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Post-Mortem of a Zombie: Conficker Cleanup After Six Years

Hadi Asghari, Michael Ciere and Michel J.G. van Eeten
Delft University of Technology

Abstract

Research on botnet mitigation has focused predomi-
nantly on methods to technically disrupt the command-
and-control infrastructure. Much less is known about the
effectiveness of large-scale efforts to clean up infected
machines. We analyze longitudinal data from the sink-
hole of Conficker, one the largest botnets ever seen, to as-
sess the impact of what has been emerging as a best prac-
tice: national anti-botnet initiatives that support large-
scale cleanup of end user machines. It has been six years
since the Conficker botnet was sinkholed. The attackers
have abandoned it. Still, nearly a million machines re-
main infected. Conficker provides us with a unique op-
portunity to estimate cleanup rates, because there are rel-
atively few interfering factors at work. This paper is the
first to propose a systematic approach to transform noisy
sinkhole data into comparative infection metrics and nor-
malized estimates of cleanup rates. We compare the
growth, peak, and decay of Conficker across countries.
We find that institutional differences, such as ICT devel-
opment or unlicensed software use, explain much of the
variance, while the national anti-botnet centers have had
no visible impact. Cleanup seems even slower than the
replacement of machines running Windows XP. In gen-
eral, the infected users appear outside the reach of current
remediation practices. Some ISPs may have judged the
neutralized botnet an insufficient threat to merit remedi-
ation. These machines can however be magnets for other
threats — we find an overlap between GameoverZeus
and Conficker infections. We conclude by reflecting on
what this means for the future of botnet mitigation.

1 Introduction

For years, researchers have been working on methods to
take over or disrupt the command-and-control (C&C) in-
frastructure of botnets (e.g. [14, 37, 26]). Their suc-
cesses have been answered by the attackers with ever

more sophisticated C&C mechanisms that are increas-
ingly resilient against takeover attempts [30].

In pale contrast to this wealth of work stands the lim-
ited research into the other side of botnet mitigation:
cleanup of the infected machines of end users. Af-
ter a botnet is successfully sinkholed, the bots or zom-
bies basically remain waiting for the attackers to find
a way to reconnect to them, update their binaries and
move the machines out of the sinkhole. This happens
with some regularity. The recent sinkholing attempt of
GameoverZeus [32], for example, is more a tug of war
between attackers and defenders, rather than definitive
takedown action. The bots that remain after a takedown
of C&C infrastructure may also attract other attackers,
as these machines remain vulnerable and hence can be
re-compromised.

To some extent, cleanup of bots is an automated pro-
cess, driven by anti-virus software, software patches and
tools like Microsoft’s Malicious Software Removal Tool,
which is included in Windows’ automatic update cycle.
These automated actions are deemed insufficient, how-
ever. In recent years, wide support has been established
for the idea that Internet Service Providers (ISPs) should
contact affected customers and help them remediate their
compromised machines [39, 22]. This shift has been ac-
companied by proposals to treat large-scale infections as
a public health issue [6, 8].

As part of this public health approach, we have seen
the emergence of large-scale cleanup campaigns, most
notably in the form of national anti-botnet initiatives.
Public and private stakeholders, especially ISPs, collabo-
rate to notify infected end users and help them clean their
machines. Examples include Germany’s Anti-Botnet
Advisory Center (BotFrei), Australia’s Internet Industry
Code of Practice (iCode), and Japan’s Cyber Clean Cen-
ter (CCC, superseded by ACTIVE) [27].

Setting up large-scale cleanup mechanisms is cumber-
some and costly. This underlines the need to measure
whether these efforts are effective. The central question
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of this paper is: What factors drive cleanup rates of in-
fected machines? We explore whether the leading na-
tional anti-botnet initiatives have increased the speed of
cleanup.

We answer this question via longitudinal data from
the sinkhole of Conficker, one the largest botnets ever
seen. Conficker provides us with a unique opportunity to
study the impact of national initiatives. It has been six
years since the vulnerability was patched and the botnet
was sinkholed. The attackers have basically abandoned it
years ago, which means that infection rates are driven by
cleanup rather than the attacker countermeasures. Still,
nearly a million machines remain infected (see figure 1).
The Conficker Working Group, the collective industry ef-
fort against the botnet, concluded in 2010 that remedia-
tion has been a failure [7].

Before one can draw lessons from sinkhole data, or
from most other data sources on infected machines, sev-
eral methodological problems have to be overcome. This
paper is the first to systematically work through these is-
sues, transforming noisy sinkhole data into comparative
infection metrics and normalized estimates of cleanup
rates.

For this research, we were generously given access to
the Conficker sinkhole logs, which provide a unique long
term view into the life of the botnet. The dataset runs
from February 2009 until September 2014, and covers all
countries — 241 ISO codes — and 34,000 autonomous
systems. It records millions of unique IP addresses each
year — for instance, 223 million in 2009, and 120 mil-
lion in 2013. For this paper, we focus on bots located in
62 countries.

In sum, the contributions of this paper are as follows:

1. We develop a systematic approach to transform
noisy sinkhole data into comparative infection met-
rics and normalized estimates of cleanup rates.

2. We present the first long term study on botnet reme-
diation.

3. We provide the first empirical test of the best prac-
tice exemplified by the leading national anti-botnet
initiatives.

4. We identify several factors that influence cleanup
rates across countries.

2 Background

2.1 Conficker timeline and variants
In this section we will provide a brief background on the
history of the Conficker worm, its spreading and defense

Figure 1: Conficker bots worldwide

mechanisms, and some milestones in the activities of the
Conficker Working Group.

The Conficker worm, also known as Downadup, was
first detected in November 2008. The worm spread by
exploiting vulnerability MS08-067 in Microsoft Win-
dows, which had just been announced and patched. The
vulnerability affected all versions of Microsoft Windows
at the time, including server versions. A detailed tech-
nical analysis is available in [29]. Briefly put, infected
machines scanned the IP space for vulnerable machines
and infected them in a number steps. To be vulnerable,
a machine needed to be unpatched and online with its
NetBIOS ports open and not behind a firewall. Remark-
ably, a third of all machines had still not installed the
patch by January 2009, a few months after its availabil-
ity [11]. Consequently, the worm spread at an explosive
rate. The malware authors released an update on Decem-
ber 29, 2008, which was named Conficker-B. The update
added new methods of spreading, including via infected
USB devices and shared network folders with weak pass-
words. This made the worm propagate even faster [7].

Infected machines communicated with the attackers
via an innovative, centralized system. Every day, the bots
attempted to connect to 250 new pseudo-randomly gen-
erated domains under eight different top-level domains.
The attackers needed to register only one of these do-
mains to reach the bots and update their instructions and
binaries. Defenders, on the other hand, needed to block
all these domains, every day, to disrupt the C&C. An-
other aspect of Conficker was the use of intelligent de-
fense mechanisms, that made the worm harder to re-
move. It disabled Windows updates, popular anti-virus
products, and several Windows security services. It also
blocked access to popular security websites [29, 7].

Conficker continued to grow, causing alarm in the cy-
bersecurity community about the potential scale of at-
tacks, even though the botnet had not yet been very active
at that point. In late January, the community — includ-
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ing Microsoft, ICANN, domain registries, anti-virus ven-
dors, and academic researchers — responded by forming
the Conficker Working Group [7, 31]. The most impor-
tant task of the working group was to coordinate and reg-
ister or block all the domains the bots would use to com-
municate, staying ahead of the Conficker authors. The
group was mostly successful in neutralizing the botnet
and disconnecting it from its owners; however, small er-
rors were made on two occasions in March, allowing the
attackers to gain access to part of the botnet population
and update them to the C variant.

The Conficker-C variant had two key new features:
the number of pseudo-randomly generated domains was
increased to 50,000 per day, distributed over a hun-
dred different TLDs, and a P2P update protocol was
added. These features complicated the work of the work-
ing group. On April 9, 2009, Conficker-C bots up-
graded to a new variant that included a scareware pro-
gram which sold fake anti-virus at prices between $50–
$100. The fake anti-virus program, probably a pay-per-
install contract, was purchased by close to a million un-
witting users, as was later discovered. This use of the
botnet prompted law enforcement agencies to increase
their efforts to pursue the authors of Conficker.1 Even-
tually, in 2011, the U.S. Federal Bureau of Investiga-
tion, in collaboration with police in several other coun-
tries, arrested several individuals associated with this
$72-million scareware ring. [21, 19]

2.2 National anti-botnet centers
Despite the successes of the cybersecurity community in
neutralizing Conficker, a large number of infected ma-
chines still remained. This painful fact was recognized
early on; in its ‘Lessons Learned’ document from 2010,
the Conficker Working Group reported remediation as its
top failure [7]. Despite being inactive, Conficker remains
one of the largest botnets. As recent as June 2014, it was
listed as the #6 botnet in the world by anti-virus ven-
dor ESET [9]. This underlines the idea that neutralizing
the C&C infrastructure in combination with automated
cleanup tools will not eradicate the infected machines;
some organized form of cleanup is necessary.

During the past years, industry and regulatory guide-
lines have been calling for increased participation of ISPs
in cleanup efforts. For instance, the European Network
and Information Security Agency [1], the Internet En-
gineering Task Force [22], the Federal Communications
Commission [10], and the Organization for Economic
Cooperation and Development [27] have all called upon
ISPs to contact infected customers and help them clean
up their compromised machines.

1Microsoft also set a $250,000 bounty for information leading to
arrests.

The main reason for this shift is that ISPs can iden-
tify and contact the owners of the infected machines, and
provide direct support to end users. They can also quar-
antine machines that do not get cleaned up. Earlier work
has found evidence that ISP mitigation can significantly
impact end user security [40].

Along with this shift of responsibility towards ISPs,
some countries have established national anti-botnet ini-
tiatives to support the ISPs and end users in cleanup ef-
forts. The setup is different in each country, but typically
it involves the collection of data on infected machines
(from botnet sinkholes, honeypots, spamtraps, and other
sources); notifying ISPs of infections within their net-
works; and providing support for end users, via a website
and sometimes a call-center.

A number of countries have been running such cen-
ters, often as part of a public-private partnership. Table
1 lists the countries with active initiatives in late 2011,
according to an OECD report [27]. The report also men-
tions the U.S. & U.K. as developing such initiatives. The
Netherlands is listed as having ‘ISP-specific’ programs,
for at that time, KPN and Ziggo — the two largest ISPs
— were heading such programs voluntarily [39].2 Fin-
land, though not listed, has been a leader with consis-
tently low infection rates for years. It has had a notifi-
cation and cleanup mechanism in place since 2005, as
part of a collaboration between the national CERT, the
telco regulator and main ISPs [20, 25]. At the time of
writing, other countries are starting anti-botnet centers as
well. In the EU alone, seven new national centers have
been announced [2]. These will obviously not impact the
past cleanup rates of Conficker, but they do underwrite
the importance of empirically testing the efficacy of this
mitigation strategy.

Figure 2 shows the website of the German anti-botnet
advisory center, botfrei. The center was launched in 2010
by eco, the German Internet industry association, and is
partially funded by the German government. The cen-
ter does three things. First, it identifies users with in-
fected PCs. Second, they inform the infected customers
via their ISPs. Third, they offer cleanup support, through
a website — with free removal tools and a forum — and

2It has now been replaced by a wider initiative involving all main
providers and covering the bulk of the broadband market.

COUNTRY INITIATIVE
Australia Internet Industry Code of Practice (iCode)
Germany German Anti-Botnet Initiative (BotFrei)
Ireland Irish Anti-Botnet Initiative
Japan Cyber Clean Center / ACTIVE
Korea KrCERT/CC Anti-Botnet Initiative

Netherlands Dutch Anti-Botnet Initiative (Abuse-Hub)

Table 1: List of countries with anti-botnet initiatives [27]
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Figure 2: The German Anti-Botnet Advisory Center
website - botfrei.de

a call center [17]. The center covers a wide range of
malware, including Conficker. We should mention that
eco staff told us that much of the German Conficker re-
sponse took place before the center was launched. In
their own evaluations, the center reports successes in
terms of the number of users visiting its website, the
number of cleanup actions performed, and overall reduc-
tions in malware rates in Germany. Interestingly enough,
a large number of users visit botfrei.de directly, without
being prompted by their ISP. This highlights the impact
of media attention, as well as the demand for proactive
steps among part of the user population.

We only highlight Germany’s botfrei program as an
example. In short, one would expect that countries run-
ning similar anti-botnet initiatives to have higher cleanup
rates of Conficker bots. This, we shall evaluate.

2.3 Related Work
Similar to other botnets, much of the work on the
Conficker worm has focused predominantly on tech-
nical analysis, e.g., [29]. Other research has studied
the worm’s outbreak and modeled its infection patterns,
e.g., [42], [16], [33] and [41]. There have also been a
few studies looking into the functioning of the Work-
ing Group, e.g., [31]. None of this work looks specif-
ically at the issue of remediation. Although [33] uses
the same dataset as this paper to model the spread of the
worm, their results are skewed by the fact that they ig-
nore DHCP churn, which is known to cause errors in in-
fection rates of up to one order of magnitude for some
countries [37].

This paper also connects to the literature on botnet
mitigation, specifically to cleanup efforts. This includes
the industry guidelines we discussed earlier, e.g., [1],
[27], [10] and [22]; as well as academic work that tries
to model different mitigation strategies, e.g., [6], [18]
and [13]. We contribute to this discussion by bringing
longitudinal data to bear on the problem and empirically
evaluating one of the key proposals to emanate from this

literature. This expands some of our earlier work.
In a broader context, a large body of research focuses

on other forms of botnet mitigation, e.g., [14, 37, 26, 30],
modeling worm infections, e.g. [35, 44, 43, 28], and
challenges in longitudinal cybersecurity studies. For the
sake of brevity we will not cite more works in these areas
here (— except for works used in other sections).

3 Methodology

Answering the central research question requires a num-
ber of steps. First, we set out to derive reliable esti-
mates of the number of Conficker bots in each country
over time. This involves processing and cleaning the
noisy sinkhole data, as well as handling several measure-
ment issues. Later, we use the estimates to compare in-
fection trends in various countries, identify patterns and
specifically see if countries with anti-botnet initiatives
have done any better. We do this by by fitting a de-
scriptive model to each country’s time-series of infec-
tion rates. This provides us with a specific set of param-
eters, namely the growth rate, the peak infection level,
and the decay rate. We explore a few alternative models
and opt for a two-piece model that accurately captures
these characteristics. Lastly, to answer the central ques-
tion, we explore the relationship between the estimated
parameters and a set of explanatory variables.

3.1 The Conficker Dataset

The Conficker dataset has four characteristics that make
it uniquely suited for studying large-scale cleanup ef-
forts. First, it contains the complete record of one sink-
holed botnet, making it less convoluted than for example
spam data, and with far fewer false positives. Second,
it logs most of the population on a daily basis, avoid-
ing limitations from seeing only a sample of the bot-
net. Third, the dataset is longitudinal and tracks a period
of almost six years. Many sinkholes used in scientific
research typically cover weeks rather than months, let
alone six years. Fourth, most infection data reflects a mix
of attacker and defender behavior, as well as different
levels (global & local). This makes it hard to determine
what drives a trend – is it the result of attacker behav-
ior, defender innovation, or just randomness? Conficker,
however, was neutralized early on, with the attackers los-
ing control and abandoning the botnet. Most other global
defensive actions (e.g., patching and sinkholing) were
also done in early 2009. Hence, the infection levels in
our dataset predominantly reflect cleanup efforts. These
combined attributes make the Conficker dataset excellent
for studying the policy effects we are interested in.

4
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Raw Data

Our raw data comes from the Conficker sinkhole logs.
As explained in the background section, Conficker bots
used an innovative centralized command and control in-
frastructure. The bots seek to connect to a number of
pseudo-random domains every day, and ask for updated
instructions or binaries from their masters. The algo-
rithm that generates this domain list was reverse engi-
neered early on, and various teams, including the Con-
ficker Working Group, seized legal control of these do-
mains. The domains were then ‘sinkholed’: servers were
set up to listen and log every attempt to access the do-
mains. The resulting logs include the IP address of each
machine making such an attempt, timestamps, and a few
other bits of information.

Processing Sinkhole Logs

The raw logs were originally stored in plain text, before
adoption of the nmsg binary format in late 2010. The
logs are huge; a typical hour of logs in January 2013
is around half a gigabyte, which adds up to tens of ter-
abytes per year. From the raw logs we extract the IP
address, which in the majority of cases will be a Con-
ficker A, B, or C bot (the sinkholed domains were not
typically used for other purposes). Then, using the Max-
Mind GeoIP database [23] and an IP-to-ASN database
based on Routeviews BGP data [4], we determine the
country and Autonomous System that this IP address be-
longed to at that moment in time. We lastly count the
number of unique IP addresses in each region per hour.

With some exceptions, we capture most Conficker bots
worldwide. The limitations are due to sinkholes down-
time; logs for some sinkholed domains not being handed
over to the working group [7]; and bots being behind
an egress firewall, blocking their access to the sinkhole.
None of these issues however creates a systematic bias,
so we may treat them as noise.

After processing the logs we have a dataset spanning
from February 2009 to September 2014, covering 241
ISO country codes and 34,000 autonomous systems. The
dataset contains approximately 178 million unique IP ad-
dresses per year. In this paper we focus on bots located in
62 countries, which were selected as follows. We started
with the 34 members of the Organization for Economic
Cooperation and Development (OECD), and 7 additional
members of the European Union which are not part of
the OECD. These countries have a common develop-
ment baseline, and good data is available on their poli-
cies, making comparison easier. We add to this list 23
countries that rank high in terms of Conficker or spam
bots — cumulatively covering 80 percent of all such bots
worldwide. These countries are interesting from a cy-
bersecurity perspective. Finally, two countries were re-

Figure 3: Unique IP counts over various time-periods

moved due to severe measurement issues affecting their
bot counts, which we will describe later. The full list of
countries can be seen in figure 8 or in the appendix.

3.2 Counting bots from IP addresses

The Conficker dataset suffers from a limitation that is
common among most sinkhole data and other data on in-
fected machines, such as spam traps, firewall logs, and
passive DNS records: one has to use IP addresses as a
proxy for infected machines. Earlier research has estab-
lished that IP addresses are coarse unique identifiers and
they can be off by one order of magnitude in a matter of
days [37], because of differences in the dynamic IP ad-
dress allocation policies of providers (so-called DHCP
churn). Simply put, because of dynamic addresses, the
same infected machine can appear in the logs under mul-
tiple IP addresses. The higher the churn rate, the more
over-counting.

Figure 3 visualizes this problem. It shows the count
of unique Conficker IP addresses in February 2011 over
various time periods — 3 hours, 12 hours, one day, up to
a week. We see an interesting growth curve, non-linear
at the start, then linear. Not all computers are powered
on at every point in time, so it makes sense to see more
IP addresses in the sinkhole over longer time periods.
However, between the 6th and 7th day, we have most
likely seen most infected machines already. The new IP
addresses are unlikely to be new infections, as the daily
count is stable over the period. The difference is thus
driven by infected machines reappearing with a new IP
address.

The figure shows IP address counts for the Nether-
lands and Germany. From qualitative reports we know
that IP churn is relatively low in the Netherlands —
an Internet subscriber can retain the same IP address
for months — while in Germany the address typically
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changes every 24 hours. This is reflected in the figure:
the slope for Germany is much steeper. Should one ig-
nore the differences in churn rates among countries, and
simply count unique IP addresses over a week, then a
severe bias will be introduced against countries such as
Germany. Using shorter time periods, though leading to
under-counting, decreases this bias.3 We settle for this
simple solution: counting the average number of unique
IPs per hour, thereby eliminating the churn factor. This
hourly count will be a fraction of the total bot count, but
that is not a problem when we make comparisons based
on scale-invariant measures, such as cleanup rates.

Network Address Translation (NAT) and the use of
HTTP proxies can also cause under-counting. This is
particularly problematic if it happens at the ISP level,
leading to large biases when comparing cleanup poli-
cies. After comparing subscriber numbers with IP ad-
dress space size in our selection of countries, we con-
cluded that ISP-level NAT is widely practiced in India.
As we have no clear way of correcting such cases, we
chose to exclude India from our analysis.

3.3 Missing measurements

The Conficker dataset has another problem that is also
common: missing measurements. Looking back at fig-
ure 1, we see several sudden drops in bot counts, which
we highlighted with dotted lines. These drops are pri-
marily caused by sinkhole infrastructure downtime —
typically for a few hours, but at one point even several
weeks. These measurement errors are a serious issue,
as they only occur in one direction and may skew our
analysis. We considered several approaches to dealing
with them. One approach is to model the measurement
process explicitly. Another approach is to try and mini-
mize the impact of aberrant observations by using robust
curve-fitting methods. This approach adds unnecessary
complexity and is not very intuitive. A third option is to
pre-process the data using curve smoothing techniques;
for instance by taking the exponentially weighted rolling
average or applying the Hodrick-Prescott filter. Although
not necessarily wrong, this also adds its own new biases
as it changes data. The fourth approach, and the one that
we use, is to detect and remove the outliers heuristically.

For this purpose, we calculate the distance between
each weekly value in the global graph with the rolling
median of its surrounding two months, and throw out the
top 10%. This works because most bots log in about
once a day, so the IP counts of adjacent periods are not
independent. The IP count may increase, decrease, or

3Ideally, we would calculate a churn rate — the average number of
IPs per bot per day — and use that to generate a good estimate of the
actual number of bots. That is not an easy task, and requires making
quite a number of assumptions.

Figure 4: Conficker bots versus broadband subscribers

slightly fluctuate, but a sudden decrease in infected ma-
chines followed by a sudden return of infections to the
previous level is highly unlikely. The interested reader is
referred to the appendix to see the individual graphs for
all the countries with the outliers removed.4

3.4 Normalizing bot counts by country size
Countries with more Internet users are likely to have
more Conficker bots, regardless of remediation efforts.
Figure 4 illustrates this. It thus makes sense to normalize
the unique IP counts by a measure of country size; in par-
ticular if one is to compare peak infection rates. One such
measure is the size of a country’s IP space, but IP address
usage practices vary considerably between countries. A
more appropriate denominator and the one we use is the
number of Internet broadband subscribers. This is avail-
able from a number of sources, including the Worldbank
Development Indicators.

4 Modeling Infections

4.1 Descriptive Analysis
Figure 5 shows the Conficker infection trends for Ger-
many, United States, France, and Russia. The x-axis is
time; the y-axis is the average number of unique IP ad-
dresses seen per day in the sinkhole logs, corrected for
churn. We observe a similar pattern: a period of rapid
growth; a plateau period, where the number of infected
machines peaks and remains somewhat stable for a short
or longer amount of time; and finally, a period of gradual
decline.

What explains these similar trends among countries,
and in particular, the points in time where the changes

4An extreme case was Malaysia, where the length of the drops
and fluctuations spanned several months. This most likely indicates
country-level egress filtering, prompting us to also exclude Malaysia
from the analysis.
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Figure 5: Conficker trends for four countries

occur on the graphs? At first glance, one might think
that the decline is set off by some event — for instance,
the arrest of the bot-masters, or a release of a patch.
But this is not the case. As previously explained, all
patches for Conficker were released by early 2009, while
the worm continued spreading after that. This is because
most computers that get infected with Conficker are “un-
protected” — that is, they are either unpatched or with-
out security software, in case the worm spreads via weak
passwords on networks shares, USB drives, or domain
controllers. The peak in 2010 – 2011 is thus the worm
reaching some form of saturation where all vulnerable
computers are infected. In the case of business networks,
administrators may have finally gotten the worm’s re-
infection mechanisms under control [24].

Like the growth phase and the peak, the decline can
also not be directly explained by external attacker be-
havior. Arrests related to Conficker occurred mid 2011,
while the decline started earlier. In addition, most of the
botnet was already out of the control of the attackers.
What we are seeing appears to be a ‘natural’ process of
the botnet. Infections may have spread faster in some
countries, and cleanups may have been faster in others,
but the overall patterns are similar across all countries.

4.2 Epidemic Models
It is often proposed in the security literature to model
malware infections similarly as epidemics of infectious
diseases, e.g. [28, 44]. The analog is that vulnerable
hosts get infected, and start infecting other hosts in their
vicinity; at some later point they are recovered or re-
moved (cleaned, patched, upgraded or replaced).

This leads to multiple phases, similar to what we see
for Conficker: in the beginning, each new infection in-
creases the pressure on vulnerable hosts, leading to an
explosive growth. Over time, fewer and fewer vulnera-
ble hosts remain to be infected. This leads to a phase
where the force of new infections and the force of recov-

ery are locked in dynamic equilibrium. The size of the
infected population reaches a plateau. In the final phase,
the force of recovery takes over, and slowly the number
of infections declines towards zero.

Early on in our modeling efforts we experimented
with a number of epidemic models, but eventually de-
cided against them. Epidemic models involve a set of
latent compartments and a set of differential equations
that govern the transitions between them — see [12] for
an extensive overview. Most models make a number of
assumptions about the underlying structure of the popu-
lation and the propagation mechanism of the disease.

The basic models for instance assume constant tran-
sition rates over time. Such assumptions might hold to
an acceptable degree in short time spans, but not over
six years. The early works applying these models to the
Code Red and Slammer worms [44, 43] used data span-
ning just a few weeks. One can still use the models even
when the assumptions are not met, but the parameters
cannot be then easily interpreted. To illustrate: the basic
Kermack-McKendrick SIR model fits our data to a rea-
sonable degree. However, we know that this model as-
sumes no reinfections, while Conficker reinfections were
a major problem for some companies [24].

More complex models reduce assumptions by adding
additional latent variables. This creates a new problem:
often when solved numerically, different combinations
of the parameters fit the data equally well. We observed
this for some countries with even the basic SIR model.
Such estimates are not a problem when the aim is to pre-
dict an outbreak. But they are showstoppers when the
aim is to compare and interpret the parameters and make
inferences about policies.

4.3 Our model

For the outlined reasons, we opted for a simple descrip-
tive model. The model follows the characteristic trend
of infection rates, provides just enough flexibility to cap-
ture the differences between countries, and makes no as-
sumptions about the underlying behavior of Conficker.
It merely describes the observed trends in a small set of
parameters.

The model consists of two parts: a logistic growth that
ends in a plateau; followed by an exponential decay. Lo-
gistic growth is a basic model of self-limiting population
growth, where first the rate of growth is proportional to
the size of the existing population, and then declines as
the natural limit is approached (— the seminal work of
Staniford, et al. [35] also used logistic growth). In our
case, this natural limit is the number of vulnerable hosts.

Exponential decay corresponds to a daily decrease of
the number of Conficker bots by a fixed percentage. Fig-
ure 6 shows the number of infections per subscriber over

7
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Figure 6: Conficker bots per subscriber on logarithm
scale for (from top to bottom) Russia, Belarus, Germany.

time for three countries on a logarithm scale. We see a
downward-sloping straight line in the last phase that cor-
responds to an exponential decay: the botnet shrank by
a more or less a constant percentage each day. We do
not claim that the assumptions underpinning the logistic
growth and the exponential decay models are fully satis-
fied, but in the absence of knowledge of the exact dynam-
ics, their simplicity seems the most reasonable approach.

The model allows us to reduce the time series data for
each country to these parameters: (1) the infection rate
in the growth phase, (2) the peak number of infections,
(3) the time at which this peak occurred, and (4) the ex-
ponential decay rate in the declining phase. We will fit
our model on the time series for all countries, and then
compare the estimates of these parameters.

Mathematically, our model is formulated as follows:

bots(t) =




K
1+ e−r(t−t0)

, if t < tP

He−γ(t−tP), if t ≥ tP

(1)

where bots(t) is the number of bots at time t, tP is the
time of the peak (where the logistic growth transitions to
exponential decay), and H the height of the peak. The lo-
gistic growth phase has growth rate r, asymptote K, and
midpoint t0. The parameter γ is the exponential decay
rate. The height of the peak is identified by the other
parameters:

H =
K

1+ e−r(tP−t0)
.

4.4 Inspection of Model Fit
We fit the curves using the Levenberg-Marquardt least
squares algorithm with the aid of the lmfit Python mod-
ule. The results are point estimates; standard errors were
computed by lmfit by approximating the Hessian matrix

Figure 7: Comparison of alternative models

at the point estimates. With these standard errors we
computed Wald-type confidence intervals (point estimate
± 2 s.e.) for all parameters. These intervals have no ex-
act interpretation in this case, but provide some idea of
the precision of the point estimates.

The reader can find plots of the fitted curves for all 62
countries in the appendix. The fits are good, with R2 val-
ues all between 0.95 and 1. Our model is especially ef-
fective for countries with sharp peaks, that is, the abrupt
transitions from growth to decay that can be seen in Hun-
gary and South Africa, for example. For some countries,
such as Pakistan and Ukraine, we have very little data
on the growth phase, as they reached their peak infection
rate around the time sinkholing started. For these coun-
tries we will ignore the growth estimates in further anal-
ysis. By virtue of our two-phase model, the estimates of
the decay rates are unaffected by this issue.

We note that our model is deterministic rather than
stochastic; that is, it does not account for one-time
shocks in cleanup that lead to a lasting drop in infec-
tion rates. Nevertheless, we see that the data follows the
fitted exponential decay curves quite closely, which in-
dicates that bots get cleaned up at a constant rate and
non-simultaneously.5

Alternative models: We tried fitting models from epi-
demiology (e.g. the SIR model) and reliability engineer-
ing (e.g. the Weibull curve), but they did not do well in
such cases, and adjusted R2 values were lower for almost
all countries. Additionally, for a number of countries, the
parameter estimates were unstable. Figure 7 illustrates
why: our model’s distinct phases captures the height of
peak and exponential decay more accurately.

5The exception is China: near the end of 2010 we see a massive
drop in Conficker infections. After some investigation, we found clues
that this drop might be associated by a sudden spur in the adoption of
IPv6 addresses, which are not directly observable to the sinkhole.
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5 Findings

5.1 Country Parameter Estimates

Figure 8 shows the parameter estimates and their preci-
sion for each of the 62 countries: the growth rate, peak
height, time of the peak, and the decay rate.

The variance in the peak number of infections is strik-
ing: between as little as 0.01% to over 1% of Inter-
net broadband subscribers. The median is .1%. It ap-
pears that countries with high peaks tend to also have
high growth rates, though we have to keep in mind that
the growth rate estimates are less precise, because the
data does not fully cover that phase. Looking at the
peak height, it seems that this is not associated with low
cleanup rates. For example, Belarus (BY) has the highest
decay rate, but a peak height well above the median.

The timing of the peaks is distributed around the last
weeks of 2010. Countries with earlier peaks are mostly
countries with higher growth rates. This suggests that the
time of the peak is simply a matter of when Conficker
ran out of vulnerable machines to infect; a faster growth
means this happens sooner. Hence, it seems unlikely that
early peaks indicate successful remediation.

The median decay rate estimate is .009, which corre-
sponds to a 37% decline per year (100 · (1− e−.009·52)).
In countries with low decay rates (around .005), the bot-
net shrank by 23% per year, versus over 50% per year on
the high end.

5.2 National Anti-Botnet Initiatives

We are now in a position to address the paper’s central
question and to explore the effects of the leading na-
tional anti-botnet initiatives (ABIs). In figure 8, we have
highlighted the countries with such initiatives as crosses.
One would expect that these countries have slower bot-
net growth, a lower peak height, and especially a faster
cleanup rate. There is no clear evidence for any of this;
the countries with ABIs are all over the place. We do
see some clustering on the lower end of the peak height
graphs; however, this position is shared with a number of
other countries that are institutionally similar (in terms
of wealth for example) but not running such initiatives.

We can formally test if the population median is equal
for the two groups using the Wilcoxon ranksum test. The
p-value of the test when comparing the Conficker decay
rate among the two sets of countries is 0.54, which is too
large to conclude that the ABIs had a meaningful effect.
It is somewhat surprising, and disappointing, to see no
evidence for the impact of the leading remediation efforts
on bot cleanup.

We briefly look at three possible explanations. The
first one is that country trends might be driven by in-

fections in other networks than those of the ISPs, as we
know that the ABIs focus mostly on ISPs. This explana-
tion fails, however, as can be seen in figure 2. The ma-
jority of the Conficker bots were located in the networks
of the retail ISPs in these countries, compared to educa-
tional, corporate or governmental networks. This pattern
held in 2010, the year of peak infections, and 2013, the
decay phase, with one minor deviation: in the Nether-
lands, cleanup in ISP networks was faster than in other
networks.

Country ISP % 2010 ISP % 2013
AU 77% 74%
DE 89% 82%
FI 73% 69%
IE 72% 74%
JP 64% 67%
KR 83% 87%
NL 72% 37%

Others 81% 75%

Table 2: Conficker bots located in retail ISPs

A second explanation might be that the ABIs did not
include Conficker in their notification and cleanup ef-
forts. In two countries, Germany and the Netherlands,
we were able to contact participants of the ABI. They
claimed that Conficker sinkhole feeds were included and
sent to the ISPs. Perhaps the ISPs did not act on the data
— or at least not at a scale that would impact the decay
rate; they might have judged Conficker infections to be
of low risk, since the botnet had been neutralized. This
explanation might be correct, but it also reinforces our
earlier conclusion that the ABIs did not have a signifi-
cant impact. After all, this explanation implies that the
ABIs have failed to get the ISPs and their customers to
undertake cleanup at a larger scale.

Given that cleanup incurs cost for the ISP, one could
understand that they might decide to ignore sinkholed
and neutralized botnets. On closer inspection, this de-
cision seems misguided, however. If a machine is in-
fected with Conficker, it means it is in a vulnerable —
and perhaps infected — state for other malware as well.
Since we had access to the global logs of the sinkhole
for GameoverZeus — a more recent and serious threat
— we ran a cross comparison of the two botnet popu-
lations. We found that based on common IP addresses,
a surprising 15% of all GameoverZeus bots are also in-
fected with Conficker. During six weeks at the end of
2014, the GameoverZeus sinkhole saw close to 1.9 mil-
lion unique IP addresses; the Conficker sinkhole saw 12
million unique IP addresses; around 284 thousand ad-
dresses appear in both lists. Given that both malware
types only infected a small percentage of the total pop-
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Figure 8: Parameter estimates and confidence intervals

ulation of broadband subscribers, this overlap is surpris-
ingly large.6 It stands in stark contrast to the findings of
a recent study that systematically determined the over-
lap among 85 blacklists and found that most entries were
unique to one list, and that overlap between independent
lists was typically less than one percent [34]. In other
words, Conficker bots should be considered worthwhile
targets for cleanup.

6The calculated overlap in terms of bots might be inflated as a re-
sult of both NAT and DHCP churn. Churn can in this case have both an
over-counting and under-counting effect. Under-counting will occur if
one bot appears in the two sinkholes with different IP addresses, as a
result of different connection times to the sinkholes. Doing the IP com-
parisons at a daily level yields a 6% overlap, which is still considerable.

5.3 Institutional Factors

Given that anti-botnet initiatives cannot explain the vari-
ation among the country parameters shown in figure 8,
we turn our attention to several institutional factors that
are often attributed with malware infection rates (e.g., see
[40]). These are broadband access, unlicensed software
use, and ICT development on a national level. In addi-
tion, given the spreading mechanism of Conficker, we
also look at Operating System market shares, as well as
PC upgrade cycles. We correlate these factors with the
relevant parameters.

10
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Correlating Growth Rate

Broadband access is often mentioned as a technolog-
ical enabler of malware; in particular, since Conficker
was a worm that spread initially by scanning for hosts
to infect, one could expect its growth in countries with
higher broadband speeds to be faster. Holding other fac-
tors constant, most epidemiological models would also
predict this faster growth with increased network speeds.
This turns out not to be the case. The Spearman cor-
relation coefficient between average national broadband
speeds, as reported by the International Telecommunica-
tion Union [15], and Conficker growth rate is in fact neg-
ative: -0.30. This is most probably due to other factors
confounding with higher broadband speeds, e.g. national
wealth. In any case, the effects of broadband access and
speeds are negligible compared to other factors, and we
will not pursue this further.

Correlating Height of Peak

As we saw, there is a wide dispersion between countries
in the peak number of Conficker bots. What explains the
large differences in peak infection rates?

Operating system market shares: Since Conficker
only infects machines running Windows 2000, XP, Vista,
or Server 2003/2008, some variation in peak height may
be explained by differences in use of these operating sys-
tems (versus Windows 7 or non-Windows systems). We
use data from StatCounter Global Stats [36], which is
based on page view analytics of some three million web-
sites. Figure 9 shows the peak height against the com-
bined Windows XP and Vista market shares in January
2010 (other vulnerable OS versions were negligible). We
see a strong correlation — with a Pearson correlation co-
efficient of 0.55. This in itself is perhaps not surprising.

Dividing the peak heights by the XP/Vista market
shares gives us estimates of the peak number of infections
per vulnerable user; we shall call this metric h̃p. This
metric allows for fairer comparisons between countries,
as one would expect countries with higher market shares
of vulnerable OS’s to harbor more infections regardless
of other factors. Interestingly, there is still considerable
variation in this metric – the coefficient of variance is 1.2.
We investigate two institutional factors that may explain
this variation.

ICT development index is an index published by the
ITU based on a number of well-established ICT indica-
tors. It allows for benchmarking and measuring the digi-
tal divide and ICT development among countries (based
on ICT readiness and infrastructure, ICT intensity and
use, ICT skills and literacy [15]). This is obviously a
broad indicator, and can indicate the ability to manage
cybersecurity risks, including botnet cleanups, among
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Figure 9: Bots versus XP & Vista use

both citizens and firms. Figure 10 shows this metric
against h̃p, and interestingly enough we see a strong cor-
relation.

Unlicensed software use or piracy rates are another
oft mentioned factor influencing malware infection rates.
In addition to the fact that pirated software might include
malware itself, users running pirated OS’s often turn off
automatic updates, for fear of updates disabling their un-
licensed software — even though Microsoft consistently
states that it will also ship security updates to unlicensed
versions of Windows [38]. Disabling automatic updates
leaves a machine open to vulnerabilities, and stops au-
tomated cleanups. We use the unlicensed software rates
calculated by the Business Software Alliance [5]. This
factor also turns out to be strongly correlated with h̃p, as
shown in figure 10.

Since ICT development and piracy rates are them-
selves correlated, we use the following simple linear re-
gression to explore thier joint association with peak Con-
ficker infection rates:

log(h̃p) = α +β1 · ict-dev+β2 ·piracy+ ε

where both regressors were standardized by subtract-
ing the mean and dividing by two standard devia-
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Figure 10: h̃p versus ICT development & piracy
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tions. We use the logarithm of h̃p as it is a propor-
tion. The least squares estimates (standard errors) are
β̂1 = −0.78(0.27), p < 0.01, and β̂2 = 1.7(0.27), p <
0.001. These coefficients can be interpreted as follows:
everything else kept equal, countries with low (one sd be-
low the mean) ICT development have e0.78 = 2.2 times
more Conficker bots per XP/Vista user at the peak than
countries with high ICT development (one sd above the
mean), and, similarly, countries with high piracy rates
(one sd above the mean) have an e1.7 = 5.5 times higher
peak than countries with low piracy rates (one sd below
the mean). The R2 of this regression is 0.78, which indi-
cates that ICT development and piracy rates explain most
of the variation in Conficker peak height.

Correlating Decay Rate

Although decay rates are less dispersed than peak
heights, there are still noticeable differences among
countries. Given the rather slow cleanup rates — the me-
dian of 0.009 translates to a 37% decrease in the number
of bots after one year — one hypothesis that comes to
mind is that perhaps some of the cleanup is being driven
by users upgrading their OS’s (to say Windows 7), or
buying a new computer and disposing of the old fully.

For each country we estimated the decay rate of the
market share of Windows XP and Vista from January
2011 to June 2013 using the StatCounter GlobalStats
data. Figure 11 shows these decay rates versus Conficker
decay rates. There is a weak correlation among the two,
with a Spearman correlation coefficient of 0.26.

But more interesting and somewhat surprising is that
in many countries, the Conficker botnet shrank at a
slower pace than the market share of Windows XP / Vista
(all countries below and to the right of the dashed line).
Basically this means that the users infected with Con-
ficker are less likely to upgrade their computers then the
average consumer.7

6 Discussion

We found that the large scale national anti-botnet ini-
tiatives had no observable impact on the growth, peak
height, or decay of the Conficker botnet. This is sur-
prising and unfortunate, as one would expect Conficker
bots to be among those targeted for cleanup by such ini-
tiatives. We checked that the majority of bots were in-
deed located among the networks of ISPs, and also ob-
served that some of these machines have multiple infec-
tions. Turning away from the initiatives and to institu-
tional factors that could explain the differences among

7This difference between users who remain infected with Conficker
and the average user might be more extreme in countries with a higher
level of ICT development. This can be observed in the graph.
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Figure 11: Conficker decay vs. XP/Vista decay

countries, we observed that the ICT development index
and piracy rates can explain 78% of the variation in peak
height, even after correcting for OS market shares. We
also found that the Conficker cleanup rate is less than the
average PC upgrade rate.

Perhaps not all security experts are surprised by these
findings. They are nevertheless important in forming ef-
fective anti-botnet policies. We presented the research
to an audience of industry practitioners active in botnet
cleanup. Two North American ISPs commented that they
informed their customers about Conficker infections —
as part of the ISP’s own policy, not a country-level ini-
tiative. They stated that some customers repeatedly ig-
nored notifications, while others got re-infected soon af-
ter cleanup. Another difficulty was licensing issues re-
quiring ISPs to point users to a variety of cleanup tool
websites (e.g., on microsoft.com) instead of directly dis-
tributing a tool, which complicates the process for some
users. Interestingly enough both ISPs ranked well with
regards to Conficker peak, showing that their efforts did
have a positive impact. Their challenges suggests areas
for improvement.

Future work in this area can be taken in several direc-
tions. One is to test the various parameters against other
independent variables — e.g., the number of CERTs, pri-
vacy regulation, and other governance indicators. A sec-
ond avenue is to explore Conficker infection rates at the
ISP level versus the country level. A random effects re-
gression could reveal to what extent ISPs in the same
country follow similar patterns. We might see whether
particular ISPs differ widely from their country baseline,
which would be interesting from an anti-botnet perspec-
tive. Third, it might be fruitful to contact a number of
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users still infected with Conficker in a qualitative sur-
vey, to see why they remain unaware or unworried about
running infected machines. This can help develop new
mitigation strategies for the most vulnerable part of the
population. Perhaps some infections are forgotten em-
bedded systems, not end users. Forth and more broadly
is to conduct research on the challenges identified by the
ISPs: notification mechanisms and simplifying cleanup.

7 Conclusion and Policy Implications

In this paper, we tackled the often ignored side of bot-
net mitigation: large-scale cleanup efforts. We explored
the impact of the emerging best practice of setting up
national anti-botnet initiatives with ISPs. Did these ini-
tiatives accelerate cleanup?

The longitudinal data from the Conficker botnet pro-
vided us with a unique opportunity to explore this ques-
tion. We proposed a systematic approach to transform
noisy sinkhole data into comparative infection metrics
and normalized estimates of cleanup rates. After re-
moving outliers, and by using the hourly Conficker IP
address count per subscriber to compensate for a vari-
ety of known measurement issues, we modeled the in-
fection trends using a two-part model. We thereby con-
densed the dataset to three key parameters for each coun-
try, and compared the growth, peak, and decay of Con-
ficker, which we compared across countries.

The main findings were that institutional factors such
as ICT development and unlicensed software use have in-
fluenced the spread and cleanup of Conficker more than
the leading large scale anti-botnet initiatives. Cleanup
seems even slower than the replacement of machines run-
ning Windows XP, and thus infected users appear out-
side the reach of remediation practices. At first glance,
these findings seem rather gloomy. The Conficker Work-
ing Group, a collective effort against botnets, had noted
remediation to be their largest failure [7]. We have now
found that the most promising emerging practice to over-
come that failure suffers similar problems.

So what can be done? Our findings lead us to identify
several implications. First of all, the fact that peak infec-
tion levels strongly correlate with ICT development and
software piracy, suggests that botnet mitigation can go
hand in hand with economic development and capacity
building. Helping countries develop their ICT capabil-
ities can lower the global impact of infections over the
long run. In addition, the strong correlation with soft-
ware piracy suggests that automatic updates and unat-
tended cleanups are some of the strongest tools in our
arsenal. It support policies to enable security updates to
install by default, and delivering them to all machines,
including those running unlicensed copies [3]. Some of
these points were also echoed by the ISPs mentioned in

section 6.
Second, the fact that long-living bots appear in a re-

liable dataset — that is, one with few false positives —
suggests that future anti-botnet initiatives need to com-
mit ISPs to take action on such data sources, even if the
sinkholed botnet is no longer a direct threat. These ma-
chines are vulnerable and likely to harbor other threats as
well. Tracking these infections will be an important way
to measure ISP compliance with these commitments, as
well as incentivize cleanup for those users outside the
reach of automated cleanup tools.

Third, given that cleanup is a long term effort, future
anti-botnet initiatives should support, and perhaps fund,
the long-term sustainability of sinkholes. This is a neces-
sity if we want ISPs to act on this data.

A long term view is rare in the area of cybersecurity,
which tends to focus on the most recent advances and
threats. In contrast to C&C takedown, bot remediation
needs the mindset of a marathon runner, not a sprinter.
To conclude on a more optimistic note, Finland has been
in the marathon for a longer time than basically all other
countries. It pays off: they have been enjoying consis-
tently low infection rates for years now. In other words,
a long term view is not only needed, but possible.
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Appendix - Individual Country Graphs

In this appendix we provide the model fit for all the 62
countries used in the paper. The graphs show the relative
number of Conficker bots in each country - as measured
by average unique Conficker IP addresses per hour in the
sinkholes, divided by broadband subscriber counts for
each country. (Please refer to the methodology section
for the rationale). In each graph, the solid line (in blue)
indicates the measurement; the dotted line (in gray) is
removed outliers; and the smooth-solid line (in red) in-
dicates the fitted model. The model has four parameters:
growth and decay rates — given on the graph — and
height and time of peak infections — deducible from the
axes. The R2 is also given for each country.
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Abstract
Mobile money, also known as branchless banking, brings
much-needed financial services to the unbanked in the
developing world. Leveraging ubiquitous cellular net-
works, these services are now being deployed as smart
phone apps, providing an electronic payment infrastruc-
ture where alternatives such as credit cards generally do
not exist. Although widely marketed as a more secure
option to cash, these applications are often not subject
to the traditional regulations applied in the financial sec-
tor, leaving doubt as to the veracity of such claims. In
this paper, we evaluate these claims and perform the first
in-depth measurement analysis of branchless banking ap-
plications. We first perform an automated analysis of all
46 known Android mobile money apps across the 246
known mobile money providers and demonstrate that au-
tomated analysis fails to provide reliable insights. We
subsequently perform comprehensive manual teardown
of the registration, login, and transaction procedures of
a diverse 15% of these apps. We uncover pervasive
and systemic vulnerabilities spanning botched certifica-
tion validation, do-it-yourself cryptography, and myriad
other forms of information leakage that allow an attacker
to impersonate legitimate users, modify transactions in
flight, and steal financial records. These findings confirm
that the majority of these apps fail to provide the pro-
tections needed by financial services. Finally, through
inspection of providers’ terms of service, we also dis-
cover that liability for these problems unfairly rests on
the shoulders of the customer, threatening to erode trust
in branchless banking and hinder efforts for global finan-
cial inclusion.

1 Introduction

The majority of modern commerce relies on cashless
payment systems. Developed economies depend on the
near instantaneous movement of money, often across

great distances, in order to fuel the engines of indus-
try. These rapid, regular, and massive exchanges have
created significant opportunities for employment and
progress, propelling forward growth and prosperity in
participating countries. Unfortunately, not all economies
have access to the benefits of such systems and through-
out much of the developing world, physical currency re-
mains the de facto means of exchange.

Mobile money, also known as branchless banking, ap-
plications attempt to fill this void. Generally deployed
by companies outside of the traditional financial services
sector (e.g., telecommunications providers), branchless
banking systems rely on the near ubiquitous deploy-
ment of cellular networks and mobile devices around
the world. Customers can not only deposit their physi-
cal currency through a range of independent vendors, but
can also perform direct peer-to-peer payments and con-
vert credits from such transactions back into cash. Over
the past decade, these systems have helped to raise the
standard of living and have revolutionized the way in
which money is used in developing economies. Over
30% of the GDP in many such nations can now be at-
tributed to branchless banking applications [39], many
of which now perform more transactions per month than
traditional payment processors, including PayPal [36].

One of the biggest perceived advantages of these ap-
plications is security. Whereas carrying large amounts
of currency long distances can be dangerous to physi-
cal security, branchless banking applications can allow
for commercial transactions to occur without the risk of
theft. Accordingly, these systems are marketed as a se-
cure new means of enabling commerce. Unfortunately,
the strength of such claims from a technical perspective
has not been publicly investigated or verified. Such an
analysis is therefore critical to the continued growth of
branchless banking systems.

In this paper, we perform the first comprehensive anal-
ysis of branchless banking applications. Through these
efforts, we make the following contributions:

1
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• Analysis of Branchless Banking Applications:
We perform the first comprehensive security anal-
ysis of branchless banking applications. First, we
use a well-known automated analysis tool on all 46
known Android mobile money apps across all 246
known mobile money systems. We then method-
ically select seven Android-based branchless bank-
ing applications from Brazil, India, Indonesia, Thai-
land, and the Phillipines with a combined user base
of millions. We then develop and execute a com-
prehensive, reproducible methodology for analyz-
ing the entire application communication flow. In
so doing, we create the first snapshot of the global
state of security for such applications.

• Identifications of Systemic Vulnerabilities: Our
analysis discovers pervasive weaknesses and shows
that six of the seven applications broadly fail to pre-
serve the integrity of their transactions. We then
compare our results to those provided through auto-
mated analysis and show that current tools do not re-
liably indicate severe, systemic security faults. Ac-
cordingly, neither users nor providers can reason
about the veracity of requests by the majority of
these systems.

• Analysis of Liability: We combine our technical
findings with the assignment of liability described
within every application’s terms of service, and de-
termine that users of these applications have no re-
course for fraudulent activity. Therefore, it is our
belief that these applications create significant fi-
nancial dangers for their users.

The remainder of this paper is organized as follows:
Section 2 provides background information on branch-
less banking and describes how these applications com-
pare to other mobile payment systems; Section 3 details
our methodology and analysis architecture; Section 4
presents our findings and categorizes them in terms of the
CWE classification system; Section 5 delivers discussion
and recommendations for technical remediation; Sec-
tion 6 offers an analysis of the Terms of Service and the
assignment of liability; Section 7 discusses relevant re-
lated work; and Section 8 provides concluding remarks.

2 Mobile Money in the Developing World

The lack of access to basic financial services is a con-
tributing factor to poverty throughout the world [17].
Millions live without access to basic banking services,
such as value storage and electronic payments, simply
because they live hours or days away from the nearest
bank branch. Lacking this access makes it more difficult
for the poor to save for future goals or prepare for future

(a) mPAY (b) GCash

(c) Oxigen Wallet

Figure 1: Mobile money apps are heavily marketed as be-
ing safe to use. These screenshots from providers’ mar-
keting materials show the extent of these claims.

setbacks, conduct commerce remotely, or protect money
against loss or theft. Accordingly, providing banking
through mobile phone networks offers the promise of
dramatically improving the lives of the world’s poor.

The M-Pesa system in Kenya [21] pioneered the mo-
bile money service model, in which agents (typically lo-
cal shopkeepers) act as intermediaries for deposits, with-
drawals, and sometimes registration. Both agents and
users interact with the mobile money system using SMS
or a special application menu enabled by code on a SIM
card, enabling users to send money, make bill payments,
top up airtime, and check account balances. The key
feature of M-Pesa and other systems is that their use
does not require having a previously established rela-
tionship with a bank. In effect, mobile money systems
are bootstrapping an alternative banking infrastructure
in areas where traditional banking is impractical, uneco-
nomic due to minimum balances, or simply non-existent.
M-Pesa has not yet released a mobile app, but is ar-
guably the most impactful mobile money system and
highlights the promise of branchless banking for devel-
oping economies.

Mobile money has become ubiquitous and essential.
M-Pesa boasts more than 18.2 million registrations in a
country of 43.2 million [37]. In Kenya and eight other
countries, there are more mobile money accounts than
bank accounts. As of August 2014, there were a total
of 246 mobile money services in 88 countries serving
a total of over 203 million registered accounts, continu-
ing a trend [49] up from 219 services in December 2013.
Note that these numbers explicitly exclude services that
are simply a mobile interface for existing banking sys-
tems. Financial security, and trust in branchless bank-
ing systems, depends on the assurances that these sys-
tems are secure against fraud and attack. Several of the
apps that we study offer strong assurances of security in
their promotional materials. Figure 1 provides examples

2
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Figure 2: While Mobile Money (Branchless Banking)
and Mobile Payments share significant overlapping func-
tionality, the key differences are the communications
methods the systems use and that mobile money systems
do not rely on existing banking infrastructure.

of these promises. This promise of financial security is
even reflected in the M-Pesa advertising slogan “Relax,
you have got M-Pesa.” [52]. However, the veracity of
these claims is unknown.

2.1 Comparison to Other Services
Mobile money is closely related to other technologies.
Figure 2 presents a Venn diagram indicating how repre-
sentative mobile apps fall into the categories of mobile
payments, mobile wallets, and branchless banking sys-
tems. Most mobile finance systems share the ability to
make payments to other individuals or merchants. In our
study, the mobile apps for these finance systems are dis-
tinguished as follows:

• Mobile Payment describes systems that allow a mo-
bile device to make a payment to an individual or mer-
chant using traditional banking infrastructure. Exam-
ple systems include PayPal, Google Wallet, Apple Pay,
Softpay (formerly ISIS), CurrentC, and Square Cash.
These systems acting as an intermediary for an exist-
ing credit card or bank account.

• Mobile Wallets store multiple payment credentials
for either mobile money or mobile payment systems
and/or facilitate promotional offers, discounts, or loy-
alty programs. Many mobile money systems (like Ox-
igen Wallet, analyzed in this paper) and mobile pay-
ment systems (like Google Wallet and Apple Pay) are
also mobile wallets.

• Branchless Banking is designed around policies that
facilitate easy inclusion. Enrollment often simply re-
quires just a phone number or national ID number be
entered into the mobile money system. These systems
have no minimum balances and low transaction fees,

and feature reduced “Know Your Customer”1 regula-
tions [51]. Another key feature of branchless banking
systems is that in many cases they do not rely on In-
ternet (IP) connectivity exclusively, but also use SMS,
Unstructured Supplementary Service Data (USSD), or
cellular voice (via Interactive Voice Response, or IVR)
to conduct transactions. While methods for protect-
ing data confidentiality and integrity over IP are well
established, the channel cryptography used for USSD
and SMS has been known to be vulnerable for quite
some time [56].

3 App Selection and Analysis

In this section, we discuss how apps were chosen for
analysis and how the analysis was conducted.

3.1 Mallodroid Analysis

Using data from the GSMA Mobile Money Tracker [6],
we identified a total of 47 Android mobile money apps
across 28 countries. We first ran an automated analysis
on all 47 of these apps using Mallodroid [28], a static
analysis tool for detecting SSL/TLS vulnerabilities, in
order to establish a baseline. Table 3 in the appendix pro-
vides a comprehensive list of the known Android mobile
money applications and their static analysis results. Mal-
lodroid detects vulnerabilities in 24 apps, but its analysis
only provides a basic indicator of problematic code; it
does not, as we show, exclude dead code or detect major
flaws in design. For example, it cannot guarantee that
sensitive flows actually use SSL/TLS. It similarly can-
not detect ecosystem vulnerabilities, including the use of
deprecated, vulnerable, or incorrect SSL/TLS configu-
rations on remote servers. Finally, the absence of SS-
L/TLS does not necessarily condemn an application, as
applications can still operate securely using other proto-
cols. Accordingly, such automated analysis provides an
incomplete picture at best, and at worst an incorrect one.
This is a limitation of all automatic approaches, not just
Mallodroid.

In the original Mallodroid paper, its authors performed
a manual analysis on 100 of the 1,074 (9.3%) apps their
tool detected to verify its findings; however, only 41%
of those apps were vulnerable to SSL/TLS man-in-the-
middle attacks. It is therefore imperative to further ver-
ify the findings of this tool to remove false positives and
false negatives.

1“Know Your Customer” (KYC), “Anti-Money Laundering”
(AML), and “Combating Financing of Terrorism” policies are regu-
lations used throughout the world to frustrate financial crime activity.
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Figure 3: The mobile money applications we analyzed were developed for a diverse range of countries. In total, we
performed an initial analysis on applications from 28 countries representing up to approximately 1.2 million users
based on market download counts. From this, we selected 7 applications to fully analyze from 5 countries. Each black
star represents these countries, and the white stars represent the remainder of the mobile money systems.

3.2 App Selection

Given the above observations, we selected seven mobile
money apps for more extensive analysis. These seven
apps represent 15% of the total applications and were se-
lected to reflect diversity across markets, providers, fea-
tures, download counts, and static analysis results. Col-
lectively, these apps serve millions of users. Figure 3
shows the geographic diversity across all of the mobile
money apps we observed and those we selected for man-
ual analysis.

We focus on Android applications in this paper be-
cause Android has the largest market share world-
wide [43], and far more mobile money applications are
available for Android than iOS. However, while we can-
not make claims about iOS apps that we did not analyze,
we do note that all errors disclosed in Section 4 are pos-
sible in iOS and are not specific to Android.

3.3 Manual Analysis Process

Our analysis is the first of its kind to perform an in-depth
analysis of the protocols used by these applications as
well as inspect both ends of the SSL/TLS sessions they
may use. Each layer of the communication builds on the
last; any error in implementation potentially affects the
security guarantees of all others. This holistic view of
the entire app communication protocol at multiple layers

offers a deep view of the fragility of these systems.
In order to accomplish this, our analysis consisted

of two phases. The first phase provided an overview
of the functionality provided by the app; this included
analyzing the application’s code and manifest and test-
ing the quality of any SSL/TLS implementations on re-
mote servers. Where possible, we obtained an in-country
phone number and created an account for the mobile
money system. The overview phase was followed by a
reverse engineering phase involving manual analysis of
the code. For those apps that we possessed accounts, we
also executed the app and verified any findings we found
in the code.

Our main interest is in verifying the integrity of these
sensitive financial apps. While privacy issues like IMEI
or location leakage are concerning [26], we focus on
communications between the app and the IP or SMS
backend systems, where an adversary can observe, mod-
ify, and/or generate transactions.
Phase 1: Inspection

In the inspection phase, we determined the basic func-
tionality and structure of the app in order to guide later
analysis. Figure 4 shows the overall toolchain for ana-
lyzing the apps along with each respective output.

The first step of the analysis was to obtain the applica-
tion manifest using apktool [2]. We then used an sim-
ple script to generate a report identifying each app com-
ponent (i.e., activities, services, content providers, and
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Figure 4: A visualization of the tools used for analyzing
the mobile money apps.

broadcast receivers) as well as the permissions declared
and defined by the app. This acted as a high-level proxy
for understanding the capabilities of the app. With this
report, we could note interesting or dangerous permis-
sions (e.g., WRITE EXTERNAL STORAGE can leak sen-
sitive information) and which activities are exported to
other apps (which can be used to bypass authentication).

The second step of this phase was an automated review
of the Dalvik bytecode. We used the Baksmali [10]
tool to disassemble the application dex file. While dis-
assembly provides the Dalvik bytecode, this alone does
not assist in reasoning about the protocols, data flows,
and behavior of an application. Further inspection is still
required to understand the semantic context and interac-
tions of classes and functions.

After obtaining the Dalvik bytecode, we used a
script to identify classes that use interesting libraries;
these included networking libraries, cryptography li-
braries (including java.security and javax.crypto

and Bouncy Castle [11]), well-known advertising li-
braries (as identified by Chen et al. [18]), and libraries
that can be used to evade security analysis (like Java
ClassLoaders). References to these libraries are found
directly in the Dalvik assembly with regular expressions.
The third step of the overview was to manually take note
of all packages included in the app (external libraries
like social media libraries, user interface code, HTTP li-
braries, etc.).

While analyzing the application’s code can provide
deep insight into the application’s behavior and clien-
t/server protocols, it does not provide any indication of
the security of the connection as it is negotiated by the
server. For example, SSL/TLS servers can offer vulner-
able versions of the protocol, weak signature algorithms,
and/or expired or invalid certificates. Therefore, the fi-
nal step of the analysis was to check each application’s
SSL endpoints using the Qualys SSL Server Test [50].2

2For security reasons, Qualys does not test application endpoints on

This test provides a comprehensive, non-invasive view of
the configuration and capabilities of a server’s SSL/TLS
implementation.
Phase 2: Reverse Engineering

In order to complete our holistic view of both the ap-
plication protocols and the client/server SSL/TLS nego-
tiation, we reverse engineered each app in the second
phase. For this step, we used the commercial interac-
tive JEB Decompiler [4] to provide Java syntax for most
classes. While we primarily used the decompiled out-
put for analysis, we also reviewed the Dalvik assem-
bly to find vulnerabilities. Where we were able to ob-
tain accounts for mobile money accounts, we also con-
firmed each vulnerability with our accounts when doing
so would not negatively impact the service or other users.

Rather than start by identifying interesting methods
and classes, we began analysis by following the appli-
cation lifecycle as the Android framework does, starting
with the Application.onCreate() method and mov-
ing on to the first Activity to execute. From there, we
constructed the possible control paths a user can take
from the beginning through account registration, login,
and money transfer. This approach ensures that our find-
ings are actually present in live code, and accordingly
leads to conservative claims about vulnerabilities.3 After
tracing control paths through the Activity user inter-
face code, we also analyze other components that appear
to have sensitive functionality.

As stated previously, our main interest is in verifying
the integrity of these financial applications. In the course
of analysis, we look for security errors in the following
actions:
• Registration and login
• User authentication after login
• Money transfers

These errors can be classified as:
• Improper authentication procedures
• Message confidentiality and integrity failures (in-

cluding misuse of cryptography)
• Highly sensitive information leakage (including fi-

nancial information or authentication credentials)
• Practices that discourage good security hygiene,

such as permitting insecure passwords
We discuss our specific findings in Section 4.

3.3.1 Vulnerability Disclosure

As of the publication deadline of this paper we have no-
tified all services of the vulnerabilities. We also included
basic details of accepted mitigating practices for each

non-standard ports or without registered domain names.
3In the course of analysis, we found several vulnerabilities in what

is apparently dead code. While we disclosed those findings to develop-
ers for completeness, we omit them from this paper.
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ID Common Weakness Enumeration Airtel Money mPAY Oxigen Wallet GCash Zuum MOM mCoin
SSL/TLS & Certificate Verification
CWE-295 Improper Certificate Validation � � � �

Non-standard Cryptography
CWE-330 Use of Insufficiently Random Values � � �
CWE-322 Key Exchange without Entity Authentication � �

Access Control
CWE-88 Argument Injection or Modification �
CWE-302 Authentication Bypass by Assumed-Immutable Data � �
CWE-521 Weak Password Requirements �
CWE-522 Insufficiently Protected Credentials �
CWE-603 Use of Client-Side Authentication �
CWE-640 Weak Password Recovery Mechanism for Forgotten Password �

Information Leakage
CWE-200 Information Exposure � � �
CWE-532 Information Exposure Through Log Files � � �
CWE-312 Cleartext Storage of Sensitive Information � � �
CWE-319 Cleartext Transmission of Sensitive Information � � �

Table 1: Weaknesses in Mobile Money Applications, indexed to corresponding Common Weakness Enumera-
tion (CWE) records. The CWE database is a comprehensive taxonomy of software vulnerabilities developed by
MITRE [55] and provide a common language for software errors.

finding. Most have not sent any response to our disclo-
sures. We have chosen to publicly disclose these vulner-
abilities in this paper out of an obligation to inform users
of the risks they face in using these insecure services.

4 Results

This section details the results of analyzing the mobile
money applications. Overall, we find 28 significant vul-
nerabilities across seven applications. Table 1 shows
these vulnerabilities indexed by CWE and broad cate-
gories (apps are ordered by download count). All but
one application (Zuum) presents at least one major vul-
nerability that harmed the confidentiality of user finan-
cial information or the integrity of transactions, and most
applications have difficulty with the proper use of cryp-
tography in some form.

4.1 Automated Analysis

Our results for SSL/TLS vulnerabilities should mirror
the output of an SSL/TLS vulnerability scanner such as
Mallodroid. Though two applications were unable to be
analyzed by Mallodroid, it detects at least one critical
vulnerability in over 50% of the applications it success-
fully completed.

Mallodroid produces a false positive when it detects
an SSL/TLS vulnerability in Zuum, an application that,
through manual analysis, we verified was correctly per-
forming certificate validation. The Zuum application
does contain disabled certificate validation routines, but
these are correctly enclosed in logic that checks for de-
velopment modes.

Conversely, in the case of MoneyOnMobile, Mallo-
droid produces a false negative. MoneyOnMobile con-

tains no SSL/TLS vulnerability because it does not em-
ploy SSL/TLS. While this can be considered correct op-
eration of Mallodroid, it also does not capture the severe
information exposure vulnerability in the app.

Overall, we find that Mallodroid, an extremely pop-
ular analysis tool for Android apps, does not detect the
correct use of SSL/TLS in an application. It produces
an alert for the most secure app we analyzed and did not
for the least. In both cases, manual analysis reveals stark
differences between the Mallodroid results and the real
security of an app. A comprehensive, correct analysis
must include a review of the application’s validation and
actual use of SSL/TLS sessions as well as where these are
used in the application (e.g., used for all sensitive com-
munications). Additionally, it is critical to understand
whether the remote server enforces secure protocol ver-
sions, ciphers, and hashing algorithms. Only a manual
analysis provides this holistic view of the communica-
tion between application and server so that a complete
security evaluation can be made.

4.2 SSL/TLS
As we discussed above, problems with SSL/TLS certifi-
cate validation represented the most common vulnera-
bility we found among apps we analyzed. Certificate
validation methods inspect a received certificate to en-
sure that it matches the host in the URL, that it has a
trust chain that terminates in a trusted certificate author-
ity, and that it has not been revoked or expired. However,
developers are able to disable this validation by creating
a new class that implements the X509TrustManager in-
terface using arbitrary validation methods, replacing the
validation implemented in the parent library. In the appli-
cations that override the default code, the routines were
empty; that is, they do nothing and do not throw excep-
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Product Qualys Most Noteworthy
Score Vulnerabilities

Airtel Money A- Weak signature algorithm (SHA1withRSA)
mPAY 1 F- SSL2 support, Insecure Client-Initiated Renegot.
mPAY 2 F- Vulnerable to POODLE attack
Oxigen Wallet F- SSL2 support, MD5 cipher suite
Zuum A- Weak signature algorithm (SHA1withRSA)
GCash C- Vulnerable to POODLE attack
mCoin N/A Uses expired, localhost self-signed certificate
MoneyOnMobile N/A App does not use SSL/TLS

Table 2: Qualys reports for domains associated with
branchless banking apps. “Most Noteworthy Vulnerabil-
ities” lists what Qualys considers to be the most danger-
ous elements of the server’s configuration. mPAY con-
tacts two domains over SSL, both of which are separately
tabulated below. Qualys would not scan mCoin because
it connects to a specific IP address, not a domain.

tions on invalid certificates. This insecure practice was
previously identified by Georgiev et al. [31] and is specif-
ically targeted by Mallodroid.

Analyzing only the app does not provide complete vis-
ibility to the overall security state of an SSL/TLS ses-
sion. Server misconfiguration can introduce additional
vulnerabilities, even when the client application uses cor-
rectly implemented SSL/TLS. To account for this, we
also ran the Qualys SSL Server Test [50] on each of
the HTTPS endpoints we discovered while analyzing the
apps. This service tests a number of properties of each
server to identify configuration and implementation er-
rors and provide a “grade” for the configuration. These
results are presented in Table 2. Three of the endpoints
we tested received failing scores due to insecure im-
plementations of SSL/TLS. To underscore the severity
of these misconfigurations, we have included the “Most
Noteworthy Vulnerabilities” identified by Qualys.
mCoin. Coupling the manual analysis with the Qualys
results, we found that in one case, the disabled validation
routines were required for the application to function cor-
rectly. The mCoin API server provides a certificate that
is issued to “localhost” (an invalid hostname for an ex-
ternal service), is expired, and is self-signed (has no trust
chain). No correct certificate validation routine would
accept this certificate. Therefore, without this routine,
the mCoin application would be unable to establish a
connection to its server. Although Mallodroid detected
the disabled validation routines, only our full analysis
can detect the relationship between the app’s behavior
and the server’s configuration.

The implications of poor validation practices are se-
vere, especially in these critical financial applications.
Adversaries can intercept this traffic and sniff cleartext
personal or financial information. Furthermore, without
additional message integrity checking inside these weak
SSL/TLS sessions, a man-in-the-middle adversary is free
to manipulate the inside messages.

Encryption Server

Registration Server

1

2

3

Figure 5: The user registration flow of MoneyOnMobile.
All communication is over HTTP.

4.3 Non-Standard Cryptography

Despite the pervasive insecure implementations of
SSL/TLS, the client/server protocols that these apps im-
plement are similarly critical to their overall security. We
found that four applications used their own custom cryp-
tographic systems or had poor implementations of well-
known systems in their protocols. Unfortunately, these
practices are easily compromised and severely limit the
integrity and privacy guarantees of the software, giving
rise to the threat of forged transactions and loss of trans-
action privacy.
MoneyOnMobile. MoneyOnMobile does not use SS-
L/TLS. All API calls from the app use HTTP. In fact,
we found only one use of cryptography in the applica-
tion’s network calls. During the user registration process,
the app first calls an encryption proxy web service, then
sends the service’s response to a registration web service.
The call to the encryption server includes both the user
data and a fixed static key. A visualization of this proto-
col is shown in Figure 5.

The encryption server is accessed over the Internet via
HTTP, exposing both the user and key data. Because
this data is exposed during the initial call, its subsequent
encryption and delivery to the registration service pro-
vides no security. We found no other uses of this or any
other encryption in the MoneyOnMobile app; all other
API calls are provided unobfuscated user data as input.
Oxigen Wallet. Like MoneyOnMobile, Oxigen Wal-
let does not use SSL/TLS. Oxigen Wallet’s registration
messages are instead encrypted using the Blowfish al-
gorithm, a strong block cipher. However, a long, ran-
dom key is not generated for input into Blowfish. In-
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stead, only 17 bits of the key are random. The remain-
ing bits are filled by the mobile phone number, the date,
and padding with 0s. The random bits are generated by
the Random [34] random number generator. The stan-
dard Java documentation [44] explicitly warns in its doc-
umentation that Random is not sufficiently random for
cryptographic key generation.4 As a result, any attacker
can read, modify, or spoof messages. These messages
contain demographic information including first and last
name, email address, date of birth, and mobile phone
number, which constitutes a privacy concern for Oxigen
Wallet’s users.

After key generation, Oxigen Wallet transmits the key
in plaintext along with the message to the server. In other
words, every encrypted registration message includes the
key in plaintext. Naturally, this voids every guarantee of
the block cipher. In fact, any attacker who can listen to
messages can decrypt and modify them with only a few
lines of code.

The remainder of client-server interactions use an
RSA public key to send messages to the server. To es-
tablish an RSA key for the server, Oxigen Wallet sends
a simple HTTP request to receive an RSA key from the
Oxigen Wallet server. This message is unauthenticated,
which prevents the application from knowing that the re-
ceived key is from Oxigen Wallet and not from an at-
tacker. Thus, an attacker can pretend to be Oxigen Wal-
let and send an alternate key to the app. This would al-
low the attacker to read all messages sent by the client
(including those containing passwords) and forward the
messages to Oxigen Wallet (with or without modifica-
tions) if desired. This RSA man-in-the-middle attack is
severe and puts all transactions by a user at risk. At the
very least, this will allow an attacker to steal the pass-
word from messages. The password can later be used to
conduct illicit transactions from the victim’s account.

Finally, responses from the Oxigen Wallet servers are
not encrypted. This means that any sensitive information
that might be contained in a response (e.g., the name of
a transaction recipient) can be read by any eavesdropper.
This is both a privacy and integrity concern because an
attacker could read and modify responses.
GCash. Unlike Oxigen Wallet, GCash uses a static
key for encrypting communcations with the remote
server. The GCash application package includes a file
“enc.key,” which contains a symmetric key. During the
GCash login process, the user’s PIN and session ID are
encrypted using this key before being sent to the GCash
servers. This key is posted publicly because it is included
with every download of GCash. An attacker with this
key can decrypt the user’s PIN and session ID if the en-

4Although the Android offers a SecureRandom class for
cryptographically-secure generation, it does not mention its necessity
in the documentation.

crypted data is captured. This can subsequently give the
attacker the ability to impersonate the user.

The session ID described above is generated dur-
ing the login process and passed to the server to pro-
vide session authentication in subsequent messages. We
did not find any other authenticator passed in the mes-
sage body to the GCash servers after login. The ses-
sion ID is created using a combination of the device
ID, e.g., International Mobile Station Equipment Iden-
tity (IMEI), and the device’s current date and time. An-
droid will provide this device ID to any application with
the READ PHONE STATE permission, and device IDs can
be spoofed on rooted phones. Additionally, IMEI is fre-
quently abused by mobile apps for persistent tracking of
users [25], and is thus also stored in the databases of hun-
dreds of products.

Although the session ID is not a cryptographic con-
struct, the randomness properties required by a strong
session ID match those needed by a strong cryptographic
key. This lack of randomness results in predictable ses-
sion IDs can then be used to perform any task as the ses-
sion’s associated user.
Airtel Money. Airtel Money performs a similar mistake
while authenticating the user. When launching the appli-
cation, the client first sends the device’s phone number
to check if there is an existing Airtel Money account. If
so, the server sends back the user’s account number in
its response. Although this response is transmitted via
HTTPS, the app does not validate certificates, creating
a compound vulnerability where this information can be
discovered by an attacker.

Sensitive operations are secured by the user’s 4-digit
PIN. The PIN is encrypted in transit using a weakly-
constructed key that concatenates the device’s phone
number and account number in the following format:

Keyenc = j7zgy1yv‖ phone#‖account# (1)

The prefixed text in the key is immutable and included
with the application. Due to the weak SSL/TLS imple-
mentation during the initial messages, an adversary can
obtain the user’s account number and decrypt the PIN.
The lack of randomness in this key again produces a vul-
nerability that can lead to user impersonation.

4.4 Access Control
A number of the applications that we analyzed used ac-
cess control mechanisms that were poorly implemented
or relied on incorrect or unverifiable assumptions that
the user’s device and its cellular communications chan-
nels are uncompromised. Multiple applications relied on
SMS communications, but this channel is subject to a
number of points of interception [56]. For example, an-
other application on the device with the RECEIVE SMS
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permission could read the incoming SMS messages of
the mobile money application. This functionality is out-
side the control of the mobile money application. Addi-
tionally, an attacker could have physical access to an un-
locked phone, where messages can be inspected directly
by a person. This channel does not, therefore, provide
strong confidentiality or integrity guarantees.
MoneyOnMobile. The MoneyOnMobile app presents
the most severe lack of access control we found among
the apps we analyzed. The service uses two differ-
ent PINs, the MPIN and TPIN, to authenticate the user
for general functionality and transactions. However, we
found that these PINs only prevent the user from moving
between Android activities. In fact, the user’s PINs are
not required to execute any sensitive functionality via the
backend APIs. All sensitive API calls (e.g., balance in-
quiry, mobile recharge, bill pay, etc.) except PIN changes
can be executed with only knowledge of the user’s mo-
bile phone number and two API calls. MoneyOnMobile
deploys no session identifiers, cookies, or other stateful
tracking mechanisms during the app’s execution; there-
fore, none of these are required to exploit the service.

The first required API call takes the mobile number
as input and outputs various parameters of the account
(e.g., Customer ID). These parameters identify the ac-
count as input in the subsequent API call. Due to the
lack of any authentication on these sensitive functions,
an adversary with no knowledge of the user’s account can
execute transactions on the user’s behalf. Since the ini-
tial call provides information about a user account, this
call allows an adversary to brute force phone numbers in
order to find MoneyOnMobile users. This call also pro-
vides the remainder of the information needed to perform
transactions on the account, severely compromising the
security of the service.
mPAY. While the MoneyOnMobile servers do not re-
quire authentication before performing server tasks, we
found the opposite is true with mPAY. The mPAY app ac-
cepts and performs unauthenticated commands from its
server. The mPAY app uses a web/native app hybrid that
allows the server to send commands to the app through
the use of a URL parameter “method.” These methods
instruct the app to perform many actions, including start-
ing the camera, opening the browser to an arbitrary URL,
or starting an arbitrary app. If the control flow of the web
application from the server side is secure, and the HTTP
channel between client and server is free from injection
or tampering, it is unlikely that these methods could be
harmful. However, if an attacker can modify server code
or redirect the URL, this functionality could be used to
attack mobile users. Potential attacks include tricking
users into downloading malware, providing information
to a phishing website, or falling victim to a cross-site
request forgery (CSRF) attack. As we discussed in the

previous results, mPAY does not correctly validate the
certificates used for its SSL/TLS sessions, and so these
scenarios are unsettlingly plausible.
GCash. Although GCash implements authentication, it
relies on easily-spoofable identity information to secure
its accounts. During GCash’s user registration process,
the user selects a PIN for future authentication. The se-
lected PIN is sent in plaintext over SMS along with the
user’s name and address. GCash then identifies the user
with the phone number used to send the SMS message.
This ties the user’s account to their phone’s SIM card.
Unfortunately, SMS spoofing services are common, and
these services provide the ability for an unskilled adver-
sary to send messages appearing to be from an arbitrary
number [27]. SIM cards can be damaged, lost, or stolen,
and since the wallet balance is tied to this SIM, it may be
difficult for a user to reclaim their funds.

Additionally, GCash requires the user to select a 4-
digit PIN to register an account. As previously men-
tioned, this PIN is used to authenticate the user to the
service. This allows only 10,000 possible combinations
of PINs, which is quickly brute-forceable, though more
intelligent guessing can be performed using data on the
frequency of PIN selection [16]. We were not able to
create an account with GCash to determine if the service
locks accounts after a number of incorrect login attempts,
which is a partial mitigation for this problem.
Oxigen Wallet. Like GCash, Oxigen Wallet also allows
users to perform several sensitive actions via SMS. The
most severe of these is requesting a new password. As a
result, any attacker or application with access to a mobile
phone’s SMS subsystem can reset the password. That
password can be used to login to the app or to send SMS
messages to Oxigen Wallet for illicit transactions.

4.5 Information Leakage

Several of the analyzed applications exposed personally-
identifying user information and/or data critical to the
transactional integrity through various methods, includ-
ing logging and preference storage.

4.5.1 Logging

The Android logging facility provides developers the
ability to write messages to understand the state of their
application at various points of its execution. These mes-
sages are written to the device’s internal storage so they
can be viewed at a future time. If the log messages were
visible only to developers, this would not present the op-
portunity for a vulnerability. However, prior to Android
4.1, any application can declare the READ LOGS per-
mission and read the log files of any other application.
That is, any arbitrary application (including malicious
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ones) may read the logs. According to statistics from
Google [32], 20.7% of devices run a version of Android
that allows other apps to read logs.

mPAY. mPAY logs include user credentials, personal
identifiers, and card numbers.

GCash. GCash writes the plaintext PIN using the ver-
bose logging facility. The Android developer documen-
tation states that verbose logging should not be compiled
into production applications [33]. Although GCash has a
specific devLog function that only writes this data when
a debug flag is enabled, there are still statements without
this check. Additionally, the session ID is also logged
using the native Android logging facility without check-
ing for a developer debug flag. An attacker with GCash
log access can identify the user’s PIN and the device ID,
which could be used to impersonate the user.

MoneyOnMobile. These logs include server responses
and account balances.

4.5.2 Preference Storage

Android provides a separate mechanism for storing pref-
erences. This system has the capability of writing the
stored preferences to the device’s local storage, where
they can be recovered by inspecting the contents of the
preferences file. Often, developers store preferences data
in order to access it across application launches or from
different sections of the code without needing to explic-
itly pass it. While the shared preferences are normally
protected from the user and other apps, if the device is
rooted (either by the user or a malicious application) the
shared preferences file can be read.

GCash. GCash stores the user’s PIN in this system. The
application clears these preferences in several locations
in the code (e.g., logout, expired sessions), however if
the application terminates unexpectedly, these routines
may not be called, leaving this sensitive information on
the device.

mPAY. Similarly, mPAY stores the mobile phone number
and customer ID in its preferences.

mCoin. Additionally, mCoin stores the user’s name,
birthday, and certain financial information such as the
user’s balance. We also found that mCoin exposes this
data in transmission. Debugging code in the mCoin ap-
plication is also configured to forward the user’s mCoin
shared preferences to the server with a debug report. As
noted above, this may contain the user’s personal infor-
mation. This communication is performed over HTTP
and sent in plaintext, providing no confidentiality for the
user’s data in transmission.

4.5.3 Other Leakage

Oxigen Wallet. We discussed in Section 4.3 that re-
quests from the Oxigen Wallet client are encrypted (in-
securely) with either RSA or Blowfish. Oxigen Wallet
also discloses mobile numbers of account holders. On
sign up, Oxigen Wallet sends a GetProfile request to
a server to determine if the mobile number requesting a
new account is already associated with an email address.
The client sends an email address, and the server sends
a full mobile number back to the client. The applica-
tion does appear to understand the security need for this
data as only the last few digits of the mobile number are
shown on the screen (the remaining digits are replaced
by Xs). However, it appears that the full mobile num-
ber is provided in the network message. This means that
if an attacker could somehow read the full message, he
could learn the mobile number associated with the email
address.

Unfortunately, the GetProfile request can be sent
using the Blowfish encryption method previously de-
scribed, meaning that an attacker could write his own
code to poll the Oxigen Wallet servers to get mobile num-
bers associated with known email addresses. This enu-
meration could be used against a few targets or it may be
done in bulk as a precursor to SMS spam, SMS phish-
ing, or voice phishing. This bulk enumeration may also
tax the Oxigen Wallet servers and degrade service for le-
gitimate users. This attack would not be difficult for an
attacker with even rudimentary programming ability.

4.6 Zuum

Zuum is a Brazilian mobile money application built by
Mobile Financial Services, a partnership between Tele-
fonica and MasterCard. While many of the other apps
we analyzed were developed solely by cellular network
providers or third-party development companies, Master-
Card is an established company with experience building
these types of applications.

This app is particularly notable because we did not
find in Zuum the major vulnerabilities present in the
other apps. In particular, the application uses SSL/TLS
sessions with certificate validation enabled and includes
a public key and performs standard cryptographic oper-
ations to protect transactions inside the session. Mallo-
droid detects Zuum’s disabled certificate validation rou-
tines, but our manual analysis determines that these rou-
tines would not run. We discuss MasterCard’s involv-
ment in the Payment Card Industry standards, the app’s
terms of service, and the ramifications of compromise in
Section 5.
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4.7 Verification

We obtained accounts for MoneyOnMobile, Oxigen
Wallet, and Airtel Money in India. For each app, we
configured an Android emulator instance to forward its
traffic through a man-in-the-middle proxy. In order to re-
main as passive as possible, we did not attempt to verify
any transaction functionality (e.g., adding money to the
account, sending or receiving money, paying bills, etc.).
We were able to successfully verify every vulnerability
that we identified for these apps.

5 Discussion

In this discussion section, we make observations about
authentication practices and our SSL/TLS findings, reg-
ulations governing these apps, and whether smartphone
applications are in fact safer than the legacy apps they
replace.

Why do these apps use weak authentication? Numeric
PINs were the authentication method of choice for the
majority of the apps studied — only three apps allow
use of a traditional password. This reliance on PINs is
likely a holdover from earlier mobile money systems de-
veloped for feature phones. While such PINs are known
to be weak against brute force attacks, they are chosen for
SMS or USSD systems for two usability reasons. First,
they are easily input on limited phone interfaces. Sec-
ond, short numeric PINs remain usable for users who
may have limited literacy (especially in Latin alphabets).
Such users are far more common in developing countries,
and prior research on secure passwords has assumed user
literacy [54]. Creating a distinct strong password for the
app may be confusing and limit user acceptability of new
apps, despite the clear security benefits.

Beyond static PINs, Airtel Money and Oxigen Wallet
(both based in India) use SMS-provided one-time
passwords to authenticate users. While effective at
preventing remote brute-force attacks, this step provides
no defense against the other attacks we describe in the
previous section.

Why do these apps fail to validate certificates? While
this work and prior works have shown that many Android
apps fail to properly validate SSL/TLS certificates [28],
the high number of branchless banking apps that fail to
validate certificates is still surprising, especially given
the mission of these apps. Georgiev et al. found that
many applications improperly validate certificates, yet
identify the root cause as poorly designed APIs that make
it easy to make a validation mistake [31]. One possible
explanation is that certificate validation was disabled for
a test environment which had no valid certificate. When

the app was deployed, developers did not test for im-
proper validation and did not remove the test code that
disabled host name validation. Fahl et al. found this ex-
planation to be common in developer interviews [29],
and they also further explore other reasons for SSL/TLS
vulnerabilities, including developer misunderstandings
about the purpose of certificate validation.

In the absence of improved certificate management
practices at the application layer, one possible defense is
to enforce sane SSL/TLS configurations at the operating
system layer. This capability is demonstrated by Fahl
et al. for Android [29], while Bates et al. present a
mechanism for Linux that simultaneously facilitates the
use of SSL trust enhancements [15]. In the event that the
system trusts compromised root certificates, a solution
like DVCert [23] could be used to protect against man in
the middle attacks.

Are legacy systems more secure? In Section 7, we noted
that prior work had found that legacy systems are fun-
damentally insecure as they rely principally on insecure
GSM bearer channels. Those systems rely on bearer
channel security because of the practical difficulties
of developing and deploying secure applications to a
plethora of feature phone platforms with widely varying
designs and computational capabilities. In contrast,
we look at apps developed for relatively homogenous,
well-resourced smartphones. One would expect that the
advanced capabilities available on the Android platform
would increase the security of branchless banking apps.
However, given the vulnerabilities we disclose, the
branchless banking apps we studied for Android put
users at a greater risk than legacy systems. Attacking
cellular network protocols, while shown to be practi-
cal [56], still has a significant barrier to entry in terms
of equipment and expertise. In contrast, the attacks we
disclose in this paper require only a laptop, common
attack tools, and some basic security experience to
discover and exploit. Effectively, these attacks are easier
to exploit than the previously disclosed attacks against
SMS and USSD interfaces.

Does regulation help? In the United States, the PCI Se-
curity Standards Council releases a Data Security Stan-
dard (PCI DSS) [48], which govern the security require-
ments for entities that handle cardholder data (e.g., card
numbers and expiration dates). The council is a consor-
tium of card issuers including Visa, MasterCard, and oth-
ers that cooperatively develop this standard. Merchants
that accept credit card payments from these issuers are
generally required to adhere to the PCI DSS and are sub-
ject to auditing.

The DSS document includes requirements, testing
procedures, and guidance for securing devices and net-
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works that handle cardholder data. These are not, how-
ever, specific enough to include detailed implementation
instructions. The effectiveness of these standards is not
our main focus; we note that the PCI DSS can be used
as a checklist-style document for ensuring well-rounded
security implementations.

In 2008, the Reserve Bank of India (RBI) issued
guidelines for mobile payment systems [13]. (By their
definition, the apps we study would be included in these
guidelines). In 12 short pages, they touch on aspects as
broad as currencies allowed, KYC/AML policies, inter-
bank settlement policies, corporate governance approval,
legal jurisdiction, consumer protection, and technology
and security standards for a myriad of delivery channels.
The security standards give implementers wide leeway to
use their best judgement about specific security practices.
MoneyOnMobile, which had the most severe security is-
sues among all of the apps we manually analyzed, promi-
nently displays its RBI authorization on its web site.

Some prescriptions stand out from the rest: an objec-
tive to have “digital certificate based inquiry/transaction
capabilities,” a recommendation to have a mobile PIN
that is encrypted on the wire and never stored in clear-
text, and use of the mobile phone number as the chief
identifier. These recommendations may be responsible
for certain design decisions of Airtel Money and Oxigen
Wallet (both based in India). For example, the digital cer-
tificate recommendation may have driven Oxigen Wallet
developers to develop their (very flawed) public key en-
cryption architecture. These recommendations also ex-
plain why Airtel Money elected to further encrypt the
PIN (and only the PIN) in messages that are encapsulated
by TLS. Further, the lack of guidance on what “strong
encryption” entails may be partially responsible for the
security failures of Airtel Money and Oxigen Wallet. Fi-
nally, we note that we believe that Airtel Money, while
still vulnerable, was within the letter of the recommen-
dations.

To our knowledge, other mobile money systems stud-
ied in this paper are not subject to such industry or gov-
ernment regulation. While a high-quality, auditable in-
dustry standard may lead to improved branchless bank-
ing security, it is not clear that guidelines like RBI’s cur-
rently make much of a difference.

6 Terms of Service & Consumer Liability

After uncovering technical vulnerabilities for branchless
banking, we investigated their potential implications for
fraud liability. In the United States, the consumer is not
held liable for fraudulent transactions beyond a small
amount. This model recognizes that users are vulnera-
ble to fraud that they are powerless to prevent, combat,
or detect prior to incurring losses.

To determine the model used for the branchless bank-
ing apps we studied, we surveyed the Terms of Service
(ToS) for each of the seven analyzed apps analyzed. The
Airtel Money [1], GCash [3], mCoin [5], Oxigen Wal-
let [9], MoneyOnMobile [7], and Zuum [12] terms all
hold the customer solely responsible for most forms of
fraudulent activity. Each of these services hold the cus-
tomer responsible for the safety and security of their
password. GCash, mCoin, and Oxigen Wallet also hold
the customer responsible for protecting their SIM (i.e.,
mobile phone). GCash provides a complaint system, pro-
vided that the customer notifies GCash in writing within
15 days of the disputed transaction. However, they also
make it clear that erroneous transactions are not grounds
for dispute. mPAY’s terms [8] are less clear on the sub-
ject of liability; they provide a dispute resolution sys-
tem, but do not detail the circumstances for which the
customer is responsible. Across the body of these terms
of service, it is overwhelmingly clear that the customer
is responsible for all transactions conducted with their
PIN/password on their mobile device.

The presumption of customer fault for transactions is
at odds with the findings of this work. The basis for
these arguments appear to be that, if a customer pro-
tects their PIN and protects their physical device, there
is no way for a third party to initiate a fraudulent trans-
action. We have demonstrated that this is not the case.
Passwords can be easily recovered by an attacker. Six of
the seven apps we manually analyzed transmits authenti-
cation data over insecure connections, allowing them to
be recovered in transit. Additionally, with only brief ac-
cess to a customer’s phone, an attacker could read GCash
PINs out of the phone logs or trigger the Oxigen Wallet
password recovery mechanism. Even when the mobile
device and SIM card are fully under customer control,
unauthorized transactions can still occur, due to the per-
vasive vulnerabilities found in these six apps. By launch-
ing a man-in-the-middle attack, an adversary would be
able to tamper with transactions while in transit, mislead-
ing the provider into believing that a fraudulent transac-
tion originated from a legitimate user. These attacks are
all highly plausible. Exploits of the identified vulnera-
bilities are not probabilistic, but would be 100% effec-
tive. With only minimal technical capability, an adver-
sary could launch these attacks given the ability to con-
trol a local wireless access point. This litany of vulnera-
bilities comes only from an analysis of client-side code.
Table 2 hints that there may be further server side con-
figuration issues, to say nothing of the security of cus-
tom server software, system software, or the operating
systems used.

Similar to past findings for the “Chip & Pin” credit
card system [40], it is possible that these apps are already
being exploited in the wild, leaving consumers with no
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recourse to dispute fraudulent transactions. Based on
the discovery of rampant vulnerabilities in these applica-
tions, we feel that the liability model for branchless bank-
ing applications must be revisited. Providers must not
marry such vulnerable systems with a liability model that
refuses to take responsibility for the technical flaws, and
these realities could prevent sustained growth of branch-
less banking systems due to the high likelihood of fraud.

7 Related Work

Banking has been a motivation for computer security
since the origins of the field. The original Data Encryp-
tion Standard was designed to meet the needs of bank-
ing and commerce, and Anderson’s classic paper “Why
Cryptosystems Fail” looked specifically at banking secu-
rity [14]. Accordingly, mobile money systems have been
scrutinized by computer security practitioners. Current
research on mobile money systems to-date has focused
on the challenges of authentication, channel security, and
transaction verification in legacy systems designed for
feature phones. Some prior work has provided threat
modeling and discussion of broader system-wide secu-
rity issues. To our knowledge, we are the first to examine
the security of smartphone applications used by mobile
money systems.

Mobile money systems rely on the network to pro-
vide identity services; in essence, identity is the tele-
phone number (MS-ISDN) of the subscriber. To address
physical access granting attackers access to accounts, re-
searchers have investigated the use of a small one-time
pads as authenticators in place of PINs. Panjwani et
al. [47] present a new scheme that avoids vulnerabili-
ties with using one-time passwords with PINs and SMS.
Sharma et al. propose using scratch-off one-time au-
thenticators for access with supplemental recorded voice
confirmations [53]. These schemes add complexity to
the system while only masking the PIN from an adver-
sary who can see a message. These schemes do not pro-
vide any guarantees against an adversary who can mod-
ify messages or who recovers a message and a pad.

SMS-based systems, in particular, are vulnerable to
eavesdropping or message tampering [42], and so have
seen several projects to bring additional cryptographic
mechanisms to mobile money systems [20, 41, 22]. Sys-
tems that use USSD, rather than SMS, as their bearer
channel can also use code executing on the SIM card
to cryptographically protect messages. However, it is
unknown how these protocols are implemented or what
guarantees they provide [45].

Finally, several authors have written papers investigat-
ing the holistic security of mobile money systems de-
signed exclusively for “dumbphones.” Paik et al. [45]
note concerns about reliance on GSM traffic channel

cryptographic guarantees, including the ability to inter-
cept, replay, and spoof the source of SMS messages.
Panjwani fulfills the goals laid out by Paik et al. by
providing a brief threat model and a design to protect
against the threats they identify [46]. While those papers
focus on technical analysis, de Almeida [38] and Harris
et al. [35] note the policy implications of the insecurity
of mobile money.

While focused strictly on mobile money platforms,
this paper also contributes to the literature of Android
application security measurement. The pioneering work
in this space was TaintDroid [25, 25], a dynamic anal-
ysis system that detected private information leakages.
Shortly after, Felt et al. found that one-third of apps stud-
ied held privileges they did not need [30], while Chin et
al. found that 60% of apps manually examined were vul-
nerable to attacks involving Android Intents [19]. More
recently, Fahl et al. [28] and Egele et al. [24] use auto-
mated static analysis investigated cryptographic API use
in Android, finding respectively that 8% of apps studied
were vulnerable to man-in-the-middle attacks and that
88% of apps make some mistake with regards to cryp-
tographic libraries [24]. Our work confirms these re-
sults apply to mobile money applications. This project
is most similar to the work of Enck et al. [26], who auto-
matically and manually analyzed 1,100 applications for
a broad range of security concerns.

However, prior work does not investigate the security
guarantees and the severe consequences of smart phone
application compromise in branchless banking systems.
Our work specifically investigates this open area of re-
search and provides the world’s first detailed security
analysis of mobile money apps. In doing so, we demon-
strate the risk to users who rely on these systems for fi-
nancial security.

8 Conclusions

Branchless banking applications have and continue to
hold the promise to improve the standard of living for
many in the developing world. By enabling access to
a cashless payment infrastructure, these systems allow
residents of such countries to reap the benefits afforded
to modern economies and decrease the physical security
risks associated with cash transactions. However, the se-
curity of the applications providing these services has
not previously been vetted in a comprehensive or pub-
lic fashion. In this paper, we perform precisely such an
analysis on seven branchless banking applications, bal-
ancing both popularity with geographic representation.
Our analysis targets the registration, login, and transac-
tion portions of the representative applications, and cod-
ifies discovered vulnerabilities using the CWE classifi-
cation system. We find significant vulnerabilities in six
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of the seven applications, which prevent both users and
providers from reasoning about the integrity of transac-
tions. We then pair these technical findings with the dis-
covery of fraud liability models that explicitly hold the
end user culpable for all fraud. Given the systemic prob-
lems we identify, we argue that dramatic improvements
to the security of branchless banking applications are im-
perative to protect the mission of these systems.
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Appendix

Package Name Country Downloads Mallodroid Alert
bo.com.tigo.tigoapp Bolivia 1000-5000
br.com.mobicare.minhaoi Brazil 500000-1000000 �
com.cellulant.wallet Nigeria 100-500 �
com.directoriotigo.hwm Honduras 10000-50000
com.econet.ecocash Zimbabwe 10000-50000
com.ezuza.mobile.agent Mexico 10-50
com.f1soft.esewa Nepal 50000-100000
com.fetswallet App Nigeria 100-500
com.globe.gcash.android Philippines 10000-50000 �
com.indosatapps.dompetku Indonesia 5000-10000 �
com.japps.firstmonie Nigeria 50000-100000
com.m4u.vivozuum Brazil 10000-50000 �
com.mcoin.android Indonesia 1000-5000 �
com.mdinar Tunisia 500-1000 �
com.mfino.fortismobile Nigeria 100-500 �
com.mibilleteramovil Argentina 500-1000
com.mobilis.teasy.production Nigeria 100-500
com.mom.app India 10000-50000
com.moremagic.myanmarmobilemoney Myanmar 191
com.mservice.momotransfer Vietnam 100000-500000 �
com.myairtelapp India 1000000-5000000 �
com.oxigen.oxigenwallet India 100000-500000 �
com.pagatech.customer.android Nigeria 1000-5000
com.palomar.mpay Thailand 100000-500000 �
com.paycom.app Nigeria 10000-50000 �
com.pocketmoni.ui Nigeria 5000-10000
com.ptdam.emoney Indonesia 100000-500000 Market Restriction
com.qulix.mozido.jccul.android Jamaica 1000-5000 �
com.sbg.mobile.phone South Africa 100000-500000 N/A
com.simba Lebanon 1000-5000 �
com.SingTel.mWallet Singapore 100000-500000 �
com.suvidhaa.android India 10000-50000 Market Restriction
com.tpago.movil Dominican Republic 5000-10000 �
com.useboom.android Mexico 5000-10000 �
com.vanso.gtbankapp Nigeria 100000-500000
com.wizzitint.banking South Africa 100-500 �
com.zenithBank.eazymoney Nigeria 50000-100000 �
mg.telma.mvola.app Madagascar 1000-5000 N/A
net.omobio.dialogsc Sri Lanka 50000-100000 �
org.readycash.android Nigeria 1000-5000
qa.ooredoo.omm Qatar 5000-10000
sv.tigo.mfsapp El Salvador 10000-50000 �
Tag.Andro Côte d’Ivoire 500-1000
th.co.truemoney.wallet Thailand 100000-500000 �
tz.tigo.mfsapp Tanzania 50000-100000 �
uy.com.antel.bits Uruguay 10000-50000
com.vtn.vtnmobilepro Nigeria Unknown
za.co.fnb.connect.itt South Africa 500000-1000000

Table 3: We found 48 mobile money Android applications across 28 countries. Highlighted rows represent those
applications manually analyzed in this paper. We were unable to obtain two apps due to Android market restrictions.
Mallodroid was unable to analyze the apps marked N/A.

16



USENIX Association  24th USENIX Security Symposium 33

Measuring the Longitudinal Evolution of
the Online Anonymous Marketplace Ecosystem

Kyle Soska and Nicolas Christin
Carnegie Mellon University

{ksoska, nicolasc}@cmu.edu

Abstract

February 2011 saw the emergence of Silk Road, the first
successful online anonymous marketplace, in which buy-
ers and sellers could transact with anonymity properties
far superior to those available in alternative online or of-
fline means of commerce. Business on Silk Road, pri-
marily involving narcotics trafficking, rapidly boomed,
and competitors emerged. At the same time, law enforce-
ment did not sit idle, and eventually managed to shut
down Silk Road in October 2013 and arrest its operator.
Far from causing the demise of this novel form of com-
merce, the Silk Road take-down spawned an entire, dy-
namic, online anonymous marketplace ecosystem, which
has continued to evolve to this day. This paper presents a
long-term measurement analysis of a large portion of this
online anonymous marketplace ecosystem, including 16
different marketplaces, over more than two years (2013–
2015). By using long-term measurements, and combin-
ing our own data collection with publicly available pre-
vious efforts, we offer a detailed understanding of the
growth of the online anonymous marketplace ecosystem.
We are able to document the evolution of the types of
goods being sold, and assess the effect (or lack thereof)
of adversarial events, such as law enforcement operations
or large-scale frauds, on the overall size of the economy.
We also provide insights into how vendors are diversi-
fying and replicating across marketplaces, and how ven-
dor security practices (e.g., PGP adoption) are evolving.
These different aspects help us understand how tradi-
tional, physical-world criminal activities are developing
an online presence, in the same manner traditional com-
merce diversified online in the 1990s.

1 Introduction

In February 2011, a new Tor hidden service [16], called
“Silk Road,” opened its doors. Silk Road portrayed it-
self as an online anonymous marketplace, where buyers

and sellers could meet and conduct electronic commerce
transactions in a manner similar to the Amazon Market-
place, or the fixed price listings of eBay. The key inno-
vation in Silk Road was to guarantee stronger anonymity
properties to its participants than any other online mar-
ketplace. The anonymity properties were achieved by
combining the network anonymity properties of Tor hid-
den services—which make the IP addresses of both the
client and the server unknown to each other and to out-
side observers—with the use of the pseudonymous, de-
centralized Bitcoin electronic payment system [33]. Silk
Road itself did not sell any product, but provided a feed-
back system to rate vendors and buyers, as well as escrow
services (to ensure that transactions were completed to
everybody’s satisfaction) and optional hedging services
(to buffer fluctuations in the value of the bitcoin).

Embolden by the anonymity properties Silk Road pro-
vided, sellers and buyers on Silk Road mostly traded
in contraband and narcotics. While Silk Road was not
the first venue to allow people to purchase such goods
online—older forums such at the Open Vendor Database,
or smaller web stores such as the Farmer’s Market pre-
dated it—it was by far the most successful one to date at
the time due to its (perceived) superior anonymity guar-
antees [13]. The Silk Road operator famously declared
in August 2013 in an interview with Forbes, that the
“War on Drugs” had been won by Silk Road and its pa-
trons [18]. While this was an overstatement, the business
model of Silk Road had proven viable enough that com-
petitors, such as Black Market Reloaded, Atlantis, or the
Sheep Marketplace had emerged.

Then, in early October 2013, Silk Road was shut
down, its operator arrested, and all the money held in es-
crow on the site confiscated by law enforcement. Within
the next couple of weeks, reports of Silk Road sellers and
buyers moving to Silk Road’s ex-competitors (chiefly,
Sheep Marketplace and Black Market Reloaded) or start-
ing their own anonymous marketplaces started to sur-
face. By early November 2013, a novel incarnation
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of Silk Road, dubbed “Silk Road 2.0” was online—set
up by former administrators and vendors of the origi-
nal Silk Road.1 Within a few months, numerous mar-
ketplaces following the same model of offering an on-
line anonymous rendez-vous point for sellers and buy-
ers appeared. These different marketplaces offered var-
ious levels of sophistication, durability and specializa-
tion (drugs, weapons, counterfeits, financial accounts,
...). At the same time, marketplaces would often disap-
pear, sometimes due to arrests (e.g., as was the case with
Utopia [19]), sometimes voluntarily (e.g., Sheep Market-
place [34]). In other words, the anonymous online mar-
ketplace ecosystem had evolved significantly compared
to the early days when Silk Road was nearly a monopoly.

In this paper, we present our measurements and anal-
ysis of the anonymous marketplace ecosystem over a pe-
riod of two and a half years between 2013 and 2015.
Previous studies either focused on a specific marketplace
(e.g., Silk Road [13]), or on simply describing high-level
characteristics of certain marketplaces, such as the num-
ber of posted listings at a given point in time [15].

By using long-term measurements, combining our
own data collection with publicly available previous ef-
forts, and validating the completeness of our dataset us-
ing capture and recapture estimation, we offer a much
more detailed understanding of the evolution of the on-
line anonymous marketplace ecosystem. In particular,
we are able to measure the effect of the Silk Road take-
down on the overall sales volume; how reported “scams”
in some marketplaces dented consumer confidence; how
vendors are diversifying and replicating across market-
places; and how security practices (e.g., PGP adoption)
are evolving. These different aspects paint what we be-
lieve is an accurate picture of how traditional, physical-
world criminal activities are developing an online pres-
ence, in the same manner traditional commerce diversi-
fied online in the 1990s.

We discover several interesting properties. Our analy-
sis of the sales volumes demonstrates that as a whole the
online anonymous marketplace ecosystem appears to be
resilient, on the long term, to adverse events such as law
enforcement take-downs or “exit scams” in which the op-
erators abscond with the money. We also evidence stabil-
ity over time in the types of products being sold and pur-
chased: cannabis-, ecstasy- and cocaine-related products
consistently account for about 70% of all sales. Analyz-
ing vendor characteristics shows a mix of highly special-
ized vendors, who focus on a single product, and sellers
who sell a large number of different products. We also
discover that vendor population has long-tail characteris-
tics: while a few vendors are (or were) highly successful,
the vast majority of vendors grossed less than $10,000

1Including, ironically, undercover law enforcement agents [7].

over our entire study interval. This further substantiates
the notion that online anonymous marketplaces are pri-
marily competing with street dealers, in the retail space,
rather than with established criminal organizations which
focus on bulk sales.

The rest of this paper is structured as follows. Sec-
tion 2 provides a brief overview of how the various on-
line marketplaces we study operate. Section 3 describes
our measurement methodology and infrastructure. Sec-
tion 4 presents our measurement analysis. We discuss
limitations of our approach and resulting open questions
in Section 5, before introducing the related work in Sec-
tion 6 and finally concluding in Section 7.

2 Online Anonymous Marketplaces

The sale of contraband and illicit products on the Internet
can probably be traced back to the origins of the Internet
itself, with a number of forums and bulletin board sys-
tems where buyers and sellers could interact.

However, online markets have met with consider-
able developments in sophistication and scale, over the
past six years or so, going from relatively confidential
“classifieds”-type of listings such as on the Open Vendor
Database, to large online anonymous marketplaces. Fol-
lowing the Silk Road blueprint, modern online anony-
mous markets run as Tor hidden services, which gives
participants (marketplace operators and participants such
as buyers and sellers) communication anonymity proper-
ties far superior to those available from alternative solu-
tions (e.g., anonymous hosting); and use pseudonymous
online currencies as payment systems (e.g., Bitcoin [33])
to make it possible to exchange money electronically
without the immediate traceability that conventional pay-
ment systems (wire transfers, or credit card payments)
provide.

The common point between all these marketplaces is
that they actually are not themselves selling contraband.
Instead, they are risk management platforms for partici-
pants in (mostly illegal) transactions. Risk is mitigated
on several levels. First, by abolishing physical inter-
actions between transacting parties, these marketplaces
claim to reduce (or indeed, eliminate) the potential for
physical violence during the transaction.

Second, by providing superior anonymity guarantees
compared to the alternatives, online anonymous market-
places shield – to some degree2 – transaction participants
from law enforcement intervention.

Third, online anonymous marketplaces provide an es-
crow system to prevent financial risk. These systems are
very similar in spirit to those developed by electronic

2Physical items still need to be delivered, which is a potential inter-
vention point for law enforcement as shown in documented arrests [4].
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(a) Silk Road (b) Agora (c) Evolution

Figure 1: Example of marketplaces. Most marketplaces use very similar interfaces, following the original Silk Road design.

commerce platforms such as eBay or the Amazon Mar-
ketplace. Suppose Alice wants to purchase an item from
Bob. Instead of directly paying Bob, she pays the mar-
ketplace operator, Oscar. Oscar then instructs Bob that
he has received the payment, and that the item should be
shipped. After Alice confirms receipt of the item, Os-
car releases the money held in escrow to Bob. This al-
lows the marketplace to adjudicate any dispute that could
arise if Bob claims the item has been shipped, but Al-
ice claims not to have received it. Some marketplaces
claim to support Bitcoin’s recently standardized “multi-
sig” feature which allows a transaction to be redeemed
if, e.g., two out of three parties agree on its validity. For
instance, Alice and Bob could agree the funds be trans-
ferred without Oscar’s explicit blessing, which prevents
the escrow funds from being lost if the marketplace is
seized or Oscar is incapacitated.3

Fourth, and most importantly for our measurements,
online anonymous marketplaces provide a feedback sys-
tem to enforce quality control of the goods being sold. In
marketplaces where feedback is mandatory, feedback is
a good proxy to derive sales volumes [13]. We will adopt
a similar technique to estimate sales volumes.

At the time of this writing the Darknet Stats service [1]
lists 28 active marketplaces. As illustrated in Fig. 1
for the Evolution and Agora marketplaces, marketplaces
tend to have very similar interfaces, often loosely based
on the original Silk Road user interface. Product cat-
egories (on the right in each screen capture) are typi-
cally self-selected by vendors. We discovered that cate-
gories are sometimes incorrectly chosen, which led us to
build our own tools to properly categorize items. Feed-
back data (not shown in the figure) comes in various fla-
vors. Some marketplaces provide individual feedback
per product and per transaction. This makes computa-
tion of sales volumes relatively easy as long as one can

3The Evolution marketplace claimed to support multisig. However,
Evolution’s operators absconded with escrow money on March 17th,
2015 [9]; it turns out that their multisig implementation did not function
as intended, and was rarely used. Almost none of the stolen funds have
been recovered so far.

determine with good precision the time at which each
piece of feedback was issued. Others provide feedback
per vendor; if we can then link vendor feedback to spe-
cific items, we can again obtain a good estimate for sales
volumes, but if not, we may not be able to derive any
meaningful numbers. Last, in some marketplaces, feed-
back is either not mandatory, or only given as aggregates
(e.g., “top 5% vendor”), which does not allow for de-
tailed volume analysis.

3 Measurement methodology

Our measurement methodology consists of 1) crawling
online anonymous marketplaces, and 2) parsing them.
Table 1 lists all the anonymous marketplaces for which
we have data. We scraped 35 different marketplaces a
total of 1,908 times yielding a dataset of 3.2 TB in size.
The total number of pages obtained from each scrape
ranged from 27 to 331,691 pages and performing each
scrape took anywhere from minutes up to five days.

The sheer size of the data corpus we are considering,
as well as other challenging factors (e.g., hidden service
latency and poor marketplace availability) led us to de-
vise a custom web scraping framework built on top of
Scrapy [3] and Tor [16], which we discuss first. We
then highlight how we decide to parse (or ignore) mar-
ketplaces, before touching on validation techniques we
use to ensure soundness of our analysis.

3.1 Scraping marketplaces

We designed and implemented the scraping framework
with a few simple goals in mind. First, we want our
scraping to be carried out in a stealthy manner. We do
not want to alert a potential marketplace administrator to
our presence lest our page requests be censored, by ei-
ther modifying the content in an attempt to deceive us or
denying the request altogether.

4 The November 2011–July 2012 Silk Road data comes from a pre-
viously reported collection effort, with publicly available data [13].
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Marketplace Parsed? Measurement dates # snap.

Agora Y 12/28/13–06/12/15 161
Atlantis‡ Y 02/07/13–09/21/13 52
Black Flag‡ Y 10/19/13–10/28/13 9
Black Market Reloaded† Y 10/11/13–11/29/13 25
Tor Bazaar∗ Y 07/02/14–10/15/14 27
Cloud 9∗ Y 07/02/14–10/28/14 27
Deep Bay‡ Y 10/19/13–11/29/13 24
Evolution‡ Y 07/02/14–02/16/15 43
Flo Market‡ Y 12/02/13–01/05/14 23
Hydra∗ Y 07/01/14–10/28/14 29
The Marketplace† Y 07/08/14–11/08/14 90
Pandora‡ Y 12/01/13–10/28/14 140
Sheep Marketplace‡ Y 10/19/13–11/29/13 25
Silk Road∗4 Y 11/22/11–07/24/12 133

Y 06/18/13–08/18/13 31
Silk Road 2.0∗ Y 11/24/13–10/26/14 195
Utopia∗ Y 02/06/14–02/10/14 10

AlphaBay N 03/18/15–06/02/15 17
Andromeda‡ N 07/01/14–11/10/14 30
Behind Blood Shot Eyes‡ N 01/31/14–08/27/14 56
BlackBank N 07/02/14–05/16/15 56
Blue Sky∗ N 12/25/13–06/10/14 126
Budster‡ N 12/01/13–03/11/14 56
Deep Shop‡ N 01/31/14–03/09/14 20
Deep Zone† N 07/01/14–07/08/14 10
Dutchy‡ N 01/31/14–08/07/14 86
Area 51‡ N 11/20/14–01/20/15 14
Freebay† N 12/31/13–03/11/14 36
Middle Earth N 11/21/14–06/02/15 15
Nucleus N 11/21/14–05/26/15 22
Outlaw N 01/31/14–04/20/15 99
White Rabbit† N 01/14/14–05/26/14 61
The Pirate Shop‡ N 01/14/14–09/17/14 102
The Majestic Garden N 11/21/14–06/02/15 23
Tom Cat† N 11/18/14–12/08/14 11
Tor Market N 12/01/13–12/23/13 24

Table 1: Markets crawled. The table describes which markets
were crawled, the time the measurements spanned, and the number of
snapshots that were taken. ∗ denote market sites seized by the police,
† voluntary shutdowns, and ‡ (suspected) fraudulent closures (owners
absconding with escrow money).

Second, we want the scrapes to be complete, instanta-
neous, and frequent. Scrapes that are instantaneous and
complete convey a coherent picture about what is taking
place on the marketplace without doubts about possible
unobserved actions or the inconsistency that may be in-
troduced by time delay. Scraping very often ensures that
we have high precision in dating when actions occurred,
and reduces the chances of missing vendor actions, such
as listing and rapidly de-listing a given item.

Third we want our scraper to be reliable even when the
marketplace that we are measuring is not. Even when a
marketplace is unavailable for hours, the scraper should
hold state and retry to avoid an incomplete capture.

Fourth, the scraper should be capable of handling
client-side state normally kept by the users browser such
as cookies, and be robust enough to avoid any detection
schemes that might be devised to thwart the scraper. We
attempt to address these design objectives as follows.

Avoiding censorship Before we add a site to the scrap-
ing regimen, we first manually inspect it and identify
its layout. We build and use as input to the scraper a
configuration including regular expressions on the URLs
for that particular marketplace. This allows us to avoid
following links that may cause undesirable actions to be
performed such as adding items to a cart, sending mes-
sages or logging out. We also provide as input to the
scraper a session cookie that we obtain by manually log-
ging into the marketplace and solving a CAPTCHA; and
parameters such as the maximum desired scraping rate.

In addition to being careful about what to request from
a marketplace, we obfuscate how we request content. For
each page request, the scraper randomly selects a Tor cir-
cuit out of 20 pre-built circuits. This strategy ensures that
the requests are being distributed over several rendez-
vous points in the Tor network. This helps prevent trig-
gering anti-DDoS heuristics certain marketplaces use.5

This strategy also provides redundancy in the event that
one of the circuits being used becomes unreliable and
speeds up the time it takes to observe the entire site.

Completeness, soundness, and instantaneousness
The goal of the data collection is to make an observa-
tion of the entire marketplace at an instantaneous point
in time, which yields information such as item listings,
pricing information, feedback, and user pages. Instan-
taneous observations are of course impossible, and can
only be approximated by scraping the marketplace as
quickly as possible. Scraping a site aggressively however
limits the stealth of the scraper; We manually identified
sites that prohibit aggressive scraping (e.g., Agora) and
imposed appropriate rate limits.

Scrape completeness is also crucial. A partial scrape
of a site may lead to underestimating the activities taking
place. Fortunately, since marketplaces leverage feedback
to build vendor reputation, old feedback is rarely deleted.
This means that it is sufficient for an item listing and its
feedback to be eventually observed in order to know that
the transaction took place. Over time, the price of an
item may fluctuate however, and information about when
the transaction occurred often becomes less precise, so it
is much more desirable to observe feedback as soon as
possible after it is left. We generally attempted a scrape
for each marketplace once every two to three days unless
the marketplace was either unavailable or the previous
scrape had not yet completed; having collected most of
the data we were interested in by that time, we scraped
considerably less often toward the end of our data collec-
tion interval (February through May 2015).

Many marketplaces that we observed have quite poor
reliability, with 70% uptime or lower. It is very difficult

5However some marketplaces, e.g., Agora, use session cookies to
bind requests coming from different circuits, and require additional at-
tention.
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to extract entire scrapes from marketplaces suffering fre-
quent outages. This is particularly true for large sites,
where a complete scrape can take several days. As a
workaround, we designed the scraping infrastructure to
keep state and retry pages using an increasing back-off
interval for up to 24 hours. Using such a system allowed
the scraper to function despite brief outages in market-
place availability. Retrying the site after 24 hours would
be futile as in most cases, the session cookie would have
expired and the scrape would require a manual login, and
thus a manual restart.

Most marketplaces require the user to log in before
they are able to view item listings and other sensitive
information. Fortunately, creating an account on these
marketplaces is free. However, one typically needs to
solve a CAPTCHA when logging in; this was done man-
ually. The process of performing a scrape begins with
manually logging into the marketplace, extracting the
session cookie, and using it as input to the scrape to
continue scraping under that session. In many cases the
site will fail to respond to requests properly unless mul-
tiple cookies are managed or unless the user agent of
the scraper matches the user agent of the browser that
generated the cookie. We managed to emulate typical
browser behavior in all but one case (BlueSky). We were
unable to collect meaningful data on BlueSky, as an anti-
scraping measure on the server side was to annihilate any
session after approximately 100 page requests, and get
the user to log in again.

3.2 Parsing marketplaces

The raw page data collected by the scraper needs to be
parsed to extract information useful for analysis. The
parser first identifies which marketplace a particular page
was scraped from; it then determines which type of page
is being analyzed (item listing, user page, feedback page,
or any combination of those).

Each page is then parsed using a set of heuristics we
manually devised for each marketplace. We treat the in-
formation extracted as a single observation and record it
into a database. Information that does not exist or cannot
be parsed is assigned default values.

The heuristics for parsing can often become quite
complicated as many marketplaces observed over long
periods of time went through several iterations of page
formats. This justified our conscious decision to decou-
ple scraping from parsing so that we could minimize
data loss. Because of the high manual effort associ-
ated with creating and debugging new parsers for market-
places, we only generated parsers for marketplaces that
we perceived to be of significance. While observing the
scrapes of several marketplaces, it became apparent that
their volume was either extremely small (<$1,000) or

was not measurable by observing the website (e.g., be-
cause feedback is not mandatory). These marketplaces
were omitted without greatly affecting the overall pic-
ture; their analysis is left for future work.

3.3 Internally validating data analysis

To ensure that the analysis we performed was not biased,
and as a safety against egregious errors, both authors
of this paper concurrently and independently developed
multiple implementations of the analysis we present in
the next section. During that stage of the work, the two
authors relied on the same data sources, but used different
analysis code and tools and did not communicate with
each other until all results were produced.

We then internally confirmed that the independent esti-
mations of total market volumes varied by less than 10%
at any single point in time, and less than 5% on aver-
age, well within expected margin of errors for data in-
directly estimated from potentially noisy sources (user
feedback).6 The independent reproducibility of the anal-
ysis is important since, as we will show, estimating mar-
ket volumes presents many pitfalls, such as the risk of
double-counting observations or using a holding price as
the true value of an item.

3.4 Validating data completeness

The poor availability of certain marketplaces (e.g.,
Agora), combined with the large amount of time needed
to fully scrape very large marketplaces raises concerns
about data completeness. We attempt to estimate the
amount of data that might be missing through a process
known as marking and recapturing.

The basic idea is as follows. Consider that a given site
scrape at time t contains a number M of feedback. Since
we do not know whether the scrape is complete, we can
only assert that M is a lower bound on the total num-
ber of feedback F actually present on the site at time t.
Now, consider a second scrape (presumably taken after
time t), which contains n pieces of feedback left at or be-
fore time t. The number n is another lower bound of F .
We then estimate F as F̂ = nM/m, where m is the num-
ber of feedback captured in the first scrape that we also
observe in the second scrape (m ≤ M).

The Schnabel estimator [36] extends the above tech-
nique to estimate the size of a population to multiple
samples, and is thus well-suited to our measurements.
For n samples, if we denote by Ct the number of feed-
back in sample t, by Mt the total number of unique previ-
ously observed feedback in sample (t −1), and by Rt the

6These minor discrepancies can be attributed to slightly different
filtering heuristics, which we discuss later.
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Figure 2: Coverage of Agora, Silk Road 1, Silk Road
2, and Evolution. This plot estimates the fraction of all feed-
back we obtain for a given time, as a function of the number of
scrapes we collect.

number of previously observed feedback during sample
t, we estimate the total number of feedback at time t as:

F̂ =
∑n

t=1 CtMt

∑n
t=1 Rt

.

The Schnabel estimator implicitly assumes that the
distribution is time-invariant and that samples are drawn
uniformly. To help ensure time invariance, the estima-
tor begins with a sample at time t. Pieces of feedback
with timestamps greater than t are omitted from all sam-
ples taken in the future (t + τ). It is also important not to
consider samples from too far into the future since items
are occasionally de-listed and the corresponding feed-
back destroyed. To help minimize the impact of feed-
back deleted in the future, we only use samples within
60 days of t in our estimate.

We illustrate this estimate in Figure 2 for Agora, Silk
Road 1, Silk Road 2, and Evolution after multiple obser-
vations have been made. Agora has relatively poor relia-
bility and, on average, a single scrape will not manage to
capture even half of the feedback present at that time on
the site. On other marketplaces it is typical on the first
visit to see as much as 60% of the entire population, or
higher. After ten or more independent scrapes, we can
expect to obtain a dataset that approaches 90% coverage
or higher.

Figure 3 further illustrates our point, by comparing the
number of pieces of feedback observed on Agora to its
estimate. For most of the observed lifetime of Agora,
the data that we have is very close to what we estimate
the total to be. This is because information about a mar-
ketplace at a particular (past) point in time benefits from
subsequent observations. Most recent observations do
not have this benefit and therefore suffer from poor cov-
erage, leading to significant divergence from their esti-
mate. This results in potentially large underestimations
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Figure 3: Observed and estimated number of feed-
back present on Agora over time. The lower and upper
bounds for the estimate are nearly indistinguishable from the
estimate itself.

towards the very end of our dataset, which will require
us to censor some of this data when estimating volumes.

4 Analysis

We next turn to data analysis. We first estimate the over-
all evolution of the sales volumes in the entire ecosystem
over the past couple of years. We then move to an assess-
ment of the types of products being sold over time. Last,
we discuss findings about vendor activity and techniques.

4.1 Sales volumes
The first important question that our analysis answers is
how much product in terms of money is being bought and
sold on online anonymous marketplaces. While we can-
not directly measure the money being transacted from
buyers to sellers, or packages being shipped from ven-
dors to customers, we do make frequent observations of
product feedback left for particular item listings on the
marketplaces. Similar to prior work [13], we use these
observations of feedback as a proxy to estimate a lower
bound for sales.

Caveats In many marketplaces (e.g., Silk Road, Silk
Road 2.0, Agora, Evolution among others) customers are
required to leave feedback for a vendor whenever they re-
ceive their order of one of the vendor’s items. An order
for an item may be of varying quantity, so a customer
that purchases a single quantity of a product, and a cus-
tomer that purchases multiple quantities of a product will
both leave a single feedback. In an effort to be conser-
vative, we make the assumption that for every feedback
observed, only a single quantity was purchased.

Our prudent strategy of estimating sales volume from
confirmed observations of feedback diverges from other,
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simpler approaches, such as counting the number of item
listings offered (see, e.g., [15]). For instance, over the
observed lifetime of Evolution, a few of the most suc-
cessful item listings had feedback entries that indicated
over 1 million dollars had been spent on each of them.
The presence of these highly influential item listings sug-
gests that simply counting the total number of listings on
a site is a very poor indicator of sales volume. This claim
is compounded by the observation that the average sales
per item listing per day on Evolution in early July of 2014
was $85.14; but by September 2014, after new vendors
and item listings had entered, the sales per item listing
had declined to $19.42. Such volatile behavior is par-
ticularly common in marketplaces that are small or are
going through periods of rapid growth.

Estimation We derived the estimates for the total
amount of money transacted in three steps. We first
took the set of all feedback observations that had been
collected and removed any duplicates. For example, on
two consecutive scrapes of a particular marketplace, the
same item listing and its entire feedback history were
observed and recorded twice. It would be incorrect to
count two different observations of the same feedback
twice. We thus developed a criterion for uniqueness
for each marketplace—typically enforcing uniqueness of
fields such as feedback message body, the vendor for
which the feedback was left, the title of the item list-
ing and the approximate date the feedback was left. Two
pieces of feedback are considered different if and only if
they differ in at least one of these categories.

The second step was to identify the the point in time at
which the feedback was left. This time is an upper bound
on when the transaction occurred. We obtained this esti-
mate by noting the time of the observation and utilizing
any information available about the age of the feedback.
Different marketplaces have varying precision informa-
tion about feedback timestamps. In the most precise in-
stances, the time that the feedback was left is specified
within the hour; in the most ambiguous cases, we can
only infer the month in which feedback was deposited.
Fortunately, due to our rather high sampling rate of the
marketplaces, in most instances we have roughly a 24-
hour accuracy on feedback time.

The third and final step is to identify the value of the
transaction that each feedback represents. This involves
pairing each feedback observation with a single obser-
vation of an item listing and its advertised price. Care-
ful attention must be paid here as a few caveats exist,
namely that the advertised price of an item listing varies
with time, and that, in some rare cases, the correspond-
ing item is never observed, leaving us unable to identify
the value of the transaction.

Item prices change for two different reasons. The first
and most common reason is that the vendors responsi-
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Figure 4: C.d.f. of Coefficient of Variation for sets of
observations of item listings Both heuristics perform very
similarly.

ble for selling items are subject to standard free market
pressures and may raise or lower their prices in response
to competition, supply, demand, or other factors. The
second reason is that when a vendor temporarily wishes
to halt sales of an item with the expectation of selling it
again in the future, instead of de-listing the item and los-
ing all of the reviews and ratings that have accumulated
over time, the vendor instead raises the price to some-
thing prohibitively high in order to discourage any sales.
This is what we call a holding price. Holding prices are
particularly dangerous for our analysis, because they can
be in excess of millions of dollars. So, mistaking a hold-
ing price for an actual price just once could have dramatic
consequences on the overall analysis.

Dealing with holding prices Given a particular feed-
back and a set of observations of the corresponding prod-
uct listing, the objective becomes to determine which
observation yields the most accurate price for that feed-
back. Independent analysis (see Section 3.3) yielded two
different heuristics for solving this problem. In the first
heuristic (Heuristic A), we dismissed observations of the
listing where the price was greater than $10,000 USD as
well as observations that showed prices of zero (free).
We then dismissed observations that were greater than 5
times the median of the remaining samples as well as ob-
servations that were less than 25% the value of the me-
dian. We manually observed thousands of product list-
ings and identified that only in some very rare cases were
the assumptions violated.

The second heuristic (Heuristic B) proceeded by re-
moving observations with a price >$10,000 USD, as
well as the upper quartile and any observations that were
more than 100 times greater than the observation cor-
responding to the cheapest, non-zero price. To under-
stand the effect that these heuristics had on observa-
tions, we calculated the coefficient of variation defined
as cv = σ/µ (standard deviation over mean) for the set
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Figure 5: Sales volumes in the entire ecosystem. This
stacked plot shows how sales volume vary over time for the market-
places we study.

of observations for each item listing and plotted its cu-
mulative distribution function.

Figure 4 shows that without any filtering, about 5% of
all item listings were at some point sampled with highly
variable prices, which suggests that a holding price was
observed for this listing. Both heuristics produce rela-
tively similar filtering; we ended up using Heuristic A in
the rest of the analysis.

After applying the filter, there is still some smaller
variation in the pricing of many listings which is consis-
tent with the fluctuation in prices due to typical market
pressures but it is clear that no listings with extremely
high variations remain. 79,512 total unique item listings
were identified, 1,003 (1.26%) of which had no valid
observations remaining after filtering, meaning that the
output of the heuristic was the empty set, the remaining
78,509 item listings returned at least one acceptable ob-
servation.

After filtering the listing observations, we pair each
feedback with one of the remaining listing samples. To
minimize the difference in estimated price of the feed-
back from the true price, we select the listing observation
that is closest to the feedback in time. At this point we
have a set of unique pieces of feedback, each mapped to a
price at some point in time; from there, we can construct
an estimate for the sales volumes.

Results We present our results in Figure 5 where we
show the total volume, per marketplace we study, over
time. The plot is stacked, which means that the top line

corresponds to the total volume cleared by all market-
places under study. In early 2013, we only have re-
sults for Silk Road, which at that point grossed around
$300,000/day, far more than previously estimated for
2012 [13]. This number would project to over $100M
in a year; combined by the previous $15M estimate [13]
for early 2012, and “filling in” gaps for data we do not
have in late 2012, appears consistent with the (revised)
US Government calculations of $189M of total grossed
income by Silk Road over its lifetime, based on Bitcoin
transaction logs.

We then have a data collection gap, roughly corre-
sponding to the time Silk Road was taken down. (We
do not show volumes for Atlantis, which are negligi-
ble, in the order of $2,000–3,000/day.) Shortly after the
Silk Road take-down we started measuring Black Market
Reloaded, and realized that it has already made up for a
vast portion of the volumes previously seen on Silk Road.
We do not have sales data for Sheep Marketplace due to
incomplete parses, but we do believe that the combina-
tion of both markets made up for the loss of Silk Road.
Then, both Sheep and Black Market Reloaded closed –
in the case of Sheep, apparently fraudulently. There was
then quite a bit of turmoil with various markets starting
and failing quickly. Only around late November 2013
did the ecosystem find a bit more stability, as Silk Road
2.0 had been launched and was rapidly growing. In par-
allel Pandora, Agora, and Evolution were also launched.
By late January 2014, volumes far exceeded what was
seen prior to the Silk Road take-down. At that point,
though, a massive scam on Silk Road 2.0 caused dra-
matic loss of user confidence, which is evidenced by the
rapid decrease until April 2014, before it starts recov-
ering. Competitors however were not affected. (Agora
does show spikes due to very imprecise feedback timing
at a couple of points.) Eventually, in the Fall of 2014,
the anonymous online marketplace ecosystem reached
unprecedented highs. We started collecting data from
Evolution in July, so it is possible that we miss quite a
bit in the early part of 2014, but the overall take-away is
unchanged. Finally, in November 2014, Operation Ony-
mous [38] resulted in the take-down of Silk Road 2 and a
number of less marketplaces. This did significantly af-
fect total sales, but we immediately see a rebound by
people going to Evolution and Agora. We censor the
data we obtained from February 2015: at that point we
only have results for Agora and Evolution, but coverage
is poor, and as explained in Section 3, is likely to un-
derestimate volumes significantly. We did note a short
volume decrease prior to the Evolution “exit scam” of
March 2015. We have not analyzed data for other smaller
marketplaces (e.g., Black Bank, Middle Earth, or Nu-
cleus) but suspect the volumes are much smaller. Fi-
nally, more recent marketplaces such as AlphaBay seem
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to have grown rapidly after the Evolution exit scam, but
feedback on AlphaBay is not mandatory, and thus cannot
be used to reliably estimate sales volumes.

In short, the entire ecosystem shows resilience to
scams – Sheep, but also Pandora, which, as we can see
started off very well before losing ground due to a loss in
customer confidence, before shutting down. The effect
of law enforcement take-downs (Silk Road 1&2, Oper-
ation Onymous) is mixed at best: the ecosystem rela-
tively quickly recovered from the Silk Road shutdown,
and appears to have withstood Operation Onymous quite
well, since aggregate volumes were back within weeks to
more than half what they were prior to Operation Ony-
mous. We however caution that one would need longer
term data to fully assess the impact of Operation Ony-
mous.

4.2 Product categories

In addition to estimating the value of the products that
are being sold, we strived to develop an understanding of
what is being sold. Several marketplaces such as Agora
and Evolution include information on item listing pages
that describe the nature of the listing as provided by the
vendor that posted it. Unfortunately these descriptions
are often too specific, conflict across marketplaces, and
in the case of some sites, are not even available at all.

For our analysis, we need a consistent and coherent
labeling for all items, so that we could categorize them
into broad mutually exclusive categories. We thus im-
plemented a machine learning classifier that was trained
and tested on samples from Agora and Evolution, where
ground truth was available via labeling. We then took
this classifier and applied it to item listings on all mar-
ketplaces to answer the question of what is being sold.

We took 1,941,538 unique samples from Evolution
and Agora, where a sample is the concatenation of an
item listing’s title and all descriptive information about it
that was parsed from the page. We tokenized each sam-
ple under the assumption that the sample is written in
English, resulting in a total of 162,198 unique words ob-
served. We then computed a tf-idf value for each of the
162,198 words in the support for each sample, and used
these values as inputs to an L2-Penalized SVM under L2-
Loss implemented using Python and scikit-learn.

We evaluated our classifier using 10-fold cross val-
idation. The overall precision and recall were both
(roughly) 0.98. We also evaluated the classifier on
Agora data when trained with samples from Evolution
and vice-versa to ensure that the classifier was not bi-
ased to only perform well on the distributions it was
trained on. The confusion matrix in Figure 6 shows
that classification performance is very strong for all cat-
egories. Only “Misc” is occasionally confused with Dig-
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Figure 6: Classifier confusion matrix. BNZ: Benzos,
DG: Digital Goods, DIS: Dissociatives, ELEC: Electronics,
MISC: Miscellaneous, OP: Opioids, PAR: Drug Paraphernalia,
PSY: Psychedelics, RX: Prescription drugs, SL: Sildenafil, STI:
Stimulants, STR: Steroids, THC: Cannabis, TOB: Tobacco,
WPN: Weapons, X: Ecstasy.

ital Goods and Prescriptions are occasionally confused
with Benzos (which in fact is not necessarily surprising).
We believe that these errors are most likely caused by
mislabeled test samples. Although we drew our samples
from Evolution and Agora which provide a specific label
for each listing, the label is selected by the vendor and
may be erroneous, particularly for listings that are hard
to place. Manual inspection revealed that several of the
errors came from item listings that offered US $100 Bills
in exchange for Bitcoin.

We then applied the classifier to the aggregate analy-
sis performed earlier. In addition to placing a particu-
lar feedback in time, and pairing it with an item listing
observation to derive the price, we predicted the class
label of that listing and aggregated the price by class la-
bel. Figure 7 shows the normalized market aggregate by
category. Drug paraphernalia, weapons, electronics, to-
bacco, sildenafil, and steroids were collapsed into a cat-
egory called ‘Other’ for clarity.

Over time the fraction of market share that belongs to
each category is relatively stable. However, around Oc-
tober of 2013, December 2013, March 2014, and January
2015, cannabis spikes up to as much as half of the market
share. These spikes correspond to the earlier mentioned
1) take-down of Silk Road, 2) closure of Black Market
Reloaded and Sheep scam, 3) Silk Road 2.0 theft [5],
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Figure 7: Fractions of sales per item category.

and 4) Operation Onymous respectively. These are all
events that generated substantial doubts in both vendors
and consumers regarding the safety and security of oper-
ating on these marketplaces. At these times the perceived
risk of operation was higher, which may have exerted
pressure towards buying and selling cannabis as opposed
to other products for which the punishment if caught is
much more severe. We can also see that digital goods
take an unusually high market share in times of uncer-
tainty, which is most obvious around October 2013: this
is not surprising as digital goods are often a good way to
quickly accumulate large numbers of listings on a new
marketplace.

Figure 7 shows that after an event such as a take-down
or large scale scam occurs, it takes about 2–3 months
before consumer and vendor confidence is restored and
the markets converge back to equilibrium. At equilib-
rium, cannabis and MDMA (ecstasy) are about 25%
of market demand each with stimulants closely behind
at about 20%. Psychedelics, opioids, and prescription
drugs are a little less than 10% of market demand each,
although starting in November 2014, prescription drugs
have gained significant traction—perhaps making anony-
mous marketplaces a viable alternative to unlicensed on-
line pharmacies.

4.3 Vendors
Online anonymous marketplaces are only successful
when they manage to attract a large enough vendor pop-
ulation to provide a critical mass of offerings. At the
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Figure 8: Evolution of the number of active sellers
over time. Each “seller” here corresponds to a unique marketplace-
vendor name pair. Certain sellers participate in several marketplaces
and are thus counted multiple times here.

same time, vendors are not bound to a specific market-
place. Anecdotal evidence shows that certain sellers list
products on several marketplaces at once; likewise, cer-
tain sellers “move” from marketplace to marketplace in
response to law enforcement take-down or other market-
place failures. Here, we try to provide a good picture of
the vendor dynamics across the entire ecosystem.

Number of sellers Figure 8 shows, over time, the evo-
lution of the number of active sellers on all the market-
places we considered. For each marketplace, a seller
is defined as active at time T is we observed her hav-
ing at least one active listing at time t ≤ T , and at least
one active listing (potentially the same) at a time t ≥ T .
This is a slightly different definition from that used in
Christin [13] which required an active listing at time t to
count a seller as active. For us, active sellers include sell-
ers that may be on vacation but will come back, whereas
Christin did not include such sellers. As a result, our re-
sults for Silk Road are very slightly higher than his.

The main takeaway from Figure 8 is that the number of
sellers overall has considerably increased since the days
of Silk Road. By the time Silk Road stopped activities in
2013, it featured around 1,400 sellers; its leading com-
petitors, Atlantis and Black Market Reloaded (BMR)
were much smaller. After the Silk Road take-down (Oc-
tober 2013) and Atlantis closure, we observe that both
BMR and the Sheep marketplace rapidly pick up a large
influx of sellers. In parallel, Silk Road 2.0 also grows at
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Figure 9: Number of aliases per seller. This plot shows the
evolution of the number of aliases per seller across all marketplaces,
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overall.

a very rapid pace. Successful newcomers like Pandora,
Agora, and Evolution also see quick rises in the num-
ber of sellers. After a certain amount of time, however,
per-marketplace population tends to stabilize, even in the
most popular marketplaces. On the other hand, we also
observe that some marketplaces never took off: The Mar-
ketplace, Hydra, Deepbay, and Tor Bazaar, for instance,
consistently have a small number of vendors. In other
words, we see very strong network effects: Either mar-
ketplaces manage to get initial traction and then rapidly
flourish, or they never manage to take off.

Sellers and aliases After Silk Road was taken down,
a number of sellers reportedly moved to Black Market
Reloaded or the Sheep Marketplace. More generally,
nothing prevents a vendor from opening shop on multiple
marketplaces; in fact, it is probably a desirable strategy
to hedge against marketplace take-downs or failures. As
a result, a given seller, Sally, may have multiple vendor
accounts on several marketplaces: Sally may sell on Silk
Road 2 as “Sally,” on Agora as “sally” and on Evolution
as “Easy Sally;” she may even have a second Evolution
account (“The Real Easy Sally”).

We formally define an alias as a unique (vendor nick-
name, marketplace) pair, and link different aliases to
the same vendor using the combination of the follow-
ing three heuristics. We first consider vendor nicknames
on different marketplaces with only case differences as
belonging to the same person (e.g., “Sally” and “sally”).

We then use the InfoDesk feature of the Grams “DarkNet
Markets” search engine [2] to further link various ven-
dor nicknames.7 We filter out vendor nicknames consist-
ing only of a common substring (e.g., “weed,” “dealer,”
“Amsterdam,” ...) used by many vendors prior to con-
ducting the search. Finally, we link all vendor accounts
that claim to be using the same PGP key. Clearly, our
linking strategy is very conservative – in the sense that
minor variations like “Sally” and “Sally!” will not be
linked absent a common PGP key.

Using this set of heuristics, from a total of 29,258
unique aliases observed across our entire measurement
interval, we obtain a list of 9,386 sellers. In Figure 9, we
show, over time, the number of vendors that have one,
two or up to six aliases active at any given time T (where
we use the same definition of “active” as earlier, i.e., the
alias has at least one listing available before and after T ).
The plot is by definition incomplete since we can only
take into account, for each time t, the marketplaces that
we have crawled (and parsed) at time t.

For instance, the earlier part of the data show a com-
plete monopoly: this is not surprising since we only have
data for Silk Road at that time, even though Black Mar-
ket Reloaded was also active at the same time. We ob-
serve in the summer of 2013 that a few vendors sell si-
multaneously on Silk Road and Atlantis, but the prac-
tice of having multiple vendor accounts on several sites
seems to only really take hold in 2014, after many mar-
ketplaces failed in the Fall of 2013 (including Silk Road,
and many of its short-lived successors). The second jump
in July 2014 corresponds to our starting to collect data
for the very large Evolution marketplace. Finally, the
decrease observed in late 2014 is due to Operation Ony-
mous [38], which – besides Silk Road 2.0 – took down a
relatively large number of secondary marketplaces, such
as Cloud 9.

Besides the relatively robust rise is the number of sell-
ers to take-downs and scams, the main takeaway from
this plot is that the majority of sellers appear to only
use one alias – but this may be a bit misleading, as (as
we will see later) a large number of vendors sell ex-
tremely limited quantities of products. An interesting
extension would be to check whether “top” vendors di-
versify across marketplaces or not.

We complement this analysis by looking into the “sur-
vivability” functions of aliases and sellers, which we re-
port in Figure 10. Here the survival function is defined
as the probability p(τ) that a given seller (resp. alias)
observed at time t be still active at time t + τ . The fig-
ure shows the survival function, derived from a Kaplan-
Meier estimator [24] to account for the fact that we have
finite measurement intervals, along with 95% confidence

7It is not clear how the Grams search engine is implemented; we
suspect the vendor directory is primarily based on manual curation.
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Figure 11: Seller volumes. A very small fraction of sellers
generate significant profit. On average, a typical seller only
makes a couple of hundreds dollars.

intervals. The key findings here are that half of the sell-
ers are only present for 220 days or less; half of the
aliases only exist for 172 days or less. More interest-
ing is the “long-tail” phenomenon we observe: a number
(more than 10%) of sellers have been active throughout
the entire measurement interval. More generally approx-
imately 25% of all sellers are “in it for the long run,”
and remain active (with various aliases on various mar-
ketplaces) for years.

Volumes per vendor In an effort to obtain a more
clear understanding of how vendors operate, we aggre-
gated unique feedback left for products by vendor. We
used this to calculate the total value of the transactions
for items sold by each vendor and then grouped these
vendor aliases to yield the total value of transactions for
each seller. Figure 11 plots the CDF of sellers by the to-
tal value of their transactions. About 70% of all sellers
never managed to sell more than $1,000 worth of prod-
ucts. Another 18% of sellers were observed to sell be-
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Figure 12: Vendor diversity

tween $1,000 and $10,000 but only about 2% of ven-
dors managed to sell more than $100,000. In fact, 35
sellers were observed selling over $1,000,000 worth of
product and the top 1% most successful vendors were re-
sponsible for 51.5% of all the volume transacted. Some
of these sellers, like “SuperTrips” (or to a lesser extent,
“Nod”) from Silk Road, have been arrested, and numbers
released in connection with these arrests are consistent
with our findings [4, 6].

There is a clear discrepancy between sellers that ex-
periment in the marketplaces and those who manage to
leverage it to operate a successful business. Going for-
ward, we define any seller that we have observed selling
in excess of $10,000 to be successful. This allows us
to draw conclusions only about vendors that have had a
meaningful impact on the marketplace ecosystem. Now
that we know how much sellers are selling, we wish to
understand what they are selling. Once again we group
feedback by vendor but this time we also use the classi-
fier to categorize the items that were being sold and ag-
gregate by category. Let C be the set of normalized item
categories for each seller and S be the set of all sellers
across all marketplaces. So, |C |= 16, and |S |= 9,386.
Define Ci(s j) as the normalized value of the i-th category
for seller j such that ∀s j ∈ S, ∑|C |

i=1 Ci(s j) = 1. Then,
we define the coefficient of diversity for a seller s j as:

cd =
(

1−max
i

(
Ci(s j)

)) |C |
|C |−1

.

Intuitively, the coefficient of diversity is measuring
how invested a seller is into their most popular category,
normalized so that cd ∈ [0,1]. When evaluating the cate-
gories that different sellers are invested in, it only makes
sense to consider successful sellers as less significant
sellers are volatile and greatly influenced by an individ-
ual sale in some category.

Figure 12 plots the CDF of the coefficient of diversity
for sellers from Evolution, Silk Road, Silk Road 2 and
Agora that sold more than $10,000 total. From Figure 12
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we argue that there are roughly three types of sellers. The
first type of seller with a coefficient of diversity between
0 and 0.1 is highly specialized, and sells exactly one type
of product. About half of all sellers are highly special-
ized and indicates that the seller has access to a steady
long-term supply of some type of product. About one
third of all vendors who specialize sell cannabis, another
third sell digital goods, and the last third sell in the var-
ious other categories. While digital goods is a relatively
small share of the total marketplace ecosystem, it tends
to attract vendors that specialize. This is likely due to
the domain expertise required for actions such as manu-
facturing fake IDs or stealing credit cards. The second
type of seller has a diversity coefficient of between 0.1
and 0.5 and generally specializes in two or three types of
products. The most common two categories to simulta-
neously specialize in are ecstasy and psychedelics – i.e.,
primarily recreational and club drugs. The third type of
vendor has a diversity coefficient greater than 0.5 and
has no specialty but rather sells a variety of items. These
types of sellers may be networks of users with access to
many different sources, or may be involved in arbitrage
between markets.

PGP deployment We conclude our discussion of ven-
dor behavior by looking in more detail at their security
practices. While we cannot easily assess their overall
operational security, we consider a very simple proxy for
security behavior: the availability of a valid PGP key.
From our data set, we extracted 7,717 PGP keys. Most
vendors use keys of appropriate length, even though we
did observe a couple of oddities (e.g., a 2,047-bit key!)
that might indicate an incorrect use of the software. In-
spired by Heninger et al. [20] and Lenstra et al. [25] we
checked all pairs of keys to determine whether or not
they had common primes. We did not find any, which
either suggests that GPG software was always properly
used and with a good random number generator, or, more
likely, that our dataset is too small to contain evidence of
weak keys.

We then plot in Figure 13 the fraction of vendors, over
time, that have (at least) one usable PGP key. We take
an extremely inclusive view of PGP deployment here: as
long as a vendor has advertised a valid PGP key for one
or her active aliases, we consider they are using PGP. As
vendors deal with highly sensitive information such as
postal delivery addresses of their customers, we would
expect close to 100% deployment. We see that, despite
improvements, this is not the case. In the original Silk
Road, only approximately 2/3 to 3/4 of vendors had a
valid PGP key listed. During the upheaval of the 2013
Fall, with many marketplaces opening and shutting down
quickly, we see that PGP deployment is very low. When
the situation stabilizes in January 2014, we observe an
increase in PGP adoption; interestingly, after Opera-
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Figure 13: PGP deployment over time.

tion Onymous, adoption seems even higher, which can
be construed as an evolutionary argument: marketplaces
that support and encourage PGP use by their sellers (such
as Evolution and Agora) might have been also more se-
cure in other respects, and more resilient against take-
downs. Shortly before the Evolution shutdown, PGP de-
ployment on Agora and Evolution was close to 90%.

5 Discussion

A study of this kind brings up a number of important
discussion points. We focus here on what we consider
are the most salient ones: validation, ethics, and potential
public policy take-aways.

5.1 Validation

Scientific measurements should be amenable to valida-
tion. Unfortunately, here, ground truth is rarely avail-
able, which in turn makes validation extremely difficult.
Marketplace operators indeed generally do not publish
metrics such as seller numbers or traffic volumes. How-
ever, in certain cases, we have limited information that
we can use for spot-checking estimates.

Ross Ulbricht trial evidence (Silk Road) In October
2013, a San Francisco man by the name of Ross Ul-
bricht was arrested and charged as being the operator of
Silk Road [8]. A large amount of data was subsequently
entered into evidence used during his trial, which took
place in January 2015. In particular, evidence contained
relatively detailed accounting entries found on Mr. Ul-
bricht’s laptop, and claimed to pertain to Silk Road. Chat
transcripts (evidence GX226A, GX227C) place weekly
volumes at $475,000/week in late March 2012 for in-
stance: this is consistent with the data previously re-
ported [13] and which we use for documenting Silk Road
1. Evidence GX250 contains a personal ledger which
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apparently faithfully documents Silk Road sales com-
missions. Projecting the data listed during the time of
the previous study [13] ($680,279) over a year yields a
yearly projection of about $1.2M; Christin’s estimates
were of $1.1M [13]. This hints that the technique of
using feedback as a sales proxy, which we reuse here,
produces reliable estimates.

Blake Benthall criminal complaint (Silk Road 2) In
November 2014, another San Francisco man by the name
of Blake Benthall was arrested and charged with being
“Defcon,” the Silk Road 2.0 administrator. The crim-
inal complaint against Mr. Benthall [7] reports that in
September 2014, the administrator, talking to an under-
cover agent actually working on Silk Road 2’s staff, re-
ports around $6M of monthly sales; and later amends this
number to $8M. This corresponds to a daily sales volume
of $200,000–$250,000 which is very close to what we re-
port in Figure 5 for Silk Road 2 at that given time.

Leaked Agora seller page In December 2014, it was
revealed that an Agora vendor page had been scraped and
leaked on Pastebin [21]. This vendor page in particular
contains a subset of all the vendor’s transactions; one can
estimate precisely the amount for that specific vendor on
June 5, 2014 to $3,460. Checking in our database, our
instantaneous estimate credits that seller with $3,408 on
the day – which, considering Bitcoin exchange fluctua-
tions is pretty much identical to the ground truth.

5.2 Ethics of data collection

We share much of the ethical concerns and views docu-
mented in previous work [13]. Our data collection, in
particular, is massive, and could potentially put some
strain on the Tor network, not to mention marketplace
servers themselves. However, even though it is hard
to assess we believe that our measurements represent a
small fraction of all traffic that is going to online anony-
mous marketplaces. As discussed in Section 3 we are at-
tempting to balance accuracy of the data collection with a
light-weight enough crawling strategy to avoid detection
– or worse, impacting the very operations we are trying to
measure. In addition, we are contributing Tor relays with
long uptimes on very fast networks to “compensate” for
our own massive use of the network. Our work takes a
number of steps to remain neutral. We certainly do not
want to facilitate vendor or marketplace operator arrests.
This is not just an ethical question, but is also a scientific
one: our measurements, to be sound, should not impact
the subject(s) being measured [23].

5.3 Public-policy take-aways

The main outcome of this work, we hope, is a criti-
cal evaluation of meaningful public policy toward online
anonymous marketplaces. While members of Congress
have routinely called for the take down of “brazen” on-
line marketplaces, it is unclear that this is the most prag-
matic use of taxpayer money.

In fact, our measurements suggest that the ecosystem
appears quite resilient to law enforcement take-downs.
We see this without ambiguity in response to the (origi-
nal) Silk Road take-down; and while it is too early to tell
the long-lasting impacts of Operation Onymous, its main
effect so far seems to have been to consolidate transac-
tions in the two dominant marketplaces at the time of the
take-down. More generally, economics tell us that be-
cause user demand for drugs online is present (and quite
massive), enterprising individuals will seemingly always
be interested in accommodating this demand.

A natural question is whether the cat-and-mouse game
between law enforcement and marketplace operators
could end with the complete demise of online anony-
mous marketplaces. Our results suggest it is unlikely.
Thus, considering the expenses incurred in very lengthy
investigations and the level of international coordination
needed in operations like Operation Onymous, the time
may be ripe to investigate alternative solutions.

Reducing demand through prevention is certainly an
alternative worth exploring on a global public policy
level, but, from a law enforcement perspective, even ac-
tive intervention could be much more targeted, e.g., to-
ward seizing highly dangerous products while in transit.
A number of documented successes in using traditional
police work against sellers of hazardous substances (e.g.,
[35]) or large-scale dealers (e.g., [4, 6] among many oth-
ers) show that law enforcement is not powerless to ad-
dress the issue in the physical world.

6 Related work

The past decade has seen a large number of detailed re-
search efforts aiming at gathering actual measurements
from various online criminal ecosystems in order to de-
vise meaningful defenses; see, e.g., [13,14,22,26,27,28,
29,32,40,41]. Anderson et al. [11] and Thomas et al. [37]
provide a very good overview of the field. Closest among
these papers to our work, McCoy et al. obtained detailed
measurements of online pharmaceutical affiliates, show-
ing that individual networks grossed between USD 12.8
million/year to USD 67.7 million/year. In comparison,
the long-term rough average we see here is in the order of
$150–180M/year for the entire online anonymous mar-
ketplace ecosystem. In other words, online marketplaces
have seemingly surpassed more “traditional” ways of de-
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livering illicit narcotics.
With respect to specific measurements of online

anonymous marketplaces, the present paper builds up
on our previous work [13]. Surprisingly few other ef-
forts exist attempting to quantitatively characterize the
economics of online anonymous marketplaces. Of note,
Aldridge and Décary-Hétu [10] complement our original
volume estimates by showing revised numbers of around
$90M/year for Silk Road in 2013 right before its take-
down. This is roughly in line with our own measure-
ments, albeit slightly more conservative (Figure 5 shows
about $300K/day for Silk Road in summer 2013.) More
recent work by Dolliver [17] tries to assess the volumes
on Silk Road 2.0. While she does not report volumes, her
seller numbers are far smaller than ours, and we suspect
her scrapes might have been incomplete. Looking at the
problem from a different angle, Meiklejohn et al. [31]
provide a detailed analysis of transaction traceability in
the Bitcoin network, and show which addresses are re-
lated to Silk Road, which in turn could be a useful way of
assessing the total volumes of that marketplace. A follow
up paper [30] shows that purported Bitcoin “anonymity”
(i.e., unlinkability) is greatly overstated, even when us-
ing newer mixing primitives.

On the customer side, Barratt et al. [12] provide an
insightful survey of Silk Road patrons, showing that a
lot of them associate with the “party culture,” which is
corroborated by our results showing that cannabis and
ecstasy correspond to roughly half of the sales; like-
wise Van Hout and Bingham provide valuable insights
into individual participants [39]. Our research comple-
ments these efforts by providing a macro-level view of
the ecosystem.

7 Conclusions

Even though anonymous online marketplaces are a rel-
atively recent development in the overall online crime
ecosystem, our longitudinal measurements show that in
the short four years since the development of the original
Silk Road, total volumes have reached up to $700,000
daily (averaged over 30-day windows) and are generally
stable around $300,000-$500,000 a day, far exceeding
what had been previously reported. More remarkably,
anonymous marketplaces are extremely resilient to take-
downs and scams – highlighting the simple fact that eco-
nomics (demand) plays a dominant role. In light of our
findings, we suggest a re-evaluation of intervention poli-
cies against anonymous marketplaces. Given the high
demand for the products being sold, it is not clear that
take-downs will be effective; at least we have found no
evidence they were. Even if one went to the impracti-
cal extreme of banning anonymous networks, demand
would probably simply move to other channels, while

some of the benefits associated with these markets (e.g.,
reduction in risks of violence at the retail level) would be
lost. Instead, a focus on reducing consumer demand, e.g.,
through prevention, might be worth considering; like-
wise, it would be well-worth investigating whether more
targeted interventions (e.g., at the seller level) have had
measurable effects on the overall ecosystem. While our
paper does not answer these questions, we believe that
the data collection methodology we described, as well as
some of the data we have collected, may enable further
research in the field.

Acknowledgments

This research was partially supported by the National
Science Foundation under ITR award CCF-0424422
(TRUST) and SaTC award CNS-1223762; and by the
Department of Homeland Security Science and Tech-
nology Directorate, Cyber Security Division (DHS
S&T/CSD), the Government of Australia and SPAWAR
Systems Center Pacific via contract number N66001-13-
C-0131. This paper represents the position of the authors
and not that of the aforementioned agencies. We thank
our anonymous reviewers and our shepherd, Damon Mc-
Coy, for feedback that greatly improved the manuscript.

References
[1] Darknet stats. https://dnstats.net/.

[2] Grams: Search the darknet. http://grams7enufi7jmdl.
onion.

[3] Scrapy: An open source web scraping framework for Python.
http://scrapy.org.

[4] United States of America vs. Steven Lloyd Sadler and Jenna M.
White, Nov. 2013. United States District Court, Western District
of Washington at Seattle. Criminal Complaint MJ13-487.

[5] Silk Road 2.0 ’hack’ blamed on Bitcoin bug, all funds
stolen, Feb. 2014. http://www.forbes.com/sites/
andygreenberg/2014/02/13/silk-road-2-0-
hacked-using-bitcoin-bug-all-its-funds-
stolen/.

[6] Silk Road online drug dealer pleads guilty to trafficking,
May 2014. http://www.cbsnews.com/news/silk-
road-online-drug-dealer-pleads- guilty-to-
trafficking/.

[7] United States of America vs. Blake Benthall, Oct. 2014. United
States District Court, Southern District of New York. Sealed
Complaint 14MAG2427.

[8] United States of America vs. Ross William Ulbricht, Feb. 2014.
United States District Court, Southern District of New York. In-
dictment 14CRIM068.

[9] Bitcoin “exit scam”: deep-web market operators disappear with
$12m, Mar. 2015. http://www.theguardian.com/
technology/2015/mar/18/bitcoin-deep-web-
evolution-exit-scam-12-million-dollars/.
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Abstract
Software bugs are a well-known source of security vul-
nerabilities. One technique for finding bugs, symbolic
execution, considers all possible inputs to a program but
suffers from scalability limitations. This paper uses a
variant, under-constrained symbolic execution, that im-
proves scalability by directly checking individual func-
tions, rather than whole programs. We present UC-KLEE,
a novel, scalable framework for checking C/C++ systems
code, along with two use cases. First, we use UC-KLEE
to check whether patches introduce crashes. We check
over 800 patches from BIND and OpenSSL and find 12
bugs, including two OpenSSL denial-of-service vulner-
abilities. We also verify (with caveats) that 115 patches
do not introduce crashes. Second, we use UC-KLEE as a
generalized checking framework and implement check-
ers to find memory leaks, uninitialized data, and unsafe
user input. We evaluate the checkers on over 20,000
functions from BIND, OpenSSL, and the Linux kernel,
find 67 bugs, and verify that hundreds of functions are
leak free and that thousands of functions do not access
uninitialized data.

1 Introduction
Software bugs pervade every level of the modern soft-
ware stack, degrading both stability and security. Cur-
rent practice attempts to address this challenge through
a variety of techniques, including code reviews, higher-
level programming languages, testing, and static analy-
sis. While these practices prevent many bugs from being
released to the public, significant gaps remain.

One technique, testing, is a useful sanity check for
code correctness, but it typically exercises only a small
number of execution paths, each with a single set of in-
put values. Consequently, it misses bugs that are only
triggered by other inputs.

Another broad technique, static analysis, is effective
at discovering many classes of bugs. However, static
analysis generally uses abstraction to improve scalability
and cannot reason precisely about program values and

pointer relationships. Consequently, static tools often
miss deep bugs that depend on specific input values.

One promising technique that addresses the limitations
of both testing and static analysis is symbolic execu-
tion [4, 5, 40]. A symbolic execution tool conceptually
explores all possible execution paths through a program
in a bit-precise manner and considers all possible input
values. Along each path, the tool determines whether any
combination of inputs could cause the program to crash.
If so, it reports an error to the developer, along with a
concrete set of inputs that will trigger the bug.

Unfortunately, symbolic execution suffers from the
well-known path explosion problem since the number of
distinct execution paths through a program is often ex-
ponential in the number of if-statements or, in the worst
case, infinite. Consequently, while symbolic execution
often examines orders of magnitude more paths than tra-
ditional testing, it typically fails to exhaust all interest-
ing paths. In particular, it often fails to reach code deep
within a program due to complexities earlier in the pro-
gram. Even when the tool succeeds in reaching deep
code, it considers only the input values satisfying the few
paths that manage to reach this code.

An alternative to whole-program symbolic execution
is under-constrained symbolic execution [18, 42, 43],
which directly executes an arbitrary function within the
program, effectively skipping the costly path prefix from
main to this function. This approach reduces the number
and length of execution paths that must be explored. In
addition, it allows library and OS kernel code without a
main function to be checked easily and thoroughly.

This paper presents UC-KLEE, a scalable framework
implementing under-constrained symbolic execution for
C/C++ systems code without requiring a manual speci-
fication or even a single testcase. We apply this frame-
work to two important use cases. First, we use it to check
whether patches to a function introduce new bugs, which
may or may not pose security vulnerabilities. Ironically,
patches intended to fix bugs or eliminate security vulner-
abilities are a frequent source of them. In many cases,
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UC-KLEE can verify (up to a given input bound and with
standard caveats) that a patch does not introduce new
crashes to a function, a guarantee not possible with ex-
isting techniques.

Second, we use UC-KLEE as a general code checking
framework upon which specific checkers can be imple-
mented. We describe three example checkers we im-
plemented to find memory leaks, uses of uninitialized
data, and unsanitized uses of user input, all of which
may pose security vulnerabilities. Additional checkers
may be added to our framework to detect a wide vari-
ety of bugs along symbolic, bit-precise execution paths
through functions deep within a program. If UC-KLEE
exhaustively checks all execution paths through a func-
tion, then it has effectively verified (with caveats) that the
function passes the check (e.g., no leaks).

We evaluated these use cases on large, mature, and
security-critical code. We validated over 800 patches
from BIND [3] and OpenSSL [36] and found 12 bugs,
including two OpenSSL denial-of-service vulnerabili-
ties [12, 16]. UC-KLEE verified that 115 patches did not
introduce new crashes, and it checked thousands of paths
and achieved high coverage even on patches for which it
did not exhaust all execution paths.

We applied our three built-in checkers to over 20,000
functions from BIND, OpenSSL, and the Linux kernel
and discovered 67 new bugs, several of which appear to
be remotely exploitable. Many of these were latent bugs
that had been missed by years of debugging effort. UC-
KLEE also exhaustively verified (with caveats) that 771
functions from BIND and OpenSSL that allocate heap
memory do not cause memory leaks, and that 4,088 func-
tions do not access uninitialized data.

The remainder of this paper is structured as follows:
§ 2 presents an overview of under-constrained symbolic
execution; § 3 and § 4 discuss using UC-KLEE for val-
idating patches and generalized checking, respectively;
§ 5 describes implementation tricks; § 6 discusses related
work; and § 7 concludes.

2 Overview
This paper builds upon our earlier work on UC-KLEE
[43], an extension to the KLEE symbolic virtual ma-
chine [5] designed to support equivalence verification
and under-constrained symbolic inputs. Our tool checks
C/C++ code compiled as bitcode (intermediate represen-
tation) by the LLVM compiler [29]. As in KLEE, it per-
forms bit-accurate symbolic execution of the LLVM bit-
code, and it executes any functions called by the code.
Unlike KLEE, UC-KLEE begins executing code at an ar-
bitrary function chosen by the user, rather than main.

With caveats (described in § 2.2), UC-KLEE provides
verification guarantees on a per-path basis. If it exhausts
all execution paths, then it has verified that a function has

the checked property (e.g. that a patch does not introduce
any crashes or that the function does not leak memory)
up to the given input size.

Directly invoking functions within a program presents
new challenges. Traditional symbolic execution tools
generate input values that represent external input
sources (e.g., command-line arguments, files, etc.). In
most cases, a correct program should reject invalid ex-
ternal inputs rather than crash. By contrast, individual
functions typically have preconditions imposed on their
inputs. For example, a function may require that pointer
arguments be non-null. Because UC-KLEE directly exe-
cutes functions without requiring their preconditions to
be specified by the user, the inputs it considers may
be a superset (over-approximation) of the legal values
handled by the function. Consequently, we denote UC-
KLEE’s symbolic inputs as under-constrained to reflect
that they are missing preconditions (constraints).

While this technique allows previously-unreachable
code to be deeply checked, the missing preconditions
may cause false positives (spurious errors) to be reported
to the user. UC-KLEE provides both automated heuristics
and an interface for users to manually silence these errors
by lazily specifying input preconditions using simple C
code. In our experience, even simple annotations may si-
lence a large number of spurious errors (see § 3.2.5) and
this effort is orders of magnitude less work than eagerly
providing a full specification for each function.

2.1 Lazy initialization
UC-KLEE automatically generates a function’s symbolic
inputs using lazy initialization [26, 46], which avoids
the need for users to manually construct inputs, even for
complex, pointer-rich data structures. We illustrate lazy
initialization by explaining how UC-KLEE executes the
example function listSum in Figure 1(a), which sums
the entries in a linked list. Figure 1(b) summarizes the
three execution paths we explore. For clarity, we elide er-
ror checks that UC-KLEE normally performs at memory
accesses, division/remainder operations, and assertions.

UC-KLEE first creates an under-constrained symbolic
value to represent the sole argument n. Although n is a
pointer, it begins in the unbound state, not yet pointing to
any object. UC-KLEE then passes this symbolic argument
to listSum and executes as follows:
Line 7 The local variable sum is assigned a concrete
value; no special action is taken.
Line 8 The code checks whether the symbolic variable
n is non-null. At this point, UC-KLEE forks execution
and considers both cases. We first consider the false path
where n = null, (Path A). We then return to the true path
where n ̸= null (Path B). On Path A, UC-KLEE adds n =
null as a path constraint and skips the loop.
Line 12 Path A returns 0 and terminates.

1 : struct node {
2 : int val;
3 : struct node *next;
4 : };
5 :
6 : int listSum(node *n) {
7 : int sum = 0;
8 : while (n) {
9 : sum += n−>val;
10: n = n−>next;
11: }
12: return sum;
13: }

(a) C code

7 : int sum = 0;

8 : while (n) { 12: return sum;

9 :   sum += n->val;

10:   n = n->next;

8 : while (n) {

9 :   sum += n->val;

10:   n = n->next;

8 : while (n) {

...

12: return sum;

12: return sum;

true

true

false

false

false

true

Path constraints:

n = null

n ≠ null
n = &node1
node1.next = null

n ≠ null
n = &node1
node1.next ≠ null
node1.next = &node2
node2.next = null

Path A

Path B

Path C
n

node1
val

next

node2
null

Symbolic inputs:

val
next

n

node1
val

next
null

n
null

(b) Paths explored

Figure 1: Example code fragment analyzed by UC-KLEE.

We now consider Path B.
Line 8 UC-KLEE adds the constraint n ̸= null and enters
the loop.
Line 9 The code dereferences the pointer n for the first
time on Path B. Because n is unbound, UC-KLEE allo-
cates a new block of memory, denoted node1, to sat-
isfy the dereference and adds the constraint n = &node1
to bind the pointer n to this object. At this point, n is
no longer unbound, so subsequent dereferences of that
pointer will resolve to node1 rather than trigger addi-
tional allocations. The (symbolic) contents of node1
are marked as unbound, allowing future dereferences of
pointers in this object to trigger allocations. This recur-
sive process is the key to lazy initialization. Next, sum is
incremented by the symbolic value node1.val.
Line 10 n is set to the value node1.next. Path B then
returns to the loop header.
Line 8 The code tests whether n (set to node1.next) is
non-null. UC-KLEE forks execution and considers both
cases. We first consider node1.next = null, which we
still refer to as Path B. We will then return to the true
path where node1.next ̸= null (Path C). On Path B,
node1.next = null is added as a path constraint and exe-
cution exits the loop.
Line 12 Path B returns node1.val and terminates.

We now consider Path C.
Line 8 UC-KLEE adds node1.next ̸= null as a path con-
straint, and Path C enters the loop.
Line 9 Path C dereferences the unbound symbolic
pointer node1.next, which triggers allocation of a new
object node2. This step illustrates the unbounded nature
of many loops. To prevent UC-KLEE from allocating an
unbounded number of objects as input, the tool accepts
a command-line option to limit the depth of an input-
derived data structure (k-bounding [17]). When a path
attempts to exceed this limit, our tool silently terminates
it. For this example, assume a depth limit of two, which
causes UC-KLEE to terminate Path D (not shown) at line
9 during the next loop iteration.

Line 10 n is set to the value node2.next.
Line 8 UC-KLEE forks execution and adds the path con-
straint node2.next = null to Path C.
Line 12 Path C returns node1.val+node2.val and exits.

This example illustrates a simple but powerful recur-
sive technique to automatically synthesize data struc-
tures from under-constrained symbolic input. Figure 2
shows an actual data structure our tool generated as in-
put for one of the BIND bugs we discovered (Figure 5).
The edges between each object are labeled with the field
names contained in the function’s debug information and
included in UC-KLEE’s error report.

2.2 Limitations
Because we build on our earlier version of UC-KLEE, we
inherit its limitations [43]. The more important exam-
ples are as follows. The tool tests compiled code on a
specific platform and does not consider other build con-
figurations. It does not handle assembly (see § 4 for how
we skip inline assembly), nor symbolic floating point op-
erations. In addition, there is an explicit assumption that
input-derived pointers reference unique objects (no alias-
ing, and no cyclical data structures), and the tool assigns
distinct concrete addresses to allocated objects.

When checking whether patches introduce bugs, UC-
KLEE aims to detect crashing bugs and does not look for
performance bugs, differences in system call arguments,
or concurrency errors. We can only check patches that
do not add, remove, or reorder fields in data structures or
change the type signatures of patched functions. We plan
to extend UC-KLEE to support such patches by imple-
menting a type map that supplies identical inputs to each
version of a function in a “field aware” manner. How-

isc_event_t*
event

struct isc_event
uc_isc_event1

struct dns_zone
uc_dns_zone1

struct dns_rbtdb
uc_dns_rbt1

char*
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1 : struct node {
2 : int val;
3 : struct node *next;
4 : };
5 :
6 : int listSum(node *n) {
7 : int sum = 0;
8 : while (n) {
9 : sum += n−>val;
10: n = n−>next;
11: }
12: return sum;
13: }

(a) C code

7 : int sum = 0;

8 : while (n) { 12: return sum;

9 :   sum += n->val;

10:   n = n->next;

8 : while (n) {

9 :   sum += n->val;

10:   n = n->next;

8 : while (n) {

...

12: return sum;

12: return sum;

true

true

false

false

false

true

Path constraints:

n = null

n ≠ null
n = &node1
node1.next = null

n ≠ null
n = &node1
node1.next ≠ null
node1.next = &node2
node2.next = null

Path A

Path B

Path C
n

node1
val

next

node2
null

Symbolic inputs:

val
next

n

node1
val

next
null

n
null

(b) Paths explored

Figure 1: Example code fragment analyzed by UC-KLEE.

We now consider Path B.
Line 8 UC-KLEE adds the constraint n ̸= null and enters
the loop.
Line 9 The code dereferences the pointer n for the first
time on Path B. Because n is unbound, UC-KLEE allo-
cates a new block of memory, denoted node1, to sat-
isfy the dereference and adds the constraint n = &node1
to bind the pointer n to this object. At this point, n is
no longer unbound, so subsequent dereferences of that
pointer will resolve to node1 rather than trigger addi-
tional allocations. The (symbolic) contents of node1
are marked as unbound, allowing future dereferences of
pointers in this object to trigger allocations. This recur-
sive process is the key to lazy initialization. Next, sum is
incremented by the symbolic value node1.val.
Line 10 n is set to the value node1.next. Path B then
returns to the loop header.
Line 8 The code tests whether n (set to node1.next) is
non-null. UC-KLEE forks execution and considers both
cases. We first consider node1.next = null, which we
still refer to as Path B. We will then return to the true
path where node1.next ̸= null (Path C). On Path B,
node1.next = null is added as a path constraint and exe-
cution exits the loop.
Line 12 Path B returns node1.val and terminates.

We now consider Path C.
Line 8 UC-KLEE adds node1.next ̸= null as a path con-
straint, and Path C enters the loop.
Line 9 Path C dereferences the unbound symbolic
pointer node1.next, which triggers allocation of a new
object node2. This step illustrates the unbounded nature
of many loops. To prevent UC-KLEE from allocating an
unbounded number of objects as input, the tool accepts
a command-line option to limit the depth of an input-
derived data structure (k-bounding [17]). When a path
attempts to exceed this limit, our tool silently terminates
it. For this example, assume a depth limit of two, which
causes UC-KLEE to terminate Path D (not shown) at line
9 during the next loop iteration.

Line 10 n is set to the value node2.next.
Line 8 UC-KLEE forks execution and adds the path con-
straint node2.next = null to Path C.
Line 12 Path C returns node1.val+node2.val and exits.

This example illustrates a simple but powerful recur-
sive technique to automatically synthesize data struc-
tures from under-constrained symbolic input. Figure 2
shows an actual data structure our tool generated as in-
put for one of the BIND bugs we discovered (Figure 5).
The edges between each object are labeled with the field
names contained in the function’s debug information and
included in UC-KLEE’s error report.

2.2 Limitations
Because we build on our earlier version of UC-KLEE, we
inherit its limitations [43]. The more important exam-
ples are as follows. The tool tests compiled code on a
specific platform and does not consider other build con-
figurations. It does not handle assembly (see § 4 for how
we skip inline assembly), nor symbolic floating point op-
erations. In addition, there is an explicit assumption that
input-derived pointers reference unique objects (no alias-
ing, and no cyclical data structures), and the tool assigns
distinct concrete addresses to allocated objects.

When checking whether patches introduce bugs, UC-
KLEE aims to detect crashing bugs and does not look for
performance bugs, differences in system call arguments,
or concurrency errors. We can only check patches that
do not add, remove, or reorder fields in data structures or
change the type signatures of patched functions. We plan
to extend UC-KLEE to support such patches by imple-
menting a type map that supplies identical inputs to each
version of a function in a “field aware” manner. How-
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ever, our current system does not support this, and we
excluded such patches from our experiments.

3 Patch checking
To check whether a patch introduces new crashing bugs,
UC-KLEE symbolically executes two compiled versions
of a function: P, the unpatched version, and P′, the
patched version. If it finds any execution paths along
which P′ crashes but P does not (when given the same
symbolic inputs), it reports a potential bug in the patch.

Recall that due to missing input preconditions, we can-
not simply assume that all crashes are bugs. Instead, UC-
KLEE looks for paths that exhibit differing crash behav-
ior between P and P′, which usually share an identical
set of preconditions. Even if UC-KLEE does not know
these preconditions, in practice, real code tends to show
error equivalence [43], meaning that P and P′ both crash
(or neither crashes) on illegal inputs. For example, if a
precondition requires a pointer to be non-null and both
versions dereference the pointer, then P and P′ will both
crash when fed a null pointer as an argument.

In prior work, UC-KLEE [43] verified the equivalence
of small library routines, both in terms of crashes and
outputs. While detecting differences in functionality may
point to interesting bugs, these discrepancies are typi-
cally meaningful only to developers of the checked code.
Because this paper evaluates our framework on large,
complex systems developed by third parties, we limit our
discussion to crashes, which objectively point to bugs.

To check patches, UC-KLEE automatically generates
a test harness that sets up the under-constrained inputs
and invokes P and P′. Figure 3 shows a representa-
tive test harness. Lines 2–3 create an under-constrained
input n. Line 4 calls fooB (P′). Note that UC-KLEE
invokes P′ before P to facilitate path pruning (§ 3.1).

1 : int main() {
2 : node *n;
3 : ucklee make uc(&n);
4 : fooB(n); /* run P′ */
5 : ucklee reset address space();
6 : fooA(n); /* run P */
7 : return 0;
8 : }

Figure 3: Test harness.

Line 5 discards any writes
performed by fooB but pre-
serves the path constraints so
that fooA (P) will see the
same initial memory contents
and follow the corresponding
path. Line 6 invokes fooA.

If a path through fooB crashes, UC-KLEE unwinds
the stack and resumes execution at line 5. If fooA also
crashes on this path, then the two functions are crash
equivalent and no error is reported. However, if fooA
returns from line 6 without crashing, we report an error
to the user as a possible bug in fooB. For this use case,
we do not report errors in which fooA (P) crashes but
fooB (P′) does not, which suggest bugs fixed by a patch.

3.1 Path pruning
UC-KLEE employs several path pruning techniques to
target errors and avoid uninteresting paths. The underly-

ing UC-KLEE system includes a static cross-checker that
walks over the LLVM [29] control flow graph, conserva-
tively marking regions of basic blocks that differ between
the original function P and the patched function P′. This
algorithm is fairly straightforward, and we elide details
for brevity. UC-KLEE soundly prunes paths that:
1. have never executed a “differing” basic block, and
2. cannot reach a differing basic block from their cur-

rent program counter and call stack.
The second condition uses an inter-procedural reachabil-
ity analysis from the baseline UC-KLEE system. Paths
meeting both of these criteria are safe to prune because
they will execute identical instruction sequences.

In addition, UC-KLEE introduces pruning techniques
aimed specifically at detecting errors introduced by a
patch. As our system executes P′ (fooB in Figure 3),
it prunes paths that either:
1. return from P′ without triggering an error, or
2. trigger an error without reaching differing blocks.

In the first case, we are only concerned with errors intro-
duced by the patch. In the second case, P and P′ would
both trigger the error.

Error uniquing. Our system aggressively uniques er-
rors by associating each path executing P with the pro-
gram counter (PC) of the error that occurred in P′. Once
our system executes a non-error path that returns from P
(and reports the error in P′), it prunes all current and fu-
ture paths that hit the same error (PC and type) in P′. In
practice, this enabled our system to prune thousands of
redundant error paths.

3.2 Evaluation
We evaluated UC-KLEE on hundreds of patches from
BIND and OpenSSL, two widely-used, security critical
systems. Each codebase contains about 400,000 lines of
C code, making them reasonable measures of UC-KLEE’s
scalability and robustness. For this experiment, we used
a maximum symbolic object size of 25,000 bytes and a
maximum symbolic data structure depth of 9 objects.

3.2.1 Patch selection and code modifications
We tried to avoid selection bias by using two complete
sets of patches from the git repositories for recent sta-
ble branches: BIND 9.9 from 1/2013 to 3/2014 and
OpenSSL 1.0.1 from 1/2012 to 4/2014. Many of the
patches we encountered modified more than one func-
tion; this section uses patch to refer to changes to a single
function, and commit to refer to a complete changeset.

We excluded all patches that: only changed copyright
information, had build errors, modified build infrastruc-
ture only, removed dead functions only, applied only
to disabled features (e.g., win32), patched only BIND
contrib features, only touched regression/unit tests, or
used variadic functions. We also eliminated all patches



USENIX Association  24th USENIX Security Symposium 53

Codebase Function Type Cause New Vulnerability
BIND receive secure db assert fail double lock acquisition ✓
BIND save nsec3param assert fail uninitialized struct ✓
BIND configure zone acl assert fail inconsistent null argument handling ✓
BIND isc lex gettoken assert fail input parsing logic ✓
OpenSSL PKCS5 PBKDF2 HMAC uninitialized pointer dereference uninitialized struct
OpenSSL dtls1 process record assert fail inconsistent null check
OpenSSL tls1 final finish mac null pointer dereference unchecked return value ✓
OpenSSL do ssl3 write null pointer dereference callee side effect after null check ✓ CVE-2014-0198
OpenSSL PKCS7 dataDecode null pointer dereference unchecked return value ✓
OpenSSL EVP DecodeUpdate out-of-bounds array access negative count passed to memcpy ✓ CVE-2015-0292
OpenSSL dtls1 buffer record use-after-free improper error handling ✓
OpenSSL pkey ctrl gost uninitialized pointer dereference improper error handling ✓

Figure 4: Summary of bugs UC-KLEE reported while checking patches. New indicates that the bug was previously unknown.

that yielded identical code after compiler optimizations.
Because of tool limitations, we excluded patches that
changed input datatypes (§ 2.2). Finally, to avoid inflat-
ing our verification numbers, we excluded three BIND
commits that patched 200-300 functions each by chang-
ing a pervasive linked-list macro and/or replacing all uses
of memcpy with memmove. Neither of these changes in-
troduced any errors and, given their near-trivial modifi-
cations, shed little additional light on our tool’s effec-
tiveness. This yielded 487 patches from BIND and 324
patches from OpenSSL, both from 177 distinct commits
to BIND and OpenSSL (purely by coincidence).

We compiled patched and unpatched versions of the
codebase for each revision using an LLVM 2.7 toolchain.
We then ran UC-KLEE over each patch for one hour. Each
run was allocated a single Intel Xeon E5645 2.4GHz
core and 4GB of memory on a compute cluster running
64-bit Fedora Linux 14. For these runs, we configured
UC-KLEE to target crashes only in patched routines or
routines they call. While this approach allows UC-KLEE
to focus on the most likely source of errors, it does not
detect bugs caused by the outputs of a function, which
may trigger crashes elsewhere in the system (e.g., if the
function unexpectedly returns null). UC-KLEE can report
such differences, but we elide that feature in this paper.
Code modifications. In BIND and OpenSSL, we canon-
icalized several macros that introduced spurious code
differences such as the LINE , VERSION, SRCID,
DATE, and OPENSSL VERSION NUMBER macros. To sup-
port function-call annotations (§ 3.2.5) in BIND, we con-
verted four preprocessor macros to function calls.

For BIND, we disabled expensive assertion-logging
code and much of its debug malloc functionality, which
UC-KLEE already provided. For OpenSSL, we added a
new build target that disabled reference counting and ad-
dress alignment. The reference counting caused many
false positives; UC-KLEE reported double free errors due
to unknown preconditions on an object’s reference count.

3.2.2 Bugs found
From the patches we tested, UC-KLEE uncovered three
previously unknown bugs in BIND and eight bugs in
OpenSSL, six of which were previously unknown. These
bugs are summarized in Figure 4.

1 : LOCK ZONE(zone);
2 : if (DNS ZONE FLAG(zone, DNS ZONEFLG EXITING)
3 : | | !inline secure(zone)) {
4 : result = ISC R SHUTTINGDOWN;
5 : goto unlock;
6 : }
7 : . . .
8 : if (result != ISC R SUCCESS)
9 : goto failure; /* ← bypasses UNLOCK ZONE */
10: . . .
11: unlock:
12: UNLOCK ZONE(zone);
13: failure:
14: dns zone idetach(&zone);

Figure 5: BIND locking bug found in receive secure db.

Figure 5 shows a representative double-lock bug in
BIND found by cross-checking. The patch moved the
LOCK ZONE earlier in the function (line 1), causing exist-
ing error handling code that jumped to failure (line 9)
to bypass the UNLOCK ZONE (line 12). In this case, the
subsequent call to dns zone idetach (line 14) reac-
quires the already-held lock, which triggers an asser-
tion failure. This bug was one of several we found
that involved infrequently-executed error handling code.
Worse, BIND often hides goto failure statements in-
side a CHECK macro, which was responsible for a bug
we discovered in the save nsec3param function (not
shown). We reported the bugs to the BIND developers,
who promptly confirmed and fixed them. These exam-
ples demonstrate a key benefit of UC-KLEE: it explores
non-obvious execution paths that would likely be missed
by a human developer, either because the code is obfus-
cated or an error condition is overlooked.

UC-KLEE is not limited to finding new bugs introduced
by the patches; it can also find old bugs in patched code.
We added a new mode where UC-KLEE flags errors that
occur in both P and P′ if the error must occur for all
input values following that execution path (must-fail er-
ror described in § 3.2.5). This approach allowed us to
find one new bug in BIND and four in OpenSSL. It also
re-confirmed a number of bugs found by cross-checking
above. This mode could be used to find bugs in functions
that have not been patched, but we did not use it for that
purpose in this paper.

Figure 6 shows a representative must-fail bug, a
previously unknown null pointer dereference (denial-
of-service) vulnerability we discovered in OpenSSL’s
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1 : if (wb−>buf == NULL) /* ← null pointer check */
2 : if (!ssl3 setup write buffer(s))
3 : return −1;
4 : . . .
5 : /* If we have an alert to send, lets send it */
6 : if (s−>s3−>alert dispatch) {
7 : /* call sets wb→buf to NULL */
8 : i=s−>method−>ssl dispatch alert(s);
9 : if (i <= 0)
10: return(i);
11: /* if it went, fall through and send more stuff */
12: }
13: . . .
14: unsigned char *p = wb−>buf; /* ← p = NULL */
15: *(p++)=type&0xff; /* ← null pointer dereference */

Figure 6: OpenSSL null pointer bug in do ssl3 write.

do ssl3 write function that led to security advi-
sory CVE-2014-0198 [12] being issued. In this case,
a developer attempted to prevent this bug by ex-
plicitly checking whether wb->buf is null (line 1).
If the pointer is null, ssl3 setup write buffers

allocates a new buffer (line 2). On line 6, the
code then handles any pending alerts [20] by calling
ssl dispatch alert (line 8). This call has the subtle
side effect of freeing the write buffer when the common
SSL MODE RELEASE BUFFERS flag is set. After freeing
the buffer, wb->buf is set to null (not shown), triggering
a null pointer dereference on line 15.

This bug would be hard to find with other approaches.
The write buffer is freed by a chain of function calls that
includes a recursive call to do ssl3 write, which one
maintainer described as “sneaky” [44]. In contrast to
static techniques that could not reason precisely about the
recursion, UC-KLEE proved that under the circumstances
when both an alert is pending and the release flag is set,
a null pointer dereference will occur. This example also
illustrates the weaknesses of regression testing. While
a developer may write tests to make sure this function
works correctly when an alert is pending or when the re-
lease flag is set, it is unlikely that a test would exercise
these conditions simultaneously. Perhaps as a direct con-
sequence, this vulnerability was nearly six years old.

3.2.3 Patches verified
In addition to finding new bugs, UC-KLEE exhaustively
verified all execution paths for 67 (13.8%) of the patches
in BIND, and 48 (14.8%) of the patches in OpenSSL.
Our system effectively verified that, up to the given in-
put bound and with the usual caveats, these patches did
not introduce any new crashes. This strong result is not
possible with imprecise static analysis or testing.

The median instruction coverage (§ 3.2.4) for the ex-
haustively verified patches was 90.6% for BIND and
100% for OpenSSL, suggesting that these patches were
thoroughly tested. Only six of the patches in BIND and
one in OpenSSL achieved very low (0-2%) coverage.
We determined that UC-KLEE achieved low coverage on
these patches due to dead code (2 patches); an insuffi-
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Figure 7: Coverage of patched instructions: 100% cover-
age for 98 BIND patches (20.1%) and 124 OpenSSL patches
(38.3%). Median was 81.1% for BIND, 86.9% for OpenSSL.

cient symbolic input bound (2 patches); comparisons be-
tween input pointers (we assume no aliasing, 1 patch);
symbolic malloc size (1 patch); and a trivial stub func-
tion that was optimized away (1 patch).

3.2.4 Patches partially verified
This section measures how thoroughly we check non-
terminating patches using two metrics: (1) instruction
coverage, and (2) number of execution paths completed.

We conservatively measure instruction coverage by
counting the number of instructions that differ in P′ from
P and then computing the percentage of these instruc-
tions that UC-KLEE executes at least once. Figure 7
plots the instruction coverage. The median coverage was
81.1% for BIND and 86.9% for OpenSSL, suggesting
that UC-KLEE thoroughly exercised the patched code,
even when it did not exhaust all paths.

Figure 8 plots the number of completed execution
paths for each patch we did not exhaustively verify
(§ 3.2.3) that hit at least one patched instruction. These
graphs exclude 31 patches for BIND and 32 patches
for OpenSSL for which our system crashed during the
one hour execution window. The crashes were primarily
due to bugs in our tool and memory exhaustion/blowup
caused by symbolically executing cryptographic ciphers.

For the remaining patches, UC-KLEE completed a me-
dian of 5,828 distinct paths per patch for BIND and 1,412
for OpenSSL. At the upper end, 154 patches for BIND
(39.6%) and 79 for OpenSSL (32.4%) completed over
10,000 distinct execution paths. At the bottom end, 58
patches for BIND (14.9%) and 46 for OpenSSL (18.9%)
completed zero execution paths. In many cases, UC-
KLEE achieved high coverage on these patches but nei-
ther detected errors nor ran the non-error paths to com-
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Figure 8: Completed execution paths (log scale). Median was
5,828 paths per patch for BIND and 1,412 for OpenSSL. Top
quartile was 17,557 paths for BIND and 21,859 for OpenSSL.

pletion. A few reasons we observed for paths not running
to completion included query timeouts, unspecified sym-
bolic function pointers, or ineffective search heuristics.

These numbers should only be viewed as a crude
approximation of thoroughness; they do not measure
the independence between the paths explored (greater
is preferable). On the other hand, they grossly under-
count the number of distinct concrete values each sym-
bolic path reasons about simultaneously. One would gen-
erally expect that exercising 1,000 or more paths through
a patch, where each path simultaneously tests all feasi-
ble values, represents a dramatic step beyond the current
standard practice of running the patch on a few tests.

3.2.5 False positives
This section describes our experience in separating true
bugs from false positives, which were due to missing in-
put preconditions. The false positives we encountered
were largely due to three types of missing preconditions:
1. Data structure invariants, which apply to all instances

of a data structure (e.g., a parent node in a binary
search tree has a greater value than its left child).

2. State machine invariants, which determine the se-
quence of allowed values and the variable assign-
ments that may exist simultaneously (e.g., a counter
increases monotonically).

3. API invariants, which determine the legal inputs to
API entry points (e.g., a caller must not pass a null
pointer as an argument).

Figure 9 illustrates a representative example of a false
positive from BIND, which was caused by a missing data
structure invariant. The isc region t type consists of
a buffer and a length, but UC-KLEE has no knowledge
that the two are related. The code selects a valid buffer

1 : typedef struct isc region {
2 : unsigned char * base;
3 : unsigned int length;
4 : } isc region t;
5 :
6 : int isc region compare(isc region t *r1, isc region t *r2) {
7 : unsigned int l;
8 : int result;
9 :
10: REQUIRE(r1 != NULL);
11: REQUIRE(r2 != NULL);
12:
13: /* chooses min. buffer length */
14: l = (r1−>length < r2−>length) ? r1−>length : r2−>length;
15:
16: /* memcmp reads out-of-bounds */
17: if ((result = memcmp(r1−>base, r2−>base, l)) != 0)
18: return ((result < 0) ? −1 : 1);
19: else
20: return ((r1−>length == r2−>length) ? 0 :
21: (r1−>length < r2−>length) ? −1 : 1);
22: }

Figure 9: Example false positive in BIND. UC-KLEE does not
associate length field with buffer pointed to by base field.
Consequently, UC-KLEE falsely reports that memcmp (line 17)
reads out-of-bounds from base.

length at line 14, the shorter of the two buffers. At line
17, the code calls memcmp and supplies this length. Inside
memcmp, UC-KLEE reported hundreds of false positives
involving out-of-bounds memory reads. These errors oc-
curred on false paths where the buffer pointed to by the
base field was smaller than the associated length field.

UC-KLEE manages false positives using two ap-
proaches: manual annotations and automated heuristics.

Manual annotations. UC-KLEE supports two types of
manual annotations: (1) data type annotations, and (2)
function call annotations. Both are written in C and
compiled with LLVM. UC-KLEE invokes data type an-
notations at the end of a path, prior to emitting an error.
These are associated with named data types and spec-
ify invariants on symbolic inputs of that type (inferred
from debug information when available). For the exam-
ple above, we added the following simple annotation for
the isc region t data type:

INVARIANT(r−>length <= OBJECT SIZE(r−>base));

The INVARIANT macro requires that the condition hold.
If it is infeasible (cannot be true) on the current path, UC-
KLEE emits an error report with a flag indicating that the
annotations have been violated. We use this flag to filter
out uninteresting error reports. This one simple anno-
tation allowed us to filter 623 errors, which represented
about 7.5% of all the errors UC-KLEE reported for BIND.

Function call annotations are used to run specific code
immediately prior to calling a function. For example,
we wrote a function call annotation for BIND that runs
before each call to isc mutex lock, with the same ar-
guments:

void annot isc mutex lock(isc mutex t *mp) {
EXPECT(*mp == 0);

}
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P′ only P and P′

Reports Patches Reports Patches
Heuristic Tot. Bugs Tot. Bugs
Total errors 2446 3 141 5829 - 260
Manual annotations 1419 3 125 1378 - 153

must-fail 44 3 8 1378 - 153
concrete-fail 26* 2 6* 878 - 110
belief-fail 35* 3 7* 1053 - 127

excluding inputs 30* 3 7* 852 - 102
True bugs 3* 3 3* 1 1 1

(a) BIND (487 patches, 4 distinct bugs)

P′ only P and P′

Reports Patches Reports Patches
Heuristic Tot. Bugs Tot. Bugs
Total errors 1423 5 79 579 11 125
Manual annotations 1286 5 79 451 11 124

must-fail 41 5 22 451 11 124
concrete-fail 14* 5 12* 224 11 98
belief-fail 25* 5 18* 316 11 117

excluding inputs 17* 5 11* 90* 11 47*
True bugs 5* 5 4* 11* 11 10*

(b) OpenSSL (324 patches, 8 distinct bugs)

Figure 10: Effects of heuristics on false positives. Tot. indicates the total number of reports, of which Bugs are true errors; Patches
indicates the number of patches that reported at least one error. P′ only refers to errors that occurred only in function P′; P and P′

occurred in both versions. Indent indicates successive heuristics; * indicates that we reviewed all the reports manually.

Macro Description
INVARIANT(condition) Add condition as a path constraint; kill

path if infeasible.
EXPECT(condition) Add condition as a path constraint if feasi-

ble; otherwise, ignore.
IMPLIES(a, b) Logical implication: a → b.
HOLDS(a) Returns true if condition a must hold.
MAY HOLD(a) Returns true if condition a may hold.
SINK(e) Forces e to be evaluated; prevents compiler

from optimizing it away.
VALID POINTER(ptr) Returns true if ptr is valid; false otherwise.
OBJECT SIZE(ptr) Returns the size of the object pointed to by

ptr; kills path if pointer is invalid.

Figure 11: C annotation macros.

The EXPECT macro adds the specified path constraint
only if the condition is feasible on the current path and
elides it otherwise. In this example, we avoid consid-
ering cases where the mutex is already locked. How-
ever, this annotation has no effect if the condition is not
feasible (i.e., the lock has definitely been acquired along
this path). This annotation allows UC-KLEE to detect er-
rors in lock usage while suppressing false positives un-
der the assumption that if a function attempts to acquire
a lock supplied as input, then a likely input precondi-
tion is that the lock is not already held. This annotation
did not prevent us from finding the BIND locking bug in
receive secure db shown in Figure 5.

Figure 11 summarizes the convenience macros we
provided for expressing annotations using C code. While
annotations may be written using arbitrary C code, these
macros provide a simple interface to functionality not
expressible with C itself (e.g., determining the size of
a heap object using OBJECT SIZE). The HOLDS and
MAY HOLD macros allow code to check the feasibility of
a Boolean expression without causing UC-KLEE to fork
execution and trigger path explosion.

For BIND, we wrote 13 function call annotations and
31 data type annotations (about 400 lines of C). For
OpenSSL, we wrote six data type annotations and no
function call annotations (60 lines). We applied a single
set of annotations for each codebase to all the patches we
tested. In our experience, most of these annotations were

simple to specify and often suppressed many false posi-
tives. We felt the level of effort required was reasonable
compared to the sizes of the codebases we checked. We
added annotations lazily, in response to false positives.

Figure 10 illustrates the effects of the annotations and
heuristics on the error reports for BIND and OpenSSL.
The P′ only column describes errors that only occurred
in the patched function, while P and P′ describes errors
that occurred in both versions. In this experiment, we are
primarily concerned with bugs introduced by a patch, so
our discussion describes P′ only unless otherwise noted.

The manual annotations suppressed 42% of the re-
ports for BIND but only 9.6% for OpenSSL. We attribute
this difference to the greater effort we expended writing
manual annotations for BIND, for which the automated
heuristics were less effective without the annotations.

Automated heuristics. We tried numerous heuristics to
reduce false reports. UC-KLEE augments each error re-
port with a list of the heuristics that apply. The must-
fail heuristic identifies errors that must occur for all in-
put values following that execution path, since these are
often true errors [18]. For example, assertion failures are
must-fail when the condition must be false.

A variation on the must-fail heuristic is the belief-fail
heuristic, which uses a form of belief analysis [19]. The
intuition behind this heuristic is that if a function contra-
dicts itself, it likely has a bug. For example, if the code
checks that a pointer is null and then dereferences the
pointer, it has a bug, regardless of any input precondi-
tions. On the other hand, a function is generally agnostic
to the assumptions made by the functions it calls. For
example, if strcmp checks whether two strings have the
same address, the caller does not acquire this belief, even
if the path constraints now indicate that the two addresses
match. Following this intuition, the belief-fail heuristic
identifies errors that occur for all input values satisfying
the belief set, which is the set of constraints (i.e., branch
conditions) added within the current function or inher-
ited from its caller, but not its callees. We track belief
sets for each stack frame.
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A second variation on must-fail is concrete-fail,
which indicates that an assertion failure or memory er-
ror was triggered by a concrete (non-symbolic) condi-
tion or pointer, respectively. In practice, this heuristic
and belief-fail were the most effective.

These heuristics reduced the total number of reports to
a small enough number that we were able to inspect them
all manually. While only 8.6% of the belief-fail errors for
BIND and 20% of those for OpenSSL were true bugs, the
total number of these errors (60) was manageable relative
to the number of patches we tested (811). In total, the
annotations and belief-fail heuristic eliminated 98.6% of
false positives for BIND and 98.2% for OpenSSL.

A subset of the belief-fail errors were caused by read-
ing past the end of an input buffer, and none of these
were true bugs. Instead, they were due to paths reaching
the input bound we specified. In many cases, our system
would emit these errors for any input bound because they
involved unbounded loops (e.g., strlen). The excluding
inputs row in Figure 10 describes the subset of belief-fail
errors not related to input buffers. This additional fil-
ter produced a small enough set of P and P′ errors for
OpenSSL that we were able to manually inspect them,
discovering a number of additional bugs. We note that
the true errors listed in Figure 10 constitute 12 distinct
bugs; some bugs showed up in multiple error reports.

4 Generalized checking
In addition to checking patches, UC-KLEE provides an
interface for rule-based checkers to be invoked during
symbolic path exploration. These checkers are similar to
tools built using dynamic instrumentation systems such
as Valgrind [34] or Pin [30]. Unlike these frameworks,
however, UC-KLEE applies its checkers to all possible
paths through a function, not to a single execution path
through a program. In addition, UC-KLEE considers all
possible input values along each path, allowing it to dis-
cover bugs that might be missed when checking a single
set of concrete inputs.

Conceptually, our framework is similar to WOOD-
PECKER [8], a KLEE-based tool that allows system-
specific checkers to run on top of (whole program) sym-
bolic execution. In this paper, however, we focus on
generic checkers we implemented for rules that apply to
many systems, and we directly invoked these checkers
on individual functions deep within each codebase.

UC-KLEE provides a simple interface for implement-
ing checkers by deriving from a provided C++ base class.
This interface provides hooks for a checker to intercept
memory accesses, arithmetic operations, branches, and
several types of errors UC-KLEE detects.

A user invoking UC-KLEE provides a compiled LLVM
module and the name of a function to check. We re-
fer to this function as the top-level function. Generally,

the module has been linked to include all functions that
might be called by the top-level function. When UC-
KLEE encounters a function call, it executes the called
function. When UC-KLEE encounters a call to a func-
tion missing from the LLVM module, however, it may op-
tionally skip over the function call rather than terminate
the path with an error message. When UC-KLEE skips
a function call, it creates a new under-constrained value
to represent the function’s return value, but it leaves the
function’s arguments unchanged. This approach under-
approximates the behaviors that the missing function
might perform (e.g., writing to its arguments or globals).
Consequently, UC-KLEE may miss bugs and cannot pro-
vide verification guarantees when functions are missing.

We briefly experimented with an alternative approach
in which we overwrote the skipped function’s argu-
ments with new under-constrained values, but this over-
approximation caused significant path explosion, mostly
involving paths that could not arise in practice.

In addition to missing functions due to scalability lim-
itations, we also encountered inline assembly (Linux ker-
nel only) and unresolved symbolic function pointers. We
skipped these two cases in the same manner as missing
functions. For all three cases, UC-KLEE provides a hook
to allow a checker to detect when a call is being skipped
and to take appropriate actions for that checker.

In the remainder of this section, we describe each
checker, followed by our experimental results in § 4.4.

4.1 Leak checker
Memory leaks can lead to memory exhaustion and pose
a serious problem for long-running servers. Frequently,
they are exploitable as denial-of-service vulnerabili-
ties [10, 13, 14]. To detect memory leaks (which may or
may not be remotely exploitable, depending on their lo-
cation within a program), we implemented a leak checker
on top of UC-KLEE. The leak checker considers a heap
object to be leaked if, after returning from the top-level
function, the object is not reachable from a root set of
pointers. The root set consists of a function’s (symbolic)
arguments, its return value, and all global variables. This
checker is similar to the leak detection in Purify [23] or
Valgrind’s memcheck [34] tool, but it thoroughly checks
all paths through a specific function, rather than a single
concrete path through a whole program.

When UC-KLEE encounters a missing function, the
leak checker finds the set of heap objects that are reach-
able from each of the function call’s arguments using a
precise approach based on pointer referents [42, 43]. It
then marks these objects as possibly escaping, since the
missing function could capture pointers to these objects
and prevent them from becoming unreachable. At the
end of each execution path, the leak checker removes any
possibly escaping objects from the set of leaked objects.
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Doing so allows it to report only true memory leaks, at
the cost of possibly omitting leaks when functions are
missing. However, UC-KLEE may still report false leaks
along invalid execution paths due to missing input pre-
conditions. Consider the following code fragment:

1 : char* leaker() {
2 : char *a = (char*) malloc(10); /* not leaked */
3 : char *b = (char*) malloc(10); /* maybe leaked */
4 : char *c = (char*) malloc(10); /* leaked! */
5 :
6 : bar(b); /* skipped call to bar */
7 : return a;
8 : }

When UC-KLEE returns from the function leaker, it in-
spects the heap and finds three allocated objects: a, b,
and c. It then examines the root set of objects. In this
example, there are no global variables and leaker has
no arguments, so the root set consists only of leaker’s
return value. UC-KLEE examines this return value and
finds that the pointer a is live (and therefore not leaked).
However, neither b nor c is reachable. It then looks at its
list of possibly escaping pointers due to the skipped call
to bar on line 6, which includes b. UC-KLEE subtracts
b from the set of leaked objects and reports back to the
user that c has been leaked. While this example is trivial,
UC-KLEE discovered 37 non-trivial memory leak bugs in
BIND, OpenSSL, and the Linux kernel (§ 4.4).

4.2 Uninitialized data checker
Functions that access uninitialized data from the stack
or heap exhibit undefined or non-deterministic behavior
and are particularly difficult to debug. Additionally, the
prior contents of the stack or heap may hold sensitive
information, so code that operates on these values may
be vulnerable to a loss of confidentiality.

UC-KLEE includes a checker that detects accesses to
uninitialized data. When a function allocates stack or
heap memory, the checker fills it with special garbage
values. The checker then intercepts all loads, binary
operations, branches, and pointer dereferences to check
whether any of the operands (or the result of a load) con-
tain garbage values. If so, it reports an error to the user.

In practice, loads of uninitialized data are often in-
tentional; they frequently arise within calls to memcpy

or when code manipulates bit fields within a C struct.
Our evaluation in § 4.4 therefore focuses on branches and
dereferences of uninitialized pointers.

When a call to a missing function is skipped, the unini-
tialized data checker sanitizes the function’s arguments
to avoid reporting spurious errors in cases where missing
functions write to their arguments.

4.3 User input checker
Code that handles untrusted user input is particularly
prone to bugs that lead to security vulnerabilities since

an attacker can supply any possible input value to exploit
the code. Generally, UC-KLEE treats inputs to a function
as under-constrained because they may have unknown
preconditions. For cases where inputs originate from un-
trusted sources such as network packets or user-space
data passed to the kernel, however, the inputs can be con-
sidered fully-constrained. This term indicates that the set
of legal input values is known to UC-KLEE; in this case,
any possible input value may be supplied. If any value
triggers an error in the code, then the error is likely to be
exploitable by an attacker, assuming that the execution
path is feasible (does not violate other preconditions).

UC-KLEE maintains shadow memory (metadata) asso-
ciated with each symbolic input that tracks whether each
symbolic byte is under-constrained or fully-constrained.
UC-KLEE provides an interface for system-specific C an-
notations to mark untrusted inputs as fully-constrained
by calling the function ucklee clear uc byte. This
function sets the shadow memory for each byte to the
fully-constrained state.

UC-KLEE includes a system-configurable user in-
put checker that intercepts all errors and adds
an UNSAFE INPUT flag to errors caused by fully-
constrained inputs. For memory access errors, the
checker examines the pointer to see if it contains fully-
constrained symbolic values. For assertion failures, it
examines the assertion condition. For division-by-zero
errors, it examines the divisor.

In all cases, the checker inspects the fully-constrained
inputs responsible for an error and determines whether
any path constraints compare the inputs to under-
constrained data (originating elsewhere in the program).
If so, the checker assumes that the constraints may prop-
erly sanitize the input, and it suppresses the error. Oth-
erwise, it emits the error. This approach avoids reporting
spurious errors to the user, at the cost of missing errors
when inputs are partially (but insufficiently) sanitized.

We designed this checker primarily to find security
vulnerabilities similar to the OpenSSL “Heartbleed” vul-
nerability [1, 11] from 2014, which passed an untrusted
and unsanitized length argument to memcpy, triggering
a severe loss of confidentiality. In that case, the code
never attempted to sanitize the length argument. To
test this checker, we ran UC-KLEE on an old version of
OpenSSL without the fix for this bug and confirmed that
our checker reports the error.

4.4 Evaluation
We evaluated UC-KLEE’s checkers on over 20,000 func-
tions from BIND, OpenSSL, and the Linux kernel. For
BIND and OpenSSL, we used UC-KLEE to check all
functions except those in the codebases’ test directo-
ries. We used the same minor code modifications de-
scribed in § 3.2.1, and we again used a maximum input
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Leak Checker Uninitialized Data Checker User Input Checker
Pointer Pointer Branch

Funcs. Bugs Reports False Funcs. Bugs Reports False Reports Funcs. Bugs Reports False
BIND 6239 9 138 2.2% 6239 3 0 - 244* 6239 0 67 100%
OpenSSL 6579 5 272† 90.1% 6579 6 197 92.90% 564* 6579 0 5 100%
Linux kernel 5812 23 127 76.4% 7185 10 72 83.30% 494* 1857 11 145 80.0%

Figure 12: Summary of results from running UC-KLEE checkers on Funcs functions from each codebase. Bugs shows the number
of distinct true bugs found (67 total). Reports shows the total number of errors reported by UC-KLEE in each category (multiple
errors may point to a single bug). False reports the percentage of errors reported that did not appear to be true bugs (i.e., false
positives). †excludes reports for obfuscated ASN.1 code. *denotes that we inspected only a handful of errors for that category.

1 : int gssp accept sec context upcall(struct net *net,
2 : struct gssp upcall data *data) {
3 : . . .
4 : ret = gssp alloc receive pages(&arg);
5 : . . .
6 : gssp free receive pages(&arg);
7 : . . .
8 : }
9 : int gssp alloc receive pages(struct gssx arg accept sec context *arg) {
10: arg−>pages = kzalloc(. . .);
11: . . .
12: return 0;
13: }
14: void gssp free receive pages(struct gssx arg accept sec context *arg) {
15: for (i = 0; i < arg−>npages && arg−>pages[i]; i++)
16: free page(arg−>pages[i]);
17: /* missing: kfree(arg–>pages); */
18: }

Figure 13: Linux kernel memory leak in RPCSEC GSS proto-
col implementation used by NFS server-side AUTH GSS.

size of 25,000 bytes and a depth bound of 9 objects.

For the Linux kernel, we included functions relevant
to each checker, as described below. Unlike our evalua-
tion in § 3.2, we did not use any manual annotations to
suppress false positives. We ran UC-KLEE for up to five
minutes on each function from BIND and the Linux ker-
nel, and up to ten minutes on each OpenSSL function.
We used the same machines as in § 3.2.

For BIND, we checked version 9.10.1-P1 (12/2014).
For OpenSSL, we checked version 1.0.2 (1/2015). For
the Linux kernel, we checked version 3.16.3 (9/2014).

Figure 12 summarizes the results. UC-KLEE discov-
ered a total of 67 previously-unknown bugs1: 12 in
BIND, 11 in OpenSSL, and 44 in the Linux kernel. Fig-
ure 14 lists the number of functions that UC-KLEE ex-
haustively verified (up to the given input bound and with
caveats) as having each property. We omit verification
results from the Linux kernel because UC-KLEE skipped
many function calls and inline assembly, causing it to
under-approximate the set of possible execution paths
and preventing it from making any verification guaran-
tees. We did link each Linux kernel function with other
modules from the same directory, however, as well as the
mm/vmalloc.c module.

1A complete list of the bugs we discovered is available at:
http://cs.stanford.edu/~daramos/usenix-sec-2015

No leaks No malloc No uninitialized data
BIND 388 1776 2045
OpenSSL 383 1648 2043

Figure 14: Functions verified (with caveats) by UC-KLEE.

4.4.1 Leak checker
The leak checker was the most effective. It reported the
greatest number of bugs (37 total) and the lowest false
positive rate. Interestingly, only three of the 138 leak re-
ports for BIND were spurious errors, a false positive rate
of only 2.2%. For OpenSSL, we excluded 269 additional
reports involving the library’s obfuscated ASN.1 [25]
parsing code, which we could not understand. Of the
remaining 272 reports, the checker found five bugs but
had a high false positive rate of 90.1%.

For the Linux kernel, we wrote simple C annotations
(about 60 lines) to intercept calls to kmalloc, vmalloc,
kfree, vfree, and several similar functions, and to for-
ward these to UC-KLEE’s built-in malloc and free func-
tions. Doing so allowed us to track memory management
without the overhead of symbolically executing the ker-
nel’s internal allocators. We then ran UC-KLEE on all
functions that directly call these allocation functions.

Our system discovered 23 memory leaks in the Linux
kernel. One particularly interesting example (Figure 13)
involved the SunRPC layer’s server-side implementation
of AUTH GSS authentication for NFS. Each connection
triggering an upcall causes 512 bytes allocated at line
10 to be leaked due to a missing kfree that should be
present around line 17. Since this leak may be trig-
gered by remote connections, it poses a potential denial-
of-service (memory exhaustion) vulnerability. The NFS
maintainers accepted our patch to fix the bug.

UC-KLEE found that at least 2909 functions in BIND
and at least 3700 functions in OpenSSL (or functions
they call) allocate heap memory. As shown in Figure 14,
UC-KLEE verified (with caveats) that 388 functions in
BIND and 383 in OpenSSL allocate heap memory but
do not leak it. Our system also verified that 1776 func-
tions in BIND and 1648 functions in OpenSSL do not
allocate heap memory, making them trivially leak-free.

4.4.2 Uninitialized data checker
The uninitialized data checker reported a total of 19 new
bugs. One illustrative example, shown in Figure 15, in-
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1 : points = OPENSSL malloc(sizeof (EC POINT*)*(num + 1));
2 : . . .
3 : for (i = 0; i < num; i++) {
4 : if ((points[i] = EC POINT new(group)) == NULL)
5 : goto err; /* leaves ’points’ only partially initialized */
6 : }
7 : . . .
8 : err:
9 : . . .
10: if (points) {
11: EC POINT **p;
12: for (p = points; *p != NULL; p++)
13: EC POINT free(*p); /* dereference/free of uninitialized pointer */
14: OPENSSL free(points);
15: }

Figure 15: OpenSSL dereference/free of uninitialized pointer
in ec wNAF precompute mult function.

volves OpenSSL’s elliptic curve cryptography. If the call
to EC POINT new on line 4 fails, the code jumps to line
8, leaving the points array partially uninitialized. Line
13 then passes uninitialized pointers from the array to
EC POINT free, which dereferences the pointers and
passes them to free, potentially corrupting the heap.
This is one of many bugs that we found involving infre-
quently executed error-handling code, a common source
of security bugs.

UC-KLEE discovered an interesting bug (Figure 16)
in BIND’s UDP port randomization fix for Kamin-
sky’s cache poisoning attack [9]. To prevent spoofed
DNS replies, BIND must use unpredictable source port
numbers. The dispatch createudp function calls
the get udpsocket function at line 9, which selects
a pseudorandom number generator (PRNG) at line 18
based on whether we are using a UDP or TCP connec-
tion. However, the socktype field isn’t initialized in
dispatch createudp until line 12, meaning that the
PRNG selection is based on uninitialized data. While it
appears that the resulting port numbers are sufficiently
unpredictable despite this bug, this example illustrates
UC-KLEE’s ability to find errors with potentially serious
security implications.

For the Linux kernel, we checked the union of the
functions we used for the leak checker and the user in-
put checker (discussed below) and found 10 bugs.

Due to time limitations, we exhaustively inspected
only the most serious category of errors: uninitialized
pointers. The checker reported too many uninitialized
branches for us to examine completely, but we did in-
spect a few dozen of these errors in an ad-hoc manner.
All three of the bugs from BIND and one bug from the
Linux kernel fell into this category. The remaining bugs
were uninitialized pointer errors. We did not inspect the
error reports for binary operations or load values.

Finally, our system verified (with caveats) that about a
third of the functions from BIND (2045) and OpenSSL
(2043) do not access uninitialized data. We believe that
providing this level of guarantee on such a high percent-

1 : #define DISP ARC4CTX(disp) \
2 : ((disp)−>socktype == isc sockettype udp) \
3 : ? (&(disp)−>arc4ctx) : (&(disp)−>mgr−>arc4ctx)
4 : static isc result t dispatch createudp(. . ., unsigned int attributes, . . .) {
5 : . . .
6 : result = dispatch allocate(mgr, maxrequests, &disp);
7 : . . .
8 : if ((attributes & DNS DISPATCHATTR EXCLUSIVE) == 0) {
9 : result = get udpsocket(mgr, disp, . . .);
10: . . .
11: }
12: disp−>socktype = isc sockettype udp; /* late initialization */
13: . . .
14: }
15: static isc result t get udpsocket(. . ., dns dispatch t *disp, . . .) {
16: . . .
17: /* PRNG selected based on uninitialized ’socktype’ field */
18: prt = ports[dispatch uniformrandom(DISP ARC4CTX(disp), nports)];
19: . . .
20: }

Figure 16: BIND non-deterministic PRNG selection bug.

age of functions with almost no manual effort is a strong
result not possible with existing tools.

4.4.3 User input checker
The user input checker required us to identify data orig-
inating from untrusted sources. Chou [6] observed that
data swapped from network byte order to host byte or-
der is generally untrusted. We applied this observa-
tion to OpenSSL and used simple annotations (about 40
lines of C) to intercept calls to n2s, n2l, n2l3, n2l6,
c2l, and c2ln, and mark the results fully-symbolic. We
also applied a simple patch to OpenSSL to replace byte-
swapping macros with function calls so that UC-KLEE
could use our annotations. We hope to explore automated
ways of identifying untrusted data in future work.

For BIND, we annotated (about 50 lines) the byte-
swapping functions ntohs and ntohl, along with
isc buffer getuint8 and three other functions that
generally read from untrusted buffers.

For the Linux kernel, we found that many network
protocols store internal state in network byte order, lead-
ing to spurious errors if we consider these to be un-
trusted. Instead, we annotated (about 40 lines) the
copy from user function and get user macro (which
we converted to a function call). In addition, we used
an option in UC-KLEE to mark all arguments to the sys-
tem call handlers sys * as untrusted. Finally, we used
UC-KLEE to check the 1502 functions that directly in-
voke copy from user and get user, along with the
355 system call handlers in our build.

Reassuringly, this checker did not discover any bugs
in the latest versions of BIND or OpenSSL. We attribute
this both to the limited amount of data we marked as un-
trusted and to our policy of suppressing errors involving
possibly sanitized data (see § 4.3). However, we were
able to detect the 2014 “Heartbleed” vulnerability [1, 11]
when we ran our system on an old version of OpenSSL.

Interestingly, we did discover 11 new bugs in the
Linux kernel. Seven of these bugs were division- or
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1 : static int dg dispatch as host(. . ., struct vmci datagram *dg) {
2 : /* read length field from userspace datagram */
3 : dg size = VMCI DG SIZE(dg);
4 : . . .
5 : dg info = kmalloc(sizeof(*dg info) +
6 : (size t) dg−>payload size, GFP ATOMIC);
7 : . . .
8 : /* unchecked memcpy length; read overrun */
9 : memcpy(&dg info−>msg, dg, dg size);
10: . . .
11: }

Figure 17: Linux kernel VMware Communication Interface
driver unchecked memcpy length (buffer overread) bug.

remainder-by-zero operations that would trigger floating-
point exceptions and crash the kernel. The remaining
four bugs are out-of-bounds dereferences.

Figure 17 shows a buffer overread bug we discovered
in the kernel driver for the VMware Communication In-
terface (VMCI) that follows a pattern nearly identical to
“Heartbleed.” The userspace datagram dg is read using
copy from user. The code then allocates a destina-
tion buffer on line 5 and invokes memcpy on line 9 with-
out sanitizing the dg size field read from the datagram.
An attacker could potentially use this bug to copy up to
69,632 bytes of private kernel heap memory and send it
from the host OS to the guest OS. Fortunately, this vul-
nerability is only exploitable by code running locally on
the host OS. The maintainers quickly patched this bug.

Figure 18 shows an unsanitized remainder-by-zero
bug we found in the kernel driver for the CEPH dis-
tributed filesystem. The check at line 6 aims to prevent
this bug with a 64-bit comparison, but the divisor at line 8
uses only the low 32 bits of the untrusted stripe unit

field (read from userspace using copy from user). A
value such as 0xffffffff00000000 would pass the
check but result in a remainder-by-zero error. An un-
privileged local attacker could potentially issue an ioctl
system call to crash the machine. We notified the devel-
opers, who promptly fixed the bug.

Because of the ad-hoc nature of this checker, we did
not use it to exhaustively verify any properties about the
functions we checked.

5 Implementation
This section details optimizations and techniques we im-
plemented to scale our framework and address problems
we encountered while applying it to large systems.

5.1 Object sizing
Recall that when an unbound symbolic pointer is deref-
erenced, UC-KLEE must allocate memory and bind the
pointer to it. One challenge in implementing this func-
tionality is picking a useful object size to allocate. If the
size is too small, later accesses to this object may trigger
out-of-bounds memory errors. On the other hand, a size
that is too large can hide legitimate errors. We handled
this tradeoff using two approaches.

1 : static long validate layout(. . ., struct ceph ioctl layout *l) {
2 : . . .
3 : /* validate striping parameters */
4 : if ((l−>object size & ˜PAGE MASK) | |
5 : (l−>stripe unit & ˜PAGE MASK) | |
6 : (l−>stripe unit != 0 && /* ← 64-bit check */
7 : /* 32-bit divisor: */
8 : ((unsigned)l−>object size % (unsigned)l−>stripe unit)))
9 : return −EINVAL;
10: . . .
11: }

Figure 18: Linux kernel CEPH distributed filesystem driver
remainder-by-zero bug in ioctl handler.

The first approach, which we used for our experiment
in § 3.2, implemented a form of backtracking. At each
unbound pointer dereference, UC-KLEE checkpoints the
execution state and chooses an initial allocation size us-
ing a heuristic that examines any available type informa-
tion [42]. If the path later reads out-of-bounds from this
object, UC-KLEE (1) emits the error to the user, and (2)
restores the checkpoint and uses an allocation size large
enough to satisfy the most recent memory access. UC-
KLEE records the sequence of branches taken after each
checkpoint, and it forces the path to replay the sequence
of branches after increasing the allocation size. In prac-
tice, replaying branches exposed many sources of non-
determinism in the baseline KLEE tool and its system
modeling code, which we were able to eliminate through
significant development effort.

An alternative approach that we recently incorporated
into UC-KLEE is to use symbolically-sized objects, rather
than selecting a single concrete size. Doing so avoids the
need for backtracking in most cases by simultaneously
considering many possible object sizes. At each memory
access, UC-KLEE determines whether the offset could ex-
ceed the object’s symbolic size. If so, it emits an error
to the user. It also considers a path on which the offset
does not exceed this bound and adds a path constraint
that sets a lower bound on the object’s size. We used this
approach for our evaluation in § 4.4.

5.2 Error reporting
With whole program symbolic execution, symbolic in-
puts typically represent unstructured strings or byte ar-
rays from command line arguments or file contents. In
this case, an error report typically contains a single set
of concrete inputs that trigger the error, along with a
backtrace. With under-constrained symbolic execution,
however, the inputs are often complex, pointer-rich data
structures since UC-KLEE directly executes individual
functions within a program. In this case, a single set of
concrete values is not easily understood by a user, nor
can it be used to trivially reproduce the error outside of
UC-KLEE because pointer inputs expect memory objects
(i.e., stack, heap, and globals) to be located at specific
addresses.

To provide more comprehensible error reports, UC-
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KLEE emits a path summary for each error. The path
summary provides a complete listing of the source code
executed along the path, along with the path constraints
added by each line of source. The path constraints are ex-
pressed in a C-like notation and use the available LLVM
debug information to determine the types and names of
each field. Below we list example constraints that UC-
KLEE included with error reports for BIND (§ 3.2):

Code: REQUIRE(VALID_RBTDB(rbtdb));
Constraint: uc_dns_rbtdb1.common.impmagic == 1380074548

Code: if (source->is_file)
Constraint: uc_inputsource1.is_file == 0

Code: if (c == EOF)
Constraint: uc_var2[uc_var1.current + 1] == 255

5.3 General KLEE optimizations
We added several scalability improvements to UC-KLEE
that apply more broadly to symbolic execution tools.
To reduce path explosion in library functions such as
strlen, we implemented special versions that avoid
forking paths by using symbolic if-then-else constructs.
We also introduced scores of rules to simplify symbolic
expressions [42]. We elide further details due to space.

5.3.1 Lazy constraints
During our experiments, we faced query timeouts and
low coverage for several benchmarks that we traced to
symbolic division and remainder operations. The worst
cases occurred when an unsigned remainder operation
had a symbolic value in the denominator. To address
this challenge, we implemented a solution we refer to
as lazy constraints. Here, we defer evaluation of expen-
sive queries until we find an error. In the common case
where an error does not occur or two functions exhibit
crash equivalence along a path, our tool avoids ever is-
suing potentially expensive queries. When an error is
detected, the tool re-checks that the error path is feasible
(otherwise the error is invalid).

Figure 19(a) shows a simple example. With eager con-
straints (the standard approach), the if-statement at line
2 triggers an SMT query involving the symbolic integer
division operation y / z. This query may be expensive,
depending on the other path constraints imposed on y

and z. To avoid a potential query timeout, UC-KLEE in-
troduces a lazy constraint (Figure 19(b)). On line 1, it
replaces the result of the integer division operation with
a new, unconstrained symbolic value lazy x and adds
the lazy constraint lazy x = y / z to the current path.
At line 2, the resulting SMT query is the trivial expres-
sion lazy x > 10. Because lazy x is unconstrained,
UC-KLEE will take both the true and false branches fol-
lowing the if-statement. One of these branches may vi-
olate the constraints imposed on y and z, so UC-KLEE
must check that the lazy constraints are consistent with
the full set of path constraints prior to emitting any errors

1 : int x = y / z;
2 : if (x > 10) /* query: y / z > 10 */
3 : . . .

(a) Eager constraints (standard)

1 : int x = lazy x; /* adds lazy constraint: lazy x = y / z */
2 : if (x > 10) /* query: lazy x > 10 */
3 : . . .

(b) Lazy constraints

Figure 19: Lazy constraint used for integer division operation.

to the user (i.e., if the path later crashes).
In many cases, the delayed queries are more effi-

cient than their eager counterparts because additional
path constraints added after the division operation have
narrowed the solution space considered by the SMT
solver. If our tool determines that the path is infeasible,
it silently terminates the path. Otherwise, it reports the
error to the user.

5.4 Function pointers
Systems such as the Linux kernel, BIND, and OpenSSL
frequently use function pointers within struct types to
emulate object-oriented methods. For example, differ-
ent function addresses may be assigned depending on the
version negotiated for an SSL/TLS connection [20]. This
design poses a challenge for our technique because sym-
bolic inputs contain symbolic function pointers. When
our tool encounters an indirect call through one of these
pointers, it is unclear how to proceed.

We currently require that users specify concrete func-
tion pointers to associate with each type of object (as the
need arises). When our tool encounters an indirect call
through a symbolic pointer, it looks at the object’s debug
type information. If the user has defined function point-
ers for that type of object, our tool executes the speci-
fied function. Otherwise, it reports an error to the user
and terminates the path. The user can leverage these er-
rors to specify function pointers only when necessary.
For BIND, we found that most of these errors could be
eliminated by specifying function pointers for only six
types: three for memory allocation, and three for internal
databases. For OpenSSL, we specified function pointers
for only three objects: two related to support for multiple
SSL/TLS versions, and one related to I/O.

When running UC-KLEE’s checkers, we optionally al-
low the tool to skip unresolved function pointers, which
allows it to check more code but prevents verification
guarantees for the affected functions (see § 4).

6 Related work
This paper builds on prior work in symbolic execu-
tion [4], particularly KLEE [5] and our early work on UC-
KLEE [43]. Unlike our previous work, which targeted
small library routines, this paper targets large systems
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and supports generalized checking.
Other recent work has used symbolic execution to

check patches. DiSE [39] performs whole program sym-
bolic execution but prunes paths unaffected by a patch.
Differential Symbolic Execution (DSE) [38] and regres-
sion verification [21] use abstraction to achieve scala-
bility but may report false differences. By contrast, our
approach soundly executes complete paths through each
patched function, eliminating this source of false posi-
tives. Impact Summaries [2] complement our approach
by soundly pruning paths and ignoring constraints unaf-
fected by a patch.

SymDiff [27] provides a scalable solution to check the
equivalence of two programs with fixed loop unrolling
but relies on imprecise, uninterpreted functions. Differ-
ential assertion checking (DAC) [28] is the closest to our
work and applies SymDiff to the problem of detecting
whether properties that hold in P also hold in P′, a gen-
eralization of crash equivalence. However, DAC suffers
from the imprecisions of SymDiff and reports false dif-
ferences when function calls are reordered by a patch.
Abstract semantic differencing [37] achieves scalability
through clever abstraction but, as with SymDiff, suffers
additional false positives due to over-approximation.

Recent work has used symbolic execution to gener-
ate regression tests exercising the code changed by a
patch [41, 31, 32]. While they can achieve high coverage,
these approaches use existing regression tests as a start-
ing point and greedily redirect symbolic branch decisions
toward a patch, exploring only a small set of execution
paths. By contrast, our technique considers all possible
intermediate program values as input (with caveats).

Dynamic instrumentation frameworks such as Val-
grind [34] and PIN [30] provide a flexible interface for
checkers to examine a program’s execution at runtime
and flag errors. However, these tools instrument a sin-
gle execution path running with concrete inputs, making
them only as effective as the test that supplies the inputs.

Similar to our use of generalized checking in UC-KLEE
is WOODPECKER [8], which uses symbolic execution to
check system-specific rules. Unlike UC-KLEE, WOOD-
PECKER applies to whole programs, so we expect it
would not scale well to large systems. However, WOOD-
PECKER aggressively prunes execution paths that are re-
dundant with respect to individual checkers, a technique
that would be useful in UC-KLEE.

Prior work in memory leak detection has used static
analysis [45], dynamic profiling [24], and binary rewrit-
ing [23]. Dynamic tools such as Purify [23] and Val-
grind [34] detect a variety of memory errors at run-
time, including uses of uninitialized data. CCured [33]
uses a combination of static analysis and runtime checks
to detect pointer errors. Our user input checker re-
lates to prior work in dynamic taint analysis, including

TaintCheck [35] and Dytan [7].

7 Conclusions and future work
We have presented UC-KLEE, a novel framework for
validating patches and applying checkers to individual
C/C++ functions using under-constrained symbolic ex-
ecution. We evaluated our tool on large-scale systems
code from BIND, OpenSSL, and the Linux kernel, and
we found a total of 79 bugs, including two OpenSSL
denial-of-service vulnerabilities.

One avenue for future work is to employ UC-KLEE as
a tool for finding general bugs (e.g., out-of-bounds mem-
ory accesses) in a single version of a function, rather than
cross-checking two functions or using specialized check-
ers. Our preliminary experiments have shown that this
use case results in a much higher rate of false positives,
but we did find a number of interesting bugs, including
the OpenSSL denial-of-service attack for which advisory
CVE-2015-0291 [15, 22, 42] was issued.

In addition, we hope to further mitigate false positives
by using ranking schemes to prioritize error reports, and
by inferring invariants to reduce the need for manual an-
notations. In fact, many of the missing input precondi-
tions can be thought of as consequences of a weak type
system in C. We may target higher-level languages in the
future, allowing our framework to assume many built-in
invariants (e.g., that a length field corresponds to the size
of an associated buffer).
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Abstract

Taint analysis has a wide variety of compelling applica-
tions in security tasks, from software attack detection to
data lifetime analysis. Static taint analysis propagates
taint values following all possible paths with no need
for concrete execution, but is generally less accurate than
dynamic analysis. Unfortunately, the high performance
penalty incurred by dynamic taint analyses makes its de-
ployment impractical in production systems. To amelio-
rate this performance bottleneck, recent research efforts
aim to decouple data flow tracking logic from program
execution. We continue this line of research in this paper
and propose pipelined symbolic taint analysis, a novel
technique for parallelizing and pipelining taint analy-
sis to take advantage of ubiquitous multi-core platforms.
We have developed a prototype system called TaintPipe.
TaintPipe performs very lightweight runtime logging to
produce compact control flow profiles, and spawns mul-
tiple threads as different stages of a pipeline to carry
out symbolic taint analysis in parallel. Our experiments
show that TaintPipe imposes low overhead on applica-
tion runtime performance and accelerates taint analysis
significantly. Compared to a state-of-the-art inlined dy-
namic data flow tracking tool, TaintPipe achieves 2.38
times speedup for taint analysis on SPEC 2006 and 2.43
times for a set of common utilities, respectively. In ad-
dition, we demonstrate the strength of TaintPipe such as
natural support of multi-tag taint analysis with several
security applications.

1 Introduction

Taint analysis is a kind of program analysis that tracks
some selected data of interest (taint seeds), e.g., data
originated from untrusted sources, propagates them
along program execution paths according to a cus-
tomized policy (taint propagation policy), and then
checks the taint status at certain critical location (taint

sinks). It has been shown to be effective in dealing
with a wide range of security problems, including soft-
ware attack prevention [25, 40], information flow control
[45, 34], data leak detection [49], and malware analy-
sis [43], to name a few.

Static taint analysis [1, 36, 28] (STA) is performed
prior to execution and therefore it has no impact on run-
time performance. STA has the advantage of consider-
ing multiple execution paths, but at the cost of poten-
tial imprecision. For example, STA may result in either
under-tainting or over-tainting [32] when merging results
at control flow confluence points. Dynamic taint analysis
(DTA) [25, 13, 27], in contrast, propagates taint as a pro-
gram executes, which is more accurate than static taint
analysis since it only considers the actual path taken at
run time. However, the high runtime overhead imposed
by dynamic taint propagation has severely limited its
adoption in production systems. The slowdown incurred
by conventional dynamic taint analysis tools [25, 13] can
easily go beyond 30X times. Even with the state-of-the-
art DTA tool based on Pin [20], typically it still intro-
duces more than 6X slowdown.

The crux of the performance penalty comes from
the strict coupling of program execution and data flow
tracking logic. The original program instructions min-
gle with the taint tracking instructions, and usually it
takes 6–8 extra instructions to propagate a taint tag in
shadow memory [11]. In addition, the frequent “con-
text switches” between the original program execution
and its corresponding taint propagation lead to register
spilling and data cache pollution, which add further pres-
sure to runtime performance. The proliferation of multi-
core systems has inspired researchers to decouple taint
tracking logic onto spare cores in order to improve per-
formance [24, 31, 26, 15, 17, 9]. Previous work can
be classified into two categories. The first category is
hardware-assisted approaches. For example, Speck [26]
needs OS level support for speculative execution and
rollback. Ruwase et al. [31] employ a customized hard-
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ware for logging a program trace and delivering it to
other idle cores for inspection. Nagarajan et al. [24] uti-
lize a hardware first-in first-out buffer to speed up com-
munication between cores. Although they can achieve an
appealing performance, the requirement of special hard-
ware prevents them from being adopted using commod-
ity hardware.

The second category is software-only methods that
work with binary executables on commodity multi-core
hardware [15, 17, 9]. These software-only solutions rely
on dynamic binary instrumentation (DBI) to decouple
dynamic taint analysis from program execution. The pro-
gram execution and parallelized taint analysis have to
be properly synchronized to transfer the runtime values
that are necessary for taint analysis. Although these ap-
proaches look promising, they fail to achieve expected
performance gains due to the large amounts of commu-
nication data and frequent synchronizations between the
original program execution thread (or process) and its
corresponding taint analysis thread (or process). Recent
work ShadowReplica [17] creates a secondary shadow
thread from primary application thread to run DTA in
parallel. ShadowReplica conducts an offline optimiza-
tion to generate optimized DTA logic code, which re-
duces the amount of information that needs to be com-
municated, and thus dramatically improves the perfor-
mance. However, as we will show later, the performance
improvement achieved by this “primary & secondary”
thread model is fixed and cannot be improved further
when more cores are available. Furthermore, in many se-
curity related tasks (e.g., binary de-obfuscation and mal-
ware analysis), precise static analysis for the offline opti-
mization needed by ShadowReplica may not be feasible.

In this paper, we exploit another style of parallelism,
namely pipelining. We propose a novel technique, called
TaintPipe, for parallel data flow tracking using pipelined
symbolic taint analysis. In principle, TaintPipe falls
within the second category of taint decoupling work clas-
sified above. Essentially, in TaintPipe, threads form mul-
tiple pipeline stages, working in parallel. The execution
thread of an instrumented application acts as the source
of pipeline, which records information needed for taint
pipelining, including the control flow data and the con-
crete execution states when the taint seeds are first intro-
duced. To further reduce the online logging overhead, we
adopt a compact profile format and an N-way buffering
thread pool. The application thread continues executing
and filling in free buffers, while multiple worker threads
consume full buffers asynchronously. When each logged
data buffer becomes full, an inlined call-back function
will be invoked to initialize a taint analysis engine, which
conducts taint analysis on a segment of straight-line code
concurrently with other worker threads. Symbolic mem-
ory access addresses are determined by resolving indirect

control transfer targets and approximating the ranges of
the symbolic memory indices.

To overcome the challenge of propagating taint tags
in a segment without knowing the incoming taint state,
TaintPipe performs segmented symbolic taint analysis.
That is, the taint analysis engine assigned to each seg-
ment calculates taint states symbolically. When a con-
crete taint state arrives, TaintPipe then updates the re-
lated taint states by replacing the relevant symbolic taint
tags with their correct values. We call this symbolic
taint state resolution. According to the segment order,
TaintPipe sequentially computes the final taint state for
every segment, communicates to the next segment, and
performs the actual taint checks. Optimizations such as
function summary and taint basic block cache offer en-
hanced performance improvements. Moreover, differ-
ent from previous DTA tools, supporting bit-level and
multi-tag taint analysis are straightforward for TaintPipe.
TaintPipe does not require redesign of the structure of
shadow memory; instead, each taint tag can be naturally
represented as a symbolic variable and propagated with
negligible additional overhead.

We have developed a prototype of TaintPipe, a
pipelined taint analysis tool that decouples program ex-
ecution and taint logic, and parallelizes taint analysis on
straight-line code segments. Our implementation is built
on top of Pin [23], for the pipelining framework, and
BAP [5], for symbolic taint analysis. We have evalu-
ated TaintPipe with a variety of applications such as the
SPEC CINT2006 benchmarks, a set of common utilities,
a list of recent real-life software vulnerabilities, malware,
and cryptography functions. The experiments show that
TaintPipe imposes low overhead on application runtime
performance. Compared with a state-of-the-art inlined
dynamic taint analysis tool, TaintPipe achieves overall
2.38 times speedup on SPEC CINT2006, and 2.43 times
on a set of common utility programs, respectively. The
efficacy experiments indicate that TaintPipe is effective
in detecting a wide range of real-life software vulnera-
bilities, analyzing malicious programs, and speeding up
cryptography function detection with multi-tag propa-
gation. Such experimental evidence demonstrates that
TaintPipe has potential to be employed by various appli-
cations in production systems. The contributions of this
paper are summarized as follows:

• We propose a novel approach, TaintPipe, to effi-
ciently decouple conventional inlined dynamic taint
analysis by pipelining symbolic taint analysis on
segments of straight-line code.

• Unlike previous taint decoupling work, which suf-
fers from frequent communication and synchroniza-
tion, we demonstrate that with very lightweight run-
time value logging, TaintPipe rivals conventional in-
lined dynamic taint analysis in precision.
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• Our approach does not require any specific hard-
ware support or offline preprocessing, so TaintPipe
is able to work on commodity hardware instantly.

• TaintPipe is naturally a multi-tag taint analysis
method. We demonstrate this capability by detect-
ing cryptography functions in binary with little ad-
ditional overhead.

The remainder of the paper is organized as fol-
lows. Section 2 provides background information and an
overview of our approach. Section 3 and Section 4 de-
scribe the details of the system design, online logging,
and pipelined segmented symbolic taint analysis. We
present the evaluation and application of our approach
in Section 5. We discuss a few limitations in Section 6.
We then present related work in Section 7 and conclude
our paper in Section 8.

2 Background

In this section, we discuss the background and context
information of the problem that TaintPipe seeks to solve.
We start by comparing TaintPipe with the conventional
inlined taint analysis approaches, and we then present
the differences between the previous “primary & sec-
ondary” taint decoupling model and the pipelined decou-
pling style in TaintPipe.

2.1 Inlined Analysis vs. TaintPipe
Figure 1 (“Inlined DTA”) illustrates a typical dynamic
taint analysis mechanism based on dynamic binary in-
strumentation (DBI), in which the original program code
and taint tracking logic code are tightly coupled. Es-
pecially, when dynamic taint analysis runs on the same
core, they compete for the CPU cycles, registers, and
cache space, leading to significant performance slow-
down. For example, “context switch” happens fre-
quently between the original program instructions and
taint tracking instructions due to the starvation of CPU
registers. This means there will be a couple of instruc-
tions, mostly inserted per program instruction, to save
and restore those register values to and from memory.
At the same time, taint tracking instructions themselves
(e.g., shadow memory mapping) are already complicated
enough. One taint shadow memory lookup operation
normally needs 6–8 extra instructions [11].

Our approach, analogous to the hardware pipelin-
ing, decouples taint logic code to multiple spare cores.
Figure 1 (“TaintPipe”) depicts TaintPipe’s framework,
which consists of two concurrently running parts: 1) the
instrumented application thread performing lightweight
online logging and acting as the source of the pipeline;
2) multiple worker threads as different stages of the

pipeline to perform symbolic taint analysis. Each hor-
izontal bar with gray color indicates a working thread.
We start online logging when the predefined taint seeds
are introduced to the application. The collected profile
is passed to a worker thread. Each worker thread con-
structs a straight-line code segment and then performs
taint analysis in parallel. In principle, fully parallelizing
dynamic taint analysis is challenging because there are
strong serial data dependencies between the taint logic
code and application code [31]. To address this prob-
lem, we propose segmented symbolic taint analysis in-
side each worker thread whenever the explicit taint in-
formation is not available, in which the taint state is sym-
bolically calculated. The symbolic taint state will be up-
dated later when the concrete data arrive. In addition to
the control flow profile, the explicit execution state when
the taint seeds are introduced is recorded as well. The
purpose is to reduce the number of fresh symbolic taint
variables.

We use a motivating example to introduce the idea
of segmented symbolic taint analysis. Figure 2 shows
an example for symbolic taint analysis on a straight-
line code segment, which is a simplified code snippet of
the libtiff buffer overflow vulnerability (CVE-2013-
4231). Assume when a worker thread starts taint anal-
ysis on this code segment (Figure 2(a)), no taint state
for the input data (“size” and “num” in our case) is de-
fined. Instead of waiting for the explicit information, we
treat the unknown values as taint symbols (symbol1 for
“size” and symbol2 for “num”, respectively) and sum-
marize the net effect of taint propagation in the segment.
The symbolic taint states are shown in Figure 2(b). When
the explicit taint states are available, we resolve the sym-
bolic taint states by replacing the taint symbols with their
real taint tags or concrete values (Figure 2(c)). After that,
we continue to perform concrete taint analysis like con-
ventional DTA. Note that here we show pseudo-code for
ease of understanding, while TaintPipe works on binary
code.

Compared with inlined DTA, the application thread
under TaintPipe is mainly instrumented with control flow
profile logging code, which is quite lightweight. There-
fore, TaintPipe results in much lower application runtime
overhead. On the other hand, the execution of taint logic
code is decoupled to multiple pipeline stages running in
parallel. The accumulated effect of TaintPipe’s pipeline
leads to a substantial speedup on taint analysis.

2.2 “Primary & Secondary” Model

Some recent work [15, 17, 9] offloads taint logic code
from the application (primary) thread to another shadow
(secondary) thread and runs them on separate cores. At
the same time, the primary thread communicates with
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Figure 1: Inlined dynamic taint analysis vs. TaintPipe.

size = getc(infile); 
A = -1;
B = size + 1;
C = (1 << size) - 1;
D = num & C;

(a) Code segment (b) Symbolic taint state (c) Resolving symbolic taint state

A 
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D 

Output

0
symbol1 + 1

(1 << symbol1) – 1
symbol2 & ((1 << symbol1) – 1)

Taint state

A 
B 
C 
D 

Output

0
tag1 + 1

(1 << tag1) – 1
 (1 << tag1) – 1

Taint state

Figure 2: An example of symbolic taint analysis on a code segment: (a) code segment; (b) symbolic taint states, the
input value size and num are labeled as symbol1 and symbol2, respectively; (c) resolving symbolic taint states when
size is tainted as tag1 and num is a constant value (num = 0xffffffff).

the secondary thread to convey the necessary informa-
tion (e.g., the addresses of memory operations and con-
trol transfer targets) for performing taint analysis. How-
ever, this model suffers from frequent communication
between the primary and secondary thread. In principle,
every memory address that is loaded or stored has to be
logged and transferred. Due to the frequent synchroniza-
tion with the primary thread and the extra instructions
to access shadow memory, taint logic execution in the
secondary thread is typically slower than the application
execution. As a result, the delay for each taint operation
could be accumulated, leading to an delay proportional
to the original execution. ShadowReplica [17] partially
addresses this drawback by performing advanced offline
static optimizations on the taint logic code to reduce the
runtime overhead. However, in many security analysis
scenarios, precise static analysis and optimizations over
taint logic code are not feasible, e.g., reverse engineer-
ing and malware forensics. In such cases, program static
features such as control flow graphs are possibly obfus-
cated.

In TaintPipe, we record compact control flow infor-
mation to reconstruct straight-line code, in which all the

targets of direct and indirect jumps have been resolved.
However, we do not record or transfer the addresses of
memory operations. Our key observation is that most
addresses of memory operations can be inferred from
the straight-line code. For example, if a basic block is
ended with an indirect jump instruction jmp eax, we
can quickly know the value of eax from the straight-line
code. In this way, all the other memory indirect access
calculated through eax (before it is updated) can be de-
termined. For instance, we can infer the memory load
address for the instruction: mov ebx, [4*eax + 16].
Even when the index of a memory lookup is a symbol,
with the taint states and path predicates of the straight-
line code, we can often narrow down the symbolic mem-
ory addresses to a small range in most cases.

Since TaintPipe’s data communication is lightweight,
TaintPipe can achieve nearly constant delay given
enough number of worker threads. The upper limit num-
ber of worker threads is also bounded, which equals
roughly the ratio of the taint analysis execution time over
the application thread execution time for each segment.

Due to TaintPipe’s pipelining design, it is possible that
TaintPipe may detect an attack some time after the real
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attack has happened. However, this trade-off does not
prevent TaintPipe from practically supporting a broad va-
riety of security applications, such as attack forensic in-
vestigation and post-fact intrusion detection, which do
not require strict runtime security enforcement. It is
worth noting that different from ShadowReplica, Taint-
Pipe does not depend on extensive static analysis to re-
duce data communication. Therefore, TaintPipe has a
wider range of applications in speeding up analyzing ob-
fuscated binaries, as static analysis of obfuscated bina-
ries is of great challenge.

3 Design

3.1 Architecture

Figure 3 illustrates the architecture of TaintPipe. We
have built the pipelining framework on top of a dynamic
binary instrumentation tool, enabling TaintPipe to work
with unmodified program binaries. The steps followed
by TaintPipe for pipelining taint analysis are:

1. TaintPipe takes in a binary along with the taint seeds
as input. The instrumented application thread starts
execution with lightweight online logging for con-
trol flow and other information (Section 4.1.1).

2. Then the instrumented program is executed together
with a multithreaded logging tool to efficiently de-
liver the logged data to memory (Section 4.1.2).

3. When the profile buffer becomes full, a taint analy-
sis engine will be invoked for online pipelined taint
analysis (Section 4.2.1).

4. The generated log data are then used to construct
straight-line code, which helps to solve many pre-
cision loss problems in static taint analysis. In
this stage, we generate a segment of executed code
blocks for each logged data buffer. The memory
addresses that are accessed through indirect jump
targets are also resolved (Section 4.2.2).

5. The taint analysis engine will further translate
straight-line code to taint operations, which avoid
precision loss and support both multi-tag and bit-
level taint analysis (Section 4.2.3).

6. With the constructed taint operations, TaintPipe per-
forms pipelined symbolic taint analysis. When a
thread finishes taint analysis with an explicit taint
state, it synchronizes with its following thread to re-
solve the symbolic taint state (Section 4.2.4).

3.2 Segmented Symbolic Taint Analysis
In this section, we analyze symbolic taint analysis from
a theoretical point of view to justify the correctness of
our pipelining scheme. In order to formalize segmented
symbolic taint analysis, we use the following notations:

1. Let σ denote a taint state, which maps variables to
their taint tags.

2. Let A (σ ,S) denote a symbolic taint analysis A on
a straight-line code segment S, with an initial taint
state σ . We use Aσ (S) for convenience.

Note that the straight-line code segment S has no con-
trol transfer statement. Conceptually, S only contains one
type of statements, namely assignment statements. Of
course, from the implementation point of view, there may
be other types of statements, but they can all be regarded
as assignment statements. For example, as we will show
in Section 4.2.3, our taint operations contain assignment
operations, laundering operations, and arithmetic opera-
tions. The latter two operations can be derived from taint
assignment operations.

Based on the semantics of assignment statements, we
define symbolic taint analysis for an assignment state-
ment as follows:

Aσ (x := e) = σ [x �→ et ] (1)

where et denotes the taint tag of e, and [·] is the taint state
update operator. If x is a new variable, the taint state
σ is extended with a new mapping from x to its taint.
If x occurs in the taint state σ , for the variables in the
domain of σ whose symbolic taint expressions depend
on x, their symbolic taint expressions will be updated or
recomputed with the new taint value of x.

Assume σ1 = Aσ (i1) for a statement i, then the sym-
bolic taint analysis for two sequential statements i1; i2 is:

Aσ (i1; i2) = Aσ1(i2) (2)

Assume straight-line code segment S1 = (i1;S′1). We
can then deduce the symbolic taint analysis on two se-
quential segments S1;S2 as follows:

Aσ (S1;S2)

=Aσ ((i1;S′1);S2)

=Aσ (i1;(S′1;S2))

= · · ·
=AAσ (S1)(S2)

(3)

That is, given Aσ (S1) = σ1 and Aε(S2) = σ2, where ε is
an empty taint state, Eq. 3 leads to:

Aσ (S1;S2) = σ2[σ1] (4)



70 24th USENIX Security Symposium USENIX Association

Instrumented 
Program 

Execution
Logged 

Control Flow
Multithreaded 
Logging Tool Straight-line 

Code 
Construciton

Pipelined  
Symbolic Taint 

Analysis

Figure 3: Architecture.

Here, we misuse the taint state update operator [·] and
apply it to a taint state map, instead of a single taint vari-
able update. With Eq. 4, we can perform segmented taint
analysis in parallel or in a pipeline style. For two seg-
ments S1;S2, assume the starting taint state is σ0. We
start two threads, one compute Aσ0(S1) and the other
computes Aε(S2), where ε is an empty taint state. As-
sume the result of the first thread analysis is σ1 and the
result of the second is σ2. The symbolic taint analysis of
S1;S2 is σ2[σ1], that is, the right hand side of Eq. 4. Eq. 4
forms the foundation of our segmented taint analysis in a
pipeline style.

4 Implementation

To demonstrate the efficacy of TaintPipe, we have devel-
oped a prototype on top of the dynamic binary instru-
mentation framework Pin [23] (version 2.12) and the bi-
nary analysis platform BAP [5] (version 0.8). The on-
line logging and pipelining framework are implemented
as Pin tools, using about 3,100 lines of C/C++ code. The
taint operation constructors are built on BAP IL (inter-
mediate language). TaintPipe’s taint analysis engine is
based on BAP’s symbolic execution module, using about
4,400 lines of Ocaml and running concurrently with Pin
tools. We utilize Ocaml’s functor polymorphism so that
taint states can be instantiated in either concrete or sym-
bolic style. All of the functionality implemented in taint
analysis engine are wrapped as function calls. To sup-
port communication between Pin tools and taint analysis
engine, we develop a lightweight RPC interface so that
each worker thread can directly call Ocaml code. The
saving and loading of the taint cache lookup table is im-
plemented using the Ocaml Marshal API, which encodes
IL expressions as sequences of compact bytes and then
stores them in a disk file.

Dynamic binary instrumentation tools tend to inline
compact and branch-less code to the final translated
code. For the code with conditional branches, DBI emits
a function call instead, which introduces additional over-
head. Therefore, we carefully design our instrumenta-
tion code to favor DBI’s code inlining. To fully reduce
online logging overhead, we also utilize Pin-specific
optimizations. We leverage Pin’s fast buffering APIs
for efficient data buffering. For example, the inlined
INS InsertFillBuffer() writes the control flow pro-

file directly to the given buffer; the callback function
registered in PIN DefineTraceBuffer() processes the
buffer when it becomes full or thread exits. Besides,
we force Pin to use the fastcall x86 calling convention
to avoid emitting stack-based parameter loading instruc-
tions (i.e., push and pop). Currently Pin-tools do not sup-
port the Pthreads library. Thus we employ Pin Thread
API to spawn multiple worker threads. We also im-
plement a counting semaphore based on Pin’s locking
primitives to assist thread synchronization. Addition-
ally, TaintPipe can be extended to support multithreaded
applications with no difficulty by assigning one taint
pipeline for each application thread.

4.1 Logging
TaintPipe’s pipeline stages consist of multiple threads.
The thread of instrumented application (producer) serves
as the source of pipeline, and a number of Pin inter-
nal threads act as worker threads to perform symbolic
taint analysis on the data collected from the applica-
tion thread. Note that unlike application threads, worker
threads are not JITed and therefore execute natively. One
of the major drawbacks of previous dynamic taint anal-
ysis decoupling approaches is the large amount of in-
formation collected in the application thread and the
high overhead of communication between the applica-
tion thread and analysis thread. To address these chal-
lenges, TaintPipe performs lightweight online logging to
record information required for pipelined taint analysis.
The logged data comprise control flow profile and the
concrete execution state when taint seeds are first intro-
duced, which is the starting point of our pipelined taint
analysis. The initial execution state, consisting of con-
crete context of registers and memory, (e.g., CR0∼CR4,
EFLAGS and addresses of initial taint seeds), is used to
reduce the number of fresh symbolic taint variables.

We take major two steps to reduce the application
thread slowdown: First, we adopt a compact profile
structure so that the profile buffer contains logged data
as much as possible, and it is quite simple to recover
the entry address of each basic block as well. Second,
we apply the “one producer, multiple consumers” model
and N-way buffering scheme to process full buffers asyn-
chronously, which allows application to continue execu-
tion while pipelined taint analysis works in parallel. We
will discuss each step in the following sub-sections.
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4.1.1 Lightweight Online Logging

Besides the initial execution state when the taint seeds
are introduced, TaintPipe collects control flow informa-
tion, which is represented as a sequence of basic blocks
executed. Conceptually, we can use a single bit to record
the direction of conditional jump [29], which leads to
a much more compact profile. However, reconstruction
straight-line code from 1 bit profile is more complicated
to make it fit for offline analysis. Zhao et al. [47] pro-
posed Detailed Execution Profile (DEP), a 2-byte profile
structure to represent 4-byte basic block address on x86-
32 machine. In DEP, a 4-byte address is divided into
two parts: H-tag for the 2 high bytes and L-tag for 2
low bytes. If two successive basic blocks have the same
H-tag, only L-tag of each basic block enters the profile
buffer; otherwise a special tag 0x0000 followed by the
new H-tag will be logged into the buffer.

We extend DEP’s scheme to support REP-prefix in-
structions. A number of x86 instructions related to string
operations (e.g., MOVS, LODS) with REP-prefix are exe-
cuted repeatedly until the counter register (ecx) counts
down to 0. Dynamic binary instrumentation tools [23, 4]
normally treat a REP-prefixed instruction as an implicit
loop and generate a single instruction basic block in each
iteration. In our evaluation, there are several cases that
unrolling such REP-prefix instructions would be a perfor-
mance bottleneck. We address this problem by adding
additional escape tags to represent such implicit loops.
Figure 4 presents an example of the control flow profile
we adopted. The left part shows a segment of straight-
line code containing 1028 basic blocks, and 1024 out
of them are due to REP-prefixed instruction repetitions.
Our profile (the right side of Figure 4) encodes such case
with two consecutive escape tags (0xffff), followed by
the number of iterations (0x0400).

We note that it is usually unnecessary to turn on the
logging all the time. For example, when application
starts executing, many functions are only used during
loading. At that time, no sensitive taint seed is intro-
duced. Therefore we perform on-demand logging to
record control flow profile when necessary. As applica-
tion starts running, we only instrument limited functions
to inspect the various input channels that taint could be
introduced into the application (taint seeds). Such taint
seeds include standard input, files and network I/O. Be-
sides, users can customize other values as taint seeds,
such as function return values or parameters. When the
pre-defined taint seeds are triggered, we turn on the con-
trol flow profile logging. At the same time, we save the
current execution state to be used in the pipelined taint
analysis. Many well-known library functions have ex-
plicit semantics, which facilitates us to selectively turn
off logging inside these functions and propagate taint
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Figure 4: An example of 2-byte tag profile.

correspondingly at function level. We will discuss this
issue further in Section 4.2.3.

4.1.2 N-way Buffering Scheme

Since TaintPipe’s online logging is lightweight, appli-
cation (producer) thread’s execution speed is typically
faster than the processing speed of worker threads.
To mitigate this bottleneck, we employed “one pro-
ducer, multiple consumers” model and N-way buffering
scheme [46]. At the center of our design is a thread pool,
which is subdivided into n linked buffers, and the pro-
ducer thread and multiple worker threads work on differ-
ent buffers simultaneously. More specifically, when the
instrumented application thread starts running, we first
allocate n linked empty buffers (n> 1). At the same time,
n Pin internal threads (worker threads) are spawned.
Each worker thread is bound to one buffer and communi-
cates with the application thread via semaphores. When
a buffer becomes full, the application thread will release
the full buffer to its corresponding worker thread and
then continue to fill in the next available empty buffer.
Given a full profile buffers, a worker thread will send it to
a taint analysis engine to perform concrete/symbolic taint
analysis in parallel. After that, the worker thread will re-
lease the profile buffer back to the application thread and
wait for processing the next full buffer.

It is apparent that the availability of unused worker
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threads and the size of profile buffer will affect over-
all performance of TaintPipe (both application execution
time and pipelined taint analysis) significantly. In Sec-
tion 5.1, we will conduct a series of experiments to find
the optimal values for these two factors.

4.2 Symbolic Taint Analysis
4.2.1 Taint Analysis Engine

When the application thread releases a full profile buffer,
a worker thread is waked up to capture the profile buffer
and then communicates with a taint analysis engine for
pipelined taint analysis. The taint analysis engine will
first convert the control flow profile to a segment of
straight-line intermediate language (IL) code and then
translates the IL code to even simpler taint logic oper-
ations. The translations are cached for efficiency at taint
basic block level. The key components of taint analysis
engine are illustrated in Figure 5.

The core of TaintPipe’s taint analysis engine is an ab-
stract taint analysis processor, which simulates a segment
of taint operations and updates the taint states accord-
ingly. The taint state structure contains two contexts: vir-
tual registers keeping track of symbolic taint tags for reg-
ister, and taint symbolic memory for symbolic taint tags
in memory. The taint symbolic memory design is like the
two-level page table structure and each page of memory
consists of symbolic taint formulas rather than concrete
values. After the initialization of the symbolic taint in-
puts, the engines perform taint analysis either concretely
or symbolically in a pipeline style.

4.2.2 Straight-line Code Construction

Given the control flow profiles, recovering each basic
block’s H-tag and L-tag is quite straightforward. A basic
block’s entry address is the concatenation of its corre-
sponding H-tag and L-tag [47]. The taint analysis engine
should only execute the instructions required for taint
propagation. Otherwise, the work thread may run much
slower than the application thread. On the other side, due
to the cumbersome x86 ISA, precisely propagating taint
for the complex x86 instructions is an arduous work, es-
pecially for some instructions with side effect of condi-
tional taint (e.g., CMOV). To achieve these two goals, we
first extract the x86 instructions sequence from the ap-
plication binary and then lift them to BIL [5], a RISC-
like intermediate language. Since we know exactly the
execution sequence, the sequence is a straight-line code.
We have removed all the direct and indirect control trans-
fer instructions and substituted them with control transfer
target assertion statements.

After resolving an indirect control transfer, we go one
step further to determine all the memory operation ad-

Figure 6: A path predicate constrains symbolic memory
access within the boundary of 7 < i < 10.

dresses which depend on this indirect control transfer tar-
get. For example, after we know the target of jmp eax,
we continue to trace the use-def chain of eax for each
memory load or store operation whose address is calcu-
lated through this eax. With the initial execution state
(containing addresses of taint seeds) and indirect control
transfer target resolving, we are able to decide most of
the memory operation addresses.

For some applications such as word processing, a sym-
bolic taint input may be used as a memory lookup index.
Without any constraint, a symbolic memory index could
point to any memory cell. Inspired by the index-based
memory model proposed by Cha et al. [8], we attempt to
narrow down the symbolic memory accesses to a small
range with symbolic taint states and path predicates. We
first leverage value set analysis [2] to limit the range of
a symbolic memory access and then refine the range by
querying a constraint solver. The path predicate along
the straight-line code usually limits the scope of sym-
bolic memory access. Figure 6 shows such an example
where the path predicate restricts the symbolic memory
index i within a range such that 7 < i < 10. When propa-
gating a taint tag to the memory cell referenced by i, we
conservatively taint all the possible memory slots, that
is, A[8] and A[9] in Figure 6 will be tainted as tag1. In
Section 5.3, we will demonstrate that our symbolic mem-
ory index solution only introduces marginal side effects.

4.2.3 Taint Operation Generation

Based on BIL statements, we construct taint operations.
Taint operations inside a basic block are formed as “taint
basic block” [37], which are cached for efficiency. To
make the best of cache effect, we merge the basic blocks
with only one predecessor and one successor. Since BIL
explicitly reveals the side effect of intricate x86 instruc-
tions, it is easy to perform intra-block optimizations to
get rid of redundant taint operations. Therefore, our taint
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Figure 5: The structure of taint analysis engine.

operations are simple and accurate. Currently our taint
operations mainly consist of three types of operations for
tracking taint data:

1. Assignment operations: The operations in this cate-
gory are involved in copying values between reg-
isters and registers/memory. We simply assign
the taint tag of source operand to the destination
operand.

2. Laundering operations: The operations are used to
clean the taint tag of the destination operand. For
example, xor eax,eax will clean the taint result of
eax. We identify all laundering operations in taint
basic blocks and substitute them with assignment
operations.

3. Arithmetic and logic operations: This category of
operations are the most difficult to handle. We emu-
late arithmetic and logic operations on the taint tags
to capture their real semantics.

Figure 7 presents an example of taint operations for a
basic block. TaintPipe’s symbolic taint operations out-
perform conventional DTA approaches in three ways.
First and foremost, multi-tag taint analysis is straight-
forward for TaintPipe. Each symbolic variable can nat-
urally represent a taint tag (see Line 1 and Line 2 in
Figure 7). Second, previous DTA tools mostly adopted
a “short circuiting” method to handle arithmetic opera-
tions, that is, the destination is tainted if at least one of
the source operands is tainted regardless of the real se-
mantics. However, in many scenarios, it will lead to
precision loss. Check the code at Line 4 and 5 in Fig-
ure 7, value d will always be zero since b is the nega-
tion of a. Unfortunately, some previous work may la-
bel d as tainted incorrectly [41]. Third, different from
related work [20, 17], TaintPipe supports bit-level taint
for EFLAGS register, representing whether a bit of the
EFLAGS is tainted or not due to side effects. Recent
work has demonstrated the value of bit-level taint in bi-
nary code de-obfuscation [42].

int a, b, c, d;
1: a = read ();
2: c = read ();
3: c = c xor c;
4: b = ~ a;
5: d = a & b;

(a) a basic block (b) a taint basic block

1: Taint (a) = tag1;
2: Taint (c) = tag2;
3: Taint (c) = 0;
4: Taint (b) = ~ tag1;
5: Taint (d) = 0;

Figure 7: Example: taint operations.

Table 1: Function summary.
Category Function

No tainting strcmp, strncmp, memcmp, strlen, strchr,
strstr, strpbrk, strcspn, qsort, rand,

time, clock, ctime
Function level strcat, strncat, strcpy, strncpy, memcpy,

memmove, strtok, atoi, itoa, abs
tolower, toupper

Another major optimization we adopt is so called
“function summary”. As many well-known library func-
tions have explicit semantics (e.g., atoi, strlen), we gener-
ate a summary of each function and propagate taint cor-
respondingly at function level. Table 1 lists two types
of function summary TaintPipe supports: 1) Functions
within “no tainting” category do not have any side effect
on taint state. We can safely turn off logging when exe-
cuting them. 2) Some functions do propagate taint from
an input parameter to output. We still turn off logging
and update taint state correspondingly when these func-
tions return.

4.2.4 Symbolic Taint State Resolution

In TaintPipe’s pipeline framework, a worker thread may
perform taint analysis concretely or symbolically in par-
allel. When a worker thread completes taint analysis with
concrete taint tags, the final taint state it maintains is de-
terministic. Then it synchronizes with the subsequent
worker thread to resolve the symbolic taint state main-
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tained by the latter. Taint states are allocated in a shared
memory area so that multiple threads can access them
easily. Basically, given the concrete taint state at the be-
ginning of a code segment, we replace a symbolic taint
tag with the appropriate starting value (either a taint tag
or a concrete value). We further update all the symbolic
formula containing that symbolic taint tag. For example,
the logic AND formula in Figure 2(b) will be simplified
to a single taint tag. After that, the subsequent thread
switches to the concrete taint analysis and continue pro-
cessing the left segment code.

In this order, the taint states of each segment will be
resolved and updated one by one. The defined taint pol-
icy (e.g., a function return value should not be tainted)
is checked along the concrete taint analysis as well. A
tainted sink is identified if it contains a symbolic for-
mula; multiple tags are determined by counting the num-
ber of different symbols in the formula. Note that a pre-
vious hardware-assisted approach [31] utilized a separate
“master” processor to update each segment’s taint status
sequentially. However, as pointed out by the paper, when
there are more than a few “worker” processors, the mas-
ter processor will become the bottleneck. Our approach
amortizes the workload of the master processor to each
worker thread.

5 Experimental Evaluation

We conducted experiments with several goals in mind.
First, we wanted to choose optimal values for two factors
that may affect TaintPipe’s performance, namely control
flow profile buffer size and the number of worker threads.
Then we studied overall runtime overhead when running
TaintPipe on the SPEC2006 int benchmarks and a num-
ber of common utilities. We also compared TaintPipe
with a highly optimized inline dynamic taint analysis
tool. At the same time, we wanted to make sure TaintPipe
is effective in speeding up various security analysis tasks
and can compete with conventional inlined dynamic taint
analysis in precision. To this end, we demonstrated three
compelling applications: 1) detecting software attacks;
2) tracking information flow in obfuscated malicious pro-
grams; and 3) identifying cryptography functions with
multi-tag propagation.

5.1 Experiment Setup

Our experiment platform contains two Intel Xeon E5-
2690 processors, 128GB of memory and a 250GB solid
state drive, running Ubuntu12.04. Each processor is
equipped with 8 2.9GHz cores, 16 hyper threads and
20MB L3 cache. The performance data reported in this
section are all mean values with 5 repetitions.
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Figure 8: Optimal buffer size and number of worker
threads.

TaintPipe’s performance is affected by the size of the
profile buffers and the number of worker threads. Gener-
ally, the more worker threads and larger profile buffers,
the less possibility that an application is suspended to
wait for a free buffer. On the other hand, our taint anal-
ysis engine has to take longer time to process larger
segment code. We conducted a series of tests with the
SPEC CPU2006 int benchmarks, under different settings
of these two variables. We dynamically adjust the num-
ber of worker threads from 2 to 20 (2, 4, 6, 8, 12, 16 and
20), and profile size from 8MB to 64MB (8MB, 16MB,
32MB and 64MB). Figure 8 displays the experimental
results. Roughly, as number of worker threads and buffer
size increase, the application slowdown reduces. That
is mainly because large buffer sizes allow application
thread continue to fill up and worker threads spend less
time on synchronization. After a certain point (buffer
size ≥ 32MB and number of worker threads > 16), over-
head increases slightly. Two factors prevent TaintPipe
from achieving more speedup. First, taint analysis en-
gine slows down when processing large code segment.
Second, more worker threads introduce larger communi-
cation latency when resolving symbolic taint states. Ac-
cording to the results, we set the two factors as their op-
timal values (32MB buffer size and 16 worker threads),
which will be used in the following experiments.

5.2 Performance
To evaluate the performance gains achieved by pipelin-
ing taint logic, we compared TaintPipe with a state-of-
the-art tool, libdft [20], which performs inlined dynamic
taint analysis based on Pin (“libdft” bar). In addition, we
developed a simple tool to measure the slowdown im-
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Figure 9: Slowdown on SPEC CPU2006.

posed exclusively by TaintPipe. It runs a program under
Pin without any form of analysis (“nullpin” bar). The
“TaintPipe - application” bar represents the running time
of instrumented application thread alone, and “TaintPipe
- overall” corresponds to the overall overhead when both
the application thread and pipelined worker threads are
running. The major reason we reported “TaintPipe -
application” and “TaintPipe - overall” time separately
is to show the two improvements, namely “Application
speedup” and “Taint speedup” (see Figure 1). Since the
application thread typically runs faster than the worker
threads, the “TaintPipe - overall” time is actually dom-
inated by the worker threads. Therefore, usually the
“TaintPipe - overall” time represents the relative time
spent by worker threads as well. The times reported in
this section are all normalized to native execution, that
is, application running time without dynamic binary in-
strumentation.

SPEC CPU2006. Figure 9 shows the normalized ex-
ecution times when running the SPEC CPU2006 int
benchmark suite under TaintPipe. On average, the in-
strumented application thread enforces a 2.60X slow-
down to native execution, while the overall slowdown of
TaintPipe is 4.14X. If we take Pin’s environment run-
time overhead (“nullpin” bar) as the baseline, we can see
TaintPipe imposes 2.67X slowdown (“TaintPipe - over-
all” / “nullpin”) and libdft introduces 6.4X slowdown—
this number is coincident to the observation that prop-
agating a taint tag normally requires extra 6–8 instruc-
tions [30, 11]. In summary, TaintPipe outperforms in-
lined dynamic taint analysis drastically: 2.38X faster
than the inlined dynamic taint analysis, and 3.79X faster
in terms of application execution. In the best case
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Figure 10: Slowdown on common Linux utilities.

(h264ref ), the application speedup under TaintPipe ex-
ceeds 4.18X.

Utilities. We also evaluated TaintPipe on four common
Linux utilities, which were not chosen randomly. These
four utilities represent three kinds of workloads: I/O
bounded (tar), CPU bounded (bzip2 and gzip), and
the case in-between (scp). We applied tar to archive
and extract the GNU Core utilities package (version
8.13) (∼50MB), then we employed bzip2 and gzip to
compress and decompress the archive file. Finally we
utilized scp to copy the archive file over a 1Gbps link.
As shown in Figure 10, TaintPipe reduced slowdown of
dynamic taint analysis from 7.88X to 3.24X, by a factor
of 2.43 on average.

Effects of Optimizations. In this experiment, we
quantify the effects of taint logic optimizations we pre-
sented in Section 4.2, which are paramount for optimized
TaintPipe performance. Figure 11 shows the impact of
these optimizations when applied cumulatively on SPEC
CPU2006 and the set of common utilities. The “un-
opt” bar approximates an un-optimized TaintPipe, which
does not adopt any optimization method. The “O1” bar
indicates the optimization of function summary, reduc-
ing application slowdown notably by 26.6% for SPEC
CPU2006 and 25.0% for the common utilities. The “O2”
bar captures the effect of taint basic block cache, leading
to a further reduction by 19.0% and 22.9% for SPEC and
utilities, respectively. Intra-block optimizations, denoted
by “O3”, offer further improvement, 12.0% with SPEC
and 11.6% with the utilities).
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Table 2: Tested software vulnerabilities.

Program Vulnerability CVE ID # Taint Bytes
libdft Temu TaintPipe

Nginx Validation Bypass CVE-2013-4547 45 45 45
Micro httpd Validation Bypass CVE-2014-4927 80 85 80
Tiny Server Validation Bypass CVE-2012-1783 125 126 125
Regcomp Validation Bypass CVE-2010-4052 1,124 1,148 1,180
Libpng Denial Of Service CVE-2014-0333 72 72 72
Gzip Integer Underflow CVE-2010-0001 94 112 96
Grep Integer Overflows CVE-2012-5667 608 682 653

Coreutils Buffer Overflow CVE-2013-0221 252 260 256
Libtiff Buffer Overflow CVE-2013-4231 268 286 290

WaveSurfer Buffer Overflow CVE-2012-6303 384 418 406
Boa Information Leak CVE-2009-4496 164 164 164

Thttpd Information Leak CVE-2009-4491 328 328 328

0

1

2

3

4

5

6

7

8

9

 

 

 

S
lo

w
do

w
n 

(n
or

m
al

iz
ed

 ru
nt

im
e)

 Unopt
 O1
 O2
 O3

SPEC CPU2006  Common utilities

Figure 11: The impact of optimizations to speed up
TaintPipe when applied cumulatively: O1 (function sum-
mary), O2 (O1 + taint basic block cache), O3 (O2 + intra-
block optimizations).

5.3 Security Applications

Software Attack Detection. One important applica-
tion of taint analysis is to define taint policies, and en-
sure they are not violated during taint propagation. We
tested TaintPipe with 12 recent software exploits listed
in Table 2, which covers a wide range of real-life soft-
ware vulnerabilities. For example, the vulnerabilities in
nginx, micro httpd, and tiny server allow remote
attackers to bypass input validation and crash the pro-
gram. The libtiff buffer overflow vulnerability leads
to an out of bounds loop limit via a malformed gif image.
Both boa and thttpd write data to a log file without san-
itizing non-printable characters, which may be exploited
to execute arbitrary commands. Since we have detailed

Table 3: Malware samples and taint graphs.

Sample Type
Taint Graph Control Flow

Node # Edge # Obfuscation
Svat Virus 90 62
RST Virus 154 82
Agent Rootkit 624 402 �
KeyLogger Trojan 554 368 �
Subsevux Backdoor 1648 764 �
Tsunami Backdoor 734 534 �
Keitan Backdoor 618 482 �
Fireback Backdoor 1038 620 �

vulnerability reports, we can easily mark the locations of
taint sinks in the straight-line code and set corresponding
taint policies.

In our evaluation, TaintPipe did not generate any false
positives and successfully identified taint policy viola-
tions while incurring only small overhead. At the same
time, we evaluated the accuracy of TaintPipe. To this
end, we counted the total number of tainted bytes in the
taint state when taint analysis hit the taint sinks. Col-
umn 4 ∼ 6 of Table 2 show the number of taint bytes
when running libdft, Temu [44] and TaintPipe, respec-
tively. Compared with the inlined dynamic taint anal-
ysis tools (libdft and Temu), TaintPipe’s symbolic taint
analysis achieves almost the same results in 8 cases and
introduces only a few additional taint bytes in the other
4 cases. We attribute this to our conservative approach
to handling of symbolic memory indices. The evalu-
ation data show that TaintPipe does not result in over-
tainting [32] and rivals the inlined dynamic taint analysis
at the same level of precision.
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Table 4: Cryptographic function detection time.
Algorithm TaintPipe (s) Temu (s)

TEA 3.8 (<1.1X) 15.2 (2.2X)
AES-CBC 12.3 (1.2X) 125.6 (3.8X)
Blowfish 4.5 (<1.1X) 21.4 (2.5X)

MD5 7.4 (<1.1X) 35.1 (2.6X)
SHA-1 8.8 (1.1X) 40.2 (3.3X)

Generating Taint Graphs for Malware. We ran 8
malware samples collected from VX Heavens1 with
TaintPipe.2 Similar to Panorama [43], we tracked infor-
mation flow and generated a taint graph for each sam-
ple. In a taint graph, nodes represent taint seeds or in-
structions operating on taint data, and a directed edge
indicates an explicit data flow dependency between two
nodes. Taint graph faithfully describes intrinsic mali-
cious intents, which can be used as malware specification
to detect suspicious samples [12]. The statistics of our
testing results are presented in Table 3. It is worth noting
that 6 out of 8 malware samples are applied with vari-
ous control flow obfuscation methods (the fifth column),
such as opaque predicates, control flow flattening, obfus-
cated control transfer targets, and call stack tampering.
As a result, the control flow graphs are heavily cluttered.
For example, malware samples Keitan and Fireback

have a relatively high ratio of indirect jumps (e.g., jmp
eax). Typically it is hard to precisely infer the destina-
tion of an indirect jump statically. Thus, the taint logic
optimization methods that rely on accurate control flow
graph [17, 18] will fail. In contrast, our approach does
not rely on control flow graph and therefore we analyzed
these obfuscated malware samples smoothly.

Cryptography Function Detection. Malware authors
often use cryptography algorithms to encrypt malicious
code, sensitive data, and communication. Detecting
cryptography functions facilitates malware analysis and
forensics. Recent work explored the avalanche effect
to quickly identify possible cryptography functions by
observing the input-output dependency with multi-tag
taint analysis. That is, each byte in the encrypted mes-
sage is dependent on almost all bytes of input data or
key [7, 21, 48]. However, multi-tag dynamic taint anal-
ysis normally has to sacrifice more shadow memory and
imposes much higher runtime overhead than single-tag
dynamic taint analysis. Recall that multi-tag propagation
is handled transparently in TaintPipe. In this experiment,
we applied TaintPipe to detect such avalanche effects in
binary code. We utilized the test case suite of Crypto++

1http://vxheaven.org
2All these 8 samples are not packed. To analyze packed binaries, we

can start TaintPipe when the unpacking procedure arrives at the original
entry point.

library3 and tested 5 cryptography algorithms. Each byte
of the plain messages was labeled as a different taint tag.
We compared TaintPipe with Temu [44], which supports
multiple byte-to-byte taint propagation as well.4 The de-
tection time is shown in Table 4. We also reported the ra-
tio of multi-tag’s running time to single-tag’s. The results
show that TaintPipe is able to detect cryptographic func-
tions with little additional overhead (less than 1.1X on
average), while Temu’s multi-tag propagation imposes a
significant slowdown (2.9X to single-tag propagation on
average).

6 Discussions and Limitations

Since TaintPipe’s pipelining design leads to an asyn-
chronous taint check, TaintPipe may detect a violation
of taint policy after the real attack happens. One possible
solution is to provide synchronous policy enforcement at
critical points (e.g., indirect jump and system call sites).
In that case, we can explicitly suspend the application
thread, and wait for the worker threads to complete. Our
current design spawns worker threads in the same pro-
cess of running both Pin and the application. In the fu-
ture, we plan to replace the worker threads with different
processes to increase isolation.

As TaintPipe may perform symbolic taint analysis
when explicit taint states are not available, TaintPipe ex-
hibits similar limitations as symbolic execution of bi-
naries. Recent work MAYHEM [8] proposes an ad-
vanced index-based memory model to deal with sym-
bolic memory index. We plan to extend our symbolic
memory index handling in the future. TaintPipe recovers
the straight-line code by logging basic block entry ad-
dress. However, with malicious self-modifying code, the
entry address may not uniquely identify a code block. To
address this issue, we can augment TaintPipe by logging
the real executed instructions at the expense of runtime
performance overhead.

Our focus is to demonstrate the feasibility of pipelined
symbolic taint analysis. We have not fully optimized
the symbolic taint analysis part which we believe can
be greatly improved in terms of performance based on
our current prototype. As our taint analysis engine simu-
lates the semantics of taint operations, the speed of taint
analysis is slow. One future direction is to execute con-
crete taint analysis natively like micro execution [16] and
switch to the interpretation-style when performing sym-
bolic taint analysis. Currently TaintPipe requires large
share memory to reduce communication overhead be-
tween different pipeline stages. Therefore, our approach
is more suitable for large servers with sufficient memory.

3http://www.cryptopp.com/
4libdft does not support multi-tag taint analysis.



78 24th USENIX Security Symposium USENIX Association

7 Related Work

In this section we first present previous work on static
and dynamic taint analysis. Our work is a hybrid of
these two analyses. Then we introduce previous efforts
on taint logic code optimization, which benefits our taint
operation generation. Finally, we describe recent work
on decoupling taint tracking logic from original program
execution, which is the closest to TaintPipe’s method.

Static and Dynamic Taint Analysis. Since static taint
analysis (STA) is performed prior to execution by con-
sidering all possible execution paths, it does not affect
application runtime performance. STA has been applied
to data lifetime analysis for Android applications [1], ex-
ploit code detection [36], and binary vulnerability test-
ing [28]. Dynamic taint analysis (DTA) is more pre-
cise than static taint analysis as it only propagates taint
following the real path taken at run time. DTA has
been widely used in various security applications, includ-
ing data flow policy enforcement [25, 40, 27], revers-
ing protocol data structures [33, 38, 6], malware anal-
ysis [39] and Android security [14]. However, an in-
trinsic limitation of DTA is its significant performance
slowdown. Schwartz et al. [32] formally defined the op-
erational semantics for DTA and forward symbolic exe-
cution (FSE). Our approach is in fact a hybrid of these
techniques. Worker thread conducts concrete taint anal-
ysis (like DTA) whenever explicit taint information is
available; otherwise symbolic taint analysis (like STA
and FSE) is performed.

Taint Logic Optimization. Taint logic code, deciding
whether and how to propagate taint, require additional in-
structions and “context switches”. Frequently executing
taint logic code incurs substantial overhead. Minemu [3]
achieved a decent runtime performance at the cost of sac-
rificing memory space to speed up shadow memory ac-
cess. Moreover, Minemu utilized spare SSE registers to
alleviate the pressure of general register spilling. As a
result, Minemu only worked on 32-bit program. Tain-
tEraser [49] developed function summaries for Windows
programs to propagate taint at function level. Libdft [20]
introduced two guidelines to facilitate DBI’s code inlin-
ing: 1) tag propagation code should have no branch; 2)
shadow memory updates should be accomplished with
a single assignment. Ruwase et al. [30] applied com-
piler optimization techniques to eliminate redundant taint
logic code in hot paths. Jee et al. [19] proposed Taint
Flow Algebra to summarize the semantics of taint logic
for basic blocks. All these efforts to generate optimized
taint logic code are orthogonal and complementary to
TaintPipe.

Decoupling Dynamic Taint Analysis. A number
of researchers have considered the high performance
penalty imposed by inlined dynamic taint analysis. They
proposed various solutions to decouple taint tracking
logic from application under examination [24, 31, 26, 15,
17, 9], which are close in spirit to our proposed approach.
Speck [26] forked multiple taint analysis processes from
application execution to spare cores by means of specula-
tive execution, and utilized record/replay to synchronize
taint analysis processes. Speck required OS level support
for speculative execution and rollback. Speck’s approach
sacrifices processing power to achieve acceleration. Sim-
ilar to TaintPipe’s segmented symbolic taint analysis,
Ruwase et al. [31] proposed symbolic inheritance track-
ing to parallelize dynamic taint analysis. TaintPipe dif-
fers from Ruwase et al.’s approach in three ways: 1)
Their approach was built on top of a log-based archi-
tecture [10] for efficient communication with idle cores,
while TaintPipe works on commodity multi-core hard-
ware directly. 2) To achieve better parallelization, they
adopted a relaxed taint propagation policy to set a bi-
nary operation as untainted, while TaintPipe performs
full-fledged taint propagation so that we provide stronger
security guarantees. 3) They used a separate “master”
processor to update each segment’s taint status sequen-
tially, while TaintPipe resolves symbolic taint states be-
tween two consecutive segments. Our approach could
achieve better performance when there are more than a
few “worker” processors.

Software-only approaches [15, 17, 9] are the most re-
lated to TaintPipe. They decouple dynamic taint anal-
ysis to a shadow thread by logging the runtime values
that are needed for taint analysis. However, as we have
pointed out, these methods [15, 9] may suffer from high
overhead of frequent communication between the appli-
cation thread and shadow thread. Recent work Shad-
owReplica [17] ameliorates this drawback by adopting
fine-grained offline optimizations to remove redundant
taint logic code. In principle, it is possible to remove
redundant taint logic by means of static offline optimiza-
tions. Unfortunately, even static disassembly of stripped
binaries is still a challenge [22, 35]. Therefore, the
assumption by ShadowReplica that an accurate control
flow graph can be constructed may not be feasible in cer-
tain scenarios, such as analyzing control flow obfuscated
software. We take a different angle to address this issue
with lightweight runtime information logging and seg-
mented symbolic taint analysis. We demonstrate the ca-
pability of TaintPipe in speeding up obfuscated binary
analysis, which ShadowReplica may not be able to han-
dle. Furthermore, ShadowReplica does not support bit-
level and multi-tag taint analysis, while TaintPipe han-
dles them naturally.
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8 Conclusion

We have presented TaintPipe, a novel tool for pipelin-
ing dynamic taint analysis with segmented symbolic taint
analysis. Different from previous parallelization work on
taint analysis, TaintPipe uses a pipeline style that relies
on straight-line code with very few runtime values, en-
abling lightweight online logging and much lower run-
time overhead. We have evaluated TaintPipe on a num-
ber of benign and malicious programs. The results show
that TaintPipe rivals conventional inlined dynamic taint
analysis in precision, but with a much lower online ex-
ecution slowdown. The performance experiments indi-
cate that TaintPipe can speed up dynamic taint analysis
by 2.43 times on a set of common utilities and 2.38 times
on SPEC2006, respectively. Such experimental evidence
demonstrates that TaintPipe is both efficient and effective
to be applied in real production environments.
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Abstract
Many applications such as the Chrome and Firefox
browsers are largely implemented in C++ for its perfor-
mance and modularity. Type casting, which converts one
type of an object to another, plays an essential role in en-
abling polymorphism in C++ because it allows a program
to utilize certain general or specific implementations in
the class hierarchies. However, if not correctly used, it
may return unsafe and incorrectly casted values, leading
to so-called bad-casting or type-confusion vulnerabili-
ties. Since a bad-casted pointer violates a programmer’s
intended pointer semantics and enables an attacker to
corrupt memory, bad-casting has critical security implica-
tions similar to those of other memory corruption vulner-
abilities. Despite the increasing number of bad-casting
vulnerabilities, the bad-casting detection problem has not
been addressed by the security community.

In this paper, we present CAVER, a runtime bad-casting
detection tool. It performs program instrumentation
at compile time and uses a new runtime type tracing
mechanism—the type hierarchy table—to overcome the
limitation of existing approaches and efficiently verify
type casting dynamically. In particular, CAVER can be
easily and automatically adopted to target applications,
achieves broader detection coverage, and incurs reason-
able runtime overhead. We have applied CAVER to large-
scale software including Chrome and Firefox browsers,
and discovered 11 previously unknown security vulnera-
bilities: nine in GNU libstdc++ and two in Firefox, all
of which have been confirmed and subsequently fixed by
vendors. Our evaluation showed that CAVER imposes up
to 7.6% and 64.6% overhead for performance-intensive
benchmarks on the Chromium and Firefox browsers, re-
spectively.

1 Introduction
The programming paradigm popularly known as object-
oriented programming (OOP) is widely used for devel-
oping large and complex applications because it encap-
sulates the implementation details of data structures and
algorithms into objects; this in turn facilitates cleaner
software design, better code reuse, and easier software

maintenance. Although there are many programming lan-
guages that support OOP, C++ has been the most popular,
in particular when runtime performance is a key objective.
For example, all major web browsers—Internet Explorer,
Chrome, Firefox, and Safari are implemented in C++.

An important OOP feature is type casting that converts
one object type to another. Type conversions play an im-
portant role in polymorphism. It allows a program to treat
objects of one type as another so that the code can utilize
certain general or specific features within the class hier-
archy. Unlike other OOP languages—such as Java—that
always verify the safety of a type conversion using run-
time type information (RTTI), C++ offers two kinds of type
conversions: static_cast, which verifies the correctness
of conversion at compile time, and dynamic_cast, which
verifies type safety at runtime using RTTI. static_cast
is much more efficient because runtime type checking by
dynamic_cast is an expensive operation (e.g., 90 times
slower than static_cast on average). For this reason,
many performance critical applications like web browsers,
Chrome and Firefox in particular, prohibit dynamic_cast
in their code and libraries, and strictly use static_cast.

However, the performance benefit of static_cast
comes with a security risk because information at com-
pile time is by no means sufficient to fully verify the
safety of type conversions. In particular, upcasting (cast-
ing a derived class to its parent class) is always safe, but
downcasting (casting a parent class to one of its derived
classes) may not be safe because the derived class may
not be a subobject of a truly allocated object in downcast-
ing. Unsafe downcasting is better known as bad-casting
or type-confusion.

Bad-casting has critical security implications. First,
bad-casting is undefined behavior as specified in the C++
standard (5.2.9/11 [26]). Thus, compilers cannot guar-
antee the correctness of a program execution after bad-
casting occurs (more detailed security implication analy-
sis on undefined behavior is provided in §2). In addition
to undefined behavior, bad-casting is similar to memory
corruption vulnerabilities like stack/heap overflows and
use-after-free. A bad-casted pointer violates a program-
mer’s intended pointer semantics, and allows an attacker
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to corrupt memory beyond the true boundary of an ob-
ject. For example, a bad-casting vulnerability in Chrome
(CVE-2013-0912) was used to win the Pwn2Own 2013
competition by leaking and corrupting a security sensitive
memory region [31]. More alarmingly, bad-casting is not
only security-critical but is also common in applications.
For example, 91 bad-casting vulnerabilities have been
reported over the last four years in Chrome. Moreover,
over 90% of these bad-casting bugs were rated as security-
high, meaning that the bug can be directly exploited or
indirectly used to mount arbitrary code execution attacks.

To avoid bad-casting issues, several C++ projects em-
ploy custom RTTI, which embeds code to manually keep
type information at runtime and verify the type conver-
sion safety of static_cast. However, only a few C++
programs are designed with custom RTTI, and supporting
custom RTTI in existing programs requires heavy manual
code modifications.

Another approach, as recently implemented by Google
in the Undefined Behavior Sanitizer (UBSAN) [42],
optimizes the performance of dynamic_cast and re-
places all static_cast with dynamic_cast. However,
this approach is limited because dynamic_cast only
supports polymorphic classes, whereas static_cast is
used for both polymorphic and non-polymorphic classes.
Thus, this simple replacement approach changes the pro-
gram semantics and results in runtime crashes when
dynamic_cast is applied to non-polymorphic classes. It
is difficult to identify whether a static_cast operation
will be used for polymorphic or non-polymorphic classes
without runtime information. For this reason, tools follow-
ing this direction have to rely on manual blacklists (i.e.,
opt-out and do not check all non-polymorphic classes) to
avoid runtime crashes. For example, UBSAN has to black-
list 250 classes, ten functions, and eight whole source files
used for the Chromium browser [9], which is manually
created by repeated trial-and-error processes. Considering
the amount of code in popular C++ projects, creating such
a blacklist would require massive manual engineering
efforts.

In this paper, we present CAVER, a runtime bad-casting
detection tool that can be seamlessly integrated with large-
scale applications such as commodity browsers. It takes
a program’s source code as input and automatically in-
struments the program to verify type castings at runtime.
We designed a new metadata, the Type Hierarchy Ta-
ble (THTable) to efficiently keep track of rich type infor-
mation. Unlike RTTI, THTable uses a disjoint metadata
scheme (i.e., the reference to an object’s THTable is stored
outside the object). This allows CAVER to overcome all
limitations of previous bad-casting detection techniques:
it not only supports both polymorphic classes and non-
polymorphic classes, but also preserves the C++ ABI and
works seamlessly with legacy code. More specifically,

CAVER achieves three goals:

• Easy-to-deploy. CAVER can be easily adopted to
existing C++ programs without any manual effort.
Unlike current state-of-the-art tools like UBSAN, it
does not rely on manual blacklists, which are re-
quired to avoid program corruption. To demonstrate,
we have integrated CAVER into two popular web
browsers, Chromium and Firefox, by only modify-
ing its build configurations.

• Coverage. CAVER can protect all type castings
of both polymorphic and non-polymorphic classes.
Compared to UBSAN, CAVER covers 241% and
199% more classes and their castings, respectively.

• Performance. CAVER also employs optimization
techniques to further reduce runtime overheads (e.g.,
type-based casting analysis). Our evaluation shows
that CAVER imposes up to 7.6% and 64.6% over-
heads for performance-intensive benchmarks on the
Chromium and Firefox browsers, respectively. On
the contrary, UBSAN is 13.8% slower than CAVER
on the Chromium browser, and it cannot run the
Firefox browser due to a runtime crash.

To summarize, we make three major contribution as fol-
lows:

• Security analysis of bad-casting. We analyzed the
bad-casting problem and its security implications
in detail, thus providing security researchers and
practitioners a better understanding of this emerging
attack vector.

• Bad-casting detection tool. We designed and im-
plemented CAVER, a general, automated, and easy-
to-deploy tool that can be applied to any C++ applica-
tion to detect (and mitigate) bad-casting vulnerabili-
ties. We have shared CAVER with the Firefox team 1

and made our source code publicly available.
• New vulnerabilities. While evaluating CAVER, we

discovered eleven previously unknown bad-casting
vulnerabilities in two mature and widely-used open
source projects, GNU libstdc++ and Firefox. All
vulnerabilities have been reported and fixed in these
projects’ latest releases. We expect that integration
with unit tests and fuzzing infrastructure will allow
CAVER to discover more bad-casting vulnerabilities
in the future.

This paper is organized as follows. §2 explains bad-
casting issues and their security implications. §3 illus-
trates high-level ideas and usages of CAVER, §4 describes
the design of CAVER. §5 describes the implementa-
tion details of CAVER, §6 evaluates various aspects of

1The Firefox team at Mozilla asked us to share CAVER for regression
testing on bad-casting vulnerabilities.
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CAVER. §7 further discusses applications and limitations
of CAVER, §8 describes related work. Finally, §9 con-
cludes the paper.

2 C++ Bad-casting Demystified
Type castings in C++. Type casting in C++ allows an
object of one type to be converted to another so that
the program can use different features of the class hi-
erarchy. C++ provides four explicit casting operations:
static, dynamic, const, and reinterpret. In this pa-
per, we focus on the first two types — static_cast and
dynamic_cast (5.2.9 and 5.2.7 in ISO/IEC N3690 [26]) —
because they can perform downcasting and result in bad-
casting. static_cast and dynamic_cast have a variety
of different usages and subtle issues, but for the purpose
of this paper, the following two distinctive properties
are the most important: (1) time of verification: as the
name of each casting operation implies, the correctness
of a type conversion is checked (statically) at compile
time for static_cast, and (dynamically) at runtime for
dynamic_cast; (2) runtime support (RTTI): to verify type
checking at runtime, dynamic_cast requires runtime sup-
port, called RTTI, that provides type information of the
polymorphic objects.

Example 1 illustrates typical usage of both casting
operations and their correctness and safety: (1) casting
from a derived class (pCanvas of SVGElement) to a parent
class (pEle of Element) is valid upcasting; (2) casting
from the parent class (pEle of Element) to the original
allocated class (pCanvasAgain of SVGElement) is valid
downcasting; (3) on the other hand, the casting from an
object allocated as a base class (pDom of Element) to a
derived class (p of SVGElement) is invalid downcasting
(i.e., a bad-casting); (4) memory access via the invalid
pointer (p->m_className) can cause memory corruption,
and more critically, compilers cannot guarantee any cor-
rectness of program execution after this incorrect conver-
sion, resulting in undefined behavior; and (5) by using
dynamic_cast, programmers can check the correctness of
type casting at runtime, that is, since an object allocated
as a base class (pDom of Element) cannot be converted to
its derived class (SVGElement), dynamic_cast will return
a NULL pointer and the error-checking code (line 18) can
catch this bug, thus avoiding memory corruption.
Type castings in practice. Although dynamic_cast
can guarantee the correctness of type casting, it is an
expensive operation because parsing RTTI involves recur-
sive data structure traversal and linear string comparison.
From our preliminary evaluation, dynamic_cast is, on
average, 90 times slower than static_cast on average.
For large applications such as the Chrome browser, such
performance overhead is not acceptable: simply launch-
ing Chrome incurs over 150,000 casts. Therefore, despite
its security benefit, the use of dynamic_cast is strictly

SVGElement

Element (3) invalid
downcast

pDom (allocated)1 class SVGElement: public Element { ... };
2

3 Element *pDom = new Element();
4 SVGElement *pCanvas = new SVGElement();
5

6 // (1) valid upcast from pCanvas to pEle
7 Element *pEle = static_cast<Element*>(pCanvas);
8 // (2) valid downcast from pEle to pCanvasAgain (== pCanvas)
9 SVGElement *pCanvasAgain = static_cast<SVGElement*>(pEle);

10

11 // (3) invalid downcast (-> undefined behavior)
12 SVGElement *p = static_cast<SVGElement*>(pDom);
13 // (4) leads to memory corruption
14 p->m_className = "my-canvas";
15

16 // (5) invalid downcast with dynamic_cast, but no corruption
17 SVGElement *p = dynamic_cast<SVGElement*>(pDom);
18 if (p) {
19 p->m_className = "my-canvas";
20 }

Example 1: Code example using static_cast to convert types
of object pointers (e.g., Element↔ SVGElement classes). (1) is
valid upcast and (2) is valid downcast. (3) is an invalid down-
cast. (4) Memory access via the invalid pointer result in memory
corruption; more critically, compilers cannot guarantee the cor-
rectness of program execution after this incorrect conversion,
resulting in undefined behavior. (5) Using dynamic_cast, on the
other hand, the program can check the correctness of downcast
by checking the returned pointer.

forbidden in Chrome development.
A typical workaround is to implement custom RTTI

support. For example, most classes in WebKit-
based browsers have an isType() method (e.g.,
isSVGElement()), which indicates the true allocated type
of an object. Having this support, programmers can decou-
ple a dynamic_cast into an explicit type check, followed
by static_cast. For example, to prevent the bad-casting
(line 12) in Example 1, the program could invoke the
isSVGElement() method to check the validity of casting.
However, this sort of type tracking and verification has
to be manually implemented, and thus supporting custom
RTTI in existing complex programs is a challenging prob-
lem. Moreover, due to the error-prone nature of manual
modifications (e.g., incorrectly marking the object iden-
tity flag, forgetting to check the identity using isType()
function, etc.), bad-casting bugs still occur despite custom
RTTI [41].
Security implications of bad-casting. The C++ stan-
dard (5.2.9/11 [26]) clearly specifies that the behavior
of an application becomes undefined after an incorrect
static_cast. Because undefined behavior is an enig-
matic issue, understanding the security implications and
exploitability of bad-casting requires deep knowledge of
common compiler implementations.

Generally, bad-casting vulnerabilities can be exploited
via several means. An incorrectly casted pointer will ei-
ther have wider code-wise visibility (e.g., allowing out-of-
bound memory accesses), or become incorrectly adjusted
(e.g., corrupting memory semantics because of misalign-
ment). For example, when bad-casting occurs in proxim-
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ity to a virtual function table pointer (vptr), an attacker
can directly control input to the member variable (e.g., by
employing abusive memory allocation techniques such as
heap-spray techniques [16, 38]), overwrite the vptr and
hijack the control flow. Similarly, an attacker can also
exploit bad-casting vulnerabilities to launch non-control-
data attacks [7].

The exploitability of a bad-casting bug depends on
whether it allows attackers to perform out-of-bound mem-
ory access or manipulate memory semantics. This in turn
relies on the details of object data layout as specified by
the C++ application binary interface (ABI). Because the
C++ ABI varies depending on the platform (e.g., Itanium
C++ ABI [12] for Linux-based platforms and Microsoft
C++ ABI [11] for Windows platforms), security implica-
tions for the same bad-casting bug can be different. For
example, bad-casting may not crash, corrupt, or alter the
behavior of an application built against the Itanium C++
ABI because the base pointer of both the base class and
derived class always point to the same location of the
object under this ABI. However, the same bad-casting
bug can have severe security implications for other ABI
implementations that locate a base pointer of a derived
class differently from that of a base class, such as HP
and legacy g++ C++ ABI [13]. In short, given the num-
ber of different compilers and the various architectures
supported today, we want to highlight that bad-casting
should be considered as a serious security issue. This
argument is also validated from recent correspondence
with the Firefox security team: after we reported two
new bad-casting vulnerabilities in Firefox [4], they also
pointed out the C++ ABI compatibility issue and rated the
vulnerability as security-high.
Running example: CVE-2013-0912. Our illustra-
tive Example 1 is extracted from a real-world bad-casting
vulnerability—CVE-2013-0912, which was used to ex-
ploit the Chrome web browser in the Pwn2Own 2013
competition. However, the complete vulnerability is more
complicated as it involves a multitude of castings (be-
tween siblings and parents).

In HTML5, an SVG image can be embedded directly
into an HTML page using the <svg> tag. This tag is
implemented using the SVGElement class, which inherits
from the Element class. At the same time, if a web page
happens to contain unknown tags (any tags other than stan-
dard), an object of the HTMLUnknownElement class will be
created to represent this unknown tag. Since both tags are
valid HTML elements, objects of these types can be safely
casted to the Element class. Bad-casting occurs when the
browser needs to render an SVG image. Given an Element
object, it tries to downcast the object to SVGElement so
the caller function can invoke member functions of the
SVGElement class. Unfortunately, since not all Element
objects are initially allocated as SVGElement objects, this

HTMLUnknwonElement
(size: 96 bytes)

...... (56 siblings)

HTMLElement
(size: 96 bytes)

SVGElement
(size: 160 bytes)

Element
(size: 96 bytes)

ContainerNode

...

static_cast
static_cast

(> 10 parent classes)

...

(allocated)

Figure 1: Inheritance hierarchy of classes involved in the CVE-
2013-0912 vulnerability. MWR Labs exploited this vulnerability
to hijack the Chrome browser in the Pwn2Own 2013 competi-
tion [31]. The object is allocated as HTMLUnknownElement and
eventually converted (static_cast) to SVGElement. After this
incorrect type casting, accessing member variables via this ob-
ject pointer will cause memory corruption.

static_cast is not always valid. In the exploit demon-
strated in the Pwn2Own 2013 competition [31], attackers
used an object allocated as HTMLUnknownElement. As the
size of an SVGElement object (160 bytes) is much larger
than an HTMLUnknownElement object (96 bytes), this in-
correctly casted object pointer allowed the attackers to
access memory beyond the real boundary of the allocated
HTMLUnknownElement object. They then used this capabil-
ity to corrupt the vtable pointer of the object adjacent to
the HTMLUnknownElement object, ultimately leading to a
control-flow hijack of the Chrome browser. This example
also demonstrates why identifying bad-casting vulnerabil-
ities is not trivial for real-world applications. As shown
in Figure 1, the HTMLUnknownElement class has more than
56 siblings and the Element class has more than 10 parent
classes in WebKit. Furthermore, allocation and casting
locations are far apart within the source code. Such com-
plicated class hierarchies and disconnections between
allocation and casting sites make it difficult for develop-
ers and static analysis techniques to reason about the true
allocation types (i.e., alias analysis).

3 CAVER Overview
In this paper, we focus on the correctness and effective-
ness of CAVER against bad-casting bugs, and our main
application scenario is as a back-end testing tool for de-
tecting bad-casting bugs. CAVER’s workflow (Figure 2)
is as simple as compiling a program with one extra com-
pile and link flag (i.e., -fcaver for both). The produced
binary becomes capable of verifying the correctness of ev-
ery type conversion at runtime. When CAVER detects an
incorrect type cast, it provides detailed information of the
bad-cast: the source class, the destination class, the truly
allocated class, and call stacks at the time the bad-cast is
captured. Figure 3 shows a snippet of the actual report of
CVE-2013-0912. Our bug report experience showed that
the report generated by CAVER helped upstream main-
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Figure 2: Overview of CAVER’s design and workflow. Given
the source code of a program, CAVER instruments possible
castings at compile time, and injects CAVER’s runtime to verify
castings when they are performed.

1 == CaVer : (Stopped) A bad-casting detected
2 @SVGViewSpec.cpp:87:12
3 Casting an object of ’blink::HTMLUnknownElement’
4 from ’blink::Element
5 to ’blink::SVGElement’
6 Pointer 0x60c000008280
7 Alloc base 0x60c000008280
8 Offset 0x000000000000
9 THTable 0x7f7963aa20d0

10

11 #1 0x7f795d76f1a4 in viewTarget SVGViewSpec.cpp:87
12 #2 0x7f795d939d1c in viewTargetAttribute V8SVGViewSpec.cpp:56
13 ...

Figure 3: A report that CAVER generated on CVE-2013-0912.

tainers easily understand, confirm, and fix eleven newly
discovered vulnerabilities without further examination.

4 Design
In this section, we introduce the design of CAVER. We
first describe how the THTable is designed to generally
represent the type information for both polymorphic
and non-polymorphic classes (§4.1), and then explain
how CAVER associates the THTable with runtime objects
(§4.2). Next, we describe how CAVER verifies the cor-
rectness of type castings (§4.3). At the end of this section,
we present optimization techniques used to reduce the
runtime overhead of CAVER (§4.4).

4.1 Type Hierarchy Table

To keep track of the type information required for val-
idating type casting, CAVER incorporates a new meta-
data structure, called the Type Hierarchy Table (THTable).
Given a pointer to an object allocated as type T, the
THTable contains the set of all possible types to which T
can be casted. In C++, these possible types are a product
of two kinds of class relationships: is-a and has-a. The
is-a relationship between two objects is implemented as
class inheritance, the has-a relationship is implemented
as class composition (i.e., having a member variable in a
class). Thus, for each class in a C++ program, CAVER cre-
ates a corresponding THTable that includes information
about both relationships.

To represent class inheritance, the THTable employs
two unique design decisions. First, information on inher-
ited classes (i.e., base classes) is unrolled and serialized.
This allows CAVER to efficiently scan through a set of
base classes at runtime while standard RTTI requires re-

cursive traversal. Second, unlike RTTI, which stores a
mangled class name, the THTable stores the hash value
of a class name. This allows CAVER to avoid expensive
string equality comparisons. Note, since all class names
are available to CAVER at compile time, all possible hash
collisions can be detected and resolved to avoid false
negatives during runtime. Moreover, because casting is
only allowed between classes within the same inheritance
chain, we only need to guarantee the uniqueness of hash
values within a set of those classes, as opposed to guaran-
teeing global uniqueness.

The THTable also includes information of whether a
base class is a phantom class, which cannot be represented
based on RTTI and causes many false alarms in RTTI-
based type verification solutions [9]. We say a class P is a
phantom class of a class Q if two conditions are met: (1) Q
is directly or indirectly derived from P; and (2) compared
to P, Q does not have additional member variables or
different virtual functions. In other words, they have the
same data layout. Strictly speaking, allocating an object
as P and downcasting it to Q is considered bad-casting as
Q is not a base class of P. However, such bad-castings
are harmless from a security standpoint, as the pointer
semantic after downcasting is the same. More importantly,
phantom classes are often used in practice to implement
object relationships with empty inheritances. For these
reasons, CAVER deliberately allows bad-castings caused
by phantom classes. This is done by reserving a one bit
space in the THTable for each base class, and marking if
the base class is a phantom class. We will describe more
details on how the phantom class information is actually
leveraged in §4.3.

In addition, the THTable contains information on com-
posited class(es) to generally represent the type informa-
tion for both polymorphic and non-polymorphic classes
and overcome the limitation of RTTI-based type verifica-
tion solutions. RTTI-based solutions locate a RTTI ref-
erence via the virtual function table (VTable). However,
since only polymorphic classes have VTable, these solu-
tions can cause runtime crashes when they try to locate
the VTable for non-polymorphic classes. Unlike RTTI,
CAVER binds THTable references to the allocated object
with external metadata (refer §4.2 for details). There-
fore, CAVER not only supports non-polymorphic objects,
but it also does not break the C++ ABI. However, com-
posited class(es) now share the same THTable with their
container class. Since a composited class can also have
its own inheritances and compositions, we do not unroll
information about composited class(es); instead, CAVER
provides a reference to the composited class’s THTable.
The THTable also stores the layout information (offset and
size) of each composited class to determine whether the
given pointer points to a certain composited class.

Other than inheritance and composition information as
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described above, the THTable contains basic information
on the corresponding type itself: a type size to represent
object ranges; and a type name to generate user-friendly
bad-casting reports.

4.2 Object Type Binding

To verify the correctness of type casting, CAVER needs
to know the actual allocated type of the object to be
casted. In CAVER, we encoded this type information in
the THTable. In this subsection, we describe how CAVER
binds the THTable to each allocated object. To overcome
the limitations of RTTI-based solutions, CAVER uses a
disjoint metadata scheme (i.e., the reference to an object’s
THTable is stored outside the object). With this unique
metadata management scheme, CAVER not only supports
both polymorphic classes and non-polymorphic classes,
but also preserves the C++ ABI and works seamlessly with
legacy code. Overall, type binding is done in two steps.
First, CAVER instruments each allocation site of an ap-
plication to pass the allocation metadata to its runtime
library. Second, CAVER’s runtime library maintains the
allocation metadata and supports efficient lookup opera-
tions.
Instrumentation. The goal of the instrumentation is to
pass all information of an allocated object to the runtime
library. To bind a THTable to an object, the runtime li-
brary needs two pieces of information: a reference to the
THTable and the base address of the allocated object.

In C++, objects can be allocated in three ways: in heap,
on stack, or as global objects. In all three cases, the
type information of the allocated object can be deter-
mined statically at compile time. This is possible because
C++ requires programmers to specify the object’s type at
its allocation site, so the corresponding constructor can
be invoked to initialize memory. For global and stack
objects, types are specified before variable names; and
for heap objects, types are specified after the new opera-
tor. Therefore, CAVER can obtain type information by
statically inspecting the allocation site at compile time.
Specifically, CAVER generates the THTable (or reuses the
corresponding THTable if already generated) and passes
the reference of the THTable to the runtime library. An
example on how CAVER instruments a program is shown
in Example 2.

For heap objects, CAVER inserts one extra function
invocation (trace_heap() in Example 2) to the runtime
library after each new operator, and passes the information
of the object allocated by new; a reference to the THTable
and the base address of an object. A special case for the
new operator is an array allocation, where a set of objects
of the same type are allocated. To handle this case, we add
an extra parameter to inform the runtime library on how
many objects are allocated together at the base address.

Unlike heap objects, stack objects are implicitly al-

1 // Heap objects (dynamically allocated)
2 void func_heap_ex() {
3 C *p_heap_var = new C;
4 C *p_heap_array = new C[num_heap_array];
5 + trace_heap(&THTable(C), p_heap_var, 1);
6 + trace_heap(&THTable(C), p_heap_array, num_heap_array);
7 ...
8 }
9

10 // Stack objects
11 void func_stack_ex() {
12 C stack_var;
13 + trace_stack_begin(&THTable(C), &stack_var, 1);
14 ...
15 + trace_stack_end(&stack_var);
16 }
17

18 // Global objects
19 C global_var;
20

21 // @.ctors: (invoked at the program’s initialization)
22 // trace_global_helper_1() and trace_global_helper_2()
23 + void trace_global_helper_1() {
24 + trace_global(&THTable(C), &global_var, 1);
25 + }
26

27 // Verifying the correctness of a static casting
28 void func_verify_ex() {
29 B *afterAddr = static_cast<A>(beforeAddr);
30 + verify_cast(beforeAddr, afterAddr, type_hash(A));
31 }

Example 2: An example of how CAVER instruments a program.
Lines marked with + represent code introduced by CAVER, and
&THTable(T) denotes the reference to the THTable of class T.
In this example, we assume that the THTable of each allocated
class has already been generated by CAVER.

located and freed. To soundly trace them, CAVER in-
serts two function calls for each stack object at the
function prologue and epilogue (trace_stack_begin()
and trace_stack_end() in Example 2), and passes the
same information of the object as is done for heap ob-
jects. A particular challenge is that, besides function
returns, a stack unwinding can also happen due to ex-
ceptions and setjmp/longjmp. To handle these cases,
CAVER leverages existing compiler functionality (e.g.,
EHScopeStack::Cleanup in clang) to guarantee that the
runtime library is always invoked once the execution con-
text leaves the given function scope.

To pass information of global objects to the runtime
library, we leverage existing program initialization pro-
cedures. In ELF file format files [46], there is a special
section called .ctors, which holds constructors that must
be invoked during an early initialization of a program.
Thus, for each global object, CAVER creates a helper
function (trace_global_helper_1() in Example 2) that
invokes the runtime library with static metadata (the ref-
erence to the THTable) and dynamic metadata (the base
address and the number of array elements). Then, CAVER
adds the pointer to this helper function to the .ctors sec-
tion so that the metadata can be conveyed to the runtime
library2.

2Although the design detail involving .ctors section is platform de-
pendent, the idea of registering the helper function into the initialization
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Runtime library. The runtime library of CAVER main-
tains all the metadata (THTable and base address of an
object) passed from tracing functions during the course
of an application execution. Overall, we consider two pri-
mary requirements when organizing the metadata. First,
the data structure must support range queries ( i.e., given
a pointer pointing to an address within an object ([base,
base+size)) CAVER should be able to find the correspond-
ing THTable of the object). This is necessary because the
object pointer does not always point to the allocation base.
For example, the pointer to be casted can point to a com-
posited object. In case of multi-inheritance, the pointer
can also point to one of the parent classes. Second, the
data structure must support efficient store and retrieve
operations. CAVER needs to store the metadata for every
allocation and retrieve the metadata for each casting ver-
ification. As the number of object allocations and type
conversions can be huge (see §6), these operations can
easily become the performance bottleneck.

We tackle these challenges using a hybrid solution (see
Appendix 2 for the algorithm on runtime library func-
tions). We use red-black trees to trace global and stack
objects and an alignment-based direct mapping scheme
to trace heap objects3.

We chose red-black trees for stack and global objects
for two reasons. First, tree-like data structures are well
known for supporting efficient range queries. Unlike
hash-table-based data structures, tree-based data struc-
tures arrange nodes according to the order of their keys,
whose values can be numerical ranges. Since nodes are
already sorted, a balanced tree structure can guarantee
O(logN) complexity for range queries while hash-table-
based data structure requires O(N) complexity. Second,
we specifically chose red-black trees because there are sig-
nificantly more search operations than update operations
(i.e., more type conversion operations than allocations,
see §6), thus red-black trees can excel in performance due
to self-balancing.

In CAVER, each node of a red-black tree holds the
following metadata: the base address and the allocation
size as the key of the node, and the THTable reference as
the value of the node.

For global object allocations, metadata is inserted into
the global red-black tree when the object is allocated at
runtime, with the key as the base address and the alloca-
tion size4, and the value as the address of the THTable.
We maintain a per-process global red-black tree without

function list can be generalized for other platforms as others also support
.ctors-like features

3The alignment-based direct mapping scheme can be applied for
global and stack objects as well, but this is not implemented in the
current version. More details can be found in §7.

4The allocation size is computed by multiplying the type size rep-
resented in THTable and the number of array elements passed during
runtime.

locking mechanisms because there are no data races on
the global red-black tree in CAVER. All updates on the
global red-black tree occur during early process start-up
(i.e., before executing any user-written code) and update
orders are well serialized as listed in the .ctors section.

For stack object allocations, metadata is inserted to
the stack red-black tree similar to the global object case.
Unlike a global object, we maintain a per-thread red-
black tree for stack objects to avoid data races in multi-
threaded applications. Because a stack region (and all
operations onto this region) are exclusive to the corre-
sponding thread’s execution context, this per-thread data
structure is sufficient to avoid data races without locks.

For heap objects, we found that red-black trees are
not a good design choice, especially for multi-threaded
programs. Different threads in the target programs can up-
date the tree simultaneously, and using locks to avoid data
races resulted in high performance overhead, as data con-
tention occured too frequently. Per-thread red-black trees
used for stack objects are not appropriate either, because
heap objects can be shared by multiple threads. There-
fore, we chose to use a custom memory allocator that can
support alignment-based direct mapping schemes [3, 22].
In this scheme, the metadata can be maintained for a par-
ticular object, and can be retrieved with O(1) complexity
on the pointer pointing to anywhere within the object’s
range.

4.3 Casting Safety Verification

This subsection describes how CAVER uses traced in-
formation to verify the safety of type casting. We first
describe how the instrumentation is done at compile time,
and then describe how the runtime library eventually veri-
fies castings during runtime.
Instrumentation. CAVER instruments static_cast to
invoke a runtime library function, verify_cast(), to ver-
ify the casting. Here, CAVER analyzes a type hierarchy
involving source and destination types in static_cast
and only instruments for downcast cases. When invok-
ing verify_cast(), CAVER passes the following three
pieces of information: beforeAddr, the pointer address
before the casting; afterAddr, the pointer address after
the casting; and TargetTypeHash, the hash value of the
destination class to be casted to (denoted as type_hash(A)
in Example 2).
Runtime library. The casting verification (Appendix 1)
is done in two steps: (1) locating the correspond-
ing THTable associated with the object pointed to by
beforeAddr; and (2) verifying the casting operation by
checking whether TargetTypeHash is a valid type where
afterAddr points.

To locate the corresponding THTable, we first check
the data storage membership because we do not know
how the object beforeAddr points to is allocated. Checks
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are ordered by their expense, and the order is critical for
good performance. First, a stack object membership is
checked by determinig whether the beforeAddr is in the
range between the stack top and bottom; then, a heap ob-
ject membership is checked by whether the beforeAddr
is in the range of pre-mapped address spaces reserved
for the custom allocator; finally a global object member-
ship is checked with a bit vector array for each loaded
binary module. After identifying the data storage mem-
bership, CAVER retrieves the metadata containing the
allocation base and the reference to the THTable. For
stack and global objects, the corresponding red-black tree
is searched. For heap objects, the metadata is retrieved
from the custom heap.

Next, CAVER verifies the casting operation. Because
the THTable includes all possible types that the given ob-
ject can be casted to (i.e., all types from both inheritances
and compositions), CAVER exhaustively matches whether
TargetTypeHash is a valid type where afterAddr points.
To be more precise, the afterAddr value is adjusted for
each matching type. Moreover, to avoid false positives
due to a phantom class, CAVER tries to match all phantom
classes of the class to be casted to.

4.4 Optimization

Since performance overhead is an important factor for
adoption, CAVER applies several optimization techniques.
These techniques are applied in two stages, as shown
in Figure 2. First, offline optimizations are applied to
remove redundant instrumentations. After that, additional
runtime optimizations are applied to further reduce the
performance overhead.
Safe-allocations. Clearly, not all allocated objects will
be involved in type casting. This implicates that CAVER
does not need to trace type information for objects that
would never be casted. In general, soundly and accurately
determining whether objects allocated at a given alloca-
tion site will be casted is a challenging problem because
it requires sophisticated static points-to analysis. Instead,
CAVER takes a simple, yet effective, optimization ap-
proach inspired from C type safety checks in CCured [33].
The key idea is that the following two properties always
hold for downcasting operations: (1) bad-casting may
happen only if an object is allocated as a child of the
source type or the source type itself; and (2) bad-casting
never happens if an object is allocated as the destina-
tion type itself or a child of the destination type. This is
because static_cast guarantees that the corresponding
object must be a derived type of the source type. Since
CAVER can observe all allocation sites and downcasting
operations during compilation, it can recursively apply
the above properties to identify safe-allocation sites, i.e.,
the allocated objects will never cause bad-casting.
Caching verification results. Because casting verifica-

tion involves loops (over the number of compositions
and the number of bases) and recursive checks (in a
composition case), it can be a performance bottleneck.
A key observation here is that the verification result is
always the same for the same allocation type and the
same target type (i.e., when the type of object pointed by
afterAddr and TargetTypeHash are the same). Thus,
in order to alleviate this potential bottleneck, we main-
tain a cache for verification results, which is inspired by
UBSAN [42]. First, a verification result is represented
as a concatenation of the address of a corresponding
THTable, the offset of the afterAddr within the object,
and the hash value of target type to be casted into (i.e.,
&THTable || offset || TargetTypeHash). Next, this concate-
nated value is checked for existence in the cache before
verify_cast() actually performs verification. If it does,
verify_cast() can conclude that this casting is correct.
Otherwise, verify_cast() performs actual verification
using the THTable, and updates the cache only if the cast-
ing is verified to be correct.

5 Implementation
We implemented CAVER based on the LLVM Compiler
project [43] (revision 212782, version 3.5.0). The static in-
strumentation module is implemented in Clang’s CodeGen
module and LLVM’s Instrumentation module. The
runtime library is implemented using the compiler-rt
module based on LLVM’s Sanitizer code base. In to-
tal, CAVER is implemented in 3,540 lines of C++ code
(excluding empty lines and comments).

CAVER is currently implemented for the Linux x86
platform, and there are a few platform-dependent mech-
anisms. For example, the type and tracing functions for
global objects are placed in the .ctors section of ELF. As
these platform-dependent features can also be found in
other platforms, we believe CAVER can be ported to other
platforms as well. CAVER interposes threading functions
to maintain thread contexts and hold a per-thread red-
black tree for stack objects. CAVER also maintains the
top and bottom addresses of stack segments to efficiently
check pointer membership on the stack. We also modified
the front-end drivers of Clang so that users of CAVER can
easily build and secure their target applications with one
extra compilation flag and linker flag, respectively.

6 Evaluation
We evaluated CAVER with two popular web browsers,
Chromium [40] (revision 295873) and Firefox [44]
(revision 213433), and two benchmarks from SPEC
CPU2006 [39]5. Our evaluation aims to answer the fol-
lowing questions:

5 Although CAVER was able to correctly run all C++ benchmarks in
SPEC CPU2006, only 483.xalancbmk and 450.soplex have downcast
operations.
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• How easy is it to deploy CAVER to applications?
(§6.1)

• What are the new vulnerabilities CAVER found?
(§6.2)

• How precise is CAVER’s approach in detecting bad-
casting vulnerabilities? (§6.3)

• How good is CAVER’s protection coverage? (§6.4)
• What are the instrumentation overheads that CAVER

imposes and how many type castings are verified by
CAVER? (§6.5)

• What are the runtime performance overheads that
CAVER imposes? (§6.6)

Comparison methods. We used UBSAN, the state-of-art
tool for detecting bad-casting bugs, as our comparison tar-
get of CAVER. Also, We used CAVER-NAIVE, which dis-
abled the two optimization techniques described in §4.4,
to show their effectiveness on runtime performance opti-
mization.

Experimental setup. All experiments were run on
Ubuntu 13.10 (Linux Kernel 3.11) with a quad-core 3.40
GHz CPU (Intel Xeon E3-1245), 16 GB RAM, and 1 TB
SSD-based storage.

6.1 Deployments

As the main design goal for CAVER is automatic deploy-
ments, we describe our experience of applying CAVER to
tested programs including SPEC CPU 2006 benchmarks,
the Chromium browser, and the Firefox browser. CAVER
was able to successfully build and run these programs
without any program-specific understanding of the code
base. In particular, we added one line to the build config-
uration file to build SPEC CPU 2006, 21 lines to the .gyp
build configuration to build the Chromium browser, and
10 lines to the .mozconfig build configuration file to build
the Firefox browser. Most of these build configuration
changes were related to replacing gcc with clang.

On the contrary, UBSAN crashed while running
xalancbmk in SPEC CPU 2006 and while running the Fire-
fox browser due to checks on non-polymorphic classes.
UBSAN also crashed the Chromium browser without
blacklists, but was able to run once we applied the black-
lists provided by the Chromium project [9]. In particular,
to run Chromium, the blacklist has 32 different rules that
account for 250 classes, ten functions, and eight whole
source files. Moreover, this blacklist has to be maintained
constantly as newly introduced code causes new crashes
in UBSAN [10]. This is a practical obstacle for adopt-
ing UBSAN in other C++ projects—although UBSAN has
been open sourced for some time, Chromium remains the
only major project that uses UBSAN, because there is a
dedicated team to maintain its blacklist.

6.2 Newly Discovered Bad-casting Vulnerabilities

To evaluate CAVER’s capability of detecting bad-casting
bugs, we ran CAVER-hardened Chromium and Firefox
with their regression tests (mostly checking functional cor-
rectness). During this evaluation, CAVER found eleven
previously unknown bad-casting vulnerabilities in GNU
libstdc++ while evaluating Chromium and Firefox. Ta-
ble 1 summarizes these vulnerabilities including related
class information: allocated type, source, and destina-
tion types in each bad-casting. In addition, we further
analyzed their security impacts: potential compatibility
problems due to the C++ ABI (see §2) or direct mem-
ory corruption, along with security ratings provided by
Mozilla for Firefox.

CAVER found two vulnerabilities in the Firefox
browser. The Firefox team at Mozilla confirmed and
fixed these, and rated both as security-high, meaning that
the vulnerability can be abused to trigger memory cor-
ruption issues. These two bugs were casting the pointer
into a class which is not a base class of the originally
allocated type. More alarmingly, there were type seman-
tic mismatches after the bad-castings—subsequent code
could dereference the incorrectly casted pointer. Thus the
C++ ABI and Memory columns are checked for these two
cases.

CAVER also found nine bugs in GNU libstdc++ while
running the Chromium browser. We reported these bugs
to the upstream maintainers, and they have been con-
firmed and fixed. Most of these bugs were triggered when
libstdc++ converted the type of an object pointing to
its composite objects (e.g., Base_Ptr in libstdc++) into
a more derived class (Rb_Tree_node in libstdc++), but
these derived classes were not base classes of what was
originally allocated (e.g., EncodedDescriptorDatabase
in Chromium). Since these are generic bugs, meaning
that benign C++ applications will encounter these issues
even if they correctly use libstdc++ or related libraries,
it is difficult to directly evaluate their security impacts
without further evaluating the applications themselves.

These vulnerabilities were identified with legitimate
functional test cases. Thus, we believe CAVER has great
potential to find more vulnerabilities once it is utilized
for more applications and test cases, as well as inte-
grated with fuzzing infrastructures like ClusterFuzz [2]
for Chromium.

6.3 Effectiveness of Bad-casting Detection

To evaluate the correctness of detecting bad-casting
vulnerabilities, we tested five bad-casting exploits of
Chromium on the CAVER-hardened Chromium binary
(see Table 2). We backported five bad-casting vulnera-
bilities as unit tests while preserving important features
that may affect CAVER’s detection algorithm, such as
class inheritances and their compositions, and allocation
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Product Bug ID Vulnerable Types Security Implication

Function Allocation / Source / Destination ABI Mem Rating

Firefox 1074280 [4] PaintLayer() BasicThebesLayer / Layer / BasicContainerLayer ✓ ✓ High (CVE-2014-1594)
Firefox 1089438 [5] EvictContent() PRCListStr / PRCList / nsSHistory ✓ ✓ High
libstdc++ 63345 [30] _M_const_cast() EncodedDescriptorDatabase / Base_Ptr / Rb_Tree_node ✓ - †
libstdc++ 63345 [30] _M_end() EnumValueOptions / Rb_tree_node_base / Link_type ✓ - †
libstdc++ 63345 [30] _M_end() const GeneratorContextImpl / Rb_tree_node_base / Link_type_const ✓ - †
libstdc++ 63345 [30] _M_insert_unique() WaitableEventKernel / Base_ptr / List_type ✓ - †
libstdc++ 63345 [30] operator*() BucketRanges / List_node_base / Node ✓ - †
libstdc++ 63345 [30] begin() FileOptions / Link_type / Rb_Tree_node ✓ - †
libstdc++ 63345 [30] begin() const std::map / Link_type / Rb_Tree_node ✓ - †
libstdc++ 63345 [30] end() MessageOptions / Link_type / Rb_Tree_node ✓ - †
libstdc++ 63345 [30] end() const Importer / Link_type / Rb_Tree_node ✓ - †

Table 1: A list of vulnerabilities newly discovered by CAVER. All security vulnerabilities listed here are confirmed, and already
fixed by the corresponding development teams. Columns under Types represent classes causing bad-castings: allocation, source
and destination classes. Columns under Security Implication represents the security impacts of each vulnerability: whether the
vulnerability has C++ ABI incompatibility issues (ABI); whether the vulnerability triggers memory corruption (Mem); and the actual
security assessment ratings assigned by the vendor (Rating). †: The GNU libstdc++ members did not provide security ratings.

size. This backporting was due to the limited support
for the LLVM/clang compiler by older Chromium (other
than CVE-2013-0912). Table 2 shows our testing results
on these five known bad-casting vulnerabilities. CAVER
successfully detected all vulnerabilities.

In addition to real vulnerabilities, we thoroughly evalu-
ated CAVER with test cases that we designed based on all
possible combinations of bad-casting vulnerabilities: (1)
whether an object is polymorphic or non-polymorphic;
and (2) the three object types: allocation, source, and
destination.

|{Poly, non-Poly}||{Alloc, From, To}| = 8
Eight different unit tests were developed and evaluated

as shown in Table 3. Since CAVER’s design generally
handles both polymorphic and non-polymorphic classes,
CAVER successfully detected all cases. For comparison,
UBSAN failed six cases mainly due to its dependency on
RTTI. More severely, among the failed cases, UBSAN
crashed for two cases when it tried to parse RTTI non-
polymorphic class objects, showing it is difficult to use
without manual blacklists. Considering Firefox contains
greater than 60,000 downcasts, (see Table 4), creating
such a blacklist for Firefox would require massive manual
engineering efforts.

6.4 Protection Coverage

Table 4 summarizes our evaluation of CAVER’s protection
coverage during instrumentation, including the number
of protected types/classes (the left half), and the number
of protected type castings (the right half). In our evalua-
tion with C++ applications in SPEC CPU 2006, Firefox,
and Chromium, CAVER covers 241% more types than
UBSAN; and protects 199% more type castings.

6.5 Instrumentation Overheads

There are several sources that increase a program’s binary
size (see Table 5), including (1) the inserted functions
for tracing objects’ type and verifying type castings, (2)

Name # of tables # of verified cast

RTTI THTable UBSAN CAVER

483.xalancbmk 881 3,402 1,378 1,967
450.soplex 39 227 0 2

Chromium 24,929 94,386 11,531 15,611
Firefox 9,907 30,303 11,596 71,930

Table 4: Comparisons of protection coverage between UBSAN

and CAVER. In the # of tables column, VTable shows the num-
ber of virtual function tables and THTable shows the number
of type hierarchy tables, each of which is generated to build
the program. # of verified cast shows the number static_cast
instrumented in UBSAN and CAVER, respectively. Overall,
CAVER covers 241% and 199% more classes and their castings,
respectively, compared to UBSAN.

Name File Size (KB)

Orig. UBSAN CAVER

483.xalancbmk 6,111 6,674 9% 7,169 17%
450.soplex 466 817 75% 861 84%

Chromium 249,790 612,321 145% 453,449 81%
Firefox 242,704 395,311 62% 274,254 13%

Table 5: The file size increase of instrumented binaries: CAVER

incurs 64% and 49% less storage overheads in Chromium and
Firefox browsers, compared to UBSAN.

the THTable of each class, and (3) CAVER’s runtime li-
brary. Although CAVER did not perform much instru-
mentation for most SPEC CPU 2006 applications, the
file size increase still was noticeable. This increase was
caused by the statically linked runtime library (245 KB).
The CAVER-hardened Chromium requires 6× more stor-
age compared to Firefox because the Chromium code
bases contains more classes than Firefox. The additional
THTable overhead is the dominant source of file size in-
creases. (see Table 4). For comparison, UBSAN increased
the file size by 64% and 49% for Chromium and Firefox,
respectively; which indicates that THTable is an efficient
representation of type information compared to RTTI.
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CVE # Bug ID Type Names Security Rating Mitigated

Allocation Source Destination by CAVER

CVE-2013-0912 180763 HTMLUnknownElement Element SVGElement High ✓
CVE-2013-2931 302810 MessageEvent Event LocatedEvent High ✓
CVE-2014-1731 349903 RenderListBox RenderBlockFlow RenderMeter High ✓
CVE-2014-3175 387016 SpeechSynthesis EventTarget SpeechSynthesisUtterance High ✓
CVE-2014-3175 387371 ThrobAnimation Animation MultiAnimation Medium ✓

Table 2: Security evaluations of CAVER with known vulnerabilities of the Chromium browser. We first picked five known bad-
casting bugs and wrote test cases for each vulnerability, retaining features that may affect CAVER’s detection algorithm, including
class hierarchy and their compositions, and related classes including allocation, source, and destination types). CAVER correctly
detected all vulnerabilities.

(a) CAVER, P Alloc

From
To P Non-P

P ✓ ✓
Non-P ✓ ✓

(b) CAVER, Non-P Alloc

From
To P Non-P

P ✓ ✓
Non-P ✓ ✓

(c) UBSAN, P Alloc

From
To P Non-P

P ✓ X
Non-P ✓ X

(d) UBSAN, Non-P Alloc

From
To P Non-P

P Crash X
Non-P Crash X

Table 3: Evaluation of protection coverage against all possible combinations of bad-castings. P and Non-P mean polymorphic
and non-polymorphic classes, respectively. In each cell, ✓marks a successful detection, X marks a failure, and Crash marks the
program crashed. (a) and (b) show the results of CAVER with polymorphic class allocations and non-polymorphic class allocations,
respectively, and (c) and (d) show the cases of UBSAN. CAVER correctly detected all cases, while UBSAN failed for 6 cases
including 2 crashes.

6.6 Runtime Performance Overheads

In this subsection, we measured the runtime overheads of
CAVER by using SPEC CPU 2006’s C++ benchmarks and
various browser benchmarks for Chromium and Firefox.
For comparison, we measured runtime overheads of the
original, non-instrumented version (compiled with clang),
and the UBSAN-hardened version.
Microbenchmarks. To understand the performance char-
acteristics of CAVER-hardened applications, we first pro-
filed micro-scaled runtime behaviors related to CAVER’s
operations (Table 6). For workloads, we used the built-in
input for the two C++ applications of SPEC CPU 2006,
and loaded the default start page of the Chromium and
Firefox browsers. Overall, CAVER traced considerable
number of objects, especially for the browsers: 783k in
Chromium, and 15,506k in Firefox.

We counted the number of verified castings (see Ta-
ble 6), and the kinds of allocations (i.e., global, stack,
or heap). In our experiment, Firefox performed 710%
more castings than Chromium, which implies that the
total number of verified castings and the corresponding
performance overheads highly depends on the way the
application is written and its usage patterns.
SPEC CPU 2006. With these application characteris-
tics in mind, we first measured runtime performance
impacts of CAVER on two SPEC CPU 2006 programs,
xalancbmk and soplex. CAVER slowed down the exe-
cution of xalancbmk and soplex by 29.6% and 20.0%,
respectively. CAVER-NAIVE (before applying the op-
timization techniques described in §4.4) slowed down
xalancbmk and soplex by 32.7% and 20.8% respectively.

0%

25%

50%

75%

100%

Octane
SunSpider

Dromaeo-JS

Dromaeo-DOM

UBSAN

CAVER-NAIVE

CAVER

Figure 4: Browser benchmark results for the Chromium
browser. On average, while CAVER-NAIVE incurs 30.7% over-
head, CAVER showed 7.6% runtime overhead after the opti-
mization. UBSAN exhibits 16.9% overhead on average.

For UBSAN, xalancbmk crashed because of RTTI limi-
tations in handling non-polymorphic types, and soplex
becomes 21.1% slower. Note, the runtime overheads
of CAVER is highly dependent on the application char-
acteristics (e.g., the number of downcasts performed in
runtime). Thus, we measured overhead with more realis-
tic workloads on two popular browsers, Chromium and
Firefox.
Browser benchmarks (Chromium). To understand the
end-to-end performance of CAVER, we measured the
performance overhead of web benchmarks. We tested
four browser benchmarks: Octane [21], SunSpider [47],
Dromaeo-JS [29], and Dromaeo-DOM [29], each of
which evaluate either the performance of the JavaScript
engine or page rendering.

Figure 4 shows the benchmark results of the Chromium
browser. On average, CAVER showed 7.6% overhead
while CAVER-NAIVE showed 30.7%, which implies the
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Name
Object Tracing Verified Castings

Global Stack Heap Global Stack Heap Total
Total Peak Total Peak Total

483.xalancbmk 165 32 190k 8k 88k 0 104 24k 24k
450.soplex 36 1 364 141 658 0 0 0 0

Chromium 3k 274 350k 79k 453k 963 338 150k 151k
Firefox 24k 38k 14,821k 213k 685k 41k 524k 511k 1,077k

Table 6: The number of traced objects and type castings verified by CAVER in our benchmarks. Under the Object Tracing column,
Peak and Total denote the maximum number of traced objects during program execution, and the total number of traced objects
until its termination, respectively. Global, Stack, and Heap under the Verified Casts represent object’s original types (allocation)
involved in castings. Note that Firefox heavily allocates objects on stack, compared to Chromium. Firefox allocated 4,134% more
stack objects, and performs 1,550% more type castings than Chromium.
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Figure 5: Browser benchmark results for the Firefox browser.
On average, CAVER and CAVER-NAIVE showed 64.6% and
170.3% overhead, respectively.

optimization techniques in §4.4 provided a 23.1% per-
formance improvement. This performance improvement
is mostly due to the safe-allocation optimization, which
identified 76,381 safe-allocation types (81% of all types
used for Chromium) and opted-out to instrument alloca-
tion sites on such types. Compared to UBSAN, CAVER
is 13.8% faster even though it offers more wide detection
coverage on type casting. Thus, we believe this result
shows that CAVER’s THTable design and optimization
techniques are efficient in terms of runtime performances.
Browser benchmarks (Firefox). We applied CAVER
to the Firefox browser and measured the performance
overhead for the web benchmarks used in evaluating the
Chromium browser. On average, CAVER imposed 64.6%
overhead while CAVER-NAIVE imposed 170.3% over-
head (Figure 5). Similar to the Chromium case, most of
performance improvements are from safe-allocation op-
timization, which identified 21,829 safe-allocation types
(72% of all used types for Firefox). UBSAN was un-
able to run Firefox because it crashed due to the in-
ability of its RTTI to handle non-polymorphic types,
so we do not present the comparison number. Com-
pared to CAVER’s results on Chromium, the CAVER-
enhanced Firefox showed worse performance, mainly due
to the enormous amount of stack objects allocated by
Firefox (Table 6). In order words, the potential perfor-
mance impacts rely on the usage pattern of target appli-
cations, rather than the inherent overheads of CAVER’s
approaches.

Name Original UBSAN CAVER

Peak Avg Peak Avg Peak Avg

483.xalancbmk 9 8 crash crash 14 12
450.soplex 2 2 2 2 5 5

Chromium 376 311 952 804 878 738
Firefox 165 121 crash crash 208 157

Table 7: Runtime memory impacts (in KB) while running tar-
get programs. UBSAN crashed while running xalancbmk and
Firefox due to the non-polymorhpic typed classes. Peak and
Avg columns denote the maximum and average memory usages,
respectively, while running the program. CAVER used 137%
more memory on Chromium, and 23% more memory on Firefox.
UBSAN used 158% more memory on Chromium.

Memory overheads. UBSAN and CAVER achieve fast
lookup of the metadata of a given object by using a custom
memory allocator that is highly optimized for this purpose,
at the cost of unnecessary memory fragmentation. In our
benchmark (Table 7), UBSAN used 2.5× more memory
at peak and average; and CAVER used 2.3× more mem-
ory at peak and average, which is an 8% improvement
over UBSAN. Considering CAVER’s main purpose is a
diagnosis tool and the amount of required memory is not
large (< 1 GB), we believe that these memory overheads
are acceptable cost in practice for the protection gained.

7 Discussion
Integration with fuzzing tools. During our evaluations,
we relied on the built-in test inputs distributed with the tar-
get programs, and did not specifically attempt to improve
code coverage. Yet CAVER is capable of discovering
dozens of previously unknown bad-casting bugs. In the
future, we plan to integrate CAVER with fuzzing tools like
the ClusterFuzz [2] infrastructure for Chromium to im-
prove code coverage. By doing so, we expect to discover
more bad-casting vulnerabilities.
Optimization. In this paper, we focused on the correct-
ness, effectiveness, and usability of CAVER. Although
we developed several techniques to improve performance,
optimization is not our main focus. With more powerful
optimization techniques, we believe CAVER can also be
used for runtime bad-casting mitigation.
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For example, one direction we are pursuing is to use
static analysis to prove whether a type casting is always
safe. By doing so, we can remove redundant cast verifica-
tion.

Another direction is to apply alignment-based direct
mapping scheme for global and stack objects as well.
Please recall that red-black trees used for global and stack
objects show O(logN) complexity, while alignment-based
direct mapping scheme guarantees O(1) complexity. In
order to apply alignment-based direct mapping scheme for
global and stack objects together, there has to be radical
semantic changes in allocating stack and global objects.
This is because alignment-based direct mapping scheme
requires that all objects have to be strictly aligned. This
may not be difficult for global objects, but designing and
implementing for stack objects would be non-trivial for
the following reasons: (1) essentially this may involve
a knapsack problem (i.e., given different sized stack ob-
jects in each stack frame, what are the optimal packing
strategies to reduce memory uses while keeping a certain
alignment rule); (2) an alignment base address for each
stack frame has to be independently maintained during
runtime; (3) supporting variable length arrays (allowed
in ISO C99 [18]) in stack would be problematic as the
packing strategy can be only determined at runtime in this
case.

Furthermore, it is also possible to try even more ex-
treme approaches to apply alignment-based direct map-
ping scheme—simply migrating all stack objects to be
allocated in heap. However, this may result in another
potential side effects in overhead.

8 Related work
Bad-casting detection. The virtual function table check-
ing in Undefined Behavior Sanitizer (UBSAN-vptr) [42]
is the closest related work to CAVER. Similar to CAVER,
UBSAN instruments static_cast at compile time, and
verifies the casting at runtime. The primary difference is
that UBSan relies on RTTI to retrieve the type information
of an object. Thus, as we have described in §4, UBSAN
suffers from several limitations of RTTI . (1) Coverage:
UBSAN cannot handle non-polymorphic classes as there
is no RTTI for these classes; (2) Ease-of-deployments:
hardening large scale software products with UBSAN
is non-trivial due to the coverage problem and phantom
classes. As a result, UBSAN has to rely on blacklisting [9]
to avoid crashes.
RTTI alternatives. Noticing the difficulties in han-
dling complex C++ class hierarchies in large-scale soft-
ware, several open source projects use a custom form of
RTTI. For example, the LLVM project devised a custom
RTTI [27]. LLVM-style RTTI requires all classes to mark
its identity once it is created (i.e., in C++ constructors)
and further implement a static member function to re-

trieve its identity. Then, all type conversions can be done
with templates that leverage this static member function
implemented in every class. Because the static member
function can tell the true identity of an object, theoreti-
cally, all type conversions are always correct and have no
bad-casting issues. Compared to CAVER, the drawback
of this approach is that it requires manual source code
modification. Thus, it would be non-trivial to modify
large projects like browsers to switch to this style. More
alarmingly, since it relies on developers’ manual modifi-
cation, if developers make mistakes in implementations,
bad-casting can still happen [41].
Runtime type tracing. Tracing runtime type informa-
tion offers several benefits, especially for debugging and
profiling. [37] used RTTI to avoid complicated parsing
supports in profiling parallel and scientific C++ applica-
tions. Instead of relying on RTTI, [15, 28] instruments
memory allocation functions to measure complete heap
memory profiles. CAVER is inspired by these runtime
type tracing techniques, but it introduced the THTable, a
unique data structure to support efficient verification of
complicated type conversion.
Memory corruption prevention. As described in §2,
bad-casting can provide attackers access to memory be-
yond the boundary of the casted object. In this case, there
will be a particular violation (e.g., memory corruptions)
once it is abused to mount an attack. Such violations can
be detected with existing software hardening techniques,
which prevents memory corruption attacks and thus po-
tentially stop attacks abusing bad-casting. In particular,
Memcheck (Valgrind) [34] and Purify [23] are popularly
used solutions to detect memory errors. AddressSani-
tizer [36] is another popular tool developed recently by
optimizing the way to represent and probe the status of al-
located memory. However, it cannot detect if the attacker
accesses beyond red-zones or stressing memory alloca-
tors to abuse a quarantine zone [8]. Another direction
is to enforce spatial memory safety [14, 25, 32, 33, 48],
but this has drawbacks when handling bad-casting issues.
For example, Cyclone [25] requires extensive code mod-
ifications; CCured [33] modifies the memory allocation
model; and SVA [14] depends on a new virtual execution
environment. More fundamentally, most only support C
programs.

Overall, compared to these solutions, we believe
CAVER makes a valuable contribution because it detects
the root cause of one important vulnerability type: bad-
casting. CAVER can provide detailed information on how
a bad-casting happens. More importantly, depending on
certain test cases or workloads, many tools cannot detect
bad-casting if a bad-casted pointer is not actually used
to violate memory safety. However, CAVER can immedi-
ately detect such latent cases if any bad-casting occurs.
Control Flow Integrity (CFI). Similar to memory cor-
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ruption prevention techniques, supporting CFI [1, 49–51]
may prevent attacks abusing bad-casting as many exploits
hijack control flows to mount an attack. Furthermore,
specific to C++ domain, SafeDispatch [24] and VTV [45]
guarantee the integrity of virtual function calls to prevent
hijacks over virtual function calls. First of all, soundly
implementing CFI itself is challenging. Recent research
papers identified security holes in most of CFI implemen-
tations [6, 17, 19, 20]. More importantly, all of these solu-
tions are designed to only protect control-data, and thus it
cannot detect any non-control data attacks [7]. For exam-
ple, the recent vulnerability exploit against glibc [35] was
able to completely subvert the victim’s system by merely
overwriting non-control data—EXIM’s runtime configura-
tion. However, because CAVER is not relying on such
post-behaviors originating from bad-casting, it is agnostic
to specific exploit methods.

9 Conclusion
The bad-casting problem in C++ programs, which occurs
when the type of an object pointer is converted to an-
other that is incorrect and unsafe, has serious security
implications. We have developed CAVER, a runtime bad-
casting detection tool. It uses a new runtime type tracing
mechanism, the Type Hierarchy Table, to efficiently ver-
ify type casting dynamically. CAVER provides broader
coverage than existing approaches with smaller or com-
parable performance overhead. We have implemented
CAVER and have applied it to large-scale software in-
cluding the Chromium and Firefox browsers. To date,
CAVER has found eleven previously unknown vulnerabil-
ities, which have been reported and subsequently fixed by
the corresponding open-source communities.
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Appendix
1 def getTHTableByAddr(addr):
2 if isObjectInStack(addr):
3 # addr points to stack objects.
4 stack_rbtree = getThreadLocalStackRbtree()
5 allocBaseAddr, pTHTable = \
6 stack_rbtree.rangedSearch(addr):
7 return (allocBaseAddr, pTHTable)
8

9 if isObjectInHeap(addr):
10 # addr points to heap objects.
11 MetaData = getMetaDataStorage(addr):
12 return (MetaData.allocBaseAddr, MetaData.pTHTable)
13

14 if isObjectInGlobal(addr):
15 # addr points to global objects.
16 allocBaseAddr, pTHTable = \
17 global_rbtree.rangedSearch(addr):
18 return (allocBaseAddr, pTHTable)
19

20 # addr points to unknown area.
21 return ERROR
22

23 # Return True if there exists a good-casting.
24 # False if there is no good-castings.
25 def isGoodCast(addr, allocBaseAddr, THTable, TargetTypeHash):
26 # Handle compositions recursively.
27 for i in range(THTable.num_composites):
28 comp = THTable.comps[i]
29 if addr >= allocBaseAddr + comp.offset
30 and addr < allocBaseAddr + comp.offset + comp.size:
31 if isGoodCast(addr, allocBaseAddr + comp.offset,
32 comp.thtable, TargetTypeHash):
33 return True
34

35 # Check bases.
36 for i in range(THTable.num_bases):
37 base = THTable.bases[i]
38 if addr == allocBaseAddr + base.offset
39 and base.hashValue == TargetTypeHash:
40 return True
41

42 # Check phantom.
43 TargetTHTable = getTHTableByHash(TargetTypeHash)
44 for i in range(TargetTHTable.num_bases):
45 base = TargetTHTable.bases[i]
46 if addr == allocBaseAddr + base.offset
47 and base.hashValue == THTable.type_hash
48 and base.isPhantom:
49 return True
50

51 return False
52

53 def verify_cast(beforeAddr, afterAddr, TargetTypeHash):
54 (allocBaseAddr, pTHTable) = getTHTableByAddr(beforeAddr)
55 if pTHTable == ERROR:
56 return
57

58 if isGoodCast(afterAddr, allocBaseAddr, \
59 THTable, TargetTypeHash):
60 # This is a good casting.
61 return
62

63 # Reaching here means a bad-casting attempt is detected.
64 # Below may report the bug, halt the program, or nullify
65 # the pointer according to the user’s configuration.
66 HandleBadCastingAttempt()

Appendix 1: Algorithm for verifying type conversions based
on the tracked type information.

1 # global_rbtree is initialized per process.
2 def trace_global(pTHTable, baseAddr, numArrayElements):
3 allocSize = pTHTable.type_size * numArrayElements
4 global_rbtree.insert((baseAddr, allocSize), pTHTable)
5 return
6

7 # stack_rbtree is initialized per thread.
8 def trace_stack_begin(pTHTable, baseAddr, numArrayElements):
9 stack_rbtree = getThreadLocalStackRbtree()

10 allocSize = pTHTable.type_size * numArrayElements
11 stack_rbtree.insert((baseAddr, allocSize), pTHTable)
12 return
13

14 def trace_stack_end(baseAddr):
15 stack_rbtree = getThreadLocalStackRbtree()
16 stack_rbtree.remove(baseAddr)
17 return
18

19 # Meta-data storage for dynamic objects are reserved
20 # for each object allocation.
21 def trace_heap(pTHTable, baseAddr, numArrayElements):
22 MetaData = getMetaDataStorage(baseAddr)
23 MetaData.baseAddr = baseAddr
24 MetaData.allocSize = pTHTable.type_size * numArrayElements
25 MetaData.pTHTable = pTHTable
26 return

Appendix 2: Algorithm for tracking type information on objects
in runtime.

16



USENIX Association  24th USENIX Security Symposium 97

All Your Biases Belong To Us:
Breaking RC4 in WPA-TKIP and TLS

Mathy Vanhoef
KU Leuven

Mathy.Vanhoef@cs.kuleuven.be

Frank Piessens
KU Leuven

Frank.Piessens@cs.kuleuven.be

Abstract
We present new biases in RC4, break the Wi-Fi Protected
Access Temporal Key Integrity Protocol (WPA-TKIP),
and design a practical plaintext recovery attack against
the Transport Layer Security (TLS) protocol. To empir-
ically find new biases in the RC4 keystream we use sta-
tistical hypothesis tests. This reveals many new biases in
the initial keystream bytes, as well as several new long-
term biases. Our fixed-plaintext recovery algorithms are
capable of using multiple types of biases, and return a
list of plaintext candidates in decreasing likelihood.

To break WPA-TKIP we introduce a method to gen-
erate a large number of identical packets. This packet is
decrypted by generating its plaintext candidate list, and
using redundant packet structure to prune bad candidates.
From the decrypted packet we derive the TKIP MIC key,
which can be used to inject and decrypt packets. In prac-
tice the attack can be executed within an hour. We also
attack TLS as used by HTTPS, where we show how to
decrypt a secure cookie with a success rate of 94% using
9 ·227 ciphertexts. This is done by injecting known data
around the cookie, abusing this using Mantin’s ABSAB
bias, and brute-forcing the cookie by traversing the plain-
text candidates. Using our traffic generation technique,
we are able to execute the attack in merely 75 hours.

1 Introduction

RC4 is (still) one of the most widely used stream ciphers.
Arguably its most well known usage is in SSL and WEP,
and in their successors TLS [8] and WPA-TKIP [19]. In
particular it was heavily used after attacks against CBC-
mode encryption schemes in TLS were published, such
as BEAST [9], Lucky 13 [1], and the padding oracle at-
tack [7]. As a mitigation RC4 was recommended. Hence,
at one point around 50% of all TLS connections were us-
ing RC4 [2], with the current estimate around 30% [18].
This motivated the search for new attacks, relevant ex-
amples being [2, 20, 31, 15, 30]. Of special interest is

the attack proposed by AlFardan et al., where roughly
13 · 230 ciphertexts are required to decrypt a cookie sent
over HTTPS [2]. This corresponds to about 2000 hours
of data in their setup, hence the attack is considered close
to being practical. Our goal is to see how far these attacks
can be pushed by exploring three areas. First, we search
for new biases in the keystream. Second, we improve
fixed-plaintext recovery algorithms. Third, we demon-
strate techniques to perform our attacks in practice.

First we empirically search for biases in the keystream.
This is done by generating a large amount of keystream,
and storing statistics about them in several datasets. The
resulting datasets are then analysed using statistical hy-
pothesis tests. Our null hypothesis is that a keystream
byte is uniformly distributed, or that two bytes are in-
dependent. Rejecting the null hypothesis is equivalent
to detecting a bias. Compared to manually inspecting
graphs, this allows for a more large-scale analysis. With
this approach we found many new biases in the initial
keystream bytes, as well as several new long-term biases.

We break WPA-TKIP by decrypting a complete packet
using RC4 biases and deriving the TKIP MIC key. This
key can be used to inject and decrypt packets [48]. In par-
ticular we modify the plaintext recovery attack of Pater-
son et al. [31, 30] to return a list of candidates in decreas-
ing likelihood. Bad candidates are detected and pruned
based on the (decrypted) CRC of the packet. This in-
creases the success rate of simultaneously decrypting all
unknown bytes. We achieve practicality using a novel
method to rapidly inject identical packets into a network.
In practice the attack can be executed within an hour.

We also attack RC4 as used in TLS and HTTPS, where
we decrypt a secure cookie in realistic conditions. This is
done by combining the ABSAB and Fluhrer-McGrew bi-
ases using variants of the of Isobe et al. and AlFardan et
al. attack [20, 2]. Our technique can easily be extended to
include other biases as well. To abuse Mantin’s ABSAB
bias we inject known plaintext around the cookie, and ex-
ploit this to calculate Bayesian plaintext likelihoods over

1



98 24th USENIX Security Symposium USENIX Association

the unknown cookie. We then generate a list of (cookie)
candidates in decreasing likelihood, and use this to brute-
force the cookie in negligible time. The algorithm to gen-
erate candidates differs from the WPA-TKIP one due to
the reliance on double-byte instead of single-byte likeli-
hoods. All combined, we need 9 · 227 encryptions of a
cookie to decrypt it with a success rate of 94%. Finally
we show how to make a victim generate this amount
within only 75 hours, and execute the attack in practice.

To summarize, our main contributions are:

• We use statistical tests to empirically detect biases
in the keystream, revealing large sets of new biases.

• We design plaintext recovery algorithms capable of
using multiple types of biases, which return a list of
plaintext candidates in decreasing likelihood.

• We demonstrate practical exploitation techniques to
break RC4 in both WPA-TKIP and TLS.

The remainder of this paper is organized as follows.
Section 2 gives a background on RC4, TKIP, and TLS.
In Sect. 3 we introduce hypothesis tests and report new
biases. Plaintext recovery techniques are given in Sect. 4.
Practical attacks on TKIP and TLS are presented in
Sect. 5 and Sect. 6, respectively. Finally, we summarize
related work in Sect. 7 and conclude in Sect. 8.

2 Background

We introduce RC4 and its usage in TLS and WPA-TKIP.

2.1 The RC4 Algorithm
The RC4 algorithm is intriguingly short and known to
be very fast in software. It consists of a Key Scheduling
Algorithm (KSA) and a Pseudo Random Generation Al-
gorithm (PRGA), which are both shown in Fig. 1. The
state consists of a permutation S of the set {0, . . . ,255},
a public counter i, and a private index j. The KSA takes
as input a variable-length key and initializes S . At each
round r = 1,2, . . . of the PRGA, the yield statement out-
puts a keystream byte Zr. All additions are performed
modulo 256. A plaintext byte Pr is encrypted to cipher-
text byte Cr using Cr = Pr ⊕Zr.

2.1.1 Short-Term Biases

Several biases have been found in the initial RC4 key-
stream bytes. We call these short-term biases. The most
significant one was found by Mantin and Shamir. They
showed that the second keystream byte is twice as likely
to be zero compared to uniform [25]. Or more formally
that Pr[Z2 = 0]≈ 2 ·2−8, where the probability is over the

Listing (1) RC4 Key Scheduling (KSA).

1 j, S = 0, range(256)

2 for i in range(256):

3 j += S[i] + key[i % len(key)]

4 swap(S[i], S[j])

5 return S

Listing (2) RC4 Keystream Generation (PRGA).

1 S, i, j = KSA(key), 0, 0

2 while True:

3 i += 1

4 j += S[i]

5 swap(S[i], S[j])

6 yield S[S[i] + S[j]]

Figure 1: Implementation of RC4 in Python-like pseudo-
code. All additions are performed modulo 256.

random choice of the key. Because zero occurs more of-
ten than expected, we call this a positive bias. Similarly,
a value occurring less often than expected is called a neg-
ative bias. This result was extended by Maitra et al. [23]
and further refined by Sen Gupta et al. [38] to show that
there is a bias towards zero for most initial keystream
bytes. Sen Gupta et al. also found key-length dependent
biases: if � is the key length, keystream byte Z� has a pos-
itive bias towards 256− � [38]. AlFardan et al. showed
that all initial 256 keystream bytes are biased by empiri-
cally estimating their probabilities when 16-byte keys are
used [2]. While doing this they found additional strong
biases, an example being the bias towards value r for all
positions 1 ≤ r ≤ 256. This bias was also independently
discovered by Isobe et al. [20].

The bias Pr[Z1 = Z2] = 2−8(1 − 2−8) was found by
Paul and Preneel [33]. Isobe et al. refined this result
for the value zero to Pr[Z1 = Z2 = 0] ≈ 3 · 2−16 [20].
In [20] the authors searched for biases of similar strength
between initial bytes, but did not find additional ones.
However, we did manage to find new ones (see Sect. 3.3).

2.1.2 Long-Term Biases

In contrast to short-term biases, which occur only in
the initial keystream bytes, there are also biases that
keep occurring throughout the whole keystream. We call
these long-term biases. For example, Fluhrer and Mc-
Grew (FM) found that the probability of certain digraphs,
i.e., consecutive keystream bytes (Zr,Zr+1), deviate from
uniform throughout the whole keystream [13]. These bi-
ases depend on the public counter i of the PRGA, and are
listed in Table 1 (ignoring the condition on r for now). In
their analysis, Fluhrer and McGrew assumed that the in-
ternal state of the RC4 algorithm was uniformly random.
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Digraph Condition Probability
(0,0) i = 1 2−16(1+2−7)
(0,0) i �= 1,255 2−16(1+2−8)
(0,1) i �= 0,1 2−16(1+2−8)
(0,i+1) i �= 0,255 2−16(1−2−8)

(i+1,255) i �= 254∧ r �= 1 2−16(1+2−8)
(129,129) i = 2,r �= 2 2−16(1+2−8)
(255,i+1) i �= 1,254 2−16(1+2−8)
(255,i+2) i ∈ [1,252]∧ r �= 2 2−16(1+2−8)
(255,0) i = 254 2−16(1+2−8)
(255,1) i = 255 2−16(1+2−8)
(255,2) i = 0,1 2−16(1+2−8)
(255,255) i �= 254∧ r �= 5 2−16(1−2−8)

Table 1: Generalized Fluhrer-McGrew (FM) biases.
Here i is the public counter in the PRGA and r the posi-
tion of the first byte of the digraph. Probabilities for long-
term biases are shown (for short-term biases see Fig. 4).

This assumption is only true after a few rounds of the
PRGA [13, 26, 38]. Consequently these biases were gen-
erally not expected to be present in the initial keystream
bytes. However, in Sect. 3.3.1 we show that most of these
biases do occur in the initial keystream bytes, albeit with
different probabilities than their long-term variants.

Another long-term bias was found by Mantin [24]. He
discovered a bias towards the pattern ABSAB, where A
and B represent byte values, and S a short sequence of
bytes called the gap. With the length of the gap S de-
noted by g, the bias can be written as:

Pr[(Zr,Zr+1) = (Zr+g+2,Zr+g+3)] = 2−16(1+2−8e
−4−8g

256 )
(1)

Hence the bigger the gap, the weaker the bias. Finally,
Sen Gupta et al. found the long-term bias [38]

Pr[(Zw256,Zw256+2) = (0,0)] = 2−16(1+2−8)

where w ≥ 1. We discovered that a bias towards (128,0)
is also present at these positions (see Sect. 3.4).

2.2 TKIP Cryptographic Encapsulation

The design goal of WPA-TKIP was for it to be a tem-
porary replacement of WEP [19, §11.4.2]. While it is
being phased out by the WiFi Alliance, a recent study
shows its usage is still widespread [48]. Out of 6803 net-
works, they found that 71% of protected networks still
allow TKIP, with 19% exclusively supporting TKIP.

Our attack on TKIP relies on two elements of the pro-
tocol: its weak Message Integrity Check (MIC) [44, 48],
and its faulty per-packet key construction [2, 15, 31, 30].
We briefly introduce both aspects, assuming a 512-bit

header TSC SNAP IP TCP MIC ICV

encrypted

payload

Figure 2: Simplified TKIP frame with a TCP payload.

Pairwise Transient Key (PTK) has already been nego-
tiated between the Access Point (AP) and client. From
this PTK a 128-bit temporal encryption key (TK) and
two 64-bit Message Integrity Check (MIC) keys are de-
rived. The first MIC key is used for AP-to-client commu-
nication, and the second for the reverse direction. Some
works claim that the PTK, and its derived keys, are re-
newed after a user-defined interval, commonly set to 1
hour [44, 48]. However, we found that generally only
the Groupwise Transient Key (GTK) is periodically re-
newed. Interestingly, our attack can be executed within
an hour, so even networks which renew the PTK every
hour can be attacked.

When the client wants to transmit a payload, it first
calculates a MIC value using the appropriate MIC key
and the Micheal algorithm (see Fig. Figure 2). Unfortu-
nately Micheal is straightforward to invert: given plain-
text data and its MIC value, we can efficiently derive the
MIC key [44]. After appending the MIC value, a CRC
checksum called the Integrity Check Value (ICV) is also
appended. The resulting packet, including MAC header
and example TCP payload, is shown in Figure 2. The
payload, MIC, and ICV are encrypted using RC4 with
a per-packet key. This key is calculated by a mixing
function that takes as input the TK, the TKIP sequence
counter (TSC), and the transmitter MAC address (TA).
We write this as K = KM(TA,TK,TSC). The TSC is
a 6-byte counter that is incremented after transmitting a
packet, and is included unencrypted in the MAC header.
In practice the output of KM can be modelled as uni-
formly random [2, 31]. In an attempt to avoid weak-key
attacks that broke WEP [12], the first three bytes of K are
set to [19, §11.4.2.1.1]:

K0 = TSC1 K1 = (TSC1 | 0x20)& 0x7f K2 = TSC0

Here, TSC0 and TSC1 are the two least significant bytes
of the TSC. Since the TSC is public, so are the first three
bytes of K. Both formally and using simulations, it has
been shown this actually weakens security [2, 15, 31, 30].

2.3 The TLS Record Protocol
We focus on the TLS record protocol when RC4 is se-
lected as the symmetric cipher [8]. In particular we as-
sume the handshake phase is completed, and a 48-byte
TLS master secret has been negotiated.

3
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type version length payload HMAC

header RC4 encrypted

Figure 3: TLS Record structure when using RC4.

To send an encrypted payload, a TLS record of type
application data is created. It contains the protocol ver-
sion, length of the encrypted content, the payload itself,
and finally an HMAC. The resulting layout is shown in
Fig. 3. The HMAC is computed over the header, a se-
quence number incremented for each transmitted record,
and the plaintext payload. Both the payload and HMAC
are encrypted. At the start of a connection, RC4 is ini-
tialized with a key derived from the TLS master secret.
This key can be modelled as being uniformly random [2].
None of the initial keystream bytes are discarded.

In the context of HTTPS, one TLS connection can be
used to handle multiple HTTP requests. This is called a
persistent connection. Slightly simplified, a server indi-
cates support for this by setting the HTTP Connection

header to keep-alive. This implies RC4 is initialized
only once to send all HTTP requests, allowing the usage
of long-term biases in attacks. Finally, cookies can be
marked as being secure, assuring they are transmitted
only over a TLS connection.

3 Empirically Finding New Biases

In this section we explain how to empirically yet soundly
detect biases. While we discovered many biases, we will
not use them in our attacks. This simplifies the descrip-
tion of the attacks. And, while using the new biases may
improve our attacks, using existing ones already sufficed
to significantly improve upon existing attacks. Hence our
focus will mainly be on the most intriguing new biases.

3.1 Soundly Detecting Biases

In order to empirically detect new biases, we rely on hy-
pothesis tests. That is, we generate keystream statistics
over random RC4 keys, and use statistical tests to un-
cover deviations from uniform. This allows for a large-
scale and automated analysis. To detect single-byte bi-
ases, our null hypothesis is that the keystream byte values
are uniformly distributed. To detect biases between two
bytes, one may be tempted to use as null hypothesis that
the pair is uniformly distributed. However, this falls short
if there are already single-byte biases present. In this
case single-byte biases imply that the pair is also biased,
while both bytes may in fact be independent. Hence, to
detect double-byte biases, our null hypothesis is that they
are independent. With this test, we even detected pairs

that are actually more uniform than expected. Rejecting
the null hypothesis is now the same as detecting a bias.

To test whether values are uniformly distributed, we
use a chi-squared goodness-of-fit test. A naive approach
to test whether two bytes are independent, is using a chi-
squared independence test. Although this would work, it
is not ideal when only a few biases (outliers) are present.
Moreover, based on previous work we expect that only
a few values between keystream bytes show a clear de-
pendency on each other [13, 24, 20, 38, 4]. Taking the
Fluhrer-McGrew biases as an example, at any position
at most 8 out of a total 65536 value pairs show a clear
bias [13]. When expecting only a few outliers, the M-test
of Fuchs and Kenett can be asymptotically more power-
ful than the chi-squared test [14]. Hence we used the
M-test to detect dependencies between keystream bytes.
To determine which values are biased between dependent
bytes, we perform proportion tests over all value pairs.

We reject the null hypothesis only if the p-value is
lower than 10−4. Holm’s method is used to control the
family-wise error rate when performing multiple hypoth-
esis tests. This controls the probability of even a single
false positive over all hypothesis tests. We always use
the two-sided variant of an hypothesis test, since a bias
can be either positive or negative.

Simply giving or plotting the probability of two depen-
dent bytes is not ideal. After all, this probability includes
the single-byte biases, while we only want to report the
strength of the dependency between both bytes. To solve
this, we report the absolute relative bias compared to the
expected single-byte based probability. More precisely,
say that by multiplying the two single-byte probabilities
of a pair, we would expect it to occur with probability p.
Given that this pair actually occurs with probability s, we
then plot the value |q| from the formula s = p ·(1+q). In
a sense the relative bias indicates how much information
is gained by not just considering the single-byte biases,
but using the real byte-pair probability.

3.2 Generating Datasets

In order to generate detailed statistics of keystream bytes,
we created a distributed setup. We used roughly 80 stan-
dard desktop computers and three powerful servers as
workers. The generation of the statistics is done in C.
Python was used to manage the generated datasets and
control all workers. On start-up each worker generates
a cryptographically random AES key. Random 128-bit
RC4 keys are derived from this key using AES in counter
mode. Finally, we used R for all statistical analysis [34].

Our main results are based on two datasets, called
first16 and consec512. The first16 dataset esti-
mates Pr[Za = x∧Zb = y] for 1 ≤ a ≤ 16, 1 ≤ b ≤ 256,
and 0 ≤ x,y < 256 using 244 keys. Its generation took
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Figure 4: Absolute relative bias of several Fluhrer-
McGrew digraphs in the initial keystream bytes, com-
pared to their expected single-byte based probability.

roughly 9 CPU years. This allows detecting biases be-
tween the first 16 bytes and the other initial 256 bytes.
The consec512 dataset estimates Pr[Zr = x∧Zr+1 = y]
for 1 ≤ r ≤ 512 and 0 ≤ x,y < 256 using 245 keys, which
took 16 CPU years to generate. It allows a detailed study
of consecutive keystream bytes up to position 512.

We optimized the generation of both datasets. The
first optimization is that one run of a worker generates
at most 230 keystreams. This allows usage of 16-bit inte-
gers for all counters collecting the statistics, even in the
presence of significant biases. Only when combining the
results of workers are larger integers required. This low-
ers memory usage, reducing cache misses. To further re-
duce cache misses we generate several keystreams before
updating the counters. In independent work, Paterson
et al. used similar optimizations [30]. For the first16

dataset we used an additional optimization. Here we first
generate several keystreams, and then update the coun-
ters in a sorted manner based on the value of Za. This
optimization caused the most significant speed-up for the
first16 dataset.

3.3 New Short-Term Biases
By analysing the generated datasets we discovered many
new short-term biases. We classify them into several sets.

3.3.1 Biases in (Non-)Consecutive Bytes

By analysing the consec512 dataset we discovered nu-
merous biases between consecutive keystream bytes.
Our first observation is that the Fluhrer-McGrew biases
are also present in the initial keystream bytes. Excep-
tions occur at positions 1, 2 and 5, and are listed in Ta-

First byte Second byte Probability

Consecutive biases:
Z15 = 240 Z16 = 240 2−15.94786(1−2−4.894)
Z31 = 224 Z32 = 224 2−15.96486(1−2−5.427)
Z47 = 208 Z48 = 208 2−15.97595(1−2−5.963)
Z63 = 192 Z64 = 192 2−15.98363(1−2−6.469)
Z79 = 176 Z80 = 176 2−15.99020(1−2−7.150)
Z95 = 160 Z96 = 160 2−15.99405(1−2−7.740)

Z111 = 144 Z112 = 144 2−15.99668(1−2−8.331)

Non-consecutive biases:
Z3 = 4 Z5 = 4 2−16.00243(1+2−7.912)
Z3 = 131 Z131 = 3 2−15.99543(1+2−8.700)
Z3 = 131 Z131 = 131 2−15.99347(1−2−9.511)
Z4 = 5 Z6 = 255 2−15.99918(1+2−8.208)

Z14 = 0 Z16 = 14 2−15.99349(1+2−9.941)
Z15 = 47 Z17 = 16 2−16.00191(1+2−11.279)
Z15 = 112 Z32 = 224 2−15.96637(1−2−10.904)
Z15 = 159 Z32 = 224 2−15.96574(1+2−9.493)
Z16 = 240 Z31 = 63 2−15.95021(1+2−8.996)
Z16 = 240 Z32 = 16 2−15.94976(1+2−9.261)
Z16 = 240 Z33 = 16 2−15.94960(1+2−10.516)
Z16 = 240 Z40 = 32 2−15.94976(1+2−10.933)
Z16 = 240 Z48 = 16 2−15.94989(1+2−10.832)
Z16 = 240 Z48 = 208 2−15.92619(1−2−10.965)
Z16 = 240 Z64 = 192 2−15.93357(1−2−11.229)

Table 2: Biases between (non-consecutive) bytes.

ble 1 (note the extra conditions on the position r). This
is surprising, as the Fluhrer-McGrew biases were gener-
ally not expected to be present in the initial keystream
bytes [13]. However, these biases are present, albeit with
different probabilities. Figure 4 shows the absolute rela-
tive bias of most Fluhrer-McGrew digraphs, compared
to their expected single-byte based probability (recall
Sect. 3.1). For all digraphs, the sign of the relative bias q
is the same as its long-term variant as listed in Table 1.
We observe that the relative biases converge to their long-
term values, especially after position 257. The vertical
lines around position 1 and 256 are caused by digraphs
which do not hold (or hold more strongly) around these
positions.

A second set of strong biases have the form:

Pr[Zw16−1 = Zw16 = 256−w16] (2)

with 1 ≤ w ≤ 7. In Table 2 we list their probabilities.
Since 16 equals our key length, these are likely key-
length dependent biases.

Another set of biases have the form Pr[Zr = Zr+1 = x].
Depending on the value x, these biases are either nega-
tive or positive. Hence summing over all x and calcu-
lating Pr[Zr = Zr+1] would lose some statistical informa-
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Figure 5: Biases induced by the first two bytes. The num-
ber of the biases correspond to those in Sect. 3.3.2.

tion. In principle, these biases also include the Fluhrer-
McGrew pairs (0,0) and (255,255). However, as the
bias for both these pairs is much higher than for other
values, we don’t include them here. Our new bias, in the
form of Pr[Zr = Zr+1], was detected up to position 512.

We also detected biases between non-consecutive
bytes that do not fall in any obvious categories. An
overview of these is given in Table 2. We remark that the
biases induced by Z16 = 240 generally have a position,
or value, that is a multiple of 16. This is an indication
that these are likely key-length dependent biases.

3.3.2 Influence of Z1 and Z2

Arguably our most intriguing finding is the amount of
information the first two keystream bytes leak. In partic-
ular, Z1 and Z2 influence all initial 256 keystream bytes.
We detected the following six sets of biases:

1) Z1 = 257− i∧Zi = 0 4) Z1 = i−1∧Zi = 1
2) Z1 = 257− i∧Zi = i 5) Z2 = 0∧Zi = 0
3) Z1 = 257− i∧Zi = 257− i 6) Z2 = 0∧Zi = i

Their absolute relative bias, compared to the single-byte
biases, is shown in Fig. 5. The relative bias of pairs 5
and 6, i.e., those involving Z2, are generally negative.
Pairs involving Z1 are generally positive, except pair 3,
which always has a negative relative bias. We also de-
tected dependencies between Z1 and Z2 other than the
Pr[Z1 = Z2] bias of Paul and Preneel [33]. That is, the
following pairs are strongly biased:

A) Z1 = 0∧Z2 = x C) Z1 = x∧Z2 = 0
B) Z1 = x∧Z2 = 258− x D) Z1 = x∧Z2 = 1

Bias A and C are negative for all x �= 0, and both ap-
pear to be mainly caused by the strong positive bias
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Figure 6: Single-byte biases beyond position 256.

Pr[Z1 = Z2 = 0] found by Isobe et al. Bias B and D are
positive. We also discovered the following three biases:

Pr[Z1 = Z3] = 2−8(1−2−9.617) (3)

Pr[Z1 = Z4] = 2−8(1+2−8.590) (4)

Pr[Z2 = Z4] = 2−8(1−2−9.622) (5)

Note that all either involve an equality with Z1 or Z2.

3.3.3 Single-Byte Biases

We analysed single-byte biases by aggregating the
consec512 dataset, and by generating additional statis-
tics specifically from single-byte probabilities. The ag-
gregation corresponds to calculating

Pr[Zr = k] =
255

∑
y=0

Pr[Zr = k∧Zr+1 = y] (6)

We ended up with 247 keys used to estimate single-byte
probabilities. For all initial 513 bytes we could reject the
hypothesis that they are uniformly distributed. In other
words, all initial 513 bytes are biased. Figure 6 shows
the probability distribution for some positions. Manual
inspection of the distributions revealed a significant bias
towards Z256+k·16 = k ·32 for 1 ≤ k ≤ 7. These are likely
key-length dependent biases. Following [26] we conjec-
ture there are single-byte biases even beyond these posi-
tions, albeit less strong.

3.4 New Long-Term Biases
To search for new long-term biases we created a variant
of the first16 dataset. It estimates

Pr[Z256w+a = x∧Z256w+b = y] (7)

for 0 ≤ a ≤ 16, 0 ≤ b < 256, 0 ≤ x,y < 256, and w ≥ 4.
It is generated using 212 RC4 keys, where each key was
used to generate 240 keystream bytes. This took roughly
8 CPU years. The condition on w means we always
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dropped the initial 1023 keystream bytes. Using this
dataset we can detect biases whose periodicity is a proper
divisor of 256 (e.g., it detected all Fluhrer-McGrew bi-
ases). Our new short-term biases were not present in this
dataset, indicating they indeed only occur in the initial
keystream bytes, at least with the probabilities we listed.
We did find the new long-term bias

Pr[(Zw256,Zw256+2) = (128,0)] = 2−16(1+2−8) (8)

for w ≥ 1. Surprisingly this was not discovered earlier,
since a bias towards (0,0) at these positions was already
known [38]. We also specifically searched for biases of
the form Pr[Zr = Zr′ ] by aggregating our dataset. This
revealed that many bytes are dependent on each other.
That is, we detected several long-term biases of the form

Pr[Z256w+a = Z256w+b]≈ 2−8(2±2−16) (9)

Due to the small relative bias of 2−16, these are difficult
to reliably detect. That is, the pattern where these biases
occur, and when their relative bias is positive or nega-
tive, is not yet clear. We consider it an interesting future
research direction to (precisely and reliably) detect all
keystream bytes which are dependent in this manner.

4 Plaintext Recovery

We will design plaintext recovery techniques for usage in
two areas: decrypting TKIP packets and HTTPS cookies.
In other scenarios, variants of our methods can be used.

4.1 Calculating Likelihood Estimates
Our goal is to convert a sequence of ciphertexts C into
predictions about the plaintext. This is done by exploit-
ing biases in the keystream distributions pk = Pr[Zr = k].
These can be obtained by following the steps in Sect. 3.2.
All biases in pk are used to calculate the likelihood that
a plaintext byte equals a certain value µ . To accom-
plish this, we rely on the likelihood calculations of Al-
Fardan et al. [2]. Their idea is to calculate, for each
plaintext value µ , the (induced) keystream distributions
required to witness the captured ciphertexts. The closer
this matches the real keystream distributions pk, the more
likely we have the correct plaintext byte. Assuming a
fixed position r for simplicity, the induced keystream dis-
tributions are defined by the vector Nµ = (Nµ

0 , . . . ,N
µ
255).

Each Nµ
k represents the number of times the keystream

byte was equal to k, assuming the plaintext byte was µ:

Nµ
k = |{C ∈ C |C = k⊕µ}| (10)

Note that the vectors Nµ and Nµ ′
are permutations of

each other. Based on the real keystream probabilities pk

we calculate the likelihood that this induced distribution
would occur in practice. This is modelled using a multi-
nomial distribution with the number of trails equal to |C|,
and the categories being the 256 possible keystream byte
values. Since we want the probability of this sequence of
keystream bytes we get [30]:

Pr[C | P = µ] = ∏
k∈{0,...,255}

(pk)
Nµ

k (11)

Using Bayes’ theorem we can convert this into the like-
lihood λµ that the plaintext byte is µ:

λµ = Pr[P = µ | C]∼ Pr[C | P = µ] (12)

For our purposes we can treat this as an equality [2]. The
most likely plaintext byte µ is the one that maximises λµ .
This was extended to a pair of dependent keystream bytes
in the obvious way:

λµ1,µ2 = ∏
k1,k2∈{0,...,255}

(pk1,k2)
N

µ1,µ2
k1,k2 (13)

We found this formula can be optimized if most key-
stream values k1 and k2 are independent and uniform.
More precisely, let us assume that all keystream value
pairs in the set I are independent and uniform:

∀(k1,k2) ∈ I : pk1,k2 = pk1 · pk2 = u (14)

where u represents the probability of an unbiased double-
byte keystream value. Then we rewrite formula 13 to:

λµ1,µ2 = (u)Mµ1,µ2 · ∏
k1,k2∈Ic

(pk1,k2)
N

µ1,µ2
k1,k2 (15)

where

Mµ1,µ2 = ∑
k1,k2∈I

Nµ1,µ2
k1,k2

= |C|− ∑
k1,k2∈Ic

Nµ1,µ2
k1,k2

(16)

and with Ic the set of dependent keystream values. If the
set Ic is small, this results in a lower time-complexity.
For example, when applied to the long-term keystream
setting over Fluhrer-McGrew biases, roughly 219 opera-
tions are required to calculate all likelihood estimates, in-
stead of 232. A similar (though less drastic) optimization
can also be made when single-byte biases are present.

4.2 Likelihoods From Mantin’s Bias
We now show how to compute a double-byte plaintext
likelihood using Mantin’s ABSAB bias. More formally,
we want to compute the likelihood λµ1,µ2 that the plain-
text bytes at fixed positions r and r + 1 are µ1 and µ2,
respectively. To accomplish this we abuse surrounding
known plaintext. Our main idea is to first calculate the

7
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likelihood of the differential between the known and un-
known plaintext. We define the differential Ẑg

r as:

Ẑg
r = (Zr ⊕Zr+2+g,Zr+1 ⊕Zr+3+g) (17)

Similarly we use Ĉg
r and P̂g

r to denote the differential over
ciphertext and plaintext bytes, respectively. The ABSAB
bias can then be written as:

Pr[Ẑg
r = (0,0)] = 2−16(1+2−8e

−4−8g
256 ) = α(g) (18)

When XORing both sides of Ẑg
r = (0,0) with P̂g

r we get

Pr[Ĉg
r = P̂g

r ] = α(g) (19)

Hence Mantin’s bias implies that the ciphertext differen-
tial is biased towards the plaintext differential. We use
this to calculate the likelihood λµ̂ of a differential µ̂ . For
ease of notation we assume a fixed position r and a fixed
ABSAB gap of g. Let Ĉ be the sequence of captured ci-
phertext differentials, and µ ′

1 and µ ′
2 the known plaintext

bytes at positions r + 2+ g and r + 3+ g, respectively.
Similar to our previous likelihood estimates, we calcu-
late the probability of witnessing the ciphertext differen-
tials Ĉ assuming the plaintext differential is µ̂:

Pr[Ĉ | P̂ = µ̂] = ∏
k̂∈{0,...,255}2

Pr[Ẑ = k̂]N
µ̂
k̂ (20)

where
N µ̂

k̂
=
∣∣∣
{

Ĉ ∈ Ĉ | Ĉ = k̂⊕ µ̂
}∣∣∣ (21)

Using this notation we see that this is indeed identical to
an ordinary likelihood estimation. Using Bayes’ theorem
we get λµ̂ = Pr[Ĉ | P̂ = µ̂]. Since only one differential
pair is biased, we can apply and simplify formula 15:

λµ̂ = (1−α(g))|C|−|û| ·α(g)|µ̂| (22)

where we slightly abuse notation by defining |µ̂| as

|µ̂|=
∣∣∣
{

Ĉ ∈ Ĉ | Ĉ = µ̂
}∣∣∣ (23)

Finally we apply our knowledge of the known plaintext
bytes to get our desired likelihood estimate:

λµ1,µ2 = λµ̂⊕(µ ′
1,µ

′
2)

(24)

To estimate at which gap size the ABSAB bias is still
detectable, we generated 248 blocks of 512 keystream
bytes. Based on this we empirically confirmed Mantin’s
ABSAB bias up to gap sizes of at least 135 bytes. The
theoretical estimate in formula 1 slightly underestimates
the true empirical bias. In our attacks we use a maximum
gap size of 128.
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Figure 7: Average success rate of decrypting two bytes
using: (1) one ABSAB bias; (2) Fluhrer-McGrew (FM)
biases; and (3) combination of FM biases with 258
ABSAB biases. Results based on 2048 simulations each.

4.3 Combining Likelihood Estimates
Our goal is to combine multiple types of biases in a likeli-
hood calculation. Unfortunately, if the biases cover over-
lapping positions, it quickly becomes infeasible to per-
form a single likelihood estimation over all bytes. In the
worst case, the calculation cannot be optimized by rely-
ing on independent biases. Hence, a likelihood estimate
over n keystream positions would have a time complex-
ity of O(22·8·n). To overcome this problem, we perform
and combine multiple separate likelihood estimates.

We will combine multiple types of biases by multi-
plying their individual likelihood estimates. For exam-
ple, let λ ′

µ1,µ2
be the likelihood of plaintext bytes µ1

and µ2 based on the Fluhrer-McGrew biases. Similarly,
let λ ′

g,µ1,µ2
be likelihoods derived from ABSAB biases of

gap g. Then their combination is straightforward:

λµ1,µ2 = λ ′
µ1,µ2

·∏
g

λ ′
g,µ1,µ2

(25)

While this method may not be optimal when combining
likelihoods of dependent bytes, it does appear to be a
general and powerful method. An open problem is de-
termining which biases can be combined under a single
likelihood calculation, while keeping computational re-
quirements acceptable. Likelihoods based on other bi-
ases, e.g., Sen Gupta’s and our new long-term biases, can
be added as another factor (though some care is needed
so positions properly overlap).

To verify the effectiveness of this approach, we per-
formed simulations where we attempt to decrypt two
bytes using one double-byte likelihood estimate. First
this is done using only the Fluhrer-McGrew biases, and
using only one ABSAB bias. Then we combine 2 · 129
ABSAB biases and the Fluhrer-McGrew biases, where
we use the method from Sect. 4.2 to derive likelihoods
from ABSAB biases. We assume the unknown bytes are
surrounded at both sides by known plaintext, and use a

8
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maximum ABSAB gap of 128 bytes. Figure 7 shows the
results of this experiment. Notice that a single ABSAB
bias is weaker than using all Fluhrer-McGrew biases at
a specific position. However, combining several ABSAB
biases clearly results in a major improvement. We con-
clude that our approach to combine biases significantly
reduces the required number of ciphertexts.

4.4 List of Plaintext Candidates

In practice it is useful to have a list of plaintext candi-
dates in decreasing likelihood. For example, by travers-
ing this list we could attempt to brute-force keys, pass-
words, cookies, etc. (see Sect. 6). In other situations the
plaintext may have a rigid structure allowing the removal
of candidates (see Sect. 5). We will generate a list of
plaintext candidates in decreasing likelihood, when given
either single-byte or double-byte likelihood estimates.

First we show how to construct a candidate list when
given single-byte plaintext likelihoods. While it is trivial
to generate the two most likely candidates, beyond this
point the computation becomes more tedious. Our solu-
tion is to incrementally compute the N most likely can-
didates based on their length. That is, we first compute
the N most likely candidates of length 1, then of length 2,
and so on. Algorithm 1 gives a high-level implemen-
tation of this idea. Variable Pr[i] denotes the i-th most
likely plaintext of length r, having a likelihood of Er[i].
The two min operations are needed because in the initial
loops we are not yet be able to generate N candidates,
i.e., there only exist 256r plaintexts of length r. Picking
the µ ′ which maximizes pr(µ ′) can be done efficiently
using a priority queue. In practice, only the latest two
versions of lists E and P need to be stored. To better
maintain numeric stability, and to make the computation
more efficient, we perform calculations using the loga-
rithm of the likelihoods. We implemented Algorithm 1
and report on its performance in Sect. 5, where we use it
to attack a wireless network protected by WPA-TKIP.

To generate a list of candidates from double-byte like-
lihoods, we first show how to model the likelihoods as a
hidden Markov model (HMM). This allows us to present
a more intuitive version of our algorithm, and refer to
the extensive research in this area if more efficient im-
plementations are needed. The algorithm we present can
be seen as a combination of the classical Viterbi algo-
rithm, and Algorithm 1. Even though it is not the most
optimal one, it still proved sufficient to significantly im-
prove plaintext recovery (see Sect. 6). For an introduc-
tion to HMMs we refer the reader to [35]. Essentially
an HMM models a system where the internal states are
not observable, and after each state transition, output is
(probabilistically) produced dependent on its new state.

We model the plaintext likelihood estimates as a first-

Algorithm 1: Generate plaintext candidates in de-
creasing likelihood using single-byte estimates.

Input: L : Length of the unknown plaintext
λ1≤r≤L, 0≤µ≤255: single-byte likelihoods
N: Number of candidates to generate

Returns: List of candidates in decreasing likelihood

P0[1]← ε
E0[1]← 0

for r = 1 to L do
for µ = 0 to 255 do

pos(µ)← 1
pr(µ)← Er−1[1]+ log(λr,µ)

for i = 1 to min(N,256r) do
µ ← µ ′ which maximizes pr(µ ′)
Pr[i]← Pr−1[pos(µ)]‖µ
Er[i]← Er−1[pos(µ)]+ log(λr,µ)

pos(µ)← pos(µ)+1
pr(µ)← Er−1[pos(µ)]+ log(λr,µ)

if pos(µ)> min(N,256r−1) then
pr(µ)←−∞

return PN

order time-inhomogeneous HMM. The state space S of
the HMM is defined by the set of possible plaintext val-
ues {0, . . . ,255}. The byte positions are modelled using
the time-dependent (i.e., inhomogeneous) state transition
probabilities. Intuitively, the “current time” in the HMM
corresponds to the current plaintext position. This means
the transition probabilities for moving from one state to
another, which normally depend on the current time, will
now depend on the position of the byte. More formally:

Pr[St+1 = µ2 | St = µ1]∼ λt,µ1,µ2 (26)

where t represents the time. For our purposes we can
treat this as an equality. In an HMM it is assumed that
its current state is not observable. This corresponds to
the fact that we do not know the value of any plaintext
bytes. In an HMM there is also some form of output
which depends on the current state. In our setting a par-
ticular plaintext value leaks no observable (side-channel)
information. This is modelled by always letting every
state produce the same null output with probability one.

Using the above HMM model, finding the most likely
plaintext reduces to finding the most likely state se-
quence. This is solved using the well-known Viterbi al-
gorithm. Indeed, the algorithm presented by AlFardan et
al. closely resembles the Viterbi algorithm [2]. Similarly,
finding the N most likely plaintexts is the same as find-
ing the N most likely state sequences. Hence any N-best
variant of the Viterbi algorithm (also called list Viterbi

9
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Algorithm 2: Generate plaintext candidates in de-
creasing likelihood using double-byte estimates.

Input: L : Length of the unknown plaintext plus two
m1 and mL: known first and last byte
λ1≤r<L, 0≤µ1,µ2≤255: double-byte likelihoods
N: Number of candidates to generate

Returns: List of candidates in decreasing likelihood

for µ2 = 0 to 255 do
E2[µ2,1]← log(λ1,m1,µ2)
P2[µ2,1]← m1 ‖µ2

for r = 3 to L do
for µ2 = 0 to 255 do

for µ1 = 0 to 255 do
pos(µ1)← 1
pr(µ1)← Er−1[µ1,1]+ log(λr,µ1,µ2)

for i = 1 to min(N,256r−1) do
µ1 ← µ which maximizes pr(µ)
Pr[µ2, i]← Pr−1[µ1, pos(µ1)]‖µ2
Er[µ2, i]← Er−1[µ1, pos(µ1)]+ log(λr,µ1,µ2)

pos(µ1)← pos(µ1)+1
pr(µ1)← Er−1[µ1, pos(µ1)]+ log(λr,µ1,µ2)

if pos(µ1)> min(N,256r−2) then
pr(µ1)←−∞

return PN [mL, :]

algorithm) can be used, examples being [42, 36, 40, 28].
The simplest form of such an algorithm keeps track of
the N best candidates ending in a particular value µ , and
is shown in Algorithm 2. Similar to [2, 30] we assume
the first byte m1 and last byte mL of the plaintext are
known. During the last round of the outer for-loop, the
loop over µ2 has to be executed only for the value mL. In
Sect. 6 we use this algorithm to generate a list of cookies.

Algorithm 2 uses considerably more memory than Al-
gorithm 1. This is because it has to store the N most
likely candidates for each possible ending value µ . We
remind the reader that our goal is not to present the most
optimal algorithm. Instead, by showing how to model the
problem as an HMM, we can rely on related work in this
area for more efficient algorithms [42, 36, 40, 28]. Since
an HMM can be modelled as a graph, all k-shortest path
algorithms are also applicable [10]. Finally, we remark
that even our simple variant sufficed to significantly im-
prove plaintext recovery rates (see Sect. 6).

5 Attacking WPA-TKIP

We use our plaintext recovery techniques to decrypt a full
packet. From this decrypted packet the MIC key can be

derived, allowing an attacker to inject and decrypt pack-
ets. The attack takes only an hour to execute in practice.

5.1 Calculating Plaintext Likelihoods
We rely on the attack of Paterson et al. to compute plain-
text likelihood estimates [31, 30]. They noticed that the
first three bytes of the per-packet RC4 key are public.
As explained in Sect. 2.2, the first three bytes are fully
determined by the TKIP Sequence Counter (TSC). It
was observed that this dependency causes strong TSC-
dependent biases in the keystream [31, 15, 30], which
can be used to improve the plaintext likelihood estimates.
For each TSC value they calculated plaintext likelihoods
based on empirical, per-TSC, keystream distributions.
The resulting 2562 likelihoods are combined by multi-
plying them over all TSC pairs. In a sense this is sim-
ilar to combining multiple types of biases as done in
Sect. 4.3, though here the different types of biases are
known to be independent. We use the single-byte vari-
ant of the attack [30, §4.1] to obtain likelihoods λr,µ for
every unknown byte r.

The downside of this attack is that it requires detailed
per-TSC keystream statistics. Paterson at al. generated
statistics for the first 512 bytes, which took 30 CPU
years [30]. However, in our attack we only need these
statistics for the first few keystream bytes. We used 232

keys per TSC value to estimate the keystream distribu-
tion for the first 128 bytes. Using our distributed setup
the generation of these statistics took 10 CPU years.

With our per-TSC keystream distributions we obtained
similar results to that of Paterson et al. [31, 30]. By run-
ning simulations we confirmed that the odd byte posi-
tions [30], instead of the even ones [31], can be recov-
ered with a higher probability than others. Similarly, the
bytes at positions 49-51 and 63-67 are generally recov-
ered with higher probability as well. Both observations
will be used to optimize the attack in practice.

5.2 Injecting Identical Packets
We show how to fulfil the first requirement of a success-
ful attack: the generation of identical packets. If the
IP of the victim is know, and incoming connections to-
wards it are not blocked, we can simply send identical
packets to the victim. Otherwise we induce the victim
into opening a TCP connection to an attacker-controlled
server. This connection is then used to transmit identical
packets to the victim. A straightforward way to accom-
plish this is by social engineering the victim into visit-
ing a website hosted by the attacker. The browser will
open a TCP connection with the server in order to load
the website. However, we can also employ more sophis-
ticated methods that have a broader target range. One

10
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such method is abusing the inclusion of (insecure) third-
party resources on popular websites [27]. For example,
an attacker can register a mistyped domain, accidentally
used in a resource address (e.g., an image URL) on a
popular website. Whenever the victim visits this website
and loads the resource, a TCP connection is made to the
server of the attacker. In [27] these types of vulnerabil-
ities were found to be present on several popular web-
sites. Additionally, any type of web vulnerability that
can be abused to make a victim execute JavaScript can be
utilised. In this sense, our requirements are more relaxed
than those of the recent attacks on SSL and TLS, which
require the ability to run JavaScript code in the victim’s
browser [9, 1, 2]. Another method is to hijack an exist-
ing TCP connection of the victim, which under certain
conditions is possible without a man-in-the-middle posi-
tion [17]. We conclude that, while there is no universal
method to accomplish this, we can assume control over
a TCP connection with the victim. Using this connection
we inject identical packets by repeatedly retransmitting
identical TCP packets, even if the victim is behind a fire-
wall. Since retransmissions are valid TCP behaviour, this
will work even if the victim is behind a firewall.

We now determine the optimal structure of the injected
packet. A naive approach would be to use the shortest
possible packet, meaning no TCP payload is included.
Since the total size of the LLC/SNAP, IP, and TCP header
is 48 bytes, the MIC and ICV would be located at posi-
tion 49 up to and including 60 (see Fig. 2). At these
locations 7 bytes are strongly biased. In contrast, if we
use a TCP payload of 7 bytes, the MIC and ICV are lo-
cated at position 56 up to and including 60. In this range
8 bytes are strongly biased, resulting in better plaintext
likelihood estimates. Through simulations we confirmed
that using a 7 byte payload increases the probability of
successfully decrypting the MIC and ICV. In practice,
adding 7 bytes of payload also makes the length of our
injected packet unique. As a result we can easily identify
and capture such packets. Given both these advantages,
we use a TCP data packet containing 7 bytes of payload.

5.3 Decrypting a Complete Packet

Our goal is to decrypt the injected TCP packet, including
its MIC and ICV fields. Note that all these TCP pack-
ets will be encrypted with a different RC4 key. For now
we assume all fields in the IP and TCP packet are known,
and will later show why we can safely make this assump-
tion. Hence, only the 8-byte MIC and 4-byte ICV of
the packet remain unknown. We use the per-TSC key-
stream statistics to compute single-byte plaintext likeli-
hoods for all 12 bytes. However, this alone would give
a very low success probability of simultaneously (cor-
rectly) decrypting all bytes. We solve this by realising
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that the TKIP ICV is a simple CRC checksum which we
can easily verify ourselves. Hence we can detect bad
candidates by inspecting their CRC checksum. We now
generate a plaintext candidate list, and traverse it until we
find a packet having a correct CRC. This drastically im-
proves the probability of simultaneously decrypting all
bytes. From the decrypted packet we can derive the TKIP
MIC key [44], which can then be used to inject and de-
crypt arbitrary packets [48].

Figure 8 shows the success rate of finding a packet
with a good ICV and deriving the correct MIC key. For
comparison, it also includes the success rates had we
only used the two most likely candidates. Figure 9 shows
the median position of the first candidate with a correct
ICV. We plot the median instead of average to lower in-
fluence of outliers, i.e., at times the correct candidate was
unexpectedly far (or early) in the candidate list.

The question that remains how to determine the con-
tents of the unknown fields in the IP and TCP packet.
More precisely, the unknown fields are the internal IP
and port of the client, and the IP time-to-live (TTL) field.
One observation makes this clear: both the IP and TCP
header contain checksums. Therefore, we can apply ex-
actly the same technique (i.e., candidate generation and
pruning) to derive the values of these fields with high
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success rates. This can be done independently of each
other, and independently of decrypting the MIC and ICV.

Another method to obtain the internal IP is to rely on
HTML5 features. If the initial TCP connection is created
by a browser, we can first send JavaScript code to obtain
the internal IP of the victim using WebRTC [37]. We also
noticed that our NAT gateway generally did not modify
the source port used by the victim. Consequently we can
simply read this value at the server. The TTL field can
also be determined without relying on the IP checksum.
Using a traceroute command we count the number of
hops between the server and the client, allowing us to
derive the TTL value at the victim.

5.4 Empirical Evaluation

To test the plaintext recovery phase of our attack we cre-
ated a tool that parses a raw pcap file containing the cap-
tured Wi-Fi packets. It searches for the injected packets,
extracts the ciphertext statistics, calculates plaintext like-
lihoods, and searches for a candidate with a correct ICV.
From this candidate, i.e., decrypted injected packet, we
derive the MIC key.

For the ciphertext generation phase we used an
OpenVZ VPS as malicious server. The incoming TCP
connection from the victim is handled using a custom
tool written in Scapy. It relies on a patched version of
Tcpreplay to rapidly inject the identical TCP packets.
The victim machine is a Latitude E6500 and is connected
to an Asus RT-N10 router running Tomato 1.28. The
victim opens a TCP connection to the malicious server
by visiting a website hosted on it. For the attacker we
used a Compaq 8510p with an AWUS036nha to capture
the wireless traffic. Under this setup we were able to
generate roughly 2500 packets per second. This number
was reached even when the victim was actively brows-
ing YouTube videos. Thanks to the 7-byte payload, we
uniquely detected the injected packet in all experiments
without any false positives.

We ran several test where we generated and captured
traffic for (slightly more) than one hour. This amounted
to, on average, capturing 9.5 ·220 different encryptions of
the packet being injected. Retransmissions were filtered
based on the TSC of the packet. In nearly all cases we
successfully decrypted the packet and derived the MIC
key. Recall from Sect. 2.2 that this MIC key is valid as
long as the victim does not renew its PTK, and that it can
be used to inject and decrypt packets from the AP to the
victim. For one capture our tool found a packet with a
correct ICV, but this candidate did not correspond to the
actual plaintext. While our current evaluation is limited
in the number of captures performed, it shows the attack
is practically feasible, with overall success probabilities
appearing to agree with the simulated results of Fig. 8.

Listing 3: Manipulated HTTP request, with known plain-
text surrounding the cookie at both sides.

1 GET / HTTP/1.1

2 Host: site.com

3 User-Agent: Mozilla/5.0 (X11; Linux i686; rv:32.0)

Gecko/20100101 Firefox/32.0

4 Accept: text/html,application/xhtml+xml,application/

xml;q=0.9,*/*;q=0.8

5 Accept-Language: en-US,en;q=0.5

6 Accept-Encoding: gzip, deflate

7 Cookie: auth=XXXXXXXXXXXXXXXX; injected1=known1;

injected2=knownplaintext2; ...

6 Decrypting HTTPS Cookies

We inject known data around a cookie, enabling use of
the ABSAB biases. We then show that a HTTPS cookie
can be brute-forced using only 75 hours of ciphertext.

6.1 Injecting Known Plaintext
We want to be able to predict the position of the targeted
cookie in the encrypted HTTP requests, and surround it
with known plaintext. To fix ideas, we do this for the se-
cure auth cookie sent to https://site.com. Similar
to previous attacks on SSL and TLS, we assume the at-
tacker is able to execute JavaScript code in the victim’s
browser [9, 1, 2]. In our case, this means an active man-
in-the-middle (MiTM) position is used, where plaintext
HTTP channels can be manipulated. Our first realisa-
tion is that an attacker can predict the length and con-
tent of HTTP headers preceding the Cookie field. By
monitoring plaintext HTTP requests, these headers can
be sniffed. If the targeted auth cookie is the first value
in the Cookie header, this implies we know its position
in the HTTP request. Hence, our goal is to have a layout
as shown in Listing 3. Here the targeted cookie is the first
value in the Cookie header, preceded by known headers,
and followed by attacker injected cookies.

To obtain the layout in Listing 3 we use our MiTM po-
sition to redirect the victim to http://site.com, i.e.,
to the target website over an insecure HTTP channel.
If the target website uses HTTP Strict Transport Secu-
rity (HSTS), but does not use the includeSubDomains

attribute, this is still possible by redirecting the victim to
a (fake) subdomain [6]. Since few websites use HSTS,
and even fewer use it properly [47], this redirection will
likely succeed. Against old browsers HSTS can even be
bypassed completely [6, 5, 41]. Since secure cookies
guarantee only confidentiality but not integrity, the in-
secure HTTP channel can be used to overwrite, remove,
or inject secure cookies [3, 4.1.2.5]. This allows us to
remove all cookies except the auth cookie, pushing it to
the front of the list. After this we can inject cookies that

12



USENIX Association  24th USENIX Security Symposium 109

will be included after the auth cookie. An example of
a HTTP(S) request manipulated in this manner is shown
in Listing 3. Here the secure auth cookie is surrounded
by known plaintext at both sides. This allows us to use
Mantin’s ABSAB bias when calculating plaintext likeli-
hoods.

6.2 Brute-Forcing The Cookie
In contrast to passwords, many websites do not protect
against brute-forcing cookies. One reason for this is that
the password of an average user has a much lower en-
tropy than a random cookie. Hence it makes sense to
brute-force a password, but not a cookie: the chance of
successfully brute-forcing a (properly generated) cookie
is close to zero. However, if RC4 can be used to con-
nect to the web server, our candidate generation algo-
rithm voids this assumption. We can traverse the plain-
text candidate list in an attempt to brute-force the cookie.

Since we are targeting a cookie, we can exclude cer-
tain plaintext values. As RFC 6265 states, a cookie value
can consists of at most 90 unique characters [3, §4.1.1].
A similar though less general observation was already
made by AlFardan et al. [2]. Our observation allows us
to give a tighter bound on the required number of cipher-
texts to decrypt a cookie, even in the general case. In
practice, executing the attack with a reduced character
set is done by modifying Algorithm 2 so the for-loops
over µ1 and µ2 only loop over allowed characters.

Figure 10 shows the success rate of brute-forcing a 16-
character cookie using at most 223 attempts. For compar-
ison, we also include the probability of decrypting the
cookie if only the most likely plaintext was used. This
also allows for an easier comparison with the work for
AlFardan et al. [2]. Note that they only use the Fluhrer-
McGrew biases, whereas we combine serveral ABSAB
biases together with the Fluhrer-McGrew biases. We
conclude that our brute-force approach, as well as the
inclusion of the ABSAB biases, significantly improves
success rates. Even when using only 223 brute-force at-
tempts, success rates of more than 94% are obtained once
9 ·227 encryptions of the cookie have been captured. We
conjecture that generating more candidates will further
increase success rates.

6.3 Empirical Evaluation
The main requirement of our attack is being able to col-
lect sufficiently many encryptions of the cookie, i.e., hav-
ing many ciphertexts. We fulfil this requirement by forc-
ing the victim to generate a large number of HTTPS re-
quests. As in previous attacks on TLS [9, 1, 2], we ac-
complish this by assuming the attacker is able to execute
JavaScript in the browser of the victim. For example,
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Figure 10: Success rate of brute-forcing a 16-byte cookie
using roughly 223 candidates, and only the most likely
candidate, dependent on the number of collected cipher-
texts. Results based on 256 simulations each.

when performing a man-in-the-middle attack, we can in-
ject JavaScript into any plaintext HTTP connection. We
then use XMLHttpRequest objects to issue Cross-Origin
Requests to the targeted website. The browser will auto-
matically add the secure cookie to these (encrypted) re-
quests. Due to the same-origin policy we cannot read the
replies, but this poses no problem, we only require that
the cookie is included in the request. The requests are
sent inside HTML5 WebWorkers. Essentially this means
our JavaScript code will run in the background of the
browser, and any open page(s) stay responsive. We use
GET requests, and carefully craft the values of our in-
jected cookies so the targeted auth cookie is always at
a fixed position in the keystream (modulo 256). Recall
that this alignment is required to make optimal use of the
Fluhrer-McGrew biases. An attacker can learn the re-
quired amount of padding by first letting the client make
a request without padding. Since RC4 is a stream cipher,
and no padding is added by the TLS protocol, an attack
can easily observe the length of this request. Based on
this information it is trivial to derive the required amount
of padding.

To test our attack in practice we implemented a tool
in C which monitors network traffic and collects the nec-
essary ciphertext statistics. This requires reassembling
the TCP and TLS streams, and then detecting the 512-
byte (encrypted) HTTP requests. Similar to optimizing
the generation of datasets as in Sect. 3.2, we cache sev-
eral requests before updating the counters. We also cre-
ated a tool to brute-force the cookie based on the gen-
erated candidate list. It uses persistent connections and
HTTP pipelining [11, §6.3.2]. That is, it uses one con-
nection to send multiple requests without waiting for
each response.

In our experiments the victim uses a 3.1 GHz Intel
Core i5-2400 CPU with 8 GB RAM running Windows 7.
Internet Explorer 11 is used as the browser. For the server
a 3.4 GHz Intel Core i7-3770 CPU with 8 GB RAM is
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used. We use nginx as the web server, and configured
RC4-SHA1 with RSA as the only allowable cipher suite.
This assures that RC4 is used in all tests. Both the server
and client use an Intel 82579LM network card, with the
link speed set to 100 Mbps. With an idle browser this
setup resulted in an average of 4450 requests per second.
When the victim was actively browsing YouTube videos
this decreased to roughly 4100. To achieve such num-
bers, we found it’s essential that the browser uses persis-
tent connections to transmit the HTTP requests. Other-
wise a new TCP and TLS handshake must be performed
for every request, whose round-trip times would signif-
icantly slow down traffic generation. In practice this
means the website must allow a keep-alive connec-
tion. While generating requests the browser remained re-
sponsive at all times. Finally, our custom tool was able to
test more than 20000 cookies per second. To execute the
attack with a success rate of 94% we need roughly 9 ·227

ciphertexts. With 4450 requests per seconds, this means
we require 75 hours of data. Compared to the (more than)
2000 hours required by AlFardan et al. [2, §5.3.3] this is
a significant improvement. We remark that, similar to
the attack of AlFardan et al. [2], our attack also tolerates
changes of the encryption keys. Hence, since cookies
can have a long lifetime, the generation of this traffic can
even be spread out over time. With 20000 brute-force at-
tempts per second, all 223 candidates for the cookie can
be tested in less than 7 minutes.

We have executed the attack in practice, and success-
fully decrypted a 16-byte cookie. In our instance, cap-
turing traffic for 52 hours already proved to be sufficient.
At this point we collected 6.2 ·227 ciphertexts. After pro-
cessing the ciphertexts, the cookie was found at position
46229 in the candidate list. This serves as a good exam-
ple that, if the attacker has some luck, less ciphertexts are
needed than our 9 · 227 estimate. These results push the
attack from being on the verge of practicality, to feasible,
though admittedly somewhat time-consuming.

7 Related Work

Due to its popularity, RC4 has undergone wide crypt-
analysis. Particularly well known are the key recovery
attacks that broke WEP [12, 50, 45, 44, 43]. Several
other key-related biases and improvements of the orig-
inal WEP attack have also been studied [21, 39, 32, 22].

We refer to Sect. 2.1 for an overview of various biases
discovered in the keystream [25, 23, 38, 2, 20, 33, 13,
24, 38, 15, 31, 30]. In addition to these, the long-term
bias Pr[Zr = Zr+1 | 2 ·Zr = ir] = 2−8(1+2−15) was dis-
covered by Basu et al. [4]. While this resembles our new
short-term bias Pr[Zr = Zr+1], in their analysis they as-
sume the internal state S is a random permutation, which
is true only after a few rounds of the PRGA. Isobe et

al. searched for dependencies between initial keystream
bytes by empirically estimating Pr[Zr = y∧Zr−a = x] for
0 ≤ x,y ≤ 255, 2 ≤ r ≤ 256, and 1 ≤ a ≤ 8 [20]. They
did not discover any new biases using their approach.
Mironov modelled RC4 as a Markov chain and recom-
mended to skip the initial 12 ·256 keystream bytes [26].
Paterson et al. generated keystream statistics over con-
secutive keystream bytes when using the TKIP key struc-
ture [30]. However, they did not report which (new) bi-
ases were present. Through empirical analysis, we show
that biases between consecutive bytes are present even
when using RC4 with random 128 bit keys.

The first practical attack on WPA-TKIP was found by
Beck and Tews [44] and was later improved by other re-
searchers [46, 16, 48, 49]. Recently several works stud-
ied the per-packet key construction both analytically [15]
and through simulations [2, 31, 30]. For our attack we
replicated part of the results of Paterson et al. [31, 30],
and are the first to demonstrate this type of attack in prac-
tice. In [2] AlFardan et al. ran experiments where the
two most likely plaintext candidates were generated us-
ing single-byte likelihoods [2]. However, they did not
present an algorithm to return arbitrarily many candi-
dates, nor extended this to double-byte likelihoods.

The SSL and TLS protocols have undergone wide
scrutiny [9, 41, 7, 1, 2, 6]. Our work is based on the
attack of AlFardan et al., who estimated that 13 ·230 ci-
phertexts are needed to recover a 16-byte cookie with
high success rates [2]. We reduce this number to 9 · 227

using several techniques, the most prominent being us-
age of likelihoods based on Mantin’s ABSAB bias [24].
Isobe et al. used Mantin’s ABSAB bias, in combination
with previously decrypted bytes, to decrypt bytes after
position 257 [20]. However, they used a counting tech-
nique instead of Bayesian likelihoods. In [29] a guess-
and-determine algorithm combines ABSAB and Fluhrer-
McGrew biases, requiring roughly 234 ciphertexts to de-
crypt an individual byte with high success rates.

8 Conclusion

While previous attacks against RC4 in TLS and WPA-
TKIP were on the verge of practicality, our work pushes
them towards being practical and feasible. After cap-
turing 9 ·227 encryptions of a cookie sent over HTTPS,
we can brute-force it with high success rates in negligi-
ble time. By running JavaScript code in the browser of
the victim, we were able to execute the attack in practice
within merely 52 hours. Additionally, by abusing RC4
biases, we successfully attacked a WPA-TKIP network
within an hour. We consider it surprising this is possi-
ble using only known biases, and expect these types of
attacks to further improve in the future. Based on these
results, we strongly urge people to stop using RC4.
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Abstract
Despite recent high-profile attacks on the RC4 algorithm
in TLS, its usage is still running at about 30% of all
TLS traffic. We provide new attacks against RC4 in TLS
that are focussed on recovering user passwords, still the
pre-eminent means of user authentication on the Inter-
net today. Our new attacks use a generally applicable
Bayesian inference approach to transform a priori infor-
mation about passwords in combination with gathered
ciphertexts into a posteriori likelihoods for passwords.
We report on extensive simulations of the attacks. We
also report on a “proof of concept” implementation of the
attacks for a specific application layer protocol, namely
BasicAuth. Our work validates the truism that attacks
only get better with time: we obtain good success rates in
recovering user passwords with 226 encryptions, whereas
the previous generation of attacks required around 234

encryptions to recover an HTTP session cookie.

1 Introduction

TLS in all current versions allows RC4 to be used as its
bulk encryption mechanism. Attacks on RC4 in TLS
were first presented in 2013 in [2] (see also [13, 16]).
Since then, usage of RC4 in TLS has declined, but it
still accounted for around 30% of all TLS connections
in March 2015.1 Moreover, the majority of websites still
support RC42 and a small proportion of websites only
support RC4.3

1According to data obtained from the International Computer Sci-
ence Institute (ICSI) Certificate Notary project, which collects statis-
tics from live upstream SSL/TLS traffic in a passive manner; see
http://notary.icsi.berkeley.edu.

2According to statistics obtained from SSL Pulse; see https://

www.trustworthyinternet.org/ssl-pulse/.
3Amounting to 0.79% according to a January 2015 sur-

vey of about 400,000 of the Alexa top 1 million sites; see
https://securitypitfalls.wordpress.com/2015/02/01/

january-2015-scan-results/.

We describe attacks recovering TLS-protected pass-
words whose ciphertext requirements are significantly
reduced compared to those of [2]. Instead of the 234 ci-
phertexts that were needed for recovering 16-byte, base64-
encoded secure cookies in [2], our attacks now require
around 226 ciphertexts. We also describe a proof-of-
concept implementation of these attacks against a spe-
cific application-layer protocol making use of passwords,
namely BasicAuth.

1.1 Our Contributions
We obtain our improved attacks by revisiting the statis-
tical methods of [2], refining, extending and applying
them to the specific problem of recovering TLS-protected
passwords. Passwords are a good target for our attacks
because they are still very widely used on the Internet for
providing user authentication in protocols like BasicAuth
and IMAP, with TLS being used to prevent them being
passively eavesdropped. To build effective attacks, we
need to find and exploit systems in which users’ pass-
words are automatically and repeatedly sent under the
protection of TLS, so that sufficiently many ciphertexts
can be gathered for our statistical analyses.

Bayesian analysis We present a formal Bayesian anal-
ysis that combines an a priori plaintext distribution with
keystream distribution statistics to produce a posteriori
plaintext likelihoods. This analysis formalises and ex-
tends the procedure followed in [2] for single-byte attacks.
There, only keystream distribution statistics were used
(specifically, biases in the individual bytes in the early
portion of the RC4 keystream) and plaintexts were as-
sumed to be uniformly distributed, while here we also
exploit (partial) knowledge of the plaintext distribution
to produce a more accurate estimate of the a posteriori
likelihoods. This yields a procedure that is optimal (in
the sense of yielding a maximum a posteriori estimate for
the plaintext) if the plaintext distribution is known exactly.

1
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In the context of password recovery, an estimate for the
a priori plaintext distribution can be empirically formed
by using data from password breaches or by synthetically
constructing password dictionaries. We will demonstrate,
via simulations, that this Bayesian approach improves per-
formance (measured in terms of success rate of plaintext
recovery for a given number of ciphertexts) compared to
the approach in [2].

Our Bayesian analysis concerns vectors of consecu-
tive plaintext bytes, which is appropriate given passwords
as the plaintext target. This, however, means that the
keystream distribution statistics also need to be for vec-
tors of consecutive keystream bytes. Such statistics do not
exist in the prior literature on RC4, except for the Fluher-
McGrew biases [10] (which supply the distributions for
adjacent byte pairs far down the keystream). Fortunately,
in the early bytes of the RC4 keystream, the single-byte
biases are dominant enough that a simple product distri-
bution can be used as a reasonable estimate for the distri-
bution on vectors of keystream bytes. We also show how
to build a more accurate approximation to the relevant
keystream distributions using double-byte distributions.
(Obtaining the double-byte distributions to a suitable de-
gree of accuracy consumed roughly 4800 core-days of
computation; for details see the full version [12].) This
approximation is not only more accurate but also neces-
sary when the target plaintext is located further down the
stream, where the single-byte biases disappear and where
double-byte biases become dominant. Indeed, our double-
byte-based approximation to the keystream distribution
on vectors can be used to smoothly interpolate between
the region where single-byte biases dominate and where
the double-byte biases come into play (which is exhib-
ited as a fairly sharp transition around position 256 in the
keystream).

In the end, what we obtain is a formal algorithm that
estimates the likelihood of each password in a dictio-
nary based on both the a priori password distribution
and the observed ciphertexts. This formal algorithm is
amenable to efficient implementation using either the
single-byte based product distribution for keystreams or
the double-byte-based approximation to the distribution
on keystreams. The dominant terms in the running time
for both of the resulting algorithms is O(nN) where n is
the length of the target password and N is the size of the
dictionary used in the attack.

An advantage of our new algorithms over the previous
work in [2] is that they output a value for the likelihood
of each password candidate, enabling these to be ranked
and then tried in order of descending likelihood.

Note that our Bayesian approach is quite general and
not limited to recovery of passwords, nor to RC4 – it can
be applied whenever the plaintext distribution is approx-
imately known, where the same plaintext is repeatedly

encrypted, and where the stream cipher used for encryp-
tion has known biases in either single bytes or adjacent
pairs of bytes.

Evaluation We evaluate and compare our password re-
covery algorithms through extensive simulations, explor-
ing the relationships between the main parameters of our
attack:

• The length n of the target password.

• The number S of available encryptions of the pass-
word.

• The starting position r of the password in the plain-
text stream.

• The size N of the dictionary used in the attack, and
the availability (or not) of an a priori password dis-
tribution for this dictionary.

• The number of attempts T made (meaning that our
algorithm is considered successful if it ranks the cor-
rect password amongst the top T passwords, i.e. the
T passwords with highest likelihoods as computed
by the algorithm).

• Which of our two algorithms is used (the one com-
puting the keystream statistics using the product dis-
tribution or the one using a double-byte-based ap-
proximation).

• Whether the passwords are Base64 encoded before
being transmitted, or are sent as raw ASCII/Unicode.

Given the many possible parameter settings and the
cost of performing simulations, we focus on comparing
the performance with all but one or two parameters or
variables being fixed in each instance.

Proofs of concept Our final contribution is to apply
our attacks to specific and widely-deployed applications
making use of passwords over TLS: BasicAuth and (in
the full version [12]), IMAP. We introduce BasicAuth and
describe a proof-of-concept implementation of our attacks
against it, giving an indication of the practicality of our
attacks. We do the same for IMAP in the full version [12].

For both applications, we have significant success rates
with only S = 226 ciphertexts, in contrast to the roughly
234 ciphertexts required in [2]. This is because we are
able to force the target passwords into the first 256 bytes
of plaintext, where the large single-byte biases in RC4
keystreams come into play. For example, with S = 226

ciphertexts, we would expect to recover a length 6 Ba-
sicAuth password with 44.5% success rate after T = 5
attempts; the rate rises to 64.4% if T = 100 attempts are
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made. In practice, many sites do not configure any limit
on the number of BasicAuth attempts made by a client;
moreover a study [5] showed that 84% of websites sur-
veyed allowed for up to 100 password guesses (though
these sites were not necessarily using BasicAuth as their
authentication mechanism). As we will show, our result
compares very favourably to the previous attacks and to
random guessing of passwords without any reference to
the ciphertexts.

However, there is a downside too: to make use of the
early, single-byte biases in RC4 keystreams, we have to
repeatedly cause TLS connections to be closed and new
ones to be opened. Because of latency in the TLS Hand-
shake Protocol, this leads to a significant slowdown in
the wall clock running time of the attack; for S = 226, a
latency of 100ms, and exploiting browsers’ propensity to
open multiple parallel connections, we estimate a running
time of around 300 hours for the attack. This is still more
than 6 times faster than the 2000 hours estimated in [2].
Furthermore, the attack’s running time reduces propor-
tionately to the latency of the TLS Handshake Protocol,
so in environments where the client and server are close
– for example in a LAN – the execution time could be a
few tens of hours.

2 Further Background

2.1 The RC4 algorithm
Originally a proprietary stream cipher designed by Ron
Rivest in 1987, RC4 is remarkably fast when implemented
in software and has a very simple description. Details of
the cipher were leaked in 1994 and the cipher has been
subject to public analysis and study ever since.

RC4 allows for variable-length key sizes, anywhere
from 40 to 256 bits, and consists of two algorithms,
namely, a key scheduling algorithm (KSA) and a pseudo-
random generation algorithm (PRGA). The KSA takes
as input an l-byte key and produces the initial internal
state st0 = (i, j,S ) for the PRGA; S is the canonical
representation of a permutation of the numbers from 0
to 255 where the permutation is a function of the l-byte
key, and i and j are indices for S . The KSA is specified
in Algorithm 1 where K represents the l-byte key array
and S the 256-byte state array. Given the internal state
str, the PRGA will generate a keystream byte Zr+1 as
specified in Algorithm 2.

2.2 Single-byte biases in the RC4
Keystream

RC4 has several cryptographic weaknesses, notably the
existence of various biases in the RC4 keystream, see for
example [2, 10, 14, 15, 19]. Large single-byte biases are

Algorithm 1: RC4 key scheduling (KSA)
input :key K of l bytes
output : initial internal state st0
begin

for i = 0 to 255 do
S [i]← i

j ← 0
for i = 0 to 255 do

j ← j+S [i]+K[i mod l]
swap(S [i],S [ j])

i, j ← 0
st0 ← (i, j,S )
return st0

Algorithm 2: RC4 keystream generator (PRGA)
input : internal state str
output :keystream byte Zr+1

updated internal state str+1
begin

parse (i, j,S )← str
i ← i+1
j ← j+S [i]
swap(S [i],S [ j])
Zr+1 ← S [S [i]+S [ j]]
str+1 ← (i, j,S )
return (Zr+1,str+1)

prominent in the early postions of the RC4 keystream.
Mantin and Shamir [15] observed the first of these biases,
in Z2 (the second byte of the RC4 keystream), and showed
how to exploit it in what they called a broadcast attack,
wherein the same plaintext is repeatedly encrypted under
different keys. AlFardan et al. [2] performed large-scale
computations to estimate these early biases, using 245

keystreams to compute the single-byte keystream distribu-
tions in the first 256 output positions. They also provided
a statistical approach to recovering plaintext bytes in the
broadcast attack scenario, and explored its exploitation
in TLS. Much of the new bias behaviour they observed
was subsequently explained in [18]. Unfortunately, from
an attacker’s perspective, the single-byte biases die away
very quickly beyond position 256 in the RC4 keystream.
This means that they can only be used in attacks to extract
plaintext bytes which are found close to the start of plain-
text streams. This was a significant complicating factor
in the attacks of [2], where, because of the behaviour
of HTTP in modern browsers, the target HTTP secure
cookies were not so located.
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2.3 Double-byte biases in the RC4
Keystream

Fluhrer and McGrew [10] showed that there are biases
in adjacent bytes in RC4 keystreams, and that these so-
called double-byte biases are persistent throughout the
keystream. The presence of these long-term biases (and
the absence of any other similarly-sized double-byte bi-
ases) was confirmed computationally in [2]. AlFardan
et al. [2] also exploited these biases in their double-byte
attack to recover HTTP secure cookies.

Because we wish to exploit double-byte biases in early
portions of the RC4 keystream and because the anal-
ysis of [10] assumes the RC4 permutation S is uni-
formly random (which is not the case for early keystream
bytes), we carried out extensive computations to esti-
mate the initial double-byte keystream distributions: we
used roughly 4800 core-days of computation to generate
244 RC4 keystreams for random 128-bit RC4 keys (as
used in TLS); we used these keystreams to estimate the
double-byte keystream distributions for RC4 in the first
512 positions.

While the gross behaviour that we observed is domi-
nated by products of the known single-byte biases in the
first 256 positions and by the Fluhrer-McGrew biases in
the later positions, we did observe some new and inter-
esting double-byte biases. Since these are likely to be of
independent interest to researchers working on RC4, we
report in more detail on this aspect of our work in the full
version [12].

2.4 RC4 and the TLS Record Protocol
We provide an overview of the TLS Record Protocol with
RC4 selected as the method for encryption and direct the
reader to [2, 6, 7, 8] for further details.

Application data to be protected by TLS, i.e, a sequence
of bytes or a record R, is processed as follows: An 8-byte
sequence number SQN, a 5-byte header HDR and R are
concatenated to form the input to an HMAC function.
We let T denote the resulting output of this function. In
the case of RC4 encryption, the plaintext, P = T ||R, is
XORed byte-per-byte with the RC4 keystream. In other
words,

Cr = Pr ⊕Zr,

for the rth bytes of the ciphertext, plaintext and RC4
keystream respectively (for r = 1,2,3 . . . ). The data that
is transmitted has the form HDR||C, where C is the con-
catenation of the individual ciphertext bytes.

The RC4 algorithm is intialized in the standard way at
the start of each TLS connection with a 128-bit encryption
key. This key, K, is derived from the TLS master secret
that is established during the TLS Handshake Protocol; K

is either established via the the full TLS Handshake Pro-
tocol or TLS session resumption. The first few bytes to
be protected by RC4 encryption is a Finished message
of the TLS Handshake Protocol. We do not target this
record in our attacks since this message is not constant
over multiple sessions. The exact size of this message is
important in dictating how far down the keystream our
target plaintext will be located; in turn this determines
whether or not it can be recovered using only single-byte
biases. A common size is 36 bytes, but the exact size
depends on the output size of the TLS PRF used in com-
puting the Finished message and of the hash function
used in the HMAC algorithm in the record protocol.

Decryption is the reverse of the process described
above. As noted in [2], any error in decryption is treated
as fatal – an error message is sent to the sender and all
cryptographic material, including the RC4 key, is dis-
posed of. This enables an active attacker to force the use
of new encryption and MAC keys: the attacker can induce
session termination, followed by a new session being es-
tablished when the next message is sent over TLS, by
simply modifying a TLS Record Protocol message. This
could be used to ensure that the target plaintext in an at-
tack is repeatedly sent under the protection of a fresh RC4
key. However, this approach is relatively expensive since
it involves a rerun of the full TLS Handshake Protocol,
involving multiple public key operations and, more impor-
tantly, the latency involved in an exchange of 4 messages
(2 complete round-trips) on the wire. A better approach
is to cause the TCP connection carrying the TLS traffic
to close, either by injecting sequences of FIN and ACK

messages in both directions, or by injecting a RST mes-
sage in both directions. This causes the TLS connection
to be terminated, but not the TLS session (assuming the
session is marked as “resumable” which is typically the
case). This behaviour is codified in [8, Section 7.2.1].
Now when the next message is sent over TLS, a TLS
session resumption instance of the Handshake Protocol
is executed to establish a fresh key for RC4. This avoids
the expensive public key operations and reduces the TLS
latency to 1 round-trip before application data can be sent.
On large sites, session resumption is usually handled by
making use of TLS session tickets [17] on the server-side.

2.5 Passwords

Text-based passwords are arguably the dominant mecha-
nism for authenticating users to web-based services and
computer systems. As is to be expected of user-selected
secrets, passwords do not follow uniform distributions.
Various password breaches of recent years, including the
Adobe breach of 150 million records in 2013 and the
RockYou leak of 32.6 million passwords in 2009, attest
to this with passwords such as 123456 and password
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frequently being counted amongst the most popular.4 For
example, our own analysis of the RockYou password data
set confirmed this: the number of unique passwords in
the RockYou dataset is 14,344,391, meaning that (on av-
erage) each password was repeated 2.2 times, and we
indeed found the most common password to be 123456
(accounting for about 0.9% of the entire data set). Our
later simulations will make extensive use of the Rock-
You data set as an attack dictionary. A more-fine grained
analysis of it can be found in [20]. We also make use of
data from the Singles.org breach for generating our target
passwords. Singles.org is a now-defunct Christian dating
website that was breached in 2009; religiously-inspired
passwords such as jesus and angel appear with high fre-
quency in its 12,234 distinct entries, making its frequency
distribution quite different from that of the RockYou set.

There is extensive literature regarding the rea-
sons for poor password selection and usage, includ-
ing [1, 9, 21, 22]. In [4], Bonneau formalised a number of
different metrics for analysing password distributions and
studied a corpus of 70M Yahoo! passwords (collected in
a privacy-preserving manner). His work highlights the
importance of careful validation of password guessing
attacks, in particular, the problem of estimating attack
complexities in the face of passwords that occur rarely
– perhaps uniquely – in a data set, the so-called hapax
legomena problem. The approach to validation that we
adopt benefits from the analysis of [4], as explained fur-
ther in Section 4.

3 Plaintext Recovery via Bayesian Analysis

In this section, we present a formal Bayesian analysis
of plaintext recovery attacks in the broadcast setting for
stream ciphers. We then apply this to the problem of
extracting passwords, specialising the formal analysis and
making it implementable in practice based only on the
single-byte and double-byte keystream distributions.

3.1 Formal Bayesian Analysis

Suppose we have a candidate set of N plaintexts, denoted
X , with the a priori probability of an element x ∈ X
being denoted px. We assume for simplicity that all the
candidates consist of byte strings of the same length n.
For example X might consist of all the passwords of a
given length n from some breach data set, and then px can
be computed as the relative frequency of x in the data set.
If the frequency data is not available, then the uniform
distribution on X can be assumed.

4A comprehensive list of data breaches, including password breaches,
can be found at http://www.informationisbeautiful.net/

visualizations/worlds-biggest-data-breaches-hacks/.

Next, suppose that a plaintext from X is encrypted S
times, each time under independent, random keys using
a stream cipher such as RC4. Suppose also that the first
character of the plaintext always occurs in the same po-
sition r in the plaintext stream in each encryption. Let
c = (ci j) denote the S× n matrix of bytes in which row
i, denoted c(i) for 0 ≤ i < S, is a vector of n bytes cor-
responding to the values in positions r, . . . ,r + n− 1 in
ciphertext i. Let X be the random variable denoting the
(unknown) value of the plaintext.

We wish to form a maximum a posteriori (MAP) es-
timate for X , given the observed data c and the a priori
probability distribution px, that is, we wish to maximise
Pr(X = x | C = c) where C is a random variable corre-
sponding to the matrix of ciphertext bytes.

Using Bayes’ theorem, we have

Pr(X = x |C = c) = Pr(C = c | X = x) · Pr(X = x)
Pr(C = c)

.

Here the term Pr(X = x) corresponds to the a priori
distribution px on X . The term Pr(C = c) is inde-
pendent of the choice of x (as can be seen by writing
Pr(C = c) = ∑x∈X Pr(C = c | X = x) ·Pr(X = x)). Since
we are only interested in maximising Pr(X = x |C = c),
we ignore this term henceforth.

Now, since ciphertexts are formed by XORing
keystreams z and plaintext x, we can write

Pr(C = c | X = x) = Pr(W = w)

where w is the S×n matrix formed by XORing each row
of c with the vector x and W is a corresponding random
variable. Then to maximise Pr(X = x |C = c), it suffices
to maximise the value of

Pr(X = x) ·Pr(W = w)

over x ∈ X . Let w(i) denote the i-th row of the matrix w,
so w(i) = c(i)⊕ x. Then w(i) can be thought of as a vector
of keystream bytes (coming from positions r, . . . ,r+n−1)
induced by the candidate x, and we can write

Pr(W = w) =
S−1

∏
i=0

Pr(Z = w(i))

where, on the right-hand side of the above equation, Z
denotes a random variable corresponding to a vector of
bytes of length n starting from position r in the keystream.
Writing B = {0x00, . . . ,0xFF} for the set of bytes, we
can rewrite this as:

Pr(W = w) = ∏
z∈Bn

Pr(Z = z)Nx,z

where the product is taken over all possible byte strings
of length n and Nx,z is defined as:

Nx,z = |{i : z = c(i)⊕ x}0≤i<S|,
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that is, Nx,z counts the number of occurrences of vector
z in the rows of the matrix formed by XORing each row
of c with candidate x. Putting everything together, our
objective is to compute for each candidate x ∈ X the
value:

Pr(X = x) · ∏
z∈Bn

Pr(Z = z)Nx,z

and then to rank these values in order to determine the
most likely candidate(s).

Notice that the expressions here involve terms Pr(Z =
z) which are probabilities of occurrence for n consecu-
tive bytes of keystream. Such estimates are not generally
available in the literature, and for the values of n we are
interested in (corresponding to putative password lengths),
obtaining accurate estimates for them by sampling many
keystreams would be computationally prohibitive. More-
over, the product ∏z∈Bn involves 28n terms and is not
amenable to calculation. Thus we must turn to approxi-
mate methods to make further progress.

Note also that taking n = 1 in the above analysis, we
obtain exactly the same approach as was used in the single-
byte attack in [2], except that we include the a priori
probabilities Pr(X = x) whereas these were (implicitly)
assumed to be uniform in [2].

3.2 Using a Product Distribution
Our task is to derive simplified ways of computing the
expression

Pr(X = x) · ∏
z∈Bn

Pr(Z = z)Nx,z

and then apply these to produce efficient algorithms for
computing (approximate) likelihoods of candidates x ∈
X .

The simplest approach is to assume that the n bytes of
the keystreams can be treated independently. For RC4,
this is actually a very good approximation in the regime
where single-byte biases dominate (that is, in the first
256 positions). Thus, writing Z = (Zr, . . . ,Zr+n−1) and
z = (zr, . . . ,zr+n−1) (with the subscript r denoting the
position of the first keystream byte of interest), we have:

Pr(Z = z)≈
n−1

∏
j=0

Pr(Zr+ j = zr+ j) =
n−1

∏
j=0

pr+ j,z

where now the probabilities appearing on the right-hand
side are single-byte keystream probabilities, as reported
in [2] for example. Then writing x = (x0, . . . ,xn−1) and
rearranging terms, we obtain:

∏
z∈Bn

Pr(Z = z)Nx,z ≈
n−1

∏
j=0

∏
z∈B

p
Nx j ,z, j

r+ j,z

where Ny,z, j = |{i : z = ci, j ⊕y}0≤i<S| counts (now for sin-
gle bytes instead of length n vectors of bytes) the number
of occurrences of byte z in the column vector formed by
XORing column j of c with a candidate byte y.

Notice that, as in [2], the counters Ny,z, j for y ∈ B
can all be computed efficiently by permuting the coun-
ters N0x00,z, j, these being simply counters for the number
of occurrences of each byte value z in column j of the
ciphertext matrix c.

In practice, it is more convenient to work with loga-
rithms, converting products into sums, so that we evaluate
for each candidate x = (x0, . . . ,xn−1) an expression of the
form

γx := log(px)+
n−1

∑
j=0

∑
z∈B

Nx j ,z, j log(pr+ j,z).

Given a large set of candidates X , we can streamline the
computation by first computing the counters Ny,z, j, then,
for each possible byte value y, the value of the inner sum
∑z∈B Ny,z, j log(pr+ j,z), and then reusing these individual
values across all the relevant candidates x for which x j = y.
This reduces the evaluation of γx for a single candidate x
to n+1 additions of real numbers.

The above procedure, including the various optimiza-
tions, is specified as an attack in Algorithm 3. We refer to
it as our single-byte attack because of its reliance on the
single-byte keystream probabilities pr+ j,z. It outputs a
collection of approximate log likelihoods {γx : x∈X } for
each candidate x ∈ X . These can be further processed to
extract, for example, the candidate with the highest score,
or the top T candidates.

3.3 Double-byte-based Approximation

We continue to write Z = (Zr, . . . ,Zr+n−1) and z =
(zr, . . . ,zr+n−1) and aim to find an approximation for
Pr(Z = z) which lends itself to efficient computation of
approximate log likelihoods as in our first algorithm. Now
we rely on the double-byte keystream distribution, writing

ps,z1,z2 := Pr((Zs,Zs+1) = (z1,z2)), s ≥ 1,k1,k2 ∈ B

for the probabilities of observing bytes (z1,z2) in the RC4
keystream in positions (s,s + 1). We estimated these
probabilities for r in the range 1 ≤ r ≤ 511 using 244 RC4
keystreams – for details, see the full version; for larger
r, these are well approximated by the Fluhrer-McGrew
biases [10] (as was verified in [2]).

We now make the Markovian assumption that, for each
j,

Pr(Z j = z j | Z j−1 = z j−1 ∧·· ·∧Z0 = z0)

≈ Pr(Z j = z j | Z j−1 = z j−1),
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Algorithm 3: Single-byte attack
input :ci, j : 0 ≤ i < S,0 ≤ j < n – array formed from S independent encryptions of fixed n-byte candidate X

r – starting position of X in plaintext stream
X – collection of N candidates
px – a priori probability of candidates x ∈ X
pr+ j,z (0 ≤ j < n, z ∈ B) – single-byte keystream distribution

output :{γx : x ∈ X } – set of (approximate) log likelihoods for candidates in X
begin

for j = 0 to n−1 do
for z = 0x00 to 0xFF do

N′
z, j ← 0

for j = 0 to n−1 do
for i = 0 to S−1 do

N′
ci, j , j ← N′

ci, j , j +1

for j = 0 to n−1 do
for y = 0x00 to 0xFF do

for z = 0x00 to 0xFF do
Ny,z, j ← N′

z⊕y, j

Ly, j = ∑z∈B Ny,z, j log(pr+ j,z),

for x = (x0, . . . ,xn−1) ∈ X do
γx ← log(px)+∑n−1

j=0 Lx j , j

return {γx : x ∈ X }

meaning that byte j in the keystream can be modelled as
depending only on the preceding byte and not on earlier
bytes. We can write

Pr(Z j = z j | Z j−1 = z j−1) =
Pr(Z j = z j ∧Z j−1 = z j−1)

Pr(Z j−1 = z j−1)

where the numerator can then be replaced by p j−1,z j−1,z j

and the denominator by p j−1,z j−1 , a single-byte keystream
probability. Then using an inductive argument and our
assumption, we easily obtain:

Pr(Z = z)≈
∏n−2

j=0 pr+ j,z j ,z j+1

∏n−2
j=1 pr+ j,z j

giving an approximate expression for our desired prob-
ability in terms of single-byte and double-byte prob-
abilities. Notice that if we assume that the adjacent
byte pairs are independent, then we have pr+ j,z j ,z j+1 =
pr+ j,z j · pr+ j+1,z j+1 and the above expression collapses
down to the one we derived in the previous subsection.

For candidate x, we again write x = (x0, . . . ,xn−1) and
rearranging terms, we obtain:

∏
z∈Bn

Pr(Z = z)Nx,z ≈
∏n−2

j=0 ∏z1∈B ∏z2∈B p
Nx j ,x j+1,z1,z2, j

r+ j,z1,z2

∏n−2
j=1 ∏z∈B p

Nx j ,z,r+ j

r+ j,z

where Ny1,y1,z1,z2, j = |{i : z1 = ci, j ⊕ y1 ∧ z2 = ci, j+1 ⊕
y2}0≤i<S| counts (now for consecutive pairs of bytes) the
number of occurrences of bytes (z1,z2) in the pair of col-
umn vectors formed by XORing columns ( j, j+1) of c
with candidate bytes (y1,y2) (and where Nx j ,z,r+ j is as in
our previous algorithm).

Again, the counters Ny1,y2,z1,z2, j for y1,y2 ∈ B can
all be computed efficiently by permuting the counters
N0x00,0x00,z1,z2, j, these being simply counters for the num-
ber of occurrences of pairs of byte values (z1,z2) in col-
umn j and j + 1 of the ciphertext matrix c. As before,
we work with logarithms, so that we evaluate for each
candidate x = (x0, . . . ,xn−1) an expression of the form

γx := log(px)+
n−2

∑
j=0

∑
z1∈B

∑
z2∈B

Nx j ,x j+1,z1,z2, j log(pr+ j,z1,z2)

−
n−2

∑
j=1

∑
z∈B

Nx j ,z,r+ j log(pr+ j,z).

With appropriate pre-computation of the terms
Ny1,y2,z1,z2, j log(pr+ j,z1,z2) and Ny,z,r+ j log(pr+ j,z) for all
y1,y2 and all y, the computation for each candidate
x ∈ X can be reduced to roughly 2n floating point
additions. The pre-computation can be further reduced by
computing the terms for only those pairs (y1,y2) actually
arising in candidates in X in positions ( j, j+1). We use
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this further optimisation in our implementation.
The above procedure is specified as an attack in Algo-

rithm 4. We refer to it as our double-byte attack because
of its reliance on the double-byte keystream probabili-
ties ps,z1,z2 . It again outputs a collection of approximate
log likelihoods {γx : x ∈ X } for each candidate x ∈ X ,
suitable for further processing. Note that for simplicity
of presentation, it involves a quintuply-nested loop to
compute the values Ny1,y2,z1,z2, j; these values should of
course be directly computed from the (n− 1) · 216 pre-
computed counters N′

ci, j ,ci, j+1, j in an in-line fashion using
the formula Ny1,y2,z1,z2, j = N′

z1⊕y1,z2⊕y2,, j.

4 Simulation Results

4.1 Methodology
We performed extensive simulations of both of our attacks,
varying the different parameters to evaluate their effects
on success rates. We focus on the problem of password re-
covery, using the RockYou data set as an attack dictionary
and the Singles.org data set as the set of target passwords.
Except where noted, in each simulation, we performed
256 independent runs of the relevant attack. In each attack
in a simulation, we select a password of some fixed length
n from the Singles.org password data set according to the
known a priori probability distribution for that data set,
encrypt it S times in different starting positions r using
random 128-bit keys for RC4, and then attempt to recover
the password from the ciphertexts using the set of all pass-
words of length n from the entire RockYou data set (14
million passwords) as our candidate set X . We declare
success if the target password is found within the top T
passwords suggested by the algorithm (according to the
approximate likelihood measures γx). Our default settings,
unless otherwise stated, are n = 6 and T = 5. Six is the
most common password length in the data sets we encoun-
tered; T = 5 is an arbitrary choice, and we examine the
effect of varying T in detail below. We try all values for r
between 1 and 256−n+1, where the single-byte biases
dominate the behaviour of the RC4 keystreams. Typical
values of S are 2s where s ∈ {20,22,24,26,28}.

Using different data sets for the attack dictionary and
the target set from which encrypted passwords are cho-
sen is more realistic than using a single dictionary for
both purposes, not least because in a real attack, the exact
content and a priori distribution of the target set would
not be known. This approach also avoids the problem of
hapax legomena highlighted in [4]. However, this has the
effect of limiting the success rates of our attacks to less
than 100%, since there are highly likely passwords in the
target set (such as jesus) that do not occur at all, or only
have very low a priori probabilities in the attack dictio-
nary, and conversely. Figure 1 compares the use of the
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Figure 1: Recovery rate for Singles.org passwords using
RockYou data set as dictionary, compared to recovery
rate for RockYou passwords using RockYou data set as
dictionary (S = 224, n = 6, T = 5, 1 ≤ r ≤ 251, double-
byte attack).

RockYou password distribution to attack Singles.org pass-
words with the less realistic use of the RockYou password
distribution to attack RockYou itself. It can be seen that,
for the particular choice of attack parameters (S = 224,
n = 6, T = 5, double-byte attack), the effect on success
rate is not particularly large. However, for other attack
parameters, as we will see below, we observe a maximum
success rate of around 80% for our attacks, whereas we
would achieve 100% success rates if we used RockYou
against itself. The observed maximum success rate could
be increased by augmenting the attack dictionary with
synthetically generated, site-specific passwords and by
removing RockYou-specific passwords from the attack
dictionary. We leave the development and evaluation of
these improvements to future work.

Many data sets are available from password breaches.
We settled on using RockYou for the attack dictionary
because it was one of the biggest data sets in which all
passwords and their associated frequencies were available,
and because the distribution of passwords, while certainly
skewed, was less skewed than for other data sets. We
used Singles.org for the target set because the Singles.org
breach occurred later than the RockYou breach, so that
the former could reasonably used as an attack dictionary
for the latter. Moreover, the Singles.org distribution being
quite different from that for RockYou makes password re-
covery against Singles.org using RockYou as a dictionary
more challenging for our attacks. A detailed evaluation of
the extent to which the success rates of our attacks depend
on the choice of attack dictionary and target set is beyond
the scope of this current work.

A limitation of our approach as described is that we
assume the password length n to be already known. Sev-
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Algorithm 4: Double-byte attack
input : ci, j : 0 ≤ i < S,0 ≤ j < n – array formed from S independent encryptions of fixed n-byte candidate X

r – starting position of X in plaintext stream
X – collection of N candidates
px – a priori probability of candidates x ∈ X
pr+ j,z (0 ≤ j < n, z ∈ B) – single-byte keystream distribution
pr+ j,z1,z2 (0 ≤ j < n−1, z1,z2 ∈ B) – double-byte keystream distribution

output :{γx : x ∈ X } – set of (approximate) log likelihoods for candidates in X
begin

for j = 0 to n−2 do
for z1 = 0x00 to 0xFF do

N′
z, j ← 0

for z2 = 0x00 to 0xFF do
N′

z1,z2, j ← 0

for j = 0 to n−2 do
for i = 0 to S−1 do

N′
ci, j , j ← N′

ci, j , j +1
N′

ci, j ,ci, j+1, j ← N′
ci, j ,ci, j+1, j +1

for j = 1 to n−2 do
for y = 0x00 to 0xFF do

for z = 0x00 to 0xFF do
Ny,z, j ← N′

z⊕y, j

Ly, j = ∑z∈B Ny,z, j log(pr+ j,z),

for j = 0 to n−2 do
for y1 = 0x00 to 0xFF do

for y2 = 0x00 to 0xFF do
for z1 = 0x00 to 0xFF do

for z2 = 0x00 to 0xFF do
Ny1,y2,z1,z2, j ← N′

z1⊕y1,z2⊕y2,, j

Ly1,y2, j = ∑z1∈B ∑z2∈B Ny1,y2,z1,z2, j log(pr+ j,z1,z2),

for x = (x0, . . . ,xn−1) ∈ X do
γx ← log(px)+∑n−2

j=0 Lx j ,x j+1, j −∑n−2
j=1 Lx j , j

return {γx : x ∈ X }

9
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Figure 2: Recovery rates for single-byte algorithm for
S = 220, . . . ,228 (n = 6, T = 5, 1 ≤ r ≤ 251).

eral solutions to this problem are described in the full
version [12].

4.2 Results

Single-Byte Attack We ran the attack described in Al-
gorithm 3 with our default parameters (n = 6, T = 5,
1 ≤ r ≤ 251) for S = 2s with s ∈ {20,22,24,26,28} and
evaluated the attack’s success rate. We used our default
of 256 independent runs per parameter set. The results
are shown in Figure 2. We observe that:

• The performance of the attack improves markedly
as S, the number of ciphertexts, increases, but the
success rate is bounded by 75%. We attribute this
to the use of one dictionary (RockYou) to recover
passwords from another (Singles.org) – for the same
attack parameters, we achieved 100% success rates
when using RockYou against RockYou, for example.

• For 224 ciphertexts we see a success rate of greater
than 60% for small values of r, the assumed position
of the password in the RC4 keystream. We see a
drop to below 50% for starting positions greater than
32. We note the effect of the key-length-dependent
biases on password recovery; passwords encrypted
at starting positions 16�− n,16�− n+ 1, . . . ,16�−
1,16�, where �= 1,2, . . . ,6, have a higher probabil-
ity of being recovered in comparison to neighbouring
starting positions.

• For 228 ciphertexts we observe a success rate of more
than 75% for 1 ≤ r ≤ 120.

Double-Byte Attack Analogously, we ran the attack
of Algorithm 4 for S = 2s with s ∈ {20,22,24,26,28}
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Figure 3: Recovery rates for double-byte algorithm for
S = 220, . . . ,228 (n = 6, T = 5, 1 ≤ r ≤ 251).

and our defaults of n = 6, T = 5. The results for these
simulations are shown in Figure 3. Note that:

• Again, at 224 ciphertexts the effect of key-length-
dependent biases is visible.

• For 226 ciphertexts we observe a success rate that is
greater than 78% for r ≤ 48.

Comparing the Single-Byte Attack with a Naive Al-
gorithm Figure 4 provides a comparison between our
single-byte algorithm with T = 1 and a naive password
recovery attack based on the methods of [2], in which the
password bytes are recovered one at a time by selecting
the highest likelihood byte value in each position and
declaring success if all bytes of the password are recov-
ered correctly. Significant improvement over the naive
attack can be observed, particularly for high values of r.
For example with S = 224, the naive algorithm essentially
has a success rate of zero for every r, whereas our single-
byte algorithm has a success rate that exceeds 20% for
1 ≤ r ≤ 63. By way of comparison, an attacker knowing
the password length and using the obvious guessing strat-
egy would succeed with probability 4.2% with a single
guess, this being the a priori probability of the password
123456 amongst all length 6 passwords in the Singles.org
dataset (and 123456 being the highest ranked password
in the RockYou dictionary, so the first one that an attacker
using this strategy with the RockYou dictionary would
try). As another example, with S = 228 ciphertexts, a
viable recovery rate is observed all the way up to r = 251
for our single-byte algorithm, whereas the naive algo-
rithm fails badly beyond r = 160 for even this large value
of S. Note however that the naive attack can achieve a
success rate of 100% for sufficiently large S, whereas our
attack cannot. This is because the naive attack directly

10
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Figure 4: Performance of our single-byte algorithm versus
a naive single-byte attack based on the methods of AlFar-
dan et al. (labelled “old”) (n = 6, T = 1, 1 ≤ r ≤ 251).
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Figure 5: Recovery rate of single-byte versus double-byte
algorithm for S= 220, . . . ,228 (n= 6, T = 5, 1≤ r ≤ 251).

computes a password candidate rather than evaluating
the likelihood of candidates from a list which may not
contain the target password. On the other hand, our attack
trivially supports larger values of T , whereas the naive
attack is not so easily modified to enable this feature.

Comparing the Single-Byte and Double-Byte Attacks
Figure 5 provides a comparison of our single-byte and
double-byte attacks. With all other parameters equal, the
success rates are very similar for the initial 256 positions.
The reason for this is the absence of many strong double-
byte biases that do not arise from the known single-byte
biases in the early positions of the RC4 keystream.

Effect of the a priori Distribution As a means of test-
ing the extent to which our success rates are influenced by
knowledge of the a priori probabilities of the candidate
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Figure 6: Recovery rate for uniformly distributed pass-
words versus known a priori distribution (S = 224, n = 6,
T = 5, 1 ≤ r ≤ 251, double-byte algorithm).

passwords, we ran simulations in which we tried to re-
cover passwords sampled correctly from the Singles.org
dataset but using a uniform a priori distribution for the
RockYou-based dictionary used in the attack. Figure 6
shows the results (S = 224, n = 6, T = 5, double-byte
attack) of these simulations, compared to the results we
obtain by exploiting the a priori probabilities in the attack.
It can be seen that a significant gain is made by using the
a priori probabilities, with the uniform attack’s success
rate rapidly dropping to zero at around r = 128.

Effect of Password Length Figure 7 shows the effect
of increasing n, the password length, on recovery rates,
with the sub-figures showing the performance of our
double-byte attack for different numbers of ciphertexts
(S = 2s with s ∈ {24,26,28}). Other parameters are set
to their default values. As intuition suggests, password
recovery becomes more difficult as the length increases.
Also notable is that the ceiling on success rate of our
attack decreases with increasing n, dropping from more
than 80% for n = 5 to around 50% for n = 8. This is due
to the fact that only 48% of the length 8 passwords in the
Singles.org data set actually occur in the RockYou attack
dictionary: our attack is doing as well as it can in this
case, and we would expect stronger performance with an
attack dictionary that is better matched to the target site.

Effect of Increasing Try Limit T Recall that the pa-
rameter T defines the number of password trials our at-
tacks make. The number of permitted attempts for specific
protocols like BasicAuth and IMAP is server-dependent
and not mandated in the relevant specifications. Whilst
not specific to our chosen protocols, a 2010 study [5]
showed that 84% of websites surveyed allowed at least
T = 100 attempts; many websites appear to actually al-
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(b) 226 ciphertexts
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Figure 7: Effect of password length on recovery rate (T = 5, 1 ≤ r ≤ 251, double-byte algorithm).

low T = ∞. Figure 8 shows the effect of varying T in our
double-byte algorithm for different numbers of cipher-
texts (S = 2s with s ∈ {24,26,28}). Other parameters are
set to their default values. It is clear that allowing large
values of T boosts the success rate of the attacks.

Note however that a careful comparison must be made
between our attack with parameter T and the success rate
of the obvious password guessing attack given T attempts.
Such a guessing attack does not require any ciphertexts
but instead uses the a priori distribution on passwords in
the attack dictionary (RockYou) to make guesses for the
target password in descending order of probability, the
success rate being determined by the a priori probabilities
of the guessed passwords in the target set (Singles.org).
Clearly, our attacks are only of value if they significantly
out-perform this ciphertext-less attack.

Figure 9 shows the results of plotting log2(T ) against
success rate α for S = 2s with s ∈ {14,16, . . . ,28}. The
figure then illustrates the value of T necessary in our
attack to achieve a given password recovery rate α for
different values of S. This measure is related to the α-
work-factor metric explored in [4] (though with the added
novelty of representing a work factor when one set of
passwords is used to recover passwords from a different
set). To generate this figure, we used 1024 independent
runs rather than the usual 256, but using a fixed set of
1024 passwords sampled according to the a priori distri-
bution for Singles.org. This was in an attempt to improve
the stability of the results (with small numbers of cipher-
texts S, the success rate becomes heavily dependent on
the particular set of passwords selected and their a pri-
ori probabilities, while we wished to have comparability
across different values of S).

The success rates shown in Figure 9 are for our double-
byte attack with n = 6 and r = 133, this specific choice of
r being motivated by it being the location of passwords for
our BasicAuth attack proof-of-concept when the Chrome
browser is used (similar results are obtained for other
values of r). The graph also shows the corresponding
work factor T as a function of α for the guessing attack

(labeled “optimal guessing” in the figure).
Figure 9 shows that our attack far outperforms the

guessing attack for larger values of S, with a significant
advantage accruing for S = 224 and above. However, the
advantage over the guessing attack for smaller values of
S, namely 220 and below, is not significant. This can be
attributed to our attack simply not being able to compute
stable enough statistics for these small numbers of ci-
phertexts. In turn, this is because the expected random
fluctuations in the keystream distributions overwhelm the
small biases; in short, the signal does not sufficiently
exceed the noise for these low values of S.

Effect of Base64 Encoding We investigated the effect
of Base64 encoding of passwords on recovery rates, since
many application layer protocols use such an encoding.
The encoding increases the password length, making re-
covery harder, but also introduces redundancy, potentially
helping the recovery process to succeed. Figure 10 shows
our simulation results comparing the performance of our
double-byte algorithm acting on 6-character passwords
and on Base64 encoded versions of them. It is apparent
from the figure that the overall effect of the Base64 en-
coding is to help our attack to succeed. In practice, the
start of the target password may not be well-aligned with
the Base64 encoding process (for example, part of the
last character of the username and/or a delimiter such as
“:” may be jointly encoded with part of the first charac-
ter of the password). This can be handled by building a
special-purpose set of candidates X for each possibility.
Handling this requires some care when mounting a real
attack against a specific protocol; a detailed analysis is
deferred to future work.

Shifting Attack In certain application protocols and
attack environments (such as HTTPS) it is possible for the
adversary to incrementally pad the plaintext messages so
that the unknown bytes are always aligned with positions
having large keystream biases. Our algorithm descriptions

12
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Figure 8: Effect of try limit T on recovery rate (n = 6, 1 ≤ r ≤ 251, double-byte algorithm).
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Figure 10: Recovery rate of Base64 encoded password
versus a “normal” password for 6-character passwords
(T = 5, 1 ≤ r ≤ 251, double-byte algorithm).

and code are both easily modified to handle this situation,
and we have conducted simulations with the resulting
shift attack. We report on these simulations in the full
version, [12].

5 Practical Validation

In this section we describe proof-of-concept implemen-
tations of our attacks against a specific application-layer
protocol running over TLS, namely BasicAuth. In the full
version [12], we additionally consider the IMAP protocol
as a target.

5.1 Introducing BasicAuth
Defined as part of the HTTP/1.0 specification [3] and ex-
tended in [11], the Basic Access Authentication scheme
(BasicAuth) provides a simple means for controlling ac-
cess to webpages and other protected resources. In view
of its simplicity, the scheme is still very widely used in
the enterprise application space. The protocol essentially

involves the client sending the server a username and pass-
word in Base64 encoded form, and as such, requires the
use of a lower-layer secure protocol like TLS to mitigate
trivial eavesdropping attacks. Certain web browsers dis-
play a login dialog when an initiating challenge message
is received from the server and many browsers present
users with the option of storing their user credentials in
the browser, with the credentials thereafter being automat-
ically presented on behalf of the user.

The client response to the challenge is of the form
Authorization: Basic Base64(userid:password)

where Base64(·) denotes the Base64 encoding function
(which maps 3 characters at a time onto 4 characters of
output).

5.2 Attacking BasicAuth
To obtain a working attack against BasicAuth, we need to
ensure that two conditions are met:

• The Base64-encoded password included in the Ba-
sicAuth client response can be located sufficiently
early in the plaintext stream.

• There is a method for forcing a browser to repeatedly
send the BasicAuth client response.

We have observed that the first condition is met for
particular browsers, including Google Chrome. For exam-
ple, we inspected HTTPS traffic sent from Chrome to an
iChair server.5 We observed the user’s Base64-encoded
password being sent with every HTTP(S) request in the
same position in the stream, namely position r = 133 (this
includes 16 bytes consumed by the client’s Finished

message as well as the 20-bytes consumed by the TLS
Record Protocol tag). For Mozilla Firefox, the value of r
was the less useful 349.

5iChair is a popular system for conference reviewing, widely used in
the cryptography research community and available from http://www.

baigneres.net/ichair. It uses BasicAuth as its user authentication
mechanism.
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r = 133, double-byte algorithm).

For the second condition, we adopt the methods used
in the BEAST, CRIME and Lucky 13 attacks on TLS, and
also used in attacking RC4 in [2]: we assume that the user
visits a site www.evil.com which loads JavaScript into
the user’s browser; the JavaScript makes GET or POST re-
quests to the target website at https://www.good.com
by using XMLHttpRequest objects (this is permitted un-
der Cross Origin Resource Sharing (CORS), a mechanism
developed to allow JavaScript to make requests to a do-
main other than the one from which the script originates).
The Base64-encoded BasicAuth password is automati-
cally included in each such request. To force the pass-
word to be repeatedly encrypted at an early position in
the RC4 keystream, we use a MITM attacker to break the
TLS connection (by injecting sequences of TCP FIN and
ACK messages into the connection). This requires some
careful timing on the part of the JavaScript and the MITM
attacker.

We built a proof-of-concept demonstration of these
components to illustrate the principles. We set up a vir-
tual network with three virtual machines each running

Ubuntu 14.04, kernel version 3.13.0-32. On the first ma-
chine, we installed iChair. We configured the iChair web
server to use RC4 as its default TLS cipher. The sec-
ond machine was running the Chrome 38 browser and
acted as the client in our attack. We installed the required
JavaScript directly on this machine rather than download-
ing from another site. The third machine acted as the
MITM attacker, required to intercept the TLS-protected
traffic and to tear-down the TLS connections. We used
the Python tool Scapy6 to run an ARP poisoning attack
on the client and server from the MITM so as to be able to
intercept packets; with the connection hijacked we were
able to force a graceful shutdown of the connection be-
tween the client and the server after the password-bearing
record had been observed and recorded. We observed that
forcing a graceful shutdown of each subsequent connec-
tion did allow for TLS resumption (rather than leading to
the need for a full TLS Handshake run).

With this setup, the JavaScript running in the client
browser sent successive HTTPS GET requests to the

6Available at http://www.secdev.org/projects/scapy/.
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iChair server every 80ms. Our choice of 80ms was moti-
vated by the fact that for our particular configuration, we
observed a total time of around 80ms for TLS resumption,
delivery of the password-bearing record and the induced
shutdown of the TCP connection. This choice enabled
us to capture 216 encrypted password-bearing records in
1.6 hours (the somewhat greater than expected time here
being due to anomalies in network behaviour). Running
at this speed, the attack was stable over a period of hours.

We note that the latency involved in our setup is much
lower than would be found in a real network in which the
server may be many hops away from the client: between
500ms and 1000ms is typical for establishing an initial
TLS connection to a remote site, with the latency being
roughly half that for session resumptions. Notably, the
cost of public key operations is not the issue, but rather
the network latency involved in the round-trips required
for TCP connection establishment and then running the
TLS Handshake. However, browsers also open up multi-
ple TLS connections in parallel when fetching multiple
resources from a site, as a means of reducing the latency
perceived by users; the maximum number of concurrent
connections per server is 6 for both the Chrome and Fire-
fox browsers (though, we only ever saw roughly half this
number in practice, even with low inter-request times).
This means that, assuming a TLS resumption latency
(including the client’s TCP SYN, delivery of the password-
bearing record and the final, induced TCP ACK) of 250ms
and the JavaScript is running fast enough to induce the
browser to maintain 6 connections in parallel, the amount
of time needed to mount an attack with S = 226 would
be on the order of 776 hours. If the latency was further
reduced to 100ms (because of proximity of the server to
the client), the attack execution time would be reduced to
312 hours.

Again setting n = 6 , T = 100, r = 133 and using the
simulation results displayed in Figure 10, we would ex-
pect a success rate of 64.4% for this setup (with S = 226).
For T = 5, the corresponding success rate would be
44.5%.

We emphasise that we have not executed a complete
attack on these scales, but merely demonstrated the feasi-
bility of the attack in our laboratory setup.

6 Conclusion and Open Problems

We have presented plaintext recovery attacks that derive
from a formal Bayesian analysis of the problem of esti-
mating plaintext likelihoods given an a priori plaintext
distribution, suitable keystream distribution information,
and a large number of encryptions of a fixed plaintext
under independent keys. We applied these ideas to the
specific problem of recovering passwords encrypted by
the RC4 algorithm with 128-bit keys as used in TLS,

though they are of course more generally applicable – to
uses of RC4 other than in TLS, and to stream ciphers with
non-uniform keystream distributions in general. Using
large-scale simulations, we have investigated the perfor-
mance of these attacks under different settings for the
main parameters.

We then studied the applicability of these attacks for
a specific application layer protocol, BasicAuth. For cer-
tain browsers and clients, the passwords were located at
a favourable point in the plaintext stream and we could
induce the password to be repeatedly encrypted under
fresh, random keys. We built a proof-of-concept imple-
mentation of the attack. It was difficult to arrange for the
rate of generation of encryptions to be as high as desired
for a speedy attack. This was mainly due to the latency
associated with TLS connection establishment (even with
session resumption) rather than any fundamental barrier.

Good-to-excellent password recovery success rates can
be achieved using 224 – 228 ciphertexts in our attacks. We
also demonstrated that our single-byte attack for pass-
word recovery significantly outperforms a naive password
recovery attack based on the ideas of [2]. We observed an
improvement over a guessing strategy even for low num-
bers (222 or 224) of ciphertexts. By contrast to these num-
bers, the preferred double-byte attack of [2] required on
the order of 234 encryptions to recover a 16-byte cookie,
though without incurring the time overheads arising from
TLS session resumption that our approach incurs.

Our research has led to the identification of a number
of areas for further work:

• Our Bayesian approach can also be applied to the
situation where we model the plaintext as a word
from a language described as a Markov model with
memory. It would be interesting to investigate the
extent to which this approach can be applied to either
password recovery or more general analysis of, say,
typical HTTP traffic.

• We have focussed on the use of the single-byte bi-
ases described in [2] and the double-byte biases of
Fluhrer and McGrew (and from our own extensive
computations for the first 512 keystream positions).
Other biases in RC4 keystreams are known, for ex-
ample [14]. It is a challenge to integrate these in our
Bayesian framework, with the aim being to further
improve our attacks.

• We identified new double-byte biases early in the
RC4 keystream which deserve a theoretical explana-
tion.

• It would be an interesting challenge to develop al-
gorithms for constructing synthetic, site-specific dic-
tionaries along with a priori probability distribu-
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tions. Existing work in this direction includes Marx’s
WordHound tool.7

• We identified several open questions in the discus-
sion of our simulation results, including the effect of
the choice of password data sets on success rates, and
the evaluation of different methods for recovering
the target password’s length.
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Abstract
We present eclipse attacks on bitcoin’s peer-to-peer net-
work. Our attack allows an adversary controlling a suffi-
cient number of IP addresses to monopolize all connec-
tions to and from a victim bitcoin node. The attacker can
then exploit the victim for attacks on bitcoin’s mining
and consensus system, including N-confirmation double
spending, selfish mining, and adversarial forks in the
blockchain. We take a detailed look at bitcoin’s peer-
to-peer network, and quantify the resources involved in
our attack via probabilistic analysis, Monte Carlo simu-
lations, measurements and experiments with live bitcoin
nodes. Finally, we present countermeasures, inspired by
botnet architectures, that are designed to raise the bar for
eclipse attacks while preserving the openness and decen-
tralization of bitcoin’s current network architecture.

1 Introduction

While cryptocurrency has been studied since the
1980s [22, 25, 28], bitcoin is the first to see widespread
adoption.A key reason for bitcoin’s success is its baked-
in decentralization. Instead of using a central bank to
regulate currency, bitcoin uses a decentralized network
of nodes that use computational proofs-of-work to reach
consensus on a distributed public ledger of transactions,
aka., the blockchain. Satoshi Nakamoto [52] argues that
bitcoin is secure against attackers that seek to shift the
blockchain to an inconsistent/incorrect state, as long as
these attackers control less than half of the computa-
tional power in the network. But underlying this security
analysis is the crucial assumption of perfect information;
namely, that all members of the bitcoin ecosystem can
observe the proofs-of-work done by their peers.

While the last few years have seen extensive research
into the security of bitcoin’s computational proof-of-
work protocol e.g., [14, 29, 36, 37, 45, 49, 50, 52, 58, 60],
less attention has been paid to the peer-to-peer network

used to broadcast information between bitcoin nodes (see
Section 8). The bitcoin peer-to-peer network, which
is bundled into the core bitcoind implementation, aka.,
the Satoshi client, is designed to be open, decentralized,
and independent of a public-key infrastructure. As such,
cryptographic authentication between peers is not used,
and nodes are identified by their IP addresses (Section 2).
Each node uses a randomized protocol to select eight
peers with which it forms long-lived outgoing connec-
tions, and to propagate and store addresses of other po-
tential peers in the network. Nodes with public IPs also
accept up to 117 unsolicited incoming connections from
any IP address. Nodes exchange views of the state of the
blockchain with their incoming and outgoing peers.

Eclipse attacks. This openness, however, also makes it
possible for adversarial nodes to join and attack the peer-
to-peer network. In this paper, we present and quantify
the resources required for eclipse attacks on nodes with
public IPs running bitcoind version 0.9.3. In an eclipse
attack [27, 61, 62], the attacker monopolizes all of the
victim’s incoming and outgoing connections, thus iso-
lating the victim from the rest of its peers in the net-
work. The attacker can then filter the victim’s view
of the blockchain, force the victim to waste compute
power on obsolete views of the blockchain, or coopt
the victim’s compute power for its own nefarious pur-
poses (Section 1.1). We present off-path attacks, where
the attacker controls endhosts, but not key network in-
frastructure between the victim and the rest of the bit-
coin network. Our attack involves rapidly and repeatedly
forming unsolicited incoming connections to the victim
from a set of endhosts at attacker-controlled IP addresses,
sending bogus network information, and waiting until the
victim restarts (Section 3). With high probability, the
victim then forms all eight of its outgoing connections to
attacker-controlled addresses, and the attacker also mo-
nopolizes the victim’s 117 incoming connections.

Our eclipse attack uses extremely low-rate TCP con-
nections, so the main challenge for the attacker is to
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obtain a sufficient number of IP addresses (Section 4).
We consider two attack types: (1) infrastructure attacks,
modeling the threat of an ISP, company, or nation-state
that holds several contiguous IP address blocks and seeks
to subvert bitcoin by attacking its peer-to-peer network,
and (2) botnet attacks, launched by bots with addresses in
diverse IP address ranges. We use probabilistic analysis,
(Section 4) measurements (Section 5), and experiments
on our own live bitcoin nodes (Section 6) to find that
while botnet attacks require far fewer IP addresses, there
are hundreds of organizations that have sufficient IP re-
sources to launch eclipse attacks (Section 4.2.1). For ex-
ample, we show how an infrastructure attacker with 32
distinct /24 IP address blocks (8192 address total), or a
botnet of 4600 bots, can always eclipse a victim with at
least 85% probability; this is independent of the number
of nodes in the network. Moreover, 400 bots sufficed in
tests on our live bitcoin nodes. To put this in context,
if 8192 attack nodes joined today’s network (containing
≈ 7200 public-IP nodes [4]) and honestly followed the
peer-to-peer protocol, they could eclipse a target with
probability about ( 8192

7200+8192 )
8 = 0.6%.

Our attack is only for nodes with public IPs; nodes
with private IPs may be affected if all of their outgoing
connections are to eclipsed public-IP nodes.

Countermeasures. Large miners, merchant clients
and online wallets have been known to modify bit-
coin’s networking code to reduce the risk of network-
based attacks. Two countermeasures are typically rec-
ommended [3]: (1) disabling incoming connections, and
(2) choosing ‘specific’ outgoing connections to well-
connected peers or known miners (i.e., use whitelists).
However, there are several problems with scaling this to
the full bitcoin network. First, if incoming connections
are banned, how do new nodes join the network? Sec-
ond, how does one decide which ‘specific’ peers to con-
nect to? Should bitcoin nodes form a private network?
If so, how do they ensure compute power is sufficiently
decentralized to prevent mining attacks?

Indeed, if bitcoin is to live up to its promise as an open
and decentralized cryptocurrency, we believe its peer-to-
peer network should be open and decentralized as well.
Thus, our next contribution is a set of countermeasures
that preserve openness by allowing unsolicited incom-
ing connections, while raising the bar for eclipse attacks
(Section 7). Today, an attacker with enough addresses
can eclipse any victim that accepts incoming connections
and then restarts. Our countermeasures ensure that, with
high probability, if a victim stores enough legitimate ad-
dresses that accept incoming connections, then the vic-
tim be cannot eclipsed regardless of the number of IP
addresses the attacker controls. Our countermeasures 1,
2, and 6 have been deployed in bitcoind v0.10.1; we also
developed a patch [40] with Countermeasures 3,4.

1.1 Implications of eclipse attacks

Apart from disrupting the bitcoin network or selectively
filtering a victim’s view of the blockchain, eclipse attacks
are a useful building block for other attacks.

Engineering block races. A block race occurs when
two miners discover blocks at the same time; one block
will become part of the blockchain, while the other “or-
phan block” will be ignored, yielding no mining rewards
for the miner that discovered it. An attacker that eclipses
many miners can engineer block races by hording blocks
discovered by eclipsed miners, and releasing blocks to
both the eclipsed and non-eclipsed miners once a com-
peting block has been found. Thus, the eclipsed miners
waste effort on orphan blocks.

Splitting mining power. Eclipsing an x-fraction of
miners eliminates their mining power from the rest of
the network, making it easier to launch mining attacks
(e.g., the 51% attack [52]). To hide the change in min-
ing power under natural variations [19], miners could be
eclipsed gradually or intermittently.

Selfish mining. With selfish mining [14,29,37,60], the
attacker strategically withholds blocks to win more than
its fair share of mining rewards. The attack’s success
is parameterized by two values: α , the ratio of mining
power controlled by the attacker, and γ , the ratio of hon-
est mining power that will mine on the attacker’s blocks
during a block race. If γ is large, then α can be small. By
eclipsing miners, the attacker increases γ , and thus de-
creases α so that selfish mining is easier. To do this, the
attacker drops any blocks discovered by eclipsed miners
that compete with the blocks discovered by the selfish
miners. Next, the attacker increases γ by feeding only
the selfish miner’s view of the blockchain to the eclipsed
miner; this coopts the eclipsed miner’s compute power,
using it to mine on the selfish-miner’s blockchain.

Attacks on miners can harm the entire bitcoin ecosys-
tem; mining pools are also vulnerable if their gateways
to the public bitcoin network can be eclipsed. Eclipsing
can also be used for double-spend attacks on non-miners,
where the attacker spends some bitcoins multiple times:

0-confirmation double spend. In a 0-confirmation
transaction, a customer pays a transaction to a mer-
chant who releases goods to the customer before seeing
a block confirmation i.e., seeing the transaction in the
blockchain [18]. These transactions are used when it is
inappropriate to wait the 5-10 minutes typically needed
to for a block confirmation [20], e.g., in retail point-of-
sale systems like BitPay [5], or online gambling sites like
Betcoin [57]. To launch a double-spend attack against
the merchant [46], the attacker eclipses the merchant’s
bitcoin node, sends the merchant a transaction T for
goods, and sends transaction T ′ double-spending those
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bitcoins to the rest of the network. The merchant releases
the goods to the attacker, but since the attacker controls
all of the merchant’s connections, the merchant cannot
tell the rest of the network about T , which meanwhile
confirms T ′. The attacker thus obtains the goods with-
out paying. 0-confirmation double-spends have occurred
in the wild [57]. This attack is as effective as a Finney
attack [39], but uses eclipsing instead of mining power.

N-confirmation double spend. If the attacker has
eclipsed an x-fraction of miners, it can also launch
N-confirmation double-spending attacks on an eclipsed
merchant. In an N-confirmation transaction, a merchant
releases goods only after the transaction is confirmed in a
block of depth N−1 in the blockchain [18]. The attacker
sends its transaction to the eclipsed miners, who incor-
porate it into their (obsolete) view of the blockchain.
The attacker then shows this view of blockchain to the
eclipsed merchant, receives the goods, and sends both the
merchant and eclipsed miners the (non-obsolete) view of
blockchain from the non-eclipsed miners. The eclipsed
miners’ blockchain is orphaned, and the attacker ob-
tains goods without paying. This is similar to an attack
launched by a mining pool [10], but our attacker eclipses
miners instead of using his own mining power.

Other attacks exist, e.g., a transaction hiding attack on
nodes running in SPV mode [16].

2 Bitcoin’s Peer-to-Peer Network

We now describe bitcoin’s peer-to-peer network, based
on bitcoind version 0.9.3, the most current release from
9/27/2014 to 2/16/2015, whose networking code was
largely unchanged since 2013. This client was origi-
nally written by Satoshi Nakamoto, and has near univer-
sal market share for public-IP nodes (97% of public-IP
nodes according to Bitnode.io on 2/11/2015 [4]).

Peers in the bitcoin network are identified by their IP
addresses. A node with a public IP can initiate up to
eight outgoing connections with other bitcoin nodes, and
accept up to 117 incoming connections.1 A node with a
private IP only initiates eight outgoing connections. Con-
nections are over TCP. Nodes only propagate and store
public IPs; a node can determine if its peer has a public
IP by comparing the IP packet header with the bitcoin
VERSION message. A node can also connect via Tor; we
do not study this, see [16, 17] instead. We now describe
how nodes propagate and store network information, and
how they select outgoing connections.

1This is a configurable. Our analysis only assumes that nodes have
8 outgoing connections, which was confirmed by [51]’s measurements.

2.1 Propagating network information
Network information propagates through the bitcoin net-
work via DNS seeders and ADDR messages.
DNS seeders. A DNS seeder is a server that re-
sponds to DNS queries from bitcoin nodes with a (not
cryptographically-authenticated) list of IP addresses for
bitcoin nodes. The seeder obtains these addresses by pe-
riodically crawling the bitcoin network. The bitcoin net-
work has six seeders which are queried in two cases only.
The first when a new node joins the network for the first
time; it tries to connect to the seeders to get a list of active
IPs, and otherwise fails over to a hardcoded list of about
600 IP addresses. The second is when an existing node
restarts and reconnects to new peers; here, the seeder is
queried only if 11 seconds have elapsed since the node
began attempting to establish connections and the node
has less than two outgoing connections.
ADDR messages. ADDR messages, containing up to 1000
IP address and their timestamps, are used to obtain net-
work information from peers. Nodes accept unsolicited
ADDR messages. An ADDR message is solicited only upon
establishing a outgoing connection with a peer; the peer
responds with up to three ADDR message each containing
up to 1000 addresses randomly selected from its tables.
Nodes push ADDR messages to peers in two cases. Each
day, a node sends its own IP address in a ADDRmessage to
each peer. Also, when a node receives an ADDR message
with no more than 10 addresses, it forwards the ADDR

message to two randomly-selected connected peers.

2.2 Storing network information
Public IPs are stored in a node’s tried and new tables.
Tables are stored on disk and persist when a node restarts.
The tried table. The tried table consists of 64 buck-
ets, each of which can store up to 64 unique addresses
for peers to whom the node has successfully established
an incoming or outgoing connection. Along with each
stored peer’s address, the node keeps the timestamp for
the most recent successful connection to this peer.

Each peer’s address is mapped to a bucket in tried by
taking the hash of the peer’s (a) IP address and (b) group,
where the group defined is the /16 IPv4 prefix containing
the peer’s IP address.A bucket is selected as follows:

SK = random value chosen when node is born.

IP = the peer’s IP address and port number.

Group = the peer’s group

i = Hash( SK, IP ) % 4

Bucket = Hash( SK, Group, i ) % 64

return Bucket

Thus, every IP address maps to a single bucket in tried,
and each group maps to up to four buckets.
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When a node successfully connects to a peer, the
peer’s address is inserted into the appropriate tried

bucket. If the bucket is full (i.e., contains 64 addresses),
then bitcoin eviction is used: four addresses are ran-
domly selected from the bucket, and the oldest is (1)
replaced by the new peer’s address in tried, and then
(2) inserted into the new table. If the peer’s address is
already present in the bucket, the timestamp associated
with the peer’s address is updated. The timestamp is
also updated when an actively connected peer sends a
VERSION, ADDR, INVENTORY, GETDATA or PING message
and more than 20 minutes elapsed since the last update.

The new table. The new table consists of 256 buck-
ets, each of which can hold up 64 addresses for peers to
whom the node has not yet initiated a successful connec-
tion. A node populates the new table with information
learned from the DNS seeders, or from ADDR messages.

Every address a inserted in new belongs to (1) a group,
defined in our description of the tried table, and (2) a
source group, the group the contains the IP address of
the connected peer or DNS seeder from which the node
learned address a. The bucket is selected as follows:

SK = random value chosen when node is born.

Group = /16 containing IP to be inserted.

Src_Group = /16 containing IP of peer sending IP.

i = Hash( SK, Src_Group, Group ) % 32

Bucket = Hash( SK, Src_Group, i) % 256

return Bucket

Each (group, source group) pair hashes to a single new

bucket, while each group selects up to 32 buckets in new.
Each bucket holds unique addresses. If a bucket is full,
then a function called isTerrible is run over all 64 ad-
dresses in the bucket; if any one of the addresses is ter-
rible, in that it is (a) more than 30 days old, or (b) has
had too many failed connection attempts, then the terri-
ble address is evicted in favor of the new address; other-
wise, bitcoin eviction is used with the small change that
the evicted address is discarded.

2.3 Selecting peers
New outgoing connections are selected if a node restarts
or if an outgoing connection is dropped by the network.
A bitcoin node never deliberately drops a connection, ex-
cept when a blacklisting condition is met (e.g., the peer
sends ADDR messages that are too large).

A node with ω ∈ [0,7] outgoing connections selects
the ω +1th connection as follows:

(1) Decide whether to select from tried or new, where

Pr[Select from tried] =

√ρ(9−ω)

(ω +1)+
√ρ(9−ω)

(1)

and ρ is the ratio between the number of addresses stored
in tried and the number of addresses stored in new.
(2) Select a random address from the table, with a bias
towards addresses with fresher timestamps: (i) Choose
a random non-empty bucket in the table. (ii) Choose a
random position in that bucket. (ii) If there is an address
at that position, return the address with probability

p(r,τ) = min(1, 1.2r

1+τ ) (2)

else, reject the address and return to (i). The acceptance
probability p(r,τ) is a function of r, the number of ad-
dresses that have been rejected so far, and τ , the dif-
ference between the address’s timestamp and the current
time in measured in ten minute increments.2

(3) Connect to the address. If connection fails, go to (1).

3 The Eclipse Attack

Our attack is for a victim with a public IP. Our attacker
(1) populates the tried table with addresses for its at-
tack nodes, and (2) overwrites addresses in the new ta-
ble with “trash” IP addresses that are not part of the
bitcoin network. The “trash” addresses are unallocated
(e.g., listed as “available” by [56]) or as “reserved for
future use” by [43] (e.g., 252.0.0.0/8). We fill new with
“trash” because, unlike attacker addresses, “trash” is not
a scarce resource. The attack continues until (3) the
victim node restarts and chooses new outgoing connec-
tions from the tried and new tables in its persistant stor-
age (Section 2.3). With high probability, the victim es-
tablishes all eight outgoing connections to attacker ad-
dresses; all eight addresses will be from tried, since the
victim cannot connect to the “trash” in new. Finally, the
attacker (5) occupies the victim’s remaining 117 incom-
ing connections. We now detail each step of our attack.

3.1 Populating tried and new

The attacker exploits the following to fill tried and new:
1. Addresses from unsolicited incoming connections

are stored in the tried table; thus, the attacker can in-
sert an address into the victim’s tried table simply by
connecting to the victim from that address. Moreover,
the bitcoin eviction discipline means that the attacker’s
fresher addresses are likely to evict any older legitimate
addresses stored in the tried table (Section 2.2).

2. A node accepts unsolicited ADDR messages; these
addresses are inserted directly into the new table without
testing their connectivity (Section 2.2). Thus, when our
attacker connects to the victim from an adversarial ad-
dress, it can also send ADDR messages with 1000 “trash”

2The algorithm also considers the number of failed connections to
this address; we omit this because it does not affect our analysis.
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addresses. Eventually, the trash overwrites all legitimate
addresses in new. We use “trash” because we do not want
to waste our IP address resources on overwriting new.

3. Nodes only rarely solicit network information from
peers and DNS seeders (Section 2.1). Thus, while the at-
tacker overwrites the victim’s tried and new tables, the
victim almost never counteracts the flood of adversarial
information by querying legitimate peers or seeders.

3.2 Restarting the victim
Our attack requires the victim to restart so it can con-
nect to adversarial addresses. There are several reasons
why a bitcoin node could restart, including ISP outages,
power failures, and upgrades, failures or attacks on the
host OS; indeed, [16] found that a node with a public IP
has a 25% chance of going offline after 10 hours. An-
other predictable reason to restart is a software update;
on 1/10/2014, for example, bitnodes.io saw 942 nodes
running Satoshi client version 0.9.3, and by 29/12/2014,
that number had risen to 3018 nodes, corresponding to
over 2000 restarts. Since updating is often not optional,
especially when it corresponds to critical security issues;
2013 saw three such bitcoin upgrades, and the heartbleed
bug [53] caused one in 2014. Also, since the community
needs to be notified about an upgrade in advance, the at-
tacker could watch for notifications and then commence
its attack [2]. Restarts can also be deliberately elicited
via DDoS [47, 65], memory exhaustion [16], or packets-
of-death (which have been found for bitcoind [6,7]). The
bottom line is that the security of the peer-to-peer net-
work should not rely on 100% node uptime.

3.3 Selecting outgoing connections
Our attack succeeds if, upon restart, the victim makes
all its outgoing connections to attacker addresses. To
do this, we exploit the bias towards selecting addresses
with fresh timestamps from tried; by investing extra
time into the attack, our attacker ensures its addresses are
fresh, while all legitimate addresses become increasingly
stale. We analyze this with few simple assumptions:
1. An f -fraction of the addresses in the victim’s tried
table are controlled by the adversary and the remaining
1− f -fraction are legitimate. (Section 4 analyzes how
many addresses the adversary therefore must control.)
2. All addresses in new are “trash”; all connections to
addresses in new fail, and the victim is forced to connect
to addresses from tried (Section 2.3).
3. The attack proceeds in rounds, and repeats each round
until the moment that the victim restarts. During a single
round, the attacker connects to the victim from each of
its adversarial IP addresses. A round takes time τa, so all
adversarial addresses in tried are younger than τa.

4. An f ′-fraction addresses in tried are actively con-
nected to the victim before the victim restarts. The times-
tamps on these legitimate addresses are updated every 20
minute or more (Section 2.2). We assume these times-
tamps are fresh (i.e., τ = 0) when the victim restarts; this
is the worst case for the attacker.

5. The time invested in the attack τ� is the time elapsed
from the moment the adversary starts the attack, until
the victim restarts. If the victim did not obtain new le-
gitimate network information during of the attack, then,
excluding the f ′-fraction described above, the legitimate
addresses in tried are older than τ�.

Success probability. If the adversary owns an f -
fraction of the addresses in tried, the probability that
an adversarial address is accepted on the first try is
p(1,τa) · f where p(1,τa) is as in equation (2); here we
use the fact that the adversary’s addresses are no older
than τa, the length of the round. If r− 1 addresses were
rejected during this attempt to select an address from
tried, then the probability that an adversarial address
is accepted on the rth try is bounded by

p(r,τa) · f
r−1

∏
i=1

g(i, f , f ′,τa,τ�)

where

g(i, f , f ′,τa,τ�) = (1− p(i,τa)) · f +(1− p(i,0)) · f ′

+(1− p(i,τ�)) · (1− f − f ′)

is the probability that an address was rejected on the ith

try given that it was also rejected on the i−1th try. An
adversarial address is thus accepted with probability

q( f , f ′,τa,τ�) =
∞

∑
r=1

p(r,τa) · f
r−1

∏
i=1

g(i, f , f ′,τa,τ�)

(3)
and the victim is eclipsed if all eight outgoing connec-
tions are to adversarial addresses, which happens with
probability q( f , f ′,τa,τ�)8. Figure 1 plots q( f , f ′,τa,τ�)8

vs f for τa = 27 minutes and different choices of τ�;
we assume that f ′ = 8

64×64 , which corresponds to a full
tried table containing eight addresses that are actively
connected before the victim restarts.

Random selection. Figure 1 also shows success proba-
bility if addresses were just selected uniformly at random
from each table. We do this by plotting f 8 vs f . Without
random selection, the adversary has a 90% success prob-
ability even if it only fills f = 72% of tried, as long as
it attacks for τ� = 48 hours with τa = 27 minute rounds.
With random selection, 90% success probability requires
f = 98.7% of tried to be attacker addresses.
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Figure 1: Probability of eclipsing a node q( f , f ′,τa,τ�)8

(equation (3)) vs f the fraction of adversarial addresses
in tried, for different values of time invested in the at-
tack τ�. Round length is τa = 27 minutes, and f ′ = 8

64×64 .
The dotted line shows the probability of eclipsing a node
if random selection is used instead.

3.4 Monopolizing the eclipsed victim
Figure 1 assumes that the victim has exactly eight out-
going connections; all we require in terms of incoming
connections is that the victim has a few open slots to ac-
cept incoming TCP connections from the attacker.

While it is often assumed that the number of TCP
connections a computer can make is limited by the OS
or the number of source ports, this applies only when
OS-provided TCP sockets are used; a dedicated attacker
can open an arbitrary number of TCP connections us-
ing a custom TCP stack. A custom TCP stack (see e.g.,
zmap [35]) requires minimal CPU and memory, and is
typically bottlenecked only by bandwidth, and the band-
width cost of our attack is minimal:

Attack connections. To fill the tried table, our
attacker repeatedly connects to the victim from each of
its addresses. Each connection consists of a TCP hand-
shake, bitcoin VERSION message, and then disconnec-
tion via TCP RST; this costs 371 bytes upstream and
377 bytes downstream. Some attack connections also
send one ADDR message containing 1000 addresses; these
ADDR messages cost 120087 bytes upstream and 437
bytes downstream including TCP ACKs.

Monopolizing connections. If that attack succeeds,
the victim has eight outgoing connections to the attack
nodes, and the attacker must occupy the victim’s remain-
ing incoming connections. To prevent others from con-
necting to the victim, these TCP connections could be
maintained for 30 days, at which point the victim’s ad-
dress is terrible and forgotten by the network. While
bitcoin supports block inventory requests and the send-
ing of blocks and transactions, this consumes significant
bandwidth; our attacker thus does not to respond to in-
ventory requests. As such, setting up each TCP connec-

tion costs 377 bytes upstream and 377 bytes downstream,
and is maintained by ping-pong packets and TCP ACKs
consuming 164 bytes every 80 minutes.

We experimentally confirmed that a bitcoin node will
accept all incoming connections from the same IP ad-
dress. (We presume this is done to allow multiple nodes
behind a NAT to connect to the same node.) Main-
taining the default 117 incoming TCP connections costs
164×117
80×60 ≈ 4 bytes per second, easily allowing one com-

puter to monopolize multiple victims at the same time.
As an aside, this also allows for connection starvation
attacks [32], where an attacker monopolizes all the in-
coming connections in the peer-to-peer network, making
it impossible for new nodes to connect to new peers.

4 How Many Attack Addresses?

Section 3.3 showed that the success of our attack depends
heavily on τ�, the time invested in the attack, and f , the
fraction of attacker addresses in the victim’s tried ta-
ble. We now use probabilistic analysis to determine how
many addresses the attacker must control for a given
value of f ; it’s important to remember, however, that
even if f is small, our attacker can still succeed by in-
creasing τ�. Recall from Section 2.2 that bitcoin is care-
ful to ensure that a node does not store too many IP
addresses from the same group (i.e., /16 IPv4 address
block). We therefore consider two attack variants:

Botnet attack (Section 4.1). The attacker holds several
IP addresses, each in a distinct group. This models at-
tacks by a botnet of hosts scattered in diverse IP address
blocks. Section 4.1.1 explains why many botnets have
enough IP address diversity for this attack.

Infrastructure attack (Section 4.2). The attacker con-
trols several IP address blocks, and can intercept bitcoin
traffic sent to any IP address in the block, i.e., the at-
tacker holds multiple sets of addresses in the same group.
This models a company or nation-state that seeks to un-
dermine bitcoin by attacking its network. Section 4.2.1
discusses organizations that can launch this attack.

We focus here on tried; Appendix B considers how to
send “trash”-filled ADDR messages that overwrite new.

4.1 Botnet attack

The botnet attacker holds t addresses in distinct groups.
We model each address as hashing to a uniformly-
random bucket in tried, so the number of addresses
hashing to each bucket is binomally distributed3 as
B(t, 1

64 ). How many of the 64 × 64 entries in tried

3B(n, p) is a binomial distribution counting successes in a sequence
of n independent yes/no trials, each yielding ‘yes’ with probability p.
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Figure 2: Botnet attack: the expected number of ad-
dresses stored in tried for different scenarios vs the
number of addresses (bots) t. Values were computed
from equations (4), (7) and (8), and confirmed by Monte
Carlo simulations (with 100 trials/data point).

can the attacker occupy? We model various scenarios,
and plot results in Figure 2.

1. Initially empty. In the best case for the attacker, all
64 buckets are initially empty and the expected number
of adversarial addresses stored in the tried table is

64E[min(64,B(t, 1
64 ))] (4)

2. Bitcoin eviction. Now consider the worst case for
the attacker, where each bucket i is full of 64 legitimate
addresses. These addresses, however, will be older than
all Ai distinct adversarial addresses that the adversary at-
tempts to insert into to bucket i. Since the bitcoin evic-
tion discipline requires each newly inserted address to
select four random addresses stored in the bucket and to
evict the oldest, if one of the four selected addresses is a
legitimate address (which will be older than all of the ad-
versary’s addresses), the legitimate address will be over-
written by the adversarial addresses.

For a = 0....Ai, let Ya be the number of adversarial ad-
dresses actually stored in bucket i, given that the adver-
sary inserted a unique addresses into bucket i. Let Xa = 1
if the ath inserted address successfully overwrites a legit-
imate address, and Xa = 0 otherwise. Then,

E[Xa|Ya−1] = 1− (
Ya−1

64 )4

and it follows that

E[Ya|Ya−1] = Ya−1 +1− (
Ya−1

64 )4 (5)
E[Y1] = 1 (6)

where (6) follows because the bucket is initially full of
legitimate addresses. We now have a recurrence relation
for E[Ya], which we can solve numerically. The expected
number of adversarial addresses in all buckets is thus

64
t

∑
a=1

E[Ya]Pr[B(t, 1
64 ) = a] (7)

3. Random eviction. We again consider the attacker’s
worst case, where each bucket is full of legitimate ad-
dresses, but now we assume that each inserted address
evicts a randomly-selected address. (This is not what bit-
coin does, but we analyze it for comparison.) Applying
Lemma A.1 (Appendix A) we find the expected number
of adversarial addresses in all buckets is

4096(1− ( 4095
4096 )

t) (8)

4. Exploiting multiple rounds. Our eclipse attack pro-
ceeds in rounds; in each round the attacker repeatedly in-
serts each of his t addresses into the tried table. While
each address always maps to the same bucket in tried

in each round, bitcoin eviction maps each address to a
different slot in that bucket in every round. Thus, an ad-
versarial address that is not stored into its tried bucket
at the end of one round, might still be successfully stored
into that bucket in a future round. Thus far, this section
has only considered a single round. But, more addresses
can be stored in tried by repeating the attack for multi-
ple rounds. After sufficient rounds, the expected number
of addresses is given by equation (4), i.e., the attack per-
forms as in the best-case for the attacker!

4.1.1 Who can launch a botnet attack?

The ‘initially empty’ line in Figure 2 indicates that a bot-
net exploiting multiple rounds can completely fill tried
with ≈ 6000 addresses. While such an attack cannot eas-
ily be launched from a legitimate cloud service (which
typically allocates < 20 addresses per tenant [1, 8, 9]),
botnets of this size and larger than this have attacked
bitcoin [45, 47, 65]; the Miner botnet, for example, had
29,000 hosts with public IPs [54]. While some botnet in-
festations concentrate in a few IP address ranges [63],
it is important to remember that our botnet attack re-
quires no more than ≈ 6000 groups; many botnets are or-
ders of magnitude larger [59]. For example, the Walow-
dac botnet was mostly in ranges 58.x-100.x and 188.x-
233.x [63], which creates 42 × 28 + 55 × 28 = 24832
groups. Randomly sampling from the list of hosts in
the Carna botnet [26] 5000 times, we find that 1250
bots gives on average 402 distinct groups, enough to at-
tack our live bitcoin nodes (Section 6). Furthermore, we
soon show in Figure 3 that an infrastructure attack with
s > 200 groups easily fills every bucket in tried; thus,
with s > 400 groups, the attack performs as in Figure 2,
even if many bots are in the same group. .

4.2 Infrastructure attack
The attacker holds addresses in s distinct groups. We de-
termine how much of tried can be filled by an attacker
controlling s groups s containing t IP addresses/group.

7
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Figure 3: Infrastructure attack. E[Γ] (expected number
of non-empty buckets) in tried vs s (number of groups).

Figure 4: Infrastructure attack with s = 32 groups: the
expected number of addresses stored in tried for dif-
ferent scenarios vs the number of addresses per group t.
Results obtained by taking the product of equation (9)
and equations from the full version [41], and confirmed
by Monte Carlo simulations (100 trials/data point). The
horizontal line assumes all E[Γ] buckets per (9) are full.

How many groups? We model the process of pop-
ulating tried (per Section 2.2) by supposing that four
independent hash functions map each of the s groups
to one of 64 buckets in tried. Thus, if Γ ∈ [0,64]
counts the number of non-empty buckets in tried, we
use Lemma A.1 to find that

E[Γ] = 64
(
1− ( 63

64 )
4s)≈ (1− e−

4s
64 ) (9)

Figure 3 plots E[Γ]; we expect to fill 55.5 of 64 buckets
with s = 32, and all but one bucket with s > 67 groups.
How full is the tried table? The full version [41] de-
termines the expected number of addresses stored per
bucket for the first three scenarios described in Sec-
tion 4.1; the expected fraction E[ f ] of tried filled by
adversarial addresses is plotted in in Figure 4. The hori-
zontal line in Figure 4 show what happens if each of E[Γ]
buckets per equation (9) is full of attack addresses.

The adversary’s task is easiest when all buckets are
initially empty, or when a sufficient number of rounds
are used; a single /24 address block of 256 addresses
suffices to fill each bucket when s = 32 grouips is used.
Moreover, as in Section 4.1, an attack that exploits mul-
tiple rounds performs as in the ‘initially empty’ scenario.
Concretely, with 32 groups of 256 addresses each (8192
addresses in total) an adversary can expect to fill about
f = 86% of the tried table after a sufficient number of

Figure 5: Histogram of the number of organizations with
s groups. For the /24 data, we require t = 256 addresses
per group; for /23, we require t = 512.

rounds. The attacker is almost as effective in the bitcoin-
eviction scenario with only one round; meanwhile, one
round is much less effective with random eviction.

4.2.1 Who can launch an infrastructure attack?

Which organizations have enough IP address resources
to launch infrastructure attacks? We compiled data
mapping IPv4 address allocation to organizations, using
CAIDA’s AS to organization dataset [23] and AS to pre-
fix dataset [24] from July 2014, supplementing our data
with information from the RIPE database [55]. We de-
termined how many groups (i.e., addresses in the same
/16 IPv4 address block) and addresses per group are al-
located to each organization; see Figure 5. There are 448
organizations with over s= 32 groups and at least t = 256
addresses per group; if these organizations invest τ� = 5
hours into an attack with a τa = 27-minute round, then
they eclipse the victim with probability greater than 80%.

National ISPs in various countries hold a sufficient
number of groups (s ≥ 32) for this purpose; for exam-
ple, in Sudan (Sudanese Mobile), Columbia (ETB), UAE
(Etisalat), Guatemala (Telgua), Tunisia (Tunisia Tele-
com), Saudi Arabia (Saudi Telecom Company) and Do-
minica (Cable and Wireless). The United States Depart-
ment of the Interior has enough groups (s = 35), as does
the S. Korean Ministry of Information and Communica-
tion (s = 41), as do hundreds of others.

4.3 Summary: infrastructure or botnet?
Figures 4, 2 show that the botnet attack is far superior
to the infrastructure attack. Filling f = 98% of the vic-
tim’s tried table requires a 4600 node botnet (attack-
ing for a sufficient number of rounds, per equation (4)).
By contrast, an infrastructure attacker needs 16,000 ad-
dresses, consisting of s = 63 groups (equation (9)) with
t = 256 addresses per group. However, per Section 3.3,
if our attacker increases the time invested in the attack
τ�, it can be far less aggressive about filling tried. For
example, per Figure 1, attacking for τ� = 24 hours with
τa = 27 minute rounds, our success probability exceeds

8
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oldest # Age of addresses (in days)
addr addr % live < 1 1−5 5−10 10−30 > 30
38 d* 243 28% 36 71 28 79 29
41 d* 162 28% 23 29 27 44 39
42 d* 244 19% 25 45 29 95 50
42 d* 195 23% 23 40 23 64 45
43 d* 219 20% 66 57 23 50 23
103 d 4096 8% 722 645 236 819 1674
127 d 4096 8% 90 290 328 897 2491
271 d 4096 8% 750 693 356 809 1488
240 d 4096 6% 419 445 32 79 3121
373 d 4096 5% 9 14 1 216 3856

Table 1: Age and churn of addresses in tried for our
nodes (marked with *) and donated peers files.

85% with just f = 72%; in the worst case for the attacker,
this requires only 3000 bots, or an infrastructure attack of
s = 20 groups and t = 256 addresses per group (5120 ad-
dresses). The same attack ( f = 72%, τa = 27 minutes)
running for just 4 hours still has > 55% success proba-
bility. To put this in context, if 3000 bots joined today’s
network (with < 7200 public-IP nodes [4]) and honestly
followed the peer-to-peer protocol, they could eclipse a
victim with probability ≈ ( 3000

7200+3000 )
8 = 0.006%.

5 Measuring Live Bitcoin Nodes

We briefly consider how parameters affecting the success
of our eclipse attacks look on “typical” bitcoin nodes.
We thus instrumented five bitcoin nodes with public IPs
that we ran (continuously, without restarting) for 43 days
from 12/23/2014 to 2/4/2015. We also analyze several
peers files that others donated to us on 2/15/2015. Note
that there is evidence of wide variations in metrics for
nodes of different ages and in different regions [46]; as
such, our analysis (Section 3-4) and some of our experi-
ments (Section 6) focus on the attacker’s worst-case sce-
nario, where tables are initially full of fresh addresses.

Number of connections. Our attack requires the
victim to have available slots for incoming connections.
Figure 6 shows the number of connections over time for
one of our bitcoin nodes, broken out by connections to
public or private IPs. There are plenty of available slots;
while our node can accommodate 125 connections, we
never see more than 60 at a time. Similar measurements
in [17] indicate that 80% of bitcoin peers allow at least
40 incoming connections. Our node saw, on average, 9.9
connections to public IPs over the course of its lifetime;
of these, 8 correspond to outgoing connections, which
means we rarely see incoming connections from public
IPs. Results for our other nodes are similar.

Connection length. Because public bitcoin nodes
rarely drop outgoing connections to their peers (except
upon restart, network failure, or due to blacklisting, see
Section 2.3), many connections are fairly long lived.
When we sampled our nodes on 2/4/2015, across all of

Figure 6: (Top) Incoming + outgoing connections vs
time for one of our nodes. (Bottom) Number of addresses
in tried vs time for all our nodes.

our nodes, 17% of connections had lasted more than 15
days, and of these, 65.6% were to public IPs. On the
other hand, many bitcoin nodes restart frequently; we
saw that 43% of connections lasted less than two days
and of these, 97% were to nodes with private IPs. This
may explain why we see so few incoming connections
from public IPs; many public-IP nodes stick to their ma-
ture long-term peers, rather than our young-ish nodes.

Size of tried and new tables. In our worst case attack,
we supposed that the tried and new tables were com-
pletely full of fresh addresses. While our Bitcoin nodes’
new tables filled up quite quickly (99% within 48 hours),
Table 1 reveals that their tried tables were far from full
of fresh addresses. Even after 43 days, the tried ta-
bles for our nodes were no more than 300/4096 ≈ 8%
full. This likely follows because our nodes had very few
incoming connections from public IPs; thus, most ad-
dresses in tried result from successful outgoing con-
nections to public IPs (infrequently) drawn from new.

Freshness of tried. Even those few addresses in
tried are not especially fresh. Table 1 shows the age
distribution of the addresses in tried for our nodes and
from donated peers files. For our nodes, 17% of ad-
dresses were more than 30 days old, and 48% were more
than 10 days old; these addresses will therefore be less
preferred than the adversarial ones inserted during an
eclipse attack, even if the adversary does not invest much
time τ� in attacking the victim.

Churn. Table 1 also shows that a small fraction of
addresses in tried were online when we tried connect-
ing to them on 2/17/2015.4 This suggests further vul-
nerability to eclipse attacks, because if most legitimate
addresses in tried are offline when a victim resets, the
victim is likely to connect to an adversarial address.

4For consistency with the rest of this section, we tested our nodes
tables from 2/4/2015. We also repeated this test for tables taken from
our nodes on 2/17/2015, and the results did not deviate more than 6%
from those of Table 1.
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Attacker resources Experiment Predicted
grps addrs/ total τ�, time τa, Total pre-attack Total post-attack Attack addrs Attack addrs

Attack Type s grp t addrs invest round new tried new tried new tried Wins new tried Wins
Infra (Worstcase) 32 256 8192 10 h 43 m 16384 4090 16384 4096 15871 3404 98% 16064 3501 87%
Infra (Transplant) 20 256 5120 1 hr 27 m 16380 278 16383 3087 14974 2947 82% 15040 2868 77%
Infra (Transplant) 20 256 5120 2 hr 27 m 16380 278 16383 3088 14920 2966 78% 15040 2868 87%
Infra (Transplant) 20 256 5120 4 hr 27 m 16380 278 16384 3088 14819 2972 86% 15040 2868 91%
Infra (Live) 20 256 5120 1 hr 27 m 16381 346 16384 3116 14341 2942 84% 15040 2868 75%
Bots (Worstcase) 2300 2 4600 5 h 26 m 16080 4093 16384 4096 16383 4015 100% 16384 4048 96%
Bots (Transplant) 200 1 200 1 hr 74 s 16380 278 16384 448 16375 200 60% 16384 200 11%
Bots (Transplant) 400 1 400 1 hr 90 s 16380 278 16384 648 16384 400 88% 16384 400 34%
Bots (Transplant) 400 1 400 4 hr 90 s 16380 278 16384 650 16383 400 84% 16384 400 61%
Bots (Transplant) 600 1 600 1 hr 209 s 16380 278 16384 848 16384 600 96% 16384 600 47%
Bots (Live) 400 1 400 1 hr 90 s 16380 298 16384 698 16384 400 84% 16384 400 28%

Table 2: Summary of our experiments.

6 Experiments

We now validate our analysis with experiments.

Methodology. In each of our experiments, the vic-
tim (bitcoind) node is on a virtual machine on the at-
tacking machine; we also instrument the victim’s code.
The victim node runs on the public bitcoin network (aka,
mainnet). The attacking machine can read all the vic-
tim’s packets to/from the public bitcoin network, and
can therefore forge TCP connections from arbitrary IP
addresses. To launch the attack, the attacking machine
forges TCP connections from each of its attacker ad-
dresses, making an incoming connection to the victim,
sending a VERSION message and sometimes also an ADDR
message (per Appendix B) and then disconnecting; the
attack connections, which are launched at regular inter-
vals, rarely occupy all of the victim’s available slots for
incoming connections. To avoid harming the public bit-
coin network, (1) we use “reserved for future use” [43]
IPs in 240.0.0.0/8-249.0.0.0/8 as attack addresses, and
252.0.0.0/8 as “trash” sent in ADDR messages, and (2) we
drop any ADDR messages the (polluted) victim attempts
to send to the public network.

At the end of the attack, we repeatedly restart the vic-
tim and see what outgoing connections it makes, drop-
ping connections to the “trash” addresses and forging
connections for the attacker addresses. If all 8 outgo-
ing connections are to attacker addresses, the attack suc-
ceeds, and otherwise it fails. Each experiment restarts the
victim 50 times, and reports the fraction of successes. At
each restart, we revert the victim’s tables to their state at
the end of the attack, and rewind the victim’s system time
to the moment the attack ended (to avoid dating times-
tamps in tried and new). We restart the victim 50 times
to measure the success rate of our (probabilistic) attack;
in a real attack, the victim would only restart once.

Initial conditions. We try various initial conditions:

1. Worst case. In the attacker’s worst-case scenario,
the victim initially has tried and new tables that are
completely full of legitimate addresses with fresh times-
tamps. To set up the initial condition, we run our at-

tack for no longer than one hour on a freshly-born vic-
tim node, filling tried and new with IP addresses from
251.0.0.0/8, 253.0.0.0/8 and 254.0.0.0/8, which we des-
ignate as “legitimate addresses”; these addresses are no
older than one hour when the attack starts. We then
restart the victim and commence attacking it.

2. Transplant case. In our transplant experiments, we
copied the tried and new tables from one of our five
live bitcoin nodes on 8/2/2015, installed them in a fresh
victim with a different public IP address, restarted the
victim, waited for it to establish eight outgoing connec-
tions, and then commenced attacking. This allowed us to
try various attacks with a consistent initial condition.

3. Live case. Finally, on 2/17/2015 and 2/18/2015
we attacked our live bitcoin nodes while they were con-
nected to the public bitcoin network; at this point our
nodes had been online for 52 or 53 days.

Results (Table 2). Results are in Table 2. The first
five columns summarize attacker resources (the number
of groups s, addresses per group t, time invested in the
attack τ�, and length of a round τa per Sections 3-4). The
next two columns present the initial condition: the num-
ber of addresses in tried and new prior to the attack.
The following four columns give the size of tried and
new, and the number of attacker addresses they store, at
the end of the attack (when the victim first restarts). The
wins columns counts the fraction of times our attack suc-
ceeds after restarting the victim 50 times.

The final three columns give predictions from Sec-
tions 3.3, 4. The attack addrs columns give the expected
number of addresses in new (Appendix B) and tried.
For tried, we assume that the attacker runs his attack
for enough rounds so that the expected number of ad-
dresses in tried is governed by equation (4) for the bot-
net, and the ‘initially empty’ curve of Figure 4 for the
infrastructure attack. The final column predicts success
per Section 3.3 using experimental values of τa, τ�, f , f ′.

Observations. Our results indicate the following:

1. Success in worst case. Our experiments confirm that
an infrastructure attack with 32 groups of size /24 (8192
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attack addresses total) succeeds in the worst case with
very high probability. We also confirm that botnets are
superior to infrastructure attacks; 4600 bots had 100%
success even with a worst-case initial condition.

2. Accuracy of predictions. Almost all of our at-
tacks had an experimental success rate that was higher
than the predicted success rate. To explain this, recall
that our predictions from Section 3.3 assume that legit-
imate addresses are exactly τ� old (where τ� is the time
invested in the attack); in practice, legitimate addresses
are likely to be even older, especially when we work with
tried tables of real nodes (Table 1). Thus, Section 3.3’s
predictions are a lower bound on the success rate.

Our experimental botnet attacks were dramatically
more successful than their predictions (e.g., 88% actual
vs. 34% predicted), most likely because the addresses
initially in tried were already very stale prior to the at-
tack (Table 1). Our infrastructure attacks were also more
successful then their predictions, but here the difference
was much less dramatic. To explain this, we look to the
new table. While our success-rate predictions assume
that new is completely overwritten, our infrastructure at-
tacks failed to completely overwrite the new table;5 thus,
we have some extra failures because the victim made out-
going connections to addresses in new.

3. Success in a ‘typical’ case. Our attacks are suc-
cessful with even fewer addresses when we test them on
our live nodes, or on tables taken from those live nodes.
Most strikingly, a small botnet of 400 bots succeeds with
very high probability; while this botnet completely over-
writes new, it fills only 400/650 = 62% of tried, and
still manages to win with more than 80% probability.

7 Countermeasures

We have shown how an attacker with enough IP ad-
dresses and time can eclipse any target victim, regardless
of the state of the victim’s tried and new tables. We
now present countermeasures that make eclipse attacks
more difficult. Our countermeasures are inspired by bot-
net architectures (Section 8), and designed to be faithful
to bitcoin’s network architecture.

The following five countermeasures ensure that: (1) If
the victim has h legitimate addresses in tried before the
attack, and a p-fraction of them accept incoming connec-
tions during the attack when the victim restarts, then even
an attacker with an unbounded number of addresses can-
not eclipse the victim with probability exceeding equa-
tion (10). (2) If the victim’s oldest outgoing connection is

5The new table holds 16384 addresses and from 6th last column of
Table 2 we see the new is not full for our infrastructure attacks. Indeed,
we predict this in Appendix B.

to a legitimate peer before the attack, then the eclipse at-
tack fails if that peer accepts incoming connections when
the victim restarts.
1. Deterministic random eviction. Replace bitcoin
eviction as follows: just as each address deterministically
hashes to a single bucket in tried and new (Section 2.2),
an address also deterministically hashes to a single slot
in that bucket. This way, an attacker cannot increase the
number of addresses stored by repeatedly inserting the
same address in multiple rounds (Section 4.1). Instead,
addresses stored in tried are given by the ‘random evic-
tion’ curves in Figures 2, 4, reducing the attack addresses
stored in tried.
2. Random selection. Our attacks also exploit
the heavy bias towards forming outgoing connections
to addresses with fresh timestamps, so that an attacker
that owns only a small fraction f = 30% of the victim’s
tried table can increase its success probability (to say
50%) by increasing τ�, the time it invests in the attack
(Section 3.3). We can eliminate this advantage for the
attacker if addresses are selected at random from tried

and new; this way, a success rate of 50% always requires
the adversary to fill 8√0.5 = 91.7% of tried, which re-
quires 40 groups in an infrastructure attack, or about
3680 peers in a botnet attack. Combining this with deter-
ministic random eviction, the figure jumps to 10194 bots
for 50% success probability.

These countermeasures harden the network, but still
allow an attacker with enough addresses to overwrite all
of tried. The next countermeasure remedies this:
3. Test before evict. Before storing an address in its
(deterministically-chosen) slot in a bucket in tried, first
check if there is an older address stored in that slot. If
so, briefly attempt to connect to the older address, and
if connection is successful, then the older address is not
evicted from the tried table; the new address is stored
in tried only if the connection fails.

We analyze these three countermeasures. Suppose that
there are h legitimate addresses in the tried table prior
to the attack, and model network churn by supposing
that each of the h legitimate addresses in tried is live
(i.e., accepts incoming connections) independently with
probability p. With test-before-evict, the adversary can-
not evict p×h legitimate addresses (in expectation) from
tried, regardless of the number of distinct addresses it
controls. Thus, even if the rest of tried is full of adver-
sarial addresses, the probability of eclipsing the victim is
bounded to about

Pr[eclipse] = f 8 <
(

1− p×h
64×64

)8
(10)

This is in stark contrast to today’s protocol, where at-
tackers with enough addresses have unbounded success
probability even if tried is full of legitimate addresses.
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Figure 7: The area below each curve corresponds to a
number of bots a that can eclipse a victim with probabil-
ity at least 50%, given that the victim initially has h legit-
imate addresses in tried. We show one curve per churn
rate p. (Top) With test before evict. (Bottom) Without.

We perform Monte-Carlo simulations assuming churn
p, h legitimate addresses initially stored in tried, and
a botnet inserting a addresses into tried via unsolicited
incoming connections. The area below each curve in Fig-
ure 7 is the number of bots a that can eclipse a victim
with probability at least 50%, given that there are initially
h legitimate addresses in tried. With test-before-evict,
the curves plateau horizontally at h= 4096(1− 8√0.5)/p;
as long as h is greater than this quantity, even a botnet
with an infinite number of addresses has success proba-
bility bounded by 50%. Importantly, the plateau is ab-
sent without test-before-evict; a botnet with enough ad-
dresses can eclipse a victim regardless of the number of
legitimate addresses h initially in tried.

There is one problem, however. Our bitcoin nodes saw
high churn rates (Table 1). With a p = 28% churn rate,
for example, bounding the adversary’s success probabil-
ity to 10% requires about h = 3700 addresses in tried;
our nodes had h < 400. Our next countermeasure thus
adds more legitimate addresses to tried:

4. Feeler Connections. Add an outgoing connection
that establish short-lived test connections to randomly-
selected addresses in new. If connection succeeds, the
address is evicted from new and inserted into tried; oth-
erwise, the address is evicted from new.

Feeler connections clean trash out of new while in-
creasing the number of fresh address in tried that are
likely to be online when a node restarts. Our fifth coun-
termeasure is orthogonal to those above:

5. Anchor connections. Inspired by Tor entry guard
rotation rates [33], we add two connections that persist
between restarts. Thus, we add an anchor table, record-

ing addresses of current outgoing connections and the
time of first connection to each address. Upon restart,
the node dedicates two extra outgoing connections to the
oldest anchor addresses that accept incoming connec-
tions. Now, in addition to defeating our other counter-
measures, a successful attacker must also disrupt anchor
connections; eclipse attacks fail if the victim connects to
an anchor address not controlled by the attacker.

Apart from these five countermeasures, a few other
ideas can raise the bar for eclipse attacks:

6. More buckets. Among the most obvious coun-
termeasure is to increase the size of the tried and new

tables. Suppose we doubled the number of buckets in
the tried table. If we consider the infrastructure attack,
the buckets filled by s groups jumps from (1−e−

4s
64 ) (per

equation (9) to (1− e−
4s

128 ). Thus, an infrastructure at-
tacker needs double the number of groups in order to ex-
pect to fill the same fraction of tried. Similarly, a botnet
needs to double the number of bots. Importantly, how-
ever, this countermeasure is helpful only when tried

already contains many legitimate addresses, so that at-
tacker owns a smaller fraction of the addresses in tried.
However, if tried is mostly empty (or contains mostly
stale addresses for nodes that are no longer online), the
attacker will still own a large fraction of the addresses
in tried, even though the number of tried buckets
has increased. Thus, this countermeasure should also
be accompanied by another countermeasure (e.g., feeler
connections) that increases the number of legitimate ad-
dresses stored in tried.

7. More outgoing connections. Figure 6 indicates
our test bitcoin nodes had at least 65 connections slots
available, and [17] indicates that 80% of bitcoin peers
allow at least 40 incoming connections. Thus, we can
require nodes to make a few additional outgoing con-
nections without risking that the network will run out of
connection capacity. Indeed, recent measurements [51]
indicate that certain nodes (e.g., mining-pool gateways)
do this already. For example, using twelve outgoing con-
nections instead of eight (in addition to the feeler connec-
tion and two anchor connections), decreases the attack’s
success probability from f 8 to f 12; to achieve 50% suc-
cess probability the infrastructure attacker now needs 46
groups, and the botnet needs 11796 bots.

8. Ban unsolicited ADDR messages. A node could
choose not to accept large unsolicited ADDR messages
(with > 10 addresses) from incoming peers, and only so-
licit ADDR messages from outgoing connections when its
new table is too empty. This prevents adversarial incom-
ing connections from flooding a victim’s new table with
trash addresses. We argue that this change is not harmful,
since even in the current network, there is no shortage of
address in the new table (Section 5). To make this more
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concrete, note that a node request ADDR messages upon
establishing an outgoing connection. The peer responds
with n randomly selected addresses from its tried and
new tables, where n is a random number between x and
2500 and x is 23% of the addresses the peer has stored.
If each peer sends, say, about n = 1700 addresses, then
new is already 8n/16384 = 83% full the moment that the
bitcoin node finishing establishing outgoing connections.

9. Diversify incoming connections. Today, a bit-
coin node can have all of its incoming connections come
from the same IP address, making it far too easy for a sin-
gle computer to monopolize a victim’s incoming connec-
tions during an eclipse attack or connection-starvation at-
tack [32]. We suggest a node accept only a limited num-
ber of connections from the same IP address.

10. Anomaly detection. Our attack has several spe-
cific “signatures” that make it detectable including: (1) a
flurry of short-lived incoming TCP connections from di-
verse IP addresses, that send (2) large ADDR messages (3)
containing “trash” IP addresses. An attacker that sud-
denly connects a large number of nodes to the bitcoin
network could also be detected, as could one that uses
eclipsing per Section 1.1 to dramatically decrease the
network’s mining power. Thus, monitoring and anomaly
detection systems that look for this behavior are also be
useful; at the very least, they would force an eclipse at-
tacker to attack at low rate, or to waste resources on over-
writing new (instead of using “trash” IP addresses).

Status of our countermeasures. We disclosed our
results to the bitcoin core developers in 02/2015. They
deployed Countermeasures 1, 2, and 6 in the bitcoind
v0.10.1 release, which now uses deterministic random
eviction, random selection, and scales up the number of
buckets in tried and new by a factor of four. To illus-
trate the efficacy of this, consider the worst-case scenario
for the attacker where tried is completely full of legiti-
mate addresses. We use Lemma A.1 to estimate the suc-
cess rate of a botnet with t IP addresses as

Pr[Eclipse]≈
(
1− ( 16383

16384 )
t)8

(11)

Plotting (11) in Figure 8, we see that this botnet requires
163K addresses for a 50% success rate, and 284K ad-
dress for a 90% success rate. This is good news, but
we caution that ensuring that tried is full of legitimate
address is still a challenge (Section 5), especially since
there may be fewer than 16384 public-IP nodes in the
bitcoin network at a given time. Countermeasures 3 and
4 are designed to deal with this, and so we have also de-
veloped a patch with these two countermeasures; see [40]
for our implementation and its documentation.
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Figure 8: Probability of eclipsing a node vs the number
of addresses (bots) t for bitcoind v0.10.1 (with Counter-
measures 1,2 and 6) when tried is initially full of legit-
imate addresses per equation (11).

8 Related Work

The bitcoin peer-to-peer (p2p) network. Recent work
considers how bitcoin’s network can delay or prevent
block propagation [31] or be used to deanonymize bit-
coin users [16, 17, 48]. These works discuss aspects of
bitcoin’s networking protocol, with [16] providing an ex-
cellent description of ADDR message propagation; we fo-
cus instead on the structure of the tried and new tables,
timestamps and their impact on address selection (Sec-
tion 2). [17] shows that nodes connecting over Tor can
be eclipsed by a Tor exit node that manipulates both bit-
coin and Tor. Other work has mapped bitcoin peers to au-
tonomous systems [38], geolocated peers and measured
churn [34], and used side channels to learn the bitcoin
network topology [16, 51].

p2p and botnet architectures. There has been
extensive research on eclipse attacks [27, 61, 62] in
structured p2p networks built upon distributed hash ta-
bles (DHTs); see [64] for a survey. Many proposals
defend against eclipse attacks by adding more struc-
ture; [61] constrains peer degree, while others use con-
straints based on distance metrics like latency [42] or
DHT identifiers [13]. Bitcoin, by contrast, uses an un-
structured network. While we have focused on exploiting
specific quirks in bitcoin’s existing network, other works
e.g., [11, 15, 21, 44] design new unstructured networks
that are robust to Byzantine attacks. [44] blacklists mis-
behaving peers. Puppetcast’s [15] centralized solution is
based on public-key infrastructure [15], which is not ap-
propriate for bitcoin. Brahms [21] is fully decentralized,
and instead constrains the rate at which peers exchange
network information—a useful idea that is a significant
departure from bitcoin’s current approach. Meanwhile,
our goals are also more modest than those in these works;
rather than requiring that each node is equally likely to
be sampled by an honest node, we just want to limit
eclipse attacks on initially well-connected nodes. Thus,
our countermeasures are inspired by botnet architectures,
which share this same goal. Rossow et al. [59] finds that
many botnets, like bitcoin, use unstructured peer-to-peer
networks and gossip (i.e., ADDR messages), and describes
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how botnets defend against attacks that flood local ad-
dress tables with bogus information. The Sality botnet
refuses to evict “high-reputation” addresses; our anchor
countermeasure is similar (Section 7). Storm uses test-
before-evict [30], which we have also recommended for
bitcoin. Zeus [12] disallows connections from multiple
IP in the same /20, and regularly clean tables by testing
if peers are online; our feeler connections are similar.

9 Conclusion

We presented an eclipse attack on bitcoin’s peer-to-peer
network that undermines bitcoin’s core security guaran-
tees, allowing attacks on the mining and consensus sys-
tem, including N-confirmation double spending and ad-
versarial forks in the blockchain. Our attack is for nodes
with public IPs. We developed mathematical models of
our attack, and validated them with Monte Carlo sim-
ulations, measurements and experiments. We demon-
strated the practically of our attack by performing it on
our own live bitcoin nodes, finding that an attacker with
32 distinct /24 IP address blocks, or a 4600-node botnet,
can eclipse a victim with over 85% probability in the at-
tacker’s worst case. Moreover, even a 400-node botnet
sufficed to attack our own live bitcoin nodes. Finally,
we proposed countermeasures that make eclipse attacks
more difficult while still preserving bitcoin’s openness
and decentralization; several of these were incorporated
in a recent bitcoin software upgrade.
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Figure 9: E[N] vs s (the number of source groups) for dif-
ferent choices of g (number of groups per source group)
when overwriting the new table per equation (13).

A A Useful Lemma

Lemma A.1. If k items are randomly and independently
inserted into n buckets, and X is a random variable
counting the number of non-empty buckets, then

E[X ] = n
(

1− ( n−1
n )k

)
≈ n(1− e−

k
n ) (12)

Proof. Let Xi = 1 if bucket i is non-empty, and Xi = 0
otherwise. The probability that the bucket i is empty after
the first item is inserted is ( n−1

n ). After inserting k items

Pr[Xi = 1] = 1−
( n−1

n

)k

It follows that

E[X ] =
n

∑
i=1

E[Xi] =
n

∑
i=1

Pr[Xi = 1] = n(1− ( n−1
n )k)

(12) follows since ( n−1
n )≈ e−1/n for n � 1.

B Overwriting the New Table

How should the attacker send ADDR messages that over-
write the new table with “trash” IP addresses? Our
“trash” is from the unallocated Class A IPv4 address
block 252.0.0.0/8, designated by IANA as “reserved for
future use” [43]; any connections these addresses will
fail, forcing the victim to choose an address from tried.
Next, recall (Section 2.2) that the pair (group, source
group) determines the bucket in which an address in an
ADDR message is stored. Thus, if the attacker controls
nodes in s different groups, then s is the number of source
groups. We suppose that nodes in each source group can
push ADDR messages containing addresses from g distinct
groups; the “trash” 252.0.0.0/8 address block give an up-
per bound on g of 28 = 256. Each group contains a dis-
tinct addresses. How large should s, g, and a be so that
the new table is overwritten by “trash” addresses?

B.1 Infrastructure strategy
In an infrastructure attack, the number of source groups s
is constrained, and the number of groups g is essentially
unconstrained. By Lemma A.1, the expected number of
buckets filled by a s source groups is

E[N] = 256(1− ( 255
256 )

32s) (13)

We expect to fill ≈ 251 of 256 new buckets with s = 32.
Each (group, source group) pair maps to a unique

bucket in new, and each bucket in new can hold 64 ad-
dresses. Bitcoin eviction is used, and we suppose each
new bucket is completely full of legitimate addresses that
are older than all the addresses inserted by the adversary
via ADDR messages. Since all a addresses in a particu-
lar (group, source group) pair map to a single bucket, it
follows that the number of addresses that actually stored
in that bucket is given by E[Ya] in the recurrence rela-
tion of equations of (5)-(6). With a = 125 addresses,
the adversary expects to overwrite E[Ya] = 63.8 of the
64 legitimate addresses in the bucket. We thus require
each source group to have 32 peers, and each peer to
send ADDR messages with 8 distinct groups of a = 125
addresses. Thus, there are g = 32× 8 = 256 groups per
source group, which is exactly the maximum number of
groups available in our trash IP address block. Each peer
sends exactly one ADDR message with 8×125= 1000 ad-
dress, for a total of 256×125× s distinct addresses sent
by all peers. (There are 224 addresses in the 252.0.0.0/8
block, so all these addresses are distinct if s < 524.)

B.2 Botnet strategy
In a botnet attack, each of the attacker’s t nodes is in
a distinct source group. For s = t > 200, which is the
case for all our botnet attacks, equation (13) shows that
the number of source groups s = t is essentially uncon-
strained. We thus require each peer to send a single
ADDR message containing 1000 addresses with 250 dis-
tinct groups of four addresses each. Since s = t is so
large, we can model this by assuming that each (group,
source group) pair selects a bucket in new uniformly at
random, and inserts 4 addresses into that bucket; thus, the
expected number of addresses inserted per bucket will be
tightly concentrated around

4×E[B(250t, 1
256 ] = 3.9t

For t > 200, we expect at least 780 address to be inserted
into each bucket. From equations (5) and (6), we find
E[Y780]≈ 64, so that each new bucket is likely to be full.
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Abstract

An enhanced dynamic taint-tracking semantics is pre-
sented and implemented, facilitating fast and precise run-
time secret redaction from legacy processes, such as those
compiled from C/C++. The enhanced semantics reduce
the annotation burden imposed upon developers seeking
to add secret-redaction capabilities to legacy code, while
curtailing over-tainting and label creep.

An implementation for LLVM’s DataFlow Sani-
tizer automatically instruments taint-tracking and secret-
redaction support into annotated C/C++ programs at
compile-time, yielding programs that can self-censor their
address spaces in response to emerging cyber-attacks. The
technology is applied to produce the first information
flow-based honey-patching architecture for the Apache
web server. Rather than merely blocking intrusions, the
modified server deceptively diverts attacker connections
to secret-sanitized process clones that monitor attacker
activities and disinform adversaries with honey-data.

1 Introduction

Redaction of sensitive information from documents has
been used since ancient times as a means of conceal-
ing and removing secrets from texts intended for pub-
lic release. As early as the 13th century B.C., Pharaoh
Horemheb, in an effort to conceal the acts of his predeces-
sors from future generations, so thoroughly located and
erased their names from all monument inscriptions that
their identities weren’t rediscovered until the 19th century
A.D. [22]. In the modern era of digitally manipulated
data, dynamic taint analysis (cf., [40]) has become an im-
portant tool for automatically tracking the flow of secrets
(tainted data) through computer programs as they execute.
Taint analysis has myriad applications, including program
vulnerability detection [5, 6, 9, 25, 33, 34, 37, 45, 46], mal-
ware analysis [19, 20, 36, 48], test set generation [3, 42],
and information leak detection [4, 14, 21, 23, 24, 49].

Our research introduces and examines the associated
challenge of secret redaction from program process im-
ages. Safe, efficient redaction of secrets from program
address spaces has numerous potential applications, in-
cluding the safe release of program memory dumps to
software developers for debugging purposes, mitigation
of cyber-attacks via runtime self-censoring in response to
intrusions, and attacker deception through honey-potting.

A recent instantiation of the latter is honey-patching [2],
which proposes crafting software security patches in such
a way that future attempted exploits of the patched vul-
nerabilities appear successful to attackers. This frustrates
attacker vulnerability probing, and affords defenders op-
portunities to disinform attackers by divulging “fake” se-
crets in response to attempted intrusions. In order for such
deceptions to succeed, honey-patched programs must be
imbued with the ability to impersonate unpatched soft-
ware with all secrets replaced by honey-data. That is, they
require a technology for rapidly and thoroughly redacting
all secrets from the victim program’s address space at
runtime, yielding a vulnerable process that the attacker
may further penetrate without risk of secret disclosure.

Realizing such runtime process secret redaction in prac-
tice educes at least two significant research challenges.
First, the redaction step must yield a runnable program
process. Non-secrets must therefore not be conservatively
redacted, lest data critical for continuing the program’s
execution be deleted. Secret redaction for running pro-
cesses is hence especially sensitive to label creep and over-
tainting failures. Second, many real-world programs tar-
geted by cyber-attacks were not originally designed with
information flow tracking support, and are often expressed
in low-level, type-unsafe languages, such as C/C++. A
suitable solution must be amenable to retrofitting such
low-level, legacy software with annotations sufficient to
distinguish non-secrets from secrets, and with efficient
flow-tracking logic that does not impair performance.

Our approach builds upon the LLVM compiler’s [31]
DataFlow Sanatizer (DFSan) infrastructure [18], which
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adds byte-granularity taint-tracking support to C/C++ pro-
grams at compile-time. At the source level, DFSan’s
taint-tracking capabilities are purveyed as runtime data-
classification, data-declassification, and taint-checking
operations, which programmers add to their programs to
identify secrets and curtail their flow at runtime. Unfortu-
nately, straightforward use of this interface for redaction
of large, complex legacy codes can lead to severe over-
tainting, or requires an unreasonably detailed retooling of
the code with copious classification operations. This is un-
safe, since missing even one of these classification points
during retooling risks disclosing secrets to adversaries.

To overcome these deficiencies, we augment DFSan
with a declarative, type annotation-based secret-labeling
mechanism for easier secret identification; and we intro-
duce a new label propagation semantics, called Pointer
Conditional-Combine Semantics (PC2S), that efficiently
distinguishes secret data within C-style graph data struc-
tures from the non-secret structure that houses the data.
This partitioning of the bytes greatly reduces over-tainting
and the programmer’s annotation burden, and proves crit-
ical for precisely redacting secret process data whilst pre-
serving process operation after redaction.

Our innovations are showcased through the develop-
ment of a taint tracking-based honey-patching framework
for three production web servers, including the popu-
lar Apache HTTP server (∼2.2M SLOC). The modified
servers respond to detected intrusions by transparently
forking attacker sessions to unpatched process clones
in confined decoy environments. Runtime redaction
preserves attacker session data without preserving data
owned by other users, yielding a deceptive process that
continues servicing the attacker without divulging secrets.
The decoy can then monitor attacker strategies, harvest
attack data, and disinform the attacker with honey-data in
the form of false files or process data.

Our contributions can be summarized as follows:
• We introduce a pointer tainting methodology through

which secret sources are derived from statically anno-
tated data structures, lifting the burden of identifying
classification code-points in legacy C code.

• We propose and formalize taint propagation seman-
tics that accurately track secrets while controlling
taint spread. Our solution is implemented as a small
extension to LLVM, allowing it to be applied to a
large class of COTS applications.

• We implement a memory redactor for secure honey-
patching. Evaluation shows that our implementation
is both more efficient and more secure than previous
pattern-matching based redaction approaches.

• Implementations and evaluations for three produc-
tion web servers demonstrate that the approach is
feasible for large-scale, performance-critical soft-
ware with reasonable overheads.

Listing 1: Apache’s URI parser function (excerpt)
1 /* first colon delimits username:password */
2 s1 = memchr(hostinfo, ':', s − hostinfo);
3 if (s1) {
4 uptr->user = apr pstrmemdup(p, hostinfo, s1 − hostinfo);
5 ++s1;
6 uptr->password = apr pstrmemdup(p, s1, s − s1);
7 }

2 Approach Overview

We first outline practical limitations of traditional dy-
namic taint-tracking for analyzing dataflows in server ap-
plications, motivating our research. We then overview our
approach and its application to the problem of redacting
secrets from runtime process memory images.

2.1 Dynamic Taint Analysis
Dynamic taint analyses enforce taint policies, which spec-
ify how data confidentiality and integrity classifications
(taints) are introduced, propagated, and checked as a
program executes. Taint introduction rules specify taint
sources—typically a subset of program inputs. Taint prop-
agation rules define how taints flow. For example, the
result of summing tainted values might be a sum labeled
with the union (or more generally, the lattice join) of the
taints of the summands. Taint checking is the process of
reading taints associated with data, usually to enforce an
information security policy. Taints are usually checked at
data usage or disclosure points, called sinks.

Extending taint-tracking to low-level, legacy code not
designed with taint-tracking in mind is often difficult. For
example, the standard approach of specifying taint intro-
ductions as annotated program inputs often proves too
coarse for inputs comprising low-level, unstructured data
streams, such as network sockets. Listing 1 exemplifies
the problem using a code excerpt from the Apache web
server [1]. The excerpt partitions a byte stream (stored
in buffer s1) into a non-secret user name and a secret
password, delimited by a colon character. Naı̈vely label-
ing input s1 as secret to secure the password over-taints
the user name (and the colon delimiter, and the rest of
the stream), leading to excessive label creep—everything
associated with the stream becomes secret, with the result
that nothing can be safely divulged.

A correct solution must more precisely identify data
field uptr->password (but not uptr->user) as se-
cret after the unstructured data has been parsed. This
is achieved in DFSan by manually inserting a runtime
classification operation after line 6. However, on a larger
scale this brute-force labeling strategy imposes a danger-
ously heavy annotation burden on developers, who must
manually locate all such classification points. In C/C++
programs littered with pointer arithmetic, the correct clas-
sification points can often be obscure. Inadvertently omit-
ting even one classification risks information leaks.
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2.2 Sourcing & Tracking Secrets

To ease this burden, we introduce a mechanism whereby
developers can identify secret-storing structures and fields
declaratively rather than operationally. For example, to
correctly label the password in Listing 1 as secret, users
of our system may add type qualifier SECRET STR to
the password field’s declaration in its abstract datatype
definition. Our modified LLVM compiler responds to
this static annotation by dynamically tainting all values
assigned to the password field. Since datatypes typically
have a single point of definition (in contrast to the many
code points that access them), this greatly reduces the
annotation burden imposed upon code maintainers.

In cases where the appropriate taint is not stati-
cally known (e.g., if each password requires a differ-
ent, user-specific taint label), parameterized type-qualifier
SECRET〈f〉 identifies a user-implemented function f that
computes the appropriate taint label at runtime.

Unlike traditional taint introduction semantics, which
label program input values and sources with taints, rec-
ognizing structure fields as taint sources requires a
new form of taint semantics that conceptually inter-
prets dynamically identified memory addresses as taint
sources. For example, a program that assigns address
&(uptr->password) to pointer variable p, and then as-
signs a freshly allocated memory address to ∗p, must
automatically identify the freshly allocated memory as a
new taint source, and thereafter taint any values stored at
∗p[i] (for all indexes i).

To achieve this, we leverage and extend DFSan’s
pointer-combine semantics (PCS) feature, which option-
ally combines (i.e., joins) the taints of pointers and
pointees during pointer dereferences. Specifically, when
PCS on-load is enabled, read-operation ∗p yields a value
tainted with the join of pointer p’s taint and the taint of
the value to which p points; and when PCS on-store is
enabled, write-operation ∗p := e taints the value stored
into ∗p with the join of p’s and e’s taints. Using PCS leads
to a natural encoding of SECRET annotations as pointer
taints. Continuing the previous example, PCS propagates
uptr->password’s taint to p, and subsequent derefer-
encing assignments propagate the two pointers’ taints to
secrets stored at their destinations.

PCS works well when secrets are always separated
from the structures that house them by a level of pointer
indirection, as in the example above (where uptr->

password is a pointer to the secret rather than the se-
cret itself). However, label creep difficulties arise when
structures mix secret values with non-secret pointers. To
illustrate, consider a simple linked list � of secret inte-
gers, where each integer has a different taint. In order
for PCS on-store to correctly classify values stored to
�->secret int, pointer � must have taint γ1, where γ1
is the desired taint of the first integer. But this causes

Listing 2: Abbreviated Apache’s session record struct
1 typedef struct {
2 NONSECRET apr pool t *pool;
3 NONSECRET apr uuid t *uuid;
4 SECRET STR const char *remote user;
5 apr table t *entries;
6 ...
7 } SECRET session rec;

stores to �->next to incorrectly propagate taint γ1 to the
node’s next-pointer, which propagates γ1 to subsequent
nodes when dereferenced. In the worst case, all nodes be-
come labeled with all taints. Such issues have spotlighted
effective pointer tainting as a significant challenge in the
taint-tracking literature [17, 27, 40, 43].

To address this shortcoming, we introduce a new, gen-
eralized PC2S semantics that augments PCS with pointer-
combine exemptions conditional upon the static type of
the pointee. In particular, a PC2S taint-propagation pol-
icy may dictate that taint labels are not combined when
the pointee has pointer type. Hence, �->secret int

receives �’s taint because the assigned expression has
integer type, whereas �’s taint is not propagated to �->

next because the latter’s assigned expression has pointer
type. We find that just a few strategically selected exemp-
tion rules expressed using this refined semantics suffices
to vastly reduce label creep while correctly tracking all
secrets in large legacy source codes.

In order to strike an acceptable balance between secu-
rity and usability, our solution only automates tainting
of C/C++ style structures whose non-pointer fields share
a common taint. Non-pointer fields of mixed tainted-
ness within a single struct are not supported automatically
because C programs routinely use pointer arithmetic to
reference multiple fields in a struct via a common pointer
(imparting the pointer’s taint to all the struct’s non-pointer
fields). Our work therefore targets the common case in
which the taint policy is expressible at the granularity of
structures, with exemptions for fields that point to other
(differently tainted) structure instances. This corresponds
to the usual scenario where a non-secret graph structure
(e.g., a tree) stores secret data in its nodes.

Users of our system label structure datatypes as
SECRET (implicitly introducing a taint to all fields within
the structure), and additionally annotate pointer fields as
NONSECRET to exempt their taints from pointer-combines
during dereferences. Pointers to dynamic-length, null-
terminated secrets get annotation SECRET STR. For exam-
ple, Listing 2 illustrates the annotation of session req,
used by Apache to store remote users’ session data. Finer-
granularity policies remain enforceable, but require man-
ual instrumentation via DFSan’s API, to precisely distin-
guish which of the code’s pointer dereference operations
propagate pointer taints. Our solution thus complements
existing approaches.
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Figure 1: Architectural overview of honey-patching.

2.3 Application Study: Honey-Patching
Our discoveries are applied to realize practical, efficient
honey-patching of legacy web servers for attacker decep-
tion. Typical software security patches fix newly discov-
ered vulnerabilities at the price of advertising to attackers
which systems have been patched. Cyber-criminals there-
fore easily probe today’s Internet for vulnerable software,
allowing them to focus their attacks on susceptible targets.

Honey-patching, depicted in Figure 1, is a recent strat-
egy for frustrating such attacks. In response to malicious
inputs, honey-patched applications clone the attacker ses-
sion onto a confined, ephemeral, decoy environment,
which behaves henceforth as an unpatched, vulnerable
version of the software. This potentially augments the
server with an embedded honeypot that waylays, moni-
tors, and disinforms criminals.

Highly efficient cloning is critical for such architec-
tures, since response delays risk alerting attackers to the
deception. The cloning process must therefore rapidly lo-
cate and redact all secrets from the process address space,
yielding a runnable process with only the attacker’s ses-
sion data preserved. Moreover, redaction must not be
overly conservative. If redaction crashes the clone with
high probability, or redacts obvious non-secrets, this too
alerts the attacker. To our knowledge, no prior taint-
tracking approach satisfies all of these demanding per-
formance, precision, and legacy-maintainability require-
ments. We therefore select honey-patching of Apache as
our flagship case-study.

3 Formal Semantics
For explanatory precision, we formally define our new
taint-tracking semantics in terms of the simple, typed
intermediate language (IL) in Figure 2, inspired by prior
work [40]. The simplified IL abstracts irrelevant details
of LLVM’s IR language, capturing only those features
needed to formalize our analysis.

3.1 Language Syntax
Programs P are lists of commands, denoted c. Commands
consist of variable assignments, pointer-dereferencing as-

programs P ::= c

commands c ::= v :=e | store(τ, e1, e2) | ret(τ, e)

| call(τ, e, args) | br(e, e1, e0)

expressions e ::= v | 〈u, γ〉 | ♦b(τ, e1, e2) | load(τ, e)

binary ops ♦b ::= typical binary operators

variables v

values u ::= values of underlying IR language

types τ ::= ptr τ | τ τ | primitive types

taint labels γ ∈ (Γ,�) (label lattice)

locations � ::= memory addresses

environment ∆ : v ⇀ u

prog counter pc

stores σ : (� ⇀ u) ∪ (v ⇀ �)

functions f

function table φ : f ⇀ �

taint contexts λ : (� ∪ v) ⇀ γ

propagation ρ : γ → γ

prop contexts A : f → ρ

call stack Ξ ::= nil | 〈f, pc, ∆, γ〉 :: Ξ

Figure 2: Intermediate representation syntax.

signments (stores), conditional branches, function invo-
cations, and function returns. Expressions evaluate to
value-taint pairs 〈u, γ〉, where u ranges over typical value
representations, and γ is the taint label associated with
u. Labels denote sets of taints; they therefore comprise
a lattice ordered by subset (�), with the empty set ⊥ at
the bottom (denoting public data), and the universe � of
all taints at the top (denoting maximally secret data). Join
operation � denotes least upper bound.

Variable names range over identifiers and function
names, and the type system supports pointer types, func-
tion types, and typical primitive types. Since DFSan’s
taint-tracking is dynamic, we here omit a formal static
semantics and assume that programs are well-typed.

Execution contexts are comprised of a store σ relating
locations to values and variables to locations, an envi-
ronment ∆ mapping variables to values, and a tainting
context λ mapping locations and variables to taint labels.
Additionally, to express the semantics of label propaga-
tion for external function calls (e.g., runtime library API
calls), we include a function table φ that maps external
function names to their entry points, a propagation context
A that dictates whether and how each external function
propagates its argument labels to its return value label,
and the call stack Ξ. Taint propagation policies returned
by A are expressed as customizable mappings ρ from
argument labels γ to return labels γ.
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VAL
σ,∆, λ � u ⇓ 〈u,⊥〉 VAR

σ,∆, λ � v ⇓ 〈∆(v), λ(v)〉
σ,∆, λ � e1 ⇓ 〈u1, γ1〉 σ,∆, λ � e2 ⇓ 〈u2, γ2〉

BINOP
σ,∆, λ � ♦b(τ, e1, e2) ⇓ 〈u1 ♦b u2, γ1 � γ2〉

σ,∆, λ � e ⇓ 〈u, γ〉
LOAD

σ,∆, λ � load(τ, e) ⇓ 〈σ(u), ρload(τ, γ, λ(u))〉
σ,∆, λ � e ⇓ 〈u, γ〉 ∆′ = ∆[v �→ u] λ′ = λ[v �→ γ]

ASSIGN〈σ,∆, λ,Ξ, pc, v := e〉 →1 〈σ,∆′, λ′,Ξ, pc + 1,P[pc + 1]〉
σ,∆, λ � e1 ⇓ 〈u1, γ1〉 σ,∆, λ � e2 ⇓ 〈u2, γ2〉 σ′ = σ[u1 �→ u2] λ′ = λ[u1 �→ ρstore(τ, γ1, γ2)]

STORE〈σ,∆, λ,Ξ, pc,store(τ, e1, e2)〉 →1 〈σ′,∆, λ′,Ξ, pc + 1,P[pc + 1]〉
σ,∆, λ � e ⇓ 〈u, γ〉 σ,∆, λ � e(u ? 1 : 0) ⇓ 〈u′, γ′〉

COND〈σ,∆, λ,Ξ, pc,br(e, e1, e0)〉 →1 〈σ,∆, λ,Ξ, u′,P[u′]〉
σ,∆, λ � e1 ⇓ 〈u1, γ1〉 · · · σ,∆, λ � en ⇓ 〈un, γn〉

∆′ = ∆[paramsf �→ u1 · · · un] λ′ = λ[paramsf �→ γ1 · · · γn] fr = 〈f, pc + 1,∆, γ1 · · · γn〉
CALL〈σ,∆, λ,Ξ, pc,call(τ, f, e1 · · · en)〉 →1 〈σ,∆′, λ′, fr :: Ξ, φ(f),P[φ(f)]〉

σ,∆, λ � e ⇓ 〈u, γ〉 fr = 〈f, pc′,∆′, γ〉 λ′ = λ[vret �→ A f γ]
RET〈σ,∆, λ, fr :: Ξ, pc,ret(τ, e)〉 →1 〈σ,∆′[vret �→ u], λ′,Ξ, pc′,P[pc′]〉

Figure 3: Operational semantics of a generalized label propagation semantics.

3.2 Operational Semantics
Figure 3 presents an operational semantics defining how
taint labels propagate in an instrumented program. Ex-
pression judgments are large-step (⇓), while command
judgments are small-step (→1). At the IL level, expres-
sions are pure and programs are non-reflective.

Abstract machine configurations consist of tuples
〈σ,∆, λ,Ξ, pc, ι〉, where pc is the program pointer and
ι is the current instruction. Notation ∆[v �→ u] denotes
function ∆ with v remapped to u, and notation P[pc]
refers to the program instruction at address pc. For brevity,
we omit P from machine configurations, since it is fixed.

Rule VAL expresses the typical convention that hard-
coded program constants are initially untainted (⊥). Bi-
nary operations are eager, and label their outputs with the
join (�) of their operand labels.

The semantics of load(τ, e) read the value stored in
location e, where the label associated with the loaded
value is obtained by propagation function ρload . Dually,
store(τ, e1, e2) stores e2 into location e1, updating λ
according to ρstore . In C programs, these model pointer
dereferences and dereferencing assignments, respectively.
Parameterizing these rules in terms of abstract propaga-
tion functions ρload and ρstore allows us to instantiate
them with customized propagation policies at compile-
time, as detailed in §3.3.

External function calls call(τ, f, e1 · · · en) evaluate
arguments e1 · · · en, create a new stack frame fr , and
jump to the callee’s entry point. Returns then consult
propagation context A to appropriately label the value
returned by the function based on the labels of its ar-
guments. Context A can be customized by the user to
specify how labels propagate through external libraries
compiled without taint-tracking support.

NCS ρ{load,store}(τ, γ1, γ2) := γ2

PCS ρ{load,store}(τ, γ1, γ2) := γ1 � γ2

PC2S ρ{load,store}(τ, γ1, γ2) := (τ is ptr) ? γ2 : (γ1 � γ2)

Figure 4: Polymorphic functions modeling no-combine,
pointer-combine, and PC2S label propagation policies.

3.3 Label Propagation Semantics

The operational semantics are parameterized by propa-
gation functions ρ that can be instantiated to a specific
propagation policy at compile-time. This provides a base
framework through which we can study different propa-
gation policies and their differing characteristics.

Figure 4 presents three polymorphic functions that can
be used to instantiate propagation policies. On-load prop-
agation policies instantiate ρload , while on-store policies
instantiate ρstore . The instantiations in Figure 4 define
no-combine semantics (DFSan’s on-store default), PCS
(DFSan’s on-load default), and our PC2S extensions:

No-combine. The no-combine semantics (NCS) model
a traditional, pointer-transparent propagation policy.
Pointer labels are ignored during loads and stores, causing
loaded and stored data retain their labels irrespective of
the labels of the pointers being dereferenced.

Pointer-Combine Semantics. In contrast, PCS joins
pointer labels with loaded and stored data labels during
loads and stores. Using this policy, a value is tainted on-
load (resp., on-store) if its source memory location (resp.,
source operand) is tainted or the pointer value derefer-
enced during the operation is tainted. If both are tainted
with different labels, the labels are joined to obtain a new
label that denotes the union of the originals.
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Figure 5: PC2S propagation policy on store commands.

Pointer Conditional-Combine Semantics. PC2S general-
izes PCS by conditioning the label-join on the static type
of the data operand. If the loaded/stored data has pointer
type, it applies the NCS rule; otherwise, it applies the
PCS rule. The resulting label propagation for stores is
depicted in Figure 5.

This can be leveraged to obtain the best of both worlds.
PC2S pointer taints retain most of the advantages of PCS—
they can identify and track aliases to birthplaces of secrets,
such as data structures where secrets are stored immedi-
ately after parsing, and they automatically propagate their
labels to data stored there. But PC2S resists PCS’s over-
tainting and label creep problems by avoiding propaga-
tion of pointer labels through levels of pointer indirection,
which usually encode relationships with other data whose
labels must remain distinct and separately managed.

Condition (τ is ptr) in Figure 4 can be further gen-
eralized to any decidable proposition on static types τ .
We use this feature to distinguish pointers that cross data
ownership boundaries (e.g., pointers to other instances
of the parent structure) from pointers that target value
data (e.g., strings). The former receive NCS treatment
by default to resist over-tainting, while the latter receive
PCS treatment by default to capture secrets and keep the
annotation burden low.

In addition, PC2S is at least as efficient as PCS because
propagation policy ρ is partially evaluated at compile-
time. Thus, the choice of NCS or PCS semantics for each
pointer operation is decided purely statically, conditional
upon the static types of the operands. The appropriate
specialized propagation implementation is then in-lined
into the resulting object code during compilation.

Example. To illustrate how each semantics propagate
taint, consider the IL pseudo-code in Listing 3, which re-
visits the linked-list example informally presented in §2.2.
Input stream s includes a non-secret request identifier and
a secret key of primitive type (e.g., unsigned long).

If one labels stream s secret, then the public request id
becomes over-tainted in all three semantics, which is
undesirable because a redaction of request id may crash
the program (when request id is later used as an array
index). A better solution is to label pointer p secret and
employ PCS, which correctly labels the key at the moment
it is stored. However, PCS additionally taints the next-
pointer, leading to over-tainting of all the nodes in the

Listing 3: IL pseudo-code for storing public ids and secret
keys from an unstructured input stream into a linked list.

1 store(id, request id , get(s , id size));
2 store(key, p[request id ]->key,get(s,key size));
3 store(ctx t*, p[request id ]->next,queue head);

containing linked-list, some of which may contain keys
owned by other users. PC2S avoids this over-tainting by
exempting the next pointer from the combine-semantics.
This preserves the data structure while correctly labeling
the secret data it contains.

4 Implementation
Figure 6 presents an architectural overview of our im-
plementation, SignaC1 (Secret Information Graph iNstru-
mentation for Annotated C). At a high level, the imple-
mentation consists of three components: (1) a source-to-
source preprocessor, which (a) automatically propagates
user-supplied, source-level type annotations to containing
datatypes, and (b) in-lines taint introduction logic into
dynamic memory allocation operations; (2) a modified
LLVM compiler that instruments programs with PC2S
taint propagation logic during compilation; and (3) a run-
time library that the instrumented code invokes during
program execution to introduce taints and perform redac-
tion. Each component is described below.

4.1 Source-Code Rewriting
Type attributes. Users first annotate data structures con-
taining secrets with the type qualifier SECRET. This in-
structs the taint-tracker to treat all instantiations (e.g., dy-
namic allocations) of these structures as taint sources. Ad-
ditionally, qualifier NONSECRET may be applied to pointer
fields within these structures to exempt them from PCS.
The instrumentation pass generates NCS logic instead
for operations involving such members. Finally, qualifier
SECRET STR may be applied to pointer fields whose des-
tinations are dynamic-length byte sequences bounded by
a null terminator (strings).

To avoid augmenting the source language’s gram-
mar, these type qualifiers are defined using source-
level attributes (specified with attribute ) followed
by a specifier. SECRET uses the annotate specifier,
which defines a purely syntactic qualifier visible only
at the compiler’s front-end. In contrast, NONSECRET
and SECRET STR are required during the back-end instru-
mentation. To this end, we leverage Quala [39], which
extends LLVM with an overlay type system. Quala’s
type annotate specifier propagates the type qualifiers
throughout the IL code.

1named after pointillism co-founder Paul Signac
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struct request_rec {
   NONSECRET ... *pool;
   apr_uri_t parsed_uri;
   ...
} SECRET;

Annotated Types
clang transformation

Rewriting

new = (request_rec *) apr_pcalloc(r->pool,  );

new = (request_rec *) signac_alloc(apr_pcalloc, r->pool,  );

Instrumentation
clang/LLVM 
-dfsan -pc2s

instrumented
binary

libsignaC 

Figure 6: Architectural overview of SignaC illustrating its three-step, static instrumentation process: (1) annotation of
security-relevant types, (2) source-code rewriting, and (3) compilation with the sanitizer’s instrumentation pass.

Type attribute rewriting. In the preprocessing step, the
target application undergoes a source-to-source transfor-
mation pass that rewrites all dynamic allocations of anno-
tated data types with taint-introducing wrappers. Imple-
menting this transformation at the source level allows us
to utilize the full type information that is available at the
compiler’s front-end, including purely syntactic attributes
such as SECRET annotations.

Our implementation leverages Clang’s tooling API [12]
to traverse and apply the desired transformations directly
into the program’s AST. At a high-level, the rewriting
algorithm takes the following steps:

1. It first amasses a list of all security-relevant data-
types, which are defined as (a) all structs and unions
annotated SECRET, (b) all types defined as aliases
(e.g., via typedef) of security-relevant datatypes, and
(c) all structs and unions containing secret-relevant
datatypes not separated from the containing structure
by a level of pointer indirection (e.g., nested struct
definitions). This definition is recursive, so the list
is computed iteratively from the transitive closure of
the graph of datatype definition references.

2. It next finds all calls to memory allocation functions
(e.g., malloc, calloc) whose return values are explic-
itly or implicitly cast to a security-relevant datatype.
Such calls are wrapped in calls to SignaC’s runtime
library, which dynamically introduces an appropriate
taint label to the newly allocated structure.

The task of identifying memory allocation functions is
facilitated by a user-supplied list that specifies the mem-
ory allocation API. This allows the rewriter to handle
programs that employ custom memory management. For
example, Apache defines custom allocators in its Apache
Portable Runtime (APR) memory management interface.

4.2 PC2S Instrumentation
The instrumentation pass next introduces LLVM IR code
during compilation that propagates taint labels during
program execution. Our implementation extends DFSan
with the PC2S label propagation policy specified in §3.

Taint representation. To support a large number of taint
labels, DFSan adopts a low-overhead representation of

labels as 16-bit integers, with new labels allocated se-
quentially from a pool. Rather than reserving 2n labels to
represent the full power set of a set of n primitive taints,
DFSan lazily reserves labels denoting non-singleton sets
on-demand. When a label union operation is requested
at a join point (e.g., during binary operations on tainted
operands), the instrumentation first checks whether a new
label is required. If a label denoting the union has already
been reserved, or if one operand label subsumes the other,
DFSan returns the already-reserved label; otherwise, it
reserves a fresh union label from the label pool. The fresh
label is defined by pointers to the two labels that were
joined to form it. Union labels are thus organized as a
dynamically growing binary DAG—the union table.

This strategy benefits applications whose label-joins
are sparse, visiting only a small subset of the universe of
possible labels. Our PC2S semantics’ curtailment of label
creep thus synergizes with DFSan’s lazy label allocation
strategy, allowing us to realize taint-tracking for legacy
code that otherwise exceeds the maximum label limit.
This benefit is further evidenced in our evaluation (§5).

Table 1 shows the memory layout of an instrumented
program. DFSan maps (without reserving) the lower
32 TB of the process address space for shadow mem-
ory, which stores the taint labels of the values stored at
the corresponding application memory addresses. This
layout allows for efficient lookup of shadow addresses by
masking and shifting the application’s addresses. Labels
of values not stored in memory (e.g., those stored in ma-
chine registers or optimized away at compile-time) are
tracked at the IL level in SSA registers, and compiled to
suitable taint-tracking object code.

Function calls. Propagation context A defined in §3 mod-
els label propagation across external library function calls,
expressed in DFSan as an Application Binary Interface
(ABI). The ABI lists functions whose label-propagation

Table 1: Memory layout of an instrumented program.
Start End Memory Region

0x700000008000 0x800000000000 application memory
0x200000000000 0x200200000000 union table
0x000000010000 0x200000000000 shadow memory
0x000000000000 0x000000010000 reserved by kernel

7



152 24th USENIX Security Symposium USENIX Association

behavior (if any) should be replaced with a fixed, user-
defined propagation policy at call sites. For each such
function, the ABI specifies how the labels of its arguments
relate to the label of its return value.

DFSan natively supports three such semantics: (1)
discard, which corresponds to propagation function
ρdis(γ) := ⊥ (return value is unlabeled); (2) functional,
corresponding to propagation function ρfun(γ) :=

⊔
γ

(label of return value is the union of labels of the function
arguments); and (3) custom, denoting a custom-defined
label propagation wrapper function.

DFSan pre-defines an ABI list that covers glibc’s in-
terface. Users may extend this with the API functions
of external libraries for which source code is not avail-
able or cannot be instrumented. For example, to in-
strument Apache with mod ssl, we mapped OpenSSL’s
API functions to the ABI list. In addition, we extended
the custom ABI wrappers of memory transfer functions
(e.g., strcpy, strdup) and input functions (e.g., read,
pread) to implement PC2S. For instance, we modified
the wrapper for strcpy(dest,src) to taint dest with
γsrc � γdest when instrumenting code under PC2S.

Static instrumentation. The instrumentation pass is
placed at the end of LLVM’s optimization pipeline. This
ensures that only memory accesses surviving all compiler
optimizations are instrumented, and that instrumentation
takes place just before target code is generated. Like
other LLVM transform passes, the program transforma-
tion operates on LLVM IR, traversing the entire program
to insert label propagation code. At the front-end, compi-
lation flags parametrize the label propagation policies for
the store and load operations discussed in §3.3.

String handling. Strings in C are not first-class types; they
are implemented as character pointers. C’s type system
does not track their lengths or enforce proper termination.
This means that purely static typing information is insuf-
ficient for the instrumentation to reliably identify strings
or propagate their taints to all constituent bytes on store.
To overcome this problem, users must annotate secret-
containing, string fields with SECRET STR. This cues the
runtime library to taint up to and including the pointee’s
null terminator when a string is assigned to such a field.
For safety, our runtime library (see §4.3) zeros the first
byte of all fresh memory allocations, so that uninitialized
strings are always null-terminated.

Store instructions. Listing 4 summarizes the instrumenta-
tion procedure for stores in diff style. By default, DFSan
instruments NCS on store instructions: it reads the shadow
memory of the value operand (line 1) and copies it onto
the shadow of the pointer operand (line 10). If PC2S is
enabled (lines 2 and 11), the instrumentation consults the
static type of the value operand and checks whether it is a
non-pointer or non-exempt pointer field (which also sub-

Listing 4: Store instruction instrumentation
1 Value* Shadow = DFSF.getShadow(SI.getValueOperand());
2 + if (Cl PC2S OnStore) {
3 + Type *t = SI.getValueOperand()->getType();
4 + if (!t->isPointerTy() || !isExemptPtr(&SI)) {
5 + Value *PtrShadow = DFSF.getShadow(SI.getPointerOperand());
6 + Shadow = DFSF.combineShadows(Shadow, PtrShadow, &SI);
7 + }
8 + }
9 ...

10 DFSF.storeShadow(SI.getPointerOperand(), Size, Align, Shadow, &SI);
11 + if (Cl PC2S OnStore) {
12 + if (isSecretStr(&SI)) {
13 + Value *Str = IRB.CreateBitCast(v, Type::getInt8PtrTy(Ctx));
14 + IRB.CreateCall2(DFSF.DFS.DFSanSetLabelStrFn, Shadow, Str);
15 + }
16 + }

Listing 5: Load instruction instrumentation
1 Value *Shadow = DFSF.loadShadow(LI.getPointerOperand(), Size, ...);
2 + if (Cl PC2S OnLoad) {
3 + if (!isExemptPtr(&LI)) {
4 + Value *PtrShadow = DFSF.getShadow(LI.getPointerOperand());
5 + Shadow = DFSF.combineShadows(Shadow, PtrShadow, &LI);
6 + }
7 + }
8 ...
9 DFSF.setShadow(&LI, Shadow);

sumes SECRET STR) in lines 3–4. If so, the shadows of
the pointer and value operands are joined (lines 5–6), and
the resulting label is stored into the shadow of the pointer
operand. If the instruction stores a string annotated with
SECRET STR, the instrumentation calls a runtime library
function that copies the computed shadow to all bytes of
the null-terminated string (lines 12–15).

Load instructions. Listing 5 summarizes the analogous
instrumentation for load instructions. First, the instrumen-
tation loads the shadow of the value pointed by the pointer
operand (line 1). If PC2S is enabled (line 2), then the in-
strumentation checks whether the dereferenced pointer is
tainted (line 3). If so, the shadow of the pointer operand
is joined with the shadow of its value (lines 4–5), and the
resulting label is saved to the shadow (line 9).

Memory transfer intrinsics. LLVM defines intrinsics for
standard memory transfer operations, such as memcpy

and memmove. These functions accept a source pointer
src, a destination pointer dst , and the number of bytes
len to be transferred. DFSan’s default instrumentation
destructively copies the shadow associated with src to
the shadow of dst , which is not the intended propagation
policy of PC2S. We therefore instrument these functions
as shown in Listing 6. The instrumentation reads the
shadows of src and dst (lines 2–3), computes the union
of the two shadows (line 4), and stores the combined
shadows to the shadow of dst (line 5).

4.3 Runtime Library
Runtime support for the type annotation mechanism is
encapsulated in a tiny C library, allowing for low coupling

8
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Listing 6: Memory transfer intrinsics instrumentation
1 + if (Cl PC2S OnStore && !isExemptPtr(&I)) {
2 + Value *DestShadow = DFSF.getShadow(I.getDest());
3 + Value *SrcShadow = DFSF.getShadow(I.getSource());
4 + DestShadow = DFSF.combineShadows(SrcShadow, DestShadow, &I);
5 + DFSF.storeShadow(I.getDest(), Size, Align, DestShadow, &I);
6 + }

Listing 7: Taint-introducing memory allocations
1 #define signac alloc(alloc, args...) ({ \
2 void * p = alloc ( args ); \
3 signac taint(& p, sizeof(void*)); \
4 p; })

between a target application and the sanitizer’s logic. The
source-to-source rewriter and instrumentation phases in-
line logic that calls this library at runtime to introduce
taints, handle special taint-propagation cases (e.g., string
support), and check taints at sinks (e.g., during redaction).
The library exposes three API functions:

• signac init(pl): initialize a tainting context with
a fresh label instantiation pl for the current principal.

• signac taint(addr,size): taint each address in
interval [addr , addr+size) with pl .

• signac alloc(alloc,. . .): wrap allocator alloc
and taint the address of its returned pointer with pl .

Function signac init instantiates a fresh taint label and
stores it in a thread-global context, which function f of
annotation SECRET〈f〉 may consult to identify the own-
ing principal at taint-introduction points. In typical web
server architectures, this function is strategically hooked
at the start of a new connection’s processing cycle. Func-
tion signac taint sets the labels of each address in in-
terval [addr , addr+size) with the label pl retrieved from
the session’s context.

Listing 7 details signac alloc, which wraps alloca-
tions of SECRET-annotated data structures. This variadic
macro takes a memory allocation function alloc and its
arguments, invokes it (line 2), and taints the address of
the pointer returned by the allocator (line 3).

4.4 Apache Instrumentation
To instrument a particular server application, such as
Apache, our approach requires two small, one-time devel-
oper interventions: First, add a call to signac init at
the start of a user session to initialize a new tainting con-
text for the newly identified principal. Second, annotate
the security-relevant data structures whose instances are
to be tracked. For instance, in Apache, signac init

is called upon the acceptance of a new server con-
nection, and annotated types include request rec,
connection rec, session rec, and modssl ctx t.
These structures are where Apache stores URI param-
eters and request content information, private connection
data such as remote IPs, key-value entries in user sessions,
and encrypted connection information.

decoytarget

attack 
detected

fork and
detach

redact 
memory clone resume

execution

attacker process

checkpoint restore

Figure 7: Honey-patch response to an intrusion attempt.

5 Evaluation

This section demonstrates the practical advantages and
feasibility of our approach for retrofitting large legacy C
codes with taint-tracking, through the development and
evaluation of a honey-patching memory redaction archi-
tecture for three production web servers. All experiments
were performed on a quad-core VM with 8 GB RAM
running 64-bit Ubuntu 14.04. The host machine is an
Intel Xeon E5645 workstation running 64-bit Windows 7.

5.1 Honey-patching
Figure 7 illustrates how honey-patches respond to intru-
sions by cloning attacker sessions to decoys. Upon in-
trusion detection, the honey-patch forks a shallow, local
clone of the victim process. The cloning step redacts
all secrets from the clone’s address space, optionally re-
placing them with honey-data. It then resumes execution
in the decoy by emulating an unpatched implementation.
This impersonates a successful intrusion, luring the at-
tacker away from vulnerable victims, and offering defend-
ers opportunities to monitor and disinform adversaries.

Prior honey-patches implement secret redaction as a
brute-force memory sweep that identifies and replaces
plaintext string secrets. This is both slow and unsafe; the
sweep constitutes a majority of the response delay over-
head during cloning [2], and it can miss binary data secrets
difficult to express reliably as regular expressions. Us-
ing SignaC, we implemented an information flow-based
redaction strategy for honey-patching that is faster and
more reliable than prior approaches.

Our redaction scheme instruments the server with dy-
namic taint-tracking. At redaction time, it scans the result-
ing shadow memory for labels denoting secrets owned by
user sessions other than the attacker’s, and redacts such se-
crets. The shadow memory and taint-tracking libraries are
then unloaded, leaving a decoy process that masquerades
as undefended and vulnerable.

Evaluated software. We implemented taint tracking-
based honey-patching for three production web servers:
Apache, Nginx, and Lighttpd. Apache and Nginx are the
top two servers of all active websites, with 50.1% and
14.8% market share, respectively [32]. Apache comprises
2.27M SLOC mostly in C [35]. Nginx and Lighttpd are
smaller, having about 146K and 138K SLOC, respectively.
All three are commercial-grade, feature-rich, open-source
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Figure 8: Experiment comparing label creeping behavior of PC2S and PCS on Apache, Nginx, and Lighttpd.

software products without any built-in support for infor-
mation flow tracking.

To augment these products with PC2S-style taint-
tracking support, we manually annotated secret-storing
structures and pointer fields. Altogether, we added ap-
proximately 45, 30, and 25 such annotations to Apache,
Nginx, and Lighttpd, respectively. For consistent eval-
uation comparisons, we only annotated Apache’s core
modules for serving static and dynamic content, encrypt-
ing connections, and storing session data; we omitted its
optional modules. We also manually added about 20–30
SLOC to each server to initialize the taint-tracker. Con-
sidering the sizes and complexity of these products, we
consider the PC2S annotation burden exceptionally light
relative to prior approaches.

5.2 Taint Spread
Over-tainting protection. To test our approach’s resis-
tance to taint explosions, we submitted a stream of (non
keep-alive) requests to each instrumented web server,
recording a cumulative tally of distinct labels instantiated
during taint-tracking. Figure 8 plots the results, compar-
ing traditional PCS to our PC2S extensions. On Apache,
traditional PCS is impractical, exceeding the maximum la-
bel limit in just 68 requests. In contrast, PC2S instantiates
vastly fewer labels (note that the y-axes are logarithmic
scale). After extrapolation, we conclude that an aver-
age 16,384 requests are required to exceed the label limit
under PC2S—well above the standard 10K-request TTL
limit for worker threads.

Taint spread control is equally critical for preserving
program functionality after redaction. To demonstrate, we
repeated the experiment with a simulated intrusion after
n ∈ [1, 100] legitimate requests. Figure 9 plots the cu-
mulative tally of how many bytes received a taint during
the history of the run on Apache. In all cases, redaction
crashed PCS-instrumented processes cloned after just 2–3
legitimate requests (due to erasure of over-tainted bytes).
In contrast, PC2S-instrumented processes never crashed;
their decoy clones continued running after redaction, im-
personating vulnerable servers. This demonstrates our
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Figure 9: Cumulative tally of bytes tainted on Apache.

Table 2: Honey-patched security vulnerabilities
Software Version CVE-ID Description

Bash1 4.3 CVE-2014-6271 Improper parsing of environ-
ment variables

OpenSSL1 1.0.1f CVE-2014-0160 Buffer over-read in heartbeat
protocol extension

Apache 2.2.21 CVE-2011-3368 Improper URL validation
Apache 2.2.9 CVE-2010-2791 Improper timeouts of keep-

alive connections
Apache 2.2.15 CVE-2010-1452 Bad request handling
Apache 2.2.11 CVE-2009-1890 Request content length out of

bounds
Apache 2.0.55 CVE-2005-3357 Bad SSL protocol check

1tested with Apache 2.4.6

approach’s facility to realize effective taint-tracking in
legacy codes for which prior approaches fail.

Under-tainting protection. To double-check that PC2S
redaction was actually erasing all secrets, we created a
workload of legitimate post requests with pre-seeded se-
crets to a web-form application. We then automated ex-
ploits of the honey-patched vulnerabilities listed in Ta-
ble 2, including the famous Shellshock and Heartbleed
vulnerabilities. For each exploit, we ran the legacy, brute-
force memory sweep redactor after SignaC’s redactor to
confirm that the former finds no secrets missed by the
latter. We also manually inspected memory dumps of
each clone to confirm that none of the pre-seeded secrets

10
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Figure 10: Request round-trip times for attacker session
forking on honey-patched Apache.

survived. In all cases, the honey-patch responds to the
exploits as a vulnerable decoy server devoid of secrets.

5.3 Performance

Redaction performance. To evaluate the performance
overhead of redacting secrets, we benchmarked three
honey-patched Apache deployments: (1) a baseline in-
stance without memory redaction, (2) brute-force mem-
ory sweep redaction, and (3) our PC2S redactor. We
used Apache’s server benchmarking tool (ab) to launch
500 malicious HTTP requests against each setup, each
configured with a pool of 25 decoys.

Figure 10 shows request round-trip times for each de-
ployment. PC2S redaction is about 1.6× faster than brute-
force memory sweep redaction; the former’s request times
average 0.196s, while the latter’s average 0.308s. This sig-
nificant reduction in cloning delay considerably improves
the technique’s deceptiveness, making it more transparent
to attackers. Nginx and Lighttpd also exhibit improved
response times of 16% (0.165s down to 0.138s) and 21%
(0.155s down to 0.122s), respectively.

Taint-tracking performance. To evaluate the perfor-
mance overhead of the static instrumentation, three
Apache setups were tested: a static-content HTML web-
site (∼20 KB page size), a CGI-based Bash application
that returns the server’s environment variables, and a dy-
namic PHP website displaying the server’s configuration.
For each web server setup, ab was executed with four
concurrency levels c (i.e., the number of parallel threads).
Each run comprises 500 concurrent requests, plotted in
ascendant order of their round-trip times (RTT).

Figure 11 shows the results for c = 1, 10, 50, and 100,
and the average overheads observed for each test profile
are summarized in Table 3. Our measurements show
overheads of 2.4×, 1.1×, and 0.3× for the static-content,
CGI, and PHP websites, respectively, which is consistent
with dynamic taint-tracking overheads reported in the
prior literature [41]. Since server computation accounts
for only about 10% of overall web site response delay in

Table 3: Average overhead of instrumentation

Benchmark c = 1 c = 10 c = 50 c = 100

Static 2.50 2.34 2.56 2.32
CGI Bash 1.29 0.98 1.00 0.97
PHP 0.41 0.37 0.30 0.31

practice [44], this corresponds to observable overheads of
about 24%, 11%, and 3% (respectively).

While such overhead characterizes feasibility, it is ir-
relevant to deception because unpatched, patched, and
honey-patched vulnerabilities are all slowed equally by
the taint-tracking instrumentation. The overhead therefore
does not reveal which apparent vulnerabilities in a given
server instance are genuine patching lapses and which
are deceptions, and it does not distinguish honey-patched
servers from servers that are slowed by any number of
other factors (e.g., fewer computational resources). In
addition, it is encouraging that high relative overheads
were observed primarily for static websites that perform
little or no significant computation. This suggests that
the more modest 3% overhead for computationally heav-
ier PHP sites is more representative of servers for which
computational performance is an issue.

6 Discussion

6.1 Approach Limitations
Our research significantly eases the task of tracking
secrets within standard, pointer-linked, graph data-
structures as they are typically implemented in low-level
languages, like C/C++. However, there are many non-
standard, low-level programming paradigms that our ap-
proach does not fully support automatically. Such limita-
tions are discussed below.

Pointer Pre-aliases. PC2S fully tracks all pointer aliases
via taint propagation starting from the point of taint-
introduction (e.g., the code point where a secret is first
assigned to an annotated structure field after parsing).
However, if the taint-introduction policy misidentifies
secret sources too late in the program flow, dynamic track-
ing cannot track pointer pre-aliases—aliases that predate
the taint-introduction. For example, if a program first
initializes string p1, then aliases p2 := p1, and finally
initializes secret-annotated field f via f := p1, PC2S
automatically labels p1 (and f ) but not pre-alias p2.

In most cases this mislabeling of pre-aliases can be mit-
igated by enabling PC2S both on-load and on-store. This
causes secrets stored via p2 to receive the correct label
on-load when they are later read via p1 or f . Likewise,
secrets read via p2 retain the correct label if they were
earlier stored via p1 or f . Thus, only data stored and read
purely using independent pre-alias p2 remain untainted.
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Figure 11: Dynamic taint-tracking performance (measured in request round-trip times) with varying concurrency c for a
static web site (a–d), Bash CGI application (e–h), and PHP application (i–l).

This is a correct enforcement of the user’s policy, since
the policy identifies f := p1 as the taint source, not p2.
If this treatment is not desired, the user must therefore
specify a more precise policy that identifies the earlier
origin of p1 as the true taint source (e.g., by manually
inserting a dynamic classification operation where p1 is
born), rather than identifying f as the taint source.

Structure granularity. Our automation of taint-tracking
for graph data-structures implemented in low-level lan-
guages leads to taint annotations at the granularity of
whole struct declarations, not individual value fields.
Thus, all non-pointer fields within a secret-annotated C
struct receive a common taint under our semantics. This
coarse granularity is appropriate for C programs since
such programs can (and often do) refer to multiple data
fields within a given struct instance using a common
pointer. For example, marshalling is typically imple-
mented as a pointer-walk that reads a byte stream directly
into all data fields (but not the pointer fields) of a struct
instance byte-by-byte. All data fields therefore receive a
common label after marshalling.

Reliable support for structs containing secrets of mixed
taint therefore requires a finer-grained taint-introduction
policy than is expressible by declarative annotations of C
structure definitions. Such policies must be operationally
specified in C through runtime classifications at secret-
introducing code points. Our focus in this research is
on automating the much more common case where each

node of the graph structure holds secrets of uniform clas-
sification, toward lifting the user’s annotation burden for
this most common case.

Dynamic-length secrets. Our implementation provides
built-in support for a particularly common form of
dynamic-length secret—null-terminated strings. This can
be extended to support other forms of dynamic-length
secrets as needed. For example, strings with an explicit
length count rather than a terminator, fat and bounded
pointers [26], and other variable-length, dynamically al-
located, data structures can be supported through the ad-
dition of an appropriate annotation type and a dynamic
taint-propagating function that extends pointer taints to
the entire pointee during assignments.

Implicit Flows. Our dynamic taint-tracking tracks ex-
plicit information flows, but not implicit flows that
disclose information through control-flows rather than
dataflows. Tracking implicit flows generally requires
static information flow analysis to reason about dis-
closures through inaction (non-observed control-flows)
rather than merely actions. Such analysis is often in-
tractable (and generally undecidable) for low-level lan-
guages like C, whose control-flows include unstructured
and dynamically computed transitions.

Likewise, dynamic taint-tracking does not monitor side-
channels, such as resource consumption (e.g., memory or
power consumption), runtimes, or program termination,
which can also divulge information. For our problem

12
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domain (program process redaction), such channels are
largely irrelevant, since attackers may only exfiltrate in-
formation after redaction, which leaves no secrets for the
attacker to glean, directly or indirectly.

6.2 Process Memory Redaction
Our research introduces live process memory image san-
itization as a new problem domain for information flow
analysis. Process memory redaction raises unique chal-
lenges relative to prior information flow applications. It
is exceptionally sensitive to over-tainting and label creep,
since it must preserve process execution (e.g., for process
debugging, continued service availability, or attacker de-
ception); it demands exceptionally high performance; and
its security applications prominently involve large, low-
level, legacy codes, which are the most frequent victims
of cyber-attacks. Future work should expand the search
for solutions to this difficult problem to consider the suit-
ability of other information flow technologies, such as
static type-based analyses.

6.3 Language Compatibility
While our implementation targets one particularly ubiq-
uitous source language (C/C++), our general approach
is applicable to other similarly low-level languages, as
well as scripting languages whose interpreters are im-
plemented in C (e.g., PHP, Bash). Such languages are
common choices for implementing web services, and tar-
geting them is therefore a natural next step for the web
security thrust of our research.

7 Related Work

Dynamic tracking of in-memory secrets. Dynamic
taint-tracking lends itself as a natural technique for track-
ing secrets in software. It has been applied to study sensi-
tive data lifetime (i.e., propagation and duration in mem-
ory) in commodity applications [10, 11], analyze spyware
behavior [19, 48], and impede the propagation of secrets
to unauthorized sinks [21, 23, 49].

TaintBochs [10] uses whole-system simulation to un-
derstand secret propagation patterns in several large,
widely deployed applications, including Apache, and im-
plements secure deallocation [11] to reduce the risk of
exposure of in-memory secrets. Panorama [48] builds a
system-level information-flow graph using process emula-
tion to identify malicious software tampering with infor-
mation that was not intended for their consumption. Egele
et al. [19] also utilize whole-system dynamic tainting to
analyze spyware behavior in web browser components.
While valuable, the performance impact of whole-system
analyses—often on the order of 2000% [10, 19, 48]—
remains a significant obstacle, rendering such approaches

impractical for most live, high-performance, production
server applications.

More recently, there has been growing interest in run-
time detection of information leaks [21, 49]. For instance,
TaintDroid [21] extends Android’s virtualized architec-
ture with taint-tracking support to detect misuses of users’
private information across mobile apps. TaintEraser [49]
uses dynamic instrumentation to apply taint analysis on
binaries for the purpose of identifying and blocking infor-
mation leaking to restricted output channels. To achieve
this, it monitors and rewrites sensitive bytes escaping to
the network and the local file system. Our work adopts a
different strategy to instrument secret-redaction support
into programs, resulting in applications that can proac-
tively respond to attacks by self-censoring their address
spaces with minimal overhead.

Pointer taintedness. In security contexts, many cate-
gories of widely exploited, memory-overwrite vulnera-
bilities (e.g., format string, memory corruption, buffer
overflow) have been recognized as detectable by dynamic
taint-checking on pointer dereferences [7, 8, 15, 16, 28].
Hookfinder [47] employs data and pointer tainting se-
mantics in a full-system emulation approach to identify
malware hooking behaviors in victim systems. Other
systems follow a similar technique to capture system-
wide information-flow and detect privacy-breaching mal-
ware [19, 48].

With this high practical utility come numerous theo-
retical and practical challenges for effective pointer taint-
ing [17, 27, 43]. On the theoretical side, there are varied
views of how to interpret a pointer’s label. (Does it ex-
press a property of the pointer value, the values it points
to, values read or stored by dereferencing the pointer, or
all three?) Different taint tracking application contexts
solicit differing interpretations, and the differing interpre-
tations lead to differing taint-tracking methodologies. Our
contributions include a pointer tainting methodology that
is conducive to tracking in-memory secrets.

On the practical side, imprudent pointer tainting of-
ten leads to taint explosion in the form of over-tainting
or label-creep [40, 43]. This can impair the feasibility
of the analysis and increase the likelihood of crashes
in programs that implement data-rewriting policies [49].
To help overcome this, sophisticated strategies involving
pointer injection (PI) analysis have been proposed [16,28].
PI uses a taint bit to track the flow of legitimate pointers
and another bit to track the flow of untrusted data, disal-
lowing dereferences of tainted values that do not have a
corresponding pointer tainted. Our approach uses static
typing information in lieu of PI bits to achieve lower run-
time overheads and broader compatibility with low-level
legacy code.

Application-level instrumentation. Much of the prior
work on dynamic taint analysis has employed dynamic

13
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binary instrumentation (DBI) frameworks [9,13,29,33,38,
49] to enforce taint-tracking policies on software. These
approaches do not require application recompilation, nor
do they depend on source code information.

However, despite many optimization advances over the
years, dynamic instrumentation still suffers from signif-
icant performance overheads, and therefore cannot sup-
port high-performance applications, such as the redaction
speeds required for attacker-deceiving honey-patching of
production server code. Our work benefits from research
advances on static-instrumented, dynamic data flow anal-
ysis [6, 18, 30, 46] to achieve both high performance and
high accuracy by leveraging LLVM’s compilation infras-
tructure to instrument taint-propagating code into server
code binaries.

8 Conclusion

PC2S significantly improves the feasibility of dynamic
taint-tracking for low-level legacy code that stores secrets
in graph data structures. To ease the programmer’s an-
notation burden and avoid taint explosions suffered by
prior approaches, it introduces a novel pointer-combine se-
mantics that resists taint over-propagation through graph
edges. Our LLVM implementation extends C/C++ with
declarative type qualifiers for secrets, and instruments
programs with taint-tracking capabilities at compile-time.

The new infrastructure is applied to realize efficient,
precise honey-patching of production web servers for at-
tacker deception. The deceptive servers self-redact their
address spaces in response to intrusions, affording defend-
ers a new tool for attacker monitoring and disinformation.
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Abstract
Control-Flow Integrity (CFI) is a defense which pre-

vents control-flow hijacking attacks. While recent re-
search has shown that coarse-grained CFI does not stop
attacks, fine-grained CFI is believed to be secure.

We argue that assessing the effectiveness of practi-
cal CFI implementations is non-trivial and that common
evaluation metrics fail to do so. We then evaluate fully-
precise static CFI — the most restrictive CFI policy that
does not break functionality — and reveal limitations in
its security. Using a generalization of non-control-data
attacks which we call Control-Flow Bending (CFB), we
show how an attacker can leverage a memory corruption
vulnerability to achieve Turing-complete computation on
memory using just calls to the standard library. We use
this attack technique to evaluate fully-precise static CFI
on six real binaries and show that in five out of six cases,
powerful attacks are still possible. Our results suggest
that CFI may not be a reliable defense against memory
corruption vulnerabilities.

We further evaluate shadow stacks in combination
with CFI and find that their presence for security is nec-
essary: deploying shadow stacks removes arbitrary code
execution capabilities of attackers in three of six cases.

1 Introduction

Attacking software systems by exploiting memory-
corruption vulnerabilities is one of the most common
attack methods today according to the list of Common
Vulnerabilities and Exposures. To counter these threats,
several hardening techniques have been widely adopted,
including ASLR [29], DEP [38], and stack canaries [10].
Each has limitations: stack canaries protect only against
contiguous overwrites of the stack, DEP protects against
code injection but not against code reuse, and ASLR does
not protect against information leakage.

We classify defense mechanisms into two broad cat-
egories: prevent-the-corruption and prevent-the-exploit.

Defenses that prevent the corruption stop the actual
memory corruption before it can do any harm to the pro-
gram (i.e., no attacker-controlled values are ever used
out-of-context). Examples for prevent-the-corruption
defenses are SoftBound [22], Data-Flow Integrity [6],
or Code-Pointer Integrity [18]. In contrast, prevent-
the-exploit defenses allow memory corruption to occur
but protect the application from subsequent exploitation;
they try to survive or tolerate adversarial corruption of
memory. Examples for prevent-the-exploit defenses are
DEP [38] or stack canaries [10].

Control-Flow Integrity (CFI) [1, 3, 12, 15, 27, 30, 31,
39, 41–44] is a promising stateless prevent-the-exploit
defense mechanism that aims for complete protection
against control-flow hijacking attacks under a threat
model with a powerful attacker that can read and write
into the process’s address space. CFI ensures that pro-
gram execution follows a valid path through the static
Control-Flow Graph (CFG). Any deviation from the
CFG is a CFI violation, terminating the application. CFI
is not specific to any particular exploitation vector for
control-flow hijacking. Rather, it enforces its policy on
all indirect branch instructions. Therefore any attempt by
an attacker to alter the control-flow in an invalid manner
will be detected, regardless of how the attacker changes
the target of the control-flow transfer instruction.

CFI is often coupled with a protected shadow stack,
which ensures that each return statement matches the
corresponding call and thereby prevents an attacker from
tampering with return addresses. While the foundational
work [1, 15] included a shadow stack as part of CFI,
some more recent research has explored variants of CFI
that omit the shadow stack for better performance [9].
Whereas conformance to the CFG is a stateless policy,
shadow stacks are inherently dynamic and are more pre-
cise than any static policy can be with respect to returns.

Many prior attacks on CFI have focused on attacking a
weak or suboptimal implementation of CFI. Our focus is
on evaluating the effectiveness of CFI in its best achiev-
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able form, instead of artifacts of some (possibly weak)
CFI implementation. We define fully-precise static CFI
as the best achievable CFI policy as follows: a branch
from one instruction to another is allowed if and only
if some benign execution makes that same control-flow
transfer. Such a policy could be imagined as taking any
CFG over-approximation and removing edges until re-
moving additional edges would break functionality.

Thus, fully-precise static CFI is the most restrictive
stateless CFI policy that still allows the program to run as
intended. Both coarse-grained and fine-grained CFI are
less precise than fully-precise static CFI, because they
both over-approximate the set of valid targets for each
indirect transfer (though to a different degree). In con-
trast, fully-precise static CFI involves no approximation
by definition. We acknowledge that fully-precise static
CFI might be stricter than anything that can be prac-
tically implemented, but this makes any attacks all the
more meaningful: our results help us understand funda-
mental limits on the effectiveness of the strongest possi-
ble CFI policy.

Through several methods of evaluation, we argue that
fully-precise static CFI is neither completely broken (as
most coarse-grained defenses are) nor totally secure. We
explore what CFI can and cannot prevent, and hope that
this will stimulate a broader discussion about ways to fur-
ther strengthen CFI.

We evaluate the security of fully-precise static CFI
both with and without shadow stacks. Recent research
achieves better performance by omitting the shadow
stack in favor of a static policy on return statements. We
still call it fully-precise static CFI when we have added
a shadow stack, because the shadow stack is orthogonal.
This does not change the fact that the CFI policy is static.

CFI works by preventing an attacker from deviating
from the control-flow graph. Our attacks do not involve
breaking the CFI mechanism itself: we even assume the
mechanism is implemented perfectly to its fullest extent.
Rather, our analysis demonstrates that an attacker can
still create exploits for most real applications, without
causing execution to deviate from the control-flow graph.

This paper provides the following contributions:

1. formalization and evaluation of a space of different
kinds of CFI schemes;

2. new attacks on fully-precise static CFI, which reveal
fundamental limits on the effectiveness of CFI;

3. evidence that existing metrics for CFI security are
ineffective;

4. evidence that CFI without a shadow stack is broken;
5. widely applicable Turing-complete attacks on CFI

with shadow stacks; and,
6. practical case studies of the security of fully-precise

static CFI for several existing applications.

2 Background and software attacks

Over the past few decades, one of the most common at-
tack vectors has been exploitation of memory corruption
within programs written in memory-unsafe languages.In
response, operating systems and compilers have started
to support countermeasures against specific exploitation
vectors and vulnerability types, but current hardening
techniques are still unable to stop all attacks. We briefly
provide an overview of these attacks; more information
may be found elsewhere [37].

2.1 Control-Flow Hijacking
One way to exploit a memory corruption bug involves
hijacking control flow to execute attacker-supplied or
already-existing code in an application’s address space.
These methods leverage the memory corruption bug to
change the target of an indirect branch instruction (ret,
jmp *, or call *). By doing so, an attacker can completely
control the next instructions to execute.

2.2 Code-Reuse Attacks
Data Execution Prevention (DEP) prevents executing
attacker-injected code. However, redirecting control-
flow to already-existing executable code in memory re-
mains feasible. One technique, return-to-libc [25, 36],
reuses existing functions in the address space of the vul-
nerable process. Runtime libraries (such as libc) often
provide powerful functions, e.g., wrapper functions for
most system calls. One example is libc’s system()

function, which allows the attacker to execute shell com-
mands. Code-reuse attacks are possible when attacker-
needed code is already available in the address space of
a vulnerable process.

2.3 Return Oriented Programming
Return Oriented Programming (ROP) [25, 36] is a more
advanced form of code-reuse attack that lets the attacker
perform arbitrary computation solely by reusing existing
code. It relies upon short instruction sequences (called
“gadgets”) that end with an indirect branch instruction.
This allows them to be chained, so the attacker can
perform arbitrary computation by executing a carefully-
chosen sequence of gadgets. ROP can be generalized
to use indirect jump or call instructions instead of re-
turns [4, 7].

2.4 Non-Control-Data Attacks
A non-control-data attack [8] is an attack where a mem-
ory corruption vulnerability is used to corrupt only data,

2
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but not any code pointer. (A code pointer is a pointer
which refers to the code segment, for example, a re-
turn address or function pointer.) Depending on the
circumstances, these attacks can be as effective as ar-
bitrary code-execution attacks. For instance, corrupt-
ing the parameter to a sensitive function (e.g., libc’s
execve()) may allow an attacker to execute arbitrary
programs. An attacker may also be able to overwrite se-
curity configuration values and disable security checks.
Non-control-data attacks are realistic threats and hard to
defend against, due to the fact that most defense mecha-
nisms focus on the protection of code pointers.

2.5 Control-Flow Bending

We introduce a generalization of non-control-data at-
tacks which we call Control-Flow Bending (CFB). While
non-control-data attacks do not directly modify any
control-flow data (e.g., return addresses, indirect branch
targets), in control-flow bending we allow these modi-
fications so long as the modified indirect branch target
is still in the valid set of addresses as defined by the
CFI policy (or any other enforced control-flow or code
pointer integrity protection). CFB allows an attacker to
bend the control-flow of the application (compared to hi-
jacking it) but adheres to an imposed security policy.

We define a “data-only” attack as a non-control-data
attack where the entire execution trace is identical to
some feasible non-exploit execution trace. (An execution
trace is the ordered sequence of instructions which exe-
cute, and does not include the effects those instructions
have except with respect to control flow.) While data-
only attacks may change the control flow of an applica-
tion, the traces will still look legitimate, as the observed
trace can also occur during valid execution. In contrast,
CFB is more general: it refers to any attack where each
control-flow transfer is within the valid CFG, but the ex-
ecution trace is not necessarily required to match some
valid non-exploit trace.

In general, defense mechanisms implement an abstract
machine and can only observe security violations accord-
ing to the restrictions of that machine, e.g., CFI enforces
that control flow follows a finite state machine.

For example, an attacker who directly overwrites the
arguments to exec() is performing a data-only attack:
no control flow has been changed. An attacker who over-
writes an is admin flag half-way through processing a
request is performing a non-control-data attack: the data
that was overwritten is non-control-data, but it affects the
control-flow of the program. An attacker who modifies a
function pointer to point to a different (valid) call target
is mounting a CFB attack.

3 Threat model and attacker goals

Threat model. For this paper we assume a powerful
yet realistic threat model. We assume the attacker can
write arbitrarily to memory at one point in time during
the execution of the program. We assume the process
is running with non-executable data and non-writeable
code which is hardware enforced.

This threat model is a realistic generalization of mem-
ory corruption vulnerabilities: the vulnerability typically
gives the attacker some control over memory. In practice
there may be a set of specific constraints on what the at-
tacker can write where; however, this is not something
a defender can rely upon. To be a robust defense, CFI
mechanisms must be able to cope with arbitrary memory
corruptions, so in our threat model we allow the attacker
full control over memory once.

Limiting the memory corruption to a single point in
time does weaken the attacker. However, this makes our
attacks all the more meaningful.

Attacker goals. There are three kinds of outcomes an
attacker might seek, when exploiting a vulnerability:

1. Arbitrary code execution: The attacker can execute
arbitrary code and can invoke arbitrary system calls
with arbitrary parameters. In other words, the at-
tacker can exercise all permissions that the appli-
cation has. Code execution might involve injecting
new code or re-using already-existing code; from
the attacker’s perspective, there is no difference as
long as the effects are the same.

2. Confined code execution: The attacker can exe-
cute arbitrary code within the application’s address
space, but cannot invoke arbitrary system calls. The
attacker might be able to invoke a limited set of sys-
tem calls (e.g., the ones the program would usually
execute, or just enough to send information back to
the attacker) but cannot exercise all of the applica-
tion’s permissions. Reading and leaking arbitrary
memory of the vulnerable program is still possible.

3. Information leakage: The attacker can read and leak
arbitrary values from memory.

Ideally, a CFI defense would prevent all three attacker
goals. The more it can prevent, the stronger the defense.

4 Definition of CFI flavors

Control-Flow Integrity (CFI) [1, 15] adds a stateless
check before each indirect control-flow transfer (indirect
jump/call, or function return) to ensure that the target lo-
cation is in a static set defined by the control-flow graph.
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4.1 Fully-Precise Static CFI

We define Fully-Precise Static CFI as follows: an in-
direct control-flow transfer along some edge is allowed
only if there exists a non-malicious trace that follows that
edge. (An execution is not malicious if it exercises only
intended program behavior.) In other words, consider
the most restrictive control-flow graph that still allows all
feasible non-malicious executions, i.e., the CFG contains
an edge if and only if that edge is used by some benign
execution. Fully-precise static CFI then enforces that ex-
ecution follows this CFG. Thus, fully-precise static CFI
enforces the most precise (and most restrictive) policy
possible that does not break functionality.

We know of no way to implement fully-precise static
CFI: real implementations often use static analysis and
over-approximate the CFG and thus are not fully precise.
We do not design a better CFI scheme. The goal of our
work is to evaluate the strongest form of CFI that could
conceptually exist, and attempt to gain insight on its lim-
itations. This notion of fully-precise static CFI allows
us to transcend the recent arms race caused by defenders
proposing forms of CFI [9,28] and then attackers defeat-
ing them [5, 14, 16].

4.2 Practical CFI

Practical implementations of CFI are always limited by
the precision of the CFG that can be obtained. Cur-
rent CFI implementations face two sources of over-
approximation. First, due to challenges in accurate static
analysis, the set of allowed targets for each indirect
call instruction typically depends only upon the function
pointer type, and this set is often larger than necessary.

Second, most CFI mechanisms use a static points-to
analysis to define the set of allowed targets for each in-
direct control transfer. Due to imprecisions and lim-
itations of the analysis (e.g., aliasing in the case of
points-to analysis) several sets may be merged, leading
to an over-approximation of allowed targets for individ-
ual indirect control-flow transfers. The degree of over-
approximation affects the precision and effectiveness of
practical CFI mechanisms.

Previous work has classified practical CFI defenses
into two categories: coarse-grained and fine-grained. In-
tuitively, a defense is fine-grained if it is a close approx-
imation of fully-precise static CFI and coarse-grained if
there are many unnecessary edges in the sets.

4.3 Stack integrity

The seminal work on CFI [1] combined two mecha-
nisms: restricting indirect control transfers to the CFG,
and a shadow call stack to restrict return instructions.

The shadow stack keeps track of the current functions
on the application call stack, storing the return instruc-
tion pointers in a separate region that the attacker cannot
access. Each return instruction is then instrumented so
that it can only return to the function that called it. For
compatibility with exceptions, practical implementations
often allow return instructions to return to any function
on the shadow stack, not just the one on the top of the
stack. As a result, when a protected shadow stack is
in use, the attacker has very limited influence over re-
turn instructions: all the attacker can do is unwind stack
frames. The attacker cannot cause return instructions to
return to arbitrary other locations (e.g., other call-sites)
in the code.

Unfortunately, a shadow stack does introduce perfor-
mance overhead, so some modern schemes have pro-
posed omitting the shadow stack [9]. We analyze both
the security of CFI with a shadow stack and CFI without
a shadow stack. We assume the shadow stack is protected
somehow and cannot be overwritten; we do not consider
attacks against the implementation of the shadow stack.

5 Evaluating practical CFI

While there has been considerable research on how to
make CFI more fine-grained and efficient, most CFI pub-
lications still lack a thorough security evaluation. In fact,
the security evaluation is often limited to coarse metrics
such as Average Indirect target Reduction (AIR) or gad-
get reduction. Evaluating the security effectiveness of
CFI this way does not answer how effective these poli-
cies are in preventing actual attacks.

In this section, we show that metrics such as AIR and
gadget reduction are not good indicators for the effec-
tiveness of a CFI policy, even for simple programs. We
discuss CFI effectiveness and why it is difficult to mea-
sure with a single value and propose a simple test that
indicates if a CFI policy is trivially broken.

5.1 AIR and gadget reduction
The AIR metric [44] measures the relative reduction in
the average number of valid targets for all indirect branch
instructions that a CFI scheme provides: without CFI, an
indirect branch could target any instruction in the pro-
gram; CFI limits this to a set of valid targets. The gadget
reduction metric measures the relative reduction in the
number of gadgets that can be found at locations that are
valid targets for an indirect branch instruction.

These metrics measure how effectively a CFI imple-
mentation reduces the set of valid targets (or gadgets) for
indirect branch instructions, on average. However, they
fail to capture both (i) the target reduction of individual
locations (e.g., a scheme can have high AIR even if one
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branch instruction has a large set of surplus targets, if
the other locations are close to optimal) and (ii) the im-
portance and risk of the allowed control transfers. Simi-
larly, the gadget reduction metric does not weight targets
according to their usefulness to an attacker: every code
location or gadget is considered to be equally useful.

For example, consider an application with 10MB of
executable memory and an AIR of 99%. An attacker
would still have 1% of the executable memory at their
disposal — 100,000 potential targets — to perform code-
reuse attacks. A successful ROP attack requires only
a handful of gadgets within these potential targets, and
empirically, 100,000 targets is much more than is usu-
ally needed to find those gadgets [35]. As this illustrates,
averages and metrics that are relative to the code size can
be misleading. What is relevant is the absolute number of
available gadgets and how useful they are to an attacker.

5.2 CFI security effectiveness
Unfortunately, it is not clear how to construct a sin-
gle metric that accurately measures the effectiveness of
CFI. Ideally, we would like to measure the ability of
CFI to stop an attacker from mounting a control-flow hi-
jack attack. More specifically, a CFI effectiveness met-
ric should indicate whether control-flow hijacking and
code-reuse attacks are still possible under a certain at-
tacker model or not, and if so, how much harder it is for
an attacker to perform a successful attack in the presence
of CFI. However, what counts as successful exploitation
of a software vulnerability depends on the goals of the
attacker (see Section 3) and is not easily captured by a
single number.

These observations suggest that assessing CFI effec-
tiveness is hard, especially if no assumptions are made
regarding what a successful attack is and what the binary
image of the vulnerable program looks like.

5.3 Basic exploitation test
We propose a Basic Exploitation Test (BET): a simple
test to quickly rule out some trivially broken implemen-
tations of CFI. Passing the BET is not a security guar-
antee, but failing the BET means that the CFI scheme is
insecure.

In particular, the BET involves selecting a minimal
program — a simple yet representative program that con-
tains a realistic vulnerability — and then determining
whether attacks are still possible if that minimal pro-
gram is protected by the CFI scheme under evaluation.
The minimal program should be chosen to use a subset
of common run-time libraries normally found in real ap-
plications, and constructed so it contains a vulnerability
that allows hijacking control flow in a way that is seen

in real-life attacks. For instance, the minimal program
might allow an attacker to overwrite a return address or
the target of an indirect jump/call instruction.

The evaluator then applies the CFI scheme to the mini-
mal program, selects an attacker goal from Section 3, and
determines whether that goal is achievable on the pro-
tected program. If the attack is possible, the CFI scheme
fails the BET. We argue that if a CFI scheme is unable
to protect a minimal program it will also fail to protect
larger real-life applications, as larger programs afford the
attacker even more opportunities than are found in the
minimal program.

5.4 BET for coarse-grained CFI
We apply the BET to a representative coarse-grained CFI
policy. We show that the scheme is broken, even though
its AIR and gadget reduction metrics are high. This
demonstrates that AIR and gadget reduction numbers are
not reliable indicators for the security effectiveness of a
CFI scheme even for small programs. These results gen-
eralize the conclusion of recent work [5,14,16], by show-
ing that coarse-grained CFI schemes are broken even for
trivially small real-life applications.

Minimal program and attacker goals. Our mini-
mal vulnerable program is shown in Figure 1. It is
written in C, compiled with gcc version 4.6.3 under
Ubuntu LTS 12.04 for x86 32-bit, and dynamically
linked against ld-linux and libc. The program con-
tains a stack-based buffer overflow. A vulnerability in
vulnFunc() allows an attacker to hijack the return tar-
get of vulnFunc() and a memory leak in memLeak()

allows the attacker to bypass stack canaries and ASLR.

Coarse-grained CFI policy. The coarse-grained CFI
policy we analyze is a more precise version of several
recently proposed static CFI schemes [43, 44]: each im-
plementation is less accurate than our combined version.
We use a similar combined static CFI policy as used in
recent work [14, 16].

Our coarse-grained CFI policy has three equivalence
classes, one for each indirect branch type. Returns and
indirect jumps can target any instruction following a call
instruction. Indirect calls can target any defined symbol,
i.e., the potential start of any function. This policy is
overly strict, especially for indirect jumps; attacking a
stricter coarse-grained policy makes our results stronger.

Results. We see in Table 1 that our minimal program
linked against its libraries achieves high AIR and gad-
get reduction numbers for our coarse-grained CFI pol-
icy. However, as we will show, all attacker goals from
Section 3 can be achieved.
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#include <stdio.h>
#include <string.h>
#define STDIN 0

void memLeak () {
char buf [64];
int nr , i;
unsigned int *value;
value = (unsigned int*)buf;
scanf("%d", &nr);
for (i = 0; i < nr; i++)

printf("0x%08x�", value[i]);
}

void vulnFunc () {
char buf [1024];
read(STDIN , buf , 2048);

}

int main(int argc , char* argv []) {
setbuf(stdout , NULL);
printf("echo >�");
memLeak ();
printf("\nread >�");
vulnFunc ();
printf("\ndone .\n");
return 0;

}

Figure 1: Our minimal vulnerable program that allows
hijacking a return instruction target.

AIR Gadget red. Targets Gadgets

No CFI 0% 0% 1850580 128929
CFI 99.06% 98.86% 19611 1462

Table 1: Basic metrics for the minimal vulnerable pro-
gram under no CFI and our coarse-grained CFI policy.

We first identified all gadgets that can be reached with-
out violating the given CFI policy. We found five gadgets
that allow us to implement all attacker goals as defined
in Section 3. All five gadgets were within libc and be-
gan immediately following a call instruction. Two gad-
gets can be used to load a set of general purpose registers
from the attacker-controlled stack and then return. One
gadget implements an arbitrary memory write (“write-
what-where”) and then returns. Another gadget imple-
ments an arbitrary memory read and then returns. Fi-
nally, we found a fifth gadget — a “call gadget” — that
ends with an indirect call through one of the attacker-
controlled registers, and thus can be used to perform ar-
bitrary calls. The five gadgets are shown in Figure 2. By
routing control-flow through the first four gadgets and
then to the call gadget, the attacker can call any function.

The attacker can use these gadgets to execute arbitrary
system calls by calling kernel vsyscall. In Linux
systems (x86 32-bit), system calls are routed through
a virtual dynamic shared object (linux-gate.so)
mapped into user space by the kernel at a random ad-
dress. The address is passed to the user space pro-

G1 # arbitrary load (1/2)
f38ff: pop %edx
f3900: pop %ecx
f3901: pop %eax
f3902: ret

G2 # arbitrary load (2/2)
412d2: add $0x20,%esp
412d5: xor %eax,%eax
412d7: pop %ebx
412d8: pop %esi
412d9: pop %edi
412da: ret

G3 # arbitrary read
2ee25: add $0x1771cf,%ecx
2ee2b: mov 0x54(%ecx),%eax
2ee31: ret

G4 # arbitrary write
3fb11: pop %ecx
3fb12: add $0xa,%ecx
3fb18: mov %ecx,(%edx)
3fb1a: ret

G5 # arbitrary call
1b008: mov %esi,(%esp)
1b00b: call *%edi

Figure 2: Our call-site gadgets within libc.

000 b8d60 <execve >:
...

b8d72: call ...
b8d77: add $0xed27d ,%ebx
b8d7d: mov 0xc(%esp),%edi
b8d81: xchg %ebx ,%edi
b8d83: mov $0xb ,%eax
b8d88: call *%gs:0x10

Figure 3: Disassembly of libc’s execve() function.
There is an instruction (0xb8d77) that can be returned
to by any return gadget under coarse-grained CFI.

cess. If the address is leaked, the attacker can execute
arbitrary system calls by calling kernel vsyscall

using a call gadget. Calls to kernel vsyscall

are within the allowed call targets as libc itself calls
kernel vsyscall.
Alternatively, the attacker could call libc’s wrappers

for each specific system call. For example, the attacker
could call execve() within libc to execute the execve
system call. Interestingly, if the wrapper functions con-
tain calls, we can directly return to an instruction after
such a call and before the system call is issued. For an
example, see Figure 3: returning to 0xb8d77 allows us to
directly issue the system call without using the call gad-
get (we simply direct one of the other gadgets to return
there). There are some side effects on register ebx and
edi but it is straightforward to take them into account.

Arbitrary code execution is also possible. In the ab-
sence of CFI, an attacker might write new code some-
where into memory, call mprotect() to make that mem-
ory region executable, and then jump to that location
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to execute the injected code. CFI will prevent this, as
the location of the injected code will never be in one
of the target sets. We bypass this protection by using
mprotect() to make already-mapped code writeable.
The attacker can overwrite these already-available code
pages with malicious code and then transfer control to
it using our call gadget. The result is that the attacker
can inject and execute arbitrary code and invoke arbitrary
system calls with arbitrary parameters. As an alternative
mmap() could also be used to allocate readable and exe-
cutable memory (if not prohibited).

The minimal program shown in Figure 1 contains a
vulnerability that allows the attacker to overwrite a re-
turn address on the stack. We also analyzed other mini-
mal programs that allow the attacker to hijack an indirect
jump or indirect call instruction, with similar results. We
omit the details of these analyses for brevity. A minimal
vulnerable program for initial indirect jump or indirect
call hijacking is found in Appendix A.

Based on these results we conclude that coarse-
grained CFI policies are not effective in protecting even
small and simple programs, such as our minimal vulnera-
ble program example. Our analysis also shows that AIR
and gadget reduction metrics fail to indicate whether a
CFI scheme is effective at preventing attacks; if such at-
tacks are possible on a small program, then attacks will
be easier on larger programs where the absolute number
of valid locations and gadgets is even higher.

6 Attacks on Fully-Precise Static CFI

We now turn to evaluating fully-precise static CFI. Recall
from Section 2.5 that we define control-flow bending as
a generalization of non-control-data attacks. We exam-
ine the potential for control-flow bending attacks on CFI
schemes with and without a shadow stack.

6.1 Necessity of a shadow stack

To begin, we argue that CFI must have a shadow stack to
be a strong defense. Without one, an attacker can easily
traverse the CFG to reach almost any program location
desired and thereby break the CFI scheme.

For a static, stateless policy like fully-precise static
CFI without a shadow stack, the best possible policy for
returns is to allow return instructions within a function F
to target any instruction that follows a call to F . How-
ever, for functions that are called often, this set can be
very large. For example, the number of possible targets
for the return statements in malloc() is immense. Even
though dynamically only one of these should be allowed
at any given time, a stateless policy must allow all of
these edges.

Figure 4: A control-flow graph where the lack of a
shadow stack allows an attacker to mount a control-flow
bending attack.

This is elaborated in Figure 4. Functions A and C both
contain calls to function B. The return in function B must
therefore be able to target the instruction following both
of these calls. In normal execution, the program will ex-
ecute edge 1 followed by edge 2, or edge 3 followed by
edge 4. However, an attacker may be able to cause edge
3 to be followed by edge 2, or edge 1 to be followed by
edge 4.

In practice this is even more problematic with tail-call
optimizations, when signal handlers are used, or when
the program calls setjmp/longjmp. We ignore these
cases. This makes our job as an attacker more difficult,
but we base our attacks on the fundamental properties
of CFI instead of corner cases which might be handled
separately.

6.1.1 Dispatcher functions

For an attacker to cause a function to return to a differ-
ent location than it was called from, she must be able to
overwrite the return address on the stack after the func-
tion is called yet before it returns. This is easy to arrange
when the memory corruption vulnerability occurs within
that specific function. However, often the vulnerability is
found in uncommonly called (not well tested) functions.

To achieve more power, we make use of dispatcher
functions (analogous to dispatcher gadgets for JOP [4]).
A dispatcher function is one that can overwrite its own
return address when given arguments supplied by an at-
tacker. If we can find a dispatcher function that will be
called later and use the vulnerability to control its argu-
ments, we can make it overwrite its own return address.
This lets us return to any location where this function
was called.

Any function that contains a “write-what-where”
primitive when the arguments are under the attacker’s
control can be used as a dispatcher function. Alterna-
tively, a function that can write to only limited addresses
can still work as long as the return address is within the
limits. Not every function has this property, but a signif-
icant fraction of all functions do. For example, assume
we control all of the arguments to memcpy(). We can
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Figure 5: An example of loop injection. Execution fol-
lows call edge 3© , then returns along edge 2© .

point the source buffer to an attacker-controlled location,
the target buffer to the address where memcpy()’s return
address will be found, and set the length to the word
size. Then, when memcpy() is invoked, memcpy() will
overwrite its own return address and then return to some
other location in the code chosen by the attacker. If this
other location is in the valid CFG (i.e., it is an instruction
following some call to memcpy()), then it is an allowed
edge and CFI will allow the return. Thus, memcpy() is a
simple example of a dispatcher function.

We found many dispatcher functions in libc, e.g.,

1. memcpy() — As described above.
2. printf() — Using the “%n” format specifier, the

attacker can write an arbitrary value to an arbitrary
location and thus cause printf() to overwrite its
own return address.

3. strcat() — Similar to memcpy(). Only works if
the address to return to does not contain null bytes.

4. fputs() — We rely on the fact that when fputs()

is called, characters are first temporarily buffered to
a location as specified in the FILE argument. An at-
tacker can therefore specify a FILE where the tem-
porary buffer is placed on top of the return address.
Most functions that take a FILE struct as an argu-
ment can be used in a similar manner.

Similar functions also exist in Windows libraries.
Application-specific dispatcher functions can be useful
as well, as they may be called more often.

Any function that calls a dispatcher function is itself
a dispatcher function: instead of having the callee over-
write its own address, it can be used to overwrite the re-
turn address of its caller (or higher on the call chain).

6.1.2 Loop injection

One further potential use of dispatcher functions is that
they can be used to create loops in the control-flow graph

when none were intended, a process which we call loop
injection. We can use this to help us achieve Turing-
complete computation if we require a loop.

Consider the case where there are two calls to the same
dispatcher function, where the attacker controls the ar-
guments to the second call and it is possible to reach
the second call from the first through a valid CFG path.
For example, it is common for programs to make multi-
ple successive calls to printf(). If the second call to
printf() allows an attacker to control the arguments,
then this could cause a potential loop. This is achievable
because the second call to printf() can return to the
instruction following the first call to printf(). We can
then reach the second call to printf() from there (by
assumption) and we have completed the loop.

Figure 5 contains an example of this case. Under nor-
mal execution, function A would begin by executing the
first call to function B on edge 1. Function B returns
on edge 2, after which function A continues executing.
The second call to function B is then executed, on edge
3. B this time returns on edge 4. Notice that the return
instruction in function B has two valid outgoing edges.

An attacker can manipulate this to inject a loop when
function B is a dispatcher function. The attacker allows
the first call to B to proceed normally on edge 1, re-
turning on edge 2. The attacker sets up memory so that
when B is called the second time, the return will follow
edge 2 instead of the usual edge 4. That is, even though
the code was originally intended as straight-line execu-
tion, there exists a back-edge that will be allowed by any
static, stateless CFI policy without a shadow stack. A
shadow stack would block the transfer along edge 2.

6.2 Turing-complete computation

CFI ensures that the execution flow of a program stays
within a predefined CFG. CFI implicitly assumes that
the attacker must divert from this CFG for successful ex-
ploitation. We demonstrate that an attacker can achieve
Turing-complete computation while following the CFG.
This is not directly one of the attacker goals outlined in
Section 3, however it is often a useful step in achieving
attacks [14].

Specifically, we show that a single call to printf()

allows an attacker to perform Turing-complete computa-
tion, even when protected with a shadow stack. We dub
this printf-oriented programming. In our evaluation, we
found it was possible to mount this kind of attack against
all but one binary (which rewrote their own limited ver-
sion of printf).

Our attack technique is not specific to printf(): we
have constructed a similar attack using fputs() which
is widely applicable but requires a loop obtained in the
control-flow graph (via loop injection or otherwise) to be
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Turing-complete. See Appendix C.

6.2.1 Printf-oriented programming

When we control the arguments to printf(), it is pos-
sible to obtain Turing-complete computation. We show
this formally in Appendix B by giving calls to printf()
which create logic gates. In this section, we give the intu-
ition behind our attacks by showing how an attacker can
conditionally write a value at a given location.

Assume address C contains a condition value, which is
an integer that is promised to be either zero or one. If the
value is one, then we wish to store the constant X at target
address T . That is, we wish to perform the computation
*T = *C ? X : *T. We show how this can be achieved
using one call to printf().

To do this, the attacker supplies the specially-crafted
format string “%s%hhnQ%*d%n” and passes arguments
(C,S,X −2,0,T ), defined as follows:

1. C — the address of the condition. While the “%s”
format specifier expects a string, we pass a pointer
to the condition value, which is either the integer 0
or the integer 1. Because of the little-endian nature
of x86, the integer 1 contains the byte 0x01 in the
first (low) byte and 0x00 in the second byte. This
means that when we print it as a string, if the condi-
tion value is 1 then exactly one byte will be written
out whereas if it is 0 then nothing will be be printed.

2. S — the address of the Q in the format string
(i.e., the address of the format string, plus 6). The
“%hhn” specifier will write a single byte of output
consisting of the number of characters printed so
far, and will write it on top of the Q in the format
string. If we write a 0, the null byte, then the format
string will stop executing. If we write a 1, the for-
mat string will keep going. It is this action which
creates the conditional.

3. X −2 — the constant we wish to store, minus two.
This specifies the number of bytes to pad in the in-
teger which will be printed. It is the value we wish
to save minus two, because two bytes will have al-
ready been printed.

4. 0 — an integer to print. We do not care that we are
actually printing a 0, only the padding matters.

5. T — the target save location. At this point in time,
we have written exactly X bytes to the output, so
“%n” will write that value at the target address.

Observe that in this example, we have made use of a self-
modifying format string.

6.2.2 Practical printf-oriented programming

The previous section assumed that the attacker has con-
trol of the format string argument, which is usually not

the case. We show using simple techniques it is possible
to achieve the same results without this control.

We first define the destination of a printf() call ac-
cording to its type. The destination of an sprintf() call
is the address the first argument points to (the destination
buffer). The destination of a fprintf() call is the ad-
dress of the temporary buffer in the FILE struct. The
destination of a plain printf() call is the destination
buffer of fprintf() when called with stdout.

Our attack requires three conditions to hold:

• the attacker controls the destination buffer;
• the format string passed to the call to printf() al-

ready contains a “%s” specifier; and,
• the attacker controls the argument to the format

specifier as well as a few of the words further down
on the stack.

We mount our attack by pointing the destination buffer
on top of the stack. We use the “%s” plus the controlled
argument to overwrite the pointer to the format string
(which is stored on the stack), replacing it with a pointer
to an attacker-controlled format string. We then skip
past any uncontrolled words on the stack with harmless
‘‘%x’’ specifiers. We can then use the remaining con-
trolled words to pivot the va_list pointer.

If we do not control any buffer on the stack, we can
obtain partial control of the stack by continuing our ar-
bitrary write with the %s specifier to add arguments to
printf(). Note that this does not allow us to use null
bytes in arguments, which in 64-bit systems in particular
makes exploitation difficult.

6.3 Implications
Our analysis of fully-precise static CFI, the strongest
imaginable static CFI policy, shows that preventing at-
tackers with partial control over memory from gain-
ing Turing-complete computation is almost impossible.
Run-time libraries and applications contain powerful
functions that are part of the valid CFG and can be used
by attackers to implement their malicious logic. Attack-
ers can use dispatcher functions to bend control flow
within the valid CFG to reach these powerful functions.

Furthermore, we see that if an attacker can find one of
these functions and control arguments to it, the attacker
will be able to both write to and read from arbitrary ad-
dresses at multiple points in time. Defenses which allow
attackers to control arguments to these functions must be
able to protect against this stronger threat model.

7 Fully-Precise Static CFI Case Studies

We now look at some practical case studies to examine
how well fully-precise static CFI can defend against real-
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CFI without shadow stack CFI with shadow stack
Binary Arbitrary Info. Confined code Arbitrary code Arbitrary Info. Confined code Arbitrary code

write leakage execution execution write leakage execution execution

nginx yes write dispatcher dispatcher yes write no no
apache no write printf dispatcher no write write write
smbclient yes printf printf printf yes printf printf printf
wireshark yes printf printf dispatcher yes printf write write
xpdf ? dispatcher printf dispatcher ? write printf no
mysql ? dispatcher printf dispatcher ? write printf no

Table 2: The results of our evaluation of the 6 binaries. The 2nd and 6th columns indicate whether the vulnerability we
examined allows an attacker to control memory. The other columns indicate which attack goals would be achievable,
assuming the attacker controls memory. A “no” indicates that we were not able to achieve that attack goal; anything
else indicates it is achievable, and indicates the attack technique we used to achieve the goal. A “?” indicates we were
not able to reproduce the exploit.

life exploits on vulnerable programs, both with and with-
out a shadow stack. We split our evaluation into two
parts. First, we show that attackers can indeed obtain
arbitrary control over memory given actual vulnerabili-
ties. Second, we show that given a program where the
attacker controls memory at one point in time, it is pos-
sible to mount a control-flow bending attack. Our results
are summarized in Table 2.

Our examples are all evaluated on a Debian 5 system
running the binaries in x86 64-bit mode. We chose 64-
bit mode because most modern systems are running as
64-bit, and attacks are more difficult on 64-bit due to the
increased number of registers (data is loaded off of the
stack less often).

We do not implement fully-precise static CFI. Instead,
for each of our attacks, we manually verify that each
indirect control-flow transfer is valid by checking that
the edge taken occurs during normal program execution.
Because of this, we do not need to handle dynamically
linked libraries specially: we manually check those too.

7.1 Control over memory
The threat model we defined earlier allows the attacker
to control memory at a single point in time. We argue
that this level of control is achievable with most vulnera-
bilities, by analyzing four different binaries.

7.1.1 Nginx stack buffer overflow

We examined the vulnerability in CVE-2013-2028 [19]:
a signedness bug in the chunked decoding component of
nginx. We found it is possible to write arbitrary values
to arbitrary locations, even when nginx is protected by
fully-precise static CFI with a shadow stack, by modi-
fying internal data structures to perform a control-flow
bending attack.

The vulnerability occurs when an attacker supplies a
large claimed buffer size, overflowing an integer and trig-

gering a stack-based buffer overflow. An attacker can
exploit this by redirecting control flow down a path that
would never occur during normal execution. The Server
Side Includes (SSI) module contains a call to memcpy()

where all three arguments can be controlled by the at-
tacker. We can arrange memory so after memcpy() com-
pletes, the process will not crash and will continue ac-
cepting requests. This allows us to send multiple requests
and set memory to be exactly to the attacker’s choosing.

Under benign usage, this memcpy() method is called
during the parsing of a SSI file. The stack overflow al-
lows us to control the stack and overwrite the pointer to
the request state (which is passed on the stack) to point
to a forged request structure, constructed to contain a
partially-completed SSI structure. This lets us re-direct
control flow to this memcpy() call. We are able to con-
trol its source and length arguments easily because they
point to data on the heap which we control. The desti-
nation buffer is not typically under our control: it is ob-
tained by the result of a call to nginx’s memory allocator.
However, we can cause the allocator to return a pointer
to an arbitrary location by controlling the internal data
structures of the memory allocator.

7.1.2 Apache off by one error

We examined an off-by-one vulnerability in Apache’s
handling of URL parameters [11]. We found that it is no
longer exploitable in practice, when Apache is protected
with CFI.

The specific error overwrites a single extra word on
the stack; however, this word is not under the attacker’s
control. Instead, the word is a pointer to a string on the
heap, and the string on the heap is under the attacker’s
control. This is a very contrived exploit, and it was not
exploitable on the majority of systems in the first place
due to the word on the stack not containing any mean-
ingful data. However, on some systems the overwrit-
ten word contained a pointer to a data structure which

10
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contains function pointers. Later, one of these function
pointers would be invoked, allowing for a ROP attack.

When Apache is protected with CFI, the attacker is not
able to meaningfully modify the function pointers, and
therefore cannot actually gain anything. CFI is effective
in this instance because the attacker never obtains control
of the machine in the first place.

7.1.3 Smbclient printf vulnerability

We examined a format string vulnerability in smb-
client [26]. Since we already fully control the format
string of a printf() statement, we can trivially control
all of memory with printf-oriented programming.

7.1.4 Wireshark stack buffer overflow

A vulnerability in Wireshark’s parsing of mpeg files al-
lows an attacker to supply a large packet and overflow a
stack buffer. We identify a method of creating a repeat-
able arbitrary write given this vulnerability even in the
presence of a shadow stack.

The vulnerability occurs in the
packet_list_dissect_and_cache_record function
where a fixed-size buffer is created on the stack. An
attacker can use an integer overflow to create a buffer
of an arbitrary size larger than the allocated space. This
allows for a stack buffer overflow.

We achieve an arbitrary write even in the presence of
a shadow stack by identifying an arbitrary write in the
packet_list_change_record function. Normally,
this would not be good enough, as this only writes a
single memory location. However, an attacker can loop
this write due to the fact that the GTK library method
gtk_tree_view_column_cell_set_cell_data,
which is on the call stack, already contains a loop that
iterates an attacker-controllable number of times. These
two taken together give full control over memory.

7.1.5 Xpdf & Mysql

For two of our six case studies, we were unable to re-
produce the public exploit, and as such could not test if
memory writes are possible from the vulnerability.

7.2 Exploitation assuming memory control
We now demonstrate that an attacker who can control
memory at one point in time can achieve all three goals
listed in Section 3, including the ability to issue attacker-
desired system calls. (Our assumption is well-founded:
in the prior section we showed this is possible.) Prior
work has already shown that if arbitrary writes are possi-
ble (e.g., through a vulnerability) then data-only attacks

are realistic [8]. We show that control-flow bending at-
tacks that are not data-only attacks are also possible.

7.2.1 Evaluation of nginx

Assuming the attacker can perform arbitrary writes, we
show that the attacker can read arbitrary files off of the
server and relay them to the client, read arbitrary mem-
ory out of the server, and execute an arbitrary program
with arbitrary arguments. The first two attack goals can
be achieved even with a shadow stack; our third attack
only works if there is no shadow stack. Nginx is the only
binary which is not exploitable by printf-oriented pro-
gramming, because nginx rewrote their own version of
printf() and removed “%n”.

An attacker can read any file that nginx has access
to and cause their contents to be written to the out-
put socket, using a purely non-control-data attack. For
brevity, we do not describe this attack in detail: prior
work has described that these types of exploits are possi-
ble.

Our second attack can be thought of as a more
controlled version of the recent Heartbleed vulnerabil-
ity [21], allowing the attacker to read from an arbitrary
address and dump it to the attacker. The response han-
dling in nginx has two main phases. First, it handles the
header of the request and in the process initializes many
structs. Then, it parses and handles the body of the re-
quest, using these structs. Since the vulnerability in ng-
inx occurs during the parsing of the request body, we use
our control over memory to create a forged struct that
was not actually created during the initialization phase.
In particular, we initialize the postpone_filter mod-
ule data structure (which is not used under normal exe-
cution) with an internally-inconsistent state. This causes
the module to read data from an arbitrary address of an
arbitrary length and copy it to the response body.

Our final attack allows us to invoke execve() with
arbitrary arguments, if fully-precise static CFI is used
without a shadow stack. We use memcpy() as a dis-
patcher function to return into ngx sprintf() and then
again into ngx exec new binary(), which later on
calls execve(). By controlling its arguments, the at-
tacker gets arbitrary code execution.

In contrast, when there is a shadow stack, we believe
it is impossible for an attacker to trigger invocation of
execve() due to privilege separation provided by fully-
precise static CFI. The master process spawns children
via execve(), but it is only ever called there — there is
no code path that leads to execve() from any code point
that is reachable within a child process. Thus, in this case
CFI effectively provides a form of privilege separation
for free, if used with a shadow stack.

11
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7.2.2 Evaluation of apache

On Apache the attacker can invoke execve() with ar-
bitrary arguments. Other attacks similar to those on ng-
inx are possible; we omit them for brevity. When there
is no shadow stack, we can run arbitrary code by using
strcat() as a dispatcher gadget to return to a function
which later invokes execve() under compilations which
link the Windows main method. When there is a shadow
stack, we found a loop that checks, for each module, if
the module needs to be executed for the current request.
By modifying the conditions on this loop we can cause
mod cgi to execute an arbitrary shell command under
any compilation. Observe that this attack involves over-
writing a function pointer, although to a valid target.

7.2.3 Evaluation of smbclient

Smbclient contains an interpreter that accepts commands
from the user and sends them to a Samba fileserver. An
attacker who controls memory can drive the interpreter to
send any action she desired to the fileserver. This allows
an attacker to perform any action on the Samba filesys-
tem that the user could. This program is a demonstration
that on some programs, CFI provides essentially no value
due to the expressiveness of the original application.

This is one of the most difficult cases for CFI. The
only value CFI adds to a binary is restricting it to its
CFG: however, when the CFG is easy to traverse and
gives powerful functions, CFI adds no more value than
a system call filter.

7.2.4 Evaluation of wireshark

An attacker who controls memory can write to any file
that the current user has access to. This gives power
equivalent to arbitrary code execution by, for example,
overwriting the authorized keys file. This is possible
because wireshark can save traces, and an attacker who
controls memory can trivially overwrite the filename be-
ing written to with one the attacker picks.

If the attacker waits for the user to click save and sim-
ply overwrites the file argument, this would be a data-
only attack under our definitions. It is also possible to
use control-flow bending to invoke file save as cb()

directly, by returning into the GTK library and overwrit-
ing a code pointer with the file save method, which is
within the CFG.

7.2.5 Evaluation of xpdf

Similar to wireshark, an attacker can use xpdf to write
to arbitrary files using memcpy() as a dispatcher gadget
when there is no shadow stack. When a shadow stack is
present, we are limited to a printf-oriented programming

attack and we can only write files with specific exten-
sions, which does not obviously give us ability to run
arbitrary code.

7.2.6 Evaluation of mysql

When no shadow stack is present, attacks are trivial.
A dispatcher gadget lets us return into do system(),
do exec(), or do perl() from within the mysql client.
(For this attack we assume a vulnerable client to connects
to a malicious server controlled by the attacker.) When a
shadow stack is present the attacker is more limited, but
we still can use printf-oriented programming to obtain
arbitrary computation on memory. We could not obtain
arbitrary execution with a shadow stack.

7.3 Combining attacks
As these six case studies indicate, control-flow bending
is a realistic attack technique. In the five cases where CFI
does not immediately stop the exploit from occurring, as
it does for Apache, an attacker can use the vulnerabil-
ity to achieve arbitrary writes in memory. From here, it
is possible to mount traditional data-only attacks (e.g.,
by modifying configuration data-structures). We showed
that using control-flow bending techniques, more power-
ful attacks are possible. We believe this attack technique
is general and can be applied to other applications and
vulnerabilities.

8 Related work

Control-flow integrity. Control-flow integrity was orig-
inally proposed by Abadi et al. [1, 15] a decade ago.
Classical CFI instruments indirect branch target loca-
tions with equivalence-class numbers (encoded as a la-
bel in a side-effect free instruction) that are checked at
branch locations before taking the branch. Many other
CFI schemes have been proposed since then.

The most coarse-grained policies (e.g., Native
Client [40] or PittSFIeld [20]) align valid targets to the
beginning of chunks. At branches, these CFI schemes
ensure that control-flow is not transferred to unaligned
addresses. Fine-grained approaches use static analy-
sis of source code to construct more accurate CFGs
(e.g., WIT [2] and HyperSafe [39]). Recent work by
Niu et al. [27] added support for separate compilation
and dynamic loading. Binary-only CFI implementa-
tions are generally more coarse-grained: MoCFI [13] and
BinCFI [44] use static binary rewriting to instrument in-
direct branches with additional CFI checks.

CFI evaluation metrics. Others have attempted to cre-
ate methods to evaluate practical CFI implementations.
The Average Indirect target Reduction (AIR) [44] metric

12
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was proposed to measure how much on average the set of
indirect valid targets is reduced for a program under CFI.
We argue that this metric has limited utility, as even high
AIR values of 99% are insecure, allowing an attacker to
perform arbitrary computation and issue arbitrary system
calls. The gadget reduction metric is another way to eval-
uate CFI effectiveness [27], by measuring how much the
set of reachable gadgets is reduced overall. Gadget finder
tools like ROPgadget [34] or ropper [33] can be used to
estimate this metric.

CFI security evaluations. There has recently been a
significant effort to analyze the security of specific CFI
schemes, both static and dynamic. Göktaş et al. [16] an-
alyzed the security of static coarse-grained CFI schemes
and found that the specific policy of requiring returns to
target call-preceded locations is insufficient. Following
this work, prevent-the-exploit-style coarse-grained CFI
schemes with dynamic components that rely on runtime
heuristics were defeated [5, 14]. The attacks relied upon
the fact that the attacks could hide themselves from the
dynamic heuristics, and then reduced down to attacks on
coarse-grained CFI. Our evaluation of minimal programs
builds on these results by showing that coarse-grained
CFI schemes which have an AIR value of 99% are still
vulnerable to attacks on trivially small programs.

Non-control data attacks. Attacks that target only sen-
sitive data structures were categorized as pure data at-
tacks by Pincus and Baker [32]. Typically, these at-
tacks would overwrite application-specific sensitive vari-
ables (such as the “is authenticated” boolean which exists
within many applications). This was expanded by Chen
et al. [8] who demonstrated that non-control data attacks
are practical attacks on real programs. Our work general-
izes these attacks to allow modifications of control-flow
data, but only in a way that follows the CFI policy.

Data-flow integrity. Nearly as old of an idea as CFI,
Data-Flow Integrity (DFI) provides guarantees for the in-
tegrity of the data within a program [6]. Although the
original scheme used static analysis to compute an ap-
proximate data-flow graph — what we would now call
a coarse-grained approach — more refined DFI may be
able to protect against our attacks. We believe security
evaluation of prevent-the-corruption style defenses such
as DFI is an important future direction of research.

Type- and memory-safety. Other defenses have tried
to bring type-safety and memory-safety to unsafe lan-
guages like C and C++. SoftBound [22] is a compile-
time defense which enforces spatial safety in C, but at
a 67% performance overhead. CETS [23] extends this
work with a compile-time defense that enforces tempo-
ral safety in C, by protecting against memory manage-
ment errors. CCured [24] adds type-safe guarantees to
C by attempting to statically determine when errors can-
not occur, and dynamically adding checks when nothing

can be proven statically. Cyclone [17] takes a more rad-
ical approach and re-designs C to be type- and memory-
safe. Code-Pointer Integrity (CPI) [18] reduces the over-
head of SoftBound by only protecting code pointers.
While CPI protects the integrity of all indirect control-
flow transfers, limited control-flow bending attacks using
conditional jumps may be possible by using non-control-
data attacks. Evaluating control-flow bending attacks on
CPI would be an interesting direction for future work.

9 Conclusion

Control-flow integrity has historically been considered a
strong defense against control-flow hijacking attacks and
ROP attacks, if implemented to its fullest extent. Our re-
sults indicate that this is not entirely the case, and that
control-flow bending allows attackers to perform mean-
ingful attacks even against systems protected by fully-
precise static CFI. When no shadow stack is in place, dis-
patcher functions allow powerful attacks. Consequently,
CFI without return instruction integrity is not secure.
However, CFI with a shadow stack does still provide
value as a defense, if implemented correctly. It can sig-
nificantly raise the bar for writing exploits by forcing at-
tackers to tailor their attacks to a particular application; it
limits an attacker to issue only system calls available to
the application; and it can make specific vulnerabilities
unexploitable under some circumstances.

Our work has several implications for design and de-
ployment of CFI schemes. First, shadow stacks appear
to be essential for the security of CFI. We also call for
adversarial analysis of new CFI schemes before they are
deployed, as our work indicates that many published CFI
schemes have significant security weaknesses. Finally, to
make control-flow bending attacks harder, deployed sys-
tems that use CFI should consider combining CFI with
other defenses, such as data integrity protection to en-
sure that data passed to powerful functions cannot be cor-
rupted in the presence of a memory safety violation.

More broadly, our work raises the question: just how
much security can prevent-the-exploit defenses (which
allow the vulnerability to be triggered and then try to pre-
vent exploitation) provide? In the case of CFI, we argue
the answer to this question is that it still provides some,
but not complete, security. Evaluating other prevent-the-
exploit schemes is an important area of future research.

We hope that the analyses in this paper help establish
a basis for better CFI security evaluations and defenses.
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A Minimal vulnerable program for indi-
rect jump or call hijacking

The program in Figure 6 contains a bug that allows the
attacker to reliably hijack an indirect jump or indirect call
target. The function overflow() allows an attacker to
overflow a struct allocated on the stack that contains two
pointers used as the targets for an indirect jump or an
indirect call, respectively. The attacker can use the indi-
rect jump or call to divert control flow to a return gadget
and continue with a classic ROP attack. Alternatively, an
attacker may rely on JOP or COP techniques. We also
examined variations of this minimal vulnerable program,
e.g., putting the struct somewhere on the heap or requir-
ing the attacker to first perform a stack pivot to ensure
that the stack pointer points to attacker-controlled data.

B Printf is Turing-complete

The semantics of printf() allow for Turing-complete
computation while following the minimal CFG.

At a high level, we achieve Turing-completeness by
creating logic gates out of calls to printf(). We show
how to expand a byte to its eight bits, and how to com-
pact the eight bits back to a byte. We will compute on
values by using them in their base-1 (unary) form and
we will use string concatenation as our primary method
of arithmetic. That is, we represent a true value as the
byte sequence 0x01 0x00, and the false value by the byte
sequence 0x00 0x00, so that when treated as strings their
lengths are 1 and 0 respectively.

Figure 7 contains an implementation of an OR gate us-
ing only calls to printf(). In the first call to printf(),
if either of the two inputs is non-zero, the output length
will be non-zero, so the output will be set to a non-zero
value. The second call to printf() normalizes the value
so if it was any non-zero value it becomes a one. Figure 7

#include <stdio.h>
#include <string.h>
#define STDIN 0

void jmptarget ();
void calltarget ();

struct data {
char buf [1024];
int arg1;
int arg2;
int arg3;
void (* jmpPtr )();
void (* callPtr )(int ,int ,int);

};

void overflow () {
struct data our_data;
our_data.jmpPtr = &&label;
our_data.callPtr = &calltarget;
printf("%x\n", (unsigned int)& our_data.buf);
printf("\ndata >�");
read(STDIN , our_data.buf , 1044);
printf("\n");
asm("push�%0; push�%1; push�%2; call�*%3; add�$12 ,%% esp;"
: : "r"(our_data.arg3),

"r"(our_data.arg2),
"r"(our_data.arg1),
"r"(our_data.callPtr ));

asm("jmp�*%0" : : "r"(our_data.jmpPtr ));
printf("?\n");

label:
printf("label�reached\n");

}

void jmptarget () {
printf("jmptarget ()�called\n");

}

void calltarget(int arg1 , int arg2 , int arg3) {
printf("calltarget ()�called�(args:�%x,�%x,�%x)\n",
arg1 , arg2 , arg3);

}

int main(int argc , char* argv []) {
setbuf(stdout , NULL);
overflow ();
printf("\ndone .\n");
return 0;

}

Figure 6: A minimal vulnerable program that allows hi-
jack of an indirect jump or indirect call target.

implements a NOT gate using the fact that adding 255 is
the same as subtracting one, modulo 256.

In order to operate on bytes instead of bits in our con-
trived format, we implement a test gate which can test if
a byte is equal to a specific value. By repeating this test
gate for each of the 256 potential values, we can con-
vert a 8-bit value to its “one-hot encoding” (a 256-bit
value with a single bit set, corresponding to the orig-
inal value). Splitting a byte into bits does not use a
pointer to a byte, but a byte itself. This requires that
the byte is on the stack. Moving it there takes some
effort, but can still be done with printf(). The eas-
iest way to achieve this would be to interweave calls
to memcpy() and printf(), copying the bytes to the
stack with memcpy() and then operating on them with
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void or(int* in1 , int* in2 , int* out) {
printf("%s%s%n", in1 , in2 , out);
printf("%s%n", out , out);

}

void not(int* in, int* out) {
printf("%*d%s%n", 255, in, out);
printf("%s%n", out , out);

}

void test(int in, int const , int* out) {
printf("%*d%*d%n", in, 0, 256-const , 0, out);
printf("%s%n", out , out);
printf("%*d%s%n", 255, out , out);
printf("%s%n", out , out);

}

char* pad = memalign (257, 256);
memset(pad , 1, 256);
pad [256] = 0;
void single_not(int* in , int* out) {

printf("%*d%s%n%hhn%s%s%n", 255, in, out ,
addr_of_argument , pad , out , out);

}

Figure 7: Gadgets for logic gates using printf.

printf(). However, this requires more of the program
CFG, so we instead developed a technique to achieve
the same goal without resorting to memcpy(). When
printf() is invoked, the characters are not sent di-
rectly to the stdout stream. Instead, printf() will use
the FILE struct corresponding to the stdout stream to
buffer the data temporarily. Since the struct is stored
in a writable memory location, the attacker can invoke
printf() with the “%n” format specifier to point the
buffer onto the stack. Then, by reading values out of
memory with “%s” the attacker can move these values
onto the stack. Finally, the buffer can be moved back to
its original location.

It is possible to condense multiple calls to printf()

to only one. Simply concatenating the format strings is
not enough, because the length of the strings is important
with the “%n” modifier. That is, after executing a NOT
gate, the string length will either be 255 or 256. We can-
not simply insert another NOT gate, as that would make
the length be one of 510, 511, or 512. We fix this by in-
serting a length-repairing sequence of “%hhn%s”, which
pads the length of the string to zero modulo 256. We use
it to create a NOT gate in a single call to printf() in
Figure 7. Using this technique, we can condense an ar-
bitrary number of gates into a single call to printf().
This allows bounded Turing-complete computation.

To achieve full Turing-complete computation, we need
a way to loop a format string. This is possible by over-
writing the pointer inside printf() that tracks which
character in the format string is currently being executed.
The attacker is unlucky in that at the time the “%n” for-
mat specifier is used, this value is saved in a register on
our 64-bit system. However, we identify one point in

time in which the attacker can always mount the attack.
The printf() function makes calls to puts() for the
static components of the string. When this function call
is made, all registers are saved to the stack. It turns out
that an attacker can overwrite this pointer from within the
puts() function. By doing this, the format string can be
looped.

An attacker can cause puts() to overwrite the desired
pointer. Prior to printf() calling puts(), the attacker
uses “%n” format specifiers to overwrite the stdout FILE
object so that the temporary buffer is placed directly on
top of the stack where the index pointer will be saved.
Then, we print the eight bytes corresponding to the new
value we want the pointer to have. Finally, we use more
“%n” format specifiers to move the buffer back to some
other location so that more unintended data will not be
overwritten.

C Fputs-oriented programming

These printf-style attacks are not unique to printf():
many other functions can be exploited in a similar man-
ner. We give one further attack using fputs(). For
brevity, we show how an attacker can achieve a condi-
tional write, however other computation is possible.

The FILE struct contains three char* fields to tem-
porarily buffer character data before it is written out:
a base pointer, a current pointer, and an end pointer.
fputs() works by storing bytes sequentially starting
from the base pointer keeping track with the current
pointer. When it exceeds the end pointer, the data is
written out, and the current pointer is set back to the
base. Programmatically, the way this works is that if the
current pointer is larger than the end pointer, fputs()
flushes the buffer and then sets the current pointer to the
base pointer and continues writing.

This can be used to conditionally copy from source
address S to target address T if the byte address C is non-
zero. Using fputs(), the attacker copies the byte at C
on top of each of the 8 bytes in the end pointer. Then,
the attacker sets the current pointer to T and then calls
fputs() with this FILE and argument S. If the byte at C
is zero, the end pointer is the NULL pointer, and no data
is written. Otherwise, the data is written.

This attack requires two calls to fputs(). We initial-
ize memory with the constant pointers that are desired.
The first call to fputs() moves the C byte over the end
pointer. The second call is the conditional move. The
two calls can be obtained by loop injection, or by identi-
fying an actual loop in the CFG.
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Abstract
As defense solutions against control-flow hijacking at-
tacks gain wide deployment, control-oriented exploits
from memory errors become difficult. As an alterna-
tive, attacks targeting non-control data do not require
diverting the application’s control flow during an at-
tack. Although it is known that such data-oriented at-
tacks can mount significant damage, no systematic meth-
ods to automatically construct them from memory er-
rors have been developed. In this work, we develop a
new technique called data-flow stitching, which system-
atically finds ways to join data flows in the program to
generate data-oriented exploits. We build a prototype
embodying our technique in a tool called FLOWSTITCH
that works directly on Windows and Linux binaries. In
our experiments, we find that FLOWSTITCH automati-
cally constructs 16 previously unknown and three known
data-oriented attacks from eight real-world vulnerable
programs. All the automatically-crafted exploits respect
fine-grained CFI and DEP constraints, and 10 out of the
19 exploits work with standard ASLR defenses enabled.
The constructed exploits can cause significant damage,
such as disclosure of sensitive information (e.g., pass-
words and encryption keys) and escalation of privilege.

1 Introduction

In a memory error exploit, attackers often seek to ex-
ecute arbitrary malicious code, which gives them the
ultimate freedom in perpetrating damage with the vic-
tim program’s privileges. Such attacks typically hijack
the program’s control flow by exploiting memory errors.
However, such control-oriented attacks, including code-
injection and code-reuse attacks, can be thwarted by effi-
cient defense mechanisms such as control-flow integrity
(CFI) [10,43,44], data execution prevention (DEP) [12],
and address space layout randomization (ASLR) [15,33].
Recently, these defenses have become practical and are

gaining universal adoption in commodity operating sys-
tems and compilers [8, 36], making control-oriented at-
tacks increasingly difficult.

However, control-oriented attacks are not the only ma-
licious consequence of memory error exploits. Memory
errors also enable attacks through corrupting non-control
data — a well-known result from Chen et al. [19]. We
refer to the general class of non-control data attacks as
data-oriented attacks, which allow attackers to tamper
with the program’s data or cause the program to disclose
secret data inadvertently. Several recent high-profile vul-
nerabilities have highlighted the menace of these attacks.
In a recent exploit on Internet Explorer (IE) 10, it has
been shown that changing a single byte — specifically
the Safemode flag — is sufficient to run arbitrary code in
the IE process [6]. The Heartbleed vulnerability is an-
other example wherein sensitive data in an SSL-enabled
server could be leaked without hijacking the control-flow
of the application [7].

If data-oriented attacks can be constructed such that
the exploited program follows a legitimate control flow
path, they offer a realistic attack mechanism to cause
damage even in the presence of state-of-the-art control-
flow defenses, such as DEP, CFI and ASLR. However,
although data-oriented attacks are conceptually under-
stood, most of the known attacks are straightforward cor-
ruption of non-control data. No systematic methods to
identify and construct these exploits from memory er-
rors have been developed yet to demonstrate the power of
data-oriented attacks. In this work, we study systematic
techniques for automatically constructing data-oriented
exploits from given memory corruption flaws.

Based on a new concept called data-flow stitching, we
develop a novel solution that enables us to systematize
the understanding and construction of data-oriented at-
tacks. The intuition behind this approach is that non-
control data is often far more abundant than control data
in a program’s memory space; as a result, there exists
an opportunity to reuse existing data-flow patterns in the
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program to do the attacker’s bidding. The main idea of
data-flow stitching is to “stitch” existing data-flow paths
in the program to form new (unintended) data-flow paths
via exploiting memory errors. Data-flow stitching can
thus connect two or more data-flow paths that are disjoint
in the benign execution of the program. Such a stitched
execution, for instance, allows the attacker to write out a
secret value (e.g., cryptographic keys) to the program’s
public output, which otherwise would only be used in
private operations of the application.
Problem. Our goal is to check whether a program is ex-
ploitable via data-oriented attacks, and if so, to automat-
ically generate working data-oriented exploits. We aim
to develop an exploit generation toolkit that can be used
in conjunction with a dynamic bug-finding tool. Specif-
ically, from an input that triggers a memory corruption
bug in the program, with the knowledge of the program,
our toolkit constructs a data-oriented exploit.

Compared to control-oriented attacks, data-oriented
attacks are more difficult to carry out, since attackers
cannot run malicious code of their choice even after the
attack. Though non-control data is abundant in a typi-
cal program’s memory space, due to the large range of
possibilities for memory corruption and their subtle in-
fluence on program memory states, identifying how to
corrupt memory values for a successful exploit is diffi-
cult. The main challenge lies in searching through the
large space of memory state configurations, such that the
attack exhibits an unintended data consequence, such as
information disclosure or privilege escalation. An addi-
tional practical challenge is that defenses such as ASLR
randomize addresses, making it even harder since abso-
lute address values cannot be used in exploit payloads.
Our Approach. In this work, we develop a novel so-
lution to construct data-oriented exploits through data-
flow stitching. Our approach consists of a variety of
techniques that stitch data flows in a much more effi-
cient manner compared to manual analysis or brute-force
searching. We develop ways to prioritize the search-
ing for data-flow stitches that require a single new edge
or a small number of new edges in the new data-flow
path. We also develop techniques to address the chal-
lenges caused by limited knowledge of memory lay-
out. To further prune the search space, we model the
path constraints along the new data-flow path using sym-
bolic execution, and check its feasibility using SMT
solvers. This can efficiently prune out memory corrup-
tions that cause the attacker to lose control over the ap-
plication’s execution, like triggering exceptions, failing
on compiler-inserted runtime checks, or causing the pro-
gram to abort abruptly. By addressing these challenges, a
data-oriented attack that causes unintended behavior can
be constructed, without violating control-flow require-
ments in the victim program.

We build a tool called FLOWSTITCH embodying these
techniques, which operates directly on x86 binaries.
FLOWSTITCH takes as input a vulnerable program with
a memory error, an input that exploits the memory er-
ror, as well as benign inputs to that program. It employs
dynamic binary analysis to construct an information-
flow graph, and efficiently searches for data flows to be
stitched. FLOWSTITCH outputs a working data-oriented
exploit that either leaks or tampers with sensitive data.
Results. We show that automatic data-oriented exploit
generation is feasible. In our evaluation, we find that
multiple data-flow exploits can often be constructed from
a single vulnerability. We test FLOWSTITCH on eight
real-world vulnerable applications, and FLOWSTITCH
automatically constructs 19 data-oriented exploits from
eight applications, 16 of which are previously unknown
to be feasible from known memory errors. All con-
structed exploits violate memory safety, but completely
respect fine-grained CFI constraints. That is, they create
no new edges in the static control-flow graph. All the
attacks work with the DEP protection turned on, and 10
exploits (out 19) work even when ASLR is enabled. The
majority of known data-oriented attacks (c.f. Chen et.
al. [19], Heartbleed [7], IE-Safemode [6]) are straight-
forward non-control data corruption attacks, requiring at
most one data-flow edge. In contrast, seven exploits we
have constructed are only feasible with the addition of
multiple data-flow edges in the data-flow graph, showing
the efficacy of our automatic construction techniques.
Contributions. This paper makes the following contri-
butions:

• We conceptualize data-flow stitching and develop a
new approach that systematizes the construction of
data-oriented attacks, by composing the benign data
flows in an application via a memory error.

• We build a prototype of our approach in an au-
tomatic data-oriented attack generation tool called
FLOWSTITCH. FLOWSTITCH operates directly on
Windows and Linux x86 binaries.

• We show that constructing data-oriented attacks
from common memory errors is feasible, and offers
a promising way to bypass many defense mecha-
nisms to control-flow attacks. Specifically, we show
that 16 previously unknown and three known data-
oriented attacks are feasible from eight vulnerabili-
ties. All our 19 constructed attacks bypass DEP and
the CFI checks, and 10 of them bypass ASLR.

2 Problem Definition

2.1 Motivating Example
The following example shown in Code 1 is modeled after
a web server. It loads the web site’s private key from a

2
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1 int server() {
2 char *userInput, *reqFile;
3 char *privKey, *result, output[BUFSIZE];
4 char fullPath[BUFSIZE] = "/path/to/root/";
5
6 privKey = loadPrivKey("/path/to/privKey");
7 /* HTTPS connection using privKey */
8 GetConnection(privKey, ...);
9 userInput = read_socket();

10 if (checkInput(userInput)) {
11 /* user input OK, parse request */
12 reqFile = getFileName(userInput);
13 /* stack buffer overflow */
14 strcat(fullPath, reqFile);
15 result = retrieve(fullPath);
16 sprintf(output,"%s:%s",reqFile,result);
17 sendOut(output);
18 }
19 }

Code 1: Vulnerable code snippet. String concatenation on line 14
introduces a stack buffer overflow vulnerability.

file, and uses it to establish an HTTPS connection with
the client. After receiving the input — a file name, the
code sanitizes the input by invoking checkInput()
(on line 10). The code then retrieves the file content and
sends the content and the file name back to the client.
There is a stack buffer overflow vulnerability on line 14,
through which the client can corrupt the stack memory
immediately after the fullPath buffer.

However, there is no obvious security-sensitive non-
control data [19] on the stack of the vulnerable function.
To create a data-oriented attack, we analyze the data flow
patterns in the program’s execution under a benign input,
which contains at least two data flows: the flow involv-
ing the sensitive private key pointed to by the pointer
named privKey, and the flow involving the input file
name pointed by the pointer named reqFile, which is
written out to the program’s public outputs. Note that in
the benign run, these two data flows do not intersect —
that is, they have no shared variables or direct data de-
pendence between them, but we can corrupt memory in
such a way that the secret private key gets written out to
the public output. Specifically, the attacker crafts an at-
tack exploiting the buffer overflow to corrupt the pointer
reqFile, making it to point to the private key. This
forces the program to copy the private key to the output
buffer in the sprintf function on line 16, and then the
program sends the output buffer to the client on line 17.
Note that the attack alters no control data, and executes
the same execution path as the benign run.

This example illustrates the idea of data-flow stitch-
ing, an exploit mechanism to manipulate the benign data
flows in a program execution without changing its con-
trol flow. Though it is not difficult to manually analyze
this simplified example to construct a data-oriented at-

tack, real-world programs are much more complex and
often available in binary-only form. Constructing data-
oriented attacks for such programs is a challenging task
we tackle in this work.

2.2 Objectives & Threat Model
In this paper, we aim to develop techniques to automat-
ically construct data-oriented attacks by stitching data
flows. The generated data-oriented attacks result in the
following consequences:
G1: Information disclosure. The attacks leak sensitive
data to attackers. Specifically, we target the following
sources of security-sensitive data:

• Passwords and private keys. Leaking passwords
and private keys help bypass authentication controls
and break secure channels established by encryption
techniques.

• Randomized values. Several memory protection
defenses utilize randomized values generated by the
program at runtime, such as stack canaries, CFI-
enforcing tags, and randomized addresses. Disclo-
sure of such information allows attackers bypass
randomization-based defenses.

G2: Privilege escalation. The attacks grant attackers the
access to privileged application resources. Specifically,
we focus on the following kinds of program data:

• System call parameters. System calls are used for
high-privilege operations, like setuid(). Cor-
rupting system call parameters can lead to privilege
escalation.

• Configuration settings. Program configuration
data, especially for server programs (e.g., data
loaded from httpd.conf for Apache servers)
specifies critical information, such as the user’s per-
mission and the root directory of the web server.
Corrupting such data directly escalates privilege.

Threat Model. We assume the execution environment
has deployed defense mechanisms against control-flow
hijacking attacks, such as fine-grained CFI [10,32], non-
executable data [12] and state-of-the-art implementation
of ASLR. Therefore attackers cannot mount control flow
hijacking attacks. All non-deterministic system gener-
ated values, e.g., stack-canaries or CFI tags, are assumed
to be secret and unknown to attackers.

2.3 Problem Definition
To systematically construct data-oriented exploits, we
introduce a new abstraction called the two-dimensional
data-flow graph (2D-DFG), which represents the flows
of data in a given program execution in two dimensions:
memory addresses and execution time. Specifically, a

3
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Figure 1: 2D-DFG of a concrete execution of Code 1. Black edges
are data edges, while grey edges are address edges. For clarity, ver-
tices do not strictly conform the order on address-axis (this applies to
all figures). We use line number to represent the time. var1 means a
particular value (constant) of the variable var in Code 1.

2D-DFG is a directed graph, represented as G = {V,E},
where V is the set of vertices, and E is the set of edges. A
vertex in V is a variable instance, i.e., a point in the two
dimensional address-time space, denoted as (a, t), where
a is the address of the variable, and t is a representation
of the execution time when the variable instance is cre-
ated. The address includes both memory addresses and
register names1, and the execution time is represented as
an instruction counter in the execution trace of the pro-
gram. An edge (v′, v) from vertex v′ to vertex v denotes
a data dependency created during the execution, i.e., the
value of v or the address of v is derived from the value of
v′. Therefore, the 2D-DFG also embodies the “points to”
relation between pointer variables and pointed variables.
Each vertex v has a value property, denoted as v.value.

A new vertex v = (a, t) is created if an instruction
writes to address a at the execution time t. A new data
edge (v′, v) is created if an instruction takes v′ as the
source operand and takes v as a destination operand. A
new address edge (v′, v) is created if an instruction takes
v′ as the address of one operand v. Therefore, an instruc-
tion may create several vertices at a given point in execu-
tion if it changes more than one variables, for instance in
the loop-prefixed instructions (e.g., repmov). Note that
the 2D-DFG is a representation of the direct data depen-
dencies created in a program execution under a concrete
input, not the static data-flow graph often used in static
analysis. Figure 1 shows a 2D-DFG of Code 1.

We define the core problem of data-flow stitching as
follows. For a program with a memory error, we take
the following parameters as the input: a 2D-DFG G from
a benign execution of the program, a memory error in-
fluence I, and two vertices vS (source) and vT (target).
In our example, vS is the private key buffer, shown as
(privKey12, 6) in Figure 1 and vT is the public output

1We treat the register name as a special memory address.
2privKey1 here means the key buffer address, a concrete value.

buffer, shown as (output, 16) in Figure 1. Our goal is
to generate an exploit input that exhibits a new 2D-DFG
G′ = {V ′,E ′}, where V ′ and E ′ result from the memory
error exploit, and that G′ contains data-flow paths from
vS to vT . Let E = E ′−E be the edge-set difference and
V = V ′ − V be the vertex-set difference. Then, E is the
set of new edges we need to generate to get E ′ from E.

The memory error influence I is the set of memory
locations which can be written to by the memory error,
represented as a set of vertices. Therefore, we must se-
lect V to be a subset of vertices in I. To achieve G1
we consider variables carrying program secrets as source
vertices and variables written to public outputs as target
vertices. In the development of attacks for G2, source
vertices are attacker-controlled variables and target ver-
tices are security-critical variables such as system call
parameters. A successful data-oriented attack should ad-
ditionally satisfy the following critical requirements:

• R1. The exploit input satisfies the program path
constraints to reach the memory error, create new
edges and continue the execution to reach the in-
struction creating vT .

• R2. The instructions executed in the exploit must
conform to the program’s static control flow graph.

2.4 Key Technique & Challenges
The key idea in data-flow stitching is to efficiently search
for the new data-flow edge set E to add in G′ such that
it creates new data-flow paths from vS to vT . For each
edge (x,y) ∈ E, x is data-dependent on vS and vT is data-
dependent on y. We denote the sub-graph of G contain-
ing all the vertices that are data-dependent on vS as the
source flow. We also denote the sub-graph of G contain-
ing all the vertices that vT is data-dependent on as the
target flow. For each vertex pair (x, y), where x is in the
source flow and y is in the target flow, we check whether
(x, y) is a feasible edge of E resulting from the inclusion
of vertices from I. The vertices x and y may either be
contained in I directly, or be connected via a sequence of
edges by corruption of their pointers which are in I. If we
change the address to which x is written, or change the
address from which y is read, the value of x will flow to y.
If so, we call (x, y) the stitch edge, x the stitch source, and
y the stitch target. For example, in Figure 2, we change
the pointer (which is in I) of the file name from reqFile1
to privKey1. Then the flow of the private key and the
flow of the file name are stitched, as we discuss in Sec-
tion 2.1. In finding data-flow stitching in the 2D-DFG,
we face the following challenges:

• C1. Large search space for stitching. A 2D-DFG
from a real-world program has many data flows and
a large number of vertices. For example, there are

4
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Figure 2: A data-oriented attack of Code 1. This attack connects
flow of the private key and flow of the file name, with the new edges
(dashed lines).

776 source vertices and 56 target vertices in one of
SSHD attacks. Therefore, the search space to find a
feasible path is large, for we often need heavy anal-
ysis to connect each pair of vertices.

• C2. Limited knowledge of memory layout. Most
of the modern operating systems have enabled
ASLR by default. The base addresses of data mem-
ory regions, like the stack and the heap, are random-
ized and thus are difficult to predict.

The 2D-DFG captures only the data dependencies
in the execution, abstracting away control dependence
and any conditional constraints the the program imposes
along the execution path. To satisfy the requirements R1
and R2 completely, the following challenge must be ad-
dressed:

• C3. Complex program path constraints. A suc-
cessful data-oriented attack causes the victim pro-
gram execute to the memory error, create a stitch
edge, and continue without crashing. This requires
the input to satisfy all path constraints, respect the
program’s control flow integrity constraints, and
avoid invalid memory accesses.

3 Data-flow Stitching

Data-oriented exploits can manipulate data-flow paths in
a number of different ways to stitch the source and target
vertices. The solution space can be categorized based on
the number of new edges added by the exploit. The sim-
plest case of data-oriented exploits is when the exploit
adds a single new edge. More complex exploits that use
a sequence of corrupted values can be crafted when a
single-edge stitch is infeasible. We discuss these cases to
solve challenge C1 in Section 3.1 and 3.2. To overcome
the challenge C2, we develop two methods to make data-
oriented attacks work even when ASLR is deployed, dis-
cussed in Section 3.3. For each stitch candidate, we con-
sider the path constraints and CFI requirement (C3) to
generate input that trigger the stitch edge in Section 4.4.

1 struct passwd { uid_t pw_uid; ... } *pw;
2 ...
3 int uid = getuid();
4 pw->pw_uid = uid;
5 ... //format string error
6 void passive(void) { ...
7 seteuid(0); //set root uid
8 ...
9 seteuid(pw->pw_uid); //set normal uid

10 ... }

Code 2: Code snippet of wu-ftpd, setting uid back to process user
id.
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Figure 3: Target flow in the single-edge stitch of wu-ftpd. &arg
is the stack address of setuid’s argument. (a) is the original target
flow, where the pw->pwd uid has vale 100 and address pw1. Grey
area stands for the memory influence I. With the stitching attack, the
value at address pw1 is changed to 0 in (b).

3.1 Basic Stitching Technique
A basic data-oriented exploit adds one edge in the new
edge set E to connect vS with vT . We call this case
a single-edge stitch. For instance, attackers can cre-
ate a single new vertex at the memory corruption point
by overwriting a security-critical data value, causing es-
calation of privileges. Most of the previously known
data-oriented attacks are cases of single-edge stitches,
including attacks studied by Chen et al. [19] and the
IE Safemode attack [6]. We use the example of a vul-
nerable web server wu-ftpd, shown in Code 2, which
was used by Chen et al. to explain non-control data at-
tacks [19]. In this exploit, the attackers utilizes a format
string vulnerability (skipped on line 5) to overwrite the
security-critical pw->pw uid with root user’s id. The
subsequent setuid call on line 9, which is intended to
drop the process privileges, instead makes the program
retain its root user privileges. Figure 3 (a) and Figure 3
(b) show the 2D-DFG for the execution of the vulnerable
code fragment under a benign and the exploit payload re-
spectively. Numbers on time-axis are the line numbers in
Code 2. The exploit aims to introduce a single edge to
write a zero value from the network input to the memory
allocated to the pw->pw id. Note that the exploit is a
valid path in the static control-flow graph.
Search for Single-Edge Stitch. Instead of brute-forcing
all vertices in the target flow for a stitch edge, we propose
a method that utilizes the influence set I of the mem-
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StitchAlgo-1: Single-edge Stitch
Input: G: benign 2D-DFG, I: memory influence,

vT : target vertex, cp: memory error vertex,
X : value to be in VT .value (requirement for stitch edge)

Output: E: stitch edge candidate set
1 E = /0
2 T DFlow = dataSubgraph(G, vT ) /* only data edges */
3 foreach v ∈ V(TDFlow) do
4 if isRegister(v) then
5 continue /* Skip registers */

6 if ∃ (v, v′) ∈ E(TDFlow): ∃ t : v.time < t < v′.time ∧
(v.address, t) ∈ I then

7 E = E ∪ {(cp, v)} /* Stitch edge candidate */

ory error to prune the search space. The influence set I
contains vertices that can be corrupted by the memory
error, like the grey area shown in Figure 3. For ver-
tices in the target flow, attackers can only affect those
in the intersection of the target flow and the influence
I. Other vertices do not yield a single-edge stitch and
can be filtered out. Specifically, we utilize three obser-
vations here. First, register vertices can be ignored since
memory error exploit cannot corrupt them. Second, the
vertex must be defined (written) before the memory error
and used (read) after the memory error. In Figure 3 (a),
the code reads vertex (&uid, 3) before the memory error
and writes vertices (&arg, 9) and the following one af-
ter the memory error. Therefore these three vertices are
useless for single-edge stitches. Third, in the memory
address dimension, the vertex address should belong to
the memory region of the influence I. In our example,
only vertex (pw1, 4) falls into the intersection of the tar-
get flow and the influence area and we select this vertex
for stitch. StitchAlgo-1 shows the algorithm to identify
single-edge stitch. From the given 2D-DFG, StitchAlgo-
1 gets the target flow T DFlow for the target vertex vT ,
which only considers data edges. For each vertex v that
satisfies the requirements, we add the edge from memory
error vertex to v into E as one possible solution.

We consider the search space reduction due to our al-
gorithm over a brute-force search for stitch edges. The
naı̈ve brute-force search would consider the Cartesian
product of all vertices in the source flow and the tar-
get flow. In our algorithm, this search is reduced to the
Cartesian product of only the live variables in the source
flow at the time of corruption, and the vertices in the tar-
get flow as well as in I. In our experiments, we show that
this reduction can be significant.

3.2 Advanced Stitching Technique
Single-edge stitch is a basic stitching method, creating
one new edge. Advanced data-flow stitching techniques
create paths with multiple edges in the new edge set E.
A multi-edge stitch can be synthesized through several
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Figure 4: Two-edge stitch of wu-ftpd. The target flow is
pw->pw uid’s flow, and the source flow is the flow of a constant 0.
With the attack, the variable pw at &pw is changed to b2. A later opera-
tion reads 0 from b2 and writes it to stack for setuid. Two edges are
changed: one for pointer dereference and another for data movement.

ways. Attackers can use several single-edge stitches to
create a multi-edge stitch. Another way is to perform
pointer stitch, which corrupts a variable that is later used
as a pointer to vertices in the source or target flow. Since
the pointer determines the address of the stitch source
or the stitch target, corrupting the pointer introduces two
different edges: one edge for the new “points to” rela-
tionship and one edge for the changed data flow. We re-
visit the example of wu-ftpd shown earlier in Code 2,
illustrating a multi-edge stitch exploit in it. Instead of
directly modifying the field pw uid, we change its base
pointer pw to an address of a structure with a constant
0 at the offset corresponding to the pw uid. The vul-
nerable code then reads 0 and uses it as the argument
of setuid, creating a privilege escalation attack. Fig-
ure 4 shows the 2D-DFGs for the benign and attack exe-
cutions. Changing the value of pw creates two new edges
(dashed lines): the grey edge that connects the corrupted
pointer to a new variable it points to, and the black edge
that writes the new variable into setuid argument. As
a result, we create a two-edge stitch.
Identifying Pointer Stitches. Our algorithm for finding
multi-edge exploits using pointer stitching is shown in
the StitchAlgo-2. The basic idea is to check each mem-
ory vertex in the source flow and the target flow. If it is
pointed to by another vertex in the 2D-DFG, we select
the pointer vertex to corrupt. The search for stitchable
pointers on the target flow is different from that on the
source flow. Specifically, for a vertex v in the target flow,
we need to find an data edge (v′,v) and a pointer vertex
vp of v′, and then change vp to point to a vertex vs in the
source flow, so that a new edge (vs,v) will be created to
stitch the data flows. For a vertex v in the source flow, we
need to find an data edge (v,v′) and a pointer vertex vp of
v′, and change vp to point to a vertex vt in the target flow,
so that a new edge (v,vt) will be created to stitch the data
flows. At the same time, we need to consider the liveness
of the stitching vertices. For example, the source vertex

6
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StitchAlgo-2: Pointer Stitch
Input: G: benign 2D-DFG, I: memory influence,

vS: source vertex, vT : target vertex,
cp: memory error vertex

Output: E: stitch edge candidate set
1 E = /0
2 SrcFlow = subgraph(G, vS) /* both data and address edges. */
3 T gtFlow = subgraph(G, vT )
4 SDFlow = dataSubgraph(G, vS) /* only data edges */
5 T DFlow = dataSubgraph(G, vT )
6 foreach v ∈ V(TDFlow) do
7 if isRegister(v) then continue
8 if � (vi ∈ E(I)∧ (v, v′) ∈ TDFlow) : vi.time < v′.time then

continue
9 foreach (vp, v) ∈ E(TgtFlow) – E(TDFlow) do

/* Only consider address edges. */
10 if vp is used to write v then continue

/* Expect data flow from v */
11 foreach vs ∈ V(SDFlow) do
12 if ¬isRegister(vs) ∧ vs.isAliveAt(vp.time) then
13 StitchAlgo-1(G, I, vp, cp, vs.address)

14 foreach v ∈ V(SDFlow) do
15 if isRegister(v) then continue
16 if ∀ vi ∈ I: v.time < vi.time then continue
17 foreach (vp, v) ∈ E(SrcFlow) – E(SDFlow) do
18 if vp is used to read v then continue

/* Expect data flow into v */
19 foreach vt ∈ V(TDFlow) do
20 if ¬ isRegister(vt) ∧∃(vt, v′) ∈ TDFlow : vt.time

< vp.time < v′.time then
21 StitchAlgo-1(G, I, vp, cp, vt.address)

should carry valid source data when it is used to write
data out to the target vertex. Once we select the pointer
vertex vp and its value (vt’s or vs’s address), the last step
is to set the value into vp through the memory error ex-
ploit. StitchAlgo-2 invokes the basic stitching technique
in StitchAlgo-1 to complete the last step.

Our technique uses vertex liveness and the memory er-
ror influence I to significantly reduce the search space. A
naı̈ve solution to finding pointer stitches would consider
all pairs (vs, vt) where vs is in the source flow and vt is
in the target flow. The search space will be the Carte-
sian product of the vertex set in the source flow (denoted
as V (SrcFlow)) and the vertex set in the target flow (de-
noted as V (T gtFlow)). In contrast, in StitchAlgo-2, if
the memory corruption occurs at time t1, the vertex used
in the stitch edge from the source flow must be live at
t1. Similarly, the vertex used in the stitch edge from
the target flow should be created after t1. We illustrate
it in Figure 5, where only the black vertices are candi-
dates. Furthermore, we restrict our search to the set of
vertices whose pointer vertices vp are inside the mem-
ory influence as well. We call the selected vertices from
the source flow R-set. Similarly, we call the vertices se-
lected from the target flow W-set. Our algorithm reduces
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Figure 5: Stitch edge selection. The execution starts at time t0, and
reaches memory error instructions at time t1. Target data is used at time
t2, just before target vertex VT . There are two stitch source candidates
(black points in the source flow) and three stitch destination candidate
(black points in the target flow). One of the stitch edge candidate is
shown using the dotted line.

the search space to the Cartesian product of the R-set and
W -set instead.

R-set = V (SrcFlow)∩ I, W -set = V (T gtFlow)∩ I

|SSnaive| = |V (SrcFlow)|× |V (T gtFlow)|
|SSpointer−stitch| = | R-set |× | W -set |

Pointer stitch constitutes a natural hierarchy of ex-
ploits, which can consist of multiple levels of derefer-
ences of attacker-controlled pointers. For instance, in a
two-level pointer stitch we can construct an exploit that
corrupts a pointer vp2 that points to the pointer vp. This
can be achieved by treating vp as the target vertex, an-
other pointer vp′ holding the intended value (vt’s or vs’s
address) as the source vertex and applying StitchAlgo-2
to change vp. In this case, StitchAlgo-2 is recursively
used twice. Similarly, N-level stitch corrupts a pointer
vpN of the the pointer vp(N−1) to make an attack (and so
on), by applying StitchAlgo-2 N times recursively. Note
that for a N-level stitch to work, we need to make sure
the source vertex vp′N “aligns” with the target vertex vpN

at each level, such that the program dereferences vpN N-
1 times to get the vertex vp, and dereferences vp′N N-1
time to get the intended value in the exploit.

Pointer stitch is one specific way to implement multi-
edge stitches. In principle, it can be composed to create
more powerful exploits, combining several other single-
edge stitches in a “multi-step” stitch attack. In a multi-
step stitch, several intermediate data flows are used to
achieve data-flow stitching. Each step can be realized
by pointer stitch or single-edge stitch. Multi-step stitch
is useful when direct stitches of the source flow and the
target flow are not feasible.

3.3 Challenges from ASLR
Address space layout randomization (ASLR) deployed
by modern systems poses a strong challenge in mounting

7
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Table 1: Deterministic memory region size of binaries on Ubuntu
12.04 x86 system. Position-independent executables have size 0. Two
largest numbers are highlighted for each directory.

size (KB) /bin /sbin /usr/bin /usr/sbin Total
0 21 22 73 18 134

1 - 8 10 33 150 20 213
8 - 16 12 17 113 11 153

16 - 32 23 17 147 14 201
32 - 64 19 22 103 25 169

64 - 128 15 8 66 8 97
128 - 256 7 2 35 4 48
256 - 512 3 2 32 3 40

> 512 2 2 32 2 38
Total 112 125 751 105 1093

successful data-oriented attacks since vertex addresses
are highly unpredictable. We develop two methods in
data-oriented attacks to address this challenge: stitch-
ing with deterministic addresses and stitching by address
reuse. Note that attackers can use others methods devel-
oped for control flow attacks to bypass ASLR here, like
disclosure of random addresses [14, 35].

3.3.1 Stitching With Deterministic Addresses

When security-critical data is stored in deterministic
memory addresses, stitching data flows of such data is
not affected by ASLR. Existing work [2, 34, 37] have
shown that current ASLR implementations leave a large
portion of program data in the deterministic memory
region. For example, Linux binaries are often com-
piled without the “-pie” option, resulting in deterministic
memory regions. We study deterministic memory size
of Ubuntu 12.04 (x86) binaries under directories /bin,
/sbin, /usr/bin and /usr/sbin, and show the re-
sults in Table 1. Among 1093 analyzed programs, more
than 87.74% have deterministic memory regions. Two
hundred and twenty-three programs have deterministic
memory regions larger than 64KB. Inside such memory
regions, there is many security-critical data, like random-
ized addresses in .got.plt and configuration struc-
tures in .bss. Hence we believe stitch with determinis-
tic addresses in real-world programs is practical.

We build an information leakage attack against the
orzhttpd web server [5] (details in Section 6.4.3) us-
ing the stitch with deterministic addresses. To respond
to a page request, orzhttpd uses a pointer to retrieve
the HTTP protocol version string. The pointer is stored
in memory. If we replace the pointer value with the ad-
dress of a secret data, the server will send that secret to
the client. However this requires both the address of the
pointer and the address of the secret to be predictable.
In the orzhttpd example, we find that the address of
the pointer is fixed (0x8051164) and choose the con-
tents of the .got.plt section (allocated at a fixed ad-
dress) as the secret to leak out. Figure 6 shows two 2D-
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Figure 6: Stitch with deterministic memory addresses of the
orzhttpd server. This attack is the similar to the one in Figure 4,
except the address of the source vertex and the pointer’s address of of
the target vertex are fixed. This attack works with ASLR.

DFGs for the benign execution and the attack, respec-
tively. With this attack, the content of .got.plt is sent
to the attacker, which leads to an memory address disclo-
sure exploit useful for constructing second-stage control-
hijacking attacks or stealing secret data in randomized
memory region. Unlike a direct memory disclosure at-
tack, here we use the corruption of deterministically-
allocated data to leak randomized addresses.
Identifying Stitch with Deterministic Addresses. We
represent the deterministic memory region as a set D.
Our algorithm considers the intersection of D for the ver-
tices in the source flow and the target flow. The previ-
ously outlined stitching algorithms can then be used di-
rectly prioritizing the vertices in the intersection with D.

3.3.2 Stitching By Address Reuse

If the security-critical data only exists inside the random-
ized memory region, data-oriented attacks cannot use de-
terministic addresses. To bypass ASLR in such cases,
we leverage the observation that a lot of randomized ad-
dresses are stored in memory. If we can reuse such real-
time randomized addresses instead of providing concrete
address in the exploit, the generated data-oriented attacks
will be stable (agnostic to address randomization). There
are two types of address reuse: partial address reuse and
complete address reuse.
Partial Address Reuse. A variable’s relative address,
with respect to the module base address or with respect
to another variable in the same module, is usually fixed.
Attackers can easily calculate such relative addresses in
advance. On the other hand, instructions commonly get
a memory address with one base address and one rela-
tive offset (e.g., array access, switch table). If attack-
ers control the offset variable, they can corrupt the offset
with the pre-computed relative address from the selected
vertex (source vertex or target vertex) and reuse the ran-
domized base address. In this way attackers can access
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1 struct user_details { uid_t uid; ... } ud;
2 ... //run with root uid
3 ud.uid = getuid(); //in get_user_info()
4 ...
5 vfprintf(...); //in sudo_debug()
6 ...
7 setuid(ud.uid); //in sudo_askpass()
8 ...

Code 3: Code snippet of sudo, setting uid to normal user id.

the intended data without knowing their randomized ad-
dresses. We show an example of a vulnerable instruction
pattern, that allows the attacker partial ability to read a
value from memory and write it out without knowing
randomized addresses. If attackers control %eax, they
can reuse the source base address %esi in the first in-
struction, and reuse the destination base address %edi
in the second instruction. In fact, any memory access in-
struction with a corrupted offset can be used to mount
partial address reuse attack.

1 //attackers control %eax
2 mov (%esi,%eax,4), %ebx //reuse %esi
3 mov %ecx, (%edi,%eax,4) //reuse %edi

Complete Address Reuse. We observe that a variable’s
address is frequently saved in memory due to the limi-
tation of CPU registers. If the memory error allows re-
trieving such spilled memory address for reading or writ-
ing, attackers can reuse the randomized vertex address
existing in memory to bypass ASLR. For example, in
the following assembly code, if attacker controls %eax
on line 1, it can load a randomized address into %ebx
from memory. Then, attacker can access the target ver-
tex pointed by %ebx without knowing the concrete ran-
domized address. The attacker merely needs to know the
right offset value to use in %eax on line 2, or may have
a deterministic %esi value to gain arbitrary control over
addresses loaded on line 2.

1 //attacker controls %eax
2 mov (%esi, %eax, 4), %ebx
3 mov %ecx, (%ebx) / mov (%ebx), %ecx

Let us consider a real example of the sudo pro-
gram [9] that shows how to use such instruction patterns
that permit complete address reuse meaningfully. Code 3
shows the related code of sudo, where a format string
vulnerable exists in the sudo debug function (line 5).
At the time of executing vfprintf() on line 5, the
address of the user identity variable (ud.uid) exists on
the stack. The vfprintf() function with format string
“%X$n” uses the X th argument on stack for “%n”. By
specifying the value of X , vfprintf() can retrieve the
address of ud.uid from its ancestor’s stack frame and
change the ud.uid to the root user ID without knowing
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Figure 7: Stitch by complete memory address reuse of sudo. The
dashed line is the new edge (single-edge stitch). An address of ud.uid
exists on ancestor’s stack frame, which is reused to overwrite ud.uid.

the stack base address. Figure 7 shows the 2D-DFGs for
the benign execution and the attack. This attack works
even if the fine-grained ASLR is deployed.
Identifying Stitch by Address Reuse. Memory error in-
structions for address reuse stitch should match the pat-
terns we discuss above. For partial address reuse, the
memory error exploit corrupts variable offsets, while for
complete address reuse, the memory error exploit can re-
trieve addresses from memory. Our approach intersects
the memory error influence I with the source flow and
the target flow. Then we search from the new source flow
and the new target flow to identify matched instructions,
from which we can build stitch by address reuse with
methods discuss above.

4 The FLOWSTITCH System

We design a system called FLOWSTITCH to system-
atically generate data-oriented attacks using data-flow
stitching. As shown in Figure 8, FLOWSTITCH takes
three inputs: a program with memory errors, an error-
exhibiting input, and a benign input of the program. The
two inputs should drive the program execution down the
same execution path until the memory error instruction,
with the error-exhibiting input causing a crash. FLOW-
STITCH builds data-oriented attacks using the memory
errors in five steps. First, it generates the execution trace
for the given program. We call the execution trace with
the benign input the benign trace, and the execution trace
with the error-exhibiting input the error-exhibiting trace.
Second, FLOWSTITCH identifies the influence of the
memory errors from the error-exhibiting trace and gen-
erates constraints on the program input to reach memory
errors. Third, FLOWSTITCH performs data-flow anal-
ysis and security-sensitive data identification using the
benign trace. Fourth, FLOWSTITCH selects stitch can-
didates from the identified security-sensitive data flows
with the methods discussed in Section 3. Finally, FLOW-
STITCH checks the feasibility of creating new edges with
the memory errors and validates the exploit. It finally
outputs the input to mount a data-oriented attack.

9
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Figure 8: Overview of FLOWSTITCH. FLOWSTITCH takes a vulnerable program, an error-exhibiting input and a benign input of the program as
inputs. It builds data-oriented attacks against the given program using data-flow stitching. Finally it outputs the data-oriented attack exploits.

FLOWSTITCH requires that the error-exhibiting input
and the benign input make the program follow the same
code path until memory error happens. Such pairs of in-
puts can be found by existing symbolic execution tools,
like BAP [16] and SAGE [25], which explore multiple
execution paths with various inputs. Before detecting
one error-exhibiting execution, these tools usually have
explored many matched benign executions.

4.1 Memory Error Influence Analysis

FLOWSTITCH analyzes the error-exhibiting trace to un-
derstand the influence I of the memory errors. It identi-
fies two aspects of the memory error influence: the time
when the memory errors happens during the execution
(temporal influence) and the memory range that can be
written to in the memory error (spatial influence). From
the error-exhibiting trace, FLOWSTITCH detects instruc-
tions whose memory dereference addresses are derived
from the error-exhibiting input. We call these instruc-
tions memory error instructions. Note that data flows
ending before such instructions or starting after them
cannot be affected by the memory error, therefore they
are out of the temporal influence.

Attackers get access to unintended memory locations
with memory error instructions. However, the program’s
logic limits the total memory range accessible to attack-
ers. To identify the spatial influence of the memory er-
ror instruction, we employ dynamic symbolic execution
techniques. We generate a symbolic formula from the
error-exhibiting trace in which all the inputs are sym-
bolic variables and all the path constraints are asserted
true. Inputs that satisfy the formula imply that the execu-
tion to memory error instructions with an unintended ad-
dress3. The set of addresses that satisfy these constraints
and can be dereferenced at the memory error instruction
constitute the spatial influence.

3This is true if the symbolic formula constructed is complete [26].

4.2 Security-Sensitive Data Identification
As we discuss in Section 2.3, FLOWSTITCH synthesizes
flows of security-sensitive data. There are four types of
data that are interesting for stitching: input data, out-
put data, program secret and permission flags. To iden-
tify input data, FLOWSTITCH performs taint analysis at
the time of trace generation, treating the given input as
an external taint source. For output data, FLOWSTITCH
identifies a set of program sinks that send out the pro-
gram data, like send() and printf(). The parame-
ters used in sinks are the output data. Further, we classify
program secret and permission flags into two categories:
the program-specific data and the generic data. FLOW-
STITCH accepts user specification to find out program-
specific data. For example, user can provide addresses of
security flags. For the generic data, FLOWSTITCH uses
the following methods to automatically infer it.

• System call parameters. FLOWSTITCH identi-
fies all system calls from the trace, like setuid,
unlink. Based on the system call convention,
FLOWSTITCH collects the system call parameters.

• Configuration data. To identify configuration data,
FLOWSTITCH treats the configuration file as a taint
source and uses taint analysis to track the usage of
the configuration data.

• Randomized data. FLOWSTITCH identifies stack
canary based on the instructions that set and check
the canary, and identifies randomized addresses if
they are not inside the deterministic memory region.

Deterministic Memory Region Identification. FLOW-
STITCH identifies the deterministic memory region for
stitch with deterministic addresses (Section 3.3.1). It
first checks the program binary to identify the memory
regions that will not be randomized at runtime. If the
program is not position-independent, all the data sec-
tions shown in the binary headers will be at deterministic
addresses. FLOWSTITCH collects loadable sections and
gets a deterministic memory set D. FLOWSTITCH fur-
ther scans benign traces to find all the memory writing
instructions that write data into the deterministic mem-
ory set to identify data stored in such region.
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Note that based on the functionality of the security-
sensitive data, we predefine goals of the attacks. For ex-
ample, the attack of setuid parameter is to change it
to the root user’s id 0. For a web server’s home directory
string, the goal is to set it to system root directory.

4.3 Stitching Candidate Selection
For identified security-sensitive data, FLOWSTITCH gen-
erates its data flow from the 2D-DFG. FLOWSTITCH se-
lects the source flow originated from the source vertex VS
and the target flow ended at the target vertex VT . It then
uses the stitching methods discussed in Section 3 to find
stitching solutions. Although any combination of stitch-
ing methods can be used here, FLOWSTITCH uses the
following policy in order to produce a successful stitch-
ing efficiently.

1. FLOWSTITCH tries the single-edge stitch technique
before the multi-edge stitch technique. After the
single-edge stitch’s search space is exhausted, it
moves to multi-edge stitch. FLOWSTITCH stops
searching at four-edge stitch in our experiments.

2. FLOWSTITCH considers stitch with deterministic
addresses before stitch by address reuse. After ex-
hausting the search space of deterministic address
and address reuse space, FLOWSTITCH continues
searching stitches with concrete addresses shown in
benign traces, for cases without ASLR.

4.4 Candidate Filtering
To overcome challenge C3, FLOWSTITCH checks the
feasibility of each selected stitch edge candidate. We
define the stitchability constraint to cover the following
constraints.

• Path conditions to reach memory error instructions;
• Path conditions to continue to the target flow;
• Integrity of the control data;
FLOWSTITCH generates the stitchability constraint

using symbolic execution tools. The constraint is sent
to SMT solvers as an input. If the solver cannot find
any input satisfying the constraint, FLOWSTITCH picks
the next candidate stitch edge. If it exists, the input will
be the witness input that is used to exercise the execu-
tion path in order to exhibit the data-oriented attack. Due
to the concretization in symbolic constraint generation
in the implementation, the constraints might not be com-
plete [26], i.e., it may allow inputs that results in different
paths. FLOWSTITCH concretely verifies the input gener-
ated by the SMT solver to check if it successfully mounts
the data-oriented attack on the program.

5 Implementation

We prototype FLOWSTITCH on Ubuntu 12.04 32 bit sys-
tem. Note that as the first step the trace generation tool

can work on both Windows and Linux systems to gener-
ate traces. Although the following analysis steps are per-
formed on Ubuntu, FLOWSTITCH works for both Win-
dows and Linux binaries.
Trace Generation. Our trace generation is based on
the Pintraces tool provided by BAP [16]. Pintraces is
a Pin [28] tool that uses dynamic binary instrumentation
to record the program execution status. It logs all the
instructions executed by the program into the trace file,
together with the operand information. In our evalua-
tion, the traces also contain dynamic taint information to
facilitate the extraction of data flows.
Data Flow Generation. For input data and configura-
tion data, FLOWSTITCH uses the taint information to get
the data flows. To generate the data flow of the security-
sensitive data, FLOWSTITCH performs backward and
forward slicing on the benign trace to locate all the re-
lated instructions. It is possible for one instruction to
have multiple source operands. For example, in add
%eax, %ebx, the destination operand %ebx is derived
from %eax and %ebx. In this case, one vertex has mul-
tiple parent vertices. As a result, the generated data flow
is a graph where each node may have multiple parents.
Constraint Generation and Solving. The generation of
the stitchability constraint required in Section 4.4 is im-
plemented in three parts: path constraints, influence con-
straints, and CFI constraints.The stitchability constraint
is expressed as a logical conjunction of these three parts.
We use BAP to generate formulas which capture the path
conditions and influence constraints. For control flow in-
tegrity constraint, we implement a procedure to search
the trace for all the indirect jmp or ret instruction.
Memory locations holding the return addresses or indi-
rect jump targets are recorded. The control flow integrity
requires that at runtime, the memory location contain-
ing control data should not be corrupted by the memory
errors. The stitchability constraint is checked for satisfi-
ability using the Z3 SMT-solver [22], which produces a
witness input when the constraint is satisfiable.

6 Evaluation

In this section, we evaluate the effectiveness of data-
flow stitching using FLOWSTITCH, including single-
edge stitch, multi-edge stitch, stitch with deterministic
addresses and stitch by address reuse. We also measure
the search space reduction using FLOWSTITCH and the
performance of FLOWSTITCH.

6.1 Efficacy in Exploit Generation

Table 2 shows the programs used in our evaluation, as
well as their running environments and vulnerabilities.
The trace generation phase is performed on different
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Table 2: Experiment environments and benchmarks. # of Data-Oriented Attacks gives the number of attacks generated by FLOWSTITCH, includ-
ing privilege escalation attacks and information leakage attacks. FLOWSTITCH generates 19 data-oriented attacks from 8 vulnerable programs.

ID Vul. Program Vulnerability Environment (32b) # of Data-Oriented Attacks
Escalation Leakage

CVE-2013-2028 nginx stack buffer overflow Ubuntu 12.04 1 1
CVE-2012-0809 sudo format string Ubuntu 12.04 1 0
CVE-2009-4769 httpdx format string Windows XP SP3 4 1
bugtraq ID: 41956 orzhttpd format string Ubuntu 9.10 1 1
CVE-2002-1496 null httpd heap overflow Ubuntu 9.10 2 0
CVE-2001-0820 ghttpd stack buffer overflow Ubuntu 12.04 1 0
CVE-2001-0144 SSHD integer overflow Ubuntu 9.10 2 1
CVE-2000-0573 wu-ftpd format string Ubuntu 9.10 2 1
Total 8 programs 14 5

Table 3: Evaluation of FLOWSTITCH on generating data-oriented attacks. In the Attack Description column, Li stands for information leakage
attack, while Mi represents privilege escalation attack. The third column indicates whether the built attack can bypass ASLR or not. The “CP”
column shows the number of memory error instructions. Trace size is the number of instructions inside the trace. The last four columns show the
number of stitch sources and stitch targets before and after our selection. SrcFlow means source flow, while TgtFlow stands for target flow.

Vul. Apps Attack Description ASLR CP Error-exhibiting Benign # of nodes before # of nodes after
Bypass Trace Size Trace Size SrcFlow TgtFlow SrcFlow TgtFlow

nginx L0: private key 1 50789 411437 3 48 3 1
M0: http directory path 1717182 173 462 1 42

sudo M0: user id � 1 351988 854371 2083 1 1 1

httpdx

L0: admin’s password �

1 1197657

1361761 152 7 152 2
M0: admin’s password � 1298247 78 120 1 8
M1: anon.’s permission � 1233522 78 2 1 1
M2: anon.’s root directory � 1522672 78 165 1 11
M3: CGI directory path � 1257694 78 480 1 30

orzhttpd L0: randomized address � 1 84694 131871 8 28 8 1
M0: directory path � 131871 368 95 1 19

null httpd M0: http directory path 2 160844 401285 3 141 2 47
M1: CGI directory path 335329 3 144 2 48

ghttpd M0: CGI directory path 1 312130 316473 3579 6 1 1

SSHD
L0: root password hash

1 38201
3094592 776 56 97 2

M0: user id 674365 1 24 1 1
M1: authenticated flag 674365 1 2 1 1

wu-ftpd
L0: env. variables

1 328108
1417908 88 5 88 1

M0: user id (single-edge) � 1057554 183 2 1 1
M1: user id (multi-edge) � 1057554 183 1 1 1

systems according to the tested program. All gener-
ated traces are analyzed by FLOWSTITCH on a 32-bit
Ubuntu 12.04 system. The vulnerabilities used for the
experiments come from four different categories to en-
sure that FLOWSTITCH can handle different vulnerabili-
ties. Seven of the 8 vulnerable programs are server pro-
grams, including HTTP and FTP servers, which are the
common targets of remote attacks. The other one is the
sudo program, which allows users to run command as
another user on Unix-like system. The last four vulner-
abilities were discussed in [19], where data-oriented at-
tacks were manually built. We apply FLOWSTITCH on
these vulnerabilities to verify the efficacy of our method.

Results. Our result demonstrates that FLOWSTITCH
can effectively generate data-oriented attacks with dif-
ferent vulnerabilities on different platforms. The num-
ber of generated data-oriented attacks on each program
is shown in Table 2 and their details are given in Ta-
ble 3. FLOWSTITCH generates a total of 19 data-oriented

attacks for eight real-world vulnerable programs, more
than two attacks per program on average. Among 19
data-oriented attacks, there are five information leak-
age attacks and 14 privilege escalation attacks. For the
vulnerable httpdx server, FLOWSTITCH generates five
data-oriented attacks from a format string vulnerability.

Out of the 19 data-oriented attacks, 16 are previ-
ously unknown. The three known attacks are two uid-
corruption attacks on SSHD and wu-ftpd, and a CGI
directory corruption attack on null httpd, discussed
in [19]. FLOWSTITCH successfully reproduces known
attacks and builds new data-oriented attacks with the
same vulnerabilities. Note that FLOWSTITCH produces
a different ghttpd CGI directory corruption attack than
the one described in [19]. Details of this attack are dis-
cussed in Section 6.4.2. The results show the efficacy of
our systematic approach in identifying new data-oriented
attacks.

From our experiments, seven out of 19 of the data-
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oriented attacks are generated using multi-edge stitch.
The significant number of new data-oriented attacks gen-
erated by multi-edge stitch highlights the importance of
a systematic approach in managing the complexity and
identifying new data-oriented attacks. As a measure-
ment of the efficacy of ASLR on data-oriented attacks,
we report that 10 of 19 attacks work even with ASLR
deployed. Among 10 attacks, two attacks reuse ran-
domized addresses on the stack and eight attacks cor-
rupt data in the deterministic memory region. We ob-
serve that security-sensitive data such as configuration
option is usually represented as a global variable in C
programs and reside in the .bss segment. This high-
lights the limitation of current ASLR implementations
which randomize the stack and heap addresses but not
the .bss segment.

For three of 19 attacks, FLOWSTITCH requires the
user to specify the security-sensitive data, including the
private key of nginx, the root password hash and the au-
thenticated flag of SSHD. For others, FLOWSTITCH au-
tomatically infers the security-sensitive data using tech-
niques discussed in Section 4.2. Once such data is
identified, FLOWSTITCH automatically generates data-
oriented exploits.

6.2 Reduction in Search Space
Data-flow stitching has a large search space due to the
large number of vertices in the flows to be stitched. Man-
ual checking through a large search space is difficult.
For example, in the root password hash leakage attack
against SSHD server, there are 776 vertices in source flow
containing the hashed root passwords. In the target flow,
there are 56 vertices leading to the output data. Without
considering the influence of the memory errors, there are
a total of 43,456 possible stitch edges. After applying the
methods described in Section 3, we get the intersection
of the memory error influence I with the stitch source set
R-set and the stitch target set W-set. In this way, the num-
ber of candidate edges is reduced from 43,456 to 194,
obtaining a reduction ratio of 224.

The last four columns in Table 3 give the detailed in-
formation of the search space for each attack. For most of
the data-oriented attacks, there is a significant reduction
in the number of possible stitches. ghttpd-M0 achieves
the highest reduction ratio of 21,474 while SSHD-M1
achieves the lowest reduction ratio of two. The median
reduction ratio is 183 achieved by wu-ftpd-M1(multi-
edge). Given the relatively large spatial influence of the
memory error, most of the reduction is achieved by the
temporal influence of I.

6.3 Performance
We measure the time FLOWSTITCH uses to generate
data-oriented attacks. Table 4 shows the results, includ-

Table 4: Performance of trace and flow generation using FLOW-
STITCH. The unit used in the table is second, so 1:07 means one minute
and seven seconds.

Attacks Trace Gen Slicing Totalerror benign error benign

nginx L0 0:08 0:22 0:06 2:41 3:17
M0 0:36 0:12 1:02

sudo M0 0:35 1:07 1:17 3:34 6:33

httpdx

L0

0:08

0:45

0:12

5:56 7:01
M0 0:51 4:44 5:55
M1 0:50 4:52 6:02
M2 1:03 4:45 6:08
M3 0:53 4:47 6:00

orzhttpd L0 0:17 0:20 0:12 0:24 1:13
M0 0:20 1:04 1:53

null httpd M0 0:13 1:20 0:14 6:21 8:08
M1 0:52 2:29 3:48

ghttpd M0 0:09 0:18 0:12 0:09 0:48

SSHD
L0

2:35
9:38

1:02
21:08 34:23

M0 5:30 1:22 10:29
M1 5:30 1:00 10:07

wu-ftpd
L0

0:12
0:50

0:19
5:42 7:03

M0 0:31 0:27 1:29
M1 0:31 0:26 1:28

Average 0:32 1:41 0:26 3:47 6:27

ing the time of trace generation and the time of data-
flow collection (slicing). Note that the trace generation
time includes the time to execute instructions that are
not logged (e.g., crypto routines and mpz library for
SSHD). As we can see from Table 4, FLOWSTITCH takes
an average of six minutes and 27 seconds to generate the
trace and flows. Most of them are generated within 10
minutes. The information leakage attack of SSHD server
takes the longest time, 34 minutes and 23 seconds, since
crypto routines execute a large number of instructions.
From the performance results, we can see that the gen-
eration of data flows through trace slicing takes up most
of the generation time, from 20 percent to 87 percent.
Currently, our slicer works on BAP IL file. We plan to
optimize the slicer using parallel tools in the future.

6.4 Case Studies
We present five case studies to demonstrate the effective-
ness of stitching methods and interesting observations.

6.4.1 Sensitive Data Lifespan

A common defense employed to reduce the effective-
ness of data-oriented attacks is to limit the lifespan of
security-critical data [19, 20]. This case study highlights
the difficulty of doing it correctly. In the implementa-
tion of SSHD, the program explicitly zeros out sensi-
tive data, such as the RSA private keys, as soon as they
are not in use. For password authentication on Linux,
getspnam() provided by glibc is often used to ob-
tain the password hash. Rather than using the password
hash directly, SSHD makes a local copy of the password
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hash on stack for its use. Although the program makes
no special effort is to clear the copy on the stack, the
password on stack is eventually overwritten by subse-
quent function frames before it can be leaked. The devel-
oper explicitly deallocates the original hash value using
endspent() [1] in the glibc internal data structures.
However, glibc does not clear the deallocated memory
after endspent() is called and this allows FLOW-
STITCH to successfully leak the hash from the copy held
by glibc. Hence, this case study highlights that sensitive
information should not be kept by the program after us-
age, and that identifying all copies of sensitive data in
memory is difficult at the source level.

6.4.2 Multi-edge Stitch – ghttpd CGI Directory

The ghttpd application is a light-weight web server
supporting CGI. A stack buffer overflow vulnerability
was reported in version 1.4.0 - 1.4.3, allowing remote at-
tackers to smash the stack of the vulnerable Log() func-
tion. During the security-sensitive data identification,
FLOWSTITCH detects execv() is used to run an exe-
cutable file. One of execv()’s arguments is the address
of the program path string. Controlling it allows attack-
ers to run arbitrary commands. FLOWSTITCH is unable
to find a new data dependency edge using single-edge
stitching, since there is no security-sensitive data on the
stack frame to corrupt. FLOWSTITCH then proceeds to
search for a multi-edge stitch. For the program path pa-
rameter of execv(), FLOWSTITCH identifies its flow,
which includes use of a series of stack frame-base point-
ers saved in memory. The temporal constraints of the
memory error exploit only allow the saved %ebp of the
Log() function to be corrupted. Once the Log() func-
tion returns, the saved %ebp is used as a pointer, refer-
ring to all the local variables and parameters of Log()
caller’s stack frame. FLOWSTITCH corrupts the saved
%ebp to change the variable for the CGI directory used
in execv() system call. This attack is a four-edge stitch
by composing two pointer stitches.

Chen et al. [19] discussed a data-oriented attack with
the same vulnerability, which was in fact a two-edge
stitch. However, that attack no longer works in our exper-
iment. The ghttpd program compiled on our Ubuntu
12.04 platform does not store the address of command
string on the stack frame of Log(). Only the four-edge
stitching can be used to attack our ghttpd binary.

6.4.3 Bypassing ASLR – orzhttpd Attacks

The orzhttpd web server has a format string vulnera-
bility which the attacker can exploit to control almost the
whole memory space of the vulnerable program. FLOW-
STITCH identifies the deterministic memory region and
the randomized address on stack under fprintf()

frame. The first attack which bypasses ASLR is a privi-
lege escalation attack. This attack corrupts the web root
directory with single-edge stitching and memory address
reuse. The root directory string is stored on the heap,
which is allocated at runtime. FLOWSTITCH identifies
the address of the heap string from the stack and reuses it
to directly change the string to / based on the pre-defined
goal (Section 4.2). The second attack is an information
leakage attack, which leaks randomized addresses in the
.got.plt section. FLOWSTITCH identifies the deter-
ministic memory region from the binary and performs
a multi-edge stitch. The stitch involves modifying the
pointer of an HTTP protocol string stored in a determin-
istic memory region. FLOWSTITCH changes the pointer
value to the address of .got.plt section and a sub-
sequent call to send the HTTP protocol string leaks the
randomized addresses to attackers.

6.4.4 Privilege Escalation – Nginx Root Directory

The Nginx HTTP server 1.3.9-1.4.0 has a buffer over-
flow vulnerability [4]. FLOWSTITCH checks the local
variables on the vulnerable stack and identifies two data
pointers that can be used to perform arbitrary memory
corruption. The memory influence of the overwriting is
limited by the program logic. FLOWSTITCH identifies
the web root directory string from the configuration data.
It tries single-edge stitching to corrupt the root directory
setting. The root directory string is inside the memory in-
fluence of the arbitrary overwriting. FLOWSTITCH over-
writes the value 0x002f into the string location, thus
changing the root directory into /. FLOWSTITCH veri-
fies the attack by requesting /etc/passwd file. As a
result, the server sends the file content back to the client.

6.4.5 Information Leakage – httpdx Password

The httpdx server has a format string vulnerability be-
tween version 1.4 to 1.5 [3]. The vulnerable tolog()
function records FTP commands and HTTP requests into
a server-side log file. Note that direct exploitation of this
vulnerability does not leak information. Using the error-
exhibiting trace, FLOWSTITCH identifies the memory er-
ror instruction and figures out that there is almost no lim-
itation on the memory range affected by attackers. From
the httpdx binary, FLOWSTITCH manages to find a to-
tal of 102MB of deterministic memory addresses. From
the benign trace, FLOWSTITCH generates data flows of
the root user passwords. This is the secret to be leaked
out. The FLOWSTITCH generates the necessary data flow
which reaches the send() system call automatically.

Starting from the memory error instruction, FLOW-
STITCH searches backwards in the secret data flow and
identifies vertices inside the deterministic memory re-
gion. FLOWSTITCH successfully finds two such mem-
ory locations containing the “admin” password: one is a
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buffer containing the whole configuration file, and an-
other only contains the password. At the same time,
FLOWSTITCH searches forwards in the output flow to
find the vertices that affect the buffer argument of
send(). Our tool identifies vertices within the deter-
ministic memory region. The solver gives one possible
input that will trigger the attack. FLOWSTITCH confirms
this attack by providing the attack input to the server and
receiving the “admin” user password.

7 Related Work

Data-Oriented Attack. Several work [21, 32, 36, 38, 41,
43, 44] has been done to improve the practicality of CFI,
increasing the barrier to constructing control flow hijack-
ing attacks. Instead, data-oriented attacks are serious al-
ternatives. Data-oriented attacks have been conceptually
known for a decade. Chen et al. constructed non-control-
data exploits to show that data-oriented attack is a real-
istic threat [19]. However, no systematic method to de-
velop data-oriented attacks is known yet. In our paper,
we develop a systematic way to search for possible data-
oriented attacks. This method searches attacks within the
candidate space efficiently and effectively.
Automatic Exploit Generation. Brumley et al. [17] de-
scribed an automatic exploit generation technique based
on program patches. The idea is to identify the difference
between the patched and the unpatched binaries, and
generate an input to trigger the difference. Avgerinos et
al. [13] discussed Automatic Exploit Generation(AEG)
to generate real exploits resulting in a working shell. Fel-
metsger et al. [24] discussed automatic exploit genera-
tion for web applications. The previous work focused
on generating control flow hijacking exploits. FLOW-
STITCH on the other hand generates data-oriented at-
tacks that do not violate the control flow integrity. To
our knowledge, FLOWSTITCH is the first tool to system-
atically generate data-oriented attacks.
Defenses against Data-Oriented Attacks. Data-
oriented attacks can be prevented by enforcing data-flow
integrity (DFI). Existing work enforces DFI through dy-
namic information tracking [23, 39, 40] or by legitimate
memory modification instruction analysis [18,42]. How-
ever, DFI defenses are not yet practical, requiring large
overheads or manual declassification. An ultimate de-
fense is to enforce the memory safety to prevent the at-
tacks in their first steps. Cyclone [27] and CCured [31]
introduce a safe type system to the type-unsafe C lan-
guages. SoftBound [29] with CETS [30] uses bound
checking with fat-pointer to force a complete memory
safety. Cling [11] enforces temporal memory safety
through type-safe memory reuse. Data-oriented attack
prevention requires a complete memory safety.

8 Conclusion

In this paper, we present a new concept called data-
flow stitching, and develop a novel solution to systemati-
cally construct data-oriented attacks. We discuss novel
stitching methods, including single-edge stitch, multi-
edge stitch, stitch with deterministic addresses and stitch
by address reuse. We build a prototype of data-flow
stitching, called FLOWSTITCH. FLOWSTITCH gener-
ates 19 data-oriented attacks from eight vulnerable pro-
grams. Sixteen attacks are previously unknown attacks.
All attacks bypass DEP and the CFI checks, and 10 by-
pass ASLR. The result shows that automatic generation
of data-oriented exploits exhibiting significant damage is
practical.
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Abstract

We describe a largely automated and systematic analysis
of TLS implementations by what we call ‘protocol state
fuzzing’: we use state machine learning to infer state ma-
chines from protocol implementations, using only black-
box testing, and then inspect the inferred state machines
to look for spurious behaviour which might be an indica-
tion of flaws in the program logic. For detecting the pres-
ence of spurious behaviour the approach is almost fully
automatic: we automatically obtain state machines and
any spurious behaviour is then trivial to see. Detecting
whether the spurious behaviour introduces exploitable
security weaknesses does require manual investigation.
Still, we take the point of view that any spurious func-
tionality in a security protocol implementation is danger-
ous and should be removed.

We analysed both server- and client-side implemen-
tations with a test harness that supports several key ex-
change algorithms and the option of client certificate au-
thentication. We show that this approach can catch an
interesting class of implementation flaws that is appar-
ently common in security protocol implementations: in
three of the TLS implementations analysed new security
flaws were found (in GnuTLS, the Java Secure Socket
Extension, and OpenSSL). This shows that protocol state
fuzzing is a useful technique to systematically analyse
security protocol implementations. As our analysis of
different TLS implementations resulted in different and
unique state machines for each one, the technique can
also be used for fingerprinting TLS implementations.

1 Introduction

TLS, short for Transport Layer Security, is widely used
to secure network connections, for example in HTTPS.
Being one of the most widely used security protocols,
TLS has been the subject of a lot of research and many
issues have been identified. These range from crypto-

graphic attacks (such as problems when using RC4 [4])
to serious implementation bugs (such as Heartbleed [13])
and timing attacks (for example, Lucky Thirteen and
variations of the Bleichenbacher attack [3, 30, 9]).

To describe TLS, or protocols in general, a state ma-
chine can be used to specify possible sequences of mes-
sages that can be sent and received. Using automated
learning techniques, it is possible to automatically ex-
tract these state machines from protocol implementa-
tions, relying only on black-box testing. In essence,
this involves fuzzing different sequences of messages,
which is why we call this approach protocol state fuzzing.
By analysing these state machines, logical flaws in the
protocol flow can be discovered. An example of such
a flaw is accepting and processing a message to per-
form some security-sensitive action before authentica-
tion takes place. The analysis of the state machines can
be done by hand or using a model checker; for the anal-
yses discussed in this paper we simply relied on manual
analysis. Both approaches require knowledge of the pro-
tocol to interpret the results or specify the requirements.
However, in security protocols, every superfluous state or
transition is undesirable and a reason for closer inspec-
tion. The presence of such superfluous states or transi-
tions is typically easy to spot visually.

1.1 Related work on TLS

Various formal methods have been used to analyse dif-
ferent parts and properties of the TLS protocol [33, 16,
22, 32, 20, 31, 26, 24, 28]. However, these analyses look
at abstract descriptions of TLS, not actual implementa-
tions, and in practice many security problems with TLS
have been due to mistakes in implementation [29]. To
bridge the gap between the specification and implemen-
tation, formally verified TLS implementations have been
proposed [7, 8].

Existing tools to analyse TLS implementations mainly
focus on fuzzing of individual messages, in particular the
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certificates that are used. These certificates have been
the source of numerous security problems in the past.
An automated approach to test for vulnerabilities in the
processing of certificates is using Frankencerts as pro-
posed by Brubaker et al. [10] or using the tool x509test1.
Fuzzing of individual messages is orthogonal to the tech-
nique we propose as it targets different parts or aspects of
the code. However, the results of our analysis could be
used to guide fuzzing of messages by indicating proto-
col states that might be interesting places to start fuzzing
messages.

Another category of tools analyses implementations
by looking at the particular configuration that is used.
Examples of this are the SSL Server Test2 and sslmap3.

Finally, closely related research on the implementation
of state machines for TLS was done by Beurdouche et al.
[6]. We compare their work with ours in Section 5.

1.2 Related work on state machine learn-

ing

When learning state machines, we can distinguish be-
tween a passive and active approach. In passive learning,
only existing data is used and based on this a model is
constructed. For example, in [14] passive learning tech-
niques are used on observed network traffic to infer a
state machine of the protocol used by a botnet. This
approach has been combined with the automated learn-
ing of message formats in [23], which then also used the
model obtained as a basis for fuzz-testing.

When using active automated learning techniques, as
done in this paper, an implementation is actively queried
by the learning algorithm and based on the responses a
model is constructed. We have used this approach before
to analyse implementations of security protocols in EMV
bank cards [1] and handheld readers for online banking
[11], and colleagues have used it to analyse electronic
passports [2]. These investigations did not reveal new
security vulnerabilities, but they did provide interesting
insights in the implementations analysed. In particular,
it showed a lot of variation in implementations of bank
cards [1] – even cards implementing the same Master-
Card standard – and a known attack was confirmed for
the online banking device and confirmed to be fixed in a
new version [11].

1.3 Overview

We first discuss the TLS protocol in more detail in Sec-
tion 2. Next we present our setup for the automated
learning in Section 3. The results of our analysis of nine

1https://github.com/yymax/x509test
2https://www.ssllabs.com/ssltest/
3https://www.thesprawl.org/projects/sslmap/

TLS implementations are subsequently discussed in Sec-
tion 4, after which we conclude in Section 5.

2 The TLS protocol

The TLS protocol was originally known as SSL (Secure
Socket Layer), which was developed at Netscape. SSL
1.0 was never released and version 2.0 contained numer-
ous security flaws [37]. This lead to the development of
SSL 3.0, on which all later versions are based. After SSL
3.0, the name was changed to TLS and currently three
versions are published: 1.0, 1.1 and 1.2 [17, 18, 19]. The
specifications for these versions are published in RFCs
issued by the Internet Engineering Task Force (IETF).

To establish a secure connection, different subproto-
cols are used within TLS:

• The Handshake protocol is used to establish session
keys and parameters and to optionally authenticate
the server and/or client.

• The ChangeCipherSpec protocol – consisting of
only one message – is used to indicate the start of
the use of established session keys.

• To indicate errors or notifications, the Alert protocol
is used to send the level of the alert (either warning
or fatal) and a one byte description.

In Fig. 1 a normal flow for a TLS session is given. In
the ClientHello message, the client indicates the desired
TLS version, supported cipher suites and optional exten-
sions. A cipher suite is a combination of algorithms used
for the key exchange, encryption, and MAC computa-
tion. During the key exchange a premaster secret is es-
tablished. This premaster secret is used in combination
with random values from both the client and server to
derive the master secret. This master secret is then used
to derive the actual keys that are used for encryption and
MAC computation. Different keys are used for messages
from the client to the server and for messages in the op-
posite direction. Optionally, the key exchange can be
followed by client verification where the client proves it
knows the private key corresponding to the public key
in the certificate it presents to the server. After the key
exchange and optional client verification, a ChangeCi-
pherSpec message is used to indicate that from that point
on the agreed keys will be used to encrypt all messages
and add a MAC to them. The Finished message is fi-
nally used to conclude the handshake phase. It contains
a keyed hash, computed using the master secret, of all
previously exchanged handshake messages. Since it is
sent after the ChangeCipherSpec message it is the first
message that is encrypted and MACed. After the hand-
shake phase, application data can be exchanged over the
established secure channel.

2
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To add additional functionality, TLS offers the possi-
bility to add extensions to the protocol. One example of
such an extension is the – due to Heartbleed [13] by now
well-known – Heartbeat Extension, which can be used
to keep a connection alive using HeartbeatRequest and
HeartbeatResponse messages [36].

Client Server

ClientHello

ServerHello;
[Certificate;]

[ServerKeyExchange;]
[CertificateRequest;]

ServerHelloDone

ClientKeyExchange;
[Certificate;]

[CertificateVerify;]
ChangeCipherSpec;

{Finished}

ChangeCipherSpec;
{Finished}

{ApplicationData}

{ApplicationData}

Figure 1: A regular TLS session. An encrypted message
m is denoted as {m}. If message m is optional, this is
indicated by [m].

3 State machine learning

To infer the state machines of implementations of the
TLS protocol we used LearnLib [34], which uses a mod-
ified version of Angluin’s L* algorithm [5]. An imple-
mentation that is analysed is referred to as the System

Under Test (SUT) and is considered to be a black box.
LearnLib has to be provided with a list of messages it
can send to the SUT (also known as the input alphabet),
and a command to reset the SUT to its initial state. A test
harness is needed to translate abstract messages from the
input alphabet to concrete messages that can be sent to
the SUT. To be able to implement this test harness we
need to know the messages that are used by the SUT.
By sending sequences of messages and reset commands,
LearnLib tries to come up with hypotheses for the state
machine based on the responses it receives from the SUT.
Such hypotheses are then checked for equivalence with
the actual state machine. If the models are not equivalent,
a counter-example is returned and LearnLib will use this
to redefine its hypothesis.

As the actual state machine is not known, the equiv-
alence check has to be approximated, with what is ef-
fectively a form of model-based testing. For this we use
an improved version of Chow’s W-method [12]. The W-
method is guaranteed to be correct given an upper bound
for the number of states. For LearnLib we can specify a
depth for the equivalence checking: given a hypothesis
for the state machine, the upper bound for the W-method
is set to the number of found states plus the specified
depth. The algorithm will only look for counterexample
traces of which the lengths is at most the set upper bound,
and if none can be found the current hypothesis for the
state machine is assumed to be equivalent with the one
implemented. This assumption is correct if the actual
state machine does not have more states than the number
of found states plus the specified depth. The W-method
is very powerful but comes at a high cost in terms of per-
formance. Therefore we improved the algorithm to take
advantage of a property of the system we learn, namely
that once a connection is closed, all outputs returned af-
terwards will be the same (namely Connection closed).
So when looking for counterexamples, extending a trial
trace that results in the connection being closed is point-
less. The W-method, however, will still look for coun-
terexamples by extending traces which result in a closed
connection. We improved the W-method by adding a
check to see if it makes sense to continue searching for
counterexamples with a particular prefix, and for this we
simply check if the connection has not been closed. This
simple modification of the W-method greatly reduced the
number of equivalence queries needed, as we will see in
Section 4.

3.1 Test harness

To use LearnLib, we need to fix an input alphabet
of messages that can be sent to the SUT. This alpha-
bet is an abstraction of the actual messages sent. In
our analyses we use different input alphabets depend-
ing on whether we test a client or server, and whether
we perform a more limited or more extensive analy-
sis. To test servers we support the following mes-
sages: ClientHello (RSA and DHE), Certificate (RSA
and empty), ClientKeyExchange, ClientCertificateVer-
ify, ChangeCipherSpec, Finished, ApplicationData (reg-
ular and empty), HeartbeatRequest and HeartbeatRe-
sponse. To test clients we support the following mes-
sages: ServerHello (RSA and DHE), Certificate (RSA
and empty), CertificateRequest, ServerKeyExchange,
ServerHelloDone, ChangeCipherSpec, Finished, Appli-
cationData (regular and empty), HeartbeatRequest and
HeartbeatResponse.

We thus support all regular TLS messages as well as
the messages for the Heartbeat Extension. The test har-

3
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ness supports both TLS version 1.2 and, in order to test
older implementations, version 1.0. The input alphabet
is not fixed, but can be configured per analysis as de-
sired. For the output alphabet we use all the regular TLS
messages as well as the messages from the Alert protocol
that can be returned. This is extended with some special
symbols that correspond with exceptions that can occur
in the test harness:

• Empty, this is returned if no data is received from
the SUT before a timeout occurs in the test harness.

• Decryption failed, this is returned if decryption fails
in the test harness after a ChangeChipherSpec mes-
sage was received. This could happen, for example,
if not enough data is received, the padding is incor-
rect after decryption (e.g. because a different key
was used for encryption) or the MAC verification
fails.

• Connection closed, this is returned if a socket ex-
ception occurs or the socket is closed.

LearnLib uses these abstract inputs and outputs as la-
bels on the transitions of the state machine. To interact
with an actual TLS server or client we need a test harness
that translates the abstract input messages to actual TLS
packets and the responses back to abstract responses. As
we make use of cryptographic operations in the protocol,
we needed to introduce state in our test harness, for in-
stance to keep track of the information used in the key
exchange and the actual keys that result from this. Apart
from this, the test harness also has to remember whether
a ChangeCipherSpec was received or sent, as we have to
encrypt and MAC all corresponding data after this mes-
sage. Note that we only need a single test harness for
TLS to then be able to analyse any implementation. Our
test harness can be considered a ‘stateless’ TLS imple-
mentation.

When testing a server, the test harness is initialised by
sending a ClientHello message to the SUT to retrieve the
server’s public key and preferred ciphersuite. When a re-
set command is received we set the internal variables to
these values. This is done to prevent null pointer excep-
tions that could otherwise occur when messages are sent
in the wrong order.

After sending a message the test harness waits to re-
ceive responses from the SUT. As the SUT will not al-
ways send a response, for example because it may be
waiting for a next message, the test harness will gener-
ate a timeout after a fixed period. Some implementations
require longer timeouts as they can be slower in respond-
ing. As the timeout has a significant impact on the total
running time we varied this per implementation.

To test client implementations we need to launch a
client for every test sequence. This is done automati-

cally by the test harness upon receiving the reset com-
mand. The test harness then waits to receive the Client-
Hello message, after which the client is ready to receive
a query. Because the first ClientHello is received before
any query is issued, this message does not appear explic-
itly in the learned models.

4 Results

We analysed the nine different implementations listed
in Table 1. We used demo client and server applica-
tions that came with the different implementations ex-
cept with the Java Secure Socket Extension (JSSE). For
JSSE we wrote simple server and client applications. For
the implementations listed the models of the server-side
were learned using our modified W-method for the fol-
lowing alphabet: ClientHello (RSA), Certificate (empty),
ClientKeyExchange, ChangeCipherSpec, Finished, Ap-
plicationData (regular and empty), HeartbeatRequest.
For completeness we learned models for both TLS ver-
sion 1.0 and 1.2, when available, but this always resulted
in the same model.

Due to space limitations we cannot include the models
for all nine implementations in this paper, but we do in-
clude the models in which we found security issues (for
GnuTLS, Java Secure Socket Extension, and OpenSSL),
and the model of RSA BSAFE for Java to illustrate how
much simpler the state machine can be. The other mod-
els can be found in [15] as well as online, together with
the code of our test harness.4 We wrote a Python ap-
plication to automatically simplify the models by com-
bining transitions with the same responses and replacing
the abstract input and output symbols with more readable
names. Table 2 shows the times needed to obtain these
state machines, which ranged from about 9 minutes to
over 8 hours.

A comparison between our modified equivalence algo-
rithm and the original W-method can be found in Table 3.
This comparison is based on the analysis of GnuTLS
3.3.12 running a TLS server. It is clear that by taking
advantage of the state of the socket our algorithm per-
forms much better than the original W-method: the num-
ber of equivalence queries is over 15 times smaller for
our method when learning a model for the server.

When analysing a model, we first manually look if
there are more paths than expected that lead to a suc-
cessful exchange of application data. Next we determine
whether the model contains more states than necessary
and identify unexpected or superfluous transitions. We
also check for transitions that can indicate interesting be-
haviour such as, for example, a ’Bad record MAC’ alert
or a Decryption failed message. If we come across any

4Available at http://www.cs.bham.ac.uk/~deruitej/

4



USENIX Association  24th USENIX Security Symposium 197

Name Version URL

GnuTLS 3.3.8 http://www.gnutls.org/

3.3.12
Java Secure Socket Extension (JSSE) 1.8.0_25 http://www.oracle.com/java/

1.8.0_31
mbed TLS (previously PolarSSL) 1.3.10 https://polarssl.org/

miTLS 0.1.3 http://www.mitls.org/

RSA BSAFE for C 4.0.4 http://www.emc.com/security/rsa-bsafe.htm

RSA BSAFE for Java 6.1.1 http://www.emc.com/security/rsa-bsafe.htm

Network Security Services (NSS) 3.17.4 https://developer.mozilla.org/en-US/docs/

Mozilla/Projects/NSS

OpenSSL 1.0.1g https://www.openssl.org/

1.0.1j
1.0.1l
1.0.2

nqsb-TLS 0.4.0 https://github.com/mirleft/ocaml-tls

Table 1: Tested implementations

unexpected behaviour, we perform a more in-depth anal-
ysis to determine the cause and severity.

An obvious first observation is that all the models
of server-side implementations are very different. For
example, note the huge difference between the mod-
els learned for RSA BSAFE for Java in Fig. 6 and for
OpenSSL in Fig. 7. Because all the models are different,
they provide a unique fingerprint of each implementa-
tion, which could be used to remotely identify the imple-
mentation that a particular server is using.

Most demo applications close the connection after
their first response to application data. In the models
there is then only one ApplicationData transition where
application data is exchanged instead of the expected cy-
cle consisting of an ApplicationData transition that al-
lows server and client to continue exchanging application
data after a successful handshake.

In the subsections below we discuss the peculiarities
of models we learned, and the flaws they revealed. Cor-
rect paths leading to an exchange of application data are
indicated by thick green transitions in the models. If
there is any additional path leading to the exchange of
application data this is a security flaw and indicated by a
dashed red transition.

4.1 GnuTLS

Fig. 2 shows the model that was learned for GnuTLS
3.3.8. In this model there are two paths leading to a
successful exchange of application data: the regular one
without client authentication and one where an empty
client certificate is sent during the handshake. As we

did not require client authentication, both are accept-
able paths. What is immediately clear is that there are
more states than expected. Closer inspection reveals that
there is a ‘shadow’ path, which is entered by sending
a HeartbeatRequest message during the handshake pro-
tocol. The handshake protocol then does proceed, but
eventually results in a fatal alert (‘Internal error’) in re-
sponse to the Finished message (from state 8). From ev-
ery state in the handshake protocol it is possible to go to
a corresponding state in the ‘shadow’ path by sending the
HeartbeatRequest message. This behaviour is introduced
by a security bug, which we will discuss below. Addi-
tionally there is a redundant state 5, which is reached
from states 3 and 9 when a ClientHello message is sent.
From state 5 a fatal alert is given to all subsequent mes-
sages that are sent. One would expect to already receive
an error message in response to the ClientHello message
itself.

Forgetting the buffer in a heartbeat As mentioned
above, HeartbeatRequest messages are not just ignored
in the handshake protocol but cause some side effect:
sending a HeartbeatRequest during the handshake proto-
col will cause the implementation to return an alert mes-
sage in response to the Finished message that terminates
the handshake. Further inspection of the code revealed
the cause: the implementation uses a buffer to collect
all handshake messages in order to compute a hash over
these messages when the handshake is completed, but
this buffer is reset upon receiving the heartbeat message.
The alert is then sent because the hashes computed by
server and client no longer match.

5
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Figure 2: Learned state machine model for GnuTLS 3.3.8

Figure 3: Learned state machine model for GnuTLS 3.3.12. A comparison with the model for GnuTLS 3.3.8 in Fig. 2
shows that the superflous states (8, 9, 10, and 11) are now gone, confirming that the code has been improved.

6
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GnuTLS 3.3.8 12 100ms 0:45 1370 5613
GnuTLS 3.3.12 7 100ms 0:09 456 1347
mbed TLS 1.3.10 8 100ms 0:39 520 2939
OpenSSL 1.0.1g + 16 100ms 0:31 1016 4171
OpenSSL 1.0.1j + 11 100ms 0:16 680 2348
OpenSSL 1.0.1l + 10 100ms 0:14 624 2249
OpenSSL 1.0.2 + 7 100ms 0:06 350 902
JSSE 1.8.0_25 9 200ms 0:41 584 2458
JSSE 1.8.0_31 9 200ms 0:39 584 2176
miTLS 0.1.3 6 1500ms 0:53 392 517
NSS 3.17.4 8 500ms 3:16 520 5329
RSA BSAFE for Java 6.1.1 6 500ms 0:18 392 517
RSA BSAFE for C 4.0.4 9 200ms 8:16 584 26353
nqsb-TLS 0.4.0 + 8 100ms 0:15 399 1835
+ Without heartbeat extension

Table 2: Results of the automated analysis of server implementations for the regular alphabet of inputs using our
modified W-method with depth 2

Alphabet Algorithm Time (hh:mm) #states Membership queries Equivalence queries

regular modified W-method 0:09 7 456 1347
full modified W-method 0:27 9 1573 4126
full original W-method 4:09 9 1573 68578

Table 3: Analysis of the GnuTLS 3.3.12 server using different alphabets and equivalence algorithms

This bug can be exploited to effectively bypass the in-
tegrity check that relies on comparing the keyed hashes
of the messages in the handshake: when also resetting
this buffer on the client side (i.e. our test harness) at the
same time we were able to successfully complete the
handshake protocol, but then no integrity guarantee is
provided on the previous handshake messages that were
exchanged.

By learning the state machine of a GnuTLS client
we confirmed that the same problem exists when using
GnuTLS as a client.

This problem was reported to the developers of
GnuTLS and is fixed in version 3.3.9. By learning mod-
els of newer versions, we could confirm the issue is no
longer present, as can be seen in Fig. 3.

To exploit this problem both sides would need to reset
the buffer at the same time. This might be hard to achieve

as at any time either one of the two parties is computing a
response, at which point it will not process any incoming
message. If an attacker would successfully succeed to
exploit this issue no integrity would be provided on any
message sent before, meaning a fallback attack would be
possible, for example to an older TLS version or weaker
cipher suite.

4.2 mbed TLS

For mbed TLS, previously known as PolarSSL, we tested
version 1.3.10. We saw several paths leading to a suc-
cessful exchange of data. Instead of sending a regular
ApplicationData message, it is possible to first send one
empty ApplicationData message after which it is still
possible to send the regular ApplicationData message.
Sending two empty ApplicationData messages directly

7
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after each other will close the connection. However, if in
between these message an unexpected handshake mes-
sage is sent, the connection will not be closed and only
a warning is returned. After this it is also still possible
to send a regular ApplicationData message. While this is
strange behaviour, it does not seem to be exploitable.

4.3 Java Secure Socket Extension

For Java Secure Socket Extension we analysed Java ver-
sion 1.8.0_25. The model contains several paths leading
to a successful exchange of application data and contains
more states than expected (see Fig. 4). This is the result
of a security issue which we will discuss below.

As long as no Finished message has been sent it is ap-
parently possible to keep renegotiating. After sending a
ClientKeyExchange, other ClientHello messages are ac-
cepted as long as they are eventually followed by another
ClientKeyExchange message. If no ClientKeyExchange
message was sent since the last ChangeCipherSpec, a
ChangeCipherSpec message will result in an error (state
7). Otherwise it either leads to an error state if sent di-
rectly after a ClientHello (state 8) or a successful change
of keys after a ClientKeyExchange.

Accepting plaintext data More interesting is that the
model contains two paths leading to the exchange of ap-
plication data. One of these is a regular TLS protocol
run, but in the second path the ChangeCipherSpec mes-
sage from the client is omitted. Despite the server not
receiving a ChangeCipherSpec message it still responds
with a ChangeCipherSpec message to a plaintext Fin-
ished message by the client. As a result the server will
send its data encrypted, but it expects data from the client
to be unencrypted. A similar problem occurs when trying
to negotiate new keys. By skipping the ChangeCipher-
Spec message and just sending the Finished message the
server will start to use the new keys, whereas the client
needs to continue to use its old keys.

This bug invalidates any assumption of integrity or
confidentiality of data sent to the server, as it can be
tricked into accepting plaintext data. To exploit this issue
it is, for example, possible to include this behaviour in a
rogue library. As the attack is transparent to applications
using the connection, both the client and server applica-
tion would think they talk on a secure connection, where
in reality anyone on the line could read the client’s data
and tamper with it. Fig. 5 shows a protocol run where
this bug is triggered. The bug was report to Oracle and is
identified by CVE-2014-6593. A fix was released in their
Critical Security Update in January 2015. By analysing
JSSE version 1.8.0_31 we are able to confirm the issue
was indeed fixed.

Client Server

ClientHello

ServerHello;
Certificate;

ServerHelloDone

ClientKeyExchange;
Finished

ChangeCipherSpec;
{Finished}

ApplicationData

{ApplicationData}

Figure 5: A protocol run triggering a bug in the JSSE,
causing the server to accept plaintext application data.

This issue was identified in parallel by Beurdouche et
al. [6], who also reported the same and a related issue for
the client-side. By learning the client, we could confirm
that the issue was also present there. Moreover, after re-
ceiving the ServerHello message, the client would accept
the Finish message and start exchanging application data
at any point during the handshake protocol. This makes
it possible to completely circumvent both server authen-
tication and the confidentiality and integrity of the data
being exchanged.

4.4 miTLS

MiTLS is a formally verified TLS implementation writ-
ten in F# [8]. For miTLS 0.1.3, initially our test har-
ness had problems to successfully complete the hand-
shake protocol and the responses seemed to be non-
deterministic because sometimes a response was delayed
and appeared to be received in return to the next message.
To solve this, the timeout had to be increased consider-
ably when waiting for incoming messages to not miss
any message. This means that compared to the other im-
plementations, miTLS was relatively slow in our setup.
Additionally, miTLS requires the Secure Renegotiation
extension to be enabled in the ClientHello message. The
learned model looks very clean with only one path lead-
ing to an exchange of application data and does not con-
tain more states than expected.

4.5 RSA BSAFE for C

The RSA BSAFE for C 4.0.4 library resulted in a model
containing two paths leading to the exchange application
data. The only difference between the paths is that an

8



USENIX Association  24th USENIX Security Symposium 201

Figure 4: Learned state machine model for JSSE 1.8.0_25

empty ApplicationData is sent in the second path. How-
ever, the alerts that are sent are not very consistent as they
differ depending on the state and message. For exam-
ple, sending a ChangeCipherSpec message after an ini-
tial ClientHello results in a fatal alert with reason ‘Ille-
gal parameter’, whereas application data results in a fatal
alert with ‘Unexpected message’ as reason. More cu-
rious however is a fatal alert ‘Bad record MAC’ that is
returned to certain messages after the server received the
ChangeCipherSpec in a regular handshake. As this alert
is only returned in response to certain messages, while
other messages are answered with an ‘Unexpected mes-
sage’ alert, the server is apparently able to successfully
decrypt and check the MAC on messages. Still, an error
is returned that it is not able to do this. This seems to be
a non-compliant usage of alert messages.

At the end of the protocol the implementation does
not close the connection. This means we cannot take any
advantage from a closed connection in our modified W-

method and the analysis therefore takes much longer than
for the other implementations.

4.6 RSA BSAFE for Java

The model for RSA BSAFE for Java 6.1.1 library looks
very clean, as can be seen in Fig. 6. The model again
contains only one path leading to an exchange of appli-
cation data and no more states than necessary. In gen-
eral all received alerts are ‘Unexpected message’. The
only exception is when a ClientHello is sent after a suc-
cessful handshake, in which case a ‘Handshake failure’
is given. This makes sense as the ClientHello message is
not correctly formatted for secure renegotiation, which is
required in this case. This model is the simplest that we
learned during our research.

9
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Figure 6: Learned state machine model for RSA BSAFE for Java 6.1.1

4.7 Network Security Services

The model for NSS that was learned for version 3.17.4
looks pretty clean, although there is one more state than
one would expect. There is only one path leading to a
successful exchange of application data. In general all
messages received in states where they are not expected
are responded to with a fatal alert (‘Unexpected mes-
sage’). Exceptions to this are the Finished and Heart-
beat messages: these are ignored and the connection
is closed without any alert. Other exceptions are non-
handshake messages sent before the first ClientHello:
then the server goes into a state where the connection
stays open but nothing happens anymore. Although the
TLS specification does not explicitly specify what to
do in this case, one would expect the connection to be
closed, especially since it’s not possible to recover from
this. Because the connection is not actually closed in this
case the analysis takes longer, as we have less advantage
of our modification of the W-method to decide equiva-
lence.

4.8 OpenSSL

Fig. 7 shows the model inferred for OpenSSL 1.01j. In
the first run of the analysis it turned out that Heartbeat-
Request message sent during the handshake phase were
‘saved up’ and only responded to after the handshake
phase was finished. As this results in infinite models we
had to remove the heartbeat messages from the input al-
phabet. This model obtained contains quite a few more
states than expected, but does only contain one path to
successfully exchange application data.

The model shows that it is possible to start by sending
two ClientHello messages, but not more. After the sec-
ond ClientHello message there is no path to a successful
exchange of application data in the model. This is due
to the fact that OpenSSL resets the buffer containing the
handshake messages every time when sending a Client-

Hello, whereas our test harness does this only on initial-
isation of the connection. Therefore, the hash computed
by our test harness at the end of the handshake is not ac-
cepted and the Finished message in state 9 is responded
to with an alert. Which messages are included in the hash
differs per implementation: for JSSE all handshake mes-
sages since the beginning of the connection are included.

Re-using keys In state 8 we see some unexpected be-
haviour. After successfully completing a handshake, it is
possible to send an additional ChangeCipherSpec mes-
sage after which all messages are responded to with a
‘Bad record MAC’ alert. This usually is an indication of
wrong keys being used. Closer inspection revealed that
at this point OpenSSL changes the keys that the client
uses to encrypt and MAC messages to the server keys.
This means that in both directions the same keys are used
from this point.

We observed the following behaviour after the addi-
tional ChangeCipherSpec message. First, OpenSSL ex-
pects a ClientHello message (instead of a Finished mes-
sage as one would expect). This ClientHello is responded
to with the ServerHello, ChangeCipherSpec and Fin-
ished messages. OpenSSL does change the server keys
then, but does not use the new randoms from the Client-
Hello and ServerHello to compute new keys. Instead the
old keys are used and the cipher is thus basically reset
(i.e. the original IVs are set and the MAC counter reset
to 0). After receiving the ClientHello message, the server
does expect the Finished message, which contains the
keyed hash over the messages since the second Client-
Hello and does make use of the new client and server
randoms. After this, application data can be send over
the connection, where the same keys are used in both di-
rections. The issue was reported to the OpenSSL team
and was fixed in version 1.0.1k.

10
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Figure 7: Learned state machine model for OpenSSL 1.0.1j

Figure 8: Learned state machine model for OpenSSL 1.0.1g, an older version of OpenSSL which had a known security
flaw [27].

11
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Early ChangeCipherSpec The state machine model
of the older version OpenSSL 1.0.1g (Fig. 8) reveals a
known vulnerability that was recently discovered [27],
which makes it possible for an attacker to easily com-
pute the session keys that are used in the versions up to
1.0.0l and 1.0.1g, as described below.

As soon as a ChangeCipherSpec message is received,
the keys are computed. However, this also happened
when no ClientKeyExchange was sent yet, in which case
an empty master secret is used. This results in keys that
are computed based on only public data. In version 1.0.1
it is possible to completely hijack a session by sending
an early ChangeCipherSpec message to both the server
and client, as in this version the empty master secret is
also used in the computation of the hash in the Finished
message. In the model of OpenSSL version 1.0.1g in
Fig. 8 it is clear that if a ChangeCipherSpec message is
received too early, the Finished message is still accepted
as a ChangeCipherSpec is returned (see path 0, 1, 6, 9, 12

in the model). This is an indication of the bug and would
be reason for closer inspection. The incoming messages
after this path cannot be decrypted anymore however, be-
cause the corresponding keys are only computed by our
test harness as soon as the ChangeCipherSpec message is
received, which means that these keys are actually based
on the ClientKeyExchange message. A simple modifi-
cation of the test harness to change the point at which
the keys are computed will even provide a successful ex-
ploitation of the bug.

An interesting observation regarding the evolution of
the OpenSSL code is that for the four different versions
that we analysed (1.0.1g, 1.0.1j, 1.0.1l and 1.0.2) the
number of states reduces with every version. For ver-
sion 1.0.2 there is still one state more than required, but
this is an error state from which all messages result in a
closed connection.

4.9 nqsb-TLS

A recent TLS implementation, nqsb-TLS, is intended to
be both a specification and usable implementation writ-
ten in OCaml [25]. For nsqb-TLS we analysed ver-
sion 0.4.0. Our analysis revealed a bug in this imple-
mentation: alert messages are not encrypted even af-
ter a ChangeCipherSpec is received. This bug was re-
ported to the nqsb-TLS developers and is fixed in a newer
version. What is more interesting is a design decision
with regard to the state machine: after the client sends
a ChangeCipherSpec, the server immediately responds
with a ChangeCipherSpec. This is different compared to
all other implementations, that first wait for the client to
also send a Finished message before sending a response.
This is a clear example where the TLS specifications are
not completely unambiguous and adding a state machine

would remove room for interpretation.

5 Conclusion

We presented a thorough analysis of commonly used
TLS implementations using the systematic approach we
call protocol state fuzzing: we use state machine learn-
ing, which relies only on black box testing, to infer a
state machine and then we perform a manual analysis of
the state machines obtained. We demonstrated that this
is a powerful and fast technique to reveal security flaws:
in 3 out of 9 tested implementations we discovered new
flaws. We applied the method on both server- and client-
side implementations. By using our modified version of
the W-method we are able to drastically reduce the num-
ber of equivalence queries used, which in turn results in
a much lower running time of the analysis.

Our approach is able to find mistakes in the logic in
the state machine of implementations. Deliberate back-
doors, that are for example triggered by sending a par-
ticular message 100 times, would not be detected. Also
mistakes in, for example, the parsing of messages or cer-
tificates would not be detected.

An overview of different approaches to prevent secu-
rity bugs and more generally improve the security of soft-
ware is given in [38] (using the Heartbleed bug as a ba-
sis). The method presented in this paper would not have
detected the Heartbleed bug, but we believe it makes a
useful addition to the approaches discussed in [38]. It
is related to some of the approaches listed there; in par-
ticular, state machine learning involves a form of neg-
ative testing: the tests carried out during the state ma-
chine learning include many negative tests, namely those
where messages are sent in unexpected orders, which one
would expect to result in the closing of the connection
(and which probably should result in closing of the con-
nection, to be on the safe side). By sending messages in
an unexpected order we get a high coverage of the code,
which is different from for example full branch code cov-
erage, as we trigger many different paths through the
code.

In parallel with our research Beurdouche et al. [6] in-
dependently performed closely related research. They
also analyse protocol state machines of TLS implemen-
tations and successfully find numerous security flaws.
Both approaches have independently come up with the
same fundamental idea, namely that protocol state ma-
chines are a great formalism to systematically analyse
implementations of security protocols. Both approaches
require the construction of a framework to send arbi-
trary TLS messages, and both approaches reveal that
OpenSSL and JSSE have the most (over)complicated
state machines.

12
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The approach of Beurdouche et al. is different though:
whereas we infer the state machines from the code with-
out prior knowledge, they start with a manually con-
structed reference protocol state machine, and subse-
quently use this as a basis to test TLS implementations.
Moreover, the testing they do here is not truly random, as
the ‘blind’ learning by LearnLib is, but uses a set of test
traces that is automatically generated using some heuris-
tics.

The difference in the issues identified by Beurdouche
et al. and us can partly be explained by the difference
in functionality that is supported by the test frameworks
used. For example, our framework supports the Heart-
beat extension, whereas theirs supports Diffie-Hellman
certificates and export cipher suites. Another reason is
the fact that our approach has a higher coverage due to
its ‘blind’ nature.

One advantage of our approach is that we don’t have to
construct a correct reference model by hand beforehand.
But in the end, we do have to decide which behaviour
is unwanted. Having a visual model helps here, as it is
easy to see if there are states or transitions that seem re-
dundant and don’t occur in other models. Note that both
approaches ultimately rely on a manual analysis to as-
sess the security impact of any protocol behaviour that is
deemed to be deviant or superfluous.

When it comes to implementing TLS, the specifica-
tions leave the developer quite some freedom as how
to implement the protocol, especially in handling errors
or exceptions. Indeed, many of the differences between
models we infer are variations in error messages. These
are not fixed in the specifications and can be freely cho-
sen when implementing the protocol. Though this might
be useful for debugging, the different error messages are
probably not useful in production (especially since they
differ per implementation).

This means that there is not a single ‘correct’ state ma-
chine for the TLS protocol and indeed every implemen-
tation we analysed resulted in a different model. How-
ever, there are some clearly wrong state machines. One
would expect to see a state machine where there is clearly
one correct path (or possibly more depending on the con-
figuration) and all other paths going to one error state –
preferably all with the same error code. We have seen
one model that conforms to this, namely the one for RSA
BSAFE for Java, shown in Fig. 6.

Of course, it would be interesting to apply the same
technique we have used on TLS implementations here on
implementations of other security protocols. The main
effort in protocol state fuzzing is developing a test har-
ness. But as only one test harness is needed to test all
implementations for a given protocol, we believe that this
is a worthwhile investment. In fact, one can argue that
for any security protocol such a test harness should be

provided to allow analysis of implementations.
The first manual analysis of the state machines we ob-

tain is fairly straightforward: any superfluous strange be-
haviour is easy to spot visually. This step could even be
automated as well by providing a correct reference state
machine. A state machine that we consider to be correct
would be the one that we learned for RSA BSAFE for
Java.

Deciding whether any superfluous behaviour is ex-
ploitable is the hardest part of the manual analysis, but
for security protocols it makes sense to simply require
that there should not be any superfluous behaviour what-
soever.

The difference behaviour between the various imple-
mentations might be traced back to Postel’s Law:

‘Be conservative in what you send,
be liberal in what you accept.’

As has been noted many times before, e.g. in [35], this
is an unwanted and risky approach in security protocols:
if there is any suspicion about inputs they should be dis-
carded, connections should be closed, and no response
should be given that could possibly aid an attacker. To
quote [21]: ‘It’s time to deprecate Jon Postel’s dictum
and to be conservative in what you accept’.

Of course, ideally state machines would be included in
the official specifications of protocols to begin with. This
would provide a more fundamental solution to remove –
or at least reduce – some of the implementation freedom.
It would avoid each implementer having to come up with
his or her own interpretation of English prose specifica-
tions, avoiding not only lots of work, but also the large
variety of state machines in implementations that we ob-
served, and the bugs that some of these introduce.

References

[1] AARTS, F., DE RUITER, J., AND POLL, E. Formal models of
bank cards for free. In Software Testing Verification and Valida-

tion Workshop, IEEE International Conference on (2013), IEEE,
pp. 461–468.

[2] AARTS, F., SCHMALTZ, J., AND VAANDRAGER, F. Inference
and abstraction of the biometric passport. In Leveraging Appli-

cations of Formal Methods, Verification, and Validation, T. Mar-
garia and B. Steffen, Eds., vol. 6415 of Lecture Notes in Com-

puter Science. Springer, 2010, pp. 673–686.

[3] AL FARDAN, N., AND PATERSON, K. Lucky Thirteen: Breaking
the TLS and DTLS record protocols. In Security and Privacy

(SP), 2013 IEEE Symposium on (2013), IEEE, pp. 526–540.

[4] ALFARDAN, N., BERNSTEIN, D. J., PATERSON, K. G., POET-
TERING, B., AND SCHULDT, J. C. N. On the security of RC4 in
TLS. In Presented as part of the 22nd USENIX Security Sympo-

sium (USENIX Security 13) (2013), USENIX, pp. 305–320.

[5] ANGLUIN, D. Learning regular sets from queries and counterex-
amples. Information and Computation 75, 2 (1987), 87–106.

13



206 24th USENIX Security Symposium USENIX Association

[6] BENJAMIN BEURDOUCHE, KARTHIKEYAN BHARGAVAN, A.
D.-L., FOURNET, C., KOHLWEISS, M., PIRONTI, A., STRUB,
P.-Y., , AND ZINZINDOHOUE, J. K. A messy state of the union:
Taming the composite state machines of TLS. In Security and

Privacy (SP), 2015 IEEE Symposium on (2015), IEEE, pp. 535–
552.

[7] BHARGAVAN, K., FOURNET, C., CORIN, R., AND ZALINESCU,
E. Cryptographically verified implementations for TLS. In Pro-

ceedings of the 15th ACM Conference on Computer and Commu-

nications Security (2008), CCS ’08, ACM, pp. 459–468.

[8] BHARGAVAN, K., FOURNET, C., KOHLWEISS, M., PIRONTI,
A., AND STRUB, P. Implementing TLS with verified crypto-
graphic security. 2013 IEEE Symposium on Security and Privacy

(2013), 445–459.

[9] BLEICHENBACHER, D. Chosen ciphertext attacks against pro-
tocols based on the RSA encryption standard PKCS #1. In
Advances in Cryptology – CRYPTO ’98, H. Krawczyk, Ed.,
vol. 1462 of Lecture Notes in Computer Science. Springer, 1998,
pp. 1–12.

[10] BRUBAKER, C., JANA, S., RAY, B., KHURSHID, S., AND

SHMATIKOV, V. Using Frankencerts for automated adversar-
ial testing of certificate validation in SSL/TLS implementations.
In Security and Privacy (SP), 2014 IEEE Symposium on (2014),
pp. 114–129.

[11] CHALUPAR, G., PEHERSTORFER, S., POLL, E., AND

DE RUITER, J. Automated reverse engineering using Lego. In
8th USENIX Workshop on Offensive Technologies (WOOT 14)

(2014), USENIX.

[12] CHOW, T. Testing software design modeled by finite-state ma-
chines. IEEE Transactions on Software Engineering 4, 3 (1978),
178–187.

[13] CODENOMICON. Heartbleed bug. http://heartbleed.com/.
Accessed on June 8th 2015.

[14] COMPARETTI, P., WONDRACEK, G., KRUEGEL, C., AND

KIRDA, E. Prospex: Protocol specification extraction. In Secu-

rity and Privacy, 2009 30th IEEE Symposium on (2009), IEEE,
pp. 110–125.

[15] DE RUITER, J. Lessons learned in the analysis of the EMV

and TLS security protocols. PhD thesis, Radboud University Ni-
jmegen, 2015.

[16] DÍAZ, G., CUARTERO, F., VALERO, V., AND PELAYO, F. Auto-
matic verification of the TLS handshake protocol. In Proceedings

of the 2004 ACM Symposium on Applied Computing (2004), SAC
’04, ACM, pp. 789–794.

[17] DIERKS, T., AND ALLEN, C. The TLS protocol version 1.0.
RFC 2246, Internet Engineering Task Force, 1999.

[18] DIERKS, T., AND RESCORLA, E. The Transport Layer Security
(TLS) protocol version 1.1. RFC 4346, Internet Engineering Task
Force, 2006.

[19] DIERKS, T., AND RESCORLA, E. The Transport Layer Security
(TLS) protocol version 1.2. RFC 5246, Internet Engineering Task
Force, 2008.

[20] GAJEK, S., MANULIS, M., PEREIRA, O., SADEGHI, A.-R.,
AND SCHWENK, J. Universally composable security analysis of
TLS. In Provable Security, J. Baek, F. Bao, K. Chen, and X. Lai,
Eds., vol. 5324 of Lecture Notes in Computer Science. Springer,
2008, pp. 313–327.

[21] GEER, D. Vulnerable compliance. login: The USENIX Magazine

35, 6 (2010), 10–12.

[22] HE, C., SUNDARARAJAN, M., DATTA, A., DEREK, A., AND

MITCHELL, J. C. A modular correctness proof of IEEE 802.11i
and TLS. In Proceedings of the 12th ACM Conference on Com-

puter and Communications Security (2005), CCS ’05, ACM,
pp. 2–15.

[23] HSU, Y., SHU, G., AND LEE, D. A model-based approach to
security flaw detection of network protocol implementations. In
Network Protocols, 2008. ICNP 2008. IEEE International Con-

ference on (2008), IEEE, pp. 114–123.

[24] JAGER, T., KOHLAR, F., SCHÄGE, S., AND SCHWENK, J. On
the security of TLS-DHE in the standard model. In Advances

in Cryptology – CRYPTO 2012, R. Safavi-Naini and R. Canetti,
Eds., vol. 7417 of Lecture Notes in Computer Science. Springer,
2012, pp. 273–293.

[25] KALOPER-MERŠINJAK, D., MEHNERT, H., MADHAVAPEDDY,
A., AND SEWELL, P. Not-quite-so-broken TLS: Lessons in
re-engineering a security protocol specification and implemen-
tation. In 24th USENIX Security Symposium (USENIX Security

15) (2015), USENIX Association.

[26] KAMIL, A., AND LOWE, G. Analysing TLS in the strand spaces
model. Journal of Computer Security 19, 5 (2011), 975–1025.

[27] KIKUCHI, M. OpenSSL #ccsinjection vulnerability. http://

ccsinjection.lepidum.co.jp/. Access on June 8th 2015.

[28] KRAWCZYK, H., PATERSON, K., AND WEE, H. On the security
of the TLS protocol: A systematic analysis. In Advances in Cryp-

tology – CRYPTO 2013, vol. 8042 of Lecture Notes in Computer

Science. Springer, 2013, pp. 429–448.

[29] MEYER, C., AND SCHWENK, J. SoK: Lessons learned from
SSL/TLS attacks. In Information Security Applications, Y. Kim,
H. Lee, and A. Perrig, Eds., Lecture Notes in Computer Science.
Springer, 2014, pp. 189–209.

[30] MEYER, C., SOMOROVSKY, J., WEISS, E., SCHWENK, J.,
SCHINZEL, S., AND TEWS, E. Revisiting SSL/TLS imple-
mentations: New bleichenbacher side channels and attacks. In
23rd USENIX Security Symposium (USENIX Security 14) (2014),
USENIX Association, pp. 733–748.

[31] MORRISSEY, P., SMART, N., AND WARINSCHI, B. A modular
security analysis of the TLS handshake protocol. In Advances in

Cryptology – ASIACRYPT 2008, J. Pieprzyk, Ed., vol. 5350 of
Lecture Notes in Computer Science. Springer, 2008, pp. 55–73.

[32] OGATA, K., AND FUTATSUGI, K. Equational approach to for-
mal analysis of TLS. In Distributed Computing Systems, 2005.

ICDCS 2005. Proceedings. 25th IEEE International Conference

on (2005), IEEE, pp. 795–804.

[33] PAULSON, L. C. Inductive analysis of the internet protocol TLS.
ACM Trans. Inf. Syst. Secur. 2, 3 (1999), 332–351.

[34] RAFFELT, H., STEFFEN, B., AND BERG, T. LearnLib: a library
for automata learning and experimentation. In Formal methods

for industrial critical systems (FMICS’05) (2005), ACM, pp. 62–
71.

[35] SASSAMAN, L., PATTERSON, M. L., AND BRATUS, S. A patch
for Postel’s robustness principle. Security & Privacy, IEEE 10, 2
(2012), 87–91.

[36] SEGGELMANN, R., TUEXEN, M., AND WILLIAMS, M. Trans-
port Layer Security (TLS) and Datagram Transport Layer Secu-
rity (DTLS) Heartbeat Extension. RFC 6520, Internet Engineer-
ing Task Force, 2012.

[37] TURNER, S., AND POLK, T. Prohibiting Secure Sockets Layer
(SSL) version 2.0. RFC 6176, Internet Engineering Task Force,
2011.

[38] WHEELER, D. Preventing Heartbleed. Computer 47, 8 (2014),
80–83.

14



USENIX Association  24th USENIX Security Symposium 207

Verified correctness and security of OpenSSL HMAC

Lennart Beringer
Princeton Univ.

Adam Petcher
Harvard Univ. and

MIT Lincoln Laboratory

Katherine Q. Ye
Princeton Univ.

Andrew W. Appel
Princeton Univ.

Abstract
We have proved, with machine-checked proofs in Coq,
that an OpenSSL implementation of HMAC with SHA-
256 correctly implements its FIPS functional specifi-
cation and that its functional specification guarantees
the expected cryptographic properties. This is the
first machine-checked cryptographic proof that combines
a source-program implementation proof, a compiler-
correctness proof, and a cryptographic-security proof,
with no gaps at the specification interfaces.

The verification was done using three systems within
the Coq proof assistant: the Foundational Cryptogra-
phy Framework, to verify crypto properties of functional
specs; the Verified Software Toolchain, to verify C pro-
grams w.r.t. functional specs; and CompCert, for verified
compilation of C to assembly language.

1 Introduction

HMAC is a cryptographic authentication algorithm, the
“Keyed-Hash Message Authentication Code,” widely
used in conjunction with the SHA-256 cryptographic
hashing primitive. The sender and receiver of a mes-
sage m share a secret session key k. The sender com-
putes s = HMAC(k,m) and appends s to m. The receiver
computes s′ = HMAC(k,m) and verifies that s′ = s. In
principle, a third party will not know k and thus cannot
compute s. Therefore, the receiver can infer that message
m really originated with the sender.

What could go wrong?

Algorithmic/cryptographic problems. The compres-
sion function underlying SHA might fail to have
the cryptographic property of being a pseudoran-
dom function (PRF); the SHA algorithm might not
be the right construction over its compression func-
tion; the HMAC algorithm might fail to have the
cryptographic property of being a PRF; we might
even be considering the wrong crypto properties.

Implementation problems. The SHA program (in C)
might incorrectly implement the SHA algorithm;
the HMAC program might incorrectly implement
the HMAC algorithm; the programs might be cor-
rect but permit side channels such as power analy-
sis, timing analysis, or fault injection.

Specification mismatch. The specification of HMAC
or SHA used in the cryptographic-properties [15]
proof might be subtly different from the one pub-
lished as the specification of computer programs
[28, 27]. The proofs about C programs might in-
terpret the semantics of the C language differently
from the C compiler.

Based on Bellare and Rogaway’s probabilistic game
framework [16] for cryptographic proofs, Halevi [30] ad-
vocates creating an “automated tool to help us with the
mundane parts of writing and checking common argu-
ments in [game-based] proofs.” Barthe et al. [13] present
such a tool in the form of CertiCrypt, a framework that
“enables the machine-checked construction and verifica-
tion” of proofs using the same game-based techniques,
written in code. Barthe et al.’s more recent EasyCrypt
system [12] is a more lightweight, user-friendly version
(but not foundational, i.e., the implementation is not
proved sound in any machine-checked general-purpose
logic). In this paper we use the Foundational Cryptogra-
phy Framework (FCF) of Petcher and Morrisett [38].

But the automated tools envisioned by Halevi—and
built by Barthe et al. and Petcher—address only the
“algorithmic/cryptographic problems.” We also need
machine-checked tools for functional correctness of C
programs—not just static analysis tools that verify the
absence of buffer overruns. And we need the functional-
correctness tools to connect, with machine-checked
proofs of equivalence, to the crypto-algorithm proofs. By
2015, proof systems for formally reasoning about crypto
algorithms and C programs have come far enough that it
is now possible to do this.
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Here we present machine-checked proofs, in Coq, of
many components, connected and checked at their speci-
fication interfaces so that we get a truly end-to-end result:
Version 0.9.1c of OpenSSL’s HMAC and SHA-256 cor-
rectly implements the FIPS 198-1 and FIPS 180-4 stan-
dards, respectively; and that same FIPS 198-1 HMAC
standard is a PRF, subject to certain standard (unproved)
assumptions about the SHA-256 algorithm that we state
formally and explicitly.

Software is large, complex, and always under main-
tenance; if we “prove” something about a real program
then the proof (and its correspondence to the syntactic
program) had better be checked by machine. Fortunately,
as Gödel showed, checking a proof is a simple calcula-
tion. Today, proof checkers can be simple trusted (and
trustworthy) kernel programs [7].

A proof assistant comprises a proof-checking kernel
with an untrusted proof-development system. The sys-
tem is typically interactive, relying on the user to build
the overall structure of the proof and supply the impor-
tant invariants and induction hypotheses, with many of
the details filled in by tactical proof automation or by de-
cision procedures such as SMT or Omega.

Coq is an open-source proof assistant under develop-
ment since 1984. In the 21st century it has been used for
practical applications such as Leroy’s correctness proof
of an optimizing C compiler [34]. But note, that com-
piler was not itself written in C; the proof theory of C
makes life harder, and only more recently have people

done proofs of substantial C programs in proof assistants
[32, 29].

Our entire proof (including the algorithmic/crypto-
graphic proofs, the implementation proofs, and the spec-
ification matches) is done in Coq, so that we avoid mis-
understandings at interfaces. To prove our main theorem,
we took these steps (cf. Figure 1):

1. Formalized.[5] We use a Coq formalization of the
FIPS 180-4 Secure Hash Standard [28] as a speci-
fication of SHA-256. (Henceforth, “formalized” or
“proved” implies “in the Coq proof assistant.”)

2. Formalized.* We have formalized the FIPS 198-1
Keyed-Hash Message Authentication Code [27] as
a specification of HMAC. (Henceforth, the * indi-
cates new work first reported in this paper; other-
wise we provide a citation to previous work.)

3. Formalized.* We have formalized Bellare’s func-
tional characterization of the HMAC algorithm.

4. Proved.* We have proved the equivalence of FIPS
198-1 with Bellare’s functional characterization of
HMAC.

5. Formalized.[6] We use Verifiable C, a program logic
(embedded in Coq) for specifying and proving func-
tional correctness of C programs.

6. Formalized.[35] Leroy has formalized the opera-
tional semantics of the C programming language.
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7. Proved.[6] Verifiable C has been proved sound.
That is, if you specify and prove any input-output
property of your C program using Verifiable C, then
that property actually holds in Leroy’s operational
semantics of the C language.

8. Formalized.[35] Leroy has formalized the opera-
tional semantics of the Intel x86 (and PowerPC and
ARM) assembly language.

9. Proved.[35] If the CompCert optimizing C compiler
translates a C program to assembly language, then
input-output property of the C program is preserved
in the assembly-language program.

10. Formalized.[5] We rely on a formalization (in Ver-
ifiable C) of the API interface of the OpenSSL
header file for SHA-256, including its semantic
connection to the formalization of the FIPS Secure
Hash Standard.

11. Proved.[5] The C program implementing SHA-256,
lightly adapted from the OpenSSL implementation,
has the input-output (API) properties specified by
the formalized API spec of SHA-256.

12. Formalized.* We have formalized the API interface
of the OpenSSL header file for HMAC, including
its semantic connection to our FIPS 198-1 formal-
ization.

13. Proved.* Our C program implementing HMAC,
lightly adapted from the OpenSSL implementation,
has the input-output (API) properties specified by
our formalization of FIPS 198-1.

14. Formalized.* Bellare et al. proved properties of
HMAC [15, 14] subject to certain assumptions
about the underlying cryptographic compression
function (typically SHA). We have formalized those
assumptions.

15. Formalized.* Bellare et al. proved that HMAC
implements a pseudorandom function (PRF); we
have formalized what exactly that means. (Bellare’s
work is “formal” in the sense of rigorous mathe-
matics and LATEX; we formalized our work in Coq
so that proofs of these properties can be machine-
checked.)

16. Proved.* We prove that, subject to these formal-
ized assumptions about SHA, Bellare’s HMAC al-
gorithm is a PRF; this is a mechanization of a vari-
ant of the 1996 proof [15] using some ideas from
the 2006 proofs [14].

Theorem. The assembly-language program, resulting
from compiling OpenSSL 0.9.1c using CompCert, cor-
rectly implements the FIPS standards for HMAC and
SHA, and implements a cryptographically secure PRF
subject to the usual assumptions about SHA.
Proof. Machine-checked, in Coq, by chaining together
specifications and proofs 1–16. Available open-source at
https://github.com/PrincetonUniversity/VST/, subdi-
rectories sha, fcf, hmacfcf.

The trusted code base (TCB) of our system is quite
small, comprising only items 1, 2, 8, 12, 14, 15. Items
4, 7, 9, 11, 13, 16 need not be trusted, because they are
proofs checked by the kernel of Coq. Items 3, 5, 6, 10
need not be trusted, because they are specification inter-
faces checked on both sides by Coq, as Appel [5, §8]
explains.

One needs to trust the Coq kernel and the software that
compiles it; see Appel’s discussion [5, §12].

We do not analyze timing channels or other side chan-
nels. But the programs we prove correct are standard
C programs for which standard timing and side-channel
analysis tools and techniques can be used.

The HMAC brawl. Bernstein [19] and Koblitz and
Menezes [33] argue that the security guarantees proved
by Bellare et al. are of little value in practice, because
these guarantees do not properly account for the power
of precomputation by the adversary. In effect, they argue
that item 15 in our enumeration is the wrong specifica-
tion for desired cryptographic properties of a symmetric-
key authentication algorithm. This may well be true; here
we use Bellare’s specification in a demonstration of end-
to-end machine-checked proof. As improved specifica-
tions and proofs are developed by the theorists, we can
implement them using our tools. Our proofs are suffi-
ciently modular that only items 15 and 16 would change.

Which version of OpenSSL. We verified
HMAC/SHA from OpenSSL 0.9.1c, dated March
1999, which does not include the home-brew object sys-
tem “engines” of more recent versions of OpenSSL. We
further simplified the code by specializing OpenSSL’s
use of generic “envelopes” to the specific hash function
SHA-256, thus obtaining a statically linked code.
Verifiable C is capable of reasoning about function
pointers and home-brew object systems [6, Chapter
29]—it is entirely plausible that a formal specification of
“engines” and “envelopes” could be written down—but
such proofs are more complex.
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2 Formalizing functional specifications

(Items 1, 2 of the architecture.) The FIPS 180-4 specifi-
cation of the SHA function can be formalized in Coq as
this mathematical function:

Definition SHA-256 (str : list Z) : list Z :=
intlist-to-Zlist (
hash-blocks init-registers (generate-and-pad str)).

where hash-blocks, init-registers, and generate-and-pad
are translations of the FIPS standard. Z is Coq’s type
for (mathematical) integers; the (list Z) is the contents
of a string of bytes, considered as their integer values.
SHA-256 works internally in 32-bit unsigned modular
arithmetic; intlist-to-Zlist converts a sequence of 32-bit
machine ints to the mathematical contents of a byte-
sequence. See Appel [5] for complete details. The func-
tional spec of SHA-256, including definitions of all these
functions, comes to 169 lines of Coq, all of which is in
the trusted base for the security/correctness proof.

In this paper we show the full functional spec for
HMAC256, the HMAC construction applied to hash
function SHA 256:

Definition mkKey (l:list Z):list Z :=
zeropad (if |l| > 64 then SHA-256 l else l).

Definition KeyPreparation (k: list Z):list byte :=
map Byte.repr (mkKey k).

Definition HASH l m := SHA-256 (l++m)
Definition HmacCore m k :=
HASH (opad ⊕ k) (HASH (ipad ⊕ k) m)

Definition HMAC256 (m k : list Z) : list Z :=
HmacCore m (KeyPreparation k)

where zeropad right-extends1 its argument to length 64
(i.e. to SHA256’s block size, in bytes), ipad and opad are
the padding constants from FIPS198-1, ⊕ denotes byte-
wise XOR, and ++ denotes list concatenation.

3 API specifications of C functions

(Items 10, 12 of the architecture.) Hoare logic [31], dat-
ing from 1969, is a method of proving correctness of im-
perative programs using preconditions, postconditions,
and loop invariants. Hoare’s original logic did not handle
pointer data structures well. Separation logic, introduced
in 2001 [37], is a variant of Hoare logic that encapsulates
“local actions” on data structures.

1The more recent RFC4868 mandates that when HMAC is used
for authentication, a fixed key length equal to the output length of
the hash functions MUST be supported, and key lengths other than
the output length of the associated hash function MUST NOT be sup-
ported. Our specification clearly separates KeyPreparation from
HmacCore, but at the top level follows the more permissive standards
RFC2104/FIPS198-1 as well as the implementation reality of even con-
temporary snapshots of OpenSSL and its clones.

Verifiable C [6] is a separation logic that applies to the
real C language. Verifiable C’s rules are complicated in
some places, to capture C’s warts and corner cases.

The FIPS 180 and FIPS 198 specifications—and our
definitions of SHA 256 and HMAC256—do not explain
how the “mathematical” sequences of bytes are laid out
in the arrays and structs passed as parameters to (and
used internally by) the C functions. For this we need an
API spec. Using Verifiable C, one specifies the API be-
havior of each function: the data structures it operates on,
its preconditions (what it assumes about the input data
structures available in parameters and global variables),
and the postcondition (what it guarantees about its return
value and changes to data structures). Appel [5, §7] ex-
plains how to build such API specs and shows the API
spec for the SHA 256 function.

Here we show the API spec for HMAC. First we define
a Coq record type,

Record DATA := { LEN:Z; CONT: list Z }.

If key has type DATA, then LEN(key) is an integer and
CONT(key) is “contents” of the key, a sequence of inte-
gers. We do not use Coq’s dependent types here to en-
force that LEN corresponds to the length of the CONT
field, but see the has lengthK constraint below.

To specify the API of a C-language function in Verifi-
able C, one writes

DECLARE f WITH �v
PRE[params] Pre POST [ret] Post.

where f is the name of the function, params are the for-
mal parameters (of various C-language types), and ret is
the C return type. The precondition Pre and postcondi-
tion Post have the form PROPP LOCALQ SEPR, where
P is a list of pure propositions (true independent of the
current program state), Q is a list of local/global variable
bindings, and R is a list of separation logic predicates that
describe the contents of memory. The WITH clause de-
scribes logical variables �v, abstract mathematical values
that can be referred to anywhere in the precondition and
postcondition.

In our HMAC256-spec, shown below, the first “ab-
stract mathematical value” listed in this WITH clause is
the key-pointer kp, whose “mathematical” type is “C-
language value’,’ or val. It represents an address in
memory where the HMAC session key is passed. In the
LOCAL part of the PREcondition, we say that the formal
parameter -key actually contains the value kp on entry to
the function, and in the SEP part we say that there’s a
data-block at location kp containing the actual key bytes.
In the postcondition we refer to kp again, saying that the
data-block at address kp is still there, unchanged by the
HMAC function.
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Definition HMAC256-spec :=
DECLARE -HMAC
WITH kp: val, key:DATA, KV:val,

mp: val, msg:DATA, shmd: share, md: val
PRE [ -key OF tptr tuchar, -key-len OF tint,

-d OF tptr tuchar, -n OF tint,

-md OF tptr tuchar ]
PROP(writable share shmd;

has lengthK (LEN key) (CONT key);
has lengthD 512 (LEN msg) (CONT msg))

LOCAL(temp -md md; temp -key kp; temp -d mp;
temp -key-len (Vint (Int.repr (LEN key)));
temp -n (Vint (Int.repr (LEN msg)));
gvar -K256 KV)

SEP( (̀data-block Tsh (CONT key) kp);
(̀data-block Tsh (CONT msg) mp);
(̀K-vector KV);
(̀memory-block shmd (Int.repr 32) md))

POST [ tvoid ]
PROP() LOCAL()
SEP( (̀K-vector KV);

(̀data-block shmd
(HMAC256 (CONT msg) (CONT key)) md);
(̀data-block Tsh (CONT key) kp);
(̀data-block Tsh (CONT msg) mp)).

The next WITH value is key, a DATA value, that
is, a mathematical sequence of byte values along
with its (supposed) length. In the PROP clause of
the precondition, we enforce this supposition with
has lengthK (LEN key) (CONT key).

The function Int.repr injects from the mathemati-
cal integers into 32-bit signed/unsigned numbers. So
temp -n (Vint (Int.repr (LEN msg))) means, take the
mathematical integer (LEN msg), smash it into a 32-bit
signed number, inject that into the space of C values,
and assert that the parameter -n contains this value on
entry to the function. This makes reasonable sense if
0 ≤ LEN msg < 232, which is elsewhere enforced by
has lengthD. Such 32-bit range constraints are part of
C’s “warts and all,” which are rigorously accounted for
in Verifiable C. Both has lengthK and has lengthD are
user-defined predicates within the HMAC API spec.

The precondition contains an uninitialized 32-byte
memory-block at address md, and the -md parameter of
the C function contains the value md. In the postcondi-
tion, we find that at address md the memory block has
become an initialized data block containing a represen-
tation of HMAC256 (CONT msg) (CONT key).

For stating and proving these specifications, the fol-
lowing characteristics of separation logic are crucial:

1. The SEP lists are interpreted using the separat-
ing conjunction ∗ which (in contrast to ordinary
conjunction ∧) enforces disjointness of the mem-

ory regions specified by each conjunct. Thus,
the precondition requires—and the postcondition
guarantees—that keys, messages, and digests do not
overlap.

2. Implicit in the semantic interpretation of a separa-
tion logic judgment is a safety guarantee of the ab-
sence of memory violations and other runtime er-
rors, apart from memory exhaustion. In particu-
lar, verified code is guaranteed to respect the spec-
ified footprint: it will neither read from, nor mod-
ify or free any memory outside the region speci-
fied by the SEP clause of PRE. Moreover, all heap
that is locally allocated is either locally freed, or is
accounted for in POST. Hence, memory leaks are
ruled out.

3. As a consequence of these locality principles, sep-
aration logic specifications enjoy a frame property:
a verified judgment remains valid whenever we add
an arbitrary additional separating conjunct to both
SEP-clauses. The corresponding proof rule, the
frame rule, is crucial for modular verification, guar-
anteeing, for example, that when we call SHA-256,
the HMAC data structure remains unmodified.

The HMAC API spec has the 25 lines shown here
plus a few more for definitions of auxiliary predicates
(has-lengthK 3 lines, has-lengthD 3 lines, etc.); plus the
API spec for SHA-256, all in the trusted base.

Incremental hashing. OpenSSL’s HMAC and SHA
functions are incremental. One can initialize the
hasher with a key, then incrementally append message-
fragments (not necessarily block-aligned) to be hashed,
then finalize to produce the message digest. We fully
support this incremental API in our correctness proofs.
For simplicity we did not present it here, but Appel [5]
presents the incremental API for SHA-256. The API
spec for fully incremental SHA-256 is 247 lines of Coq;
the simple (nonincremental) version has a much smaller
API spec, similar to the 25+6 lines shown here for the
nonincremental HMAC.

Once every function is specified, we use Verifiable C
to prove that each function’s body satisfies its specifica-
tion. See Section 6.

4 Cryptographic properties of HMAC

(Items 14, 15, 16 of the architecture.) This section de-
scribes a mechanization of a cryptographic proof of se-
curity of HMAC. The final result of this proof is similar
to the result of Bellare et al. [15], though the structure
of the proof and some of the definitions are influenced
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by Bellare’s later proof [14]. This proof uses a more ab-
stract model of HMAC (compared to the functional spec
in §2) in which keys are in {0,1}b (the set of bit vectors
of length b), inputs are in {0,1}∗ (bit lists), and outputs
are in {0,1}c for arbitrary b and c such that c ≤ b. An
implementation of HMAC would require that b and c are
multiples of some word size, and the input is an array
of words, but these issues are typically not considered in
cryptographic proofs.

In the context of the larger proof described in this pa-
per, we refer to this model of HMAC in which sizes are
arbitrary as the abstract specification of HMAC. In or-
der to use security results related to this specification, we
must show that this specification is appropriately related
to the specification provided in §2. We chose to prove the
security of the abstract specification, rather than directly
proving the security of a more concrete specification, be-
cause there is significant value in this organization. Pri-
marily, this organization allows us to use the exact def-
initions and assumptions from the cryptography litera-
ture, and we therefore gain greater assurance that the def-
initions are correct and the assumptions are reasonable.
Also, this approach demonstrates how an existing mech-
anized proof of cryptographic security can be used in a
verification of the security of an implementation. This
organization also helps decompose the proof, and it al-
lows us to deal with issues related to the implementation
in isolation from issues related to cryptographic security.

We address the “gap” between the abstract and con-
crete HMAC specifications by proving that they are
equivalent. Section 5 outlines the proof and states the
equivalence theorem.

4.1 The Foundational Cryptography
Framework

This proof of security was completed using the Founda-
tional Cryptography Framework (FCF), a Coq library for
reasoning about the security of cryptographic schemes
in the computational model [38]. FCF provides a proba-
bilistic programming language for describing all crypto-
graphic constructions, security definitions, and problems
that are assumed to be hard. Probabilistic programs are
described using Gallina, the purely functional program-
ming language of Coq, extended with a computational
monad that adds sampling uniformly random bit vectors.
The type of probabilistic computations that return values
of type A is Comp A. The code uses {0,1}ˆn to de-
scribe sampling a bit vector of length n. Arrows (<-$)
denote sequencing (i.e. bind) in the monad.

Listing 1 contains an example program implementing
a one-time pad on bit vectors of length c (for any natural
number c). The program produces a random bit vector
and stores it in p, then returns the xor (using the standard

Definition OTP c (x : Bvector c) : Comp (Bvector c)
:= p <-$ {0, 1}ˆc; ret (BVxor c p x)

Listing 1: Example Program: One-Time Pad.

Coq function BVxor) of p and the argument x.
The language of FCF has a denotational semantics that

relates programs to discrete, finite probability distribu-
tions. A distribution on type A is modeled as a function
in A → Q which should be interpreted as a probability
mass function. FCF provides a theory of distributions, a
program logic, and a library of tactics that can be used to
complete proofs without appealing directly to the seman-
tics. We can use FCF to prove that two distributions are
equivalent, that the distance between the probabilities of
two events is bounded by some value, or that the proba-
bility of some event is less than some value. Such claims
enable cryptographic proofs in the “sequence of games”
style [16].

In some cryptographic definitions and proofs, an
adversary is allowed to interact with an “oracle”
that maintains state while accepting queries and pro-
viding responses. In FCF, an oracle has type
S →A →Comp (B ∗ S) for types S, A, and B, of state,
input, and output, respectively. The OracleComp type is
provided to allow an adversary to interact with an oracle
without viewing or modifying its state. By combining
an OracleComp with an oracle and a value for the initial
state of the oracle, we obtain a computation returning a
pair of values, where the first value is produced by the
OracleComp at the end of its interaction with the oracle,
and the second value is the final state of the oracle.

4.2 HMAC Security

We mechanized a proof of the following fact. If h is a
compression function, and h∗ is a Merkle-Damgård hash
function constructed from h, then HMAC based on h∗ is
a pseudorandom function (PRF) assuming:

1. h is a PRF.

2. h∗ is weakly collision-resistant (WCR).

3. The dual family of h (denoted h̄) is a PRF against
⊕-related-key attacks.

The formal definition of a PRF is shown in Listing
2. In this definition, f is a function in K →D →R that
should be a PRF. That is, for a key k : K, an adversary
who does not know k cannot gain much advantage in
distinguishing f k from a random function in D →R.

The adversary A is an OracleComp that interacts with
either an oracle constructed from f or with randomFunc,
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a random function constructed by producing random val-
ues for outputs and memoizing them so they can be re-
peated the next time the same input is provided. The
randomFunc oracle uses a list of pairs as its state, so an
empty list is provided as its initial state. The value tt is
the “unit” value, where unit is a placeholder type much
like “void” in the C language. This definition uses alter-
native arrows (such as <-$2) to construct sequences in
which the first computation produces a tuple, and a name
is given to each value in the tuple. The size of the tuple
is provided in the arrow in order to assist the parser.

Definition f-oracle (k : K) (x : unit) (d : D)
: Comp (R × unit) :=

ret (f k d, tt).

Definition PRF-G0 : Comp bool :=
k <-$ RndKey;
[b, -] <-$2 A (f-oracle k) tt; ret b.

Definition PRF-G1 : Comp bool :=
[b, -] <-$2 A (randomFunc) nil; ret b.

Definition PRF-Advantage : Rat :=
| Pr[PRF-G0] -Pr[PRF-G1] |.

Listing 2: Definition of a PRF. The f oracle function
wraps the function f (closed over key k) and turns it into
an oracle. A is an adversary. Comp bool is the type of
probabilistic computations that produce a bool. Rat is
the type of (unary, nonnegative) rational numbers.

This security definition is provided in the form of
a “game” in which the adversary tries to determine
whether the oracle is f (in game 0) or a random function
(in game 1). After interacting with the oracle, the adver-
sary produces a bit, and the adversary “wins” if this bit
is likely to be different in the games. We define the ad-
vantage of the adversary to be the difference between the
probability that it produces “true” in game 0 and in game
1. We can conclude that f is a PRF if this advantage is
sufficiently small.

Definition Adv-WCR-G : Comp bool :=
k <-$ RndKey;
[d1, d2, -] <-$3 A (f-oracle k) tt;
ret ((d1 != d2) && ((f k d1) ?= (f k d2))).

Definition Adv-WCR : Rat := Pr[Adv-WCR-G].

Listing 3: Definition of Weak Collision-Resistance.

Listing 3 defines a weakly collision-resistant function.
This definition uses a single game in which the adversary
is allowed to interact with an oracle defined by a keyed
function f. At the end of this interaction, the adversary

attempts to produce a collision, or a pair of different in-
put values that produce the same output. In this game, we
use ?= and != to denote tests for equality and inequal-
ity, respectively. The advantage of the adversary is the
probability with which it is able to locate a collision.

Finally, the security proof assumes that a certain keyed
function is a PRF against ⊕-related-key attacks (RKA).
This definition (Listing 4) is similar to the definition of
a PRF, except the adversary is also allowed to provide a
value that will be xored with the unknown key before the
PRF is called. Note that this assumption is applied to the
dual family of h, in which the roles of inputs and keys are
reversed. So a single input value is chosen at random and
fixed, and the adversary queries the oracle by providing
values which are used as keys.

Definition RKA-F (k: Bvector b) (s: unit)
(p: Bvector b × Bvector c)

: (Bvector c × unit) :=
ret (f ((fst p) xor k) (snd p), tt).

Definition RKA-R (k: Bvector b)
(s : list (Bvector c × Bvector c))
(p: Bvector b × Bvector c)
: (Bvector c × list (Bvector c × Bvector c) :=

randomFunc s ((fst p) xor k, (snd p))

Definition RKA-G0 : Comp bool :=
k <-$ RndKey; [b, -] <-$2 A (RKA-F k) tt; ret b.

Definition RKA-G1 : Comp bool :=
k <-$ RndKey; [b, -] <-$2 A (RKA-R k) nil; ret b.

Definition RKA-Advantage : Rat :=
| Pr[RKA-G0] -Pr[RKA-G1] |.

Listing 4: Definition of Security against ⊕ Related-Key
Attacks. b is the key length of the compression function,
c is the input length of the compression function; Bvec-
tor b is the type of bit-vectors of length b.

The proof of security has the same basic structure
(Figure 2) as Bellare’s more recent HMAC proof [14],
though we simplify the proof significantly by assum-
ing h∗ is WCR. The proof makes use of a nested MAC
(NMAC) construction that is similar to HMAC, but it
uses h∗ in a way that is not typically possible in imple-
mentations of hash functions. The proof begins by show-
ing that NMAC is a PRF given that h is a PRF and h∗ is
WCR. Then we show that NMAC and HMAC are “close”
(that no adversary can effectively distinguish them) un-
der the assumption that h̄ is a ⊕-RKA-secure PRF. Fi-
nally, we combine these two results to derive that HMAC
is a PRF.
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Figure 2: HMAC Security Proof Structure

We also mirror Bellare’s proof by reasoning about
slightly generalized forms of HMAC and NMAC (called
GHMAC and GNMAC) that require the input to be a list
of bit vectors of length b. The proof also makes use of
a “two-key” version of HMAC that uses a bit vector of
length 2b as the key. To simplify the development of this
proof, we build HMAC on top of these intermediate con-
structions in the abstract specification (Listing 5).

Definition h-star k (m : list (Bvector b))
:= fold-left h m k.

Definition hash-words := h-star iv.

Definition GNMAC k m :=
let (k-Out, k-In) := splitVector c c k in
h k-Out (app-fpad (h-star k-In m)).

Definition GHMAC-2K k m :=
let (k-Out, k-In) := splitVector b b k in
let h-in := (hash-words (k-In :: m)) in
hash-words (k-Out :: (app-fpad h-in) :: nil).

Definition HMAC-2K k (m : list bool) :=
GHMAC-2K k (splitAndPad m).

Definition HMAC (k : Bvector b) :=
HMAC-2K ((k xor opad) ++ (k xor ipad)).

Listing 5: HMAC Abstract Specification.

splitAndPad produces a list of bit-vectors from a list of
bits (padding the last bit-vector as needed), and app-fpad
is a padding function that produces a bit vector of length
b from a bit vector of length c. In the HMAC function, we
use constants opad and ipad to produce a key of length
2b from a key of length b.

The statement of security for HMAC is shown in List-
ing 6. We show that HMAC is a PRF by giving an expres-
sion that bounds the advantage of an arbitrary adversary
A. This expression is the sum of three terms, where each
term represents the advantage of some adversary against
some other security definition.

The listing describes all the parameters to each of the
security definitions. In all these definitions, the first pa-
rameter is the computation that produces random keys,
and in PRF-Advantage and RKA-Advantage, the second
parameter is the computation that produces random val-

ues in the range of the function. In all definitions, the
penultimate parameter is the function of interest, and the
final parameter is some constructed adversary. The de-
scriptions of these adversaries are omitted for brevity, but
only their computational complexity is relevant (e.g. all
adversaries are in ZPP assuming adversary A is in ZPP).

Theorem HMAC-PRF:
PRF-Advantage ({0, 1}ˆb) ({0, 1}ˆc) HMAC A <=
PRF-Advantage ({0, 1}ˆc) ({0, 1}ˆc) h B1 +
Adv-WCR ({0, 1}ˆc) h-star B2 +
RKA-Advantage ({0, 1}ˆb) ({0, 1}ˆc)
(BVxor b) (dual-f h) B3.

Listing 6: Statement of Security for HMAC.

We can view the result in Listing 6 in the asymptotic
setting, in which there is a security parameter η , and pa-
rameters c and b are polynomial in η . In this setting, it
is possible to conclude that the advantage of A against
HMAC is negligible in η assuming that each of the other
three terms is negligible in η . We can also view this re-
sult in the concrete setting, and use this expression to ob-
tain exact security measures for HMAC when the values
of b and c are fixed according the sizes used by the imple-
mentation. The latter interpretation is more informative,
and probably more appropriate for reasoning about the
cryptographic security of an implementation.

5 Equivalence of the two functional specs

(Item 4 of the architecture.) In §2 we described a bytes-
and-words specification following FIPS198-1, suited for
proving the C program; call that the concrete specifica-
tion. In §4 we described a length-constrained bit-vector
specification following Bellare et al.’s original papers;
call that the abstract specification. Here we describe the
proof that these two specifications are equivalent.

Proof outline. There are seven main differences be-
tween the concrete and abstract specs:

(0) The abstract spec, as its name suggests, leaves sev-
eral variables as parameters to be instantiated. Thus,
in order to compute with the abstract HMAC, one
must pass it “converted” variables and “wrapped”
functions from the concrete HMAC.

(1) The abstract spec operates on bits, whereas the con-
crete spec operates on bytes.

(2) The abstract spec uses the dependent type
Bvector n, which is a length-constrained bit list of
length n, whereas the concrete spec uses byte lists
and int lists, whose lengths are unconstrained by
definition.
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(3) Due to its use of dependent types, the abstract
spec must pad its input twice in an ad-hoc man-
ner, whereas the concrete spec uses the SHA-256
padding function consistently.

(4) The concrete spec treats the hash function (SHA-
256) as a black box, whereas the abstract spec ex-
poses various parts of its functionality, such as its
initialization vector, internal compression function,
and manner of iteration. (It does this because the
Bellare-style proofs rely on the Merkle-Damgård
structure of the hash function.)

(5) The abstract spec pads the message and splits it into
a list of blocks so that it can perform an explicit fold
over the list of lists. However, the concrete spec
leaves the message as a list of bytes and performs
an implicit fold over the list, taking a new block at
each iteration.

(6) The abstract spec defines HMAC via the HMAC 2K
and GHMAC 2K structures, not directly.

Instantiating the abstract specification. The abstract
HMAC spec leaves the following parameters abstract:

Variable c p : nat.

(∗ compression function ∗)
Variable h : Bvector c →Bvector b →Bvector c.

(∗ initialization vector ∗)
Variable iv : Bvector c.
Variable splitAndPad : Blist → list (Bvector b).
Variable fpad : Bvector c →Bvector p.
Variable opad ipad : Bvector b.

The abstract HMAC spec is also more general than the
concrete spec, since it operates on bit vectors, not byte
lists, and does not specify a block size or output size. Af-
ter “replacing” the vectors with lists (see the explanation
of difference (2)) and specializing c = p = 256 (result-
ing in b = 512), we may instantiate abstract parameters
with concrete parameters or functions from SHA-256,
wrapped in bytesToBits and/or intlist to Zlist conversion
functions. For example, we instantiate the block size to
256 and the output size to 512, and define iv and h as:

Definition intsToBits := bytesToBits ◦ intlist-to-Zlist.
Definition sha-iv : Blist :=
intsToBits SHA256.init-registers.

Definition sha-h (regs : Blist) (block : Blist) : Blist :=
intsToBits (SHA256.hash-block (bitsToInts regs)

(bitsToInts block)).

The intlist to Zlist conversion function is necessary
because portions of the SHA-256 spec operate on lists of

Integers, as specified in our bytes-and-words formaliza-
tion of FIPS 180-4. (Z in Coq denotes arbitrary-precision
mathematical integers. Our SHA-256 spec represents
byte values as Z. An Integer is four byte-Zs packed big-
endian into a 32-bit integer.)

We are essentially converting the types of the func-
tions from functions on intlists (intlist → . . .→ intlist) to
functions on Blists (Blist → . . . → Blist) by converting
their inputs and outputs.

Let us denote by HmacAbs256 the instantiation of
function HMAC from Listing 5 to these parameters.
Since Bellare’s proof assumes that the given key is of the
right length (the block size), our formal equivalence re-
sult relates HmacAbs256 to the function HmacCore from
Section 2, i.e. to the part of HMAC256 that is applied af-
ter key length normalization. (Unlike Bellare, FIPS 198
includes steps to first truncate or pad the key if it is too
long or short.)

Theorem. For key vector kv of type Bvector 256 and
message m of type list bool satisfying |l| ≡ 0 (mod 8),

HmacAbs256 kv m≈HmacCore m (map Bytes.repr kv).

where (·) denotes bitsToBytes conversion, and ≈ is
equality modulo conversion between lists and vectors.

Reconciling other differences. The last difference
(6) is easily resolved by unfolding the definitions of
HMAC 2K and GHMAC 2K. We solve the other six
problems by changing definitions and massaging the two
specs toward each other, proving equality or equivalence
each time.

Bridging (5) is basically the proof of correctness of a
deforestation transformation. Consider a message m as a
list of bits bi. First, split it into 512-bit blocks Bi, then
“fold” (the “reduce” operation in map-reduce) the hash
operation H over it, starting with the initialization vector
iv: H(H(H(iv,B0),B1), . . . ,Bn−1). Alternatively, express
this as a recursive function on the original bit-sequence
b: grab the first 512 bits, hash with H, then do a recursive
call after skipping the first 512 bits:

Function F (r: list bool) (b: list bool)
{measure length b} : list bool :=

match msg with
nil ⇒ r
| - ⇒ F (H r (firstn 512 b)) (skipn 512 b)

end.

Provided that |b| is a multiple of 512 (which we prove
elsewhere), F(iv,b) = H(H(H(iv,B0),B1), . . . ,Bn−1).

We bridge (4) by using the fact that SHA-256 is a
Merkle-Damgård construction over a compression func-
tion. This is a simple matter of matching the definition
of SHA-256 to the definition of an MD hash function.
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Bridging (3) is a proof that two different views of the
SHA padding function are equivalent. Before iterating
the compression function on the message, SHA-256 pads
it in a standard, one-to-one fashion such that its length is
a multiple of the block size. It pads it as such:

msg | [1] | [0,0, . . .0] |L

where | denotes list concatenation and L denotes the 64-
bit representation of the length of the message. The num-
ber of 0s is calculated such that the length of the entire
padded message is a multiple of the block size.

The abstract spec accomplishes this padding in two
ways using the functions fpad and splitAndPad. fpad
pads a message of known length of the output size c to
the block size b, since c is specified to be less than b.
splitAndPad breaks a variable-length message (of type
list bool) into a list of blocks, each size b, padding it
along the way. fpad is instantiated as a constant, since we
know that the length of the message is c< b. splitAndPad
is instantiated as the normal SHA padding function, but
tweaked to add one block size to the length appended
in [l1, l2], since kin (with a length of one block) will be
prepended to the padded message later.

To eliminate these two types of ad-hoc padding,
we rewrite the abstract spec to incorporate fpad and
splitAndPad into a single padding function split-and-pad
included in the hash function, in the style of SHA-256.

hash-words-padded := hash-words ◦ split-and-pad.

We then remove fpad and splitAndPad from subse-
quent versions of the specification. We can easily prove
equality by unfolding definitions.

Bridging bytes and bits. The abstract and concrete
HMAC functions have different types, so we cannot
prove them equal, only equivalent. HMACc operates on
(lists of) bits and HMACa operates on (lists of) bytes.
(HMACc used to operate on vectors, but recall that we
replaced them with lists earlier.) To bridge gap (1) we
prove, given that the inputs are equivalent, the outputs
will be equivalent:

kc ≈ ka →
mc ≈ ma →

HMACc(kc,mc)≈ HMACa(ka,ma).

The equivalence relation ≈ can be defined either compu-
tationally or inductively, and both definitions are useful.

To reason about the behavior of the wrapped functions
with which we instantiated the abstract HMAC spec, we
use the computational equivalence relation (≈c) instan-
tiated with a generic conversion function. This allows
us to build a framework for reasoning about the asym-
metry of converting from bytes to bits versus from bits
to bytes, as well as the behavior of repeatedly applied
wrapped functions.

Bridging vectors and lists. We bridge (2) by changing
all Bvector n to list bool, then proving that all functions
preserve the length of the list when needed. This main-
tains the Bvector n invariant that its length is always n.
In general, the use of lists (of bytes, or Z values) is mo-
tivated by the desire to reuse Appel [5]’s prior work on
SHA literally, whereas the use of Bvector enables a more
elegant proof of the proof of cryptographic properties.

Injectivity of splitAndPad. The security proof relies
on the fact that splitAndPad is injective, in the sense
that b1 = b2 should hold whenever splitAndPad(b1)
= splitAndPad(b2). Indeed, this property is vio-
lated if we naively instantiate splitAndPad with the
bitlists-to-bytelists roundtrip conversion of SHA-256’s
padding+length function, due to the non-injectivity of
bitlists-to-bytelists conversion. On the other hand, as
the C programs interpret all length informations as re-
ferring to lengths in bytes, attackers that attempt to send
messages whose length is not divisible by 8 are ef-
fectively ruled out. To verify this property formally,
we make the abstract specification (and the proof of
Theorem HMAC-PRF) parametric in the type of mes-
sages. Instantiating the development to the case where
messages are bitlists of length 8n allows us to establish
the desired injectivity condition along the the lines of the
following informal argument.

Given a message m, SHA’s splitAndPad appends a 1
bit, then k zero bits, then a 64-bit integer representing
the length of the message |m|; k is the smallest number
so that |splitAndPad(m1)| is a multiple of the block size.
Injective means that if m1 �= m2 then splitAndPad(m1) �=
splitAndPad(m2). The proof has five cases:

• m1 = m2, then by contradiction.

• |m1|= |m2|, then splitAndPad(m1) must differ from
splitAndPad(m2) in their first |m1| bits.

• |m1| �= |m2|, |m1| ≤ 264, |m2| ≤ 264, then the last 64
bits (representation of length) will differ.

• (|m1|−|m2|) mod 264 �= 0, then the last 64 bits (rep-
resentation of length) will differ.

• |m1| �= |m2|, and (|m1|−|m2|) mod 264 = 0; then the
lengths |m1|, |m2| must differ by at least 264, so the
variation in k1 and k2 (which must each be less than
twice the block size) cannot make up the difference,
so the padded messages will have different lengths.

Our machine-checked proof of injectivity is somewhat
more comprehensive than Bellare et al.’s [15], which
reads in its entirety, “Notice that a way to pad messages
to an exact multiple of b bits needs to be defined, in par-
ticular, MD5 and SHA pad inputs to always include an
encoding of their length.”
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Preservation of cryptographic security. Once the
equivalence between the two functional programs has
been established, and injectivity of the padding function
is proved, it is straightforward to prove the applicability
of Theorem HMAC-PRF (Listing 6) to the API spec.

6 Specifying and verifying the C program

(Items 11, 13 of the architecture.) We use Verifiable C
to prove that each function’s body satisfies its specifica-
tion. As in a classic Hoare logic, each kind of C-language
statement has one or more proof rules. Appel [6, Ch.
24-26] presents these proof rules, and explains how tac-
tics—programmed in the Ltac language of Coq—apply
the proof rules to the abstract syntax trees of C programs.
The ASTs are obtained by applying the front-end phase
of the CompCert compiler to the C program. The HMAC
proof (item 13 in §1) is 2832 lines of Coq (including
blanks and comments), none of which is in the trusted
base because it is all machine-checked.

Just like OpenSSL’s implementation of SHA-256, the
C code implementing HMAC is incremental: the one-
shot HMAC function is obtained by composing auxil-
iary functions hmacInit, hmacUpdate, hmacFinish, and
hmacCleanup that are all exposed in the header file.
They allow a client to reuse a key for the authenti-
cation of multiple messages, and also to provide each
individual message in chunks, by repeatedly invoking
hmacUpdate. To this end, the auxiliary functions em-
ploy the hash function’s incremental interface and are
formulated over a client-visible struct, HMAC-CTX.
Specializing OpenSSL’s original header file to the hash
function SHA-256 yields the following:2

typedef struct hmac-ctx-st {
SHA256-CTX md-ctx; // workspace
SHA256-CTX i-ctx; // inner SHA structure
SHA256-CTX o-ctx; // outer SHA structure
unsigned int key-length;
unsigned char key[64];
} HMAC-CTX;

void HMAC-Init(HMAC-CTX ∗ctx,
unsigned char ∗key, int len);

void HMAC-Update(HMAC-CTX ∗ctx,
const void ∗data, size-t len);

void HMAC-Final(HMAC-CTX ∗ctx,
unsigned char ∗md);

2During the verification, we observed that the fields key-length and
key can be eliminated from hmac-ctx-st, for the price of minor alter-
ations to the code, API specification, and proof. A similar modification
has recently (and independently) been implemented in boringssl.

void HMAC-cleanup(HMAC-CTX ∗ctx);

unsigned char ∗HMAC(unsigned char ∗key,
int key-len,
unsigned char ∗d, int n,
unsigned char ∗md);

Fields i-ctx and o-ctx store partially constructed SHA
data structures that are initialized during HMAC-Init to
hold the ⊕ of the normalized key and ipad/opad, respec-
tively, and are copied to the workspace md-ctx where the
inner and outer hashing applications are performed.

Omitting the implementations of the other functions,
the one-shot HMAC invokes the incremental functions
on a freshly stack-allocated HMAC-CTX, where 32 is
the digest length of SHA-256:

unsigned char ∗HMAC(unsigned char ∗key,
int key-len, unsigned char ∗d,
int n, unsigned char ∗md) {

HMAC-CTX c; static unsigned char m[32];
if (md == NULL) md=m;
HMAC-Init(&c, key, key-len);
HMAC-Update(&c,d,n);
HMAC-Final(&c,md);
HMAC-cleanup(&c);
return(md);

}

In order to verify that this code satisfies the specification
HMAC256-spec from Section 2, each incremental func-
tion is equipped with its individual Verifiable C specifica-
tion. Each specification is formulated with reference to a
suitable Coq function (or alternatively a propositional re-
lation, as extractability is not required) that expresses the
function’s effect on the HMAC-CTX structure abstractly,
without reference to the concrete memory layout.

More precisely, the logical counterpart of an
HMAC-CTX structure is given by the Coq type

Inductive hmacabs :=
HMACabs: ∀(ctx iSha oSha: s256abs)

(keylen: Z) (key: list Z), hmacabs.

That is, an HMAC abstract state has five components:
ctx, iSha, and oSha are SHA abstract states, keylen is an
integer, and key is a list of (integer) byte values. Appel
[5] defines SHA abstract states; if you initialize a SHA
module and dump the first n bytes of a message into it,
you get a value of type s256abs representing the abstract
state of the incremental-mode SHA-256 program.

Appel also defines a relation, update-abs a c1 c2, say-
ing that adding another (incremental mode) message
fragment s to abstract state c1 yields state c2.

We define abstract states for HMAC, and the
incremental-mode HMAC update relation, in terms of
the SHA s256abs type and update-abs relation.
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Definition hmacUpdate (data: list Z)
(h1 h2: hmacabs) : Prop :=

match h1 with HMACabs ctx1 iS oS klen k
⇒ ∃ctx2, update-abs data ctx1 ctx2

∧ h2 = HMACabs ctx2 iS oS klen k
end.

To connect these definitions to the upper parts of our
verification architecture, we prove that the composi-
tion of these counterparts of the incremental functions
(i.e. the counterpart of the one-shot HMAC) coincides
with HMAC256 the FIPS functional specification from
Section 3.

Definition hmacIncremental (k data dig:list Z) :=
∃hInit hUpd, hmacInit k hInit ∧

hmacUpdate data hInit hUpd ∧
hmacFinal hUpd dig.

Lemma hmacIncremental-sound k data dig:
hmacIncremental k data dig →
dig = HMAC256 data k.

Proof. ... Qed.

Downward, we connect hmacabs and HMAC-CTX by a
separation logic representation predicate:

Definition hmacstate- (h:hmacabs) (c:val): mpred:=
EX r:hmacstate,
!! hmac-relate h r
&& data-at Tsh t-struct-hmac-ctx-st r c.

where hmac-relate is a pure proposition specifying that
each component of a concrete struct r has precisely the
content prescribed by h.

Using these constructions, we obtain API spec-
ifications of the incremental functions such as
HMAC-Update.

Definition HMAC-Update-spec :=
DECLARE -HMAC-Update
WITH h1: hmacabs, c : val, d:val, len:Z,

data:list Z, KV:val
PRE [ -ctx OF tptr t-struct-hmac-ctx-st,

-data OF tptr tvoid, -len OF tuint]
PROP(has-lengthD (s256a-len (absCtxt h1))

len data)
LOCAL(temp -ctx c; temp -data d;

temp -len (Vint (Int.repr len));
gvar -K256 KV)

SEP( (̀K-vector KV); (̀hmacstate- h1 c);
(̀data-block Tsh data d))

POST [ tvoid ]
EX h2: hmacabs,

PROP(hmacUpdate data h1 h2)
LOCAL()
SEP( (̀K-vector KV); (̀hmacstate- h2 c);

(̀data-block Tsh data d)).

7 Proof effort

It is difficult to estimate the proof effort, as we used this
case study to learn where to make improvements to the
usability and automation of our toolset. However, we can
give some numbers: size, in commented lines of code, of
the specifications and proofs. Where relevant, we give
the size of the corresponding C API or function.

Functional correctness proof of the C program:
C lines Coq lines SHA-256 component

169 FIPS-180 functional spec of SHA
71 247 API spec of SHA-256

1022 Lemmas about the functional spec
10 229 Proof of addlength function
81 1640 sha256 block data order()
10 43 SHA256 Init()
38 1682 SHA256 Update()
31 1484 SHA256 Final()

7 58 SHA256()
248 6574 Total SHA-256

159 FIPS-198 functional spec of HMAC
25 374 API spec
25 533 Total HMAC spec

875 Supporting lemmas
74 1530 HMAC Init proof

7 101 HMAC Update proof
27 196 HMAC Final proof

5 31 HMAC Cleanup proof
21 99 HMAC proof

134 2832 Total HMAC proof

FCF proof that HMAC is a PRF:
Coq lines component

70 Bellare-style functional spec of HMAC
25 Statement, HMAC is a PRF

377 Proof, HMAC is a PRF
472 Total

Connecting Verifiable C proof to FCF proof:
Coq lines component

3017 General equivalence proof of the two func-
tional specs for any compression function

993 Specialization to SHA-256
4010 Total

8 Related work

We have presented a foundational, end-to-end verifica-
tion. All the relevant aspects of cryptographic proofs or
of the C programming language are defined and checked
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with respect to the foundations of logic. We say a rea-
soning engine for crypto is foundational if it is imple-
mented in, or its implementation is proved correct in, a
trustworthy general-purpose mechanized logic. We say a
connection to a language implementation is foundational
if the synthesizer or verifier is connected (with proofs in
a trustworthy general-purpose mechanized logic) to the
operational semantics compiled by a verified compiler.

Crypto verification. Smith and Dill [40] verify sev-
eral block-cipher implementations written in Java with
respect to a functional spec written either in Java or in
ACL2. They compile to bytecode, then use a subset
model of the JVM to generate straight-line code. This
work is not end-to-end, as the JVM is unverified—and it
wouldn’t suffice to simply plug in a “verified” JVM, if
one existed, without also knowing that the same specifi-
cation of the JVM was used in both proofs. Their method
applies only where the number of input bits is fixed and
the loops can be completely unrolled. Their verifier
would likely be applicable to the SHA-256 block shuf-
fle function, but certainly not to the management code
(padding, adding the length, key management, HMAC).

Cryptol [25] generates C or VHDL directly from a
functional specification, where the number of input bits
is fixed and the loops can be completely unrolled, i.e.
the SHA-256 block shuffle, but not the SHA-256 man-
agement code or HMAC. The Cryptol synthesizer is not
foundational because its semantics is not formally speci-
fied, let alone proved.

CAO is a domain specific language for crypto appli-
cations, which is compiled into C [11], and equipped
with verification technology based on the FRAMA-C
tool suite [4].

Libraries of arbitrary-precision arithmetic functions
have been verified by Fischer [39] and Berghofer [17]
using Isabelle/HOL. Bertot et al. [20] verify GMP’s com-
putation of square roots in Coq, based on Filliatre’s COR-
RECTNESS tool for ML-style programs with imperative
features [26]. Neither of these formalizations is foun-
datationally connected to a verified compiler.

Verified assembly implementations of arithmetic func-
tions have been developed by Myreen and Curello [36]
and Affeldt [1], who use, respectively, proof-producing
(de)compilation and simulation to link assembly code
and memory layout to functional specifications at
(roughly) the level of our FIPS specifications. Chen et
al. [24] verify the Montgomery step in Bernstein’s high-
speed implementation of elliptic curve 25519 [18], using
a combination of SMT solving and Coq to implement a
Hoare logic for Bernstein’s portable assembly represen-
tation qhasm.

The abstraction techniques and representation predi-
cates in these works are compatible with our memory

layout predicates. One important future step is to con-
dense commonalities of these libraries into an ontology
for crypto-related reasoning principles, reusable across
multiple language levels and realised in multiple proof
assistants. Doing this is crucial for scaling our work to
larger fragments of cryptographic libraries.

Formal verification of protocols is an established re-
search area, and efforts to link abstract protocol verifica-
tions to implementations are emerging using automated
techniques like model extraction or code generation [8],
or interactive proof [2].

Toma and Borrione [41] use ACL2 to prove correct-
ness of a VHDL implementation of the SHA-1 block-
shuffle algorithm. There is no connection to (for exam-
ple) a verified compiler for VHDL.

Backes et al. [10] verify mechanically (in EasyCrypt)
that Merkle-Damgård constructions have certain security
properties.

EasyCrypt. Almeida et al. [3] describe the use of their
EasyCrypt tool to verify the security of an implemen-
tation of the RSA-OAEP encryption scheme. A func-
tional specification of RSA-OAEP is written in Easy-
Crypt, which then verifies its security properties. An
unverified Python script translates the EasyCrypt spec-
ification to (an extension of) C, then an extension of
CompCert compiles it to assembly language. Finally, a
leakage tool verifies that the assembly language program
has no more program counter leakage than the source
code, i.e. that the compiled program’s trace of condi-
tional branches is no more informative to the adversary
than the source code’s.

The EasyCrypt verifier is not foundational; it is an
OCaml program whose correctness is not proved. The
translation from C to assembly language is foundational,
using CompCert. However, EasyCrypt’s C code relies on
bignum library functions, but provides no mechanism by
which these functions can be proved correct.

CertiCrypt [13] is a system for reasoning about cryp-
tographic algorithms in Coq; it is foundational, but (like
EasyCrypt) has no foundational connection to a C se-
mantics. ZKCrypt[9] is a synthesizer that generates C
code for zero-knowledge proofs, implemented in Cer-
tiCrypt, also with no foundational connection to a C se-
mantics.

Bhargavan et al. [21] “implement TLS with veri-
fied cryptographic security” in F# using the F7 type-
checker. F7 is not capable of reasoning about all of
the required cryptographic/probabilistic relationships re-
quired to complete the proof. So parts of the proof are
completed using EasyCrypt, and there is no formal rela-
tionship between the EasyCrypt proofs and the F7 proof;
one must inspect the code to ensure that the things ad-
mitted in F7 are the same things that are proved in Easy-
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Crypt. F7 is also not foundational, because the type
checker has a large amount of trusted code and because
it depends on the Z3 SMT solver. Another difference
between this work and ours is that the code provides a
reference implementation in F#, not an efficient imple-
mentation in C.

CryptoVerif [22] is a prover (implemented in OCaml)
for security protocols in which one can, for example, ex-
tract a OCaml program from a CryptoVerif model [23].
CryptoVerif is not foundational, the extraction is not
foundational, and the compiler for OCaml is not foun-
dationally verified.

C program verification. There are many program
analysis tools for C. Most of them do not address func-
tional specification or functional correctness, and most
are unsound and incomplete. They are useful in practice,
but cannot be used for an end-to-end verification of the
kind we have done.

Foundational formal verification of C programs has
only recently been possible. The most significant such
works are both operating-system kernels: seL4 [32] and
CertiKOS [29]. Both proofs are refinement proofs be-
tween functional specifications and operational seman-
tics. Both proofs are done in higher-order logics: seL4
in Isabelle/HOL and CertiKOS in Coq.

Neither of those proof frameworks uses separation
logic, and neither can accommodate the use of address-
able local variables in C. This means that OpenSSL’s
HMAC/SHA could not be proved in these frameworks,
because it uses addressable local variables.

Additionally, neither of those proof frameworks can
handle function pointers. OpenSSL uses function point-
ers in its “engines” mechanism, an object-oriented style
of programming that dynamically connects components
together, such as HMAC and SHA. The Verifiable C pro-
gram logic is capable of reasoning about such object-
oriented patterns in C [6, Chapter 29], although we have
not done so in the work described in this paper.

9 Conclusion

Widely used open-source cryptographic libraries such as
OpenSSL, operating systems kernels, and the C compil-
ers that build them, form the backbone of the public’s
communication security. Since 2013 or so, it has be-
come clear that hackers and nation-states (is there a dif-
ference anymore?) are willing to invest enormous re-
sources in searching for vulnerabilities and exploiting
them. Other authors have demonstrated that compilers
[34] and OS kernels [32, 29] can be built to a prov-
able zero-functional-correctness-defect standard. Here

we have demonstrated the same, in a modular way, for
key components of our common cryptographic infras-
tructure.

Functional correctness implies zero buffer-overrun de-
fects as well. But there are side channels we have not ad-
dressed here, such as timing, fault-injection, and leaks
through dead memory. Our approach does not solve
these problems; but it makes them no worse. Because we
can reason about standard C code, other authors’ tech-
niques for side channel analysis are applicable without
obstruction.

Functional correctness (with respect to a specification)
does not always guarantee that a program has abstract
security properties. Here, by linking a proof of crypto-
graphic security to a proof of program correctness, we
provide that guarantee.
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Abstract

Transport Layer Security (TLS) implementations have a
history of security flaws. The immediate causes of these
are often programming errors, e.g. in memory manage-
ment, but the root causes are more fundamental: the chal-
lenges of interpreting the ambiguous prose specification,
the complexities inherent in large APIs and code bases,
inherently unsafe programming choices, and the impos-
sibility of directly testing conformance between imple-
mentations and the specification.

We present nqsb-TLS, the result of our re-engineered
approach to security protocol specification and imple-
mentation that addresses these root causes. The same
code serves two roles: it is both a specification of TLS,
executable as a test oracle to check conformance of traces
from arbitrary implementations, and a usable implemen-
tation of TLS; a modular and declarative programming
style provides clean separation between its components.
Many security flaws are thus excluded by construction.

nqsb-TLS can be used in standalone Unix applica-
tions, which we demonstrate with a messaging client,
and can also be compiled into Xen unikernels (spe-
cialised virtual machine image) with a trusted comput-
ing base (TCB) that is 4% of a standalone system run-
ning a standard Linux/OpenSSL stack, with all network
traffic being handled in a memory-safe language; this
supports applications including HTTPS, IMAP, Git, and
Websocket clients and servers. Despite the dual-role de-
sign, the high-level implementation style, and the func-
tional programming language we still achieve reasonable
performance, with the same handshake performance as
OpenSSL and 73% – 84% for bulk throughput.

1 Introduction

Current mainstream engineering practices for specifying
and implementing security protocols are not fit for pur-
pose: as one can see from many recent compromises of

sensitive services, they are not providing the security we
need. Transport Layer Security (TLS) is the most widely
deployed security protocol on the Internet, used for au-
thentication and confidentiality, but a long history of ex-
ploits shows that its implementations have failed to guar-
antee either property. Analysis of these exploits typically
focusses on their immediate causes, e.g. errors in mem-
ory management or control flow, but we believe their root
causes are more fundamental:

Error-prone languages: historical choices of pro-
gramming language and programming style that tend to
lead to such errors rather than protecting against them.

Lack of separation: the complexities inherent in
working with large code bases, exacerbated by lack of
emphasis on clean separation of concerns and modular-
ity, and by poor language support for those.

Ambiguous and untestable specifications: the chal-
lenges of writing and interpreting the large and ambigu-
ous prose specifications, and the impossibility of di-
rectly testing conformance between implementations and
a prose specification.

In this paper we report on an experiment in developing
a practical and usable TLS stack, nqsb-TLS, using a new
approach designed to address each of these root-cause
problems. This re-engineering, of the development pro-
cess and of our concrete stack, aims to build in improved
security from the ground up.

We demonstrate the practicality of the result in sev-
eral ways: we show on-the-wire interoperability with ex-
isting stacks; we show reasonable performance, in both
bulk transfer and handshakes; we use it in a test oracle,
validating recorded packet traces which contain TLS ses-
sions between other implementations; and we use it as
part of a standalone instant-messaging client. In addition
to use in such traditional executables, nqsb-TLS is us-
able in applications compiled into unikernels – type-safe,
single-address-space VMs with TCBs that run directly
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on a hypervisor [32]. This integration into a uniker-
nel stack lets us demonstrate a wide range of working
systems, including HTTPS, IMAP, Git, and Websocket
clients and servers, while sidestepping a further diffi-
culty with radical solutions in this area: the large body
of legacy code (in applications, operating systems, and
libraries) that existing TLS stacks are intertwined with.

We assess the security of nqsb-TLS also in several
ways: for each of the root causes above, we discuss why
our approach rules out certain classes of associated flaws,
with reference to an analysis of flaws found in previ-
ous TLS implementations; and we test our authentication
logic with a large corpus of certificate chains generated
by using the Frankencert fuzzer [8], which found flaws
in several previous implementations. We have also made
the system publically available for penetration testing, as
a Bitcoin Piñata, an example unikernel using nqsb-TLS.
This has a TCB size roughly 4% of that of a similar sys-
tem using OpenSSL on Linux.

We describe our overall approach in the remainder of
the introduction. We then briefly describe the TLS pro-
tocol (§2), analyse flaws previously found in TLS im-
plementations (§3), and the result of applying our ap-
proach, dubbed nqsb-TLS (§4). We demonstrate the du-
ality of nqsb-TLS next by using its specification to vali-
date recorded sessions (§5) and executing its implemen-
tation to provide concrete services (§6). We evaluate the
interoperability, performance, and security (§7) of nqsb-
TLS, describe related work (§8), and conclude (§9).

nqsb-TLS is freely available under a BSD license
(https://nqsb.io), and the data used in this paper is
openly accessible [27].

1.1 Approach

A precise and testable specification for TLS In prin-
ciple, a protocol specification should unambiguously de-
fine the set of all implementation behaviour that it allows,
and hence also what it does not allow: it should be pre-
cise. This should not be confused with the question of
whether a specification is loose or tight: a precise specifi-
cation might well allow a wide range of implementation
behaviour. It is also highly desirable for specifications
to be executable as test oracles: given an implementa-
tion behaviour (perhaps a trace captured from a particu-
lar execution), the specification should let one compute
whether it is in the allowed set or not.

In practice, the TLS specification is neither, but rather
a series of RFCs written in prose [13, 14, 15]. An ex-
plicit and precise description of the TLS state machine
is lacking, as are some security-critical preconditions of
its transitions, and there are ambiguities in various semi-
formal grammars. There is no way such prose documents
can be executed as a test oracle to directly test whether

Flow Entropy

ASN.1 Trust 
Anchors
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CSPRNGParse
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Config
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Figure 1: nqsb-TLS is broken down into strongly sep-
arated modules. The main part, in bold boxes, has
pure value-passing interfaces and internals. The PRNG
maintains internal state, while Nocrypto includes C code
but has a pure effect-free interface. Arrows indicate
depends-on relationships.

implementation behaviour conforms to the specification.
TLS is not unique in this, of course, and many other
specifications are expressed in the same traditional prose
style, but its disadvantages are especially serious for se-
curity protocols.

For nqsb-TLS, we specify TLS as a collection of pure
functions over abstract datatypes. By avoiding I/O and
shared mutable state, these functions can be considered
in isolation and each is deterministic, with errors re-
turned as explicit values. The top-level function takes an
abstract protocol state and an incoming message, and cal-
culates the next state and any response messages. To do
so, it invokes subsidiary functions to parse the message,
drive the state machine, perform cryptographic opera-
tions, and construct the response. This top-level function
can be executed as a trace-checker, on traces both from
our implementation and from others, such as OpenSSL,
to decide whether they are allowed by our specification
or not. In building our specification, to resolve the RFC
ambiguities, we read other implementations and tested
interoperability with them; we thereby capture the prac-
tical de facto standard.

Reuse between specification and implementation
The same functions form the main part of our imple-
mentation, coupled with code for I/O and to provide en-
tropy. Note that this is not an “executable specification”
in the conventional sense: our specification is necessar-
ily somewhat loose, as the server must have the freedom
to choose a protocol version and cipher suite, and the
trace checker must admit that, while our implementation
makes particular choices.

Each version of the implementation (Unix, unikernel)
has a top-level Flow module that repeatedly performs I/O
and invokes the pure functional core; the trace-checker
has a top-level module of the same type that reads in a
trace to be checked offline.

2
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Separation and modular structure This focus on
pure functional descriptions also enables a decomposi-
tion of the system (both implementation and specifica-
tion) into strongly separated modules, with typed inter-
faces, that interact only by exchanging pure values, as
shown in Fig. 1. These modules and their interfaces are
arranged to ensure that localised concerns such as binary
protocol formats, ASN.1 grammars and certificate vali-
dation are not spread throughout the stack, with no im-
plicit dependencies via shared memory.

External resources are explicitly represented as mod-
ules, instead of being implicitly accessed, and each sat-
isfies a module type that describes collections of opera-
tions over an abstract type, and that can be instantiated
with any of several implementations. These include the
Nocrypto cryptography layer and our PRNG, which de-
pends on an external Entropy module type.

Communication with the outside world is factored out
into an I/O component, Flow, that passes a byte sequence
to the pure core, then transmits responses and handles
timeouts, and is used by the top-level but not by the TLS
engine itself. The pure TLS engine depends on some
external data, such as the policy config and trust anchors.

Choice of language and style The structure we de-
scribe above could be implemented in many different
programming languages, but guarantees of memory and
type safety are desirable to exclude many common secu-
rity flaws (lack of memory safety was the largest single
source of vulnerabilities in various TLS stacks through-
out 2014, as shown in our §3 vulnerability analysis), and
expressive statically checked type and module systems
help maintain the strongly separated structure that we
outlined. Our implementation of nqsb-TLS uses OCaml,
a memory-safe, statically typed programming language
that compiles to fast native code with a lightweight, em-
beddable runtime. OCaml supports (but does not man-
date) a pure programming style, and has a module sys-
tem which supports large-scale abstraction via ML func-
tors – modules that can depend on other modules’ types.
In OCaml, we can encode complex state machines (§4),
with lightweight invariants statically enforced by the
type checker (state machine problems were the second
largest source of vulnerabilities). Merely using OCaml
does not guarantee all the properties we need, of course
(one can write imperative and convoluted code in any
language); our specification and programming styles are
equally important.

This is a significant departure from normal practice, in
which systems software is typically written in C, but we
believe our evaluation shows that it is viable in at least
some compelling scenarios (§7).

Non-goals For nqsb-TLS we are focussed on the engi-
neering of TLS specifications and implementations, not

on the security protocol itself (as we recall in §3, some
vulnerabilities have been found there). We are also not
attempting to advance the state of the art in side-channel
defence, though we do follow current best practice. We
are focussed on making a stack that is usable in prac-
tice and on security improvements achievable with better
engineering processes, rather than trying to prove that a
specification or implementation is correct or secure (see
§8 for related work in that direction).

Current state The entire set of TLS RFCs [13, 14, 15]
are implemented in nqsb-TLS, apart from minor rarely
used features, such as DSS certificates and anon and
pre-shared keys ciphersuites. As we demonstrate in
§7.1, nqsb-TLS can interoperate with many contempo-
rary TLS implementations, but we are not attempting to
support legacy options or those of doubtful utility. We
neither support SSLv3 [1], nor use RC4 in the default
configuration [39]. The crypto wars are over: we have
not implemented ciphersuites to adhere to export restric-
tions, which gave rise to the FREAK and Logjam attacks.

nqsb-TLS is strict (see §7.2), which results in roughly
10% failing connections from legacy clients. But since
our main goal is to provide security, we are not willing to
make compromises for insecure implementations. In ad-
dition to TLS itself, we also implemented ASN.1, X.509
and crypto primitives. From a practical point of view, the
largest missing part is elliptic curve cryptography.

2 TLS Background

TLS provides the twin features of authentication and
confidentiality. Clients typically verify the server’s iden-
tity, the server can optionally verify the client’s identity,
while the two endpoints establish an encrypted commu-
nication channel. This channel should be immune from
eavesdropping, tampering and message forgery.

There have been three standardised versions of TLS,
1.0, 1.1 and 1.2, while the last SSL (version 3) is still in
wide usage. A key feature of TLS is algorithmic agility:
it allows the two endpoints to negotiate the key exchange
method, symmetric cipher and the message authentica-
tion mode upon connecting. This triple is called a cipher
suite, and there are around 160 cipher suites standard-
ised and widely supported. Together with a number of
standardised extensions to the protocol that can be nego-
tiated, this creates a large possible space of session pa-
rameters. This large variation in configuration options is
a marked characteristic of TLS, significantly contribut-
ing to the complexity of its state machine.

Only a handful implementations of TLS are in wide
use. The three major free or open-source implementa-
tions are OpenSSL, GnuTLS and Mozilla’s NSS. Mi-
crosoft supplies SChannel with their operating systems,

3
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while Apple supplies Secure Transport with theirs, and
Oracle Java runtime comes bundled with JSSE.

Structurally, TLS is a two-layered protocol. The outer
layer preserves message boundaries and provides fram-
ing. It encapsulates one of five sub-protocols: hand-
shake, change cipher spec, alert, application data or
heartbeat. Both layers can contain fragmentation.

A TLS session is initiated by the client, which uses
the handshake protocol to signal the highest protocol ver-
sion, possible extensions, and a set of ciphersuites it sup-
ports. The server picks the highest protocol version it
shares with the client and a mutually supported cipher-
suite, or fails the handshake. The ciphersuite determines
whether the server authenticates itself, and depending on
the server configuration it requests the client to authenti-
cate itself. After the security parameters for the authenti-
cated encryption scheme are negotiated, the Change Ci-
pher Spec message activates these, and the last hand-
shake message authenticates the handshake. Either party
can renegotiate the session over the established channel
by initiating another handshake.

The handshake sub-protocol contains a complex state
machine, which must be successfully traversed at least
once. Handshake messages are independent of other sub-
protocols, but some other sub-protocols are dependent of
a successful handshake. For instance, it is not possible to
exchange application data before a session is established,
and it is impossible to affect the use of negotiated session
parameters while the negotiation is still in progress.

Server and client authentication is performed by
means of X.509 certificates. Usually path validation is
used: after one party presents a sequence of certificates
called the certificate chain, the other party needs to ver-
ify that a) each certificate in the chain is signed by the
next certificate; b) the last certificate is signed by one
of the trust anchors independent of connection; and c)
that the first party owns the private key associated with
the first certificate in the chain by transferring a signed
message containing session-specific data. For correct au-
thentication, the authenticating party also needs to verify
general semantic well-formedness of the involved certifi-
cates, and be able to deal with three version of X.509 and
a number of extensions.

X.509 certificates are described through ASN.1, a no-
tation for describing the abstract syntax of data, and en-
coded using Distinguished Encoding Rules (DER), one
of the several standard encodings ASN.1 defines. A par-
ticular description in the ASN.1 language coupled with
a choice of encoding defines both the shape the the data-
structures and their wire-level encoding. ASN.1 provides
a rich language for describing structure, with a number
of primitive elements, like INTEGER and BIT STRING,
and combining constructs, like SEQUENCE (a record of
sub-grammars) and CHOICE (a node joining alternative

grammars). The ASN.1 formalism can be used with a
compiler that derives parsing and serialisation code for
the target language, but TLS implementations more typi-
cally contain custom parsing code for dealing with X.509
certificates. As X.509 exercises much of ASN.1, this
parsing layer is non-trivial and significantly adds to the
implementation complexity.

3 Vulnerability Analysis

In the past 13 months (January 2014 to January 2015),
54 CVE security advisories have been published for 6
widely used TLS implementations (see Table 1): 22 for
OpenSSL, 6 for GnuTLS, 7 for NSS, 2 for SChannel, 2
for Secure Transport, 5 for JSSE, and 10 related to errors
in their usage in the client software (excluding vulnera-
bilities related to DTLS – TLS over UDP).

These vulnerabilities have a wide range of causes. We
classify them into broad families below, identifying root
causes for each and discussing how nqsb-TLS avoids
flaws of each kind.

General memory safety violations Most of these bugs,
15 in total, are memory safety issues: out-of-bounds
reads, out-of-bounds writes and NULL pointer derefer-
ences. A large group has only been demonstrated to
crash the hosting process, ending in denial-of-service,
but some lead to disclosure of sensitive information.

A now-notorious example of this class of bugs is
Heartbleed in OpenSSL (CVE-2014-0160). Upon re-
ceiving a heartbeat record, a TLS endpoint should re-
spond by sending back the payload of the record. The
record contains the payload and its length. In Heartbleed,
the TLS implementation did not check if the length of
the received heartbeat matched the length encoded in the
record, and responded by sending back as many bytes
as were requested on the record level. This resulted in
an out-of-bounds read, which lets a malicious client dis-
cover parts of server’s memory. In April 2014, Cloud-
flare posed a challenge of exploiting this bug to compro-
mise the private RSA key, which has been accomplished
by at least four independent researchers.

nqsb-TLS avoids this class of issues entirely by the
choice of a programming language with automated mem-
ory management and memory safety guarantees: in
OCaml, array bounds are always checked and it is not
possible to access raw memory; and our pure functional
programming style rules out reuse of mutable buffers.

Certificate parsing TLS implementations need to parse
ASN.1, primarily for decoding X.509 certificates. While
ASN.1 is a large and fairly complex standard, for the pur-
poses of TLS, it is sufficient to implement one of its en-
codings (DER), and only some of the primitives. Some
TLS implementations contain an ad-hoc ASN.1 parser,
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Product CVE ID Issue source

OpenSSL 2013-4353, 2015-0206, 2014-[3567, 3512, 3569, 3508, 3470, 0198, 0160] Memory management
2015-0205, 2015-0204, 2014-3572, 2014-0224, 2014-3568, 2014-3511 State machine
2014-8275 Certificate parsing
2014-2234 Certificate validation
2014-3509, 2010-5298 Shared mutable state
2014-0076 Timing side-channel
2014-3570 Wrong sqrt

GnuTLS 2014-8564, 2014-3465, 2014-3466 Memory management
2014-1959, 2014-0092, 2009-5138 Certificate validation

NSS 2014-1544 Memory management
2013-1740 State machine
2014-1490 Shared mutable state
2014-1569, 2014-1568 Certificate parsing
2014-1492 Certificate validation
2014-1491 DH param validation

SChannel 2014-6321 Memory management
Secure Transport 2014-1266 State machine
JSSE 2014-6593, 2014-0626 State machine

2014-0625 Memory exhaustion
2014-0411 Timing side-channel

Applications 2014-2734 Memory management
2014-3694, 2014-0139, 2014-2522, 2014-8151, 2014-1263 Certificate validation
2013-7373, 2014-0016, 2014-0017, 2013-7295 RNG seeding

Protocol-level 2014-1771, 2014-1295, 2014-6457 Triple handshake
2014-3566 POODLE

Table 1: Vulnerabilities in TLS implementations in 2014.

combining the core ASN.1 parsing task with the defini-
tions of ASN.1 grammars, and this code operates as a
part of certificate validation.

Unsurprisingly, ASN.1 parsing is a recurrent source of
vulnerabilities in TLS and related software, dating back
at least to 2004 (MS04-007, a remote code execution vul-
nerability), and 3 vulnerabilities in 2014 (CVEs 2014-
8275, 2014-1568 and 2014-1569). Two examples are
CVE-2015-1182, the use of uninitialised memory during
parsing in PolarSSL, which could lead to remote code
execution, and CVE-2014-1568, a case of insufficiently
selective parsing in NSS, which allowed the attacker to
construct a fake signed certificate from a large space of
byte sequences interpreted as the same certificate.

This class of errors is due to ambiguity in the specifi-
cation, and ad-hoc parsers in most TLS implementations.
nqsb-TLS avoids this class of issues entirely by separat-
ing parsing from the grammar description (§4.4).

Certificate validation Closely related to ASN.1 pars-
ing is certificate validation. X.509 certificates are nested
data structures standardised in three versions and with
various optional extensions, so validation involves pars-
ing, traversing, and extracting information from complex
compound data. This opens up the potential for errors
both in the control-flow logic of this task and in the in-
terpretation of certificates (multiple GnuTLS vulnerabil-

ities are related to lax interpretation of the structures).
In 2014, there were 5 issues related to certificate val-

idation. A prominent example in the control-flow logic
is GnuTLS (CVE-2014-0092), where a misplaced goto

statement lead to certificate validation being skipped if
any intermediate certificate was of X.509 version 1.

Many implementations interleave the complicated
X.509 certificate validation with parsing the ASN.1
grammar, leading to a complex control flow with sub-
tle call chains. This illustrates another way in which the
choice of programming language and style can lead to
errors: the normal C idiom for error handling uses goto
and negative return values, while in nqsb-TLS we return
errors explicitly as values and have to handle all possi-
ble variants. OCaml’s typechecker and pattern-match ex-
haustiveness checker ensures this at compile time (§4.3).

State machine errors TLS consists of several sub-
protocols that are multiplexed at the record level: (i) the
handshake that initially establishes the secure connection
and subsequently renegotiates it; (ii) alerts that signal
out-of-band conditions; (iii) cipher spec activation notifi-
cations; (iv) heartbeats; and (v) application data. The ma-
jority of the TLS protocol specification covers the hand-
shake state machine. The path to a successful negotia-
tion is determined during the handshake and depends on
the ciphersuite, protocol version, negotiated options, and
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configuration, such as client authentication. Errors in the
handshake logic often lead to a security breach, allowing
attackers to perform active man-in-the-middle (MITM)
insertion, or to passively gain knowledge over the nego-
tiated security parameters.

There were 10 vulnerabilities in this class. Some led
to denial-of-service conditions caused (for example) by
NULL-pointer dereferences on receipt of an unexpected
message, while others lead to a breakdown of the TLS
security guarantees. An extensive study of problems in
TLS state machine implementations has been done in the
literature [2, 11].

A prominent example is Apple’s “goto fail” (CVE-
2014-1266), caused by a repetition of a goto state-
ment targeting the cleanup block of the procedure re-
sponsible for verifying the digital signature of the
ServerKeyExchange message. This caused the proce-
dure to skip the subsequent logic and return the value
registered in the output variable. As this variable was
initialised to “success”, the signature was never verified.

Another typical example is the CCS Injection in
OpenSSL (CVE-2014-0224). ChangeCipherSpec is
the message signalling that the just negotiated security
parameters are activated. In the TLS state machine, it is
legal only as the penultimate message in the handshake
sequence. However, both OpenSSL (CVE-2014-0224)
and JSSE (CVE-2014-6593) allowed a CCS message be-
fore the actual key exchange took place, which activated
predictable initial security parameters. A MITM attacker
can exploit this by sending a CCS during handshake,
causing two parties to establish a deterministic session
key and defeating encryption.

Some of these errors are due to missing preconditions
of state machine transitions in the specification. In nqsb-
TLS, our code structure (§4.1) makes the need to con-
sider each of these clear. We encode the state machine
explicitly, while state transitions default to failure.

Protocol bugs In 2014, two separate issues in the pro-
tocol itself were described: POODLE and triple hand-
shakes. POODLE is an attack on SSL version 3, which
does not specify the value of padding bytes in CBC
mode. Triple handshake [3] is a MITM attack where one
negotiates sessions with the same security parameters
and resumes. We do not claim to prevent nor solve those
protocol bugs in nqsb-TLS, we mitigate triple handshake
by resuming sessions only if the extended master se-
cret [4] was used. Furthermore, we focus on a modern
subset of the protocol, not including SSL version 3, so
neither attack is applicable.

Timing side-channel leaks Two vulnerabilities were re-
lated to timing side-channel leaks, where the observable
duration of cryptographic operations depended on cryp-
tographic secrets. These were implementation issues,

related to the use of variable-duration arithmetic oper-
ations. The PKCS1.5 padding of the premaster secret
is transmitted during an RSA key exchange. If the un-
padding fails, there is computationally no need to de-
crypt the received secret material. But omitting this step
leaks the information on whether the padding was cor-
rect through the time signature, and this can be used to
obtain the secret. A similar issue was discovered in 2014
in various TLS implementations [34].

nqsb-TLS mitigates this attack by always computing
the RSA operation, on padding failure with a fake value.
To mitigate timing side-channels, which a memory man-
aged programming language might further expose, we
use C implementations of the low level primitives (§4.2).

Usage of the libraries Of the examined bugs, 10 were
not in TLS implementations themselves, but in the way
the client software used them. These included the high-
profile anonymisation software Tor [16], the instant mes-
senger Pidgin and the widely used multi-protocol data
transfer tool cURL.

TLS libraries typically have complicated APIs due to
implementing a protocol with a large parameter space.
For example, OpenSSL 1.0.2 documents 243 symbols in
its protocol alone, not counting the cryptographic parts of
the API. Parts of its API are used by registering callbacks
with the library that get invoked upon certain events. A
well-documented example of the difficulty in correctly
using these APIs is the OpenSSL certificate validation
callback. The library does not implement the full logic
that is commonly needed (it omits name validation), so
the client needs to construct a function to perform cer-
tificate validation using a mix of custom code and calls
to OpenSSL, and supply it to the library. This step is a
common pitfall: a recent survey [23] showed that it is
common for OpenSSL clients in the wild to do this in-
correctly. We counted 6 individual advisories stemming
from improper usage of certificate validation API, which
is a large number given that improper certificate valida-
tion undermines the authentication property of TLS and
completely undermines its security.

The root cause of this error class is the large and com-
plex legacy APIs of contemporary TLS stacks. nqsb-TLS
does not mirror those APIs, but provides a minimal API
with strict validation by default. This small API is suf-
ficient for various applications we developed. OpenBSD
uses a similar approach with their libtls API.

4 The nqsb-TLS stack

We now describe how we structure and develop the nqsb-
TLS stack, following the approach outlined in the intro-
duction to avoid a range of security pitfalls.
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4.1 TLS Core

The heart of our TLS stack is the core protocol imple-
mentation. By using pure, composable functions to ex-
press the protocol handling, we deal with TLS as a data-
transformation pipeline, independent of how the data is
obtained or transmitted.

Accordingly, our core revolves around two functions.
One (handle tls) takes the sequence of bytes seen on
the wire and a value denoting the previous state, and
produces, as new values, the bytes to reply with or
to transfer to the application, and the subsequent state.
Our state type encapsulates all the information about
a TLS session in progress, including the state of the
handshake, the cryptographic state for both directions
of communication, and the incomplete frames previ-
ously received, as an immutable value. The other one
(send application data) takes a sequence of bytes
that the application wishes to send and the previous state,
and produces the sequence ready to be sent and the sub-
sequent state. Coupled with a few operations to extract
session information from the state, these form the entire
interface to the core protocol implementation.

Below the entry points, we segment the records, de-
crypt and authenticate them, and dispatch to the appro-
priate protocol handler. One of the places where OCaml
helps most prominently is in handling of the combined
state machine of handshake and its interdependent sub-
protocols. We use algebraic data types to encode each
possible handshake state as a distinct type variant, that
symbolically denotes the state it represents and contains
all of the data accumulated so far. The overall state
type is simply the discriminated union of these variants.
Every operation that extracts information from state

needs to scrutinise its value through a form of multi-way
branching known as pattern match. This syntactic con-
struct combines branching on the particular variant of
the state present with extraction of components. The
resulting dispatch leads to equation-like code: branches
that deal with distinct states follow directly from the val-
ues representing them, process the state data locally, and
remain fully independent in the sense of control flow and
access to values they operate on. Finally, each separately
materialises the output and subsequent state.

This construction and the explicit encoding of state-
machine is central to maintaining the state-machine in-
variants and preserving the coherence of state represen-
tation. It is impossible to enter a branch dedicated to a
particular transition without the pair of values represent-
ing the appropriate state and appropriate input message,
and, as intermediate data is directly obtained from the
state value, it is impossible to process it without at the
same time requiring that the state-machine is in the ap-
propriate state. It is also impossible to manufacture a

state-representation ahead of time, as it needs to contain
all of the relevant data.

The benefit of this encoding is most clearly seen in
CCS-injection-like vulnerabilities. They depend on ses-
sion parameters being stored in locations visible through-
out the handshake code, which are activated on receipt
of the appropriate message. In the OpenSSL case (CVE-
2014-0224), the dispatch code failed to verify whether
all of these locations were populated, which implies that
the handshake progressed to the appropriate phase. In
our case, the only way to refer to the session parameters
is to deconstruct a state-value containing them, and it is
impossible to create this value without having collected
the appropriate session parameters.

All of core’s inner workings adhere to a predictable,
restricted coding style. Information is always communi-
cated through parameters and result values. Error prop-
agation is achieved exclusively through results, without
the use of exceptions. We explicitly encode errors dis-
tinct from successful results, instead of overloading the
result’s domain to mean error in some parts of its range.
The type checker verifies both that each code path is
dealing with exactly one possibility, and – through the
exhaustiveness checker – that both forms have been ac-
counted for. The repetitive logic of testing for error re-
sults and deciding whether to propagate the error or pro-
ceed is then abstracted away in a few higher-order func-
tions and does not re-appear throughout the code.

This approach has also proven convenient when main-
taining a growing code-base: when we had to add sig-
nificant new capabilities, e.g. extending the TLS version
support to versions 1.1 and 1.2 or implementing client
authentication, the scope of changes was localised and
the effects they had on other modules were flagged by
the type checker.

4.2 Nocrypto

TLS cryptography is provided by Nocrypto, a separate
library we developed for that purpose. It supports ba-
sic modular public-key primitives like RSA, DSA and
DH; the two most commonly used symmetric block ci-
phers, AES and 3DES; the most important hash func-
tions, MD5, SHA and the SHA2 family; and an imple-
mentation of the cryptographically strong pseudorandom
number generator, Fortuna [20].

One of the fundamental design decisions was to use
block-level symmetric encryption and hash cores written
in C. For hashing, DES, and the portable version of AES,
we use widely available public domain code. In addition,
we wrote our own AES core using the Intel AES-NI in-
structions.

There are two reasons for using C at this level. Firstly,
symmetric encryption and hashing are the most CPU-
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intensive operations in TLS. Therefore, performance
concerns motivate the use of C. Secondly, the security
impact of writing cryptography in a garbage-collected
environment is unclear. Performing computations over
secret material in this context is a potential attack vector.
The garbage collector pauses might act as an amplifier to
any existing timing side-channel leaks, revealing infor-
mation about the allocation rate. We side-step this issue
by leaving the secret material used by symmetric encryp-
tion opaque to the OCaml runtime.

Such treatment creates a potential safety problem in
turn: even if we manage to prevent certain classes of bugs
in OCaml, they could occur in our C code. Our strategy
to contain this is to restrict the scope of C code: we em-
ploy simple control flow and never manage memory in
the C layer. C functions receive pre-allocated buffers,
tracked by the runtime, and write their results there. The
most complex control flow in these are driving loops that
call the compression function (in the case of hashes), or
the block transform (in the case of ciphers), over the con-
tents of the input buffer. AES-NI instructions are partic-
ularly simplifying in this respect, as the code consists of
a sequence of calls to compiler intrinsics.

Presently, only the AES-NI implementation of AES
is protected from timing side-channel leaks, since the
bulk of the cipher is implemented via constant-time ded-
icated instructions. The generic code path is yet to be
augmented with code to pre-load substitution tables in a
non-data-dependent manner.

More complex cryptographic constructions, like ci-
pher modes (CBC, CTR, GCM and CCM) and HMAC
are implemented in OCaml on top of C-level primitives.
We benefit from OCaml’s safety and expressive power in
these more complex parts of the code, but at the same
time preserve the property that secret material is not di-
rectly exposed to the managed runtime.

Public key cryptography is treated differently. It is not
block-oriented and is not easily expressed in straight-
line code, while the numeric operations it relies on are
less amenable to C-level optimisation. At the same time,
there are known techniques for mitigating timing leaks
at the algorithmic level [28], unlike in the symmetric
case. We therefore implement these directly in OCaml
using GMP as our bignum backend and employ the stan-
dard blinding countermeasures to compensate for poten-
tial sources of timing side-channels.

Our Fortuna CSPRNG uses AES-CTR with a self-
rekeying regime and a system of entropy accumulators.
Instead of entropy estimation, it employs exponential
lagging of accumulators, a scheme that has been shown
to asymptotically optimally recover from state compro-
mise under a constant input of entropy of unknown qual-
ity [17]. To retain purity of the system and facilitate de-
terministic runs, entropy itself is required from the sys-

tem as an external service, as shown later in §6.
For the sake of reducing complexity in the upper lay-

ers, the API of Nocrypto is concise and retains the ap-
plicative style, mapping inputs to outputs. We did make
two concessions to further simplify it: first, we use
OCaml exceptions to signal programming errors of ap-
plying cyptographic operations to malformed input (such
as buffers which are not a multiple of the block size in
CBC mode, or the use of RSA keys unsuitably small for
a message). Secondly, we employ a global and changing
RNG state, because operations involving it are pervasive
throughout interactions with the library and the style of
explicit passing would complicate the dependent code.

4.3 X.509

X.509 certificates are rich tree-like data structures whose
semantics changes with the presence of several optional
extensions. Although the core of the path-validation pro-
cess is checking of the signature, a cryptographic oper-
ation, the correct validation required by the standard in-
cludes extensive checking of the entire data structure.

For example, each extension must be present at most
once, the key usage extension can further constrain
which exact operations a certificate is authorised for, and
a certificate can specify the maximal chain length which
is allowed to follow. There are several ways in which a
certificate can express its own identity and the identity of
its signing certificate. After parsing, a correct validation
procedure must take all these possibilities into account.

The ground encoding of certificates again benefits
from algebraic data types, as the control flow of func-
tions that navigate this structure is directed by the type-
checker. On a level above, we separate the validation
process into a series of functions computing individual
predicates, such as the certificate being self-signed, its
validity period matching the provided time or confor-
mance of the present extensions to the certificate ver-
sion. The conjunction of these is clearly grouped into
single top-level functions validating certificates in differ-
ent roles, which describe the high-level constraints we
impose upon the certificates. The entire validation logic
amounts to 314 lines of easily reviewable code.

This is in contrast to 7 000 lines of text in the RFC [9],
which go into detail to explain extensions – such as poli-
cies and name constraints – that are rarely seen in the
wild. For the typical HTTPS setting, the RFC fails to
clarify how to search for a trust anchor, and assumes in-
stead the presence of exactly one. Due to cross sign-
ing there can be multiple chains with different properties
which are not covered by the RFC.

nqsb-TLS initially strictly followed the RFC, but was
not able to validate many HTTPS endpoints on the In-
ternet. It currently follows the RFC augmented with
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Mozilla’s guidelines and provides a self-contained con-
densation of these which can be used to clarify, or even
supplant, the specification. We created an extensive test
suite with full code coverage, the code has been evalu-
ated (see §7.2) with the Frankencert tool, and it success-
fully parses most of ZMap’s certificate repositories. In
addition, we also support signing and serialising to PEM.

The interface to this logic is deterministic (it is made
so by requiring the current time as an input). Our X.509
library provides operations to construct a full authenti-
cator, by combining the validation logic with the current
time at the moment of construction, which the TLS core
can be parametrised with. We do not leave validation to
the user of the library, unlike other TLS libraries [23].
Instead, we have full implementations of path validation
with name checking [42] and fingerprint-based valida-
tion, and we use the type system to force the user to in-
stantiate one of them and provide it to the TLS layer.

4.4 ASN.1

ASN.1 parsing creates a tension in TLS implementa-
tions: TLS critically relies on ASN.1, but it requires only
a subset of DER encoding, and, since certificates are usu-
ally pre-generated, needs very little in the way of writing.
For the purposes of TLS, it is therefore sufficient to im-
plement just a partial parser.

When implementing ASN.1, a decision has to be made
on how to encode the actual abstract grammar that will
drive the parsing process, given by various TLS and
X.509-related standards. OpenSSL, PolarSSL, JSSE and
others, with the notable exception of GnuTLS, do not
make any attempts to separate the grammar definition
from the parsing process. The leaf rules of ASN.1 are
implemented as subroutines, which are exercised in the
order required by the grammar in every routine that acts
as parser. In other words, they implement the parsers as
ad-hoc procedures that interleave the code that performs
the actual parsing with the encoding of the grammar to be
parsed. Therefore the code that describes the high-level
structure of data also contains details of invocation of
low-lever parsers and, in the case of C, memory manage-
ment. Unsurprisingly, ASN.1 parsers provide a steady
stream of exploits in popular TLS implementations.

We retain the full separation of the abstract syntax rep-
resentation from the parsing code, avoiding the complex-
ity of the code that fuses the two. At the same time, we
avoid parser generators which output source code that is
hard to understand.

Instead, we created a library for declaratively describ-
ing ASN.1 grammars in OCaml, using a functional tech-
nique known as combinatory parsing [21]. It exposes
an opaque data type that describes ASN.1 grammar in-
stances and provides a set of constants (corresponding

to terminals) and functions over them (corresponding to
productions). Nested applications of these functions to
create data that describes ASN.1 grammars follow the
shape of the actual ASN.1 grammar definitions. Inter-
nally, this tree-like type is traversed at initialisation-time
to construct the parsing and serialisation functions.

This approach allows us to create “grammar ex-
pressions” which encode ASN.1 grammars, and derive
parsers and serialisers. As the ASN.1-language we cre-
ate is a fragment of OCaml, we retain all the bene-
fits of its static type checking. Types of functions over
grammar representations correspond to restrictions in the
production rules, so type-checking grammar expressions
amounts to checking their well-formedness without writ-
ing a separate parser for the grammar formalism. More-
over, type inference automatically derives the OCaml
representation of the types defined by ASN.1 grammars.

Such an approach also makes testing much easier. The
grammar type is traversed to generate random inhabi-
tants of the particular grammar, which can be serialised
and parsed back to check that the two directions match
in their interpretation of the underlying ASN.1 encoding
and to exercise all of the code paths in both.

A derived parsing function does not interpret the
grammar data, but as its connections to component pars-
ing functions are known only when synthesis takes place
at run-time, we do not retain the benefit of inlining
and inter-function optimisation a truly compiled parser
would have. Nonetheless, given that it parses roughly
50 000 certificates per second, this approach does not
create a major performance bottleneck. The result is
a significant reduction in code complexity: the ASN.1
parsing logic amounts to 620 lines of OCaml, and the
ASN.1 grammar code for X.509 certificates and signa-
tures is around 1 000 lines. For comparison, PolarSSL
1.3.7 needs around 7 500 lines to parse ASN.1, while
OpenSSL 1.0.1h has around 25 000 in its ASN.1 parser.

5 Using nqsb-TLS as a test oracle

One use of nqsb-TLS is as an executable test oracle,
an application which reads a recorded TLS session trace
and checks whether it (together with some configuration
information) adheres to the specification that nqsb-TLS
embodies. This recorded session can be a packet capture
(using tcpdump) of a TLS session between various im-
plementations (e.g. OpenSSL, PolarSSL, nqsb-TLS), or,
for basic testing, a trace generated by nqsb-TLS itself.

To do this we must deal with the looseness of the TLS
specification: a TLS client chooses its random nonce, set
of ciphersuites, protocol version, and handshake exten-
sions, while a TLS server picks its random nonce, the
protocol version, the ciphersuite, possibly the DH group,
and possibly extensions. Our test oracle does not make
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Figure 2: nqsb-TLS acts as a trace checker: the RNG
is predictable, configuration and certificates are inputs,
driven by packet traces from OpenSSL (or other stacks).

those decisions, but rather takes the parameters recorded
in the given session. To make this possible, given the on-
the-wire encryption, some configuration information has
to be provided to the trace checker, including private key
material. In addition, both records and sub-protocols can
be fragmented; our test oracle normalises the records to
not contain any fragmentation for comparison.

Figure 2 shows how nqsb-TLS can be used to build
such a test oracle (note that it does not instantiate the
entropy source for this usage). The test oracle produces
its initial protocol state from the given session. It cal-
culates handle tls with its state and the record input
of the given session, together with the particular selec-
tion of protocol version, etc., resulting in an output state,
potentially an output record, and potentially decrypted
application data. It then compares equality of the out-
put record and the given session. If successful, it uses
the output state and next recorded input of the given ses-
sion to evaluate handle tls again, and repeats to the
end of the trace. It thus terminates either when the entire
trace has been accepted, which means success; or with a
discrepancy between the nqsb-TLS specification and the
recorded session, which means failure and needs further
investigation. Such a discrepancy might indicate an error
in the TLS stack being tested, an error in the nqsb-TLS
specification, or an ambiguity in what TLS actually is.

A first test of this infrastructure was to use a recorded
session of the change cipher spec injection (CVE-2014-
0224): our test oracle correctly denied this session, iden-
tifying an unexpected message. We ran our test ora-
cle and validated our 30 000 interoperability traces (see
§7.1) and our Piñata traces (see §7.2), and also validated
recorded TLS sessions between various implementations
(OpenSSL, PolarSSL, nqsb-TLS) using tcpdump.

While running the test oracle we discovered interest-
ingly varied choices in fragmentation of messages among
existing stacks, which may be useful in fingerprinting.
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Figure 3: nqsb-TLS as a unikernel domU VM on Xen: a
dom0 Xentropyd proxies host entropy, config and certifi-
cates are compiled in, various protocols run over TLS.

The test oracle opens up the prospect of extensive test-
ing of the behaviour of different TLS implementations,
especially if combined with automated test generation.

6 Using nqsb-TLS in applications

Another use of nqsb-TLS is as a TLS implementation in
applications. We ported nqsb-TLS to two distinct envi-
ronments and developed a series of applications, some
for demonstration purposes, others for regular use.

6.1 Porting nqsb-TLS
To use nqsb-TLS as an executable implementation, we
have to provide it with implementations of entropy and
flow (see Figure 1), and an effectful piece of code that
communicates via the network and drives the core.

We pay special attention to prevent common client
bugs which arise from complexity of configuring TLS
stacks and correspondingly large APIs. In each instance,
there is only one function to construct a TLS config-
uration which can be turned into an I/O interface, the
function does extensive validation of the requested pa-
rameters, and the resulting configuration object is im-
mutable. This restricts potentially error-prone interac-
tions that configure TLS to a single API point.

Unix Porting nqsb-TLS to Unix was straightforward;
we use the POSIX sockets API to build a flow and
/dev/urandom as the entropy source. The exposed
interface provides convenience functions to read cer-
tificates and private keys from files, and analogues of
listen, connect, accept, read, write, and close

for communication.

MirageOS The MirageOS variant allows nqsb-TLS to
be compiled into a unikernel VM (see Figure 3). It uses
the MirageOS OCaml TCP/IP library [31] to provide the
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I/O flow, which is in turn coupled to Xen device drivers
that communicate with the backend physical network de-
vice via shared memory rings [44]. The logger outputs
directly to the VM console, and the certificates and the
secret keys are compiled into OCaml data structures at
build time and become part of the VM image. A key
challenge when running in a virtualised environment is
providing a suitable entropy source [18], especially in the
common case of a VM having no access to physical hard-
ware. Since specialised unikernels have very determin-
istic boot-sequences that make sources of entropy even
scarcer, we had to extend MirageOS and Xen to avoid
cryptographic weaknesses [25].

One way in which we solve this is by relying on dom0
to provide cross-domain entropy injection. We devel-
oped Xentropyd, a dom0 daemon which reads bytes from
/dev/urandom and makes them available to VMs via
an inter-VM shared memory channel. The entropy de-
vice is plugged in as a standard Xen device driver via
Xenstore [22], and MirageOS has a frontend library that
periodically injects entropy into the nqsb-TLS CSPRNG.

To avoid being fully reliant on dom0, we implement
additional entropy harvesting within the unikernel itself.
We do this by trapping the MirageOS event loop and us-
ing RDTSCP instruction to read the Time Stamp Counter
(TSC) register on each external event. This provides us
with the unpredictability inherent in the ambient events.
This source is augmented with readings from the CPU
RNG where available: we feed the results of RDSEED (or
RDRAND) instruction into the entropy pool on each event.

To make the RNG more resilient, we do extra entropy
harvesting at boot time. Following Whirlwind RNG [18],
we employ a timing loop early in the boot phase, de-
signed to take advantage of nondeterminism inherent in
the CPU by way of internal races in the CPU state. This
provides an initial entropy boost in the absence of Xen-
tropyd and helps mitigate resumption-based attacks [18].

In an ideal scenario the entropy would be provided
through both mechanisms, but we expect the usage to
rely on one or the other, depending on deployment: on
an ARM board lacking high-resolution timing and CPU
RNG, the user is likely to have control over the hypervi-
sor and be able to install Xentropyd. Conversely, in com-
mercial hosting scenarios where the assistance of dom0
might not be available but the extra CPU features are, we
expect the user to rely on the internal entropy harvesting.

6.2 Applications

An example application using the Unix interface is the
terminal-based instant messaging client jackline using
XMPP. The XMPP protocol negotiates features, such as
TLS, over a plaintext TCP connection. Jackline performs
an upgrade to TLS via the STARTTLS mechanism before

authentication credentials are exchanged. The Unix port
of nqsb-TLS contains an API that supports upgrading an
already established TCP connection to TLS. Jackline can
use either of the authentication APIs (path and fingerprint
validation) depending on user configuration.

tlstunnel also runs on Unix and accepts a TLS connec-
tion, forwards the application data to another service via
TCP, similar to stud and stunnel. This has been deployed
since months on some websites.

The Unix application certify generates RSA private
keys, self-signed certificates, and certificate signing re-
quests in PEM format. It uses nocrypto and X.509.

The OCaml Conduit library (also illustrated in Fig. 3)
supports communication transports that include TCP,
inter-VM shared memory rings. It provides a high-level
API that maps URIs into specific transport mechanisms.
We added nqsb-TLS support to Conduit so that any appli-
cation that links to it can choose between the use of nqsb-
TLS or OpenSSL, depending on an environment vari-
able. As of February 2015, 42 different libraries (both
client and server) use Conduit and its provided API and
can thus indirectly use nqsb-TLS for secure connections.
The OPAM package manager uses nqsb-TLS as part of
its mirror infrastructure to fetch 2 500 distribution files,
with no HTTPS-related regressions encountered.

7 Evaluation

We now assess the interoperability, security, and perfor-
mance of nqsb-TLS.

7.1 Interoperability

We assess the interoperability of nqsb-TLS in several
ways: testing against OpenSSL and PolarSSL on every
commit; successfully connecting to most of the Fortune
500 web sites; testing X.509 certificates from ZMap; and
by running a web server.

This web server, running since mid 2014, displays the
live sequence diagram of a successful TLS session es-
tablished via HTTPS. A user can press a button on the
website which let the server initiate a renegotiation. The
server configuration includes all three TLS protocol ver-
sions and eight different ciphersuites, picking a proto-
col version and ciphersuite at random. Roughly 30 000
traces were recorded from roughly 350 different client
stacks (6230 unique user agent identifiers).

Of these, around 27% resulted in a connection estab-
lishment failure. Our implementation is strict, and does
not allow e.g. duplicated advertised ciphersuites. Also,
several accesses came from automated tools which eval-
uate the quality of a TLS server by trying each defined
ciphersuite separately.
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Roughly 50% of the failed connections did not share
a ciphersuite with nqsb-TLS. Another 20% started with
bytes which were not interpretable by nqsb-TLS. 12% of
the failed connections did not contain the secure renego-
tiation extension, which our server requires. 5% of the
failed traces were attempts to send an early change ci-
pher spec. Another 4% tried to negotiate SSL version 3.
2.5% contained a ciphersuite with null (iOS6).

We parse more than 99% of ZMap’s HTTPS
(20150615) and IMAP (20150604) certificate repository.
The remaining failures are RSASSA-PSS signatures, re-
quiring an explicit NULL as parameter, and unknown
and outdated algorithm identifiers.

This four-fold evaluation shows that our TLS imple-
mentation is broadly interoperable with a large number
of other TLS implementations, which also indicates that
we are capturing the de facto standard reasonably well.

Specification mismatches While evaluating nqsb-
TLS we discovered several inconsistencies between the
RFC and other TLS implementations:

• Apple’s SecureTransport and Microsoft’s SChannel
deny application data records while a renegotiation
is in process, while the RFC allows interleaving.

• OpenSSL (1.0.1i) accepts any X.509v3 certificate
which contains either digitalSignature or keyEnci-
pherment in keyUsage. RFC [15] mandates digi-
talSignature for DHE, keyEncipherment for RSA.

• Some unknown TLS implementation starts the
padding data [29] (must be 0) with 16 bit length.

• A TLS 1.1 stack sends the unregistered alert 0x80.

7.2 Security
We assess the security of nqsb-TLS in several ways: the
discussion of the root causes of many classic vulnerabil-
ities and how we avoid them; mitigation of other specific
issues; our state machine was tested [11]; random testing
with the Frankencert [8] fuzzing tool; a public integrated
system protecting a bitcoin reward; and analysis of the
TCB size of that compared with a similar system built
using a conventional stack.

Avoidance of classic vulnerability root causes In
Sections 3 and 4 we described how the nqsb-TLS struc-
ture and development process exclude the root causes of
many vulnerabilities that have been found in previous
TLS implementations.

Additional mitigations The TLS RFC [15] includes
a section on implementation pitfalls, which contains a
list of known protocol issues and common failures when
implementing cryptographic operations. nqsb-TLS miti-
gates all of these.

Further issues that nqsb-TLS addresses include:

• Interleaving of sub-protocols, except between
change of cipher spec and finished.

• Each TLS 1.0 application data is prepended by an
empty fragment to randomise the IV (BEAST).

• Secure renegotiation [40] is required.
• SCSV extension [35] is supported.
• Best practices against attacks arising from mac-

then-encrypt in CBC mode are followed (no miti-
gation of Lucky13 [19])

• No support for export restricted ciphersuites, thus
no downgrade to weak RSA keys and small DH
groups (FREAK and Logjam).

• Requiring extended master secret [4] to resume a
session.

State machine fuzzing Researchers fuzzed [11] nqsb-
TLS and found a minor issue: alerts we send are not en-
crypted. This issue was fixed within a day after discov-
ery, and it is unlikely that it was security-relevant.

Frankencert Frankencert is a fuzzing tool which gen-
erates syntactically valid X.509 certificate chains by ran-
domly mixing valid certificates and random data. We
generated 10 000 X.509 certificate chains, and compared
the verification result of OpenSSL (1.0.1i) and nqsb-TLS
The result is that nqsb-TLS accepted 120 certificates, a
strict subset of the 192 OpenSSL accepted.

Of these 72 accepted by OpenSSL but not by nqsb-
TLS, 57 certificate chains contain arbitrary data in
X.509v3 extensions where our implementation allows
only restricted values. An example is the key usage ex-
tension, which specifies a sequence of OIDs. In the RFC,
9 different OIDs are defined. Our X.509v3 grammar re-
stricts the value of the key usage extension to those 9
OIDs. 12 certificate chains included an X.509v3 exten-
sion marked critical but not supported by nqsb-TLS.

Two server certificates are certificate authority certifi-
cates. While not required by the path validation, best
practices from Mozilla recommend to not accept a server
certificate which can act as certificate authority. The last
certificate is valid for a Diffie-Hellman key exchange,
but not for RSA. Our experimental setup used RSA, thus
nqsb-TLS denied the certificate appropriately.

Exposure to new vulnerabilities Building nqsb-TLS
in a managed language potentially opens us up to vul-
nerabilities that would not affect stacks written in C.
Algorithmic complexity attacks are a low-bandwidth
class of denial-of-service attacks that exploit deficien-
cies in many common default data structure implementa-
tions [10]. The modular structure of nqsb-TLS makes it
easy to audit the implementations used within each com-
ponent. The French computer security governmental of-
fice [37] assessed the security of the OCaml runtime in
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2013, which lead to several changes (such as distinction
between immutable strings and mutable byte arrays).

The Bitcoin Piñata To demonstrate the use of nqsb-
TLS in an integrated system based on MirageOS, and
to encourage external code-review and penetration test-
ing, we set up a public bounty, the Bitcoin Piñata. This
is a standalone MirageOS unikernel containing the se-
cret key to a bitcoin address, which it transmits upon es-
tablishing a successfully authenticated TLS connection.
The service exposes both TLS client and server on differ-
ent ports, and it is possible to bridge the traffic between
the two and observe a successful handshake and the en-
crypted exchange of the secret.

The attack surface encompasses the entire system,
from the the underlying operating system and its TCP/IP
stack, to TLS and the cryptographic level. The system
will only accept connections authenticated by the cus-
tom certificate authority that we set up for this purpose.
Reward is public and automated, because if an attacker
manages to access the private bitcoin key, they can trans-
fer the bitcoins to an address of their choosing, which is
attestable through the blockchain.

While this setup cannot prove the absence of security
issues in our stack, it motivated several people to read
through our code and experiment with the service.

At the end of June 2015, there were 230 000 accesses
to the website from more than 50 000 unique IP ad-
dresses. More than 9 600 failed and 12 000 successful
TLS connections from 1000 unique IPs were present. Al-
though we cannot directly verify that all successful con-
nection resulted from the service being short-circuited
to connect to itself, there have been no outgoing trans-
actions registered in the blockchain. The breakdown of
failed connections is similar to §7.1. We collected 42 cer-
tificates which were tried for authentication, but failed
(not well formatted, not signed, not signed by our trust
anchor, private key not present). A detailed analysis of
the captured traces showed that most of the flaws in other
stacks have been attempted against the Piñata.

Trusted computing base The TCB size is a rough
quantification of the attack surface of a system. We as-
sess the TCB of our Piñata, compared to a similar tradi-
tional system using Linux and OpenSSL. Both systems
are executed on the same hardware and the Xen hyper-
visor, which we do not consider here. The TCB sizes of
the two systems are shown in Table 2 (using cloc).

The traditional system contains the Linux kernel (ex-
cluding device drivers and assembly code), glibc, and
OpenSSL. In comparison, our Piñata uses a minimal op-
erating system, the OCaml runtime, and several OCaml
libraries (including GMP). While the traditional sys-
tem uses a C compiler, our Piñata additionally uses the
OCaml compiler (roughly 40 000 lines of code).

Linux/OpenSSL Unikernel/nqsb-TLS
Kernel 1600 48 (36)
Runtime 689 25 (6)
Crypto 230 23 (14)
TLS 41 6 (0)
Total 2560 102 (56)

Table 2: TCB (in kloc); portion of C code in parens

nqsb-TLS OpenSSL PolarSSL
RSA 698 hs/s 723 hs/s 672 hs/s

DHE-RSA 601 hs/s 515 hs/s 367 hs/s

Table 3: Handshake performance of nqsb-TLS,
OpenSSL and PolarSSL, using 1024-bit RSA certificate
and 1024-bit DH group.

The trusted computing base of the traditional system
is 25 times larger than ours. Both systems provide the
same service to the outside world and are hardly distin-
guishable for an external observer.

7.3 Performance
We evaluate the performance of nqsb-TLS, comparing it
to OpenSSL 1.0.2c and PolarSSL 1.3.11. We use a single
machine to avoid network effects. In the case of nqsb-
TLS, we compile the test application as a Unix binary to
limit the comparison to TLS itself.

The test machine has an Intel i7-5600 Broadwell CPU
and runs Linux 4.0.5 and glibc 2.21. Throughput is mea-
sured by connecting the command line tool socat, linked
against OpenSSL, to a server running the tested imple-
mentation, and transferring 100 MB of data from the
client to the server. This test is repeated for various
transmission block sizes. Handshakes are measured by
running 20 parallel processes in a continuous connecting
loop and measuring the maximum number of successful
connection within 1 second; the purpose of parallelism is
to negate the network latency.

Throughput rates are summarized in Figure 4. With
16 byte blocks, processing is dominated by the protocol
overhead. This helps us gauge the performance impact
of using OCaml relative to C, as nqsb-TLS implements
protocol logic entirely in OCaml. At this size, we run at
about 78% of OpenSSL’s speed.

At 8196 bytes, performance becomes almost entirely
dominated by cryptographic processing. All three im-
plementations use AES-NI, giving them roughly compa-
rable speed. OpenSSL’s performance lead is likely due
to its extensive use of assembly, and in particular the
technique of stitching, combining parts the of the cipher
mode of operation and hashing function to saturate the
CPU pipeline. PolarSSL’s performance drop compared
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Figure 4: Scaling of throughput with application
data size for nqsb-TLS, OpenSSL and PolarSSL, using
AES 256 CBC SHA.

to nqsb-TLS is likely a consequence of our usage of sim-
ple software pipelining in the AES-NI code. nqsb-TLS
reaches about 84% of OpenSSL’s speed in this scenario.

Handshake performance, summarized in Table 3, is
roughly similar. We attribute OpenSSL’s advantage to
their use of C in the protocol handling, and PolarSSL’s
disadvantage to our use of faster bignum routines pro-
vided by GMP. The comparatively smaller cost nqsb-
TLS pays for DH is a result of picking shorter exponents,
matched to the security strength of the group modulus.

We ran miTLS 0.8.1 through Mono 4.0.1.44 on the
same test machine. Using the bundled HTTP server, we
achieve a peak throughput of 19 MB/s for a file transfer
using the same cipher suite. As the Mono cryptography
provider only contains C# AES implementations, we ex-
clude this implementation from further analysis. We do
note, however, that the throughput ratio between miTLS
and OpenSSL is similar to the one its authors report [5].

The exact numbers are likely to vary with the choice of
cipher suite, which places different weights on hashing
and cipher performance, the CPU generation, which is
utilised to a fuller extent by OpenSSL, and the testing
scenario. The broad picture is that our usage of OCaml
for all but the lowest-level cryptographic primitives is, in
itself, not taking a prohibitive toll on performance.

8 Related Work

Security proofs Several research groups [36, 26, 24,
12, 38] have modelled and formally verified security
properties of TLS. Because TLS is a complex protocol,
most models use a simplified core, and formalising even
these subsets is challenging work which is not very ac-
cessible to an implementer audience. Additionally, these

models need to be validated with actual implementations,
to relate to the de facto standard, but this is rarely done
(to do so, some kind of trace checker or executable needs
to be developed). Some of these models formalised the
handshake protocol, but omitted renegotiation, in which
a security flaw was present until discovered in 2009.

miTLS The miTLS [5] stack is developed in F7 with
the possibility to extract executable F# code. It is both
a formalisation of the TLS protocol and a runnable im-
plementation. This formalisation allowed its developers
to discover two protocol-level issues: alert fragmentation
and triple handshake. As an implementation, it depends
on the Common Language Runtime for execution, and
uses its services for cryptographic operations and X.509
treatment (including ASN.1 parsing). In contrast, nqsb-
TLS cannot be used for verifying security properties of
TLS, but provides a test oracle and a fast runnable imple-
mentation which is easily deployable. It compiles to na-
tive code and implements the entire stack from scratch,
making it self-contained. It can be used e.g. in Mira-
geOS, which only provides the bare TCP/IP interfaces
and has no POSIX layer or cryptographic services.

Language-oriented approach to security Mettler et
al. propose Joe-E [33], a subset of Java designed to sup-
port the development of secure software systems. They
strongly argue in favour of a particular programming
style to facilitate ease of security reviews.

Our approach shares some of the ideas in Joe-E. By
disallowing mutable static fields of Java classes, they ef-
fectively prohibit globally visible mutable state and en-
force explicit propagation of references to objects, which
serve as object capabilities. They also emphasise im-
mutability to restrict the flows of data and achieve better
modularity and separation of concerns.

The difference in our approach is that we use im-
mutability and explicit data-passing not only on the mod-
ule (or class) boundaries but pervasively throughout the
code, aiming to facilitate code-review and reasoning on
all levels. A further difference is that Joe-E focusses the
proposed changes in style on security reviews only, aim-
ing to help the reader of the code ascertain that the code
does not contain unforeseen interactions and faithfully
implements the desired logic. In contrast, we employ a
fully declarative style. Our goals go beyond code review,
as large portions of our implementation are accessible as
a clarification to the specification, and we have an exe-
cutable test oracle.

Finally, there is the difference between host languages.
Java lacks some of the features we found to be most sig-
nificant in simplifying the implementation, chiefly the
ability to encode deeply nested data structures and tra-
verse them via pattern-matching, and to express local op-
erations in a pure fashion.
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Brittle implementations of cryptography systems
Schneier et al.’s work [43] discovered several root causes
for software implementing cryptographic systems, which
explicitly mentions incorrect error handling and flawed
API usage. We agree with their principles for software
engineering for cryptography, and extend this further by
proposing our approach: immutable data, value-passing
interfaces, explicit error handling, small API footprint.

TLS implementations in high-level languages Sev-
eral high-level languages contain their own TLS stack.
Oracle Java ships with JSEE, a memory-safe implemen-
tation. However its overall structure closely resembles
the C implementations. For example, the state machine
is built around accumulating state by mutations of shared
memory locations, the parsing and validation of certifi-
cates are not clearly separated, and the certificate vali-
dation logic includes non-trivial control flow. This re-
sulted in high-level vulnerabilities similar in nature to the
ones found in C implementations, such as CCS Injection
(CVE-2014-0626), and its unmanaged exception system
led to several further vulnerabilities [34].

There are at least two more TLS implementations in
functional languages, one in Isabelle [30] and one in
Haskell. Interestingly, both implementations experiment
with their respective languages’ expressivity to give the
implementations an essentially imperative formulation.
The Isabelle development uses a coroutine-like monad to
directly interleave I/O operations with the TLS process-
ing, while the Haskell development uses a monad stack
to both interleave I/O and to implicitly propagate the ses-
sion state through the code. In this way both implementa-
tions lose the clear description of data-dependencies and
strong separation of layers nqsb-TLS has.

Protocol specification and testing There is an ex-
tensive literature on protocol specification and testing in
general (not tied to a security context). We build in par-
ticular on ideas from Bishop et al.’s work on TCP [6, 41],
in which they developed a precise specification for TCP
and the Sockets API in a form that could be used as a
trace-checker, characterising the de facto standard. TCP
has a great deal of internal nondeterminism, and so
Bishop et al. resorted to a general-purpose higher-order
logic for their specification and symbolic evaluation over
that for their trace-checker. In contrast, the internal non-
determinism needed for TLS can be bounded as we de-
scribe in §5, and so we have been able to use simple pure
functional programming, and to arrange the specification
so that it is simultaneously usable as an implementation.
We differ also in focussing on an on-the-wire specifi-
cation rather than the endpoint-behaviour or end-to-end
API behaviour specifications of that work. In contrast to
the Sockets API specified in POSIX, there is no API for
TLS. Every implementation defines its custom API, and

many have a compatibility layer for the OpenSSL API.

9 Conclusion

We have described an experiment in engineering critical
security-protocol software using what may be perceived
as a radical approach. We focus throughout on struc-
turing the system into modules and pure functions that
can each be understood in isolation, serving dual roles
as test-oracle specification and as implementation, rather
than traditional prose specifications and code driven en-
tirely by implementation concerns.

Our evaluation suggests that it is a successful exper-
iment: nqsb-TLS is usable in multiple contexts, as test
oracle and in Unix and unikernel applications, it has rea-
sonable performance, and it is a very concise body of
code. Our security assessment suggests that, while it is
by no means guaranteed secure, it does not suffer from
several classes of flaws that have been important in pre-
vious TLS implementations. In this sense, it is at least
not quite so broken as some secure software has been.

In turn, this indicates that our approach has value.
As further evidence of that, we applied the same ap-
proach to the off-the-record [7] security protocol, used
for end-to-end encryption in instant messaging proto-
cols. We engineered a usable implementation and re-
ported several inconsistencies in the prose specification.
The XMPP client mentioned earlier uses nqsb-TLS for
transport layer encryption, and our OTR implementation
for end-to-end encryption.

The approach cannot be applied everywhere. The two
obvious limitations are (1) that we rely on a language
runtime to remove the need for manual memory manage-
ment, and (2) that our specification and implementation
style, while precise and concise, is relatively unusual in
the wider engineering community. But the benefits sug-
gest that, where it can be applied, it will be well worth
doing so.
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Abstract
For increased security during TLS certificate valida-
tion, a common recommendation is to use a vari-
ation of pinning. Especially non-browser software
developers are encouraged to limit the number of
trusted certificates to a minimum, since the default
CA-based approach is known to be vulnerable to se-
rious security threats.
The decision for or against pinning is always a trade-
off between increasing security and keeping mainte-
nance efforts at an acceptable level. In this paper,
we present an extensive study on the applicability
of pinning for non-browser software by analyzing
639,283 Android apps. Conservatively, we propose
pinning as an appropriate strategy for 11,547 (1.8%)
apps or for 45,247 TLS connections (4.25%) in our
sample set. With a more optimistic classification of
borderline cases, we propose pinning for considera-
tion for 58,817 (9.1%) apps or for 140,020 (3.8%1)
TLS connections. This weakens the assumption that
pinning is a widely usable strategy for TLS security
in non-browser software. However, in a nominal-
actual comparison, we find that only 45 apps ac-
tually implement pinning. We collected developer
feedback from 45 respondents and learned that only
a quarter of them grasp the concept of pinning, but
still find pinning too complex to use. Based on their
feedback, we built an easy-to-use web-application
that supports developers in the decision process and
guides them through the correct deployment of a
pinning-protected TLS implementation.

1 Introduction

Android is the major platform for mobile users and
mobile app developers. Many apps handle sensitive

1This smaller percentage in the optimistic case is caused
by a different prevalence of third party library use.

information and deploy the transport layer security
protocol (TLS) to protect data in transit. Previous
research uncovered security issues with TLS in mo-
bile apps [7, 8, 9, 2, 22] that highlight that developers
have problems with implementing correct certificate
validation while users are challenged by TLS intersti-
tials. Furthermore, the default TLS implementation
on Android receives criticism [24, 18]: Adopted from
web-browsers, default TLS certificate validation re-
lies on a huge number of root CAs pre-installed on
all Android devices [24]. Hence, all Android apps
suffer from the same issues as web-browsers: A single
malicious CA is able to conduct Man-In-The-Middle
attacks (MITMAs) against all apps trusting the re-
spective certificate. To make things even worse, Fahl
et al. [8] uncovered that in 97% of all cases where
developers implemented their own certificate valida-
tion strategy, they turned off validation entirely and
left their apps vulnerable to MITMAs with arbitrary
certificates, i.e. every active network attacker was
able to attack successfully.
Pinning is often recommended as a general coun-

termeasure to tackle the weakest link in the CA-
based infrastructure [1, 14, 17, 8]. We use the term
pinning in this paper to include both pinning the
complete X.509 certificate or only the certificate’s
public key. Instead of trusting a large set of root
CAs that come pre-installed with the operating sys-
tem, software limits the set of certificates it trusts
to pins, which can be single leaf certificates, single
root CA certificates or a set of certificates. Pin-
ning is a straightforward mechanism and its de-
ployment does not require changes to the current
CA infrastructure. However, pinning has not found
widespread adoption yet. While limiting the number
of trusted certificates drastically increases security,
pinning doesn’t come for free: Embedding trusted
certificates into an app requires app updates when-
ever the pins change. Hence, the decision whether
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pinning is applicable for a TLS connection is always
a trade-off between increased security and mainte-
nance effort that is not entirely under the control
of an app developer: Whenever users do not update
their app although the pins have changed, the app
stops working and users might uninstall the broken
app. Therefore, to pin or not to pin is a critical deci-
sion for app developers, which requires in-depth un-
derstanding of the mechanisms behind pinning and
its implications on their apps. This is where our
work comes in: To the best of our knowledge, we
are the first to explore the applicability of pinning
as an appropriate alternative certificate validation
strategy for non-browser software. In this paper, we
make the following contributions:
Status Quo We evaluate the status quo and ana-
lyze 639,283 Android apps to find that only 45 apps
implement pinning.
Formalization Instead of intuitively recommend-
ing pinning, we formalize criteria that must be con-
sidered when the decision is made whether to pin or
not to pin.
Implementation We apply static code analysis
and program slicing to automatically assess those
criteria and obtain an overview of the situation for
single apps.
Evaluation We evaluate our criteria against a set
of 639,283 Android apps for an overview of the ap-
plicability of pinning in the Android universe. We
find that 223,655 apps establish TLS-secured con-
nections to remote origins; 11,481 (5.13%) of these
223,655 apps are eligible candidates to implement
pinning for one or more of their TLS connections.
App Updates Since new certificate pins need to
be updated on the users’ devices, the update speed
is crucial. Therefore, we instrument telemetry data
from a popular anti-virus software provider. We
evaluate the update behaviour of 871,911 unique
users from January 2014 to December 2014 and find
that only 50% of the users update to a new app
version within the first week after release.
Developer View Although pinning is only ap-
plicable in relatively few cases, the nominal-actual
comparison leaves room for improvement. We there-
fore collected feedback from 45 developers of apps
for which we would recommend pinning. We iden-
tified the developers’ major issues with pinning and
used their feedback as the foundation to build an
easy-to-use web application that assists developers
with securing their apps’ TLS connections. We offer
help on the decision whether to pin or not to pin and
support the implementation of pinning with concrete
suggestions and code examples.

Take-aways We formulate lessons learned during
our evaluation to share them with the research com-
munity.

2 Background and Motivation

To establish secure TLS connections, certificate val-
idation is important in order for communication
partners to authenticate remote endpoints. There-
fore, Android and most other non-browser software
adopted the in-browser certificate validation strat-
egy, i.e. applications trust a predefined set of root
certificate authorities (root CAs). When attempting
to establish a secure connection, the server provides
the client with a certificate chain.

2.1 Default Certificate Validation
Certificate chain validation works as follows:
Chain of Trust Based on the certificate chain
sent by the server, the client tries to build the chain
of trust beginning at the server’s leaf certificate up
to one of the root CA certificates. Every certificate
in the chain is checked for validity – i.e. it is not
expired and it is signed by its immediate successor
in the chain. The second last certificate in the chain
must be signed by one of the root CAs installed on
the user’s device [3]; the last certificate in the chain
belongs to the signing root CA.
Hostname Verification A certificate is bound to
a certain identity – in this case a particular hostname
or a set of hostnames. During hostname verification,
a client verifies this identity by checking whether
the hostname can be matched to one of the identi-
ties (i.e. CommonName, SubjectAltName [20]) for
which the certificate was issued.
Further checks Complete certificate validation
may include further checks, e. g. certificates have
to be checked for revocation which is done via a cer-
tificate revocation list (CRL)[3] or Online Certificate
Status Protocol (OCSP)[21].

2.2 MITM Attack
In a Man-In-The-Middle attack (MITMA), the at-
tacker is in a position to intercept network communi-
cation. A passive MITMA can only eavesdrop on the
communication, while an active MITMA can also
tamper with the communication. Correctly config-
ured TLS together with proper certificate validation
is fundamentally capable of preventing both passive
and active attackers from executing their attacks.

2
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2.3 Alternative Validation Strategies
Over the years, alternative certificate validation
strategies have come up [12, 26, 16, 15, 10, 17].
While they all provide approaches to check a cer-
tificate chain’s validity, our paper focuses on pin-
ning [17] as one of the most recommended alterna-
tive strategies for non-browser software.

2.3.1 Pinning

Pinning is a notion of certificate validation that uses
existing knowledge about the network origin or the
certification data presented to protect the TLS con-
nection [17]. Required parameters to be pinned need
to be available in an application before the TLS
handshake happens. Pinning can be achieved based
on different parameters (e.g. public key, whole cer-
tificate).
Pinning can also be applied to different subjects:
Leaf Pinning Leaf pinning includes pinning a sin-
gle leaf certificate or its public key or a set of leaf
certificates or their public keys and is the most rig-
orous way of pinning.
CA Pinning Certificate authority pinning effec-
tively limits the number of trusted certificate au-
thorities and allows for more flexible reconfiguration
of deployed TLS certificates. This includes both in-
termediate and root CAs.

2.3.2 Trust on First Use (TOFU)

Another notion of pinning is trust on first use
(TOFU). Instead of knowing the information to be
pinned in advance, the first certificate (leaf or CA)
seen for a TLS connection is stored locally on the
client side and used to validate certificates for fur-
ther connections. Hence, TOFU can be seen as a mix
of conventional pinning (cf. Section 2.3.1) and the
default validation strategy. TOFU is used to secure
SSH connections and is an opt-in feature for HTTPS
webservers for which it is called HTTP Public Key
Pinning (HPKP [5]). As of today, HPKP has not
found widespread adoption on the web [11].

2.4 Flaws in client implementations
The Android platform provides built-in function-
alities for handling TLS and certificate validation
based on the PKI without further configuration. It
comes pre-loaded with an extensive truststore fea-
turing 140+ root CAs [18]. Additionally, the An-
droid framework enables developers to provide cus-
tom implementations for handling certificate valida-
tion. There are several reasons for developers to use
custom implementations:

• Application developers might want to use a self-
signed certificate either for testing, effort- or
economical reasons;

• When a root CA is not in the system-wide list
of trusted root CAs, a company might have an
internal CA that issues certificates for use in
intranet applications;

• Security can be enhanced by restricting reliance
on the PKI to mitigate the exposure to weak-
nesses in the PKI

• and custom implementations are required to im-
plement leaf or CA pinning.

2.5 Related Work

Recently, TLS has been subject to urgent flaws.
Studies by Fahl et al. [7] and Georgiev et al. [9]
uncovered a disastrous state of TLS-Code. Georgiev
et al. [9] show numerous flaws in non-browser TLS-
Code. Fahl et al. [7] identify numerous applications
featuring erroneous custom TLS-code that poten-
tially renders applications vulnerable to MITMAs.
This is caused by incorrect implementations of cus-
tom certificate handling. Investigations on the rea-
sons illustrate that especially developers without a
security focus are unaware of the correct use of
the APIs that Android provides: They carelessly
incorporate code snippets from platforms such as
stackoverflow.com [8]. In particular, self-signed
certificates used during development lead to erro-
neous code that makes applications vulnerable by
deactivating certificate validation completely.
Both of the above investigations [7, 9] focused

on the difficulties experienced by developers with
the implementation of correct certificate valida-
tion. However, they discuss possible countermea-
sures rather sketchily and do not evaluate the appli-
cability of pinning for non-browser software.
To improve the state of erroneous certificate han-

dling and to mitigate the threats, Fahl et al. [8] sug-
gest to completely disallow custom code. Instead,
they propose a framework that allows to realize com-
mon use-cases (e.g. self-signed certificates for test-
ing, pinning, default warning messages, etc.) by con-
figuration without the developer writing any TLS-
related code. Tendulkar and Enck [23] suggest a sim-
ilar approach. However, although both approaches
try to improve the usability of certificate handling
for software developers, they do not support devel-
opers in the decision process of whether pinning is a
recommendable certificate validation strategy.

3
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3 An Exit Strategy

Previous work shows that TLS is complex and error-
prone. Studies imply that the implementation of
client code for correct certificate validation is hard
for software developers. The general trust model
received a lot of criticism over the last years and al-
ternative solutions have not found widespread adop-
tion.
As a general solution for both problems, pinning

is often advocated as a secure and reliable alter-
native to the default trust model for non-browser
software [17, 14, 1, 8]. Pinning can serve two pur-
poses. First, it can mitigate the risk of MITMAs
as it strengthens the validation process. Secondly,
pinning allows to overcome limitations of the cur-
rent CA infrastructure, e.g. by allowing self-signed
certificates.
We challenge the recommendation to use pinning

for non-browser software and conduct a deep anal-
ysis on the root causes that hinder its widespread
adoption in non-browser software.

3.1 Pinning in Android Apps
Before evaluating the status quo, we give a brief
overview of how TLS pinning can be implemented
in Android apps. In general, Android apps can es-
tablish low-level TLS connections via an SSLSocket
or an HTTPSUrlConnection object. Using pinning
in these cases requires the developer to implement a
custom version of Android’s TrustManager interface
with an appropriate checkServerTrusted method.
This method has to check whether the certificate
sent by the remote server matches one of the given
pins. Another option is to use a custom KeyStore
in which developers can store their own certificates.
Many Android applications do not make use of
such lower level APIs but use a WebView to display
HTML directly. Sadly Android does not provide
an API to implement pinning for WebViews2. As a
workaround, developers can download all HTML/-
JavaScript via the low-level HTTPSUrlConnection,
store it locally and only use the WebView for ren-
dering. However, this is a clear shortcoming of An-
droid’s API and makes the implementation of pin-
ning unnecessarily hard.

3.2 Status Quo
For a better understanding of the current adoption
of TLS pinning in Android apps, we evaluated cus-

2https://code.google.com/p/android/issues/detail?
id=76501

tom certificate verification strategies for 639,283 An-
droid apps. Therefore we used MalloDroid [7] and
extended the classification feature of custom verifi-
cation implementations. We focused on both cus-
tomized implementations of the TrustManager in-
terface and the usage of a custom KeyStore for TLS
certificates.
Whenever we found that a KeyStore object was

created, we conducted a reachability analysis [13] for
this object. For objects that were reachable from an
app’s entry point, we assume that this app uses pin-
ning. Next, we extracted the keystore file that was
loaded to check whether leaf or CA certificates were
pinned. We found 21 apps that implement pinning
using the keystore method. 13 of these apps pin a
leaf certificate, while 8 of them pin a custom root
CA certificate.
Whenever we found a TrustManager implementa-

tion, we checked whether the chain parameter of the
checkServerTrusted method was accessed by the
implementation. Implementations that do not use
this parameter do not verify the remote origin’s cer-
tificate chain and hence were removed from further
analyses. In a second step we conducted a reach-
ability analysis for implemented TrustManager ob-
jects and removed all implementations that were not
reachable from an app’s entry point. We found cus-
tom TrustManager implementations in 42,902 apps
and could remove 42,042 apps from the list since
they either implemented bypassing TrustManagers
or were not reachable. The remaining 858 apps im-
plemented 189 different TrustManagers. We com-
pared these implementations with the list provided
by Fahl et al. [8] and could filter out 124 implemen-
tations that basically add logging for certificate vali-
dation. We manually reviewed the remaining 65 im-
plementations and found that 13 implemented pin-
ning. Overall, these implementations were used by
24 apps.
Altogether, of the 639,283 apps in our data-set, 45

implement pinning. These numbers confirm findings
already reported by Fahl et al. [8].

4 Classification Strategy

The decision whether or not a TLS connection
should be secured by pinning depends on multiple
factors and is not trivial in many cases.
Furthermore, whenever we cannot reliably identify

the origin string for a TLS connection endpoint, we
cannot assess whether pinning would be a reasonable
validation strategy. Therefore, we report our results
for two different scenarios:

4
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Conservative We report numbers for a conserva-
tive scenario. Whenever we cannot identify the ori-
gin string for a TLS connection endpoint, we assume
that pinning is unfeasible. This covers most of our
results.

Optimistic For some of the cases where we could
not successfully identify origin strings, pinning could
be applied under certain circumstances. These cases
are treated differently for the optimistic scenario as
detailed in Section 6.
For our classification, we consider the following

properties as high level indicators:

Prior Knowledge of the Target Origin Prior
knowledge about the target origin is vital: Pinning
is only feasible if the developer of an app is able
to hard-code target origins into their app. This
includes adding target origins at compile time as
well as via configuration files before or at run-time.
Whenever target origins depend on user- or external
app input – e.g. via an Intent – at run-time, we
consider pinning as not feasible, since web-browsers
do not automatically pin certificates for websites for
the same reasons.3. Automatically pinning previ-
ously unknown origins would increase the danger of
failed TLS handshakes due to substituted certificates
and would decrease acceptance of pinning for both
developers and app users.
In the conservative scenario, we recommend the

default validation strategy for all connections where
the origin depends on external input. However, some
of these connections can be pinned in the optimistic
scenario (cf. Section 6).

Ownership of Relevant API Calls App de-
velopment consists of writing one’s own code and
embedding external libraries. All source code that
was written by the developer or the developer’s com-
pany is considered owned by the developer. API
calls required for certificate validation during the
establishment of TLS-secured network connections
are relevant for this. Relevant API calls might be
a HTTPSUrlConnection or an SSLSocket. When-
ever ownership of relevant API calls is given, pin-
ning might be feasible. Library developers do not
own their code when it is included in other apps.
Therefore, we do not recommend pinning for library
code. Library developers cannot control when app

3Administrators can configure HTTP Public Key Pinning
(HPKP) to pin TLS certificates in modern web-browsers.
However, this involves heavy manual configuration work on
the server side and does not happen automatically (cf. Sec-
tion 2).

developers update their libraries, while app develop-
ers can hardly influence whether library developers
keep their certificate pins up to date.
For both the conservative and the optimistic sce-

nario pinning is not recommended in case API own-
ership is not given.

TLS Certificate Configuration Responsibility
Being responsible for the TLS certificate configura-
tion as well as being the owner of relevant API calls
eases the coordinated deployment of pinning in apps.
In case developers or their companies have control
over the TLS certificate configuration of origins used
in apps, both the certificate pins in apps and the
corresponding server configurations can be coordi-
nated. In these cases, pinning is feasible. When-
ever apps communicate with public origins, such as
public API interfaces or websites, pinning cannot be
recommended. Certificate configurations can change
frequently and the responsible administrators only
rarely announce them in advance. Unplanned cer-
tificate changes can lead to failing TLS handshakes
and are therefore unacceptable.
For both the conservative and the optimistic sce-

nario pinning is not recommended in case the devel-
oper is not responsible for TLS certificate configura-
tion.

4.1 Possible Recommendations
The above criteria build the foundation for the de-
cision whether pinning is applicable for a TLS con-
nection in a given app. The classification algorithm
recommends one of the following strategies:

Leaf Pinning Leaf pinning limits the number
of trusted certificates to the server’s leaf certifi-
cate/public key (cf. Section 2.3.1).

CA Pinning CA pinning effectively limits the
number of trusted CAs (cf. Section 2.3.1). We treat

conventional pinning (cf. Section 2.3.1) and TOFU
(cf. Section 2.3.2) equally, since both provide a sim-
ilar level of security (cf. Section 2.3.1) and require
the same maintenance overhead from an app devel-
oper’s point of view.
Default Whenever none of the above criteria ap-
plies, pinning is not a recommended strategy and
should not be implemented. This also accounts for
cases where external input – e.g. user input in an
address bar or Intent input – influences a TLS con-
nection.

5
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4.2 Classification Details

Algorithm 1 illustrates the classification process we
apply to decide whether pinning is an advisable ver-
ification strategy. In the initial state, the default
strategy is assumed to be the right choice for a
TLS connection, since we do not know yet if pin-
ning is recommendable. First, we check whether the
TLS connection is established within a third party
library. In this case classification ends with the rec-
ommendation to use the default strategy, since own-
ership of the relevant API is not guaranteed.
Second, we check whether the remote origin de-

pends on user input, other external sources such as
Intents, or may be configured via a configuration
file. In these cases we recommend the default strat-
egy, since control over the remote origin is not guar-
anteed.
Third, we check whether the TLS connection’s re-

mote endpoint is a popular origin; in this case, clas-
sification ends with recommending the default strat-
egy, since the TLS configuration of the remote ori-
gin is probably not under the developer’s control. If
we assume that a remote origin is probably under
control of the developer, as no other app accesses
it, the classification continues: We check whether
the origin’s certificate was issued by a valid CA or
is self-signed. For self-signed certificates and certifi-
cates that were issued by a valid CA, we recommend
leaf certificate pinning. For certificates issued by an
untrusted CA, we recommend CA pinning, since the
custom CA is probably under control of the devel-
oper.

4.3 Challenges

For our strategy classification, we apply static code
analysis on a large set of Android apps. To work
as efficiently as possible, we identified multiple chal-
lenges:

4.3.1 Relevant API Calls

First, we identify relevant API calls, which means
taking remote origins as parameters and establish-
ing a TLS-secured connection between the app and
the origin. The official Android API documenta-
tion identifies relevant API calls in the packages pre-
sented in Table 1.
These API calls are the most low-level calls in the

API and they implicitly include higher level APIs
such as the HTTPSUrlConnection.

Package name
org.apache.http.client.methods.*
org.apache.http.HttpHost
android.webkit.WebView.loadUrl
android.webkit.WebView.loadDataWithBaseURL
android.webkit.WebView.loadData
android.webkit.WebView.postUrl
android.net.http.AndroidHttpClient
java.net.Url

Table 1: Relevant API Calls.

4.3.2 Embedded Static TLS Origins

As described above, knowing remote origins in ad-
vance is crucial for pinning. At this point, we focus
on extracting whether a remote origin is embedded
in an app or depends on user input or is injected
via an external interface such as an Intent. This
information is supplied via parameters to relevant
API calls. Although these mainly refer to String
values, the object-oriented and Java-based nature of
the Android platform introduces complexity:

• Strings may not be constant values but can be
composed of numerous substrings. We identify
concatenation of Strings, formatting of Strings
and platform-specific APIs for building URIs
as relevant. Therefore, we statically backtrack
these and reproduce String values.

• Values can stem from variables or may be return
values of method calls. Therefore, we account
for intra-application method calls as well.

• Values that stem from Resources, Properties
or Preferences hint at configuration parame-
ters.

• Origins can be input parameters for applica-
tion entrypoints. Entrypoints are parts of an
application that allow either other app compo-
nents, external apps or users to interact with
an app. Android application entrypoints are
Activities, Services, Receivers, Intents
and Bundles. UI-Components in Activities
hint at user input.

4.3.3 API Call Ownership

API call ownership is a requirement for pinning. To
identify whether an app developer holds ownership
of relevant API calls, we must distinguish relevant
API calls that are accessed by third party libraries
and relevant API calls accessed by code that was

6
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Algorithm 1: The Classification Process.
for r ∈ results do

dependencies ← dependencies(r);
set strategy as default;
if dependencies �= /0 then

if ∃d ∈ dependencies|d ∈ {exposed intent,UI −Component} then
continue;

else if ∃d ∈ dependencies|d ∈ {unexposed intent,variable,con f iguration} then
continue;

if not callInLibrary(r) and not isPublicHost(r) then
host ← host(r);
schema ← schema(r);
cert ← cert(r);
dependencies ← dependencies(r);
if isUnderControl(host) then

if signedByUntrustedCA(cert) then
mark for CA pinning;

else if validCertChain(cert) or isSel f Signed(cert) then
mark for leaf pinning;

written by the app developer (we call this custom
code). Whenever we find relevant API calls in code
that is shared between multiple apps by different au-
thors, we assume a library that is not under control
of an app’s developer.

4.3.4 Origin Exclusivity

Whenever the TLS configuration of a remote origin
is not in the range of influence of the developer, pin-
ning is not advisable. We classify origins that are
shared between multiple apps’ authors and connec-
tions that access public origins as not under control
of the developer.

5 Implementation Details

To decide whether pinning for a TLS connection is
advisable and to address the above challenges (cf.
Section 4.3), we implement our classification strat-
egy in a multi-step process. We extend4 the Mallo-
Droid tool [7] and execute the following steps:

1. Disassemble a given Android application to gain
access to the application’s code and call graph
(cf. Section 5.1).

4Our MalloDroid extension is available at https://
github.com/sfahl/mallodroid.

2. Identify relevant API calls – i.e. API calls that
implement TLS connections in apps (cf. Sec-
tions 5.2 and 4.3.1).

3. Extract information for remote origins applying
program slicing (cf. Sections 5.3 and 5.3.1).

4. Determine whether API and/or origin owner-
ship for relevant API calls is given and decide
which certificate validation strategy suits best
(cf. Sections 4.2 and 5.4).

5.1 Disassembly
In Step 1, we use androguard [4] to disassemble apps
and construct call graphs for further processing.

5.2 Relevant API Calls
In Step 2, the call graphs were used to identify apps
that make use of API calls in which origin infor-
mation for establishing TLS-enabled connections is
specified (cf. Section 4.3).
We consider API calls as relevant if they are used

during the process of TLS connection establishment
(cf. Table 1).

5.3 Program Slicing
In Step 3, we apply backwards program slicing [25]
to collect method parameters which we subsequently
call slicing criteria. We focus on slicing criteria that

7
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represent remote origins which are used as input for
relevant API calls, i. e. we are backtracking param-
eters that are URLs or hostnames for TLS connec-
tions.
Our approach is similar to the one applied by Poe-

plau et al. [19], who apply a backward slicing algo-
rithm to identify security issues with dynamic code
loading in Android apps.
In contrast to backwards slicing single and fixed

method parameters, our targets are network origins.
A network origin String can be a composition of
multiple substrings. We take this fact into account
by applying backwards slicing for multiple param-
eters. After backtracking, we join these (multiple)
substrings to one origin string whenever possible. To
break cycles, we stop the slicer after 80 iterations,
which guarantees that the algorithm terminates and
also makes sure we do not lose data.

5.3.1 Extracting Origin Strings

Origin strings can be compositions of multiple sub-
strings (e.g. https:// and www.example.com and
:443). Thus, reconstructing an origin string might
require combining multiple sliced substrings. There-
fore, after program slicing, we apply a combination
of backward and forward analysis. Backwards anal-
ysis is used for backtracking constant register values
while forward analysis determines calls of a String
instance. Both, back- and forward analyses are ap-
plied multiple times successively as long as we find
new substrings that are part of a final origin string.
Algorithm 2 outlines pseudocode for handling

StringBuilder objects. The algorithm makes use
of the following functions:

methodsOnInstance returns a list of all method
invocations on an instance (e.g. calls to
toString, append or the constructor for
StringBuilder objects).

backtrack applies the actual backtracking tech-
niques to gather all substrings for the origin
string composition.

add adds one originSubstring to the array of
originSubstrings that make the origin string
we are looking for.

join merges all originSubstrings to get the final
origin string that is represented by the given
StringBuilder object.

1. Identify instructions indicating the instanti-
ation of a StringBuilder object (i.e. a

Algorithm 2: StringBuilder Analysis
Data: stringBuilderObjects sbos
Result: new originSubstring O
begin

for sb ∈ sbos do
methodInvocations ←
methodsOnInstance(sb);
originSubstrings ← /0;
origin ← null;
for mi in methodInvocations do

if isAppend(mi) then
originSubstring ←
backtrack(mi.regs[1]);
if originSubstring �= null then

add(originSubstrings,
originSubstring);

else if isToString(mi) then
break;

join(O, originSubstrings);

new-instance instruction referring to the
StringBuilder constructor) and store them in
sbos.

2. Find all method invocations for each
StringBuilder object sb;

3. For calls of the constructor or the append()
method, backtrack the register value for the
String parameter originSubstring and add
it to all originSubstrings.

4. Stop on calls of the toString method and
join all collected originSubstrings to a new
originSubstring.

Similarly, we support String concatenation, for-
matting Strings, UriBuilder instances, Android
UI-Components, Intents, Bundles, Properties,
Preferences and Resources. For Intents and
Bundles we identify the source in order to deter-
mine whether the corresponding component is ex-
posed externally, e.g. via a Service.

5.4 Decide on Validation Strategy
In the final Step 4, we assess whether API and/or
origin ownership is given (cf. Section 4). For pinning
candidates, X.509 certificate information is collected
and a decision for or against pinning is made (cf.
Section 4.2).
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5.5 Limitations
The described approach is limited in multiple ways.
We decided to reverse engineer a large sample of free
Android apps and analyze the resulting code. This
limits the analysis compared to the analysis of orig-
inal source code, e.g. we lose variable names and
cannot preclude obfuscation. This is however the
state of the art for large scale app analyses, since
reaching out to developers and asking for source code
does not scale well. We apply static code analysis
and program slicing to determine the best certificate
validation strategy to secure a TLS connection. Our
approach does not consider native code in Android
apps. We cannot track potential TLS connections in
code that was dynamically loaded or when obfusca-
tion was applied.
Since we apply static code analysis techniques, we

might report some false positives: Some of the TLS
connections we found and identified as being reach-
able code might not be used during real applica-
tion usage. However, this is not a specific limitation
of our work, but a general limitation of static code
analysis.
We might also report some false negatives: Due to
the strategy to classify origins to which apps devel-
oped by different developers connect as “not under
control of the developer”, we might miss the sce-
nario that one company has several distinct devel-
opers write apps for them that all access the same
domain. However, there exist no criteria to distin-
guish these cases from the common scenario that
multiple apps by different developers accessing the
same domain means that the domain is not under
control of the developers. Therefore, these cases are
included in the group of public origins for which we
do not recommend pinning.

6 Evaluation
We applied the classification algorithm (cf. Section
4) to a set of 639,283 Android applications we down-
loaded from Google Play in October 2014. Our data
extraction showed that of these apps, 573,258 imple-
mented network connections.
In the following, we report details of our auto-

mated large-scale analysis. We report our results on
a per-connection base (see Figure 2) as well as on a
per-app base (see Figure 1), where an app is counted
as eligible for pinning if at least one of its connections
can be pinned. We distinguish between a conserva-
tive and an optimistic strategy rating (cf. Section
4). Altogether we found 20,020,535 calls to network
related API calls (cf. Table 1). For these calls we
tried to identify the origin strings. We could iden-

Overall Con. Apps
Hard-coded HTTPS Origin 1,062,810 229,317
Hard-coded HTTP Origin 2,420,104 414,194
Non-hard-coded Origin 16,537,621 553,399

20,020,535 573,258

Third Party Libraries Con. Apps
Hard-coded HTTPS Origin 917,567 203,159
Hard-coded HTTP Origin 1,659,933 310,331
Non-hard-coded Origin 14,564,581 512,055

17,142,081 517,790

Custom Code Con. Apps
Hard-coded HTTPS Origin 145,243 48,755
Hard-coded HTTP Origin 760,171 184,184
Non-hard-coded Origin 1,973,040 246,636

2,878,454 299,863

Table 2: Distribution of Network API Calls.

tify 1,062,810 calls as TLS connections due to the
fact that the corresponding origin string’s scheme
was HTTPS. 2,420,104 connections were identified
as plain HTTP, while 16,537,621 connections did not
have a hard-coded origin string in the app’s code.
Hence, for 81% of all connections, it was not di-
rectly possible to determine whether TLS was used.
However, a deeper analysis based on our classifica-
tion criteria (cf. Section 4.2) gives detailed insights
into the applicability of pinning. Table 2 gives an
overview of the results.

6.1 Library Code
The majority of network connections we identified
were made in third party library code, i. e. users
include third party libraries to make use of exter-
nal functionality. Such connections can include both
plain and TLS-protected connections. As described
in Section 4.2, we recommend not to use pinning
for those TLS connections, as API ownership is not
given. Of the 20,021,137 TLS connections we could
identify, we found that 17,142,081 (85.6%) connec-
tions are embedded in third party libraries.
Table 3 gives an overview of the top 10 third party

libraries we found in our data-set.
Most of the identified libraries belong to

ad networks (e.g. com.google.ads.*), crash
reporting tools or app building kits (e.g.
org.apache.cordova.*) that establish network

9
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Library Connections
com.google.ads.* 2,535,020
org.apache.cordova.* 1,145,108
com.qbiki.* 977,298
com.millennialmedia.* 730,408
com.facebook.* 551,373
com.Tobit.* 488,143
com.inmobi.* 352,855
com.flurry.* 340,929
com.startapp.* 276,988
com.adsdk.* 234,130

Table 3: Top 10 Third Party Libraries.

connections without any interaction with an app’s
custom code.
We found the AndroidPinning library5 to be the

only library that supports pinning as a security fea-
ture out of the box. However, in our data-set we
found only 14 apps that made use of this library (cf.
Section 3.2).

6.2 Custom Code
Next, we identified network connections that were
established in code that was actually written by
apps’ developers, i.e. network-related API objects
were not instantiated within third party libraries.
We found 2,878,454 connections in custom code

of which we identified 145,243 as TLS connections.
48,755 apps implemented hard-coded TLS origins as
parts of their custom code. Based on the type of the
deployed certificate and depending on whether the
origin is shared, we evaluated which of these TLS
connections are candidates for pinning.
For 1,973,040 of the connections that were imple-

mented as part of apps’ custom code, we could not
identify hard-coded origins in apps. Those connec-
tions could be either HTTP or HTTPS and depend
on further input available only at run-time, e.g. user
input or Intents. For these connections, we con-
sider a conservative as well as an optimistic scenario.
Based on different assumptions, these scenarios al-
low us to estimate the applicability of pinning in
Android apps.

6.2.1 Hard-coded Origins

Overall, we found 145,243 hard-coded HTTPS con-
nections and 760,171 hard-coded HTTP connections
in our data-set. For the HTTPS connections, we
collected further information such as the number of

5https://github.com/moxie0/AndroidPinning
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Shared Origin 99,996 40,691 - -
Unique Origin(d.a.b.c) 45,247 11,547  

145,243 45,549

(a) HTTPS Origins in Custom Code.
Con. Apps C O

Internal Intent 294,846 81,040 - 
Public Intent 14,599 8,268 - -
Parcel 5,729 2,883 - -
UI Component 31,266 18,766 - -
Resource 124,356 32,113 - 
(Shared) Preference 87,051 31,975 - 
Variable 432,985 119,406 - 
JSON 96,438 32,200 - 

1,973,040 326,651

(b) Dynamic Origins in Custom Code.

Table 4: Origins in Custom Code – Connections
marked with  can be pinned.

connections that connect to the same origin and the
origin’s X.509 certificate whenever possible.
The 145,243 TLS connections we found included

connections to 11,203 different TLS-enabled remote
origins.
To investigate whether pinning is the recommend-

able validation strategy, it is important to know if
an origin is shared between multiple apps authored
by multiple developers or used by apps of a single
developer only (cf. Section 4).

Shared Origins 1,301 of the extracted 11,203
hosts were present in multiple apps that were au-
thored by multiple developers. We assume these
hosts not to be under the control of an app’s de-
veloper and hence recommend the default certificate
validation strategy, since host-ownership is not given
(cf. Section 4). This affects 99,996 of the TLS con-
nections we identified in our data-set (cf. Table 4a).
Table 5 lists the top 10 shared origins in custom

code we found in our data-set.

Unique Origins 6,012 origins were unique to one
single app while 3,890 origins were included in no
more than five apps owned by a single developer.
Hence, we assume 9,902 origins to be under the con-

10
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Hostname C
on

.

A
pp

s

graph.facebook.com 220,697 111,559
m.facebook.com 110,903 104,745
www.googleapis.com 30,101 20,120
bugsense.appspot.com 18,402 18,285
www.starbucks.com 32,063 16,029
www.facebook.com 39,969 13,923
docs.google.com 29,240 11,872
mobileclient.paypal.com 39,214 10,963
api.twitter.com 34,641 10,551
svcs.paypal.com 38,175 9,999

Table 5: Top 10 Remote Origins.

trol of a single developer each. We recommend pin-
ning for these apps and their connections, since both
host- and code-ownership are given (cf. Section 4).
This affects 45,247 TLS connections in our data-set
(cf. Table 4a).
To determine whether leaf pinning or CA pinning

is the right choice, we analyzed the deployed certifi-
cates for the respective origins. Overall, we gathered
7,941 unique certificate chains. We used Androids
pre-installed root CA certificates and Androids cer-
tificate validation strategy to verify the validity of
the origins’ certificates and found that 7,177 of all
chains could be verified successfully, while verifica-
tion failed for 764 chains. Of these non-validating
certificate chains, 182 certificates were self-signed;
170 certificates were issued by an unknown CA; 335
certificates were already expired and for 160 certifi-
cates hostname verification failed. Table 6 gives an
overview of the chains and the affected connections
and apps in our data-set.

Verification Result C
on

.

A
pp

s

Chain Ok 40,433 10,176
Self-Signed 1,966 486
Custom CA 269 81
Expired 1,709 546
Hostname Mismatch 870 258

45,247 11,547

Table 6: X.509 Certificates Statistics.

We recommend pinning for all of these connections
(cf. Section 4). We recommend leaf pinning for the
connections that use a self-signed certificate and CA
pinning for all other connections (cf. Table 7).

Type Connections Apps
Leaf Pinning 44,978 11,247
CA Pinning 269 81

Table 7: Pinning Statistics (Conservative).

6.2.2 Dynamic Origins

While the unique origins in custom code are good
candidates for pinning, the majority of origins for
connections in custom code were not hard-coded into
the apps at compile time (cf. Table 4). These con-
nections’ origins can depend on different external
factors such as Intents, UI components etc.
For these connections, we distinguish two scenar-

ios:

Conservative In the conservative scenario, we as-
sume that connections that use dynamic origins can-
not be pinned. This assumption prevents us from
over-reporting the applicability of pinning, but prob-
ably underestimates its applicability as well. As-
suming this scenario, 45,247 of the 1,062,810 TLS
connections we found in our data-set would be good
pinning candidates, which makes up 4.25%.

Optimistic In this scenario, we assume some of
the 1,973,040 dynamic origins connections eligible
for pinning. We still assume that connections that
get their input from Public Intents, Parcels and UI
Components are no good pinning candidates, since
the app developer probably does not have control
over the actual origin strings values. That leaves
some of the remaining 1,921,446 connections that
depend on dynamic origin strings eligible for pin-
ning. We assume that – as for the custom code
with hard-coded origins – 16% of all connections are
HTTPS connections (cf. Table 4), which leaves us
with 307,431 HTTPS connections. If we again as-
sume that, like for the hard-coded custom code ori-
gins, 31.1% of the HTTPS connections can be pinned
(cf. Table 4), we can recommend 95,611 connections
for pinning. In combination with the 45,247 connec-
tions from the conservative scenario, we recommend
to pin 140,858 connections in the optimistic scenario.
However, while only 86.33% of all known HTTPS
connections are implemented in third party library
code, but 88.07% of our assumed HTTPS connec-
tions happen via third library code, the connections
we optimistically recommend for pinning make up
only 3.8% of all (assumed and definite) HTTPS con-
nections (as opposed to 4.25% for definite HTTPS
connections). We can optimistically pin 140,858 con-
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nections as opposed to only 45,247 connections in the
conservative case. Naturally, we are unable to spec-
ify which pinning strategy we would suggest, but
extrapolating from the conservative scenario i.e. ap-
plying the percentages of which pinning strategy is
applicable in the small conservative data-set to the
larger data-set, 140,020 cases would be eligible for
leaf pinning, while we would recommend CA pin-
ning for 838 connections.

Figure 1: Statistics and Classification Results for
Apps; Network Access includes apps with custom-
coded, library- and dynamic HTTPS and HTTP
connections.

Figure 2: Statistics and Classification Results for
Connections.

6.3 Update Frequencies
In addition to the strategy classification, a crucial
requirement for pinning to work properly is the pos-
sibility to deploy quick updates for apps to distribute
new pins. The applicability of pinning for Android
apps in general depends on how quickly developers
can push new certificate pins to their users’ devices.
Hence, we were interested in assessing the frequency
for app updates.
Although newer Android versions have an auto

update feature for apps, this feature is opt-in. Fur-
thermore, the default is that app updates are only
downloaded in case a device is connected to a WiFi.
Hence, even auto-updates are not guaranteed to hap-
pen instantly.
Information about update frequencies is not eas-

ily accessible via Google Play. To gain insights into
users’ update behaviour, we cooperated with a pop-
ular anti-virus software vendor for Android with an
install base of 5 million devices. Our cooperation
partner runs a telemetry program and gathers user
data for all users that participate in that program.
From January 2014 to December 2014, we collected
data for 784,721 unique apps and 871,911 unique
users. The 871,911 users that participated in the
telemetry program and gave their consent to anony-
mously analyze the data for our research yield the
following meta information:

Pseudonym We assigned a 256-bit random
pseudonym to each device to protect the users’
privacy. The pseudonym did not reveal any
private information.

DeviceInfo We collected manufacturer- and device
model information as well as the installed An-
droid version.

DeviceFlags We gathered three different flags for
every device: (1) Whether developer options
were enabled, (2) whether app installs from un-
trusted sources were allowed and (3) whether
USB debugging was enabled.

PackageInfo For every (pre-)installed app we
gathered the package name and version code.

PackageHashes For every (pre-)installed app we
gathered SHA256 checksums of the packages
and their corresponding signing keys.

Timestamps We gathered timestamps for when we
saw an app version installed on a device.

Our interest focused on third party apps such
as facebook or games, as these apps get updates
pushed via Android’s default update mechanism.
We excluded Google apps and device vendor specific
apps from our analysis, since these can be updated

12
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through special update channels provided by Google
or the device vendor. We identified Google apps and
device vendor apps based on the keys they have been
signed with [6].
For third party apps, we found that on average

40% of all users update to a new version on the re-
lease day. Around half of all app users update within
the first week after release and 70% update within 30
days after release. However, to update all devices,
on average 200 days elapse. Figure 3 illustrates the
average apps update periods.

Figure 3: Average days between the release of a new
app version and its installation.

These numbers illustrate that app updates are
unsuitable for security-critical app components. In
case of pinning, half of all users of an app would be
unable to use the app during the first week after the
update is released, since the pinning-secured TLS
handshakes would fail 6.

6.4 Discussion
Our results have multiple major implications: The
majority of TLS connections happen in third party
libraries (86.33%) and another 68.85% of connec-
tions are established with shared hosts. However, al-
though only 4.25% of all TLS connections seem to be
good candidates for pinning, the current situation of
only 45 apps that actually implement pinning leaves
much room for improvement. An additional hurdle
for deploying pinning are the lazy update frequen-
cies of many users; losing half of the users for a total
of one week after a certificate (pin) update is unac-
ceptable for both app developers and their users. To
facilitate the use of pinning for eligible developers,
we cannot recommend to hard-code certificate pins
into app binaries. Instead, pins should be included

6We assume that apps use TLS-secured connections for
critical components and do not work properly without Inter-
net access.

via configuration files that can easily be updated via
a secure remote connection. Such an update mecha-
nism could be enforced immediately and developers
would not depend on the (lazy) update behaviour
of their users. An alternative pinning deployment
strategy would be to use multiple origins for a TLS
connection, e. g. having pin1.example.com for one
pin version and pin2.example.com for a second ver-
sion. Both mechanisms allow for out-of-band pin
updates but come with some extra effort on the de-
velopers’ side.

7 Developer Support

After conducting a large scale analysis for real world
Android apps and the applicability of pinning, we
were also interested in the developers’ point of view
as the actors who actually implement pinning. First,
we collected informative feedback from developers
to learn more about their view on pinning. Second,
based on their valuable and constructive feedback,
we built a tool that supports developers in the pro-
cess of deciding whether to implement pinning and
eases the implementation.

7.1 Feedback
We analyzed all apps in our sample set and ex-
tracted possible candidates for pinning 7. For those,
we extracted the email addresses of the developers
from Google Play, taking care not to create multi-
ple emails for the same recipient, which left us with
roughly 3,200 addresses. We emailed a random sam-
ple of 500 developers with an introductory email and
the plea to provide us feedback on their experience
with pinning, or, if they were not the developer, to
please forward the email to their app’s developer.
Our outreach to developers was intended for a qual-
itative analysis of their feedback and comments to
be used as the foundation to build our tool. A quan-
titative analysis was not our primary focus. We were
able to gather 498 responses, of which we manually
removed 4 who had answered in a nonsensical way
or who clearly did not understand English. After
we analyzed the 45 responses, we had gained insight
into the major problem areas, a saturation of new in-
put was reached and more responses would probably
not have provided more valuable insights.

7Here we made conservative choices to prevent unnecessar-
ily bothering developers.

8Given the lack of a platform comparable to Amazon Me-
chanical Turk for software developer studies, which also means
that they donate their time to our research for free, a response
rate of 10% seems quite reasonable.
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To build our tool with the best possible feature
set and usability in mind, we were mainly interested
in the following aspects:

Knowledge About Pinning 15 (a third) of our
participants stated they knew what pinning was.
We asked them to explain this knowledge, and their
replies varied from correct mentions of “custom, self-
signed certificates”, “reduction of the reliance on in-
termediate/root certificates, if a intermediate/root
gets compromised you don’t.” and “mobile apps that
talk to the same well known server all the time”
over “securing the communication between the app
and the server without needing to pay to issuers out
there” to “i don’t know” and confused and/or wrong
answers like “when you change the servers and/or
certificates more often”. We rated 80% of the an-
swers as sensible.

Key Result: Only a quarter of the developers who
gave us feedback have a basic understanding of
pinning.

Desired Change: More detailed and critical ex-
planation of what pinning is and how it works
as part of the official Android documentation.

Obstacles Six participants had considered imple-
menting pinning and decided against it. The reasons
ranged from “laziness” over confusion to complaints
about the complexity and the lack of an “out-of-
the-box solution”. To the two thirds of our par-
ticipants who didn’t know what pinning was, we
showed a short explanatory text 9 and asked them to
rate what they imagined could hypothetically keep
them from using pinning or convince them to stay
with the standard solution. We showed the same
set of possible reasons to the developers who were
informed about pinning and asked how much these
reasons contributed to their not implementing pin-
ning. They ranked “fear of losing users with old
app versions / due to hard TLS fails” the high-
est, followed by ”updates required when a certifi-
cate changes” and “complexity of the implementa-
tion”. They said the standard solution was prefer-
able, because “it is easier”, they “trust in the existing
CA-ecosystem” and “already own CA-signed certifi-
cates”, but rather not because of “employing several
different certificates”.

Key Result: Of those who had heard of pinning,
40% had considered implementing it, but dis-
counted it for being unusable or hard to imple-
ment.

9taken and adapted from www.owasp.org

Desired Change: Provide concrete sample code
for the specific use case or app.

Wishlist We received wishes for “good tutorials
and programming examples”, “example code”, “li-
braries across platforms”, a “native Android API”,
a “test period and simple implementations” and the
possibility to “do the same for the web front-end”.

Key Result: Developers want better tool support
and support in the decision process.

Desired Change: Easy-to-use tool support.

7.2 Tool Support
The developer feedback confirmed that more tool
support is required and requested. When offering
security solutions, we have to keep in mind that de-
velopers usually do not have a strong security fo-
cus and are not TLS experts, therefore, choosing
and implementing secure solutions must be made as
easy as possible. To this end, we built a tool that
supports developers with implementing secure cer-
tificate validation in general; it additionally helps
to decide whether pinning is the appropriate strat-
egy. We made a web application publicly accessible
at https://pinning.android-ssl.org/, which we
base on our classification framework, the evaluation
results and the developer study’s results. We chose
to implement our tool as a web application, since
it is easily accessible and allows to keep the data
backend up-to-date.
Developers and app users can upload APK files

and have results presented to them in a clear web
interface. First of all, the developers need to up-
load their app’s APK file, whereupon the web ap-
plication conducts all required information extrac-
tion steps (cf. Section 4) and presents the developer
with an overview of relevant API calls and the cor-
responding remote origins that could be extracted.
To increase accuracy, in the next step the developers
are asked (1) whether they hold ownership for the
relevant API calls and (2) whether they control the
TLS configuration for the extracted remote origins
(to keep the workflow as simple as possible and not
overcharge the developer with unnecessary informa-
tion, we filter out well known libraries and popular
origins). Involving developers into the decision pro-
cess is especially important in cases where automatic
classification might not reveal accurate results, such
as for configured origins (cf. Section 4).
Finally, the strategy classification is conducted

and we present the developer with our recommenda-
tion for making their connections as secure as pos-
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sible. In case the default strategy was selected, we
do not recommend the developer to take further ac-
tion. In case leaf or CA pinning is recommended, the
developers are encouraged to increase their app’s se-
curity by implementing pinning. However, we also
inform the developers about the downsides of pin-
ning in terms of updatability of certificate pins (cf.
Section 6.3). In a last step, the developer is offered
support for implementing pinning.
For any given relevant API call and the corre-

sponding remote origin, concrete example code for
pinning is generated over the following steps:

1. The remote origin’s certificate is fetched and the
corresponding pin is computed.

2. A PinningTrustManager that uses the pin for
certificate validation is generated.

3. Surrounding code that includes the
PinningTrustManager into the rele-
vant API calls is generated, e.g. for an
HTTPSUrlConnection, an SSLContext is
generated that is initialized with the given
PinningTrustManager.

The developer can then simply include this scaffold
into the app and profit from a higher level of security.
We asked the interested developers who left their
contact information in our developer study to test
our web application; 7 participated and gave positive
feedback on its usability.

8 Limitations

In addition to the limitations described in Section
5.5, our work has three more limiations.
First, the update behaviour analysis we conducted

for the users that participated in the AV’s telemetry
program might not necessarily represent the global
update behaviour. However, we think that security
affine users who install anti-virus software on their
devices have a tendency to update their software
more quickly than average users. Therefore, update
frequencies for the global Android user population
might be even worse.
Second, the feedback we got from app developers

was based on self-reporting and might be influenced
by a self-selection bias. Since we emailed developers
who our classification framework had identified as
good candidates for pinning, but offered them no
incentive for taking part in our survey, we could only
work with the developers who responded, leaving us
with an opt-in bias. However, this is best practice
for getting feedback from developers.
Third, our tool is currently implemented as a web

service and a standalone command line tool. In the

future, it would be reasonable to include the classi-
fication and recommendation process into the pub-
lication process in Google Play: An uploaded APK
file could be run through the tool and unpinned but
pinnable connections could be pointed out to the
respective developer or pinned automatically via a
library.

9 Conclusions

We conducted an extensive analysis on the applica-
bility of pinning as an alternative and more secure
certificate validation mechanism for non-browser
software. Therefore, we analyzed 639,283 Android
apps of which 229,317 (35.9%) use TLS to secure
network connections and conservatively recommend
pinning for 11,547 (1.8%) of all apps, or 5.0% of the
apps that use TLS. This corresponds to 20,020,535
connections, of which 1,062,810 (5.3%) use TLS,
of which 45,247 (4.25%) are conservatively recom-
mendable for pinning. Optimistically, including es-
timates for unclassified connections as well as con-
nections depending on dynamic code loading, we are
able to suggest 140,858 connections or 58,817 (9.1%)
apps to take pinning into consideration.
This contradicts the common assumption that

pinning is a widely applicable solution for making
TLS certificate validation in non-browser software
more secure. Of the 229,317 apps we analyzed that
make use of TLS to secure (some of) their network
connections, 203,159 (88.6%) establish TLS connec-
tions via third-party libraries.
While we find that pinning is applicable only for

relatively few apps and their TLS connections, a
nominal-actual comparison illustrates that there is
room for improving the current situation, as only
45 of the 11,481 apps that could benefit from pin-
ning actually implement it. To help us understand
affected developers and design a solution, we con-
ducted a qualitative study with 45 developers, where
we learned that pinning is relatively unknown and
often neglected due to usability problems. These
results incentivized us to build an easy-to-use web-
application to support developers in the decision
making process and guide them through the imple-
mentation of pinning for appropriate connections.
Our work concludes with the following take-aways:

Poor Support for Pinning The Android API
lacks sufficient support for pinning: For low-level
APIs, developers have to implement their own cer-
tificate validation and need detailed knowledge re-
garding pinning. For higher level APIs, support for
pinning is missing entirely.
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Limited Applicability The application of pin-
ning in non-browser software such as apps is very
limited: We recommend pinning for only 5.0% of the
229,317 TLS-enabled Android apps we analyzed.
Developer Education Developer feedback
showed that only a third of the developers who
could have implemented pinning had heard of it
before. Pinning seems to be confusing and devel-
opers misinformed. In the future, better developer
education is required as well as better developer
support.
Security Updates Our analysis of update peri-
ods for Android apps suggests that Android requires
mechanisms to quickly deploy security updates in
the future (cf. Section 6.3).
Pinning Implementation The current Android
documentation recommends to include pinning in-
formation at compile time, i. e. the recommenda-
tion is to add pins to the source code of an app.
However, our analysis of the update behaviour of
Android users suggests that developers should not
implement certificate pins into an app’s binary. In-
stead, we recommend to set pins via configuration
files that are only accessible by the respective app.
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Abstract

Source code authorship attribution is a significant pri-
vacy threat to anonymous code contributors. However,
it may also enable attribution of successful attacks from
code left behind on an infected system, or aid in resolv-
ing copyright, copyleft, and plagiarism issues in the pro-
gramming fields. In this work, we investigate machine
learning methods to de-anonymize source code authors
of C/C++ using coding style. Our Code Stylometry Fea-
ture Set is a novel representation of coding style found
in source code that reflects coding style from properties
derived from abstract syntax trees.

Our random forest and abstract syntax tree-based ap-
proach attributes more authors (1,600 and 250) with sig-
nificantly higher accuracy (94% and 98%) on a larger
data set (Google Code Jam) than has been previously
achieved. Furthermore, these novel features are robust,
difficult to obfuscate, and can be used in other program-
ming languages, such as Python. We also find that (i) the
code resulting from difficult programming tasks is easier
to attribute than easier tasks and (ii) skilled programmers
(who can complete the more difficult tasks) are easier to
attribute than less skilled programmers.

1 Introduction

Do programmers leave fingerprints in their source code?
That is, does each programmer have a distinctive “cod-
ing style”? Perhaps a programmer has a preference for
spaces over tabs, or while loops over for loops, or,
more subtly, modular rather than monolithic code.

These questions have strong privacy and security im-
plications. Contributors to open-source projects may
hide their identity whether they are Bitcoin’s creator or
just a programmer who does not want her employer to
know about her side activities. They may live in a regime
that prohibits certain types of software, such as censor-
ship circumvention tools. For example, an Iranian pro-

grammer was sentenced to death in 2012 for developing
photo sharing software that was used on pornographic
websites [31].

The flip side of this scenario is that code attribution
may be helpful in a forensic context, such as detection of
ghostwriting, a form of plagiarism, and investigation of
copyright disputes. It might also give us clues about the
identity of malware authors. A careful adversary may
only leave binaries, but others may leave behind code
written in a scripting language or source code down-
loaded into the breached system for compilation.

While this problem has been studied previously, our
work represents a qualitative advance over the state of the
art by showing that Abstract Syntax Trees (ASTs) carry
authorial ‘fingerprints.’ The highest accuracy achieved
in the literature is 97%, but this is achieved on a set of
only 30 programmers and furthermore relies on using
programmer comments and larger amounts of training
data [12, 14]. We match this accuracy on small program-
mer sets without this limitation. The largest scale exper-
iments in the literature use 46 programmers and achieve
67.2% accuracy [10]. We are able to handle orders of
magnitude more programmers (1,600) while using less
training data with 92.83% accuracy. Furthermore, the
features we are using are not trivial to obfuscate. We are
able to maintain high accuracy while using commercial
obfuscators. While abstract syntax trees can be obfus-
cated to an extent, doing so incurs significant overhead
and maintenance costs.

Contributions. First, we use syntactic features for
code stylometry. Extracting such features requires pars-
ing of incomplete source code using a fuzzy parser to
generate an abstract syntax tree. These features add a
component to code stylometry that has so far remained
almost completely unexplored. We provide evidence that
these features are more fundamental and harder to ob-
fuscate. Our complete feature set consists of a compre-
hensive set of around 120,000 layout-based, lexical, and
syntactic features. With this complete feature set we are
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able to achieve a significant increase in accuracy com-
pared to previous work. Second, we show that we can
scale our method to 1,600 programmers without losing
much accuracy. Third, this method is not specific to C or
C++, and can be applied to any programming language.

We collected C++ source of thousands of contestants
from the annual international competition “Google Code
Jam”. A bagging (portmanteau of “bootstrap aggregat-
ing”) classifier - random forest was used to attribute pro-
grammers to source code. Our classifiers reach 98% ac-
curacy in a 250-class closed world task, 93% accuracy in
a 1,600-class closed world task, 100% accuracy on av-
erage in a two-class task. Finally, we analyze various
attributes of programmers, types of programming tasks,
and types of features that appear to influence the success
of attribution. We identified the most important 928 fea-
tures out of 120,000; 44% of them are syntactic, 1% are
layout-based and the rest of the features are lexical. 8
training files with an average of 70 lines of code is suffi-
cient for training when using the lexical, layout and syn-
tactic features. We also observe that programmers with
a greater skill set are more easily identifiable compared
to less advanced programmers and that a programmer’s
coding style is more distinctive in implementations of
difficult tasks as opposed to easier tasks.

The remainder of this paper is structured as follows.
We begin by introducing applications of source code au-
thorship attribution considered throughout this paper in
Section 2, and present our AST-based approach in Sec-
tion 3. We proceed to give a detailed overview of the ex-
periments conducted to evaluate our method in Section 4
and discuss the insights they provide in Section 5. Sec-
tion 6 presents related work, and Section 7 concludes.

2 Motivation

Throughout this work, we consider an analyst interested
in determining the programmer of an anonymous frag-
ment of source code purely based on its style. To do so,
the analyst only has access to labeled samples from a set
of candidate programmers, as well as from zero or more
unrelated programmers.

The analyst addresses this problem by converting each
labeled sample into a numerical feature vector, in order to
train a machine learning classifier, that can subsequently
be used to determine the code’s programmer. In partic-
ular, this abstract problem formulation captures the fol-
lowing five settings and corresponding applications (see
Table 1). The experimental formulations are presented in
Section 4.2.

We emphasize that while these applications motivate
our work, we have not directly studied them. Rather, we
formulate them as variants of a machine-learning (classi-
fication) problem. Our data comes from the Google Code

Jam competition, as we discuss in Section 4.1. Doubt-
less there will be additional challenges in using our tech-
niques for digital forensics or any of the other real-world
applications. We describe some known limitations in
Section 5.

Programmer De-anonymization. In this scenario,
the analyst is interested in determining the identity of an
anonymous programmer. For example, if she has a set of
programmers who she suspects might be Bitcoin’s cre-
ator, Satoshi, and samples of source code from each of
these programmers, she could use the initial versions of
Bitcoin’s source code to try to determine Satoshi’s iden-
tity. Of course, this assumes that Satoshi did not make
any attempts to obfuscate his or her coding style. Given a
set of probable programmers, this is considered a closed-
world machine learning task with multiple classes where
anonymous source code is attributed to a programmer.
This is a threat to privacy for open source contributors
who wish to remain anonymous.

Ghostwriting Detection. Ghostwriting detection is
related to but different from traditional plagiarism detec-
tion. We are given a suspicious piece of code and one or
more candidate pieces of code that the suspicious code
may have been plagiarized from. This is a well-studied
problem, typically solved using code similarity metrics,
as implemented by widely used tools such as MOSS [6],
JPlag [25], and Sherlock [24].

For example, a professor may want to determine
whether a student’s programming assignment has been
written by a student who has previously taken the class.
Unfortunately, even though submissions of the previous
year are available, the assignments may have changed
considerably, rendering code-similarity based methods
ineffective. Luckily, stylometry can be applied in this
setting—we find the most stylistically similar piece of
code from the previous year’s corpus and bring both stu-
dents in for gentle questioning. Given the limited set of
students, this can be considered a closed-world machine
learning problem.

Software Forensics. In software forensics, the analyst
assembles a set of candidate programmers based on pre-
viously collected malware samples or online code repos-
itories. Unfortunately, she cannot be sure that the anony-
mous programmer is one of the candidates, making this
an open world classification problem as the test sample
might not belong to any known category.

Copyright Investigation. Theft of code often leads to
copyright disputes. Informal arrangements of hired pro-
gramming labor are very common, and in the absence of
a written contract, someone might claim a piece of code
was her own after it was developed for hire and delivered.
A dispute between two parties is thus a two-class classi-
fication problem; we assume that labeled code from both
programmers is available to the forensic expert.

2
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Authorship Verification. Finally, we may suspect
that a piece of code was not written by the claimed pro-
grammer, but have no leads on who the actual program-
mer might be. This is the authorship verification prob-
lem. In this work, we take the textbook approach and
model it as a two-class problem where positive examples
come from previous works of the claimed programmer
and negative examples come from randomly selected un-
related programmers. Alternatively, anomaly detection
could be employed in this setting, e.g., using a one-class
support vector machine [see 30].

As an example, a recent investigation conducted by
Verizon [17] on a US company’s anomalous virtual pri-
vate network traffic, revealed an employee who was out-
sourcing her work to programmers in China. In such
cases, training a classifier on employee’s original code
and that of random programmers, and subsequently test-
ing pieces of recent code, could demonstrate if the em-
ployee was the actual programmer.

In each of these applications, the adversary may try to
actively modify the program’s coding style. In the soft-
ware forensics application, the adversary tries to modify
code written by her to hide her style. In the copyright and
authorship verification applications, the adversary mod-
ifies code written by another programmer to match his
own style. Finally, in the ghostwriting application, two
of the parties may collaborate to modify the style of code
written by one to match the other’s style.

Application Learner Comments Evaluation
De-anonymization Multiclass Closed world Section 4.2.1
Ghostwriting detection Multiclass Closed world Section 4.2.1
Software forensics Multiclass Open world Section 4.2.2
Copyright investigation Two-class Closed world Section 4.2.3
Authorship verification Two/One-class Open world Section 4.2.4

Table 1: Overview of Applications for Code Stylometry

We emphasize that code stylometry that is robust to
adversarial manipulation is largely left to future work.
However, we hope that our demonstration of the power
of features based on the abstract syntax tree will serve as
the starting point for such research.

3 De-anonymizing Programmers

One of the goals of our research is to create a classifier
that automatically determines the most likely author of
a source file. Machine learning methods are an obvious
choice to tackle this problem, however, their success cru-
cially depends on the choice of a feature set that clearly
represents programming style. To this end, we begin by
parsing source code, thereby obtaining access to a wide
range of possible features that reflect programming lan-
guage use (Section 3.1). We then define a number of

different features to represent both syntax and structure
of program code (Section 3.2) and finally, we train a ran-
dom forest classifier for classification of previously un-
seen source files (Section 3.3). In the following sections,
we will discuss each of these steps in detail and outline
design decisions along the way. The code for our ap-
proach is made available as open-source to allow other
researchers to reproduce our results1.

3.1 Fuzzy Abstract Syntax Trees

To date, methods for source code authorship attribu-
tion focus mostly on sequential feature representations of
code such as byte-level and feature level n-grams [8, 13].
While these models are well suited to capture naming
conventions and preference of keywords, they are en-
tirely language agnostic and thus cannot model author
characteristics that become apparent only in the compo-
sition of language constructs. For example, an author’s
tendency to create deeply nested code, unusually long
functions or long chains of assignments cannot be mod-
eled using n-grams alone.

Addressing these limitations requires source code to
be parsed. Unfortunately, parsing C/C++ code using tra-
ditional compiler front-ends is only possible for complete
code, i.e., source code where all identifiers can be re-
solved. This severely limits their applicability in the set-
ting of authorship attribution as it prohibits analysis of
lone functions or code fragments, as is possible with sim-
ple n-gram models.

As a compromise, we employ the fuzzy parser Jo-
ern that has been designed specifically with incomplete
code in mind [32]. Where possible, the parser produces
abstract syntax trees for code fragments while ignoring
fragments that cannot be parsed without further infor-
mation. The produced syntax trees form the basis for
our feature extraction procedure. While they largely pre-
serve the information required to create n-grams or bag-
of-words representations, in addition, they allow a wealth
of features to be extracted that encode programmer habits
visible in the code’s structure.

As an example, consider the function foo as shown
in Figure 1, and a simplified version of its correspond-
ing abstract syntax tree in Figure 2. The function con-
tains a number of common language constructs found
in many programming languages, such as if-statements
(line 3 and 7), return-statements (line 4, 8 and 10), and
function call expressions (line 6). For each of these con-
structs, the abstract syntax tree contains a corresponding
node. While the leaves of the tree make classical syn-
tactic features such as keywords, identifiers and opera-
tors accessible, inner nodes represent operations showing

1https://github.com/calaylin/CodeStylometry

3
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Figure 1: Sample Code Listing

Function

int foo CompoundStmt

If If Decl

Condition Return Condition Return Else

Or UnaryOp (-)

int ret Assign(=)

EqExpr (!=) UnaryOp (-) Return

RelExpr (<) RelExpr (>) 1

ret Call

ret 0 1 1

x 0 x MAX

bar Args

x

Figure 2: Corresponding Abstract Syntax Tree

how these basic elements are combined to form expres-
sions and statements. In effect, the nesting of language
constructs can also be analyzed to obtain a feature set
representing the code’s structure.

3.2 Feature Extraction

Analyzing coding style using machine learning ap-
proaches is not possible without a suitable representa-
tion of source code that clearly expresses program style.
To address this problem, we present the Code Stylome-
try Feature Set (CSFS), a novel representation of source
code developed specifically for code stylometry. Our fea-
ture set combines three types of features, namely lexical
features, layout features and syntactic features. Lexical
and layout features are obtained from source code while
the syntactic features can only be obtained from ASTs.
We now describe each of these feature types in detail.

3.2.1 Lexical and Layout Features

We begin by extracting numerical features from the
source code that express preferences for certain identi-
fiers and keywords, as well as some statistics on the use
of functions or the nesting depth. Lexical and layout fea-
tures can be calculated from the source code, without
having access to a parser, with basic knowledge of the
programming language in use. For example, we mea-
sure the number of functions per source line to determine
the programmer’s preference of longer over shorter func-
tions. Furthermore, we tokenize the source file to obtain
the number of occurrences of each token, so called word
unigrams. Table 2 gives an overview of lexical features.

In addition, we consider layout features that represent
code-indentation. For example, we determine whether
the majority of indented lines begin with whitespace
or tabulator characters, and we determine the ratio of
whitespace to the file size. Table 3 gives a detailed de-
scription of these features.

Feature Definition Count
WordUnigramTF Term frequency of word unigrams in

source code
dynamic*

ln(numkeyword/
length)

Log of the number of occurrences of key-
word divided by file length in characters,
where keyword is one of do, else-if, if, else,
switch, for or while

7

ln(numTernary/
length)

Log of the number of ternary operators di-
vided by file length in characters

1

ln(numTokens/
length)

Log of the number of word tokens divided
by file length in characters

1

ln(numComments/
length)

Log of the number of comments divided by
file length in characters

1

ln(numLiterals/
length)

Log of the number of string, character, and
numeric literals divided by file length in
characters

1

ln(numKeywords/
length)

Log of the number of unique keywords
used divided by file length in characters

1

ln(numFunctions/
length)

Log of the number of functions divided by
file length in characters

1

ln(numMacros/
length)

Log of the number of preprocessor direc-
tives divided by file length in characters

1

nestingDepth Highest degree to which control statements
and loops are nested within each other

1

branchingFactor Branching factor of the tree formed by con-
verting code blocks of files into nodes

1

avgParams The average number of parameters among
all functions

1

stdDevNumParams The standard deviation of the number of
parameters among all functions

1

avgLineLength The average length of each line 1
stdDevLineLength The standard deviation of the character

lengths of each line
1

*About 55,000 for 250 authors with 9 files.

Table 2: Lexical Features

3.2.2 Syntactic Features

The syntactic feature set describes the properties of the
language dependent abstract syntax tree, and keywords.
Calculating these features requires access to an abstract
syntax tree. All of these features are invariant to changes
in source-code layout, as well as comments.

Table 4 gives an overview of our syntactic features.
We obtain these features by preprocessing all C++ source
files in the dataset to produce their abstract syntax trees.

4
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Feature Definition Count
ln(numTabs/length) Log of the number of tab characters di-

vided by file length in characters
1

ln(numSpaces/length) Log of the number of space characters di-
vided by file length in characters

1

ln(numEmptyLines/
length)

Log of the number of empty lines divided
by file length in characters, excluding
leading and trailing lines between lines of
text

1

whiteSpaceRatio The ratio between the number of whites-
pace characters (spaces, tabs, and new-
lines) and non-whitespace characters

1

newLineBefore
OpenBrace

A boolean representing whether the ma-
jority of code-block braces are preceded
by a newline character

1

tabsLeadLines A boolean representing whether the ma-
jority of indented lines begin with spaces
or tabs

1

Table 3: Layout Features

An abstract syntax tree is created for each function in the
code. There are 58 node types in the abstract syntax tree
(see Appendix A) produced by Joern [33].

Feature Definition Count
MaxDepthASTNode Maximum depth of an AST node 1
ASTNodeBigramsTF Term frequency AST node bigrams dynamic*
ASTNodeTypesTF Term frequency of 58 possible AST

node type excluding leaves
58

ASTNodeTypesTFIDF Term frequency inverse document fre-
quency of 58 possible AST node type
excluding leaves

58

ASTNodeTypeAvgDep Average depth of 58 possible AST
node types excluding leaves

58

cppKeywords Term frequency of 84 C++ keywords 84
CodeInASTLeavesTF Term frequency of code unigrams in

AST leaves
dynamic**

CodeInASTLeaves
TFIDF

Term frequency inverse document fre-
quency of code unigrams in AST
leaves

dynamic**

CodeInASTLeaves
AvgDep

Average depth of code unigrams in
AST leaves

dynamic**

*About 45,000 for 250 authors with 9 files.
**About 7,000 for 250 authors with 9 files.
**About 4,000 for 150 authors with 6 files.
**About 2,000 for 25 authors with 9 files.

Table 4: Syntactic Features

The AST node bigrams are the most discriminating
features of all. AST node bigrams are two AST nodes
that are connected to each other. In most cases, when
used alone, they provide similar classification results to
using the entire feature set.

The term frequency (TF) is the raw frequency of a
node found in the abstract syntax trees for each file. The
term frequency inverse document frequency (TFIDF) of
nodes is calculated by multiplying the term frequency of
a node by inverse document frequency. The goal in using
the inverse document frequency is normalizing the term
frequency by the number of authors actually using that

particular type of node. The inverse document frequency
is calculated by dividing the number of authors in the
dataset by the number of authors that use that particular
node. Consequently, we are able to capture how rare of a
node it is and weight it more according to its rarity.

The maximum depth of an abstract syntax tree re-
flects the deepest level a programmer nests a node in the
solution. The average depth of the AST nodes shows
how nested or deep a programmer tends to use particular
structural pieces. And lastly, term frequency of each C++
keyword is calculated. Each of these features is written
to a feature vector to represent the solution file of a spe-
cific author and these vectors are later used in training
and testing by machine learning classifiers.

3.3 Classification
Using the feature set presented in the previous section,
we can now express fragments of source code as numeri-
cal vectors, making them accessible to machine learning
algorithms. We proceed to perform feature selection and
train a random forest classifier capable of identifying the
most likely author of a code fragment.

3.3.1 Feature Selection

Due to our heavy use of unigram term frequency and
TF/IDF measures, and the diversity of individual terms
in the code, our resulting feature vectors are extremely
large and sparse, consisting of tens of thousands of fea-
tures for hundreds of classes. The dynamic Code stylom-
etry feature set, for example, produced close to 120,000
features for 250 authors with 9 solution files each.

In many cases, such feature vectors can lead to over-
fitting (where a rare term, by chance, uniquely identifies
a particular author). Extremely sparse feature vectors
can also damage the accuracy of random forest classi-
fiers, as the sparsity may result in large numbers of zero-
valued features being selected during the random sub-
sampling of the features to select a best split. This re-
duces the number of ‘useful’ splits that can be obtained
at any given node, leading to poorer fits and larger trees.
Large, sparse feature vectors can also lead to slowdowns
in model fitting and evaluation, and are often more diffi-
cult to interpret. By selecting a smaller number of more
informative features, the sparsity in the feature vector can
be greatly reduced, thus allowing the classifier to both
produce more accurate results and fit the data faster.

We therefore employed a feature selection step using
WEKA’s information gain [26] criterion, which evaluates
the difference between the entropy of the distribution of
classes and the entropy of the conditional distribution of
classes given a particular feature:

IG(A,Mi) = H(A)−H(A|Mi) (1)

5
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where A is the class corresponding to an author, H is
Shannon entropy, and Mi is the ith feature of the dataset.
Intuitively, the information gain can be thought of as
measuring the amount of information that the observa-
tion of the value of feature i gives about the class label
associated with the example.

To reduce the total size and sparsity of the feature vec-
tor, we retained only those features that individually had
non-zero information gain. (These features can be re-
ferred to as IG-CSFS throughout the rest of the paper.)
Note that, as H(A|Mi) ≤ H(A), information gain is al-
ways non-negative. While the use of information gain
on a variable-per-variable basis implicitly assumes inde-
pendence between the features with respect to their im-
pact on the class label, this conservative approach to fea-
ture selection means that we only use features that have
demonstrable value in classification.

To validate this approach to feature selection, we ap-
plied this method to two distinct sets of source code files,
and observed that sets of features with non-zero informa-
tion gain were nearly identical between the two sets, and
the ranking of features was substantially similar between
the two. This suggests that the application of information
gain to feature selection is producing a robust and con-
sistent set of features (see Section 4 for further discus-
sion). All the results are calculated by using CSFS and
IG-CSFS. Using IG-CSFS on all experiments demon-
strates how these features generalize to different datasets
that are larger in magnitude. One other advantage of IG-
CSFS is that it consists of a few hundred features that
result in non-sparse feature vectors. Such a compact rep-
resentation of coding style makes de-anonymizing thou-
sands of programmers possible in minutes.

3.3.2 Random Forest Classification

We used the random forest ensemble classifier [7] as
our classifier for authorship attribution. Random forests
are ensemble learners built from collections of decision
trees, each of which is grown by randomly sampling
N training samples with replacement, where N is the
number of instances in the dataset. To reduce correla-
tion between trees, features are also subsampled; com-
monly (logM)+1 features are selected at random (with-
out replacement) out of M, and the best split on these
(logM)+ 1 features is used to split the tree nodes. The
number of selected features represents one of the few
tuning parameters in random forests: increasing the num-
ber of features increases the correlation between trees in
the forest which can harm the accuracy of the overall en-
semble, however increasing the number of features that
can be chosen at each split increases the classification ac-
curacy of each individual tree making them stronger clas-
sifiers with low error rates. The optimal range of number

of features can be found using the out of bag (oob) error
estimate, or the error estimate derived from those sam-
ples not selected for training on a given tree.

During classification, each test example is classified
via each of the trained decision trees by following the bi-
nary decisions made at each node until a leaf is reached,
and the results are then aggregated. The most populous
class can be selected as the output of the forest for simple
classification, or classifications can be ranked according
to the number of trees that ‘voted’ for a label when per-
forming relaxed attribution (see Section 4.3.4).

We employed random forests with 300 trees, which
empirically provided the best trade-off between accuracy
and processing time. Examination of numerous oob val-
ues across multiple fits suggested that (logM) + 1 ran-
dom features (where M denotes the total number of fea-
tures) at each split of the decision trees was in fact op-
timal in all of the experiments (listed in Section 4), and
was used throughout. Node splits were selected based on
the information gain criteria, and all trees were grown to
the largest extent possible, without pruning.

The data was analyzed via k-fold cross-validation,
where the data was split into training and test sets strat-
ified by author (ensuring that the number of code sam-
ples per author in the training and test sets was identi-
cal across authors). k varies according to datasets and
is equal to the number of instances present from each
author. The cross-validation procedure was repeated 10
times, each with a different random seed. We report the
average results across all iterations in the results, ensur-
ing that they are not biased by improbably easy or diffi-
cult to classify subsets.

4 Evaluation

In the evaluation section, we present the results to the
possible scenarios formulated in the problem statement
and evaluate our method. The corpus section gives an
overview of the data we collected. Then, we present the
main results to programmer de-anonymization and how
it scales to 1,600 programmers, which is an immediate
privacy concern for open source contributors that prefer
to remain anonymous. We then present the training data
requirements and efficacy of types of features. The ob-
fuscation section discusses a possible countermeasure to
programmer de-anonymization. We then present possi-
ble machine learning formulations along with the verifi-
cation section that extends the approach to an open world
problem. We conclude the evaluation with generalizing
the method to other programming languages and provid-
ing software engineering insights.
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4.1 Corpus

One concern in source code authorship attribution is that
we are actually identifying differences in coding style,
rather than merely differences in functionality. Consider
the case where Alice and Bob collaborate on an open
source project. Bob writes user interface code whereas
Alice works on the network interface and backend ana-
lytics. If we used a dataset derived from their project,
we might differentiate differences between frontend and
backend code rather than differences in style.

In order to minimize these effects, we evaluate our
method on the source code of solutions to programming
tasks from the international programming competition
Google Code Jam (GCJ), made public in 2008 [2]. The
competition consists of algorithmic problems that need
to be solved in a programming language of choice. In
particular, this means that all programmers solve the
same problems, and hence implement similar functional-
ity, a property of the dataset crucial for code stylometry
analysis.

The dataset contains solutions by professional pro-
grammers, students, academics, and hobbyists from 166
countries. Participation statistics are similar over the
years. Moreover, it contains problems of different dif-
ficulty, as the contest takes place in several rounds. This
allows us to assess whether coding style is related to pro-
grammer experience and problem difficulty.

The most commonly used programming language was
C++, followed by Java, and Python. We chose to inves-
tigate source code stylometry on C++ and C because of
their popularity in the competition and having a parser
for C/C++ readily available [32]. We also conducted
some preliminary experimentation on Python.

A validation dataset was created from 2012’s GCJ
competition. Some problems had two stages, where the
second stage involved answering the same problem in a
limited amount of time and for a larger input. The so-
lution to the large input is essentially a solution for the
small input but not vice versa. Therefore, collecting both
of these solutions could result in duplicate and identical
source code. In order to avoid multiple entries, we only
collected the small input versions’ solutions to be used in
our dataset.

The programmers had up to 19 solution files in these
datasets. Solution files have an average of 70 lines of
code per programmer.

To create our experimental datasets that are discussed
in further detail in the results section;
(i) We first partitioned the corpus of files by year of com-
petition. The “main” dataset includes files drawn from
2014 (250 programmers). The “validation” dataset files
come from 2012, and the “multi-year” dataset files come
from years 2008 through 2014 (1,600 programmers).

(ii) Within each year, we ordered the corpus files by the
round in which they were written, and by the problem
within a round, as all competitors proceed through the
same sequence of rounds in that year. As a result, we
performed stratified cross validation on each program file
by the year it was written, by the round in which the pro-
gram was written, by the problems solved in the round,
and by the author’s highest round completed in that year.

Some limitations of this dataset are that it does not al-
low us to assess the effect of style guidelines that may
be imposed on a project or attributing code with mul-
tiple/mixed programmers. We leave these interesting
questions for future work, but posit that our improved re-
sults with basic stylometry make them worthy of study.

4.2 Applications

In this section, we will go over machine learning task
formulations representing five possible real-world appli-
cations presented in Section 2.

4.2.1 Multiclass Closed World Task

This section presents our main experiment—de-
anonymizing 250 programmers in the difficult scenario
where all programmers solved the same set of prob-
lems. The machine learning task formulation for
de-anonymizing programmers also applies to ghostwrit-
ing detection. The biggest dataset formed from 2014’s
Google Code Jam Competition with 9 solution files to
the same problem had 250 programmers. These were the
easiest set of 9 problems, making the classification more
challenging (see Section 4.3.6). We reached 91.78%
accuracy in classifying 250 programmers with the Code
Stylometry Feature Set. After applying information gain
and using the features that had information gain, the
accuracy was 95.08%.

We also took 250 programmers from different years
and randomly selected 9 solution files for each one of
them. We used the information gain features obtained
from 2014’s dataset to see how well they generalize.
We reached 98.04% accuracy in classifying 250 pro-
grammers. This is 3% higher than the controlled large
dataset’s results. The accuracy might be increasing be-
cause of using a mixed set of Google Code Jam prob-
lems, which potentially contains the possible solutions’
properties along with programmers’ coding style and
makes the code more distinct.

We wanted to evaluate our approach and validate our
method and important features. We created a dataset
from 2012’s Google Code Jam Competition with 250
programmers who had the solutions to the same set of
9 problems. We extracted only the features that had pos-
itive information gain in 2014’s dataset that was used as
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the main dataset to implement the approach. The classi-
fication accuracy was 96.83%, which is higher than the
95.07% accuracy obtained in 2014’s dataset.

The high accuracy of validation results in Table 5 show
that we identified the important features of code stylom-
etry and found a stable feature set. This feature set does
not necessarily represent the exact features for all pos-
sible datasets. For a given dataset that has ground truth
information on authorship, following the same approach
should generate the most important features that repre-
sent coding style in that particular dataset.

A = #programmers, F = max #problems completed
N = #problems included in dataset (N ≤ F)

A = 250 from 2014 A = 250 from 2012 A = 250 all years
F = 9 from 2014 F = 9 from 2014 F ≥ 9 all years

N = 9 N = 9 N = 9
Average accuracy after 10 iterations with IG-CSFS features

95.07% 96.83% 98.04%

Table 5: Validation Experiments

4.2.2 Mutliclass Open World Task

The experiments in this section can be used in software
forensics to find out the programmer of a piece of mal-
ware. In software forensics, the analyst does not know if
source code belongs to one of the programmers in the
candidate set of programmers. In such cases, we can
classify the anonymous source code, and if the majority
number of votes of trees in the random forest is below a
certain threshold, we can reject the classification consid-
ering the possibility that it might not belong to any of the
classes in the training data. By doing so, we can scale
our approach to an open world scenario, where we might
not have encountered the suspect before. As long as we
determine a confidence threshold based on training data
[30], we can calculate the probability that an instance
belongs to one of the programmers in the set and accord-
ingly accept or reject the classification.

We performed 270 classifications in a 30-class prob-
lem using all the features to determine the confidence
threshold based on the training data. The accuracy was
96.67%. There were 9 misclassifications and all of them
were classified with less than 15% confidence by the
classifier. The class probability or classification confi-
dence that source code fragment C is of class i is cal-
culated by taking the percentage of trees in the random
forest that voted for that particular class, as follows2:

P(Ci) =
∑ j Vj(i)
|T | f

(2)

Where Vj(i) = 1 if the jth tree voted for class i and
0 otherwise, and |T | f denotes the total number of trees
in forest f . Note that by construction, ∑i P(Ci) = 1 and
P(Ci)≥ 0 ∀ i, allowing us to treat P(Ci) as a probability
measure.

There was one correct classification made with 13.7%
confidence. This suggests that we can use a threshold be-
tween 13.7% and 15% confidence level for verification,
and manually analyze the classifications that did not pass
the confidence threshold or exclude them from results.

We picked an aggressive threshold of 15% and to vali-
date it, we trained a random forest classifier on the same
set of 30 programmers 270 code samples. We tested on
150 different files from the programmers in the training
set. There were 6 classifications below the 15% threshold
and two of them were misclassified. We took another set
of 420 test files from 30 programmers that were not in the
training set. All the files from the 30 programmers were
attributed to one of the 30 programmers in the training
set since this is a closed world classification task, how-
ever, the highest confidence level in these classifications
was 14.7%. The 15% threshold catches all the instances
that do not belong to the programmers in the suspect set,
gets rid of 2 misclassifications and 4 correct classifica-
tions. Consequently, when we see a classification with
less than a threshold value, we can reject the classifica-
tion and attribute the test instance to an unknown suspect.

4.2.3 Two-class Closed World Task

Source code author identification could automatically
deal with source code copyright disputes without requir-
ing manual analysis by an objective code investigator.
A copyright dispute on code ownership can be resolved
by comparing the styles of both parties claiming to have
generated the code. The style of the disputed code can
be compared to both parties’ other source code to aid in
the investigation. To imitate such a scenario, we took
60 different pairs of programmers, each with 9 solution
files. We used a random forest and 9-fold cross validation
to classify two programmers’ source code. The average
classification accuracy using CSFS set is 100.00% and
100.00% with the information gain features.

4.2.4 Two-class/One-class Open World Task

Another two-class machine learning task can be formu-
lated for authorship verification. We suspect Mallory of
plagiarizing, so we mix in some code of hers with a large
sample of other people, test, and see if the disputed code
gets classified as hers or someone else’s. If it gets clas-
sified as hers, then it was with high probability really
written by her. If it is classified as someone else’s, it
really was someone else’s code. This could be an open
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world problem and the person that originally wrote the
code could be a previously unknown programmer.

This is a two-class problem with classes Mallory and
others. We train on Mallory’s solutions to problems a,
b, c, d, e, f, g, h. We also train on programmer A’s solu-
tion to problem a, programmer B’s solution to problem b,
programmer C’s solution to problem c, programmer D’s
solution to problem d, programmer E’s solution to prob-
lem e, programmer F’s solution to problem f, program-
mer G’s solution to problem g, programmer H’s solution
to problem h and put them in one class called ABCDE-
FGH. We train a random forest classifier with 300 trees
on classes Mallory and ABCDEFGH. We have 6 test in-
stances from Mallory and 6 test instances from another
programmer ZZZZZZ, who is not in the training set.

These experiments have been repeated in the ex-
act same setting with 80 different sets of programmers
ABCDEFGH, ZZZZZZ and Mallorys. The average clas-
sification accuracy for Mallory using the CSFS set is
100.00%. ZZZZZZ’s test instances are classified as pro-
grammer ABCDEFGH 82.04% of the time, and classi-
fied as Mallory for the rest of the time while using the
CSFS. Depending on the amount of false positives we
are willing to accept, we can change the operating point
on the ROC curve.

These results are also promising for use in cases where
a piece of code is suspected to be plagiarized. Following
the same approach, if the classification result of the piece
of code is someone other than Mallory, that piece of code
was with very high probability not written by Mallory.

4.3 Additional Insights

4.3.1 Scaling

We collected a larger dataset of 1,600 programmers from
various years. Each of the programmers had 9 source
code samples. We created 7 subsets of this large dataset
in differing sizes, with 250, 500, 750, 1,000, 1,250,
1,500, and 1,600 programmers. These subsets are use-
ful to understand how well our approach scales. We ex-
tracted the specific features that had information gain in
the main 250 programmer dataset from this large dataset.
In theory, we need to use more trees in the random for-
est as the number of classes increase to decrease vari-
ance, but we used fewer trees compared to smaller ex-
periments. We used 300 trees in the random forest to
run the experiments in a reasonable amount of time with
a reasonable amount of memory. The accuracy did not
decrease too much when increasing the number of pro-
grammers. This result shows that information gain fea-
tures are robust against changes in class and are im-
portant properties of programmers’ coding styles. The
following Figure 3 demonstrates how well our method

scales. We are able to de-anonymize 1,600 programmers
using 32GB memory within one hour. Alternately, we
can use 40 trees and get nearly the same accuracy (within
0.5%) in a few minutes.

Figure 3: Large Scale De-anonymization

4.3.2 Training Data and Features

We selected different sets of 62 programmers that had F
solution files, from 2 up to 14. Each dataset has the so-
lutions to the same set of F problems by different sets
of programmers. Each dataset consisted of programmers
that were able to solve exactly F problems. Such an ex-
perimental setup makes it possible to investigate the ef-
fect of programmer skill set on coding style. The size of
the datasets were limited to 62, because there were only
62 contestants with 14 files. There were a few contes-
tants with up to 19 files but we had to exclude them since
there were not enough programmers to compare them.

The same set of F problems were used to ensure that
the coding style of the programmer is being classified
and not the properties of possible solutions of the prob-
lem itself. We were able to capture personal program-
ming style since all the programmers are coding the same
functionality in their own ways.

Stratified F-fold cross validation was used by training
on everyone’s (F − 1) solutions and testing on the Fth

problem that did not appear in the training set. As a re-
sult, the problems in the test files were encountered for
the first time by the classifier.

We used a random forest with 300 trees and (logM)+1
features with F-fold stratified cross validation, first with
the Code Stylometry Feature Set (CSFS) and then with
the CSFS’s features that had information gain.

Figure 4 shows the accuracy from 13 different sets of
62 programmers with 2 to 14 solution files, and conse-
quently 1 to 13 training files. The CSFS reaches an opti-
mal training set size at 9 solution files, where the classi-
fier trains on 8 (F −1) solutions.

In the datasets we constructed, as the number of files
increase and problems from more advanced rounds are
included, the average line of code (LOC) per file also
increases. The average lines of code per source code
in the dataset is 70. Increased number of lines of code
might have a positive effect on the accuracy but at the
same time it reveals programmer’s choice of program

9



264 24th USENIX Security Symposium USENIX Association

Figure 4: Training Data

length in implementing the same functionality. On the
other hand, the average line of code of the 7 easier (76
LOC) or difficult problems (83 LOC) taken from contes-
tants that were able to complete 14 problems, is higher
than the average line of code (68) of contestants that
were able to solve only 7 problems. This shows that
programmers with better skills tend to write longer code
to solve Google Code Jam problems. The mainstream
idea is that better programmers write shorter and cleaner
code which contradicts with line of code statistics in our
datasets. Google Code Jam contestants are supposed to
optimize their code to process large inputs with faster
performance. This implementation strategy might be
leading to advanced programmers implementing longer
solutions for the sake of optimization.

We took the dataset with 62 programmers each with
9 solutions. We get 97.67% accuracy with all the fea-
tures and 99.28% accuracy with the information gain fea-
tures. We excluded all the syntactic features and the ac-
curacy dropped to 88.89% with all the non-syntactic fea-
tures and 88.35% with the information gain features of
the non-syntactic feature set. We ran another experiment
using only the syntactic features and obtained 96.06%
with all the syntactic features and 96.96% with the infor-
mation gain features of the syntactic feature set. Most
of the classification power is preserved with the syntac-
tic features, and using non-syntactic features leads to a
significant decline in accuracy.

4.3.3 Obfuscation

We took a dataset with 9 solution files and 20 program-
mers and obfuscated the code using an off-the-shelf C++
obfuscator called stunnix [3]. The accuracy with the in-
formation gain code stylometry feature set on the ob-
fuscated dataset is 98.89%. The accuracy on the same
dataset when the code is not obfuscated is 100.00%. The
obfuscator refactored function and variable names, as
well as comments, and stripped all the spaces, preserv-
ing the functionality of code without changing the struc-
ture of the program. Obfuscating the data produced little

detectable change in the performance of the classifier for
this sample. The results are summarized in Table 6.

We took the maximum number of programmers, 20,
that had solutions to 9 problems in C and obfuscated
the code (see example in Appendix B) using a much
more sophisticated open source obfuscator called Tigress
[1]. In particular, Tigress implements function virtualiza-
tion, an obfuscation technique that turns functions into
interpreters and converts the original program into cor-
responding bytecode. After applying function virtual-
ization, we were less able to effectively de-anonymize
programmers, so it has potential as a countermeasure to
programmer de-anonymization. However, this obfusca-
tion comes at a cost. First of all, the obfuscated code is
neither readable nor maintainable, and is thus unsuitable
for an open source project. Second, the obfuscation adds
significant overhead (9 times slower) to the runtime of
the program, which is another disadvantage.

The accuracy with the information gain feature set on
the obfuscated dataset is reduced to 67.22%. When we
limit the feature set to AST node bigrams, we get 18.89%
accuracy, which demonstrates the need for all feature
types in certain scenarios. The accuracy on the same
dataset when the code is not obfuscated is 95.91%.

Obfuscator Programmers Lang Results w/o
Obfuscation

Results w/
Obfuscation

Stunnix 20 C++ 98.89% 100.00%
Stunnix 20 C++ 98.89*% 98.89*%
Tigress 20 C 93.65% 58.33%
Tigress 20 C 95.91*% 67.22*%

*Information gain features

Table 6: Effect of Obfuscation on De-anonymization

4.3.4 Relaxed Classification

The goal here is to determine whether it is possible to re-
duce the number of suspects using code stylometry. Re-
ducing the set of suspects in challenging cases, such as
having too many suspects, would reduce the effort re-
quired to manually find the actual programmer of the
code.

In this section, we performed classification on the
main 250 programmer dataset from 2014 using the in-
formation gain features. The classification was relaxed
to a set of top R suspects instead of exact classification
of the programmer. The relaxed factor R varied from 1
to 10. Instead of taking the highest majority vote of the
decisions trees in the random forest, the highest R major-
ity vote decisions were taken and the classification result
was considered correct if the programmer was in the set
of top R highest voted classes. The accuracy does not
improve much after the relaxed factor is larger than 5.
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Figure 5: Relaxed Classification with 250 Programmers

4.3.5 Generalizing the Method

Features derived from ASTs can represent coding styles
in various languages. These features are applicable in
cases when lexical and layout features may be less dis-
criminating due to formatting standards and reliance on
whitespace and other ‘lexical’ features as syntax, such
as Python’s PEP8 formatting. To show that our method
generalizes, we collected source code of 229 Python pro-
grammers from GCJ’s 2014 competition. 229 program-
mers had exactly 9 solutions. Using only the Python
equivalents of syntactic features listed in Table 4 and
9-fold cross-validation, the average accuracy is 53.91%
for top-1 classification, 75.69% for top-5 relaxed attri-
bution. The largest set of programmers to all work on
the same set of 9 problems was 23 programmers. The
average accuracy in identifying these 23 programmers is
87.93% for top-1 and 99.52% for top-5 relaxed attribu-
tion. The same classification tasks using the information
gain features are also listed in Table 7. The overall ac-
curacy in datasets composed of Python code are lower
than C++ datasets. In Python datasets, we only used
syntactic features from ASTs that were generated by a
parser that was not fuzzy. The lack of quantity and speci-
ficity of features accounts for the decreased accuracy.
The Python dataset’s information gain features are sig-
nificantly fewer in quantity, compared to C++ dataset’s
information gain features. Information gain only keeps
features that have discriminative value all on their own.
If two features only provide discriminative value when
used together, then information gain will discard them.
So if a lot of the features for the Python set are only
jointly discriminative (and not individually discrimina-
tive), then the information gain criteria may be removing
features that in combination could effectively discrimi-
nate between authors. This might account for the de-
crease when using information gain features. While in
the context of other results in this paper the results in Ta-
ble 7 appear lackluster, it is worth noting that even this
preliminary test using only syntactic features has compa-
rable performance to other prior work at a similar scale
(see Section 6 and Table 9), demonstrating the utility
of syntactic features and the relative ease of generating
them for novel programming languages. Nevertheless, a
CSFS equivalent feature set can be generated for other

programming languages by implementing the layout and
lexical features as well as using a fuzzy parser.

Lang. Programmers Classification IG Top-5 Top-5 IG
Python 23 87.93% 79.71% 99.52% 96.62
Python 229 53.91% 39.16% 75.69% 55.46

Table 7: Generalizing to Other Programming Languages

4.3.6 Software Engineering Insights

We wanted to investigate if programming style is consis-
tent throughout years. We found the contestants that had
the same username and country information both in 2012
and 2014. We assumed that these are the same people but
there is a chance that they might be different people. In
2014, someone else might have picked up the same user-
name from the same country and started using it. We are
going to ignore such a ground truth problem for now and
assume that they are the same people.

We took a set of 25 programmers from 2012 that were
also contestants in 2014’s competition. We took 8 files
from their submissions in 2012 and trained a random for-
est classifier with 300 trees using CSFS. We had one in-
stance from each one of the contestants from 2014. The
correct classification of these test instances from 2014
is 96.00%. The accuracy dropped to 92.00% when using
only information gain features, which might be due to the
aggressive elimination of pairs of features that are jointly
discriminative. These 25 programmers’ 9 files from 2014
had a correct classification accuracy of 98.04%. These
results indicate that coding style is preserved up to some
degree throughout years.

To investigate problem difficulty’s effect on coding
style, we created two datasets from 62 programmers that
had exactly 14 solution files. Table 8 summarizes the
following results. A dataset with 7 of the easier prob-
lems out of 14 resulted in 95.62% accuracy. A dataset
with 7 of the more difficult problems out of 14 resulted
in 99.31% accuracy. This might imply that more difficult
coding tasks have a more prevalent reflection of coding
style. On the other hand, the dataset that had 62 pro-
grammers with exactly 7 of the easier problems resulted
in 91.24% accuracy, which is a lot lower than the accu-
racy obtained from the dataset whose programmers were
able to advance to solve 14 problems. This might indi-
cate that, programmers who are advanced enough to an-
swer 14 problems likely have more unique coding styles
compared to contestants that were only able to solve the
first 7 problems.

To investigate the possibility that contestants who are
able to advance further in the rounds have more unique
coding styles, we performed a second round of experi-
ments on comparable datasets. We took the dataset with
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12 solution files and 62 programmers. A dataset with 6
of the easier problems out of 12 resulted in 91.39% ac-
curacy. A dataset with 6 of the more difficult problems
out of 12 resulted in 94.35% accuracy. These results are
higher than the dataset whose programmers were only
able to solve the easier 6 problems. The dataset that had
62 programmers with exactly 6 of the easier problems
resulted in 90.05% accuracy.

A = #programmers, F = max #problems completed

N = #problems included in dataset (N ≤ F)

A = 62

F = 14 F = 7 F = 12 F = 6

N = 7 N = 7 N = 7 N = 6 N = 6 N = 6

Average accuracy after 10 iterations while using CSFS

99.31% 95.62%2 91.24%1 94.35% 91.39%2 90.05%1

Average accuracy after 10 iterations while using IG CSFS

99.38% 98.62%2 96.77%1 96.69% 95.43%2 94.89%1

1 Drop in accuracy due to programmer skill set.
2 Coding style is more distinct in more difficult tasks.

Table 8: Effect of Problem Difficulty on Coding Style

5 Discussion

In this section, we discuss the conclusions we draw from
the experiments outlined in the previous section, limita-
tions, as well as questions raised by our results. In par-
ticular, we discuss the difficulty of the different settings
considered, the effects of obfuscation, and limitations of
our current approach.

Problem Difficulty. The experiment with random
problems from random authors among seven years most
closely resembles a real world scenario. In such an ex-
perimental setting, there is a chance that instead of only
identifying authors we are also identifying the properties
of a specific problem’s solution, which results in a boost
in accuracy.

In contrast, our main experimental setting where all
authors have only answered the nine easiest problems is
possibly the hardest scenario, since we are training on the
same set of eight problems that all the authors have algo-
rithmically solved and try to identify the authors from
the test instances that are all solutions of the 9th prob-
lem. On the upside, these test instances help us precisely
capture the differences between individual coding style
that represent the same functionality. We also see that
such a scenario is harder since the randomized dataset
has higher accuracy.

Classifying authors that have implemented the solu-
tion to a set of difficult problems is easier than identi-
fying authors with a set of easier problems. This shows

that coding style is reflected more through difficult pro-
gramming tasks. This might indicate that programmers
come up with unique solutions and preserve their cod-
ing style more when problems get harder. On the other
hand, programmers with a better skill set have a prevalent
coding style which can be identified more easily com-
pared to contestants who were not able to advance as
far in the competition. This might indicate that as pro-
grammers become more advanced, they build a stronger
coding style compared to novices. There is another pos-
sibility that maybe better programmers start out with a
more unique coding style.

Effects of Obfuscation. A malware author or pla-
giarizing programmer might deliberately try to hide his
source code by obfuscation. Our experiments indicate
that our method is resistant to simple off-the-shelf obfus-
cators such as stunnix, that make code look cryptic while
preserving functionality. The reason for this success is
that the changes stunnix makes to the code have no effect
on syntactic features, e.g., removal of comments, chang-
ing of names, and stripping of whitespace.

In contrast, sophisticated obfuscation techniques such
as function virtualization hinder de-anonymization to
some degree, however, at the cost of making code
unreadable and introducing a significant performance
penalty. Unfortunately, unreadability of code is not ac-
ceptable for open-source projects, while it is no problem
for attackers interested in covering their tracks. Develop-
ing methods to automatically remove stylometric infor-
mation from source code without sacrificing readability
is therefore a promising direction for future research.

Limitations. We have not considered the case where
a source file might be written by a different author than
the stated contestant, which is a ground truth problem
that we cannot control. Moreover, it is often the case that
code fragments are the work of multiple authors. We
plan to extend this work to study such datasets. To shed
light on the feasibility of classifying such code, we are
currently working with a dataset of git commits to open
source projects. Our parser works on code fragments
rather than complete code, consequently we believe this
analysis will be possible.

Another fundamental problem for machine learning
classifiers are mimicry attacks. For example, our clas-
sifier may be evaded by an adversary by adding extra
dummy code to a file that closely resembles that of an-
other programmer, albeit without affecting the program’s
behavior. This evasion is possible, but trivial to resolve
when an analysts verifies the decision.

Finally, we cannot be sure whether the original au-
thor is actually a Google Code Jam contestant. In this
case, we can detect those by a classify and then verify
approach as explained in Stolerman et al.’s work [30].
Each classification could go through a verification step
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to eliminate instances where the classifier’s confidence is
below a threshold. After the verification step, instances
that do not belong to the set of known authors can be
separated from the dataset to be excluded or for further
manual analysis.

6 Related Work

Our work is inspired by the research done on authorship
attribution of unstructured or semi-structured text [5, 22].
In this section, we discuss prior work on source code
authorship attribution. In general, such work (Table 9)
looks at smaller scale problems, does not use structural
features, and achieves lower accuracies than our work.

The highest accuracies in the related work are
achieved by Frantzeskou et al. [12, 14]. They used 1,500
7-grams to reach 97% accuracy with 30 programmers.
They investigated the high-level features that contribute
to source code authorship attribution in Java and Com-
mon Lisp. They determined the importance of each fea-
ture by iteratively excluding one of the features from the
feature set. They showed that comments, layout features
and naming patterns have a strong influence on the au-
thor classification accuracy. They used more training
data (172 line of code on average) than us (70 lines of
code). We replicated their experiments on a 30 program-
mer subset of our C++ data set, with eleven files contain-
ing 70 lines of code on average and no comments. We
reach 76.67% accuracy with 6-grams, and 76.06% accu-
racy with 7-grams. When we used a 6 and 7-gram fea-
ture set on 250 programmers with 9 files, we got 63.42%
accuracy. With our original feature set, we get 98% ac-
curacy on 250 programmers.

The largest number of programmers studied in the re-
lated work was 46 programmers with 67.2% accuracy.
Ding and Samadzadeh [10] use statistical methods for
authorship attribution in Java. They show that among
lexical, keyword and layout properties, layout metrics
have a more important role than others which is not the
case in our analysis.

There are also a number of smaller scale, lower ac-
curacy approaches in the literature [9, 11, 18–21, 28],
shown in Table 9, all of which we significantly outper-
form. These approaches use a combination of layout and
lexical features.

The only other work to explore structural features is
by Pellin [23], who used manually parsed abstract syntax
trees with an SVM that has a tree based kernel to classify
functions of two programmers. He obtains an average of
73% accuracy in a two class classification task. His ap-
proach explained in the white paper can be extended to
our approach, so it is the closest to our work in the lit-
erature. This work demonstrates that it is non-trivial to
use ASTs effectively. Our work is the first to use struc-

tural features to achieve higher accuracies at larger scales
and the first to study how code obfuscation affects code
stylometry.

There has also been some code stylometry work that
focused on manual analysis and case studies. Spafford
and Weeber [29] suggest that use of lexical features such
as variable names, formatting and comments, as well as
some syntactic features such as usage of keywords, scop-
ing and presence of bugs could aid in source code at-
tribution but they do not present results or a case study
experiment with a formal approach. Gray et al. [15]
identify three categories in code stylometry: the layout
of the code, variable and function naming conventions,
types of data structures being used and also the cyclo-
matic complexity of the code obtained from the control
flow graph. They do not mention anything about the syn-
tactic characteristics of code, which could potentially be
a great marker of coding style that reveals the usage of
programming language’s grammar. Their case study is
based on a manual analysis of three worms, rather than
a statistical learning approach. Hayes and Offutt [16]
examine coding style in source code by their consistent
programmer hypothesis. They focused on lexical and
layout features, such as the occurrence of semicolons,
operators and constants. Their dataset consisted of 20
programmers and the analysis was not automated. They
concluded that coding style exists through some of their
features and professional programmers have a stronger
programming style compared to students. In our results
in Section 4.3.6, we also show that more advanced pro-
grammers have a more identifying coding style.

There is also a great deal of research on plagiarism
detection which is carried out by identifying the similar-
ities between different programs. For example, there is a
widely used tool called Moss that originated from Stan-
ford University for detecting software plagiarism. Moss
[6] is able to analyze the similarities of code written by
different programmers. Rosenblum et al. [27] present a
novel program representation and techniques that auto-
matically detect the stylistic features of binary code.

Related Work # of Programmers Results
Pellin [23] 2 73%
MacDonell et al.[21] 7 88.00%
Frantzeskou et al.[14] 8 100.0%
Burrows et al. [9] 10 76.78%
Elenbogen and Seliya [11] 12 74.70%
Kothari et al. [18] 12 76%
Lange and Mancoridis [20] 20 75%
Krsul and Spafford [19] 29 73%
Frantzeskou et al. [14] 30 96.9%
Ding and Samadzadeh [10] 46 67.2%
This work 8 100.00%
This work 35 100.00%
This work 250 98.04%
This work 1,600 92.83%

Table 9: Comparison to Previous Results
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7 Conclusion and Future Work

Source code stylometry has direct applications for pri-
vacy, security, software forensics, plagiarism, copy-
right infringement disputes, and authorship verification.
Source code stylometry is an immediate concern for pro-
grammers who want to contribute code anonymously be-
cause de-anonymization is quite possible. We introduce
the first principled use of syntactic features along with
lexical and layout features to investigate style in source
code. We can reach 94% accuracy in classifying 1,600
authors and 98% accuracy in classifying 250 authors
with eight training files per class. This is a significant
increase in accuracy and scale in source code authorship
attribution. In particular, it shows that source code au-
thorship attribution with the Code Stylometry Feature Set
scales even better than regular stylometric authorship at-
tribution, as these methods can only identify individuals
in sets of 50 authors with slightly over 90% accuracy [see
4]. Furthermore, this performance is achieved by training
on only 550 lines of code or eight solution files, whereas
classical stylometric analysis requires 5,000 words.

Additionally, our results raise a number of questions
that motivate future research. First, as malicious code
is often only available in binary format, it would be in-
teresting to investigate whether syntactic features can be
partially preserved in binaries. This may require our fea-
ture set to be improved in order to incorporate informa-
tion obtained from control flow graphs.

Second, we would also like to see if classification ac-
curacy can be further increased. For example, we would
like to explore whether using features that have joint in-
formation gain alongside features that have information
gain by themselves improve performance. Moreover, de-
signing features that capture larger fragments of the ab-
stract syntax tree could provide improvements. These
changes (along with adding lexical and layout features)
may provide significant improvements to the Python re-
sults and help generalize the approach further.

Finally, we would like to investigate whether code can
be automatically normalized to remove stylistic informa-
tion while preserving functionality and readability.
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A Appendix: Keywords and Node Types

AdditiveExpression AndExpression Argument

ArgumentList ArrayIndexing AssignmentExpr

BitAndExpression BlockStarter BreakStatement

Callee CallExpression CastExpression

CastTarget CompoundStatement Condition

ConditionalExpression ContinueStatement DoStatement

ElseStatement EqualityExpression ExclusiveOrExpression

Expression ExpressionStatement ForInit

ForStatement FunctionDef GotoStatement

Identifier IdentifierDecl IdentifierDeclStatement

IdentifierDeclType IfStatement IncDec

IncDecOp InclusiveOrExpression InitializerList

Label MemberAccess MultiplicativeExpression

OrExpression Parameter ParameterList

ParameterType PrimaryExpression PtrMemberAccess

RelationalExpression ReturnStatement ReturnType

ShiftExpression Sizeof SizeofExpr

SizeofOperand Statement SwitchStatement

UnaryExpression UnaryOp UnaryOperator

WhileStatement

Table 10: Abstract syntax tree node types

Table 10 lists the AST node types generated by Joern
that were incorporated to the feature set. Table 11 shows
the C++ keywords used in the feature set.

alignas alignof and and_eq asm

auto bitand bitor bool break

case catch char char16_t char32_t

class compl const constexpr const_cast

continue decltype default delete do

double dynamic_cast else enum explicit

export extern false float for

friend goto if inline int

long mutable namespace new noexcept

not not_eq nullptr operator or

or_eq private protected public register

reinterpret_cast return short signed sizeof

static static_assert static_cast struct switch

template this thread_local throw true

try typedef typeid typename union

unsigned using virtual void volatile

wchar_t while xor xor_eq

Table 11: C++ keywords
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B Appendix: Original vs Obfuscated Code

Figure 6: A code sample X

Figure 6 shows a source code sample X from our
dataset that is 21 lines long. After obfuscation with Ti-
gress, sample X became 537 lines long. Figure 7 shows
the first 13 lines of the obfuscated sample X .

Figure 7: Code sample X after obfuscation
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Abstract

The Tor network is a widely used system for anony-
mous communication. However, Tor is known to be
vulnerable to attackers who can observe traffic at both
ends of the communication path. In this paper, we show
that prior attacks are just the tip of the iceberg. We
present a suite of new attacks, called Raptor, that can
be launched by Autonomous Systems (ASes) to com-
promise user anonymity. First, AS-level adversaries can
exploit the asymmetric nature of Internet routing to in-
crease the chance of observing at least one direction of
user traffic at both ends of the communication. Second,
AS-level adversaries can exploit natural churn in Inter-
net routing to lie on the BGP paths for more users over
time. Third, strategic adversaries can manipulate Inter-
net routing via BGP hijacks (to discover the users using
specific Tor guard nodes) and interceptions (to perform
traffic analysis). We demonstrate the feasibility of Rap-
tor attacks by analyzing historical BGP data and Tracer-
oute data as well as performing real-world attacks on the
live Tor network, while ensuring that we do not harm real
users. In addition, we outline the design of two monitor-
ing frameworks to counter these attacks: BGP monitor-
ing to detect control-plane attacks, and Traceroute moni-
toring to detect data-plane anomalies. Overall, our work
motivates the design of anonymity systems that are aware
of the dynamics of Internet routing.

1 Introduction

Anonymity systems aim to protect user identities from
untrusted destinations and third parties on the Internet.
Among all of them, the Tor network [25] is the most
widely used. As of February 2015, the Tor network com-
prises of 7,000 relays or proxies which together carry
terabytes of traffic every day [8]. Tor serves millions
of users and is often publicized by political dissidents,
whistle-blowers, law-enforcement, intelligence agencies,

journalists, businesses and ordinary citizens concerned
about the privacy of their online communications [9].

Along with anonymity, Tor aims to provide low la-
tency and, as such, does not obfuscate packet timings
or sizes. Consequently, an adversary who is able to ob-
serve traffic on both segments of the Tor communication
channel (i.e., between the server and the Tor network,
and between the Tor network and the client) can corre-
late packet sizes and packet timings to deanonymize Tor
clients [45, 46].

There are essentially two ways for an adversary to
gain visibility into Tor traffic, either by compromising
(or owning enough) Tor relays or by manipulating the
underlying network communications so as to put herself
on the forwarding path for Tor traffic. Regarding net-
work threats, large Autonomous Systems (ASes) such as
Internet Service Providers (ISPs) can easily eavesdrop on
a portion of all links, and observe any unencrypted infor-
mation, packet headers, packet timing, and packet size.
Recent declarations by Edward Snowden have confirmed
that ASes poses a real threat. Among others, the NSA has
a program called Marina which stores meta information
about user communications for up to a year [15], while
the GCHQ has a program called Tempora that stores
meta-information for 30 days and buffers data for three
days [36]. Also, and maybe more importantly, it has been
shown that Tor was targeted by such adversaries in col-
lusion with ASes [10, 12, 11].

In this paper, we present Raptor, a suite of novel traffic
analysis attacks that deanonymize Tor users more effec-
tively than previously thought possible. To do so, and
unlike previous studies on AS-level adversaries [28, 26,
40], Raptor leverages the dynamic aspects of the Inter-
net routing protocol, i.e. the Border Gateway Protocol
(BGP).

Raptor attacks are composed of three individual at-
tacks whose effects are compounded (§2). First, Raptor
exploits the asymmetric nature of Internet routing: the
BGP path from a sender to a receiver can be different
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Traffic Analysis BGP Churn BGP Hijack BGP Interception

Symmetric Known [45, 46]
Novel (§4) Novel (§5) Novel (§5)

Asymmetric Novel (§3)

Table 1: This paper describes Raptor, a suite of previously unknown attacks on the Tor Network

than the BGP path from the receiver to the sender. In-
ternet routing asymmetry increases the chance of an AS-
level adversary observing at least one direction of both
communication endpoints, enabling a novel asymmetric
traffic analysis attack. Second, Raptor exploits natural
churn in Internet routing: BGP paths change over time
due to link or router failures, setup of new Internet links
or peering relationships, or changes in AS routing poli-
cies. Changes in BGP paths allow ASes to observe ad-
ditional Tor traffic, enabling them to deanonymize an in-
creasing number of Tor clients over time. Third, Rap-
tor exploits the inherent insecurity of Internet routing:
strategic adversaries can manipulate Internet routing via
BGP hijack and BGP interception attacks against the Tor
network. These attacks enable the adversary to observe
user communications, and to deanonymize clients via
traffic analysis.

Raptor attacks were briefly discussed in a preliminary
and short workshop paper [48]. In this paper, we go fur-
ther by measuring the importance of the attacks using
real-world Internet control- and data-plane data. We also
demonstrate the attacks feasibility by performing them
on the live Tor network—with success. No real Tor users
were harmed in our experiments (§7). Finally, we also
describe efficient countermeasures to restore a good level
of anonymity. To summarize, we make the following key
contributions:
Asymmetric Traffic Analysis and BGP Churn: Us-
ing live experiments on the Tor network, we showed
that Raptor’s asymmetric traffic analysis attacks can
deanonymize a user with a 95% accuracy, without any
false positives (§3). Using historical BGP and Tracer-
oute data, we showed that by considering routing asym-
metry and routing churn, the threat of AS-level attacks
increases by 50% and 100%, respectively (§4).
BGP Hijacks and Interceptions: We analyzed known
BGP hijacks and interception attacks on the Internet and
show multiple instances where Tor relays were among
the target prefixes (§5). As an illustration, the recent Bit-
coin Hijack attack [1] in 2014, as well as Indosat Hijack
attacks [3, 2] in 2014 and 2011 involved multiple Tor re-
lays. To demonstrate the feasibility of such attacks for
the purpose of deanonymizing Tor clients, we success-
fully performed an interception attack against a live Tor
relay. Overall, we found that more than 90% of Tor re-
lays are vulnerable to our attacks.

Countermeasures: We present a comprehensive taxon-
omy of countermeasures against Raptor attacks (§6). In
particular, we outline the design of a monitoring frame-
work for the Tor network that aims to detect suspicious
AS-level path changes towards Tor prefixes using both
BGP and Traceroute monitoring.

2 Raptor Attacks

To communicate with a destination, Tor clients establish
layered circuits through three subsequent Tor relays. The
three relays are referred to as: entry (or guard) for the
first one, middle for the second one, and exit relay for
the last one. To load balance its traffic, Tor clients se-
lect relays with a probability that is proportional to their
network capacity. Encryption is used to ensure that each
relay learns the identity of only the previous hop and the
next hop in the communications, and no single relay can
link the client to the destination server.

It is well known that if an attacker can observe the
traffic from the destination server to the exit relay as well
as from the entry relay to the client (or traffic from the
client to the entry relay and from the exit relay to the
destination server), then it can leverage correlation be-
tween packet timing and sizes to infer the network iden-
tities of clients and servers (end-to-end timing analysis).
This timing analysis works even if the communication is
encrypted.

In the rest of the section, we present the three Raptor
attacks and how they contrast to conventional symmetric
traffic analysis. We start by discussing how seeing just
one direction of the traffic for each segment (between
the sender and the guard, and between the last relay and
the destination) is sufficient for the adversary (§2.1). We
then explain how ASes can exploit natural BGP dynam-
ics (§2.2), or even launch active attacks (§2.3), to com-
promise the anonymity of Tor users.

2.1 Asymmetric Traffic Analysis
We propose asymmetric traffic analysis, a novel form of
end-to-end timing analysis that allows AS-level adver-
saries to compromise the anonymity of Tor users. Let
us suppose that a Tor client is uploading a large file to a
Web server. Conventional traffic analysis considers only
one scenario where adversaries observe traffic from the

2
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Figure 1: Asymmetric routing increases the power of
AS-level adversaries. When considering forward traf-
fic, i.e., client-to-entry and exit-to-destination flows, only
AS5 can compromise anonymity. When considering
both forward and backward traffic though, AS3, AS4
and AS5 can compromise anonymity. Our measurements
confirm that asymmetric traffic analysis is feasible.

client to the entry relay, and from the exit relay to the
Web server (same direction as the flow of traffic)1.

However, Internet paths are often asymmetric: the
path from the exit relay to the Web server may be dif-
ferent than the path from the Web server to the exit relay.
Thus it is possible that an adversary may not be able to
observe the data traffic on the path from the exit relay
to the server, but it observes the TCP acknowledgment
traffic on the path from the server to the exit relay.

We introduce an asymmetric traffic analysis attack that
allows an adversary to deanonymize users as long as the
adversary is able to observe any direction of the traffic, at
both ends of the communication. Note that we can view
the conventional end-to-end timing analysis as a special
case of our attack, in which the adversary is able to ob-
serve traffic at both ends of the anonymous path, and in
the same direction as the flow of traffic. Routing asym-
metry increases the number of ASes who can observe at
least one direction of traffic at both communication end-
points. We illustrate this scenario in Figure 1.

More concretely, our attack is applicable to four sce-
narios where an adversary observes (a) data traffic from
the client to entry relay, and data traffic from exit relay to
the server, or (b) data traffic from the client to entry re-
lay, and TCP acknowledgment traffic from the server to
exit relay, or (c) TCP acknowledgment traffic from guard
relay to the client, and data traffic from exit relay to the
server, or (d) TCP acknowledgment traffic from guard re-
lay to the client, and TCP acknowledgment traffic from
the server to the exit relay.

A key hurdle in asymmetric traffic correlation is that
TCP acknowledgments are cumulative, and there is not
a one-to-one correspondence between data packets and

1If the traffic is flowing from the server to the client, then end-to-
end timing analysis considers a scenario where the adversary observes
traffic from the Web server to the exit relay and from the entry relay to
the client.

the TCP acknowledgment packets. We overcome this
hurdle by observing that Tor (and other anonymity sys-
tems) use SSL/TLS for encryption, which leaves the TCP
header unencrypted. Our attack inspects TCP headers in
the observed traffic to retrieve the TCP sequence number
field and TCP acknowledgment number field, and ana-
lyzes the correlation between these fields of both ends
over time. Our experimental results in Section 3 show
the feasibility of asymmetric traffic analysis, with a de-
tection accuracy of 95%. Furthermore, asymmetric traf-
fic analysis can be combined with other Raptor attacks,
such as exploiting natural churn and BGP interception
attack, which we discuss next.

2.2 Natural Churn
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client-to-entry
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entry

exitclient
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Figure 2: BGP churn increases the number of ASes that
can deanonymize Tor traffic. Initially, only AS5 can
deanonymize the client, seeing both direction of the traf-
fic (left). After the failure of link (AS4, AS5), both AS5
and AS3 can deanonymize Tor traffic (right).

When users communicate with recipients over multi-
ple time instances, then there is a potential for compro-
mise of anonymity at every communication instance [49,
42]. Thus anonymity can degrade over time. Tor consid-
ers this threat from the perspective of adversarial relays
(but not adversarial ASes).Tor clients use a fixed entry
relay (guard relay) for a period of time (Dingledine et al.
recommend 9 months [24]) to mitigate this threat with
respect to adversarial relays. We note that the threat of
AS-level adversaries still persists, because even though
the entry relay is fixed, the set of ASes on the path be-
tween the client and the guard relay may change over
time. Next, we discuss such attacks that rely on natural
churn in BGP paths.

The underlying Internet paths between a client and
guard relay vary over time due to changes in the phys-
ical topology (e.g., failures, recoveries, and the rollout
of new routers and links) and AS-level routing policies
(e.g., traffic engineering and new business relationships).
These changes give a malicious AS surveillance power
that increases over time. For example, AS 3 in Figure 2
does not lie on the original path from the exit to the des-

3
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tination, but a BGP routing change can put AS 3 on the
path, allowing it to perform traffic analysis.

In Section 4, we show that the surveillance capability
of an AS-level adversary can increase up to 50% when
considering BGP churn over a period of one month.

2.3 BGP Hijack
So far, we discussed Raptor attacks that were pas-
sive. Strategic AS-level adversaries are also capable of
launching active attacks, that deviate from honest routing
behavior. Internet routing is vulnerable to attacks which
enable an AS to manipulate inter-domain routing by ad-
vertising incorrect BGP control messages. While these
attacks are well known in the networking community, we
are the first to apply these attacks to anonymity systems
such as Tor.

AS-level adversaries can hijack an IP prefix [51] by
advertising the prefix as its own. The attack causes a
fraction of Internet traffic destined to the prefix to be
captured by the adversary. Tor relay nodes can ob-
serve a large amount of client traffic. For example, a
Tor guard relay observes information about client IP ad-
dresses. Thus, the IP prefixes corresponding to Tor guard
relays presents an attractive target for BGP hijack.

As a concrete attack example, we consider a scenario
where an AS-level adversary aims to deanonymize the
user associated with a connection to a sensitive Web
server (say a whistleblowing website). The adversary can
first use existing attacks on the Tor network to uncover
the identity of the client’s guard relay [39, 37, 31, 42].
Next, the adversary can launch a BGP hijack attack
against the Tor relay. This allows the adversary to see
traffic destined to the guard relay. BGP hijack thus en-
ables an adversary to learn the set of all client IP ad-
dresses (anonymity set) associated with a guard relay
(and the target connection to the sensitive Web server).

We note that in a prefix-hijack attack, the captured
traffic is blackholed, and the client’s connection to the
guard is eventually dropped. Thus, it may not be pos-
sible to perform fine-grained traffic analysis to infer the
true client identity from this anonymity set. However, the
identification of a reduced anonymity set (as opposed to
the entire set of Tor users) is already a significant amount
of information leakage, and can be combined with other
contextual information to break user anonymity [18]. In
Section 5, we uncover several real-world BGP hijack at-
tacks in which Tor relays were among the target prefixes.

2.4 BGP Interception
Our BGP hijack attack discussed above allows adver-
saries to capture traffic destined towards a target Tor
prefix, but the captured traffic is blackholed, resulting
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Figure 3: BGP interception attack enables ASes to selec-
tively put themselves on some path. Here, AS3 only sees
traffic between the client and the entry relay (left). By
intercepting the prefix containing the exit relay (right),
AS3 also sees traffic towards the exit relay, enabling it to
deanonymize the Tor communication.

in the connecting being dropped. Next, we discuss a
more sophisticated routing attack called BGP intercep-
tion attack [16], that allows adversaries to perform exact
deanonymization of Tor users.

A prefix interception attack allows the malicious AS to
become an intermediate AS in the path towards the guard
relay, i.e., after interception, the traffic is routed back to
the actual guard relay. Such an interception attack al-
lows the connection to be kept alive, enabling the ma-
licious AS to exactly deanonymize the client via asym-
metric traffic analysis.

Similar to the previous discussion, let us consider an
adversary trying to deanonymize the user connecting to
a sensitive website (the adversary already sees the traf-
fic towards the website). The adversary can first uncover
the identity of the guard relay using existing attacks [39]
(as before), and then launch a prefix interception attack
against the guard relay. Since the adversary routes the
traffic back to the guard relay, the client’s connection is
kept alive, allowing the adversary to launch asymmetric
traffic correlation attacks. Note that in contrast to BGP
hijack attacks, BGP interception attacks can perform ex-
act deanonymization of Tor clients.

These attacks enable malicious ASes to deanonymize
user identity corresponding to a monitored target connec-
tion. Similarly, ASes that already see the client’s traffic
to its guard can position themselves to observe the traffic
between the server and the exit relay by launching inter-
ception attacks against exit relays. Figure 3 illustrates
this attack scenario.

Finally, we note that a remote adversary can launch in-
terception attacks against both guard relays and exit re-
lays simultaneously, to perform general surveillance of
the Tor network. In Section 5, we demonstrate a real-
world BGP interception attack against a live Tor relay by
collaborating with autonomous system operators.
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3 Asymmetric Traffic Analysis

In this section, we experimentally show that asymmet-
ric traffic analysis attacks are feasible. We use the live
Tor network for our experiments. To protect the safety
of real Tor users, we generate our own traffic through the
Tor network. Our goal is to investigate the accuracy of
asymmetric traffic analysis in deanonymizing our gener-
ated traffic.
Experimental Setup: In order to generate our own
traffic through the live Tor network, we use Planet-
Lab nodes as clients and Web servers. PlanetLab is an
open platform for networking research, that provides ac-
cess to hundreds of geographically distributed machines.
We randomly pick 100 machines on PlanetLab, located
across United States, Europe, and Asia. We installed Tor
clients on 50 of those machines, and used the Privoxy
tool (www.privoxy.org) to configure wget requests to
tunnel over Tor. The remaining 50 machines were setup
to be Web servers, each containing a 100MB image file.

We use the default Tor configuration on the 50 client
machines. We launch wget requests on the 50 clients
at the same time, each requesting a 100MB image file
from one of the 50 web servers, respectively. We use
tcpdump to capture data for 300 seconds at the clients
and the servers during this process.
Asymmetric correlation analysis: In each packet trace,
we first extract the TCP sequence number and TCP ac-
knowledgment number fields in the TCP header. Us-
ing the TCP sequence and acknowledgment numbers, we
next compute the number of transmitted data bytes per
unit time. For each pair of observed traces, we com-
pute the correlation between the vector of transmitted
data bytes over time. For our analysis, we use the Spear-
man’s rank correlation coefficient (other correlation met-
rics could also be applicable). For each client, our asym-
metric traffic analysis attack selects the server trace with
the highest correlation as the best match.
Results: Figure 4 illustrates our asymmetric analysis
computed between a client server pair that is commu-
nicating. We can see high correlation in all four ob-
servation scenarios discussed in Section 2. Figure 5 il-
lustrates our asymmetric analysis computed between a
client server pair that is not communicating with each
other. We can see that incorrectly matched pairs have
poor correlation in all four observation scenarios. Fig-
ure 6 illustrates the detection accuracy rate grows as the
duration of attack increases, especially in the first 30 sec-
onds.

We computed the detection accuracy of our asymmet-
ric traffic analysis attacks in all four scenarios after 300
seconds (by selecting the highest correlated pair), and
obtained an average accuracy of 95% (Table 2). The er-
ror matches are all false negatives, for which the client
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Figure 4: Asymmetric traffic analysis shows high corre-
lation between a matched client/server pair

has insignificant correlation coefficients with all servers,
so it fails to be matched to any servers. We did not ob-
serve any false positives in our results.

Client ACK/ Client ACK/ Client Data/ Client Data/
Server ACK Server Data Server ACK Server Data

Overall 96% 94% 96% 94%
False negative 4% 6% 4% 6%
False positive 0% 0% 0% 0%

Table 2: Asymmetric traffic analysis accuracy rate

In addition to the actual observed error rate above, we
also performed a statistical tests to compute the 95% con-
fidence interval on our error rate, given our sample size
of 50 client machines and 50 server machines. Table 3
illustrates the confidence intervals on our error rates.

Client ACK/ Client ACK/ Client Data/ Client Data/
Server ACK Server Data Server ACK Server Data

False negative
0.48% – 1.25% – 0.48% – 1.25% –
13.71% 16.54% 13.71% 16.54%

False positive
0% – 0% – 0% – 0% –
0.15% 0.15% 0.15% 0.15%

Table 3: Asymmetric traffic analysis error rate confi-
dence interval

4 Natural Churn

In this section, we study and evaluate how routing dy-
namics, or churn, increase the power of AS-level adver-
saries in anonymity systems such as Tor. We start with
an exhaustive control-plane analysis using collected BGP
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Figure 5: Asymmetric traffic analysis shows low corre-
lation between an unmatched client/server pair
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Figure 6: The accuracy of the attack quickly increases
with time, reaching 80% within a minute, 95% after five
minutes.

data (§4.1). Our results show that churn can increase the
amount of compromised Tor circuits by up to 50% over
a period of one month. We then confirmed our results by
performing targeted data-plane measurements on the Tor
network (§4.2). Again, churn significantly increased the
percentage of vulnerable Tor circuits, nearly tripling it.

4.1 Control-plane Evaluation
We quantified the impact of churn by measuring how it
increased the probability of a single AS (say AS X) to
end up simultaneously on the path between a client and
a guard relay and on the path between a destination and
an exit relay. When this happens, we considered AS X
as (potentially) compromising for the pair (client, desti-
nation) using the corresponding Tor circuit. Observe that
our analysis leverages asymmetric traffic analysis (§3) as
it only requires X to be on-path for two publicly-known
prefixes, covering the guard and the exit relay.
Datasets We collected 612+ million BGP updates per-

taining to 550,000 IP prefixes collected by six RIPE-
maintained BGP Looking Glass (rrc00, rrc01, rrc03,
rrc04, rrc11, rrc14) [6] in January 2015 over 250+ BGP
sessions. We processed the dataset to remove any arti-
facts caused by session resets [20]. In parallel, we also
collected Tor-related data (IP address, flags and band-
width) of about 6755 Tor relays active during the same
period of time [4]. Among all Tor relays, 1459 (resp.
1182) of them were listed as guards (resp. exits) and 338
relays were listed as both guard and exit.

We considered each BGP session as a proxy for Tor
clients and destinations. Note that analysis implicitly ac-
counts for any Internet host reachable directly or indi-
rectly through these BGP sessions. Our dataset contains
sessions belonging to major Internet transit providers
such as Level-3, ATT, NTT, etc. that provide transit to
millions of hosts.
Static baseline. We computed a static baseline by con-
sidering the amount of compromising ASes at the be-
ginning of our dataset, without considering any updates.
On each BGP session si, we computed and maintained
the routing table used to forward Tor traffic by consid-
ering all the BGP announcements and withdrawals re-
ceived over si. More precisely, we kept track of the most-
specific routing table entry that was used to forward traf-
fic to any Tor guard or exit relays. We refer to those as
Tor prefixes. In this context, a routing table entry for a
relay r is a five-tuple (ti, t f , p,e,L) composed of: i) the
initial time ti at which the entry started to be used by
the router for forwarding traffic to r; ii) the final time t f
at which the entry stopped to be used by the router; iii)
the corresponding IP prefix p; iv) a boolean e denoting
whether the r is an entry or an exit relay; and v) the list
of all the ASes L that will see the traffic en-route to reach
r (i.e., the AS-PATH).

… …

… …
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Figure 7: Control-plane evaluation setup

Using the routing-table data, we accounted, for each
AS X , the number of pairs ((si, gi), (s j, e j)) for which it
appeared simultaneously in the AS-PATH. Here, si (resp.
s j) refers to a client (resp. destination) session, while gi
(resp. e j) refers to a Tor guard (resp. exit) relay. To
ensure meaningful results, we only considered cases in
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which si and s j are in different ASes to ensure enough
diversity in the paths seen. As illustration, in Fig. 7,
ASX is a compromising AS for the pair ((s1, g1), (s2,
e2)), meaning it can deanonymize any clients connected
beyond s1 and exchanging data with a destination con-
nected beyond s2 which uses g1 (resp. e2) as a guard
(resp. exit) relay.
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Figure 8: Without considering churn, more than 5% of
all the possible Tor circuits are compromised by at least
one AS in 20% of the cases (left). The amount of com-
promised circuits increase for the majority of the (src,
dest) pairs (60%) when considering churn, by up to 50%
in 20% of the cases (right).

Fig. 8a depicts the percentage of compromised Tor cir-
cuits for each source and destination as a Complemen-
tary Cumulative Distribution Function (CCDF). A point
(x,y) on the curve means that x% of all Tor circuits, i.e.
(guard,exit) pairs, are compromised for at least y%
of all the (src,dst) pairs. We see that, for 50% of all
the (src,dst) pairs, at least 0.75% of the Tor circuits
are compromised by at least one AS. This number grows
to 6% and 13% of the Tor circuits considering the 75th-
and 95th-percentile, respectively.
Measuring the effect of churn. We computed the num-
ber of extra Tor circuits that got compromised by at least
one AS over one month. To be fair, we only considered a
Tor circuit as compromised if it crossed the same AS for
at least 30 seconds as it is unlikely that a time-correlation
attack can be performed in shorter timescale. Fig. 8b
plots the ratio between the amount of compromised Tor
circuits for each (src,dst) pair at the end of the month
with respect to the static baseline amount. We see that
churn significantly increases the probability of compro-
mise. Indeed, the amount of compromised circuits in-
crease for 60% of the (src,dst). The increase reaches
50% (ratio of 1.5) in 20% of the cases.

In addition to increasing the number of compro-
mised Tor circuits, churn also increases the number of
compromisable (src,dst) pairs. Indeed, while 5593
(src,dst) pairs could be compromised without up-
dates, that number increased to 5754 pairs when consid-
ering updates (an augmentation of nearly 3%).
Few powerful ASes see some traffic for a large ma-

Name ASN Tor circuits (%) seen Country

NTT 2914 91 US
IIJ 2497 91 Japan
BroadbandONE 19151 91 US
Inet7 13030 91 CH
Level3 3356 88 US
Tinet 3257 86 DE
Cogent 174 63 US
Level3/GBLX 3549 58 US
TATA AMERICA 6453 53 US
TeliaSonera 1299 50 SWE

Table 4: A few well-established ASes simultaneously see
some traffic for up to 90% of all (entry, exit) relays pairs.

jority of the Tor circuits. Due to their central position
in the Internet, a few ASes naturally tend to see a lot of
Tor traffic crossing them. To account for this effect, we
compute how many Tor circuits crossed each AS from
at least one (src,dst) pair. The top 10 ASes in terms
of compromised circuits are listed in Table 4. Large net-
works such as NTT or Level3 are able to see Tor traffic
for up to 90% of Tor circuits.

4.2 Data-plane Evaluation
Next, we aim to quantify the impact of churn using data-
plane information collected via traceroute.
Datasets We ran traceroute between 70 RIPE Atlas
probes [5] to measure the actual forwarding path taken
by packets entering and exiting the Tor network. We se-
lected one probe in 70 different ASes, split in the follow-
ing four sets:

• S1 : 10 ASes that contain the most Tor clients [35];

• S2 : 25 ASes that cumulatively contained ∼50% of all
guard relay bandwidth;

• S3 : 25 ASes that cumulatively contained ∼50% of all
exit relay bandwidth;

• S4 : 10 ASes that contain the most Tor destina-
tions [35].

We then ran daily traceroutes over a 3 weeks period be-
tween all probes in S1 towards all probes in S2 (and vice-
versa), measuring the forwarding paths P1 between Tor
clients and guard relays, and the paths P2 between guard
relays and Tor clients. Similarly, we measured the for-
warding paths P3 between exit relays and Tor destina-
tions, and the paths P4 between Tor destinations and exit
relays. Overall, we measured 10×25×25×10 = 62500
possible Tor circuits.
Churn nearly tripled the amount of vulnerable Tor
circuits. If we use conventional methodology and only
look for common ASes between P1 and P3, we found
12.8% of Tor circuits to be vulnerable on the first day
of the experiment (red line in Fig. 9). In comparison,
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Figure 9: Percentage of Tor circuits vulnerable to an AS
level adversary

if we also consider asymmetric paths (i.e., also look for
common ASes between P1 and P4, P2 and P3, and P2 and
P4), the percentage of vulnerable Tor circuits nearly dou-
bled to 21.3% on the first day (blue line in Fig. 9), and
nearly tripled to 31.8% at the end of the three week pe-
riod (green line in Fig. 9).

5 BGP Attacks: Hijack and Interception

In this section, we study and evaluate the feasibility
of BGP hijack and interception attacks on the Tor net-
work. First, we show that Tor relays tend to be concen-
trated within few ASes and IP prefixes—making those
highly attractive targets for hijack and interception at-
tacks (§5.1). Second, we show that, in several real-
world BGP hijack attacks, Tor relays were among the
target prefixes (§5.2). Third, we perform a real-world
BGP interception attack against a live Tor guard relay,
with success, to demonstrate the ability to accurately
deanonymize Tor clients (§5.3).

5.1 Tor relays concentration

The amount of Tor traffic attracted by a hijack or an in-
terception attack depends on the number of relays that
lie within the corresponding prefix. As such, prefixes
and ASes that host many relays of high bandwidth are an
interesting targets for attackers. To evaluate how vulner-
able the Tor network was to hijack and interceptions at-
tacks, we computed the number of relays present in each
AS and in each BGP prefix. Surprisingly, close to 30%
of all relays are hosted in only 6 ASes and 70 prefixes.
Together, these relays represent almost 40% of the band-
width in the entire Tor network (see Table 5). As such,
these few prefixes constitute extremely attractive targets.

% relays % bw # pfx Name ASN

10.5 23 11.80 OVH 16276
6.30 13 6.68 Hetzner 24940
4.78 7 10.52 Online.net 12876
3.04 4 2.58 Wedos 197019
2.04 14 4.27 Leaseweb 16265
1.69 9 3.86 PlusServer 8972

Total 28.35 70 39.71

Table 5: 6 ASes and 70 prefixes host ∼30% of all Tor
guard and exit relays as well as ∼40% of the entire Tor
network bandwidth. As such, these constitute extremely
attractive targets for hijacks and interceptions attacks.

5.2 Known Prefix Hijacking Attacks
While there have been numerous well-documented BGP
prefix hijacks and interceptions, it was unknown whether
Tor traffic was intercepted or not. To this extent, we stud-
ied occurrences of well-known prefix hijacks and looked
for leaked prefixes covering at least a Tor relay. To do so,
we gathered BGP updates from Routeviews [7] around
the time of each attack and filtered out the ones unre-
lated to Tor prefixes. Overall, we found that three well-
known hijacks affected Tor relays: two separate incidents
involving one of Indonesia’s largest telecommunication
networks, Indosat, as well as one malicious hijack attack
whose goal was to steal Bitcoins.

Event
# hijacked # hijacked # hijacked
relays guards exits

Indosat 2011 5 (0.24%) 1 (0.15%) 4 (0.44%)
Indosat 2014 44 (0.80%) 38 (1.80%) 17 (1.65%)

Table 6: Summary statistics for known Indosat prefix hi-
jacking events.

Indosat 2011. On January 14th, 2011, Indosat (AS4761)
originated 2,800 new prefixes, which covered 824 differ-
ent ASes [2]. 7 of these prefixes affected the Tor net-
work by covering 5 of the Tor relays. As discussed in
Section 2, Indosat could potentially have learned infor-
mation about the client IP addresses associated with each
of the guard relays (reduced anonymity set).
Indosat 2014. On April 3, 2014, Indosat originated
417,038 new prefixes; it usually originates 300 pre-
fixes [3]. This compromised 44 Tor relays, 38 of which
were guard relays and 17 of which were exit relays (11
hijacked relays were both guards and exits). Table 6
shows the summary statistics of both Indosat hijacking
incidents.
Canadian Bitcoin 2014. From February 2014 to
May 2014, an attacker compromised 51 networks at
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Figure 10: Transit Portal setup

19 different ISPs, and resulted in the theft of ap-
proximately $83,000 in Bitcoin [1]. We found that
198.245.63.0/24 and 162.243.142.0/24 were hijacked,
and contained a Tor relay, 198.245.63.228. AS16276
(OVH) owns 198.245.63.0/24, but this prefix was hi-
jacked by AS21548 (MTO Telecom). The Tor relay that
consequently was hijacked, 198.245.63.228, was a guard
relay located in Montreal, Quebec.

While we do not make any claims about the intent of
the above hijacking ASes, our analysis shows the exis-
tential threat of real-world routing attacks on the Tor net-
work. Furthermore, the fact that the Tor and the research
community missed noticing the presence of Tor relays
among the hijacked prefixes is surprising.

5.3 BGP Prefix Interception Attack Exper-
iment

Methodology and setup. We now demonstrate the feasi-
bility of the interception attack by performing one, with
success, on the live Tor network. For that, we set up a
machine to run as a Tor guard relay and made it reachable
to the Internet by announcing a /23 prefix in BGP using
Transit Portal (TP) [43]. TP enables virtual ASes to es-
tablish full BGP connectivity with the rest of the Internet
by proxying their announcements via dozens of world-
wide deployments. Next, we configure the 50 Tor clients
in PlanetLab to use our Tor guard relay as the entry relay
to reach 50 web servers, also hosted in PlanetLab.

In order to perform the BGP prefix interception at-
tack, we used two TP deployments (GATECH and ISI),
located in different ASes. GATECH TP served the pur-
pose of the “good” AS through which Tor traffic is nor-
mally routed, while ISI TP served as the “malicious”
AS which performed the interception attack. We con-
nected the two TPs to our Tor relay machine via VPN
tunnels. First, in order for our Tor guard relay (run-
ning on 184.164.244.1) to be reachable, we advertised
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Figure 11: ISI performing interception attack

184.164.244.0/23 (run by us in its entirety for the dura-
tion of our research) via the GATECH TP, so that traffic
destined for IP addresses within that range will be routed,
first to the GATECH TP, and then sent to our machine
via the corresponding tunnel. We illustrate our setup in
Fig. 10.

Next, We advertise BGP prefix 184.164.244.0/24

via the ISI TP, which constitutes a more-specific prefix
attack against the original announcement announced by
the GATECH TP. Thus, after the new BGP prefix an-
nouncement gets propagated through the internet, Tor
client traffic that is destined for our guard will be sent
to ISI instead. Since we configured the ISI TP to forward
traffic to our guard machine, the Tor relay can still re-
ceive the traffic and keep the Tor connection alive after
the attack. We illustrate the interception attack model in
Fig. 11.

Our setup constitutes a BGP interception attack. Ini-
tially, traffic is routed via GATECH and arrives at our Tor
relay machine via GATECH tunnel. After the attack hap-
pens, traffic drains from GATECH tunnel and gets routed
via ISI, and thus comes to our Tor relay machine via ISI
tunnel instead. Since the traffic still arrives at the relay
machine, it is an interception attack and the connection
does not get interrupted. We use tcpdump on our relay
machine, listening to ISI tunnel, to capture client TCP ac-
knowledgment traffic coming from that tunnel, which is
exactly the data that an adversary would get from launch-
ing such an interception attack.

In the experiment, we first launch simultaneous HTTP
requests using wget at the 50 Tor clients for the 100MB
file at the 50 web servers. Then, 20 seconds after launch-
ing the wget requests, we start announcing the more-
specific prefix via ISI. We use tcpdump listening to ISI
tunnel to capture TCP acknowledgment traffic sent from
the Tor clients during the interception attack. We also use
tcpdump to capture traffic at the web servers during the
whole process. Finally, 300 seconds after launching the
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Figure 12: Traffic Flow During the Experiment

attack, we send a withdrawal message via the ISI TP, so
the traffic will be routed via GATECH again as normal.
Our interception attack successfully deanonymized
Tor sources with a 90% accuracy rate. In Fig. 12, we
plot the Tor traffic flow captured on our relay machine
from both GATECH tunnel and ISI tunnel. We can see
that all traffic is routed via GATECH at the beginning.
At t = 20s, ISI starts advertising a more specific /24 pre-
fix, which takes approximately 35 seconds for it to be
propagated through the internet and drain the traffic from
GATECH. At t = 55s, traffic starts showing up via ISI,
and GATECH does not receive traffic any more. Then,
at t = 300s, ISI withdraws the IP prefix announcement,
which takes approximately 22 seconds for the traffic to
appear back on GATECH again. During this interception
process, the connection stays alive.

The captured data from ISI tunnel is client TCP ac-
knowledgment traffic. Thus, we will employ our Asym-
metric Traffic Analysis approach, described in Section 3,
with sample size of 50 client machines and 50 server
machines to do the correlation analysis to deanonymize
users’ identity. We achieve 90% accuracy rate (see Ta-
ble 7).

Accuracy False False
Rate Negative Positive

Client ACK/Server ACK 90% 8% 2%

Table 7: Asymmetric Traffic Analysis accuracy rate

Fig. 13 shows an example of a client with its correlated
server and an uncorrelated server, respectively. Note that
the time shown on the graph has been adjusted according
to the time that traffic starts showing via ISI.

The detection accuracy rate in the interception attack
case decreases from the average 95% in static asymmet-
ric traffic analysis to 90%. One main reason is that we
configure all 50 Tor clients to connect to the same Tor
guard relay, which leads to significantly higher probabil-
ity that many of them will share the same Tor exit relay
(especially those clients which are in the same AS) as
well, and as a result, their bandwidths are highly likely
to be similar. And also, all the clients start requesting
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Figure 13: Client ACK versus Server ACK analysis
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Figure 14: >90% of BGP prefixes hosting relays are
shorter than /24, making them vulnerable to our attack.

files from the web servers at the same time, so the band-
width they could achieve will be limited by the guard and
the exit relay, which leads to similar bandwidths due to
the guard/exit bottleneck. However, this scenario is an
extreme and very unlikely case in real Tor connections.
With fewer clients connecting to the same Tor guard re-
lay at the same time, the accuracy of the asymmetric traf-
fic analysis should be higher.
The vast majority of Tor relays are vulnerable to our
attacks. Technically, only prefixes shorter than /24 can
be hijacked globally with a more-specific prefix attack
as longer prefixes tend to be filtered by default by many
ISPs. To make sure of the feasibility of our attack, we
computed the prefix length distribution of Tor prefixes
(see Fig.14). We can see that more than 90% of BGP pre-
fixes hosting relays have prefix length shorter than /24,
making them directly vulnerable to a more-specific pre-
fix attack such as ours.

6 Countermeasures Sketch

In this section, we first describe a taxonomy of counter-
measures against Raptor attacks. Second, we describe
a general approach for AS-aware anonymous communi-
cation in which Tor clients are aware of the dynamics
of Internet routing. Finally, we describe exploratory ap-
proaches for detecting and preventing BGP hijack and
interception attacks against Tor.

10
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6.1 Countermeasure Taxonomy

There are two main categories of countermeasures: (a)
approaches that reduce the chance of an AS-level adver-
sary observing both ends of the anonymous communica-
tion, and (b) approaches that aim to mitigate correlation
attacks even when an adversary observes both ends of
the anonymous communication. Figure 15 illustrates the
design space of potential countermeasures against Rap-
tor attacks. In this work, we advocate the former line of
defense – namely, to monitor both routing control-plane
and data-plane, and to strategically select Tor relays that
minimize the chance of compromise (§6.2). We also ad-
vocate defenses that aim to detect and prevent routing at-
tacks (§6.3). We do not focus on the class of approaches
that aim to mitigate correlation analysis by obfuscating
packet sizes and timings, as they are generally consid-
ered too costly to deploy (Appendix A).

Taxonomy	  of	  Countermeasures	  

1.	  Mi4ga4ng	  Traffic	  Intercep4on	   2.	  Mi4ga4ng	  Correla4on	  A=acks	  
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Sta4c	  	  
Routes	  
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Obfuscate	  	  
Packet	  Timing	  
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Packet	  Sizes	  

Randomize	  	  
TCP	  Ack	  protocol	  

Encrypt	  TCP	  	  
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	  	  	  	  	  	  	  	  	  +	  
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/24	  prefixes	  

*Select	  closer	  	  
Guards	  

Figure 15: Taxonomy of Countermeasures

6.2 AS-Aware Path Selection

To minimize opportunities for AS-level traffic analysis,
the Tor network can monitor the path dynamics between
the clients and the guard relays, and between the exit re-
lays and the destinations. Information about path dynam-
ics can be obtained using data-plane (e.g., traceroute)
or control-plane (e.g., BGP feed) tools. For instance,
each relay could publish the list of any ASes it used to
reach each destination prefix in the last month. This in-
formation can be distributed to all Tor clients as part of
the Tor network consensus data. Tor clients can use this
data in relay selection, perhaps in combination with their
own traceroute measurements of the forward path to each
guard relay. For example, Tor clients should select relays
such that the same AS does not appear in both the first
and the last segments, after taking path dynamics into
account.

6.3 Mitigating Routing Attacks in Tor
Next, we consider two approaches for mitigating Rap-
tor’s routing attacks: detection and prevention.

6.3.1 Monitoring Framework for Detection Routing
Attacks

We propose that the Tor network monitor the routing
control-plane and data-plane for robust detection of rout-
ing attacks. Detecting routing attacks serves two pur-
poses: (1) First, this serves to raise awareness about the
problem and hold attackers accountable. (2) Second, Tor
directory authorities can notify clients. Such notifica-
tions allow the end-user to respond by either suspend-
ing its use of Tor (since most hijacks and interceptions
are short lived), or choose another Tor relay . Next, we
discuss two proof-of-concept monitoring frameworks,
based on BGP data and traceroute data respectively.
BGP Monitoring Framework. Our BGP monitor-
ing framework gathers BGP data from the Routeviews
project. The framework filters BGP updates to consider
data about prefixes that involve a Tor relay. Building
upon prior work in routing attack detection [16], we im-
plement the following heuristics. (1) Frequency heuris-
tic: routing attacks can be characterized by an AS an-
nouncing a path once (or extremely rarely) to a prefix that
it does not own. The frequency heuristic detects attacks
that exhibit this behavior. It measures the frequency of
each AS that originates a given prefix; if the frequency
is lower than a specified threshold, then it could be a po-
tential hijack attack. (2) Time Heuristic. Most known
attacks, including those discussed in § 5, last a relatively
short amount of time. The time heuristic measures the
amount of time each path to a prefix is announced for;
if the amount of time is extremely small (below a speci-
fied threshold), then there is the possibility of it being a
routing attack.

Detection Capability: We tested our BGP monitoring
framework based on BGP data during known prefix hi-
jack attacks, that were discussed in § 5. As a preliminary
validation, the frequency and time heuristics were able
to detect all of the known attacks; the threshold used for
the frequency heuristic was .00001 (the fraction {# of an-
nouncements for prefix p originated by AS A}/{total # of
announcements for prefix p}), and the threshold used for
the time heuristic was .01 (the fraction {length of time
that prefix p is originated by AS A}/{total length of time
prefix p is announced by any AS}).

Traceroute Monitoring Framework. The BGP mon-
itoring framework provides measurements of actual AS-
level paths from BGP collector nodes. However, the in-
put data to the monitoring framework is limited to peers
who chose to participate in frameworks such as Route-
views, and BGP data is only a noisy indicator of the rout-

11



282 24th USENIX Security Symposium USENIX Association

ing control-plane. For robust detection of attacks, it is
also necessary to monitor the data-plane, which we do
via a Traceroute monitoring framework.

Traceroute is a network diagnostic tool that infers the
routers traversed by internet packets. To analyze both
attacks and changes in AS-level paths to the Tor net-
work, we have built a traceroute monitoring framework
that runs traceroutes from 450 PlanetLab machines to all
Tor entry and exit relays and stores the resulting tracer-
oute data. The set of all Tor entry and exit relays is
updated daily to accommodate new relays that have re-
ceived the guard and exit flags. BGP hijack and inter-
ception attacks typically affect a variety of users from
different vantage points. Thus, traceroute measurements
from 450 geographically diverse PlanetLab have the abil-
ity to detect data-plane anomalies arising out of routing
attacks. The PlanetLab machines are distributed across
140 ASes. Meanwhile, the Tor entry relays are dis-
tributed across 982 ASes and the exit relays are dis-
tributed across 882 ASes. We use Team-Cymru (http:
//www.team-cymru.org/) to compute the mapping be-
tween an IP address and its autonomous system. We will
make the data collected by our Traceroute monitoring
framework available to the research community.

Detection Capability: As a preliminary validation, our
Traceroute monitoring framework was able to detect the
the BGP interception attack discussed in § 5. From the
traceroute data, we observed AS-level path changes from
every PlanetLab node to our Tor guard relay, indicating
an anomaly.

6.3.2 Preventing Routing Attacks in Tor

In addition to monitoring the routing control-plane and
data-plane with respect to the Tor network, the following
approaches can help prevent the threat of Raptor’s rout-
ing attacks.
Advertising /24 Tor prefixes: Our experimental mea-
surements indicate that over 90% of Tor relays have a
prefix length shorter than /24. This allows an AS-level
adversary to launch a BGP hijack or interception attack
against these Tor relays by advertising a more specific
prefix for them (globally). We advocate that the Tor re-
lay operators should be running Tor relays with a prefix
length of /24. Autonomous systems typically filter route
advertisements of prefix longer than /24, so AS-level ad-
versaries will not be able to launch a more specific hijack
or interception attack.
Favoring closer guard relays: Even if a Tor relay adver-
tises a /24 prefix, an AS-level adversary can launch an
equally specific prefix hijack or interception attack (by
advertising another /24). In this case, the impact of the
attack is localized around the attacker’s autonomous sys-
tem, since the route is not globally propagated. We advo-

cate that Tor clients select their guard relays by favoring
Tor relays with a shorter AS-level path between them.
Tor clients could either obtain AS-level path information
via the Tor network consensus download mechanism, or
they can perform traceroutes themselves. This further
mitigates the risk to Tor clients due to an equally specific
prefix attack. We note that by selecting guard relays that
are closer to the client in the AS topology, the risk of
asymmetric traffic analysis and BGP churn is also miti-
gated. 2

Securing inter-domain routing: The research commu-
nity has proposed multiple protocols for securing inter-
domain routing [41, 32, 19, 29, 17]. Real-world deploy-
ment of these protocols would mitigate the BGP hijack
and interception attacks on Tor. However, this approach
requires buy-in from multiple stakeholders in the com-
plex ecosystem of the Internet, and progress on this front
has been slow. We hope that the concerns we raise about
the compromise of user anonymity in Tor can help accel-
erate the momentum for improving BGP security.

7 Discussion and Ethical Considerations

Colluding adversaries. In this paper, we quantified the
threat of Raptor attacks from the perspective of indi-
vidual autonomous systems. In practice, autonomous
systems can collude with each other to increase their
capability of monitoring Tor traffic. For example, au-
tonomous systems within the same legal jurisdiction may
be forced to monitor Tor traffic and share it with a single
entity that may launch Raptor attacks.
Applicability to other anonymity systems. It is impor-
tant to note that our attacks merely consider Tor as an
example of a low-latency anonymity system. Raptor at-
tacks are broadly applicable to other deployed anonymity
systems such as I2P, Freenet and Tribler [47, 21, 50].
Ethical considerations. We introduce and evaluate sev-
eral novel attacks against the Tor network. The Tor net-
work has a userbase of several million users [9], and
these users are especially concerned about the privacy of
their communications. Thus, it is of utmost importance
that our real-world experiments on the Tor network do
not compromise the privacy and safety of Tor users. In
this paper, we take multiple precautions to safeguard the
privacy of Tor users:

• Attack our own traffic. All of our attacks only exper-
iment with traffic that we created ourselves, i.e., we
deanonymize our own traffic. In fact, we do not store
or analyze traffic of any real Tor user.

2We note that if clients select closer guards, then knowledge of the
guards reveals probabilistic information about the clients. We will in-
vestigate this trade-off in future work.
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• Attack our own relay. Similarly, to demonstrate the
threat of prefix interception attacks on the live Tor net-
work, we launch interception attacks against relays
that we already control, i.e., we hijack/intercept our
own prefix.

• Firewall our Tor relay. We also used network-level
firewalls to ensure that real Tor users will never use re-
lays that we control: traffic from real users is dropped
by the firewall. Only authorized traffic that we create
ourselves can bypass the firewall and use our Tor relay.

8 Related Work

AS-level adversaries: It is well known that an adversary
who can observe users’ communications at both ends
of the segment can deanonymize Tor clients [45, 54].
Feamster and Dingledine were the first to consider the at-
tack from the perspective of an AS-level adversary [28].
Later, Edman and Syverson explored the impact of
Tor path selection strategies on the security of the net-
work [26]. Recently, Johnson et al. analyzed the secu-
rity of the Tor network against AS-level adversaries in
terms of user understandable metrics for anonymity [34],
and Akhoondi et al. [13] considered path selection algo-
rithms that minimize opportunities for AS-level end-to-
end traffic analysis. Finally, Murdoch et al. [40] consid-
ered the analogous analysis with respect to Internet ex-
change level adversaries, which are also in a position to
observe a significant fraction of Internet traffic.

We build upon these works and introduce Raptor at-
tacks, that leverage routing asymmetry, routing churn,
and routing attacks to compromise user anonymity more
effectively than previously thought possible.

The attack observations in Raptor were briefly dis-
cussed in a preliminary and short workshop paper [48].
In this paper, we go further by measuring the importance
of the attacks using real-world Internet control- and data-
plane data. We also demonstrate the attacks feasibility by
performing them on the live Tor network—with success.
Finally, we also describe efficient countermeasures to re-
store a good level of anonymity.
Traffic analysis of Tor: An important thread of re-
search aims to perform traffic analysis of Tor commu-
nications via side-channel information about Tor relays.
Murdoch et al. [39], Evans et al. [27], and Jansen et
al. [33] have demonstrated attacks that use node con-
gestion and protocol-level details as a side channel to
uncover Tor relays involved in anonymous paths. Fur-
thermore, Mittal et al. [37] and Hopper et al. [30, 31]
proposed the use of network throughput and network la-
tency as a side channel to fingerprint Tor relays involved
in anonymous paths. We note that most of these attacks
provide probabilistic information about Tor relays, and

may not deanonymize the Tor clients. In contrast, Raptor
attacks can completely deanonymize Tor clients.
BGP insecurity: The networking research community
has extensively studied attacks on inter-domain routing
protocols including BGP hijack [51, 52, 53, 44] and in-
terception attacks [16]. Similarly, there has been much
work on proposing secure routing protocols that resist the
above attacks [41, 32, 17, 19, 29]. However, we are the
first to study the implications of these attacks on privacy
technologies such as the Tor network. Arnbak et al. [14]
discuss surveillance capabilities of autonomous systems
from a legal perspective, but do not discuss anonymity
systems.

9 Conclusion

Raptor attacks exploit the dynamics of Internet routing
(such as routing asymmetry, routing churn, and routing
attacks) to enable an AS-level adversary to effectively
compromise user anonymity.

Our experimental results show that Raptor attacks
present a serious threat to the security of anonymity sys-
tems. Our key results include (1) demonstration of asym-
metric traffic correlation on the live Tor network, which
achieves 95% accuracy with no observed false positives,
(2) quantifying the impact of routing asymmetry and
routing churn on AS-level attacks – an increase of 50% to
100% respectively compared to conventional attacks, (3)
uncovering historical BGP hijacks involving Tor relays,
and (4) successful demonstration of a traffic analysis at-
tack via BGP interception on the live Tor network. We
also outlined a taxonomy of countermeasures against our
attacks.

Our work highlights the dangers of abstracting net-
work routing from the analysis of anonymity systems
such as Tor, and motivates the design of next generation
anonymity systems that resist Raptor.
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pled traffic analysis by Internet-exchange-level ad-
versaries. In Proceedings of the 7th Interna-
tional Conference on Privacy Enhancing Technolo-
gies (Berlin, Heidelberg, 2007), PET’07, Springer-
Verlag, pp. 167–183.

15



286 24th USENIX Security Symposium USENIX Association

[41] OORSCHOT, P. V., WAN, T., AND KRANAKIS, E.
On interdomain routing security and pretty secure
BGP (psBGP). ACM Trans. Inf. Syst. Secur. 10, 3
(July 2007).

[42] OVERLIER, L., AND SYVERSON, P. Locating hid-
den servers. In Security and Privacy, 2006 IEEE
Symposium on (May 2006), pp. 100–114.

[43] SCHLINKER, B., ZARIFIS, K., CUNHA, I., FEAM-
STER, N., AND KATZ-BASSETT, E. PEERING:
An AS for us. In Proceedings of the 13th ACM
Workshop on Hot Topics in Networks (New York,
NY, USA, 2014), HotNets-XIII, ACM, pp. 18:1–
18:7.

[44] SHI, X., XIANG, Y., WANG, Z., YIN, X., AND
WU, J. Detecting prefix hijackings in the Internet
with Argus. In Proceedings of the 2012 ACM Con-
ference on Internet Measurement Conference (New
York, NY, USA, 2012), IMC ’12, ACM, pp. 15–28.

[45] SHMATIKOV, V., AND WANG, M.-H. Timing anal-
ysis in low-latency mix networks: Attacks and de-
fenses. In Proceedings of the 11th European Con-
ference on Research in Computer Security (Berlin,
Heidelberg, 2006), ESORICS’06, Springer-Verlag,
pp. 18–33.

[46] SYVERSON, P., TSUDIK, G., REED, M., AND
LANDWEHR, C. Towards an analysis of onion rout-
ing security. In International Workshop on Design-
ing Privacy Enhancing Technologies: Design Is-
sues in Anonymity and Unobservability (New York,
NY, USA, 2001), Springer-Verlag New York, Inc.,
pp. 96–114.

[47] TIMPANARO, J. P., CHRISMENT, I., AND FES-
TOR, O. A bird’s eye view on the I2P anonymous
file-sharing environment. In Proceedings of the
6th International Conference on Network and Sys-
tem Security (Berlin, Heidelberg, 2012), NSS’12,
Springer-Verlag, pp. 135–148.

[48] VANBEVER, L., LI, O., REXFORD, J., AND MIT-
TAL, P. Anonymity on quicksand: Using BGP to
compromise Tor. In Proceedings of the 13th ACM
Workshop on Hot Topics in Networks (New York,
NY, USA, 2014), HotNets-XIII, ACM, pp. 14:1–
14:7.

[49] WRIGHT, M., ADLER, M., LEVINE, B. N., AND
SHIELDS, C. Defending anonymous communica-
tions against passive logging attacks. In Proceed-
ings of the 2003 IEEE Symposium on Security and
Privacy (Washington, DC, USA, 2003), SP ’03,
IEEE Computer Society.

[50] ZEILEMAKER, N., AND POUWELSE, J. Open
source column: Tribler: P2P search, share and
stream. SIGMultimedia Rec. 4, 1 (Mar. 2012), 20–
24.

[51] ZHANG, Z., ZHANG, Y., HU, Y. C., AND MAO,
Z. M. Practical defenses against BGP prefix hi-
jacking. In Proceedings of the 2007 ACM CoNEXT
Conference (New York, NY, USA, 2007), CoNEXT
’07, ACM.

[52] ZHANG, Z., ZHANG, Y., HU, Y. C., MAO, Z. M.,
AND BUSH, R. iSPY: Detecting IP prefix hijacking
on my own. IEEE/ACM Trans. Netw. 18, 6 (Dec.
2010), 1815–1828.

[53] ZHENG, C., JI, L., PEI, D., WANG, J., AND
FRANCIS, P. A light-weight distributed scheme
for detecting IP prefix hijacks in real-time. In
Proceedings of the 2007 Conference on Applica-
tions, Technologies, Architectures, and Protocols
for Computer Communications (New York, NY,
USA, 2007), SIGCOMM ’07, ACM, pp. 277–288.

[54] ZHU, Y., FU, X., GRAHAM, B., BETTATI, R.,
AND ZHAO, W. On flow correlation attacks and
countermeasures in mix networks. In Proceedings
of the 4th International Conference on Privacy En-
hancing Technologies (Berlin, Heidelberg, 2005),
PET’04, Springer-Verlag, pp. 207–225.

A Appendix: Rejected Countermeasures

Obfuscating packet timings and sizes: While the use
of high latency mix networks [38, 23] and constant
rate cover traffic [22] can mitigate timing analysis even
against an adversary that observes all communications,
these defenses are considered too costly to be deployed
in the Tor network.
Mitigating asymmetric attacks: Recall that our asym-
metric correlation attack leverages information in the
TCP header, namely the sequence number field that in-
dicates the number of acknowledged bytes. One poten-
tial countermeasure would be to encrypt the TCP header,
by leveraging IP-layer encryption techniques such as IP-
Sec. However, this approach introduces several chal-
lenges. First, it would require a substantial engineer-
ing effort to migrate Tor towards IPSEC. Second, since
IPSEC is not widely used, this would make Tor traffic
easy to distinguish from other encrypted traffic, thwart-
ing its use for applications such as censorship resistance.
Finally, encrypting the TCP header may not complete
solve the attack. For example, an adversary could at-
tempt to correlate TCP data packets with simply the
number of TCP ACK packets, disregarding the sequence
number field.
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This paper sheds light on crucial weaknesses in the
design of hidden services that allow us to break the
anonymity of hidden service clients and operators pas-
sively. In particular, we show that the circuits, paths
established through the Tor network, used to commu-
nicate with hidden services exhibit a very different be-
havior compared to a general circuit. We propose two
attacks, under two slightly different threat models, that
could identify a hidden service client or operator using
these weaknesses. We found that we can identify the
users’ involvement with hidden services with more than
98% true positive rate and less than 0.1% false positive
rate with the first attack, and 99% true positive rate and
0.07% false positive rate with the second. We then re-
visit the threat model of previous website fingerprinting
attacks, and show that previous results are directly ap-
plicable, with greater efficiency, in the realm of hidden
services. Indeed, we show that we can correctly deter-
mine which of the 50 monitored pages the client is visit-
ing with 88% true positive rate and false positive rate as
low as 2.9%, and correctly deanonymize 50 monitored
hidden service servers with true positive rate of 88% and
false positive rate of 7.8% in an open world setting.

1 Introduction
In today’s online world where gathering users’ per-
sonal data has become a business trend, Tor [14] has
emerged as an important privacy-enhancing technology
allowing Internet users to maintain their anonymity on-
line. Today, Tor is considered to be the most popular
anonymous communication network, serving millions of
clients using approximately 6000 volunteer-operated re-
lays, which are run from all around the world [3].

In addition to sender anonymity, Tor’s hidden services
allow for receiver anonymity. This provides people with
a free haven to host and serve content without the fear
of being targeted, arrested or forced to shut down [11].

∗Joint first author.

As a result, many sensitive services are only accessi-
ble through Tor. Prominent examples include human
rights and whistleblowing organizations such as Wik-
ileaks and Globalleaks, tools for anonymous messag-
ing such as TorChat and Bitmessage, and black markets
like Silkroad and Black Market Reloaded. Even many
non-hidden services, like Facebook and DuckDuckGo,
recently have started providing hidden versions of their
websites to provide stronger anonymity guarantees.

That said, over the past few years, hidden services
have witnessed various active attacks in the wild [12, 28],
resulting in several takedowns [28]. To examine the se-
curity of the design of hidden services, a handful of at-
tacks have been proposed against them. While they have
shown their effectiveness, they all assume an active at-
tacker model. The attacker sends crafted signals [6] to
speed up discovery of entry guards, which are first-hop
routers on circuits, or use congestion attacks to bias entry
guard selection towards colluding entry guards [22]. Fur-
thermore, all previous attacks require a malicious client
to continuously attempt to connect to the hidden service.

In this paper, we present the first practical passive
attack against hidden services and their users called
circuit fingerprinting attack. Using our attack, an at-
tacker can identify the presence of (client or server) hid-
den service activity in the network with high accuracy.
This detection reduces the anonymity set of a user from
millions of Tor users to just the users of hidden ser-
vices. Once the activity is detected, we show that the
attacker can perform website fingerprinting (WF) attacks
to deanonymize the hidden service clients and servers.
While the threat of WF attacks has been recently criti-
cized by Juarez et al. [24], we revisit their findings and
demonstrate that the world of hidden services is the ideal
setting to wage WF attacks. Finally, since the attack
is passive, it is undetectable until the nodes have been
deanonymized, and can target thousands of hosts retroac-
tively just by having access to clients’ old network traffic.
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Approach. We start by studying the behavior of Tor cir-
cuits on the live Tor network (for our own Tor clients and
hidden services) when a client connects to a Tor hidden
service. Our key insight is that during the circuit con-
struction and communication phase between a client and
a hidden service, Tor exhibits fingerprintable traffic pat-
terns that allow an adversary to efficiently and accurately
identify, and correlate circuits involved in the communi-
cation with hidden services. Therefore, instead of mon-
itoring every circuit, which may be costly, the first step
in the attacker’s strategy is to identify suspicious circuits
with high confidence to reduce the problem space to just
hidden services. Next, the attacker applies the WF at-
tack [10, 36, 35] to identify the clients’ hidden service
activity or deanonymize the hidden service server.
Contributions. This paper offers the following contri-
butions:

1. We present key observations regarding the commu-
nication and interaction pattern in the hidden ser-
vices design in Tor.

2. We identify distinguishing features that allow a pas-
sive adversary to easily detect the presence of hid-
den service clients or servers in the local network.
We evaluate our detection approach and show that
we can classify hidden service circuits (from the
client- and the hidden service-side) with more than
98% accuracy.

3. For a stronger attacker who sees a majority of the
clients’ Tor circuits, we propose a novel circuit cor-
relation attack that is able to quickly and efficiently
detect the presence of hidden service activity using
a sequence of only the first 20 cells with accuracy
of 99%.

4. Based on our observations and results, we argue that
the WF attacker model is significantly more realis-
tic and less costly in the domain of hidden services
as opposed to the general web. We evaluate WF at-
tacks on the identified circuits (from client and hid-
den service side), and we are able to classify hidden
services in both open and closed world settings.

5. We propose defenses that aim to reduce the detec-
tion rate of the presence of hidden service commu-
nication in the network.

Roadmap. We first provide the reader with a back-
ground on Tor, its hidden service design, and WF attacks
in Section 2. We next present, in Section 3, our obser-
vations regarding different characteristics of hidden ser-
vices. In Section 4, we discuss our model and assump-
tions, and in Sections 5 and 6, we present our attacks and
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Figure 1: Cells exchanged between the client and the entry
guard to build a general circuit for non-hidden streams after the
circuit to G1 has been created.

evaluation. In Section 7, we demonstrate the effective-
ness of WF attacks on hidden services. We then discuss
possible future countermeasures in Section 8. Finally,
we overview related works in Section 9, and conclude in
Section 10.

2 Background

We will now provide the necessary background on Tor
and its hidden services. Next, we provide an overview of
WF attacks.

2.1 Tor and Hidden Services

Alice uses the Tor network simply by installing the
Tor browser bundle, which includes a modified Firefox
browser and the Onion Proxy (OP). The OP acts as an
interface between Alice’s applications and the Tor net-
work. The OP learns about Tor’s relays, Onion Routers
(ORs), by downloading the network consensus document
from directory servers. Before Alice can send her traffic
through the network, the OP builds circuits interactively
and incrementally using 3 ORs: an entry guard, middle,
and exit node. Tor uses 512-byte fixed-sized cells as its
communication data unit for exchanging control infor-
mation between ORs and for relaying users’ data.

The details of the circuit construction process in Tor
proceeds as follows. The OP sends a create fast cell
to establish the circuit with the entry guard, which re-
sponds with a created fast. Next, the OP sends an
extend command cell to the entry guard, which causes
it to send a create cell to the middle OR to establish
the circuit on behalf of the user. Finally, the OP sends
another extend to the middle OR to cause it to cre-
ate the circuit at exit. Once done, the OP will receive
an extended message from the middle OR, relayed by
the entry guard. By the end of this operation, the OP
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will have shared keys used for layered encryption, with
every hop on the circuit.1 The exit node peels the last
layer of the encryption and establishes the TCP connec-
tion to Alice’s destination. Figure 1 shows the cells ex-
changed between OP and the entry guard for regular Tor
connections, after the exchange of the create fast and
created fast messages.

Tor uses TCP secured with TLS to maintain the OP-
to-OR and the OR-to-OR connections, and multiplexes
circuits within a single TCP connection. An OR-to-
OR connection multiplexes circuits from various users,
whereas an OP-to-OR connection multiplexes circuits
from the same user. An observer watching the OP-to-OR
TCP connection should not be able to tell apart which
TCP segment belongs to which circuit (unless only one
circuit is active). However, an entry guard is able to dif-
ferentiate the traffic of different circuits (though the con-
tents of the cells are encrypted).

Tor also allows receiver anonymity through hidden
services. Bob can run a server behind his OP to serve
content without revealing his identity or location. The
overview of creation and usage of hidden services is de-
picted in Figure 2. In order to be reachable by clients,
Bob’s OP will generate a hidden service descriptor, and
execute the following steps. First, Bob’s OP chooses a
random OR to serve as his Introduction Point (IP), and
creates a circuit to it as described above. Bob then sends
an establish intro message that contains Bob’s pub-
lic key (the client can select more than one IP). If the
OR accepts, it sends back an intro established to
Bob’s OP. Bob now creates a signed descriptor (contain-
ing a timestamp, information about the IP, and its public
key), and computes a descriptor-id based on the public
key hash and validity duration. The descriptor is then
published to the hash ring formed by the hidden service
directories, which are the ORs that have been flagged by
the network as “HSDir”. Finally, Bob advertises his hid-
den service URL z.onion out of band, which is derived
from the public key. This sequence of exchanged cells to
create a hidden service is shown in Figure 3.

In Figure 4, we show how Alice can connect to Bob.
Using the descriptor from the hidden service directo-
ries, The exchange of cells goes as follows. First,
Alice’s OP selects a random OR to serve as a Ren-
dezvous Point (RP) for its connection to Bob’s service,
and sends an establish rendezvous cell (through a
Tor circuit). If the OR accepts, it responds with a
rendezvous established cell. In the meantime, Al-
ice’s OP builds another circuit to one of Bob’s IPs, and
sends an introduce1 cell along with the address of RP
and a cookie (one-time secret) encrypted under Bob’s

1We have omitted the details of the Diffie-Hellman handshakes (and
the Tor Authentication Protocol (TAP) in general), as our goal is to
demonstrate the data flow only during the circuit construction process.
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Figure 2: Circuit construction for Hidden Services.

public key. The IP then relays that information to Bob
and an introduce2 cell, and sends an introduce ack

towards Alice. At this point, Bob’s OP builds a circuit
towards Alice’s RP and sends it a rendezvous1, which
causes the RP to send a rendezvous2 towards Alice. By
the end of this operation, Alice and Bob will have shared
keys established through the cookie, and can exchange
data through the 6 hops between them.

2.2 Website Fingerprinting

One class of traffic analysis attacks that has gained re-
search popularity over the past few years is the website
fingerprinting (WF) attack [10, 36, 35, 9]. This attack
demonstrates that a local passive adversary observing the
(SSH, IPsec, or Tor) encrypted traffic is able, under cer-
tain conditions, to identify the website being visited by
the user.

In the context of Tor, the strategy of the attacker is
as follows. The attacker tries to emulate the network
conditions of the monitored clients by deploying his own
client who visits websites that he is interested in classi-
fying through the live network. During this process, the
attacker collects the network traces of the clients. Then,
he trains a supervised classifier with many identifying
features of a network traffic of a website, such as the se-
quences of packets, size of the packets, and inter-packet
timings. Using the model built from the samples, the
attacker then attempts to classify the network traces of
users on the live network.

WF attacks come in two settings: open- or closed-
world. In the closed-world setting, the attacker assumes
that the websites visited are among a list of k known web-
sites, and the goal of the attacker is to identify which
one. The open-world setting is more realistic in that it
assumes that the client will visit a larger set of websites

3
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Figure 3: Cells exchanged in the circuit between the entry
guards and the hidden service operator after the circuits to G1
and G2 have been created. Note that both G1 and G2 might
be the same OR, and that entry guards can only view the first
extend cell they receive.

n, and the goal of the attacker is to identify if the client
is visiting a monitored website from a list of k websites,
where k � n.

Hermann et al. [20] were the first to test this attack
against Tor using a multinomial Naive Bayes classifier,
which only achieved 3% success rate since it relied on
packet sizes which are fixed in Tor. Panchenko et al. [33]
improved the results by using a Support Vector Ma-
chine (SVM) classifier, using features that are mainly
based on the volume, time, and direction of the traf-
fic, and achieved more than 50% accuracy in a closed-
world experiment of 775 URLs. Several subsequent pa-
pers have worked on WF in open-world settings, im-
proved on the classification accuracy, and proposed de-
fenses [10, 36, 35, 9].

3 Observations on Hidden Service Circuits

To better understand different circuit behaviors, we car-
ried out a series of experiments, which were designed to
show different properties of the circuits used in the com-
munication between a client and a Hidden Service (HS),
such as the Duration of Activity (DoA), incoming and
outgoing cells, presence of multiplexing, and other po-
tentially distinguishing features. DoA is the period of
time during which a circuit sends or receives cells. The
expected lifetime of a circuit is around 10 minutes, but
circuits may be alive for more or less time depending on
their activities.

For the remainder of this paper, we use the following
terminology to denote circuits:
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extend

extended
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extended

establish_rendezvous

rendezvous_extended
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introduce1

introduce_ack
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data
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Legend:
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Figure 4: Cells exchanged in the circuit between the entry
guards and the client attempting to access a hidden service after
the circuits to G1 and G2 have been created.

• HS-IP: This is the circuit established between the
Hidden Service (HS) and its Introduction Point (IP).
The purpose of this circuit is to listen for incoming
client connections. This circuit corresponds to ar-
row 1 in Figure 2.

• Client-RP: This is the circuit that a client builds to
a randomly chosen Rendezvous Point (RP) to even-
tually receive a connection from the HS after he has
expressed interest in establishing a communication
through the creation of a Client-IP circuit. This cir-
cuit corresponds to arrow 4 in Figure 2.

• Client-IP: This is the circuit that a client interested
in connecting to a HS builds to one of the IPs of
the HS to inform the service of its interest in wait-
ing for a connection on its RP circuit. This circuit
corresponds to arrow 5 in Figure 2.

• HS-RP: This is the circuit that the HS builds to the
RP OR chosen by the client to establish the commu-
nication with the interested client. Both this circuit
and the Client-RP connect the HS and the client to-
gether over Tor. This circuit corresponds to arrow 6
in Figure 2.

For our hidden service experiments, we used more
than 1000 hidden services that are compiled in
ahmia.fi [2], an open source search engine for Tor hid-
den service websites. We base our observations on the
logs we obtained after running all experiments for a three
month period from January to March, 2015. This is im-
portant in order to realistically model steady-state Tor
processes, since Tor’s circuit building decisions are in-
fluenced by the circuit build time distributions. Further-
more, we configured our Tor clients so that they do not
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use fixed entry guards (by setting UseEntryGuards to 0).
By doing so, we increase variety in our data collection,
and do not limit ourselves to observations that are only
obtained by using a handful of entry guards.

3.1 Multiplexing Experiment

To understand how stream multiplexing works for
Client-RP and Client-IP circuits, we deployed a single
Tor process on a local machine which is used by two
applications: firefox and wget. Both automate hid-
den services browsing by picking a random .onion do-
main from our list of hidden services described above.
While the firefox application paused between fetches
to model user think times [19], the wget application ac-
cessed pages sequentially without pausing to model a
more aggressive use. Note that the distribution of user
think times we used has a median of 13 seconds, and a
long tail that ranges between 152 to 3656 seconds for
10% of user think times. Since both applications are us-
ing the same Tor process, our intention is to understand
how Tor multiplexes streams trying to access different
.onion domains. We logged for every .onion incom-
ing stream, the circuit on which it is attached. We next
describe our observations.
Streams for different .onion domains are not multi-
plexed in the same circuit. When the Tor process re-
ceives a stream to connect to a .onion domain, it checks
if it already has an existing RP circuit connected to it. If
it does, it attaches the stream to the same circuit. If not,
it will build a new RP circuit. We verified this by exam-
ining a 7-hour log from the experiment described above.
We found that around 560 RP circuits were created, and
each was used to connect to a different.onion domain.
Tor does not use IP or RP circuits for general
streams. Tor assigns different purposes to circuits when
they are established. For streams accessing non-hidden
servers, they use general purpose circuits. These circuits
can carry multiple logical connections; i.e., Tor multi-
plexes multiple non-hidden service streams into one cir-
cuit. On the other hand, streams accessing a .onion

domain are assigned to circuits that have a rendezvous-
related purpose, which differ from general circuits. We
verified the behavior through our experiments, and also
by reviewing Tor’s specification and the source code.

3.2 Hidden Service Traffic Experiment

The goal of this experiment is to understand the usage of
IP and RP circuits from the hidden server and from the
client points of view. We deployed a hidden service on
the live Tor network through which a client could visit a
cached version of any hidden service from our list above,

which we had previously crawled and downloaded. Our
hidden service was simultaneously accessed by our five
separate Tor instances, four of which use wget, while
one uses firefox. Every client chooses a random page
from our list of previously crawled hidden pages and re-
quests it from our HS. Again, all clients pause between
fetches for a duration that is drawn from a distribution of
user think times. During the whole hour, we logged the
usage of the IP and RP circuits observed from our hidden
server, and we logged the RP and IP circuits from our 5
clients. We ran this experiment more than 20 times over
two months before analyzing the results.

In addition, to get client-side traffic from live hid-
den services, we also deployed our five clients described
above to access our list of real Tor HSs, rather than our
deployed HS.

Similarly, to understand the usage of general circuits,
and to compare their usage to IP, and RP circuits, we
also ran clients as described above, with the exception
that the clients accessed general (non-hidden) websites
using Alexa’s top 1000 URL [1]. From our experiments,
we generated the cumulative distribution function (CDF)
of the DoA, the number of outgoing and incoming cells,
which are shown in Figure 5a, 5b, and 5c. We present
our observations below.
IP circuits are unique. Figure 5a shows the CDF of
the DoA for different circuit types. Interestingly, we ob-
serve that IP circuits from the hidden service side (i.e.,
HS-IP) are long lived compared to other circuit types.
We observe that the DoA of IP circuits showed an age of
around 3600 seconds (i.e., an hour), which happens to be
the duration of each experiment. This seems quite logi-
cal as these have to be long living connections to ensure
a continuous reachability of the HS through its IP. An-
other unique aspect of the hidden services’ IP circuits,
shown in Figure 5b, was that they had exactly 3 outgo-
ing cells (coming from the HS): 2 extend cells and one
establish intro cell. The number of incoming cells
(from the IP to the HS) differ however, depending on
how many clients connect to them. Intuitively, one un-
derstands that any entry guard could, possibly, identify
an OP acting on behalf of an HS by seeing that this OP
establishes with him long-lived connections in which it
only sends 3 cells at the very beginning. Furthermore,
from the number of incoming client cells, an entry guard
can also evaluate the popularity of that HS.

Client-IP circuits are also unique because they have
the same number of incoming and outgoing cells. This
is evidenced by the identical distributions of the num-
ber of incoming and outgoing cells shown in Figures 5b
and 5c. For most cases, they had 4 outgoing and 4 incom-
ing cells. The OP sends 3 extend and 1 introduce1

cells, and receives 3 extended and 1 introduce ack

cells. Some conditions, such as RP failure, occasionally
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resulted in more exchanged cells, but IP circuits still had
the same number of incoming and outgoing cells. An-
other unique feature was that, contrary to the HS-IP cir-
cuits, the Client-IP circuits are very short lived – their
median DoA is around a second, as shown in Figure 5a,
and around 80% of Client-IP circuits have a DoA that is
less than or equal to 10 seconds. We expect this behavior
as Client-IP circuits are not used at all once the connec-
tion to the service is established.

Active RP circuits, like general circuits, had a median
DoA of 600 seconds, which is the expected lifetime of
a Tor circuit. This was in particular observed with the
clients which accessed our HS (the same RP circuit is
reused to fetch different previously crawled pages). On
the other hand, when the clients access live Tor hidden
services, they have significantly lower DoA. Indeed, we
observe (Figure 5a) that general circuits tend to have a
larger DoA than RP circuits. The reason for this is that
the same RP circuit is not used to access more than one
hidden domain. Once the access is over, the circuit is not
used again. On the other hand, general circuits can be
used to access multiple general domains as long as they
have not been used for more than 600 seconds.
HS-RP circuits have more outgoing cells than incom-
ing cells. This is quite normal and expected since that
circuit corresponds to the fetching of web pages on a
server by a client. Typically, the client sends a few re-
quests for each object to be retrieved in the page whereas
the server sends the objects themselves which are nor-
mally much larger than the requests. There can be ex-
ceptions to this observation when, for instance, the client
is uploading documents on the server or writing a blog,
among other reasons.

Similarly, because RP circuits do not multiplex
streams for different hidden domains, they are also ex-
pected to have a smaller number of outgoing and incom-
ing cells throughout their DoA compared to active gen-
eral circuits. As can be seen in Figures 5b, and 5c, one
may distinguish between Client-RP and HS-RP circuits
by observing the total number of incoming and outgo-
ing cells. (Note that, as expected, the incoming distribu-
tions for the client and for the hidden service RP circuits
from Figure 5c are the same as the outgoing distribution
for hidden service and client RP, respectively, from Fig-
ure 5b.)

The incoming and outgoing distributions of RP cir-
cuits are based on fetching a hidden page, so the distribu-
tions we see in the figures might represent baseline dis-
tributions, and in the real network, they may have more
incoming and outgoing cells based on users’ activity. Al-
though the exact distributions of the total number of in-
coming and outgoing cells for RP circuits is based on
our models and may not reflect the models of users on
the live network, we believe that the general trends are
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(a) Distribution of the DoA of different Tor circuits from
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Figure 5: Cumulative distribution functions showing our ob-
servations from the experiments. Note that the X-axis scales
exponentially.

realistic. It is expected that clients mostly send small re-
quests, while hidden services send larger pages.
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Table 1: Edit distances of hidden pages across several weeks.

Edit distance 1 week 2 weeks 3 weeks 8 weeks
Q1 1 0.997 0.994 0.980

Median 1 1 1 1
Q3 1 1 1 1

Mean 0.96 0.97 0.96 0.927

Table 2: Edit distances of Alexa pages across several weeks.

Edit distance 1 week 2 weeks 3 weeks 8 weeks
Q1 0.864 0.846 0.81 0.71

Median 0.95 0.94 0.92 0.88
Q3 0.995 0.990 0.98 0.96

Mean 0.90 0.88 0.86 0.8

3.3 Variability in Hidden Pages

Over a period of four weeks, we downloaded the pages of
more than 1000 hidden services once per week. We then
computed the edit distance, which is the number of inser-
tions, deletions, and substitutions of characters needed to
transform the page retrieved at time T with the ones re-
trieved at time T + k weeks (with k ∈ [1..8]). Table 1
shows the three quartiles and the mean for the distribu-
tion of edit distances computed, which demonstrates that
the pages remained almost identical. For comparison, we
also downloaded the pages of Alexa’s top 1000 URLs,
and computed the edit distances in Table 2. This is not
surprising since the sources of variations in the pages are
mostly due to dynamism, personalized advertisements,
or different locations. None of these sources is applica-
ble to hidden services since clients are anonymous when
they initiate the connections. Note that hidden services
may implement personalized pages for a user after he or
she logs into his or her account; however in the context
of this paper, we are mainly concerned with the retrieval
of the very first page.

4 Threat Model

Alice’s anonymity is maintained in Tor as long as no
single entity can link her to her destination. If an at-
tacker controls the entry and the exit of Alice’s circuit,
her anonymity can be compromised, as the attacker is
able to perform traffic or timing analysis to link Alice’s
traffic to the destination [5, 23, 25, 32]. For hidden ser-
vices, this implies that the attacker needs to control the
two entry guards used for the communication between
the client and the hidden service. This significantly lim-
its the attacker, as the probability that both the client and
the hidden service select a malicious entry guard is much
lower than the probability that only one of them makes a
bad choice.

abc.onion

xyz.onion

Malicious
   Entry     
  Guard

   Entry     
  Guard

The Tor 
Network

Figure 6: Our adversary can be a malicious entry guard that is
able to watch all circuits

Our goal is to show that it is possible for a local pas-
sive adversary to deanonymize users with hidden service
activities without the need to perform end-to-end traffic
analysis. We assume that the attacker is able to monitor
the traffic between the user and the Tor network. The at-
tacker’s goal is to identify that a user is either operating
or connected to a hidden service. In addition, the attacker
then aims to identify the hidden service associated with
the user.

In order for our attack to work effectively, the attacker
needs to be able to extract circuit-level details such as
the lifetime, number of incoming and outgoing cells, se-
quences of packets, and timing information. We note
that similar assumptions have been made in previous
works [10, 35, 36]. We discuss the conditions under
which our assumptions are true for the case of a network
admin/ISP and an entry guard.
Network administrator or ISP. A network administra-
tor (or ISP) may be interested in finding out who is ac-
cessing a specific hidden service, or if a hidden service
is being run from the network. Under some conditions,
such an attacker can extract circuit-level knowledge from
the TCP traces by monitoring all the TCP connections
between Alice and her entry guards. For example, if
only a single active circuit is used in every TCP con-
nection to the guards, the TCP segments will be easily
mapped to the corresponding Tor cells. While it is hard
to estimate how often this condition happens in the live
network, as users have different usage models, we argue
that the probability of observing this condition increases
over time.
Malicious entry guard. Controlling entry guards al-
lows the adversary to perform the attack more realisti-
cally and effectively. Entry guards are in a perfect po-
sition to perform our traffic analysis attacks since they
have full visibility to Tor circuits. In today’s Tor net-
work, each OP chooses 3 entry guards and uses them for

7
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45 days on average [16], after which it switches to other
guards. For circuit establishment, those entry guards are
chosen with equal probability. Every entry guard thus
relays on average 33.3% of a user’s traffic, and relays
50% of a user’s traffic if one entry guard is down. Note
that Tor is currently considering using a single fast entry
guard for each user [13]. This will provide the attacker
with even better circuit visibility which will exacerbate
the effectiveness of our attack. This adversary is shown
in Figure 6.

5 Circuit Fingerprinting Attack

In this section, we present our circuit fingerprinting at-
tacks. Our attack allows an adversary to accurately and
efficiently identify the presence of hidden service activ-
ity of a client or a server, and the circuit used to com-
municate with or by the hidden service (i.e., RP circuit).
We first present an attack feasible for a more traditional
attacker. Then, we describe a stronger attack for a more
powerful adversary who can see more of the circuits from
a user.

5.1 Classifying Special Circuits

Since the attacker is monitoring thousands of users, who
produce hundreds of thousands of circuits, it is impor-
tant to find an easy and straightforward approach to flag
potentially “interesting” circuits for further examination.
The attacker can exploit the simple and surprisingly dis-
tinctive features exhibited by IP and RP circuits (both
client and hidden service side) to identify those circuits.
In particular, we use the following features which are
based on our observations in Section 3:

• Incoming and outgoing cells: This category of fea-
tures will be useful in identifying IP circuits. For
example, if a circuit sends precisely 3 cells, but has
slightly more incoming cells (within a 1-hour dura-
tion), then this circuit is HS-IP with a high probabil-
ity. Furthermore, if a circuit sends more than 3 cells,
but has the exact same number of incoming and out-
going cells, then it is a client-IP with a high prob-
ability. This feature is also useful in distinguishing
Client-RP from HS-RP circuits since we expect that
HS-RP circuits to have more outgoing than incom-
ing cells, and vice-versa for Client-RP circuits.

• Duration of activity: This feature is useful in dis-
tinguishing three groups of circuits: Client-IP cir-
cuits, HS-IP circuits, and all other circuits consist-
ing of general, Client-, and HS-RP circuits. Recall
that HS-IP circuits are long lived by design in or-
der to be contacted by all interested clients, whereas

client-IP circuits are inactive after performing the
introduction process between the client and the hid-
den service, and have a median DoA of 1 second.
Active general, Client-RP and HS-RP circuits can
be alive and have a median of 600 seconds, which
is the default lifetime of a circuit in Tor.

• Circuit construction sequences: We represent
each of the first 10 cells (enough cells to capture
the sequence of circuit establishment) either by the
string -1 or +1. Each string encodes the direction
of the corresponding cell. For example, the se-
quence “-1-1+1” corresponds to two outgoing cells
followed by one incoming cell. This feature is use-
ful in distinguishing Client-RP circuits from general
and HS-RP circuits. The reason is that the circuit
construction cell sequences in the case of Client-
RP circuits differs from HS-RP and general circuits.
This can be observed in Figures 1, 2, and 3. For
example, we noticed that the sequence -1+1-1+1-
1+1+1-1+1-1 is very common in Client-RP circuits,
which corresponds to the sequence between the OP
and G1 in Figure 3. However, HS-RP and general
circuits have similar sequences so this feature alone
cannot differentiate between those two circuit types.

Strategy. Different features are more indicative of cer-
tain circuit types. To best exploit those features, we per-
form our classification in two steps. First, the adversary
looks for Client-IP and HS-IP circuits since those are the
easiest ones to classify. This also allows the adversary
to figure out if he is monitoring a HS or client of a HS.
In the second step, the adversary examines the non-IP
circuits to find RP circuits among them.

We use decision-tree classification algorithms, since
identifying IP and RP circuits is dependent on an if-
then-else conditional model as we discussed above.
Tree-based algorithms build decision trees whose inter-
nal nodes correspond to the tests of features, and the
branches correspond to the different outcomes of the
tests. The leaves of the tree correspond to the classes, and
the classification of a test instance corresponds to select-
ing the path in the tree whose branch values best reflect
the new testing instance. Decisional trees have been used
previously in the traffic classification literature [27, 4, 26]
and are ideal for our problem.

Figures 7 and 8 depict decision trees which we use in
the first step of this attack to identify the IP circuits. Note
that general and RP circuits are treated as “noise”. The
tree in Figure 7 uses all features described above, and
has a size of 15 nodes and 8 leaves, whereas the tree in
Figure 8 omits the sequences, and only relies on incom-
ing/outgoing packets and the DoA, which results in 10
leaves and a total size of 19 nodes. Both trees are very
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Figure 7: Decisional Tree (C4.5 algorithm) used in identifying
IP circuits when cell sequences are used.

small, which allows for efficient classification. We dis-
cuss their performance in Section 6.1.

Once the adversary succeeds in identifying IP circuits,
he is able to mark suspicious clients, and he can pro-
ceed to identifying their RP circuits. This can reduce his
classification costs, and false positives. One challenge
in distinguishing RP circuits from general circuits is that
we cannot rely on DoA or the total number of incom-
ing and outgoing cells as we did for IP circuits: in the
case of general and RP circuits, those values are based
on the user activity and can be biased by our models.
To avoid such biases, we rely again on features that are
protocol-dependent rather than user-dependent. Using
our observation about sequences of Client-RP described
previously, we can classify the circuit. Finally, to distin-
guish between HS-RP and general circuits, we use the
first 50 cells of each circuit, and count the number of its
incoming and outgoing cells. HS-RP circuits will gener-
ally have more outgoing than incoming, and the opposite
should be true for general browsing circuits.

Figure 9 depicts a decision tree for classifying Client-
RP, HS-RP and general circuits. It can be seen from the
tree that Client-RP circuits are completely distinguished
by their packet sequence fingerprint. Recall that those
sequences represent the first 10 cells from the circuit,
which is important as we want our sequences to be ap-
plication independent. Also, HS-RP and general circuits
are distinguished from each other by the fraction of in-
coming and outgoing cells of the first 50 cells. The tree
contains a total of 17 nodes and only 9 leaves. We present
the performance of this tree in Section 6.1.

5.2 Correlating Two Circuits

As mentioned in Section 4, Tor is considering using only
a single entry guard per user. This changes the adver-
sarial model: a malicious entry guard can now see all of
the circuits used by a connected user. In this scenario,
the attacker can see both IP and RP circuits. Even for a
traditional entry guard, it has at least 11-25% chance of
seeing both circuits. Such an attacker can leverage the

Figure 8: Decisional Tree (C4.5 algorithm) used in identifying
IP circuits when cell sequences are not used

Figure 9: Decisional Tree (C4.5 algorithm) used in identifying
RP circuits out of web browsing circuits.

fact that the process of establishing the connection with
the hidden service is fingerprintable.

A client accessing a hidden service will exhibit a dif-
ferent circuit construction and data flow pattern from that
of a client accessing a non-hidden service. For a client
accessing a hidden service, the OP first builds the RP cir-
cuit, and simultaneously starts building a circuit to the IP.
In contrast, a client visiting a regular website only estab-
lishes one circuit. (Figures 1 and 4 in Section 2 illustrate
the exact flow of cells.) Using this fact, the attacker can
classify behavior of pairwise circuits, and learn the RP
of a user. In particular, we show that the first 20 cells of
a circuit pair, which include all the cells used to establish
connections with IP and RP, are enough to identify IP-RP
pairs.

6 Evaluation

To evaluate our features with different machine learn-
ing algorithms, we used Weka [18], a free and open-
source suite which provides out-of-the-box implementa-
tion of various machine learning algorithms. We experi-
mented with the following algorithms: CART [8], which
builds binary regression trees based on the Gini impurity,
C4.5 [34], which uses information gain to rank possi-
ble outcomes, and k-nearest neighbors (k-NN for short),
which considers the neighbors that lie close to each other

9
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Table 3: Number of instances of different circuit types

Dataset HS-IP HS-RP Client-IP Client-RP general
IP-Noise 76 954 200 4514 3862
RP-Noise N/A 954 N/A 4514 3862

in the feature space. When the k-NN classifier is used,
we set k = 2 with a weight that is inversely proportional
to the distance. For each algorithm, we study the true
positive rate (T PR = T P

T P+FN ) and the false positive rate
(FPR = FP

T N+FP ). Specifically, TPR is the rate of cor-
rectly identified sensitive class, and FPR is the rate of
incorrectly identified non-sensitive class. We collected
network traces over the live Tor networks for our clients
and server, and we did not touch or log the traffic of other
users. We used the latest stable release of the Tor source
code (tor-0.2.5.10) in all our experiments.

6.1 Accuracy of Circuit Classification

Datasets. From our long-term experiments described
in Section 3, we extracted 5 types of circuits: Client-
IP, Client-RP, HS-IP, HS-RP and general circuits. From
every circuit, we created an instance consisting of its se-
quences (first 10 cell), DoA, total incoming and outgoing
number of cells within the first 50 cells in the circuit, and
a class label corresponding to the circuit type. Further-
more, since Tor is mainly used for web browsing [29],
we designed our datasets so that most of the instances
are “general” circuits to reflect realistically what an ad-
versary would face when attempting to classify circuits
of real users on the live network.

Recall that our general circuits are generated by
browsing a random page from the top 1000 websites pub-
lished by Alexa [1]. This list contains very small web-
pages (such as localized versions of google.com), and
large websites (such as cnn.com). While it is not clear if
this set of websites represents what real Tor users visit,
we believe that this would not affect our approach since
our features are protocol-dependent rather than website-
or user-dependent. This is also true about our RP cir-
cuits. Therefore, we believe that the specific models and
websites should not have an impact on our classification
approach. Table 3 shows the number of instances of ev-
ery class for both datasets.

Since we perform the classification in two steps, we
created the following datasets:

• IP-Noise dataset: This dataset consists of 76 HS-
IP circuits, 200 Client-IP circuits, and 6593 “noise”
circuits. The 200 Client-IP circuits were selected
uniformly at random from a large collection of 4514

Client-IP circuits.2 The circuits labeled with the
class “noise” consist of 954 HS-RP, 4514 Client-RP,
and 3862 general browsing circuits.

• RP-Noise dataset: This dataset contains 200 Client-
RP, 200 HS-RP circuit, and 3862 “noise” circuits
(general browsing). The Client-RP and HS-RP cir-
cuits were selected uniformly at random from our
collection of 954 and 4514 HS-RP and Client-RP
circuits, respectively. Again, our goal is to imitate
the conditions that the adversary would most likely
face on the live network, where the majority of cir-
cuits to be classified are general browsing circuits.

Results. We used n-fold cross-validation for the three
classification algorithms. This is a validation technique
where the dataset is divided into n subsets and n−1 sub-
sets are used for training and 1 subset is used for testing,
and the process is repeated n times, where each subset is
used for validation exactly once. Finally, the results from
all n folds are averaged. We set n to 10 for our experi-
ments.

We found that both C4.5 and CART perform equally
well in classifying both datasets. We also found that k-
NN performs well when cell sequences are used as fea-
tures but otherwise performs poorly. For the IP-Noise
dataset, when cell sequences are not used as a feature,
as shown in Figure 10, the per-class TPR for CART
ranges between 91.5% (Client-IP class) and 99% (for
noise class), whereas the per-class accuracy for C4.5
ranges between 95.5% (Client-IP), and 99.8% (for noise
class). k-NN performs worse with a TPR ranging from
55% (for HS-IP class) and 99% (for noise class). k-NN
also has a high FPR for the noise class that exceeds 20%.
Both C4.5 and Cart have 0% FPR for HS-IP, and have
0.2% and 0.1% FPR for Client-IP, respectively. How-
ever, we found that Cart has 7% FPR for the noise class
because 17 out of 200 Client-IP instances got misclas-
sified as noise. Therefore, based on the TPR and FPR
rates, we conclude that C4.5 outperforms k-NN and Cart
for the IP-Noise dataset when no sequences are used as
features.

Figure 11 shows that when sequences are used as clas-
sification features, all three classifiers perform very well,
but C4.5 still outperforms both Cart and k-NN with a
nearly perfect per-class TPR. Interestingly, all classifiers
provide 0% FPR for HS-IP and very low FPR for Client-
IP and noise. We note that C4.5 also provides the best
performance since it provides the highest TPR and low-
est FPR among other classifiers.

2Recall that Client-IP are short-lived and one of these circuits is
created every time a client attempts to connect to a HS, whereas HS-IP
circuit samples are the most difficult to obtain since we observe each
of them for an hour before we repeat experiments.
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Table 4: Impact of different features on the TPR and FPR for
the RP-Noise dataset. The table shows the accuracy results
(TPR / FPR) if individual categories of features are used.

TPR/FPR Sequences Cells Sequences and Cells
HS-RP 0% / 0% 95% / 0.1% 95.5% / 0.1%

Client-RP 98% / 0% 15% / 0.3% 99% / 0%
Noise 100% / 46% 99.5% / 44.8% 99.9% / 2.5%

Figure 10: TPR and FPR of circuit classification with 3 classes
when no cell sequences are used. FPR is shown in log scale.

For the RP-Noise dataset, we observe that both C4.5
and Cart provide identical performances in terms of TPR
and FPR as shown in Figure 12. Both provide very high
TPR for all classes, and 0% FPR for HS-RP and Client-
RP classes. The FPR achieved by C4.5 and CART for
the noise class is also low at 3%. k-NN provides slightly
higher TPR for the HS-RP class than CART and C4.5,
but the TPR is very similar to that achieved by CART
and C4.5. We thus conclude that all classifiers perform
equally well for the RP-noise dataset. Table 4 shows the
impact on the overall accuracy based on different fea-
tures.

6.2 Accuracy of Circuit Correlation

Datasets. We collected data of both the clients’ and the
servers’ IP and RP circuit pairs for different hidden ser-
vices. To collect client side circuit pairs, we used both
firefox and wget (with flags set to mimic a browser as
much as possible) to connect to hidden and non-hidden
services from many different machines, each with one
Tor instance. Each client visited 1000 different hid-
den services and 1000 most popular websites [1] several
times. To collect server side circuit pairs, we spawned
our own hidden service, and had multiple clients connect
and view a page. The number of simultaneously connect-
ing clients ranged from 1 to 10 randomly.

Figure 11: TPR and FPR of circuit classification with 3 classes
when cell sequences are used. FPR is shown in log scale.

Figure 12: TPR and FPR of circuit classification with 3
classes. FPR is shown in log scale.

We then extracted traces of the first 20 cells of 6000
IP-RP circuit pairs (3000 client and 3000 server pairs)
and 80000 of non-special circuit pairs. The non-special
circuit pairs included any combination that is not IP-RP
(i.e., IP-general, RP-general, general-general).
Result. The accuracy of IP-RP classification is shown
in Table 5. We again used 10-fold cross validation to
evaluate our attack. We can see that IP-RP circuit pairs
are very identifiable: all three algorithms have 99.9%
true positive rate, and less than 0.05% false positive rate.
This accuracy is likely due to the uniqueness of the ex-
act sequence of cells for IP-RP circuits. From the 6000
sequences of IP-RP pairs and 80000 non-special pairs,
there were 923 and 31000 unique sequences respectively.
We found that only 14 sequences were shared between
the two classes. Furthermore, of those 14 sequences,
only 3 of them had more than 50 instances.

This result implies that an adversary who can see a
user’s IP and RP (e.g., entry guard) can classify IP and
RP circuits with almost 100% certainty by observing a
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Table 5: IP/RP Pair Classification

Algorithm True Positive Rate False Positive Rate
CART 0.999 2.07 ·10−4

C4.5 0.999 3.45 ·10−4

k-NN 0.999 6.90 ·10−5

few cells. Moreover, the attack can be carried out in near
real-time speed since we only need the first 20 cells. The
attacker can thus effectively rule out most non-sensitive
circuits, making data collection much easier.

7 Website Fingerprinting Revisited

In this section, we discuss the impact of our observations
and attacks on WF, and show the result of applying mod-
ern WF techniques to hidden services. We show that the
adversary can classify both the clients’ and the operators’
hidden service activities with high probability.

7.1 Adversaries Targeting Hidden Services

Juarez et al. [24] recently criticized various WF attacks
because they made assumptions which were too advan-
tageous for the adversary, and exacerbated the effective-
ness of their attacks. In this section, we discuss some
of the points that were raised by Juarez et al. [24] and
show how our attacks address the concerns in the case of
attacking hidden services.
Noisy streams. Previous WF attacks assumed that the
adversary is able to eliminate noisy background traffic
[10, 35, 36]. For example, if the victim’s file download
stream (noise) is multiplexed in the same circuit with the
browsing stream (target), the attacker is able to eliminate
the noisy download stream from the traces. With a lack
of experimental evidence, such an assumption might in-
deed overestimate the power of the attack.

In the world of hidden services, we observed that
Tor uses separate circuits for different .onion domains
(Section 3). Furthermore, Tor does not multiplex gen-
eral streams accessing general non-hidden services with
streams accessing hidden services in the same circuit.
From the attacker’s perspective, this is a huge advan-
tage since it simplifies traffic analysis; the attacker does
not have to worry about noisy streams in the background
of target streams. Furthermore, the previous assumption
that the attacker can distinguish different pages loads is
still valid [35]. User “think times” still likely dominate
the browsing session, and create noticeable time gaps be-
tween cells.
Size of the world. All previous WF attacks have a
problem space that is potentially significantly smaller
than a realistic setting. Even in Wang et al.’s “large”

open-world setting, the number of all websites are lim-
ited to 10,000 [35]. Moreover, different combinations
of websites sharing one circuit could make it impossible
to bound the number of untrainable streams. This im-
plies that the false positive rate of WF techniques in prac-
tice is significantly higher, since the ratio of trained non-
monitored pages to all non-monitored pages go down.

However, in the case of hidden services, the size of the
world is significantly smaller than that of the world wide
web. Also, while it is true that not all existing hidden
services are publicly available, it has been shown that
enumerating hidden services is possible [6]3. In some
cases, the attacker could be mainly interested in identi-
fying a censored list of services that make their onion
address public. Furthermore, we do not need to consider
the blow up of the number of untrainable streams. Since
RP always produces clean data, the number of untrained
streams is bounded by the number of available hidden
services.

Rapidly changing pages. The contents of the general
web changes very rapidly as shown by Juarez et al. [24].
However, hidden pages show minimal changes over time
(Section 3), contrary to non-hidden pages. The slowly
changing nature of hidden services reduces the attacker’s
false positives and false negatives, and minimizes the
cost of training. Furthermore, hidden services do not
serve localized versions of their pages.

Replicability. Another assumption pointed out by
Juarez et al. [24], which we share and retain from pre-
vious WF attacks, is the replicability of the results. That
is, we are assuming that we are able to train our classifier
under the same conditions as the victim. Indeed, we ac-
knowledge that since it is difficult to get network traces
of users from the live Tor network, we are faced with the
challenge of having to design experiments that realisti-
cally model the behavior of users, hidden services, and
the conditions of the network. That said, our attacks de-
scribed above use features that are based on circuit inter-
actions and are independent of the users’ browsing habits
or locations, which can reduce the false positive rate for
the WF attacker.

Based on the above discussion, we claim that our at-
tacker model is significantly more realistic than that of
previous WF attacks [10, 35, 36]. While the conclusions
made by Juarez et al. [24] regarding the assumptions of
previous WF attacks are indeed insightful, we argue that
many of these conclusions do not apply to the realm of
hidden services.

3As pointed out by a reviewer, it is worth noting that the specific
technique used in [6] has since been adressed by a change in the HS
directory protocol.
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7.2 Methodology

We first note here that hidden services have significantly
lower uptime than a normal website on average. We
found that only about 1000 hidden services were consis-
tently up of the 2000 hidden services we tried to connect
to. This makes collecting significant amounts of traces
of hidden services very difficult. Furthermore, we found
that hundreds of the available services were just a front
page showing that it had been compromised by the FBI.
This introduces significant noise to WF printing tech-
niques: we now have hundreds of “different” pages that
look exactly the same. We thus tried to group all of these
hidden services as one website. This unfortunately lim-
ited our open world experiments to just 1000 websites.
We also note that there may be other similar cases in our
data, where a hidden service is not actually servicing any
real content.

7.2.1 Data Collection

We gathered data to test OP servicing a normal user and
a hidden service for both closed and open world settings.
For the normal user case, we spawned an OP behind
which a client connects to any website. We then used
both firefox and wget to visit 50 sensitive hidden ser-
vices that the attacker monitors (similar to experiments
in Section 3). Our sensitive hidden service list contained
a variety of websites for whistleblowing, adult content,
anonymous messaging, and black markets. We collected
50 instances of the 50 pages, and 1 instance of 950 the
other hidden services.

For the hidden service case, we first downloaded the
contents of 1000 hidden services using a recursive wget.
We then started our own hidden service which contains
all the downloaded hidden service contents in a subdi-
rectory. Finally, we created 5 clients who connect to our
service to simulate users connecting to one server, and
visiting a cached page. We then reset all the circuits, and
visited a different cached page to simulate a different hid-
den service. We repeated this experiment 50 times for the
50 monitored hidden services, and once for the other 950
hidden services.

We argue that this setup generates realistic data for the
following reasons. First, as shown in Section 3, the ac-
tual contents of hidden services changes minimally. Thus
servicing older content from a different hidden service
within our hidden service should not result in a signifi-
cantly different trace than the real one. Second, the exact
number of clients connected to the service is irrelevant
once you consider the results in Section 6. An RP circuit
correlates to one client, and thus allows us to consider
one client trace at a time. Note that this is how a real-life
adversary could generate training data to deanonymize

Figure 13: Accuracy of website fingerprinting attacks in closed
world setting.

the servers: it could run its own servers of the cached
hidden services, and collect large samples of the servers’
traffic patterns.

7.2.2 Website Fingerprinting Hidden Services

We extracted features similar to the ones presented in
Wang et al. [35] from the data we collected.

• General Features: We use the total transmission
size and time, and the number of incoming and out-
going packets.

• Packer Ordering: We record the location of each
outgoing cell.

• Bursts: We use the number of consecutive cells of
the same type. That is, we record both the incoming
bursts and outgoing bursts, and use them as features.

We performed WF in closed and open world settings.
In the closed world setting, the user visits/hosts a hid-
den service selected randomly from the list of 50 pages
known to the attacker. In the open world setting, the user
visits/hosts any of the 1000 pages, only 50 of which are
monitored by the attacker. In either case, the attacker col-
lects network traces of the Tor user, and tries to identify
which service is associated with which network trace.
We can consider the clients and the servers separately
since we can identify HS-IP and Client-IP using the at-
tack from Section 5.1 with high probability.

7.3 WF Accuracy on Hidden Services

We ran the same classifiers as the ones used in Section 6:
CART, C4.5, and k-NN.4 The accuracy of the classifiers
in the closed world setting of both client and server is
shown in Figure 13. For the open world setting, we var-
ied the number of non-monitored training pages from
100 to 900 in 100 page increments (i.e., included exactly

4For k-NN, we tested with both Wang et al. [35] and the implemen-
tation in Weka, and we got inconsistent results. For consistency in our
evaluation, we used the Weka version as with the other two classifiers.
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Figure 14: TPR and FPR of the client side classification for
different classifiers.

Figure 15: TPR and FPR of the server side classification for
different classifiers.

one instance of the websites in the training set), and mea-
sured the TPR and FPR. The results of the open world
experiment on the clients and the servers are shown in
Figure 14 and Figure 15 respectively.

In all settings, we found that k-NN classifier works
the best for classifying hidden services. We believe this
is because k-NN considers multiple features simultane-
ously while the tree-based classifiers consider each fea-
ture one after another. In the closed world, the accu-
racy of k-NN was 97% for classifying the clients and
94.7% for the servers. In the open world, the k-NN
classifier again performed the best. The TPR of k-NN
reduced slightly as we increased the number of trained
non-monitored websites. The TPR ranged from 90% to
88% and 96% to 88% for classifying clients and servers
respectively. The FPR steadily decreased as we trained
on more non-monitored websites: for classifying clients,
it varied from 40% to 2.9% depending on the number of
trained pages. Similarly, FPR of classifying servers var-

ied from 80.3% to 7.8% for attacking servers.5 Though
the FPR is too a large for accurate classification when
trained only on small number of non-monitored websites,
we found that it quickly decreased as we increased the
number of websites in the training set.

In general, the classifiers performed better in identify-
ing clients’ connections better than the hidden services
servers; the TPR was comparable, but the FPR was sig-
nificantly lower for classifying clients. We believe that
this is, at least partially, due to the fact that we are us-
ing one real hidden service to emulate multiple hidden
services; our data does not capture the differences in the
differences in hardware, software, locations, and other
characteristics real hidden service servers would have.

8 Future Possible Defenses

Our attacks rely on the special properties of the circuits
used for hidden service activities. For the first attack
(Section 5.1), we used three very identifiable features
of the circuits: (1) DoA, (2) number of outgoing cells,
and (3) number of incoming cells. To defend against this
attack, Tor should address the three features. First, all
circuits should have similar lifetime. Client IP and hid-
den service IP lasts either a very short or very long time,
and this is very identifying. We recommend that circuits
with less than 400 seconds of activity should be padded
to have a lifetime of 400-800 seconds. Furthermore, we
suggest that hidden services re-establish their connection
to their IPs every 400-800 seconds to avoid any circuits
from lasting too long. Second, hidden service and client
IP should have a larger and varying number of outgo-
ing and incoming cells. IPs are only used to establish
the connection which limits the possible number of ex-
changed cells. We believe they should send and receive
a random number of PADDING cells, such that their me-
dian value of incoming and outgoing cells is similar to
that of a general circuit. We evaluated the effectiveness
of this defense on the same dataset used in Section 6.1,
and found that the true positive rate for the IPs and RPs
fell below 15%. Once the features look the same, the
classifiers cannot do much better than simply guessing.

To prevent the second attack (Section 5.2), we recom-
mend that every circuit be established in a pair with the
same sequence for the first few cells. If an extend fails
for either circuit (which should be a rare occurrence),
then we should restart the whole process to ensure no in-
formation is leaked. To do this efficiently, Tor could use
its preemptive circuits. Tor already has the practice of
building circuits preemptively for performance reasons.
We can leverage this, and build the preemptive circuit

5The results are not directly comparable to previous WF attacks due
to the differences in the settings, such as the size of the open world.

14



USENIX Association  24th USENIX Security Symposium 301

with another general circuit with the same sequence as
the IP-RP pairs. This would eliminate the second attack.

For WF attacks (Section 7), defenses proposed by pre-
vious works [35, 9] will be effective here as well. Fur-
thermore, for the clients, the results of Juarez et al. [24]
suggest that WF attacks on hidden service would have
significantly lower accuracy if an RP circuit is shared
across multiple hidden service accesses.

9 Related Work

Several attacks challenging the security of Tor have been
proposed. Most of the proposed attacks are based on
side-channel leaks such as congestion [31, 17], through-
put [30], and latency [21]. Other attacks exploit Tor’s
bandwidth-weighted router selection algorithm [5] or its
router reliability and availability [7]. Most of these at-
tacks are active in that they require the adversary to per-
form periodic measurements, induce congestion, influ-
ence routing, or kill circuits.

Our attacks on the other hand, like the various WF at-
tacks, are passive. Other passive attacks against Tor in-
clude Autonomous Systems (AS) observers [15], where
the attacker is an AS that appears anywhere between the
client and his entry guard, and between the exit and the
destination.

In addition, several attacks have been proposed to
deanonymize hidden services. Øverlier and Syver-
son [32] presented attacks aiming to deanonymize hid-
den services as follows: the adversary starts by deploying
a router in the network, and uses a client which repeat-
edly attempts to connect to the target hidden service. The
goal is that, over time, the hidden service will choose the
malicious router as part of its circuit and even as its entry
guard to the client allowing the attacker to deanonymize
him using traffic confirmation.

A similar traffic confirmation attack was described by
Biryukov et al. [6]. The malicious RP sends a message
towards the hidden service consisting of 50 padding cells
when it receives the rendezvous1 sent by the hidden
service. This signal allows another malicious OR along
the circuit from the hidden service to the RP, to iden-
tify the hidden service or its entry guard on the circuit.
Biryukov et al. also show how it is possible for the at-
tacker to enumerate all hidden services and to deny ser-
vice to a particular target hidden service.

10 Conclusion

Tor’s hidden services allow users to provide content and
run servers, while maintaining their anonymity. In this
paper, we present the first passive attacks on hidden ser-
vices, which allow an entry guard to detect the presence

of hidden service activity from the client- or the server-
side. The weaker attacker, who does not have perfect cir-
cuit visibility, can exploit the distinctive features of the
IP and RP circuit communication and lifetime patterns
to classify the monitored circuits to five different classes.

For the stronger attacker, who has perfect circuit vis-
ibility (in the case where the client uses only one entry
guard), the attacker runs a novel pairwise circuit correla-
tion attack to identify distinctive cell sequences that can
accurately indicate IP and RP circuits.

We evaluated our attacks using network traces ob-
tained by running our own clients and hidden service on
the live Tor network. We showed that our attacks can
be carried out easily and yield very high TPR and very
low FPR. As an application of our attack, we studied the
applicability of WF attacks on hidden services, and we
made several observations as to why WF is more real-
istic and serious in the domain of hidden services. We
applied state-of-the-art WF attacks, and showed their ef-
fectiveness in compromising the anonymity of users ac-
cessing hidden services, and in deanonymizing hidden
services. Finally, we propose defenses that would miti-
gate our traffic analysis attacks.

11 Code and Data Availability

Our data and scripts are available at http://people.
csail.mit.edu/kwonal/hswf.tar.gz.
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Abstract
In this paper, we analyze and systematize the state-of-

the-art graph data privacy and utility techniques. Specif-
ically, we propose and develop SecGraph (available
at [1]), a uniform and open-source Secure Graph data
sharing/publishing system. In SecGraph, we system-
atically study, implement, and evaluate 11 graph data
anonymization algorithms, 19 data utility metrics, and 15
modern Structure-based De-Anonymization (SDA) at-
tacks. To the best of our knowledge, SecGraph is the
first such system that enables data owners to anonymize
data by state-of-the-art anonymization techniques, mea-
sure the data’s utility, and evaluate the data’s vulnerabil-
ity against modern De-Anonymization (DA) attacks. In
addition, SecGraph enables researchers to conduct fair
analysis and evaluation of existing and newly developed
anonymization/DA techniques. Leveraging SecGraph,
we conduct extensive experiments to systematically eval-
uate the existing graph data anonymization and DA tech-
niques. The results demonstrate that (i) most anonymiza-
tion schemes can partially or conditionally preserve most
graph utilities while losing some application utility; (ii)
no DA attack is optimum in all scenarios. The DA
performance depends on several factors, e.g., similar-
ity between anonymized and auxiliary data, graph den-
sity, and DA heuristics; and (iii) all the state-of-the-art
anonymization schemes are vulnerable to several or all
of the modern SDA attacks. The degree of vulnerability
of each anonymization scheme depends on how much
and which data utility it preserves.

1 Introduction

Many computing systems generate data with graph struc-
ture, e.g., social networks, collaboration networks, and
email networks [2–4]. Even mobility traces, e.g., WiFi
traces, Bluetooth traces, instant message traces, and
check-ins, can be modeled by graphs via applying so-
phisticated techniques [3–5]. Generally, those data are

called graph data. For research purposes, data and net-
work mining tasks, and commercial applications, these
graph data are often transferred, shared, and/or provided
to the public, research community, and/or commercial
partners. Since graph data carry a lot of sensitive private
information of users/systems who generated them [2, 3],
it is critical to protect users’ privacy during the data trans-
ferring, sharing, and/or publishing.

To protect users’ privacy, several anonymization tech-
niques have been proposed to anonymize graph data,
which can be classified into six categorizes: Naive
ID Removal, Edge Editing (EE) based techniques
[6], k-anonymity based techniques [7–11], Aggrega-
tion/Class/Cluster based techniques [12–14], Differen-
tial Privacy (DP) based techniques [15–19], and Random
Walk (RW) based techniques [20]. Fundamentally, these
techniques try to protect users’ privacy by perturbing the
original graph’s structure while preserving as much data
utility as possible.

Following Narayanan and Shmatikov’s work [2],
many new Structure-based De-Anonymization (SDA, we
use DA and SDA interchangeably in this paper) at-
tacks on graph data have been proposed, which can be
categorized into two classes: seed-based attacks, e.g.,
Narayanan-Shmatikov’s attack [2], and seed-free attacks,
e.g., Ji et al.’s attack [3]. For both types of attacks, the
goal is to de-anonymize anonymized users using their
uniquely distinguishable structural characteristics.

Surprisingly, although we already have many sophis-
ticated anonymization techniques (e.g., [6, 7, 12, 15, 20])
and powerful SDA attacks (e.g., [2,3,5,21–24]), whether
state-of-the-art anonymization techniques can defend
against modern SDA attacks is still an open problem.
This is because of the incomplete evaluation of exist-
ing anonymization and DA techniques. For anonymiza-
tion works, they usually only evaluate the data util-
ity performance of their proposed techniques (although
some works provide a theoretical security guarantee,
these guarantees usually do not hold due to improper
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assumptions or incomplete considerations as analyzed
in Section 4). For DA works, they usually evaluate
their attacks’ performance without applying state-of-the-
art anonymization techniques (e.g., k-anonymity based
schemes, DP based schemes) to their test data.

Contributions. To address the above open problem,
we systematically study, implement, and evaluate ex-
isting graph data anonymization techniques and DA at-
tacks. Specifically, our main contributions are as follows.

(a) We design and implement a Secure Graph data
publishing/sharing (SecGraph) system (available at [1]).
SecGraph enables data owners to anonymize their data
using state-of-the-art anonymization techniques, mea-
sure the anonymized data’s graph and application util-
ities, and comprehensively evaluate their data’s actual
vulnerability against modern DA attacks. To the best of
our knowledge, SecGraph is the first such system pub-
licly available to both academia and industry. More im-
portantly, SecGraph provides the first uniform platform
that enables researchers to conduct accurate comparative
studies of anonymization/DA techniques, and to compre-
hensively understand the resistance/vulnerability of ex-
isting or newly developed anonymization techniques, the
effectiveness of existing or newly developed DA attacks,
and graph and application utilities of anonymized data.

(b) In SecGraph, we systematically analyze, im-
plement, and evaluate 11 state-of-the-art graph data
anonymization schemes and 19 graph and application
utility metrics. We also analyze the 11 anonymiza-
tion schemes with respect to the 19 utility metrics,
both analytically and experimentally. The evaluation re-
sults demonstrate that most existing anonymization algo-
rithms can partially or conditionally preserve most graph
utilities. However, all the anonymization schemes lose
one or more application utility.

(c) We summarize and analyze the fundamental prop-
erties of existing SDA attacks. Then, we systematically
implement and evaluate 15 modern SDA attacks on real-
world graph datasets. Our results show that modern SDA
attacks are powerful and robust to seed mapping errors.
Furthermore, no attack is optimum in all scenarios. The
DA performance of an attack depends on the similarity
between the anonymized and auxiliary data, graph den-
sity, DA heuristics, etc.

(d) We analytically and experimentally evaluate the
performance of existing graph data anonymization
schemes on defending against modern SDA attacks. We
find that existing anonymization techniques are vulnera-
ble to modern SDA attacks. Their degree of vulnerabil-
ity depends on how much data utility is preserved in the
anonymized data.

Abbreviations. For convenient reference, we summa-
rize the used abbreviations in Table 1.

Roadmap. In Section 2, we study existing graph data

Table 1: Abbreviations and acronyms.

Te
rm

s SDA Structure-based De-anonymization
DA De-anonymization
SF Seed-Free

A
no

ny
m

iz
at

oi
n EE Edge Editing

DP Differential Privacy
RW Random Walk

k-NA k-Neighborhood Anonymity
k-DA k-Degree Anonymity
k-auto k-automorphism
k-iso k-isomorphism

U
til

ity
m

et
ri

cs

Deg. Degree
JD Joint Degree
ED Effective Diameter
PL Path Length

LCC Local Clustering Coefficient
GCC Global Clustering Coefficient
CC Closeness Centrality
BC Betweenness Centrality
EV Eigenvector
NC Network Constraint
NR Network Resilience
Infe. Infectiousness
RX Role extraction
RE Reliable Email
IM Influence Maximization

MINS Minimum-sized Influential Node Set
CD Community Detection
SR Secure Routing
SD Sybil Detection

D
e-

an
on

ym
iz

at
io

n

DV Distance Vector [5]
RST Randomized Spanning Tress [5]
RSM Recursive Subgraph Matching [5]
DeA De-Anonymization [25]
ADA Adaptive De-Anonymization [25]
BDK Backstrom et al.’s attacks [26]
NS Narayanan-Shmatikov’s attack [2]

NSR Narayanan et al.’s attack [21]
NKA Nilizadeh et al.’s attack [22]
PFG Pedarsani et al.’s attack [23]
YG Yartseva-Grossglauser’s attack [27]
KL Korula-Lattanzi’s attack [24]

JLSB Ji et al.’s attack [3]

anonymization schemes and their utility performance. In
Section 3, we study modern SDA attacks. In Section
4, the effectiveness of existing anonymization schemes
against modern DA attacks is analyzed. We systemat-
ically implement and evaluate SecGraph in Section 5.
The future research directions are discussed in Section
6. We conclude this paper in Section 7.

2 Graph Anonymization

2.1 Status Quo
Generally, existing graph data anonymization techniques
can be classified into six categories. We discuss each
category as follows.

2
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Naive ID Removal. To anonymize graph data, a
straightforward method is naive ID removal. Although
this method has been demonstrated to be extremely vul-
nerable to SDA attacks, it is still widely used because
of its simplicity, ease of applicability, and scalability
[2, 3, 5, 26, 28].

Edge Editing based Anonymization. To protect
graph data’s privacy, Ying and Wu proposed spectrum
preserved Edge Editing (EE) based schemes Add/Del and
Switch [6]. Under Add/Del, k randomly chosen edges
will be added followed by the deletion of another k ran-
domly chosen edges. Under Switch, k random edge
switches are conducted.

k-anonymity. k-anonymity has been widely used to
anonymize relational data [29, 30]. Similarly, much ef-
fort has been spent to extend k-anonymity to graph data
[7–11]. To defend against neighborhood attacks, Zhou
and Pei proposed k-Neighborhood Anonymity (k-NA) for
graph data [7]. In another work, Liu and Terzi consid-
ered degree attacks and proposed k-Degree Anonymity
(k-DA) for graph data, under which for each user, there
exists at least k − 1 other users with the same degree
[8]. In [9], Zou et al. simultaneously considered four
types of structural attacks on graph data and proposed
k-automorphism (k-auto), where each user always has
k− 1 other symmetric users with respect to k− 1 auto-
morphic functions. Another similar work is [10], where
Cheng et al. proposed k-isomorphism (k-iso) to defend
against structural attacks. Under k-iso, a graph is parti-
tioned and anonymized into k disjoint isomorphic sub-
graphs. In [11], Yuan et al. considered personalized pri-
vacy protection for anonymizing graph data in terms of
both semantic and structural information.

Aggregation/Class/Cluster based Anonymization.
Another popular idea to protect graph data is to group
users into clusters (equivalently, groups, classes). In
[12], Hay et al. proposed an aggregation based graph
anonymization algorithm, which first partitions users and
then describes the graph at the level of partitions. An-
other work, at the semantics level, is [13], where Bhagat
et al. designed a class-based anonymization algorithm.
In [14], Thompson and Yao presented two cluster-based
anonymization schemes for graph data.

Differential Privacy. Differential Privacy (DP) is an
emerging anonymization technique with a strong privacy
guarantee [31, 32]. Initially, DP was proposed for sta-
tistical databases [31]. Recently, there have been works
that seek to enable differentially private graph data re-
lease. Aiming at protecting edge/link privacy, defined
as the privacy of users’ relationship in graph data, in
[15], Sala et al. introduced Pygmalion, a differentially-
private graph model. To bypass many difficulties en-
countered when working with the worst-case sensitiv-
ity [15], Proserpio recently presented a general platform,

named wPING, for differentially private data analysis
and publishing [16, 17]. Similar to [15], Wang and Wu
also employed the dK-graph generation model for en-
forcing edge DP in graph anonymization [18]. Another
recent work for edge DP is [19], where Xiao et al. pro-
posed a Hierarchical Random Graph (HRG) model based
scheme to meet edge DP.

Random Walk based Anonymization. In [20],
Mittal et al. proposed a Random Walk (RW) based
anonymization technique for preserving link (edge) pri-
vacy. In this technique, an edge in the original graph is
replaced by a RW path.

2.2 Anonymization and Utility
Generally, an anonymization scheme can be evaluated
from two perspectives: data utility preservation and re-
sistance to DA attacks. However, most, if not all, existing
graph anonymization works have not been significantly
evaluated with respect to their utility or resistance to DA
attacks. On one hand, most existing graph anonymiza-
tion works only conducted limited evaluations on their
utility preservation, e.g., degree distribution, path length
distribution, which are insufficient to understand their
value for high-level data mining tasks and applications,
e.g., sense-making, search for similar users, user classi-
fication, reliable email, influence maximization. On the
other hand and more seriously, to the best of our knowl-
edge, no work (including existing DA works) actually
evaluated the resistance of state-of-the-art anonymiza-
tion techniques against modern SDA attacks.

To address these concerns, we comprehensively ana-
lyze the utility of existing graph data anonymization al-
gorithms in this subsection and defer the detailed resis-
tance analysis to Section 4. Before performing the anal-
ysis, we first present the used utility metrics, which can
be classified as graph utility metrics or application utility
metrics.

2.2.1 Graph Utility Metrics

Graph utility captures how the anonymized data pre-
serves fundamental structural properties of the original
graph after applying an anonymization technique. Par-
ticularly, we examine 12 graph utility metrics of existing
anonymization schemes as follows1.

Degree (Deg.), which refers to the degree distribution;
Joint Degree (JD), which refers to the joint degree dis-
tribution of a graph; Effective Diameter (ED), which is
defined as the minimum number of hops in which 90%
of all connected pairs of nodes can reach each other;
Path Length (PL), which refers to the distribution of the

1Without of causing confusion, we interchangeably use node and
user in this paper.
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shortest path lengths between all pairs of users; Local
Clustering Coefficient (LCC) and Global Clustering Co-
efficient (GCC). Clustering coefficient measures the de-
gree to which users in graph data tend to cluster together.
Closeness Centrality (CC), which is defined as the in-
verse of the farness of a user within a graph and mea-
sures how long it takes to spread information from a user
to all other users sequentially; Betweenness Centrality
(BC), which quantifies the number of times a user acts as
a bridge along the shortest path between two other users;
EigenVector (EV). The EV of the adjacency matrix A of a
graph G is a non-zero vector v such that Av = λv, where
λ is some scalar multiplier; Network Constraint (NC),
which measures the extent to which a user links to others
that are already linked to each other; Network Resilience
(NR) [33], which measures how robust a graph is and is
defined as the number of users in the largest connected
component when users are removed from the graph in the
degree decreasing order; and Infectiousness (Infe.) [34],
which measures the number of users infected by a dis-
ease, given that a randomly chosen user is infected and
each infected user transmits this disease to its neighbors
with some infection rate.

2.2.2 Application Utility Metrics

In reality, most data is published/shared for data/network
mining tasks, high-level applications, etc. Therefore, be-
sides examining data’s fundamental structural utility, it is
also crucial to ensure that the anonymized data is useful
for practical applications. Toward this objective, we eval-
uate 7 popular application utility metrics for anonymiza-
tion schemes as follows.

(a) Role eXtraction (RX) [35]. Based on users’ struc-
tural behavior, users in a graph can be labeled as having
different roles, e.g., clique members, periphery-nodes.
RX is an important operation for graph data that is use-
ful for many network mining tasks such as sense-making.
We measure the RX utility of an anonymization scheme
using the method in [35].

(b) Reliable Email (RE) [36]. RE is a whitelisting sys-
tem leveraging users’ neighborhoods to filter and block
spam emails. To evaluate the structural utility of an
anonymization scheme with respect to RE, we take a
similar method as in [15] to compute the number of users
who can be spammed by a fixed number of compromised
neighbors in a graph.

(c) Influence Maximization (IM) [37]. The IM prob-
lem seeks to find a set of θ users such that these θ users
have the maximum influence to the network under some
influence propagation model. IM is important for many
real world applications, e.g., advertisements.

(d) Minimum-sized Influential Node Set (MINS) [38].
MINS is another popular and important application util-

ity metric that leverages a graph’s structure to identify
the minimum-sized set of influential nodes, such that all
other nodes in the network could be influenced with a
probability above a threshold. MINS can be used in
many meaningful applications, e.g., social problems al-
leviation, new products promotion.

(e) Community Detection (CD) [39]. CD is a popular
application on graph data which enables comprehensive
analysis of a network structure and supports other appli-
cations, e.g., classification, routing (information propa-
gation). To measure the CD utility of an anonymization
scheme, we employ the hierarchical agglomeration algo-
rithm proposed in [39].

(f) Secure Routing (SR) [40]. The structure of graph
data can also be used to improve the performance of
secure routing for systems such as P2P systems. For
our purpose, we evaluate the SR application utility of
an anonymization scheme using the method designed
in [40].

(g) Sybil Detection (SD) [41]. Sybil attacks are a se-
rious threat to both centralized and distributed systems,
e.g., recommendation systems, anonymity systems. For
our purpose, we evaluate the SD application utility of an
anonymization scheme using the method in [41].

2.2.3 Anonymization vs Utility

We are ready to analyze the utility performance of exist-
ing graph data anonymization techniques. We summa-
rize the graph and application utilities, and Resistance
to SDA attacks (R2SDA) (e.g., [2, 3, 25, 27]) of existing
graph anonymization schemes in Table 2. We analyze
the results in Table 2 as follows.

For the Naive ID removal scheme, it is straightforward
that it preserves all the data utility. However, it is also the
most vulnerable scheme to SDA attacks.

Since Add/Del randomly adds and deletes edges,
which is an global edge edition operation and thus it
may change many fundamental structural properties of
a graph. It follows that it can conditionally or partially
preserve both graph and application utilities. However,
utilities like JD, GCC, NC, CD, and MINS would be de-
stroyed if too many existing edges are deleted while new
edges are added. For Switch, it switches two randomly
selected qualified edges, which preserves the degree of
each user. Consequently, Switch can preserve Deg. and
partially preserve most other utilities. Furthermore, com-
pared to Add/Del, Switch can conditionally preserve the
RX and CD utilities which are destroyed in Add/Del.
This is because that Add/Del randomly changes users’
degree in the global edge edition process and thus some
global structure-sensitive application utility is lost or sig-
nificantly affected. Furthermore, Add/Del and Switch
cannot defend against modern SDA attacks as shown
in [2, 3, 5].
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Table 2: Analysis of existing graph anonymization techniques. � = preserving the utility, ��= partially preserving the
utility, � = conditionally preserving the utility depending on parameters and considered data (based on our analysis,
it is necessary to distinguish partially and conditionally preserving a data utility. For instance, k-DA conditionally
preserves the Deg. utility depending on k while Add/Del can partially preserve the Deg. utility for an arbitrary k), � =
not preserving the utility, and n/a = evaluation not available in existing works.

graph utility application utility R2SDADeg. JD ED PL LCC GCC CC BC EV NC NR Infe. RX RE IM MINS CD SR SD
Naive � � � � � � � � � � � � � � � � � � � �

Add/Del [6] �� � �� �� � � �� �� �� � �� �� � �� �� � � � � �
Switch [6] � � � �� � � �� �� �� �� � �� � �� �� � � �� �� �
k-NA [7] � � � � � � �� � � �� �� �� � �� � � � � � n/a
k-DA [8] � � � � � � �� � � �� �� �� � �� � � � � � n/a
k-auto [9] � � � � � � �� � � �� �� �� � �� � � � � � n/a
k-iso [10] � � � � � � � � � � � � � � � � � � � n/a

Aggregation [12] � � � � � � �� � � �� �� �� � �� � � � � � n/a
Cluster [14] � � � � � � �� � � �� �� �� � �� � � � � � n/a

DP [15] � � � �� � � �� � � � � �� � �� � � � � � n/a
DP [16, 17] � � � �� � � �� � � � � �� � �� � � � � � n/a

DP [18] � � � �� � � �� � � � � �� � �� � � � � � n/a
DP [19] � � � �� � � �� � � � � �� � �� � � � � � n/a
RW [20] � � � � � � �� � � �� � �� � �� � � � �� �� n/a

The k-anonymity based anonymization schemes k-NA
[7], k-DA [8], and k-auto [9] can partially/conditionally
preserve the graph and most application utilities ex-
cept for the RX utility. This is because the fundamen-
tal idea of k-anonymity based schemes is to make k
users/subgraphs structurally similar. Therefore, there is
a tradeoff between anonymity and utility. If k is large,
more users will be structurally similar while more util-
ity will be lost. On the other hand, if k is chosen to be
small, more utility will be preserved at the cost of lower
anonymity guarantee. Furthermore, since every user is
guaranteed to be structurally similar to at least k−1 other
users while the RX utility tries to distinguish users based
on their structural differences, it turns out k-anonymity
based schemes cannot preserve the RX utility. As we
discussed before, k-iso achieves structure anonymization
by partitioning the original graph into k isomorphic sub-
graphs. Therefore, several fundamental properties of a
graph will be destroyed, e.g., connectivity. It follows that
several important graph and application utilities are lost
in k-iso, e.g., PL, GCC, NR, Infe., RX, RE, IM, and SR.
Finally, compared with other schemes, k-NA, k-auto, and
k-iso have higher computational complexities.

Similar to k-anonymity based schemes, the cluster
based schemes [12, 14] can conditionally/partially pre-
serve graph and application utilities except for RX. This
is because the fundamental idea of cluster based schemes
is to make the users within a cluster structurally indistin-
guishable. Therefore, to what extent these schemes can
preserve data utility depends on the cluster size setting.
Again, since RX is achieved based on users’ structural
difference, this utility is not preserved in cluster based
schemes.

For DP based schemes (e.g., [15, 19]), their main ob-
jective is to protect link privacy by perturbing the edges
of a graph. The fundamental idea of these schemes is
to make an anonymized graph structurally similar to its
neighboring graphs and thus an adversary cannot infer
the existence of an edge. Therefore, they can condition-
ally/partially preserve most graph and application utili-
ties. However, if a high level of privacy is guaranteed,
many edges in the graph are changed. Furthermore, sim-
ilar to Add/Del, the edge perturbation in DP also belongs
to global edge edition. Therefore, the global structure-
sensitive high-level application utilities, e.g., RX, MINS,
and CD, are destroyed or significantly reduced in DP
based schemes.

In the RW based scheme [20], link privacy is achieved
by replacing a random walk path with an edge, and thus
this scheme, theoretically, will not change the degree dis-
tribution of the original data. It follows that several util-
ities, e.g., Deg., RX, SD, NR, Infe., can be preserved or
partially preserved. However, some other global utilities,
e.g. JD, GCC, are lost in the RW based scheme due to
the significant change of the overall graph structure.

From Table 2, no existing work evaluates the resis-
tance of state-of-the-art anonymization schemes against
modern SDA attacks. Although most of the schemes
have nice theoretical privacy guarantees, unfortunately,
that privacy analysis cannot guarantee that they can de-
fend against modern SDA attacks due to the improper
model of the adversary’s auxiliary information, problem-
atic assumptions, etc. Therefore, aiming to address this
open problem, we evaluate the effectiveness of existing
graph data anonymization schemes against modern SDA
attacks in Sections 4 and 5.
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3 Graph De-anonymization

3.1 Graph Data DA
3.1.1 Seed-based DA

When de-anonymizing graph data, it is intuitive to iden-
tify some users first as seeds. Then, the large scale DA is
bootstrapped from these seeds. In [26], Backstrom et al.
presented both active attacks and passive attacks to graph
data. However, the attacks in [26] have several limita-
tions, e.g., they are not scalable and they leverage sybil
users that can be detected by modern sybil defense tech-
niques [41]. To improve the attacks in [26], Narayanan
and Shmatikov presented a scalable two-phase DA at-
tack to social networks [2]. In the first phase, some seed
users are identified between the anonymized graph and
the auxiliary graph. In the second phase, starting from
the identified seeds, a self-reinforcing DA propagation
process is iteratively conducted based on both graphs’
structural characteristics, e.g., node degrees, nodes’ ec-
centricity, edge directionality. Later, Narayanan et al.
employed a simplified version of the attack in [2] (us-
ing less DA heuristics) for link prediction [21]. In [22],
Nilizadeh et al. extended Narayanan and Shmatikov’s
attack by proposing a community-enhanced DA scheme
of social networks. Actually, the community-level DA
in [22] can also be applied to enhance other seed-based
DA attacks (e.g., [5, 25]).

In [5], Srivatsa and Hicks presented three attacks to
de-anonymize mobility traces, which can be modeled
as contact graphs by applying multiple preprocessing
techniques (e.g., [5]). Similar to Narayanan et al.’s
attacks [2, 21], Srivatsa-Hicks’ attacks also consist of
two phases, where the first phase is for seed identifica-
tion and the second phase is for mapping (DA) propa-
gation. To achieve mapping propagation, Srivatsa and
Hicks proposed three heuristics based on Distance Vec-
tor (DV), Randomized Spanning Trees (RST), and Re-
cursive Subgraph Matching (RSM). In [25], Ji et al. pro-
posed two two-phase DA attack frameworks, namely De-
Anonymization (DeA) and Adaptive De-Anonymization
(ADA), which are workable when the auxiliary data only
has partial overlap with the anonymized data.

In [24,27], besides quantifying the de-anonymizability
of graph data, the authors also proposed DA attacks.
In [27], Yartseva and Grossglauser proposed a simple
percolation-based DA algorithm to graph data. Given
a seed mapping set, the algorithm incrementally maps
every pair of users (from the anonymized and auxiliary
graphs respectively) with at least r neighboring mapped
pairs, where r is a predefined mapping threshold. An-
other similar attack was presented by Korula and Lat-
tanzi [24], which also starts from a seed set and iter-
atively maps a pair of users with the most number of

Table 3: Analysis of existing graph DA techniques.
SF = seed-free, AGF = auxiliary graph-free, SemF =
semantics-free, A/P = active/passive attack, Scal. = scal-
able, Prac. = practical, Rob. = robust to noise, � = true,
��= partially true, � = conditionally true, and � = false.

SF AGF SemF A/P Scal. Prac. Rob.
BDK [26] � � � A, P � �� �

NS [2] � � � P � � �
NSR [21] � � � P � � �
NKA [22] � � � P � � �

DV [5] � � � P � � �
RST [5] � � � P � � �
RSM [5] � � � P � � �
PFG [23] � � � P � � �
YG [27] � � � P � � �
DeA [25] � � � P � � �
ADA [25] � � � P � � �
KL [24] � � � P � � �
JLSB [3] � � � P � � �

neighboring mapped pairs.

3.1.2 Seed-free DA

Taking another approach, some powerful seed-free DA
attacks on graph data have been proposed. Using degrees
and distances to other nodes as each node’s fingerprints,
Pedarsani et al. proposed a Bayesian model based seed-
free algorithm for graph data DA [23]. Another seed-free
DA attack to graph data was presented by Ji et al. [3].
Unlike previous attacks, Ji et al.’s attack is an optimiza-
tion based single-phase cold start algorithm.

3.2 Graph DA Analysis
In this subsection, we analyze the performance of ex-

isting graph data DA algorithms. For convenience, in the
rest of this paper, we denote Backstrom et al.’s attacks
[26] by BDK (the initials of the authors), Narayanan-
Shmatikov’s attack [2] by NS, Narayanan et al.’s at-
tack [21] by NSR, Nilizadeh et al.’s attack [22] by
NKA, Srivatsa-Hicks’ three attacks [5] by DV, RST, and
RSM, respectively, Pedarsani et al.’s attack [23] by PFG,
Yartseva-Grossglauser’s attack [27] by YG, Ji et al.’s
two attacks [25] by DeA and ADA, respectively, Korula-
Lattanzi’s attack [24] by KL, and Ji et al.’s attack [3] by
JLSB. We show our analytical results in Table 3 and dis-
cuss the result as follows.

Except for BDK, all the existing SDA attacks are pas-
sive attacks and require auxiliary graphs to perform the
attack, i.e., they employ the structural similarity between
the the anonymized graph and the auxiliary graph to
break the anonymity. However, when we examine the
anonymization schemes in Table 2, we find that none
properly consider such auxiliary information in their
threat models.
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To perform BDK attacks [26], an adversary either has
to insert some Sybil users in the dataset before the ac-
tual anonymized data release, or has to be an internal
user that knows its neighborhoods. In either case, such
attacks can only de-anonymize some users but cannot
de-anonymize users in large scale. Furthermore, the at-
tacks cannot tolerate any topological change of the orig-
inal data. Therefore, BDK attacks are not scalable or ro-
bust. These attacks require that an adversary successfully
launches Sybil users or be an internal user that obtains his
neighborhoods.

All the examined DA attacks are semantics-free. This
is because the structural information itself is sufficient
to perfectly or partially de-anonymize graph users. Fur-
thermore, compared to semantics information, structural
information is widely available in large scale, resilient
to noise, and easily computable [2, 3, 5]. Following this
fact, all the attacks except for BDK are (conditionally)
scalable, practical, and robust.

Specifically, DV, RST, and RSM [5] are condition-
ally scalable and practical. This is because they are not
computationally feasible when the number of seeds is
large. PFG [23] is conditionally practical and robust.
This is because it is very sensitive to the graph den-
sity of the anonymized data. Generally, this attack is
suitable for sparse graphs however it has a significant
performance degradation as the graph density increases.
YG [27] is conditionally practical because it is designed
to de-anonymize users of degree no less than 4 in the
anonymized data. In many real world graph datasets, the
users with degree less than 4 could dominate or take a
significant portion of graph data based on the statistics
in [3]. The conditional practicability of KL [24] comes
from its improper assumption that Θ(ι · n) (ι ∈ (0,1] is
a constant and n is the number of nodes in a graph)
seeds are available, which is too strong to hold for real
world DA attacks. Note that, the community-level DA of
NKA [22] is scalable (with complexity of O(n2)). How-
ever, the NKA [22] is conditionally scalable, practical,
and robust. This is because, if the community-level DA
of NKA [22] is employed to enhance DV, RST, RSM,
YG, and/or KL, it is conditionally scalable, practical,
and/or robust. NS [2], NSR [21], DeA, ADA, and JLSB
[3,25] adaptively perform DA employing several heuris-
tics based on a graph’s local and global structural charac-
teristics. It follows that they are scalable, practical, and
robust as long as similarity exists between anonymized
graphs and auxiliary graphs.

Both seed-based attacks (e.g., NS, DV) and seed-free
attacks (e.g., PFG, JLSB) have advantages depending on
the application scenarios. On one hand, seed-based at-
tacks are more stable with respect to de-anonymizing
arbitrary anonymized graphs. The reason is straightfor-
ward since seed knowledge provides more auxiliary in-

Table 4: DA attacks vs anonymization techniques. Naive
= naive ID removal, EE = EE based schemes [6], k-
anony. = k-anonymity based schemes [7]- [10], Cluster =
cluster based schemes [12, 14], DP = DP based schemes
[15]- [19], RW = the random walk based scheme [20],
and �, �, and � = the anonymization scheme is vulner-
able, conditionally vulnerable, and invulnerable (i.e., re-
sistant) to the DA attack, respectively.

Naive EE k-anony. Cluster DP RW
BDK [26] � � � � � �

NS [2] � � � � � �
NSR [21] � � � � � �
NKA [22] � � � � � �

DV [5] � � � � � �
RST [5] � � � � � �
RSM [5] � � � � � �
PFG [23] � � � � � �
YG [27] � � � � � �
DeA [25] � � � � � �
ADA [25] � � � � � �
KL [24] � � � � � �
JLSB [3] � � � � � �

formation to an adversary. On the other hand, it is pos-
sible that in some scenarios seeds are not available, and
thus seed-free attacks are more general. Furthermore, if
there is some error in the seed seeking phase (which is
possible in real world attacks), seed-based attacks will
suffer performance de-gradation or will possibly fail.

4 Anonymization vs DA Analysis

As we analyzed in Tables 2 and 3, understanding
the vulnerability/resistance of state-of-the-art graph data
anonymization schemes against modern SDA attacks is
still an open problem. After carefully analyzing exist-
ing anonymization and DA techniques, we summarize
the vulnerability of existing anonymization schemes in
Table 4. We further experimentally validate our analysis
in Section 5. Below, we analyze and discuss the results
in Table 4.

It has been shown in both academia and in practice
that the naive ID removal anonymization cannot protect
graph data’s privacy. Therefore, naive anonymization is
vulnerable to all the existing SDA attacks.

As we analyzed before, all other state-of-the-art
anonymization schemes (e.g., EE, k-anony., Cluster, DP,
and RW) are resistant to BDK attacks. Again, this is
because an assumption of BDK attacks is that data is
anonymized by the naive ID removal technique.

For EE based anonymization schemes ( [6]), they are
conditionally vulnerable to NKA [22] and vulnerable to
all the other modern SDA attacks [2,3,25,27]. This is be-
cause although EE can partially modify the structure of
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a graph, to preserve data utility, many structural prop-
erties, e.g., neighborhood, degree distribution, close-
ness/betweenness centrality distribution, and path length
distribution, are generally preserved. Therefore, given
an auxiliary graph consisting of the same or overlap-
ping group of users with the anonymized graph, powerful
DA heuristics can be designed based on these structural
properties to break the privacy of EE based anonymiza-
tion schemes. Furthermore, the availability of seed users
make such heuristics more robust to the noise introduced
by EE. For instance, NS breaks EE by employing degree
and neighborhood similarity [2], DV, RST, and RSM
break EE by employing path length and neighborhood
similarity [5], DeA and ADA break EE by employing
centrality similarity [25], etc. As we analyzed in Table
2, EE based anonymization schemes (e.g., Add/Del) may
destroy graphs’ community utility, and thus they are con-
ditionally vulnerable to NKA [22].

k-anonymity based anonymization schemes ( [7]-
[10]) are conditionally vulnerable to modern SDA at-
tacks [2, 3, 25, 27]. The reasons are as follows: k-
anonymity is initially designed for traditional relational
data, which makes a user semantically indistinguish-
able with k − 1 other users. Unlike relational data,
which are structurally independent of each other, users
in graph data have strong structural correlation in addi-
tion to semantic similarity. When researchers extended
k-anonymity to graph data, they extended the concept of
traditional semantics to graph data as different structural
properties (e.g., degree, neighborhood, and subgraph),
and designed schemes to make k users structurally in-
distinguishable with respect to some structural seman-
tics, i.e., degree, neighborhood, subgraph, etc. How-
ever, even if users in graph data cannot be distinguished
with respect to some structural semantics, e.g., degree,
neighborhood, subgraph, they can be de-anonymized by
other structural semantics, e.g., path length distribution,
closeness centrality, betweenness centrality, or the com-
binations of several structural semantics. Theoretically,
the only way to make users indistinguishable with re-
spect to all structural semantics is to make a graph com-
pletely connected or disconnected, which also implies
that all the data utility is destroyed. Therefore, as long
as some data utility is preserved in the anonymized data,
k-anonymity based schemes are vulnerable to modern
SDA attacks. The degree of vulnerability depends on
how much data utility is preserved.

Cluster based schemes ( [12, 14]) are also condition-
ally vulnerable to modern SDA attacks [2,3,25,27]. The
analysis is similar to that of k-anonymity. The fundamen-
tal idea of cluster based schemes is to cluster users first
and then to make the users within a cluster indistinguish-
able with respect to neighborhoods. Again, even if users
are indistinguishable by neighborhoods, they can be de-

anonymized by other structural semantics or the combi-
nations of other semantics, e.g., centralities scores, path
length distribution. Consequently, cluster based schemes
are vulnerable as long as some data utility, especially
graph utilities, are preserved in the anonymized data, and
the vulnerability depends on the amount of data utility
preserved.

DP and RW based schemes ( [15]- [20]) are vulnerable
to modern SDA attacks except NKA [22]. The reasons
are as follows: First, they are designed with the objec-
tive of protecting the link privacy of graph data and no
dedicated node privacy protection techniques are consid-
ered. Second, to protect link privacy, the edges are per-
turbed in DP based schemes and random walk paths are
replaced by edges in the RW based scheme, both with
a nice theoretical privacy guarantee. However, after the
edge anonymization process, many data utilities, e.g., de-
gree, path length distribution, are still preserved. This
implies that, given an auxiliary graph, users are still de-
anonymizable based on several structural semantics un-
der DP and RW based schemes. Furthermore, as shown
by Narayanan et al. in [21], link privacy can be breached
after de-anonymizing the users in an anonymized graph
(we also employ the same approach to break users’ link
privacy [1]). Again, as we analyzed in Table 2, since DP
and RW based schemes cannot preserve data’s commu-
nity utility, they are resistant to NKA.

In summary, based on our analysis, state-of-the-art
anonymization schemes are still vulnerable to modern
DA attacks. The fundamental reasons are: first, exist-
ing anonymization schemes only ensure that graph data
users are indistinguishable with respect to some struc-
tural semantics (properties). However, other structural
semantics, especially global ones, and the combinations
of multiple structural semantics can still enable effective
DA of users; and second, as one of the main objectives,
all the anonymization schemes try to preserve as much
data utility as possible. However, data utility from the
adversary’s perspective is equivalent to structural infor-
mation, which can be used along with an auxiliary graph
for conducting powerful DA attacks.

5 SecGraph

As we found when discussing existing anonymization
and DA techniques, they all have limitations when
evaluating the techniques’ performance. For instance,
it is still an open problem to understand the re-
sistance/vulnerability of state-of-the-art anonymization
schemes against modern DA attacks. To address this
open problem, we implement a Secure Graph data pub-
lishing/sharing (SecGraph) system.
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Figure 1: SecGraph: system overview.

5.1 System Overview

The overview of SecGraph is shown in Fig.1. SecGraph
consists of three main modules: Anonymization Module
(AM), Utility evaluation Module (UM), and DA evalua-
tion Module (DM). The main functions of each module
are briefly summarized as follows.

AM: the main function of this module is to anonymize
raw graph data and generate anonymized data. In this
module, we implement 11 state-of-the-art graph data
anonymization schemes, including EE based algorithms
[6], k-anonymity based algorithms and its variants [7–
11], aggregation/class/cluster based algorithms [12–14],
differential privacy based algorithms [15–17,19], and the
random walk based algorithm [20].

UM: in this module, we evaluate raw/anonymized
data’s utility with respect to the 12 graph utility metrics
and 7 application utility metrics as defined in Section 2.2.
With the UM, we can determine whether the data to be
published/shared (e.g., the anonymized data) satisfies re-
quired utility requirements. We can also evaluate how an
anonymization algorithm preserves data utility.

DM: in this module, we implement 15 SDA algo-
rithms (all the existing SDA algorithms, to the best of
our knowledge). By this module, the security of data
to be published/shared can be evaluated with real-world
SDA attacks. More importantly, the effectiveness of an
anonymization algorithm can be examined by this mod-
ule, i.e., whether the anonymized data of an anonymiza-
tion algorithm is resistant to modern SDA attacks.

We make further remarks on SecGraph and its mod-
ules and functions as follows.

(a) From Fig.1, raw data can be published/shared in
multiple forms depending on the data owners’ require-
ments on the security/privacy and utility of the data to be
published. Each path in Fig.1 represents a data publish-
ing scenario. For instance, the path raw data → publish-
ing data means to publish the raw data directly. The path
raw data → AM → anonymized data → evaluation →
publishing data means that the raw data is anonymized
first. Then, the anonymized data will be evaluated with
respect to utility and/or practical de-anonymizability be-
fore actual publishing. The anonymization and evalua-
tion process may be repeated several times until certain

security and utility requirements are met.
(b) To the best of our knowledge, SecGraph is

the first implemented uniform secure graph data pub-
lishing system, which systematically and comprehen-
sively integrates state-of-the-art anonymization schemes,
DA schemes, and graph/application utility measure-
ments. The significance of SecGraph to the graph data
anonymization and DA area lies in the following as-
pects. First, SecGraph enables data owners to conve-
niently and freely choose any modern anonymization al-
gorithm to anonymize their data. They can also em-
ploy different evaluation modules to examine whether
the anonymized data meets their security/privacy and
utility requirements. Second, SecGraph is a uniform
platform for testing and comparing different anonymiza-
tion and DA algorithms. Previously, due to the lack
of a uniform system, existing anonymization/DA algo-
rithms are often proposed and implemented on separate
platforms and different environments/settings. Conse-
quently, a number of implementation and evaluation dif-
ferences (e.g., particular assumptions, models, evalua-
tion datasets, programming, testing environments, pa-
rameter settings) limit researchers’ understanding of the
performance of existing anonymization and DA algo-
rithms in different scenarios. However, as a uniform plat-
form, SecGraph can reduce the evaluation bias caused by
implementation and testing differences as much as pos-
sible. Therefore, SecGraph allows data owners to choose
and compare the actual performance of different data
anonymization algorithms on their data and thus to make
the best decision. Additionally, SecGraph allows data
anonymization researchers to compare their anonymiza-
tion schemes to existing solutions as well as to exam-
ine their schemes’ resistance against modern DA attacks.
SecGraph also allows data DA researchers to evaluate
the performance of new DA attacks by de-anonymizing
the anonymized data of state-of-the-art anonymization
schemes. Therefore, SecGraph is helpful to both data
owners and researchers in conveniently applying exist-
ing schemes, comprehensively understanding existing al-
gorithms, and effectively developing new anonymiza-
tion/DA techniques.

(c) Besides providing a uniform platform, SecGraph
is an easily portable and extendable system. First, the al-
gorithms in SecGraph are implemented in Java and thus
it is system independent. Second, all the modules of
SecGraph are independent of each other, which means
that each module can work individually. Additionally,
as shown in Fig.1, multiple modules can also work to-
gether to perform data anonymization, utility evalua-
tion, and de-anonymizability evaluation. Third, all the
schemes/measurements within each module are indepen-
dent, which means that they can be implemented, evalu-
ated, and employed independently. Furthermore, newly
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developed anonymization/DA schemes and utility met-
rics can be easily integrated into SecGraph.

5.2 System Implementation
The implementation of SecGraph is as follows.

In the AM, we implement 11 algorithms, which cover
all the categories of state-of-the-art anonymization tech-
niques. Specifically, the implemented anonyzation algo-
rithms are naive ID removal, two EE based algorithms
Add/Del [6] and Switch [6], two k-anonymity based algo-
rithms k-DA [8] and k-iso [10], two cluster based algo-
rithms bounded t-means clustering [14] and union-split
clustering [14], three DP based algorithms Sala et al.’s
scheme [15], Proserpio et al.’s scheme [16,17], and Xiao
et al.’s scheme [19], and one RW based algorithm [20].
Note that, we do not implement all the algorithms dis-
cussed in Section 2.1 even though we cover all the cat-
egories. The implementation criteria includes represen-
tativeness, scalability, and practicality, which led us to
implement the latest, scalable, and practical schemes.

In the UM, we implemented the 12 graph utility met-
rics and 7 application utility metrics as discussed in Sec-
tion 2.2.

In the DM, we implement all the 15 SDA attacks dis-
cussed in Section 3.1. To the best of our knowledge,
these are all of the existing SDA attacks.

5.3 SecGraph-based Analysis
5.3.1 Primary Datasets

The employed datasets for evaluation are Enron, an email
network consisting of 36.7K users and .2M edges, and
Facebook, a Facebook friendship network in the New
Orleans area consisting of 63.7K users and .82M edges
[3, 4].

5.3.2 Anonymization vs Utility

In this subsection, we evaluate the utility performance
of anonymization algorithms. Due to the space limita-
tion, we do not show the evaluation results of all the
implemented algorithms. Particularly, we demonstrate
the results of Switch [6], k-DA [8], union-split cluster-
ing [14], the improved version of Sala et al.’s DP scheme
[15–17], and RW [20] which represent all the categories
of anonymization algorithms. The evaluation methodol-
ogy is that we first anonymize the original graph by an
algorithm, and then measure how each data utility is pre-
served in the anonymized graph compared to the origi-
nal graph. Specifically, when measuring utilities Deg.,
JD, PL, LCC, CC, BC, NC, NR, Infe., RX, and RE, we
measure the cosine similarity between their distributions
in the anonymized and original graphs; when measuring

ED, GCC, and EV, we measure their ratios between the
anonymized and original graphs; and when measuring
MINS and CD, we measure their Jaccard similarity in
the anonymized and original graphs.

We demonstrate the results in Table 5. (more results
are available in [1]). The criteria for anonymization pa-
rameters settings are: (i) we follow the same/similar set-
tings as in the original works of these anonymization
schemes; and (ii) many data utilities can be preserved af-
ter anonymization. For the three graph utilities IM, SR,
and SD, we only test them on small graphs, and put the
results in [1]. We analyze the results in Table 5 as fol-
lows.

Generally, the evaluation results in Table 5 are consis-
tent with our analysis in Table 2. Most anonymization
algorithms can partially or conditionally preserve most
graph and application utilities. Therefore, most of the
anonymized data can be employed for graph analytics,
data mining tasks, and graph applications.

Among all the graph utilities, JD and GCC are the
most sensitive utilities to a graph’s structure change, and
thus they are the easiest ones to be destroyed by the
anonymization algorithms. This is because these two
utilities are very sensitive to edge changes. Even if the
degree distribution of the anonymized data remains the
same as the original data, the JD distribution and GCC
may change significantly.

Compared to application utility, existing anonymiza-
tion algorithms are better at preserving graph utility. For
instance, most algorithms lost the RX utility and CD util-
ity. This is because most application utilities depend
on several graph utilities, e.g., the role of a user in RX
depends on that user’s degree, CC, BC, community at-
tributes, and other structural characteristics. Therefore,
application utilities are more easily affected than graph
utilities, i.e., application utilities are more sensitive to
graph’s structural changes.

No anonymization scheme is optimal in preserving ev-
ery data utility. For instance, Switch is better than k-DA
on preserving Deg. and JD while it is worse than k-DA
on preserving GCC and MINS, and DP is better than
RW on preserving LCC and GCC while it is worse than
RW on preserving Deg. Therefore, when choosing an
anonymization algorithm, it is better to take into account
the specific application. Furthermore, RW has the most
utility loss, e.g., GCC, RX, MINS, and CD, which is also
consistent with our analysis in Table 2. This is because
that the graph’s global structure is significantly changed
in RW by replacing random walk paths with edges.

5.3.3 DA Evaluation

In this subsection, we evaluate the performance of mod-
ern DA attacks. As we analyzed before, BDK [26],
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Table 5: Utility analysis of anonymization techniques. k is the number of modified edges for Switch, and the
anonymization parameter for k-DA and Cluster, ε is the anonymization parameter for DP, t is the random walk step
for RW, m is the number of edges in the original graph, and D is the diameter of the original graph (D= 11 for Enron
and D= 6 for Facebook).

Utility
Enron Facebook

Switch (vs. k) k-DA (vs. k) Cluster (vs. k) DP (vs. ε) RW (vs. t) Switch (vs. k) k-DA (vs. k) Cluster (vs. k) DP (vs. ε) RW (vs. t)
.05m .1m 5 50 5 50 300 50 2 D .05m .1m 5 50 5 50 300 50 2 D

Deg. 1 1 .9988 .9166 .9990 .9934 .9617 .8616 .9871 .9964 1 1 .9990 .9595 .9998 .9981 .9932 .9716 .9958 .9959
JD .8725 .8338 .8928 .4183 .8216 .7055 .8496 .7363 .6972 .6438 .9941 .9804 .9947 .7328 .9872 .9024 .9755 .8263 .9678 .9362
ED .9881 .9617 1.080 .9561 1.04 1.02 1.03 .9627 1.02 .9025 .9161 .8328 .9350 1.015 .9957 .9956 .9414 .9313 .9285 .8376
PL .9954 .9887 .9891 .8934 .9994 .9905 .9565 .9839 .9963 .9657 .9618 .9159 .9999 .9946 .9999 1 .9960 .9653 .9706 .8965

LCC .9830 .9631 .9972 .9809 .9966 .9797 .9528 .8328 .6785 .5985 .9204 .8303 .9998 .9983 .9968 .9947 .9793 .9437 .6239 .5543
GCC .8967 .8013 .9921 .9283 .9774 .9097 .7755 .4609 .3107 .5383 .5180 .2241 .9847 .9986 .9766 .9937 .9522 .8702 .2552 .0334
CC .9986 .9965 .9985 .9955 .9999 .9947 .9759 .9666 .9885 .9994 1 .9999 1 1 1 1 1 .9998 1 .9998
BC .9859 .9812 .9691 .9019 .9936 .9733 .8360 .7406 .9613 .9246 .9787 .9494 .9790 .9515 .9983 .9897 .9779 .9518 .9935 .9669
EV .9991 .9977 .9910 .8998 .9947 .9720 .9232 .8653 .9717 .9204 .9881 .9556 .9981 .9626 .9999 .9996 .9977 .9911 .9891 .9480
NC .9984 .9962 .9999 .9991 .9996 .9956 .9977 .9596 .9042 .9028 .9995 .9986 1 1 1 1 .9987 .9934 .9928 .9942
NR .9968 .9917 .9988 .9599 .9998 .9962 .9782 .8591 .9313 .8695 .9990 .9990 .9990 .9990 .9990 .9990 .9990 .9990 .9990 .9990
Infe. .9627 .9597 .9604 .9411 .9427 .9413 .9662 .9593 .9664 .9446 .9748 .9704 .9758 .9695 .9730 .9719 .9730 .9699 .9788 .9778
PR .9980 .9962 .9848 .8934 .9997 .9974 .9801 .9000 .8925 .9942 .9866 .9825 .9878 .9610 .9900 .9907 .9875 .9691 .9869 .9810
HS .9991 .9977 .9910 .8998 .9947 .9720 .9232 .8653 .9717 .9204 .9326 .8780 .9711 .9789 .9648 .9625 .9626 .9322 .9283 .8655
AS .9991 .9977 .9910 .8998 .9947 .9720 .9232 .8653 .9717 .9204 .9920 .9656 .9946 .9498 .9978 .9986 .9970 .9965 .9943 .9594
RX .6575 .6009 .4561 .3173 .4512 .3685 .4196 .4116 .2955 .2680 .3494 .2608 .2974 .3139 .3902 .4652 .3483 .3134 .3250 .2772
RE .9997 .9997 .9999 .9954 .9999 .9996 .9994 .9985 .9994 .9990 .9999 .9997 1 .9999 1 1 1 .9996 .9999 .9997

MINS .7578 .6486 .9639 .9026 .9898 .9297 .7292 .3272 .1815 .1645 .6085 .4419 .9426 .9251 .9240 .9184 .8483 .7768 .2480 .1893
CD .6251 .5411 .8454 .5339 .6794 .6692 .5095 .1028 .2531 .0569 .3536 .1986 .5043 .5887 .8558 .8523 .5027 .3213 .2860 .1205

RST [5], and RSM [5] are not scalable/practical; NSR
[21] and DeA [25] are simplified versions of NS [2] and
ADA [25], respectively; and NKA [22] actually depends
on other attacks, e.g., NS. Therefore, here, we focus
on evaluating the seven general, practical, and scalable
DA attacks: NS [2], DV (we replace its seed identifica-
tion phase with a scalable one) [5], PFG [23], YG [27],
ADA [25], KL [24], and JLSB [3]. Furthermore, PFG
and JLSB are seed-free and the other five attacks are
seed-based.

First, employing the same Enron and Facebook
datasets as before, we evaluate the DA performance of
the seven DA attacks. The evaluation methodology is
generally the same as in previous works [2, 3, 5, 22, 23,
25, 27]: we first randomly sample two graphs with prob-
ability s from the original data as the anonymized graph
and auxiliary graph respectively, and then employ the
auxiliary graph to de-anonymize the anonymized graph.
Furthermore, for seed-based attacks, e.g., NS, DV, YG,
ADA, and KL, we feed them 50 pre-identified seed map-
pings. The DA performance of the evaluated attacks with
respect to different s is shown in Table 6. From Table 6,
we have the following observations.

With the increase of s, more users can be successfully
de-anonymized under each algorithm. The reason is ev-
ident. Since a large s implies that the anonymized graph
and the auxiliary graph are more structurally similar,
more accurate structural information can be employed by
all the SDA algorithms. Hence, better DA performance
can be achieved.

Generally, all the algorithms have their advantages in
some specific scenarios, and no algorithm is the best in
all the cases. For instance, to de-anonymize Enron, KL
has the best performance when s = .6 while ADA has
the best performance when s = .95. Multiple reasons are
responsible for the results such as the similarity between
the anonymized and auxiliary graphs, the density of the
anonymized/auxiliary graph, the heuristics employed by
an algorithm, etc.

According to the results, NS is more suitable for the
scenarios where the anonymized and auxiliary graphs are
highly similar while unsuitable when they are not suf-
ficiently similar, e.g., it can successfully de-anonymize
95.27% Facebook users when s = .95 while only 0.18%
users when s = .6. The reason is because NS mainly em-
ploys local graph structural properties to adaptively con-
duct user DA, and thus is sensitive to users’ local struc-
tural characteristics. When s is small, most users are in-
distinguishable with respect to their local structures, e.g.,
degree, followed by poor DA performance.

Compared to NS, the other attacks, especially DV,
PFG, ADA, and JLSB, are more stable even with a small
s. For instance, when s = .6, DV, PFG, ADA, and
JLSB can successfully de-anonymize 15.63%, 10.87%,
15.68%, and 14.73% Facebook users, respectively. This
is because these attacks mainly employ global graph
characteristics (e.g., clossness centrality, the distance
vector to seeds) to perform the DA, which are more re-
silient to noise.
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Table 6: Performance of DA attacks. s is the probability of generating the auxiliary and anonyized graphs from the
original graph. Each value, e.g., 0.1277, in the table indicates the ratio of successfully de-anonymized users.

s De-anonymize Enron De-anonymize Facebook
NS DV PFG YG ADA KL JLSB NS DV PFG YG ADA KL JLSB

.60 .0037 .1277 .0739 .0310 .1305 .1596 .1191 .0018 .1563 .1087 .2832 .1568 .0599 .1473

.65 .0039 .1601 .0937 .0410 .1651 .1814 .1460 .0020 .1998 .1402 .3346 .2005 .0747 .1799

.70 .0054 .1969 .1397 .0725 .2013 .2026 .1723 .0031 .2437 .1523 .4124 .2444 .0841 .2094

.75 .0055 .2244 .1349 .1004 .2307 .2152 .1958 .8712 .3068 .2041 .4554 .3078 .1196 .2574

.80 .0061 .2841 .1837 .1014 .2896 .2519 .2474 .9056 .3802 .2586 .4970 .3805 .1508 .3042

.85 .3420 .3481 .2180 .1531 .3522 .3123 .2971 .9231 .4561 .3073 .5402 .4576 .1817 .3559

.90 .3660 .4004 .2736 .1885 .4043 .3389 .3443 .9414 .5659 .3977 .5737 .5670 .2552 .4289

.95 .3937 .5814 .4370 .2277 .5898 .5209 .5438 .9527 .7407 .5584 .6071 .7422 .3989 .5542

For the seed-free attacks, PFG and JLSB, they can
achieve comparable performance as seed-based attacks
in most scenarios even without any seed information.
For instance, when s = .95, PFG and JLSB can de-
anonymize 43.7% and 54.38% Enron users, respectively,
which are better than several seed-based algorithms and
further demonstrate the power of structure-based attacks.
The reason for the effectiveness of seed-free attacks is
that in most cases, the combination of a user’s local and
global structural characteristics, e.g., degree, neighbor-
hood degree distribution, closeness/betweenness central-
ity, is sufficient to distinguish him/her from other users.

5.3.4 Robustness of Modern SDA Attacks

The robustness of modern DA attacks with respect to
graph noise (e.g., adding fake edges and deleting true
edges) has been extensively evaluated in existing works
[2,3,5,25]. However, to the best our knowledge, no exist-
ing work has evaluated the robustness of any seed-based
de-anonymizaton attack to incorrect seed mappings. Em-
ploying Enron and Facebook, we address this open is-
sue by conducting such an evaluation and the results are
shown in Table 7. We analyze the results in Table 7 as
follows.

Generally, all the DA algorithms are robust with re-
spect to incorrect seed mappings in most scenarios.
This is because during the DA process, most algorithms
also employ other seed-independent structural proper-
ties, e.g., degree, closeness/betweenness centrality, in ad-
dition to relying on seed-dependent structural properties.
Even for the pure seed-based DA attacks, e.g., YG and
KL, they perform DA in the decreasing order of user de-
grees. Therefore, the negative impacts of incorrect seed
mappings can be partially offset, i.e., even with some in-
correct seed mappings, many users are still distinguish-
able with respect to their structural characteristics.

For all algorithms, when incorrect seed mappings in-
crease, fewer users can be correctly de-anonymized. The
reason is evident: more incorrect seed mappings imply
more incorrect seed-dependent structural information is

provided to each algorithm, followed by the degradation
of the DA performance of each algorithm.

When de-anonymizing Enron, the performance of NS
has a significant drop when the percentage of incorrect
seed mappings is increased from 8% to 10%. This is be-
cause of the seed transitional phenomena as observed in
[2], i.e., when the correct effective seed-dependent struc-
tural information is below/above some crucial threshold,
NS’s performance has a significant transition.

DV is much more stable than other algorithms. This
is because it is a pure global structure-based attack and
thus incorrect seed mappings have minimum impact on
it.

5.3.5 Anonymization vs DA

Now, we evaluate the effectiveness of state-of-the-art
anonymization techniques against modern DA attacks
employing Enron and Facebook. The methodology is
that we first employ different anonymization techniques
to anonymize Enron/Facebook. Then, we sample an
auxiliary graph from Enron/Facebook with probabil-
ity s. Finally, we employ different DA algorithms to
de-anonymize the anonymized data using the auxiliary
graph. We show the results in Table 8 and analyze the
results as follows.

All the state-of-the-art graph anonymization algo-
rithms are vulnerable to some or all of the modern SDA
attacks, which confirmed our analytical results in Ta-
ble 4. For instance, when s = .85, NS can still suc-
cessfully de-anonymize more than 80% Facebook users
anonymized by Switch, k-DA, Cluster, or DP, and DV
can successfully de-anonymize 15.3% Facebook users
anonymized by RW (t = 2). Similarly, when s = .85,
NS can successfully de-anonymize more than 35% En-
ron users anonymized by k-DA (k = 5), Cluster (k =
5,50), YG can successfully de-anonymize 13.73% and
15.49% Enron users anonymized by Switch (k = .05m)
and DP (ε = 300) respectively, and DV can successfully
de-anonymize 19.23%/24.12% Enron users anonymized
by RW with t = 2/11. Based on the results, we con-
clude that modern SDA attacks are very powerful. As

12



USENIX Association  24th USENIX Security Symposium 315

Table 7: DA robustness with respect to seed errors. Each algorithm is provided with 50 seed mappings, and Λe/Λ
indicates the percentages of incorrect seed mappings. Each value in the table indicates the ratio of successfully de-
anonymized users.

Λe
Λ

De-anonymize Enron De-anonymize Facebook
NS DV YG ADA KL NS DV YG ADA KL

4% .341 .342 .148 .336 .302 .922 .456 .537 .442 .183
6% .341 .342 .133 .329 .303 .917 .456 .528 .440 .183
8% .338 .348 .135 .329 .310 .918 .456 .542 .428 .184
10% .007 .348 .147 .323 .310 .918 .456 .536 .420 .182
12% .007 .348 .142 .313 .311 .915 .456 .529 .414 .185
14% .006 .348 .112 .306 .307 .916 .456 .526 .403 .186
16% .006 .348 .129 .297 .303 .916 .456 .525 .394 .184
18% .006 .348 .099 .293 .308 .913 .456 .533 .380 .183
20% .006 .348 .126 .285 .306 .913 .456 .518 .356 .179
22% .005 .348 .125 .280 .303 .912 .456 .531 .347 .182
24% .005 .348 .116 .268 .304 .910 .456 .521 .332 .180
26% .005 .348 .118 .255 .303 .889 .456 .528 .319 .179
28% .004 .348 .112 .253 .300 .886 .456 .520 .309 .182
30% .004 .348 .120 .247 .307 .884 .456 .522 .283 .180
32% .004 .348 .106 .235 .305 .888 .456 .521 .270 .178
34% .004 .348 .081 .230 .304 .887 .456 .521 .259 .178
36% .004 .348 .084 .216 .300 .889 .456 .505 .245 .182
38% .004 .347 .096 .199 .301 .888 .456 .493 .230 .178
40% .004 .347 .065 .186 .302 .886 .456 .505 .214 .179
42% .003 .347 .071 .182 .302 .882 .456 .516 .195 .181
44% .003 .347 .106 .169 .303 .881 .456 .495 .185 .180
46% .003 .347 .050 .160 .299 .881 .456 .480 .173 .177
48% .003 .347 .059 .153 .297 .881 .456 .497 .161 .180
50% .002 .347 .063 .146 .298 .874 .456 .475 .148 .176

Table 8: Anonymization vs DA. The seed-based algorithms are provided with 50 seeds and the anonymization param-
eters are chosen according to the same criteria as in Table 5.

s
Enron Facebook

Switch (k) k-DA (k) Cluster (k) DP (ε) RW (t) Switch (k) k-DA (k) Cluster (k) DP (ε) RW (t)
5 10 5 50 5 50 300 50 2 D 5 10 5 50 5 50 300 50 2 D

NS

.85 .0072 .0052 .3702 .0088 .3722 .3707 .0091 .0055 .0015 .0015 .8973 .8247 .9454 .9402 .9456 .9442 .9317 .8914 .0008 .0006

.90 .0077 .0054 .3822 .0105 .3900 .3839 .0095 .0060 .0015 .0015 .9063 .8427 .9520 .9495 .9519 .9508 .9393 .8944 .0008 .0007

.95 .3577 .0064 .4033 .0418 .4049 .4064 .3946 .0064 .0015 .0016 .9162 .8583 .9570 .9559 .9569 .9558 .9453 .9130 .0000 .0007

DV

.85 .1261 .0813 .1433 .0437 .2120 .1408 .1160 .0701 .1923 .2412 .1716 .0926 .2411 .0588 .3340 .3368 .2324 .0736 .1530 .1271

.90 .1546 .0956 .1765 .0517 .2564 .1637 .1394 .0733 .2129 .2169 .2124 .1147 .2999 .0758 .4113 .4090 .3623 .0802 .1604 .1322

.95 .2121 .1366 .2548 .0753 .3745 .2215 .1821 .0858 .2072 .2190 .3006 .1586 .4210 .1161 .5767 .5656 .4087 .1016 .1591 .1332

PFG

.85 .0667 .0422 .0692 .0214 .1116 .0683 .0489 .0365 .1578 .2131 .0706 .0395 .0703 .0154 .1191 .1155 .0891 .0206 .1349 .1190

.90 .0805 .0478 .0810 .0263 .1317 .0789 .0571 .0390 .1711 .2012 .0978 .0497 .0946 .0213 .1480 .1595 .1870 .0223 .1382 .1217

.95 .1193 .0695 .1123 .0353 .1978 .0952 .0755 .0479 .1714 .2074 .1378 .0725 .1317 .0332 .2034 .2330 .1756 .0295 .1397 .1216

YG

.85 .1373 .0969 .1646 .0289 .1576 .1570 .1549 .0664 .0394 .0323 .5437 .5056 .5816 .5086 .5897 .5805 .5404 .4347 .0356 .0210

.90 .1716 .1037 .1612 .0253 .1868 .1710 .1577 .0736 .0404 .0342 .5681 .5182 .6089 .5129 .6036 .5980 .5702 .4818 .0372 .0222

.95 .1730 .1197 .2155 .3785 .1971 .2064 .1884 .0838 .0418 .0348 .5821 .5439 .6208 .5504 .6223 .6190 .5716 .4538 .0346 .0231

ADA

.85 .1262 .0820 .1468 .0445 .2130 .1418 .1160 .0701 .0771 .0731 .1724 .0926 .2425 .0603 .3358 .3379 .2337 .0749 .0985 .0725

.90 .1543 .0964 .1795 .0534 .2588 .1652 .1394 .0729 .0855 .0704 .2129 .1146 .3026 .0776 .4124 .4103 .3639 .0823 .1008 .0764

.95 .2139 .1381 .2605 .0768 .3777 .2230 .1823 .0855 .0872 .0733 .3019 .1589 .4245 .1186 .5780 .5667 .4105 .1038 .1041 .0784

KL

.85 .0904 .0811 .0997 .0357 .0965 .0689 .0745 .0331 .0900 .0729 .0799 .0764 .0819 .0683 .0788 .0762 .0769 .0313 .1099 .0737

.90 .1077 .0970 .1202 .0549 .1134 .0918 .0874 .0319 .0939 .0744 .0979 .0939 .1013 .0848 .0960 .0863 .1249 .0317 .1099 .0715

.95 .1381 .1150 .1936 .0978 .2052 .1686 .1719 .0376 .0994 .0776 .1350 .1331 .1418 .1265 .1294 .1206 .1450 .0600 .1171 .0754

JLSB

.85 .0692 .0440 .0798 .0234 .1248 .0854 .0886 .0656 .0709 .0720 .1453 .0786 .2025 .0595 .2618 .2673 .1958 .0768 .0901 .0681

.90 .0886 .0536 .1046 .0296 .1618 .1135 .1070 .0664 .0767 .0728 .1673 .0911 .2335 .0708 .3001 .3094 .3050 .0777 .0911 .0699

.95 .1846 .1189 .2381 .0746 .3317 .2319 .1449 .0814 .0838 .0740 .2180 .1174 .3111 .1096 .3983 .3924 .3142 .0950 .0940 .0734

13
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we analyzed in Table 4, two fundamental reasons make
state-of-the-art graph anonymization algorithms vulner-
able. First, in existing graph anonymization schemes,
graph users are only indistinguishable with respect to
some structural properties/semantics. However, several
other structural properties or the combinations of them
can still enable effective graph user DA. Furthermore, the
design philosophy of existing anonymization schemes is
to preserve as much data utility as possible. However,
data utility can be used to conduct powerful SDA attacks.
Therefore, it is still an open problem to design effective
graph data anonymization algorithms which can defend
against modern SDA attacks.

Generally, when s is large and the anonymization level
(e.g., k for Switch and k-DA) is low, more users can be
correctly de-anonymized. The reason is straightforward.
A large s implies more structural information of the origi-
nal graph can be preserved in the auxiliary graph and thus
more accurate structural characteristics can be employed
for DA. Meanwhile, a low anonymization level implies
less perturbation applied to the original graph’s structure
followed by the anonymized graph is more structurally
similar to the original graph and thus is easier to be de-
anonymized.

Among all the DA attacks, NS, YG, and ADA per-
form better than other attacks in most scenarios. This
is because they mainly employ the combinations of sev-
eral local structural characteristics to conduct the DA.
According to our utility analysis in Table 2 and evalu-
ation results in Table 5, most existing anonymization al-
gorithms can preserve most graph utilities, especially the
local graph utilities, e.g., Deg., LCC. It turns out that the
graph utility preserved by anonymization algorithms can
be used by DA attacks to conduct effective DA. There-
fore, in the scenarios where an anonymization algorithm
preserves more data utility, the corresponding dataset is
more vulnerable to modern SDA attacks.

Among all the anonymization techniques, RW has bet-
ter performance than others in most of the cases. The rea-
son is that, a random walk path of length t is replaced by
an edge in RW. It follows that the original graph structure
is significantly changed. Therefore, a RW-anonymized
graph is more resistant to DA attacks. However, RW
achieves such DA resistance at the cost of sacrificing
more data utility compared with other anonymization
techniques, which is consistent with our utility analysis
and evaluation results in Tables 2 and 5. Furthermore, we
can also find that in most scenarios, existing anonymiza-
tion techniques can degrade the performance of SDA at-
tacks. Again, as shown in Tables 2 and 5, some data
utilities are also degraded/lost.

6 Future Research and Challenges

In this section, we discuss the future research directions
and challenges of graph data anonymization and DA.

Graph Data Anonymization. According to our an-
alytical results in Table 4 and evaluation results in Ta-
ble 8, all the state-of-the-art anonymization techniques,
e.g., k-anonymity based schemes, DP based schemes,
are vulnerable to modern SDA attacks. Their vulnera-
bility depends on how much data utility is preserved in
the anonymized data. Therefore, it is very difficult, if
not impossible, to develop effective and universal graph
data anonymization techniques to defend against mod-
ern SDA attacks. The main challenges are two-folds.
First, guaranteeing data utility is one of the primary ob-
jectives when publishing/sharing graph data. However,
as we explained before, the preserved graph and appli-
cation utilities enable adversaries to conduct large-scale
DA attacks. Therefore, it is a big challenge to effectively
anonymize graph data with desired data utility preserva-
tion and without enabling adversaries to utilize these data
utilities. Second, many local and global structural char-
acteristics (or, structural scemantics), e.g., Deg., LCC,
CC, BC, are embedded in graph data’s structure. Exist-
ing anonymization techniques can only make graph users
structurally indistinguishable with respect to one or sev-
eral semantics, e.g., degree and neighborhood. However,
as we explained before, in many scenarios, several other
structural semantics and their combinations are sufficient
to enable a SDA attack to de-anonymize graph users.
Therefore, it is also a key challenge to make graph users
structurally indistinguishable with respect to most, if not
all, structural semantics.

Considering that it is difficult to seek a tradeoff
between generic utility and anonymity, a promising
research direction could be developing application-
oriented anonymization techniques. Instead of preserv-
ing as much data utility as possible, one only considers
some specific application-aware utility when designing
the anonymization techniques. For instance, although
RW loses more data utility than most existing graph
anonymization techniques, it achieves better anonymity
and meanwhile supports some application utility, e.g.,
sybil detection [20].

Graph Data DA. Based on our DA evaluation results,
future DA research may follow two directions.

First, it is interesting to study how to combine the ad-
vantages of different algorithms and develop new stable
and improved DA schemes. To achieve this, the chal-
lenge is to decide which structural characteristics should
be employed and how to use these characteristics during
the DA process. This is because some structural char-
acteristics are local (e.g., Deg.) while others are global
(e.g., CC and BC). It is better to seek a balance between

14
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the employed local and global structural semantics. Ad-
ditionally, some structural characteristics may carry sim-
ilar structural semantics, and thus simultaneously em-
ploying such characteristics will not lead to too much
improvement. Furthermore, according to our evaluation
experience, the sequence and weights of applying differ-
ent structural characteristics may induce very different
DA performance.

Second, instead of trying to design a uniformly
optimal DA algorithm, it is better to develop some
anonymization technique-oriented and application-aware
DA schemes. This is because, for some anonymiza-
tion algorithms, e.g., most k-anonymity based schemes,
they mainly achieve anonymity by local graph pertur-
bation. In this scenario, the global graph characteris-
tics based DA algorithms will be more effective. On
the other hand, for some anonymization algorithms,
e.g., Add/Del and RW, they mainly achieve anonymity
through global graph perturbation. Therefore, the local
graph characteristics based DA schemes will be better
at de-anonymizing the data anonymized by these tech-
niques. Furthermore, according to our DA evaluation
experience, some DA attacks are more effective to de-
anonymize dense graphs, e.g., NS and JLSB, while some
other attacks are more effective to de-anonymize sparse
graphs, e.g., DV, PFG. Therefore, when developing new
DA algorithms, it is helpful to take into account both the
attacked anonymization technique and the attacked ap-
plication.

More Future Work. In this paper, we focus on im-
plementing and evaluating graph data anonymization and
DA techniques. It is also interesting to integrate the
anonymization and DA techniques for other data types,
e.g., relational data. In the future, we propose to develop
a uniform and open-source evaluation system supporting
multi-type data anonymization and DA.

7 Conclusion

In this paper, we propose, implement, and evaluate Sec-
Graph (available at [1]), an open-source secure graph
data publishing/sharing system. Within SecGraph, we
systematically analyze, implement, and evaluate 11
graph data anonymization algorithms, 19 data utility
metrics, and 15 modern SDA attacks. To the best of
our knowledge, SecGraph is the first such system that
provides a uniform platform enabling data owners to
anonymize and evaluate the security of their data, and si-
multaneously enabling researchers to conduct fair studies
of existing or newly developed anonymization/DA tech-
niques. Leveraging SecGraph, we conduct extensive ex-
perimental evaluations. The results demonstrate that (i)
most anonymization schemes can partially or condition-
ally preserve most graph utility but lose some applica-

tion utility; (ii) no DA attack is optimum in all scenarios.
The actual DA performance depends on several factors;
and (iii) all the state-of-the-art anonymization schemes
are vulnerable to modern SDA attacks. Based on our
findings and analysis, we discuss the future research di-
rections and challenges of graph data anonymization and
DA.
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Abstract
In a provenance-aware system, mechanisms gather

and report metadata that describes the history of each ob-
ject being processed on the system, allowing users to un-
derstand how data objects came to exist in their present
state. However, while past work has demonstrated the
usefulness of provenance, less attention has been given
to securing provenance-aware systems. Provenance it-
self is a ripe attack vector, and its authenticity and in-
tegrity must be guaranteed before it can be put to use.

We present Linux Provenance Modules (LPM),
the first general framework for the development of
provenance-aware systems. We demonstrate that LPM
creates a trusted provenance-aware execution environ-
ment, collecting complete whole-system provenance
while imposing as little as 2.7% performance overhead
on normal system operation. LPM introduces new mech-
anisms for secure provenance layering and authenticated
communication between provenance-aware hosts, and
also interoperates with existing mechanisms to provide
strong security assurances. To demonstrate the poten-
tial uses of LPM, we design a Provenance-Based Data
Loss Prevention (PB-DLP) system. We implement PB-
DLP as a file transfer application that blocks the trans-
mission of files derived from sensitive ancestors while
imposing just tens of milliseconds overhead. LPM is the
first step towards widespread deployment of trustworthy
provenance-aware applications.

1 Introduction

A provenance-aware system automatically gathers and
reports metadata that describes the history of each ob-
ject being processed on the system. This allows users to
track, and understand, how a piece of data came to ex-
ist in its current state. The application of provenance

The Lincoln Laboratory portion of this work was sponsored by the
Assistant Secretary of Defense for Research & Engineering under Air
Force Contract #FA8721-05-C-0002. Opinions, interpretations, con-
clusions and recommendations are those of the author and are not nec-
essarily endorsed by the United States Government.

is presently of enormous interest in a variety of dis-
parate communities including scientific data processing,
databases, software development, and storage [43, 53].
Provenance has also been demonstrated to be of great
value to security by identifying malicious activity in data
centers [5, 27, 56, 65, 66], improving Mandatory Access
Control (MAC) labels [45, 46, 47], and assuring regula-
tory compliance [3].

Unfortunately, most provenance collection mecha-
nisms in the literature exist as fully-trusted user space
applications [28, 27, 41, 56]. Even kernel-based prove-
nance mechanisms [43, 48] and sketches for trusted
provenance architectures [40, 42] fall short of providing
a provenance-aware system for malicious environments.
The problem of whether or not to trust provenance is fur-
ther exacerbated in distributed environments, or in lay-
ered provenance systems, due to the lack of a mechanism
to verify the authenticity and integrity of provenance col-
lected from different sources.

In this work, we present Linux Provenance Modules
(LPM), the first generalized framework for secure prove-
nance collection on the Linux operating system. Mod-
ules capture whole-system provenance, a detailed record
of processes, IPC mechanisms, network activity, and
even the kernel itself; this capture is invisible to the ap-
plications for which provenance is being collected. LPM
introduces a gateway that permits the upgrading of low
integrity workflow provenance from user space. LPM
also facilitates secure distributed provenance through an
authenticated, tamper-evident channel for the transmis-
sion of provenance metadata between hosts. LPM inter-
operates with existing security mechanisms to establish a
hardware-based root of trust to protect system integrity.

Achieving the goal of trustworthy whole-system
provenance, we demonstrate the power of our approach
by presenting a scheme for Provenance-Based Data Loss
Prevention (PB-DLP). PB-DLP allows administrators to
reason about the propagation of sensitive data and control
its further dissemination through an expressive policy
system, offering dramatically stronger assurances than
existing enterprise solutions, while imposing just mil-
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Used Used Used Used Used WasControlledBy

WasGeneratedBy WasGeneratedByWasGeneratedBy WasGeneratedBy WasGeneratedBy

/etc/rc.local:0 /bin/ps:0 /var/spool/cron/root:0 /etc/passwd:0 /etc/shadow:0

Malicious Binary

/etc/rc.local:1 /bin/ps:1 /var/spool/cron/root:1 /etc/passwd:1 /etc/shadow:1

root

Figure 1: A provenance graph showing the attack footprint of a malicious binary. Edges encode relationships that flow
backwards into the history of system execution, and writing to an object creates a second node with an incremented
version number. Here, we see that the binary has rewritten /etc/rc.local, likely in an attempt to gain persistence
after a system reboot.

liseconds of overhead on file transmission. To our knowl-
edge, this work is the first to apply provenance to DLP.

Our contributions can thus be summarized as follows:

• Introduce Linux Provenance Modules (LPM).
LPM facilitates secure provenance collection at the
kernel layer, supports attested disclosure at the ap-
plication layer, provides an authenticated channel
for network transmission, and is compatible with
the W3C Provenance (PROV) Model [59]. In eval-
uation, we demonstrate that provenance collection
imposes as little as 2.7% performance overhead.

• Demonstrate secure deployment. Leveraging
LPM and existing security mechanisms, we create
a trusted provenance-aware execution environment
for Linux. Through porting Hi-Fi [48] and provid-
ing support for SPADE [29], we demonstrate the
relative ease with which LPM can be used to secure
existing provenance collection mechanisms. We
show that, in realistic malicious environments, ours
is the first proposed system to offer secure prove-
nance collection.

• Introduce Provenance-Based Data Loss Preven-
tion (PB-DLP). We present a new paradigm for
the prevention of data leakage that searches object
provenance to identify and prevent the spread of
sensitive data. PB-DLP is impervious to attempts
to launder data through intermediary files and IPC.
We implement PB-DLP as a file transfer applica-
tion, and demonstrate its ability to query object an-
cestries in just tens of milliseconds.

2 Background

Data provenance, sometimes called lineage, describes
the actions taken on a data object from its creation up
to the present. Provenance can be used to answer a va-
riety of historical questions about the data it describes.
Such questions include, but are not limited to, “What
processes and datasets were used to generate this data?"

and “In what environment was the data produced?" Con-
versely, provenance can also answer questions about the
successors of a piece of data, such as “What objects on
the system were derived from this object?" Although po-
tential applications for such information are nearly lim-
itless, past proposals have conceptualized provenance in
different ways, indicating that a one-size-fits-all solution
to provenance collection is unlikely to meet the needs of
all of these audiences. We review these past proposals
for provenance-aware systems in Section 8.

The commonly accepted representation for data prove-
nance is a directed acyclic graph (DAG). In this work, we
use the W3C PROV-DM specification [59] because it is
pervasive and facilitates the exchange of provenance be-
tween deployments. An example PROV-DM graph of a
malicious binary is shown in Figure 1. This graph de-
scribes an attack in which a binary running with root
privilege reads several sensitive system files, then ed-
its those files in an attempt to gain persistent access to
the host. Edges encode relationships between nodes,
pointing backwards into the history of system execution.
Writing to an object triggers the creation of a second ob-
ject node with an incremented version number. This par-
ticular provenance graph could serve as a valuable foren-
sics tool, allowing system administrators to better under-
stand the nature of a network intrusion.

2.1 Data Loss Prevention

Data Loss Prevention (DLP) is enterprise software that
seeks to minimize the leakage of sensitive data by moni-
toring and controlling information flow in large, complex
organizations [1].1 In addition to the desire to control in-
tellectual property, another motivator for DLP systems
is demonstrating regulatory compliance for personally-
identifiable information (PII),2 as well as directives such

1 Our overview of data loss prevention is based on review of pub-
licly available product descriptions for software developed by Bit9,
CDW, Cisco, McAfee, Symantec, and Titus.

2 See NIST SP 800-122
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as PCI,3 HIPAA,4 SOX.5 or E.U. Data Protection.6 As
encryption can be used to protect data at rest from unau-
thorized access, the true DLP challenge involves prevent-
ing leakage at the hands of authorized users, both mali-
cious and well-meaning agents. This latter group is a
surprisingly big problem in the fight to control an organi-
zation’s intellectual property; a 2013 study conducted by
the Ponemon Institute found that over half of companies’
employees admitted to emailing intellectual property to
their personal email accounts, with 41 percent admitting
to doing so on a weekly basis [2]. It is therefore im-
portant for a DLP system to be able to exhaustively ex-
plain which pieces of data are sensitive, where that data
has propagated to within the organization, and where it
is (and is not) permitted to flow.

As DLP systems are proprietary and are marketed so
as to abstract away the complex details of their inter-
nal workings, we cannot offer a complete explanation of
their core features. However, some of the mechanisms
in such systems are known. Many DLP products use a
regular expression-based approach to identify sensitive
data, operating similarly to a general-purpose version of
Cornell’s Spider7. For example, in PCI compliance,3

DLP might attempt to identify credit card numbers in
outbound emails by searching for 16 digit numbers that
pass a Mod-10 validation check [39]. Other DLP systems
use a label-based approach to identify sensitive data, tag-
ging document metadata with security labels. The Titus
system accomplishes this by having company employees
manually annotate the documents that they create;8 plug-
ins for applications (e.g., Microsoft Office) then prevent
the document from being transmitted to or opened by
other employees that lack the necessary clearance. In ei-
ther approach, DLP software is difficult to configure and
prone to failure, offering marginal utility at great price.

3 Linux Provenance Modules

To serve as the foundation for secure provenance-aware
systems, we present Linux Provenance Modules (LPM).
We provide a working definition for the provenance our
system will collect in §3.1. In §3.2 we consider the ca-
pabilities and aims of a provenance-aware adversary, and
identify security and design goals in §3.3. The LPM de-
sign is presented in §3.4, and in §3.5 we demonstrate its
secure deployment. An expanded description of our sys-
tem is available in our technical report [8].

3 See https://www.pcisecuritystandards.org
4 See http://www.hhs.gov/ocr/privacy
5 Short for the Sarbanes-Oxley Act, U.S. Public Law No. 107-20
6 See EU Directive 95/46/EC
7 See http://www2.cit.cornell.edu/security/tools
8 See http://www.titus.com

3.1 Defining Whole-System Provenance

In the design of LPM, we adopt a model for whole-
system provenance9 that is broad enough to accom-
modate the needs of a variety of existing provenance
projects. To arrive at a definition, we inspect four
past proposals that collect broadly scoped provenance:
SPADE [29], LineageFS [53], PASS [43], and Hi-Fi [48].
SPADE provenance is structured around primitive oper-
ations of system activities with data inputs and outputs.
It instruments file and process system calls, and asso-
ciates each call to a process ID (PID), user identifier, and
network address. LineageFS uses a similar definition,
associating process IDs with the file descriptors that the
process reads and writes. PASS associates a process’s
output with references to all input files and the command
line and process environment of the process; it also ap-
pends out-of-band knowledge such as OS and hardware
descriptions, and random number generator seeds, if pro-
vided. In each of these systems, networking and IPC
activity is primarily reflected in the provenance record
through manipulation of the underlying file descriptors.
Hi-Fi takes an even broader approach to provenance,
treating non-persistent objects such as memory, IPC, and
network packets as principal objects.

We observe that, in all instances, provenance-aware
systems are exclusively concerned with operations on
controlled data types, which are identified by Zhang et
al. as files, inodes, superblocks, socket buffers, IPC
messages, IPC message queue, semaphores, and shared
memory [64]. Because controlled data types represent a
super set of the objects tracked by system layer prove-
nance mechanisms, we define whole-system provenance
as a complete description of agents (users, groups) con-
trolling activities (processes) interacting with controlled
data types during system execution.

3.2 Threat Model & Assumptions

We consider an adversary that has gained remote access
to a provenance-aware host or network. Once inside the
system, the attacker may attempt to remove provenance
records, insert spurious information into those records,
or find gaps in the provenance monitor’s ability to record
information flows. A network attacker may also attempt
to forge or strip provenance from data in transit. Be-
cause captured provenance can be put to use in other ap-
plications, the adversary’s goal may even be to target the
provenance monitor itself. The implications and meth-
ods of such an attack are domain-specific. For example:

9This term is coined in [48], but not explicitly defined. We demon-
strate the concrete requirements of a collection mechanism for whole-
system provenance in this work.

3



322 24th USENIX Security Symposium USENIX Association

• Scientific Computing: An adversary may wish to ma-
nipulate provenance in order to commit fraud, or to in-
ject uncertainty into records to trigger a “Climategate”-
like controversy [50].

• Access Control: When used to mediate access deci-
sions [7, 45, 46, 47], an attacker could tamper with
provenance in order to gain unauthorized access, or to
perform a denial-of-service attack on other users by ar-
tificially escalating the security level of data objects.

• Networks: Provenance metadata can also be associ-
ated with packets in order to better understand network
events in distributed systems [5, 65, 66]. Coordinating
multiple compromised hosts, an attacker may attempt
to send unauthenticated messages to avoid provenance
generation and to perform data exfiltration.

We define a provenance trusted computing base (TCB)
to be the kernel mechanisms, provenance recorder, and
storage back-ends responsible for the collection and
management of provenance. Provenance-aware appli-
cations are not considered part of the TCB.

We make the following assumption with regards to the
TCB. In Linux, kernel modules have unrestricted access
to kernel memory, meaning that there is no mechanism
for protecting LPM from the rest of the kernel. The ker-
nel code is therefore trusted; we assume that the stock
kernel will not seek to tamper with the TCB. However,
we do consider the possibility that the kernel could be
compromised after installation through its interactions
with user space applications. To facilitate host attestation
in distributed environments, we also assume access to
a Public Key Infrastructure (PKI) for provenance-aware
hosts to publish their public signing keys.

3.3 System Goals
We set out to provide the following security assurances
in the design of of our system-layer provenance collec-
tion mechanism. McDaniel et al. liken the needs of a
secure provenance monitor [42] to the reference monitor
guarantees laid out by Anderson [4]: complete media-
tion, tamperproofness, and verifiability. We define these
guarantees as follows:

G1 Complete. Complete mediation for provenance has
been discussed elsewhere in the literature in terms
of assuring completeness [32]: that the provenance
record be gapless in its description of system activ-
ity. To facilitate this, LPM must be able to observe
all information flows that pass through controlled
data types.

G2 Tamperproof. As many provenance use cases in-
volve enhancing system security, LPM will be an
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Figure 2: Diagram of the LPM Framework. Kernel
hooks report provenance to a recorder in userspace,
which uses one of several storage back-ends. The
recorder is also responsible for evaluating the integrity
of workflow provenance prior to storing it.

adversarial target. The TCB must therefore be im-
pervious to disabling or manipulation by processes
in user space.

G3 Verifiable. The functionality of LPM must be
verifiably correct. Additionally, local and remote
users should be able to attest whether the host with
which they are communicating is running the se-
cured provenance-aware kernel.

Through surveying past work in provenance-aware
systems, we identify the following additional goals to
support whole-system provenance:

G4 Authenticated Channel. In distributed environ-
ments, provenance-aware systems must provide a
means of assuring authenticity and integrity of
provenance as it is communicated over open net-
works [7, 42, 48, 65]. While we do not seek to
provide a complete distributed provenance solution
in LPM, we do wish to provide the required build-
ing blocks within the host for such a system to ex-
ist. LPM must therefore be able to monitor ev-
ery network message that is sent or received by the
host, and reliably explain these messages to other
provenance-aware hosts in the network.

G5 Attested Disclosure. Layered provenance, where
additional metadata is disclosed from higher opera-
tional layers, is a desirable feature in provenance-
aware systems, as applications are able to report
workflow semantics that are invisible to the oper-
ating system [44]. LPM must provide a gateway for
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upgrading low integrity user space disclosures be-
fore logging them in the high integrity provenance
record. This is consistent with the Clark-Wilson In-
tegrity model for upgrading or discarding low in-
tegrity inputs [17].

In order to bootstrap trust in our system, we have im-
plemented LPM as a parallel framework to Linux Secu-
rity Modules (LSM) [60, 61]. Building on these results,
we show in Section 4 that this approach allows LPM to
inherit the formal assurances that have been verified for
the LSM architecture.

3.4 Design & Implementation
An overview of the LPM architecture is shown in Fig-
ure 2. The LPM patch places a set of provenance hooks
around the kernel; a provenance module then registers
to control these hooks, and also registers several Netfil-
ter hooks; the module then observes system events and
transmits information via a relay buffer to a provenance
recorder in user space that interfaces with a datastore.
The recorder also accepts disclosed provenance from ap-
plications after verifying their correctness using the In-
tegrity Measurements Architecture (IMA) [52].

In designing LPM, we first considered using an exper-
imental patch to the LSM framework that allows “stack-
ing” of LSM modules 10. However, at this time, no stan-
dard exists for handling when modules make conflict-
ing decisions, creating the potential unpredicted behav-
ior. We also felt that dedicated provenance hooks were
necessary; by collecting provenance after LSM autho-
rization routines, we ensure that the provenance history
is an accurate description of authorized system events. If
provenance collection occurred during authorization, as
would be the case with stacked LSMs, it would not be
possible to provide this property.

3.4.1 Provenance Hooks

The LPM patch introduces a set of hook functions in the
Linux kernel. These hooks behave similarly to the LSM
framework’s security hooks in that they facilitate mod-
ularity, and default to taking no action unless a module
is enabled. Each provenance hook is placed directly be-
neath a corresponding security hook. The return value of
the security hook is checked prior to calling the prove-
nance hook, thus assuring that the requested activity has
been authorized prior to provenance capture; we consider
the implications of this design in Section 4. A workflow
for the hook architecture is depicted in Figure 3. The
LPM patch places over 170 provenance hooks, one for
each of the LSM authorization hooks. In addition to the

10See https://lwn.net/Articles/518345/
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Figure 3: Hook Architecture for the open system call.
Provenance is collected after DAC and LSM checks, en-
suring that it accurately reflects system activity. LPM
will only deny the operation if it fails to generate prove-
nance for the event.

hooks that correspond to existing security hooks, we also
support Pohly et al.’s Hi-Fi [48] hook that is necessary to
preserve Lamport timestamps on network messages [38].

3.4.2 Netfilter Hooks

LPM uses Netfilter hooks to implement a cryptographic
message commitment protocol. In Hi-Fi, provenance-
aware hosts communicated by embedding a provenance
sequence number in the IP options field [49] of each out-
bound packet [48]. This approach allowed Hi-Fi to com-
municate as normal with hosts that were not provenance-
aware, but unfortunately was not secure against a net-
work adversary. In LPM, provenance sequence numbers
are replaced with Digital Signature Algorithm (DSA)
signatures, which are space-efficient enough to embed in
the IP Options field. We have implemented full DSA
support in the Linux kernel by creating signing rou-
tines to use with the existing DSA verification func-
tion. DSA signing and verification occurs in the NetFil-
ter inet_local_out and inet_local_in hooks.
In inet_local_out, LPM signs over the immutable
fields of the IP header, as well as the IP payload. In
inet_local_in, LPM checks for the presence of a
signature, then verifies the signature against a config-
urable list of public keys. If the signature fails, the packet
is dropped before it reaches the recipient application,
thus ensuring that there are no breaks in the continuity of
the provenance log. The key store for provenance-aware
hosts is obtained by a PKI and transmitted to the ker-
nel during the boot process by writing to securityfs.
LPM registers the Netfilter hooks with the highest prior-
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ity levels, such that signing occurs just before transmis-
sion (i.e., after all other IPTables operations), and sig-
nature verification occurs just after the packet enters the
interface (i.e., before all other IPTables operations).

3.4.3 Provenance Modules

Here, we introduce two of our own provenance modules
(Provmon, SPADE), as well as briefly mention the work
of our peers (UPTEMPO):

• Provmon. Provmon is an extended port of the Hi-Fi
security module [48]. The original Hi-Fi code base
was 1,566 lines of code, requiring 723 lines to be mod-
ified in the transition. Our extensions introduced 728
additional lines of code. The process of porting did
not affect the module’s functionality, although we have
subsequently extended the Hi-Fi protocol to capture
additional lineage information:

File Versioning. The original Hi-Fi protocol did not
track version information for files, leading to uncer-
tainty as to the exact contents of a file at the time it
was read. Accurately recovering this information in
user space was not possible due to race conditions be-
tween kernel events. Because versioning is necessary
to break cycles in provenance graphs [43], we have
added a version field to the provenance context for in-
odes, which is incremented on each write.

Network Context. Hi-Fi omitted remote host address
information for network events, reasoning that source
information could be forged by a dishonest agent in the
network. These human-interpretable data points were
replaced with an assigned random identifier for each
packet. We found, however, that these identifiers could
not be interpreted without remote address information,
and incorporated the recording of remote IP addresses
and ports into Provmon.

• SPADE. The SPADE system is an increasingly pop-
ular option for provenance auditing, but collecting
provenance in user space limits SPADE’s expressive-
ness and creates the potential for incomplete prove-
nance. To address this limitation, we have cre-
ated a mechanism that reports LPM provenance into
SPADE’s Domain-Specific Language pipe [29]. This
permits the collection of whole-system provenance
while simultaneously leveraging SPADE’s existing
storage, remote query, and visualization utilities.

• Using Provenance to Expedite MAC Policies (UP-
TEMPO). Using LPM as a collection mechanism,
Moyer et al. investigate provenance analysis as a
means of administrating Mandatory Access Control
(MAC) policies [54]. UPTEMPO first observes system
execution in a sterile environment, aggregating LPM

provenance in a centralized data store. It then recov-
ers the implicit information flow policy through min-
ing the provenance store to generate a MAC policy for
the distributed system, decreasing both administrator
effort and the potential for misconfiguration.

3.4.4 Provenance Recorders

LPM provides modular support for different storage
through provenance recorders. To prevent an infinite
provenance loop, recorders are flagged as provenance-
opaque [48] using the security.provenance ex-
tended attribute, which is checked by LPM before creat-
ing a new event. Each recorder was designed to be as ag-
nostic to the active LPM as possible, making them easy
to adapt to new modules.

We currently provide provenance recorders that of-
fer backend storage for Gzip, PostGreSQL, Neo4j, and
SNAP. Commentary on our PostGreSQL and Neo4j re-
porters can be found in our technical report [8]. We make
use of the Gzip and SNAP recorders during our evalua-
tion in Section 6.

The Gzip recorder incurs low storage overheads and
fast insertion speeds. On our test bed, we observed
this recorder processing up to 400,000 events per sec-
ond from the Provmon provenance stream. However, be-
cause the provenance is not stored in an easily queried
form, this back-end is best suited for environments where
queries are an offline process.

To create graph storage that was efficient enough for
LPM, we used the SNAP graphing library11 to design
a recorder that maintains an in-memory graph database
that is fully compliant with the W3C PROV-DM Model
[59]. We have observed insertion speeds of over 150,000
events per second using the SNAP recorder, and highly
efficient querying as well. This recorder is further evalu-
ated in Section 6.

3.4.5 Workflow Provenance

To support layered provenance while preserving our se-
curity goals, we require a means of evaluating the in-
tegrity of user space provenance disclosures. To ac-
complish this, we extend the LPM Provenance Recorder
to use the Linux Integrity Measurement Architecture
(IMA) [35, 52]. IMA computes a cryptographic hash of
each binary before execution, extends the measurement
into a TPM Platform Control Register (PCR), and stores
the measurement in kernel memory. This set of measure-
ments can be used by the Recorder to make a decision
about the integrity of the a Provenance-Aware Applica-
tion (PAA) prior to accepting the disclosed provenance.
When a PAA wishes to disclose provenance, it opens a

11See http://snap.stanford.edu
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Figure 4: A provenance graph of image conversion.
Here, workflow provenance (WasDerivedFrom) encodes
a relationship that more accurately identifies the output
files’ dependencies compared to only using kernel layer
observations (Used, WasGeneratedBy).

new UNIX domain socket to send the provenance data
to the Provenance Recorder. The Recorder uses its own
UNIX domain socket to recover the process’s pid, then
uses the /proc filesystem to find the full path of the bi-
nary, then uses this information to look up the PAA in
the IMA measurement list. The disclosed provenance is
recorded only if the signature of PAA matches a known-
good cryptographic hash.

As a demonstration of this functionality, we created
a provenance-aware version of the popular ImageMag-
ick utility 12. ImageMagick contains a batch conversion
tool for image reformatting, mogrify. Shown in Fig-
ure 4, mogrify reads and writes multiple files during
execution, leading to an overtainting problem – at the
kernel layer, LPM is forced to conservatively assume
that all outputs were derived from all inputs, creating
false dependencies in the provenance record. To address
this, we extended the Provmon protocol to support a
new message, provmsg_imagemagick_convert,
which links an input file directly to its output file. When
the recorder receives this message, it first checks the list
of IMA measurements to confirm that ImageMagick is
in a good state. If successful, it then annotates the exist-
ing provenance graph, connecting the appropriate input
and output objects with WasDerivedFrom relationships.
Our instrumentation of ImageMagick demonstrates that
LPM supports layered provenance at no additional cost
over other provenance-aware systems [29, 43], and does
so in a manner that provides assurance of the integrity of
the provenance log.

3.5 Deployment

We now demonstrate how we used LPM in the deploy-
ment of a secure provenance-aware system. Additional
background on the security technologies use in our de-
ployment can be found in our technical report [8].

12See http://www.imagemagick.org

3.5.1 Platform Integrity

We configured LPM to run on a physical machine with
a Trusted Platform Module (TPM). The TPM provides a
root of trust that allows for a measured boot of the sys-
tem. The TPM also provides the basis for remote attes-
tations to prove that LPM was in a known hardware and
software configuration. The BIOS’s core root of trust for
measurement (CRTM) bootstraps a series of code mea-
surements prior to the execution of each platform com-
ponent. Once booted, the kernel then measures the code
for user space components (e.g., provenance recorder)
before launching them, through the use of the Linux In-
tegrity Measurement Architecture (IMA)[52]. The result
is then extended into TPM PCRs, which forms a verifi-
able chain of trust that shows the integrity of the system
via a digital signature over the measurements. A remote
verifier can use this chain to determine the current state
of the system using TPM attestation.

We configured the system with Intel’s Trusted Boot
(tboot),13 which provides a secure boot mechanism, pre-
venting system from booting into the environment where
critical components (e.g., the BIOS, boot loader and
the kernel) are modified. Intel tboot relies on the In-
tel TXT14 to provide a secure execution environment.
15 Additionally, we compiled support for IMA into the
provenance-aware kernel, which is necessary in order for
the LPM Recorder to be able to measure the integrity of
provenance-aware applications.

3.5.2 Runtime Integrity

After booting into the provenance-aware kernel, the run-
time integrity of the TCB (defined in §3.2) must also be
assured. To protect the runtime integrity of the kernel,
we deploy a Mandatory Access Control (MAC) policy,
as implemented by Linux Security Modules. On our pro-
totype deployments, we enabled SELinux’s MLS policy,
the security of which was formally modeled by Hicks et
al. [33]. Refining the SELinux policy to prevent Ac-
cess Vector Cache (AVC) denials on LPM components
required minimal effort; the only denial we encountered
was when using the PostgreSQL recorder, which was
quickly remedied with the audit2allow tool. Pre-
serving the integrity of LPM’s user space components,
such as the provenance recorder, was as simple as creat-
ing a new policy module. We created a policy module to
protect the LPM recorder and storage back-end using the
sepolicy utility. Uncompiled, the policy module was
only 135 lines.

13 See http://sf.net/projects/tboot
14 See https: //www.kernel.org/doc/Documentation/intel_txt.txt
15For virtual environments, similar functionality can be provided on

Xen via TPM sealing and the virtual TPM (vTPM), which is bound to
the physical TPM of the host system.
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4 Security

In this section, we demonstrate that our system meets
all of the required security goals for trustworthy whole-
system provenance. In this analysis, we consider an LPM
deployment on a physical machine that was enabled with
the Provmon module and has been configured to the con-
ditions described in Section 3.5.
Complete (G1). We defined whole-system provenance
as a complete description of agents (users, groups) con-
trolling activities (processes) interacting with controlled
data types during system execution (§ 3.1). LPM at-
tempts to track these system objects through the place-
ment of provenance hooks (§3.4.1), which directly fol-
low each LSM authorization hook. The LSM’s complete
mediation property has been formally verified [20, 64];
in other words, there is an authorization hook prior to
every security-sensitive operation. Because every inter-
action with a controlled data type is considered security-
sensitive, we know that a provenance hook resides on
all control paths to the provenance-sensitive operations.
LPM is therefore capable of collecting complete prove-
nance on the host.

It is important to note that, as a consequence of plac-
ing provenance hooks beneath authorization hooks, LPM
is unable to record failed access attempts. However, in-
serting the provenance layer beneath the security layer
ensures accuracy of the provenance record. Moreover,
failed authorizations are a different kind of metadata than
provenance because they do not describe processed data;
this information is better handled at the security layer,
e.g., by the SELinux Access Vector Cache (AVC) Log.
Tamperproof (G2). The runtime integrity of the LPM
trusted computing base is assured via the SELinux MLS
policy, and we have written a policy module that protects
the LPM user space components (§3.5.2). Therefore, the
only way to disable LPM would be to reboot the sys-
tem into a different kernel; this action can be disallowed
through secure boot techniques,13 and is detectable by
remote hosts via TPM attestation (§3.5.1).
Verifiable (G3). While we have not conducted an in-
dependent formal verification of LPM, our argument for
its correctness is as follows. A provenance hook follows
each LSM authorization hook in the kernel. The correct-
ness of LSM hook placement has been verified through
both static and dynamic analysis techniques [20, 25, 34].
Because an authorization hook exists on the path of ev-
ery sensitive operation to controlled data types, and LPM
introduces a provenance hook behind each authorization
hook, LPM inherits LSM’s formal assurance of complete
mediation over controlled data types. This is sufficient
to ensure that LPM can collect the provenance of every
sensitive operation on controlled data types in the kernel
(i.e., whole-system provenance).

Authenticated Channel (G4). Through use of Net-
filter hooks [57], LPM embeds a DSA signature in ev-
ery outbound network packet. Signing occurs immedi-
ately prior to transmission, and verification occurs im-
mediately after reception, making it impossible for an
adversary-controlled application running in user space
to interfere. For both transmission and reception, the
signature is invisible to user space. Signatures are
removed from the packets before delivery, and LPM
feigns ignorance that the options field has been set if
get_options is called. Hence, LPM can enforce that
all applications participate in the commitment protocol.

Prior to implementing our own message commitment
protocol in the kernel, we investigated a variety of ex-
isting secure protocols. The integrity and authenticity of
provenance identifiers could also be protected via IPsec
[36], SSL tunneling,16 or other forms of encapsulation
[5, 65]. We elected to move forward with our approach
because 1) it ensures the monitoring of all all processes
and network events, including non-IP packets, 2) it does
not change the number of packets sent or received, en-
suring that our provenance mechanism is minimally in-
vasive to the rest of the Linux network stack, and 3)
it preserves compatibility with non-LPM hosts. An al-
ternative to DSA signing would be HMAC [9], which
offers better performance but requires pairwise keying
and sacrifices the non-repudiation policy; BLS, which
approaches the theoretical maximum security parame-
ter per byte of signature [12]; or online/offline signature
schemes [15, 23, 26, 55].

Authenticated Disclosures (G5). We make use
of IMA to protect the channel between LPM and
provenance-aware applications wishing to disclose
provenance. IMA is able to prove to the provenance
recorder that the application was unmodified at the time
it was loaded into memory, at which point the recorder
can accept the provenance disclosure into the official
record. If the application is known to be correct (e.g.,
through formal verification), this is sufficient to estab-
lish the runtime integrity of the application. However, if
the application is compromised after execution, this ap-
proach is unable to protect against provenance forgery.

A separate consideration for all of the above security
properties are Denial of Service (DoS) attacks. DoS at-
tacks on LPM do not break its security properties. If an
attacker launches a resource exhaustion attack in order
to prevent provenance from being collected, all kernel
operations will be disallowed and the host will cease to
function. If a network attacker tampers with a packet’s
provenance identifier, the packet will not be delivered to
the recipient application. In all cases, the provenance
record remains an accurate reflection of system events.

16See http://docs.oracle.com/cd/E23823_01/html/816-5175/kssl-
5.html
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Algorithm 1 Summarizes a’s propagation through the system.

Require: a is an entity
1: procedure REPORT(a)
2: Locations = [ ] � Assigns an empty list.
3: for each s in a,FindSuccessors(a) do
4: if s.type is File then
5: Locations.Add(< s.disk,s.directory >)
6: else if s.type is Network Packet then
7: Locations.Add(< s.remote_ip,s.port >)
8: end if
9: end for

10: return Locations
11: end procedure

5 LPM Application: Provenance-Based
Data Loss Prevention

To further demonstrate the power of LPM, we now in-
troduce a set of mechanisms for Provenance-Based Data
Loss Prevention (PB-DLP) that offer dramatically sim-
plified administration and improved enforcement over
existing DLP systems. A provenance-based approach is
a novel and effective means of handling data loss preven-
tion; to our knowledge, we are the first in the literature
to do so. The advantage of our approach when compared
to existing systems is that LPM-based provenance-aware
systems already perform system-wide capture of infor-
mation flows between kernel objects. Data loss preven-
tion in such a system therefore becomes a matter of pre-
venting all derivations of a sensitive source entity, e.g., a
Payment Card Industry (PCI) database, from being writ-
ten to a monitored destination entity (e.g., a network in-
terface).

We begin by defining a policy format for PB-DLP. In-
dividual rules take the form

< Srcs = [src1,src2, . . . ,srcn],dst >

where Srcs is a list of entities representing persistent
data objects, and dst is a single entity representing either
a persistent data object such as a file or interface or an ab-
stract entity such as a remote host. The goal for PB-DLP
is as follows – an entity e1 with ancestors A is written
to entity e2 if and only if A �⊇ Srcs for all rules in the
rule set where e2 = dst. The reason that sources are ex-
pressed as sets is that, at times, the union of information
is more sensitive than its individual components. For ex-
ample, sharing a person’s last name or birthdate may be
permissible, while sharing the last name and birthdate is
restricted as PII.2

Below, we define the functions that realize this goal.
First, we define two provenance-based functions as the
basis for a DLP monitoring phase, which allows admin-
istrators to learn more about the propagation of sensitive
data on their systems. Then, we define mechanisms for a
DLP enforcement phase.

Algorithm 2 Mediates request to write e to d given Rules.

Require: e,d are entities
Require: Rules is a PB-DLP policy
1: procedure PROVWRITE(e,d,Rules)
2: for each rule in Rules do
3: if d = rule.dst then
4: A = FindAncestors(e)
5: NumSrcs = length(rule.Srcs)
6: for each src in rule.Srcs do
7: if src in A then
8: NumSrcs−−
9: end if

10: end for
11: if NumSrcs = 0 then � A ⊇ Srcs, deny.
12: return PB-DLP_DENY
13: end if
14: end if
15: end for
16: return PB-DLP_PERMIT � A �⊇ Srcs, permit.
17: end procedure

5.1 Monitoring Phase
The goal of monitoring is to allow administrators to rea-
son about how sensitive data is stored and put to use on
their systems. The end product of the monitor phase is a
set of rules (a policy) that restrict the permissible flows
for sensitive data sources. Monitoring is an ongoing pro-
cess in DLP, where administrators attempt to iteratively
improve protection against data leakage. The first step is
to identify the data that needs protection. Identifying the
source of such information is often quite simple; for ex-
ample, a database of PCI or PII data. However, reliably
finding data objects that were derived from this source is
extraordinarily complicated using existing solutions, but
is simple now with LPM. To begin, we define a helper
function for system monitoring:

1. FindSuccessors(Entity): This function performs a
provenance graph traversal to obtain the list of data
objects derived from Entity.

FindSuccessors can then be used as the basis for a
function that summarizes the spread of sensitive data:

2. Report(Entity): List the locations that a target object
and its successors have propagated. This function is
defined in Algorithm 1.

The information provided by Report is similar to the
data found in the Symantec DLP Dashboard [1], and
could be used as the backbone of a PB-DLP user inter-
face. Administrators can use this information to write a
PB-DLP policy or revise an existing one.

5.2 Enforcement Phase
Possessing a PB-DLP policy, the goal of the enforcement
phase is to prevent entities that were derived from sensi-
tive sources from being written to restricted locations. To
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do so, we need to inspect the object’s provenance to dis-
cover the entities from which it was derived. We define
the following helper function:

3. FindAncestors(Entity): This function performs a
provenance graph traversal to obtain the list of data
objects used in the creation of Entity.

FindAncestors can be then used as the basis for a func-
tion that prevents the spread of sensitive data:

4. ProvWrite(Entity, Destination, Rules): Write the tar-
get entity to the destination if and only if it is valid to
the provided rule set, as defined in Algorithm 2.

5.3 File Transfer Application
In many enterprise networks that are isolated from the
Internet via firewalls and proxies, it is desirable to share
files with external users. File transfer services are one
way to achieve this, and provide a single entry/exit point
to the enterprise network where files being transferred
can be examined before being released.17 In the case
of incoming files, scans can check for known malware,
and in some cases, check for other types of malicious
behavior from unknown malware.

We implemented PB-DLP as a file transfer applica-
tion for provenance-aware systems using LPM’s Prov-
mon module. The application interfaced with LPM’s
SNAP recorder using a custom API. Before permitting
a file to be transmitted to a remote host, the application
ran a query that traversed WasDerivedFrom edges to re-
turn a list of the file’s ancestors, permitting the transfer
only if the file was not derived from a restricted source.
PB-DLP allows internal users to share data, while ensur-
ing that sensitive data is not exfiltrated in the process.

Because provenance graphs continue to grow indefi-
nitely over time, in practice the bottleneck of this appli-
cation is the speed of provenance querying. We evaluate
the performance of PB-DLP queries in Section 6.3.

5.4 PB-DLP Analysis
Below, we select two open source systems that approx-
imate label based and regular expression (regex) based
DLP solutions, and compare their benefits to PB-DLP.

5.4.1 Label-Based DLP

The SELinux MLS policy [31] provides information flow
security through a label-based approach, and could be
used to approximate a DLP solution without relying on

17 Two examples of vendors that provide this capability are FireEye
(http://www.fireeye.com) and Accellion (http://www.accellion.com/)

commercial products. Proprietary label-based DLP sys-
tems rely on manual annotations provided by users, re-
quiring them to provide correct labeling based on their
knowledge of data content. Using SELinux as an exem-
plar labeling system is therefore an extremely conserva-
tive approach to analysis.

Within an MLS system, each subject, and object, is
assigned a classification level, and categories, or com-
partments. Consider an example system, with classi-
fication levels, {A,B} with A dominating B, and com-
partments {α,β}. We can model our policy as a lat-
tice, where each node in the lattice is a tuple of the
form {< level >,{compartments}}. Once the policy
is defined, it is possible to enforce the simple and *-
properties. If a user has access to data with classification
level A, and compartment α , he cannot read anything in
compartment {β} (no read-up). Furthermore, when data
is accessed in A,{α}, the user cannot write anything to
B,{α} (no write-down).

In order to use SELinux’s MLS enforcement as a DLP
solution, the administrator configures the policy to en-
force the constraint that no data of specified types can
be sent over the network. However, this is difficult in
practice. Consider an example system that processes PII.
The users of the system may need to access information,
such as last names, and send these to the payroll depart-
ment to ensure that each employee receives a paycheck.
Separately, the user may need to send a list of birthdays
to another user in the department to coordinate birthday
celebrations for each month. Either of these activities are
acceptable (Figure 5, Decision Condition 2). However,
it is common practice for organizations to have stricter
sharing policies for data that contains multiple forms of
PII, so while either of these identifiers could be transmit-
ted in isolation, the two pieces of information combined
could not be shared (Figure 5, Decision Condition 3).

The MLS policy cannot easily handle this type of data
fusion. In order to provide support for correctly label-
ing fused data, an administrator would need to define the
power set of all compartments within the MLS policy.
In the example above, the administrator would define the
following compartments: {}, {α}, {β}, {α,β}. In the
default configuration SELinux supports 256 unique cate-
gories, meaning an SELinux DLP policy could only sup-
port eight types of data. Furthermore, the MLS policy
does not support defining multiple categories within a
single sensitivity level18. This implies that the MLS pol-
icy cannot support having a security level for A,{α} and
for A,{α,β}. Instead, the most restrictive labeling must
be defined to protect the data on the system. In contrast,
PB-DLP can support an arbitrary number of data fusions.

18See the definition of level statements at http://
selinuxproject.org/page/MLSStatements
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Figure 5: A provenance graph of PII data objects that are first fused and then transformed. The numbers mark
DLP decision conditions. Objects marked by green circles should not be restricted, while red octagons should be
restricted. Label-Based DLP correctly handles data resembling PII (1,2) and data transformations (4), but struggles
with data fusions (3). Regex-Based DLP correctly identifies data fusions (3), but is prone to incorrect handling of data
resembling PII (1) and fails to identify data transformations (4). PB-DLP correctly handles all conditions.

5.4.2 Regex-Based DLP

The majority of DLP software relies on pattern matching
techniques to identify sensitive data. While enterprise so-
lutions offer greater sophistication and customizability,
their fundamental approach resembles that of Cornell’s
Spider 7, a forensics tools for identifying sensitive per-
sonal data (e.g., credit card or social security numbers).
Because it is open source, we make use of Spider as an
exemplar application for regex-based DLP.

Regex approaches are prone to false positives.
Spider is pre-configured with a set of regular
expressions for identifying potential PII, e.g.,
(\d{3}-\d{2}-\d{4}) identifies a social se-
curity number. However, it is common practice for
developers to generate and distribute training datasets
to aid in software testing (Figure 5, Decision Condition
1). Spider is oblivious to information flows, instead
searching for content that bears structural similarity
to PII, and therefore would be unable to distinguish
between true PII and training data. PB-DLP tracks the
propagation of data from its source onwards, and could
trivially differentiate between true PII and training sets.

Regex approaches are also prone to false negatives.
Even after the most trivial data transformations, PII and
PCI data is no longer identifiable to the Spider system
(Figure 5, Decision Condition 4), permitting its exfiltra-
tion. To demonstrate, we generated a file full of ran-
dom valid social security numbers that Spider was able to
identify. We then ran gzip on the file and stored it in a
second file. Spider was unable to identify the second file,
but PB-DLP correctly identified both files as PII since the
gzip output was derived from a sensitive input.

6 Evaluation

We now evaluate the performance of LPM. Our bench-
marks were run on a bare metal server machine with 12
GB memory and 2 Intel Xeon quad core CPUs. The Red
Hat 2.6.32 kernel was compiled and installed under 3 dif-
ferent configurations: all provenance disabled (Vanilla),

Test Type Vanilla LPM Provmon
Process tests, times in µseconds (smaller is better)
null call 0.14 0.14 (0%) 0.14 (0%)
null I/O 0.21 0.21 (0%) 0.32 (52%)
stat 1.57 1.6 (2%) 2.8 (78%)
open/close file 2.75 2.42 (-12%) 3.91 (42%)
signal install 0.25 0.25 (0%) 0.25 (0%)
signal handle 1.37 1.29 (-6%) 1.39 (1%)
fork process 380 396 (4%) 401 (6%)
exec process 873 879 (1%) 911 (4%)
shell process 2990 3000 (0%) 3113 (4%)
File and memory latencies in µseconds (smaller is better)
file create (0k) 11.5 11.2 (-3%) 15.8 (37%)
file delete (0k) 8.51 8.12 (-5%) 11.8 (39%)
file create (10k) 23.4 21.6 (-8%) 28.8 (23%)
file delete (10k) 12.5 12 (-4%) 14.7 (18%)
mmap latency 1062 1053 (-1%) 1120 (5%)
protect fault 0.32 0.3 (-6%) 0.346 (8%)
page fault 0.016 0.016 (0%) 0.016 (0%)
100 fd select 1.53 1.53 (0%) 1.53 (0%)

Table 1: LMBench measurements for LPM kernels. All
times are in microseconds. Percent overhead for modi-
fied configurations are shown in parenthesis.

LPM scaffolding installed but without an enabled mod-
ule (LPM), and LPM installed with the Provmon module
enabled (Provmon).

6.1 Collection Performance

We used LMBench to microbenchmark LPM’s impact
on system calls as well as file and memory latencies.
Table 1 shows the averaged results over 10 trials for
each kernel, with a percent overhead calculation against
Vanilla. For most measures, the performance differ-
ences between LPM and Vanilla are negligible. Com-
paring Vanilla to Provmon, there are several measures
in which overhead is noteworthy: stat, open/close, file
creation and deletion. Each of these benchmarks in-
volve LMBench manipulating a temporary file that re-
sides in /usr/tmp/lat_fs/. Because an absolute
path is provided, before each system call occurs LM-
Bench first traverses the path to the file, resulting in
the creation of 3 different provenance events in Prov-
mon’s inode_permission hook, each of which is
transmitted to user space via the kernel relay. While
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the overheads seem large for these operations, the log-
ging of these three events only imposes approximately
1.5 microseconds per traversal. Moreover, the over-
head for opening and closing is significantly higher than
the overhead than reads and writes (Null I/O); thus, the
higher open/close costs are likely to be amortized over
the course of regular system use. A provenance module
could further reduce this overhead by maintaining state
about past events within the kernel, then blocking the
creation of redundant provenance records.

Test Vanilla Provmon Overhead
Kernel Compile 598 sec 614 sec 2.7%
Postmark 25 sec 27 sec 7.5%
Blast 376 sec 390 sec 4.8%

Table 2: Benchmarking Results. Our provenance module
imposed just 2.7% overhead on kernel compilation.

To gain a more practical sense of the costs of LPM, we
also performed multiple benchmark tests that represented
realistic system workloads. Each trial was repeated 5
times to ensure consistency. The results are summarized
in Table 2. For the kernel compile test, we recompiled
the kernel source (in a fixed configuration) while booted
into each of the kernels. Each compilation occurred on
16 threads. The LPM scaffolding (without an enabled
module) is not included, because in both tests it imposed
less than 1% overhead. In spite of seemingly high over-
heads for file I/O, Provmon imposes just 2.7% overhead
on kernel compilation, or 16 seconds. The Postmark test
simulates the operation of an email server. It was con-
figured to run 15,000 transactions with file sizes rang-
ing from 4 KB to 1 MB in 10 subdirectories, with up to
1,500 simultaneous transactions. The Provmon module
imposed just 7.5% overhead on this task. To estimate
LPM’s overhead for scientific applications, we ran the
BLAST benchmarks 19, which simulates biological se-
quence workloads obtained from analysis of hundreds of
thousands of jobs from the National Institutes of Health.

19See http://fiehnlab.ucdavis.edu/staff/kind/Collector/Benchmark/
Blast_Benchmark

For kernel compile and postmark, Provmon outper-
forms the PASS system, which exacted 15.6% and 11.5%
overheads on kernel compilation and postmark, respec-
tively [43]. Provmon introduces comparable kernel com-
pilation overhead to Hi-Fi (2.8%) [48]. It is difficult to
compare our Blast results to SPADE and PASS, as both
used a custom workload instead of a publicly available
benchmark. SPADE reports an 11.5% overhead on a
large workload [29], while PASS reports just an 0.7%
overhead. Taken as a whole, though, LPM collection ei-
ther meets or exceeds the performance of past systems,
while providing additional security assurances.

6.2 Storage Overhead
A major challenge to automated provenance collection is
the storage overhead incurred. We plotted the growth of
provenance storage using different recorders during the
kernel compilation benchmark, shown in Figure 6. LPM
generated 3.7 GB of raw provenance. This required only
450 MB of storage with the Gzip recorder, but prove-
nance cannot be efficiently queried in this format. The
SNAP recorder builds an in-memory provenance graph.
We approximated the storage overhead through polling
the virtual memory consumed by the recorder process in
the /proc filesystem. The SNAP graph required 1.6 GB
storage; the reduction from the raw provenance stream
is due to the fact that redundant events did not lead to
the creation of new graph components. In contrast, the
PASS system generates 1.3 GB of storage overhead dur-
ing kernel compilation while collecting less information
(e.g., shared memory). LPM’s storage overheads are thus
comparable to other provenance-aware systems.

6.3 Query Performance (PB-DLP)
We evaluated query performance using our exemplar PB-
DLP application and LPM’s SNAP recorder. The prove-
nance graph that was populated using the routine from
the kernel compile benchmark. This yielded a raw prove-
nance stream of 3.7 GB, which was translated by the
recorder into a graph of 6,513,398 nodes and 6,754,059

12
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edges. We were then able to use the graph to issue an-
cestry queries, in which the subgraphs were traversed to
find the data object ancestors of a given file. Because
we did not want ephemeral objects with limited ances-
tries to skew our results, we only considered the results
of objects with more than 50 ancestors.

In the worst case, which was a node that had 17,696
ancestors, the query returned in just 21 milliseconds.
Effectively, we were able to query object ancestries at
line speed for network activity. We are confident that
this approach can scale to large databases through pre-
computation of expensive operations at data ingest, mak-
ing it a promising strategy for provenance-aware dis-
tributed systems; however, we note that these results are
highly dependent on the size of the graph. Our test graph,
while large, would inevitably be dwarfed by the size of
the provenance on long-lived systems. Fortunately, there
are also a variety of techniques for reducing these costs.
Bates et al. show that the results from provenance graph
traversals can be extensively cached when using a fixed
security policy, which would allow querying to amortize
to a small constant cost [7]. LPM could also be extended
to support deduplication [63, 62] and policy-based prun-
ing [6, 13], both of which could further improve perfor-
mance by reducing the size of provenance graphs.

6.4 Message Commitment Protocol

Under each kernel configuration, we performed iperf
benchmarking to discover LPM’s impact on TCP
throughput. iperf was launched in both client and server
mode over localhost. The client was launched
with 16 threads, two per each CPU. Our results can be
found in Figure 8. The Vanilla kernel reached 4490
Mbps. While the LPM framework imposed negligible
cost compared to the vanilla kernel (4480 Mbps), Prov-
mon’s DSA-based message commitment protocol re-
duced throughput by an order of magnitude (482 Mbps).
Through use of printk instrumentation, we found that
the average overhead per packet signature was 1.2 ms.

This result is not surprising when compared to IPsec
performance. IPsec’s Authentication Header (AH) mode
uses an HMAC-based approach to provide similar guar-
antees as our protocol. AH has been shown to reduce
throughput by as much as half [16]. An HMAC approach
is a viable alternative to establish integrity and data ori-
gin authenticity and would also fit into the options field,
but would require the negotiation of IPsec security as-
sociations. Our message commitment protocol has the
benefit of being fully interoperable with other hosts, and
does not require a negotiation phase before communi-
cation occurs. Another option for increasing through-
put would be to employ CPU instruction extensions [30]
and security co-processor [19] to accelerate the speed of

DSA. Yet another approach to reducing our impact on
network performance would be to employ a batch signa-
ture scheme [11]. We tested this by transmitting a sig-
nature over every 10 packets during TCP sessions, and
found that throughput increased by 3.3 times to approx-
imately 1600 Mbps. Due to the fact that this overhead
may not be suitable for some environments, Provmon
can be configured to use Hi-Fi identifiers [48], which are
vulnerable to network attack but impose negligible over-
head. LPM’s impact on network performance is specific
to the particular module, and can be tailored to meet the
needs of the system.

7 Discussion

Without the aid of provenance-aware applications, LPM
will struggle to accurately track dependencies through
workflow layer abstractions. The most obvious example
of such an abstraction is the copy/paste buffer in window-
ing applications like Xorg. This is a known side channel
for kernel layer security mechanisms, one that has been
addressed by the Trusted Solaris project [10], Trusted X
[21, 22], the SELinux-aware X window system [37], Se-
cureView 20, and General Dynamics’ TVE 21. Without
provenance-aware windowing, LPM will conservatively
assume that all files opened for reading are dependencies
of the paste buffer, leading to false dependencies. LPM
is also unable to observe system side channels, such as
timing channels or L2 cache measurements [51], a limi-
tation shared by many other security solutions [18].

Although we have not presented a secure distributed
provenance-aware system in this work, LPM provides
the foundation for the creation of such a system. In the
presented modules, provenance is stored locally by the
host and retrieved on an as-needed basis from other hosts.
This raises availability concerns as hosts inevitably begin
to fail. Availability could be improved with minimal per-
formance and storage overheads through Gehani et al.’s
approach of duplicating provenance at k neighbors with
a limited graph depth d [27, 28].

Finally, LPM does not address the matter of prove-
nance confidentiality; this is an important challenge that
is explored elsewhere in the literature [14, 46]. LPM’s
Recorders provide interfaces that can be used to intro-
duce an access control layer onto the provenance store.

8 Related Work

While myriad provenance-aware systems have been pro-
posed in the literature, the majority disclose provenance
within an application [32, 41, 65] or workflow [24, 58]. It

20See http://www.ainfosec.com/secureview
21See http://gdc4s.com/tve.html
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is difficult or impossible to obtain complete provenance
in this manner. This is because systems events that occur
outside of the application, but still effect its execution,
will not appear in the provenance record.

The alternative to disclosed systems are automatic
provenance-aware systems, which collect provenance
transparently within the operating system. Gehani et
al.’s SPADE is a multi-platform system for eScience and
grid computing audiences, with an emphasis on low la-
tency and availability in distributed environments [29].
SPADE’s provenance reporters make use of familiar ap-
plication layer utilities to generate provenance, such as
polling ps for process information and lsof for net-
work information. This gives rise to the possibility of in-
complete provenance due to race conditions. The PASS
project collects the provenance of system calls at the vir-
tual filesystem (VFS) layer. PASSv1 provides base func-
tions for provenance collection that observe processes’
file I/O activity [43]. Because these basic functions are
manually placed around the kernel, there is no clear
way to extend PASSv1 to support additional collection
hooks; we address this limitation in the modular design
of LPM. PASSv2 introduces a Disclosed Provenance API
for tighter integration between provenance collected at
different layers of abstraction, e.g., at the application
layer [44]. PASSv2 assumes that disclosing processes
are benign, while LPM provides a secure disclosure
mechanism for attesting the correctness of provenance-
aware applications. Both SPADE and PASS are designed
for benign environments, making no attempt to protect
their collection mechanisms from an adversary.

Previous work has considered the security of prove-
nance under relaxed threat models relative to LPM’s. In
SProv, Hasan et al. introduce provenance chains, cryp-
tographic constructs that prevent the insertion or dele-
tion of provenance inside of a series of events [32].
SProv effectively demonstrates the authentication prop-
erties of this primitive, but is not intended to serve as a
secure provenance-aware system; attackers can still ap-
pend false records to the end of the chain, delete the
whole chain, or disable the library altogether. Zhou et
al. consider provenance corruption an inevitability, and
show that provenance can detect some malicious hosts in
distributed environments provided that a critical mass of
correct hosts still exist [65]. They later strengthen these
assurances through use of provenance-aware software-
defined networking [5]. These systems consider only
network events, and are unable to speak to the internal
state of hosts. Lyle and Martin sketch the design for
a secure provenance monitor based on trusted comput-
ing [40]. However, they conceptualize provenance as
a TPM-aided proof of code execution, overlooking in-
terprocess communication and other system activity that
could inform execution results, and therefore offer infor-

mation that is too coarse-grained to meet the needs of
some applications. Moreover, to the best of our knowl-
edge their system is unimplemented.

The most promising model to date for secure prove-
nance collection is Pohly et al.’s Hi-Fi system [48]. Hi-Fi
is a Linux Security Module (LSM) that collects whole-
system provenance that details the actions of processes,
IPC mechanisms, and even the kernel itself (which does
not exclusively use system calls). Hi-Fi attempts to pro-
vide a provenance reference monitor [42], but remains
vulnerable to the provenance-aware adversary that we
describe in Section 3.2. Enabling Hi-Fi blocks the in-
stallation of other LSM’s, such as SELinux or Tomoyo,
or requires a third party patch to permit module stack-
ing. This blocks the installation of MAC policy on the
host, preventing runtime integrity assurances. Hi-Fi is
also vulnerable to adversaries in the network, who can
strip the provenance identifiers from packets in transit,
resulting in irrecoverable provenance. Unlike LPM, Hi-
Fi does not attempt to provide layered provenance ser-
vices, and therefore does not consider the integrity and
authenticity of provenance-aware applications.

Provenance collection is a form of information flow
monitoring that is related, but fundamentally distinct,
from past areas of study. Due to space constraints, our
discussion of Information Flow Control (IFC) systems
has been relegated to our technical report [8].

9 Conclusion

In this work, we have presented LPM, a platform for
the creation of trusted provenance-aware execution en-
vironments. Our system imposes as little as 2.7% per-
formance overhead on normal system operation, and can
respond to queries about data object ancestry in tens of
milliseconds. We have used LPM as the foundation of
a provenance-based data loss prevention system that can
scan file transmissions to detect the presence of sensitive
ancestors in just tenths of a second. The Linux Prove-
nance Module Framework is an exciting step forward for
both provenance- and security-conscious communities.
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Availability

The LPM code base, including all user space utilities and
patches for both Red Hat and the mainline Linux kernels,
is available at http://linuxprovenance.org.
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Abstract
Single root I/O virtualization (SRIOV) is a hard-
ware/software interface that allows devices to “self virtu-
alize” and thereby remove the host from the critical I/O
path. SRIOV thus brings near bare-metal performance to
untrusted guest virtual machines (VMs) in public clouds,
enterprise data centers, and high-performance comput-
ing setups. We identify a design flaw in current Ethernet
SRIOV NIC deployments that enables untrusted VMs to
completely control the throughput and latency of other,
unrelated VMs. The attack exploits Ethernet ”pause”
frames, which enable network flow control functional-
ity. We experimentally launch the attack across sev-
eral NIC models and find that it is effective and highly
accurate, with substantial consequences if left unmiti-
gated: (1) to be safe, NIC vendors will have to mod-
ify their NICs so as to filter pause frames originating
from SRIOV instances; (2) in the meantime, administra-
tors will have to either trust their VMs, or configure their
switches to ignore pause frames, thus relinquishing flow
control, which might severely degrade networking per-
formance. We present the Virtualization-Aware Network
Flow Controller (VANFC), a software-based SRIOV NIC
prototype that overcomes the attack. VANFC filters pause
frames from malicious virtual machines without any loss
of performance, while keeping SRIOV and Ethernet flow
control hardware/software interfaces intact.

1 Introduction

A key challenge when running untrusted virtual ma-
chines is providing them with efficient and secure I/O.
Environments running potentially untrusted virtual ma-
chines include enterprise data centers, public cloud com-
puting providers, and high-performance computing sites.

There are three common approaches to providing I/O
services to guest virtual machines: (1) the hypervisor
emulates a known device and the guest uses an unmod-
ified driver to interact with it [71]; (2) a paravirtual

hypervisor

(a) Traditional Virtualization (b) Direct I/O Device Assignment

Figure 1: Types of I/O Virtualization

driver is installed in the guest [20, 69]; (3) the host as-
signs a real device to the guest, which then controls the
device directly [22, 52, 64, 74, 76]. When emulating a
device or using a paravirtual driver, the hypervisor in-
tercepts all interactions between the guest and the I/O
device, as shown in Figure 1a, leading to increased over-
head and significant performance penalty.

The hypervisor can reduce the overhead of device em-
ulation or paravirtualization by assigning I/O devices di-
rectly to virtual machines, as shown in Figure 1b. Device
assignment provides the best performance [38,53,65,76],
since it minimizes the number of I/O-related world
switches between the virtual machine and its hypervisor.
However, assignment of standard devices is not scalable:
a single host can generally run an order of magnitude
more virtual machines than it has physical I/O device
slots available.

One way to reduce I/O virtualization overhead fur-
ther and improve virtual machine performance is to of-
fload I/O processing to scalable self-virtualizing I/O de-
vices. The PCI Special Interest Group (PCI-SIG) on
I/O Virtualization proposed the Single Root I/O Virtu-
alization (SRIOV) standard for scalable device assign-
ment [60]. PCI devices supporting the SRIOV standard
present themselves to host software as multiple virtual
interfaces. The host can assign each such partition di-
rectly to a different virtual machine. With SRIOV de-
vices, virtual machines can achieve bare-metal perfor-
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mance even for the most demanding I/O-intensive work-
loads [38, 39]. We describe how SRIOV works and why
it improves performance in Section 2.

New technology such as SRIOV often provides new
capabilities but also poses new security challenges. Be-
cause SRIOV provides untrusted virtual machines with
unfettered access to the physical network, such machines
can inject malicious or harmful traffic into the network.
We analyze the security risks posed by using SRIOV
in environments with untrusted virtual machines in Sec-
tion 3. We find that SRIOV NIC, as currently deployed,
suffers from a major design flaw and cannot be used se-
curely together with network flow control.

We make two contributions in this paper. The first
contribution is to show how a malicious virtual machine
with access to an SRIOV device can use the Ethernet
flow control functionality to attack and completely con-
trol the bandwidth and latency of other unrelated VMs
using the same SRIOV device, without their knowledge
or cooperation. The malicious virtual machine does this
by transmitting a small number of Ethernet pause or Pri-
ority Flow Control (PFC) frames on its host’s link to
the edge switch. If Ethernet flow control is enabled, the
switch will then shut down traffic on the link for a spec-
ified amount of time. Since the link is shared between
multiple untrusted guests and the host, none of them will
receive traffic. The details of this attack are discussed
in Section 4. We highlight and experimentally evaluate
the most notable ramifications of this attack in Section 5.

Our second contribution is to provide an understand-
ing of the fundamental cause of the design flaw lead-
ing to this attack and to show how to overcome it. We
present and evaluate (in Section 6 and Section 7) the
Virtualization-Aware Network Flow Controller (VANFC),
a software-based prototype of an SRIOV NIC that suc-
cessfully overcomes the described attack without any
loss in performance.

With SRIOV, a single physical endpoint includes both
the host (usually trusted) and multiple untrusted guests,
all of which share the same link to the edge switch. The
edge switch must either trust all the guests and the host
or trust none of them. The former leads to the flow con-
trol attack we show; the latter means doing without flow
control and, consequently, giving up on the performance
and efficient resource utilization flow control provides.

With SRIOV NICs modeled after VANFC, cloud users
could take full advantage of lossless Ethernet in SRIOV
device assignment setups without compromising their se-
curity. By filtering pause frames generated by the mali-
cious virtual machine, VANFC keeps these frames from

reaching the edge switch. The traffic of virtual machines
and host that share the same link remains unaffected;
thus VANFC is 100% effective in eliminating the attack.
VANFC has no impact on throughput or latency compared
to the baseline system not under attack.

VANFC is fully backward compatible with the current
hardware/software SRIOV interface and with the Ether-
net flow control protocol, with all of its pros and cons.
Controlling Ethernet flow by pausing physical links has
its fundamental problems, such as link congestion prop-
agation, also known as the ”congestion spreading” phe-
nomenon [13]. The attack might also be prevented by
completely redesigning the Ethernet flow control mech-
anism, making it end-to-end credit-based, as in Infini-
Band [18], for example. But such a pervasive approach
is not practical to deploy and remains outside the scope
of this work. Instead, VANFC specifically targets the de-
sign flaw in SRIOV NICs that enables the attack. VANFC
prevents the attack without any loss of performance and
without requiring any changes to either Ethernet flow
control or to the SRIOV hardware/software interfaces.

One could argue that flow control at the Ethernet level
is not necessary, since protocols at a higher level (e.g.,
TCP) have their own flow control. We show why flow
control is required for high performance setups, such as
those using Converged Enhanced Ethernet, in Section 8.

In Section 9 we provide some notes on the VANFC im-
plementation and on several aspects of VM-to-VM traf-
fic security. We present related work in Section 10. We
offer concluding remarks on SRIOV security as well as
remaining future work in Section 11.

2 SRIOV Primer

Hardware emulation and paravirtualized devices impose
a significant performance penalty on guest virtual ma-
chines [15, 16, 21, 22, 23]. Seeking to improve vir-
tual I/O performance and scalability, PCI-SIG proposed
the SRIOV specification for PCIe devices with self-
virtualization capabilities. The SRIOV spec defines how
host software can partition a single SRIOV PCIe device
into multiple PCIe “virtual” devices.

Each SRIOV-capable physical device has at least one
Physical Function (PF) and multiple virtual partitions
called Virtual Functions (VFs). Each PF is a standard
PCIe function: host software can access it as it would
any other PCIe device. A PF also has a full configuration
space. Through the PF, host software can control the en-
tire PCIe device as well as perform I/O operations. Each
PCIe device can have up to eight independent PFs.

VFs, on the other hand, are “lightweight” (virtual)
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Figure 2: SRIOV NIC in a virtualized environment

PCIe functions that implement a subset of standard PCIe
device functionalities. Virtual machines driving VFs per-
form only I/O operations through them. For a virtual ma-
chine to use a VF, the host software must configure that
VF and assign it to the virtual machine. Host software
often configures a VF through its PF. VFs have a partial
configuration space and are usually presented to virtual
machines as PCIe devices with limited capabilities. In
theory, each PF can have up to 64K VFs. Current In-
tel implementations of SRIOV enable up to 63 VFs per
PF [42] and Mellanox ConnectX adapters usually have
126 VFs per PF [57].

While PFs provide both control plane functionality
and data plane functionality, VFs provide only data
plane functionality. PFs are usually controlled by device
drivers that reside in the trusted, privileged, host operat-
ing system or hypervisor. As shown in Figure 2, in virtu-
alized environments each VF can be directly assigned to
a VM using device assignment, which allows each VM to
directly access its corresponding VF, without hypervisor
involvement on the I/O path.

Studies show that direct assignment of VFs provides
virtual machines with nearly the same performance as
direct assignment of physical devices (without SRIOV)
while allowing the same level of scalability as software-
based virtualization solutions such as device emulation
or paravirtualization [33, 38, 41, 77]. Furthermore, two
VMs that share the same network device PF can com-
municate efficiently since their VM-to-VM traffic can be
switched in the network adapter. Generally, SRIOV de-
vices include embedded Ethernet switch functionality ca-
pable of efficiently routing traffic between VFs, reducing
the burden on the external switch. The embedded switch
in SRIOV capable devices is known as a Virtual Ethernet

Bridge (VEB) [51].
SRIOV provides virtual machines with I/O perfor-

mance and scalability that is nearly the same as bare
metal. Without SRIOV, many use cases in cloud comput-
ing, high-performance computing (HPC) and enterprise
data centers would be infeasible. With SRIOV it is pos-
sible to virtualize HPC setups [24, 37]. In fact, SRIOV
is considered the key enabling technology for fully virtu-
alized HPC clusters [54]. Cloud service providers such
as Amazon Elastic Compute Cloud (EC2) use SRIOV as
the underlying technology in EC2 HPC services. Their
Cluster Compute-optimized virtual machines with high
performance enhanced networking rely on SRIOV [2].
SRIOV is important in traditional data centers as well.
Oracle, for example, created the Oracle Exalogic Elastic
Cloud, an integrated hardware and software system for
data centers. Oracle Exalogic uses SRIOV technology to
share the internal network [40].

3 Analyzing SRIOV Security

Until recently, organizations designed and deployed Lo-
cal Area Networks (LANs) with the assumption that each
end-station in the LAN is connected to a dedicated port
of an access switch, also known as an edge switch.

The edge switch applies the organization’s security
policy to this dedicated port according to the level of trust
of the end-station connected to the port: some machines
and the ports they connect to are trusted and some are
not. But given a port and the machine connected to it, the
switch enforcing security policy must know how trusted
that port is.

With the introduction of virtualization technology, this
assumption of a single level of trust per port no longer
holds. In virtualized environments, the host, which is of-
ten a trusted entity, shares the same physical link with
untrusted guest VMs. When using hardware emulation
or paravirtualized devices, the trusted host can intercept
and control all guest I/O requests to enforce the relevant
security policy. Thus, from the point of view of the net-
work, the host makes the port trusted again.

Hardware vendors such as Intel or Mellanox imple-
ment strict VF management or configuration access to
SRIOV devices. Often they allow VFs driven by un-
trusted entities to perform only a limited set of manage-
ment or configuration operations. In some implemen-
tations, the VF performs no such operations; instead, it
sends requests to perform them to the PF, which does so
after first validating them.

On the data path, the situation is markedly different.
SRIOV’s raison d’être is to avoid host involvement on
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the data path. Untrusted guests with directly assigned
VFs perform data path operations—sending and receiv-
ing network frames—directly against the device. Since
the device usually has a single link to the edge switch,
the device aggregates all traffic, both from the trusted
host and from the untrusted guests, and sends it on the
single shared link. As a result, untrusted guests can send
any network frames to the edge switch.

Giving untrusted guests uncontrolled access to the
edge switch has two implications. First, since the edge
switch uses its physical resources (CAM tables, queues,
processing power) to process untrusted guests’ traffic,
the switch becomes vulnerable to various denial of ser-
vice attacks. Second, sharing the same physical link be-
tween trusted and untrusted entities exposes the network
to many Ethernet data-link layer network attacks such
as Address Resolution Protocol (ARP) poisoning, Media
Access Control (MAC) flooding, ARP spoofing, MAC
address spoofing, and Spanning Tree Protocol (STP) at-
tacks [14, 17, 47, 56, 73, 75]. Therefore, the edge switch
must never trust ports connected to virtualized hosts with
an SRIOV device.

Although the problem of uncontrolled access of un-
trusted end-points is general to Ethernet networks, using
SRIOV devices imposes additional limitations. As we
will see in the next few subsections, not trusting the port
sometimes means giving up the required functionality.

3.1 Traditional Lossy Ethernet
Traditional Ethernet is a lossy protocol; it does not guar-
antee that data injected into the network will reach its
destination. Data frames can be dropped for different
reasons: because a frame arrived with errors or because a
received frame was addressed to a different end-station.
But most data frame drops happen when the receiver’s
buffers are full and the receiving end-station has no mem-
ory available to store incoming data frames. In the origi-
nal design of the IEEE 802.3 Ethernet standard, reliabil-
ity was to be provided by upper-layer protocols, usually
TCP [63], with traditional Ethernet networks providing
best effort service and dropping frames whenever con-
gestion occurs.

3.2 Flow Control in Traditional Ethernet
Ethernet Flow Control (FC) was proposed to control con-
gestion and create a lossless data link medium. FC en-
ables a receiving node to signal a sending node to tem-
porarily stop data transmission. According to the IEEE
802.3x standard [6], this can be accomplished by sending
a special Ethernet pause frame. The IEEE 802.3x pause

link
speed,
Gbps

single frame
pause time, ms

frame rate required to
stop transmission,

frames/second

1 33.6 30
10 3.36 299
40 0.85 1193

Table 1: Pause frame rate for stopping traffic completely

frame is defined in Annex 31B of the spec [9] and uses
the MAC frame format to carry pause commands.

When a sender transmits data faster than the receiver
can process it and the receiver runs out of space, the
receiver sends the sender a MAC control frame with
a pause request. Upon receiving the pause frame, the
sender stops transmitting data.

The pause frame includes information on how long to
halt the transmission. The pause time is a two byte
MAC Control parameter in the pause frame that is mea-
sured in units of pause quanta. It can be between 0
to 65535 pause quanta. The receiver can also tell the
sender to resume transmission by sending a special pause
frame with the pause time value set to 0.

Each pause quanta equals 512 “bit times,” defined
as the time required to eject one bit from the NIC (i.e., 1
divided by the NIC speed). The maximal pause frame
pause time value can be 65535 pause quanta,
which is 65535×512 = 33.6 million bit times.

For 1Gbps networks, one pause frame with
pause time value of 65535 pause quanta
will tell the sender to stop transmitting for 33.6 million
bit times, i.e., 33.6 ms. A sender operating at 10 Gbps
speed will pause for 3.36 ms. A sender operating at 40
Gbps speed will pause for 0.85 ms.

Table 1 shows the rate at which a network device
should receive pause frames to stop transmission com-
pletely. The pause time value of each frame is
0xFFFF. Sending 30 pause frames per second will tell
the sender to completely stop transmission on a 1Gbps
link. For a sender operating at 10 Gbps speed to stop
transmission requires sending 299 frames/second. For a
sender operating at 40 Gbps speed to stop transmission
requires sending 1193 frames/second.

3.3 Priority Flow Control in Ethernet

To improve the performance and reliability of Ethernet
and make it more suitable for data centers, the IEEE
802.1 working group proposed a new set of standards,
known as Data Center Bridging (DCB) or Converged En-
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hanced Ethernet (CEE).
In addition to the IEEE 802.3x Ethernet pause, the

new IEEE 802.1Qbb standard proposed to make Ethernet
truly “lossless” in data center environments by adding
Priority-based Flow Control (PFC) [8].

Similar to the 802.3x FC, PFC is a link-level flow con-
trol mechanism, but it is implemented on a per traffic-
class basis. While 802.3x FC pauses all traffic on the
link, PFC makes it possible to pause a specific class of
traffic using the same pause frame structure. PFC oper-
ates on individual traffic classes, as defined by Annex I
of the IEEE 802.1Q standard [7]. Up to 8 traffic classes
can be defined for PFC per link.

3.4 Attacking VMs via Flow Control

Direct device assignment enables malicious guests to
attack the Ethernet network via well-known Layer 2
attacks [14, 17, 47, 56, 73, 75]. Even when using
virtualization-aware switching extensions such as the
Virtual Edge Port Aggregator (VEPA) [30,31], all guests
with direct access to the VFs of the same PF still share
the same physical link to the edge switch, and the edge
switch still allocates processing resources per link.

Since both 802.3x and 802.1Qbb perform flow control
on a link-level basis, and the link is shared between VMs,
any flow control manipulation by a single VM will affect
the PF and all VFs associated with this PF. This means
that a malicious VM is capable of controlling the band-
width and latency of all VMs that share the same adapter.

The malicious VM can pause all traffic on the link by
sending 802.3x pause frames and can stop a specific traf-
fic class by sending 802.1Qbb pause frames. To stop all
traffic on a 10 Gbps Ethernet link, an attacker needs to
transmit pause frames at a rate of 300 frames/second,
which is about 155 Kbps of bandwidth. The attacker can
fully control the bandwidth and latency of all tenant VMs
with minimal required resources and without any coop-
eration from the host or from other guest VMs.

4 Attack Evaluation

4.1 Experimental Setup

We constructed a lab setup in which we perform and
evaluate the flow-control attack described in the previous
section. We use a Dell PowerEdge R420 server, which is
a dual socket with six cores per socket, with Intel Xeon
E5-2420 CPUs running at 1.90GHz. The chipset is the
Intel C600 series. The server includes 16GBs of mem-
ory and an SRIOV-capable Intel NIC (10GbE 82599 or

1GbE I350) installed in PCIe generation 3 slots with two
VFs enabled.

We use the KVM Hypervisor [50] and Ubuntu server
13.10 with 3.11.0 x86 64 kernel for the host, guest VMs,
and the client. Each guest is created with 2GBs of mem-
ory, two virtual CPUs, and one VF directly assigned to it.
Client and host machines are identical servers connected
to the same dedicated switch, as shown in Figure 3.

To achieve consistent results, the server’s BIOS profile
is performance optimized, all power optimizations are
tuned off, and Non-Uniform Memory Access (NUMA) is
enabled. The guest virtual CPUs are pinned to the cores
on the same NUMA node to which the Intel PF is con-
nected. The host allocates to the guest memory from the
same NUMA node as well.

For our 1GbE environment, we use an Intel Ethernet
I350-T2 network interface connected to a Dell Power-
Connect 6224P 1Gb Ethernet switch. For our 10GbE
environment, we use an Intel 82599 10 Gigabit TN net-
work interface connected to an HP 5900AF 10Gb Ether-
net switch.

Host and client use their distribution’s default drivers
with default configuration settings. Guest VMs use ver-
sion 2.14.2 of the ixgbevf driver for the Intel 10G
82599 Ethernet controller virtual function and the default
igbvf version 2.0.2-k for the Intel 1G I350 Ethernet
controller virtual function. Ethernet flow control IEEE
802.3x is enabled on switch ports. We set the Ethernet
Maximal Transfer Unit (MTU) to 1500 bytes on all Eth-
ernet switches and network interfaces in our tests.

4.2 Benchmark Methodology

We conduct a performance evaluation according to the
methodology in RFC 2544 [25]. For throughput tests,
we use an Ethernet frame size of 1518 bytes and measure
maximal throughput without packet loss. Each through-
put test runs for at least 60 seconds and we take the aver-
age of 5 test cycles. To measure latency, we use 64 and
1024 byte messages. Each latency test runs at least 120
seconds and we measure the average of at least 15 test
cycles. (While RFC 2544 dictates running 20 cycles, we
obtained plausible results after 15 cycles; thus, we de-
cided to reduce test runtime by running each test only 15
cycles.)

Benchmark Tools: We measure throughput and la-
tency with two well-known network benchmark utilities:
iperf [3] and netperf [45]. We use the iperf TCP
stream test to measure throughput and the netperf
TCP RR test to measure latency. The iperf and
netperf clients are run on the client machine, while
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Figure 3: Setup scheme

the iperf and netperf servers are run on VM1. We
measure on the client the bandwidth and latency from the
client to VM1.

Traffic Generators: In addition to the traffic gener-
ated by the benchmark tools, we use tcpdump [44] to
capture traffic and tcpreplay [5] to send previously
captured and modified frames at the desired rate.

Testbed Scheme: The testbed scheme is shown in Fig-
ure 3. Our testbed consists of two identical servers, one
acting as client and the other as the host with SRIOV ca-
pable NIC. We configure two VFs on the host’s SRIOV
PF. We assign VF1 to guest VM1 and VF2 to guest
VM2. Client and host are connected to the same Ethernet
switch. We generate traffic between VM1 and the client
using iperf and netperf. VM2 is the attacking VM.

4.3 Flow-Control Attack Implementation

We use tcpreplay [5] to send specially crafted 802.3x
pause frames at the desired rate from the malicious
VM2.1 When the switch receives a pause frame from
VM2, it inhibits transmission of any traffic on the
link between the switch and the PF, including the traf-
fic between the client and VM1, for a certain num-
ber of pause time quanta. Sending pause frames
from VM2, we can manipulate the bandwidth and la-
tency of the traffic between VM1 and the client. The
value of pause time of each pause frame is 0xFFFF
pause quanta units. Knowing the link speed, we can
calculate the pause frame rate, as described in Section 3,
and impose precise bandwidth limits and latency delays
on VM1. The results of the attack in both 1GbE and
10GbE environments are presented in Section 4.4.

1 We use 802.3x pause frames for the sake of simplicity, but we
could have used PFC frames instead. PFC uses exactly the same flow
control mechanism and has the same MAC control frame format. The
only difference between PFC frames and pause frames is the addition
of seven pause time fields in PFC that are padded in 802.3x frames.

4.4 Attack Results
Figures 4 and 5 show the results of the pause frame at-
tack on victim throughput in the 1GbE and 10GbE en-
vironments respectively. Figures 4a and 5a show victim
(VM1) throughput under periodic attack of VM2. Every
10 seconds, VM2 transmits pause frames for 10 seconds
at 30 frames/second (as shown in Figure 4a) and at 300
frames/second (as shown in Figure 5a). In this test we
measure the throughput of the victim system, VM1. The
figures clearly show that VM2 can gain complete control
over VM1 throughput: starting from the tenth second,
the attacker completely stops traffic on the link for ten
seconds.

Figure 6 shows the results of the pause frame attack
on victim latency in the 10GbE environment. Figure 6a
shows victim latency under the same periodic attack de-
scribed above. In this test we use 64B and 1024B mes-
sages. For better result visualization, we lowered the at-
tack rate to 150 pause frames/second. Figure 6a shows
that the attacker can increase victim latency to 250% by
running the attack at a rate of only 150 frames/second.

Victim throughput Figures 4b and 5b display
throughput of VM1 as a function of the rate of pause
frames VM2 sends. From Figure 4b we can see that
VM2 can pause all traffic on the 1GbE link with al-
most no effort, by sending pause frames at a rate of 30
frames/second. For the 10GbE link, VM2 needs to work
a little bit harder and raise its rate to 300 frames/second.
This test’s results confirm the calculations shown in Ta-
ble 1. Figures 7a and 7b confirm that the measured vic-
tim throughput is exactly as predicted. In other words, it
is easily and completely controlled by the attacker.

These tests show that a malicious VM can use the
pause frame attack to control the throughput of other
VMs with precision. Furthermore, we see that the pause
frame attack requires minimal effort from the attacker
and will be hard to detect amid all the other network
traffic. To halt all transmissions on the 10GbE link,
the attacker only needs to send 64B pause frames at
300 frames/second. 300 frames/second is approximately
0.002% of the 14.88 million frames/second maximum
frame rate for 10GbE.2 Discovering such an attack can
be quite challenging, due to the low frame rate involved,
especially on a busy high-speed link such as 10GbE or
40GbE.

Victim latency Figure 6b shows the victim’s latency
as a function of the attacker’s pause frame rate. In this
test we measure the latency of 64 byte messages and
1024 byte messages. We see that the figures for both 64B

2 The maximum frame rate equals the link speed divided by the sum
of sizes of the preamble, frame length and inter-frame gap.
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Figure 4: Pause frame attack: victim throughput in 1GbE environment
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Figure 5: Pause frame attack: victim throughput in 10GbE environment
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Figure 6: Pause frame attack: victim latency in 10GbE environment

and 1024B are barely distinguishable and almost con-
verge; the latency is the same for small and large size
messages under attack.

In Figure 7c we see that measured latency and ex-
pected latency differ somewhat. In practice, this differ-
ence means that an attacker can control the victim’s la-
tency with slightly less precision than it can control its
throughput, but it can still control both with high preci-
sion and relatively little effort.

In back-to-back configuration, without a switch, la-
tency behaves as expected. We believe this difference
is caused by the switch’s internal buffering methods—

in addition to storing frames internally, the Ethernet
switch prevents the possible side effects of such buffering
e.g., head-of-line blocking [70] and congestion spread-
ing [13]. To accurately explain this phenomenon, we
need access to the switch internals; unfortunately, the
Ethernet switch uses proprietary closed software and
hardware.

Experiments with Non-Intel Devices We performed
an identical experiment on same setup with an SRIOV
Broadcom NetXtreme II BCM57810 10GbE NIC [26]
and got the same results. Our attack is valid for this NIC
as well.
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Figure 7: Pause frame attack: expected vs. measured throughput and latency

We also tried the attack described above on another
vendor’s 40GbE SRIOV adapter. Whenever the attack-
ing VM transmitted MAC control frames (pause frames)
through its VF, the adapter completely locked up and be-
came unresponsive. It stopped generating both transmit
and receive interrupts, and required manual intervention
to reset it, by reloading the PF driver on the host. This
lockup appears to be a firmware issue and has been com-
municated to the adapter vendor.

Clearly, with this adapter and this firmware issue, a
malicious VM could trivially perform a straightforward
denial of service attack against its peer VMs that use this
adapter’s VFs and against the host. But since this attack
is trivial to discover, we focus instead on the stealthier
pause frame attack, which is much harder to discover and
protect against.

5 Attack Ramifications

The consequences of the attack are substantial. If Eth-
ernet flow control is enabled on the SRIOV device, the
host’s VMs’ security is compromised and the VM’s are
susceptible to the attack.

The attack cannot be prevented using the filtering ca-
pabilities of currently available SRIOV Ethernet devices
due to their minimal filtering capability. At best, mod-
ern SRIOV NICs are capable of enforcing anti-spoofing
checks based on the source MAC address or VLAN tag
of the VM, to prevent one VM from pretending to be
another. In the attack we describe, the adversary gener-
ates flow control frames with the malicious VM’s source
MAC and VLAN tag, so anti-spoofing features cannot
block the attack.

Since the attack cannot be prevented with current
NICs and switches, cloud providers must either be con-
tent with flawed security and fully trust the guest VMs or
disable the Ethernet flow control in their networks. Nei-
ther option is palatable. The former is unrealistic for the
public cloud and unlikely be acceptable to private cloud

providers. The latter means giving up the performance
benefits of lossless Ethernet, increasing overall resource
utilization, and reducing performance. We discuss in
greater detail the performance advantages that Ethernet
flow control provides in Section 8.

6 Improving SRIOV Security

The attack described in the previous sections is the result
of a fundamental limitation of SRIOV: from the network
point of view, VFs and their associated untrusted VMs
are all lumped together into a single end-station. To se-
cure SRIOV and eliminate the attack while keeping flow
control functionality, we propose to extend SRIOV Eth-
ernet NIC filtering capability to filter traffic transmitted
by VFs, not only on the basis of source MAC and VLAN
tags—the method currently employed by anti-spoofing
features—but also on the basis of the MAC destination
and Ethernet type fields of the frame. This filtering can-
not be done by the host without some loss of perfor-
mance [39] and has to be done before traffic hits the edge
switch. Hence it must be done internally in the SRIOV
NIC. We built a software-based prototype of an SRIOV
Ethernet NIC with pause frame filtering. Before present-
ing the prototype, we begin by describing the internals of
an SRIOV NIC.

6.1 SRIOV NIC Internals

Figure 8a shows a detailed schema of an SRIOV Ether-
net NIC. The SRIOV device is connected to the external
adjacent Ethernet switch on the bottom side and to the
host’s PCIe bus, internal to the host, on the top side.

Switching The NIC stores frames it receives from the
external switch in its internal buffer. The size of this
buffer is on the order of hundreds of KBytes, depending
on the NIC model: 144KB in Intel I350 [43] and 512KB
in Intel 82599 [42]. After receiving a packet, the SRIOV
NIC looks up the frame’s MAC in its MAC address table,
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finds the destination VF according to the frame’s desti-
nation MAC address, and copies the frame (using DMA)
over the PCIe bus to the VF’s buffer ring, which is allo-
cated in the host’s RAM. This is analogous to a standard
Ethernet switch that receives a packet on an ingress port,
looks up its MAC address, and chooses the right egress
port to send it to. The data path of the frame is marked
with a red dashed line in Figure 8a. In addition, SRIOV
NIC is able to perform VM-to-VM switching internally,
without sending the frames to the external switch.

Internal Buffer When Ethernet flow control is en-
abled, the SRIOV NIC starts monitoring its internal
buffer. If the NIC cannot process received frames fast
enough, for example due to an overloaded or slow PCIe
link, the buffer fills up. Once it reaches a predefined
threshold, the SRIOV NIC generates and sends pause
frames to the external Ethernet switch. The switch then
holds transmissions to the NIC for the requested time,
storing these frames in its own internal buffers. While
the switch is buffering frames, the NIC should continue
copying the frames it buffered into the each VF’s ring
buffer, clearing up space in its internal buffer.

Ring Buffer The final destination for a received frame
is in its VF’s ring buffer, located in host RAM. The net-
work stack in the VM driving the VF removes frames
from its ring buffers at a rate that is limited by the CPU.
If the VM does not get enough CPU cycles or is not ef-
ficient enough, the NIC may queue frames to the ring
buffer faster than the VM can process them. When the
ring buffer fills up, most Ethernet NICs (e.g., those of In-
tel’s and Mellanox’s) will simply drop incoming frames.
Less commonly, a few NICs, such as Broadcom’s NetX-
treme II BCM57810 10GbE, can monitor each VF’s ring
buffer. When the ring buffer is exhausted, the NIC can
send pause frames to the external switch to give the host
CPU a chance to catch up with the sender. When avail-
able, this functionality is usually disabled by default.

Outbound Security Some SRIOV Ethernet NICs
(e.g., Intel 82599 10GbE [42] or I350 1GbE [43] NICs)
include anti-spoofing functionality. They can verify that
the source MAC address and/or VLAN tag of each frame
transmitted by the VF belongs to the transmitting VF.
To this end, these NICs have an internal component that
can inspect and even change frames transmitted from the
VF. In addition, Intel SRIOV NICs have advanced in-
bound filtering capabilities, storm control, rate limiting,
and port mirroring features, very much like any standard
Ethernet switch.

As we can see, Ethernet SRIOV devices implement
on-board a limited form of Ethernet switching. That
is why such devices are also known as virtual Ethernet

bridges (VEBs).

6.2 The VANFC design

The key requirement from VANFC is to filter outbound
traffic transmitted by a VF. Ideally, VANFC would be
implemented in a production SRIOV NIC. Unfortu-
nately, all tested SRIOV NICs are proprietary with closed
firmware. Furthermore, most frame processing logic is
implemented in high speed ASIC hardware.

We opted instead to build VANFC as a software-based
prototype of an SRIOV NIC that filters outbound traffic.
VANFC takes advantage of the following two observa-
tions: (1) VEB embedded into the SRIOV NIC device
replicates standard Ethernet switching behavior and can
be considered as a virtual Ethernet switch; (2) all valid
pause frames are generated by the NIC’s hardware and
have the PF’s source MAC address, whereas invalid—
malicious—pause frames are sent with source address of
a VF. Should the adversary VM attempt to generate pause
frames with the PF’s source MAC address, the NIC’s
anti-spoofing will find and drop these frames.

In order to filter transmitted malicious pause frames,
we first need to identify pause frames. In such
frames the Ethernet type field is 0x8808 (MAC con-
trol type), the MAC opcode field is 0x0001 (pause
opcode), and the destination MAC address is multi-
cast 01-80-C2-00-00-01. For any such packet, the
VANFC filter should drop the frame if the source MAC is
different than the PF’s MAC address.

As mentioned previously, most SRIOV NICs already
have a component that can filter outbound traffic; this
component is a part of the SRIOV device’s internal Eth-
ernet switch and cannot be modified. Our prototype ex-
tends this switch in software by running the extension
on the wire between the SRIOV NIC and the external
switch.

Filtering Component For our Ethernet filtering de-
vice we use the standard Linux bridge configured on
an x86-based commodity server running Ubuntu server
13.10 and equipped with two Intel 82599 10 Gigabit TN
Network controllers installed in PCIe gen 2 slots. One
NIC is connected to the host PF and the other is con-
nected to the external Ethernet switch, as displayed in
Figure 8b. Ethernet switching is performed by the Linux
bridge [4] and filtering is done by the ebtables [32].

Performance model Bridge hardware is fast enough
not to be a bottleneck for 10Gb Ethernet speed. How-
ever, by adding to the setup an Ethernet device imple-
mented in software, we increased latency by a constant
delay of approximately 55µs. An eventual implementa-
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Figure 8: Fig. (a) shows schema of current SRIOV NIC internals; Fig. (b) shows VANFC schema.

tion of VANFC in hardware will eliminate this overhead;
we therefore discount it in latency oriented performance
tests.

We wanted to make this bridge completely transparent
and not to interfere with passing traffic: the host should
keep communicating with the external switch and the
switch should keep communicating with the host as in
the original setup without VANFC. VANFC should change
neither the SRIOV software/hardware interface nor the
Ethernet flow control protocol. To ensure this, we made
a few modifications in Linux bridge code and in the Intel
82599 device driver used by the bridge device.

Bridge Modification The standard Ethernet bridge
should not forward MAC control frames that are used
to carry pause commands since MAC control frames are
designed to be processed by Ethernet devices. Since
we want the bridge to deliver all of the traffic be-
tween the SRIOV device and the external switch, in-
cluding the pause frames sent by the PF, we modify the
Linux bridging code to forward MAC control frames
and use ebtables to filter pause frames not sent from
the PF. Our experiments use a static configuration for
ebtables and for the Linux bridge.

Device Driver Modification We use a modified
ixgbe driver version 3.21.2 for Intel 10G 82599 net-
work controllers on the bridge machine. According to
the Intel 82599 controller data-sheet [42], the flow con-
trol mechanism of the device receives pause frames when
flow control is enabled; otherwise the device silently
drops pause frames. In our setup, we disable the flow
control feature of Intel NICs installed in the bridge ma-
chine and we configure them to forward pause frames up

to the OS, where they should be processed by the bridge
and ebtables. We do this by enabling the Pass MAC
Control Frames (PMCF) bit of the MAC Flow Control
(MFLCN) register, as described in section 3.7.7.2 of the
Intel 82599 data-sheet [42].

Ring Buffer Exhaustion As mentioned, some SRIOV
devices are capable of monitoring a VF’s ring buffer
and automatically generating pause frames when it is ex-
hausted. In such a scenario, pause frames will be gen-
erated with the source MAC address of the PF and will
not be recognized by the VANFC. We argue that such
pause frame generation should be disabled in any SRIOV
based setup, regardless of whether the VMs are trusted.
Since the VM fully controls the VF’s ring buffer, a ma-
licious VM can modify its software stack (e.g., the VF
device driver) to manipulate the ring buffer so that the
SRIOV device monitoring the ring buffer will generate
pause frames on the VM’s behalf. Such pause frames
will reach the external switch, which will stop its trans-
missions to the host and other VMs, leaving us with the
same attack vector.

Automatic generation of pause frames on VF ring
buffer exhaustion is problematic even if all VMs are
trusted. Consider, for example, a VM that does not have
enough CPU resources to process all incoming traffic and
exhausts the VF’s ring buffer. Sending pause frames to
the switch may help this VM process the buffer but will
halt the traffic to other VMs. Thus, to keep the SRIOV
device secure, an SRIOV NIC should not automatically
send pause frames when the VF’s ring buffer is exhausted
regardless of whether the VM is trusted.

Nevertheless, monitoring VF ring buffers can be use-
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ful for keeping the Ethernet network lossless and avoid-
ing dropped frames. We propose that the SRIOV device
monitor ring buffers, but instead of automatically gener-
ating pause frames on ring buffer exhaustion, it should
notify the hypervisor. The hypervisor, unlike the device,
could then carefully consider whether the VM is mali-
cious or simply slow. If the VM is simply slow, the hy-
pervisor could give it a scheduling boost or assign more
CPU resources to it, thereby giving it a chance to process
its ring buffer before it fills up. We plan to explore this
avenue in future work.

7 Evaluating VANFC

We evaluate VANFC in several scenarios. The base-
line scenario includes an unprotected system, as shown
in Figure 3, and no attack is performed during the test. In
this scenario we measure the system’s baseline through-
put and latency. The baseline system under attack in-
cludes the same unprotected system but here VM2 runs
the attack during the test, sending pause frames at a con-
stant rate of 150 frames/sec. In this scenario we measure
the effectiveness of the attack on an unprotected system.

In the protected system scenario, VANFC, shown
in Figure 8b, replaces the unprotected system. In this
scenario VM2 does not perform any attack during the
test. We use this scenario to measure the performance
overhead introduced by VANFC compared to the base-
line. In the protected system under attack scenario, we
also use VANFC, but here the attacker VM2 sends pause
frames at a constant rate of 150 frames/sec. In this sce-
nario we verify that VANFC indeed overcomes the attack.

We perform all tests on the 10GbE network with the
same environment, equipment, and methodology as de-
scribed in Section 4.1.

As explained in Section 6.2, to filter malicious pause
frames, our solution uses a software-based filtering de-
vice, which adds constant latency of 55µs. A produc-
tion solution would filter these frames in hardware, ob-
viating this constant latency overhead of software-based
model. Thus, in latency-oriented performance tests of
the VANFC, we reduced 55µs from the results.

Evaluation Tests To evaluate the performance of the
described scenarios, we test throughput and latency using
iperf and netperf, as previously described.

In addition, we configure the apache2 [34] web
server on VM1 to serve two files, one sized 1KB and
one sized 1MB. We use apache2 version 2.4.6 installed
from the Ubuntu repository with the default configura-
tion. We run the ab [1] benchmark tool from the client
to test the performance of the web server on VM1.

VM1 also runs memcached [35] server version
1.4.14, installed from the Ubuntu repository with
the default configuration file. On the client we
run the memslap [78] benchmark tool, part of the
libmemcached client library, to measure the perfor-
mance of the memcached server on VM1.

Figure 9 displays normalized results of the performed
tests. We group test results into two categories: through-
put oriented and latency oriented. Throughput oriented
tests are iperf running pure TCP stream and apache2
serving a 1MB file. These tests are limited by the 10GbE
link bandwidth. During the tests, the client and server
CPUs are almost idle.

From Figure 9 we conclude that VANFC completely
blocks VM2’s attack and introduces no performance
penalty.

8 Necessity of Flow Control

One can argue that flow control is not required for proper
functionality of high level protocols such as TCP. It then
follows from this argument that SRIOV can be made “se-
cure” simply by disabling flow control.

The TCP protocol does provide its own flow control
mechanism. However, many studies have shown that
TCP’s main disadvantage is high CPU utilization [28,36,
46, 55, 66]. Relying on TCP alone for flow control leads
to increased resource utilization.

In public cloud environments, users pay for computa-
tional resources. Higher CPU utilization results in higher
charges. In enterprise data centers and high-performance
computing setups, resource consumption matters as well.
Ultimately, someone pays for it. In clouds, especially,
effective resource utilization will become increasingly
more important [12].

Certain traffic patterns that use the TCP protocol in
high-bandwidth low-latency data center environments
may suffer from catastrophic TCP throughput collapse,
a phenomenon also known as the incast problem [58].
This problem occurs when many senders simultaneously
transmit data to a single receiver, overflowing the net-
work buffers of the Ethernet switches and the receiver,
thus causing significant packet loss. Studies show that
Ethernet flow control functionality, together with con-
gestion control protocol, can mitigate the incast problem,
thus improving the TCP performance [27, 62].

As part of a recent effort to converge current net-
work infrastructures, many existing protocols were im-
plemented over Ethernet, e.g., Remote DMA over Con-
verged Ethernet (RoCE) [19]. RoCE significantly re-
duces CPU utilization when compared with TCP.
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Figure 10: Performance of a single RoCE flow in the system with two competing RoCE flows. Graph (a) shows
performance with enabled flow control; graph (b) shows performance with disabled flow control.

A few recent studies that evaluate performance of dif-
ferent data transfer protocols over high speed links have
been published [48, 49, 67, 72]. Kissel et al. [49] com-
pare TCP and RoCE transfers over 40GbE links using
the same application they developed for benchmarking.
Using TCP, they managed to reach a speed of 22Gbps
while the sender’s CPU load was 100% and the receiver’s
CPU load was 91%. With OS-level optimizations, they
managed to reach a speed of 39.5 Gbps and reduce the
sender’s CPU load to 43%. Using the RoCE protocol,
they managed to reach 39.2 Gbps while the CPU load of
the receiver and sender was less than 2%! These results
clearly show that RoCE significantly reduces CPU uti-
lization and thus the overall cost of carrying out compu-
tations. It is especially important when a large amount
of data is being moved between computational nodes
in HPC or data center environments, where virtualiza-
tion is becoming prevalent and increasing in popular-
ity [24, 37, 54].

Studies show that RoCE cannot function properly
without flow control [48, 49, 67, 72]. Figure 10, taken

from Kissel et al. [49], with the authors’ explicit permis-
sion, shows the performance effect of flow control on two
competing data transfers using the RoCE protocol. Fig-
ure 10a shows the performance of a single RoCE data
transfer while another RoCE data transfer is competing
with it for bandwidth and flow control is enabled. Both
transfers effectively share link bandwidth. Figure 10b
shows the performance of the same RoCE data transfer
when flow control is disabled. As can be seen in the fig-
ure, without flow control the RoCE data transfer suffers,
achieving a fraction of the performance shown in Fig-
ure 10a. We have also independently reproduced and
verified these results.

Kissel et al. also show [49] that the same problem is
relevant not only to RoCE but can be generalized to TCP
as well. Thus we conclude that disabling flow control
would cause less effective resource utilization and lead to
higher cost for cloud customers and for any organization
deploying SRIOV. Conversely, securing SRIOV against
flow control attacks would make it possible for SRIOV
and flow control to coexist, providing the performance
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benefits of both without relinquishing security.

9 Discussion

Notes on Implementation VANFC can be implemented
as part of an SRIOV device already equipped with an
embedded Ethernet switch or it can be implemented
in the edge Ethernet switch, by programming the edge
switch to filter flow control frames from VFs’ MAC ad-
dresses. Adding VANFC functionality to the NIC requires
less manufacturing effort; it is also more convenient and
cheaper to replace a single NIC on a host than to replace
an edge switch. Nevertheless, in large-scale virtualiza-
tion deployments, such as those of cloud providers or
corporate virtual server farms, a single 10GbE Ethernet
switch with high port density (for example, the 48 port
HP 5900AF 10Gb Ethernet switch in our testbed) serves
many host servers with SRIOV capable devices. In such
scenarios, upgrading 48 SRIOV devices connected to the
48 port switch requires considerably more resources than
single switch upgrade.

Having said that, we argue that proper implementation
of the solution to the described problem is in the SRIOV
NIC and not in the edge Ethernet switch. The problem
we discuss is strictly related to the virtualization plat-
form and caused by a design flaw in the SRIOV NIC’s
internal switching implementation. Mitigating the prob-
lem in the edge switch, an external device whose purpose
is not handle virtualization problems of the host, would
force the edge switch to learn about each VF’s MAC ad-
dress and to distinguish PFs from VFs, coupling the edge
switch too closely with the NICs.

VEB and VEPA Another important security aspect of
SRIOV is VM-to-VM traffic. In SRIOV devices with an
embedded VEB switch, VM-to-VM traffic does not leave
the host network device and is not visible to the external
edge switch, which enforces the security policy on the
edge of the network. To make all VM traffic visible to the
external switch, the VEB switch should act as a VEPA
and send all VM traffic to the adjacent switch.

A properly configured Ethernet switch and the use of
a VEPA device can enforce a security policy (ACL, port
security) on malicious VM traffic and prevent most L2
attacks. However, while VEPA solves many manage-
ability and security issues that pertain to switching in
virtualized environments [29], it does not address the
flow control attack we presented earlier. This is because
VEPA still shares the same single link between multi-
ple untrusted guests and the host and does not manage
flow control per VF. Besides not solving the flow control
attack, it uses, again, the edge Ethernet switch, which is

external to the source of the problem–SRIOV NIC. Thus,
a VEPA extension should not be considered for the so-
lution and the problem should be solved in the SRIOV
NIC.

10 Related Work

Several recent works discussed the security of self-
virtualizing devices. Pék et al. [61] described a wide
range of attacks on host and tenant VMs using directly
assigned devices. They performed successful attacks on
PCI/PCIe configuration space, on memory mapped I/O,
and by injecting interrupts. They also described an NMI
injection attack. Most of the attacks they discussed can
be blocked by a fix in the hypervisor or by proper hard-
ware configuration.

Richter et al. [68] showed how a malicious VM with
a directly attached VF can perform DoS attacks on other
VMs that share the same PCIe link by overloading its
own Memory Mapped I/O (MMIO) resources and flood-
ing the PCIe link with write request packets. As the au-
thors mention, this attack can be mitigated by using the
QoS mechanisms defined by the PCIe standard [59].

All of the attacks discussed in the aforementioned pa-
pers are based on weak security implementations of soft-
ware (e.g., a hypervisor) or hardware (a chipset system
error reporting mechanism) that are internal to the host.
Our attack exploits different design aspects of SRIOV
devices: it targets the interoperability of SRIOV devices
with software and hardware external to the host.

There are ongoing efforts of the Data Center Bridging
Task Group, which is a part of the IEEE 802.1 Working
Group, to standardize configuration, management and
communication of virtual stations connected to the adja-
cent bridge. The working group proposed the 802.1Qbg
Edge Virtual Bridging [10] and 802.1BR Bridge Port
Extension [11] standards. Both standards concentrate
on configuration and management of the bridge services
for virtual stations, leaving the flow control of virtual
stations out of their scope. To the best of our knowl-
edge, our work is the first to present the problem of self-
virtualizing devices in converged enhanced Ethernet en-
vironments with flow control, and the first to suggest a
solution for it.

11 Conclusions and Future Work

Self-virtualizing devices with SRIOV lie at the founda-
tion of modern enterprise data centers, cloud comput-
ing, and high-performance computing setups. We have
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shown that SRIOV, as currently deployed on current Eth-
ernet networks, is incompatible with required function-
ality such as flow control. This is because flow control
relies on the assumption that each endpoint is trusted,
whereas with SRIOV, each network endpoint is com-
prised of multiple, possibly untrusted, virtual machines.
We show how to overcome this flaw by teaching the
NIC about virtual functions. We present the prototype of
such a system, VANFC, and its evaluation. Our prototype
is 100% effective in securing SRIOV against this flaw
while imposing no overhead on throughput or latency-
oriented workloads.

Future work includes continuing to investigate the
security of SRIOV devices; extending our work from
Ethernet to other networking technologies such as In-
finiBand and Fiber Channel; looking at the security of
direct-assigned self-virtualizing devices other than NICs,
such as high-end NVMe SSDs and GPGPUs; develop-
ing VF co-residency detection techniques; and using the
hypervisor to solve the problem of VM ring buffer ex-
haustion. Handling this with software without losing per-
formance will be challenging. On VANFC specifically,
we plan to continue our evaluation and to explore what
an eventual hardware-based implementation would look
like.
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Abstract

Mandatory protection systems such as SELinux and SE-
Android harden operating system integrity. Unfortu-
nately, policy development is error prone and requires
lengthy refinement using audit logs from deployed sys-
tems. While prior work has studied SELinux policy in
detail, SEAndroid is relatively new and has received lit-
tle attention. SEAndroid policy engineering differs sig-
nificantly from SELinux: Android fundamentally differs
from traditional Linux; the same policy is used on mil-
lions of devices for which new audit logs are continu-
ally available; and audit logs contain a mix of benign
and malicious accesses. In this paper, we propose EASE-
Android, the first SEAndroid analytic platform for auto-
matic policy analysis and refinement. Our key insight is
that the policy refinement process can be modeled and
automated using semi-supervised learning. Given an ex-
isting policy and a small set of known access patterns,
EASEAndroid continually expands the knowledge base
as new audit logs become available, producing sugges-
tions for policy refinement. We evaluate EASEAndroid
on 1.3 million audit logs from real-world devices. EASE-
Android successfully learns 2,518 new access patterns
and generates 331 new policy rules. During this process,
EASEAndroid discovers eight categories of attack access
patterns in real devices, two of which are new attacks di-
rectly against the SEAndroid MAC mechanism.

1 Introduction

Operating system integrity relies on the correctness of
1) trusted computing base (TCB) code and 2) access con-
trol policy protecting the TCB code and OS resources. It
is generally impractical to verify the correctness of OS
code in commodity systems. Therefore, mandatory ac-
cess control (MAC) policy is often used as a fallback
when the security of the software inevitably fails [29].

SELinux [6] is the most notable MAC policy frame-

work widely used in practice. Security Enhanced An-
droid [38] (known simply as SEAndroid) is a recent port
of SELinux to the Android platform. However, while
Android is based on a Linux kernel, the runtime environ-
ment is vastly different than existing Linux distributions
for commodity PCs. This difference resulted in a com-
plete redesign of the MAC policy rules, with several new
object classes (e.g., for Android’s binder IPC).

As with SELinux, SEAndroid policy development is a
challenging task, requiring many iterations of refinement
to be ready for commercial deployment. For example,
Google introduced a very permissive SEAndroid policy
into Android version 4.3 and did not enable enforcement.
Version 4.4 enabled enforcement, but the policy was still
very permissive, containing only a few system daemons.
Finally, Android version 5.0 provides a much more ro-
bust (but not perfect) version of the policy. Additionally,
major smartphone vendors need to customize Google’s
base SEAndroid policy for their devices to add additional
protections against known attacks.

SEAndroid policy refinement is currently a very man-
ual process that typically involves analyzing audit logs
to identify proposed changes. There are two general ap-
proaches to SEAndroid policy refinement. The first ap-
proach is to develop a least privilege [35] policy (also
known as a “strict” policy in SELinux terminology) and
monitor audit logs for access patterns that should be al-
lowed. The second approach is to begin with a more per-
missive policy, refine the policy to prevent (or contain)
privilege escalation attacks and use audit logs to verify
the refinement. Each approach has disadvantages. If the
policy is too strict, it will hurt the usability of deployed
real-world devices. If the policy is too permissive, it will
allow attacks. As a result, smartphone vendors use a
combination of these two approaches.

The goal of our research is to significantly reduce the
manual effort required to refine SEAndroid policy using
audit logs. Audit log analysis is challenging for several
reasons. First, audit logs are collected from millions of
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real-world devices, and purely manual analysis is im-
practical. Second, the audit logs contain both benign
access patterns and malicious access patterns. Existing
SELinux tools such as audit2allow that blindly create
rules to allow all access patterns in audit logs are error
prone. Third, the functionality of both benign applica-
tions and malicious exploits is continually changing/up-
grading, requiring frequent reassessment of the deny/al-
low boundary to refine the policy.

In this paper, we present Elastic Analytics for SEAn-
droid (EASEAndroid) as the first large-scale audit log
and policy analytic platform for automatic policy anal-
ysis and refinement of SEAndroid-style MAC policy.
Our key insight is that the policy refinement process can
be modeled and automated using semi-supervised learn-
ing [18], a popular knowledge-base construction tech-
nique [16, 21]. We apply EASEAndroid to a database
of 1.3 million audit logs from real-world Samsung de-
vices running Android 4.3 over the entire year of 2014.1

EASEAndroid correctly discovers 336 new benign ac-
cess patterns and 2,182 new malicious access patterns,
and automatically translates them into 331 policy rules.
The generated rules are consistent with rules manually
added by policy analysts. Among the malicious access
patterns, EASEAndroid further discovers two new types
of attacks in the wild directly targeting SEAndroid MAC
mechanism itself.

This paper makes the following contributions:

• We propose EASEAndroid, a semi-supervised learn-
ing approach for refining MAC policy at large scale.
Our approach scales to millions of audit logs that
contain a mix of benign and malicious access pat-
terns. While we focus on SEAndroid, the ap-
proach is more broadly applicable to type enforce-
ment (TE) MAC policy.

• We implement a prototype of EASEAndroid to
help policy analysts analyze SEAndroid audit logs.
The implementation generates policy refinements,
and discovers new Android attacks, providing new
knowledge of both benign and malicious access pat-
terns learned from audit logs for policy analysts.

• We evaluate EASEAndroid on 1.3 million audit
logs from real-world Samsung devices. Using this
dataset, EASEAndroid successfully learns 2,518
benign and malicious access patterns and generates
331 policy rules as a refinement. EASEAndroid
also discovers two new types of attacks directly tar-
geting SEAndroid. With the help of EASEAndroid,
this is the first large-scale study on real-world mali-
cious access patterns in Android devices.

1See Appendix A for more details about audit log collection.

The remainder of this paper proceeds as follows. Sec-
tion 2 provides background on SEAndroid and semi-
supervised learning. Section 3 defines the problem ad-
dressed in this paper. Section 4 describes the EASEAn-
droid design. Section 5 evaluates EASEAndroid against
a large database of real-world audit logs. Section 6 dis-
cusses limitations. Section 7 overviews related work.
Section 8 concludes.

2 Background

2.1 SELinux and SEAndroid
SEAndroid is a port of SELinux’s type enforcement (TE)
MAC policy to the Android platform [4]. As such,
SEAndroid enforces mandatory policy on system-level
operations between subjects and objects (e.g., system
calls) [6]. In general, processes are regarded as sub-
jects, whereas files, sockets, etc. are objects in different
classes. A security context label is assigned to subjects
(or objects) that share the same semantics. Traditionally,
the subject label is called a domain, and the object label
is called a type (nomenclature from DTE [12]). A policy
rule defines which domain of subjects can operate which
class and type of objects with a set of permissions, such
as open, read, write [28]. For example,

allow app app data file:file {open read}

allows processes with the app domain to open and read
file class objects assigned the app data file type. In
addition to allow rules, SELinux provides neverallow
rules to define policy invariants for malicious accesses
that should never be allowed. These rules are enforced
at policy compile-time and are necessary due to the com-
plexity of the SELinux policy language.

SEAndroid extends SELinux’s policy semantics to
support Android-specific functionality, including media-
tion of Binder IPC and assigning security contexts based
on application digital signatures. The goal of SEAndroid
is to reduce the attack surface and limit the damage if any
flaw or vulnerability is exploited causing privilege esca-
lation [38]. This goal is accomplished by confining the
capabilities of different privileged Android applications
and system daemons.

The Android platform is vastly different than tradi-
tional Linux distributions, therefore the SEAndroid pol-
icy rules were created from scratch. While the regular-
ity of Android’s UNIX-level interactions results in a pol-
icy that is less complex than the example SELinux pol-
icy for PCs, the SEAndroid policy is still nontrivial and
error prone. It requires careful understanding of subtle
interactions between different privileged processes. In
practice, policy development requires continual manual
refinement based on audit logs.
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type=1400 msg=audit(1399587808.122:14):
avc: denied { entrypoint } pid=285 comm="init"
scontext=u:r:init:s0
tcontext=u:object_r:system_file:s0 tclass=file

type=1300 msg=audit(1399587808.122:14):
syscall=11(execve) success=no exit=-13
items=1 ppid=1 pid=285 uid=0 gid=0
comm="init" exe="/init" subj=u:r:init:s0

type=1302 msg=audit(1399587808.122:14):
item=0 name="/system/etc/install-recovery.sh"
inode=3799 dev=b3:10 mode=0100755
ouid=0 ogid=0 obj=u:object_r:system_file:s0

Listing 1: A denied access event example recorded at the epoch time
1399587808.122 in an audit log. It consists of three entries: labels &
permission (1400), syscall & process info (1300), object info (1302).

An audit log captures security labels and system calls
of the operations that are not explicitly allowed by a
rule. As shown in Listing 1, a denied operation gen-
erally has three entries with epoch timestamps. Log
entries with type=1400 record the denied permission
(e.g., entrypoint), the security labels of the subject
(source), called scontext, and the object (target), called
tcontext, as well as the object’s class, called tclass

(e.g., file). Log entries with type=1300 record the
system call and the subject’s process information, includ-
ing the executable file path. Log entries with type=1302
record the object information (e.g., the file name).

Traditionally, policy analysts develop and refine a pol-
icy by manually analyzing audit logs. Existing SELinux
tools such as Tresys’s setools [8] are used to analyze
SEAndroid policies based on interactive user interface.
Analysts also develop simple shell and Python scripts to
parse audit logs. Unfortunately, such tools are not scal-
able to a large number of audit logs, and cannot distin-
guish benign or malicious access patterns in real-world
audit logs. In addition, analysts often use a tool called
audit2allow [9] that can create new allow rules by
directly using the security labels captured in type=1400
entries in audit logs. However, blindly using this tool
may increase attack surface, because in some cases, ex-
isting labels are too coarse-grained or semantically inap-
propriate. Therefore, policy refinement usually consists
of the creation and modification of both security labels
and policy rules. Once the policy is refined by analysts,
it is pushed to users’ devices through a secure over-the-
air (OTA) channel, similar to antivirus signature updates.

2.2 Semi-Supervised Learning
Semi-supervised learning is a type of machine learn-
ing that trains on both labeled2 data (used by super-
vised learning) and unlabeled data (used by unsupervised

2Here, labeled and unlabeled are machine learning terms, not re-
lated to security labels.

learning) [18]. It is typically used when labeled data is
insufficient and expensive to collect, and a large set of
unlabeled data is available. By correlating the features
in unlabeled data with labeled data, a semi-supervised
learner infers the labels of the unlabeled instances with
strong correlation. This labeling increases the size of la-
beled data set, which can be used to further re-train and
improve the learning accuracy [44]. This iterative train-
ing process is commonly referred to as bootstrapping.
Semi-supervised learning is popular for information ex-
traction and knowledge base construction. Examples in-
clude NELL [16, 17], Google Knowledge Vault [21].

We hypothesize that the process of developing and re-
fining SEAndroid policy is analogous to semi-supervised
learning. Human analysts encode their knowledge about
various access patterns into a policy. When analyzing
audit logs, analysts find semantic correlations between
known and unknown access patterns to infer whether the
unknown ones are benign or malicious, such as a known
malicious subject performing an unseen behavior (likely
malicious), or a system daemon performing a new but
similar functional operation (likely benign). These new
patterns expand analysts’ knowledge and help them re-
fine the policy. However, when more and more logs
are collected containing access patterns about new An-
droid systems and new attacks, manual learning is time-
consuming and likely to miss important knowledge. Our
insight is that semi-supervised learning can automate this
process to achieve scalability in policy refinement.

3 Problem

Refining SEAndroid policy is more challenging than re-
fining SELinux policy. Existing SELinux tools such as
audit2allow are severely limited in their ability to help
policy analysts. This task has the following challenges.

C-1: Consumer devices produce millions of audit logs.
Policy analysts cannot practically analyze audit log
entries manually. A solution must automate or
semi-automate the audit log analysis.

C-2: Real-world audit logs contain a mixture of benign
and malicious accesses. Classifying log entries as
benign or malicious is a central design challenge. It
is often difficult to classify an access in isolation.
Instead, the analysis must look at the broad con-
text of the access, as well as the contexts of related
known accesses.

C-3: Target functionality is not static. The set of benign
and malicious applications continues to evolve as
new software and malware is developed, requiring
continuous audit log analysis and policy refinement.
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For example, benign software may access new re-
sources, while malware may exploit new vulnera-
bilities to achieve privilege escalation.

We now define two terms to clarify the discussion in
the remainder of this paper.

Definition 1 (Access Event). An access event is the ac-
cess control event that causes the three audit log entries
described in Section 2. These log entries may result from
a policy denial, or an auditallow policy rule, which
allows but logs the access.

Note that this definition does not include allowed ac-
cesses that are not contained in the audit log.

Since audit logs are collected for millions of devices,
the logs contain many duplicate access events. For the
purposes of audit log analysis, it is useful to abstract the
salient details of access events into an access pattern.

Definition 2 (Access Pattern). An access pattern is a 6-
tuple (sbj, sbj label, perm, tclass, obj, obj label). Many
access events may map to the same access pattern.

Here sbj refers to a concrete subject such as an
Android application or system binary. Binaries carried
inside an application are generalized as the application.
obj refers to concrete objects such as file paths and
socket names. In some cases, we group over-specific
files that share the same filesystem semantics as one
obj (e.g., /sdcard). The values of sbj and obj are
derived from the comm, exe, pid, and name val-
ues in the type=1300,1302 log entries. perm and
tclass are the same as the permission and the object’s
class in the type=1400 log entries and policy rules.
sbj label and obj label are derived from the scontext

and tcontext values in type=1400 log entries.
For example, the access pattern for the access event
in Listing 1 is (“/init”, “init”, “entrypoint”,
“file”, “/system/etc/install-recovery.sh”,
“system file”).

Problem Statement: Given 1) a large dataset of new ac-
cess patterns from audit logs, 2) a small set of known ac-
cess patterns (e.g., known attacks), and 3) an SEAndroid
policy, we seek to a) separate new benign access patterns
from new malicious access patterns in the dataset, and b)
suggest new rules and refined labels for the policy.

Threat Model and Assumptions: We assume that an
audit log is collected from an Android device with a pol-
icy loaded in either enforcing or permissive mode. We
assume the integrity of audit log contents. We therefore
assume that the Linux kernel and its audit subsystem are
not compromised. However, even if the SEAndroid pol-
icy properly confines Android applications and system
daemons, they may be compromised by the adversary.

4 EASEAndroid

Elastic Analytics for SEAndroid (EASEAndroid) is a
large-scale audit log and policy analytic platform for au-
tomated policy refinement. The novelty of EASEAn-
droid is that it models the policy refining process as a
semi-supervised learning of new access patterns. At a
high level, EASEAndroid starts with an initial knowl-
edge base containing existing policy rules and a small
set of (potentially manually) identified access patterns.
It expands the knowledge base by correlating, classify-
ing, and incorporating new access patterns captured by
audit logs. Based on the new knowledge, EASEAndroid
suggests policy changes (new rules and new domain and
type labels in the context of SEAndroid). As more audit
logs become available, EASEAndroid continuously ex-
pands the knowledge base and refines the policy.

Figure 1 shows the architecture of EASEAndroid. The
architecture uses three machine learning algorithms that
consider different perspectives of the knowledge base
and audit logs. The output of these algorithms is fed into
a combiner that combines and appends the new knowl-
edge into the knowledge base. This learning process is
iterated multiple times until no more new knowledge can
be learned from the current audit log input. Finally, the
policy generator suggests refinements.

Each machine learning algorithm analyzes a different
perspective of the data. The goal of each algorithm is to
find semantic correlations between unknown new access
patterns and existing knowledge base, in order to classify
each new access pattern as benign or malicious.

1. The nearest-neighbors-based (NN) classifier clas-
sifies new access patterns based on their relations
to known access patterns in the knowledge base. It
finds new access patterns that are related to known
subjects/objects (e.g., known subjects are updated
and perform new access patterns). By treating these
known subjects/objects as neighbors of the new ac-
cess patterns, it classifies the new access patterns
based on the majority of their known neighbors.

2. The pattern-to-rule distance measurer calculates
the distance between new access patterns and ex-
isting policy rules. If a new access pattern is closest
to an allow rule, it is classified as benign. If it is
closest to a neverallow rule, it is classified as ma-
licious. If the access pattern is not close to either
type of rule, it remains unclassified. The pattern-
to-rule distance measurer also exposes potentially
incomplete rules in existing policy for refinement.

3. The co-occurrence learner considers correlations
across access patterns using statistical relations be-
tween new and known access patterns that fre-
quently occur together in audit logs. Our intuition is
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Figure 1: EASEAndroid consists of four learning components and a policy generator to iteratively learn new patterns and refine policy

that a benign functionality or a malicious attack of-
ten involves a series of access patterns that are cap-
tured together in an audit log. If known and new ac-
cess patterns occur together, we can use the known
ones to infer the classification of the new ones.

Each learner is configured with its own threshold to
classify new access patterns independently. However,
it is non-trivial to define proper thresholds because too
relaxed thresholds could cause false classification, low-
ering the learning precision, while too strict thresholds
could leave potential access pattern candidates unclassi-
fied, lowering the learning coverage.

The learning balancer & combiner manages the
threshold of each learner, balances the precision and cov-
erage, and combines the classification results from the
three learners. It has two modes: (1) an automated mode
that uses strict threshold in each learner to achieve high
precision with the cost of less coverage; and (2) a semi-
automated mode that relaxes each learner’s threshold to
achieve high coverage and relies on a majority vote from
the three learners to increase the precision. In practice,
the result of semi-automated mode requires policy ana-
lysts’ verification to control error rate.

Finally, the policy generator takes newly classified ac-
cess patterns as input from the combiner, to suggest pol-
icy refinements in the form of new rules and new secu-
rity labels. It uses a clustering algorithm to group similar
subjects and objects together. The clustering algorithm
follows the principle of least privilege by inferring fine-
grained labels that can cover and only cover the clustered
concrete subjects and objects. In practice, the resulting
refined policy can be confirmed by policy analysts and
merge into the knowledge base to analyze new audit logs
after the refined policy is deployed.

The remainder of this section describes each stage of

the EASEAndroid architecture in detail.

4.1 Nearest-Neighbors-based Classifier

Nearest-neighbors-based (NN) learning is a common
technique for classifying an unlabeled instance based
on its nearest labeled neighbors within a defined dis-
tance [41]. Our intuition of using NN for access pattern
classification is two-fold. First, known subjects often
perform previously unseen access patterns in audit logs.
This scenario often occurs when Android applications
and system binaries are updated with new capabilities.
Second, some known access patterns are also performed
by new subjects. This scenario occurs when certain op-
erations become popular and are copied by other new ap-
plications. In practice, some exploit kits and repackaged
applications [43] have been found to share the same set
of known malicious access patterns.

These two scenarios cause known subjects and pat-
terns to be semantically connected with new subjects
and patterns. EASEAndroid leverages this connectiv-
ity as the distance metric to design the NN classifier.
When multiple known subjects (or patterns) connect to
the same new pattern (or subject), the NN classifier can
infer whether the new pattern (or subject) is benign or
malicious, based on the majority of the connected known
neighbors. Note that here the observation is with re-
spect to concrete subjects and objects in access patterns.
Hence, only a 4-tuple (sb j, perm, tclass,ob j) out of the
original 6-tuple is required. For completeness, our im-
plementation still includes sb j label and ob j label in the
dataset, but they are not used in this learner.

Algorithm 1 shows the procedure of the NN classifier.
APk collects known 4-tuple access patterns, either benign
or malicious. In practice, our APk is a small set contain-
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Algorithm 1 NN-based Classification of Access Patterns

APk ←{(sk, pk, tk,ok)|sk ∈ Sk,(pk, tk,ok) ∈ Pk}
APu ←{(su, pu, tu,ou)|su ∈ Su,(pu, tu,ou) ∈ Pu}
APc ← /0
procedure NN CLASSIFIER(APk,APu,APc)

for each (s, p, t,o) ∈ APu do
if s ∈ Sk ∩Su and (p, t,o) ∈ Pu −Pk then

Stmp ← f indAllSb js((p, t,o),APu)
if IsMa jorityKnown(Stmp,Sk) then

APc ← APc ∪Classi f y((s, p, t,o))
end if

else if s ∈ Su −Sk and (p, t,o) ∈ Pk ∩Pu then
Ptmp ← f indAllPatterns(s,APu)
if IsMa jorityKnown(Ptmp,Pk) then

APc ← APc ∪Classi f y((s, p, t,o))
end if

end if
end for

end procedure
return APc

ing a few well-confirmed subjects and patterns, used as
the initial seed. APu collects all unknown new access pat-
terns from audit logs. To clearly describe the above two
cases, we further divide the 4-tuple into S for all subjects,
and P for the triples (perm, tclass, obj) as partial patterns
shared by multiple subjects. APc is the result set of newly
classified access patterns.

For each 4-tuple in APu, we check if it is a known sub-
ject with a new triple (partial pattern), or a new subject
with a known triple. In the first case, besides the subject
in this 4-tuple, f indAllSb js collects all subjects Stmp that
perform (connect) the same new triple in APu, including
both known and new subjects. Then IsMa jorityKnown
checks if the majority of Stmp is a set of known subjects
from Sk with the same benign or malicious flag. If so,
the new access pattern is classified as benign or mali-
cious accordingly. The second case is done in the same
way but using known triples to classify new subjects.

The function IsMa jorityKnown uses two empirically
defined thresholds (m,σ). m determines the minimum
required neighbors and σ is a percentage for how many
known neighbors in Stmp or Ptmp are required as a ma-
jority. Table 1 in the evaluation studies the effects of
different threshold values.

From the perspective of machine learning, our NN-
based classifier is a type of radius-based near neigh-
bors learning [13], a variant of the common k-nearest-
neighbors (kNN). The difference is that kNN is based on
the top k neighbors while we find all neighbors within a
radius as nearest neighbors (connectivity is the radius in
our case).

Note that, it is possible that some access patterns are
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Figure 2: A decision tree example based on rules related to subject
domain as untrusted app. The black nodes are from existing
rules and the blue nodes are semantic siblings.

rarely connected with known ones. Besides, an access
pattern could be evenly connected to both known benign
and malicious ones. Both cases cause IsMa jorityKnown
to return false. In this case, the NN classifier leaves the
access patterns as unclassified and relies on the following
learners to complement the learning process.

4.2 Pattern-to-Rule Distance Measurer

EASEAndroid’s second data perspective is the closeness
of access patterns to policy rules. Since audit logs record
denied accesses that cannot match with an allow rule, it
is useful to know how far/close the denied access pattern
is from an existing rule. In particular, because policy
rules are developed incrementally, they may only cover a
subset of permissions or access patterns and miss similar
access patterns belonging to the same operation.

A common case of this is an imprecise list of permis-
sions in an allow rule. For example, writing a file not
only requires write permission, but also append and
sometimes create (in case the file does not exist). Some
malicious operations can also be performed using seman-
tically equivalent, but different access patterns.

The pattern-to-rule distance measurer quantifies the
difference between access patterns and existing rules.
The purpose of this measurer is two-fold. First, pattern-
to-rule distance indicates how likely a new access pattern
is to be benign or malicious. Second, if an access pattern
is very close to a policy rule, the policy refinement gener-
ator (Section 4.5) can update the rule rather than creating
a new rule from scratch.

The distance measurer uses a metric based on the
1) subject label, i.e., domain, 2) object label, i.e., type,
3) tclass, e.g., file, and 4) permission, e.g., write.
Note that all four of these elements are in both the SE-
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Android policy allow rules, as well as the 6-tuple repre-
senting an access pattern in the audit log. Intuitively, an
access pattern is very close to a rule if it shares the same
labels and tclasses only with slightly different permis-
sions (e.g., write vs append). The distance increases a
little, but is still close, if a pattern and a rule operate on
different but similar tclasses (e.g., file vs dir).

EASEAndroid systematically measures distance using
decision trees based on existing policy rules. The dis-
tance is defined by the matching depth for a specific ac-
cess pattern. Decision trees are built as follows.
Step 1: For every subject label, find all related rules and
follow their semantic order to build a tree skeleton start-
ing from the subject as the root, followed by object la-
bels, tclasses and permissions as nodes in each layer.
Step 2: Extend each node with its semantically similar
siblings.
Figure 2 shows an example decision tree. The black
nodes indicate the tree skeleton, which uses rules such
as allow untrusted app app data file:file

{open}, where app data file is the object node in
the second layer and file is the tclass node in the third
layer and so on. Then each node is extended with its
semantic siblings, such as sdcard file in the same
group of low sensitive data as app data.

Given an access pattern and a decision tree, the dis-
tance measurer walks the decision tree and tries to
match the access pattern’s subject label, object label,
tclass, and permission with each layer. The match-
ing depth indicates how close a pattern is to existing
rules. For the example in Figure 2, access pattern api =
(untrusted app, sdcard file, dir, read) matches
the fourth layer. The distance is computed as follows:

Dist(api) = TotalLayerDepth−MatchedDepth(api)

If we define TotalLayerDepth = 4, then Dist(api) = 0,
indicating the access pattern is very close to the rule. We
create trees for both allow and neverallow rules to
compute the distances from both sides.

In practice, the effectiveness of the distance metric
depends on the correctness of semantic siblings. For-
tunately, the SEAndroid policy development frequently
uses semantic groups. A list of permissions, tclasses,
and object types are already grouped together in policy
source code using macros and attribute [7]. These groups
form a ground truth for semantic siblings.

Additionally, recall that some existing subject and ob-
ject labels are coarse-grained (e.g., labels assigned to var-
ious objects using wildcard in policy source code). If a
pattern matches with a rule with a coarse-grained label,
the distance measurer marks the distance as low confi-
dence and relies on the learning balancer & combiner for
additional verification (Section 4.4).

Finally, note that this technique can be further ex-
tended to measure access pattern to access pattern dis-
tance. Since the pattern-to-rule distance helps to infer
both new patterns as well as identify incomplete rules for
refinement, our design considers policy rules and leaves
the distance between access patterns for future work.

4.3 Co-Occurrence Learner
When analyzing a large number of audit logs, some ac-
cess patterns frequently occur together in many logs.
This is because some high-level benign functionality or
some popular multi-step attacks consist of a series of ac-
cess patterns within a time period (typically minutes).
The statistics of co-occurrence is a valuable means of
correlating access patterns that have different subjects or
objects, but share the same group semantics. When a
group contains both known and new access patterns, the
known access patterns can be used to infer the seman-
tics of the new access patterns. In fact, co-occurrence
is popular in natural language processing and knowledge
extraction. For example, it is used for finding words that
are frequently used together in a specialized domain [15].

The co-occurrence of access pattern can be repre-
sented using a n× n matrix for all n unique access pat-
terns from the audit logs, as shown below. Each row
stores one access pattern api’s co-occurrence percentage
with every other access pattern, denoted in each column.
The value ci j is the percentage of the number of times
that api co-occurs with ap j out of the total number of
api’s occurrences throughout the logs.

COAP =




api ap j ...

api 1 ci j ...

ap j c ji 1 ...

... ... ... 1


,

where ci j =
CoOccurNum(api,ap j)

TotalOccurNum(api)

When counting the number of co-occurrences, it is im-
portant to avoid noise and duplicates. In practice, we use
a time frame of 10 minutes to determine whether two ac-
cess patterns are part of a co-occurrence set. Recall from
Section 2 that each access pattern has an epoch times-
tamp. Additionally, when counting the occurrence at the
granularity of logs, repeated pairs of co-occurred access
patterns in one log are counted only once.

To use this co-occurrence matrix, the learner focuses
on the rows with new access patterns. For each api row,
the learner sorts columns and selects the set of known
access patterns in columns whose percentage is above a
threshold. A majority vote of this known access pattern
set determines the classification of the new api (benign or
malicious). On the other hand, the known access pattern
rows may also have some highly co-occurred new access
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pattern columns. However, one known access pattern is
usually not enough to classify a new access pattern.

Note that the matrix is not symmetric. ci j can be dif-
ferent from c ji due to different total occurrence counts.
For instance, some popular known malicious access pat-
terns (e.g., remount /system) can co-occur with mul-
tiple less popular new access patterns, because multi-step
attacks often use different steppingstones to achieve the
final privilege escalation goal.

4.4 Learning Balancer & Combiner

Each learner is configured with its own threshold to clas-
sify new access patterns independently. However, it is
non-trivial to define proper thresholds due to two rea-
sons. On the one hand, if a threshold is too relaxed,
it could cause false classification, lowering the learning
precision and might further propagate the error to the
next iteration of semi-supervised learning. On the other
hand, if a threshold is too strict, it could miss potential
access pattern candidates and leaves them as unclassi-
fied, lowering the learning coverage.

We design the learning balancer & combiner to man-
age the threshold setting of each learner, balance the pre-
cision and coverage, and combine the classification re-
sults from the three learners (also called ensemble or
multi-view learning [17]). The final combined classifi-
cation result is added to the knowledge base and sent to
the policy refinement generator. Specifically, we propose
two quantifiable methods to achieve the balancing:

Automated Mode: Since each learner specializes in
one dimension, each learner with a strict threshold can
directly contribute its classified access patterns with
high precision. For example, we can set a minimum
of 10 required known neighbors with a 90% bar for
IsMa jorityKnown in NN classifier; Dist(api) = 0 with
fine-grained rules in pattern-to-rule distance measurer;
and ci j > 0.9 with known access pattern set ≥ 10 in co-
occurrence learner. The high precision of strict thresh-
olds enables EASEAndroid to be used in an automated
mode over multiple iterations of semi-supervised learn-
ing. However, with such strict thresholds, some access
pattern candidates can be left as unclassified.

Semi-Automated Mode: This mode relaxes the thresh-
olds to get more access pattern candidates. It uses a ma-
jority vote to choose the candidates shared by at least two
learners with the same classification result, and the third
learner must not have conflicting result.

Note that relaxed thresholds can increase the possibil-
ity of error propagation. However, if the analysis can
tolerate a semi-automated configuration, relaxed thresh-
olds can be used. Here a human analyst can investigate
low-confident candidates and input external knowledge

into EASEAndroid for better learning in future.

4.5 Policy Refinement Generator

Finally, the policy refinement generator translates newly
classified access patterns3 into the final policy form. A
key part of the generator is to assign the concrete subjects
(sbjs) and objects (objs) in the access pattern with appro-
priate security labels before generating policy rules.

According to the Android Open Source Project,
Google provides a baseline definition of security labels
for common subjects (e.g., system apps and binaries) and
basic objects (e.g., basic files/dirs in Android file system
structure). However, Google recommends that manufac-
turers replace the generic default labels with fine-grained
labels to decrease the attack surface [4].

Recall that both the access pattern 6-tuple and the in-
complete rules identified by the distance measurer in-
clude subject labels and object labels from the existing
policy. While some of the labels are coarse-grained, they
serve as a baseline to derive fine-grained labels. Specifi-
cally, the policy refinement generator takes all access pat-
terns as input and clusters them into groups where each
group shares the same 4-tuple (sbj label, perm, tclass,
obj label). Each group is further clustered by sbjs and
objs to create subgroups that share the detailed seman-
tics to derive fine-grained labels.

Our current generator prototype groups sbjs and de-
rives fine-grained subject labels for built-in, vendor, and
untrusted applications and binaries separately. The gen-
erator also groups file-like objects (e.g., file, dir,
blk file), which comprise the majority of tclasses.
Group is performed using a longest common prefix search
on file paths. This optimization helps to derive more
fine-grained labels than provided by the general An-
droid filesystem structure. Finally, the generator pro-
duces rules in the form of (new sbj label, perm, tclass,
new obj label) as a policy refinement. If access patterns
are matched with incomplete rules by the distance mea-
surer, new rules merge with existing rules’ permissions.

The generator handles benign and malicious patterns
separately and generates allow and neverallow rules,
respectively. Note that, it is possible that newly gen-
erated rules may conflict with existing rules due to in-
complete or tightened access control. In such cases,
policy analysts manually resolve conflicts (e.g., using
auditallow to verify). Nevertheless, EASEAndroid
exposes these conflicts with evidence collected through
learning, therefore easing the policy refining process.

3In practice, the learning process can iterate multiple times with
current audit logs. The generator caches all classified access patterns.
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5 Evaluation

We implement a prototype of EASEAndroid and evalu-
ate the learning capability and the security effectiveness
of EASEAndroid from three perspectives:

1. We evaluate the coverage and precision of the clas-
sification result of EASEAndroid, and how they
are affected by different threshold settings (Sec-
tion 5.3).

2. We conduct a case study of the policy refine-
ment generated by EASEAndroid, also comparing
the generated rules with human-written rules (Sec-
tion 5.4).

3. We further conduct a study on the new malicious
access patterns classified by EASEAndroid and dis-
cuss several interesting new findings of attacks in
the wild (Section 5.5).

5.1 Environment Setup
We build a prototype of EASEAndroid on an 8-node
Hadoop cluster with each node having 8-core Xeon
2GHz, 32 GB memory. We use open source Cloudera
Impala as the distributed SQL layer, with 10K SLOC
Java as the learning layer. Parallelism is heavily em-
ployed for fast analytics. A data set of 1.3 million audit
logs used in the following experiments are analyzed by
EASEAndroid within 3 hours in a cold start.

5.2 Audit Log & Existing Knowledge
Audit Logs & Existing Policy We make use of 1.3 mil-
lion audit logs over the entire 2014 from real-world de-
vices running Android 4.3 (See Appendix A about au-
dit log collection). All devices are loaded with an early
version of Samsung SEAndroid policy (the policy re-
mained unchanged) in enforcing mode4. The policy con-
tains 5,094 allow rules and 59 neverallow rules de-
veloped by policy analysts. This policy is loaded as ex-
isting knowledge into EASEAndroid’s knowledge base,
used by the pattern-to-rule distance measurer.

The audit logs contain a total of over 14 million de-
nied access events. After eliminating duplicate entries,
we identify approximately 145K unique access events
and further generalize them into 3,530 access patterns.
For example, third-party app process ids under /proc/
are generalized as /proc/app pid in access patterns.

The subjects in the audit logs consist of 113 system
(built-in) binaries, 1,182 external binaries (e.g., installed
by adb), and 626 Android apps, which are captured be-
cause they perform system-level operations that do not

4Some devices are found being rooted and may switch to permissive
mode. See Section 5.5

go through Android framework/Dalvik VM (normal app
operations are already allowed by the policy).
Initial Known Malicious Access Patterns In the initial
knowledge base, we prepare a small set of known mali-
cious access patterns as the initial seed to kick off learn-
ing. The set contains 9 confirmed exploit kits with their
17 malicious access patterns (e.g., psneuter CVE-2011-
1149, Motochopper CVE-2013-2596, vroot CVE-2013-
6282 and several exploit apps). Note that we do not have
known benign access patterns initially as we rely on the
allow rules in the existing policy.
Ground Truth To analyze the classification result of be-
nign and malicious access patterns, we use a later ver-
sion of human-written policy (6,337 allow rules, 94
neverallow rules) as the ground truth. We also consult
with experienced policy analysts about the result.

5.3 Coverage & Precision of the Classifica-
tion by EASEAndroid

5.3.1 Coverage compared with naive matching

To illustrate the effect of EASEAndroid’s learning cov-
erage, we design a naive matching tool as a baseline to
compare with EASEAndroid learning when both analyz-
ing the same set of new access patterns from the audit
logs, as shown in Figure 3. The naive matching tool is a
dumb access pattern matching tool with no learning ca-
pability. It only uses the known subjects and access pat-
terns in the initial knowledge base and can only match
new access patterns directly related to them, based on the
subjects and objects in the syscall entries in audit logs. In
contrast, EASEAndroid starts from the initial knowledge
base and keeps expanding the knowledge base.

As the audit logs are continuously collected over the
year, we setup 6 analyses at a rate of every two months.
Each analysis takes as input the accumulated audit logs
from Jan 2014 to the current month (e.g., “Feb” is 2-
month logs, “Apr” is 4-month logs, “Dec” is the entire
year’s logs). It is a typical scenario of semi-supervised
learning with incremental input data. It also follows the
nature that new benign/malicious patterns are gradually
accumulated in audit logs over time.

As shown in Figure 3, EASEAndroid dramatically
outperforms the naive matching in each analysis. As the
total number of access pattern keeps increasing, EASE-
Android’s coverage reaches about 74% in the final De-
cember analysis. EASEAndroid also discovers that the
majority of denied access patterns in real world are mali-
cious and they keep emerging while benign access pat-
terns gradually stabilize. In contrast, the coverage of
naive matching remains around 7%, because it can only
match access patterns related to the initial known ones,
the 9 exploit kits, which are updated with a small set of
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Figure 3: The comparison between naive matching and EASEAndroid on analyzing the same set of access patterns

Threshold Setting Classified
Malicious
(TP+FP)

Classified
Benign

(TN+FN)

Remain
Unclassified

True
Malicious

(TP)

False
Malicious

(FP)

True
Benign
(TN)

False
Benign
(FN)

σ = 55%,Dist ≤ 2,ci j > 0.55 77.2% 14.0% 8.8% 62.96% 37.04% 58.65% 41.35%
σ = 65%,Dist ≤ 1,ci j > 0.65 70.0% 11.8% 18.2% 88.73% 11.27% 71.35% 28.65%
σ = 75%,Dist ≤ 1,ci j > 0.75 65.7% 10.9% 23.4% 91.35% 8.65% 88.92% 11.08%
σ = 85%,Dist = 0,ci j > 0.85 63.9% 10.5% 25.7% 96.81% 3.19% 90.81% 9.19%
σ = 95%,Dist = 0,ci j > 0.95 53.1% 9.2% 37.7% 97.27% 2.73% 100.00% 0.00%

Table 1: The coverage and precision of EASEAndroid with different threshold settings after comparison with ground truth. The first three columns
summarize the overall classification coverage over the 3,530 patterns. The following four columns give more details about the percentages of each
set of true/false-classified benign and malicious patterns. Row 4 is the threshold setting used in Figure 3(b).

new access patterns over time. But it still leaves the ma-
jority unclassified.

Specifically, all three learners of EASEAndroid con-
tribute to the high classification coverage. In the first
February analysis, EASEAndroid first matches 118 ma-
licious access patterns, same as naive matching. Then
it performs multiple learning iterations with the cur-
rent audit logs in both automated and semi-automated
mode. In summary, in automated mode, the NN classifier
finds 282 patterns using threshold (m,σ) = (10,85%)
in IsMa jorityKnown. The pattern-to-rule distance mea-
surer finds 95 patterns using Dist(api) = 0 with existing
neverallow rules. The co-occurrence learner finds 110
patterns with ci j > 0.85. In semi-automated mode, we re-
lax the thresholds to (10,75%), Dist(api)≤ 1, ci j > 0.75,
respectively and further find 143 patterns based on the
majority vote of the three learners.

As for benign access patterns in the February analy-
sis, since the initial knowledge lacks benign patterns, the
pattern-to-rule distance measurer classifies the first 23
benign patterns using Dist(api) = 0 with existing allow
rules and adds them to the knowledge base. Then the
three learners contribute the remaining 203 using the
same threshold settings.

Due to the strict thresholds, the automated mode clas-
sifies access patterns with no false positives or negatives.
However, in the semi-automated mode, we do find 34
false-benign (False-Negative5) access patterns and the 72
false-malicious (False-Positive) ones in the final Decem-
ber analysis, mainly due to two reasons. First, a small
set of access patterns are shared by both privileged be-
nign system binaries and malicious apps with similar oc-
currences (e.g., both access /proc/stat), which make
EASEAndroid hard to distinguish with relaxed thresh-
olds. Second, some mis-classified patterns in early anal-
yses affect the learning precision in later ones. In fact,
there are only 4 false-malicious patterns in the Febru-
ary analysis. But then the NN classifier uses them to
mistakenly find more false-malicious ones in the follow-
ing analyses. Nevertheless, this limitation of the semi-
automated mode is expected. Therefore in practice, the
semi-automated mode requires policy analysts to verify
the result to avoid error propagation. Analysts can also
input extra constraints and knowledge about the access
patterns of privileged system binaries to help EASEAn-
droid increase the precision.

There are still 906 access patterns unclassified in the

5We treat malicious as positive, benign as negative.
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final analysis due to their low occurrence (less than five
days throughout the year). After manual analysis, we
find that some access patterns are likely malicious and
might be isolated attack attempts in the wild. However,
the statistics is too low to reach the threshold. In such
cases, we have to wait for more similar access patterns
coming in future audit logs. In Section 6, we discuss
the limitation that isolated/targeted attacks may evade
EASEAndroid’s detection if they are not widely spread.

5.3.2 Coverage & precision with different threshold
settings

The thresholds for the three learners play an important
role on the coverage and the precision of EASEAndroid.
In practice, it is important to find a balance between
the coverage and the precision. In this section, we fur-
ther investigate the detailed coverage and precision dif-
ference by choosing 5 different threshold settings from
very relaxed to very strict as shown in Table 1. The listed
threshold settings are for the automated mode. The semi-
automated mode is relaxed by reducing 10% on both
IsMa jorityKnown (minimum neighbors unchanged) and
ci j, and increasing 1 in Dist(api). The first three columns
show the overall percentage (adds to 100%) summariz-
ing the classified malicious and benign and unclassified
over the total 3,530 access patterns. The following four
columns provide the more detailed TP/FP and TN/FN
percentage of classified malicious and benign access pat-
terns.

We can see that the thresholds in Row 1 is largely
relaxed. Although it has the highest coverage, both FP
(37.04%) and FN (41.35%) are too high, making it prac-
tically useless. In contrast, Row 5’s thresholds achieve
100% correctness on classifying benign patterns. But it
also leaves 37.7% patterns unclassified. The middle 3
rows are more balanced. Row 3 and 4 are candidates
for practical use. In practice, analysts can also use mul-
tiple thresholds respectively, such as with Row 4 and 5
together, and only need to investigate the diff of their
learning results since we have high confidence with the
result of Row 5.

Admittedly, each individual threshold for each learner
may have a different effect on the final classification re-
sult. To analyze more detailed threshold difference, or
find an optimal vector of thresholds, a cross-validation
[27] can be performed with multiple real-world audit log
sets.

5.4 Case Study of Refinement Generation
& Comparison with Human Policy

In the last December analysis in Figure 3, the policy
refinement generator finally generates 51 new allow

rules from the 336 benign access patterns, and 280 new
neverallow rules from the 2,182 malicious access pat-
terns, by extending identified incomplete rules and cre-
ating new fine-grained security labels to replace existing
coarse-grained ones. In this section, we use the follow-
ing example as a case study to illustrate the generated
refinement.

EASEAndroid classified as benign 9 access pat-
terns that read some time-zone data files under
/data/misc/zoneinfo. These access patterns
are found in multiple Android framework-related
binaries (subjects) in /system/bin, including
surfaceflinger,dhcpcd,pppd and a vendor-specific
daemon. In the 6-tuples, the time-zone data files carry
system data file, which is the default label for all
files under /data. Naively generating a rule with this la-
bel (using audit2allow) would over-grant the subjects
with permissions to access all files under /data.

EASEAndroid instead finds that these files all share
the same /data/misc/zoneinfo file path prefix, and
thus derives a new label zoneinfo file specifically for
them, adding to the labeling definition file contexts:

/data/misc/zoneinfo/.* \
u:object r:zoneinfo file:s0

In practice, the full path prefix can be transformed
into an underscore-joined label to keep the semantics
and prevent conflict (though abbreviation may be re-
quired). EASEAndroid also creates a new attribute
access zoneinfo domain to group the above subject
domains, as the following:

attribute access zoneinfo domain;
typeattribute surfaceflinger \

access zoneinfo domain;...

Finally, EASEAndroid generates a new rule based on the
new labels defined above:

allow access zoneinfo domain

zoneinfo file:file {open read}

This rule only covers the 9 patterns observed by EASE-
Android, thus preventing unnecessary accesses being
granted, following the least privilege principle.

The rules generated by EASEAndroid for the 336 be-
nign access patterns are compared with human-written
rules in the later policy version. Semantically, all ac-
cess patterns allowed by EASEAndroid rules are also
permitted by human-written rules. However, syntacti-
cally, EASEAndroid in general creates a larger set of
more-specific rules, while human-written rules are more
concise with the frequent use of policy macros, which
ease the policy writing and are expanded during com-
pile time [7]. It may be desirable to aggregate EASEAn-
droid’s more specific rules for better human-readability;
this remains for future work.
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2. {dac_override,chown,fsetid} capability on /data/data, /data/local, /data/misc, /data/system, /sdcard

3. {create,write,unlink} files on /system/app, /system/bin, /system/xbin, /system/etc
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5. {kill,sys_admin,sys_ptrace,sys_chroot,setuid,setgid} capability
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7. {read,write} files on /proc/sys, /proc/app_pid/cwd|environ|exe|mem|mounts

8. {connectto} unix domain sockets of privileged daemons directly

Figure 4: The distribution of malicious access patterns classified by EASEAndroid.

5.5 Case Study of Classified Malicious Ac-
cess Patterns

For the one-year dataset of audit logs processed by
EASEAndroid, 2,182 access patterns are classified as
malicious. The reader is reminded that the starting point
of analysis is 17 access patterns derived (manually) from
9 confirmed exploit kits. The access patterns newly clas-
sified as malicious by EASEAndroid capture malicious
behavior much more precisely than has previously been
possible. To the best of our knowledge, this is the first
large-scale study of system-level malicious access pat-
terns from real-world Android devices.

The subjects in these malicious access patterns are
mostly untrusted third-party shell binaries and apps.
For the purpose of understanding and discussion, they
are categorized based on the permissions [5] (shown in
braces) and the objects they accessed, which were mainly
privileged files. Figure 4 shows the resulting 8 categories
of malicious access patterns, each discussed below. Two
of them (modify /sys/fs/selinux and transition

to privileged domains) are new attacks in Android which
directly target the SEAndroid MAC mechanism itself.
1. Exploit /dev nodes
The most common malicious access patterns are the
ones that exploit various vulnerabilities in device nodes
under /dev. For instance, EASEAndroid found 62
different shell binaries and exploit apps trying to di-
rectly read and write /dev/graphics/* (exploiting
a previously-known framebuffer vulnerability). After
identifying these subjects, EASEAndroid further discov-
ered that they bundled various exploits targeting several
other device nodes as well (including vendor-specific
nodes). Some of these subjects were found to success-
fully gain root privileges. However, note that a good
SEAndroid policy is still able to provide protection even
on a rooted device (e.g., even init has limited permis-
sions), as long as the Linux kernel is not compromised.6

6Since certain subjects gain root, they may be able to rollback to the

2. Request file-related privileged capabilities
The second most frequent category of malicious access
patterns are that subjects try to use privileged capabili-
ties to modify the file mode bits and ownership of var-
ious files. This is a classic privilege escalation attack
step; external binary files pushed to the device (e.g., in
/data/local/tmp) may be given unintended capabil-
ities, and important data files (e.g., in /data/system)
can be made writable for attacks to proceed.
3. Modify /system partition
This is also a common step in exploits that the /system
partition is modified with new binaries added such as
su,busybox. Normally, the /system partition is
mounted as read-only. But some subjects were able to re-
mount the partition as writable. However, they were still
captured by the audit logs because their domain labels
were not allowed to write system file under /system.
4. Access /sys filesystem
/sys is a virtual filesystem that exports kernel-level
information to userspace, normally used by privileged
system daemons. EASEAndroid found that untrusted
subjects also try to directly access /sys, particularly
/sys/fs/selinux, which contains the policy content
and runtime state. Untrusted subjects may try to mod-
ify the policy content, either to switch to the permissive
mode, or to get more permissions. We believe this is
a new type of attack directly against SEAndroid MAC
mechanism. Although this new attack is expected to
emerge, it is still surprising to discover that the new at-
tack has already become popular in the wild.
5. Request process-related privileged capabilities
EASEAndroid also found that some untrusted subjects
ask for privileged process capabilities, such as kill’ing
other processes, or sys admin managing a list of func-
tionalities [5]. The most common example is to use
sys ptrace to ptrace another process. This capability
is attempted by several third-party management/moni-

permissive mode. The audit logs might just record the malicious access
patterns but not actually block them.
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tor apps, and game hacking apps (to modify other game
apps’ score/rewards).
6. Transition to privileged domains
Another new type of attack directly targeting SEAndroid
is that untrusted apps try (some succeed) to gain more
privileges by transforming their subject domains from
untrusted app to domains with higher privileges, in-
cluding init,init shell,system app, and vendor
daemon domains.7 Interestingly, this case is found due
to the conflict reported by the majority-vote in the semi-
automated mode. An access pattern classified as mali-
cious by both the NN classifier and the co-occurrence
learner, is classified as benign by the pattern-to-rule dis-
tance measurer, because it is close to an allow rule. The
conflict indicates that the subject carries a wrong domain.
7. Access /proc filesystem
Like /sys, /proc is also frequently accessed, espe-
cially by third-party management/monitor apps. Al-
though reading /proc/app pid/* might not be di-
rectly damaging, the information can be leveraged as a
side-channel to compose attacks [20]. Besides, EASE-
Android also showed that certain apps try to write
/proc/sys/kernel/kptr restrict to gain access to
the kernel symbol table, a common step in kernel ex-
ploits.
8. Connect to Unix sockets of privileged daemons
Unix domain socket is a more complicated case in SE-
Android. By design, some Unix sockets in system dae-
mons such as adbd,debuggerd can be connected by
apps, while others are reserved only for privileged dae-
mons. EASEAndroid is able to distinguish these two
cases, mainly by the co-occurrence learner. It found one
new benign access pattern between two vendor daemons
and several malicious ones that untrusted apps try to di-
rectly connect to Unix sockets of highly privileged dae-
mons, such as init.

In summary, with EASEAndroid’s learning, we find a
group of interesting malicious access patterns and new
attacks in Android. EASEAndroid also generates 280
fine-grained neverallow rules. 52 rules are found in the
later policy. But others still require deeper investigation,
since the knowledge learned by current EASEAndroid
prototype may not be sufficient to understand the attack
mechanisms behind these malicious access patterns.

6 Discussion

Blurred line between benign and malicious In practice,
the line between benign and malicious might be blurred
and subjective. It depends on specific security require-
ments and use cases to determine whether an access pat-

7Policy analysts suggest that it is also possible that some daemons
may have zero-day vulnerabilities that are exploited to run attacks.

tern is really benign or malicious. For example, individ-
ual users may like rooting their own devices and using
the game hacking apps mentioned above, while game de-
velopers treat them as malicious because they bypass the
in-app purchase. Nevertheless, EASEAndroid’s learning
provides more detailed evidence of access patterns’ se-
mantics for policy analysts to make the final decision.
Information missed by audit logs EASEAndroid relies
on audit logs to learn new access patterns and derive
policy refinements. However, two types of information
could be missed or not available in audit logs, which can
cause EASEAndroid to miss important knowledge. First,
by default, audit logs only capture system-level opera-
tions that are denied by the policy currently loaded in a
device. If the policy is too permissive or has too coarse-
grained allow rules, malicious access patterns could be
mistakenly allowed and missed by audit logs. To miti-
gate this issue, policy analysts should use auditallow

to mark coarse-grained or uncertain rules so that audit
logs can capture the operations allowed by these rules
for EASEAndroid’s analysis.

Second, framework-level operations are not available
in audit logs, because they are controlled by Android per-
mission model. But these upper-level operations contain
valuable semantics (e.g., attack mechanisms). Without
them, it is difficult to explain and distinguish certain be-
nign/malicious access patterns in audit logs. Since An-
droid 5.0, logcat is involved in SEAndroid auditing. In
future, EASEAndroid can integrate logs from logcat to
have more semantics in the knowledge base.
Countermeasure against EASEAndroid Similar to
tampering virus sampling in AntiVirus programs, attack-
ers can disable or compromise the audit log mechanism
(logging and uploading) to avoid malicious access pat-
terns being learned. Currently, we rely on Linux kernel
protection [11] to ensure the integrity of audit log mech-
anism. And we argue that enabling audit log with policy
refinement updates is a recommended security service
for the majority users to have the latest security protec-
tion (or mandatory for enterprise users).

By design, if a malicious access pattern is widely
spread and affects a large number of normal users, audit
logs can catch the pattern for EASEAndroid to analyze.
However, it is possible that isolated or targeted attacks
may evade the detection of EASEAndroid if they are not
popular enough to reach the thresholds, or deliberately
avoid having semantic correlation with known malicious
access patterns. In such cases, although EASEAndroid
may leave them as unclassified, it still helps narrow down
the scope for policy analysts to investigate. And policy
analysts can input extra knowledge into EASEAndroid
to help increase the coverage and precision.

It is also potentially possible that attackers manipulate
the co-occurrence rate by intentionally forcing the be-
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nign and malicious patterns to co-occur in one log, such
as triggering the benign pattern first and then launching
the attack. Such data poisoning attack may fool EASE-
Android’s learning, which requires extra constraints or
more logs from different devices to dilute the poisoned
logs [14].

7 Related Work

Though SEAndroid is fairly new, SELinux has been de-
veloped and researched for years, including SELinux
policy analysis and verification [10, 23, 36, 42], policy
visualization [40], policy conflict resolving [26], pol-
icy simplifying [33, 34], policy comparison [19], policy
information-flow integrity measurement [22, 24, 25, 37],
etc. Also, the above research work usually assumes a rel-
atively complete SELinux policy that has already been
well developed. And the analysis usually focuses on sta-
ble desktop Linux system or only a few specific appli-
cation programs (e.g., sshd,httpd). Due to the archi-
tecture difference, SEAndroid faces different challenges
from SELinux, because current SEAndroid policy is still
incomplete and under active development and continu-
ous refinement.

In terms of SELinux policy generation, Polgen pro-
posed by MITRE is a tool that guides policy analysts to
develop policies based on system call traces [39]. How-
ever, it does not have machine learning capability and
only focuses on system call traces from a single applica-
tion program, which is not scalable. Madison proposed
by Redhat is an extension of audit2allow that can gen-
erate policy similar to the reference policy style, such as
using macros [30]. However, like audit2allow, it can-
not create new security labels to cover new access pat-
terns.

There is very little SELinux research related to ma-
chine learning. Marouf et al. proposed a similar ap-
proach to Polgen that analyzes system call traces to sim-
plify SELinux policy [32]. Markowsky et al. proposed
an IDS system that uses SELinux denials as input to an
SVM classifier to detect attacks [31]. But there is no pol-
icy analysis or refinement.

Android SafetyNet [1] is a new security service pro-
vided by Google, which includes analyzing SELinux
logs collected from Android devices, though no specific
technical details about the SELinux log analysis have
been disclosed.

8 Conclusion

Developing SEAndroid policies is a non-trivial task. In
this paper, we have proposed EASEAndroid, the first
SEAndroid audit log analytic platform for automatic

policy analysis and refinement. EASEAndroid innova-
tively applies semi-supervised learning to MAC policy
development. It has been evaluated with 1.3 million
audit logs from real-world devices. It successfully
discovered over 2,500 new benign and malicious access
patterns, generated 331 policy rules, and found 2 new
attacks in the wild directly targeting SEAndroid MAC
mechanism.
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A Data Collection Policies

Collection of audit logs used in this research strictly fol-
lowed the Privacy Policy of Samsung [3], and conformed
to the conditions described in Samsung’s End User Li-
cense Agreement [2]. Audit logs were collected anony-
mously from users who consented to provide diagnos-
tic and usage data to help Samsung improve the quality
and the performance of its products and services. Only
Samsung authorized employees, using Samsung’s inter-
nal computer systems, had access to the audit logs. No
individual audit log information was released outside of
Samsung while conducting the experiments described in
this paper.
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Abstract
Recently, a number of obfuscation systems have been
developed to aid in censorship circumvention scenarios
where encrypted network traffic is filtered. In this pa-
per, we present Marionette, the first programmable net-
work traffic obfuscation system capable of simultane-
ously controlling encrypted traffic features at a variety
of levels, including ciphertext formats, stateful protocol
semantics, and statistical properties. The behavior of the
system is directed by a powerful type of probabilistic au-
tomata and specified in a user-friendly domain-specific
language, which allows the user to easily adjust their ob-
fuscation strategy to meet the unique needs of their net-
work environment. In fact, the Marionette system is ca-
pable of emulating many existing obfuscation systems,
and enables developers to explore a breadth of proto-
cols and depth of traffic features that have, so far, been
unattainable. We evaluate Marionette through a series
of case studies inspired by censor capabilities demon-
strated in the real-world and research literature, includ-
ing passive network monitors, stateful proxies, and active
probing. The results of our experiments not only show
that Marionette provides outstanding flexibility and con-
trol over traffic features, but it is also capable of achiev-
ing throughput of up to 6.7Mbps when generating RFC-
compliant cover traffic.

1 Introduction

Many countries have begun to view encrypted network
services as a threat to the enforcement of information
control and security policies. China [41] and Iran [7] are
well-known for their efforts to block encrypted services
like Tor [14], while other countries, such as the United
Kingdom [18], have begun to express interest in block-
ing VPNs and anonymity systems. These discriminatory
routing policies are empowered by analyzing traffic at
both the network layer (e.g. TCP/IP headers) and, more

recently, the application layer. The latter looks for spe-
cific features of packet payloads that act as a signature
for the application-layer protocol being transported.

To combat application-layer filtering, several sys-
tems have been proposed to obfuscate packet payloads,
and generally hide the true protocol being transported.
Broadly speaking, these methods fall into one of three
categories: those that use encryption to fully random-
ize the messages sent (e.g., obfs4 [34], ScrambleSuit
[42], Dust [40]); those that tunnel traffic using exist-
ing software artifacts (e.g., FreeWave [21], Facet [24]);
and those that use encryption in combination with some
lightweight ciphertext formatting to make the traffic
mimic an allowed protocol (e.g., FTE [15], Stego-
Torus [38]). A few of these systems have been deployed
and are currently used by more comprehensive circum-
vention systems, such as Lantern [1], uProxy [5], and
Tor [14].

Despite the progress these obfuscation systems repre-
sent, each of them suffers from one or more shortcom-
ings that severely limit their ability to adapt to new net-
work environments or censorship strategies. Lightweight
obfuscation methods based on randomization fail in sit-
uations where protocol whitelisting is applied, as in the
recent Iranian elections [13]. Tunneling systems are in-
timately tied to a specific protocol that may not always
be permitted within the restrictive network environment,
such as the case of Skype in Ethiopia [27]. Protocol-
mimicry systems really only aim to mimic individual
protocol messages, and therefore fail to traverse proxies
that enforce stateful protocol semantics (e.g., Squid [39])
. Moreover, these systems can be quite brittle in the face
of proxies that alter protocol messages in transit (e.g., al-
tering message headers can render FTE [15] inoperable).
In any case, all of the systems are incapable of changing
their target protocol or traffic features without heavy sys-
tem re-engineering and redeployment of code. This is a
huge undertaking in censored networks.
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Message Stateful Multi-layer Traffic Active Goodput
Case Study Content Behavior Control Statistics Probing Protocol(s) (Down/Up)

Regex-Based DPI � - - - - HTTP, SSH, SMB 68.2 / 68.2 Mbps
Proxy Traversal � � - - - HTTP 5.8 / 0.41 Mbps

Protocol Compliance � � � - - FTP, POP3 6.6 / 6.7 Mbps
Traffic Analysis � � � � - HTTP 0.45 / 0.32 Mbps
Active Probing � � � - � HTTP, FTP, SSH 6.6 / 6.7 Mbps

Figure 1: Summary of Marionette case studies illustrating breadth of protocols and depth of feature control.

The Marionette System. To address these shortcom-
ings, we develop the Marionette system. Marionette is a
network-traffic obfuscation system that empowers users
to rapidly explore a rich design space, without the need
to deploy new code or re-design the underlying system.

The conceptual foundation of Marionette is a power-
ful kind of probabilistic automaton, loosely inspired by
probabilistic input/output automata [45]. We use these to
enforce (probabilistic) sequencing of individual cipher-
text message types. Each transition between automata
states has an associated block of actions to perform,
such as encrypting and formatting a message, sampling
from a distribution, or spawning other automata to sup-
port hierarchical composition. By composing automata,
we achieve even more comprehensive control over mim-
icked protocol behaviors (e.g., multiple dependent chan-
nels) and statistical features of traffic. In addition, the
automata admit distinguished error states, thereby pro-
viding an explicit mechanism for handling active attacks,
such as censor-initiated “probing attacks.”

At the level of individual ciphertext formats, we intro-
duce another novel abstraction that supports fine-grained
control. These template grammars are probabilistic
context-free grammars (CFG) that compactly describes
a language of templates for ciphertexts. Templates are
strings that contain placeholder tokens, marking the po-
sitions where information (e.g., encrypted data bytes,
dates, content-length values) may be embedded by user-
specified routines. Adopting a CFG to describe templates
has several benefits, including ease of deployment due to
their compact representation, ability to directly translate
grammars from available RFCs, and use of the grammar
in receiver-side parsing tasks.

Everything is specified in a user-friendly domain-
specific language (DSL), which enables rapid develop-
ment and testing of new obfuscation strategies that are
robust and responsive to future network monitoring tools.
To encourage adoption and use of Marionette it has been
made available as free and open source software1.

Case studies. To display what is possible with Mari-
onette, we provide several case studies that are inspired
by recent research literature and real-world censor capa-

1https://github.com/kpdyer/marionette/

bilities. These are summarized in Figure 1. For one ex-
ample, we show that Marionette can implement passive-
mode FTP by spawning multiple models that control in-
terdependent TCP connections. For another, we use Mar-
ionette to mimic HTTP with enforced protocol semantics
and resilience to message alteration, thereby successfully
traversing HTTP proxies.

Our studies show that Marionette is capable of im-
plementing a range of application-layer protocols, from
HTTP to POP3, while also providing great depth in the
range of traffic features it controls. Most importantly, it
maintains this flexibility without unduly sacrificing per-
formance – achieving up to 6.7Mbps while still main-
taining fully RFC-compliant protocol semantics. We also
show that the system performance is network-bound, and
directly related to the constraints of the Marionette for-
mat being used.

Security Considerations. While our case studies are
motivated by well-known types of adversaries, we avoid
a formal security analysis of our framework for two rea-
sons. First, the security of the system is intimately tied
to the automata and template grammars specified by the
user, as well as how the chosen protocols and features
interact with the adversary. Second, any principled se-
curity analysis requires a generally accepted adversarial
model. At the moment, the capabilities of adversaries in
this space are poorly understood, and there are no formal-
ized security goals to target. With that said, we believe
our case studies represent a diverse sample of adversaries
known to exist in practice, and hope that the flexibility of
our system allows it to adapt to new adversaries faced in
deployment. More fully understanding the limits of our
system, and the adversaries it may face, is left for future
work.

2 Related Work

In this section, we discuss previous work in the area of
obfuscation and mimicry of application-layer protocols,
as well as their common ancestry with network traffic
generation research. The majority of systems aiming to
avoid application-layer filtering are non-programmable,
in the sense that they adopt one strategy at design-time
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Blacklist Whitelist Statistical-test Protocol-enforcing Multi-layer High
System DPI DPI DPI Proxy Control Throughput

Randomization

obfs2/3 [34] � - - - - �
ScrambleSuit [42] � - � - - �

obfs4 [34] � - � - - �
Dust [40] � - � - - �

Mimicry SkypeMorph [26] � � � - - -
StegoTorus [38] � � - - - -

Tunneling

Freewave [21] � � - - - -
Facet [24] � � � - - -

SWEET [47] � � - - - -
JumpBox [25] � � - - - �

CensorSpoofer [36] � � - - - -
CloudTransport [8] � � - � - �

Programmable FTE [15] � � - - - �
Marionette � � � � � �

Figure 2: A comparison of features across randomization, mimicry, tunneling, and programmable obfuscation systems. A “�" in
the first four columns mean the system is appropriate for the indicated type of monitoring device; in the last two, it means that the
system has the listed property. Multi-layer control is the ability to control features beyond single, independent connections. High-
throughput systems are defined as any system capable of > 1Mbps throughput. Both FTE and Marionette can trade throughput for
control over ciphertext traffic features.

and it cannot be changed without a major overhaul of
the system and subsequent re-deployment. The non-
programmable systems can be further subdivided into
three categories based on their strategy: randomization,
mimicry, or tunneling. A programmable system, how-
ever, allows for a variety of dynamically applied strate-
gies, both randomization and mimicry-based, without the
need for changes to the underlying software. Figure 2
presents a comparison of the available systems in each
category, and we discuss each of them below. For those
interested in a broader survey of circumvention and ob-
fuscation technologies, we suggest recent work by Khat-
tak et al. that discusses the space in greater detail [23].

Network Traffic Generation. Before beginning our
discussion of obfuscation systems, it is important to point
out the connection that they share with the broader area
of network traffic generation. Most traffic generation
systems focus on simple replay of captured network ses-
sions [33, 19], replay with limited levels of message con-
tent synthesis [12, 31], generation of traffic mixes with
specific statistical properties and static content [10, 37],
or heavyweight emulation of user behavior with appli-
cations in virtualized environments [43]. As we will
see, many mimicry and tunneling systems share similar
strategies with the the key difference that they must also
transport useful information to circumvent filtering.

Randomization. For systems implementing the ran-
domization approach, the primary goal is to remove all
static fingerprints in the content and statistical charac-
teristics of the connection, effectively making the traf-
fic look like “nothing.” The obfs2 and obfs3 [34] pro-
tocols were the first to implement this approach by re-

encrypting standard Tor traffic with a stream cipher,
thereby removing all indications of the underlying pro-
tocol from the content. Recently, improvements on this
approach were proposed in the ScrambleSuit system [42]
and obfs4 protocol [34], which implement similar con-
tent randomization, but also randomize the distribution
of packet sizes and inter-arrival times to bypass both DPI
and traffic analysis strategies implemented by the censor.
The Dust system [40] also offers both content and statis-
tical randomization, but does so on a per-packet, rather
than per-connection basis. While these approaches pro-
vide fast and efficient obfuscation of the traffic, they only
work in environments that block specific types of known-
bad traffic (i.e., blacklists). In cases where a whitelist
strategy is used to allow known-good protocols, these
randomization approaches fail to bypass filtering, as was
demonstrated during recent elections in Iran [13].

Mimicry. Another popular approach is to mimic cer-
tain characteristics of popular protocols, such as HTTP
or Skype, so that blocking traffic with those char-
acteristics would result in significant collateral dam-
age. Mimicry-based systems typically perform shallow
mimicry of only a protocol’s messages or the statisti-
cal properties of a single connection. As an example,
StegoTorus [38] embeds data into the headers and pay-
loads of a fixed set of previously collected HTTP mes-
sages, using various steganographic techniques. How-
ever, this provides no mechanism to control statistical
properties, beyond what replaying of the filled-in mes-
sage templates achieves. SkypeMorph [26], on the other
hand, relies on the fact that Skype traffic is encrypted and
focuses primarily on replicating the statistical features of
packet sizes and timing. Ideally, these mimicked pro-
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tocols would easily blend into the background traffic of
the network, however research has shown that mimicked
protocols can be distinguished from real versions of the
same protocol using protocol semantics, dependencies
among connections, and error conditions [20, 17]. In ad-
dition, they incur sometimes significant amounts of over-
head due to the constraints of the content or statistical
mimicry, which makes them much slower than random-
ization approaches.

Tunneling. Like mimicry-based systems, tunneling
approaches rely on potential collateral damage caused
by blocking popular protocols to avoid filtering. How-
ever, these systems tunnel their data in the payload of
real instances of the target protocols. The Freewave [21]
system, for example, uses Skype’s voice channel to en-
code data, while Facet [24] uses the Skype video chan-
nel, SWEET [47] uses the body of email messages, and
JumpBox [25] uses web browsers and live web servers.
CensorSpoofer [36] also tunnels data over existing proto-
cols, but uses a low-capacity email channel for upstream
messages and a high-capacity VoIP channel for down-
stream. CloudTransport [8] uses a slightly different ap-
proach by tunneling data over critical (and consequently
unblockable) cloud storage services, like Amazon S3,
rather than a particular protocol. The tunneling-based
systems have the advantage of using real implementa-
tions of their target protocols that naturally replicate all
protocol semantics and other distinctive behaviors, and
so they are much harder to distinguish. Even with this ad-
vantage, however, there are still cases where the tunneled
data causes tell-tale changes to the protocol’s behavior
[17] or to the overall traffic mix through skewed band-
width consumption. In general, tunneling approaches in-
cur even more overhead than shallow mimicry systems
since they are limited by the (low) capacity of the tun-
neling protocols.

Programmable Systems. Finally, programmable ob-
fuscation systems combine the benefits of both random-
ization and mimicry-based systems by allowing the sys-
tem to be configured to accommodate either strategy.
Currently, the only system to implement programmable
obfuscation is Format-Transforming Encryption (FTE)
[15], which transforms encrypted data into a format
dictated by a regular expression provided by the user.
The approach has been demonstrated to have both high
throughput and the ability to mimic a broad range of
application-layer protocols, including randomized con-
tent. Unfortunately, FTE only focuses on altering the
content of the application-layer messages, and not statis-
tical properties, protocol semantics, or other potentially
distinguishing traffic features.

Comparison with Marionette. Overall, each of these
systems suffers from a common set of problems that we
address with Marionette. For one, these systems, with
the exception of FTE, force the user to choose a sin-
gle target protocol to mimic without regard to the user’s
throughput needs, network restrictions, and background
traffic mix. Moreover, many of the systems focus on only
a fixed set of traffic features to control, usually only con-
tent and statical features of a single connection. In those
cases where tunneling is used, the overhead and latency
incurred often renders the channel virtually unusable for
many common use cases, such as video streaming. The
primary goal of Marionette, therefore, is not to develop
a system that implements a single obfuscation method to
defeat all possible censor strategies, but instead to pro-
vide the user with the ability to choose the obfuscation
method that best fits their use case in terms of breadth of
target protocols, depth of controlled traffic features, and
overall network throughput.

3 Models and Actions

We aim for a system that enables broad control over
several traffic properties, not just those of individual
application-layer protocol messages. These properties
may require that the system maintain some level of
state about the interaction to enforce protocols seman-
tics, or allow for non-deterministic behavior to match
distributions of message size and timing. A natural ap-
proach to efficiently model this sort of stateful and non-
deterministic system is a special type of probabilistic
state machine, which we find to be well-suited to our
needs and flexible enough to support a wide range of de-
sign approaches.

Marionette models. A Marionette model (or just
model, for short) is a tuple M = (Q,Qnrm, Qerr, C,∆).
The state set Q = Qnrm ∪Qerr, where Qnrm is the set of
normal states, Qerr is the set of error states, and Qnrm ∩
Qerr = ∅. We assume that Qnrm contains a distinguished
start state, and that at least one of Qnrm, Qerr contains
a distinguished finish state. The set C is the set of ac-
tions, which are (potentially) randomized algorithms. A
string B = f1f2 · · · fn ∈ C∗ is called an action-block,
and it defines a sequence of actions. Finally, ∆ is a tran-
sition relation ∆ ⊆ Q×C∗×(dist(Qnrm)∪∅)×P(Qerr)
where dist(X) the set of distributions over a set X , and
P(X) is the powerset of X . The roles of Qnrm and Qerr

will be made clear shortly.
A tuple (s,B, (µnrm, S)) ∈ ∆ is interpreted as fol-

lows. When M is in state s, the action-block B
may be executed and, upon completion, one samples a
state s′nrm ∈ Qnrm (according to distribution µnrm ∈
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dist(Qnrm)). If the action-block fails, then an error
state is chosen non-deterministically from S. Therefore,
{s′nrm} ∪ S is the set of valid next states, and in this
way our models have both proper probabilistic and non-
deterministic choice, as in probabilistic input/output au-
tomata [45]. When (s,B, (µnrm, ∅)) ∈ ∆, then only
transitions to states in Qnrm are possible, and similarly
for (s,B, (∅, S)) with transitions to states in Qerr.

In practice, normal states will be states of the model
that are reached under normal, correct operation of the
system. Error states are reached with the system detects
an operational error, which may or may not be caused by
an active adversary. For us, it will typically be the case
that the results of the action-block B determine whether
or not the system is operating normally or is in error, thus
which of the possible next states is correct.

Discussion. Marionette models support a broad va-
riety of uses. One is to capture the intended state of a
channel between two communicating parties (i.e., what
message the channel should be holding at a given point in
time). Such a model serves at least two related purposes.
First, it serves to drive the implementation of procedures
for either side of the channel. Second, it describes what a
passive adversary would see (given implementations that
realize the model), and gives the communicating parties
some defense against active adversaries. The model tells
a receiving party exactly what types of messages may be
received next; receiving any other type of message (i.e.,
observing an invalid next channel state) provides a signal
to commence error handling, or defensive measures.

Consider the partial model in Figure 3 for an exchange
of ciphertexts that mimic various types of HTTP mes-
sages. The states of this model represent effective states
of the shared channel (i.e., what message type is to ap-
pear next on the channel). Let us refer to the first-sender
as the client, and the first-receiver as the server. In the
beginning, both client and server are in the start state.
The client moves to state http_get_js with probability
0.25, state http_get_png with probability 0.7, and state
NONE with probability 0.05. In transitioning to any
of these states, the empty action-block is executed (de-
noted by ε), meaning there are no actions on the tran-
sition. Note that, at this point, the server knows only
the set {http_get_js, http_get_png,NONE} of valid states
and the probabilities with which they are selected.

Say that the client moves to state http_get_png, thus
the message that should be placed on the channel is to
be of the http_get_png type. The action-block Bget_png
gives the set of actions to be carried out in order to affect
this. We have annotated the actions with “c:” and “s:”
to make it clear which meant to be executed by the client
and which are meant to be executed by the server, respec-

http_get_js

http_get_png

NONE

http_ok_js

http_404

http_ok_png

ERROR
(parse fail)

ERROR
(decrypt fail)

Bget_png:
  c: X=encrypt(M,http_get_png)
  c: Y=postprocess(X,http_get_png)
  s: X=parse(Y,http_get_png)
  s: M=decrypt(X,http_get_png)

Bget_png , 0.1
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Bget_png
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Figure 3: A partial graphical representation of a Marionette
model for an HTTP exchange. (Transitions between http_get_js

and error states dropped to avoid clutter.) The text discusses
paths marked with bold arrows; normal states on these are blue,
error states are orange.

tively. The client is to encrypt a message M using the pa-
rameters associated to the handle http_get_png, and then
apply any necessary post-processing in order to produce
the (ciphertext) message Y for sending. The server, is
meant to parse the received Y (e.g. to undo whatever
was done by the post-processing), and then to decrypt
the result.

If parsing and decrypting succeed at the server, then
it knows that the state selected by the client was
http_get_png and, hence, that it should enter http_404
with probability 0.1, or http_ok_png with probability
0.9. If parsing fails at the server (i.e. the server action
parse(Y,http_get_png) in action block Bget_png fails) then
the server must enter state ERROR (parse fail). If parsing
succeeds but decryption fails (i.e., the server action de-
crypt(X,http_get_png) in action block Bget_png fails) then
the server must enter state ERROR (decrypt fail). At this
point, it is the client who must keep alive a front of po-
tential next states, namely the four just mentioned (error
states are shaded orange in the figure). Whichever state
the server chooses, the associated action-block is exe-
cuted and progress through the model continues until it
reaches the specified finish state.

Models provide a useful design abstraction for spec-
ifying allowable sequencings of ciphertext messages, as
well as the particular actions that the communicating par-
ties should realize in moving from message to message
(e.g., encrypt or decrypt according to a particular cipher-
text format). In practice, we do not expect sender and
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receiver instantiations of a given model will be identical.
For example, probabilistic or nondeterministic choices
made by the sender-side instantiation of a model (i.e.,
which transition was just followed) will need to be “de-
terminized” by the receiver-side instantiation. This de-
terminization process may need mechanisms to handle
ambiguity. In Section 7 we will consider concrete speci-
fications of models.

4 Templates and Template Grammars

In an effort to allow fined-grained control over the for-
mat of individual ciphertexts on the wire, we introduce
the ideas of ciphertext-format templates, and grammars
for creating them. Templates are, essentially, partially
specified ciphertext strings. The unspecified portions are
marked by special placeholders, and each placeholder
will ultimately be replaced by an appropriate string, (e.g.,
a string representing a date, a hexadecimal value repre-
senting a color, a URL of a certain depth). To compactly
represent a large set of these templates, we will use a
probabilistic context-free grammar. Typically, a gram-
mar will create templates sharing a common motif, such
as HTTP request messages or CSS files.

Template Grammars. A template grammar G =
(V,Σ, R, S, p) is a probabilisitic CFG, and we refer to
strings T ∈ L(G) as templates. The set V is the set of
non-terminals, and S ∈ V is the starting non-terminal.
The set Σ = Σ ∪ P consists of two disjoint sets of sym-
bols: Σ are the base terminals, and P is a set of place-
holder terminals (or just placeholders). Collectively, we
refer to Σ as template terminals. The set of rules R con-
sists of pairs (v, β) ∈ V × (V ∪ Σ)∗, and we will some-
times adopt the standard notation v → β for these. Fi-
nally, the mapping p : R → (0, 1] associates to each rule
a probability. We require that the sum of values p(v, ·)
for a fixed v ∈ V and any second component is equal
to one. For simplicity, we have assumed all probabil-
ities are non-zero. The mapping p supports a method
for sampling templates from L(G). Namely, beginning
with S, carry out a leftmost derivation and sample among
the possible productions for a given rule according to the
specified distribution.

Template grammars produce templates, but it is not
templates that we place on the wire. Instead, a tem-
plate T serves to define a set of strings in Σ∗, all of which
share the same template-enforced structure. To produce
these strings, each placeholder γ ∈ P has associated to
it a handler. Formally, a handler is a algorithm that takes
as inputs a template T ∈ Σ∗ and (optionally) a bit string
c ∈ {0, 1}∗, and outputs a string in Σ∗ or the distin-
guished symbol ⊥, which denotes error. A handler for γ

scans T and, upon reading γ, computes a string in s ∈ Σ∗

and replaces γ with s. The handler halts upon reaching
the end of T , and returns the new string T ′ that is T but
will all occurrences of γ replaced. If a placeholder γ is
to be replaced with a string from a particular set (say a
dictionary of fixed strings, or an element of a regular lan-
guage described by some regular expression), we assume
the restrictions are built into the handler.

As an example, consider the following (overly simple)
production rules that could be a subset of a context-free
grammar for HTTP requests/responses.

〈header〉 → 〈date_prop〉: 〈date_val〉\r\n
| 〈cookie_prop〉: 〈cookie_val〉\r\n

〈date_prop〉 → Date

〈cookie_prop〉 → Cookie

〈date_val〉 → γdate

〈cookie_val〉 → γcookie

To handle our placeholders γdate and γcookie,
we might replace the former with the result of
FTE[”(Jan|Feb|...”)], and the latter with the result of
running FTE[”([a-zA-Z...)”]. In this example our FTE-
based handlers are responsible for replacing the place-
holder with a ciphertext that is in the language of its in-
put regular expression. To recover the data we parse the
string according to the the template grammar rules, pro-
cessing terminals in the resultant parse tree that corre-
spond to placeholders.

5 System Architecture

In Section 3 we described how a Marionette model can
be used to capture stateful and probabilistic communica-
tions between two parties. The notion of abstract actions
(and action-blocks) gives us a way to use models gener-
atively, too. In this section, we give a high-level descrip-
tion of an architecture that supports this use, so that we
may transport arbitrary datastreams via ciphertexts that
adhere to our models. We will discuss certain aspects
of our design in detail in subsequent sections. Figure ??
provides a diagram of this client-server proxy architec-
ture. In addition to models, this architecture consists of
the following components:

• The client-side driver runs the main event loop, in-
stantiates models (from a model specification file,
see Section 6.3), and destructs them when they have
reached the end of their execution. The complimen-
tary receiver-side broker is responsible for listening
to incoming connections and constructing and de-
structing models.

• Plugins are the mechanism that allow user-specified
actions to be invoked in action-blocks. We discuss
plugins in greater detail in Section 6.2.
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Figure 4: A high-level diagram of the Marionette client-server architecture and its major components for the client-server stream
of communications in the Marionette system.

• The client-side multiplexer is an interface that al-
lows plugins to serialize incoming datastreams into
bitstrings of precise lengths, to be encoded into
messages via plugins. The receiver-side demulti-
plexer parses and deserializes streams of cells to
recover the underlying datastream. We discuss
the implementation details of our (de)multiplexer
in Section 6.1.

• A channel is a logical construct that connects Mar-
ionette models to real-world (e.g., TCP) data con-
nections, and represents the communications be-
tween a specific pair of Marionette models. We note
that, over the course of a channel’s lifetime, it may
be associated with multiple real-world connections.

Let’s start by discussing how data traverses the compo-
nents of a Marionette system. A datastream’s first point
of contact with the system is the incoming multiplexer,
where it enters a FIFO buffer. Then a driver invokes a
model that, in turn, invokes a plugin that wants to encode
n bits of data into a message. Note that if the FIFO buffer
is empty, the multiplexer returns a string that contains no
payload data and is padded to n bits. The resultant mes-
sage produced by the plugin is then relayed to the server.
Server-side, the broker attempts to dispatch the received
message to a model. There are three possible outcomes
when the broker dispatches the message: (1) an active
model is able to process it, (2) a new model needs to be
spawned, or (3) an error has occurred and the message
cannot be processed. In case 1 or 2, the cell is forwarded
to the demultiplexer, and onward to its ultimate destina-
tion. In case 3, the server enters an error state for that
message, where it can respond to a non-Marionette con-
nection. We also note that the Marionette system can, in
fact, operate with some of its components disabled. As
an example, by disabling the multiplexer/demultiplexer
we have a traffic generation system that doesn’t carry ac-
tual data payloads, but generates traffic that abides by our
model(s). This shows that there’s a clear decoupling of
our two main system features: control over cover traffic
and relaying datastreams.

6 Implementation

Our implementation of Marionette consists of two com-
mand line applications, a client and server, which share
a common codebase, and differ only in how they inter-
pret a model. (e.g., initiate connection vs. receive con-
nection) Given a model and its current state, each party
determines the set of valid transitions and selects one ac-
cording to the model’s transition probabilities. In cases
where normal transitions and error transitions are both
valid, the normal transitions are preferred.

Our prototype of Marionette is written in roughly three
thousand lines of Python code. All source code and en-
gineering details are available as free and open-source
software2. In this section, we will provide an overview
of some of the major engineering obstacles we overcame
to realize Marionette.

6.1 Record Layer
First, we will briefly describe the Marionette record layer
and its objectives and design. Our record layer aims to
achieve three goals: (1) enable multiplexing and reliabil-
ity of multiple, simultaneous datastreams, (2) aid Mari-
onette in negotiating and initializing models, and (3) pro-
vide privacy and authenticity of payload data. We imple-
ment the record layer using variable-length cells, as de-
picted in Figure 5, that are relayed between the client and
server. In this section, we will walk through each of our
goals and discuss how our record layer achieves them.

Multiplexing of datastreams. Our goal is to enable re-
liability and in-order delivery of datastreams that we tun-
nel through the Marionette system. If multiple streams
are multiplexed over a single marionette channel, it must
be capable of segmenting these streams. We achieve this
by including a datastream ID and datastream sequence
number in each cell, as depicted in Figure 5. Sender
side, these values are populated at the time of the cell

2https://github.com/kpdyer/marionette
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Figure 5: Format of the plaintext Marionette record layer cell.

creation. Receiver side, these values used to reassem-
ble streams and delegate them to the appropriate data
sink. The datastream flags field may have the value of
OPEN, RELAY or CLOSE, to indicate the state of the
datastream.

Negotiation and initialization of Marionette models.
Upon accepting an incoming message, a Marionette re-
ceiver iterates through all transitions from the given
model’s start state. If one of the action blocks for a transi-
tion is successful, the underlying record layer (Figure 5)
is recovered and then processed. The model flags field,
in Figure 5, may have three values: START, RUNNING,
or END. A START value is set when this is the first
cell transmitted by this model, otherwise the value is
set to RELAY until the final transmission of the model
where an END is sent. The model UUID field is a global
identifier that uniquely identifies the model that trans-
mitted the message. The model instance ID is used to
uniquely identify the instance of the model that relayed
the cell from amongst all currently running instances of
the model.

For practical purposes, in our proof of concept, we as-
sume that a Marionette instance ID is created by either
the client or server, but not both. By convention, the
party that sends the first information-carrying message
(i.e., first-sender) initiates the instance ID. Once estab-
lished, the model instance ID has two potential uses. In
settings where we have a proxy between the Marionette
client and server, the instance ID can be used to deter-
mine the model that originated a message despite multi-
plexing performed by the proxy. In other settings, the in-
stance ID can be used to enhance performance and seed
a random number generator for shared randomness be-
tween the client and server.

Encryption of the cell. We encrypt each record-
layer cell M using a slightly modified encrypt-
then-MAC authenticated encryption scheme, namely
C = AESK1(IV1‖〈|M |〉)‖CTR[AES]IV2

K1
(M)‖T , where

IV1 = 0‖R and IV2 = 1‖R for per-message random R.
The first component of the encrypted record is a header.
Here we use AES with key K1 to encrypt IV1 along with
an encoding of the length of M 3. The second compo-
nent is the record body, which is the counter-mode en-
cryption of M under IV2 and key K1, using AES as the
underlying blockcipher4. Note that CTR can be length-
preserving, not sending IV2 as part of its output, be-
cause IV2 is recoverable from IV1. The third and com-
ponent is an authentication tag T resulting from run-
ning HMAC-SHA256K2 over the entire record header
and record body. One decrypts in the standard manner
for encrypt-then-MAC.

6.2 Plugins

User-specified plugins are used to execute actions de-
scribed in each model’s action blocks. A plugin is called
by the Marionette system with four parameters: the cur-
rent channel, global variables shared across all active
models, local variables scoped to our specific model, and
the input parameters for this specific plugin (e.g., the
FTE regex or the template grammar). It is the job of
the plugin to attempt its action given the input parame-
ters. By using global and local dictionaries, plugins can
maintain long-term state and even enable message pass-
ing between models. We place few restrictions on plu-
gins, however we do require that if a plugin fails (e.g.,
couldn’t receive a message) it must return a failure flag
and revert any changes it made when attempting to per-
form the action. Meanwhile, if it encounters a fatal error
(e.g., channel is unexpectedly closed) then it must throw
an exception.

To enable multi-level models, we provide a spawn plu-
gin that can be used to spawn new model instances. In
addition, we provide puts and gets for the purpose of
transmitting static strings. As one example, this can be
used to transmit a static, non-information carrying ban-
ner to emulate an FTP server. In addition, we imple-
mented FTE and template grammars (Section 4) as our
primary message-level plugins. Each plugin has a syn-
chronous (i.e., blocking) and asynchronous (i.e., non-
blocking) implementation. The FTE plugin is a wrapper
around the FTE5 and regex2dfa6 libraries used by the Tor
Project for FTE [15].

3One could also use the cell-length field in place of 〈|M |〉.
4Since IV1 �= IV2 we enforce domain separation between the uses

of AESK1. Without this we would need an extra key.
5https://github.com/kpdyer/libfte
6https://github.com/kpdyer/regex2dfa
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6.3 The Marionette DSL
Finally, we present a domain-specific language that can
be used to compactly describe Marionette models. We
refer to the formats that are created using this language
as Marionette model specifications or model specifica-
tions for short. Figure 6 shows the Marionette modeling
language syntax.

We have two primary, logical blocks in the model
specification. The connection block is responsible for
establishing model states, actions blocks that are exe-
cuted upon a transition, and transition probabilities. An
error transition may be specified for each state and is
taken if all other potential transitions encounter a fatal
error. The action block is responsible for defining a set
of actions, which is a line for each party (client or server)
and the plugin the party should execute. Let’s illustrate
the Marionette language by considering the following ex-
ample.

Example: Simple HTTP model specification. Re-
call the model in Figure 3, which (partially) captures an
HTTP connection where the first client-server message
is an HTTP get for a JS or PNG file. Translating the
diagram into our Marionette language is a straightfor-
ward process. First, we establish our connection block
and specify tcp and port 80 — the server listens on this
port and the client connects to it. For each transition we
create an entry in our connection block. As an example,
we added a transition between the http_get_png and
http_404 state with probability 0.1. For this transition
we execute the get_png action block. We repeat this
process for all transitions in the model ensuring that we
have the appropriate action block for each transition.

For each action block we use synchronous FTE. One
party is sending, one is receiving, and neither party can
advance to the next state until the action successfully
completes. Marionette transparently handles the open-
ing and closing of the underlying TCP connection.

7 Case Studies

We evaluate the Marionette implementation described
in Section 6 by building model specifications for a
breadth of scenarios: protocol misidentification against
regex-based DPI, protocol compliance for complex state-
ful protocols, traversal of proxy systems that actively ma-
nipulate Marionette messages, controlling statistical fea-
tures of traffic, and responding to network scanners. We
then conclude this section with a performance analysis
of the formats considered.

For each case study, we analyze the performance
of Marionette for the given model specification using

connection([connection_type]):
start [dst] [block_name] [prob | error]
[src] [dst] [block_name] [prob | error]
...
[src] end [block_name] [prob | error]

action [block_name]:
[client | server] plugin(arg1, arg2, ...)
...

connection(tcp, 80):
start http_get_js NULL 0.25
start http_get_png NULL 0.7
http_get_png http_404 get_png 0.1
http_get_png http_ok_png get_png 0.9
http_ok_png ...

action get_png:
client fte.send("GET /\w+ HTTP/1\.1...")

action ok_png:
server fte.send("HTTP/1\.1 200 OK...")

...

Figure 6: Top: The Marionette DSL. The connection block is
responsible for establishing the Marionette model, its states and
transitions probabilities. Optionally, the connection_type
parameter specifies the type of channel that will be used for the
model. Bottom: The partial model specification that imple-
ments the model from Figure 3.

our testbed. In our testbed, we deployed our Marionette
client and server on Amazon Web Services m3.2xlarge
instances, in the us-west (Oregon) and us-east (N. Vir-
ginia) zones, respectively. These instances include 8 vir-
tual CPUs based on the Xeon E5-2670 v2 (Ivy Bridge)
processor at 2.5GHz and 30GB of memory. The aver-
age round-trip latency between the client and server was
75ms. Downstream and upstream goodput was measured
by transmitting a 1MB file, and averaged across 100 tri-
als. Due to space constraints we omit the full model
specifications used in our experiments, but note that each
of these specifications is available with the Marionette
source code7.

7.1 Regex-Based DPI

As our first case study, we confirm that Marionette is able
to generate traffic that is misclassified by regex-based
DPI as a target protocol of our choosing. We are repro-
ducing the tests from [15], using the regular expressions
referred to as manual-http, manual-ssh and manual-smb
in order to provide a baseline for the performance of the
Marionette system under the simplest of specifications.
Using these regular expressions, we engineered a Mari-

7https://github.com/kpdyer/marionette
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Misclassification
Target Protocol bro [28] YAF [22]

HTTP (manual-http from [15]) 100% 100%
SSH (manual-ssh from [15]) 100% 100%

SMB (manual-smb from [15]) 100% 100%

Figure 7: Summary of misclassification using existing FTE for-
mats for HTTP, SSH, and SMB.

onette model that invokes the non-blocking implementa-
tion of our FTE plugins.

For each configuration we generated 100 datastreams
in our testbed and classified this traffic using bro [28]
(version 2.3.2) and YAF [22] (version 2.7.1.) We con-
sidered it a success if the classifier reported the manual-
http datastreams as HTTP, the manual-ssh datastreams
as SSH, and so on. In all six cases (two classifiers,
three protocols) we achieved 100% success. These re-
sults are summarized in Figure 7. All three formats
exhibited similar performance characteristics, which is
consistent with the results from [15]. On average, we
achieved 68.2Mbps goodput for both the upstream and
downstream directions, which actually exceeds the good-
put reported in [15].

7.2 Protocol-Compliance

As our next test, we aim to achieve protocol compli-
ance for scenarios that require a greater degree of inter-
message and inter-connection state. In our testing we
created model specifications for HTTP, POP3, and FTP
that generate protocol-compliant (i.e., correctly classi-
fied by bro) network traffic. The FTP format was the
most challenging of the three, so we will use it as our
illustrative example.

An FTP session in passive mode uses two data con-
nections: a control channel and a data channel. To
enter passive mode a client issues the PASV com-
mand, and the server responds with an address in
the form (a,b,c,d,x,y). As defined by the FTP
protocol [30], the client then connects to TCP port
a.b.c.d:(256*x+y) to retrieve the file requested in
the GET command.

Building our FTP model specification. In building
our FTP model we encounter three unique challenges,
compared to other protocols, such as HTTP:

1. FTP has a range of message types, including user-
names, passwords, and arbitrary files, that could be
used to encode data. In order to maximize potential
encoding capacity, we must utilize multiple encod-
ing strategies (e.g., FTE, template grammars, etc.)

2. The FTP protocol is stateful (i.e., message order
matters) and has many message types (e.g., USER,
PASV, etc,) which do not have the capacity to en-
code information.

3. Performing either an active or passive FTP file
transfer requires establishing a new connection and
maintaining appropriate inter-connection state.

To address the first challenge, we utilize Marionette’s
plugin architecture, including FTE, template grammars,
multi-layer models, and the ability to send/receive static
strings. To resolve the second, we rely on Marionette’s
ability to model stateful transitions and block until,
say, a specific static string (e.g., the FTP server ban-
ner) has been sent/received. For the third, we rely not
only on Marionette’s ability to spawn a new model, but
we also rely on inter-model communications. In fact,
we can generate the listening port server-side on the
the fly and communicate it in-band to the client via
the 227 Entering Passive Mode (a,b,c,d,x,y)

command, which is processed by a client-side template-
grammar handler to populate a client-side global vari-
able. This global variable value is then used to inform
the spawned model as to which server-side TCP port it
should connect.

Our FTP model specification relies upon the up-
stream password field, and upstream (PUT) and down-
stream (GET) file transfers to relay data. In our testbed
the FTP model achieved 6.6Mbps downstream and
6.7Mbps upstream goodput.

7.3 Proxy Traversal

As our next case study, we evaluate Marionette in a set-
ting where a protocol-enforcing proxy is positioned be-
tween the client and server. Given the prevalence of the
HTTP protocol and breadth of proxy systems available,
we focus our attention on engineering Marionette model
specifications that are able to traverse HTTP proxies.

When considering the presence of an HTTP proxy,
there are at least five ways it could interfere with our
communications. A proxy could: (1) add HTTP headers,
(2) remove HTTP headers, (3) modify header or payload
contents, (4) re-order/multiplex messages, or (5) drop
messages. Marionette is able to handle each of these
cases with only slight enhancements to the plugins we
have already described.

We first considered using FTE to generate ciphertexts
that are valid HTTP messages. However, FTE is sensi-
tive to modifications to its ciphertexts. As an example,
changing the case of a single character of an FTE cipher-
text would result in FTE decryption failure. Hence, we
need a more robust solution.
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Fortunately, template grammars (Section 4) give us
fine-grained control over ciphertexts and allows us to
tolerate ciphertext modification, and our record layer
(Section 6.1) provides mechanisms to deal with stream
multiplexing, message re-ordering and data loss. This
covers all five types of interference mentioned above.

Building our HTTP template grammar. As a proof
of concept we developed four HTTP template grammars.
Two languages that are HTTP-GET requests, one with
a header field of Connection: keep-alive and one
with Connection: close. We then created analo-
gous HTTP-OK languages that have keep-alive and close
headers. Our model oscillates between the keep-alive
GET and OK states with probability 0.9, until it transi-
tions from the keep-alive OK state to the GET close state,
with probability 0.1

In all upstream messages we encode data into the URL
and cookie fields using the FTE template grammar han-
dler. Downstream we encode data in the payload body
using the FTE handler and follow this with a separate
handler to correctly populate the content-length field.

We provide receiver-side HTTP parsers that validate
incoming HTTP messages (e.g., ensure content length is
correct) and then extract the URL, cookie and payload
fields. Then, we take each of these components and re-
assemble them into a complete message, independent of
the order they appeared. That is, the order of the incom-
ing headers does not matter.

Coping with multiplexing and re-ordering. The tem-
plate grammar plugin resolves the majority of issues that
we could encounter. However, it does not allow us to
cope with cases where the proxy might re-order or multi-
plex messages. By multiplex, we mean that a proxy may
interleave two or more Marionette TCP channels into a
single TCP stream between the proxy and server. In such
a case, we can no longer assume that two messages from
the same incoming datastream are, in fact, two sequential
messages from the same client model. Therefore, in the
non-proxy setting there is a one-to-one mapping between
channels and server-side Marionette model instances. In
the proxied setting, the channel to model instance map-
ping may be one-to-many.

We are able to cope with this scenario by relying upon
the non-determinism of our Marionette models, and our
record layer. The server-side broker attempts to execute
all action blocks for available transitions across all active
models. If no active model was able to successfully pro-
cess the incoming message, then the broker (Section 5)
attempts to instantiate a new model for that message. In
our plugins we must rely upon our record layer to deter-
mine success for each of these operations. This allows us

to deal with cases where a message may successfully de-
code and decrypt, but the model instance ID field doesn’t
match the current model.

Testing with Squid HTTP proxy. We validated our
HTTP model specification and broker/plugin enhance-
ments against the Squid [39] caching proxy (version
3.4.9). The Squid caching proxy adds headers, removes
header, alters headers and payload contents, and re-
orders/multiplexes datastreams. We generated 10,000
streams through the Squid proxy and did not encounter
any unexpected issues, such as message loss.

In our testbed, our HTTP model specification for use
with Squid proxy achieved 5.8Mbps downstream and
0.41Mbps upstream goodput, with the upstream band-
width limited by the capacity of the HTTP request for-
mat.

7.4 Traffic Analysis Resistance

In our next case study, we control statistical features of
HTTP traffic. As our baseline, we visited Amazon.com
with Firefox 35 ten times and captured all resultant net-
work traffic8. We then post-processed the packet cap-
tures and recorded the following values: the lengths of
HTTP response payloads, the number of HTTP request-
response pairs per TCP connection, and the number of
TCP connections generated as a result of each page visit.
Our goal in this section is to utilize Marionette to model
the traffic characteristics of these observed traffic pat-
terns to make network sessions that “look like" a visit
to Amazon.com. We will discuss each traffic character-
istic individually, then combine them in a single model
to mimic all characteristics simultaneously.

Message lengths. To model message lengths, we
started with the HTTP response template grammar de-
scribed in Section 7.3. We adapted the response body
handler such that it takes an additional, integer value as
input. This integer dictates the output length of the HTTP
response body. On input n, the handler must return an
HTTP response payload of exactly length n bytes.

From our packet captures of Amazon.com we
recorded the message length for each observed HTTP
response payload. Each time our new HTTP response
template grammar was invoked by Marionette, we sam-
pled from our recorded distribution of message lengths
and used this value as input to the HTTP response tem-
plate grammar. With this, we generate HTTP response
payloads with lengths that match the distribution of those
observed during our downloads of Amazon.com.

8Retrieval performed on February 21, 2015.
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Figure 8: A comparison of the aggregate traffic features for ten downloads of amazon.com using Firefox 35, compared to the traffic
generated by ten executions of the Marionette model mimicking amazon.com.

Messages per TCP connection. We model the num-
ber of HTTP request-response pairs per TCP connection
using the following strategy, which employs hierarchi-
cal modeling. Let’s start with the case where we want to
model a single TCP connection that has n HTTP request-
response pairs. We start by creating a set of models
which contain exactly n request-response pair with prob-
ability 1, for all n values of interest. We can achieve this
by creating a model Mn with n+ 1 states, n transitions,
and exactly one path. From the start state each transi-
tion results in an action block that performs one HTTP
request-response. Therefore, Mn models a TCP connec-
tion with exactly n HTTP request-response pairs.

Then, we can employ Marionette’s hierarchical model
structure to have fine-grained control over the number
of HTTP request-response pairs per connection. Let’s
say that we want to have n1 request-response pairs with
probability p1, n2 with probability p2, and so on. For
simplicity, we assume that all values ni are unique, all
values pi are greater than 0, and Σm

i=0pi = 1. For each
possible value of ni we create a model Mni

, as described
above. Then, we create a single parent model which has
a start state with a transition that spawns Mn1 with prob-
ability p1, Mn2 with probability p2, and so on. This en-
ables us to create a single, hierarchical model that that
controls the number of request-response pairs for arbi-
trary distributions.

Simultaneously active connections. Finally, we aim
to control the total number of connections generated by
a model during an HTTP session. That is, we want our
model to spawn ni connections with probability pi, ac-
cording to some distribution dictated by our target. We
achieve this by using the same hierarchical approach as
the request-response pairs model, with the distinction
that each child model now spawns ni connections.

Building the model and its performance. For each
statistical traffic feature, we analyzed the distribution of

values in the packet captures from our Amazon.com vis-
its. We then used the strategies in this section to construct
a three-level hierarchical model that controls all of the
traffic features simultaneously: message lengths, number
of request-response pairs per connection, and the number
of simultaneously active TCP connections. With this new
model we deployed Marionette in our testbed and cap-
tured all network traffic it generated. In Figure 8 we have
a comparison of the traffic features of the Amazon.com

traffic, compared to the traffic generated by our Mari-
onette model.

In our testbed, this model achieved 0.45Mbps down-
stream and 0.32Mbps upstream goodput. Compared
to Section 7.3 this decrease in performance can be ex-
plained, in part, by the fact that Amazon.com has many
connections with only a single HTTP request-response,
and very short messages. As one example, the most
common payload length in the distribution was 43 bytes.
Consequently, the majority of the processing time was
spent waiting for setup and teardown of TCP connec-
tions.

7.5 Resisting Application Fingerprinting

In our final case study, we evaluate Marionette’s abil-
ity to resist adversaries that wish to identify Marionette
servers using active probing or fingerprinting methods.
We assume that an adversary is employing off-the-shelf
tools to scan a target host and determine which services
it is running. An adversary may have an initial goal to
identify that a server is running Marionette and not an
industry-standard service (e.g., Apache, etc.). Then, they
may use this information to perform a secondary inspec-
tion or immediately block the server. This problem has
been shown to be of great practical importance for ser-
vices such as Tor [41] that wish to remain undetected in
the presence of such active adversaries.

Our goal is to show that Marionette can coerce finger-
printing tools to incorrectly classify a Marionette server
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connection(tcp, 8080):
start upstream http_get 1.0
upstream downstream http_ok 1.0
upstream downstream_err http_ok_err error
...

action http_ok_err:
server io.puts("HTTP/1.1 200 OK\r\n" \

+ "Server: Apache/2.4.7\r\n..."
...

Figure 9: Example HTTP model specification including active
probing resistance.

as a service of our choosing. As one example, we’ll show
that with slight embellishments to the formats we de-
scribe in Section 7.1 and Section 7.2, we can convince
nmap [4] that Marionette is an instance of an Apache
server.

7.5.1 Building Fingerprinting-Resistant Formats

In our exploration of fingerprinting attacks we consider
three protocols: HTTP [16], SSH [46], and FTP [30]. For
HTTP and SSH we started with the formats described in
Section 7.1, and for FTP we started the format described
in Section 7.2. We augmented these formats by adding
an error transition (Section 3) that invokes an action that
mimics the behavior of our target service. This error
transition is traversed if all other potential transitions en-
counter fatal errors in their action blocks, which occur if
an invalid message is received.

As an example, for our HTTP format we introduce an
error transition to the downstream_err state. This tran-
sition is taken if the http_ok action block encounters a
fatal error when attempting to invoke an FTE decryption.
In this specific format, a fatal error in the http_ok ac-
tion block is identified if an invalid message is detected
when attempting to perform FTE decryption (i.e., doesn’t
match the regex or encounters a MAC failure). In the
example found in Figure 9, upon encountering an error,
we output the default response produced when request-
ing the index file from an Apache 2.4.7 server.

7.5.2 Fingerprinting Tools

For our evaluation we used nmap [4], Nessus [3], and
metasploit [2], which are three commonly used tools for
network reconnaissance and application fingerprinting.
Our configuration was as follows.

nmap: We used nmap version 6.4.7 with version detec-
tion enabled and all fingerprinting probes enabled. We
invoked nmap via the command line to scan our host.

Fingerprint Scanner
Protocol Target nmap Nessus metasploit
HTTP Apache 2.4.7 � � �
FTP Pure-FTPd 1.0.39 � � �
SSH OpenSSH 6.6.1 � � �

Figure 10: A � indicates that Marionette was able to successful
coerce the fingerprinting tool into reporting that the Marionette
server is the fingerprint target.

Nmap’s service and version fields were used to identify
its fingerprint of the target.
Nessus: For Nessus we used version 6.3.6 and performed
a Basic Network Scan. We invoked Nessus via its REST
API to start the scan and then asynchronously retrieved
the scan with a second request. The reported fingerprint
was determined by the protocol and svc_name for all
plugins that were triggered.
metasploit: We used version 4.11.2 of metasploit.
For fingerprinting SSH, FTP, and HTTP we used the
ssh_version , ftp_version and http_version

modules, respectively. For each module we set the
RHOST and RPORT variable to our host and the reported
fingerprint was the complete text string returned by the
module.

7.5.3 Results

We refer to the target or fingerprint target as the appli-
cation that we are attempting to mimic. To establish
our fingerprint targets we installed Apache 2.4.7, Pure-
FTPd 1.0.39 and OpenSSH 6.6.1 on a virtual machine.
We then scanned each of these target applications with
each of our three fingerprinting tools and stored the fin-
gerprints.

To create our Marionette formats that mimic these tar-
gets, we added error states that respond identically to our
target services. As an example, for our Apache 2.4.7, we
respond with a success status code (200) if the client re-
quests the index.html or robots.txt file. Otherwise
we respond with a File Not Found (404) error code. Each
server response includes a Server: Apache 2.4.7

header. For our FTP and SSH formats we used a sim-
ilar strategy. We observed the request initiated by each
probe, and ensured that our error transitions triggered ac-
tions that are identical to our fingerprinting target.

We then invoked Marionette with our three new for-
mats and scanned each of the listening instances with our
fingerprinting tools. In order to claim success, we require
two conditions. First, the three fingerprinting tools in
our evaluation must report the exact same fingerprint as
the target. Second, we require that a Marionette client
must be able to connect to the server and relay data,
as described in prior sections. We achieved this for all
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Percent of Time Blocking
on Network I/O

Section Protocol Client Server
7.1 HTTP, SSH, etc. 56.9% 50.1%
7.2 FTP, POP3 90.1% 80.5%
7.3 HTTP 84.0% 96.8%
7.4 HTTP 65.5% 98.8%

Figure 11: Summary of case study formats and time spent
blocking on network I/O for both client and server.

nine configurations (three protocols, three fingerprinting
tools) and we summarize our results in Figure 10.

7.6 Performance
In our experiments, the performance of Marionette was
dominated by two variables: (1) the structure of the
model specification and (2) the client-server latency in
our testbed. To illustrate the issue, consider our FTP for-
mat in Section 7.2 where we require nine back-and-forth
messages in the FTP command channel before we can
invoke a PASV FTP connection. This format requires
a total of thirteen round trips (nine for our messages and
four to establish the two TCP connections) before we can
send our first downstream ciphertext. In our testbed, with
a 75ms client-server latency, this means that (at least)
975ms elapse before we send any data. Therefore, a dis-
proportionately large amount of time is spent blocking
on network I/O.

In Figure 11 we give the percentage of time that our
client and server were blocked due to network I/O, for
each of the Marionette formats in our case studies. In
the most extreme case, the Marionette server for the
HTTP specification in Section 7.4 sits idle 98.8% of the
time, waiting for network events. These results sug-
gest that that certain Marionette formats (e.g., HTTP in
Section 7.4) that target high-fidelity mimicry of protocol
behaviors, network effects can dominate overall system
performance. Appropriately balancing efficiency and re-
alism is an important design consideration for Marionette
formats.

8 Conclusion

The Marionette system is the first programmable ob-
fuscation system to offer users the ability to control
traffic features ranging from the format of individual
application-layer messages to statistical features of con-
nections to dependencies among multiple connections.
In doing so, the user can choose the strategy that best
suits their network environment and usage requirements.
More importantly, Marionette achieves this flexibility
without sacrificing performance beyond what is required

to maintain the constraints of the model. This provides
the user with an acceptable trade-off between depth of
control over traffic features and network throughput. Our
evaluation highlights the power of Marionette through
a variety of case studies motivated by censorship tech-
niques found in practice and the research literature. Here,
we conclude by putting those experimental results into
context by explicitly comparing them to the state of the
art in application identification techniques, as well as
highlighting the open questions that remain about the
limitations of the Marionette system.

DPI. The most widely used method for application
identification available to censors is DPI, which can
search for content matching specified keywords or regu-
lar expressions. DPI technology is now available in a va-
riety of networking products with support for traffic vol-
umes reaching 30Gbps [11], and has been demonstrated
in real-world censorship events by China [41] and Iran
[7]. The Marionette system uses a novel template gram-
mar system, along with a flexible plugin system, to con-
trol the format of the messages produced and how data
is embedded into those messages. As such, the system
can be programmed to produce messages that meet the
requirements for a range of DPI signatures, as demon-
strated in Sections 7.1 and 7.2.

Proxies and Application Firewalls. Many large en-
terprise networks implement more advanced proxy and
application-layer firewall devices that are capable of
deeper analysis of particular protocols, such as FTP,
HTTP, and SMTP [39]. These devices can cache data
to improve performance, apply protocol-specific content
controls, and examine entire protocol sessions for indi-
cations of attacks targeted at the application. In many
cases, the proxies and firewalls will rewrite headers to en-
sure compliance with protocol semantics, multiplex con-
nections for improved efficiency, change protocol ver-
sions, and even alter content (e.g., HTTP chunking). Al-
though these devices are not known to be used by nation-
states, they are certainly capable of large traffic vol-
umes (e.g., 400TB/day [6]) and could be used to block
most current obfuscation and mimicry systems due to the
changes they make to communications sessions. Mar-
ionette avoids these problems by using template gram-
mars and a resilient record layer to combine several inde-
pendent data-carrying fields into a message that is robust
to reordering, changes to protocol headers, and connec-
tion multiplexing. The protocol compliance and proxy
traversal capabilities of Marionette were demonstrated in
Sections 7.2 and 7.3, respectively.
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Advanced Techniques. Recent papers by
Houmansadr et al. [20] and Geddes et al. [17]
have presented a number of passive and active tests
that a censor could use to identify mimicry systems.
The passive tests include examination of dependent
communication channels that are not present in many
mimicry systems, such as a TCP control channel in
the Skype protocol. Active tests include dropping
packets or preemptively closing connections to elicit
an expected action that the mimicked systems do not
perform. Additionally, the networking community have
been developing methods to tackle the problem of traffic
identification for well over a decade [9], and specific
methods have even been developed to target encrypted
network traffic [44].

To this point, there has been no evidence that these
more advanced methods have been applied in practice.
This is likely due to two very difficult challenges. First,
many of the traffic analysis techniques proposed in the
literature require non-trivial amounts of state to be kept
on every connection (e.g., packet size bi-gram distribu-
tions), as well as the use of machine learning algorithms
that do not scale to the multi-gigabit traffic volumes of
enterprise and backbone networks. As a point of com-
parison, the Bro IDS system [28], which uses DPI tech-
nology, has been known to have difficulties scaling to
enterprise-level networks [35]. The second issue stems
from the challenge of identifying rare events in large vol-
umes of traffic, commonly referred to as the base-rate fal-
lacy. That is, even a tiny false positive rate can generate
an overwhelming amount of collateral damage when we
consider traffic volumes in the 1 Gbps range. Sommer
and Paxson [32] present an analysis of the issue in the
context of network intrusion detection and Perry [29] for
the case of website fingerprinting attacks.

Regardless of the current state of practice, there may
be some cases where technological developments or a
carefully controlled network environment enables the
censor to apply these techniques. As we have shown in
Section 7.4, however, the Marionette system is capable
of controlling multiple statistical features not just within
a single connection, but also across many simultaneous
connections. We also demonstrate how our system can
be programmed to spawn interdependent models across
multiple connections in Section 7.2. Finally, in Section
7.5, we explored the use of error transitions in our mod-
els to respond to active probing and fingerprinting.

Future Work. While the case studies described in the
previous section cover a range of potential adversaries,
we note that there are still many open questions and po-
tential limitations that have yet to be explored. For one,
we do not have a complete understanding of the capa-
bilities of the probabilistic I/O automata to model long-

term state. These automata naturally exhibit the Markov
property, but can also be spawned in a hierarchical man-
ner with shared global and local variables, essentially
providing much deeper conditional dependencies. An-
other area of exploration lies in the ability of template
grammars to produce message content outside of sim-
ple message headers, potentially extending to context-
sensitive languages found in practice. Similarly, there
are many questions surrounding the development of the
model specifications themselves since, as we saw in Sec-
tion 7.6, these not only impact the unobservability of the
traffic but also its efficiency and throughput.
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Abstract
We present CONIKS, an end-user key verification ser-

vice capable of integration in end-to-end encrypted com-
munication systems. CONIKS builds on transparency
log proposals for web server certificates but solves sev-
eral new challenges specific to key verification for end
users. CONIKS obviates the need for global third-party
monitors and enables users to efficiently monitor their
own key bindings for consistency, downloading less than
20 kB per day to do so even for a provider with billions
of users. CONIKS users and providers can collectively
audit providers for non-equivocation, and this requires
downloading a constant 2.5 kB per provider per day. Ad-
ditionally, CONIKS preserves the level of privacy offered
by today’s major communication services, hiding the list
of usernames present and even allowing providers to con-
ceal the total number of users in the system.

1 Introduction

Billions of users now depend on online services for sensi-
tive communication. While much of this traffic is trans-
mitted encrypted via SSL/TLS, the vast majority is not
end-to-end encrypted meaning service providers still have
access to the plaintext in transit or storage. Not only are
users exposed to the well-documented insecurity of cer-
tificate authorities managing TLS certificates [10, 11, 64],
they also face data collection by communication provid-
ers for improved personalization and advertising [25] and
government surveillance or censorship [24, 57].

Spurred by these security threats and users’ desire for
stronger security [43], several large services including
Apple iMessage and WhatsApp have recently deployed
end-to-end encryption [19, 62]. However, while these
services have limited users’ exposure to TLS failures and
demonstrated that end-to-end encryption can be deployed
with an excellent user experience, they still rely on a
centralized directory of public keys maintained by the
service provider. These key servers remain vulnerable
to technical compromise [17, 48], and legal or extralegal
pressure for access by surveillance agencies or others.

Despite its critical importance, secure key verification
for end users remains an unsolved problem. Over two
decades of experience with PGP email encryption [12,

55, 70] suggests that manual key verification is error-
prone and irritating [22, 69]. The EFF’s recent Secure
Messaging Scorecard reported that none of 40 secure
messaging apps which were evaluated have a practical
and secure system for contact verification [50]. Similar
conclusions were reached by a recent academic survey on
key verification mechanisms [66].

To address this essential problem, we present CONIKS,
a deployable and privacy-preserving system for end-user
key verification.

Key directories with consistency. We retain the basic
model of service providers issuing authoritative name-
to-key bindings within their namespaces, but ensure that
users can automatically verify consistency of their bind-
ings. That is, given an authenticated binding issued by
foo.com from the name alice@foo.com to one or more
public keys, anybody can verify that this is the same bind-
ing for alice@foo.com that every other party observed.

Ensuring a stronger correctness property of bindings is
impractical to automate as it would require users to verify
that keys bound to the name alice@foo.com are genuinely
controlled by an individual named Alice. Instead, with
CONIKS, Bob can confidently use an authenticated bind-
ing for the name alice@foo.com because he knows Alice’s
software will monitor this binding and detect if it does
not represent the key (or keys) Alice actually controls.

These bindings function somewhat like certificates in
that users can present them to other users to set up a secure
communication channel. However, unlike certificates,
which present only an authoritative signature as a proof of
validity, CONIKS bindings contain a cryptographic proof
of consistency. To enable consistency checking, CONIKS
servers periodically sign and publish an authenticated
data structure encapsulating all bindings issued within
their namespace, which all clients automatically verify is
consistent with their expectations. If a CONIKS server
ever tries to equivocate by issuing multiple bindings for
a single username, this would require publishing distinct
data structures which would provide irrefutable proof of
the server’s equivocation. CONIKS clients will detect the
equivocation promptly with high probability.

Transparency solutions for web PKI. Several proposals
seek to make the complete set of valid PKIX (SSL/TLS)
certificates visible by use of public authenticated data
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structures often called transparency logs [4, 34, 38, 39,
53, 60]. The security model is similar to CONIKS in that
publication does not ensure a certificate is correct, but
users can accept it knowing the valid domain owner will
promptly detect any certificate issued maliciously.

Follow-up proposals have incorporated more advanced
features such as revocation [4, 34, 38, 60] and finer-
grained limitations on certificate issuance [4, 34], but all
have made several basic assumptions which make sense
for web PKI but not for end-user key verification. Specif-
ically, all of these systems make the set of names and
keys/certificates completely public and rely to varying
degrees on third-party monitors interested in ensuring the
security of web PKI on the whole. End-user key verifi-
cation has stricter requirements: there are hundreds of
thousands of email providers and communication appli-
cations, most of which are too small to be monitored by
independent parties and many of which would like to keep
their users’ names and public keys private.

CONIKS solves these two problems:
1. Efficient monitoring. All previous schemes in-

clude third-party monitors since monitoring the certifi-
cates/bindings issued for a single domain or user requires
tracking the entire log. Webmasters might be willing to
pay for this service or have their certificate authority pro-
vide it as an add-on benefit. For individual users, it is
not clear who might provide this service free of charge or
how users would choose such a monitoring service, which
must be independent of their service provider itself.

CONIKS obviates this problem by using an efficient
data structure, a Merkle prefix tree, which allows a single
small proof (logarithmic in the total number of users) to
guarantee the consistency of a user’s entry in the direc-
tory. This allows users to monitor only their own entry
without needing to rely on third parties to perform expen-
sive monitoring of the entire tree. A user’s device can
automatically monitor the user’s key binding and alert the
user if unexpected keys are ever bound to their username.

2. Privacy-preserving key directories. In prior sys-
tems, third-party monitors must view the entire system
log, which reveals the set of users who have been is-
sued keys [34, 39, 53, 60]. CONIKS, on the contrary, is
privacy-preserving. CONIKS clients may only query for
individual usernames (which can be rate-limited and/or
authenticated) and the response for any individual queries
leaks no information about which other users exist or
what key data is mapped to their username. CONIKS also
naturally supports obfuscating the number of users and
updates in a given directory.

CONIKS in Practice. We have built a prototype CON-
IKS system, which includes both the application-agnostic
CONIKS server and an example CONIKS Chat appli-
cation integrated into the OTR plug-in [8, 26, 65] for

Pidgin [1]. Our CONIKS clients automatically monitor
their directory entry by regularly downloading consis-
tency proofs from the CONIKS server in the background,
avoiding any explicit user action except in the case of
notifications that a new key binding has been issued.

In addition to the strong security and privacy features,
CONIKS is also efficient in terms of bandwidth, compu-
tation, and storage for clients and servers. Clients need to
download about 17.6 kB per day from the CONIKS server
and verifying key bindings can be done in milliseconds.
Our prototype server implementation is able to easily sup-
port 10 million users (with 1% changing keys per day) on
a commodity machine.

2 System Model and Design Goals

The goal of CONIKS is to provide a key verification sys-
tem that facilitates practical, seamless, and secure com-
munication for virtually all of today’s users.

2.1 Participants and Assumptions

CONIKS’s security model includes four main types of
principals: identity providers, clients (specifically client
software), auditors and users.

Identity Providers. Identity providers run CONIKS
servers and manage disjoint namespaces, each of which
has its own set of name-to-key bindings.1 We assume
a separate PKI exists for distributing providers’ public
keys, which they use to sign authenticated bindings and
to transform users’ names for privacy purposes.

While we assume that CONIKS providers may be mali-
cious, we assume they have a reputation to protect and do
not wish to attack their users in a public manner. Because
CONIKS primarily provides transparency and enables
reactive security in case of provider attacks, CONIKS
cannot deter a service provider which is willing to attack
its users openly (although it will expose the attacks).

Clients. Users run CONIKS client software on one or
more trusted devices; CONIKS does not address the prob-
lem of compromised client endpoints. Clients monitor
the consistency of their user’s own bindings. To support
monitoring, we assume that at least one of a user’s clients
has access to a reasonably accurate clock as well as access
to secure local storage in which the client can save the
results of prior checks.

We also assume clients have network access which can-
not be reliably blocked by their communication provider.
This is necessary for whistleblowing if a client detects

1Existing communication service providers can act as identity pro-
viders, although CONIKS also enables dedicated “stand-alone” identity
providers to become part of the system.
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misbehavior by an identity provider (more details in §4.2).
CONIKS cannot ensure security if clients have no means
of communication that is not under their communication
provider’s control.2

Auditors. To verify that identity providers are not equiv-
ocating, auditors track the chain of signed “snapshots” of
the key directory. Auditors publish and gossip with other
auditors to ensure global consistency. Indeed, CONIKS
clients all serve as auditors for their own identity provider
and providers audit each other. Third-party auditors are
also able to participate if they desire.

Users. An important design strategy is to provide good
baseline security which is accessible to nearly all users,
necessarily requiring some security tradeoffs, with the op-
portunity for upgraded security for advanced users within
the same system to avoid fragmenting the communication
network. While there are many gradations possible, we
draw a recurring distinction between default users and
strict users to illustrate the differing security properties
and usability challenges of the system.

We discuss the security tradeoffs between these two
user security policies in §4.3.

2.2 Design Goals

The design goals of CONIKS are divided into security,
privacy and deployability goals.

Security goals.
G1: Non-equivocation. An identity provider may at-
tempt to equivocate by presenting diverging views of the
name-to-key bindings in its namespace to different users.
Because CONIKS providers issue signed, chained “snap-
shots” of each version of the key directory, any equivoca-
tion to two distinct parties must be maintained forever or
else it will be detected by auditors who can then broad-
cast non-repudiable cryptographic evidence, ensuring that
equivocation will be detected with high probability (see
Appendix B for a detailed analysis).
G2: No spurious keys. If an identity provider inserts a
malicious key binding for a given user, her client software
will rapidly detect this and alert the user. For default
users, this will not produce non-repudiable evidence as
key changes are not necessarily cryptographically signed
with a key controlled by the user. However, the user will
still see evidence of the attack and can report it publicly.
For strict users, all key changes must be signed by the
user’s previous key and therefore malicious bindings will
not be accepted by other users.

2Even given a communication provider who also controls all network
access, it may be possible for users to whistleblow manually by reading
information from their device and using a channel such as physical mail
or sneakernet, but we will not model this in detail.

Privacy goals.
G3: Privacy-preserving consistency proofs. CONIKS
servers do not need to make any information about their
bindings public in order to allow consistency verification.
Specifically, an adversary who has obtained an arbitrary
number of consistency proofs at a given time, even for
adversarially chosen usernames, cannot learn any infor-
mation about which other users exist in the namespace or
what data is bound to their usernames.
G4: Concealed number of users. Identity providers
may not wish to reveal their exact number of users. CON-
IKS allows providers to insert an arbitrary number of
dummy entries into their key directory which are indis-
tinguishable from real users (assuming goal G3 is met),
exposing only an upper bound on the number of users.

Deployability goals.
G5: Strong security with human-readable names.
With CONIKS, users of the system only need to learn
their contacts’ usernames in order to communicate with
end-to-end encryption. They need not explicitly reason
about keys. This enables seamless integration in end-to-
end encrypted communication systems and requires no
effort from users in normal operation.
G6: Efficiency. Computational and communication over-
head should be minimized so that CONIKS is feasible to
implement for identity providers using commodity servers
and for clients on mobile devices. All overhead should
scale at most logarithmically in the number of total users.

3 Core Data Structure Design

At a high level, CONIKS identity providers manage a
directory of verifiable bindings of usernames to public
keys. This directory is constructed as a Merkle prefix tree
of all registered bindings in the provider’s namespace.

At regular time intervals, or epochs, the identity pro-
vider generates a non-repudiable “snapshot” of the di-
rectory by digitally signing the root of the Merkle tree.
We call this snapshot a signed tree root (STR) (see §3.3).
Clients can use these STRs to check the consistency of
key bindings in an efficient manner, obviating the need
for clients to have access to the entire contents of the key
directory. Each STR includes the hash of the previous
STR, committing to a linear history of the directory.

To make the directory privacy-preserving, CONIKS
employs two cryptographic primitives. First, a private
index is computed for each username via a verifiable
unpredictable function (described in §3.4). Each user’s
keys are stored at the associated private index rather than
his or her username (or a hash of it). This prevents the
data structure from leaking information about usernames.
Second, to ensure that it is not possible to test if a users’
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key data is equal to some known value even given this
user’s lookup index, a cryptographic commitment3 to each
user’s key data is stored at the private index, rather than
the public keys themselves.

3.1 Merkle Prefix Tree

CONIKS directories are constructed as Merkle binary
prefix trees. Each node in the tree represents a unique
prefix i. Each branch of the tree adds either a 0 or a 1
to the prefix of the parent node. There are three types of
nodes, each of which is hashed slightly differently into a
representative value using a collision-resistant hash H():
Interior nodes exist for any prefix which is shared by
more than one index present in the tree. An interior node
is hashed as follows, committing to its two children:

hinterior = H(hchild.0||hchild.1)

Empty nodes represent a prefix i of length � (depth � in
the tree) which is not a prefix of any index included in the
tree. Empty nodes are hashed as:

hempty = H
(
kempty||kn||i||�

)

Leaf nodes represent exactly one complete index i
present in the tree at depth � (meaning its first � bits form
a unique prefix). Leaf nodes are hashed as follows:

hleaf = H(kleaf||kn||i||�||commit(namei||keysi))

where commit(namei||keysi) is a cryptographic commit-
ment to the name and the associated key data. Committing
to the name, rather than the index i, protects against colli-
sions in the VUF used to generate i (see §3.4).

Collision attacks. While arbitrary collisions in the hash
function are not useful, a malicious provider can mount
a birthday attack to try to find two nodes with the same
hash (for example by varying the randomness used in the
key data commitment). Therefore, for t-bit security our
hash function must produce at least 2t bits of output.

The inclusion of depths � and prefixes i in leaf and
empty nodes (as well as constants kempty and kleaf to dis-
tinguish the two) ensures that no node’s pre-image can be
valid at more than one location in the tree (including inte-
rior nodes, whose location is implicit given the embedded
locations of all of its descendants). The use of a tree-wide
nonce kn ensures that no node’s pre-image can be valid at
the same location between two distinct trees which have
chosen different nonces. Both are countermeasures for
the multi-instance setting of an attacker attempting to find

3Commitments are a basic cryptographic primitive. A simple imple-
mentation computes a collision-resistant hash of the input data and a
random nonce.

…	  

…	  
H(child0)	  H(child1)	  

kleaf||kn||iBob||l||
commit(bob,	  PKBob)	  

H(child0)	  H(child1)	  

H(child0)	  H(child1)	  

H(child0)	  H(child1)	  

…	  

H(child0)	   H(child1)	  

0	  

0	  

0	  

1	  

1	  

1	  

root	  

Figure 1: An authentication path from Bob’s key en-
try to the root node of the Merkle prefix tree. Bob’s
index, iBob, has the prefix “000”. Dotted nodes are not
included in the proof’s authentication path.

a collision at more than one location simultaneously.4.
Uniquely encoding the location requires the attacker to
target a specific epoch and location in the tree and ensures
full t-bit security.

If the tree-wide nonce kn is re-used between epochs, a
parallel birthday attack is possible against each version of
the tree. However, choosing a new kn each epoch means
that every node in the tree will change.

3.2 Proofs of Inclusion

Since clients no longer have a direct view on the contents
of the key directory, CONIKS needs to be able to prove
that a particular index exists in the tree. This is done
by providing a proof of inclusion which consists of the
complete authentication path between the corresponding
leaf node and the root. This is a pruned tree containing the
prefix path to the requested index, as shown in Figure 1.
By itself, this path only reveals that an index exists in
the directory, because the commitment hides the key data
mapped to an index. To prove inclusion of the full binding,
the server provides an opening of the commitment in
addition to the authentication path.

Proofs of Absence. To prove that a given index j has no
key data mapped to it, an authentication path is provided
to the longest prefix match of j currently in the directory.
That node will either be a leaf node at depth � with an
index i �= j which matches j in the first � bits, or an empty
node whose index i is a prefix of j.

3.3 Signed Tree Roots

At each epoch, the provider signs the root of the direc-
tory tree, as well as some metadata, using their directory-
signing key SKd . Specifically, an STR consists of

STR = SignSKd
(t||tprev||roott ||H(STRprev)||P)

4This is inspired by Katz’ analysis [33] of hash-based signature trees
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root0	  

H(seed)	  

0	  
…	  
.	  

STR0	   STRprev	   STRt	  

P	  

rootprev	  

H(STRprev-‐1)	  

tprev	  

P	  

roott	  

H(STRprev)	  

t	  

P	  

tprev-‐1	   tprev	  

Figure 2: The directory’s history is published as a lin-
ear hash chain of signed tree roots.

where t is the epoch number and P is a summary of this
provider’s current security policies. P may include, for
example, the key KVUF used to generate private indices,
an expected time the next epoch will be published, as well
as the cryptographic algorithms in use, protocol version
numbers, and so forth. The previous epoch number tprev
must be included because epoch numbers need not be
sequential (only increasing). In practice, our implementa-
tion uses UNIX timestamps.

By including the hash of the previous epoch’s STR,
the STRs form a hash chain committing to the entire
history, as shown in Figure 2. This hash chain is used
to ensure that if an identity provider ever equivocates by
creating a fork in its history, the provider must maintain
these forked hash chains for the rest of time (i.e. it must
maintain fork consistency [41]). Otherwise, clients will
immediately detect the equivocation when presented with
an STR belonging to a different branch of the hash chain.

3.4 Private Index Calculation
A key design goal is to ensure that each authentication
path reveals no information about whether any other
names are present in the directory. If indices were com-
puted using any publicly computable function of the user-
name (such as a simple hash), each user’s authentication
path would reveal information about the presence of other
users with prefixes “close” to that user.

For example, if a user alice@foo.com’s shortest unique
prefix in the tree is i and her immediate neighbor in the
tree is a non-empty node, this reveals that at least one
users exists with the same prefix i. An attacker could hash
a large number of potential usernames offline, searching
for a potential username whose index shares this prefix i.

Private Indices. To prevent such leakage, we compute
private indices using a verifiable unpredictable function,
which is a function that requires a private key to compute
but can then be publicly verified. VUFs are a simpler form
of a stronger cryptographic construction called verifiable
random functions (VRFs) [47]. In our application, we
only need to ensure that a user’s location in the tree is not
predictable and do not need pseudorandomness (although
statistical randomness helps to produce a balanced tree).

Given such a function VUF(), we generate the index i
for a user u as:

i = H(VUFKVUF(u))

KVUF is a public key belonging to the provider, and it is
specified in the policy field of each STR. A hash function
is used because indices are considered public and VUFs
are not guaranteed to be one-way. A full proof of inclu-
sion for user u therefore requires the value of VUF(u) in
addition to the authentication path and an opening of the
commitment to the user’s key data.

We can implement a VUF using any deterministic, ex-
istentially unforgeable signature scheme [47]. The sig-
nature scheme must be deterministic or else the identity
provider could insert multiple bindings for a user at dif-
ferent locations each with a valid authentication path. We
discuss our choice for this primitive in §5.2.

Note that we might like our VUF to be collision-
resistant to ensure that a malicious provider cannot pro-
duce two usernames u,u′ which map to the same in-
dex. However, VUFs are not guaranteed to be collision-
resistant given knowledge of the private key (and the
ability to pick this key maliciously). To prevent any po-
tential problems we commit to the username u in each
leaf node. This ensures that only one of u or u′ can be
validly included in the tree even if the provider has crafted
them to share an index.

4 CONIKS Operation

With the properties of key directories outlined in §3, CON-
IKS provides four efficient protocols that together allow
end users to verify each other’s keys to communicate se-
curely: registration, lookup, monitoring and auditing. In
these protocols, providers, clients and auditors collaborate
to ensure that identity providers do not publish spurious
keys, and maintain a single linear history of STRs.

4.1 Protocols

4.1.1 Registration and Temporary Bindings

CONIKS provides a registration protocol, which clients
use to register a new name-to-key binding with an identity
provider on behalf of its user, or to update the public key
of the user’s existing binding when revoking her key. An
important deployability goal is for users to be able to
communicate immediately after enrollment. This means
users must be able to use new keys before they can be
added to the key directory. An alternate approach would
be to reduce the epoch time to a very short interval (on the
order of seconds). However, we consider this undesirable
both on the server end and in terms of client overhead.

CONIKS providers may issue temporary bindings with-
out writing any data to the Merkle prefix tree. A tempo-
rary binding consists of:

TB = SignKd
(ST Rt , i,k)
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The binding includes the most recent signed tree root
ST Rt , the index i for the user’s binding, and the user’s
new key information k. The binding is signed by the
identity provider, creating a non-repudiable promise to
add this data to the next version of the tree.

To register a user’s key binding with a CONIKS iden-
tity provider, her client now participates in the following
protocol. First, the client generates a key pair for the user
and stores it in some secure storage on the device. Next,
the client sends a registration request to the provider to the
bind the public key to the user’s online name, and if this
name is not already taken in the provider’s namespace,
it returns a temporary binding for this key. The client
then needs to wait for the next epoch and ensure that the
provider has kept its promise of inserting Alice’s binding
into its key directory by the next epoch.

4.1.2 Key Lookups

Since CONIKS clients only regularly check directory
roots for consistency, they need to ensure that public keys
retrieved from the provider are contained in the most
recently validated directory. Thus, whenever a CONIKS
client looks up a user’s public key to contact her client, the
provider also returns a proof of inclusion showing that the
retrieved binding is consistent with a specific STR. This
way, if a malicious identity provider attempts to distribute
a spurious key for a user, it is not able to do so without
leaving evidence of the misbehavior. Any client that looks
up this user’s key and verifies that the binding is included
in the presented STR will then promptly detect the attack.

In more detail, CONIKS’s lookup protocol achieves
this goal in three steps (summarized in Fig. 3). When
a user wants to send a secure message to another user,
her client first requests the recipient’s public key at her
provider. To allow the client to check whether the recipi-
ent’s binding is included in the STR for the current epoch,
the identity provider returns the full authentication path
for the recipient’s binding in the Merkle prefix tree along
with the current STR. In the final step, the client recom-
putes the root of the tree using the authentication path and
checks that this root is consistent with the presented STR.
Note that, if the recipient has not registered a binding with
the identity provider, it returns an authentication path as
a proof of absence allowing the client to verify that the
binding is indeed absent in the tree and consistent with
the current STR.

4.1.3 Monitoring for Spurious Keys

CONIKS depends on the fact that each client monitors
its own user’s binding every epoch to ensure that her key
binding has not changed unexpectedly. This prevents a
malicious identity provider from inserting spurious keys

Figure 3: Steps taken when a client looks up a user’s
public key at her identity provider.

Figure 4: Steps taken when a client monitors its own
user’s binding for spurious keys every epoch.

that are properly included in the STR. Clients do not mon-
itor other user’s bindings as they may not have enough
information to determine when another user’s binding has
changed unexpectedly.

Fig. 4 summarizes the steps taken during the monitor-
ing protocol. The client begins monitoring by performing
a key lookup for its own user’s name to obtain a proof of
inclusion for the user’s binding. Next, the client checks
the binding to ensure it represents the public key data
the user believes is correct. In the simplest case, this is
done by checking that a user’s key is consistent between
epochs. If the keys have not changed, or the client detects
an authorized key change, the user need not be notified.

In the case of an unexpected key change, by default the
user chooses what course of action to take as this change
may reflect, for example, having recently enrolled a new
device with a new key. Alternatively, security-conscious
users may request a stricter key change policy which can
be automatically enforced, and which we discuss further
in §4.3. After checking the binding for spurious keys, the
client verifies the authentication path as described in §3,
including verifying the user’s private index.

4.1.4 Auditing for Non-Equivocation

Even if a client monitors its own user’s binding, it still
needs to ensure that its user’s identity provider is pre-
senting consistent versions of its key directory to all par-
ticipants in the system. Similarly, clients need to check
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Figure 5: Steps taken when verifying if a provider’s STR history is linear in the auditing protocol.

Figure 6: Steps taken when comparing STRs in the
auditing protocol.

that the identity provider of any user they contact is not
equivocating about its directory. In other words, clients
need to verify that any provider of interest is maintaining
a linear STR history. Comparing each observed STR with
every single other client with which a given client com-
municates would be a significant performance burden.

Therefore, CONIKS allows identity providers to facili-
tate auditing for their clients by acting as auditors of all
CONIKS providers with which their users have been in
communication (although it is also possible for any other
entity to act as an auditor). Providers achieve this by dis-
tributing their most recent STR to other identity providers
in the system at the beginning of every epoch.5

The auditing protocol in CONIKS checks whether an
identity provider is maintaining a linear STR history. Iden-
tity providers perform the history verification whenever
they observe a new STR from any other provider, while
clients do so whenever they request the most recent STR
from a specific identity provider directly. We summa-
rize the steps required for an auditor to verify an STR
history in Fig. 5. The auditor first ensures that the pro-
vider correctly signed the STR before checking whether
the embedded hash of the previous epoch’s STR matches
what the auditor saw previously. If they do not match, the
provider has generated a fork in its STR history.

Because each auditor has independently verified a pro-
vider’s history, each has its own view of a provider’s STR,
so clients must perform an STR comparison to check for
possible equivocation between these views (summarized
in Fig. 6). Once a client has verified the provider’s STR
history is linear, the client queries one or more CONIKS

5 CONIKS could support an auditing protocol in which clients di-
rectly exchange observed STRs, obviating the need of providers to act
as auditors. The design of such a protocol is left as future work.

identity providers at random.6 The client asks the auditor
for the most recent STR it observed from the provider
in question. Because the auditor has already verified the
provider’s history, the client need not verify the STR re-
ceived from the auditor. The client then compares the
auditor’s observed STR with the STR which the provider
directly presented it. The client may repeat this process
with different auditors as desired to increase confidence.
For an analysis of the number of checks necessary to
detect equivocation with high probability, see App. B.

CONIKS auditors store the current STRs of CONIKS
providers; since the STRs are chained, maintaining the
current STR commits to the entire history. Because this
is a small, constant amount of data (less than 1 kB) it
is efficient for a single machine to act as an auditor for
thousands of CONIKS providers.

4.2 Secure Communication with CONIKS

When a user Bob wants to communicate with a user Al-
ice via their CONIKS-backed secure messaging service
foo.com, his client client B performs the following steps.
We assume both Alice’s and Bob’s clients have registered
their respective name-to-key bindings with foo.com as
described in §4.1.1.

1. Periodically, client B checks the consistency of Bob’s
binding. To do so, the client first performs the
monitoring protocol (per §4.1.3), and then it audits
foo.com (per §4.1.4).

2. Before sending Bob’s message to client A, client B
looks up the public key for the username alice at
foo.com (§4.1.2). It verifies the proof of inclusion
for alice and performs the auditing protocol (§4.1.4)
for foo.com if the STR received as part of the lookup
is different or newer than the STR it observed for
foo.com in its latest run of step 1.

3. If client B determines that Alice’s binding is consis-
tent, it encrypts Bob’s message using alice’s public
key and signs it using Bob’s key. It then sends the
message.

Performing checks after missed epochs. Because STRs
are associated with each other across epochs, clients can
“catch up” to the most recent epoch if they have not veri-

6We assume the client maintains a list of CONIKS providers acting
as auditors from which it can choose any provider with equal probability.
The larger this list, the harder it is for an adversary to guess which
providers a client will query.
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fied the consistency of a binding for several epochs. They
do so by performing a series of the appropriate checks un-
til they are sure that the proofs of inclusion and STRs they
last verified are consistent with the more recent proofs.
This is the only way a client can be sure that the security
of its communication has not been compromised during
the missed epochs.

Liveness. CONIKS servers may attempt to hide mali-
cious behavior by ceasing to respond to queries. We
provide flexible defense against this, as servers may also
simply go down. Servers may publish an expected next
epoch number with each STR in the policy section P.
Clients must decide whether they will accept STRs pub-
lished at a later time than previously indicated.

Whistleblowing. If a client ever discovers two inconsis-
tent STRs (for example, two distinct versions signed for
the same epoch time), they should notify the user and
whistleblow by publishing them to all auditors they are
able to contact. For example, clients could include them
in messages sent to other clients, or they could explicitly
send whistleblowing messages to other identity providers.
We also envision out-of-band whistleblowing in which
users publish inconsistent STRs via social media or other
high-traffic sites. We leave the complete specification of
a whistleblowing protocol for future work.

4.3 Multiple Security Options

CONIKS gives users the flexibility to choose the level of
security they want to enforce with respect to key lookups
and key change. For each functionality, we propose two
security policies: a default policy and a strict policy,
which have different tradeoffs of security and privacy
against usability. All security policies are denoted by
flags that are set as part of a user’s directory entry, and
the consistency checks allow users to verify that the flags
do not change unexpectedly.

4.3.1 Visibility of Public Keys

Our goal is to enable the same level of privacy SMTP
servers employ today,7 in which usernames can be queried
(subject to rate-limiting) but it is difficult to enumerate
the entire list of names.

Users need to decide whether their public key(s) in the
directory should be publicly visible. The difference be-
tween the default and the strict lookup policies is whether
the user’s public keys are encrypted with a secret sym-
metric key known only to the binding’s owner and any

7 The SMTP protocol defines a VRFY command to query the exis-
tence of an email address at a given server. To protect user’s privacy,
however, it has long been recommended to ignore this command (report-
ing that any usernames exists if asked) [42].

other user of her choosing. For example, if the user Al-
ice follows the default lookup policy, her public keys are
not encrypted. Thus, anyone who knows Alice’s name
alice@foo.com can look up and obtain her keys from her
foo.com’s directory. On the other hand, if Alice follows
the strict lookup policy, her public keys are encrypted
with a symmetric key only known to Alice and the users
of her choosing.

Under both lookup policies, any user can verify the
consistency of Alice’s binding as described in §4, but if
she enforces the strict policy, only those users with the
symmetric key learn her public keys. The main advantage
of the default policy is that it matches users’ intuition
about interacting with any user whose username they
know without requiring explicit “permission”. On the
other hand, the strict lookup policy provides stronger
privacy, but it requires additional action to distribute the
symmetric key which protects her public keys.

4.3.2 Key Change

Dealing with key loss is a difficult quandary for any secu-
rity system. Automatic key recovery is an indispensable
option for the vast majority of users who cannot perpet-
ually maintain a private key. Using password authenti-
cation or some other fallback method, users can request
that identity providers change a user’s public key in the
event that the user’s previous device was lost or destroyed.
If Alice chooses the default key change policy, her iden-
tity provider foo.com accepts any key change statement
in which the new key is signed by the previous key, as
well as unsigned key change requests. Thus, foo.com
should change the public key bound to alice@foo.com
only upon her request, and it should reflect the update to
Alice’s binding by including a key change statement in
her directory entry. The strict key change policy requires
that Alice’s client sign all of her key change statements
with the key that is being changed. Thus, Alice’s client
only considers a new key to be valid if the key change
statement has been authenticated by one of her public
keys.

While the default key change policy makes it easy for
users to recover from key loss and reclaim their username,
it allows an identity provider to maliciously change a
user’s key and falsely claim that the user requested the
operation. Only Alice can determine with certainty that
she has not requested the new key (and password-based
authentication means the server cannot prove Alice re-
quested it). Still, her client will detect these updates and
can notify Alice, making surreptitious key changes risky
for identity providers to attempt. Requiring authenticated
key changes, on the other hand, does sacrifice the ability
for Alice to regain control of her username if her key is
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ever lost. We discuss some implications for key loss for
strict users in §6.

5 Implementation and Evaluation

CONIKS provides a framework for integrating key verifi-
cation into communications services that support end-to-
end encryption. To demonstrate the practicality of CON-
IKS and how it interacts with existing secure communi-
cations services, we implemented a prototype CONIKS
Chat, a secure chat service based on the Off-the-Record
Messaging [8] (OTR) plug-in for the Pidgin instant mes-
saging client [1, 26]. We implemented a stand-alone
CONIKS server in Java (∼2.5k sloc), and modified the
OTR plug-in (∼2.2k sloc diff) to communicate with our
server for key management. We have released a basic
reference implementation of our prototype on Github.8

5.1 Implementation Details

CONIKS Chat consists of an enhanced OTR plug-in for
the Pidgin chat client and a stand-alone CONIKS server
which runs alongside an unmodified Tigase XMPP server.
Clients and servers communicate using Google Protocol
Buffers [2], allowing us to define specific message for-
mats. We use our client and server implementations for
our performance evaluation of CONIKS.

Our implementation of the CONIKS server provides
the basic functionality of an identity provider. Every ver-
sion of the directory (implemented as a Merkle prefix
tree) as well as every generated STR are persisted in a
MySQL database. The server supports key registration
in the namespace of the XMPP service, and the directory
efficiently generates the authentication path for proofs of
inclusion and proofs of absence, both of which implicitly
prove the proper construction of the directory. Our server
implementation additionally supports STR exchanges be-
tween identity providers.

The CONIKS-OTR plug-in automatically registers a
user’s public key with the server upon the generation of a
new key pair and automatically stores information about
the user’s binding locally on the client to facilitate future
consistency checks. To facilitate CONIKS integration,
we leave the DH-based key exchange protocol in OTR
unchanged, but replace the socialist millionaires proto-
col used for key verification with a public key lookup at
the CONIKS server. If two users, Alice and Bob, both
having already registered their keys with the coniks.org
identity provider, want to chat, Alice’s client will auto-
matically request a proof of inclusion for Bob’s binding
in coniks.org’s most recent version of the directory. Upon

8https://github.com/coniks-sys/coniks-ref-
implementation

receipt of this proof, Alice’s client automatically verifies
the authentication path for Bob’s name-to-key binding (as
described in §4.1.2), and caches the newest information
about Bob’s binding if the consistency checks pass. If
Bob has not registered his key with coniks.org, the client
falls back to the original key verification mechanism. Ad-
ditionally, Alice’s client and Bob’s clients automatically
perform all monitoring and auditing checks for their re-
spective bindings upon every login and cache the most
recent proofs.

CONIKS Chat currently does not support key changes.
Furthermore, our prototype only supports the default
lookup policy for name-to-key bindings. Fully imple-
menting these features is planned for the near future.

5.2 Choice of Cryptographic Primitives

To provide a 128-bit security level, we use SHA-256 as
our hash function and EC-Schnorr signatures [21, 63].

Unfortunately Schnorr signatures (and related discrete-
log based signature schemes like DSA [36]) are not imme-
diately applicable as a VUF as they are not deterministic,
requiring a random nonce which the server can choose
arbitrarily.9 In Appendix A we describe a discrete-log
based scheme for producing a VUF (and indeed, a VRF)
in the random-oracle model. Note that discrete-log based
VUFs are longer than basic signatures: at a 128-bit secu-
rity level using elliptic curves, we expect signatures of
size 512 bits and VUF proofs of size 768 bits.

Alternately, we could employ a deterministic signature
scheme like classic RSA signature [59] (using a determin-
istic padding scheme such as PKCS v. 1.5 [31]), although
this is not particularly space-efficient at a 128-bit security
level. Using RSA-2048 provides approximately 112 bits
of security [3] with proofs of size 2048 bits. 10

Using pairing-based crypto, BLS “short signatures” [7]
are also deterministic and provide the best space efficiency
with signature sizes of just 256 bits, making them an effi-
cient choice both for signatures and VUF computations.
BLS signatures also support aggregation, that is, multi-
ple signatures with the same key can be compressed into
a single signature, meaning the server can combine the
signatures on n consecutive roots. However there is not
widespread support for pairing calculations required for
BLS, making it more difficult to standardize and deploy.

We evaluate performance in Table 1 in the next section
for all three potential choices of signature/VUF scheme.

9There are deterministic variants of Schnorr or DSA [5, 49] but these
are not verifiably deterministic as they generate nonces pseudorandomly
as a symmetric-key MAC of the data to be signed.

10We might tolerate slightly lower security in our VUF than our signa-
ture scheme, as this key only ensures privacy and not non-equivocation.
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Figure 7: Mean time to re-compute the tree for a new
epoch with 1K updated nodes. The x-axis is logarith-
mic and each data point is the mean of 10 executions.
Error bars indicate standard deviation.

5.3 Performance Evaluation

To estimate the performance of CONIKS, we collect both
theoretical and real performance characteristics of our
prototype implementation. We evaluate client and server
overheads with the following parameters:

• A single provider might support N ≈ 232 users.
• Epochs occur roughly once per hour.
• Up to 1% of users change or add keys per day, mean-

ing n ≈ 221 directory updates in an average epoch.
• Servers use a 128-bit cryptographic security level.

Server Overheads. To measure how long it takes for a
server to compute the changes for an epoch, we evaluated
our server prototype on a 2.4 GHz Intel Xeon E5620
machine with 64 GB of RAM allotted to the OpenJDK 1.7
JVM. We executed batches of 1000 insertions (roughly 3
times the expected number of directory updates per epoch)
into a Merkle prefix with 10 M users, and measured the
time it took for the server to compute the next epoch.

Figure 7 shows the time to compute a version of the
directory with 1000 new entries as the size of the original
namespace varies. For a server with 10 M users, com-
puting a new Merkle tree with 1000 insertions takes on
average 2.6 s. As epochs only need to be computed every
hour, this is not cumbersome for a large service provider.
These numbers indicate that even with a relatively unopti-
mized implementation, a single machine is able to handle
the additional overhead imposed by CONIKS for work-
loads similar in scale to a medium-sized communication
providers (e.g., TextSecure) today.

While our prototype server implementation on a com-
modity machine comfortably supports 10M users, we note
that due to the statistically random allocation of users to
indices and the recursive nature of the tree structure, the
task parallelizes near-perfectly and it would be trivial
to scale horizontally with additional identical servers to
compute a directory with billions of users.

Lookup Cost. Every time a client looks up a user’s
binding, it needs to download the current STR, a proof
of of inclusion consisting of about lg2(N) + 1 hashes
plus one 96-byte VUF proof (proving the validity of the
binding’s private index). This will require downloading
32 · (lg2(N)+1)+96 ≈ 1216 bytes. Verifying the proof
will require up to lg2(N) + 1 hash verifications on the
authentication path as well as one VUF verification. On a
2 GHz Intel Core i7 laptop, verifying the authentication
path returned by a server with 10 million users, required
on average 159 µs (sampled over 1000 runs, with σ = 30).
Verifying the signature takes approximately 400 µs, domi-
nating the cost of verifying the authentication path. While
mobile-phone clients would require more computation
time, we do not believe this overhead presents a signifi-
cant barrier to adoption.

Monitoring Cost. In order for any client to monitor the
consistency of its own binding, it needs fetch proof that
this binding is validly included in the epoch’s STR. Each
epoch’s STR signature (64 bytes) must be downloaded
and the client must fetch its new authentication path. How-
ever, the server can significantly compress the length of
this path by only sending the hashes on the user’s path
which have changed since the last epoch. If n changes
are made to the tree, a given authentication path will have
lg2(n) expected changed nodes. (This is the expected
longest prefix match between the n changed indices and
the terminating index of the given authentication path.)
Therefore each epoch requires downloading an average
of 64+ lg2(n) ·32 ≈ 736 bytes. Verification time will be
similar to verifying another user’s proof, dominated by
the cost of signature verification. While clients need to
fetch each STR from the server, they are only required to
store the most recent STR (see §5.3).

To monitor a binding for a day, the client must down-
load a total of about 19.1 kB. Note that we have assumed
users update randomly throughout the day, but for a fixed
number of updates this is actually the worst-case scenario
for bandwidth consumption; bursty updates will actually
lead to a lower amount of bandwidth as each epoch’s
proof is lg2(n) for n changes. These numbers indicate
that neither bandwidth nor computational overheads pose
a significant burden for CONIKS clients.

Auditing cost. For a client or other auditor tracking all
of a provider’s STRs, assuming the policy field changes
rarely, the only new data in an STR is the new timestamp,
the new tree root and signature (the previous STR and
epoch number can be inferred and need not be transmit-
ted). The total size of each STR in minimal form is just
104 bytes (64 for the signature, 32 for the root and 8 for a
timestamp), or 2.5 kB per day to audit a specific provider.
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# # # approx. download size
VUFs sigs. hashes RSA EC BLS

lookup (per binding) 1 1 lgN +1 1568 B 1216 B 1120 B
monitor (epoch) 0 1 lgn 928 B 726 B 704 B
monitor (day) 1 k† k lgn 22.6 kB 17.6 kB 16.1 kB
audit (epoch, per STR) 0 1 1 288 B 96 B 64 B
audit (day, per STR) 0 k† k 6.9 kB 2.3 kB 0.8 kB

Table 1: Client bandwidth requirements, based the number of signatures, VUFs and hashes downloaded for
lookups, monitoring, and auditing. Sizes are given assuming a N ≈ 232 total users, n ≈ 221 changes per epoch,
and k ≈ 24 epochs per day. Signatures that can be aggregated into a single signature to transmit in the BLS
signature scheme are denoted by †.

6 Discussion

6.1 Coercion of Identity Providers

Government agencies or other powerful adversaries may
attempt to coerce identity providers into malicious behav-
ior. Recent revelations about government surveillance
and collection of user communications data world-wide
have revealed that governments use mandatory legal pro-
cess to demand access to information providers’ data
about users’ private communications and Internet activity
[9, 23, 24, 51, 52]. A government might demand that
an identity provider equivocate about some or all name-
to-key bindings. Since the identity provider is the entity
actually mounting the attack, a user of CONIKS has no
way of technologically differentiating between a mali-
cious insider attack mounted by the provider itself and
this coerced attack [18]. Nevertheless, because of the con-
sistency and non-equivocation checks CONIKS provides,
users could expose such attacks, and thereby mitigate
their effect.

Furthermore, running a CONIKS server may provide
some legal protection for service providers under U.S.
law for providers attempting to fight legal orders, because
complying with such a demand will produce public ev-
idence that may harm the provider’s reputation. (Legal
experts disagree about whether and when this type of
argument shelters a provider[45].)

6.2 Key Loss and Account Protection

CONIKS clients are responsible for managing their pri-
vate keys. However, CONIKS can provide account pro-
tection for users who enforce the paranoid key change
policy and have forfeit their username due to key loss.
Even if Alice’s key is lost, her identity remains secure;
she can continue performing consistency checks on her
old binding. Unfortunately, if a future attacker manages
to obtain her private key, that attacker may be able to
assume her “lost identity”.

In practice, this could be prevented by allowing the
provider to place a “tombstone” on a name with its own
signature, regardless of the user’s key policy. The provider
would use some specific out-of-band authorization steps
to authorize such an action. Unlike allowing providers to
issue key change operations, though, a permanent account
deactivation does not require much additional trust in
the provider, because a malicious provider could already
render an account unusable through denial of service.

6.3 Protocol Extensions

Limiting the effects of denied service. Sufficiently pow-
erful identity providers may refuse to distribute STRs to
providers with which they do not collude. In these cases,
clients who query these honest providers will be unable to
obtain explicit proof of equivocation. Fortunately, clients
may help circumvent this by submitting observed STRs to
these honest identity providers. The honest identity pro-
viders can verify the other identity provider’s signature,
and then store and redistribute the STR.

Similarly, any identity provider might ignore requests
about individual bindings in order to prevent clients from
performing consistency checks or key changes. In these
cases, clients may be able to circumvent this attack by
using other providers to proxy their requests, with the
caveat that a malicious provider may ignore all requests
for a name. This renders this binding unusable for as
long as the provider denies service. However, this only
allows the provider to deny service, any modification to
the binding during this attack would become evident as
soon as the service is restored.

Obfuscating the social graph. As an additional privacy
requirement, users may want to conceal with whom they
are in communication, or providers may want to offer
anonymized communication. In principle, users could use
Tor to anonymize their communications. However, if only
few users in CONIKS use Tor, it is possible for providers
to distinguish clients connecting through Tor from those
connecting to the directly.
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CONIKS could leverage the proxying mechanism de-
scribed in §6.3 for obfuscating the social graph. If Alice
would like to conceal with whom she communicates, she
could require her client to use other providers to proxy
any requests for her contacts’ bindings or consistency
proofs. Clients could choose these proxying providers
uniformly at random to minimize the amount of infor-
mation any single provider has about a particular user’s
contacts. This can be further improved the more pro-
viders agree to act as proxies. Thus, the only way for
providers to gain information about whom a given user is
contacting would be to aggregate collected requests. For
system-wide Tor-like anonymization, CONIKS providers
could form a mixnet [13], which would provide much
higher privacy guarantees but would likely hamper the
deployability of the system.

Randomizing the order of directory entries. Once a
user learns the lookup index of a name, this position in
the tree is known for the rest of time because the index is
a deterministic value. If a user has an authentication path
for two users bob@foo.com and alice@foo.com which
share a common prefix in the tree, the Bob’s authentica-
tion path will leak any changes to Alice’s binding if his
key has not changed, and vice-versa. foo.com can prevent
this information leakage by randomizing the ordering of
entries periodically by including additional data when
computing their lookup indices. However, such random-
ized reordering of all directory entries would require a
complete reconstruction of the tree. Thus, if done every
epoch, the identity provider would be able to provide en-
hanced privacy guarantees at the expense of efficiency.
The shorter the epochs, the greater the tradeoff between
efficiency and privacy. An alternative would be to reorder
all entries every n epochs to obtain better efficiency.

Key Expiration. To reduce the time frame during which
a compromised key can be used by an attacker, users may
want to enforce key expiration. This would entail includ-
ing the epoch in which the public key is to expire as part
of the directory entry, and clients would need to ensure
that such keys are not expired when checking the consis-
tency of bindings. Furthermore, CONIKS could allow
users to choose whether to enforce key expiration on their
binding, and provide multiple security options allowing
users to set shorter or longer expiration periods. When the
key expires, clients can automatically change the expired
key and specify the new expiration date according to the
user’s policies.

Support for Multiple Devices. Any modern communi-
cation system must support users communicating from
multiple devices. CONIKS easily allows users to bind
multiple keys to their username. Unfortunately, device
pairing has proved cumbersome and error-prone for users

in practice [32, 67]. As a result, most widely-deployed
chat applications allow users to simply install software to
a new device which will automatically create a new key
and add it to the directory via password authentication.

The tradeoffs for supporting multiple devices are the
same as for key change. Following this easy enrollment
procedure requires that Alice enforce the cautious key
change policy, and her client will no longer be able to
automatically determine if a newly observed key has been
maliciously inserted by the server or represents the addi-
tion of a new device. Users can deal with this issue by
requiring that any new device key is authenticated with
a previously-registered key for a different device. This
means that clients can automatically detect if new bind-
ings are inconsistent, but will require users to execute a
manual pairing procedure to sign the new keys as part of
the paranoid key change policy discussed above.

7 Related Work

Certificate validation systems. Several proposals for
validating SSL/TLS certificates seek to detect fraudulent
certificates via transparency logs [4, 34, 38, 39, 53], or
observatories from different points in the network [4, 34,
54, 58, 68]. Certificate Transparency (CT) [39] publicly
logs all certificates as they are issued in a signed append-
only log. This log is implemented as a chronologically-
ordered Merkle binary search tree. Auditors check that
each signed tree head represents an extension of the pre-
vious version of the log and gossip to ensure that the log
server is not equivocating.

This design only maintains a set of issued certificates,
so domain administrators must scan the entire list of is-
sued certificates (or use a third-party monitor) in order
to detect any newly-logged, suspicious certificates issued
for their domain. We consider this a major limitation for
user communication as independent, trustworthy moni-
tors may not exist for small identity providers. CT is also
not privacy-preserving; indeed it was designed with the
opposite goal of making all certificates publicly visible.

Enhanced Certificate Transparency (ECT) [60], which
was developed concurrently [46] extends the basic CT
design to support efficient queries of the current set of
valid certificates for a domain, enabling built-in revoca-
tion. Since ECT adds a second Merkle tree of currently
valid certificates organized as a binary search tree sorted
lexicographically by domain name, third-party auditors
must verify that no certificate appears in only one of the
trees by mirroring the entire structure and verifying all
insertions and deletions.

Because of this additional consistency check, audit-
ing in ECT requires effort linear in the total number of
changes to the logs, unlike in CT or CONIKS, which only
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require auditors to verify a small number of signed tree
roots. ECT also does not provide privacy: the proposal
suggests storing users in the lexicographic tree by a hash
of their name, but this provides only weak privacy as most
usernames are predictable and their hash can easily be
determined by a dictionary attack.

Other proposals include public certificate observato-
ries such as Perspectives [54, 58, 68], and more com-
plex designs such as Sovereign Keys [53] and AK-
I/ARPKI [4, 34] which combine append-only logs with
policy specifications to require multiple parties to sign
key changes and revocations to provide proactive as well
as reactive security.

All of these systems are designed for TLS certificates,
which differ from CONIKS in a few important ways. First,
TLS has many certificate authorities sharing a single,
global namespace. It is not required that the different
CAs offer only certificates that are consistent or non-
overlapping. Second, there is no notion of certificate or
name privacy in the TLS setting,11 and as a result, they use
data structures making the entire name-space public. Fi-
nally, stronger assumptions, such as maintaining a private
key forever or designating multiple parties to authorize
key changes, might be feasible for web administrators but
are not practical for end users.

Key pinning. An alternative to auditable certificate sys-
tems are schemes which limit the set of certificate au-
thorities capable of signing for a given name, such as
certificate pinning [16] or TACK [44]. These approaches
are brittle, with the possibility of losing access to a do-
main if an overly strict pinning policy is set. Deployment
of pinning has been limited due to this fear and most web
administrators have set very loose policies [35]. This dif-
ficulty of managing keys, experienced even by technically
savvy administrators, highlights how important it is to
require no key management by end users.

Identity and key services. As end users are accustomed
to interacting with a multitude of identities at various
online services, recent proposals for online identity ver-
ification have focused on providing a secure means for
consolidating these identities, including encryption keys.

Keybase [37] allows users to consolidate their online
account information while also providing semi-automated
consistency checking of name-to-key bindings by verify-
ing control of third-party accounts. This system’s primary
function is to provide an easy means to consolidate online
identity information in a publicly auditable log. It is not
designed for automated key verification and it does not
integrate seamlessly into existing applications.

11Some organizations use “private CAs” which members manually
install in their browsers. Certificate transparency specifically exempts
these certificates and cannot detect if private CAs misbehave.

Nicknym [56] is designed to be purely an end-user key
verification service, which allows users to register existing
third-party usernames with public keys. These bindings
are publicly auditable by allowing clients to query any
Nicknym provider for individual bindings they observe.
While equivocation about bindings can be detected in
this manner in principle, Nicknym does not maintain an
authenticated history of published bindings which would
provide more robust consistency checking as in CONIKS.

Cryptographically accountable authorities. Identity-
based encryption inherently requires a trusted private-key
generator (PKG). Goyal [28] proposed the accountable-
authority model, in which the PKG and a user cooperate
to generate the user’s private key in such a way that the
PKG does not know what private key the user has chosen.
If the PKG ever runs this protocol with another party
to generate a second private key, the existence of two
private keys would be proof of misbehavior. This concept
was later extended to the black-box accountable-authority
model [29, 61], in which even issuing a black-box decoder
algorithm is enough to prove misbehavior. These schemes
have somewhat different security goals than CONIKS in
that they require discovering two private keys to prove
misbehavior (and provide no built-in mechanism for such
discovery). By contrast, CONIKS is designed to provide
a mechanism to discover if two distinct public keys have
been issued for a single name.

VUFs and dictionary attacks. DNSSEC [15] provides a
hierarchical mapping between domains and signing keys
via an authenticated linked list. Because each domain
references its immediate neighbors lexicographically in
this design, it is possible for an adversary to enumerate
the entire set of domains in a given zone via zone walking
(repeatedly querying neighboring domains). In response,
the NSEC3 extension [40] was added; while it prevents
trivial enumeration, it suffers a similar vulnerability to
ECT in that likely domain names can be found via a dic-
tionary attack because records are sorted by the hash of
their domain name. Concurrent with our work on CON-
IKS, [27] proposed NSEC5, effectively using a verifiable
unpredictable function (also in the form of a deterministic
RSA signature) to prevent zone enumeration.

8 Conclusion

We have presented CONIKS, a key verification system for
end users that provides consistency and privacy for users’
name-to-key bindings, all without requiring explicit key
management by users. CONIKS allows clients to effi-
ciently monitor their own bindings and quickly detect
equivocation with high probability. CONIKS is highly
scalable and is backward compatible with existing se-
cure communication protocols. We have built a prototype
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CONIKS system which is application-agnostic and sup-
ports millions of users on a single commodity server.

As of this writing, several major providers are im-
plementing CONIKS-based key servers to bolster their
end-to-end encrypted communications tools. While au-
tomatic, decentralized key management without least a
semi-trusted key directory remains an open challenge, we
believe CONIKS provides a reasonable baseline of secu-
rity that any key directory should support to reduce user’s
exposure to mass surveillance.
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A Discrete-log Based VRF Construction

We propose a simple discrete-log based VRF in the random
oracle model. By definition, this scheme is also a VUF as
required. This construction was described by Franklin and
Zhang [20] although they considered it already well-known.
Following Micali et al.’s outline [47], the basic idea is to publish
a commitment c to the seed k of a pseudo-random function,
compute y = fk(x) as the VUF, and issue non-interactive zero-
knowledge proofs that y = fk(x) for some k to which c is a
commitment of. The public key and private key are c and k.

Parameters. For a group12 G with generator g of prime
order q, the prover chooses a random k R← (1,q) as their private
key and publishes G = gk as their public key. We require two
hash functions: one which maps to curve points [6, 30] H1 :
∗ → G and one which maps to integers H2 : ∗ → (1,q) which
are modeled as random oracles.

VRF computation. The VRF is defined as:

VRFk(m) = H1(m)k

Non-interactive proof The prover must show in zero-
knowledge that there is some x for which G = gk and H = hk

for h = H1(m). The proof is a standard Sigma proof of equal-
ity for two discrete logarithms made non-interactive using the
Fiat-Shamir heuristic [14]. The prover chooses r R← (1,q) and
transmits s = H1(m,gr,hr) and t = r− sk mod q.

To verify that VRFk(m) = H1(m)k is a correct VRF compu-
tation given a proof (s, t), the verifier checks that

s = H1
(
m,gt ·Gs,H(m)t ·VRFk(m)s)

We refer the reader to [14, 20] for proof that this scheme sat-
isfies the properties of a VRF. Note that the pseudorandomness

12Note that we use multiplicative group notation here, though this
scheme applies equally to elliptic-curve groups.

15



398 24th USENIX Security Symposium USENIX Association

reduces to the Decisional Diffie-Hellman assumption. The tuple
(H1(m),G = gk,VRFk(m) = H1(m)k) is a DDH triple, there-
fore an attacker that could distinguish VRFk(m) from random
could break the DDH assumption for G .

Efficiency. Proofs consist of a group elements (the VRF
result H1(m)k) and two integer which is the size of the order of
the group ((s, t)). For 256-bit elliptic curve, this leads to proofs
of size 768 bits (96 bytes).

B Analysis of Equivocation Detection

CONIKS participants check for non-equivocation by consulting
auditors to ensure that they both see an identical STR for a given
provider P. Clients perform this cross-verification by choosing
uniformly at random a small set of auditors from the set of
known auditors, querying them for the observed STRs from
P, and comparing these observed STRs to the signed tree root
presented directly to the client by P. If any of the observed
STRs differ from the STR presented to the client, the client is
sure to have detected an equivocation attack.

B.1 Single Equivocating Provider

Suppose that foo.com wants to allow impersonation of a user
Alice to hijack all encrypted messages that a user Bob sends
her. To mount this attack, foo.com equivocates by showing
Alice STR A, which is consistent with Alice’s valid name-to-
key binding, and showing Bob STR B, which is consistent with
a fraudulent binding for Alice.

If Bob is the only participant in the system to whom foo.com
presents STR B, while all other users and auditors receive STR
A, Alice will not detect the equivocation (unless she compares
her STR directly with Bob’s). Bob, on the other hand, will
detect the equivocation immediately because performing the
non-equivocation check with a single randomly chosen auditor
is sufficient for him to discover a diverging STR for foo.com.

A more effective approach for foo.com is to choose a subset
of auditors who will be presented STR A, and to present the
remaining auditors with STR B. Suppose the first subset contains
a fraction f of all auditors, and the second subset contains
the fraction 1− f . If Alice and Bob each contact k randomly
chosen providers to check consistency of foo.com’s STR, the
probability that Alice fails to discover an inconsistency is f k,
and the probability that Bob fails to discover an inconsistency is
(1− f )k. The probability that both will fail is ( f − f 2)k, which is
maximized with f = 1

2 . Alice and Bob therefore fail to discover
equivocation with probability

ε ≤
(

1
4

)k

In order to discover the equivocation with probability 1− ε ,
Alice and Bob must perform − 1

2 log ε
2 checks. After perform-

ing 5 checks each, Alice and Bob would have discovered an
equivocation with 99.9% probability.
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Figure 8: This graph shows the probability that Alice
and Bob will detect an equivocation after each per-
forming k checks with randomly chosen auditors.

B.2 Colluding Auditors
Now suppose that foo.com colludes with auditors in an attempt
to better hide its equivocation about Alice’s binding. The col-
luding auditors agree to tell Alice that foo.com is distributing
STR A while telling Bob that foo.com is distributing STR B. As
the size of the collusion increases, Alice and Bob become less
likely to detect the equivocation. However, as the number of
auditors in the system (and therefore, the number of auditors
not participating in the collusion) increases, the difficulty of
detecting the attack decreases.

More precisely, we assume that foo.com is colluding with a
proportion p of all auditors. The colluding auditors behave as
described above, and foo.com presents STR A to a fraction f
of the non-colluding providers. Alice and Bob each contacts k
randomly chosen providers. The probability of Alice failing to
detect equivocation within k checks is therefore (p+(1− p) f )k

and the probability of Bob failing to detect equivocation within
k checks is (p+(1− p)(1− f ))k. The probability that neither
Alice nor Bob detects equivocation is then

ε = ((p+(1− p) f )(p+(1− p)(1− f )))k

As before, this is maximized when f = 1
2 , so the probability that

Alice and Bob fail to detect the equivocation is

ε ≤
(

1+ p
2

)2k

If p = 0.1, then by doing 5 checks each, Alice and Bob will
discover equivocation with 99.7% probability.

Figure 8 plots the probability of discovery as p and k vary. If
fewer than 50% of auditors are colluding, Alice and Bob will
detect an equivocation within 5 checks with over 94% probabil-
ity. In practice, large-scale collusion is unexpected, as today’s
secure messaging services have many providers operating with
different business models and under many different legal and
regulatory regimes. In any case, if Alice and Bob can agree on a
single auditor whom they both trust to be honest, then they can
detect equivocation with certainty if they both check with that
trusted auditor.

16



USENIX Association  24th USENIX Security Symposium 399

Investigating the Computer Security Practices and Needs of Journalists

Susan E. McGregor
Tow Center for Digital Journalism

Columbia Journalism School

Polina Charters, Tobin Holliday
Master of HCI + Design, DUB Group

University of Washington

Franziska Roesner
Computer Science & Engineering

University of Washington

Abstract
Though journalists are often cited as potential users of

computer security technologies, their practices and men-
tal models have not been deeply studied by the academic
computer security community. Such an understanding,
however, is critical to developing technical solutions that
can address the real needs of journalists and integrate
into their existing practices. We seek to provide that in-
sight in this paper, by investigating the general and com-
puter security practices of 15 journalists in the U.S. and
France via in-depth, semi-structured interviews. Among
our findings is evidence that existing security tools fail
not only due to usability issues but when they actively in-
terfere with other aspects of the journalistic process; that
communication methods are typically driven by sources
rather than journalists; and that journalists’ organizations
play an important role in influencing journalists’ behav-
iors. Based on these and other findings, we make recom-
mendations to the computer security community for im-
provements to existing tools and future lines of research.

1 Introduction
In recent decades, improved digital communication tech-
nologies have reduced barriers to journalism worldwide.
Security weaknesses in these same technologies, how-
ever, have put journalists and their sources increasingly
at risk of identification, prosecution, and persecution by
powerful entities, threatening efforts in investigative re-
porting, transparency, and whistleblowing.

Recent examples of such threats include intensifying
U.S. leak prosecutions (e.g. [46, 54]), the secret seizure
of journalists’ phone records by the U.S. Justice De-
partment [55], the collection of journalists’ emails by
the British intelligence agency GCHQ [11], politically-
motivated malware targeting journalists (among oth-
ers) [13, 36, 41, 45], and other types of pervasive digital
surveillance [34]. In the U.S., these developments have
led to a documented “chilling effect”, leading sources
to reduce communication with journalists even on non-
sensitive issues [25, 40]. Elsewhere, risks to journalists

and sources cross the line from legal consequences to the
potential for physical harm [42, 57, 58].

Responses to these escalating threats have included
guides to best computer security practices for journal-
ists (e.g., [17, 43, 47, 62]), which recommend the use
of tools like PGP [67], Tor [22], and OTR [14]. More
generally, the computer security community has devel-
oped many secure or anonymous communication tools
(e.g., [4, 10, 14, 21–23, 63, 67]). These tools have seen
relatively little adoption within the journalism commu-
nity, however, even among the investigative journalists
that should arguably be their earliest adopters [48].

To design and build tools that will successfully protect
journalist-source communications, it is critical that the
technical computer security community understand the
practices, constraints, and needs of journalists, as well as
the successes and failures of existing tools. However, the
journalistic process has not been deeply studied by the
academic computer security community. We seek to fill
that gap in this paper, which is the result of a collabora-
tion between researchers in the journalism and computer
security communities, and which is targeted at a techni-
cal computer security audience.

To achieve this, we develop a grounded understand-
ing of the journalistic process from a computer se-
curity perspective via in-depth, semi-structured inter-
views. Following accepted frameworks for qualitative
research [18, 30, 35], we focus closely on a small number
of participants. We interviewed 15 journalists employed
in a range of well-respected journalistic institutions in
the United States and France, analyzing these interviews
using a grounded theory approach [18, 30]. We then syn-
thesize these findings to shed light on the general prac-
tices (Section 4.3), security concerns (Section 4.4), de-
fensive strategies (Section 4.5), and needs (Section 4.6)
of journalists in their communications with sources.

Our interviews offer a glimpse into journalistic pro-
cesses that deal with information and sources of a range
of sensitivities. Some of our participants report being
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the direct targets of threats like eavesdropping and data
theft: for example, one participant received threatening
letters and had his laptop (and nothing else) stolen from
his home while working on sensitive government-related
stories. Others discuss their perceived or hypothetical se-
curity concerns, which we systematize in Section 4.4 —
along with threats that participants tended to overlook,
such as the trustworthiness of third-party services.

By cataloguing the computer security tools that our
participants do and don’t use (Section 4.5), we reveal
new reasons for their successes or failures. For example,
built-in disk encryption is widely used among our partic-
ipants because it is both easy-to-use and does not require
explicit installation. However, we find that many security
tools are not used regularly by our participants. Beyond
the expected usability issues, we find that the most crit-
ical failures arise when security tools interfere with an-
other part of a journalist’s process. For example, anony-
mous communication tools fail when they compromise a
journalist’s ability to verify the authenticity of a source or
information. As one participant put it: “If I don’t know
who they are and can’t check their background, I’m not
going to use the information they give.” This requirement
limits the effectiveness even of tools developed specifi-
cally for journalists — such as SecureDrop [26], which
supports anonymous document drops — and highlights
how crucial it is for computer security experts who de-
sign tools for journalists to understand and respect the
requirements of the journalistic process.

Based on our findings, we make recommendations
for technical computer security researchers focusing on
journalist-source communications, including:
• Focus on sources: Journalists often choose commu-

nication methods based on sources’ comfort with
and access to technology, rather than the sensitivity
of information — particularly when sources are on
the other side of a “digital divide” (e.g., low-income
populations with limited access to technology).

• Consider journalistic requirements: Security tools
that impede essential aspects of the journalistic pro-
cess (e.g., source authentication) will struggle to see
widespread adoption. Meanwhile, unfulfilled tech-
nical needs (e.g., the absence of a standard know-
ledge management tool for notes) may cause jour-
nalists to introduce vulnerabilities into their pro-
cess (e.g., reliance on third-party cloud tools not
supported by their organization). These unfulfilled
needs, however, present opportunities to integrate
computer security seamlessly into new tools with
broader applicability to the field of journalism.

• Beyond journalist-source communications: A jour-
nalist’s organization and colleagues play an impor-
tant role in the security of his or her practices; secu-
rity tools must consider this broader ecosystem.

We consider these and other lessons and recommen-
dations in more detail below. Taken together, our find-
ings suggest that further collaboration between the com-
puter security and journalism communities is critical,
with our work as an important first step in informing and
grounding future research in computer security around
journalist-source communications.

2 Related Work
We provide context for our study through a survey of
three types of related works: studies of journalists and
computer security, computer security guidelines devel-
oped specifically for journalists, and secure communica-
tion tools.

Studies of journalists and computer security. Sev-
eral recent studies interviewed or surveyed journalists
(among others) in Mexico [58], Pakistan [42], Tibet [15]
and Vietnam [57] to shed light on the risks associated
with their work, as well as their use and understanding
of computer security technologies (such as encryption).
Despite the different context, our findings echo some of
the findings in these studies: for example, that maintain-
ing communication with sources may take precedence
over security [57], that meeting in person may be prefer-
able to digital communication [15], and that the use of
more sophisticated computer security tools is typically
limited even in the face of real threats, including risk of
physical harm [42, 57, 58]. These prior studies primar-
ily recommended increased computer security education
and training for journalists; though we concur, our work
focuses more on technical recommendations.

Though most journalists in countries like the United
States do not face physical harm, recent interviews of
U.S. journalists and lawyers [40] revealed a distinct
chilling effect in these fields resulting from revelations
about widespread government surveillance. For exam-
ple, journalists reported increased reluctance by sources
to discuss even non-sensitive topics. Another recent re-
port [48] provides quantitative survey data about the use
of computer security tools by investigative journalists,
suggesting (as we also find) that sophisticated computer
security tools have seen limited adoption. These studies
begin to paint a picture of the computer security men-
tal models and needs of journalists; we expand on that
understanding in this work and distill from it concrete
technical and research recommendations.

The computer security community has previously
studied the usability and social challenges with encryp-
tion among other populations (e.g., [27, 65]). Where ap-
plicable, we draw comparisons or highlight differences
to the findings of these works.

Computer security guidelines for journalists. Recent
concerns about government surveillance have prompted
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journalists in the U.S. and elsewhere to weigh computer
security more seriously. For example, several groups
have developed computer security guidelines and best
practices for journalists [17, 43, 47, 62]. Online guides
for journalists and other technology users (e.g., [16]) also
abound. These efforts highlight the need for engagement
between the journalism and computer security commu-
nities, but generally take the approach of educating jour-
nalists to use existing available tools, such as GPG and
Tor. The goal of our work is to provide the developers of
new technologies with a deep, grounded understanding
of the needs and security concerns of journalists.

Secure communication. A large body of work exists
on secure communication and data storage, both com-
mercially and in the computer security research litera-
ture. For example, various smartphone applications aim
to provide secure text messaging or calling [6, 60, 64];
a range of desktop applications provide disk encryp-
tion and cleaning [1, 5, 8]; Tor [22, 61] aims to pro-
vide anonymous web surfing; Tails [4] aims to pro-
vide a private and anonymous operating system; and
tools like GPG and CryptoCat provide encryption for
email and chat messages respectively [2, 31]. Several
email providers have also attempted to provide secure
and anonymous email [3, 44]. Though valuable, most
of these tools and techniques have known weaknesses:
anonymous email, for example, lacks essential legal pro-
tections [38, 51]. Tor and Tails do not protect against all
threats and present usability challenges (e.g., [49]). Fi-
nally, many applications that appear to provide certain
security properties fail to provide those guarantees in the
face of government requests [33, 56].

While the above-mentioned commercial tools are
among those frequently recommended to journalists, the
computer security research community has also consid-
ered anonymous communications in depth. These ef-
forts include developing, analyzing, and attacking sys-
tems like trusted relays, mix systems, and onion routing
such as that used in Tor. Good summaries of these bodies
of work can be found in [21] and [23]. Secure messaging
in general is summarized in [63]. There have also been
a number of efforts toward creating self-destructing data,
including early work by Perlman [52] and more recent
work on Vanish [28, 29]. An analysis of different ap-
proaches for secure data deletion appears in [53]. There
have also been significant efforts toward ephemeral and
secure two-way communications, such as the off-the-
record (OTR) messaging system [14, 32].

Though the above-mentioned technologies are valu-
able, our research suggests that many of them require
steps or actions at odds with substantive aspects of the
journalistic process or technical access issues of journal-
ists and/or their sources. Moreover, these access issues

are often most acute among the most vulnerable source
populations with whom journalists work (e.g., sources
involved in the criminal justice system).

Though some journalism-specific tools have been de-
veloped and deployed, notably SecureDrop [20, 26] and
similar systems, our findings suggests that such anony-
mous document drops — while more secure — comprise
only a small portion of journalists’ source material. In
a similar vein, Witness [7] and the Syria Accountability
Project [59] focus on collecting and securely storing sen-
sitive eyewitness data, but are not necessarily designed
to protect the kind of ongoing communications that our
research and other sources [37, 39] suggest commonly
drives sensitive reporting.

3 Methodology
To make possible a sufficiently rigorous qualitative,
grounded theory based [18, 30] analysis of the general
and computer security needs and practices of journalists,
we followed the recommendation of Guest et al. [35]
to conduct 12-20 interviews, until new themes stopped
emerging [18]. Our in-depth, semi-structured interviews
were conducted with 15 journalists. Table 1 summarizes
our participants and interviews.

Human subjects and ethics. Our study was approved
by the human subjects review boards (IRBs) of our insti-
tutions before any research activities began. We obtained
informed written or verbal consent from all participants,
both to participate in the study as well as to have the in-
terviews audio recorded. We transmitted and stored these
audio files only in encrypted form. We did not record or
store any explicitly identifying metadata (e.g., the name
of a journalist or organization), nor do we report those
here. Though we asked participants to reflect on recent
source communications, including those that touched on
sensitive information, we explicitly asked them not to
reveal identifying information about specific sources or
stories. As journalists are normally responsible for pro-
tecting source identities, these constraints were not out of
the ordinary; indeed, we felt that the resulting interviews
did not contain unnecessarily sensitive details.

3.1 Recruitment
We recruited our participants via our existing connec-
tions to journalistic institutions, usually via verbal or
email contact with a staff member followed by an email
containing our recruitment blurb. For better anonymity,
participants at each organization were not recruited di-
rectly but were selected by our contact person according
to individuals’ availability at the time of the interviews.
In communicating with the main organizational contacts,
we stressed a desire for balance in terms of participants’
technical skill and the sensitivity of their work. The vast
majority of interviews were conducted in-person, though
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a few were conducted via Skype.
For the purposes of this study, we limited our search

for participants to journalists directly employed by well-
respected journalistic institutions rather than freelance
journalists. This focus allows us to explore the role of
a journalist’s employer in his or her computer security
practices (or lack thereof). Our interviewees came from
six different news organizations. Of these, four represent
newsrooms and journalists who deal regularly with inter-
national (including non-Western) sources and stories of
national and/or international profile. So while the orga-
nizations themselves are based in the U.S. and/or France,
their work involves sources outside of those countries as
well. The remaining organizations have a primarily U.S.-
focused source base.

Nine interviews were conducted in France with jour-
nalists from French and U.S. journalistic institutions.
Two of these interviews were conducted in French and
were translated to English by another researcher. Both
the interviewer and the translator are proficient in French.
Due to our qualitative interview method and correspond-
ing small sample size, we do not attempt to draw conclu-
sions about differences between French and U.S. jour-
nalists in this work.

We do note that our participants are not necessarily
representative of all journalists. It may be that journalists
who agreed to speak with us are more (or less) security-
conscious than those who declined, or that that the expe-
riences of U.S. and French journalists differ from those
of journalists in other countries. We also expect that the
practices of freelance journalists differ from those of in-
stitutional journalists. Future work should study these
questions; nevertheless, our interviews give us a valuable
glimpse into the computer security practices and needs of
a significant subset of the journalistic community.

3.2 Interview Procedure
One of the researchers conducted all of the interviews
in the period from November 2014 through February
2015. Interviews were audio recorded and later tran-
scribed and coded (more details below) by the remain-
ing (non-interviewing) researchers. Each interview took
between 15-45 minutes and had two parts:

Part 1: Questions about a specific story
We first prompted participants to tell us about the prac-
tices and tools that they use as journalists by asking them
to think about a specific recent example. We asked:

Please think about a specific story that you
have published in approximately the last year
for which you spoke with a source. (There is
no need to tell us the specific story or source,
unless you believe this information is not sen-
sitive and would like to share it.)

In this context, we then asked about:
• Whether they had a relationship with the source

prior to this story;
• How they first contacted the source about the story;
• Primary form(s) of communication with the source;
• Whether they would feel comfortable asking this

source to use a specific communication method; and
• How representative this example is of their commu-

nication with sources in general.

Part 2: General questions
We then asked participants more general questions about
their work as a journalist, including questions about:
• Their note-taking and storage process, and whether

they take any steps to protect or share their notes;
• Problems that might arise if their digital notes or

communications were revealed;
• Any non-technological strategies they use to protect

themselves or their sources;
• Whether someone has ever recommended they use

security-related technology in their work;
• How they define “sensitive” information or sources

in their work;
• Any specific security-related problems to which

they wish they had a solution;
• What kinds of devices they use, and who owns

and/or administers them;
• Whether they have anyone, inside or outside of their

organization, to whom they can go for help with
computer security or other technologies; and

• Their self-described comfort level with technology
and security-related technology.

Finally, we gave participants an opportunity to share any
additional thoughts with us and to ask us any questions.

Throughout the interviews, we allowed participants to
elaborate and ask clarification questions, and we asked
follow-up questions where appropriate. As a result, the
interviews did not necessarily proceed in the same order
nor did they address identical questions.

3.3 Coding
To analyze the interviews, we used a grounded the-
ory [18, 30] approach in which we developed a set of
themes, or “codes”, via an iterative process. After the
interviewing researcher had conducted nearly half of
the interviews, three additional researchers each inde-
pendently listened to and transcribed several interviews.
These researchers then met in person to develop, test, and
iteratively modify an initial set of codes. Two researchers
then independently coded each interview. As additional
interviews were performed, the researchers reexamined
and modified the codebook as necessary, going back and
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Participant Interview Technical Expertise
Number Identifier Gender Organization (Type) Location Language Length General Security

1 P0 Male Large, established France English 32 min High High
2 P1 Female Large, new USA English 31 min High Medium
3 P2 Female Large, established France English 39 min Medium Low
4 P3 Female Large, established France English 39 min High Medium
5 P4 Female Large, established France English 42 min Medium Low
6 P5 Male Large, established France French 24 min Medium Low
7 P6 Male Large, established France French 23 min Medium Medium
8 P7 Female Large, established France English 27 min High Low
9 P8 Male Large, established France English 20 min High Medium
10 P9 Male Large, new USA English 41 min High Medium
11 P10 Female Large, new USA English 31 min Medium Medium
12 P11 Female Large, new USA English 19 min Medium Low
13 P12 Female Small, new USA English 17 min Medium Low
14 P13 Female Small, new USA English 34 min High Low
15 P14 Female Small, established USA English 25 min Medium Medium

Table 1: Interviews. One researcher conducted all interviews between November 2014 and February 2015, at six well-respected
journalistic institutions. The two interviews conducted in French were translated to English by another researcher (both researchers
are proficient in French). On the right, we report participants’ general and security-specific technical expertise; these values are
self-reported. Organization size descriptors are based on those used by the Online News Association (http://journalists.
org/awards/online-journalism-awards-rules-eligibility/). “New” organizations have existed for 10 years or less.

recoding previously coded interviews. This iterative pro-
cess was repeated until the final codebook was created
and all interviews were coded. The researchers then met
in person to reach consensus where possible. We report
inter-coder agreement inline with our results.

4 Results
We now turn to a discussion of results from our inter-
views. In designing and analyzing our interviews, we
focused on several primary research questions, around
which we organize this section:

1. What are the general practices of journalists in
communicating with their sources?

2. What are the security concerns and threat models of
journalists with respect to source communication?

3. What, if any, defensive strategies (technical or oth-
erwise) do journalists employ to protect themselves
or their sources? How and why do some possible
defensive strategies succeed and others fail?

4. What are the needs of journalists in their communi-
cations with sources that are currently hampered or
unfulfilled by computer security technologies?

By applying an appropriate qualitative analysis [18,
30, 35], we identify important themes and other obser-
vations present in the interviews. Where applicable, we
report the raw number of participants who discussed a
certain theme in order to give a rough indication of its
prevalence amongst journalists. Our results are not quan-
titative, however: a given participant failing to mention
a particular theme does not necessarily mean that it is
inapplicable to him or her.

Each interview was coded independently by two re-
searchers: a primary coder who coded all interviews, and

two additional coders who coded non-overlapping sets of
9 and 6 interviews respectively. We report raw numbers
based on the primary coder, with Cohen’s kappa (κ) as a
measure of inter-coder agreement [19] (averaging kappas
for the two sets of coders). The average kappa for all re-
sults in the paper is 0.88. Fleiss rates any value of kappa
over 0.75 as excellent agreement and between 0.40 and
0.75 as intermediate to good agreement [24].

4.1 Participants
Our participants are journalists working at major jour-
nalistic institutions in both the United States and France.
Table 1 summarizes our 15 interviews and participants.

As reflected in Table 1, we spoke with journalists
across the spectrum of general technical and computer
security expertise. Some of our participants comfortably
discussed their use of security tools such as encrypted
chat and email, while others did not use or mention any
security technologies at all. Regardless of technical and
computer security expertise, our participants work with
sources and stories of varying sensitivity. Stories consid-
ered “sensitive” by our participants include those involv-
ing information provided off-the-record by government
officials, leaked or stolen documents, vulnerable popula-
tions (e.g., abuse victims or homeless people), and per-
sonal information that sources did not want published.

4.2 Key Findings
Before diving into our detailed results, we briefly high-
light our key findings.

First, we find that journalist-source communications
are often driven by the source. Participants tended to se-
lect communication mechanisms based on the comfort
level, capacities, and preferences of sources, deferring to
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them to specify the use of computer security tools rather
than imposing these on sources. In this sense, the exist-
ing communication habits of sources are a primary ob-
stacle to adoption of secure communication tools among
journalists. In particular, the digital divide, in which
source populations do not have access to or knowledge
about technology, presents a serious challenge.

Additionally, our study reveals both expected secu-
rity concerns (e.g., government surveillance, disciplinary
consequences for sources) and less expected security
concerns (e.g., financial impact on organizations) held
by our participants. Participants described many ad hoc
defensive strategies to address these concerns, including
ways to authenticate sources, to obfuscate information in
filenames and notes, and to obfuscate communications
metadata by contacting sources through intermediaries.

Finally, beyond the expected usability and adoption
challenges of computer security technologies, we find
that a major barrier to adoption of these tools arises
when they interfere with a journalist’s other professional
needs. For example, participants described the challenge
of authenticating anonymous sources, and more gener-
ally, the need to reduce communication barriers with
sources. Our study also reveals the need among journal-
ists for a more general knowledge management platform,
for which today’s journalists use ad hoc methods based
on tools like Google Docs and Evernote. This need may
represent an opportunity to seamlessly integrate stronger
computer security properties into journalistic practices.

4.3 General Practices
We begin by overviewing the general journalistic pro-
cess described by our participants, in order to provide
important context for the computer security community
when it designs tools for journalists. We highlight se-
curity implications where applicable, and dive into these
more deeply in later subsections.

Finding sources. Many participants discussed having
long-term sources (10 of 15), particularly for sensitive in-
formation (e.g., sources in government). A different sub-
set described finding new sources relevant to new stories
(10 of 15), often by following referrals from previously
known contacts. The importance of long-term sources
poses security challenges: for example, it may be hard
to protect metadata about communications over a long
period, especially if the journalist’s communication with
that source is not always sensitive (and thus not always
conducted over secure channels).

Communicating with sources. Our participants typi-
cally communicate with sources by email, phone, SMS,
and/or in person. Security tools, such as encrypted mes-
saging, were used only in exceptional cases where the
context was known in advance to be sensitive, and both

the journalist and source were sufficiently tech-savvy.
The choice of communication technology is typically

determined by what is most convenient for the source,
including the platform on which source is most likely to
respond. Several participants discussed the importance
of reducing communication barriers to sources. In the
words of P13, “taking down barriers is the most impor-
tant thing to source communication.” Thus, if the source
is concerned about security and sufficiently tech-savvy,
the journalist may use security technologies to communi-
cate; however, several of our participants expressed hes-
itation about interfering with a source’s decision about
what form of communication — even if insecure — is ac-
ceptable. For example, P9 said:

[The source] probably understand[s] the
threat model they’re under better than I would.
So, it brings up an interesting question: do you
go with what they’re comfortable with? Or do
you say, alright, actually let me assess what’s
going on and get back to you with what would
be appropriate. [...] People’s first impression
is that they would go by what the source feels
comfortable doing. As opposed to stepping in
and being paternalistic about it.

This finding suggests that the computer security commu-
nity must consider sources as well as journalists when
developing secure communication tools for journalism.

Building trust with sources. In order to feel comfort-
able providing sensitive information, a source must trust
the journalist. While some trust with sources is built
naturally over time, several participants mentioned ex-
plicit strategies for building trust with sources, includ-
ing: speaking with people informally before they become
official sources, being explicit with sources about what
is “on the record,” respecting sources’ later requests not
to include something in a story, and using security tech-
nologies to protect communications.

Communication tools. Table 2 summarizes the non-
security-specific technologies participants mentioned us-
ing in their work. Primary communication tools include
phone, SMS, and email, with limited use of social media
to contact sources (usually as a last resort). In addition to
digital communication, in-person meetings with sources
are common. While some participants reported meeting
in person for security reasons, most cited this as a means
to gain higher quality information from sources.

Among storage technologies, we note that Google
Docs/Drive is particularly popular, and that many of the
tools mentioned involve syncing local data to cloud stor-
age. Though cloud storage may have security implica-
tions (e.g., exposing sensitive data to third parties), few
participants voiced these concerns explicitly.
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Number of Inter-coder
Tool or technology participants (of 15) agreement (κ)
Phone 15 1.00
Email (unencrypted) 15 1.00
Google Docs/Drive 8 1.00
Microsoft Word 8 1.00
SMS 8 1.00
Social media 7 0.83
Dropbox 4 1.00
Skype 4 1.00
Evernote 3 1.00
Text editor 2 1.00
Chat (unencrypted) 1 1.00
Scrivener 1 1.00

Table 2: Non-security-specific tools. This table reports the
number of participants who mentioned using various non-
security-specific tools or technologies in their work.

Devices and accounts. Though participants typically
reported relatively strong “data hygiene” practices for
email — i.e., conducting work-related communications
only from a work email account — everyone we spoke
to used at least one personal device or account for com-
municating with sources, including personal laptops and
(more commonly) personal cell phones. Many partici-
pants reported using iPhones or iPads, often to take pho-
tos of documents or audio-record interviews. These de-
vices are not necessarily encrypted, and the resulting files
may be automatically backed up to cloud storage. Per-
sonal/professional distinctions were often blurred for so-
cial media accounts, and participants frequently reported
using personal Google Drive, Dropbox, or Evernote ac-
counts to sync, store and share data, particularly when
the organization did not have its own enterprise Google
Apps instance set up. As we discuss later, even partici-
pants who exhibited otherwise careful data security prac-
tices did not express concern about the security implica-
tions of storing data with third parties.

Many participants (7 of 15) reported that their em-
ployers have administrative access to their work com-
puter, particularly at larger or older organizations. From
a security perspective, this arrangement may allow or-
ganizations to ensure that journalists have updated sys-
tems and do not accidentally install malware, but it may
also prevent journalists from installing security tools. It
could also potentially expose sensitive information to the
broader organization.

Two participants reported taking actions to circumvent
the administrative rights of their employers: one insisted
on being granted administrative access officially, while
the other silently disabled his employer’s remote access
due to security and privacy concerns. He also mentioned
being required to provide his laptop decryption key to his
employer; he complied, but then re-encrypted his laptop
and kept the new key to himself.

Note-taking. The journalists we spoke to described a
variety of strategies for taking notes, most commonly
audio-recording (13 of 15), electronic notes (12 of 15),
and handwritten notes (10 of 15). We were somewhat
surprised by the prevalence of audio recording, since
such recordings may be particularly sensitive. Only two
participants explicitly mentioned that they record audio
only when intending to publish a full transcription.

We also asked participants about whether they share
their notes with others. No one we spoke with ever shares
notes outside of their organization, but many (13 of 15)
sometimes share portions of notes within their organiza-
tion. This sharing is typically done when working with
another journalist on a story or for fact-checking. Most
participants reported using some kind of third-party plat-
form (e.g., Google Docs or Dropbox) for storing and
sharing information. Several mentioned explicit strate-
gies for sanitizing or redacting notes before sharing them
(e.g., using codenames or omitting information); we dis-
cuss such strategies further in Section 4.5.

Knowledge management. We identify a possible oppor-
tunity for computer security in the knowledge manage-
ment practices of journalists. In particular, several partic-
ipants discussed strategies for organizing their notes and
references for different projects and stories over time,
including the use of file system folders, Google Drive,
Evernote, and Scrivener. These knowledge management
techniques were all ad hoc; no two participants described
identical techniques. Indeed, several participants explic-
itly discussed the lack of a good knowledge management
tool for journalists as a challenge. As we discuss in Sec-
tion 4.6, this gap represents an opportunity for integrat-
ing computer security into the journalistic process.

4.4 Security Concerns
We now turn specifically to security-related issues, con-
sidering first the security concerns voiced in our inter-
views. Because one researcher’s prior experience in the
journalism community suggested that the term “threat
modeling” is familiar but not widely understood, we
elicited these concerns indirectly, by asking: “Of the in-
formation that you currently store digitally, would it be
problematic if it were to become known to people or or-
ganizations outside of you and/or your news organiza-
tion? If so, who would be at risk?” Because the con-
cept of risk is dependent on a judgment about vulnerabil-
ity, we also asked participants about their view on what
kind of sources or information they considered “sensi-
tive,” whether or not they had worked with it personally.

Concrete threats experienced. A small number of par-
ticipants reported encountering direct tangible threats or
harms themselves in the course of their work. For ex-
ample, one journalist told us that during his time report-
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Category Concern Number of participants (of 15) Inter-coder agreement (κ)
Threats to Discovery by government 6 0.88
sources Disciplinary action (e.g., lost job) 6 0.88

Reputation/personal consequences 6 0.88
Generally vulnerable populations (e.g., abuse victims) 4 0.65
Discovery by others wishing to reveal identity 3 0.80
Physical danger 3 0.86
Prison 2 1.00

Threats to Reputation consequences (incl. loss of source’s trust) 9 0.89
journalist or Being “scooped” (i.e., journalistic competition) 6 1.00
organization False or misleading information from a source 4 0.36

Physical threats (incl. theft) 2 0.50
Financial consequences 1 1.00

Threats to Political / foreign relations consequences 1 0.50
others Other 1 1.00

Table 3: Security concerns. We report how many participants mentioned various threats to themselves, to their sources, to their or-
ganizations, or to others. These are not necessarily threats that participants have directly encountered or acted on themselves — that
is, they discussed threats both in a hypothetical sense (concerns they have) and a concrete sense (real issues they have encountered).

ing on government-related scandals, his work phones had
been wiretapped, his laptop (and nothing else) had been
stolen from his home, and he had received letters threat-
ening his and his family’s lives and safety. Another de-
scribed communications with contacts in a foreign re-
gion, in which phone communications were regularly ter-
minated when the conversation broached what she per-
ceived as sensitive topics. In total, 6 participants men-
tioned the knowledge or strong suspicion that their or
their sources’ digital communications had been retroac-
tively collected or actively monitored.

General concerns. In addition to these concrete attacks
and threats, participants mentioned a range of risks that
they consider in communications with sources. These
concerns are organized and summarized in Table 3.

Many of the general security concerns reported by
participants were in line with our expectations: govern-
ments attempting to identify sources, reputational threats
or harms, and legal or disciplinary consequences. The
most common concern involved reputational harm and
loss of credibility by the journalist and his or her organi-
zation, largely characterized as a compromised ability to
gain access to and establish trust with future sources.

Participants also mentioned several threats that we
had not initially anticipated. For example, one partic-
ipant discussed the possible financial consequences to
his organization when it reported on a scandal involv-
ing a major advertiser. Several participants mentioned
concern about being “scooped” by other journalists if
they lost their competitive advantage in having early ac-
cess to certain information. One participant worried that
her web searches on sensitive work-related topics would
make her a surveillance target in her personal life, so she
avoided doing those searches on her home computer.

Overlooked concerns. We identify several security con-

cerns that were generally overlooked by our participants,
despite being well-known to computer security experts.

Third parties. Only one participant expressed concern
about the trustworthiness of major third parties, such as
Apple, Google, or Microsoft. While some participants
expressed hesitation about how secure a certain practice
is, they did not explicitly discuss these major technol-
ogy providers as being a possible security risk. Unfor-
tunately, this implicit trust assumption may not be war-
ranted — e.g., consider reports of government or other
compromises of major companies [34, 66] and the FBI’s
National Security Letters compelling service providers
to release information [50].

Metadata. While a few participants expressed concerns
about the metadata connecting them to their sources (dis-
cussed further in Section 4.5 below), most did not dis-
cuss metadata as a threat even implicitly. Indeed, even
those who explicitly took steps to protect their notes or
communications (e.g., using encryption) did not gener-
ally discuss the need to similarly protect metadata.

Legal concerns. Finally, there was virtually no mention
in any of the interviews of the risk of lawsuit resulting
from or discovery of digitally stored or communicated
information. There are several possible explanations for
this, though comments from most of those interviewed
suggest that they did not feel their own work was ever
likely to be the subject of a government investigation.

4.5 Defensive Strategies

Whether or not they had experienced concrete threats,
most participants reported using some defensive strate-
gies, including security technologies as well as non-
technical or technology-avoidant strategies. Figure 4
systematizes these strategies, and Table 5 summarizes
participants’ use of specific security technologies.
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Number of Inter-coder
Category Defense participants (of 15) agreement (κ)
Technical defenses Encrypting digital notes 6 1.00

Keeping files local (not in the cloud) 5 0.89
Encrypted communication with colleagues 3 0.81
Circumventing organization’s admin rights on computer 2 0.50
Encrypted communication with sources 2 0.50
Anonymous communication (e.g., over Tor) 2 1.00
Air-gapping a computer (keeping it off the internet) 1 1.00
Using additional, secret devices or temporary burner phones 1 1.00
Visually obscuring information in photos/videos (e.g., blurring) 1 0.50

Ad hoc non-technical Using code names in communications or notes 8 1.00
strategies Claiming bad handwriting as a defense for written notes 3 1.00

Contacting sources through intermediaries 2 0.81
Citing multiple sources to create plausible deniability 1 1.00
Using some method to authenticate source 1 1.00

Explicitly avoiding Communicating in person 7 0.72
technology Self-censoring (avoiding saying things in notes/email) 6 0.86

Communicating only vague information electronically 5 0.83
Physically mailing digital data (e.g., on USB stick) 2 1.00

Physical defenses Home alarm system 1 1.00
Physical safe (e.g., to store notes) 1 1.00
Shredding paper documents 1 1.00

Table 4: Defensive techniques. We report the number of participants who mentioned using various defensive techniques to protect
themselves, their notes, and/or their sources.

Number of participants (of 15) Inter-coder
Security tool or technology Use regularly Tried but don’t use Haven’t tried Not mentioned agreement (κ)
Dispatch 0 0 1 14 1.00
Encrypted chat (e.g., OTR, CryptoCat) 5 0 1 9 0.90
Encrypted email (e.g., GPG, Mailvelope) 4 4 1 6 0.92
Encrypted messaging (e.g., Wickr, Telegram) 0 1 0 14 1.00
Encrypted phone (e.g., SilentCircle) 0 2 0 13 1.00
Other encryption (e.g., hard drive, cloud) 5 1 0 9 1.00
Password manager 1 0 1 13 1.00
SecureDrop 0 0 1 14 1.00
Tor 2 1 0 12 0.89
VPN 2 1 0 12 1.00

Table 5: Security tools. This table lists security technologies discussed by participants. We report on the number who regularly use,
have tried but don’t regularly use, and haven’t tried each tool. We consider use to be “regular” even if it depends on the sensitivity
of the source or story, i.e., if the journalist regularly employs that tool when appropriate, even if not in every communication.

Non-technical defensive strategies. Since not all of our
participants were computer security experts — and cer-
tainly most journalists are not — we were particularly
interested in non-technical or otherwise ad hoc strate-
gies that they have developed to protect themselves,
their notes, or their sources. As reflected in Table 4, a
commonly mentioned non-technical strategy is avoiding
technology entirely, e.g., meeting sources face-to-face,
physically mailing digital data, and/or communicating
only vague information electronically. For example, P6
told us (translated from French):

I don’t use phones, I don’t send email. Some-
times I send SMS messages, but these messages
are very vague. [Later in the interview he
adds:] I don’t use technical methods [to pro-
tect my sources]. I prefer to work in an old
fashioned way. A little bit like Bin Laden did.

The reference to Bin Laden echoes an issue raised in a re-
cent report about U.S. journalists, which describes how
concerns about surveillance and increased leak investiga-
tions have caused journalists to feel like they must “act
like criminals” to communicate with sources [40].

Some of these non-technical strategies, however, were
cited specifically for their journalistic rather than their
security value. In explaining the choice to meet a source
primarily in person, participant P11 noted:

I think it’s always preferable because of the
level of intimacy and information that you
gain. You get better results and [...] you can
sort of verify in different ways the stories that
they’re telling you.

Ad hoc defensive strategies. We also uncovered a num-
ber of ad hoc strategies that make incidental use of tech-
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nology. For example, participant P0 described his strat-
egy for authenticating a source whose email address he
found on a public mailing list: he asked that source to
post a particular sentence on Twitter, allowing P0 to ver-
ify that the email and Twitter accounts indeed belonged
to the same individual. In another example, P5 described
a strategy for hiding the connection between himself and
a sensitive source in the government by contacting the
source through an intermediary. In particular, P5 called
the source’s assistant at previous job and stated a false
name; when the assistant passed this message on, the
source knew whom to contact.

These strategies of avoiding technology entirely or us-
ing ad hoc methods for specific cases suggest that our
participants (and/or their sources) are not always com-
fortable with existing security technologies, and/or that
these technologies do not meet their security needs in a
straightforward way, as we discuss further in Section 4.6.

Technical defensive strategies. As reflected in Table 4,
several participants explicitly mentioned using security
technologies to protect themselves, their notes, or their
sources. Table 5 summarizes specific security technolo-
gies mentioned, broken down by how often participants
mentioned using these technologies.

Most commonly, participants mentioned using en-
cryption to protect communications or stored data. Even
participants with low computer security expertise often
mentioned and even used encryption. For example, P5,
who otherwise mentioned no technical security strate-
gies, uses the Mac Disk Utility to encrypt virtual drives
on his machine. Indeed, several participants mentioned
using built-in file or disk encryption of this sort, suggest-
ing that these tools are reasonably discoverable and us-
able. The lack of installation overhead may also con-
tribute to their prevalence among our participants.

Participants who reported use of computer security
technology for source communication fell roughly into
two groups: those whose sources demanded it, and those
who had participated in some kind of computer security
training either through their workplace or at an external
event. Sustained use, however, was seen only in intra-
institutional communications (largely chat). Those who
used these tools for communication with sources did so
only sporadically (as required by a particular source),
and reported an extended timeframe to become comfort-
able using them (particularly GPG and OTR).

We observe several security technologies that were
under-represented in our interviews. For example, Se-
cureDrop [26] and Dispatch [12], which were designed
specifically for journalists, were mentioned by only one
participant who did not report ever having used them.

Reasons for not using security technologies. We asked
participants whether anyone (a source, a colleague, or

anyone else) had ever recommended that they use any
computer security tools or technologies. Of our 15 par-
ticipants, 10 replied that they had received such a recom-
mendation. Of those, however, only four began regularly
using any of the recommended tools.

For participants who had never tried, or tried but did
not continue using tools mentioned in the interview (see
Table 5), we coded the interviews for reasons for not us-
ing security technologies. These reasons are summarized
in Table 6, and we highlight a few important issues here.

Usability, reliability, and education. Echoing findings
from prior studies (e.g., [65]), many participants dis-
cussed challenges related to usability of security tools
and the need for education of journalists and sources
about security issues. These challenges result in limited
adoption of these tools among sources and colleagues,
reducing their utility to even the most technically savvy
journalist. For example, one participant described a sit-
uation where he and his colleagues worked with sensi-
tive data; as the size of the group grew and included less
security-versed individuals, it became harder to main-
tain strict data security practices (echoing prior findings
about the social context surrounding such tools [27]).

In addition to the well-known usability challenges
with many security tools, participant P10 described the
difficulty of knowing which tools to trust:

A lot of services out there say they’re secure,
but having to know which ones are actually
audited and approved by security profession-
als — it takes a lot of work to find that out.

Digital divide. A challenge frequently mentioned in our
interviews (by 4 of 15 participants) is the “digital di-
vide”: many sources do not understand or even have ac-
cess to computer security technology, making it infeasi-
ble for journalists to use technical tools to secure their
communications with these sources. As our participants
described, this challenge applies particularly to vulnera-
ble populations, such as low-income communities, abuse
victims, homeless people, etc. To take just one example,
P12 discussed the digital divide as follows:

Most of the [sensitive sources] I’ve worked
with [are] also people who probably aren’t
very tech-savvy. Like, entry-level people in
prisons, or something like that. So if they were
really concerned about communication, I don’t
quite know what a secure, non-intimidatingly-
techy way would be. [...] Some of them don’t
even necessarily have email addresses.

Lack of institutional support for computer security. An-
other important challenge for some journalists attempt-
ing to use security technologies is a lack of institutional
support. Though some participants described supportive
organizations, 9 of 15 mentioned that they did not have
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Number of Inter-coder
Category Reasons for not using security technology participants (of 15) agreement (κ)
Usability and Not enough people using it 5 0.79
adoption Digital divide: sources don’t have/understand technology 4 0.86

Security technology is too complicated 3 1.00
Hard to evaluate credibility/security of a tool 2 0.50

Interference with Creates barrier to communication with sources 5 0.64
journalism Doesn’t want to impose on sources 5 0.83

Interferes with some other part of their work 3 1.00
Other Work isn’t sensitive enough / no one is looking 8 0.41

Uses a non-technical strategy instead 6 0.70
Insufficient support from organization 2 0.80
Tool doesn’t provide the needed defense 1 1.00

Table 6: Reasons journalists report not using security technologies. We report the number of participants who mentioned
various reasons for why they haven’t tried or don’t regularly use computer security technologies. Note that some of these themes
may overlap (i.e., a single statement made by a participant may have been coded with more than one of the themes in this table).

anyone to go to for help with computer security issues
who was both within their organization and whose role
explicitly involved providing technical support of this na-
ture. Instead, 5 participants had no one to ask for help or
had to go outside their organizations, while 4 received
help from other journalists within their organization who
happened to be knowledgable about these issues (e.g.,
because they cover related stories). Similarly, many par-
ticipants (6 of 15) explicitly reported not having admin-
istrative privileges on their work computers, making it
difficult or impossible to install security tools not offi-
cially supported by the organizations.

Inconsistencies and vulnerabilities. Finally, we reflect
on several inconsistencies or vulnerabilities that we ob-
served in the described behaviors of our participants.

A common inconsistency (observed in 5 of 15 inter-
views) involved protecting data effectively in one con-
text but insufficiently in another. For example, partici-
pant P5 (quoted above) avoids using technology to com-
municate with sources due to real threats he has encoun-
tered (including eavesdropping, laptop theft, and death
threats) — but uses his iPad (with no mention of encryp-
tion) to photograph sensitive documents provided with-
out permission by sources.

Participants also frequently discussed or acknowl-
edged the potential danger in a particular practice, but
did not change their behavior. For example, P10 told
us: “I should have a separate work [Gmail] account
but I just use my personal one” — a sentiment echoed by
other participants. As another example, when asked if he
takes steps to protect his notes, P5 responded: “I should.
But no.” In another case, though a participant considered
herself “comfortable” with computer security technology
and worked with sensitive information, she did not use
and seemingly could not name any security tools.

We also identified several vulnerabilities present in the
behaviors of participants but not explicitly acknowledged
by any of them. For example, while some participants

explicitly mentioned meeting with sources face-to-face
for security reasons (in addition to journalistic reasons),
they did not mention taking precautions like leaving be-
hind or turning off electronic devices at these meetings.
Indeed, many participants (though not necessarily those
using face-to-face meetings for security reasons) men-
tioned using their iPhones or other devices to audio-
record in-person conversations with sources. Participants
also frequently use document management services that
sync data to a third-party cloud service, such as Google
Docs and Evernote.

4.6 Needs of Journalists
A major goal of our study is to inform future efforts
by the computer security community to develop tools to
protect journalist-source communications. To that end,
we identify needs of journalists in their communications
with sources that are hampered or unfulfilled by current
computer security technologies. Needs that are still un-
fulfilled present immediate opportunities for future work,
while needs that are hampered suggest reasons why ex-
isting technologies have failed to find greater adoption.

Functions impeded by security technology. One of
the reasons that participants noted for why they have not
tried or do not regularly use certain security technologies
is that they interfere with some component of the journal-
istic process. As reflected in Table 6, 3 of 15 participants
mentioned this reason. Taking a closer look at which
functions are impeded by existing security technologies
(and should be considered in future tools for journalists),
our participants mentioned the following problems:
• Anonymous communications may make it difficult

for journalists to authenticate sources, or to authen-
ticate themselves to sources.

• Using security tools may impede communications
with colleagues who don’t use or understand them.

• Constraints on communications with sources may
reduce the quality of information journalists can get.

11
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For example, P13 described the tension between
anonymous sources and authenticity:

If I don’t know who they are and can’t check
their background, I’m not going to use the in-
formation they give. Anonymous sourcing is
fine if I know who they are, and I’ve checked
who they are, and my editor knows who they
are, but they can’t keep that from me and then
expect me to use the information they provide.

In other words, a source’s communications must be
anonymous to everyone but the journalist with whom
they are communicating, and that journalist must be able
to prove the authenticity of that source to others (e.g.,
their editor). This need suggests that tools like Secure-
Drop [26], which supports anonymous document drops
for journalists, are unlikely to be widely adopted in iso-
lation — highlighting the need for the computer security
community to interface with the journalism community.

On the flip side, P6 discussed the need for sources to
authenticate him when he attempts to reach them, de-
scribing how sources are unlikely to answer the phone if
they cannot see who is calling them.

In order to develop computer security technologies
that will be widely adopted by journalists, the computer
security community must understand such failures of ex-
isting tools. We emphasize that these failures are not
merely the result of computer security tools being hard
to use (a common culprit [65]) but often arise when a
tool did not sufficiently account for functions important
in a journalist’s process, such as the ability to authenti-
cate sources. In Section 5, we discuss what the specific
failures above mean for where technologists should fo-
cus their efforts in this space.

Security needs unfulfilled by technology. In the pre-
vious paragraphs, we described needs of journalists that
we infer from their reasons for not using certain secu-
rity technologies. In addition to making these inferences,
we also asked participants to report specifically on any
concerns or issues related to computer security to which
they have not yet found a good technical solutions (i.e.,
“I wish somebody would build a tool that does X”). From
the responses to this question, we extract several techni-
cal security-related needs currently unaddressed.

Usability, education, and adoption. As discussed above,
several participants mentioned usability concerns (the
need for more usable security tools) and education con-
cerns (the need for education about these issues for both
sources and journalists), both for themselves and to in-
crease the adoption of security technologies among oth-
ers. Specifically, participants asked for better and easier-
to-use tools or services for encrypted email, encrypted
file sharing, and encrypted phone calls, as well as ways
to prevent emails from being accidentally forwarded and

to keep sensitive data off the Internet (e.g., air-gapping).

Mutual authentication and first contact. Some partici-
pants discussed ad hoc strategies to authenticate sources,
or to authenticate themselves to sources. As noted above,
current security tools for journalists may hamper these
needs, rather than addressing them. Participant P0 spoke
in particular about the tension between anonymity and
authentication in first contact:

The first contact is never or very rarely anony-
mous or protected. If someone wants to give
me some information and we don’t already
know each other, how would he do it? He could
send me an email, yeah, okay — but then how
could I be sure it’s him? Unless he contacts me
with his real identity first. It’s very difficult to
have the first contact secure.

In this “first contact” problem, it is nearly impossible
for journalists to entirely avoid some metadata trail when
communicating with a source, since their initial contact
will almost universally take place over a channel whose
metadata is associated with the journalist’s professional
identity (e.g. telephone, email, or social media). Given
the pivotal role that metadata has played in recent leak
prosecutions [54], this is a significant security concern.

Digital divide. As discussed above, several participants
expressed the need for better security technologies that
work across the digital divide, in order to protect their
communications with sources who have low technical
expertise and/or limited access to technology.

These unfulfilled needs represent immediate opportu-
nities for future work on secure journalist-source com-
munications within the computer security community,
with varying types and degrees of challenge. We discuss
these new directions further in Section 5.

Other technical needs. Though we asked participants
specifically about unaddressed issues related to computer
security, a few also (or instead) expressed more general
technical needs that have security implications.

For example, several participants discussed the diffi-
culty of manually transcribing audio recordings of in-
terviews and expressed a desire for better machine tran-
scription. Our interviews show this unaddressed need led
to at least one insecure practice by a participant, who de-
scribed planning to use her iPhone’s or Mac’s speech-to-
text feature to transcribe audio recordings of interviews
with sources, seemingly unaware that this might send the
audio of potentially sensitive interviews to the cloud [9].
Thus, as journalists develop ad hoc workarounds for
tasks where a technical solution is missing from their
toolset, they may unintentionally introduce vulnerabili-
ties into their process.

More generally, as mentioned above, several partic-
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ipants discussed the need for a systematic knowledge
management tool for journalists. P11 was most explicit:

There were different kinds of litigation soft-
ware that I was familiar with as a lawyer,
where, let’s say, you have a massive case,
where you have a document dump that has
15,000 documents. [...] There are programs
that help you consolidate and put them into a
secure database. So it’s searchable [and pro-
vides a secure place where you can see every-
thing related to a story at once]. I don’t know
of anything like that for journalism.

This absence of a dedicated knowledge management
tool for journalists represents an opportunity for com-
puter security. If such a knowledge management tool
seamlessly integrated computer security techniques to
protect stored data and communications without signif-
icant effort on the part of the journalist, it would signif-
icantly raise the bar for the security of journalist-source
communications.

5 Discussion
We elaborate on the implications of our findings for the
computer security community and make concrete recom-
mendations for how those considering journalist-source
communications can most fruitfully direct their efforts.

5.1 Key Take-Aways
From the perspective of the computer security commu-
nity, we consider the following take-aways to be the most
important ones from our findings:
• Journalists commonly make decisions about how to

communicate with sources based on the technical
access and comfort level of the sources themselves.
Thus, limited adoption of technical security tools
for journalist-source communications stems in large
part from the limited technical access and expertise
of certain vulnerable populations.

• Journalists face technical challenges unrelated to
computer security, including the lack of systematic
knowledge management tools and limited techni-
cal support for transcription. In developing ad hoc
strategies to deal with these challenges, journalists
sometimes introduce additional security vulnerabil-
ities into their practices.

• A journalist’s organization plays an important role
in his or her access to and competence with com-
puter security technologies. Organizations that re-
strict a journalist’s ability to install security (or other
software) tools, or where many employees have
limited technical expertise, reduce the effectiveness
and adoption of security and other technologies.

• An important reason for the failure of some security
tools in the journalistic context is their incompati-

bility with some essential aspect of the journalistic
process. A tool that increases barriers to communi-
cation or prevents a journalist from determining the
authenticity of a source will see limited adoption.

5.2 Recommendations
In addition to supporting ongoing efforts at educating
and training journalists with respect to existing computer
security technologies (e.g., [17, 43, 47, 62]), we distill
from our findings the following recommendations for
where the computer security community should focus its
efforts.

First contact and authentication. The challenge of
securing (or retroactively protecting) a journalist’s first
contact with a source remains a hard problem, especially
given the tension between anonymity and mutual authen-
tication. Determining authenticity, both of sources and
of journalists, is of fundamental importance in the jour-
nalistic context and should be addressed explicitly by
anonymous communication tools. For instance, success-
ful approaches might leverage existing identity networks,
as with the participant who asked his source to post a spe-
cific sentence on Twitter — similar to social authenticity
proofs used by Keybase (https://keybase.io/).

Metadata protection. Protecting metadata of journalist-
source communications is crucial, especially in light of
successful leak prosecutions based on metadata infor-
mation [54]. In practice, metadata is both legally and
technically unprotected: none of the defensive strategies
described by our participants was truly foolproof, espe-
cially with respect to metadata. Protecting metadata is
challenging because it requires that both journalists and
sources understand the risk, because it is brittle (e.g., a
single failure to communicate securely can compromise
dozens or hundreds of exchanges), and because it can
conflict with other journalistic needs (e.g., the need for
authentication in first contact). The computer security
community should consider metadata protection in this
context and develop effective, usable, and transparent so-
lutions that can account for long-term communications
of varying sensitivity.

Focus on sources. Since the methods and security of
journalist-source communications often depend on the
technical expertise and access of sources, the computer
security community should focus not only on educating
and building tools for journalists but also for sources.
Enabling and improving access to computer security
technologies for low-income and vulnerable populations
(e.g., through a collaboration with public libraries and/or
by supporting “dumb” phones or other access methods)
will provide benefits to these communities far beyond
their interaction with journalists. Meanwhile, future
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studies should also interview and/or survey sources to
shed light on their perspectives and needs.

Knowledge management. Our findings suggest that
journalists desire — but lack — a solution for system-
atic knowledge management to support storing, organiz-
ing, searching, and indexing story-related data and doc-
uments. This need presents an opportunity for computer
security: if security techniques and tools are seamlessly
and usably integrated into a well-designed knowledge
management tool for journalists, these could see wide
adoption within the industry and significantly raise the
bar for the security of journalistic practices. For ex-
ample, given the reliance among our interviewees on
third-party cloud storage, a secure (and easy-to-use)
cloud storage solution integrated into such a knowledge
management tool would provide significant benefits. A
knowledge management tool that also supports secure
communication — such as encrypted chat or email within
the organization — would also benefit affiliated but non-
staff members of the organization (e.g., freelancers).

Understanding the journalistic process. We encour-
age the technical computer security community to con-
tinue engaging closely with the journalism community.
While many of the themes observed in our interviews
and highlighted in this paper may be well-known within
the journalism community, several of them were surpris-
ing to us. The prevalence of ad hoc defensive strategies
among our participants suggests mismatches between ex-
isting computer security tools and the needs and under-
standings of journalists. To create technical designs that
address journalists’ most significant security problems
without compromising necessary professional practices,
the computer security community must develop a deep
understanding of the journalistic process. These efforts
are likely to be most valuable if they are iterative, involv-
ing the development of tools that are then evaluated and
refined in the field among the target population.

Broader applicability. Finally, successful techniques
for securing journalist-source communications are likely
to apply to — or provide lessons for — other contexts as
well, such as communications between lawyers and their
clients, between doctors and patients, in government op-
erations, among dissidents and activists, and for other ev-
eryday users of technology.

6 Conclusion
Though journalists are often considered likely users and
beneficiaries of secure communication and data storage
tools, their practices have not been been studied in depth
by the academic computer security community. To close
this gap and to inform ongoing and future work on com-
puter security for journalists, we conducted an in-depth,

qualitative study of 15 journalists at well-respected jour-
nalistic institutions in the U.S. and France.

Our findings provide insight into the general journal-
istic practices and specific security concerns of journal-
ists, as well as the successes and failures of existing secu-
rity technologies within the journalistic context. Perhaps
most importantly, we find that existing security tools
have seen limited adoption not just due to usability issues
(a common culprit) but because of a mismatch between
between the assumed and actual practices, priorities, and
constraints of journalists. This mismatch suggests that
secure journalistic practices depend on a meaningful col-
laboration between the computer security and the jour-
nalism communities; we take an important step towards
such a collaboration in this work.
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Abstract
Oblivious RAM (ORAM) is a cryptographic primitive
that hides memory access patterns as seen by untrusted
storage. This paper proposes Ring ORAM, the most
bandwidth-efficient ORAM scheme for the small client
storage setting in both theory and practice. Ring ORAM
is the first tree-based ORAM whose bandwidth is in-
dependent of the ORAM bucket size, a property that
unlocks multiple performance improvements. First,
Ring ORAM’s overall bandwidth is 2.3× to 4× better
than Path ORAM, the prior-art scheme for small client
storage. Second, if memory can perform simple un-
trusted computation, Ring ORAM achieves constant on-
line bandwidth (∼ 60× improvement over Path ORAM
for practical parameters). As a case study, we show Ring
ORAM speeds up program completion time in a secure
processor by 1.5× relative to Path ORAM. On the the-
ory side, Ring ORAM features a tighter and significantly
simpler analysis than Path ORAM.

1 Introduction

With cloud computing and storage gaining popularity,
privacy of users’ sensitive data has become a large con-
cern. It is well known, however, that encryption alone
is not enough to ensure data privacy. Even after encryp-
tion, a malicious server still learns a user’s access pattern,
e.g., how frequently each piece of data is accessed, if the
user scans, binary searches or randomly accesses her data
at different stages. Prior works have shown that access
patterns can reveal a lot of information about encrypted
files [14] or private user data in computation outsourc-
ing [32, 18].

Oblivious RAM (ORAM) is a cryptographic primi-
tive that completely eliminates the information leakage
in memory access traces. In an ORAM scheme, a client
(e.g., a local machine) accesses data blocks residing on
a server, such that for any two logical access sequences

of the same length, the observable communications be-
tween the client and the server are computationally in-
distinguishable.

ORAMs are traditionally evaluated by bandwidth—
the number of blocks that have to be transferred between
the client and the server to access one block, client stor-
age—the amount of trusted local memory required at the
client side, and server storage—the amount of untrusted
memory required at the server side. All three metrics
are measured as functions of N, the total number of data
blocks in the ORAM.

A factor that determines which ORAM scheme to use
is whether the client has a large (GigaBytes or larger) or
small (KiloBytes to MegaBytes) storage budget. An ex-
ample of large client storage setting is remote oblivious
file servers [30, 17, 24, 3]. In this setting, a user runs on
a local desktop machine and can use its main memory
or disk for client storage. Given this large client storage
budget, the preferred ORAM scheme to date is the SSS
construction [25], which has about 1 · logN bandwidth
and typically requires GigaBytes of client storage.

In the same file server application, however, if the user
is instead on a mobile phone, the client storage will have
to be small. A more dramatic example for small client
storage is when the client is a remote secure processor
— in which case client storage is restricted to the pro-
cessor’s scarce on-chip memory. Partly for this reason,
all secure processor proposals [18, 16, 8, 31, 22, 7, 5, 6]
have adopted Path ORAM [27] which allows for small
(typically KiloBytes of) client storage.

The majority of this paper focuses on the small client
storage setting and Path ORAM. In fact, our construc-
tion is an improvement to Path ORAM. However, in
Section 7, we show that our techniques can be eas-
ily extended to obtain a competitive large client storage
ORAM.
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Figure 1: Path ORAM server and client storage. Sup-
pose the black block is mapped to the shaded path. In
that case, the block may reside in any slot along the path
or in the stash (client storage).

1.1 Path ORAM and Challenges

We now give a brief overview of Path ORAM (for more
details, see [27]). Path ORAM follows the tree-based
ORAM paradigm [23] where server storage is structured
as a binary tree of roughly logN levels. Each node in
the tree is a bucket that can hold up to a small num-
ber Z of data blocks. Each path in the tree is defined
as the sequence of buckets from the root of the tree to
some leaf node. Each block is mapped to a random path,
and must reside somewhere on that path. To access a
block, the Path ORAM algorithm first looks up a posi-
tion map, a table in client storage which tracks the path
each block is currently mapped to, and then reads all the
(∼ Z logN) blocks on that path into a client-side data
structure called the stash. The requested block is then
remapped to a new random path and the position map
is updated accordingly. Lastly, the algorithm invokes an
eviction procedure which writes the same path we just
read from, percolating blocks down that path. (Other
tree-based ORAMs use different eviction algorithms that
are less effective than Path ORAM, and hence the worse
performance.)

The bandwidth of Path ORAM is 2Z logN because
each access reads and writes a path in the tree. To
prevent blocks from accumulating in client storage, the
bucket size Z has to be at least 4 (experimentally veri-
fied [27, 18]) or 5 (theoretically proven [26]).

We remind readers not to confuse the above read/write
path operation with reading/writing data blocks. In
ORAM, both reads and writes to a data block are served
by the read path operation, which moves the requested
block into client storage to be operated upon secretly.
The sole purpose of the write path operation is to evict
blocks from the stash and percolate blocks down the
tree.

Despite being a huge improvement over prior

Online Bandwidth Overall Bandwidth
Path ORAM Z logN = 4logN 2Z logN = 8logN
Ring ORAM ∼ 1 · logN 3-3.5logN

Ring ORAM + XOR ∼ 1 2-2.5logN

Table 1: Our contributions. Overheads are relative to an in-
secure system. Ranges in constants for Ring ORAM are due to
different parameter settings. The bandwidth cost of tree ORAM
recursion [23, 26] is small (< 3%) and thus excluded. XOR
refers to the XOR technique from [3].

schemes, Path ORAM is still plagued with several im-
portant challenges. First, the constant factor 2Z ≥ 8 is
substantial, and brings Path ORAM’s bandwidth over-
head to > 150× for practical parameterizations. In con-
trast, the SSS construction does not have this bucket size
parameter and can achieve close to 1 · logN bandwidth.
(This bucket-size-dependent bandwidth is exactly why
Path ORAM is dismissed in the large client storage set-
ting.)

Second, despite the importance of overall bandwidth,
online bandwidth—which determines response time—
is equally, if not more, important in practice. For Path
ORAM, half of the overall bandwidth must be incurred
online. Again in contrast, an earlier work [3] reduced
the SSS ORAM’s online bandwidth to O(1) by grant-
ing the server the ability to perform simple XOR compu-
tations. Unfortunately, their techniques do not apply to
Path ORAM.

1.2 Our Contributions
In this paper, we propose Ring ORAM to address both
challenges simultaneously. Our key technical achieve-
ment is to carefully re-design the tree-based ORAM such
that the online bandwidth is O(1), and the amortized
overall bandwidth is independent of the bucket size. We
compare bandwidth overhead with Path ORAM in Ta-
ble 1. The major contributions of Ring ORAM include:

• Small online bandwidth. We provide the first
tree-based ORAM scheme that achieves ∼ 1 online
bandwidth, relying only on very simple, untrusted
computation logic on the server side. This repre-
sents at least 60× improvement over Path ORAM
for reasonable parameters.

• Bucket-size independent overall bandwidth.
While all known tree-based ORAMs incur an over-
all bandwidth cost that depends on the bucket size,
Ring ORAM eliminates this dependence, and im-
proves overall bandwidth by 2.3× to 4× relative to
Path ORAM.

• Simple and tight theoretical analysis. Using novel
proof techniques based on Ring ORAM’s eviction

2
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algorithm, we obtain a much simpler and tighter
theoretical analysis than that of Path ORAM. Of in-
dependent interest, we note that the proof of Lemma
1 in [27], a crucial lemma for both Path ORAM and
this paper, is incomplete (the lemma itself is cor-
rect). We give a rigorous proof for that lemma in
this paper.

As mentioned, one main application of small client
storage ORAM is for the secure processor setting. We
simulate Ring ORAM in the secure processor setting and
confirm that the improvement in bandwidth over Path
ORAM translates to a 1.5× speedup in program comple-
tion time. Combined with all other known techniques,
the average program slowdown from using an ORAM is
2.4× over a set of SPEC and database benchmarks.

Extension to larger client storage. Although our ini-
tial motivation was to design an optimized ORAM
scheme under small client storage, as an interesting by-
product, Ring ORAM can be easily extended to achieve
competitive performance in the large client storage set-
ting. This makes Ring ORAM a good candidate in obliv-
ious cloud storage, because as a tree-based ORAM, Ring
ORAM is easier to analyze, implement and de-amortize
than hierarchical ORAMs like SSS [25]. Therefore, Ring
ORAM is essentially a united paradigm for ORAM con-
structions in both large and small client storage settings.

Organization. In the rest of this introduction, we give
an overview of our techniques to improve ORAM’s on-
line and overall bandwidth. Section 2 gives a formal se-
curity definition for ORAM. Section 3 explains the Ring
ORAM protocol in detail. Section 4 gives a complete for-
mal analysis for bounding Ring ORAM’s client storage.
Section 5 analyzes Ring ORAM’s bandwidth and gives
a methodology for setting parameters optimally. Section
6 compares Ring ORAM to prior work in terms of band-
width vs. client storage and performance in a secure pro-
cessor setting. Section 7 describes how to extend Ring
ORAM to the large client storage setting. Section 8 gives
related work and Section 9 concludes.

1.3 Overview of Techniques

We now explain our key technical insights. At a high
level, our scheme also follows the tree-based ORAM
paradigm [23]. Server storage is a binary tree where each
node (a bucket) contains up to Z blocks and blocks per-
colate down the tree during ORAM evictions. We intro-
duce the following non-trivial techniques that allow us
to achieve significant savings in both online and overall
bandwidth costs.

Eliminating online bandwidth’s dependence on
bucket size. In Path ORAM, reading a block would
amount to reading and writing all Z slots in all buckets on
a path. Our first goal is to read only one block from each
bucket on the path. To do this, we randomly permute
each bucket and store the permutation in each bucket as
additional metadata. Then, by reading only metadata,
the client can determine whether the requested block is
in the present bucket or not. If so, the client relies on
the stored permutation to read the block of interest from
its random offset. Otherwise, the client reads a “fresh”
(unread) dummy block, also from a random offset. We
stress that the metadata size is typically much smaller
than the block size, so the cost of reading metadata can
be ignored.

For the above approach to be secure, it is impera-
tive that each block in a bucket should be read at most
once—a key idea also adopted by Goldreich and Ostro-
vsky in their early ORAM constructions [11]. Notice that
any real block is naturally read only once, since once a
real block is read, it will be invalidated from the present
bucket, and relocated somewhere else in the ORAM tree.
But dummy blocks in a bucket can be exhausted if the
bucket is read many times. When this happens (which
is public information), Ring ORAM introduces an early
reshuffle procedure to reshuffle the buckets that have
been read too many times. Specifically, suppose that
each bucket is guaranteed to have S dummy blocks, then
a bucket must be reshuffled every S times it is read.

We note that the above technique also gives an addi-
tional nice property: out of the O(logN) blocks the client
reads, only 1 of them is a real block (i.e., the block of
interest); all the others are dummy blocks. If we allow
some simple computation on the memory side, we can
immediately apply the XOR trick from Burst ORAM [3]
to get O(1) online bandwidth. In the XOR trick, the
server simply XORs these encrypted blocks and sends a
single, XOR’ed block to the client. The client can recon-
struct the ciphertext of all the dummy blocks, and XOR
them away to get back the encrypted real block.

Eliminating overall bandwidth’s dependence on
bucket size. Unfortunately, naı̈vely applying the above
strategy will dramatically increase offline and overall
bandwidth. The more dummy slots we reserve in each
bucket (i.e., a large S), the more expensive ORAM evic-
tions become, since they have to read and write all the
blocks in a bucket. But if we reserve too few dummy
slots, we will frequently run out of dummy blocks and
have to call early reshuffle, also increasing overall band-
width.

We solve the above problem with several additional
techniques. First, we design a new eviction procedure
that improves eviction quality. At a high level, Ring

3
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ORAM performs evictions on a path in a similar fashion
as Path ORAM, but eviction paths are selected based on
a reverse lexicographical order [9], which evenly spreads
eviction paths over the entire tree. The improved eviction
quality allows us to perform evictions less frequently,
only once every A ORAM accesses, where A is a new
parameter. We then develop a proof that crucially shows
A can approach 2Z while still ensuring negligible ORAM
failure probability. The proof may be of independent
interest as it uses novel proof techniques and is signifi-
cantly simpler than Path ORAM’s proof. The amortized
offline bandwidth is now roughly 2Z

A logN, which does
not depend on the bucket size Z either.

Second, bucket reshuffles can naturally piggyback on
ORAM evictions. The balanced eviction order further
ensures that every bucket will be reshuffled regularly.
Therefore, we can set the reserved dummy slots S in ac-
cordance with the eviction frequency A, such that early
reshuffles contribute little (< 3%) to the overall band-
width.

Putting it all Together. None of the aforementioned
ideas would work alone. Our final product, Ring ORAM,
stems from intricately combining these ideas in a non-
trivial manner. For example, observe how our two
main techniques act like two sides of a lever: (1) per-
muted buckets such that only 1 block is read per bucket;
and (2) high quality and hence less frequent evictions.
While permuted buckets make reads cheaper, they re-
quire adding dummy slots and would dramatically in-
crease eviction overhead without the second technique.
At the same time, less frequent evictions require increas-
ing bucket size Z; without permuted buckets, ORAM
reads blow up and nullify any saving on evictions. Addi-
tional techniques are needed to complete the construc-
tion. For example, early reshuffles keep the number
of dummy slots small; piggyback reshuffles and load-
balancing evictions keep the early reshuffle rate low.
Without all of the above techniques, one can hardly get
any improvement.

2 Security Definition

We adopt the standard ORAM security definition. In-
formally, the server should not learn anything about: 1)
which data the client is accessing; 2) how old it is (when
it was last accessed); 3) whether the same data is be-
ing accessed (linkability); 4) access pattern (sequential,
random, etc); or 5) whether the access is a read or a
write. Like previous work, we do not consider informa-
tion leakage through the timing channel, such as when or
how frequently the client makes data requests.

Notation Meaning

N Number of real data blocks in ORAM
L Depth of the ORAM tree
Z Maximum number of real blocks per bucket
S Number of slots reserved for dummies per bucket
B Data block size (in bits)
A Eviction rate (larger means less frequent)

P(l) Path l
P(l, i) The i-th bucket (towards the root) on P(l)
P(l, i, j) The j-th slot in bucket P(l, i)

Table 2: ORAM parameters and notations.

Definition 1. (ORAM Definition) Let

←−y = ((opM,addrM,dataM), . . . ,(op1,addr1,data1))

denote a data sequence of length M, where opi denotes
whether the i-th operation is a read or a write, addri de-
notes the address for that access and datai denotes the
data (if a write). Let ORAM(←−y ) be the resulting se-
quence of operations between the client and server under
an ORAM algorithm. The ORAM protocol guarantees
that for any ←−y and ←−y ′, ORAM(←−y ) and ORAM(←−y ′)
are computationally indistinguishable if |←−y |= |←−y ′|, and
also that for any ←−y the data returned to the client by
ORAM is consistent with ←−y (i.e., the ORAM behaves like
a valid RAM) with overwhelming probability.

We remark that for the server to perform computations
on data blocks [3], ORAM(←−y ) and ORAM(←−y ′) include
those operations. To satisfy the above security definition,
it is implied that these operations also cannot leak any
information about the access pattern.

3 Ring ORAM Protocol

3.1 Overview
We first describe Ring ORAM in terms of its server and
client data structures. All notation used throughout the
rest of the paper is summarized in Table 2.

Server storage is organized as a binary tree of buckets
where each bucket has a small number of slots to hold
blocks. Levels in the tree are numbered from 0 (the root)
to L (inclusive, the leaves) where L = O(logN) and N is
the number of blocks in the ORAM. Each bucket has Z+
S slots and a small amount of metadata. Of these slots,
up to Z slots may contain real blocks and the remaining
S slots are reserved for dummy blocks as described in
Section 1.3. Our theoretical analysis in Section 4 will
show that to store N blocks in Ring ORAM, the physical
ORAM tree needs roughly 6N to 8N slots. Experiments
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show that server storage in practice for both Ring ORAM
and Path ORAM can be 2N or even smaller.

Client storage is made up of a position map and a
stash. The position map is a dictionary that maps each
block in the ORAM to a random leaf in the ORAM tree
(each leaf is given a unique identifier). The stash buffers
blocks that have not been evicted to the ORAM tree and
additionally stores Z(L+ 1) blocks on the eviction path
during an eviction operation. We will prove in Section 4
that stash overflow probability decreases exponentially
as stash capacity increases, which means our required
stash size is the same as Path ORAM. The position map
stores N ∗L bits, but can be squashed to constant storage
using the standard recursion technique (Section 3.7).

Main invariants. Ring ORAM has two main invari-
ants:

1. (Same as Path ORAM): Every block is mapped to a
leaf chosen uniformly at random in the ORAM tree.
If a block a is mapped to leaf l, block a is contained
either in the stash or in some bucket along the path
from the root of the tree to leaf l.

2. (Permuted buckets) For every bucket in the tree,
the physical positions of the Z +S dummy and real
blocks in each bucket are randomly permuted with
respect to all past and future writes to that bucket.

Since a leaf uniquely determines a path in a binary tree,
we will use leaves/paths interchangeably when the con-
text is clear, and denote path l as P(l).

Access and Eviction Operations. The Ring ORAM
access protocol is shown in Algorithm 1. Each access
is broken into the following four steps:

1.) Position Map lookup (Lines 3-5): Look up the po-
sition map to learn which path l the block being accessed
is currently mapped to. Remap that block to a new ran-
dom path l′.

This first step is identical to other tree-based
ORAMs [23, 27]. But the rest of the protocol differs
substantially from previous tree-based schemes, and we
highlight our key innovations in bold.

2.) Read Path (Lines 6-15): The ReadPath(l,a) oper-
ation reads all buckets along P(l) to look for the block
of interest (block a), and then reads that block into the
stash. The block of interest is then updated in stash on a
write, or is returned to the client on a read. We remind
readers again that both reading and writing a data block
are served by a ReadPath operation.

Unlike prior tree-based schemes, our ReadPath op-
eration only reads one block from each bucket—the

Algorithm 1 Non-recursive Ring ORAM.
1: function ACCESS(a,op,data′)
2: Global/persistent variables: round

3: l′ ← UniformRandom(0,2L −1)
4: l ← PositionMap[a]
5: PositionMap[a]← l′

6: data← ReadPath(l,a)
7: if data=⊥ then
8: � If block a is not found on path l, it must
9: be in Stash �

10: data← read and remove a from Stash
11: if op= read then
12: return data to client
13: if op= write then
14: data← data′

15: Stash ← Stash∪ (a, l′,data)

16: round← round+1 mod A
17: if round ?

= 0 then
18: EvictPath()

19: EarlyReshuffle(l)

block of interest if found or a previously-unread
dummy block otherwise. This is safe because of In-
variant 2, above: each bucket is permuted randomly, so
the slot being read looks random to an observer. This
lowers the bandwidth overhead of ReadPath (i.e., online
bandwidth) to L+ 1 blocks (the number of levels in the
tree) or even a single block if the XOR trick is applied
(Section 3.2).

3.) Evict Path (Line 16-18): The EvictPath operation
reads Z blocks (all the remaining real blocks, and po-
tentially some dummy blocks) from each bucket along a
path into the stash, and then fills that path with blocks
from the stash, trying to push blocks as far down towards
the leaves as possible. The sole purpose of an eviction
operation is to push blocks back to the ORAM tree to
keep the stash occupancy low.

Unlike Path ORAM, eviction in Ring ORAM selects
paths in the reverse lexicographical order, and does
not happen on every access. Its rate is controlled by
a public parameter A: every A ReadPath operations
trigger a single EvictPath operation. This means Ring
ORAM needs much fewer eviction operations than Path
ORAM. We will theoretically derive a tight relationship
between A and Z in Section 4.

5
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4.) Early Reshuffles (Line 19): Finally, we perform
a maintenance task called EarlyReshuffle on P(l), the
path accessed by ReadPath. This step is crucial in
maintaining blocks randomly shuffled in each bucket,
which enables ReadPath to securely read only one block
from each bucket.

We will present details of ReadPath, EvictPath and
EarlyReshuffle in the next three subsections. We de-
fer low-level details for helper functions needed in these
three subroutines to Appendix A. We explain the security
for each subroutine in Section 3.5. Finally, we discuss
additional optimizations in Section 3.6 and recursion in
Section 3.7.

3.2 Read Path Operation

Algorithm 2 ReadPath procedure.
1: function ReadPath(l,a)
2: data←⊥
3: for i ← 0 to L do
4: offset ← GetBlockOffset(P(l, i),a)
5: data′ ← P(l, i,offset)
6: Invalidate P(l, i,offset)
7: if data′ �=⊥ then
8: data← data′

9: P(l, i).count ←P(l, i).count+1
return data

The ReadPath operation is shown in Algorithm 2. For
each bucket along the current path, ReadPath selects a
single block to read from that bucket. For a given bucket,
if the block of interest lives in that bucket, we read and
invalidate the block of interest. Otherwise, we read and
invalidate a randomly-chosen dummy block that is still
valid at that point. The index of the block to read (either
real or random) is returned by the GetBlockOffset func-
tion whose detailed description is given in Appendix A.

Reading a single block per bucket is crucial for our
bandwidth improvements. In addition to reducing online
bandwidth by a factor of Z, it allows us to use larger Z
and A to decrease overall bandwidth (Section 5). Without
this, read bandwidth is proportional to Z, and the cost of
larger Z on reads outweighs the benefits.

Bucket Metadata. Because the position map only
tracks the path containing the block of interest, the client
does not know where in each bucket to look for the block
of interest. Thus, for each bucket we must store the
permutation in the bucket metadata that maps each real
block in the bucket to one of the Z + S slots (Lines 4,
GetBlockOffset) as well as some additional metadata.
Once we know the offset into the bucket, Line 5 reads

the block in the slot, and invalidates it. We describe all
metadata in Appendix A, but make the important point
that the metadata is small and independent of the block
size.

One important piece of metadata to mention now is a
counter which tracks how many times it has been read
since its last eviction (Line 9). If a bucket is read too
many (S) times, it may run out of dummy blocks (i.e.,
all the dummy blocks have been invalidated). On fu-
ture accesses, if additional dummy blocks are requested
from this bucket, we cannot re-read a previously inval-
idated dummy block: doing so reveals to the adversary
that the block of interest is not in this bucket. Therefore,
we need to reshuffle single buckets on-demand as soon as
they are touched more than S times using EarlyReshuffle
(Section 3.4).

XOR Technique. We further make the following key
observation: during our ReadPath operation, each block
returned to the client is a dummy block except for
the block of interest. This means our scheme can
also take advantage of the XOR technique introduced
in [3] to reduce online bandwidth overhead to O(1).
To be more concrete, on each access ReadPath re-
turns L+ 1 blocks in ciphertext, one from each bucket,
Enc(b0,r0),Enc(b2,r2), · · · ,Enc(bL,rL). Enc is a ran-
domized symmetric scheme such as AES counter mode
with nonce ri. With the XOR technique, ReadPath
will return a single ciphertext — the ciphertext of
all the blocks XORed together, namely Enc(b0,r0)⊕
Enc(b2,r2)⊕ ·· · ⊕ Enc(bL,rL). The client can recover
the encrypted block of interest by XORing the returned
ciphertext with the encryptions of all the dummy blocks.
To make computing each dummy block’s encryption
easy, the client can set the plaintext of all dummy blocks
to a fixed value of its choosing (e.g., 0).

3.3 Evict Path Operation

Algorithm 3 EvictPath procedure.
1: function EvictPath
2: Global/persistent variables G initialized to 0
3: l ← G mod 2L

4: G ← G+1
5: for i ← 0 to L do
6: Stash ← Stash∪ReadBucket(P(l, i))
7: for i ← L to 0 do
8: WriteBucket(P(l, i),Stash)
9: P(l, i).count ← 0

The EvictPath routine is shown in Algorithm 3. As
mentioned, evictions are scheduled statically: one evic-

6



USENIX Association  24th USENIX Security Symposium 421

Time
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Figure 2: Reverse-lexicographic order of paths used by
EvictPath. After path G = 3 is evicted to, the order re-
peats.

tion operation happens after every A reads. At a high
level, an eviction operation reads all remaining real
blocks on a path (in a secure fashion), and tries to push
them down that path as far as possible. The leaf-to-root
order in the writeback step (Lines 7) reflects that we wish
to fill the deepest buckets as fully as possible. (For read-
ers who are familiar with Path ORAM, EvictPath is like
a Path ORAM access where no block is accessed and
therefore no block is remapped to a new leaf.)

We emphasize two unique features of Ring ORAM
eviction operations. First, evictions in Ring ORAM are
performed to paths in a specific order called the reverse-
lexicographic order, first proposed by Gentry et al. [9]
and shown in Figure 2. The reverse-lexicographic order
eviction aims to minimize the overlap between consecu-
tive eviction paths, because (intuitively) evictions to the
same bucket in consecutive accesses are less useful. This
improves eviction quality and allows us to reduce the fre-
quency of eviction. Evicting using this static order is also
a key component in simplifying our theoretical analysis
in Section 4.

Second, buckets in Ring ORAM need to be randomly
shuffled (Invariant 2), and we mostly rely on EvictPath
operations to keep them shuffled. An EvictPath oper-
ation reads Z blocks from each bucket on a path into
the stash, and writes out Z + S blocks (only up to Z
are real blocks) to each bucket, randomly permuted.
The details of reading/writing buckets (ReadBucket and
WriteBucket) are deferred to Appendix A.

3.4 Early Reshuffle Operation

Algorithm 4 EarlyReshuffle procedure.
1: function EarlyReshuffle(l)
2: for i ← 0 to L do
3: if P(l, i).count≥ S then
4: Stash ← Stash∪ReadBucket(P(l, i))
5: WriteBucket(P(l, i),Stash)
6: P(l, i).count ← 0

Due to randomness, a bucket can be touched > S
times by ReadPath operations before it is reshuffled

by the scheduled EvictPath. If this happens, we call
EarlyReshuffle on that bucket to reshuffle it before the
bucket is read again (see Section 3.2). More precisely,
after each ORAM access EarlyReshuffle goes over all
the buckets on the read path, and reshuffles all the buck-
ets that have been accessed more than S times by per-
forming ReadBucket and WriteBucket. ReadBucket
and WriteBucket are the same as in EvictPath: that
is, ReadBucket reads exactly Z slots in the bucket
and WriteBucket re-permutes and writes back Z + S
real/dummy blocks. We note that though S does not af-
fect security (Section 3.5), it clearly has an impact on
performance (how often we shuffle, the extra cost per
reshuffle, etc.). We discuss how to optimally select S in
Section 5.

3.5 Security Analysis

Claim 1. ReadPath leaks no information.

The path selected for reading will look random to
any adversary due to Invariant 1 (leaves are chosen
uniformly at random). From Invariant 2, we know that
every bucket is randomly shuffled. Moreover, because
we invalidate any block we read, we will never read the
same slot. Thus, any sequence of reads (real or dummy)
to a bucket between two shuffles is indistinguishable.
Thus the adversary learns nothing during ReadPath. �

Claim 2. EvictPath leaks no information.

The path selected for eviction is chosen statically,
and is public (reverse-lexicographic order). ReadBucket
always reads exactly Z blocks from random slots.
WriteBucket similarly writes Z + S encrypted blocks in
a data-independent fashion. �

Claim 3. EarlyShuffle leaks no information.

To which buckets EarlyShuffle operations occur is
publicly known: the adversary knows how many times a
bucket has been accessed since the last EvictPath to that
bucket. ReadBucket and WriteBucket are secure as per
observations in Claim 2. �

The three subroutines of the Ring ORAM algorithm
are the only operations that cause externally observable
behaviors. Claims 1, 2, and 3 show that the subroutines
are secure. We have so far assumed that path remap-
ping and bucket permutation are truly random, which
gives unconditional security. If pseudorandom numbers
are used instead, we have computational security through
similar arguments.

7
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3.6 Other Optimizations
Minimizing roundtrips. To keep the presentation sim-
ple, we wrote the ReadPath (EvictPath) algorithms to
process buckets one by one. In fact, they can be per-
formed for all buckets on the path in parallel which re-
duces the number of roundtrips to 2 (one for metadata
and one for data blocks).

Tree-top caching. The idea of tree-top caching [18] is
simple: we can reduce the bandwidth for ReadPath and
EvictPath by storing the top t (a new parameter) levels of
the Ring ORAM tree at the client as an extension of the
stash1. For a given t, the stash grows by approximately
2tZ blocks.

De-amortization. We can de-amortize the expensive
EvictPath operation through a period of A accesses, sim-
ply by reading/writing a small number of blocks on the
eviction path after each access. After de-amortization,
worst-case overall bandwidth equals average overall
bandwidth.

3.7 Recursive Construction
With the construction given thus far, the client needs to
store a large position map. To achieve small client stor-
age, we follow the standard recursion idea in tree-based
ORAMs [23]: instead of storing the position map on the
client, we store the position map on a smaller ORAM
on the server, and store only the position map for the
smaller ORAM. The client can recurse until the final
position map becomes small enough to fit in its stor-
age. For reasonably block sizes (e.g., 4 KB), recursion
contributes very little to overall bandwidth (e.g., < 5%
for a 1 TB ORAM) because the position map ORAMs
use much smaller blocks [26]. Since recursion for Ring
ORAM behaves in the same way as all the other tree-
based ORAMs, we omit the details.

4 Stash Analysis

In this section we analyze the stash occupancy for a non-
recursive Ring ORAM. Following the notations in Path
ORAM [27], by ORAMZ,A

L we denote a non-recursive
Ring ORAM with L + 1 levels, bucket size Z and one
eviction per A accesses. The root is at level 0 and the
leaves are at level L. We define the stash occupancy
st(SZ) to be the number of real blocks in the stash after a
sequence of ORAM sequences (this notation will be fur-
ther explained later). We will prove that Pr [st(SZ)> R]

1We call this optimization tree-top caching following prior work.
But the word cache is a misnomer: the top t levels of the tree are per-
manently stored by the client.

decreases exponentially in R for certain Z and A combi-
nations. As it turns out, the deterministic eviction pattern
in Ring ORAM dramatically simplifies the proof.

We note here that the reshuffling of a bucket does not
affect the occupancy of the bucket, and is thus irrelevant
to the proof we present here.

4.1 Proof outline
The proof consists of the two steps. The first step is the
same as Path ORAM, and needs Lemma 1 and Lemma 2
in the Path ORAM paper [27], which we restate in Sec-
tion 4.2. We introduce ∞-ORAM, which has an infinite
bucket size and after a post-processing step has exactly
the same distribution of blocks over all buckets and the
stash (Lemma 1). Lemma 2 says the stash occupancy
of ∞-ORAM after post-processing is greater than R if
and only if there exists a subtree T in ∞-ORAM whose
“occupancy” exceeds its “capacity” by more than R. We
note, however, that the Path ORAM [27] paper only gave
intuition for the proof of Lemma 1, and unfortunately
did not capture of all the subtleties. We will rigorously
prove that lemma, which turns out to be quite tricky and
requires significant changes to the post-processing algo-
rithm.

The second step (Section 4.3) is much simpler than
the rest of Path ORAM’s proof, thanks to Ring ORAM’s
static eviction pattern. We simply need to calculate the
expected occupancy of subtrees in ∞-ORAM, and apply
a Chernoff-like bound on their actual occupancy to com-
plete the proof. We do not need the complicated eviction
game, negative association, stochastic dominance, etc.,
as in the Path ORAM proof [26].

For readability, we will defer the proofs of all lemmas
to Appendix B.

4.2 ∞-ORAM
We first introduce ∞-ORAM, denoted as ORAM∞,A

L . Its
buckets have infinite capacity. It receives the same input
request sequence as ORAMZ,A

L . We then label buckets
linearly such that the two children of bucket bi are b2i and
b2i+1, with the root bucket being b1. We define the stash
to be b0. We refer to bi of ORAM∞,A

L as b∞
i , and bi of

ORAMZ,A
L as bZ

i . We further define ORAM state, which
consists of the states of all the buckets in the ORAM, i.e.,
the blocks contained by each bucket. Let S∞ be the state
of ORAM∞,A

L and SZ be the state of ORAMZ,A
L .

We now propose a new greedy post-processing algo-
rithm G (different from the one in [27]), which by re-
assigning blocks in buckets makes each bucket b∞

i in ∞-
ORAM contain the same set of blocks as bZ

i . Formally, G
takes as input S∞ and SZ after the same access sequence
with the same randomness. For i from 2L+1 −1 down to

8
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1 (note that the decreasing order ensures that a parent is
always processed later than its children), G processes the
blocks in bucket b∞

i in the following way:
1. For those blocks that are also in bZ

i , keep them in
b∞

i .
2. For those blocks that are not in bZ

i but in some an-
cestors of bZ

i , move them from b∞
i to b∞

i/2 (the parent
of b∞

i , and note that the division includes flooring).
If such blocks exist and the number of blocks re-
maining in b∞

i is less than Z, raise an error.
3. If there exists a block in b∞

i that is in neither bZ
i nor

any ancestor of bZ
i , raise an error.

We say GSZ (S∞) = SZ , if no error occurs during G
and b∞

i after G contains the same set of blocks as bZ
i for

i = 0,1, · · ·2L+1.

Lemma 1. GSZ (S∞) = SZ after the same ORAM access
sequence with the same randomness.

Next, we investigate what state S∞ will lead to the
stash occupancy of more than R blocks in a post-
processed ∞-ORAM. We say a subtree T is a rooted sub-
tree, denoted as T ∈ ORAM∞,A

L if T contains the root of
ORAM∞,A

L . This means that if a node in ORAM∞,A
L is

in T , then so are all its ancestors. We define n(T ) to
be the total number of nodes in T . We define c(T ) (the
capacity of T ) to be the maximum number of blocks T
can hold; for Ring ORAM c(T ) = n(T ) · Z. Lastly, we
define X(T ) (the occupancy of T ) to be the actual num-
ber of real blocks that are stored in T . The following
lemma characterizes the stash size of a post-processed
∞-ORAM:

Lemma 2. st(GSZ (S∞)) > R if and only if ∃T ∈
ORAM∞,A

L s.t. X(T )> c(T )+R before post-processing.

By Lemma 1 and Lemma 2, we have

Pr [st(SZ)> R] = Pr [st(GSZ (S∞))> R]

≤ ∑
T∈ORAM

∞,A
L

Pr [X(T )> c(T )+R]

< ∑
n≥1

4n max
T :n(T )=n

Pr [X(T )> c(T )+R] (1)

The above inequalities used a union bound and a bound
on Catalan sequences.

4.3 Bounding the Stash Size
We first give a bound on the expected bucket load:

Lemma 3. For any rooted subtree T in ORAM∞,A
L , if the

number of distinct blocks in the ORAM N ≤ A ·2L−1, the
expected load of T has the following upper bound:

∀T ∈ ORAM∞,A
L ,E[X(T )]≤ n(T ) ·A/2.

Let X(T ) = ∑i Xi(T ), where each Xi(T ) ∈ {0,1} and
indicates whether the i-th block (can be either real or
stale) is in T . Let pi = Pr [Xi(T ) = 1]. Xi(T ) is com-
pletely determined by its time stamp i and the leaf label
assigned to block i, so they are independent from each
other (refer to the proof of Lemma 3). Thus, we can
apply a Chernoff-like bound to get an exponentially de-
creasing bound on the tail distribution. To do so, we first
establish a bound on E

[
etX(T )

]
where t > 0,

E
[
etX(T )

]
= E

[
et ∑i Xi(T )

]
= E

[
ΠietXi(T )

]

= ΠiE
[
etXi(T )

]
(by independence)

= Πi
(

pi(et −1)+1
)

≤ Πi

(
epi(et−1)

)
= e(e

t−1)Σi pi

= e(e
t−1)E[X(T )] (2)

For simplicity, we write n = n(T ) and a = A/2. By
Lemma 3, E[X(T )] ≤ n · a. By the Markov Inequality,
we have for all t > 0,

Pr [X(T )> c(T )+R] = Pr
[
etX(T ) > et(nZ+R)

]

≤ E
[
etX(T )

]
· e−t(nZ+R)

≤ e(e
t−1)an · e−t(nZ+R)

= e−tR · e−n[tZ−a(et−1)]

Let t = ln(Z/a),

Pr [X(T )> c(T )+R]≤ (a/Z)R · e−n[Z ln(Z/a)+a−Z] (3)

Now we will choose Z and A such that Z > a and q =
Z ln(Z/a)+a−Z− ln4> 0. If these two conditions hold,
from Equation (1) we have t = ln(Z/a) > 0 and that the
stash overflow probability decreases exponentially in the
stash size R:

Pr [st(SZ)> R]≤ ∑
n≥1

(a/Z)R · e−qn <
(a/Z)R

1− e−q .

4.4 Stash Size in Practice
Now that we have established that Z ln(2Z/A)+A/2−
Z − ln4 > 0 ensures an exponentially decreasing stash
overflow probability, we would like to know how tight
this requirement is and what the stash size should be in
practice.

We simulate Ring ORAM with L = 20 for over 1 Bil-
lion accesses in a random access pattern, and measure
the stash occupancy (excluding the transient storage of a
path). For several Z values, we look for the maximum A
that results in an exponentially decreasing stash overflow

9



424 24th USENIX Security Symposium USENIX Association

0

100

200

300

400

500

600

700

800

900

1000

0 100 200 300 400 500 600

A

Z

Analytical
Empirical

0

10

20

30

40

50

60

0 10 20 30 40

Zoomed in:

Figure 3: For each Z, determine analytically and em-
pirically the maximum A that results in an exponentially
decreasing stash failure probability.

Z,A Parameters
4,3 8,8 16,20 32,46 16,23

Max Stash Size

λ
80 32 41 65 113 197

128 51 62 93 155 302
256 103 120 171 272 595

Table 3: Maximum stash occupancy for realistic security
parameters (stash overflow probability 2−λ ) and several
choices of A and Z. A = 23 is the maximum achievable
A for Z = 16 according to simulation.

probability. In Figure 3, we plot both the empirical curve
based on simulation and the theoretical curve based on
the proof. In all cases, the theoretical curve indicates a
only slightly smaller A than we are able to achieve in
simulation, indicating that our analysis is tight.

To determine required stash size in practice, Table 3
shows the extrapolated required stash size for a stash
overflow probability of 2−λ for several realistic λ . We
show Z = 16, A = 23 for completeness: this is an aggres-
sive setting that works for Z = 16 according to simulation
but does not satisfy the theoretical analysis; observe that
this point requires roughly 3× the stash occupancy for a
given λ .

5 Bandwidth Analysis

In this section, we answer an important question: how
do Z (the maximum number of real blocks per bucket),
A (the eviction rate) and S (the number of extra dummies
per bucket) impact Ring ORAM’s performance (band-
width)? By the end of the section, we will have a
theoretically-backed analytic model that, given Z, selects
optimal A and S to minimize bandwidth.

We first state an intuitive trade-off: for a given Z, in-
creasing A causes stash occupancy to increase and band-
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Figure 4: For different Z, and the corresponding optimal
A, vary S and plot bandwidth overhead. We only consider
S ≥ A

width overhead to decrease. Let us first ignore early
reshuffles and the XOR technique. Then, the overall
bandwidth of Ring ORAM consists of ReadPath and
EvictPath. ReadPath transfers L+ 1 blocks, one from
each bucket. EvictPath reads Z blocks per bucket and
writes Z + S blocks per bucket, (2Z + S)(L+ 1) blocks
in total, but happens every A accesses. From the re-
quirement of Lemma 3, we have L = log(2N/A), so
the ideal amortized overall bandwidth of Ring ORAM
is (1+(2Z + S)/A) log(4N/A). Clearly, a larger A im-
proves bandwidth for a given Z as it reduces both evic-
tion frequency and tree depth L. So we simply choose
the largest A that satisfies the requirement from the stash
analysis in Section 4.3.

Now we consider the extra overhead from early
reshuffles. We have the following trade-off in choos-
ing S: as S increases, the early reshuffle rate de-
creases (since we have more dummies per bucket) but
the cost to read+write buckets during an EvictPath and
EarlyReshuffle increases. This effect is shown in Figure 4
through simulation: for S too small, early shuffle rate is
high and bandwidth increases; for S too large, eviction
bandwidth dominates.

To analytically choose a good S, we analyze the early
reshuffle rate. First, notice a bucket at level l in the Ring
ORAM tree will be processed by EvictPath exactly once
for every 2lA ReadPath operations, due to the reverse-
lexicographic order of eviction paths (Section 3.3). Sec-
ond, each ReadPath operation is to an independent and
uniformly random path and thus will touch any bucket in
level l with equal probability of 2−l . Thus, the distribu-
tion on the expected number of times ReadPath opera-
tions touch a given bucket in level l, between two consec-
utive EvictPath calls, is given by a binomial distribution
of 2lA trials and success probability 2−l . The probabil-
ity that a bucket needs to be early reshuffled before an
EvictPath is given by a binomial distribution cumula-

10
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Find largest A ≤ 2Z such that
Z ln(2Z/A)+A/2−Z − ln4 > 0 holds.

Find S ≥ 0 that minimizes
(2Z +S)(1+Poiss cdf(S,A))

Ring ORAM offline bandwidth is
(2Z+S)(1+Poiss cdf(S,A))

A · log(4N/A)

Table 4: Analytic model for choosing parameters, given
Z.
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Figure 5: Overall bandwidth as a function of Z. Kinks
are present in the graph because we always round A to the
nearest integer. For Path ORAM, we only study Z = 4
since a larger Z strictly hurts bandwidth.

tive density function Binom cdf(S,2lA,2−l).2 Based on
this analysis, the expected number of times any bucket
is involved in ReadPath operations between consecutive
EvictPath operations is A. Thus, we will only consider
S ≥ A as shown in Figure 4 (S < A is clearly bad as it
needs too much early reshuffling).

We remark that the binomial distribution quickly con-
verges to a Poisson distribution. So the amortized overall
bandwidth, taking early reshuffles into account, can be
accurately approximated as (L+1)+(L+1)(2Z+S)/A ·
(1+Poiss cdf(S,A)). We should then choose the S that
minimizes the above formula. This method always finds
the optimal S and perfectly matches the overall band-
width in our simulation in Figure 4.

We recap how to choose A and S for a given Z in Ta-
ble 4. For the rest of the paper, we will choose A and S
this way unless otherwise stated. Using this method to
set A and S, we show online and overall bandwidth as a
function of Z in Figure 5. In the figure, Ring ORAM does
not use the XOR technique on reads. For Z = 50, we
achieve ∼ 3.5logN bandwidth; for very large Z, band-
width approaches 3 logN. Applying the XOR technique,
online bandwidth overhead drops to close to 1 which re-
duces overall bandwidth to ∼ 2.5logN for Z = 50 and

2The possibility that a bucket needs to be early reshuffled twice
before an eviction is negligible.
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2−80.

2 logN for very large Z.

6 Evaluation

6.1 Bandwidth vs. Client Storage

To give a holistic comparison between schemes, Figure 6
shows the best achievable bandwidth, for different client
storage budgets, for Path ORAM and Ring ORAM. For
each scheme in the figure, we apply all known optimiza-
tions and tune parameters to minimize overall bandwidth
given a storage budget. For Path ORAM we choose Z = 4
(increasing Z strictly hurts bandwidth) and tree-top cache
to fill remaining space. For Ring ORAM we adjust Z, A
and S, tree-top cache and apply the XOR technique.

To simplify the presentation, “client storage” includes
all ORAM data structures except for the position map
– which has the same space/bandwidth cost for both
Path ORAM and Ring ORAM. We remark that applying
the recursion technique (Section 3.7) to get a small on-
chip position map is cheap for reasonably large blocks.
For example, recursing the on-chip position map down
to 256 KiloBytes of space when the data block size
is 4 KiloBytes increases overall bandwidth for Ring
ORAM and Path ORAM by < 3%.

The high order bit is that across different block sizes
and client storage budgets, Ring ORAM consistently re-
duces overall bandwidth relative to Path ORAM by 2-
2.7×. We give a summary of these results for several rep-
resentative client storage budgets in Table 5. We remark
that for smaller block sizes, Ring ORAM’s improvement
over Path ORAM (∼ 2× for 64 Byte blocks) is smaller
relative to when we use larger blocks (2.7× for 4 Kilo-
Byte blocks). The reason is that with small blocks, the
cost to read bucket metadata cannot be ignored, forcing
Ring ORAM to use smaller Z.

11
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Online, Overall Bandwidth overhead
Block Size (Bytes) Z, A (Ring ORAM only) Ring ORAM Ring ORAM (XOR) Path ORAM

64 10,11 48×, 144× 24×, 118× 120×, 240×
4096 33,48 20×, 82× ∼ 1×, 60× 80×, 160×

Table 5: Breakdown between online and offline bandwidth given a client storage budget of 1000× the block size for several
representative points (Section 6.1). Overheads are relative to an insecure system. Parameter meaning is given in Table 2.

Figure 7: SPEC benchmark slowdown.

6.2 Case Study: Secure Processors

In this study, we show how Ring ORAM improves the
performance of secure processors over Path ORAM. We
assume the same processor/cache architecture as [5],
given in Table 4 of that work. We evaluate a 4 GigaByte
ORAM with 64-Byte block size (matching a typical pro-
cessor’s cache line size). Due to the small block size,
we parameterize Ring ORAM at Z = 5, A = 5, X = 2
to reduce metadata overhead. We use the optimized
ORAM recursion techniques [22]: we apply recursion
three times with 32-Byte position map block size and get
a 256 KB final position map. We evaluate performance
for SPEC-int benchmarks and two database benchmarks,
and simulate 3 billion instructions for each benchmark.
We assume a flat 50-cycle DRAM latency, and com-
pute ORAM latency assuming 128 bits/cycle processor-
memory bandwidth. We do not use tree-top caching
since it proportionally benefits both Ring ORAM and
Path ORAM. Today’s DRAM DIMMs cannot perform
any computation, but it is not hard to imagine having
simple XOR logic either inside memory, or connected to
O(logN) parallel DIMMs so as not to occupy processor-
memory bandwidth. Thus, we show results with and
without the XOR technique.

Figure 7 shows program slowdown over an insecure
DRAM. The high order bit is that using Ring ORAM
with XOR results in a geometric average slowdown of
2.8× relative to an insecure system. This is a 1.5× im-
provement over Path ORAM. If XOR is not available, the
slowdown over an insecure system is 3.2×.

We have also repeated the experiment with the unified
ORAM recursion technique and its parameters [5]. The
geometric average slowdown over an insecure system is
2.4× (2.5× without XOR).

7 Ring ORAM with Large Client Storage

If given a large client storage budget, we can first choose
very large A and Z for Ring ORAM, which means band-
width approaches 2 logN (Section 5).3 Then remaining
client storage can be used to tree-top cache (Section 3.6).
For example, tree-top caching t = L/2 levels requires
O(

√
N) storage and bandwidth drops by a factor of 2

to 1 · logN—which roughly matches the SSS construc-
tion [25].

Burst ORAM [3] extends the SSS construction to han-
dle millions of accesses in a short period, followed by
a relatively long idle time where there are few requests.
The idea to adapt Ring ORAM to handle bursts is to de-
lay multiple (potentially millions of) EvictPath opera-
tions until after the burst of requests. Unfortunately, this
strategy means we will experience a much higher early
reshuffle rate in levels towards the root. The solution
is to coordinate tree-top caching with delayed evictions:
For a given tree-top size t, we allow at most 2t delayed
EvictPath operations. This ensures that for levels ≥ t,
the early reshuffle rate matches our analysis in Section 5.
We experimentally compared this methodology to the
dataset used by Burst ORAM and verified that it gives
comparable performance to that work.

8 Related Work

ORAM was first proposed by Goldreich and Ostro-
vsky [10, 11]. Since then, there have been numerous
follow-up works that significantly improved ORAM’s ef-
ficiency in the past three decades [21, 20, 2, 1, 29, 12,
13, 15, 25, 23, 9, 27, 28]. We have already reviewed two
state-of-the-art schemes with different client storage re-
quirements: Path ORAM [27] and the SSS ORAM [25].
Circuit ORAM [28] is another recent tree-based ORAM,
which requires only O(1) client storage, but its band-
width is a constant factor worse than Path ORAM.

Reducing online bandwidth. Two recent works
[3, 19] have made efforts to reduce online bandwidth
(response time). Unfortunately, the techniques in Burst
ORAM [3] do not work with Path ORAM (or more
generally any existing tree-based ORAMs). On the

3We assume the XOR technique because large client storage implies
a file server setting.
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other hand, Path-PIR [19], while featuring a tree-based
ORAM, employs heavy primitives like Private Informa-
tion Retrieval (PIR) or even FHE, and thus requires a
significant amount of server computation. In compari-
son, our techniques efficiently achieve O(1) online cost
for tree-based ORAMs without resorting to PIR/FHE,
and also improve bursty workload performance similar
to Burst ORAM.

Subsequent work. Techniques proposed in this paper
have been adopted by subsequent works. For example,
Tiny ORAM [6] and Onion ORAM [4] used part of our
eviction strategy in their design for different purposes.

9 Conclusion

This paper proposes Ring ORAM, the most bandwidth-
efficient ORAM scheme for the small (constant or poly-
log) client storage setting. Ring ORAM is simple, flexi-
ble and backed by a tight theoretic analysis.

Ring ORAM is the first tree-based ORAM whose
online and overall bandwidth are independent of tree
ORAM bucket size. With this and additional proper-
ties of the algorithm, we show that Ring ORAM im-
proves online bandwidth by 60× (if simple computa-
tion such as XOR is available at memory), and overall
bandwidth by 2.3× to 4× relative to Path ORAM. In a
secure processor case study, we show that Ring ORAM’s
bandwidth improvement translates to an overall program
performance improvement of 1.5×. By increasing Ring
ORAM’s client storage, Ring ORAM is competitive in
the cloud storage setting as well.
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A Bucket Structure

Table 6 lists all the fields in a Ring ORAM bucket and
their size. We would like to make two remarks. First,
only the data fields are permuted and that permutation
is stored in ptrs. Other bucket fields do not need to
be permuted because when they are needed, they will
be read in their entirety. Second, count and valids are
stored in plaintext. There is no need to encrypt them
since the server can see which bucket is accessed (deduc-
ing count for each bucket), and which slot is accessed in
each bucket (deducing valids for each bucket). In fact,
if the server can do computation and is trusted to follow

Algorithm 5 Helper functions.
count, valids, addrs, leaves, ptrs, data are fields of the
input bucket in each of the following three functions

1: function GetBlockOffset(bucket,a)
2: read in valids, addrs, ptrs
3: decrypt addrs, ptrs
4: for j ← 0 to Z −1 do
5: if a = addrs[ j] and valids[ptrs[ j]] then
6: return ptrs[ j] � block of interest

return a pointer to a random valid dummy

1: function ReadBucket(bucket)
2: read in valids, addrs, leaves, ptrs
3: decrypt addrs, leaves, ptrs
4: z ← 0 � track # of remaining real blocks
5: for j ← 0 to Z −1 do
6: if valids[ptrs[ j]] then
7: data′ ← read and decrypt data[ptrs[ j]]
8: z ← z+1
9: if addrs[ j] �=⊥ then

10: block ← (addr[ j], leaf[ j],data′)
11: Stash ← Stash∪block
12: for j ← z to Z −1 do
13: read a random valid dummy

1: function WriteBucket(bucket,Stash)
2: find up to Z blocks from Stash that can reside
3: in this bucket, to form addrs, leaves, data′

4: ptrs← PRP(0,Z +S) � or truly random
5: for j ← 0 to Z −1 do
6: data[ptrs[ j]]← data′[ j]
7: valids← {1}Z+S

8: count ← 0
9: encrypt addrs, leaves, ptrs, data

10: write out count, valids, addrs, leaves, ptrs, data

the protocol faithfully, the client can let the server up-
date count and valids. All the other structures should be
probabilistically encrypted.

Having defined the bucket structure, we can be more
specific about some of the operations in earlier sec-
tions. For example, in Algorithm 2 Line 5 means
reading P(l, i).data[offset], and Line 6 means setting
P(l, i).valids[offset] to 0.

Now we describe the helper functions in detail.
GetBlockOffset reads in the valids, addrs, ptrs field, and
looks for the block of interest. If it finds the block of
interest, meaning that the address of a still valid block
matches the block of interest, it returns the permuted lo-
cation of that block (stored in ptrs). If it does not find
the block of interest, it returns the permuted location of
a random valid dummy block.

14



USENIX Association  24th USENIX Security Symposium 429

Notation Size (bits) Meaning

count log(S) # of times this bucket has been touched by ReadPath since it was last shuffled
valids (Z +S)∗1 Indicates whether each of the Z +S blocks is valid
addrs Z ∗ log(N) Address for each of the Z (potentially) real blocks
leaves Z ∗L Leaf label for each of the Z (potentially) real blocks
ptrs Z ∗ log(Z +S) Offset in the bucket for each of the Z (potentially) real blocks
data (Z +S)∗B Data field for each of the Z +S blocks, permuted according to ptrs

EncSeed λ (security parameter) Encryption seed for the bucket; count and valids are stored in the clear

Table 6: Ring ORAM bucket format. All logs are taken to their ceiling.

ReadBucket reads all of the remaining real blocks in a
bucket into the stash. For security reasons, ReadBucket
always reads exactly Z blocks from that bucket. If the
bucket contains less than Z valid real blocks, the remain-
ing blocks read out are random valid dummy blocks. Im-
portantly, since we allow at most S reads to each bucket
before reshuffling it, it is guaranteed that there are at least
Z valid (real + dummy) blocks left that have not been
touched since the last reshuffle.
WriteBucket evicts as many blocks as possible (up to

Z) from the stash to a certain bucket. If there are z′ ≤ Z
real blocks to be evicted to that bucket, Z+S−z′ dummy
blocks are added. The Z + S blocks are then randomly
shuffled based on either a truly random permutation or a
Pseudo Random Permutation (PRP). The permutation is
stored in the bucket field ptrs. Then, the function resets
count to 0 and all valid bits to 1, since this bucket has
just been reshuffled and no blocks have been touched.
Finally, the permuted data field along with its metadata
are encrypted (except count and valids) and written out
to the bucket.

B Proof of the Lemmas

To prove Lemma 1, we made a little change to the Ring
ORAM algorithm. In Ring ORAM, a ReadPath opera-
tion adds the block of interest to the stash and replaces it
with a dummy block in the tree. Instead of making the
block of interest in the tree dummy, we turn it into a stale
block. On an EvictPath operation to path l, all the stale
blocks that are mapped to leaf l are turned into dummy
blocks. Stale blocks are treated as real blocks in both
ORAMZ,A

L and ORAM∞,A
L (including GZ) until they are

turned into dummy blocks. Note that this trick of stale
blocks is only to make the proof go through. It hurts
the stash occupancy and we will not use it in practice.
With the stale block trick, we can use induction to prove
Lemma 1.

Proof of Lemma 1. Initially, the lemma obviously holds.
Suppose GSZ (S∞) = SZ after some accesses. We need to

show that GS ′
Z
(S∞) = S′

Z where S′
Z and S′

∞ are the states
after the next operation (either ReadPath or EvictPath).
A ReadPath operation adds a block to the stash (the root
bucket) for both ORAMZ,A

L and ORAM∞,A
L , and does not

move any blocks in the tree except turning a real block
into a stale block. Since stale blocks are treated as real
blocks, GS ′

Z
(S∞) = S′

Z holds.
Now we show the induction holds for an EvictPath

operation. Let EPZ
l be an EvictPath operation to P(l)

(path l) in ORAMZ,A
L and EP∞

l be an EvictPath operation
to P(l) in ORAM∞,A

L . Then, S′
Z = EPZ

l (SZ) and S′
∞ =

EP∞
l (S∞). Note that EPZ

l has the same effect as EP∞
l

followed by post-processing, so

S′
Z = EPZ

l (SZ) = GS ′
Z
(EP∞

l (SZ))

= GS ′
Z
(EP∞

l (GSZ (S∞)))

The last equation is due to the induction hypothesis.
It remains to show that

GS ′
Z
(EP∞

l (GSZ (S∞))) = GS ′
Z
(EP∞

l (S∞)) ,

which is GS ′
Z
(S′

∞). To show this, we decompose G into
steps for each bucket, i.e., GSZ (S∞) = g1g2 · · ·g2L+1 (S∞)
where gi processes bucket b∞

i in reference to bZ
i . Sim-

ilarly, we decompose GS ′
Z

into g′1g′2 · · ·g′2L+1 where
each g′i processes bucket b′∞i of S′

∞ in reference
to b′Zi of S′

Z . We now only need to show that
for any 0 < i < 2L+1, GS ′

Z
(EP∞

l (g1g2 · · ·gi (S∞))) =

GS ′
Z
(EP∞

l (g1g2 · · ·gi−1 (S∞))). This is obvious if we
consider the following three cases separately:

1. If bi ∈ P(l), then gi before EP∞
l has no effect since

EP∞
l moves all blocks on P(l) into the stash before

evicting them to P(l).
2. If bi �∈ P(l) and bi/2 �∈ P(l) (neither bi nor

its parent is on Path l), then gi and EP∞
l

touch non-overlapping buckets and do not in-
terfere with each other. Hence, their order
can be swapped, GS ′

Z
(EP∞

l (g0g1g2 · · ·gi (S∞))) =

GS ′
Z
gi (EP

∞
l (g0g1g2 · · ·gi−1 (S∞))). Furthermore,
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bZ
i = b′Zi (since EP∞

l does not change the content
of bi), so gi has the same effect as g′i and can be
merged into GS ′

Z
.

3. If bi �∈ P(l) but bi/2 ∈ P(l), the blocks moved into
bi/2 by gi will stay in bi/2 after EP∞

l since bi/2 is
the highest intersection (towards the leaf) that these
blocks can go to. So gi can be swapped with EP∞

l
and can be merged into GS ′

Z
as in the second case.

We remind the readers that because we only remove stale
blocks that are mapped to P(l), the first case is the only
case where some stale blocks in bi may turn into dummy
blocks. And the same set of stale blocks are removed
from ORAMZ,A

L and ORAM∞,A
L .

This shows

GS ′
Z
(EP∞

l (GSZ (S∞))) = GS ′
Z
(EP∞

l (S∞))

= GS ′
Z

(
S′

∞
)

and completes the proof.

The proof of Lemma 2 remains unchanged from the
Path ORAM paper [27], and is replicated here for com-
pleteness.

Proof of Lemma 2. If part: Suppose T ∈ ORAM∞,A
L and

X(T ) > c(T )+R. Observe that G can assign the blocks
in a bucket only to an ancestor bucket. Since T can store
at most c(T ) blocks, more than R blocks must be as-
signed to the stash by G.

Only if part: Suppose that st(GSZ (S∞)) > R. Let T
be the maximal rooted subtree such that all the buck-
ets in T contain exactly Z blocks after post-processing
G. Suppose b is a bucket not in T . By the maximality
of T , there is an ancestor (not necessarily proper ances-
tor) bucket b′ of b that contains less than Z blocks after
post-processing, which implies that no block from b can
go to the stash. Hence, all blocks that are in the stash
must have originated from T . Therefore, it follows that
X(T )> c(T )+R.

Proof of Lemma 3. For a bucket b in ORAM∞,A
L , de-

fine Y (b) to be the number of blocks in b before post-
processing. It suffices to prove that ∀b ∈ ORAM∞,A

L ,
E[Y (b)]≤ A/2.

If b is a leaf bucket, the blocks in it are put there by the
last EvictPath operation to that leaf/path. Note that only
real blocks could be put in b by that operation, although
some of them may have turned into stale blocks. Stale
blocks can never be moved into a leaf by an EvictPath
operation, because that EvictPath operation would re-
move all the stale blocks mapped to that leaf. There are
at most N distinct real blocks and each block has a prob-
ability of 2−L to be mapped to b independently. Thus
E[Y (b)]≤ N ·2−L ≤ A/2.

If b is not a leaf bucket, we define two variables m1 and
m2: the last EvictPath operation to b’s left child is the
m1-th EvictPath operation, and the last EvictPath oper-
ation to b’s right child is the m2-th EvictPath operation.
Without loss of generality, assume m1 < m2. We then
time-stamp the blocks as follows. When a block is ac-
cessed and remapped, it gets time stamp m∗, which is
the number of EvictPath operations that have happened.
Blocks with m∗ ≤ m1 will not be in b as they will go
to either the left child or the right child of b. Blocks
with m∗ > m2 will not be in b as the last access to b
(m2-th) has already passed. Therefore, only blocks with
time stamp m1 < m∗ ≤ m2 will be put in b by the m2-
th access. (Some of them may be accessed again after
the m2-th access and become stale, but this does not af-
fect the total number of blocks in b as stale blocks are
treated as real blocks.) There are at most d = A|m1−m2|
such blocks, and each goes to b independently with a
probability of 2−(i+1), where i is the level of b. The de-
terministic nature of evictions in Ring ORAM ensures
|m1 −m2| = 2i. (One way to see this is that a bucket b
at level i will be written every 2i EvictPath operations,
and two consecutive EvictPath operations to b always
travel down the two different children of b.) Therefore,
E[Y (b)] ≤ d · 2−(i+1) = A/2 for any non-leaf bucket as
well.
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Abstract

Side-channel attacks monitor some aspect of a com-
puter system’s behavior to infer the values of secret data.
Numerous side-channels have been exploited, including
those that monitor caches, the branch predictor, and the
memory address bus. This paper presents a method of
defending against a broad class of side-channel attacks,
which we refer to as digital side-channel attacks. The
key idea is to obfuscate the program at the source code
level to provide the illusion that many extraneous pro-
gram paths are executed. This paper describes the techni-
cal issues involved in using this idea to provide confiden-
tiality while minimizing execution overhead. We argue
about the correctness and security of our compiler trans-
formations and demonstrate that our transformations are
safe in the context of a modern processor. Our empiri-
cal evaluation shows that our solution is 8.9× faster than
prior work (GhostRider [20]) that specifically defends
against memory trace-based side-channel attacks.

1 Introduction

It is difficult to keep secrets during program execu-
tion. Even with powerful encryption, the values of secret
variables can be inferred through various side-channels,
which are mechanisms for observing the program’s exe-
cution at the level of the operating system, the instruction
set architecture, or the physical hardware. Side-channel
attacks have been used to break AES [26] and RSA [27]
encryption schemes, to break the Diffie-Hellman key ex-
change [15], to fingerprint software libraries [46], and to
reverse-engineer commercial processors [18].

To understand side-channel attacks, consider the pseu-
docode in Figure 1, which is found in old implementa-
tions of both the encryption and decryption steps of RSA,
DSA, and other cryptographic systems. In this func-
tion, s is the secret key, but because the Taken branch
is computationally more expensive than the Not Taken

1: function SQUARE AND MULTIPLY(m,s,n)
2: z ← 1
3: for bit b in s from left to right do
4: if b = 1 then
5: z ← m · z2 mod n
6: else
7: z ← z2 mod n
8: end if
9: end for

10: return z
11: end function

Figure 1: Source code to compute ms mod n.

branch, an adversary who can measure the time it takes
to execute an iteration of the loop can infer whether the
branch was Taken or Not Taken, thereby inferring the
value of s one bit at a time [31, 5]. This particular block
of code has also been attacked using side-channels in-
volving the cache [44], power [16], fault injection [3, 41],
branch predictor [1], electromagnetic radiation [11], and
sound [32].

Over the past five decades, numerous solutions [20,
30, 21, 42, 35, 22, 40, 14, 43, 37, 39, 38, 23, 45, 25, 34,
9, 33, 10] have been proposed for defending against side-
channel attacks. Unfortunately, these defenses provide
point solutions that leave the program open to other side-
channel attacks. Given the vast number of possible side-
channels, and given the high overhead that comes from
composing multiple solutions, we ideally would find a
single solution that simultaneously closes a broad class
of side-channels.

In this paper, we introduce a technique that does just
this, as we focus on the class of digital side-channels,
which we define as side-channels that carry information
over discrete bits. These side-channels are visible to the
adversary at the level of both the program state and the
instruction set architecture (ISA). Thus, address traces,
cache usage, and data size are examples of digital side-
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channels, while power draw, electromagnetic radiation,
and heat are not.

Our key insight is that all digital side-channels emerge
from variations in program execution, so while other so-
lutions attempt to hide the symptoms—for example, by
normalizing the number of instructions along two paths
of a branch—we instead attack the root cause by execut-
ing extraneous program paths, which we refer to as de-
coy paths. Intuitively, after obfuscation, the adversary’s
view through any digital side-channel appears the same
as if the program were run many times with different in-
puts. Of course, we must ensure that our system records
the output of only the real path and not the decoy paths,
so our solution uses a transaction-like system to update
memory. On the real paths, each store operation first
reads the old value of a memory location before writing
the new value, while the decoy paths read the old value
and write the same old value.

The only distinction between real and decoy paths lies
in the values written to memory: Decoy and real paths
will write different values, but unless an adversary can
break the data encryption, she cannot distinguish decoy
from real paths by monitoring digital side-channels. Our
solution does not defend against non-digital side-channel
attacks, because analog side-channels might reveal the
difference between the encrypted values that are stored.
For example, a decoy path might “increment” some vari-
able x multiple times, and an adversary who can precisely
monitor some non-digital side-channel, such as power-
draw, might be able to detect that the “increments” to x
all write the same value, thereby revealing that the code
belongs to a decoy path.

Nevertheless, our new approach offers several advan-
tages. First, it defends against almost all digital side-
channel attacks.1 Second, it does not require that the
programs themselves be secret, just the data. Third, it
obviates the need for special-purpose hardware. Thus,
standard processor features such as caches, branch pre-
dictors and prefetchers do not need to be disabled. Fi-
nally, in contrast with previous solutions for hiding spe-
cific side channels, it places few fundamental restrictions
on the set of supported language features.

This paper makes the following contributions:

1. We design a set of mechanisms, embodied in a
system that we call Raccoon,2 that closes digital
side-channels for programs executing on commod-
ity hardware. Raccoon works for both single- and
multi-threaded programs.

1Section 3 (Threat Model) clarifies the specific side-channels closed
by our approach.

2Raccoons are known for their clever ability to break their scent
trails to elude predators. Raccoons introduce spurious paths as they
climb and descend trees, jump into water, and create loops.

2. We evaluate the security aspects of these mecha-
nisms in several ways. First, we argue that the ob-
fuscated data- and control-flows are correct and are
always kept secret. Second, we use information
flows over inference rules to argue that Raccoon’s
own code does not leak information. Third, as an
example of Raccoon’s defense, we show that Rac-
coon protects against a simple but powerful side-
channel attack through the OS interface.

3. We evaluate the performance overhead of Raccoon
and find that its overhead is 8.9× smaller than
that of GhostRider, which is the most similar prior
work [20].3 Unlike GhostRider, Raccoon defends
against a broad range of side-channel attacks and
places many fewer restrictions on the programming
language, on the set of applicable compiler opti-
mizations, and on the underlying hardware.

This paper is organized as follows. Section 2 describes
background and related work, and Section 3 describes
our assumed threat model. We then describe our solu-
tion in detail in Section 4 before presenting our security
evaluation and our performance evaluation in Sections 5
and 6, respectively. We discuss the implications of Rac-
coon’s design in Section 7, and we conclude in Section 8.

2 Background and Related Work

Side-channel attacks through the OS, the underlying
hardware, or the processor’s output pins have been a sub-
ject of vigorous research. Formulated as the “confine-
ment problem” by Lampson in 1973 [19], such attacks
have become relevant for cloud infrastructures where the
adversary and victim VMs can be co-resident [29] and
also for settings where adversaries have physical access
to the processor-DRAM interface [46, 22].

Side-Channels through OS and Microarchitecture.
Some application-level information leaks are beyond the
application’s control, for example, an adversary reading
a victim’s secrets through the /proc filesystem [13], or a
victim’s floating point registers that are not cleared on a
context switch [2]. In addition to such explicit informa-
tion leaks, implicit flows rely on contention for shared
resources, as observed by Wang and Lee [39] for cache
channels and extended by Hunger et al. [37] to all mi-
croarchitectural channels.

Defenses against such attacks either partition re-
sources [40, 14, 43, 37], add noise [39, 38, 23, 45], or

3GhostRider [20] was evaluated with non-optimized programs exe-
cuting on embedded CPUs, which results in an unrealistically low over-
head (∼10×). Our measurements instead use a modern CPU with an
aggressively optimized binary as the baseline.

2
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normalize the channel [17, 20] to curb side-channel ca-
pacity. Raccoon’s defenses complement prior work that
modifies the hardware and/or OS. Molnar et al. [25] de-
scribe a transformation that prevents control-flow side-
channel attacks, but their approach does not apply to pro-
grams that contain function calls and it does not protect
against data-flow-based side-channel attacks.

Physical Access Attacks and Secure Processors.
Execute-only Memory (XOM) [36] encrypts portions of
memory to prevent the adversary from reading secret
data or instructions from memory. The AEGIS [35] se-
cure processor provides the notion of tamper-evident ex-
ecution (recognizing integrity violations using a merkle
tree) and tamper-resistant computing (preventing an ad-
versary from learning secret data using memory encryp-
tion). Intel’s Software Guard Extensions (SGX) [24] cre-
ate “enclaves” in memory and limit accesses to these en-
claves. Both XOM and SGX are only partially successful
in prevent the adversary from accessing code because an
adversary can still disassemble the program binary that is
stored on the disk. In contrast, Raccoon permits release
of the transformed code to the adversary. Hence Raccoon
never needs to encrypt code memory.

Oblivious RAM. AEGIS, XOM, and Intel SGX do not
prevent information leakage via memory address traces.
Memory address traces can be protected using Oblivious
RAM, which re-encrypts and re-shuffles data after each
memory access. The Path ORAM algorithm [34] is a
tree-based ORAM scheme that adds two secret on-chip
data structures, the stash and position map, to piggyback
multiple writes to the in-memory data structure. While
Raccoon uses a modified version of the Path ORAM al-
gorithm, the specific ORAM implementation is orthogo-
nal to the Raccoon design.

The Ascend [9] secure processor encrypts memory
contents and uses the ORAM construct to hide mem-
ory access traces. Similarly, Phantom [22] implements
ORAM to hide memory access traces. Phantom’s mem-
ory controller leverages parallelism in DRAM banks to
reduce overhead of ORAM accesses. However, both
Phantom and Ascend assume that the adversary can only
access code by reading the contents of memory. By con-
trast, Raccoon hides memory access traces via control
flow obfuscation and software ORAM while still permit-
ting the adversary to read the code. Ascend and Phan-
tom rely on custom memory controllers whereas Mem-
ory Trace Oblivious systems that build on Phantom [20]
rely on a new, deterministic processor pipeline. In con-
trast, Raccoon protects off-chip data on commodity hard-
ware.

Memory Trace Obliviousness. GhostRider [20, 21] is
a set of compiler and hardware modifications that trans-
forms programs to satisfy Memory Trace Obliviousness
(MTO). MTO hides control flow by transforming pro-
grams to ensure that the memory access traces are the
same no matter which control flow path is taken by the
program. GhostRider’s transformation uses a type sys-
tem to check whether the program is fit for transforma-
tion and to identify security-sensitive program values. It
also pads execution paths along both sides of a branch so
that the length of the execution does not reveal the branch
predicate value.

However, unlike Raccoon, GhostRider cannot exe-
cute on generally-available processors and software envi-
ronments because GhostRider makes strict assumptions
about the underlying hardware and the user’s program.
Specifically, GhostRider (1) requires the use of new in-
structions to load and store data blocks, (2) requires sub-
stantial on-chip storage, (3) disallows the use of dynamic
branch prediction, (4) assumes in-order execution, and
(5) does not permit use of the hardware cache (it instead
uses a scratchpad memory controlled by the compiler).
GhostRider also does not permit the user code to contain
pointers or to contain function calls that use or return
secret information. By contrast, Raccoon runs on SGX-
enabled Intel processors (SGX is required to encrypt val-
ues on the data bus) and permits user programs to contain
pointers, permits the use of possibly unsafe arithmetic
statements, and allows the use of function calls that use
or return secret information.

3 Threat Model and System Guarantees

This section describes our assumptions about the under-
lying hardware and software, along with Raccoon’s ob-
fuscation guarantees.

Hardware Assumptions. We assume that the adver-
sary can monitor and tamper with any digital signals on
the processor’s I/O pins. We also assume that the pro-
cessor is a sealed chip [35], that all off-chip resources
(including DRAM, disks, and network devices) are un-
trusted, that all read and written values are encrypted,
and that the integrity of all reads and writes is checked.

Software Assumptions. We assume that the adversary
can run malicious applications on the same operating
system and/or hardware as the victim’s application. We
allow malicious applications to probe the victim applica-
tion’s run-time statistics exposed by the operating system
(e.g. the stack pointer in /proc/pid/stat). However,
we assume that the operating system is trusted, so Iago
attacks [7] are out of scope.
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The Raccoon design assumes that the input program
is free of errors, i.e. (1) the program does not contain
bugs that will induce application crashes, (2) the pro-
gram does not exhibit undefined behavior, and (3) if
multi-threaded, then the program is data-race free. Un-
der these assumptions, Raccoon does not introduce new
termination-channel leaks, and Raccoon correctly obfus-
cates multi-threaded programs.

Raccoon statically transforms the user code into an ob-
fuscated binary; we assume that the adversary has access
to this transformed binary code and to any symbol table
and debug information that may be present.

In its current implementation, Raccoon does not sup-
port all features of the C99 standard. Specifically, Rac-
coon cannot obfuscate I/O statements4 and non-local
goto statements. While break and continue statements
do not present a fundamental challenge to Raccoon, our
current implementation does not obfuscate these state-
ments. Raccoon cannot analyze libraries since their
source code is not available when compiling the end-
user’s application.

As with related solutions [30, 20, 21], Raccoon does
not protect information leaks from loop trip counts, since
naı̈vely obfuscating loop back-edges would create infi-
nite loops. For the same reason, Raccoon does not ob-
fuscate branches that represent terminal cases of recur-
sive function calls. However, to address these issues, it is
possible to adapt complementary techniques designed to
close timing channels [42], which can limit information
leaks from loop trip counts and recursive function calls.

Raccoon includes static analyses that check if the in-
put program contains these unsupported language con-
structs. If such constructs are found in the input program,
the program is rejected.

System Guarantees. Within the constraints listed
above, Raccoon protects against all digital side-channel
attacks. Raccoon guarantees that an adversary monitor-
ing the digital signals of the processor chip cannot dif-
ferentiate between the real path execution and the de-
coy path executions. Even after executing multiple de-
coy program paths, Raccoon guarantees the same final
program output as the original program.

Raccoon guarantees that its obfuscation steps will not
introduce new program bugs or crashes, so Raccoon does
not introduce new information leaks over the termination
channel.

Assuming that the original program is race-free, Rac-
coon’s code transformations respect the original pro-
gram’s control and data dependences. Moreover, Rac-
coon’s obfuscation code uses thread-local storage. Thus,

4Various solutions have been proposed that allow limited use of
“transactional” I/O statements through runtime systems [6], operating
systems [28], or the underlying hardware [4].

1: p ← &a;
2: if secret = true then
3: ... � Real path.
4: else
5: ... � Decoy path.
6: p ← &b; � Dummy instructions do not update p.
7: ∗p ← 10; � Accesses variable a instead of b!
8: end if

Figure 2: Illustrating the importance of Property 2. This
code fragment shows how solutions that do not update
memory along decoy paths may leak information. If the
decoy path is not allowed to update memory, then the
dereferenced pointer in line 7 will access a instead of
accessing b, which reveals that the statement was part of
a decoy path.

Raccoon’s obfuscation technique works seamlessly with
multi-threaded applications because it does not introduce
new data dependences.

4 Raccoon Design

This section describes the design and implementation of
Raccoon from the bottom-up. We start by describing the
two critical properties of Raccoon that distinguish it from
other obfuscation techniques. Then, after describing the
key building block upon which higher-level oblivious op-
erations are built, we describe each of Raccoon’s individ-
ual components: (1) a taint analysis that identifies pro-
gram statements that require obfuscation (Section 4.3),
(2) a runtime transaction-like memory mechanism for
buffering intermediate results along decoy paths (Sec-
tion 4.4), (3) a program transformation that obfuscates
control-flow statements (Section 4.5), and (4) a code
transformation that uses software Path ORAM to hide
array accesses that depend on secrets (Section 4.6). We
then describe Raccoon’s program transformations that
ensure crash-free execution (Section 4.7). Finally, we
illustrate with a simple example the synergy among Rac-
coon’s various obfuscation steps (Section 4.8).

4.1 Key Properties of Our Solution
Two key properties of Raccoon distinguish it from other
branch-obfuscating solutions [20, 21, 25, 8]:

• Property 1: Both real and decoy paths execute ac-
tual program instructions.

• Property 2: Both real and decoy paths are allowed
to update memory.

Property 1 produces decoy paths that—from the per-
spective of an adversary monitoring a digital side-
channel—are indistinguishable from from real paths.
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Without this property, previous solutions can close one
side-channel while leaving other side-channels open. To
understand this point, we refer back to Figure 1 and con-
sider a solution that normalizes execution time along the
two branch paths in the Figure by adding NOP instructions
to the Not Taken path. This solution closes the timing
channel but introduces different instruction counts along
the two branch paths. On the other hand, the addition
of dummy instructions to normalize instruction counts
will likely result in different execution time along the two
branch paths, since (on commodity hardware) the NOP in-
structions will have a different execution latency than the
multiply instruction.

Property 2 is a special case of Property 1, but we in-
clude it because the ability to update memory is critical to
Raccoon’s ability to obfuscate execution. For example,
Figure 2 shows that if the decoy path does not update the
pointer p, then the subsequent decoy statement will up-
date a instead of b, revealing that the assignment to *p
was part of a decoy path.

4.2 Oblivious Store Operation

Raccoon’s key building block is the oblivious store op-
eration, which we implement using the CMOV x86 in-
struction. This instruction accepts a condition code, a
source operand, and a destination operand; if the condi-
tion is true, it moves the source operand to the destina-
tion. When both the source and the destination operands
are in registers, the execution of this instruction does
not reveal information about the branch predicate (hence
the name oblivious store operation).5 As we describe
shortly, many components in Raccoon leverage the obliv-
ious store operation. Figure 3 shows the x86 assembly
code for the CMOV wrapper function.

4.3 Taint Analysis

Raccoon requires the user to annotate secret variables
using the attribute construct. With these secret
variables identified, Raccoon performs inter-procedural
taint analysis to identify branches and data access state-
ments that require obfuscation. Raccoon propagates taint
across both implicit and explicit flow edges. The result of
the taint analysis is a list of memory accesses and branch
statements that must be obfuscated to protect privacy.

5Contrary to the pseudocode describing the CMOV instruction in the
Intel 64 Architecture Software Developer’s Manual, our assembly code
tests reveal that in 64-bit operating mode when the operand size is
16-bit or 32-bit, the instruction resets the upper 32 bits regardless of
whether the predicate is true. Thus the instruction does not leak the
value of the predicate via the upper 32 bits, as one might assume based
on the manual.

01: cmov(uint8_t pred, uint32_t t_val, uint32_t f_val) {
02: uint32_t result;
03: __asm__ volatile (
04: "mov %2, %0;"
05: "test %1, %1;"
06: "cmovz %3, %0;"
07: "test %2, %2;"
08: : "=r" (result)
09: : "r" (pred), "r" (t_val), "r" (f_val)
10: : "cc"
11: );
12: return result;
13: }

Figure 3: CMOV wrapper

4.4 Transaction Management

To support Properties 1 and 2, Raccoon executes each
branch of an obfuscated if-statement in a transaction. In
particular, Raccoon buffers load and store operations
along each path of an if-statement, and Raccoon writes
values along the real path to DRAM using the oblivi-
ous store operation. If a decoy path tries to write a
value to the DRAM, Raccoon uses the oblivious store
operation to read the existing value and write it back.
At compile time, Raccoon transforms load and store
operations so that they will be serviced from the transac-
tion buffers. Figure 4 shows pseudocode that implements
transactional loads and stores. Loads and stores that ap-
pear in non-obfuscated code do not use the transaction
buffers.

4.5 Control-Flow Obfuscation

To obfuscate control flow, Raccoon forces control flow
along both paths of an obfuscated branch, which re-
quires three key facilities: (1) a method of perturbing
the branch outcome, (2) a method of bringing execu-
tion control back from the end of the if-statement to
the start of the if-statement so that execution can fol-
low along the unexplored path, and (3) a method of en-
suring that memory updates along decoy path(s) do not
alter non-transactional memory. The first facility is im-
plemented by the obfuscate() function (which forces
sequential execution of both paths arising out of a con-
ditional branch instruction). Although Raccoon executes
both branch paths, it evaluates the (secret) branch pred-
icate only once. This ensures that the execution of the
first path does not unexpectedly change the value of the
branch predicate. The second facility is implemented
by the epilog() function (which transfers control-flow
from the post-dominator of the if-statement to the be-
ginning of the if-statement). Finally the third facility
is implemented using the oblivious store operation de-
scribed earlier. The control-flow obfuscation functions
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// Writes a value to the transaction buffer.
tx_write(address, value) {

if (threaded program)
lock();

// Write to both the transaction buffer
// and to the non-transactional storage.
tls->gl_buffer[address] = value;
*address = cmov(real_idx == instance,

value, *address);

if (threaded program)
unlock();

}

// Fetches a value from the transaction buffer.
tx_read(address) {

if (threaded program)
lock();

value = *address;
if (address in tls->gl_buffer)

value = tls->gl_buffer[address];

value = cmov(real_idx == instance,
*address, value);

if (threaded program)
unlock();

return value;
}

Figure 4: Pseudocode for transaction buffer accesses.
Equality checks are implemented using XOR operation to
prevent the compiler from introducing an explicit branch
instruction.

(obfuscate() and epilog()) use the libc setjmp() and
longjmp() functions to transfer control between pro-
gram points.

Safety of setjmp() and longjmp() Operations. The
use of setjmp() and longjmp() is safe as long as the
runtime system does not destroy the activation record of
the caller of setjmp() prior to calling longjmp(). Thus,
the function that invokes setjmp() should not return un-
til longjmp() is invoked. To work around this limitation,
Raccoon copies the stack contents along with the register
state (identified by the jmp buff structure) and restores
the stack before calling longjmp(). To avoid perturbing
the stack while manipulating the stack, Raccoon manip-
ulates the stack using C macros and global variables.

As an additional safety requirement, the runtime sys-
tem must not remove the code segment containing the
call to setjmp() from instruction memory before the call
to longjmp(). Because both obfuscate()—which calls
setjmp()—and epilog()—which calls longjmp()—
are present in the same program module, we know that

that the code segment will not vanish before calling
longjmp().

Obfuscating Nested Branches. Nested branches are
obfuscated in Raccoon by maintaining a stack of transac-
tion buffers that mimics the nesting of transactions. Un-
like traditional transactions, transactions in Raccoon are
easier to nest because Raccoon can determine whether
to commit the results or to store them temporarily in
the transaction buffer at the beginning of the transaction
(based on the secret value of the branch predicate).

4.6 Software Path ORAM

Raccoon’s implementation of the Path ORAM algorithm
builds on the oblivious store operation. Since proces-
sors such as the Intel x86 do not have a trusted mem-
ory (other than a handful of registers) for implementing
the stash, we modify the Path ORAM algorithm from
its original form [34]. Raccoon’s Path ORAM imple-
mentation cannot directly index into arrays that represent
the position map or the stash, so Raccoon’s implementa-
tion streams over the position map and stash arrays and
uses the oblivious store operation to selectively read or
update array elements. Raccoon implements both re-
cursive [33] as well as non-recursive versions of Path
ORAM. Our software implementation of Path ORAM
permits flexible sizes for both the stash memory and the
position map.

Section 6.3 compares recursive and non-recursive
ORAM implementations with an implementation that
streams over the entire data array. Raccoon uses AVX
vector intrinsic operations for streaming over data ar-
rays. We find that even with large data sizes, it is faster
to stream over the array than perform a single ORAM
access.

4.7 Limiting Termination Channel Leaks

By executing instructions along decoy paths, Raccoon
might operate on incorrect values. For example, consider
the statement if (y != 0) { z = x / y; }. If y= 0 for
a particular execution and if Raccoon executes the decoy
path with y = 0, then the program will crash due to a
division-by-zero error, and the occurrence of this crash
in an otherwise bug-free program would reveal that the
program was executing a decoy path (and, consequently,
that y= 0).

To avoid such situations, Raccoon prevents the pro-
gram from terminating abnormally due to exceptions.
For each integer division that appears in a transaction
(along both real and decoy paths), Raccoon instruments
the operation so that it obliviously (using cmov) replaces
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/* Sample user code. */
01: int array[512] __attribute__((annotate ("secret")));
02: if (array[mid] <= x) {
03: l = mid;
04: } else {
05: r = mid;
06: }

/* Transformed pseudocode. */
07: r1 = stream_load(array, mid);
08: r2 = r1 <= x;
09: key = obfuscate(r2, r3);

10: if (r3) {
11: tx_write(l, mid);
12: } else {
13: tx_write(r, mid);
14: }

15: epilog(key);

Figure 5: Sample code and transformed pseudocode.

the divisor with a non-zero value. To prevent integer di-
vision overflow, Raccoon checks whether the dividend is
equal to INT MIN and whether the divisor is equal to -1;
if so, Raccoon obliviously substitutes the divisor to pre-
vent a division overflow. Raccoon also disables floating
point exceptions using fedisableexcept(). Similarly,
array load and store operations appearing on the de-
coy path are checked (again, obliviously, using cmov) for
out-of-bounds accesses. Thus, to ensure that the execu-
tion of decoy paths does not crash the program, Raccoon
patches unsafe operations. Section 5.3 demonstrates that
this process of patching unsafe operations does not leak
secret information to the adversary.

4.8 Putting It All Together

We now explain how Raccoon transforms the code
shown in Figure 5. Here, the secret annotation informs
Raccoon that the contents of array are secret.

Static taint analysis then reveals that the branch predi-
cate (line 2) depends on the secret value, so Raccoon ob-
fuscates this branch. Similarly, implicit flow edges from
the branch predicate to the two assignment statements (at
lines 3 and 5) indicate that Raccoon should use the obliv-
ious store operation for both assignment statements.

Accordingly, Raccoon replaces direct memory stores
for l and r with function calls that write into trans-
action buffers in lines 11 and 13 of the transformed
pseudocode. The access to array in line 1 is replaced
by an oblivious streaming operation in line 7. Fi-
nally, the branch in line 2 is obfuscated by inserting
the obfuscate() and epilog() function calls. The
epilog() and obfuscate() function calls are coordi-
nated over the key variable. To prevent the compiler

from deleting or optimizing security-sensitive code sec-
tions, Raccoon marks security-sensitive functions, vari-
ables, and memory access operations as volatile (not
shown in the transformed IR).6

At runtime, the transformed code executes the follow-
ing steps:

1. Line 7 streams over the array and uses ORAM to
load a single element (identified by mid) of the ar-
ray.

2. Line 8 calculates the actual value of the branch
predicate.

3. The key to this obfuscation lies in the epilog()
function on line 15, which forces the transformed
code to execute twice. The first time this function is
called, it transfers control back to line 9. The sec-
ond time this function is called, it simply returns,
and program execution proceeds to other statements
in the user’s code.

4. Line 9 obfuscates the branch outcome. The first
time the obfuscate() function returns, it stores 0
in r3, and control is transferred to the statement at
line 13, where the tx write() function call updates
the transaction buffer. Non-transactional memory
is updated only if this path corresponds to the real
path.

The second time the obfuscate() function returns,
it stores 1 in r3, and control is transferred to the
statement at line 11, again calling the tx write()
function to update the transaction buffer. Again,
non-transactional memory is updated only if this
path corresponds to the real path.

5 Security Evaluation

In this section, we first demonstrate that the control-flows
and data-flows in obfuscated programs are correct and
that they are independent of the secret value. Then, us-
ing type-rules that track information flows, we argue that
Raccoon’s own code does not leak secret information.
We then illustrate Raccoon’s defenses against termina-
tion channels by reasoning about exceptions in x86 pro-
cessors. Finally, we evaluate Raccoon’s ability to prevent
side-channel attacks via the /proc filesystem.

5.1 Security of Obfuscated Code
In this section, we argue that the obfuscated control-
flows and data-flows (1) preserve the original program’s

6The C99 standard states that any “any expression referring to [a
volatile object] shall be evaluated strictly according to the rules of the
abstract machine”, and the abstract machine is defined in a manner that
considers that “issues of optimization are irrelevant”.
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dependences and (2) do not reveal any secret informa-
tion. We only describe scalar loads and stores, since
all array-loads and array-stores are obfuscated by simply
streaming over the array. To simplify the explanation,
the following arguments describe a top-level (i.e. a non-
nested) branch. The same arguments can be extended
to nested branches by maintaining a stack of transaction
buffers.

Correctness of Obfuscated Data-Flow. To ensure
correct data-flow, Raccoon uses a combination of trans-
action buffers and non-transactional storage (i.e. main
memory). Raccoon sets up a fresh transaction buffer for
each thread that executes a new path. Figure 4 shows the
implementation of buffered load and store operations
for use with transactions. The store operations along
real paths write to both transaction buffers and non-
transactional storage (since threads cannot share data that
is stored in thread-local transaction buffers).

Consider a non-obfuscated program that stores a value
to a memory location m in line 10 and loads a value from
the same location in line 20. We now consider four pos-
sible arrangements of these two load and store oper-
ations in the obfuscated program, where each operation
may reside either inside or outside a transaction. Our
goal is to ensure that the load operation always reads
the correct value, whether the correct value resides in a
transactional buffer or in non-transactional storage.

• store outside transaction, load inside transac-
tion: This implies that there is no store operation
on m within the transaction. Thus, the transaction
buffer does not contain an entry for m, and the load
operation reads the value from the non-transactional
storage.

• store inside transaction, load inside transac-
tion: Since the transaction has previously written
to m, the transaction buffer contains an entry for m,
and the load operation fetches the value from the
transaction buffer.

• store inside transaction, load outside transac-
tion: This implies that the store operation must
lie along the real path. Real-path execution up-
dates non-transactional storage. Since load opera-
tions outside of transactions always fetch from non-
transactional storage, the load operation reads the
correct value of m.

• store outside transaction, load outside transac-
tion: Raccoon does not change load or store op-
erations that are located outside of the transactions.
Hence the non-obfuscated reaching definition re-
mains unperturbed.

Raccoon correctly obfuscates multi-threaded code as
well. In programs obfuscated by Raccoon, decoy paths
only update transactional buffers. Thus, only the store
operations on real path affect reaching definitions of the
obfuscated program. Furthermore, store (or load) op-
erations along real path immediately update (or fetch)
non-transactional storage and do not wait until the trans-
action execution ends. Thus, memory updates from
execution of real paths are immediately visible to all
threads, ensuring that inter-thread dependences are not
masked by transactional execution. Finally, all transac-
tional load and store operations use locks to ensure
that these accesses are atomic. Put together, load and
store operations on real paths are atomic and globally-
visible, whereas store operations on decoy paths are
only locally-visible and get discarded upon transaction
termination. We thus conclude that the obfuscated code
maintains correct data-flows for both single- and multi-
threaded programs.

Concealing Obfuscated Data-Flow. Raccoon always
performs two store operations for every transactional
write operation, regardless of whether the write opera-
tion belongs to a real path or a decoy path. Moreover, by
leveraging the oblivious store operation, Raccoon hides
the specific value written to the transactional buffer or to
the non-transactional storage. Although the tx read()
function uses an if-statement, the predicate of the if-
statement is not secret, since an adversary can simply
inspect the code and differentiate between repeated and
first-time memory accesses. Thus, we conclude that the
data-flows exposed to the adversary do not leak secret
information.

Concealing Obfuscated Control-Flow. Raccoon con-
verts control flow that depends on secret values into static
(i.e. deterministically repeatable) control-flow that does
not depend on secret values. Given a conditional branch
instruction and two branch targets in the LLVM Inter-
mediate Representation (IR), Raccoon always forces ex-
ecution along the first target and then the second target.
Thus, the sequence of executed branch targets depends
on the (static) encoding of the branch instruction and not
on the secret predicate.

5.2 Security of Obfuscation Code

Raccoon’s own code should never leak secret informa-
tion, so in this section, we demonstrate the security of the
secret information maintained by Raccoon. Because the
Raccoon code exposes only a handful of APIs (Table 1)
to user applications, we can perform a detailed analysis
of the code’s entry- and exit-points to ensure that these
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T-LOAD

lr(p) = L,A = pts(p),m = max
a∈A

la(a)

〈x = loadp;c, la, lr〉 → 〈c, la, lr[x �→ m]〉 T-STORE

lr(p) = L,A = pts(p)

〈store(x, p);c, la, lr〉 → 〈c,
⋃
a∈A

la[a �→ max(la(a), lr(x)), lr]〉

T-BINOP 〈v = binary-op(x,y);c, la, lr〉 → 〈c, la, lr[v �→ max(lr(x), lr(y))]〉 T-UNOP 〈v = unary-op(x);c, la, lr〉 → 〈c, la, lr[v �→ lr(x)]〉

T-BRANCH

lr(p) = L,〈ct ;c, la, lr〉 → 〈c, la ′, lr ′〉,〈c f ;c, la, lr〉 → 〈c, la ′′, lr ′′〉
〈branch(p,ct ,c f );c, la, lr〉 → 〈c,M(la ′, la ′′),M(lr ′, lr ′′)〉 T-CMOV 〈v = cmov(p, t, f );c, la, lr〉 → 〈c, la, lr[v �→ L]〉

T-SKIP 〈v = skip;c, la, lr〉 → 〈c, la, lr〉 T-SEQUENCE

〈c0, la, lr〉 → 〈c0
′, la ′, lr ′〉

〈c0;c1, la, lr〉 → 〈c0
′;c1, la ′, lr ′〉

M(l′, l′′) = ∀x ∈ {K(l′) ∪ K(l′′)} (x, max(l′(x), l′′(x))) K(l) = {x | (x,s) ∈ l}

Figure 6: Typing rules and supporting functions that check security of Raccoon’s code.

Category Functions Secret info.
Control-flow
obfuscation.

obfuscate(),
epilog(). Predicate value

Wrapper functions
for unsafe operations.

stream load(),
stream store(),
div wrapper().

Array index,
division operands.

Registering stack and
array information.

reg memory(),
reg stack base(). -

Initialization and
clean-up functions.

init handler(),
exit handler(). -

Table 1: Entry-points of Raccoon’s library.

interfaces never spill secret information outside of Rac-
coon’s own code.

Type System for Tracking Information Flows. Fig-
ure 6 shows a subset of the typing rules used for check-
ing the IR of Raccoon’s own code. These rules express
small-step semantics that track security labels. We as-
sume the existence of a functions lr : ν → γ and la : ∆→ γ
that map LLVM’s virtual registers (ν) and addresses (∆)
to security labels (γ), respectively. Security labels can be
of two types: L represents low-context (or public) infor-
mation, while H represents high-context (or secret) infor-
mation. Secret information listed in Table 1 is assigned
the H security label, while all other information is as-
signed the L security label. We also assume the existence
of a function pts : r → {∆} that returns the points-to set
for a given virtual register r.

Our goal is to ensure that Raccoon does not leak secret
information either through control-flow (branch instruc-
tions) or data-flow (load and store instructions). The
typing rules in Figure 6 verify that information labeled
as secret never appears as an address in a load or store
instruction and never appears as a predicate in a branch
instruction. Otherwise, the typing rules would result in
a stuck transition. To prevent information leaks, Rac-

coon passes the secret information through the declassi-
fier (cmov) before executing a load, store, or branch
operation with a secret value. Due to its oblivious na-
ture, the cmov operation resets the security label of its
destination to L.

Security Evaluation of the cmov Operation. The tiny
code size of the cmov operation (Figure 3) permits us to
thoroughly inspect each instruction for possible informa-
tion leaks. We use the Intel 64 Architecture Software De-
veloper’s Manual to understand the side-effects of each
instruction.

Since the code operates on the processor registers
only and never accesses memory, it operates within the
(trusted) boundary of the sealed processor chip. The se-
cret predicate is loaded into the %1 register. The mov in-
struction in line 4 initializes the destination register with
t val. The test instruction at line 5 checks if pred is
zero and updates the Zero flag (ZF), Sign flag (SF), and
the Parity flag (PF) to reflect the comparison. The subse-
quent cmovz instruction copies f val into the destination
register only if pred is zero. At this point, ZF, SF, and PF
still contain the results of the comparison. The test in-
struction at line 7 overwrites these flags by comparing
known non-secret values.

Since none of the instructions ever accesses mem-
ory, these instructions can never raise a General Pro-
tection Fault, Page Fault, Stack Exception Fault, Seg-
ment Not Present exception, or Alignment Check excep-
tion. None of these instructions uses the LOCK prefix, so
they will never generate an Invalid Opcode (#UD) excep-
tion. As per the Intel Software Developer’s Manual, the
above instructions cannot raise any other exception be-
sides the ones listed above. Through a manual analysis
of the descriptions of 253 performance events7 supported

7Intel 64 and IA-32 Architectures Software Developers Manual,
Section 19.5.
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by our target platform, we discovered that only two
performance events are directly relevant to the code in
Figure 3: PARTIAL RAT STALLS.FLAGS MERGE UOP and
UOPS RETIRED.ALL. The first event (FLAGS MERGE UOP),
which counts the number of performance-sensitive flags-
merging micro-operations, produces the same value for
our code, no matter whether the predicate is true or false.
The second event (UOPS RETIRED.ALL) counts the num-
ber of retired micro-operations. Since details of micro-
operation counts for x86 instructions are not publicly
available, we used an unofficial source of instruction ta-
bles8 to verify that the micro-operation count for a cmov
instruction is independent of the instruction’s predicate.
We thus conclude that the code in Figure 3 does not leak
the secret predicate value.

Category Interrupt list

Arithmetic errors
Division by zero, invalid operands,
overflow, underflow, inexact results.

Memory access
interrupts

Stack exception fault,
general protection fault, page fault.

Debugging interrupts Single-step, breakpoint.
Privileged operations Invalid TSS, segment not present.
Coprocessor (legacy)
interrupts

No coprocessor, coprocessor overrun,
coprocessor error.

Other
Non-maskable interrupt,
invalid opcode, double-fault abort.

Table 2: Categorized list of x86 hardware exceptions.

5.3 Termination Leaks
In Section 4.7, we explained how Raccoon patches divi-
sion operations and memory access instructions to pre-
vent the program from crashing along decoy paths. We
now explain why these patches are sufficient in prevent-
ing the introduction of new termination leaks. Table 2
shows a categorized list of exception conditions arising
in Intel x86 processors9 that may terminate programs.
Among these interrupts, Raccoon transparently handles
arithmetic and memory access interrupts.

Debugging interrupts are irrelevant for the program
safety discussion because they do not cause the program
to terminate. Our threat model does not apply obfus-
cation to OS or kernel code. Since we do not expect
user programs to contain privileged instructions, Rac-
coon does not need to mask interrupts from privileged
operations. Coprocessor interrupts are relevant to Nu-
meric Processor eXtensions (NPX), which are no longer
used today. Non-maskable interrupts are not caused by
software events and thus need not be hidden by Rac-
coon. Branches in Raccoon always jump to the start of
valid basic blocks, so invalid opcodes can never occur in

8http://www.agner.org/optimize/instruction tables.pdf
9http://www.x86-64.org/documentation/abi.pdf

an obfuscated version of a correct program. A double-
fault exception occurs when the processor encounters an
exception while invoking the handler for a previous ex-
ception. Aborts due to double-fault need not be hidden
by Raccoon because none of the primary exceptions in
an obfuscated program will leak secret information. In
conclusion, Raccoon prevents abnormal program termi-
nation, thus guaranteeing that Raccoon’s execution of de-
coy paths will never cause information leaks over the ter-
mination channel.

5.4 Defense Against Side-Channel Attacks
We have argued in Sections 5.1 and 5.2 that Raccoon
closes digital side-channels. We now show a concrete ex-
ample of a simple but powerful side-channel attack, and
we use basic machine-learning techniques to visually il-
lustrate Raccoon’s defense against this attack. We model
the adversary as a process that observes the instruction
pointer (IP) values of the victim process. Both the vic-
tim process and the adversary process run on the same
machine. The driver process starts the victim process
and immediately pauses the victim process by sending
a SIGSTOP signal. The driver process then starts the
adversary process and sends it the process ID of the
paused victim process. This adversary process polls
for the instruction pointer of the victim process every
5ms via the kstkeip field in /proc/pid/stat. When
the victim process finishes execution, the driver pro-
cess sends a SIGINT signal to the adversary process,
signalling it to save its collection of instruction pointers
to a file. We run the victim programs with various se-
cret inputs and each run produces a (sampled) trace of
instruction pointers. Each such trace is labelled with the
name of the program and an identifier for the secret in-
put. We collect 300 traces for each label. For the sake
of brevity, we show results for only three programs from
our benchmark suite.

The labelled traces are then passed through a Support
Vector Machine for k-fold cross-validation (we choose
k = 10) using LIBSVM v3.18. Using the prediction data,
we construct a confusion matrix for each program, which
conveys the accuracy of a classification system by count-
ing the number of correctly-predicted and mis-predicted
values (see Figure 7). The confusion matrices show that
for the non-secure executions, the classifier is able to la-
bel instruction pointer traces with high accuracy. By con-
trast, when using traces from obfuscated execution, the
classifier’s accuracy is significantly lower.

6 Performance Evaluation

Methodology. Raccoon is implemented in the LLVM
compiler framework v3.6. In our test setup, the host op-

10
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Figure 7: Confusion matrices for ip-resolv, find-max
and tax. The top matrices describe original execution.
The bottom matrices describe obfuscated execution.

erating system is CentOS 6.3. To evaluate performance,
we use 15 programs (eight small kernels and seven small
applications). Table 3 summarizes their characteristics
and the associated input data sizes. The bottom eight
programs in the table are the same programs used to eval-
uate GhostRider [20, 21], and we use these to compare
Raccoon’s overhead against that of GhostRider. To sim-
plify the comparison between Raccoon and GhostRider,
we use data sizes that are similar to those used to evaluate
GhostRider [20]. Raccoon uses the attribute con-
struct to mark secret variables—which mandates that the
input programs are written in C/C++. However the rest of
Raccoon operates entirely on the LLVM IR and does not
use any source-language features. Thus, Raccoon can
easily be ported to work with any language that can be
compiled to the LLVM IR. All tests use the LLVM/Clang
compiler toolchain.

We run all experiments on a machine with two Intel
Xeon (Sandy Bridge) processors and with 32 GB (8 ×
4 GB) DDR3 memory. Each processor has eight cores
with 256 KB private L2 caches. The eight cores on a
processor chip share a 20 MB L3 cache. Streaming en-
cryption/decryption hardware makes the cost of access-
ing memory from encrypted RAM banks almost the same
as the cost of accessing a DRAM bank. The underlying
hardware does not support encrypted RAM banks, but we
do not separately add any encryption-related overhead to
our measurements because the streaming access cost is
almost the same with or without encryption.

Performance measurements of our simulated
ORAM use the native hardware performance event—
UNHALTED CORE CYCLES. We measure overhead using
clock gettime(). Our software Path ORAM imple-
mentation is configured with a block size of 64 bytes.
Each node in the Path ORAM tree stores 10 blocks. The

Name Lines Data size
Classifier 86 5 features, 5 records
IP resolver 247 3,500 records
Medical risk analysis 92 3,200 records
CRC32 76 10 KB
Genetic algorithm 446 pop. size = 1 KB
Tax calculator 350 -
Radix sort 675 256K elements
Binary search 35 10K elements
Dijkstra 50 1K edges
Find max 27 1K elements
Heap add 24 1K elements
Heap pop 42 10K elements
Histogram 40 1K elements
Map 29 1K elements
Matrix multiplication 28 500 x 500 values

Table 3: Benchmark programs used for performance
evaluation of Raccoon. The bottom eight programs are
also used to evaluate GhostRider. The remaining seven
programs cannot be transformed by GhostRider because
these programs use pointers and invoke functions in the
secret context.

stash size is selected at ORAM initialization time and is
set to ORAM block count

100 or 64 entries, whichever is higher.

6.1 Obfuscation Overhead

There are two main sources of Raccoon overhead: (1) the
cost of the ORAM operations (or streaming) and (2) the
cost of control-flow obfuscation (including the cost of
buffering transactional memory accesses, the cost of
copying program stack and CPU registers, and the cost
of obliviously patching arithmetic and memory access in-
structions). We account for ORAM/streaming overhead
over both real and decoy paths. Of course, the overhead
varies with program characteristics, such as size of the
input data, number of obfuscated statements, and number
of memory access statements. Figure 8 shows the obfus-
cation overhead for the benchmark programs when com-
pared with an aggressively optimized (compiled with
-O3) non-obfuscated binary executable. The geometric
mean of the overhead is ∼16.1×. Applications closer
to the left end of the spectrum had low overheads due
to Raccoon’s ability to leverage existing compiler opti-
mizations (if-conversion, automatic loop unrolling, and
memory to register promotion). In most applications
with high obfuscation overhead, a majority of the over-
head arises from transactional execution in control-flow
obfuscation.

6.2 Comparison with GhostRider

To place our work in the context of similar solutions
to side-channel defenses, we compare Raccoon with the

11
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Figure 8: Sources of obfuscation overhead.

GhostRider hardware/software framework [20, 21] that
implements Memory Trace Obliviousness. This section
focuses on the performance aspects of the two systems,
but as mentioned in Section 2, Raccoon provides sig-
nificant benefits over GhostRider beyond performance.
First, Raccoon provides a broad coverage against many
different side-channel attacks. Second, the dynamic ob-
fuscation scheme used in Raccoon strengthens the threat
model, since it allows the transformed code to be re-
leased to the adversary. Third, Raccoon does not require
special-purpose hardware. Finally, since GhostRider
adds instructions to mimic address traces in both branch
paths, it requires that address traces from obfuscated
code be known at compile-time, which significantly lim-
its the programs that GhostRider can obfuscate. Rac-
coon relaxes this requirement by executing actual code,
so Raccoon can transform more complex programs than
GhostRider.

Methodology. We now describe our methodology for
simulating the GhostRider solution. As with our Rac-
coon setup, we compare GhostRider’s obfuscated pro-
gram with an aggressively optimized (compiled with
-O3) non-obfuscated version of the same program. Var-
ious compiler optimizations (dead code elimination,
vectorization, constant merging, constant propagation,
global value optimizations, instruction combining, loop-
invariant code motion, and promotion of memory to reg-
isters) interfere with GhostRider’s security guarantees,
so we disable optimizations for the obfuscated program.
We manually apply the transformations implemented in
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Figure 9: Overhead comparison on GhostRider’s bench-
marks. Even when we generously underestimate
GhostRider’s overhead, GhostRider sees an average
overhead of 195×, while Raccoon’s overhead is 21.8×.

the GhostRider compiler. We simulate a processor that
is modelled after the GhostRider processor, so we use
a single-issue in-order processor that does not allow
prefetching into the cache.

There are four reasons why our methodology signifi-
cantly underestimates GhostRider’s overhead. The first
three reasons stem from our inability to faithfully sim-
ulate all features of the GhostRider processor: (1) We
simulate variable-latency instructions, (2) we simulate
the use of a dynamic branch predictor, and (3) we sim-
ulate a perfect cache for non-ORAM memory accesses.
All three of these discrepancies give GhostRider an un-
realistically fast hardware platform. The fourth reason
arises because our simulator does not support AVX vec-
tor instructions, so we are unable to compare GhostRider
against a machine that can execute AVX vector instruc-
tions.

The non-obfuscated execution uses a 4-issue, out-of-
order core with support for Access Map Pattern Match-
ing prefetching scheme [12] for the L1, L2 and L3 data
caches. In all other respects, the two processor config-
urations are identical. Both processors are clocked at 1
GHz. The processor configuration closely matches the
configuration described by Fletcher et al. [10], and based
on their measurements, we assume that the latency to all
ORAM banks is 1,488 cycles per cache line. We run
GhostRider’s benchmarks on this modified Marss86 sim-
ulator and manually add the cost of each ORAM access

12
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to the total program execution latency.

Performance Comparison. Figure 9 compares the
overhead of GhostRider on the simulated processor and
the overhead of Raccoon. Only those benchmark pro-
grams that meet GhostRider’s assumptions are used in
this comparison. The remaining seven applications can-
not be transformed by the GhostRider solution because
they use pointers or because they invoke functions in the
secret context. We see that Raccoon’s overhead (geo-
metric mean of 16.1× over all 15 benchmarks, geomet-
ric mean of 21.8× over GhostRider-only benchmarks)
is significantly lower than GhostRider’s overhead (geo-
metric mean of 195×), even when giving GhostRider’s
processor substantial benefits (perfect caching, lack of
AVX-vector support in the baseline processor, and dy-
namic branch prediction).

6.3 Software Path ORAM

This section considers choices for Raccoon’s ORAM im-
plementation. In particular, to run on typical general-
purpose processors, we need to modify the Path ORAM
algorithm to assume just a tiny amount of trusted mem-
ory, which forces us to stream the position map and stash
multiple times to obliviously copy or update elements.

We thus consider three possible implementations. The
first, recursive ORAM [33], places the position map in
a smaller ORAM until the position map of the smallest
ORAM fits in the CPU registers. The second is a non-
recursive solution that streams over a single large posi-
tion map. The third uses AVX intrinsic operations and
streams over the entire array to access a single element.

Figure 10(a) compares the cost of ORAM initial-
ization for different ORAM sizes in our recursive and
non-recursive ORAM implementations. On this log-log
scale, we see that the non-recursive ORAM is signifi-
cantly faster than the recursive ORAM for all sizes. Fig-
ure 10(b) compares our non-recursive ORAM implemen-
tation against the streaming approach. In particular, it
measures the cost of accessing a single element and the
cost of 64 single-element random accesses using ORAM
and streaming. We see that the streaming implementa-
tion is orders of magnitude faster than our non-recursive
ORAM.

In summary, our software implementation of Path
ORAM requires non-trivial changes to the original Path
ORAM algorithm. Unfortunately, these changes im-
pose a prohibitively large memory bandwidth require-
ment, making the modified software Path ORAM far
costlier than streaming over arrays. Raccoon’s obfusca-
tion technique is compatible with the use of dedicated
ORAM memory controllers, and Raccoon’s overhead

can be further reduced by using such special purpose
hardware [22].

7 Discussion

Closing Other Side-Channels. The existing Raccoon
implementation does not defend against kernel-space
side-channel attacks. However, many of Raccoon’s ob-
fuscation principles can be applied to OS kernels as well.
Memory updates in systems such as TxOS [28] can be
made oblivious using Raccoon’s cmov operation. By
contrast, non-digital side-channels appear to be funda-
mentally beyond Raccoon’s scope since physical charac-
teristics (power, temperature, EM radiation) of hardware
devices make it possible to differentiate between real val-
ues and decoy values.

Multi-threaded Programs. Raccoon’s data structures
are stored in thread-local storage (TLS), so Rac-
coon can access internal data structures without us-
ing locks. Raccoon initializes these data-structures at
thread entry-points (identified by pthread create())
and frees them at thread destruction-points (identified by
pthread exit()). Raccoon prevents race conditions on
the user program’s memory by using locks where neces-
sary. Most importantly, as long as the user program is
race-free, Raccoon maintains the correct data-flow de-
pendences in both single-threaded and multi-threaded
programs, as described in Section 5.1.

Taint Analysis. Raccoon’s taint analysis is sound but
not complete, so it over-approximates the amount of code
that must be obfuscated. For large programs, this over-
approximation is a significant source of overhead. Rac-
coon’s taint analysis is flow-insensitive, path-insensitive,
and context-insensitive, and Raccoon uses a rudimen-
tary alias analysis technique that assumes two pointers
alias if they have the same type. We believe that more
precise static analysis techniques can be used to greatly
shrink Raccoon’s taint graph, thus reducing the obfusca-
tion overhead.

Limitations Imposed by Hardware. Various x86 in-
structions (DIV, SQRT, etc.) consume different cycles
depending on their operand values. Such operand-
dependent instruction execution latency introduces the
biggest hurdle in ensuring the security of Raccoon-
obfuscated programs. We also believe that the perfor-
mance overhead of obfuscated programs would be sub-
stantially smaller than the current overhead if processors
came equipped with (small) scratchpad memory. Based
on these conjectures, we plan to explore the impact of
modified hardware designs in the near future.

13



444 24th USENIX Security Symposium USENIX Association

1e+01 1e+03 1e+05 1e+07

1e
+0

0
1e

+0
2

1e
+0

4
1e

+0
6

ORAM size (KB)

Ti
m

e 
(u

s)

� � �

�

�

�

�

�

Recursive ORAM
Non−recursive ORAM

(a) Initialization cost of recursive and non-recursive ORAM implemen-
tation (median of 10 measurements for each sample).

1e+01 1e+03 1e+05 1e+07 1e+09

1
10

0
10

00
0

Data size (elements)

C
PU

 c
yc

le
s 

(m
illi

on
s)

� � � � �

�

�

�

�

�

Non−recursive ORAM − 64
Non−recursive ORAM − 1
Stream − 64
Stream − 1

(b) Performance comparison of software Path ORAM and streaming
over the entire array.

Figure 10: Software ORAM performance.

8 Conclusions

In this paper, we have introduced the notion of digital
side-channel attacks, and we have presented a system
named Raccoon to defend against such attacks. We have
evaluated Raccoon’s performance against 15 programs
to show that its overhead is significantly less than that
of the best prior work and that it has several additional
benefits: it expands the threat model, it removes special-
purpose hardware, it permits the release of the trans-
formed code to the adversary, and it also expands the set
of supported language features. In comparing Raccoon
against GhostRider, we find that Raccoon’s overhead is
8.9× lower.

Raccoon’s obfuscation technique can be enhanced in
several ways. First, while the performance overhead
of Raccoon-obfuscated programs is high enough to pre-
clude immediate practical deployment, we believe that
this overhead can be substantially reduced by employing
deterministic or special-purpose hardware. Second, Rac-
coon’s technique of transactional execution and oblivious
memory update can be applied to the operating system
(OS) kernel, thus paving the way for protection against
OS-based digital side-channel attacks. Finally, in addi-
tion to defending against side-channel attacks, we be-
lieve that Raccoon can be strengthened to defend against
covert-channel communication.
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Abstract
New big-data analysis platforms can enable distributed
computation on encrypted data by utilizing trusted com-
puting primitives available in commodity server hard-
ware. We study techniques for ensuring privacy-
preserving computation in the popular MapReduce
framework. In this paper, we first show that protect-
ing only individual units of distributed computation (e.g.
map and reduce units), as proposed in recent works,
leaves several important channels of information leak-
age exposed to the adversary. Next, we analyze a variety
of design choices in achieving a stronger notion of pri-
vate execution that is the analogue of using a distributed
oblivious-RAM (ORAM) across the platform. We de-
velop a simple solution which avoids using the expen-
sive ORAM construction, and incurs only an additive
logarithmic factor of overhead to the latency. We im-
plement our solution in a system called M2R, which en-
hances an existing Hadoop implementation, and evaluate
it on seven standard MapReduce benchmarks. We show
that it is easy to port most existing applications to M2R
by changing fewer than 43 lines of code. M2R adds fewer
than 500 lines of code to the TCB, which is less than
0.16% of the Hadoop codebase. M2R offers a factor of
1.3× to 44.6× lower overhead than extensions of previ-
ous solutions with equivalent privacy. M2R adds a total of
17% to 130% overhead over the insecure baseline solu-
tion that ignores the leakage channels M2R addresses.

1 Introduction

The threat of data theft in public and private clouds from
insiders (e.g. curious administrators) is a serious con-
cern. Encrypting data on the cloud storage is one stan-
dard technique which allows users to protect their sen-
sitive data from such insider threats. However, once
the data is encrypted, enabling computation on it poses
a significant challenge. To enable privacy-preserving
computation, a range of security primitives have sur-
faced recently, including trusted computing support for
hardware-isolated computation [2, 5, 38, 40] as well as
purely cryptographic techniques [20,21,47]. These prim-

itives show promising ways for running computation se-
curely on a single device running an untrusted software
stack. For instance, trusted computing primitives can iso-
late units of computation on an untrusted cloud server. In
this approach, the hardware provides a confidential and
integrity-protected execution environment to which en-
cryption keys can be made available for decrypting the
data before computing on it. Previous works have suc-
cessfully demonstrated how to securely execute a unit of
user-defined computation on an untrusted cloud node, us-
ing support from hardware primitives available in com-
modity CPUs [8, 14, 38, 39, 49] .

In this paper, we study the problem of enabling
privacy-preserving distributed computation on an un-
trusted cloud. A sensitive distributed computation task
comprises many units of computation which are sched-
uled to run on a multi-node cluster (or cloud). The input
and output data between units of computation are sent
over channels controlled by the cloud provisioning sys-
tem, which may be compromised. We assume that each
computation node in the cluster is equipped with a CPU
that supports trusted computing primitives (for example,
TPMs or Intel SGX). Our goal is to enable a privacy-
preserving execution of a distributed computation task.
Consequently, we focus on designing privacy in the pop-
ular MapReduce framework [17]. However, our tech-
niques can be applied to other distributed dataflow frame-
works such as Spark [62], Dryad [26], and epiC [27].

Problem. A MapReduce computation consists of two
types of units of computation, namely map and re-
duce, each of which takes key-value tuples as input.
The MapReduce provisioning platform, for example
Hadoop [1], is responsible for scheduling the map/reduce
operations for the execution in a cluster and for provid-
ing a data channel between them [31]. We aim to achieve
a strong level of security in the distributed execution of a
MapReduce task (or job) — that is, the adversary learns
nothing beyond the execution time and the number of
input and output of each computation unit. If we view
each unit of computation as one atomic operation of a
larger distributed program, the execution can be thought
of as running a set of operations on data values passed

1



448 24th USENIX Security Symposium USENIX Association

via a data channel (or a global “RAM”) under the ad-
versary’s control. That is, our definition of privacy is
analogous to the strong level of privacy offered by the
well-known oblivious RAM protocol in the monolithic
processor case [22].

We assume that the MapReduce provisioning platform
is compromised, say running malware on all nodes in
the cluster. Our starting point in developing a defense
is a baseline system which runs each unit of computation
(map/reduce instance) in a hardware-isolated process, as
proposed in recent systems [49, 59]. Inputs and outputs
of each computation unit are encrypted, thus the adver-
sary observes only encrypted data. While this baseline
offers a good starting point, merely encrypting data in-
transit between units of computation is not sufficient (see
Section 3). For instance, the adversary can observe the
pattern of data reads/writes between units. As another
example, the adversary can learn the synchronization be-
tween map and reduce units due to the scheduling struc-
ture of the provisioning platform. Further, the adversary
has the ability to duplicate computation, or tamper with
the routing of encrypted data to observe variations in the
execution of the program.

Challenges. There are several challenges in building
a practical system that achieves our model of privacy.
First, to execute map or reduce operations on a single
computation node, one could run all computation units
— including the entire MapReduce platform — in an ex-
ecution environment that is protected by use of existing
trusted computing primitives. However, such a solution
would entail little trust given the large TCB, besides be-
ing unwieldy to implement. For instance, a standard im-
plementation of the Hadoop stack is over 190K lines of
code. The scope of exploit from vulnerabilities in such a
TCB is large. Therefore, the first challenge is to enable
practical privacy by minimizing the increase in platform
TCB and without requiring any algorithmic changes to
the original application.

The second challenge is in balancing the needs of pri-
vacy and performance. Addressing the leakage channels
discussed above using generic methods easily yields a
solution with poor practical efficiency. For instance, hid-
ing data read/write patterns between specific map and
reduce operations could be achieved by a generic obliv-
ious RAM (ORAM) solution [22, 55]. However, such
a solution would introduce a slowdown proportional to
polylog in the size of the intermediate data exchange,
which could degrade performance by over 100× when
gigabytes of data are processed.

Our Approach. We make two observations that en-
able us to achieve our model of privacy in a MapRe-
duce implementation. First, on a single node, most of the
MapReduce codebase can stay outside of the TCB (i.e.

code performing I/O and scheduling related tasks). Thus,
we design four new components that integrate readily to
the existing MapReduce infrastructure. These compo-
nents which amount to fewer than 500 lines of code are
the only pieces of trusted logic that need to be in the
TCB, and are run in a protected environment on each
computation node. Second, MapReduce computation
(and computation in distributed dataflow frameworks in
general) has a specific structure of data exchange and ex-
ecution between map and reduce operations; that is, the
map writes the data completely before it is consumed by
the reduce. Exploiting this structure, we design a com-
ponent called secure shuffler which achieves the desired
security but is much less expensive than a generic ORAM
solution, adding only a O(logN) additive term to the la-
tency, where N is the size of the data.

Results. We have implemented a system called M2R
based on Hadoop [1]. We ported 7 applications from a
popular big-data benchmarks [25] and evaluated them on
a cluster. The results confirm three findings. First, port-
ing MapReduce jobs to M2R requires small development
effort: changing less than 45 lines of code. Second, our
solution offers a factor of 1.3× to 44.6× (median 11.2×)
reduction in overhead compared to the existing solu-
tions with equivalent privacy, and a total of 17%−130%
of overhead over the baseline solution which protects
against none of the attacks we focus on in this paper. Our
overhead is moderately high, but M2R has high compati-
bility and is usable with high-sensitivity big data analysis
tasks (e.g. in medical, social or financial data analytics).
Third, the design is scalable and adds a TCB of less than
0.16% of the original Hadoop codebase.

Contributions. In summary, our work makes three key
contributions:

• Privacy-preserving distributed computation. We
define a new pragmatic level of privacy which can
be achieved in the MapReduce framework requiring
no algorithmic restructuring of applications.

• Attacks. We show that merely encrypting data in en-
claved execution (with hardware primitives) is inse-
cure, leading to significant privacy loss.

• Practical Design. We design a simple, non-
intrusive architectural change to MapReduce. We
implement it in a real Hadoop implementation
and benchmark its performance cost for privacy-
sensitive applications.

2 The Problem

Our goal is to enable privacy-preserving computation for
distributed dataflow frameworks. Our current design and
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Figure 1: The MapReduce computation model.

implementation are specific to MapReduce framework,
the computation structure of which is nevertheless simi-
lar to other distributed dataflow engines [26, 27, 62], dif-
fering mainly in supported operations.
Background on MapReduce. The MapReduce lan-
guage enforces a strict structure: the computation task
is split into map and reduce operations. Each instance
of a map or reduce, called a computation unit (or unit),
takes a list of key-value tuples1. A MapReduce task con-
sists of sequential phases of map and reduce operations.
Once the map step is finished, the intermediate tuples
are grouped by their key-components. This process of
grouping is known as shuffling. All tuples belonging to
one group are processed by a reduce instance which ex-
pects to receive tuples sorted by their key-component.
Outputs of the reduce step can be used as inputs for the
map step in the next phase, creating a chained MapRe-
duce task. Figure 1 shows the dataflow from the map to
the reduce operations via the shuffling step. In the actual
implementation, the provisioning of all map units on one
cluster node is locally handled by a mapper process, and
similarly, by a reducer process for reduce units.

2.1 Threat Model
The adversary is a malicious insider in the cloud, aiming
to subvert the confidentiality of the client’s computation
running on the MapReduce platform. We assume that the
adversary has complete access to the network and storage
back-end of the infrastructure and can tamper with the
persistent storage or network traffic. For each compu-
tation node in the cluster, we assume that the adversary
can corrupt the entire software stack, say by installing
malware.

We consider an adversary that perpetrates both pas-
sive and active attacks. A passive or honest-but-curious
attacker passively observes the computation session, be-

1To avoid confusion of the tuple key with cryptographic key, we
refer to the first component in the tuple as key-component.

having honestly in relaying data between computation
units, but aims to infer sensitive information from the
observed data. This is a pragmatic model which includes
adversaries that observe data backed up periodically on
disk for archival, or have access to performance moni-
toring interfaces. An active or malicious attacker (e.g.
an installed malware) can deviate arbitrarily from the ex-
pected behavior and tamper with any data under its con-
trol. Our work considers both such attacks.

There are at least two direct attacks that an adversary
can mount on a MapReduce computation session. First,
the adversary can observe data passing between compu-
tation units. If the data is left unencrypted, this leads to
a direct breach in confidentiality. Second, the adversary
can subvert the computation of each map/reduce instance
by tampering with its execution. To address these basic
threats, we start with a baseline system described below.

Baseline System. We consider the baseline system in
which each computation unit is hardware-isolated and
executed privately. We assume that the baseline sys-
tem guarantees that the program can only be invoked on
its entire input dataset, or else it aborts in its first map
phase. Data blocks entering and exiting a computation
unit are encrypted with authenticated encryption, and all
side-channels from each computation unit are assumed to
be masked [51]. Intermediate data is decrypted only in
a hardware-attested computation unit, which has limited
memory to securely process up to T inputs tuples. Sys-
tems achieving this baseline have been previously pro-
posed, based on differing underlying hardware mecha-
nisms. VC3 is a recent system built on Intel SGX [49].

Note that in this baseline system, the MapReduce pro-
visioning platform is responsible for invoking various
trusted units of computation in hardware-isolated pro-
cesses, passing encrypted data between them. In Sec-
tion 3, we explain why this baseline system leaks sig-
nificant information, and subsequently define a stronger
privacy objective.

2.2 Problem Definition
Ideally, the distributed execution of the MapReduce pro-
gram should leak nothing to the adversary, except the to-
tal size of the input, total size of the output and the run-
ning time. The aforementioned baseline system fails to
achieve the ideal privacy. It leaks two types of informa-
tion: (a) the input and output size, and processing time
of individual computation unit, and (b) dataflow among
the computation units.

We stress that the leakage of (b) is significant in many
applications since it reveals relationships among the in-
put. For instance, in the well-known example of comput-
ing Pagerank scores for an encrypted graph [44], flows
from a computation unit to another correspond to edges

3
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in the input graph. Hence, leaking the dataflow essen-
tially reveals the whole graph edge-structure!

Techniques for hiding or reducing the leakage in (a)
by padding the input/output size and introducing timing
delays are known [35, 41]. Such measures can often re-
quire algorithmic redesign of the application [9] or use of
specialized programming languages or hardware [33,34],
and can lead to large overheads for applications where
the worst case running time is significantly larger than
the average case. We leave incorporating these orthogo-
nal defenses out-of-scope.

Instead, in this work, we advocate focusing on elimi-
nating leakage on (b), while providing a formulation that
clearly captures the information that might be revealed.
We formulate the admissible leakage as Ψ which cap-
tures the information (a) mentioned above, namely the
input/output size and running time of each trusted com-
putation unit invoked in the system. We formalize this
intuition by defining the execution as a protocol between
trusted components and the adversary, and define our pri-
vacy goal as achieving privacy modulo-Ψ.

Execution Protocol. Consider an honest execution of a
program on input I = 〈x1,x2, . . . ,xn〉. For a given map-
reduce phase, let there be n map computation units. Let
us label the map computation units such that the unit with
label i takes xi as input. Recall that the tuples generated
by the map computation units are to be shuffled, and
divided into groups according to the key-components.
Let K to be the set of unique key-components and let
π : [n+1,n+m]→K be a randomly chosen permutation,
where m = |K|. Next, m reduce computation units are to
be invoked. We label them starting from n+1, such that
the computation unit i takes tuples with key-component
π(i) as input.

Let Ii,Oi,Ti be the respective input size (measured by
number of tuples), output size, and processing time of the
computation unit i, and call Ψi = 〈Ii,Oi,Ti〉 the IO-profile
of computation unit i. The profile Ψ of the entire execu-
tion on input I is the sequence of Ψi for all computation
units i ∈ [1, . . . ,n+m] in the execution protocol. If an
adversary Ã can initiate the above protocol and observe
Ψ, we say that the adversary has access to Ψ.

Now, let us consider the execution of the program on
the same input I = 〈x1,x2, . . . ,xn〉 under a MapReduce
provisioning protocol by an adversary A . A semi-honest
adversary A can obtain information on the value of the
input, output and processing time of every trusted in-
stance, including information on trusted instances other
than the map and reduce computation units. If the adver-
sary is malicious, it can further tamper with the inputs
and invocations of the instances. In the protocol, the ad-

versary controls 6 parameters:

(C1) the start time of each computation instance,
(C2) the end time of each instance,
(C3) the encrypted tuples passed to its inputs,
(C4) the number of computation instances,
(C5) order of computation units executed,
(C6) the total number of map-reduce phases executed.

Since the adversary A can obtain “more” information
and tamper the execution, a question to ask is, can the
adversary A gain more knowledge compared to an ad-
versary Ã who only has access to Ψ? Using the standard
notions of indistinguishability2 and adversaries [28], we
define a secure protocol as follows:

Definition 1 (Privacy modulo-Ψ ). A provisioning pro-
tocol for a program is modulo-Ψ private if, for any ad-
versary A executing the MapReduce protocol, there is a
adversary Ã with access only to Ψ, such that the output
of A and Ã are indistinguishable.

The definition states that the output of the adversaries
can be directly seen as deduction made on the informa-
tion available. The fact that all adversaries have output
indistinguishable from the one which knows Ψ suggests
that no additional information can be gained by any A
beyond that implied by knowledge of Ψ.
Remarks. First, our definition follows the scenario pro-
posed by Canneti [11], which facilitates universal com-
position. Hence, if a protocol is private module-Ψ for
one map-reduce phase, then an entire sequence of phases
executed is private module-Ψ. Note that our proposed
M2R consists of a sequence of map, shuffle, and reduce
phases where each phase starts only after the previous
phase has completed, and the chain of MapReduce jobs
are carried out sequentially. Thus, universal composition
can be applied. Second, we point out that if the developer
restructures the original computation to make the IO-
profile the same for all inputs, then Ψ leaks nothing about
the input. Therefore, the developer can consider using or-
thogonal techniques to mask timing latencies [41], hid-
ing trace paths and IO patterns [34] to achieve ideal pri-
vacy, if the performance considerations permit so.

2.3 Assumptions
In this work, we make specific assumptions about the
baseline system we build upon. First, we assume that the
underlying hardware sufficiently protects each computa-
tion unit from malware and snooping attacks. The range
of threats that are protected against varies based on the
underlying trusted computing hardware. For instance,

2non-negligible advantage in a distinguishing game
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traditional TPMs protect against software-only attacks
but not against physical access to RAM via attacks such
as cold-boot [24]. More recent trusted computing prim-
itives, such as Intel SGX [40], encrypt physical mem-
ory and therefore offer stronger protection against adver-
saries with direct physical access. Therefore, we do not
focus on the specifics of how to protect each computa-
tion unit, as it is likely to change with varying hardware
platform used in deployment. In fact, our design can
be implemented in any virtualization-assisted isolation
that protects user-level processes on a malicious guest
OS [12, 52, 57], before Intel SGX becomes available on
the market.

Second, an important assumption we make is that of
information leakage via side-channels (e.g. cache laten-
cies, power) from a computation unit is minimal. Indeed,
it is a valid concern and an area of active research. Both
software and hardware-based solutions are emerging, but
they are orthogonal to our techniques [18, 29].

Finally, to enable arbitrary computation on encrypted
data, decryption keys need to be made made available
to each hardware-isolated computation unit. This pro-
visioning of client’s keys to the cloud requires a set of
trusted administrator interfaces and privileged software.
We assume that such trusted key provisioning exists, as
is shown in recent work [49, 65].

3 Attacks

In this section, we explain why a baseline system that
merely encrypts the output of each computation unit
leaks significantly more than a system that achieves pri-
vacy modulo-Ψ. We explain various subtle attack chan-
nels that our solution eliminates, with an example.
Running Example. Let us consider the canonical ex-
ample of the Wordcount job in MapReduce, wherein the
goal is to count the number of occurrences of each word
in a set of input files. The map operation takes one file
as input, and for each word w in the file, outputs the tu-
ple 〈w,1〉. All outputs are encrypted with standard au-
thenticated encryption. Each reduce operation takes as
input all the tuples with the same tuple-key, i.e. the same
word, and aggregates the values. Hence the output of
reduce operations is an encrypted list of tuples 〈w,wc〉,
where wc is the frequency of word w for all input files.
For simplicity, we assume that the input is a set of files
F = {F1, . . . ,Fn}, each file has the same number of words
and is small enough to be processed by a map operation3.
What does Privacy modulo-Ψ Achieve? Here all the
map computation units output same size tuples, and af-
ter grouping, each reduce unit receives tuples grouped

3Files can be processed in fixed size blocks, so this assumption is
without any loss of generality

by words. The size of map outputs and group sizes con-
stitute Ψ, and a private modulo-Ψ execution therefore
leaks some statistical information about the collection of
files in aggregate, namely the frequency distribution of
words in F . However, it leaks nothing about the con-
tents of words in the individual files — for instance, the
frequency of words in any given file, and the common
words between any pair of files are not leaked. As we
show next, the baseline system permits a lot of inference
attacks as it fails to achieve privacy modulo-Ψ. In fact,
eliminating the remaining leakage in this example may
not be easy, as it may assume apriori knowledge about
the probability distribution of words in F (e.g. using dif-
ferential privacy [48]).

Passive Attacks. Consider a semi-honest adversary that
executes the provisioning protocol, but aims to infer ad-
ditional information. The adversary controls 6 parame-
ters C1-C6 (Section 2.2 ) in the execution protocol. The
number of units (C4) and map-reduce phases executed
(C6) are dependent (and implied) by Ψ in an honest exe-
cution, and do not leak any additional information about
the input. However, parameters C1,C2,C3 and C5 may
directly leak additional information, as explained below.

• Dataflow Patterns (Channel C3). Assume that the
encrypted tuples are of the same size, and hence do
not individually leak anything about the underlying
plain text. However, since the adversary constitutes
the data communication channel, it can correlate the
tuples written out by a map unit and read by a spe-
cific reduce unit. In the Wordcount example, the
ith map unit processes words in the file Fi, and then
the intermediate tuples are sorted before being fed
to reduce units. By observing which map outputs
are grouped together to the same reduce unit, the
adversary can learn that the word wi in file Fi is the
same as a word w j in file Fj. This is true if they
are received by the same reduce unit as one group.
Thus, data access patterns leak significant informa-
tion about overlapping words in files.

• Order of Execution (Channel C5). A determinis-
tic order of execution of nodes in any step can re-
veal information about the underlying tuples be-
yond what is implied by Ψ. For instance, if the
provisioning protocol always sorts tuple-keys and
assigns them to reduce units in sorted order, then
the adversary learns significant information. In the
WordCount example, if the first reduce unit always
corresponds to words appearing first in the sorted
order, this would leak information about specific
words processed by the reduce unit. This is not di-
rectly implied by Ψ.

• Time-of-Access (Channel C1,C2) Even if data ac-
cess patterns are eliminated, time-of-access is an-

5



452 24th USENIX Security Symposium USENIX Association

other channel of leakage. For instance, an optimiz-
ing scheduler may start to move tuples to the re-
duce units even before the map step is completed
(pipelining) to gain efficiency. In such cases, the ad-
versary can correlate which blocks written by map
units are read by which reduce units. If outputs of
all but the ith map unit are delayed, and the jth re-
duce unit completes, then the adversary can deduce
that there is no dataflow from the ith map unit to jth

reduce unit. In general, if computation units in a
subsequent step do not synchronize to obtain out-
puts from all units in the previous step, the time of
start and completion leaks information.

Active Attacks. While we allow the adversary to abort
the computation session at any time, we aim to prevent
the adversary from using active attacks to gain advantage
in breaking confidentiality. We remind readers that in our
baseline system, the adversary can only invoke the pro-
gram with its complete input set, without tampering with
any original inputs. The output tuple-set of each compu-
tation unit is encrypted with an authenticated encryption
scheme, so the adversary cannot tamper with individual
tuples. Despite these preliminary defenses, several chan-
nels for active attacks exist:

• Tuple Tampering. The adversary may attempt to du-
plicate or eliminate an entire output tuple-set pro-
duced by a computation unit, even though it cannot
forge individual tuples. As an attack illustration,
suppose the adversary wants to learn how many
words are unique to an input file Fi. To do this, the
adversary can simply drop the output of the ith map
unit. If the number of tuples in the final output re-
duces by k, the tuples eliminated correspond to k
unique words in Fi.

• Misrouting Tuples. The adversary can reorder in-
termediate tuples or route data blocks intended for
one reduce unit to another. These attacks subvert
our confidentiality goals. For instance, the adver-
sary can bypass the shuffler altogether and route the
output of ith map unit to a reduce unit. The output of
this reduce unit leaks the number of unique words
in Fi. Similar inference attacks can be achieved by
duplicating outputs of tuples in the reduce unit and
observing the result.

4 Design

Our goal is to design a MapReduce provisioning proto-
col which is private modulo-Ψ and adds a small amount
of the TCB to the existing MapReduce platform. We ex-
plain the design choices available and our observations
that lead to an efficient and clean security design.
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Figure 2: The data flow in M2R. Filled components are trusted.
Input, intermediate and output tuples are encrypted. The orig-
inal map and reduce operations are replaced with mapT and
reduceT. New components are the mixer nodes which use
mixT, and another trusted component called groupT.

4.1 Architecture Overview
The computation proceeds in phases, each consisting of
a map step, a shuffle step, and a reduce step. Figure 2
depicts the 4 new trusted components our design intro-
duces into the dataflow pipeline of MapReduce. These
four new TCB components are mapT, reduceT, mixT
and groupT. Two of these correspond to the execution
of map and reduce unit. They ensure that output tuples
from the map and reduce units are encrypted and each
tuple is of the same size. The other 2 components im-
plement the critical role of secure shuffling. We explain
our non-intrusive mechanism for secure shuffling in Sec-
tion 4.2. Further, all integrity checks to defeat active at-
tacks are designed to be distributed requiring minimal
global synchronization. The shuffler in the MapReduce
platform is responsible for grouping tuples, and invoking
reduce units on disjoint ranges of tuple-keys. On each
cluster node, the reducer checks the grouped order and
the expected range of tuples received using the trusted
groupT component. The outputs of the reduce units are
then fed back into the next round of map-reduce phase.

Minimizing TCB. In our design, a major part of the
MapReduce’s software stack deals with job scheduling
and I/O operations, hence it can be left outside of the
TCB. Our design makes no change to the grouping and
scheduling algorithms, and they are outside our TCB as
shown in the Figure 2. Therefore, the design is concep-
tually simple and requires no intrusive changes to be im-
plemented over existing MapReduce implementations.
Developers need to modify their original applications to
prepare them for execution in a hardware-protected pro-
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cess in our baseline system, as proposed in previous sys-
tems [38, 39, 49]. Beyond this modification made by the
baseline system to the original MapReduce, M2R requires
a few additional lines of code to invoke the new privacy-
enhancing TCB components. That is, MapReduce appli-
cations need modifications only to invoke components in
our TCB. Next, we explain how our architecture achieves
privacy and integrity in a MapReduce execution, along
with the design of these four TCB components.

4.2 Privacy-Preserving Execution
For any given execution, we wish to ensure that each
computation step in a phase is private modulo-Ψ. If the
map step, the shuffle step, and the reduce step are in-
dividually private modulo-Ψ, by the property of serial
composibility, the entire phase and a sequence of phases
can be shown to be private. We discuss the design of
these steps in this section, assuming a honest-but-curious
adversary limited to passive attacks. The case of mali-
cious adversaries is discussed in Section 4.3.

4.2.1 Secure Shuffling

As discussed in the previous section, the key challenge
is performing secure shuffling. Consider the naive ap-
proach in which we simply move the entire shuffler into
the platform TCB of each cluster node. To see why this is
insecure, consider the grouping step of the shuffler, often
implemented as a distributed sort or hash-based group-
ing algorithm. The grouping algorithm can only process
a limited number of tuples locally at each mapper, so ac-
cess to intermediate tuples must go to the network during
the grouping process. Here, network data access patterns
from the shuffler leak information. For example, if the
shuffler were implemented using a standard merge sort
implementation, the merge step leaks the relative posi-
tion of the pointers in sorted sub-arrays as it fetches parts
of each sub-array from network incrementally4.

One generic solution to hide data access patterns is to
employ an ORAM protocol when communicating with
the untrusted storage backend. The grouping step will
then access data obliviously, thereby hiding all corre-
lations between grouped tuples. This solution achieves
strong privacy, but with an overhead of O(logk N) for
each access when the total number of tuples is N [55].
Advanced techniques can be employed to reduce the
overhead to O(logN), i.e. k = 1 [43]. Nevertheless, us-
ing a sorting algorithm for grouping, the total overhead
becomes O(N logk+1 N), which translates to a factor of
30−100× slowdown when processing gigabytes of shuf-
fled data.

4This can reveal, for instance, whether the first sub-array is strictly
lesser than the first element in the second sorted sub-array.

mapper mapper mapper

mixT mixT mixT mixT

mixT mixT mixT mixT

reducer reducer reducer

mixer mixer

mixer mixer

Figure 3: High level overview of the map-mix-reduce execution
using a 2-round mix network.

A more advanced solution is to perform oblivious sort-
ing using sorting networks, for example, odd-even or
bitonic sorting network [23]. Such an approach hides
data access patterns, but admits a O(log2 N) latency (ad-
ditive only). However, sorting networks are often de-
signed for a fixed number of small inputs and hard to
adapt to tens of gigabytes of distributed data.

We make a simple observation which yields a non-
intrusive solution. Our main observation is that in
MapReduce and other dataflow frameworks, the se-
quence of data access patterns is fixed: it consists of
cycles of tuple writes followed by reads. The reduce
units start reading and processing their inputs only af-
ter the map units have finished. In our solution, we re-
write intermediate encrypted tuples with re-randomized
tuple keys such that there is no linkability between the re-
randomized tuples and the original encrypted map output
tuples. We observe that this step can be realized by se-
cure mix networks [30]. The privacy of the computa-
tion reduces directly to the problem of secure mixing.
The total latency added by our solution is an additive
term of O(logN) in the worst case. Since MapReduce
shuffle step is based on sorting which already admits
O(N logN) overhead, our design retains the asymptotic
runtime complexity of the original framework.

Our design achieves privacy using a cascaded mix net-
work (or cascaded-mix) to securely shuffle tuples [30].
The procedure consists of a cascading of κ intermedi-
ate steps, as shown in Figure 3. It has κ identical steps
(called mixing steps) each employing a number of trusted
computation units called mixT units, the execution of
which can be distributed over multiple nodes called mix-
ers. Each mixT takes a fixed amount of T tuples that
it can process in memory, and passes exactly the same
number of encrypted tuples to all mixT units in the sub-
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sequent step. Therefore, in each step of the cascade, the
mixer utilizes N/T mixT units for mixing N tuples. At
κ = log N

T , the network ensures the strongest possible un-
linkability, that is, the output distribution is statistically
indistinguishable from a random distribution [30].

Each mixT unit decrypts the tuples it receives from
the previous step, randomly permutes them using a
linear-time algorithm and re-encrypts the permuted tu-
ples with fresh randomly chosen symmetric key. These
keys are known only to mixT units, and can be derived
using a secure key-derivation function from a common
secret. The processing time of mixT are padded to a
constant. Note that the re-encryption time has low vari-
ance over different inputs, therefore such padding incurs
low overhead.

Let Ω represents the number of input and output tu-
ples of cascaded-mix with κ steps. Intuitively, when κ is
sufficiently large, an semi-honest adversary who has ob-
served the execution does not gain more knowledge than
Ω. The following lemma states that indeed this is the
case. We present the proof in Appendix A.

Lemma 1. Cascaded-mix is private module-Ω under
semi-honest adversary, given that the underlying encryp-
tion scheme is semantically secure.

4.2.2 Secure Grouping

After the mixing step, the shuffler can group the random-
ized tuple keys using its original (unmodified) grouping
algorithm, which is not in the TCB. The output of the
cascaded-mix is thus fed into the existing grouping al-
gorithm of MapReduce, which combines all tuples with
the same tuple-key and forward them to reducers. Read-
ers will notice that if the outputs of the last step of the
cascaded-mix are probabilistically encrypted, this group-
ing step would need to be done in a trusted component.
In our design, we add a last (κ +1)-th step in the cascade
to accommodate the requirement for subsequent group-
ing. The last step in the cascade uses a deterministic
symmetric encryption Fs, with a secret key s, to encrypt
the key-component of the final output tuples. Specifi-
cally, the 〈a,b〉 is encrypted to a ciphertext of the form
〈Fs(a),E(a,b)〉, where E(·) is a probabilistic encryption
scheme. This ensures that the two shuffled tuples with
the same tuple-keys have the same ciphertext for the key-
component of the tuple, and hence the subsequent group-
ing algorithm can group them without decrypting the tu-
ples. The secret key s is randomized in each invocation of
the cascaded-mix, thereby randomizing the ciphertexts
across two map-reduce phases or jobs.

What the adversary gains by observing the last step
of mixing is the tuples groups which are permuted using
Fs(·). Thus, if Fs(·) is a pseudorandom function family,
the adversary can only learn about the size of each group,

which is already implied by Ψ. Putting it all together
with the Lemma 1, we have:

Theorem 1. The protocol M2R is modulo-Ψ private (un-
der semi-honest adversary), assuming that the underly-
ing private-key encryption is semantically secure, and
Fs(·) is a pseudorandom function family.

4.3 Execution Integrity
So far, we have considered the privacy of the protocol
against honest-but-curious adversaries. However, a mali-
cious adversary can deviate arbitrarily from the protocol
by mounting active attacks using the 6 parameters un-
der its control. In this section, we explain the techniques
necessary to prevent active attacks.

The program execution in M2R can be viewed as a
directed acyclic graph (DAG), where vertices denote
trusted computation units and edges denote the flow of
encrypted data blocks. M2R has 4 kinds of trusted com-
putation units or vertices in the DAG: mapT, mixT,
groupT, and reduceT. At a high-level, our integrity-
checking mechanism works by ensuring that nodes at the
jth level (by topologically sorted order) check the con-
sistency of the execution at level j−1. If they detect that
the adversary deviates or tampers with the execution or
outputs from level j−1, then they abort the execution.

The MapReduce provisioning system is responsible
for invoking trusted computation units, and is free to de-
cide the total number of units spawned at each level j.
We do not restrict the MapReduce scheduling algorithm
to decide which tuples are processed by which reduce
unit, and their allocation to nodes in the cluster. How-
ever, we ensure that all tuples output at level i−1 are pro-
cessed at level i, and there is no duplicate. Note that this
requirement ensures that a computation in step i starts
only after outputs of previous step are passed to it, im-
plicitly synchronizes the start of the computation units at
step i. Under this constraint, it can be shown that chan-
nels C1-C2 (start-end time of each computation node)
can only allow the adversary to delay an entire step, or
distinguish the outputs of units within one step, which is
already implied by Ψ. We omit a detailed proof in this
paper. Using these facts, we can show that the malicious
adversary has no additional advantage compared to an
honest-but-curious adversary, stated formally below.

Theorem 2. The protocol M2R is private modulo-Ψ un-
der malicious adversary, assuming that the underlying
authenticated-encryption is semantically secure (confi-
dentiality) and secure under chosen message attack (in-
tegrity), and Fs(·) is a pseudorandom function family.

Proof Sketch: Given a malicious adversary A that ex-
ecutes the M2R protocol, we can construct an adversary
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Ã that simulates A , but only has access to Ψ in the
following way. To simulate A , the adversary Ã needs
to fill in information not present in Ψ. For the output
of a trusted unit, the simulation simply fills in random
tuples, where the number of tuples is derived from
Ψ. The timing information can likewise be filled-in.
Whenever A deviates from the protocol and feeds a
different input to a trusted instance, the simulation
expects the instance will halt and fills in the information
accordingly. Note that the input to A and the input
constructed for the simulator Ã could have the same
DAG of program execution, although the encrypted
tuples are different. Suppose there is a distinguisher
that distinguishes A and Ã , let us consider the two
cases: either the two DAG’s are the same or different.
If there is a non-negligible probability that they are the
same, then we can construct a distinguisher to contradict
the security of the encryption, or Fs(·). If there is a
non-negligible probability that they are different, we can
forge a valid authentication tag. Hence, the outputs of
A and Ã are indistinguishable.

Integrity Checks. Nearly all our integrity checks can
be distributed across the cluster, with checking of invari-
ants done locally at each trusted computation. There-
fore, our integrity checking mechanism can largely bun-
dle the integrity metadata with the original data. No
global synchronization is necessary, except for the case
of the groupT units as they consume data output by an
untrusted grouping step. The groupT checks ensure
that the ordering of the grouped tuples received by the
designated reduceT is preserved. In addition, groupT
units synchronize to ensure that each reducer processes
a distinct range of tuple-keys, and that all the tuple-keys
are processed by at least one of the reduce units.

4.3.1 Mechanisms

In the DAG corresponding to a program execution, the
MapReduce provisioning system assigns unique instance
ids. Let the vertex i at the level j has the designated
id (i, j), and the total number of units at level j be |Vj|.
When a computation instance is spawned, its designed
instance id (i, j) and the total number of units |Vj| are
passed as auxiliary input parameters by the provision-
ing system. Each vertex with id (i, j) is an operation
of type mapT, groupT, mixT or reduceT, denoted
by the function OpType(i, j). The basic mechanism
for integrity-checking consists of each vertex emitting a
tagged-block as output which can be checked by trusted
components in the next stage. Specifically, the tagged
block is 6-tuple B = 〈O, LvlCnt, SrcID, DstID, DstLvl,

DstType 〉, where:
O is the encrypted output tuple-set,
LvlCnt is the number of units at source level,
SrcID is the instance id of the source vertex,
DstID is instance id of destination vertex or NULL
DstLvl is the level of the destination vertex,
DstType is the destination operation type.

In our design, each vertex with id (i, j) fetches the
tagged-blocks from all vertices at the previous level, de-
noted by the multiset B, and performs the following con-
sistency checks on B:

1. The LvlCnt for all b ∈ B are the same (say �(B)).
2. The SrcID for all b ∈ B are distinct.
3. For set S = {SrcID(b) |b ∈ B}, |S| = �(B).
4. For all b ∈ B, DstLvl(b) = j.
5. For all b ∈ B, DstID(b) = (i, j) or NULL.
6. For all b ∈ B, DstType(b) = OpType(i, j).

Conditions 1,2 and 3 ensure that tagged-blocks from
all units in the previous level are read and that they are
distinct. Thus, the adversary has not dropped or dupli-
cated any output tuple. Condition 4 ensures that the
computation nodes are ordered sequentially, that is, the
adversary cannot misroute data bypassing certain levels.
Condition 6 further checks that execution progresses in
the expected order — for instance, the map step is fol-
lowed by a mix, subsequently followed by a group step,
and so on. We explain how each vertex decides the
right or expected order independently later in this sec-
tion. Condition 5 states that if the source vertex wishes
to fix the recipient id of a tagged-block, it can verifiably
enforce it by setting it to non-NULL value.

Each tagged-block is encrypted with standard authen-
ticated encryption, protecting the integrity of all meta-
data in it. We explain next how each trusted computation
vertex encodes the tagged-block.
Map-to-Mix DataFlow. Each mixT reads the output
metadata of all mapT. Thus, each mixT knows the to-
tal number of tuples N generated in the entire map step,
by summing up the counts of encrypted tuples received.
From this, each mixT independently determines the to-
tal number of mixers in the system as N/T . Note that
T is the pre-configured number of tuples that each mixT
can process securely without invoking disk accesses, typ-
ically a 100M of tuples. Therefore, this step is com-
pletely decentralized and requires no co-ordination be-
tween mixT units. A mapT unit invoked with id (i, j)
simply emit tagged-blocks, with the following structure:
〈·, |Vj|,(i, j),NULL, j+1,mixT〉.
Mix-to-Mix DataFlow. Each mixT re-encrypts and per-
mutes a fixed number (T ) of tuples. In a κ-step cascaded
mix network, at any step s (s < κ − 1) the mixT out-
puts T/m tuples to each one of the m mixT units in the
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step s+ 1. To ensure this, each mixT adds metadata to
its tagged-block output so that it reaches only the speci-
fied mixT unit for the next stage. To do so, we use the
DstType field, which is set to type mixTs+1 by the mixer
at step s. Thus, each mixT node knows the total num-
ber of tuples being shuffled N (encoded in OpType), its
step number in the cascaded mix, and the public value T .
From this each mixT can determine the correct number
of cascade steps to perform, and can abort the execution
if the adversary tries to avoid any step of the mixing.

Mix-to-Group DataFlow. In our design, the last mix
step (i, j) writes the original tuple as 〈Fs(k),(k,v, tctr)〉,
where the second part of this tuple is protected with
authenticated-encryption. The value tctr is called a
tuple-counter, which makes each tuple globally distinct
in the job. Specifically, it encodes the value (i, j,ctr)
where ctr is a counter unique to the instance (i, j). The
assumption here is that all such output tuples will be
grouped by the first component, and each group will be
forwarded to reducers with no duplicates. To ensure that
the outputs received are correctly ordered and untam-
pered, the last mixT nodes send a special tagged-block
to groupT nodes. This tagged-block contains the count
of tuples corresponding to Fs(k) generated by mixT unit
with id (i, j). With this information each groupT node
can locally check that:

• For each received group corresponding to g=Fs(k),
the count of distinct tuples (k, ·, i, j,ctr) it receives
tallies with that specified in the tagged-block re-
ceived from mixT node (i, j), for all blocks in B.

Finally, groupT units need to synchronize to check if
there is any overlap between tuple-key ranges. This
requires an additional exchange of tokens between
groupT units containing the range of group keys and
tuple-counters that each unit processes.

Group-to-Reduce Dataflow. There is a one-to-one
mapping between groupT units and reduceT units,
where the former checks the correctness of the tuple
group before forwarding to the designated reduceT.
This communication is analogous to that between mixT
units, so we omit a detailed description for brevity.

5 Implementation

Baseline Setup. The design of M2R can be imple-
mented differently depending on the underlying archi-
tectural primitives available. For instance, we could im-
plement our solution using Intel SGX, using the mech-
anisms of VC3 to achieve our baseline. However, Intel
SGX is not yet available in shipping CPUs, therefore
we use a trusted-hypervisor approach to implement the

baseline system, which minimizes the performance over-
heads from the baseline system. We use Intel TXT to
securely boot a trusted Xen-4.4.3 hypervisor kernel, en-
suring its static boot integrity5. The inputs ands output of
map and reduce units are encrypted with AES-GCM us-
ing 256-bit keys. The original Hadoop jobs are executed
as user-level processes in ring-3, attested at launch by the
hypervisor, making an assumption that they are protected
during subsequent execution. The MapReduce jobs are
modified to call into our TCB components implemented
as x86 code, which can be compiled with SFI constraints
for additional safety. The hypervisor loads, verifies and
executes the TCB components within its address space
in ring-0. The rest of Hadoop stack runs in ring 3 and
invokes the units by making hypercalls. Note that the
TCB components can be isolated as user-level processes
in the future, but this is only meaningful if the processes
are protected by stronger solutions such as Intel SGX or
other systems [12, 14, 52].
M2R TCB. Our main contributions are beyond the base-
line system. We add four new components to the TCB
of the baseline system. We have modified a stan-
dard Hadoop implementation to invoke the mixT and
groupT units before and after the grouping step. These
two components add a total 90 LoC to the platform TCB.
No changes are necessary to the original grouping algo-
rithm. Each mapT and reduceT implement the trusted
map and reduce operation — same as in the baseline sys-
tem. They are compiled together with a static utility code
which is responsible for (a) padding each tuple to a fixed
size, (b) encrypting tuples with authenticated encryption,
(c) adding and verifying the metadata for tagged-blocks,
and (d) recording the instance id for each unit. Most of
these changes are fairly straightforward to implement. To
execute an application, the client encrypts and uploads
all the data to M2R nodes. The user then submits M2R
applications and finally decrypts the results.

6 Evaluation

This section describes M2R performance in a small clus-
ter under real workloads. We ported 7 data intensive jobs
from the standard benchmark to M2R, making less than
25% changes in number of lines of code (LoC) to the
original Hadoop jobs. The applications add fewer than
500 LoC into the TCB, or less than 0.16% of the entire
Hadoop software stack. M2R adds 17− 130% overhead
in running time to the baseline system. We also compare
M2R with another system offering the same level of pri-
vacy, in which encrypted tuples are sent back to a trusted
client. We show that M2R is up to 44.6× faster compared

5Other hypervisor solutions such as TrustVisor [39], Over-
shadow [14], Nova [56], SecVisor [50] could equivalently be used
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Job LoC changed (vs.
Hadoop job)

TCB increase (vs. Hadoop
codebase) Input size (vs. plaintext size) Shuffled bytes # App hyper-

calls
# Platform hy-
percall

Wordcount 10 (15%) 370 (0.14%) 2.1G (1.06×) 4.2G 3277173 35
Index 28 (24%) 370 (0.14%) 2.5G (1.15×) 8G 3277173 59
Grep 13 (13%) 355 (0.13%) 2.1G (1.06×) 75M 3277174 10
Aggregate 16 (18%) 395 (0.15%) 2G (1.19×) 289M 18121377 12
Join 30 (22%) 478 (0.16%) 2G (1.19×) 450M 11010647 14
Pagerank 42 (20%) 429 (0.15%) 2.5G (4×) 2.6G 1750000 21
KMeans 113 (7%) 400 (0.12%) 1G (1.09×) 11K 12000064 8

Table 1: Summary of the porting effort and TCB increase for various M2R applications, and the application runtime cost factors. Number of app
hypercalls consists of both mapT and reduceT invocations. Number of platform hypercalls include groupT and mixT invocations.

Job Baseline (vs. no en-
cryption)

M2R (% increase vs.
baseline)

Download-and-compute
(× M2R)

Wordcount 570 (221) 1156 (100%) 1859 (1.6×)
Index 666 (423) 1549 (130%) 2061 (1.3×)
Grep 70 (48) 106 (50%) 1686 (15.9×)
Aggregate 125 (80) 205 (64%) 9140 (44.6×)
Join 422 (211) 510 (20%) 5716 (11.2×)
Pagerank 521 (334) 755 (44%) 1209 (1.6×)
KMeans 123 (71) 145 (17%) 6071 (41.9×)

Table 2: Overall running time (s) of M2R applications in compari-
son with other systems: (1) the baseline system protecting computation
only in single nodes, (2) the download-and-compute system which does
not use trusted primitives but instead sends the encrypted tuples back to
trusted servers when homomorphic encrypted computation is not pos-
sible [59].

to this solution.

6.1 Setup & Benchmarks
We select a standard benchmark for evaluating Hadoop
under large workloads called HiBench suite [25]. The
7 benchmark applications, listed in Table 1, cover a
wide range of data-intensive tasks: compute intensive
(KMeans, Grep, Pagerank), shuffle intensive (Word-
count, Index), database queries (Join, Aggregate), and
iterative (KMeans, Pagerank). The size of the encrypted
input data is between 1 GB and 2.5 GB in these case stud-
ies. Different applications have different amount of shuf-
fled data, ranging from small sizes (75MB in Grep, 11K
in KMeans) to large sizes (4.2GB in Wordcount, 8GB in
Index).

Our implementation uses the Xen-4.3.3 64-bit hyper-
visor compiled with trusted boot option. The rest of M2R
stack runs on Ubuntu 13.04 64-bit version. We con-
duct our experiments in a cluster of commodity servers
equipped with 1 quad-core Intel CPU 1.8GHz, 1TB hard
drive, 8GB RAM and 1GB Ethernet cards. We vary our
setup to have between 1 to 4 compute nodes (running
mappers and reducers) and between 1 to 4 mixer nodes
for implementing a 2-step cascaded mix network. The
results presented below are from running with 4 com-
pute nodes and 4 mixers each reserving a 100MB buffer
for mixing, averaged over 10 executions.

6.2 Results: Performance

Overheads & Cost Breakdown. We observe a lin-
ear scale-up with the number of nodes in the cluster,

which confirms the scalability of M2R. In our bench-
marks (Table 2), we observe a total overhead of between
17% − 130% over the baseline system that simply en-
crypts inputs and outputs of map/reduce units, and uti-
lizes none of our privacy-enhancing techniques. It can
also be seen that in all applications except for Grep and
KMeans, running time is proportional to the size of data
transferred during shuffling (shuffled bytes column in Ta-
ble 1). To understand the cost factors contributing to the
overhead, we measure the time taken by the secure shuf-
fler, by the mapT and reduceT units, and by the rest of
the Hadoop system which comprises the time spent on
I/O, scheduling and other book-keeping tasks. This rel-
ative cost breakdown is detailed in Figure 4. From the
result, we observe that the cost of the secure shuffler is
significant. Therefore, reducing the overheads of shuf-
fling, by avoiding the generic ORAM solution, is well-
incentivized and is critical to reducing the overall over-
heads. The two main benchmarks which have high over-
heads of over 100%, namely Wordcount and Index, incur
this cost primarily due to the cost of privacy-preserving
shuffling a large amount of data. In benchmarks where
the shuffled data is small (Grep, KMeans), the use of
mapT/reduceT adds relatively larger overheads than
that from the secure shuffler. The second observation is
that the total cost of the both shuffler and other trusted
components is comparable to that of Hadoop, which pro-
vides evidence that M2R preserves the asymptotic com-
plexity of Hadoop.

Comparison to Previous Solutions. Apart from the
baseline system, a second point of comparison are pre-
viously proposed systems that send encrypted tuples
to the user for private computation. Systems such as
Monomi [59] and AutoCrypt [58] employ homomorphic
encryption for computing on encrypted data on the single
servers. For operations that cannot be done on the server
using partially homomorphic encryption, such Monomi-
like systems forward the data to a trusted set of servers
(or to the client’s private cloud) for decryption. We re-
fer to this approach as download-and-compute approach.
We estimate the performance of a Monomi-like system
extended to distributed computation tasks, for achiev-
ing privacy equivalent to ours. To compare, we assume
that the system uses Paillier, ElGamal and randomized
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Figure 4: Normalized break-down time for M2R applications. The run-
ning time consists of the time taken by mapT and reduceT, plus the
time by the secure shuffler. The rest comes from the Hadoop runtime.

search schemes for homomorphic computation, but not
OPE or deterministic schemes (since that leaks more than
M2R and our baseline system do). We run operations
that would fall outside such the expressiveness of the
allowed homomorphic operations, including shuffling,
as a separate network request to the trusted client. We
batch network requests into one per MapReduce step.
We assume that the network round trip latency to the
client is only 1ms — an optimistic approximation since
the average round trip delay in the same data center is
10 − 100ms [4, 61]. We find that this download-and-
compute approach is slower compared to ours by a fac-
tor of 1.3× to 44.6× (Table 2), with the median bench-
mark running slower by 11.2×. The overheads are low
for case-studies where most of the computation can be
handled by homomorphic operations, but most of the
benchmarks require conversions between homomorphic
schemes (thereby requiring decryption) [58, 59] or com-
putation on plaintext values.

Platform-Specific Costs. Readers may wonder if the
evaluation results are significantly affected by the choice
of our implementation platform. We find that the dom-
inant costs we report here are largely complementary to
the costs incurred by the specifics of the underlying plat-
form. We conduct a micro-benchmark to evaluate the
cost of context-switches and the total time spent in the
trusted components to explain this aspect. In our plat-
form, the cost of each hypercall (switch to trusted logic)
is small (13µs), and the execution of each trusted com-
ponent is largely proportional to the size of its input data
as shown in Figure 5. The time taken by the trusted
computation grows near linearly with the input data-size,
showing that the constant overheads of context-switches
and other platform’s specifics do not contribute to the
reported results significantly. This implies that simple
optimizations such as batching multiple trusted code in-
vocations would not yield any significant improvements,
since the overheads are indeed proportional to the total
size of data and not the number of invocations. The total
number of invocations (via hypercalls) for app-specific
trusted logic (mapT, reduceT) is proportional to the to-
tal number input tuples, which amounts for less than half

Figure 5: Cost of executing mapT instance of the Wordcount and
Aggregate job, and the cost for executing mixT. Input sizes (number
of ciphertexts per input) varies from 2 to 106.

a second overhead even for millions of input tuples. The
number of invocations to the other components (mixT
and groupT) is much smaller (8−59) and the each invo-
cation operates on large inputs of a few gigabytes; there-
fore the dominant cost is not that of context-switches, but
that of the cost of multi-step shuffling operation itself and
the I/O overheads.

6.3 Results: Security & Porting Effort

Porting effort. We find that the effort to adapt all bench-
marks to M2R is modest at best. For each benchmark, we
report the number of Java LoC we changed in order to
invoke the trusted components in M2R, measured using
the sloccount tool 6. Table 1 shows that all applica-
tions except for KMeans need to change fewer than 43
LoC. Most changes are from data marshaling before and
after invoking the mapT and reduceT units. KMeans
is more complex as it is a part of the Mahout distribution
and depends on many other utility classes. Despite this,
the change is only 113 LoC, or merely 7% of the original
KMeans implementation.
TCB increase. We define our TCB increase as the to-
tal size of the four trusted components. This represents
the additional code running on top of a base TCB, which
in our case is Xen. Note that our design can eliminate
the base TCB altogether in the future by using SGX en-
claves, and only retain the main trusted components we
propose in M2R. The TCB increase comprises the per-
application trusted code and platform trusted code. The
former consists of the code for loading and executing
mapT, reduceT units (213 LoC) as well as the code
for implementing their logic. Each map/reduce codebase
itself is small, fewer than 200 LoC, and runs as trusted
components in the baseline system itself. The platform
trusted code includes that of mixT and groupT, which
amounts to 90 LoC altogether. The entire Hadoop soft-
ware stack is over 190K LoC and M2R avoids moving all
of it into the TCB. Table 1 shows that all jobs have TCB
increases of fewer than 500 LoC, merely 0.16% of the
Hadoop codebase.
Security. M2R achieves stronger privacy than previous

6http://www.dwheeler.com/sloccount
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Job M2R Baseline (additional leakage)
Wordcount # unique words + count word-file relationship
Index # unique words + count word-file relationship
Grep nothing nothing
Aggregate # groups + group size record-group relationship
Join # groups + group size record-group relationship
Pagerank node in-degree whole input graph
KMeans nothing nothing

Table 3: Remaining leakage of M2R applications, compared with that
in the baseline system.

platforms that propose to use encrypted computation for
big-data analysis. Our definition allows the adversary to
observe an admissible amount of information, captured
by Ψ, in the computation but hides everything else. It is
possible to quantitatively analyze the increased privacy
in information-theoretic terms, by assuming the proba-
bility distribution of input data [37, 53]. However, here
we present a qualitative description in Table 3 highlight-
ing how much privacy is gained by the techniques in-
troduced in M2R over the baseline system. For instance,
consider the two case studies that incur most perfor-
mance overhead (Wordcount, Index). In these examples,
merely encrypting the map/reduce tuples leaks informa-
tion about which file contains which words. This may
allow adversaries to learn the specific keywords in each
file in the dataset. In M2R, this leakage is reduced to
learning only the total number of unique words in the
complete database and the counts of each, hiding in-
formation about individual files. Similarly, M2R hides
which records are in which group for database opera-
tions (Aggregate and Join). For Pagerank, the baseline
system leaks the complete input graph edge structure,
giving away which pair of nodes has an edge, whereas
M2R reduces this leakage to only the in-degree of graph
vertices. In the two remaining case studies, M2R provides
no additional benefit over the baseline.

7 Related Work

Privacy-preserving data processing. One of M2R’s goal
is to offer large-scale data processing in a privacy pre-
serving manner on untrusted clouds. Most systems with
this capability are in the database domain, i.e. sup-
porting SQL queries processing. CryptDB [47] takes a
purely cryptographic approach, showing the practicality
of using partially homomorphic encryption schemes [3,
15, 45, 46, 54]. CryptDB can only work on a small set
of SQL queries and therefore is unable to support ar-
bitrary computation. Monomi [59] supports more com-
plex queries, by adopting the download-and-compute ap-
proach for complex queries. As shown in our evaluation,
such an approach incurs an order of magnitude larger
overheads.

There exist alternatives supporting outsourcing of

query processing to a third party via server-side trusted
hardware, e.g. IBM 4764/5 cryptographic co-processors.
TrustedDB [7] demonstrated that a secure outsourced
database solution can be built and run at a fraction of
the monetary cost of any cryptography-enabled private
data processing. However, the system requires expensive
hardware and a large TCB which includes the entire SQL
server stack. Cipherbase improves upon TrustedDB by
considering encrypting data with partially homomorphic
schemes, and by introducing a trusted entity for query
optimization [6]. M2R differs to these systems in two
fundamental aspects. First, it supports general compu-
tation on any type of data, as opposed to being restricted
to SQL and structured database semantics. Second, and
more importantly, M2R provides confidentiality in a dis-
tributed execution environment which introduces more
threats than in a single-machine environment.

VC3 is a recent system offering privacy-preserving
general-purpose data processing [49]. It considers
MapReduce and utilizes Intel SGX to maintain a small
TCB. This system is complementary to M2R, as it fo-
cuses on techniques for isolated computation, key man-
agement, etc. which we do not consider. The privacy
model in our system is stronger than that of VC3 which
does not consider traffic analysis attacks.

GraphSC offers a similar security guarantee to that
of M2R for specialized graph-processing tasks [42]. It
provides a graph-based programming model similar to
GraphLab’s [36], as opposed to the dataflow model ex-
posed by M2R. GraphSC does not employ trusted prim-
itives, but it assumes two non-colluding parties. There
are two main techniques for ensuring data-oblivious and
secure computation in GraphSC: sorting and garbled cir-
cuits. However, these techniques result in large perfor-
mance overheads: a small Pagerank job in GraphSC is
200,000×−500,000× slower than in GraphLab without
security. M2R achieves an overhead of 2×−5× increase
in running time because it leverages trusted primitives for
computation on encrypted data. A direct comparison of
oblivious sorting used therein instead of our secure shuf-
fler is a promising future work.

Techniques for isolated computation. The current im-
plementation of M2R uses a trusted hypervisor based on
Xen for isolated computation. Overshadow [14] and
CloudVisor [63] are techniques with large TCB, whereas
Flicker [38] and TrustVisor [39] reduce the TCB at the
cost of performance. Recently, Minibox [32] enhances a
TrustVisor-like hypervisor with two-way protection pro-
viding security for both the OS and the applications (or
PALs). Advanced hardware-based techniques include In-
tel SGX [40] and Bastion [12] provide a hardware pro-
tected secure mode in which applications can be exe-
cuted at hardware speed. All these techniques are com-
plementary to ours.
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Mix networks. The concept of mix network is first de-
scribed in the design of untraceable electronic mail [13].
Since then, a body of research has concentrated on build-
ing, analyzing and attacking anonymous communication
systems [16, 19]. Canetti presents the first definition of
security that is preserved under composition [11], from
which others have shown that the mix network is secure
under Canetti’s framework [10, 60]. Security properties
of cascaded mix networks were studied in [30]. We use
these theoretical results in our design.

8 Conclusion & Future Work

In this paper, we defined a model of privacy-preserving
distributed execution of MapReduce jobs. We analyzed
various attacks channels that break data confidentiality
on a baseline system which employs both encryption
and trusted computing primitives. Our new design re-
alizes the defined level of security, with a significant step
towards lower performance overhead while requiring a
small TCB. Our experiments with M2R showed that the
system requires little effort to port legacy MapReduce
applications, and is scalable.

Systems such as M2R show evidence that specialized
designs to hide data access patterns are practical alterna-
tives to generic constructions such as ORAM. The ques-
tion of how much special-purpose constructions benefit
important practical systems, as compared to generic con-
structions, is an area of future work. A somewhat more
immediate future work is to integrate our design to other
distributed dataflow systems. Although having the simi-
lar structure of computation, those systems are based on
different sets of computation primitives and different ex-
ecution models, which presents both opportunities and
challenges for reducing the performance overheads of
our design. Another avenue for future work is to real-
ize our model of privacy-preserving distributed computa-
tion in the emerging in-memory big-data platforms [64],
where only very small overheads from security mecha-
nisms can be tolerated.
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Appendix A Security Analysis

Proof (Lemma 1):
Consider the “ideal mixer” that takes as input a se-

quence 〈x1, . . . ,xN〉 where each xi ∈ [1,N], picks a per-
mutation p : [1,N]→ [1,N] randomly and then output the
sequence 〈xp(1),xp(2), . . . ,xp(N)〉. Klonowski et al. [30]
investigated the effectiveness of the cascaded network of
mixing, and showed that O(log N

T ) steps are suffice to

bring the distribution of the mixed sequence statistically
close to the output of the ideal mixer, where T is the
number of items an instance can process in memory. Our
proof relies on the above-mentioned result.

Let us assume that κ , the number of steps carried out
by cascaded-mix, is sufficiently large such that the distri-
bution of the mixed sequence is statistically close to the
ideal mixer.

Consider an adversary S that executes the cascaded-
mix. Let us construct an adversary A who simulates S
but only has access to Ω. To fill in the tuple values not
present in Ω, the simulation simply fills in random tuples.
Note that the number of tuples can be derived from Ω.

Now, suppose that on input x1, . . . ,xN , the output of
A and S can be distinguished by D . We want to
show that this contradicts the semantic security of the
underlying encryption scheme, by constructing a distin-
guisher D̃ who can distinguish multiple ciphertexts from
random with polynomial-time sampling (i.e. the distin-
guisher sends the challenger multiple messages, and re-
ceive more than one sample).

Let z = 〈z1,z2, . . . ,zN〉 be the output of the mixer on
input x1, . . . ,xN . The distinguisher D̃ asks the challenger
for a sequence of ciphertexts of z. Let ci, j’s be the ci-
phertexts returned by the challenger, where ci, j is the i-th
ciphertexts of z j. To emulate S , likewise, D̃ needs to
feed the simulation with the intermediate data generated
by mixT. Let yi, j be the i-th intermediate ciphertext in
round j the distinguisher D̃ generated for the emulation.
The yi, j’s are generated as follow:

1. D̃ simulates the cascaded-mix by randomly pick-
ing a permutation for every mixT. Let p j : [1,N]→
[1,N] be the overall permutation for round j. Let
p̂ j be the permutation that moves the i-th ciphertext
in the input, to its location after j rounds. That is,
p̂ j(i) = p j( p̂ j−1(i)), and p̂0(i) = i.

2. Set yi, j = cp̂ j(i), j for each i, j.

Let v be the output of D’s simulation. Note that if
xi, j’s are random ciphertexts, then the distribution of v is
the same as the output distribution of A . On the other
hand, if xi, j’s are ciphertexts of z, then the input to the
emulation is statistically close to the input of S , and
thus distribution of v is statistically close to the output
distribution of S.

Since D can distinguish output of S from A ’s, D̃
can distinguish the ciphertexts of z from random. �
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Abstract

Parameterized password guessability—how many
guesses a particular cracking algorithm with particular
training data would take to guess a password—has
become a common metric of password security. Unlike
statistical metrics, it aims to model real-world attackers
and to provide per-password strength estimates. We
investigate how cracking approaches often used by
researchers compare to real-world cracking by profes-
sionals, as well as how the choice of approach biases
research conclusions.

We find that semi-automated cracking by profession-
als outperforms popular fully automated approaches, but
can be approximated by combining multiple such ap-
proaches. These approaches are only effective, however,
with careful configuration and tuning; in commonly used
default configurations, they underestimate the real-world
guessability of passwords. We find that analyses of large
password sets are often robust to the algorithm used for
guessing as long as it is configured effectively. However,
cracking algorithms differ systematically in their effec-
tiveness guessing passwords with certain common fea-
tures (e.g., character substitutions). This has important
implications for analyzing the security of specific pass-
word characteristics or of individual passwords (e.g., in a
password meter or security audit). Our results highlight
the danger of relying only on a single cracking algorithm
as a measure of password strength and constitute the first
scientific evidence that automated guessing can often ap-
proximate guessing by professionals.

1 Introduction

Despite decades of research into alternative authen-
tication schemes, text passwords have comparative
advantages—familiarity, ease of implementation, noth-
ing for users to carry—that make a world without text
passwords unlikely in the near future [5]. Two-factor

authentication, single-sign-on systems, password man-
agers, and biometrics promise to obviate remembering a
distinct password for each online account, but passwords
will not disappear entirely.

Text passwords have been compromised with alarm-
ing regularity through both online and offline attacks.
While online attacks are mitigated through rate-limiting
password-entry attempts, faulty rate limiting contributed
to the iCloud photo leak [39]. In offline attacks, in-
cluding recent ones on LinkedIn [7], eHarmony [62],
Gawker [2], and Adobe [48], an attacker steals a database
of (usually) hashed passwords and tries to recover pass-
words through offline guessing. Because password reuse
is common [14], recovered passwords can often be used
to access accounts on other systems.

A key aspect of improving password security is mak-
ing passwords more computationally expensive to guess
during offline attacks. Cracking tools like the GPU-
based oclHashcat [57] and distributed cracking bot-
nets [13, 17] enable attackers to make 1014 guesses in
hours if passwords are hashed using fast hash func-
tions like MD5 or NTLM. These advances are offset by
the development of hash functions like bcrypt [52] and
scrypt [47], which make attacks more difficult by requir-
ing many iterations or consuming lots of memory.

Unfortunately, users often create predictable pass-
words [7, 29], which attackers can guess quickly even
if the passwords are protected by a computationally ex-
pensive hash function. In some cases, predictable pass-
words are a rational coping strategy [54, 60]; in other
cases, users are simply unsure whether a password is
secure [66]. System administrators encourage strong
passwords through password-composition policies and
password-strength meters. The design and effectiveness
of such mechanisms hinges on robust metrics to measure
how difficult passwords are to guess.

In recent years, traditional entropy metrics have fallen
out of favor because they do not reflect how easily a
password can be cracked in practice [3, 31, 69]. It has
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instead become common to measure password strength
by running or simulating a particular cracking algo-
rithm, parameterized by a set of training data [4, 31, 69].
This approach has two main advantages. First, it cal-
culates the guessability of each password individually,
enabling data-driven strength estimates during password
creation [10, 33]. Second, it estimates real-world secu-
rity against existing, rather than idealized, adversarial
techniques. A disadvantage of this approach is that the
(simulated) cracking algorithm may not be configured or
trained as effectively as by a real attacker, leading to in-
accurate estimates of password strength.

This paper reports on the first study of how vari-
ous cracking approaches used by researchers compare to
real-world cracking by professionals, as well as how the
choice of approach biases research conclusions. We con-
tracted a computer security firm specializing in password
recovery to crack a set of passwords chosen for their di-
versity in password-composition policies. We then com-
puted the guessability of these passwords using four pop-
ular approaches. We tested many configurations of two
well-known password-cracking toolkits: John the Rip-
per [49] and oclHashcat [57]. We also tested two ap-
proaches popular in academia: Weir et al.’s probabilis-
tic context-free grammar (PCFG) [70] and Ma et al.’s
Markov models [40].

Unsurprisingly, a professional attacker updating his
strategy dynamically during cracking outperformed fully
automated, “fire-and-forget” approaches (henceforth
simply referred to as automated), yet often only once bil-
lions or trillions of guesses had been made. We found
that relying on a single automated approach to calculate
guessability underestimates a password’s vulnerability to
an experienced attacker, but using the earliest each pass-
word is guessed by any automated approach provides a
realistic and conservative approximation.

We found that each approach was highly sensitive to
its configuration. Using more sophisticated configura-
tions than those traditionally used in academic research,
our comparative analysis produced far more nuanced re-
sults than prior work. These prior studies found that
Markov models substantially outperform the PCFG ap-
proach [18, 40], which in turn substantially outperforms
tools like John the Ripper [16, 69, 72]. We found that
while Markov was marginally more successful at first, it
was eventually surpassed by PCFG for passwords cre-
ated under typical requirements. Furthermore, the most
effective configurations of John the Ripper and Hash-
cat were frequently comparable to, and sometimes even
more effective than, the probabilistic approaches.

Both the differences across algorithms and the sensi-
tivity to configuration choices are particularly notable be-
cause most researchers use only a single approach as a
security metric [10, 12, 19, 42, 56, 65, 69]. In addition,

many researchers use adversarial cracking tools in their
default configuration [11, 14, 15, 20, 21, 28, 34, 71]. Such
a decision is understandable since each algorithm is very
resource- and time-intensive to configure and run. This
raises the question of whether considering only a single
approach biases research studies and security analyses.
For instance, would substituting a different cracking al-
gorithm change the conclusions of a study?

We investigate these concerns and find that for com-
parative analyses of large password sets (e.g., the ef-
fect of password-composition policies on guessability),
choosing one cracking algorithm can reasonably be ex-
pected to yield similar results as choosing another.

However, more fine-grained analyses—e.g., exam-
ining what characteristics make a password easy to
guess—prove very sensitive to the algorithm used. We
find that per-password guessability results often vary by
orders of magnitude, even when two approaches are sim-
ilarly effective against large password sets as a whole.
This has particular significance for efforts to help sys-
tem administrators ban weak passwords or provide cus-
tomized guidance during password creation [10, 33]. To
facilitate the analysis of password guessability across
many password-cracking approaches and to further sys-
tematize passwords research, we introduce a Password
Guessability Service [9] for researchers.

In summary, this paper makes the following main con-
tributions: We show that while running a single crack-
ing algorithm or tool relatively out-of-the-box produces
only a poor estimate of password guessability, using mul-
tiple well-configured algorithms or tools in parallel can
approximate passwords’ vulnerability to an expert, real-
world attacker. Furthermore, while comparative analy-
ses of large password sets may be able to rely on a single
cracking approach, any analysis of the strength of indi-
vidual passwords (e.g., a tool to reject weak ones) or the
security impact of particular characteristics (e.g., the use
of digits, multiple character classes, or character substi-
tutions) must consider many approaches in parallel.

2 Related Work

In this section, we discuss commonly used metrics of
password strength (Section 2.1) and describe popular cat-
egories of password-cracking attacks (Section 2.2).

2.1 Password Security Metrics

While estimated entropy was once a leading password
strength metric [8], it does not reflect what portion of a
set can be cracked easily [3, 31, 69]. Two main classes
of metrics have emerged in its place: statistical metrics
and parameterized metrics. Both classes focus on guess-
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ability, the number of guesses needed by an adversary to
guess a given password or a fraction of a set.

Statistical metrics are particularly valuable for exam-
ining password sets as a whole. For example, Bonneau
introduced partial guessing metrics [3] for estimating the
number of guesses required for an idealized attacker,
who can perfectly order guesses, to guess a given frac-
tion of a set. Since password distributions are heavy-
tailed, very large samples are required to determine a
set’s guessability accurately.

Parameterized metrics instead investigate guessability
under a cracking algorithm and training data [4, 31, 69].
These metrics thus model an adversary using existing
tools, rather than an idealized attack, though the metric is
only as good as the chosen algorithm and training data.
Parameterized metrics can also be used to compare pass-
word sets without fully running the algorithm [40].

In contrast to statistical metrics, parameterized met-
rics have two important properties. First, they estimate
the guessability of each password individually. Estimat-
ing guessability per-password is important for security
audits (e.g., identifying weak passwords) and to provide
feedback to a user about a password she has created. This
latter promises to become more widespread as proac-
tive feedback tools move from length-and-character-
class heuristics [15] to data-driven feedback [10, 33].
Second, parameterized metrics aim to estimate security
against real-world, rather than idealized, attacks. Re-
searchers previously assumed automated techniques ap-
proximate real-world attackers [31, 69]; we are the first
to test this assumption against attacks by professionals.

Parameterized metrics have been used to measure
password strength in a number of previous studies [10,
14, 16, 20, 21, 31, 34, 40, 42, 53, 56, 65, 68, 69, 72]. While
there are many different methods for cracking passwords,
as we detail in Section 2.2, time and resource constraints
lead many researchers to run only a single algorithm per
study. However, it remains an open question whether
this strategy accurately models real-world attackers, or
whether choosing a different algorithm would change a
study’s results. We address this issue.

Throughout the paper, we refer to the guess number of
a password, or how many guesses a particular parameter-
ized algorithm took to arrive at that password. Because
the algorithm must be run or simulated, there is neces-
sarily a guess cutoff, or maximum guess after which re-
maining passwords are denoted “not guessed.”

2.2 Types of Guessing Attacks

Researchers have long investigated how to guess pass-
words. A handful of studies [12, 16, 53] have compared
the aggregate results of running different cracking ap-
proaches. Other studies have compared results of run-

ning different cracking approaches based on guess num-
bers [11, 18, 40]. We are the first to examine in de-
tail the magnitude and causes of differences in these ap-
proaches’ effectiveness at guessing specific passwords;
we also compare approaches from academia and adver-
sarial tools to a professional attacker. In this section, we
highlight four major types of attacks.

Brute-force and mask attacks Brute-force attacks are
conceptually the simplest. They are also inefficient and
therefore used in practice only when targeting very short
or randomly generated, system-assigned passwords.

Mask attacks are directed brute-force attacks in which
password character-class structures, such as “seven
lowercase letters followed by one digit” are exhausted in
an attacker-defined order [58]. While this strategy may
make many guesses without success, mask attacks can be
effective for short passwords, as many users craft pass-
words matching popular structures [37, 63]. Real-world
attackers also turn to mask attacks after more efficient
methods exhaust their guesses. We evaluated mask at-
tacks in our initial tests. Unsurprisingly, we found them
significantly less efficient than other attacks we analyzed.

Probabilistic context-free grammar In 2009, Weir et
al. proposed using a probabilistic context-free grammar
(PCFG) with a large training set of passwords from ma-
jor password breaches [67] to model passwords and gen-
erate guesses [70]. They use training data to create a
context-free grammar in which non-terminals represent
contiguous strings of a single character class. From the
passwords observed in its training data, PCFG assigns
probabilities to both the structure of a password (e.g.,
monkey99 has the structure {six letters}{two digits}) and
the component strings (e.g., “99” will be added to the list
of two-digit strings it has seen). A number of research
studies [11, 16, 19, 31, 40, 42, 56, 65, 69, 72] have used
PCFG or a close variant to compute guessability.

Kelley et al. proposed other improvements to Weir et
al.’s PCFG algorithm, like treating uppercase and lower-
case letters separately and training with structures and
component strings from separate sources [31]. Because
they found these modifications improved guessing effec-
tiveness, we incorporate their improvements in our tests.
In addition, multiple groups of researchers have pro-
posed using grammatical structures and semantic tokens
as PCFG non-terminals [53, 68]. More recently, Koman-
duri proposed a series of PCFG improvements, including
supporting hybrid structures and assigning probabilities
to unseen terminals [32]. We incorporate his insights,
which he found improves guessing efficiency.
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Markov models Narayanan and Shmatikov first pro-
posed using a Markov model of letters in natural lan-
guage with finite automata representing password struc-
tures [45]. Castelluccia et al. used a similar algorithm for
password meters [10]. John the Ripper and Hashcat offer
simple Markov modes in their cracking toolkits as well.

Recently, Duermuth et al. [18] and Ma et al. [40] in-
dependently evaluated many variations of Markov mod-
els and types of smoothing in cracking passwords, using
large sets of leaked passwords for training. Both groups
compared their model with other probabilistic attacks,
including Weir et al.’s original PCFG code, finding par-
ticular configurations of a Markov model to be more ef-
ficient at guessing passwords for some datasets. We use
Ma et al.’s recommended model in our tests [40].

Mangled wordlist attacks Perhaps the most popular
strategy in real-world password cracking is the dictio-
nary attack. First proposed by Morris and Thompson
in 1979 [43], modern-day dictionary attacks often com-
bine wordlists with mangling rules, string transforma-
tions that modify wordlist entries to create additional
guesses. Wordlists usually contain both natural language
dictionaries and stolen password sets. Typical mangling
rules perform transformations like appending digits and
substituting characters [50, 59].

Many modern cracking tools, including John the Rip-
per [49], Hashcat [57], and PasswordsPro [30], support
these attacks, which we term mangled wordlist attacks.
The popularity of this category of attack is evident from
these tools’ wide use and success in password-cracking
competitions [36,51]. Furthermore, a number of research
papers have used John the Ripper, often with the default
mangling rules [11,14,15,20,21,28,34,71] or additional
mangling rules [16, 19, 72].

Expert password crackers, such as those offering
forensic password-recovery services, frequently perform
a variant of the mangled wordlist attack in which hu-
mans manually write, prioritize, and dynamically update
rules [23]. We term these manual updates to mangling
rules freestyle rules. As we discuss in Section 3, we
evaluate guessability using off-the-shelf tools relying on
publicly available wordlists and mangling rules. We also
contract a password recovery industry leader to do the
same using their proprietary wordlists and freestyle rules.

3 Methodology

We analyze four automated guessing algorithms and one
manual cracking approach (together, our five cracking
approaches). We first describe the password sets for
which we calculated guessability, then explain the train-
ing data we used. Afterwards, we discuss our five crack-

ing approaches. Finally, we discuss computational limi-
tations of our analyses.

3.1 Datasets

We examine 13,345 passwords from four sets created
under composition policies ranging from the typical
to the currently less common to understand the suc-
cess of password-guessing approaches against passwords
of different characteristics. Since no major password
leaks contain passwords created under strict composi-
tion policies, we leverage passwords that our group col-
lected for prior studies of password-composition poli-
cies [31, 42, 56]. This choice of data also enables us
to contract with a professional computer security firm
to crack these unfamiliar passwords. Had we used any
major password leak, their analysts would have already
been familiar with most or all of the passwords contained
in the leak, biasing results.

The passwords in these sets were collected using Ama-
zon’s Mechanical Turk crowdsourcing service. Two re-
cent studies have demonstrated that passwords collected
for research studies, while not perfect proxies for real
data, are in many ways very representative of real pass-
words from high-value accounts [20, 42].

Despite these claims, we were also curious how real
passwords would differ in our analyses from those col-
lected on Mechanical Turk. Therefore, we repeated our
analyses of Basic passwords (see below) with 15,000
plaintext passwords sampled from the RockYou gaming
site leak [67] and another 15,000 sampled from a Yahoo!
Voices leak [22]. As we detail in Appendix A.4, our Ba-
sic passwords and comparable passwords from these two
real leaks yielded approximately the same results.

Next, we detail our datasets, summarized in Table 1.
The Basic set comprises 3,062 passwords collected for a
research study requiring a minimum length of 8 charac-
ters [31]. As we discuss in Section 4, the vast majority
of 8-character passwords can be guessed using off-the-
shelf, automated approaches. Hence, we give particular
attention to longer and more complex passwords, which
will likely represent best practices moving forward.

System administrators commonly require passwords
to contain multiple character classes (lowercase letters,
uppercase letters, digits, and symbols). The Complex set
comprises passwords required to contain 8+ characters,
include all 4 character classes, and not be in a cracking
wordlist [46] after removing digits and symbols. They
were also collected for research [42].

Recent increases in hashing speeds have made pass-
words of length 8 or less increasingly susceptible to of-
fline guessing [24, 31]. We therefore examine 2,054
LongBasic passwords collected for research [31] that re-
quired a a minimum length of 16 characters. Finally, we
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Table 1: Characteristics of passwords per set, including
the percentage of characters that were lowercase (LC) or
uppercase (UC) letters, digits, or symbols (Sym).

Length % of Characters
Set # Mean (σ ) LC UC Digit Sym

Basic 3,062 9.6 (2.2) 68 4 26 1
Complex 3,000 10.7 (3.2) 51 14 25 11
LongBasic 2,054 18.1 (3.1) 73 4 20 2
LongComplex 990 13.8 (2.6) 57 12 22 8

examine 990 LongComplex passwords, also collected
for research [56], that needed to contain 12+ characters,
including characters from 3 or more character classes.

3.2 Training Data
To compare cracking approaches as directly as possible,
we used the same training data for each. That said, each
algorithm uses training data differently, making perfectly
equivalent comparisons impossible.

Our training data comprised leaked passwords and dic-
tionaries. The passwords were from breaches of MyS-
pace, RockYou, and Yahoo! (excluding the aforemen-
tioned 30,000 passwords analyzed in Appendix A.4).
Using leaked passwords raises ethical concerns. We be-
lieve our use of such sets in this research is justifiable
because the password sets are already available publicly
and we exclude personally identifiable information, such
as usernames. Furthermore, malicious agents use these
sets in attacks [23]; failure to consider them in our analy-
ses may give attackers an advantage over those who work
in defensive security.

Prior research has found including natural-language
dictionaries to work better than using just passwords [31,
69]. We used the dictionaries previously found most ef-
fective: all single words in the Google Web corpus [26],
the UNIX dictionary [1], and a 250,000-word inflec-
tion dictionary [55]. The combined set of passwords
and dictionaries contained 19.4 million unique entries.
For cracking approaches that take only a wordlist, with-
out frequency information, we ordered the wordlist by
descending frequency and removed duplicates. We in-
cluded frequency information for the other approaches.

3.3 Simulating Password Cracking
To investigate the degree to which research results can
be biased by the choice of cracking algorithm, as well
as how automated approaches compare to real attacks,
we investigated two cracking tools and two probabilistic
algorithms. We selected approaches based on their popu-
larity in the academic literature or the password-cracking
community, as well as their conceptual distinctness. We

also contracted a computer security firm specializing in
password cracking for the real-world attack.

Most cracking approaches do not natively provide
guess numbers, and instrumenting them to calculate
guessability was typically far from trivial. Because this
instrumentation enabled the comparisons in this paper
and can similarly support future research, we include
many details in this section about this instrumentation.
Furthermore, in Section 5, we introduce a Password
Guessability Service so that other researchers can lever-
age our instrumentation and computational resources.

For each approach, we analyze as many guesses
as computationally feasible, making 100 trillion (1014)
guesses for some approaches and ten billion (1010)
guesses for the most resource-intensive approach. With
the exception of Hashcat, as explained below, we filter
out guesses that do not comply with a password set’s
composition policy. For example, a LongComplex pass-
word’s guess number excludes guesses with under 12
characters or fewer than 3 character classes.

We define Minauto as the minimum guess number
(and therefore the most conservative security result)
for a given password across our automated cracking
approaches. This number approximates the best re-
searchers can expect with well-configured automation.

In the following subsections, we detail the configura-
tion (and terminology) of the five approaches we tested.
We ran CPU-based approaches (JTR, PCFG, Markov) on
a 64-core server. Each processor on this server was an
AMD Opteron 6274 running at 1.4Ghz. The machine
had 256 GB of RAM and 15 TB of disk. Its market value
is over $10,000, yet we still faced steep resource limita-
tions generating Markov guesses. We ran Hashcat (more
precisely, oclHashcat) on a machine with six AMD R9
270 GPUs, 2 GB of RAM, and a dual-core processor.

Probabilistic context-free grammar Weir et al.’s
probabilistic context-free grammar (termed PCFG) [70]
has been widely discussed in recent years. We use
Komanduri’s implementation of PCFG [32], which im-
proves upon the guessing efficiency of Weir et al.’s
work [70] by assigning letter strings probabilities based
on their frequency in the training data and assigning un-
seen strings a non-zero probability. This implementa-
tion is a newer version of Kelley et al.’s implementation
of PCFG as a lookup table for quickly computing guess
numbers, rather than enumerating guesses [31].

Based on our initial testing, discussed further in Sec-
tion 4.1, we prepend our training data, ordered by fre-
quency, before PCFG’s first guess to improve perfor-
mance. As a result, we do not use Komanduri’s hy-
brid structures [32], which serve a similar purpose. We
weight passwords 10× as heavily as dictionary entries.
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We were able to simulate 1012 guesses for Complex pass-
words and 1014 guesses for the other three sets.

Markov model Second, we evaluated the Markov-
model password guesser presented by Ma et al. [40],
which implemented a number of variants differing by or-
der and approaches to smoothing. We use the order-5
Markov-chain model, which they found most effective
for English-language test sets. We tried using both our
combined training data (dictionaries and paswords) us-
ing the same weighting as with PCFG, as well as only the
passwords from our training data. The combined training
data and passwords-only training data performed nearly
identically. We report only on the combined training
data, which was slightly more effective for Basic pass-
words and is most consistent with the other approaches.

We used Ma et al.’s code [40], which they shared with
us, to enumerate a list of guesses in descending proba-
bility. We used a separate program to remove guesses
that did not conform to the given password-composition
policy. Because this approach is extremely resource-
intensive, both conceptually (traversing a very large tree)
and in its current implementation, we were not able to
analyze as many guesses as for other approaches. As
with PCFG, we found prepending the training data im-
proved performance, albeit only marginally for Markov.
Therefore, we used this tweak. We simulated over 1010

guesses for Basic passwords, similar to Ma et al. [40].

John the Ripper We also tested variants of a man-
gled wordlist attack implemented in two popular soft-
ware tools. The first tool, John the Ripper (termed JTR),
has been used in a number of prior studies as a security
metric, as described in Section 2. In most cases, these
prior studies used JTR with its stock mangling rules.
However, pairing the stock rules with our 19.4-million-
word wordlist produced only 108 guesses for Basic pass-
words. To generate more guesses, we augment the stock
rules with 5,146 rules released for DEF CON’s “Crack
Me If You Can” (CMIYC) password-cracking contest in
2010 [35]. Specifically, we use Trustwave SpiderLabs’
reordering of these rules for guessing efficiency [64].
Our JTR tests therefore use the stock mangling rules fol-
lowed by the Spiderlabs rules. For completeness, Ap-
pendix A.2 presents these rules separately.

Instrumenting JTR to calculate precise guess numbers
was an involved process. We used john-1.7.9-jumbo

with the --stdout flag to output guesses to standard out.
We piped these guesses into a program we wrote to per-
form a regular expression check filtering out guesses that
do not conform to the given password policy. This pro-
gram then does a fast hash table lookup with GNU gperf

[27] to quickly evaluate whether a guess matches a pass-
word in our dataset. Using this method, we achieved a

throughput speed of 3 million guesses per second and
made more than 1013 guesses for Basic passwords.

Hashcat While Hashcat is conceptually similar to JTR,
we chose to also include it in our tests for two reasons.
First, we discovered in our testing that JTR and Hashcat
iterate through guesses in a very different order, leading
to significant differences in the efficacy of guessing spe-
cific passwords. JTR iterates through the entire wordlist
using one mangling rule before proceeding to the subse-
quent mangling rule. Hashcat, in contrast, iterates over
all mangling rules for the first wordlist entry before con-
tinuing to the subsequent wordlist entry.

Second, the GPU-based oclHashcat, which is often
used in practice [23, 24, 36, 51], does not permit users
to filter guesses that do not meet password-composition
requirements except for computationally expensive hash
functions. We accept this limitation both because it rep-
resents the actual behavior of a popular closed-source
tool and because, for fast hashes like MD5 or NTLM,
guessing without filtering cracks passwords faster in
practice than applying filtering.

Unlike JTR, Hashcat does not have a default set of
mangling rules, so we evaluated several. We generally
report on only the most effective set, but detail our tests
of four different rule sets in Appendix A.3. This most
effective rule set, which we term Hashcat throughout
the paper, resulted from our collaboration with a Hash-
cat user and password researcher from MWR InfoSecu-
rity [25, 44], who shared his mangling rules for the pur-
pose of this analysis. We believe such a configuration
represents a typical expert configuration of Hashcat.

We used oclHashcat-1.21. While, like JTR, Hash-
cat provides a debugging feature that streams guesses to
standard output, we found it extremely slow in practice
relative to Hashcat’s very efficient GPU implementation.
In support of this study, Hashcat’s developers generously
added a feature to oclHashcat to count how many guesses
it took to arrive at each password it cracked. This fea-
ture is activated using the flag --outfile-format=11

in oclHashcat-1.20 and above. We therefore hashed
the passwords in our datasets using the NTLM hash func-
tion, which was the fastest for Hashcat to guess in our
benchmarks. We then used Hashcat to actually crack
these passwords while counting guesses, with throughput
of roughly 10 billion guesses per second on our system.
We made more than 1013 guesses for Basic passwords,
along with nearly 1015 guesses for some alternate con-
figurations reported in Appendix A.3.

Professional cracker An open question in measur-
ing password guessability using off-the-shelf, automated
tools is how these attacks compare to an experienced,
real-world attacker. Such attackers manually customize

6



USENIX Association  24th USENIX Security Symposium 469

and dynamically update their attacks based on a target
set’s characteristics and initial successful cracks.

To this end, we contracted an industry leader in profes-
sional password recovery services, KoreLogic (termed
Pros), to attack the password sets we study. We believe
KoreLogic is representative of expert password crackers
because they have organized the DEF CON “Crack Me If
You Can” password-cracking contest since 2010 [36] and
perform password-recovery services for many Fortune-
500 companies [38]. For this study, they instrumented
their distributed cracking infrastructure to count guesses.

Like most experienced crackers, the KoreLogic ana-
lysts used tools including JTR and Hashcat with propri-
etary wordlists, mangling rules, mask lists, and Markov
models optimized over 10 years of password audit-
ing. Similarly, they dynamically update their mangling
rules (termed freestyle rules) as additional passwords are
cracked. To unpack which aspects of a professional
attack (e.g., proprietary wordlists and mangling rules,
freestyle rules, etc.) give experienced crackers an advan-
tage, we first had KoreLogic attack a set of 4,239 Com-
plex passwords (distinct from those reported in our other
tests) in artificially limited configurations.

We then had the professionals attack the Complex,
LongBasic, and LongComplex passwords with no artifi-
cial limitations. An experienced password analyst wrote
freestyle rules for each set before cracking began, and
again after 1013 guesses based on the passwords guessed
to that point. They made more than 1014 guesses per set.

LongBasic and LongComplex approaches are rare in
corporate environments and thus relatively unfamiliar
to real-world attackers. To mitigate this unfamiliarity,
we randomly split each set in two and designated half
for training and half for testing. We provided analysts
with the training half (in plaintext) to familiarize them
with common patterns in these sets. Because we found
that automated approaches can already crack most Ba-
sic passwords, rendering them insecure, we chose not to
have the professionals attack Basic passwords.

3.4 Computational Limitations

As expected, the computational cost of generating
guesses in each approach proved a crucial limiting factor
in our tests. In three days, oclHashcat, the fastest of our
approaches, produced 1015 guesses using a single AMD
R9 290X GPU (roughly a $500 value). In contrast, the
Markov approach (our slowest) required three days on
a roughly $10,000 server (64 AMD Opteron 6274 CPU
cores and 256 GB of RAM) to generate 1010 guesses
without computing a single hash. In three days on the
same machine as Markov, PCFG simulated 1013 guesses.

The inefficiency of Markov stems partially from our
use of a research implementation. Even the most effi-

cient implementation, however, would still face substan-
tial conceptual barriers. Whereas Hashcat and JTR incur
the same performance cost generating the quadrillionth
guess as the first guess, Markov must maintain a tree of
substring probabilities. As more guesses are desired, the
tree must grow, increasing the cost of both storing and
traversing it. While Markov produced a high rate of suc-
cessful guesses per guess made (see Section 4.2), the cost
of generating guesses makes it a poor choice for comput-
ing guessability beyond billions of guesses.

Further, our automated approaches differ significantly
in how well they handle complex password-composition
policies. For PCFG, non-terminal structures can be
pruned before guessing starts, so only compliant pass-
words are ever generated. As a result, it takes about equal
time for PCFG to generate Basic passwords as Long-
Complex passwords. In contrast, Markov must first gen-
erate all passwords in a probability range and then fil-
ter out non-compliant passwords, adding additional over-
head per guess. JTR has a similar generate-then-filter
mechanism, while Hashcat (as discussed above) does not
allow this post-hoc filtering at all for fast hashes. This
means that Markov and JTR take much longer to gener-
ate valid LongComplex guesses than Basic guesses, and
Hashcat wastes guesses against the LongComplex set.

As a result of these factors, the largest guess is nec-
essarily unequal among approaches we test, and even
among test sets within each approach. To account for
this, we only compare approaches directly at equivalent
guess numbers. In addition, we argue that these compu-
tational limitations are important in practice, so our find-
ings can help researchers understand these approaches
and choose among them appropriately.

4 Results

We first show, in Section 4.1, that for each automated
guessing approach we evaluated, different seemingly
reasonable configurations produce very different crack-
ing results, and that out-of-the-box configurations com-
monly used by researchers substantially underestimate
password vulnerability.

Next, in Section 4.2, we examine the relative perfor-
mance of the four automated approaches. We find they
are similarly effective against Basic passwords. They
have far less success against the other password sets, and
their relative effectiveness also diverges.

For the three non-Basic sets, we also compare the
automated approaches to the professional attack. Pros
outperform the automated approaches, but only after a
large number of guesses. As Pros crack more pass-
words, their manual adjustments prove quite effective;
automated approaches lack this feedback mechanism.
We also find that, at least through 1014 guesses, auto-
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mated approaches can conservatively approximate hu-
man password-cracking experts, but only if a password
is counted as guessed when any of the four automated
approaches guesses it. A single approach is not enough.

In Section 4.3, we explore the degree to which differ-
ent cracking approaches overlap in which particular pass-
words they guess. While multiple approaches success-
fully guess most Basic passwords, many passwords in
the other classes are guessed only by a single approach.
We also find that different cracking approaches provide
systematically different results based on characteristics
like the number of character classes in a password.

In Section 4.4, we revisit how the choice of guessing
approach impacts research questions at a high level (e.g.,
how composition policies impact security) and lower
level (e.g., if a particular password is hard to guess).
While we find analyses on large, heterogeneous sets of
passwords to be fairly robust, security estimates for a
given password are very sensitive to the approach used.

4.1 The Importance of Configuration
We found that using any guessing approach naively per-
formed far more poorly, sometimes by more than an or-
der of magnitude, than more expert configurations.

Stock vs advanced configurations We experimented
with several configurations each for Hashcat and JTR, in-
cluding the default configurations they ship with, and ob-
served stark differences in performance. We detail a few
here; others are described in Appendices A.2 and A.3.

For example, Hashcat configured with the (default)
Best64 mangling rules guessed only about 2% of the
Complex passwords before running out of guesses. Us-
ing the mangling rules described in Section 3, it made far
more guesses, eventually cracking 30% (Figure 1).

Similarly, JTR guessed less than 3% of Complex pass-
words before exhausting its stock rules. The larger set of
rules described in Section 3 enabled it to guess 29% (see
Appendix A.2 for details). We found similar configura-
tion effects for LongComplex passwords, and analogous
but milder effects for the Basic and LongBasic sets.

We also compared the PCFG implementation we use
throughout the paper [32] with our approximation of the
originally published algorithm [70], which differs in how
probabilities are assigned (see Section 3). As we detail
in Appendix A.1, the newer PCFG consistently outper-
forms the original algorithm; the details of the same con-
ceptual approach greatly impact guessability analyses.

Choices of training data The performance of PCFG
and Markov depends heavily on the quality of training
data. Our group previously found that training with
closely related passwords improves performance [31].
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Figure 1: Results of Hashcat configured using the same
wordlist, but different sets of mangling rules (described
in Appendix A.3), to guess Complex passwords.

For our non-basic password sets, however, closely
matched data is not available in publicly leaked sets.

In tests reported in Appendix A.1, we thus incorpo-
rated closely matched data via cross-validation, in which
we iteratively split the test set into training and testing
portions. Using cross-validation improved guessing effi-
ciency for three of the four password sets, most dramati-
cally for LongBasic. This result demonstrates that an al-
gorithm trained with generic training data will miss pass-
words that are vulnerable to an attacker who has training
data that closely matches a target set. To minimize differ-
ences across approaches, however, PCFG results in the
body of the paper use generic training data only.

Actionable takeaways Together, these results suggest
that a researcher must carefully manage guessing config-
uration before calculating password guessability. In par-
ticular, tools like JTR and Hashcat will “out of the box”
systematically underestimate password guessability. Un-
fortunately, many existing research studies rely on unop-
timized configurations [11, 14, 15, 20, 21, 28, 34, 71].

While we report on the configurations we found most
effective in extensive testing, we argue that the research
community should establish configuration best practices,
which may depend on the password sets targeted.

4.2 Comparison of Guessing Approaches
We first show that automated approaches differ in effec-
tiveness based on the nature of the password sets be-
ing cracked and the number of guesses at which they
are compared. We then compare these automated ap-
proaches to cracking by an expert attacker making dy-
namic updates, finding that the expert lags in initial
guessing efficiency, yet becomes stronger over time. We
find the minimum guess number across automated ap-
proaches can serve as a conservative proxy for guessabil-
ity by an expert attacker.
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4.2.1 Guessing by Automated Approaches

On some password sets and for specific numbers of
guesses, the performance of all four approaches was sim-
ilar (e.g., at 1012 guesses all but Markov had guessed
60-70% of Basic passwords). In contrast, on other sets,
their performance was inconsistent at many points that
would be relevant for real-world cracking (e.g., PCFG
cracked 20% of Complex passwords by 1010 guesses,
while Hashcat and JTR had cracked under 3%).

As shown in Figure 2, all four automated approaches
were quite successful at guessing Basic passwords, the
most widely used of the four classes. Whereas past
work has found that, for password sets resembling our
Basic passwords, PCFG often guesses more passwords
than JTR [16] or that Markov performs significantly
better than PCFG [40], good configurations of JTR,
Markov, and PCFG performed somewhat similarly in our
tests. Hashcat was less efficient at generating successful
guesses in the millions and billions of guesses, yet it sur-
passed JTR by 1012 guesses and continued to generate
successful guesses beyond 1013 guesses.

The four automated approaches had far less success
guessing the other password sets. Figure 3 shows the
guessability of the Complex passwords under each ap-
proach. Within the first ten million guesses, very few
passwords were cracked by any approach. From that
point until its guess cutoff, PCFG performed best, at
points having guessed nearly ten times as many pass-
words as JTR. Although its initial guesses were often
successful, the conceptual and implementation-specific
performance issues we detailed in Section 3.4 prevented
Markov from making over 100 million valid Complex
guesses, orders of magnitude less than the other ap-
proaches we examined. A real attack using this algorithm
would be similarly constrained.

Both Hashcat and JTR performed poorly compared to
PCFG in early Complex guessing. By 109 guesses, each
had each guessed under 3% of Complex passwords, com-
pared to 20% for PCFG. Both Hashcat and JTR improve
rapidly after 1010 guesses, however, eventually guessing
around 30% of Complex passwords.

JTR required almost 1012 guesses and Hashcat re-
quired over 1013 guesses to crack 30% of Complex pass-
words. As we discuss in Section 4.3, there was less over-
lap in which passwords were guessed by multiple auto-
mated approaches for Complex passwords than for Basic
passwords. As a result, the Minauto curve in Figure 3,
representing the smallest guess number per password
across the automated approaches, shows that just under
1011 guesses are necessary for 30% of Complex pass-
words to have been guessed by at least one automated ap-
proach. Over 40% of Complex passwords were guessed
by at least one automated approach in 1013 guesses.
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Figure 2: Automated approaches’ success guessing Ba-
sic passwords. Minauto represents the smallest guess
number for a password by any automated approach.
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Figure 3: Success guessing Complex passwords. Pros
are experts updating their guessing strategy dynamically.
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Figure 4: Success guessing LongBasic passwords.
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Figure 5: Success guessing LongComplex passwords.
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Figure 6: The proportion of passwords guessed by
Minauto, Pros, both, or neither within 1014 guesses.

LongBasic passwords were also challenging for all
approaches to guess, though relative differences across
approaches are not as stark as for Complex passwords.
Markov was marginally more successful than other ap-
proaches at its cutoff just before 109 guesses. JTR and
PCFG both continued to generate successful guesses
through when JTR exhausted its guesses after guessing
10% of the passwords. Hashcat lagged slightly behind
JTR at 109 guesses (7% cracked vs ∼9%), but was able
to make more guesses than either, eventually guessing
over 20% of the passwords, compared to 16% for PCFG
and 10% for JTR at those approaches’ guess cutoffs.

As with LongBasic passwords, all approaches had dif-
ficulty guessing LongComplex passwords. As shown
in Figure 5, nearly 70% of LongComplex passwords
were not guessed by any of the approaches we exam-
ined even after trillions of guesses. The relative per-
formance of the four automated guessing approaches
for LongComplex passwords again differed noticeably.
Markov and PCFG again outperformed other approaches
early. Markov guessed 5% of the passwords after 108

guesses, yet reached its guess cutoff soon thereafter. At
109 guesses PCFG and JTR had both also guessed at least
5% of the passwords, compared to almost no passwords
guessed by Hashcat. PCFG’s and JTR’s performance
diverged and then converged at higher guess numbers.
Hashcat caught up at around 1013 guesses, cracking 20%
of LongComplex passwords.

4.2.2 Guessing by Pros

As we expected, Pros guessed more passwords overall
than any of the automated approaches. As we discussed
in Section 3, we chose not to have Pros attack Basic pass-
words because those passwords could be guessed with
automated approaches alone. As shown in Figures 3–5,
within 1014 guesses Pros cracked 44% of Complex pass-
words, 33% of LongBasic passwords, and 33% of Long-
Complex passwords, improving on the guessing of the
best automated approach.

Three aspects of guessing by Pros were particularly
notable. First, even though Pros manually examined
half of each password set and adjusted their mangling
rules and wordlists before making the first guess against
each set, automated approaches were often more suc-

cessful at early guessing. For example, Markov sur-
passed Pros at guessing Complex passwords in the first
102 guesses and again from around 106 till Markov’s
guess cutoff at 5 × 107. Similarly, all four automated
approaches guessed LongComplex passwords more suc-
cessfully than Pros from the start of guessing until past
1013 guesses. All approaches guessed LongBasic pass-
words better than Pros for the first 106 guesses.

Second, while Pros lagged in early guessing, the
freestyle rules an experienced analyst wrote at 1013

guesses proved rather effective and caused a large spike
in successful guesses for all three password sets. Hash-
cat, the only automated approach that surpassed 1013

guesses for all sets, remained effective past 1013 guesses,
yet did not experience nearly the same spike.

Third, while Pros were more successful across pass-
word sets once a sufficiently high number of guesses had
been reached, the automated approaches we tested had
guessing success that was, to a very rough approxima-
tion, surprisingly similar to Pros. As we discussed in
Section 4.1 and discuss further in the appendix, this suc-
cess required substantial configuration beyond each ap-
proach’s performance out of the box.

We found that our Minauto metric (the minimum guess
number for each password across Hashcat, JTR, Markov,
and PCFG) served as a conservative approximation of
the success of Pros, at least through our automated guess
cutoffs around 1013 guesses. As seen in Figures 3–6,
Pros never substantially exceeded Minauto, yet often per-
formed worse than Minauto.

Professional cracking with limitations To unpack
why professional crackers have an advantage over novice
attackers, we also had KoreLogic attack a different set of
Complex passwords in artificially limited configurations.
These limitations covered the wordlists they used, the
mangling rules they used, and whether they were permit-
ted to write freestyle rules. To avoid biasing subsequent
tests, we provided them a comparable set of 4,239 Com-
plex passwords [31] distinct from those examined in the
rest of the paper. We call this alternate set Complexpilot .

As shown in Table 2, we limited Pros in Trial 1 to
use the same wordlist we used elsewhere in this paper
and did not allow freestyle rules. In Trial 2, we did not
limit the wordlist, but did limit mangling rules to those
used in the 2010 Crack Me If You Can contest [35]. In
Trial 3 and Trial 4, we did not limit the starting wordlist
or mangling rules. In Trial 4, however, KoreLogic ana-
lysts dynamically adjusted their attacks through freestyle
rules and wordlist tweaks after 1014 guesses.

We found that KoreLogic’s set of proprietary man-
gling rules had a far greater impact on guessing effi-
ciency than their proprietary wordlist (Figure 7). Fur-
thermore, as evidenced by the difference between Trial 3
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Table 2: The four trials of Pros guessing Complexpilot .
We artificially limited the first three trials to uncover why
Pros have an advantage over more novice attackers.

Trial Wordlist Rules Freestyle Rules

1 CMU wordlist Anything None
2 Anything 2010 CMIYC rules None
3 Anything Anything None
4 Anything Anything Unlimited
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Figure 7: Complexpilot guessability by trial.

and Trial 4, freestyle rules also had a major impact at the
point the analyst wrote them.

Actionable takeaways One conceptual advantage of
parameterized metrics is that they model an attack using
existing cracking approaches. However, it has long been
unclear whether automated cracking approaches used by
researchers effectively model the dynamically updated
techniques used by expert real-world attackers. Our re-
sults demonstrate that only by considering multiple au-
tomated approaches in concert can researchers approxi-
mate professional password cracking.

One of our primary observations, both from compar-
ing Pros to the automated approaches and from our trials
artificially limiting Pros (Section 4.2.2), is that dynami-
cally updated freestyle rules can be highly effective. This
result raises the question of to what extent automated ap-
proaches can model dynamic updates. Although the ad-
versarial cracking community has discussed techniques
for automatically generating mangling rules from previ-
ous cracks [41], researchers have yet to leverage such
techniques, highlighting an area ripe for future work.

Contrary to prior research (e.g., [16, 40]), we found
that Hashcat, JTR, Markov, and PCFG all performed rel-
atively effectively when configured and trained accord-
ing to currently accepted best practices in the cracking
and research communities. That said, our tests also high-
lighted a limitation of the guessability metric in not con-
sidering the performance cost of generating a guess. De-
spite its real-world popularity, Hashcat performed com-

0% 20% 40% 60% 80% 100%

LongComplex

LongBasic

Complex

Basic

3 approaches 2 approaches 1 approach

Figure 8: Number of automated approaches, excluding
Markov, that cracked a particular password. We ignore
passwords not guessed by any approach and use the same
guess cutoff for all guessing approaches within a set.

paratively poorly until making trillions of guesses, yet
generated guesses very quickly.

If hashing a guess is the dominant time factor, as
is the case for intentionally slow hash functions like
bcrypt, PBKDF2, and scrypt, probabilistic approaches
like Markov and PCFG are advantageous for an attacker.
For fast hash functions like MD5 or NTLM, Hashcat’s
speed at generating and hashing guesses results in more
passwords being guessed in the same wall-clock time. As
discussed in Section 3.4, Markov proved comparatively
very resource-intensive to run to a large guess number,
especially for password sets with complex requirements.
These practical considerations must play a role in how
researchers select the best approaches for their needs.

4.3 Differences Across Approaches
Next, we focus on differences between approaches. We
first examine if multiple approaches guess the same pass-
words. We then examine the guessability of passwords
with particular characteristics, such as those containing
multiple character classes or character substitutions. To
examine differences across how approaches model pass-
words, for analyses in this section we do not prepend the
training data to the guesses generated by the approach.

4.3.1 Overlap in Successful Guesses

While one would expect any two cracking approaches to
guess slightly different subsets of passwords, we found
larger-than-expected differences for three of the four
password sets. Figure 8 shows the proportion of pass-
words in each class guessed by all four approaches,
or only some subset of them. We exclude passwords
guessed by none of the automated approaches. Within a
password set, we examine all approaches only up to the
minimum guess cutoff among Hashcat, JTR, and PCFG;
we exclude Markov due to its low guess cutoffs.

The three approaches guessed many of the same Basic
passwords: Three-fourths of Basic passwords guessed by
any approach were guessed by all of them. Only 11%
of Basic passwords were guessed only by a single ap-
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Figure 9: Percentage of Basic passwords each approach
guessed, by character-class count.

proach. In contrast, only 6% of LongBasic passwords
were guessed by all approaches, while 28% of Complex,
LongBasic, and LongComplex passwords were guessed
only by a single approach.

4.3.2 Guessing Success by Password Characteristics

While it is unsurprising that different approaches do bet-
ter at guessing distinct types of passwords, we found dif-
ferences that were large and difficult to predict.

Character classes and length We first considered how
efficiently automated approaches guessed passwords rel-
ative to their length and character-class count. These two
characteristics are of particular interest because they are
frequently used in password-composition policies.

As shown in Figure 9, the impact of adding charac-
ter classes is not as straightforward as one might expect.
While the general trend is for passwords with more char-
acter classes to be stronger, the details vary. Markov ex-
periences a large drop in effectiveness with each increase
in character classes (63% to 52% to 23% to 8%). JTR, by
contrast, finds only a minor difference between one and
two classes (72% to 70%). PCFG actually increases in
effectiveness between one and two classes (78% to 86%).
Since changes in security and usability as a result of dif-
ferent policies are often incremental (e.g., [8]), the mag-
nitude of these disagreements can easily affect research
conclusions about the relative strength of passwords.

In contrast, we did not find surprising idiosyncrasies
based on the length of the password. For all approaches,
cracking efficiency decreased as length increased.

Character-level password characteristics As the re-
search community seeks to understand the characteristics
of good passwords, a researcher might investigate how
easy it is to guess all-digit passwords, which are com-
mon [6], or examine the effect of character substitutions
(e.g., $Hplovecraft!$ → $Hpl0v3cr@ft!$) on guessabil-
ity. Despite their sometimes similar effectiveness over-
all, approaches often diverged when guessing passwords
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Figure 10: Approaches’ effectiveness guessing pass-
words composed entirely of lowercase letters across sets.

that had these characteristics. As a result, researchers
using different approaches could draw different conclu-
sions about the guessability of these properties.

The guessability of the 1,490 passwords (across sets)
composed entirely of lowercase letters varied starkly by
guessing approach. This variation is particularly no-
table because such passwords made up 29% of Basic
and LongBasic passwords, and were impermissible un-
der the other two composition policies. As shown in Fig-
ure 10, Hashcat guessed few such passwords until well
into the billions of guesses, whereas Markov success-
fully guessed passwords composed entirely of lowercase
letters throughout its attack. In contrast, PCFG had a
large spike in successful guesses between 1 million and
10 million guesses, but then plateaued. JTR had early
success, but similarly plateaued from 10 million guesses
until into the trillions of guesses.

Similarly, approaches differed in their efficiency
guessing passwords containing character substitutions,
which we identified using crowdsourcing on Amazon’s
Mechanical Turk. Passwords identified by crowdworkers
as containing character substitutions included 4Everb-
lessed, B1cycle Race, and Ca$hmoneybr0. PCFG per-
formed poorly relative to JTR and Markov at guessing
passwords with character substitutions. A researcher us-
ing only PCFG could mistakenly believe these passwords
are much stronger than they actually are. We found simi-
lar differences with many other common characteristics,
potentially skewing research conclusions.

Actionable takeaways Given the many passwords
guessed by only a single cracking approach and the sys-
tematic differences in when passwords with certain char-
acteristics are guessed, we argue that researchers must
consider major cracking approaches in parallel.

Our results also show how comparative analyses un-
cover relative weaknesses of each approach. Upon close
examination, many of these behaviors make sense. For
example, PCFG abstracts passwords into structures of
non-terminal characters based on character class, ig-
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noring contextual information across these boundaries.
As a result, P@ssw0rd would be split into “P,” “@,”
“ssw,” “0,” and “rd,” explaining PCFG’s poor perfor-
mance guessing passwords with character substitutions.

4.4 Robustness of Analyses to Approach

In this section, we examine whether differences among
automated cracking approaches are likely to affect con-
clusions to two main types of research questions.

We first consider analyses of password sets, such
as passwords created under particular password-
composition policies. We find such analyses to be some-
what, but not completely, robust to the approach used.

In contrast, per-password analyses are very sensitive
to the guessing approach. Currently, such analyses are
mainly used in security audits [61] to detect weak pass-
words. In the future, however, per-password strength
metrics may be used to provide detailed feedback to users
during password creation, mirroring the recent trend of
data-driven password meters [10, 33]. The ability to cal-
culate a guess number per-password is a major advantage
of parameterized metrics over statistical metrics, yet this
advantage is lost if guess numbers change dramatically
when a different approach is used. Unfortunately, we
sometimes found huge differences across approaches.

4.4.1 Per Password Set

As an example of an analysis of large password sets, we
consider the relative guessability of passwords created
under different composition policies, as has been studied
by Shay et al. [56] and Kelley et al. [31].

Figure 11 shows the relative guessability of the three
password sets examined by the Pros. LongBasic pass-
words were most vulnerable, and LongComplex pass-
words least vulnerable, to early guessing (under 109

guesses). Between roughly 109 and 1012 guesses, Long-
Basic and Complex passwords followed similar curves,
though Complex passwords were cracked with higher
success past 1012 guesses. Very few LongComplex
passwords were guessed before 1013 guesses, yet Pros
quickly guessed about one-third of the LongComplex set
between 1013 and 1014 guesses.

Performing the same analysis using Minauto guess
numbers instead (Figure 12) would lead to similar con-
clusions. LongBasic passwords were again more vulner-
able than Complex or LongComplex under 108 guesses.
After 1012 guesses, Complex passwords were easier to
guess than LongBasic or LongComplex passwords. Ba-
sic passwords were easy to guess at all points. The main
difference between Minauto and Pros was that LongCom-
plex passwords appear more vulnerable to the first 1012

guesses under Minauto than Pros.
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Figure 11: Pros’ comparative success guessing each
password. For reference, the dotted line represents the
Minauto guess across automated approaches for Basic
passwords, which the Pros did not try to guess.
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Figure 12: The guessability of all four password sets un-
der Minauto, representing the smallest guess number for
each password across all four automated approaches.

Based on this data, a researcher comparing composi-
tion policies would likely reach similar conclusions us-
ing either professionals or a combination of automated
approaches. As shown in Figure 13, we repeated this
analysis using each of the four automated approaches in
isolation. Against every approach, Basic passwords are
easily guessable, and LongBasic passwords are compar-
atively vulnerable during early guessing. After trillions
of guesses, Hashcat, PCFG, and JTR find Long Com-
plex passwords more secure than Complex passwords.
In each case, a researcher would come to similar conclu-
sions about the relative strength of these password sets.

4.4.2 Per Individual Password

Analyses of the strength of individual passwords, in con-
trast, proved very sensitive to the guessing approach. Al-
though one would expect different approaches to guess
passwords at somewhat different times, many pass-
words’ guess numbers varied by orders of magnitude
across approaches. This state of affairs could cause a
very weak password to be misclassified as very strong.

We examined per-password differences pairwise
among JTR, Markov, and PCFG, using the same guess
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(a) Hashcat guessability.
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(b) JTR guessability.
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(c) Markov guessability.
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(d) PCFG guessability.

Figure 13: The relative guessability of the four different password sets under each of the four automated cracking
approaches considered in isolation. The research conclusions would be fairly similar in each case.

Figure 14: The % (log scale) of passwords guessed by
JTR or PCFG whose guess numbers differed by a given
order of magnitude. e.g., the blue > 6 bar represents
passwords guessed by JTR more than 6, but no more than
7, orders of magnitude more quickly than by PCFG.

cutoff for each approach in a pair. Because Hashcat’s
early guesses were often unsuccessful, we exclude it
from this analysis. Passwords not guessed by the guess
cutoff were assigned a guess number one past the cutoff,
lower-bounding differences between passwords guessed
by one approach but not the other. For each password, we
calculated the log10 of the ratio between guess numbers
in the two approaches. For example, iceman1232 was
guess 595,300,840 for JTR and 61,554,045 for Markov,
a 0.985 order of magnitude difference.

Among passwords guessed by JTR, PCFG, or both,
51% of passwords had guess numbers differing by more
than an order of magnitude between approaches, indi-
cating large variations in the resulting security conclu-
sions. Alarmingly, some passwords had guess numbers
differing by over 12 orders of magnitude (Figure 14).
For example, P@ssw0rd! took JTR only 801 Com-
plex guesses, yet PCFG never guessed it in our tests.
Similarly, 1q2w3e4r5t6y7u8i was the 29th LongBasic
JTR guess, yet it was not among the 1014 such guesses
PCFG made. In contrast, PCFG guessed Abc@1993 af-
ter 48,670 guesses and 12345678password after 130,555
guesses. JTR never guessed either password.

We found similar results in the two other pairwise
comparisons. Among passwords guessed by Markov,
PCFG, or both, 41% of guess numbers differed by at least
one order of magnitude. In an extreme example, the pass-
words 1qaz!QAZ and 1q2w3e4r5t6y7u8i were among the
first few hundred Markov guesses, yet not guessed by
PCFG’s guess cutoff. Conversely, unitedstatesofamerica
was among PCFG’s first few dozen LongBasic guesses,
yet never guessed by Markov. For 37% of passwords,
JTR and Markov guess numbers differed by at least one
order of magnitude. Markov was particularly strong
at guessing long passwords with predictable patterns.
For instance, password123456789, 1234567890123456,
and qwertyuiopasdfgh were among Markov’s first thirty
guesses, yet JTR did not guess any of them by its cutoff.

Actionable takeaways As researchers and system ad-
ministrators ask questions about password strength, they
must consider whether their choice of cracking approach
biases the results. When evaluating the strength of a
large, heterogeneous password set, any of Hashcat, JTR,
Markov, or PCFG—if configured effectively—provide
fairly similar answers to research questions. Nonethe-
less, we recommend the more conservative strategy of
calculating guessability using Minauto.

In contrast, guessability results per-password can dif-
fer by many orders of magnitude between approaches
even using the same training data. To mitigate these dif-
ferences, we again recommend Minauto for the increas-
ingly important tasks of providing precise feedback on
password strength to users and system administrators.

5 Conclusion

We report on the first broad, scientific investigation of
the vulnerability of different types of passwords to guess-
ing by an expert attacker and numerous configurations of
off-the-shelf, automated approaches frequently used by
researchers. We instrument these approaches, including
both adversarial tools and academic research prototypes,
to enable precise, guess-by-guess comparisons among
automated approaches and between them and the expert.
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We find that running a single guessing algorithm, par-
ticularly in its out-of-the-box configuration, often yields
a very poor estimate of password strength. However, us-
ing several such algorithms, well-configured and in par-
allel, can be a good proxy for passwords’ vulnerability
to an expert attacker. We also find that while coarse-
grained research results targeting heterogeneous sets of
passwords are somewhat robust to the choice of (well-
configured) guessing algorithm, many other analyses are
not. For example, investigations of the effect on pass-
word strength of password characteristics, such as the
number of character classes and the use of character sub-
stitutions, can reach different conclusions depending on
the algorithm underlying the strength metric.

Finally, we hope our investigation of the effectiveness
of many configurations of popular guessing approaches
will help facilitate more accurate and easily reproducible
research in the passwords research community. To that
end, we have created a Password Guessability Service [9]
that enables researchers to submit plaintext passwords
and receive guessability analyses like those presented in
this paper. We particularly encourage researchers investi-
gating password-cracking algorithms to contribute to this
service to improve the comparability of experiments.
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A Appendix

We provide additional measurements of how guessing
approaches perform in different configurations. To sup-
port the ecological validity of our study, we also repeat
analyses from the body of the paper on password sets
leaked from RockYou and Yahoo. We provide these de-
tails in hopes of encouraging greater accuracy and repro-
ducibility across measurements of password guessability.

A.1 Alternate PCFG Configurations
We tested four different PCFG configurations. As in the
body of the paper, PCFG represents Komanduri’s im-
plementation of PCFG [32], which assigns letter strings
probabilities based on their frequency in the training data
and assigns unseen strings a non-zero probability. For
consistency across approaches, we prepend all policy-
compliant elements of the training data in lieu of en-
abling Komanduri’s similar hybrid structures [32].

PCFG−noCV is the same as PCFG, but without
the training data prepended. PCFG−CV is equiva-
lent to PCFG−noCV except for using two-fold cross-
validation. In each fold, we used half of the test pass-
words as additional training data, with a total weighting
equal to the generic training data, as recommended by
Kelley et al. [31]. PCFG−2009 is our approximation
of the original 2009 Weir et al. algorithm [70] in which
alphabetic strings are assigned uniform probability and
unseen terminals are a probability of zero.

As shown in Figure 15, prepending the training data
and performing cross-validation both usually result in
more efficient guessing, particularly for Long and Long-
Basic passwords. All three other configurations outper-
form the original PCFG−2009 implementation.

Figure 16 shows the guessability of the 350 passwords
comprised only of digits across the Basic and LongBasic
sets. Similar to the results for passwords of other com-
mon characteristics (Section 4.3.2), approaches differed.
Of particular note is PCFG−2009, which plateaued at
around 50% of such passwords guessed in fewer than
10 million guesses. Idiosyncratically, through 1014

guesses, it would never guess another password of this
type because of the way it assigns probabilities.

A.2 Alternate JTR Configurations
We next separately analyze the sets of JTR mangling
rules we combined in the body of the paper. JTR stock
represents the 23 default rules that come with JTR.
JTR SpiderLabs represents 5,146 rules published by
KoreLogic during the 2010 DEF CON “Crack Me If You
Can” password-cracking contest [35], later reordered for
guessing efficiency by Trustwave Spiderlabs [64].
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Figure 15: The guessing efficiency of the different PCFG
configurations we tested.
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Figure 16: Guessing efficiency for the 350 Basic and
LongBasic passwords composed entirely of digits.
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As described in Section 3.3, our standard JTR config-
uration used JTR stock followed by JTR SpiderLabs. In
isolation (Figure 17), JTR stock rules were far more ef-
ficient on a guess-by-guess basis than JTR SpiderLabs.
Unfortunately, however, they quickly ran out of guesses.
We exhausted JTR stock in making fewer than 109

guesses for Basic passwords. More crucially, we made
fewer than 105 guesses that were valid Complex pass-
words before exhausting these rules. Thus, any analysis
of passwords that uses only the stock rules will vastly
underestimate the guessability of passwords that contain
(or are required to have) many different character classes.

The sharp jumps in the proportion of Complex and
LongComplex passwords guessed by JTR SpiderLabs
result from one group of 13 rules. These rules capitalize
the first letter, append digits, append special characters,
and append both digits and special characters.

A.3 Alternate Hashcat Configurations
We tested eight Hashcat configurations and chose the one
that best combined efficient early guessing with success-
fully continuing to guess passwords into the trillions of
guesses. These configurations consist of four different
sets of mangling rules, each with two different wordlists.
The smaller wordlist was the same one we used in all
other tests (Section 3.2). The larger wordlist augmented
the same wordlist with all InsidePro wordlists1 in de-
scending frequency order and with duplicates removed.

Our four sets of mangling rules are the following:
Hashcat best64: Although Hashcat does not have a de-
fault set of mangling rules, the Best64 mangling rules are
often used analogously to JTR’s stock rules.
Hashcat generated2: Hashcat comes with a second set
of mangling rules, “generated2.” This set comprises

1http://www.insidepro.com/dictionaries.php
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Figure 17: The guessing efficiency of JTR rules.

65,536 rules. Dustin Heywood of ATB Financial created
them by randomly generating and then testing hundreds
of millions of mangling rules over 6 months (2013-2014)
on a 42-GPU cluster. The rules were optimized by Hash-
cat developers by removing semantic equivalents.

HC−Best64

HC−Best64−big

HC−Generated2

HC−Generated2−big
HC−MWR
HC−MWR−big

HC−SpiderLabs

HC−SpiderLabs−big

0%

25%

50%

75%

101 103 105 107 109 1011 1013 1015

Guesses

Pe
rc

en
t g

ue
ss

ed

(a) Basic

HC−Best64
HC−Best64−big

HC−Generated2

HC−Generated2−big
HC−MWR

HC−MWR−big

HC−SpiderLabs

HC−SpiderLabs−big

0%

10%

20%

30%

40%

101 103 105 107 109 1011 1013 1015

Guesses

Pe
rc

en
t g

ue
ss

ed

(b) Complex

HC−Best64

HC−Best64−big

HC−Generated2

HC−Generated2−big

HC−MWR

HC−MWR−big

HC−SpiderLabs

HC−SpiderLabs−big

0%

10%

20%

101 103 105 107 109 1011 1013 1015

Guesses

Pe
rc

en
t g

ue
ss

ed

(c) LongBasic

HC−Best64

HC−Best64−big

HC−Generated2

HC−Generated2−big

HC−MWR

HC−MWR−big

HC−SpiderLabs

HC−SpiderLabs−big

0%

10%

20%

30%

101 103 105 107 109 1011 1013 1015

Guesses

Pe
rc

en
t g

ue
ss

ed

(d) LongComplex

Figure 18: The guessing efficiency of Hashcat using four
different sets of mangling rules. We tested each set with
the wordlist used elsewhere in this paper, as well as a
larger (-big) wordlist adding the InsidePro dictionaries.
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Hashcat SpiderLabs: We performed a manual transla-
tion to Hashcat of the SpiderLabs JTR rules (Section 3),
which entailed removing clauses mandating minimum
criteria; such rules are not permitted in oclHashcat.
Hashcat MWR: We collaborated with with Matt Marx
of MWR InfoSecurity to obtain the set of 1.4 million
mangling rules he uses for password auditing [25, 44].
Following his suggestion, we augmented these rules with
the aforementioned SpiderLabs rules.

Using the smaller wordlist, we exhausted all four sets
of mangling rules. With the larger wordlist, we did not
exhaust any set of rules. The curves in Figure 18 that use
this larger dictionary have -big appended to the name and
are graphed with dotted, rather than solid, lines.

We present the results of these eight configurations in
Figure 18. True to their name, the Hashcat best64 rules
were the most efficient at guessing passwords. Unfortu-
nately, they ran out of guesses using the smaller wordlist
after only 109 guesses. For Complex and LongComplex
passwords, Hashcat best64 therefore guesses only a frac-
tion of the number possible using the other sets of man-
gling rules, albeit in far fewer guesses. While not the
most efficient guess-by-guess, the Hashcat MWR rules
eventually guessed the largest proportion of the different
sets, most notably the Complex and LongComplex sets.

A.4 Ecological validity
To better understand how well our password sets, which
we collected for research studies, compare to real plain-
text passwords revealed in major password leaks, we
compared the efficiency of the four automated cracking
approaches in guessing Basic passwords, as well as the
following two comparable sets of leaked passwords:
Basicrockyou: 15,000 passwords randomly sampled from
those containing 8+ characters in the RockYou gaming
website leak of more than 32 million passwords [67]
Basicyahoo: 15,000 passwords randomly sampled from
those containing 8+ characters in the Yahoo! Voices leak
of more than 450,000 passwords [22]

We found a high degree of similarity in the guess-
ability of the Basic passwords collected for research and
the leaked passwords. As shown in Figure 19, the four
automated cracking approaches followed similar curves
across the research passwords and the leaked passwords.

This similar guessability is notable because our analy-
ses depend on using passwords collected by researchers
for two reasons. First, no major password leak has con-
tained passwords contained under strict composition re-
quirements. Furthermore, in contracting experienced hu-
mans to attack the passwords, it was important to have
them attack passwords they had not previously examined
or tried to guess. Presumably, these experienced analysts
would already have examined all major password leaks.

In the body of the paper, we reported how differ-
ent approaches were impacted differently by the num-
ber of character classes contained in Basic passwords.
When we repeated this analysis for Basicrockyou and
Basicyahoo passwords, we found similar behavior (Fig-
ure 20). PCFG was more successful at guessing pass-
words containing two character classes, as opposed to
only a single character class. PCFG only guesses strings
that were found verbatim in its training data, which we
hypothesize might be the cause of comparatively poor
behavior for passwords of a single character class.
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Figure 19: The four automated cracking approaches tar-
geting the Basic password set, 15,000 passwords sam-
pled from the RockYou leak, and 15,000 passwords sam-
pled from the Yahoo leak.
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Abstract
Two-factor authentication protects online accounts even
if passwords are leaked. Most users, however, prefer
password-only authentication. One reason why two-
factor authentication is so unpopular is the extra steps
that the user must complete in order to log in. Currently
deployed two-factor authentication mechanisms require
the user to interact with his phone to, for example, copy
a verification code to the browser. Two-factor authentica-
tion schemes that eliminate user-phone interaction exist,
but require additional software to be deployed.

In this paper we propose Sound-Proof, a usable
and deployable two-factor authentication mechanism.
Sound-Proof does not require interaction between the
user and his phone. In Sound-Proof the second authen-
tication factor is the proximity of the user’s phone to
the device being used to log in. The proximity of the
two devices is verified by comparing the ambient noise
recorded by their microphones. Audio recording and
comparison are transparent to the user, so that the user
experience is similar to the one of password-only authen-
tication. Sound-Proof can be easily deployed as it works
with current phones and major browsers without plug-
ins. We build a prototype for both Android and iOS. We
provide empirical evidence that ambient noise is a robust
discriminant to determine the proximity of two devices
both indoors and outdoors, and even if the phone is in
a pocket or purse. We conduct a user study designed
to compare the perceived usability of Sound-Proof with
Google 2-Step Verification. Participants ranked Sound-
Proof as more usable and the majority would be will-
ing to use Sound-Proof even for scenarios in which two-
factor authentication is optional.

1 Introduction
Software tokens on modern phones are replacing dedi-
cated hardware tokens in two-factor authentication (2FA)
mechanisms. Using a software token, in place of a hard-
ware one, improves deployability and usability of 2FA.

For service providers, 2FA based on software tokens
results in a substantial reduction of manufacturing and
shipping costs. From the user’s perspective, there is no
extra hardware to carry around and phones can accom-
modate software tokens from multiple service providers.

Despite the improvements introduced by software to-
kens, most users still prefer password-only authentica-
tion for services where 2FA is not mandatory [36, 12].
This is probably due to the extra burden that 2FA causes
to the user [25, 51], since it typically requires the user to
interact with his phone.

Recent work [14, 41] improves the usability of 2FA by
eliminating the user-phone interaction. However, those
proposals are not yet deployable as their requirements
are not met by today’s phones, computers or browsers.

In this paper, we focus on both the usability and de-
ployability aspect of 2FA solutions. We propose Sound-
Proof, a two-factor authentication mechanism that is
transparent to the user and can be used with current
phones and with major browsers without any plugin. In
Sound-Proof the second authentication factor is the prox-
imity of the user’s phone to the computer being used to
log in. When the user logs in, the two devices record the
ambient noise via their microphones. The phone com-
pares the two recordings, determines if the computer is
located in the same environment, and ultimately decides
whether the login attempt is legitimate or fraudulent.

Sound-Proof does not require the user to interact with
his phone. The overall user experience is, therefore,
close to password-only authentication. Sound-Proof
works even if the phone is in the user’s pocket or purse,
and both indoors and outdoors. Sound-Proof can be eas-
ily deployed since it is compatible with current phones,
computers and browsers. In particular, it works with
any HTML5-compliant browser that implements the We-
bRTC API [24], which is currently being standardized by
the W3C [15]. Chrome, Firefox and Opera already sup-
port WebRTC, Internet Explorer plans to support it [31],
and we anticipate that other browsers will adopt it soon.
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Similar to other approaches that do not require user-
phone interaction nor a secure channel between the
phone and the computer (e.g., [14]), Sound-Proof is not
designed to protect against targeted attacks where the at-
tacker is co-located with the victim and has the victim’s
login credentials. Our design choice favors usability and
deployability over security and we argue that this can
edge for larger user adoption.

We have implemented a prototype of Sound-Proof for
both Android and iOS. Sound-Proof adds, on average,
less than 5 seconds to a password-only login operation.
This time is substantially shorter than the time overhead
of 2FA mechanisms based on verification codes (roughly
25 seconds [50]). We also report on a user study we con-
ducted which shows that users prefer Sound-Proof over
Google 2-Step Verification [22].

In summary, we make the following contributions:

• We propose Sound-Proof, a novel 2FA mechanism
that does not require user-phone interaction and is
easily deployable. The second authentication fac-
tor is the proximity of the user’s phone to the com-
puter from which he is logging in. Proximity of the
two devices is verified by comparing the ambient
audio recorded via their microphones. Recording
and comparison are transparent to the user.

• We implement a prototype of our solution for both
Android and iOS. We use the prototype to evalu-
ate the effectiveness of Sound-Proof in a number of
different settings. We show that Sound-Proof works
even if the phone is in the user’s pocket or purse and
that it fares well both indoors and outdoors.

• We conducted a user study to compare the perceived
usability of Sound-Proof and Google 2-Step Verifi-
cation. Participants ranked the usability of Sound-
Proof higher than the one of Google 2-Step Verifica-
tion, with a statistically significant difference. More
importantly, we found that most participants would
use Sound-Proof even if 2FA were optional.

The rest of the paper is organized as follows. Section 2
details our assumptions and goals while Section 3 re-
views alternative approaches and discusses why they do
not fulfill our objectives. Section 4 provides an overview
on audio similarity techniques. We present Sound-Proof
in Section 5 and its prototype implementation in Sec-
tion 6. Section 7 evaluates Sound-Proof, while Section 8
reports on our user study. We discuss limitations and
ways to further improve Sound-Proof in Section 9. Sec-
tion 10 reviews related work and Section 11 concludes
the paper.

2 Assumptions and Goals
System Model. We assume the general settings of
browser-based web authentication. The user has a user-
name and a password to authenticate to a web server. The
server implements a 2FA mechanism that uses software
tokens on phones.

The user points his browser to the server’s webpage
and enters his username and password. The server veri-
fies the validity of the password and challenges the user
to prove possession of the second authentication factor.
Threat Model. We assume a remote adversary who has
obtained the victim’s username and password via phish-
ing, leakage of a password database, or via other means.
His goal is to authenticate to the server on behalf of the
user. In particular, the adversary visits the server’s web-
page and enters the username and password of the vic-
tim. The attack is successful if the adversary convinces
the server that he also holds the second authentication
factor of the victim.

We further assume that the adversary cannot compro-
mise the victim’s phone. If the adversary gains control
of the platform where the software token runs, then the
security of any 2FA scheme reduces to the security of
password-only authentication. Also, the adversary can-
not compromise the victim’s computer. The compromise
of the computer allows the adversary to mount a Man-In-
The-Browser attack [34] and hijack the victim’s session
with the server, therefore defeating any 2FA mechanism.

We do not address targeted attacks where the adver-
sary is co-located with the victim. 2FA mechanisms that
do not require the user to interact with his phone can-
not protect against targeted, co-located attacks. For ex-
ample, if 2FA uses unauthenticated short-range commu-
nication [14], a co-located attacker can connect to the
victim’s phone and prove possession of the second au-
thentication factor to the server. We argue that targeted,
co-located attacks are less common than non-selective,
remote attacks. Furthermore, any 2FA mechanism may
not warrant protection against powerful attackers. For
example, if 2FA uses verification codes, a determined at-
tacker may gain physical access to the phone or read the
code from a distance [6, 7, 37].

We do not consider Man-In-The-Middle adversaries.
Client authentication is not sufficient to defeat MITM at-
tacks in the context of web applications [29]. We also
do not address active phishing attacks where the attacker
lures the user into visiting a phishing website and re-
lays the stolen credentials to the legitimate website in
real-time. Such attacks can be thwarted by having the
phone detect the phishing domain [14, 35]. This requires
short-range communication between the phone and the
browser. However, seamless short-range communication
between the phone and the browser is currently not pos-
sible.
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Design Goals.

• Usability. Users should authenticate using only
their username and password as in password-only
authentication. In particular, users should not be
asked to interact with their phone — not even to
pick up the phone or take it out of a pocket or purse.

• Deployability. The 2FA mechanism should
work with common smartphones, computers and
browsers. It should not require additional software
on the computer or the installation of browser plug-
ins. A plugin-based solution limits the usability of
the system because (i) a different plugin may be re-
quired for each server, and (ii) the user must install
the plugin every time he logs in from a computer for
the first time. The mechanism should also work on
a wide range of smartphones. We therefore discard
the use of special hardware on the phone like NFC
chips or biometric sensors.

3 Alternative Approaches
In this section we discuss traditional 2FA mechanisms,
as well as 2FA proposals which minimize the user-phone
interaction. For each solution we argue why it fails to
meet our usability and deployability goals.

3.1 Traditional 2FA
Hardware Tokens. Hardware tokens range from the
RSA SecurID [17] to recent dongles [53] that comply
with the FIDO U2F [20] standard for universal 2FA.
Such solutions require the user to carry and interact with
the token and may be expensive to deploy because the
service provider must ship one token per customer.
Software Tokens. Google 2-Step Verification [22] is an
example of 2FA based on verification codes, that uses
software tokens on phones. The verification code is re-
trieved either from an application running on the phone
or via SMS. Such mechanisms require the user to copy
the verification code from the phone to the browser.

Duo Push [16] and Encap Security [18] prompt the
user with a push message on his phone with information
on the current login attempt. Both solutions still require
the user to interact with his phone to authorize the login.

3.2 Reduced-Interaction 2FA
Short-range Radio Communication. PhoneAuth [14]
is a 2FA proposal that leverages unpaired Bluetooth com-
munication between the browser and the phone, in or-
der to eliminate user-phone interaction. The Bluetooth
channel enables the server (through the browser) and
the phone to engage in a challenge-response protocol
which provides the second authentication factor. Simi-
larly, [35] and [41] also leverage Bluetooth communica-
tion between the browser and the phone.

These schemes require the browser to expose a Blue-
tooth API that is currently not available on any browser.
A specification to expose a Bluetooth API in browsers
has been proposed by the Web Bluetooth Community
Group [49]. It is unclear whether the proposed API will
support the unauthenticated RFCOMM or similar func-
tionality which is required to enable seamless connec-
tivity between the browser and the phone. However, if
the Bluetooth connection is unauthenticated, an adver-
sary equipped with a powerful antenna may connect to
the victim’s phone from afar [52] and login on behalf of
the user, despite 2FA.

Authy [5] is another approach that allows for seamless
2FA using Bluetooth communication between the com-
puter and the phone. Authy, however, requires extra soft-
ware on the computer.

As an alternative to Bluetooth, the browser and the
phone can communicate over WiFi [41]. This approach
only works when both devices are on the same network.
Shirvanian et al., [41] use extra software on the computer
to virtualize the wireless interface and create a software
access point (AP) with which the phone needs to be asso-
ciated. The user has to perform this setup procedure ev-
ery time he uses a new computer to log in. Their solution
also requires a phone application listening for incoming
connections in the background, which is currently not
possible on iOS.

Finally, the browser and the phone can communicate
over NFC. NFC hardware is not commonly found in
commodity computers, and current browsers do not ex-
pose APIs to access NFC. Furthermore, a solution based
on NFC would not completely remove user-phone inter-
action because the user would still need to hold his phone
close to the computer.

We acknowledge that 2FA mechanisms that employ
direct communication between the browser and the
phone may provide additional security against remote at-
tackers. For example, the phone can detect if the user
tries to login on a phishing website and block the at-
tempt [14, 35]. The scheme in [41] further resists offline
dictionary attacks against compromised hashed pass-
word databases. Nevertheless, none of such solutions can
be deployed for the reasons we discussed above.
Near-ultrasound. SlickLogin [23] minimizes the user-
phone interaction transferring the verification code from
the computer to the phone using near-ultrasounds. The
idea is to use spectrum frequencies that are non-audible
for the majority of the population but that can be re-
produced by the speakers of commodity computers (>
18kHz). Using non-audible frequencies accommodates
for scenarios where users may not want their devices
to make audible noise. Due to their size, the speakers
of commodity computers can only produce highly direc-
tional near-ultrasound frequencies [39]. Near-ultrasound
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signals also attenuate faster, when compared to sounds in
the lower part of the spectrum (< 18kHz) [3, 28]. With
SlickLogin, the user must ensure that the speaker volume
is at a sufficient level during login. Also, login will fail
if a headset is plugged into the laptop. Finally, this ap-
proach may not work in scenarios where there is in-band
noise (e.g., when listening to music or in cafes) [28]. We
also note that a solution based on near-ultrasounds may
result unpleasant for young people and animals that are
capable of hearing sounds above 18kHz [38].
Location Information. The server can check if the com-
puter and the phone are co-located by comparing their
GPS coordinates. GPS sensors are available on all mod-
ern phones but are rare on commodity computers. If
the computer from which the user logs in has no GPS
sensor, it can use the geolocation API exposed by some
browsers [32]. Nevertheless, information retrieved via
the geolocation API may not be accurate, for example
when the device is behind a VPN or it is connected to a
large managed network (such as enterprise or university
networks). Furthermore, geolocation information can be
easily guessed by an adversary. For example, assume the
adversary knows the location of the victim’s workplace
and uses that location as the second authentication fac-
tor. This attack is likely to succeed during working hours
since the victim is presumably at his workplace.
Other Sensors. A 2FA mechanism can combine the
readings of multiple sensors that measure ambient char-
acteristics, such as temperature, concentration of gases
in the atmosphere, humidity, and altitude, as proposed
in [42]. These combined sensor modalities can be used
to verify the proximity between the computer through
which the user is trying to login and his phone. However,
today’s computers and phones lack the hardware sensors
that are required for such an approach to work.

4 Background on Sound Similarity
The problem of determining the similarity of two audio
samples is close to the problem of audio fingerprinting
and automatic media retrieval [13]. In media retrieval,
a noisy recording is matched against a database of ref-
erence samples. This is done by extracting a set of rel-
evant features from the noisy recording and comparing
them against the features of the reference samples. The
extracted features must be robust to, for example, back-
ground noise and attenuation. Bark Frequency Cepstrum
Coefficients [26], wavelets [8] or peak frequencies [48]
have been proposed as robust features for automatic me-
dia retrieval. Such techniques focus mostly on the fre-
quency domain representation of the samples because
they deal with time-misaligned samples. In our scenario,
we compare two quasi-aligned samples (the offset is less
than 150ms) and we therefore can also extract relevant
information from their time domain representations.

In order to consider both time domain and frequency
domain information of the recordings, we use one-third
octave band filtering and cross-correlation.
One-third Octave Bands. Octave bands split the audi-
ble range of frequencies (roughly from 20Hz to 20kHz)
in 11 non-overlapping bands where the ratio of the high-
est in-band frequency to the lowest in-band frequency
is 2 to 1. Each octave is represented by its center fre-
quency, where the center frequency of a particular oc-
tave is twice the center frequency of the previous octave.
One-third octave bands split the first 10 octave bands
in three and the last octave band in two, for a total of
32 bands. One-third octave bands are widely used in
acoustics and their frequency ranges have been standard-
ized [44]. The center frequency of the lowest band is
16Hz (covering from 14.1Hz to 17.8Hz) while the center
frequency of the highest band is 20kHz (covering from
17780Hz to 22390Hz). In the following we denote with
B = [lb−hb] a set of contiguous one-third octave bands,
from the band that has its central frequency at lbHz, to
the band that has its central frequency at hbHz.

Splitting a signal in one-third octave bands provides
high frequency resolution information of the original sig-
nal, while keeping its time-domain representation.
Cross-correlation. Cross-correlation is a standard mea-
sure of similarity between two time series. Let x, y de-
note two signals represented as n-points discrete time se-
ries,1 the cross-correlation cx,y(l) measures their similar-
ity as a function of the lag l ∈ [0,n−1] applied to y:

cx,y(l) =
n−1

∑
i=0

x(i) · y(i− l)

where y(i) = 0 if i < 0 or i > n−1.
To accommodate for different amplitudes of the two

signals, the cross correlation can be normalized as:

c′x,y(l) =
cx,y(l)√

cx,x(0) · cy,y(0)
where cx,x(l) is known as auto-correlation.
The normalization maps c′x,y(l) in [−1,1]. A value of

c′x,y(l) = 1 indicates that at lag l, the two signals have the
same shape even if their amplitudes may be different; a
value of c′x,y(l) = −1 indicates that the two signals have
the same shape but opposite signs. Finally, a value of
c′x,y(l) = 0 shows that the two signals are uncorrelated.

If the actual lag between the two signals is unknown,
we can discard the sign information and use the abso-
lute value of the maximum cross-correlation ĉx,y(l) =
max

l
(|c′x,y(l)|) as a metric of similarity (0 ≤ ĉx,y(l)≤ 1).

The computation overhead of cx,y(l) can be decreased
by leveraging the cross-correlation theorem and comput-
ing cx,y(l) = F−1(F(x)∗ ·F(y)), where F() denotes the

1For simplicity we assume both series to have the same length.
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Figure 1: Block diagram of the function that computes the similarity score between two samples. The computation takes place on
the phone. If Sx,y > τC and the average power of the samples is greater than τdB, the phone judges the login attempt as legitimate.

discrete Fourier transform and the asterisk denotes the
complex conjugate.

5 Sound-Proof Architecture
The second authentication factor of Sound-Proof is the
proximity of the user’s phone to the computer being used
to log in. The proximity of the two devices is determined
by computing a similarity score between the ambient
noise captured by their microphones. For privacy reasons
we do not upload cleartext audio samples to the server. In
our design, the computer encrypts its audio sample under
the public key of the phone. The phone receives the en-
crypted sample, decrypts it, and computes the similarity
score between the received sample and the one recorded
locally. Finally, the phone tells the server whether the
two devices are co-located or not. Note that the phone
never uploads its recorded sample to the server. Com-
munication between the computer and the phone goes
through the server. We avoid short-range communica-
tion between the phone and the computer (e.g., via Blue-
tooth) because it requires changes to the browser or the
installation of a plugin.

5.1 Similarity Score
Figure 1 shows a block diagram of the function that com-
putes the similarity score. Each audio signal is input to a
bank of pass-band filters to obtain n signal components,
one per each of the one-third octave bands that we take
into account. Let xi be the signal component for the i-th
one-third octave band of signal x. The similarity score
is the average of the maximum cross-correlation over the
pairs of signal components xi, yi:

Sx,y =
1
n

i=n

∑
i=1

ĉxi,yi(l)

where l is bounded between 0 and �max.

Server Phone

compute similarity
score

record audio

Browser

record audio

username,password

record, phone's PK
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encrypted audio

record

encrypted audio
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Figure 2: Sound-Proof authentication overview. At login, the
phone and the computer record ambient noise with their micro-
phones. The phone computes the similarity score between the
two samples and returns the result to the server.

5.2 Enrollment and Login
Similar to other 2FA mechanisms based on software to-
kens, Sound-Proof requires the user to install an ap-
plication on his phone and to bind the application to
his account on the server. This one-time operation can
be carried out using existing techniques to enroll soft-
ware tokens, e.g., [22]. We assume that, at the end of
the phone enrollment procedure, the server receives the
unique public key of the application on the user’s phone
and binds that public key to the account of that user.

Figure 2 shows an overview of the login procedure.
The user points the browser to the URL of the server and
enters his username and password. The server retrieves
the public key of the user’s phone and sends it to the
browser. Both the browser and the phone start recording
through their local microphones for t seconds. During
recording, the two devices synchronize their clocks with
the server. When recording completes, each device ad-
justs the timestamp of its sample taking into account the
clock difference with the server. The browser encrypts
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the audio sample under the phone’s public key and sends
it to the phone, using the server as a proxy. The phone de-
crypts the browser’s sample and compares it against the
one recorded locally. If the average power of both sam-
ples is above τdB and the similarity score is above τC, the
phone concludes that it is co-located with the computer
from which the user is logging in and informs the server
that the login is legitimate.

The procedure is completely transparent to the user if
the environment is sufficiently noisy. In case the environ-
ment is quiet, Sound-Proof requires the user to generate
some noise, for example by clearing his throat.

5.3 Security Analysis
Remote Attacks. The security of Sound-Proof stems
from the attacker’s inability to guess the sound in the vic-
tim’s environment at the time of the attack.

Let x be the sample recorded by the victim’s phone
and let y be the sample submitted by the attacker. A suc-
cessful impersonation attack requires the average power
of both signals to be above τdB, and each of the one-
third octave band components of the two signals to be
highly correlated. That is, the two samples must satisfy
Pwr(x)> τdB, Pwr(y)> τdB and Sx,y > τC with l < �max.

We bound the lag l between 0 and �max to increase
the security of the scheme against an adversary that suc-
cessfully guesses the noise in the victim’s environment
at the time of the attack. Even if the adversary correctly
guesses the noise in the victim’s environment and can
submit a similar audio sample, the two samples must be
synchronized with an error smaller than �max. We also
reject audio pairs where either sample has an average
power below the threshold τdB. This is in order to prevent
an impersonation attack when the victim’s environment
is quiet (e.g., while the victim is sleeping).

Quantifying the entropy of ambient noise, and hence
the likelihood of the adversary guessing the signal
recorded by the victim’s phone, is a challenging task.
Results are dependent on the environment, the language
spoken by the victim, his gender or age to cite a few.
In Section 7 we provide empirical evidence that Sound-
Proof can discriminate between legitimate and fraudulent
logins, even if the adversary correctly guesses the type of
environment where the victim is located.
Co-located Attacks. Sound-Proof cannot withstand at-
tackers who are co-located with the victim. A co-located
attacker can capture the ambient sound in the victim’s
environment and thus successfully authenticate to the
server, assuming that he also knows the victim’s pass-
word. Sound-Proof shares this limitation with other 2FA
mechanisms that do not require the user to interact with
his phone and do not assume a secure channel between
the phone and the computer (e.g., [14]). Resistance to
co-located attackers requires either a secure phone-to-

computer channel (as in [5, 41]) or user-phone interac-
tion (as in [16, 22]). However, both techniques impose a
significant usability burden.

6 Prototype Implementation
Our implementation works with Google Chrome (tested
with version 38.0.2125.111), Mozilla Firefox (tested
with version 33.0.2) and Opera (tested with version
25.0.1614.68). We anticipate the prototype to work with
different versions of these browsers, as long as they im-
plement the navigator.getUserMedia() API of We-
bRTC. We tested the phone application both on Android
and on iOS. For Android, on a Samsung Galaxy S3, a
Google Nexus 4 (both running Android version 4.4.4), a
Sony Xperia Z3 Compact and a Motorola Nexus 6 (run-
ning Android version 5.0.2 and 5.1.1, respectively). We
also tested different iPhone models (iPhone 4, 5 and 6)
running iOS version 7.1.2 on the iPhone 4, and iOS ver-
sion 8.1 on the newer models. The phone application
should work on different phone models and with differ-
ent OS versions without major modifications.
Web Server and Browser. The server component is
implemented using the CherryPy [45] web framework
and MySQL database. We use WebSocket [19] to
push data from the server to the client. The client-side
(browser) implementation is written entirely in HTML
and JavaScript. Encryption of the audio recording uses
AES256 with a fresh symmetric key; the symmetric key
is encrypted under the public key of the phone using
RSA2048. We use the HTML5 WebRTC API [15, 24].
In particular, we use the navigator.getUserMedia()

API to access the local microphone from within the
browser. Our prototype does not require browser code
modifications or plugins.
Software Token. We implement the software token as an
Android application as well as an iOS application. The
mobile application stays idle in the background and is
automatically activated when a push notification arrives.
Push messages for Android and iOS use the Google
GCM (Google Cloud Messaging) APIs [21] and Apple’s
APN (Apple Push Notifications) APIs [2] (in particular
the silent push notification feature), respectively. Phone
to server communication is protected with TLS.

Most of the Android code is written in Java (Android
SDK), while the component that processes the audio
samples is written in C (Android NDK). In particular, we
use the ARM Ne10 library, based on the ARM NEON
engine [4] to optimize vector operations and FFT com-
putations. The iOS application is written in Objective-C
and uses Apple’s vDSP package of the Accelerate frame-
work [1], in order to leverage the ARM NEON technol-
ogy for vector operations and FFT computations. On
both mobile platforms we parallelize the computation of
the similarity score across the available processor cores.
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Operations Mean (ms) Std.Dev.
Recording 3000 —
Similarity score computation 642 171
Cryptographic operations 118 15
Networking
WiFi 978 135
Cellular 1243 209

Table 1: Overhead of the Sound-Proof prototype. On average
it takes 4677ms (± 181ms) over WiFi and 4944ms (± 233ms)
over Cellular to complete the 2FA verification.

Time Synchronization. Sound-Proof requires the
recordings from the phone and the computer to be syn-
chronized. For this reason, the two devices run a sim-
ple time-synchronization protocol (based on the Network
Time Protocol [33]) with the server. The protocol is im-
plemented over HTTP and allows each device to com-
pute the difference between the local clock and the one
of the server. Each device runs the time-synchronization
protocol with the server while it is recording via its mi-
crophone. When recording completes, each device ad-
justs the timestamp of its sample taking into account the
clock difference with the server.
Run-time Overhead. We compute the run-time over-
head of Sound-Proof when the phone is connected ei-
ther through WiFi or through the cellular network. We
run 1000 login attempts with a Google Nexus 4 for each
connection type, and we measure the time from the mo-
ment the user submits his username and password to the
time the web server logs the user in. On average it takes
4677ms (± 181ms) over WiFi and 4944ms (± 233ms)
over Cellular to complete the 2FA verification. Table 1
shows the average time and the standard deviation of
each operation. The recording time is set to 3 seconds.
The similarity score is computed over the set of one-third
octave bands B = [50Hz−4kHz]. (Section 7.1 discusses
the selection of the band set.) After running the time-
synchronization protocol, the resulting clock difference
was, on average, 42.47ms (± 30.35ms).

7 Evaluation
Data Collection. We used our prototype to collect a
large number of audio pairs. We set up a server that
supported Sound-Proof. Two subjects logged in using
Google Chrome2 over 4 weeks. At each login, the phone
and the computer recorded audio through their micro-
phones for 3 seconds. We stored the two audio samples
for post-processing.

Login attempts differed in the following settings. En-
vironment: an office at our lab with either no ambient

2We used Google Chrome since it is currently the most popular
browser [43]. We have also tested Sound-Proof with other browsers
and have experienced similar performance (see Section 9).

noise (labelled as Office) or with the computer play-
ing music (Music); a living-room with the TV on (TV);
a lecture hall while a faculty member was giving a
lecture (Lecture); a train station (TrainStation); a cafe
(Cafe). User activity: being silent, talking, coughing, or
whistling. Phone position: on a table or a bench next
to the user, in the trouser pocket, or in a purse. Phone
model: Apple iPhone 5 or Google Nexus 4. Computer
model: Mac Book Pro “Mid 2012” running OS X10.10
Yosemite or Dell E6510 running Windows 7.

At the end of the 4 weeks we had collected between
5 and 15 login attempts per each setting, totaling 2007
login attempts (4014 audio samples).

7.1 Analysis
We used the collected samples to find the configuration
of system parameters (i.e., τdB, �max, B, and τC) that
led to the best results in terms of False Rejection Rate
(FRR) and the False Acceptance Rate (FAR). A false re-
jection occurs when a legitimate login is rejected. A false
acceptance occurs when a fraudulent login is accepted.
A fraudulent login is accepted if the sample submitted
by the attacker and the sample recorded by the victim’s
phone have a similarity score greater than τC, and if both
samples have an average power greater than τdB.

To compute the FAR, we used the following strategy.
For each phone sample collected by one of the subjects
(acting as the victim), we use all the computer samples
collected by the other subject as the attacker’s samples.
We then switch the roles of the two subjects and repeat
the procedure. The total number of victim–adversary
sample pairs we considered was 2,045,680.
System Parameters. We set the average power thresh-
old τdB to 40dB which, based on our measurements, is a
good threshold to reject silence or very quiet recordings
like the sound of a fridge buzzing or the sound of a clock
ticking. Out of 2007 login attempts we found 5 attempts
to have an average power of either sample below 40dB
and we discard them for the rest of the evaluation.

We set �max to 150ms because this was the high-
est clock difference experienced while testing our time-
synchronization protocol (see Section 6).

An important parameter of Sound-Proof is the set B of
one-third octave bands to consider when computing the
similarity score described in Section 5.1. The goal is to
select a spectral region that (i) includes most common
sounds and (ii) is robust to attenuation and directional-
ity of audio signals. We discarded bands below 50Hz to
remove very low-frequency noises. We also discarded
bands above 8kHz, because these frequencies are atten-
uated by fabric and they are not suitable for scenarios
where the phone is in a pocket or a purse. We tested all
sets of one-third octave bands B = [x−y] where x ranged
from 50Hz to 100Hz and y ranged from 630Hz to 8kHz.
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Figure 3: False Rejection Rate and False Acceptance Rate as a
function of the threshold τC for B = [50Hz−4kHz]. The Equal
Error Rate is 0.0020 at τC = 0.13.

We found the smallest Equal Error Rate (ERR, de-
fined as the crossing point of FRR and FAR) when us-
ing B = [50Hz− 4kHz]. Figure 3 shows the FRR and
FAR using this set of bands where the ERR is 0.0020 at
τC = 0.13. We experienced worse results with one-third
octave bands above 4kHz. This was likely due to the high
directionality of the microphones found on commodity
devices when recoding sounds at those frequencies [47].

We also computed the best set of one-third octave
bands to use in case usability and security are weighted
differently by the service provider.3 In particular, we
computed the sets of bands that minimized f =α ·FRR+
β ·FAR, for α ∈ [0.1, . . . ,0.9] and β = 1−α . Figure 4(b)
shows the set of bands that provided the best results for
each configuration of α and β . As before, we experi-
enced better results with bands below 4kHz. Figure 4(a)
plots the FRR and FAR against the possible values of α
and β . We stress that the set of bands may differ across
two different points on the x-axis.

Experiments in the remaining of this section were run
with the configuration of the parameters that minimized
the ERR to 0.0020: τdB = 40dB, �max = 150ms, B =
[50Hz−4kHz], and τC = 0.13.

7.2 False Rejection Rate
In the following we evaluate the impact of each setting
that we consider (environment, user activity, phone po-
sition, phone model, and computer model) on the FRR.
Figures 5 and 6 show a box and whisker plot for each
setting. The whiskers mark the 5th and the 95th per-
centiles of the similarity scores. The boxes show the
25th and 75th percentiles. The line and the solid square

3For example, a social network provider may value usability higher
than security.

(a) False Rejection Rate and False Acceptance Rate when usability and
security have different weights.

B τc

α = 0.1, β = 0.9 [80Hz−2500Hz] 0.12
α = 0.2, β = 0.8 [50Hz−2500Hz] 0.14
α = 0.3, β = 0.7 [50Hz−2500Hz] 0.14
α = 0.4, β = 0.6 [50Hz−800Hz] 0.19
α = 0.5, β = 0.5 [50Hz−800Hz] 0.19
α = 0.6, β = 0.4 [50Hz−800Hz] 0.19
α = 0.7, β = 0.3 [50Hz−1000Hz] 0.2
α = 0.8, β = 0.2 [50Hz−1000Hz] 0.2
α = 0.9, β = 0.1 [50Hz−1250Hz] 0.21

(b) One-third octave bands and similarity score
threshold.

Figure 4: Minimizing f = α · FRR + β · FAR, for α ∈
[0.1, . . . ,0.9] and β = 1−α .

within each box mark the median and the average, re-
spectively. A gray line marks the similarity score thresh-
old (τC = 0.13) and each red dot in the plots denotes a
login attempt where the similarity score was below that
threshold (i.e., a false rejection).
Environment. Figure 5 shows the similarity scores for
each environment. Sound-Proof fares equally well in-
doors and outdoors. We did not experience rejections
of legitimate logins for the Music (over 432 logins), the
Lecture (over 122 logins), and the TV (over 430 logins)
environments. The FRR was 0.003 (1 over 310 logins)
for Office, 0.003 (1 over 370 logins) for TrainStation,
and 0.006 (2 over 338 logins) for Cafe.
User Activity. Figure 6(a) shows the similarity scores
for different user activities. In general, if the user makes
any noise the similarity score improves. We only expe-
rienced a few rejections of legitimate logins when the
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Figure 5: Impact of the environment on the False Rejection
Rate.

user was silent (TrainStation and Cafe) or when he was
coughing (Office). In the Lecture case the user could
only be silent. We also avoided whistling in the cafe, be-
cause this may be awkward for some users. The FRR
was 0.005 (3 over 579 logins) when the user was silent,
0.002 (1 over 529 logins) when the user was coughing, 0
(0 over 541 logins) when the user was speaking, and 0 (0
over 353 logins) when the user was whistling.
Phone Position. Figure 6(b) shows the similarity scores
for different phone positions. Sound-Proof performs
slightly better when the phone is on a table or on a bench.
Worse performance when the phone is in a pocket or in a
purse are likely due to the attenuation caused by the fab-
ric around the microphone. The FRR was 0.001 (1 over
667 logins) with the phone on a table, 0.001 (1 over 675
logins) with the phone in a pocket, and 0.003 (2 over 660
logins) with the phone in a purse.
Phone Model. Figure 6(c) shows the similarity scores
for the two phones. The Nexus 4 and the iPhone 5 per-
formed equally good across all environments. The FRR
was 0.002 (2 over 884 logins) with the iPhone 5 and
0.002 (2 over 1118 logins) with the Nexus 4.
Computer. Figure 6(d) shows the similarity scores for
the two computers we used. We could not find significant
differences between their performance. The FRR was
0.002 (3 over 1299 logins) with the MacBook Pro and
0.001 (1 over 703 logins) with the Dell.
Distance Between Phone and Computer. In some set-
tings (e.g., at home), the user’s phone may be away from
his computer. For instance, the user could leave the
phone in his bedroom while watching TV or working in
another room. We evaluated this scenario by placing the
computer close to the TV in a living-room, and testing
Sound-Proof while the phone was away from the com-

False Acceptance Rate
SC-SP SC-DP DC-DP

TV channel 1 1 0.1 0.1
TV channel 2 1 1 0
TV channel 3 1 0 -
TV channel 4 1 0 -
Web radio 1 1 0 0.4
Web radio 2 0.1 0.8 0.8
Web TV 1 0 0 0
Web TV 2 0 0 0

Table 2: False Acceptance Rate when the adversary and
the victim devices record the same broadcast media. SC-SP
stands for “same city and same Internet/cable provider”, SC-
DP stands for “same city but different Internet/cable providers”,
DC-DP stands for “different cities and different Internet/cable
providers”. A dash in the table means that the TV channel was
not available at the victim’s location.

puter. For this set of experiments we used the iPhone 5
and the MacBook Pro. The average noise level by the TV
was measured at 50dB. We tested 3 different distances: 4,
8 and 12 meters (running 20 login attempts for each dis-
tance). All login attempts were successful (i.e., FRR=0).
We also tried to log in while the phone was in another
room behind a closed door, but logins were rejected.
Discussion. Based on the above results, we argue that
the FRR of Sound-Proof is small enough to be practical
for real-world usage. To put it in perspective, the FRR of
Sound-Proof is likely to be smaller than the FRR due to
mistyped passwords (0.04, as reported in [30]).

7.3 Advanced Attack Scenarios
A successful attack requires the adversary to submit a
sample that is very similar to the one recoded by the vic-
tim’s phone. For example, if the victim is in a cafe, the
adversary should submit an audio sample that features
typical sounds of that environment. In the following we
assume a strong adversary that correctly guesses the vic-
tim’s environment. We also evaluate the attack success
rate in scenarios where the victim and the attacker access
the same broadcast audio source from different locations.
Similar Environment Attack. In this experiment we
assume that the victim and the adversary are located in
similar environments. For each environment, we com-
pute the FAR between each phone sample collected by
one subject (the victim) and all the computer samples
of the other subject (the adversary). We then switch the
roles of the two subjects and repeat the procedure. The
FAR for the Music and the TV environments were 0.012
(1063 over 91960 attempts) and 0.003 (311 over 90992
attempts), respectively. The FAR for the Lecture envi-
ronment was 0.001 (8 over 7242 attempts). When both
the victim and the attacker were located at a train station
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(a) User Activity (b) Phone position

(c) Phone model (d) Computer

Figure 6: Impact of user activity, phone position, phone model, and computer model on the False Rejection Rate.

the FAR was 0.001 (44 over 67098 attempts). The FAR
for the Office environment was 0.025 (1194 over 47250
attempts). When both the victim and the attacker were in
a cafe the FAR was 0.001 (32 over 56994 attempts).

The above results show low FAR even when the at-
tacker correctly guesses the victim’s environment. This
is due to the fact that ambient noise in a given environ-
ment is influenced by random events (e.g., background
chatter, music, cups clinking, etc.) that cannot be con-
trolled or predicted by the adversary.

Same Media Attack. In this experiment we assume
that the victim and the adversary access the same audio
source from different locations. This happens, for ex-
ample, if the victim is watching TV and the adversary
correctly guesses the channel to which the victim’s TV
is tuned. We place the victim’s phone and the adver-
sary’s computer in different locations, but each of them

next to a smart TV that was also capable of streaming
web media. Since the devices have access to two iden-
tical audio sources, the adversary succeeds if the lag be-
tween the two audio signals is less than �max. We tested
4 cable TV channels, 2 web radios and 2 web TVs. For
each scenario, we run the attack 100 times and report
the FAR in Table 2. When the victim and the attacker
were in the same city, we experienced differences based
on the media provider. When the TVs reproduced con-
tent broadcasted by the same provider, the signals were
closely synchronized and the similarity score was above
the threshold τC. The FAR dropped in the case of web
content. When the TVs reproduced content supplied by
different providers, the lag between the signals caused
the similarity score to drop below τC in most of the cases.
The similarity score sensibly dropped when the victim
and the attacker were located in different cities.



USENIX Association  24th USENIX Security Symposium 493

8 User Study
The goal of our user study was to evaluate the usabil-
ity of Sound-Proof and to compare it with the usability
of Google 2-Step Verification (2SV), since 2FA based on
verification codes is arguably the most popular. (We only
considered the version of Google 2SV that uses an appli-
cation on the user’s phone to generate verification codes.)
We stress that the comparison focuses solely on the us-
ability aspect of the two methods. In particular, we did
not make the participants aware of the difference in the
security guarantees, i.e., the fact that Google 2SV can
better resist co-located attacks.

We ran repeated-measure experiments where each par-
ticipant was asked to log in to a server using both mech-
anisms in random order. After using each 2FA mecha-
nism, participants ranked its usability answering the Sys-
tem Usability Scale (SUS) [11]. The SUS is a widely-
used scale to assess the usability of IT systems [9]. The
SUS score ranges from 0 to 100, where higher scores in-
dicate better usability.

8.1 Procedure
Recruitment. We recruited participants using a snow-
ball sampling method. Most subjects were recruited out-
side our department and were not working in or studying
computer science. The study was advertised as a user
study to “evaluate the usability of two-factor authenti-
cation mechanisms”. We informed participants that we
would not collect any personal information and offered a
compensation of CHF 20. Among all respondents to our
email, we discarded the ones that were security experts
and ended up with 32 participants.
Experiment. The experiment took place in our lab
where we provided a laptop and a phone to complete the
login procedures. Both devices were connected to the
Internet through WiFi. We set up a Gmail account with
Google 2SV enabled. We also created another website
that supported Sound-Proof and mimicked the Gmail UI.

Participants saw a video where we explained the two
mechanisms under evaluation. We told participants that
they would need to log in using the account credentials
and the hardware we provided. We also explained that
we would record the keystrokes and the mouse move-
ments (this allowed us to time the login attempts).

We then asked participants to fill in a pre-test ques-
tionnaire designed to collect demographic information.
Participants logged in to our server using Sound-Proof
and to Gmail using Google 2SV. We randomized the or-
der in which each participant used the two mechanisms.
After each login, participants rated the 2FA mechanism
answering the SUS.

At the end of the experiment participants filled in a
post-test questionnaire that covered aspects of the 2FA
mechanisms under evaluation not covered by the SUS.

8.2 Results
Demographics. 58% of the participants were between
21 and 30 years old. 25% of the participants were be-
tween 31 and 40 years old. The remaining 17% of the
participants were above 40 years old. 53% of the partici-
pants were female. 69% of the participants had a master
or doctoral degree. 50% of the participants used 2FA for
online banking and only 13% used Google 2SV to access
their email accounts.
SUS Scores. The mean SUS score for Sound-Proof was
91.09 (±5.44). The mean SUS score for Google 2SV
was 79.45 (±7.56). Figure 7(a) and Figure 7(b) show
participant answers on 5-point Likert-scales for Sound-
Proof and for Google 2SV, respectively. To analyze
the statistical significance of these results, we used the
following null hypothesis: “there will be no difference
in perceived usability between Sound-Proof and Google
2SV”. A one-way ANOVA test revealed that the dif-
ference of the SUS scores was statistically significant
(F(1,31) = 21.698, p < .001, η2

p = .412), thus the null
hypothesis can be rejected. We concluded that users per-
ceive Sound-Proof to be more usable than Google 2SV.
Appendix A reports the items of the SUS.
Login Time. We measured the login time from the
moment when a participant clicked on the “login” but-
ton (right after entering the password), to the moment
when that participant was logged in. We neglected the
time spent entering username and password because we
wanted to focus only on the time required by the 2FA
mechanism. Login time for Sound-Proof was 4.7 sec-
onds (±0.2 seconds); this time was required for the
phone to receive the computer’s sample and compare it
with the one recorded locally. With Google 2SV, login
time increased to 24.4 seconds (±7.1 seconds); this time
was required for the participant to take the phone, start
the application and copy the verification code from the
phone to the browser.
Failure Rates. We did not witness any login failure for
either of the two methods. We speculate that this may
be due to the priming of the users right before the experi-
ment, when we explained how the two methods work and
that Sound-Proof may require users to make some noise
in quiet environments.
Post-test Questionnaire. The post-test questionnaire
was designed to collect information on the perceived
quickness of the two mechanisms (Q1–Q2) and partic-
ipants willingness to adopt any of the schemes (Q3–Q6).
We also included items to inquire if participants would
feel comfortable using the mechanisms in different envi-
ronments (Q7–Q14). Figure 7(c) shows participants an-
swers on 5-point Likert-scales. The full text of the items
can be found in Appendix B.

All participants found Sound-Proof to be quick (Q1),
while only 50% of the participants found Google 2SV to
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(c) Answers to the Post-test questionnaire

Figure 7: Distribution of the answers by the participants of the user study. System Usability Scale (SUS) of Sound-Proof (a)
and Google 2-Step Verification (b), as well as the Post-test questionnaire (c). Percentages on the left side include participants that
answered “Strongly disagree” or “Disagree”. Percentages in the middle account for participants that answered “Neither agree, nor
disagree”. Percentages on the right side include participants that answered “Agree” or “Strongly agree”.

be quick (Q2). If 2FA were mandatory, 84% of the par-
ticipants would use Sound-Proof (Q3) and 47% would
use Google 2SV (Q4). In case 2FA were optional the
percentage of participants willing to use the two mecha-
nisms dropped to 78% for Sound-Proof (Q5) and to 19%
for Google 2SV (Q6). Similar to [36, 12], our results
for Google 2SV suggest that users are likely not to use
2FA if it is optional. With Sound-Proof, the difference
in user acceptance between a mandatory and an optional
scenario is only 6%.

We asked participants if they would feel comfortable
using either mechanism at home, at their workplace, in a
cafe, and in a library. 95% of the participants would feel
comfortable using Sound-Proof at home (Q7) and 77%
of the participants would use it at the workplace (Q8).
68% would use it in a cafe (Q9) and 50% would use it
in a library (Q10). Most participants (between 91% and
82%) would feel comfortable using Google 2SV in any
of the scenario we considered (Q11–Q14).

The results of the post-test questionnaire suggest that
users may be willing to adopt Sound-Proof because it
is quicker and causes less burden, compared to Google
2SV. In some public places, however, users may feel
more comfortable using Google 2SV. In Section 9 we
discuss how to integrate the two approaches.

The post-test questionnaire allowed participants to
comment on the 2FA mechanisms evaluated. Most par-
ticipants found Sound-Proof to be user-friendly and ap-
preciated the lack of interaction with the phone. Ap-
pendix C lists some of the users’ comments.

9 Discussion
Software and Hardware Requirements. Similar to
any other 2FA based on software tokens, Sound-Proof
requires an application on the user’s phone. Sound-
Proof, however, does not require additional software on
the computer and seamlessly works with any HTML5-

compliant browser that implements the WebRTC API.
Chrome, Firefox and Opera, already support WebRTC
and a version of Internet Explorer supporting WebRTC
will soon be released [31]. Sound-Proof needs the phone
to have a data connection. Moreover, both the phone
and the computer where the browser is running must be
equipped with a microphone. Microphones are ubiqui-
tous in phones, tablets and laptops. If a computer such
as a desktop machine does not have an embedded mi-
crophone, Sound-Proof requires an external microphone,
like the one of a webcam.
Other Browsers. Section 7 evaluates Sound-Proof using
Google Chrome. We have also tested Sound-Proof with
Mozilla Firefox and Opera. Each browser may use dif-
ferent algorithms to process the recorded audio (e.g., fil-
tering for noise reduction), before delivering it to the web
application. The WebRTC specification does not yet de-
fine how the recorded audio should be processed, leaving
the specifics of the implementation to the browser ven-
dor. When we ran our tests, Opera behaved like Chrome.
Firefox audio processing was slightly different and it af-
fected the performance our prototype. In particular, the
Equal Error Rate computed over the samples collected
while using Firefox was 0.012. We speculate that a bet-
ter Equal Error Rate can be achieved with any browser if
the software token performs the same audio processing
of the browser being used to log in.
Privacy. The noise in the user’s environment may leak
private information to a prying server. In our design,
the audio recorded by the phone is never uploaded to
the server. A malicious server can also access the com-
puter’s microphone while the user is visiting the server’s
webpage. This is already the case for a number of web-
sites that require access to the microphone. For exam-
ple, websites for language learning, Gmail (for video-
chats or phone calls), live chat-support services, or any
site that uses speech-recognition require access to the
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microphone and may record the ambient noise any time
the user visits the provider’s webpage. All browsers we
tested ask the user for permission before allowing a web-
site to use getUserMedia. Moreover, browsers show an
alert when a website triggers recording from the micro-
phone. Providers are likely not to abuse the recording ca-
pability, since their reputation would be affected, if users
detect unsolicited recording.
Quiet Environments. Sound-Proof rejects a login at-
tempt if the power of either sample is below τdB. In
case the environment is too quiet, the website can prompt
the user to make any noise (by, e.g., clearing his throat,
knocking on the table, etc.).
Fallback to Code-based 2FA. Sound-Proof can be com-
bined with 2FA mechanisms based on verification codes,
like Google 2SV. For example, the webpage can employ
Sound-Proof as the default 2FA mechanism, but give to
the user the option to log in entering a verification code.
This may be useful in cases where the environment is
quiet and the user feels uncomfortable making noise. Lo-
gin based on verification codes is also convenient when
the phone has no data connectivity (e.g., when roaming).
Failed Login Attempts and Throttling. Sound-Proof
deems a login attempt as fraudulent if the similarity score
between the two samples is below the threshold τC or if
the power of either sample is below τdB. In this case, the
server may request the two devices to repeat the record-
ing and comparison phase. After a pre-defined number of
failed trials, the server can fall-back to a 2FA mechanism
based on verification codes. The server can also throttle
login attempts in order to prevent “brute-force” attacks
and to protect the user’s phone battery from draining.
Login Evidence. Since audio recording and comparison
is transparent to the user, he has no means to detect an
ongoing attack. To mitigate this, at each login attempt
the phone may vibrate, light up, or display a message to
notify the user that a login attempt is taking place. The
Sound-Proof application may also keep a log of the lo-
gin attempts. Such techniques can help to make the user
aware of fraudulent login attempts. Nevertheless, we
stress that the user does not have to attend to the phone
during legitimate login attempts.
Continuous Authentication. Sound-Proof can also be
used as a form of continuous authentication. The server
can periodically trigger Sound-Proof, while the user is
logged in and interacts with the website. If the recordings
of the two devices do not match, the server can forcibly
log the user out. Nevertheless, such use can have a more
significant impact on the user’s privacy, as well as affect
the battery life of the user’s phone.
Alternative Devices. Our 2FA mechanism uses the
phone as a software token. Another option is to use a
smartwatch and we plan to develop a Sound-Proof appli-
cation for smartwatches based on Android Wear and Ap-

ple Watch. We speculate that smartwatches can further
lower the false rejection rate because of the proximity of
the computer and the smartwatch during logins.
Logins from the Phone. If a user tries to log in from the
same device where the Sound-Proof application is run-
ning, the browser and the application will capture audio
through the same microphone and, therefore, the login
attempt will be accepted. This requires the mobile OS to
allow access to the microphone by the browser and, at the
same time, by the Sound-Proof application. If the mobile
OS does not allow concurrent access to the microphone,
Sound-Proof can fall back to code-based 2FA.
Comparative Analysis. We use the framework of Bon-
neau et al. [10] to compare Sound-Proof with Google 2-
Step Verification (Google 2SV), with PhoneAuth [14],
and with the 2FA protocol of [41] that uses WiFi to cre-
ate a channel between the phone and the computer (re-
ferred to as FBD-WF-WF in [41]). The framework of
Bonneau et al. considers 25 “benefits” that an authen-
tication scheme should provide, categorized in terms of
usability, deployability, and security. Table 3 shows the
overall comparison. The evaluation of Google 2SV in
Table 3 matches the one reported by [10], besides the
fact that we consider Google 2SV to be non-proprietary.
Usability: No scheme is scalable nor it is effortless for
the user because they all require a password as the first
authentication factor. They are all “Quasi-Nothing-to-
Carry” because they leverage the user’s phone. Sound-
Proof and PhoneAuth are more efficient to use than
Google 2SV because they do not require the user to in-
teract with his phone. They are also more efficient to
use than FBD-WF-WF, because the latter requires a non-
negligible setup time every time the user logs in from a
new computer. All mechanisms incur some errors if the
user enters the wrong password (Infrequent-Errors). All
mechanisms also require similar recovery procedures if
the user loses his phone. Deployability: Sound-Proof,
PhoneAuth, and FBD-WF-WF score better than Google
2SV in the category “Accessible” because the user is
asked nothing but his password. The three schemes are
also better than Google 2SV in terms of cost per user,
assuming users already have a phone. None of the mech-
anisms is server-compatible. Sound-Proof and Google
2SV are the only browser-compatible mechanisms as
they require no changes to current browsers or comput-
ers. Google 2SV is more mature, and all of them are non-
proprietary. Security: The security provided by Sound-
Proof, PhoneAuth, and FBD-WF-WF is similar to the
one provided by Google 2SV. However, we rate Sound-
Proof and PhoneAuth as not resilient to targeted imper-
sonation, since a targeted, co-located attacker can launch
the attack from the victim’s environment. FBD-WF-WF
uses a paired connection between the user’s computer
and phone, and can better resist such attacks.
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Sound-Proof S Y Y S S Y Y Y Y S Y Y Y Y Y Y Y
Google 2SV S Y S S S S S Y Y Y S S Y Y Y Y Y Y Y
PhoneAuth S Y Y S S Y Y Y S Y Y Y Y Y Y Y
FBD-WF-WF S Y S S S Y Y Y S S Y Y Y Y Y Y Y

Table 3: Comparison of Sound-Proof against Google 2-Step Verification (Google 2SV), PhoneAuth [14], and FBD-WF-WF [41],
using the framework of Bonneau et al. [10]. We use ‘Y’ to denote that the benefit is provided and ‘S’ to denote that the benefit is
somewhat provided.

10 Related Work

Section 3 discusses alternative approaches to 2FA. In the
following we review related work that leverages audio to
verify the proximity of two devices.

Halevi et al., [27] use ambient audio to detect the prox-
imity of two devices to thwart relay attacks in NFC pay-
ment systems. They compute the cross-correlation be-
tween the audio recorded by the two devices and employ
machine-learning techniques to tell whether the two sam-
ples were recorded at the same location or not. The au-
thors claim perfect results (0 false acceptance and false
rejection rate). They, however, assume the two devices to
have the same hardware (the experiment campaign used
two Nokia N97 phones). Furthermore, their setup allows
a maximum distance of 30 centimeters between the two
devices. Our application scenario (web authentication)
requires a solution that works (i) with heterogeneous de-
vices, (ii) indoors and outdoors, and (iii) irrespective of
the phone’s position (e.g., in the user’s pocket or purse).
As such, we propose a different function to compute
the similarity of the two samples, which we empirically
found to be more robust, than what proposed in [27], in
our settings.

Truong et al., [46] investigate relay attacks in zero-
interaction authentication systems and use techniques
similar to the ones of [27]. They propose a framework
that detects co-location of two devices comparing fea-
tures from multiple sensors, including GPS, Bluetooth,
WiFi and audio. The authors conclude that an audio-only
solution is not robust to detect co-location (20% of false
rejections) and advocate for the combination of multiple
sensors. Furthermore, their technique requires the two
devices to sense the environment for 10 seconds. This

time budget may not be available for web authentication.
The authors of [40] use ambient audio to derive a pair-

wise cryptographic key between two co-located devices.
They use an audio fingerprinting scheme similar to the
one of [26] and leverage fuzzy commitment schemes to
accommodate for the difference of the two recordings.
Their scheme may, in principle, be used to verify proxim-
ity of two devices in a 2FA mechanism. However, the ex-
periments of [40] reveal that the key derivation is hardly
feasible in outdoor scenarios. Our scheme takes advan-
tage of noisy environments and, therefore, can be used in
outdoor scenarios like train stations.

11 Conclusion
We proposed Sound-Proof, a two-factor authentication
mechanism that does not require the user to interact
with his phone and that can already be used with ma-
jor browsers. We have shown that Sound-Proof works
even if the phone is in the user’s pocket or purse, and
that it fares well both indoors and outdoors. Participants
of a user study rated Sound-Proof to be more usable than
Google 2-Step Verification. More importantly, most par-
ticipants would use Sound-Proof for online services in
which 2FA is optional. Sound-Proof improves the us-
ability and deployability of 2FA and, as such, can foster
large-scale adoption.
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Appendix
A System Usability Scale
We report the items of the System Usability Scale [11].
All items were answered with a 5-point Likert-scale from
Strongly Disagree to Strongly Agree.

Q1 I think that I would like to use this system frequently.
Q2 I found the system unnecessarily complex.
Q3 I thought the system was easy to use.
Q4 I think that I would need the support of a technical person

to be able to use this system.
Q5 I found the various functions in this system were well in-

tegrated.
Q6 I thought there was too much inconsistency in this system.
Q7 I would imagine that most people would learn to use this

system very quickly.
Q8 I found the system very cumbersome to use.
Q9 I felt very confident using the system.

Q10 I needed to learn a lot of things before I could get going
with this system.

B Post-test Questionnaire
We report the items of the post-test questionnaire. All
items were answered with a 5-point Likert-scale from
Strongly Disagree to Strongly Agree.

Q1 I thought the audio-based method was quick.
Q2 I thought the code-based method was quick.
Q3 If Second-Factor Authentication were mandatory, I would

use the audio-based method to log in.
Q4 If Second-Factor Authentication were mandatory, I would

use the code-based method to log in.
Q5 If Second-Factor Authentication were optional, I would

use the audio-based method to log in.
Q6 If Second-Factor Authentication were optional, I would

use the code-based method to log in.
Q7 I would feel comfortable using the audio-based method at

home.
Q8 I would feel comfortable using the audio-based method at

my workplace.
Q9 I would feel comfortable using the audio-based method in

a cafe.
Q10 I would feel comfortable using the audio-based method in

a library.
Q11 I would feel comfortable using the code-based method at

home.
Q12 I would feel comfortable using the code-based method at

my workplace.
Q13 I would feel comfortable using the code-based method in

a cafe.
Q14 I would feel comfortable using the code-based method in

a library.

C User Comments
This section lists some of the comments that participants
added to their post-test questionnaire.

“Sound-Proof is faster and automatic. Increased security
without having to do more things”

“I would use Sound-Proof, because it is less complicated
and faster. I do not need to unlock the phone and open the
application. In a public place it would feel a bit awkward
unless it becomes widespread. Anyway, I am already logged
in most websites that I use.”

“I like the audio idea, because what I hate the most about
second-factor authentication is to have to take my phone out
or find it around.”

“Sound-Proof is much easier. I am security-conscious and
already use 2FA. I would be willing to switch to the audio-
based method.”

“I already use Google 2SV and prefer it because I think it’s
more secure. However, Sound-Proof is seamless.”
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Abstract
We instrumented the Android platform to collect data re-
garding how often and under what circumstances smart-
phone applications access protected resources regulated
by permissions. We performed a 36-person field study
to explore the notion of “contextual integrity,” i.e., how
often applications access protected resources when users
are not expecting it. Based on our collection of 27M data
points and exit interviews with participants, we exam-
ine the situations in which users would like the ability to
deny applications access to protected resources. At least
80% of our participants would have preferred to prevent
at least one permission request, and overall, they stated a
desire to block over a third of all requests. Our findings
pave the way for future systems to automatically deter-
mine the situations in which users would want to be con-
fronted with security decisions.

1 Introduction
Mobile platform permission models regulate how appli-
cations access certain resources, such as users’ personal
information or sensor data (e.g., camera, GPS, etc.). For
instance, previous versions of Android prompt the user
during application installation with a list of all the per-
missions that the application may use in the future; if the
user is uncomfortable granting any of these requests, her
only option is to discontinue installation [3]. On iOS and
Android M, the user is prompted at runtime the first time
an application requests any of a handful of data types,
such as location, address book contacts, or photos [34].

Research has shown that few people read the Android
install-time permission requests and even fewer compre-
hend them [16]. Another problem is habituation: on av-
erage, Android applications present the user with four
permission requests during the installation process [13].
While iOS users are likely to see fewer permission re-
quests than Android users, because there are fewer pos-
sible permissions and they are only displayed the first

time the data is actually requested, it is not clear whether
or not users are being prompted about access to data that
they actually find concerning, or whether they would ap-
prove of subsequent requests [15].

Nissenbaum posited that the reason why most privacy
models fail to predict violations is that they fail to con-
sider contextual integrity [32]. That is, privacy violations
occur when personal information is used in ways that
defy users’ expectations. We believe that this notion of
“privacy as contextual integrity” can be applied to smart-
phone permission systems to yield more effective per-
missions by only prompting users when an application’s
access to sensitive data is likely to defy expectations. As
a first step down this path, we examined how applica-
tions are currently accessing this data and then examined
whether or not it complied with users’ expectations.

We modified Android to log whenever an application
accessed a permission-protected resource and then gave
these modified smartphones to 36 participants who used
them as their primary phones for one week. The pur-
pose of this was to perform dynamic analysis to deter-
mine how often various applications are actually access-
ing protected resources under realistic circumstances.
Afterwards, subjects returned the phones to our labora-
tory and completed exit surveys. We showed them vari-
ous instances over the past week where applications had
accessed certain types of data and asked whether those
instances were expected, and whether they would have
wanted to deny access. Participants wanted to block a
third of the requests. Their decisions were governed pri-
marily by two factors: whether they had privacy concerns
surrounding the specific data type and whether they un-
derstood why the application needed it.

We contribute the following:

• To our knowledge, we performed the first field study
to quantify the permission usage by third-party ap-
plications under realistic circumstances.

1
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• We show that our participants wanted to block ac-
cess to protected resources a third of the time. This
suggests that some requests should be granted by
runtime consent dialogs, rather than Android’s pre-
vious all-or-nothing install-time approval approach.

• We show that the visibility of the requesting appli-
cation and the frequency at which requests occur are
two important factors which need to be taken into
account in designing a runtime consent platform.

2 Related Work
While users are required to approve Android application
permission requests during installation, most do not pay
attention and fewer comprehend these requests [16, 26].
In fact, even developers are not fully knowledgeable
about permissions [40], and are given a lot of free-
dom when posting an application to the Google Play
Store [7]. Applications often do not follow the principle
of least privilege, intentionally or unintentionally [44].
Other work has suggested improving the Android per-
mission model with better definitions and hierarchical
breakdowns [8]. Some researchers have experimented
with adding fine-grained access control to the Android
model [11]. Providing users with more privacy informa-
tion and personal examples has been shown to help users
in choosing applications with fewer permissions [21,27].

Previous work has examined the overuse of permissions
by applications [13, 20], and attempted to identify mali-
cious applications through their permission requests [36]
or through natural language processing of application de-
scriptions [35]. Researchers have also developed static
analysis tools to analyze Android permission specifica-
tions [6, 9, 13]. Our work complements this static anal-
ysis by applying dynamic analysis to permission us-
age. Other researchers have applied dynamic analysis to
native (non-Java) APIs among third-party mobile mar-
kets [39]; we apply it to the Java APIs available to devel-
opers in the Google Play Store.

Researchers examined user privacy expectations sur-
rounding application permissions, and found that users
were often surprised by the abilities of background ap-
plications to collect data [25, 42]. Their level of con-
cern varied from annoyance to seeking retribution when
presented with possible risks associated with permis-
sions [15]. Some studies employed crowdsourcing to
create a privacy model based on user expectations [30].

Researchers have designed systems to track or reduce
privacy violations by recommending applications based
on users’ security concerns [2, 12, 19, 24, 28, 46–48].
Other tools dynamically block runtime permission re-
quests [37]. Enck et al. found that a considerable number
of applications transmitted location or other user data to

third parties without requiring user consent [12]. Horny-
ack et al.’s AppFence system gave users the ability to
deny data to applications or substitute fake data [24].
However, this broke application functionality for one-
third of the applications tested.

Reducing the number of security decisions a user must
make is likely to decrease habituation, and therefore, it is
critical to identify which security decisions users should
be asked to make. Based on this theory, Felt et al. created
a decision tree to aid platform designers in determining
the most appropriate permission-granting mechanism for
a given resource (e.g., access to benign resources should
be granted automatically, whereas access to dangerous
resources should require approval) [14]. They concluded
that the majority of Android permissions can be automat-
ically granted, but 16% (corresponding to the 12 permis-
sions in Table 1) should be granted via runtime dialogs.

Nissenbaum’s theory of contextual integrity can help us
to analyze “the appropriateness of a flow” in the con-
text of permissions granted to Android applications [32].
There is ambiguity in defining when an application actu-
ally needs access to user data to run properly. It is quite
easy to see why a location-sharing application would
need access to GPS data, whereas that same request com-
ing from a game like Angry Birds is less obvious. “Con-
textual integrity is preserved if information flows accord-
ing to contextual norms” [32], however, the lack of thor-
ough documentation on the Android permission model
makes it easier for programmers to neglect these norms,
whether intentionally or accidentally [38]. Deciding on
whether an application is violating users’ privacy can be
quite complicated since “the scope of privacy is wide-
ranging” [32]. To that end, we performed dynamic analy-
sis to measure how often (and under what circumstances)
applications were accessing protected resources, whether
this complied with users’ expectations, as well as how
often they might be prompted if we adopt Felt et al.’s
proposal to require runtime user confirmation before ac-
cessing a subset of these resources [14]. Finally, we show
how it is possible to develop a classifier to automatically
determine whether or not to prompt the user based on
varying contextual factors.

3 Methodology
Our long-term research goal is to minimize habituation
by only confronting users with necessary security de-
cisions and avoiding showing them permission requests
that are either expected, reversible, or unconcerning. Se-
lecting which permissions to ask about requires under-
standing how often users would be confronted with each
type of request (to assess the risk of habituation) and user
reactions to these requests (to assess the benefit to users).
In this study, we explored the problem space in two parts:

2
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we instrumented Android so that we could collect actual
usage data to understand how often access to various pro-
tected resources is requested by applications in practice,
and then we surveyed our participants to understand the
requests that they would not have granted, if given the
option. This field study involved 36 participants over the
course of one week of normal smartphone usage. In this
section, we describe the log data that we collected, our
recruitment procedure, and then our exit survey.

3.1 Tracking Access to Sensitive Data
In Android, when applications attempt to access pro-
tected resources (e.g., personal information, sensor data,
etc.) at runtime, the operating system checks to see
whether or not the requesting application was previously
granted access during installation. We modified the An-
droid platform to add a logging framework so that we
could determine every time one of these resources was
accessed by an application at runtime. Because our target
device was a Samsung Nexus S smartphone, we modified
Android 4.1.1 (Jellybean), which was the newest version
of Android supported by our hardware.

3.1.1 Data Collection Architecture
Our goal was to collect as much data as possible about
each applications’ access to protected resources, while
minimizing our impact on system performance. Our
data collection framework consisted of two main com-
ponents: a series of “producers” that hooked various An-
droid API calls and a “consumer” embedded in the main
Android framework service that wrote the data to a log
file and uploaded it to our collection server.

We logged three kinds of permission requests. First, we
logged function calls checked by checkPermission()

in the Android Context implementation. Instru-
menting the Context implementation, instead of the
ActivityManagerService or PackageManager, al-
lowed us to also log the function name invoked by the
user-space application. Next, we logged access to the
ContentProvider class, which verifies the read and
write permissions of an application prior to it accessing
structured data (e.g., contacts or calendars) [5]. Finally,
we tracked permission checks during Intent transmis-
sion by instrumenting the ActivityManagerService

and BroadcastQueue. Intents allow an application to
pass messages to another application when an activity is
to be performed in that other application (e.g., opening a
URL in the web browser) [4].

We created a component called Producer that fetches
the data from the above instrumented points and sends it
back to the Consumer, which is responsible for logging
everything reported. Producers are scattered across
the Android Platform, since permission checks occur in

multiple places. The Producer that logged the most
data was in system server and recorded direct func-
tion calls to Android’s Java API. For a majority of priv-
ileged function calls, when a user application invokes
the function, it sends the request to system server

via Binder. Binder is the most prominent IPC mech-
anism implemented to communicate with the Android
Platform (whereas Intents communicate between ap-
plications). For requests that do not make IPC calls to the
system server, a Producer is placed in the user appli-
cation context (e.g., in the case of ContentProviders).

The Consumer class is responsible for logging data pro-
duced by each Producer. Additionally, the Consumer

also stores contextual information, which we describe in
Section 3.1.2. The Consumer syncs data with the filesys-
tem periodically to minimize impact on system perfor-
mance. All log data is written to the internal storage of
the device because the Android kernel is not allowed to
write to external storage for security reasons. Although
this protects our data from curious or careless users, it
also limits our storage capacity. Thus, we compressed
the log files once every two hours and upload them to
our collection servers whenever the phone had an active
Internet connection (the average uploaded and zipped log
file was around 108KB and contained 9,000 events).

Due to the high volume of permission checks we en-
countered and our goal of keeping system performance
at acceptable levels, we added rate-limiting logic to the
Consumer. Specifically, if it has logged permission
checks for a particular application/permission combina-
tion more than 10,000 times, it examines whether it did
so while exceeding an average rate of 1 permission check
every 2 seconds. If so, the Consumer will only record
10% of all future requests for this application/permission
combination. When this rate-limiting is enabled, the
Consumer tracks these application/permission combina-
tions and updates all the Producers so that they start
dropping these log entries. Finally, the Consumer makes
a note of whenever this occurs so that we can extrapolate
the true number of permission checks that occurred.

3.1.2 Data Collection
We hooked the permission-checking APIs so that every
time the system checked whether an application had been
granted a particular permission, we logged the name of
the permission, the name of the application, and the API
method that resulted in the check. In addition to times-
tamps, we collected the following contextual data:

• Visibility—We categorized whether the requesting
application was visible to the user, using four cate-
gories: running (a) as a service with no user inter-
action; (b) as a service, but with user interaction via
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notifications or sounds; (c) as a foreground process,
but in the background due to multitasking; or (d) as
a foreground process with direct user interaction.

• Screen Status—Whether the screen was on/off.
• Connectivity—The phone’s WiFi connection state.
• Location—The user’s last known coordinates. In

order to preserve battery life, we collected cached
location data, rather than directly querying the GPS.

• View—The UI elements in the requesting applica-
tion that were exposed to the user at the time that a
protected resource was accessed. Specifically, since
the UI is built from an XML file, we recorded the
name of the screen as defined in the DOM.

• History—A list of applications with which the user
interacted prior to the requesting application.

• Path—When access to a ContentProvider object
was requested, the path to the specific content.

Felt et al. proposed granting most Android permissions
without a priori user approval and granting 12 permis-
sions (Table 1) at runtime so that users have contextual
information to infer why the data might be needed [14].
The idea is that, if the user is asked to grant a permission
while using an application, she may have some under-
standing of why the application needs that permission
based on what she was doing. We initially wanted to
perform experience sampling by probabilistically ques-
tioning participants whenever any of these 12 permis-
sions were checked [29]. Our goal was to survey par-
ticipants about whether access to these resources was ex-
pected and whether it should proceed, but we were con-
cerned that this would prime them to the security focus
of our experiment, biasing their subsequent behaviors.
Instead, we instrumented the phones to probabilistically
take screenshots of what participants were doing when
these 12 permissions were checked so that we could ask
them about it during the exit survey. We used reservoir
sampling to minimize storage and performance impacts,
while also ensuring that the screenshots covered a broad
set of applications and permissions [43].

Figure 1 shows a screenshot captured during the study
along with its corresponding log entry. The user was
playing the Solitaire game while Spotify requested a
WiFi scan. Since this permission was of interest (Table
1), our instrumentation took a screenshot. Since Spotify
was not the application the participant was interacting
with, its visibility was set to false. The history shows that
prior to Spotify calling getScanResults(), the user
had viewed Solitaire, the call screen, the launcher, and
the list of MMS conversations.

Permission Type Activity
WRITE SYNC
SETTINGS

Change application sync settings
when the user is roaming

ACCESS WIFI
STATE

View nearby SSIDs

INTERNET Access Internet when roaming
NFC Communicate via NFC
READ HISTORY
BOOKMARKS

Read users’ browser history

ACCESS FINE
LOCATION

Read GPS location

ACCESS COARSE
LOCATION

Read network-inferred location
(i.e., cell tower and/or WiFi)

LOCATION
HARDWARE

Directly access GPS data

READ CALL LOG Read call history
ADD VOICEMAIL Read call history
READ SMS Read sent/received/draft SMS
SEND SMS Send SMS

Table 1: The 12 permissions that Felt et al. recommend
be granted via runtime dialogs [14]. We randomly took
screenshots when these permissions were requested by
applications, and we asked about them in our exit survey.

3.2 Recruitment
We placed an online recruitment advertisement on
Craigslist in October of 2014, under the “et cetera jobs”
section.1 The title of the advertisement was “Research
Study on Android Smartphones,” and it stated that the
study was about how people interact with their smart-
phones. We made no mention of security or privacy.
Those interested in participating were directed to an on-
line consent form. Upon agreeing to the consent form,
potential participants were directed to a screening appli-
cation in the Google Play store. The screening applica-
tion asked for information about each potential partici-
pant’s age, gender, smartphone make and model. It also
collected data on their phones’ internal memory size and
the installed applications. We screened out applicants
who were under 18 years of age or used providers other
than T-Mobile, since our experimental phones could not
attain 3G speeds on other providers. We collected data on
participants’ installed applications so that we could pre-
install free applications prior to them visiting our labo-
ratory. (We copied paid applications from their phones,
since we could not download those ahead of time.)

We contacted participants who met our screening re-
quirements to schedule a time to do the initial setup.
Overall, 48 people showed up to our laboratory, and of
those, 40 qualified (8 were rejected because our screen-
ing application did not distinguish some Metro PCS users

1Approved by the UC Berkeley IRB under protocol #2013-02-4992
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(a) Screenshot
Name Log Data
Type API FUNC
Permission ACCESS WIFI STATE
App Name com.spotify.music
Timestamp 1412888326273
API Function getScanResults()
Visibility FALSE
Screen Status SCREEN ON
Connectivity NOT CONNECTED
Location Lat 37.XXX Long -122.XXX -

1412538686641 (Time it was updated)
View com.mobilityware.solitaire/.Solitaire

History

com.android.phone/.InCallScreen
com.android.launcher/com.android.-
launcher2.Launcher
com.android.mms/ConversationList

(b) Corresponding log entry

Figure 1: Screenshot (a) and corresponding log entry (b)
captured during the experiment.

from T-Mobile users). In the email, we noted that due
to the space constraints of our experimental phones, we
might not be able to install all the applications on their
existing phones, and therefore they needed to make a
note of the ones that they planned to use that week. The
initial setup took roughly 30 minutes and involved trans-
ferring their SIM cards, helping them set up their Google
and other accounts, and making sure they had all the ap-
plications they needed. We compensated each participant
with a $35 gift card for showing up at the setup session.
Out of 40 people who were given phones, 2 did not re-
turn them, and 2 did not regularly use them during the
study period. Of our 36 remaining participants who used
the phones regularly, 19 were male and 17 were female;
ages ranged from 20 to 63 years old (µ = 32, σ= 11).

After the initial setup session, participants used the ex-
perimental phones for one week in lieu of their normal
phones. They were allowed to install and uninstall appli-

cations, and we instructed them to use these phones as
they would their normal phones. Our logging framework
kept track of every protected resource accessed by a user-
level application along with the previously-mentioned
contextual data. Due to storage constraints on the de-
vices, our software uploaded log files to our server every
two hours. However, to preserve participants’ privacy,
screenshots remained on the phones during the course
of the week. At the end of the week, each participant
returned to our laboratory, completed an exit survey, re-
turned the phone, and then received an additional $100
gift card (i.e., slightly more than the value of the phone).

3.3 Exit Survey
When participants returned to our laboratory, they com-
pleted an exit survey. The exit survey software ran on
a laptop in a private room so that it could ask questions
about what they were doing on their phones during the
course of the week without raising privacy concerns. We
did not view their screenshots until participants gave us
permission. The survey had three components:

• Screenshots—Our software displayed a screenshot
taken after one of the 12 resources in Table 1 was
accessed. Next to the screenshot (Figure 2a), we
asked participants what they were doing on the
phone when the screenshot was taken (open-ended).
We also asked them to indicate which of several ac-
tions they believed the application was performing,
chosen from a multiple-choice list of permissions
presented in plain language (e.g., “reading browser
history,” “sending a SMS,” etc.). After answering
these questions, they proceeded to a second page of
questions (Figure 2b). We informed participants at
the top of this page of the resource that the appli-
cation had accessed when the screenshot was taken,
and asked them to indicate how much they expected
this (5-point Likert scale). Next, we asked, “if you
were given the choice, would you have prevented
the app from accessing this data,” and to explain
why or why not. Finally, we asked for permis-
sion to view the screenshot. This phase of the exit
survey was repeated for 10-15 different screenshots
per participant, based on the number of screenshots
saved by our reservoir sampling algorithm.

• Locked Screens—The second part of our survey
involved questions about the same protected re-
sources, though accessed while device screens were
off (i.e., participants were not using their phones).
Because there were no contextual cues (i.e., screen-
shots), we outright told participants which appli-
cations were accessing which resources and asked
them multiple choice questions about whether they
wanted to prevent this and the degree to which these

5



504 24th USENIX Security Symposium USENIX Association

(a) On the first screen, participants answered questions to estab-
lish awareness of the permission request based on the screenshot.

(b) On the second screen, they saw the resource accessed, stated
whether it was expected, and whether it should have been blocked.

Figure 2: Exit Survey Interface

behaviors were expected. They answered these
questions for up to 10 requests, similarly chosen by
our reservoir sampling algorithm to yield a breadth
of application/permission combinations.

• Personal Privacy Preferences—Finally, in order
to correlate survey responses with privacy prefer-
ences, participants completed two privacy scales.
Because of the numerous reliability problems with
the Westin index [45], we computed the average
of both Buchanan et al.’s Privacy Concerns Scale
(PCS) [10] and Malhotra et al.’s Internet Users’ In-
formation Privacy Concerns (IUIPC) scale [31].

After participants completed the exit survey, we re-
entered the room, answered any remaining questions,
and then assisted them in transferring their SIM cards
back into their personal phones. Finally, we compen-
sated each participant with a $100 gift card.

Three researchers independently coded 423 responses to
the open-ended question in the screenshot portion of the
survey. The number of responses per participant varied,
as they were randomly selected based on the number of
screenshots taken: participants who used their phones
more heavily had more screenshots, and thus answered
more questions. Prior to meeting to achieve consensus,
the three coders disagreed on 42 responses, which re-
sulted in an inter-rater agreement of 90%. Taking into
account the 9 possible codings for each response, Fleiss’
kappa yielded 0.61, indicating substantial agreement.

4 Application Behaviors
Over the week-long period, we logged 27M application
requests to protected resources governed by Android per-
missions. This translates to over 100,000 requests per
user/day. In this section, we quantify the circumstances
under which these resources were accessed. We focus on
the rate at which resources were accessed when partici-
pants were not actively using those applications (i.e., sit-
uations likely to defy users’ expectations), access to cer-
tain resources with particularly high frequency, and the
impact of replacing certain requests with runtime confir-
mation dialogs (as per Felt et al.’s suggestion [14]).

4.1 Invisible Permission Requests
In many cases, it is entirely expected that an applica-
tion might make frequent requests to resources protected
by permissions. For instance, the INTERNET permis-
sion is used every time an application needs to open a
socket, ACCESS FINE LOCATION is used every time
the user’s location is checked by a mapping application,
and so on. However, in these cases, one expects users to
have certain contextual cues to help them understand that
these applications are running and making these requests.
Based on our log data, most requests occurred while par-
ticipants were not actually interacting with those appli-
cations, nor did they have any cues to indicate that the
applications were even running. When resources are ac-
cessed, applications can be in five different states, with
regard to their visibility to users:

1. Visible foreground application (12.04%): the user
is using the application requesting the resource.

2. Invisible background application (0.70%): due to
multitasking, the application is in the background.

3. Visible background service (12.86%): the appli-
cation is a background service, but the user may be
aware of its presence due to other cues (e.g., it is
playing music or is present in the notification bar).

4. Invisible background service (14.40%): the appli-
cation is a background service without visibility.

5. Screen off (60.00%): the application is running,
but the phone screen is off because it is not in use.
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Permission Requests
ACCESS NETWORK STATE 31,206
WAKE LOCK 23,816
ACCESS FINE LOCATION 5,652
GET ACCOUNTS 3,411
ACCESS WIFI STATE 1,826
UPDATE DEVICE STATS 1,426
ACCESS COARSE LOCATION 1,277
AUTHENTICATE ACCOUNTS 644
READ SYNC SETTINGS 426
INTERNET 416

Table 2: The most frequently requested permissions by
applications with zero visibility to the user.

Combining the 3.3M (12.04% of 27M) requests that were
granted when the user was actively using the application
(Category 1) with the 3.5M (12.86% of 27M) requests
that were granted when the user had other contextual
cues to indicate that the application was running (Cat-
egory 3), we can see that fewer than one quarter of all
permission requests (24.90% of 27M) occurred when the
user had clear indications that those applications were
running. This suggests that during the vast majority of
the time, access to protected resources occurs opaquely
to users. We focus on these 20.3M “invisible” requests
(75.10% of 27M) in the remainder of this subsection.

Harbach et al. found that users’ phone screens are off
94% of the time on average [22]. We observed that
60% of permission requests occurred while participants’
phone screens were off, which suggests that permission
requests occurred less frequently than when participants
were using their phones. At the same time, certain appli-
cations made more requests when participants were not
using their phones: “Brave Frontier Service,” “Microsoft
Sky Drive,” and “Tile game by UMoni.” Our study col-
lected data on over 300 applications, and therefore it is
possible that with a larger sample size, we would ob-
serve other applications engaging in this behavior. All of
the aforementioned applications primarily requested AC-
CESS WIFI STATE and INTERNET. While a definitive
explanation for this behavior requires examining source
code or the call stacks of these applications, we hypothe-
size that they were continuously updating local data from
remote servers. For instance, Sky Drive may have been
updating documents, whereas the other two applications
may have been checking the status of multiplayer games.

Table 2 shows the most frequently requested permis-
sions from applications running invisibly to the user (i.e.,
Categories 2, 4, and 5); Table 3 shows the applica-
tions responsible for these requests (Appendix A lists
the permissions requested by these applications). We

Application Requests
Facebook 36,346
Google Location Reporting 31,747
Facebook Messenger 22,008
Taptu DJ 10,662
Google Maps 5,483
Google Gapps 4,472
Foursquare 3,527
Yahoo Weather 2,659
Devexpert Weather 2,567
Tile Game(Umoni) 2,239

Table 3: The applications making the most permission
requests while running invisibly to the user.

normalized the numbers to show requests per user/day.
ACCESS NETWORK STATE was most frequently re-
quested, averaging 31,206 times per user/day—roughly
once every 3 seconds. This is due to applications con-
stantly checking for Internet connectivity. However, the
5,562 requests/day to ACCESS FINE LOCATION and
1,277 requests/day to ACCESS COARSE LOCATION
are more concerning, as this could enable detailed track-
ing of the user’s movement throughout the day. Sim-
ilarly, a user’s location can be inferred by using AC-
CESS WIFI STATE to get data on nearby WiFi SSIDs.

Contextual integrity means ensuring that information
flows are appropriate, as determined by the user. Thus,
users need the ability to see information flows. Current
mobile platforms have done some work to let the user
know about location tracking. For instance, recent ver-
sions of Android allow users to see which applications
have used location data recently. While attribution is a
positive step towards contextual integrity, attribution is
most beneficial for actions that are reversible, whereas
the disclosure of location information is not something
that can be undone [14]. We observed that fewer than
1% of location requests were made when the applica-
tions were visible to the user or resulted in the display-
ing of a GPS notification icon. Given that Thompson et
al. showed that most users do not understand that appli-
cations running in the background may have the same
abilities as applications running in the foreground [42],
it is likely that in the vast majority of cases, users do not
know when their locations are being disclosed.

This low visibility rate is because Android only shows a
notification icon when the GPS sensor is accessed, while
offering alternative ways of inferring location. In 66.1%
of applications’ location requests, they directly queried
the TelephonyManager, which can be used to deter-
mine location via cellular tower information. In 33.3%
of the cases, applications requested the SSIDs of nearby
WiFi networks. In the remaining 0.6% of cases, applica-
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tions accessed location information using one of three
built-in location providers: GPS, network, or passive.
Applications accessed the GPS location provider only
6% of the time (which displayed a GPS notification).
In the other 94% of the time, 13% queried the network
provider (i.e., approximate location based on nearby cel-
lular towers and WiFi SSIDs) and 81% queried the pas-
sive location provider. The passive location provider
caches prior requests made to either the GPS or network
providers. Thus, across all requests for location data, the
GPS notification icon appeared 0.04% of the time.

While the alternatives to querying the GPS are less ac-
curate, users are still surprised by their accuracy [17].
This suggests a serious violation of contextual integrity,
since users likely have no idea their locations are being
requested in the vast majority of cases. Thus, runtime no-
tifications for location tracking need to be improved [18].

Apart from these invisible location requests, we also ob-
served applications reading stored SMS messages (125
times per user/day), reading browser history (5 times per
user/day), and accessing the camera (once per user/day).
Though the use of these permissions does not necessarily
lead to privacy violations, users have no contextual cues
to understand that these requests are occurring.

4.2 High Frequency Requests
Some permission requests occurred so frequently that a
few applications (i.e., Facebook, Facebook Messenger,
Google Location Reporting, Google Maps, Farm Heroes
Saga) had to be rate limited in our log files (see Sec-
tion 3.1.1), so that the logs would not fill up users’ re-
maining storage or incur performance overhead. Table 4
shows the complete list of application/permission com-
binations that exceeded the threshold. For instance, the
most frequent requests came from Facebook requesting
ACCESS NETWORK STATE with an average interval
of 213.88 ms (i.e., almost 5 times per second).

With the exception of Google’s applications, all rate-
limited applications made excessive requests for the
connectivity state. We hypothesize that once these
applications lose connectivity, they continuously poll
the system until it is regained. Their use of the
getActiveNetworkInfo() method results in permis-
sion checks and returns NetworkInfo objects, which al-
low them to determine connection state (e.g., connected,
disconnected, etc.) and type (e.g., WiFi, Bluetooth, cel-
lular, etc.). Thus, these requests do not appear to be leak-
ing sensitive information per se, but their frequency may
have adverse effects on performance and battery life.
It is possible that using the ConnectivityManager’s
NetworkCallback method may be able to fulfill this
need with far fewer permission checks.

Application / Permission Peak (ms) Avg. (ms)
com.facebook.katana

213.88 956.97
ACCESS NETWORK STATE
com.facebook.orca

334.78 1146.05
ACCESS NETWORK STATE
com.google.android.apps.maps

247.89 624.61
ACCESS NETWORK STATE
com.google.process.gapps

315.31 315.31
AUTHENTICATE ACCOUNTS
com.google.process.gapps

898.94 1400.20
WAKE LOCK
com.google.process.location

176.11 991.46
WAKE LOCK
com.google.process.location

1387.26 1387.26
ACCESS FINE LOCATION
com.google.process.location

373.41 1878.88
GET ACCOUNTS
com.google.process.location

1901.91 1901.91
ACCESS WIFI STATE
com.king.farmheroessaga

284.02 731.27
ACCESS NETWORK STATE
com.pandora.android

541.37 541.37
ACCESS NETWORK STATE
com.taptu.streams

1746.36 1746.36
ACCESS NETWORK STATE

Table 4: The application/permission combinations that
needed to be rate limited during the study. The last two
columns show the fastest interval recorded and the aver-
age of all the intervals recorded before rate-limiting.

4.3 Frequency of Data Exposure
Felt et al. posited that while most permissions can be
granted automatically in order to not habituate users to
relatively benign risks, certain requests should require
runtime consent [14]. They advocated using runtime di-
alogs before the following actions should proceed:

1. Reading location information (e.g., using conven-
tional location APIs, scanning WiFi SSIDs, etc.).

2. Reading the user’s web browser history.
3. Reading saved SMS messages.
4. Sending SMS messages that incur charges, or inap-

propriately spamming the user’s contact list.

These four actions are governed by the 12 Android per-
missions listed in Table 1. Of the 300 applications that
we observed during the experiment, 91 (30.3%) per-
formed one of these actions. On average, these permis-
sions were requested 213 times per hour/user—roughly
every 20 seconds. However, permission checks occur un-
der a variety of circumstances, only a subset of which ex-
pose sensitive resources. As a result, platform develop-
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Resource Visible Invisible Total
Data Exposed Requests Data Exposed Requests Data Exposed Requests

Location 758 2,205 3,881 8,755 4,639 10,960
Read SMS data 378 486 72 125 450 611
Sending SMS 7 7 1 1 8 8
Browser History 12 14 2 5 14 19
Total 1,155 2,712 3,956 8,886 5,111 11,598

Table 5: The sensitive permission requests (per user/day) when requesting applications were visible/invisible to users.
“Data exposed” reflects the subset of permission-protected requests that resulted in sensitive data being accessed.

ers may decide to only show runtime warnings to users
when protected data is read or modified. Thus, we at-
tempted to quantify the frequency with which permission
checks actually result in access to sensitive resources for
each of these four categories. Table 5 shows the number
of requests seen per user/day under each of these four
categories, separating the instances in which sensitive
data was exposed from the total permission requests ob-
served. Unlike Section 4.1, we include “visible” permis-
sion requests (i.e., those occurring while the user was ac-
tively using the application or had other contextual infor-
mation to indicate it was running). We didn’t observe any
uses of NFC, READ CALL LOG, ADD VOICEMAIL,
accessing WRITE SYNC SETTINGS or INTERNET
while roaming in our dataset.

Of the location permission checks, a majority were
due to requests for location provider information
(e.g., getBestProvider() returns the best location
provider based on application requirements), or check-
ing WiFi state (e.g., getWifiState() only reveals
whether WiFi is enabled). Only a portion of the
requests actually exposed participants’ locations (e.g.,
getLastKnownLocation() or getScanResults()

exposed SSIDs of nearby WiFi networks).

Although a majority of requests for the READ SMS per-
mission exposed content in the SMS store (e.g., Query()
reads the contents of the SMS store), a considerable por-
tion simply read information about the SMS store (e.g.,
renewMmsConnectivity() resets an applications’ con-
nection to the MMS store). An exception to this is the use
of SEND SMS, which resulted in the transmission of an
SMS message every time the permission was requested.

Regarding browser history, both accessing visited URLs
(getAllVisitedUrls()) and reorganizing bookmark
folders (addFolderToCurrent()) result in the same
permission being checked. However, the latter does not
expose specific URLs to the invoking application.

Our analysis of the API calls indicated that on average,
only half of all permission checks granted applications
access to sensitive data. For instance, across both visible

and invisible requests, 5,111 of the 11,598 (44.3%) per-
mission checks involving the 12 permissions in Table 1
resulted in the exposure of sensitive data (Table 5).

While limiting runtime permission requests to only the
cases in which protected resources are exposed will
greatly decrease the number of user interruptions, the fre-
quency with which these requests occur is still too great.
Prompting the user on the first request is also not appro-
priate (e.g., à la iOS and Android M), because our data
show that in the vast majority of cases, the user has no
contextual cues to understand when protected resources
are being accessed. Thus, a user may grant a request the
first time an application asks, because it is appropriate in
that instance, but then she may be surprised to find that
the application continues to access that resource in other
contexts (e.g., when the application is not actively used).
As a result, a more intelligent method is needed to de-
termine when a given permission request is likely to be
deemed appropriate by the user.

5 User Expectations and Reactions
To identify when users might want to be prompted
about permission requests, our exit survey focused on
participants’ reactions to the 12 permissions in Ta-
ble 1, limiting the number of requests shown to each
participant based on our reservoir sampling algorithm,
which was designed to ask participants about a diverse
set of permission/application combinations. We col-
lected participants’ reactions to 673 permission requests
(≈19/participant). Of these, 423 included screenshots
because participants were actively using their phones
when the requests were made, whereas 250 permission
requests were performed while device screens were off.2

Of the former, 243 screenshots were taken while the re-
questing application was visible (Category 1 and 3 from
Section 4.1), whereas 180 were taken while the applica-
tion was invisible (Category 2 and 4 from Section 4.1). In
this section, we describe the situations in which requests

2Our first 11 participants did not answer questions about permission
requests occurring while not using their devices, and therefore the data
only corresponds to our last 25 participants.
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defied users’ expectations. We present explanations for
why participants wanted to block certain requests, the
factors influencing those decisions, and how expectations
changed when devices were not in use.

5.1 Reasons for Blocking
When viewing screenshots of what they were doing
when an application requested a permission, 30 partic-
ipants (80% of 36) stated that they would have preferred
to block at least one request, whereas 6 stated a willing-
ness to allow all requests, regardless of resource type or
application. Across the entire study, participants wanted
to block 35% of these 423 permission requests. When we
asked participants to explain their rationales for these de-
cisions, two main themes emerged: the request did not—
in their minds—pertain to application functionality or it
involved information they were uncomfortable sharing.

5.1.1 Relevance to Application Functionality
When prompted for the reason behind blocking a permis-
sion request, 19 (53% of 36) participants did not believe
it was necessary for the application to perform its task.
Of the 149 (35% of 423) requests that participants would
have preferred to block, 79 (53%) were perceived as be-
ing irrelevant to the functionality of the application:

• “It wasn’t doing anything that needed my current
location.” (P1)

• “I don’t understand why this app would do anything
with SMS.” (P10)

Accordingly, functionality was the most common reason
for wanting a permission request to proceed. Out of the
274 permissible requests, 195 (71% of 274) were per-
ceived as necessary for the core functionality of the ap-
plication, as noted by thirty-one (86% of 36) participants:

• “Because it’s a weather app and it needs to
know where you are to give you weather informa-
tion.”(P13)

• “I think it needs to read the SMS to keep track of the
chat conversation.”(P12)

Beyond being necessary for core functionality, partici-
pants wanted 10% (27 of 274) of requests to proceed be-
cause they offered convenience; 90% of these requests
were for location data, and the majority of those appli-
cations were published under the Weather, Social, and
Travel & Local categories in the Google Play store:

• “It selects the closest stop to me so I don’t have to
scroll through the whole list.” (P0)

• “This app should read my current location. I’d like
for it to, so I won’t have to manually enter in my zip
code / area.” (P4)

Thus, requests were allowed when they were expected:
when participants rated the extent to which each request
was expected on a 5-point Likert scale, allowable re-
quests averaged 3.2, whereas blocked requests averaged
2.3 (lower is less expected).

5.1.2 Privacy Concerns
Participants also wanted to deny permission requests that
involved data that they considered sensitive, regardless
of whether they believed the application actually needed
the data to function. Nineteen (53% of 36) participants
noted privacy as a concern while blocking a request, and
of the 149 requests that participants wanted to block, 49
(32% of 149) requests were blocked for this reason:

• “SMS messages are quite personal.” (P14)
• “It is part of a personal conversation.” (P11)
• “Pictures could be very private and I wouldn’t like

for anybody to have access.” (P16)

Conversely, 24 participants (66% of 36) wanted requests
to proceed simply because they did not believe that the
data involved was particularly sensitive; this reasoning
accounted for 21% of the 274 allowable requests:

• “I’m ok with my location being recorded, no con-
cerns.” (P3)

• “No personal info being shared.” (P29)

5.2 Influential Factors
Based on participants’ responses to the 423 permission
requests involving screenshots (i.e., requests occurring
while they were actively using their phones), we quan-
titatively examined how various factors influenced their
desire to block some of these requests.

Effects of Identifying Permissions on Blocking: In the
exit survey, we asked participants to guess the permis-
sion an application was requesting, based on the screen-
shot of what they were doing at the time. The real an-
swer was among four other incorrect answers. Of the
149 cases where participants wanted to block permission
requests, they were only able to correctly state what per-
mission was being requested 24% of the time; whereas
when wanting a request to proceed, they correctly iden-
tified the requested permission 44% (120 of 274) of the
time. However, Pearson’s product-moment test on the
average number of blocked requests per user and the av-
erage number of correct answers per user3 did not yield a
statistically significant correlation (r=−0.171, p<0.317).

Effects of Visibility on Expectations: We were particu-
larly interested in exploring if permission requests orig-
inating from foreground applications (i.e., visible to the

3Both measures were normally distributed.
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user) were more expected than ones from background ap-
plications. Of the 243 visible permission requests that
we asked about in our exit survey, participants correctly
identified the requested permission 44% of the time, and
their average rating on our expectation scale was 3.4. On
the other hand, participants correctly identified the re-
sources accessed by background applications only 29%
of the time (52 of 180), and their average rating on our
expectation scale was 3.0. A Wilcoxon Signed-Rank
test with continuity correction revealed a statistically sig-
nificant difference in participants’ expectations between
these two groups (V=441.5, p<0.001).

Effects of Visibility on Blocking: Participants wanted
to block 71 (29% of 243) permission requests originat-
ing from applications running in the foreground, whereas
this increased by almost 50% when the applications were
in the background invisible to them (43% of 180). We
calculated the percentage of denials for each partici-
pant, for both visible and invisible requests. A Wilcoxon
Signed-Rank test with continuity correction revealed a
statistically significant difference (V=58, p<0.001).

Effects of Privacy Preferences on Blocking: Partici-
pants completed the Privacy Concerns Scale (PCS) [10]
and the Internet Users’ Information Privacy Concerns
(IUIPC) scale [31]. A Spearman’s rank test yielded no
statistically significant correlation between their privacy
preferences and their desire to block permission requests
(ρ = 0.156, p<0.364).

Effects of Expectations on Blocking: We examined
whether participants’ expectations surrounding requests
correlated with their desire to block them. For each par-
ticipant, we calculated their average Likert scores for
their expectations and the percentage of requests that
they wanted to block. Pearson’s product-moment test
showed a statistically significant correlation (r=−0.39,
p<0.018). The negative correlation shows that partici-
pants were more likely to deny unexpected requests.

5.3 User Inactivity and Resource Access
In the second part of the exit survey, participants an-
swered questions about 10 resource requests that oc-
curred when the screen was off (not in use). Overall,
they were more likely to expect resource requests to oc-
cur when using their devices (µ = 3.26 versus µ = 2.66).
They also stated a willingness to block almost half of
the permission requests (49.6% of 250) when not in use,
compared to a third of the requests that occurred when
using their phones (35.2% of 423). However, neither of
these differences was statistically significant.

6 Feasibility of Runtime Requests
Felt et al. posited that certain sensitive permissions (Ta-
ble 1) should require runtime consent [14], but in Section
4.3 we showed that the frequencies with which applica-
tions are requesting these permissions make it impracti-
cal to prompt the user each time a request occurs. In-
stead, the major mobile platforms have shifted towards a
model of prompting the user the first time an application
requests access to certain resources: iOS does this for a
selected set of resources, such as location and contacts,
and Android M does this for “dangerous” permissions.

How many prompts would users see, if we added runtime
prompts for the first use of these 12 permissions? We an-
alyzed a scheme where a runtime prompt is displayed at
most once for each unique triplet of (application, permis-
sion, application visibility), assuming the screen is on.
With a naı̈ve scheme, our study data indicates our partic-
ipants would have seen an average of 34 runtime prompts
(ranging from 13 to 77, σ=11). As a refinement, we pro-
pose that the user should be prompted only if sensitive
data will be exposed (Section 4.3), reducing the average
number of prompts to 29.

Of these 29 prompts, 21 (72%) are related to location.
Apple iOS already prompts users when an application ac-
cesses location for the first time, with no evidence of user
habituation or annoyance. Focusing on the remaining
prompts, we see that our policy would introduce an aver-
age of 8 new prompts per user: about 5 for reading SMS,
1 for sending SMS, and 2 for reading browser history.
Our data covers only the first week of use, but as we only
prompt on first use of a permission, we expect that the
number of prompts would decline greatly in subsequent
weeks, suggesting that this policy would likely not intro-
duce significant risk of habituation or annoyance. Thus,
our results suggest adding runtime prompts for reading
SMS, sending SMS, and reading browser history would
be useful given their sensitivity and low frequency.

Our data suggests that taking visibility into account is
important. If we ignore visibility and prompted only
once for each pair of (application, permission), users
would have no way to select a different policy for when
the application is visible or not visible. In contrast, “ask-
on-first-use” for the triple (application, permission, visi-
bility) gives users the option to vary their decision based
on the visibility of the requesting application. We evalu-
ated these two policies by analyzing the exit survey data
(limited to situations where the screen was on) for cases
where the same user was asked twice in the survey about
situations with the same (application, permission) pair
or the same (application, permission, visibility) triplet,
to see whether the user’s first decision to block or not
matched their subsequent decisions. For the former pol-
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icy, we saw only 51.3% agreement; for the latter, agree-
ment increased to 83.5%. This suggests that the (applica-
tion, permission, visibility) triplet captures many of the
contextual factors that users care about, and thus it is rea-
sonable to prompt only once per unique triplet.

A complicating factor is that applications can also run
even when the user is not actively using the phone. In
addition to the 29 prompts mentioned above, our data
indicates applications would have triggered an average
of 7 more prompts while the user was not actively using
the phone: 6 for location and one for reading SMS. It
is not clear how to handle prompts when the user is not
available to respond to the prompt: attribution might be
helpful, but further research is needed.

6.1 Modeling Users’ Decisions
We constructed several statistical models to examine
whether users’ desire to block certain permission re-
quests could be predicted using the contextual data that
we collected. If such a relationship exists, a classifier
could determine when to deny potentially unexpected
permission requests without user intervention. Con-
versely, the classifier could be used to only prompt the
user about questionable data requests. Thus, the response
variable in our models is the user’s choice of whether to
block the given permission request. Our predictive vari-
ables consisted of the information that might be available
at runtime: permission type (with the restriction that the
invoked function exposes data), requesting application,
and visibility of that application. We constructed sev-
eral mixed effects binary logistic regression models to
account for both inter-subject and intra-subject effects.

6.1.1 Model Selection
In our mixed effects models, permission types and the
visibility of the requesting application were fixed effects,
because all possible values for each variable existed in
our data set. Visibility had two values: visible (the user
is interacting with the application or has other contextual
cues to know that it is running) and invisible. Permission
types were categorized based on Table 5. The application
name and the participant ID were included as random ef-
fects, because our survey data did not have an exhaustive
list of all possible applications a user could run, and the
participant has a non-systematic effect on the data.

Table 6 shows two goodness-of-fit metrics: the Akaike
Information Criterion (AIC) and Bayesian Information
Criterion (BIC). Lower values for AIC and BIC repre-
sent better fit. Table 6 shows the different parameters
included in each model. We found no evidence of inter-
action effects and therefore did not include them. Visual
inspection of residual plots of each model did not reveal
obvious deviations from homoscedasticity or normality.

Predictors AIC BIC Screen State
UserCode 490.60 498.69 Screen On
Application 545.98 554.07 Screen On
Application
UserCode

491.86 503.99 Screen On

Permission
Application
UserCode

494.69 527.05 Screen On

Visibility
Application
UserCode

481.65 497.83 Screen On

Permission
Visibility
Application
UserCode

484.23 520.64 Screen On

UserCode 245.13 252.25 Screen Off
Application 349.38 356.50 Screen Off
Application
UserCode

238.84 249.52 Screen Off

Permission
Application
UserCode

235.48 263.97 Screen Off

Table 6: Goodness-of-fit metrics for various mixed ef-
fects logistic regression models on the exit survey data.

We initially included the phone’s screen state as another
variable. However, we found that creating two separate
models based on the screen state resulted in better fit
than using a single model that accounted for screen state
as a fixed effect. When the screen was on, the best fit
was a model including application visibility and appli-
cation name, while controlling for subject effects. Here,
fit improved once permission type was removed from the
model, which shows that the decision to block a permis-
sion request was based on contextual factors: users do
not categorically deny permission requests based solely
on the type of resource being accessed (i.e., they also ac-
count for their trust in the application, as well as whether
they happened to be actively using it). When the screen
was off, however, the effect of permission type was rela-
tively stronger. The strong subject effect in both models
indicates that these decisions vary from one user to the
next. As a result, any classifier developed to automati-
cally decide whether to block a permission at runtime (or
prompt the user) will need to be tailored to that particular
user’s needs.

6.1.2 Predicting User Reactions
Using these two models, we built two classifiers to make
decisions about whether to block any of the sensitive per-
mission requests listed in Table 5. We used our exit sur-
vey data as ground truth, and used 5-fold cross-validation
to evaluate model accuracy.
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We calculated the receiver operating characteristic
(ROC) to capture the tradeoff between true-positive and
false-positive rate. The quality of the classifier can be
quantified with a single value by calculating the area un-
der its ROC curve (AUC) [23]. The closer the AUC gets
to 1.0, the better the classifier is. When screens were on,
the AUC was 0.7, which is 40% better than the random
baseline (0.5). When screens were off, the AUC was 0.8,
which is 60% better than a random baseline.

7 Discussion
During the study, 80% of our participants deemed at least
one permission request as inappropriate. This violates
Nissenbaum’s notion of “privacy as contextual integrity”
because applications were performing actions that defied
users’ expectations [33]. Felt et al. posited that users may
be able to better understand why permission requests are
needed if some of these requests are granted via runtime
consent dialogs, rather than Android’s previous install-
time notification approach [14]. By granting permissions
at runtime, users will have additional contextual infor-
mation; based on what they were doing at the time that
resources are requested, they may have a better idea of
why those resources are being requested.

We make two primary contributions that system design-
ers can use to make more usable permissions systems.
We show that the visibility of the requesting applica-
tion and the frequency at which requests occur are two
important factors in designing a runtime consent plat-
form. Also, we show that “prompt-on-first-use” per
triplet could be implemented for some sensitive permis-
sions without risking user habituation or annoyance.

Based on the frequency with which runtime permissions
are requested (Section 4), it is infeasible to prompt users
every time. Doing so would overwhelm them and lead to
habituation. At the same time, drawing user attention to
the situations in which users are likely to be concerned
will lead to greater control and awareness. Thus, the
challenge is in acquiring their preferences by confronting
them minimally and then automatically inferring when
users are likely to find a permission request unexpected,
and only prompting them in these cases. Our data sug-
gests that participants’ desires to block particular permis-
sions were heavily influenced by two main factors: their
understanding of the relevance of a permission request to
the functionality of the requesting application and their
individual privacy concerns.

Our models in Section 6.1 showed that individual char-
acteristics greatly explain the variance between what dif-
ferent users deem appropriate, in terms of access to pro-
tected resources. While responses to privacy scales failed
to explain these differences, this was not a surprise, as the

disconnect between stated privacy preferences and be-
haviors is well-documented (e.g., [1]). This means that
in order to accurately model user preferences, the sys-
tem will need to learn what a specific user deems in-
appropriate over time. Thus, a feedback loop is likely
needed: when devices are “new,” users will be required
to provide more input surrounding permission requests,
and then based on their responses, they will see fewer
requests in the future. Our data suggests that prompting
once for each unique (application, permission, applica-
tion visibility) triplet can serve as a practical mechanism
in acquiring users’ privacy preferences.

Beyond individual subject characteristics (i.e., personal
preferences), participants based their decisions to block
certain permission requests on the specific applications
making the requests and whether they had contextual
cues to indicate that the applications were running (and
therefore needed the data to function). Future systems
could take these factors into account when deciding
whether or not to draw user attention to a particular re-
quest. For example, when an application that a user is
not actively using requests access to a protected resource,
she should be shown a runtime prompt. Our data indi-
cates that, if the user decides to grant a request in this
situation, then with probability 0.84 the same decision
will hold in future situations where she is actively using
that same application, and therefore a subsequent prompt
may not be needed. At a minimum, platforms need to
treat permission requests from background applications
differently than those originating from foreground ap-
plications. Similarly, applications running in the back-
ground should use passive indicators to communicate
when they are accessing particular resources. Platforms
can also be designed to make decisions about whether
or not access to resources should be granted based on
whether contextual cues are present, or at its most basic,
whether the device screen is even on.

Finally, we built our models and analyzed our data within
the framework of what resources our participants be-
lieved were necessary for applications to correctly func-
tion. Obviously, their perceptions may have been incor-
rect: if they better understood why a particular resource
was necessary, they may have been more permissive.
Thus, it is incumbent on developers to adequately com-
municate why particular resources are needed, as this im-
pacts user notions of contextual integrity. Yet, no mecha-
nisms in Android exist for developers to do this as part of
the permission-granting process. For example, one could
imagine requiring metadata to be provided that explains
how each requested resource will be used, and then auto-
matically integrating this information into permission re-
quests. Tan et al. examined a similar feature on iOS that
allows developers to include free-form text in runtime
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permission dialogs and observed that users were more
likely to grant requests that included this text [41]. Thus,
we believe that including succinct explanations in these
requests would help preserve contextual integrity by pro-
moting greater transparency.

In conclusion, we believe this study was instructive in
showing the circumstances in which Android permission
requests are made under real-world usage. While prior
work has already identified some limitations of deployed
mobile permissions systems, we believe our study can
benefit system designers by demonstrating several ways
in which contextual integrity can be improved, thereby
empowering users to make better security decisions.
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A Invisible requests
Following list shows the set of applications that have requested the most
number of permissions while executing invisibly to the user and the
most requested permission types by each respective application.

• Facebook App— ACCESS NETWORK STATE, ACCESS FINE
LOCATION, ACCESS WIFI STATE ,WAKE LOCK,

• Google Location—WAKE LOCK, ACCESS FINE LOCATION,
GET ACCOUNTS, ACCESS COARSE LOCATION,

• Facebook Messenger—ACCESS NETWORK STATE, ACCESS
WIFI STATE, WAKE LOCK, READ PHONE STATE,

• Taptu DJ—ACCESS NETWORK STATE, INTERNET, NFC
• Google Maps—ACCESS NETWORK STATE, GET AC-

COUNTS, WAKE LOCK, ACCESS FINE LOCATION,
• Google (Gapps)—WAKE LOCK, ACCESS FINE LOCA-

TION, AUTHENTICATE ACCOUNTS, ACCESS NETWORK
STATE,

• Fouraquare—ACCESS WIFI STATE, WAKE LOCK, ACCESS
FINE LOCATION, INTERNET,

• Yahoo Weather—ACCESS FINE LOCATION, ACCESS NET-
WORK STATE, INTERNET, ACCESS WIFI STATE,
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• Devexpert Weather—ACCESS NETWORK STATE, INTER-
NET, ACCESS FINE LOCATION,

• Tile Game(Umoni)—ACCESS NETWORK STATE, WAKE
LOCK, INTERNET, ACCESS WIFI STATE,

Following is the most frequently requested permission type by appli-
cations while running invisibly to the user and the applications who
requested the respective permission type most.

• ACCESS NETWORK STATE— Facebook App, Google Maps,
Facebook Messenger, Google (Gapps), Taptu - DJ

• WAKE LOCK—Google (Location), Google (Gapps), Google
(GMS), Facebook App, GTalk.

• ACCESS FINE LOCATION—Google (Location), Google
(Gapps), Facebook App, Yahoo Weather, Rhapsody (Music)

• GET ACCOUNTS—Google (Location), Google (Gapps),
Google (Login), Google (GM), Google (Vending)

• ACCESS WIFI STATE—Google (Location), Google (Gapps),
Facebook App, Foursqaure, Facebook Messenger

• UPDATE DEVICE STATS—Google (SystemUI), Google (Loca-
tion), Google (Gapps)

• ACCESS COARSE LOCATION—Google (Location), Google
(Gapps), Google (News), Facebook App, Google Maps

• AUTHENTICATE ACCOUNTS—Google (Gapps), Google (Lo-
gin), Twitter, Yahoo Mail, Google (GMS)

• READ SYNC SETTINGS—Google (GM), Google ( GMS ), an-
droid.process.acore, Google (Email), Google (Gapps)

• INTERNET—Google (Vending), Google (Gapps), Google (GM),
Facebook App, Google (Location)

B Distribution of Requests
The following graph shows the distribution of requests throughout a
given day averaged across the data set.
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C Permission Type Breakdown
This table lists the most frequently used permissions during the study
period. (per user / per day)

Permission Type Requests
ACCESS NETWORK STATE 41077
WAKE LOCK 27030
ACCESS FINE LOCATION 7400
GET ACCOUNTS 4387
UPDATE DEVICE STATS 2873
ACCESS WIFI STATE 2092
ACCESS COARSE LOCATION 1468
AUTHENTICATE ACCOUNTS 1335
READ SYNC SETTINGS 836
VIBRATE 740
INTERNET 739
READ SMS 611
READ PHONE STATE 345
STATUS BAR 290
WRITE SYNC SETTINGS 206
CHANGE COMPONENT ENABLED STATE 197
CHANGE WIFI STATE 168
READ CALENDAR 166
ACCOUNT MANAGER 134
ACCESS ALL DOWNLOADS 127
READ EXTERNAL STORAGE 126
USE CREDENTIALS 101
READ LOGS 94

D User Application Breakdown
This table shows the applications that most frequently requested access
to protected resources during the study period. (per user / per day)

Application Name Requests
facebook.katana 40041
google.process.location 32426
facebook.orca 24702
taptu.streams 15188
google.android.apps.maps 6501
google.process.gapps 5340
yahoo.mobile.client.android.weather 5505
tumblr 4251
king.farmheroessaga 3862
joelapenna.foursquared 3729
telenav.app.android.scout us 3335
devexpert.weather 2909
ch.bitspin.timely 2549
umonistudio.tile 2478
king.candycrushsaga 2448
android.systemui 2376
bambuna.podcastaddict 2087
contapps.android 1662
handcent.nextsms 1543
foursquare.robin 1408
qisiemoji.inputmethod 1384
devian.tubemate.home 1296
lookout 1158
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Abstract
Private Set Intersection (PSI) allows two parties to com-
pute the intersection of private sets while revealing noth-
ing more than the intersection itself. PSI needs to be ap-
plied to large data sets in scenarios such as measurement
of ad conversion rates, data sharing, or contact discovery.
Existing PSI protocols do not scale up well, and therefore
some applications use insecure solutions instead.

We describe a new approach for designing PSI proto-
cols based on permutation-based hashing, which enables
to reduce the length of items mapped to bins while en-
suring that no collisions occur. We denote this approach
as Phasing, for Permutation-based Hashing Set Intersec-
tion. Phasing can dramatically improve the performance
of PSI protocols whose overhead depends on the length
of the representations of input items.

We apply Phasing to design a new approach for
circuit-based PSI protocols. The resulting protocol is up
to 5 times faster than the previously best Sort-Compare-
Shuffle circuit of Huang et al. (NDSS 2012). We also
apply Phasing to the OT-based PSI protocol of Pinkas et
al. (USENIX Security 2014), which is the fastest PSI
protocol to date. Together with additional improvements
that reduce the computation complexity by a logarithmic
factor, the resulting protocol improves run-time by a fac-
tor of up to 20 and can also have similar communication
overhead as the previously best PSI protocol in that re-
spect. The new protocol is only moderately less efficient
than an insecure PSI protocol that is currently used by
real-world applications, and is therefore the first secure
PSI protocol that is scalable to the demands and the con-
straints of current real-world settings.

1 Introduction

Private set intersection (PSI) allows two parties P1 and P2
with respective input sets X and Y to compute the inter-
section X ∩Y of their sets without revealing any infor-
mation but the intersection itself. Although PSI has been

widely studied in the literature, many real-world applica-
tions today use an insecure hash-based protocol instead
of a secure PSI protocol, mainly because of the insuffi-
cient efficiency of current PSI protocols.

In this work we present Phasing, Permutation-based
Hashing Set Intersection, which is a new approach for
constructing PSI protocols based on a hashing technique
that ensures that hashed elements can be represented by
short strings without any collisions. The overhead of re-
cent PSI protocols depends on the length of these rep-
resentations, and this new structure of construction, to-
gether with other improvements, results in very efficient
performance that is only moderately larger than that of
the insecure protocol that is in current real-world usage.

1.1 Motivating Scenarios
The motivation for this work comes from scenarios
where PSI must be applied quite frequently to large
sets of data, and therefore performance becomes critical.
Moreover, the communication overhead might be even
more important than the computation overhead, since in
large data centers it is often easier to add computing
power than to improve the outgoing communication in-
frastructure. We describe here three scenarios which re-
quire large-scale PSI implementations.

Measuring ad conversion rates Online advertising,
which is a huge business, typically measures the success
of ad campaigns by measuring the success of converting
viewers into customers. A popular way of measuring this
value is by computing the conversion rate, which is the
percentage of ad viewers who later visit the advertised
site or perform a transaction there. For banner ads or ser-
vices like Google Adwords it is easy to approximate this
value by measuring ad click-throughs. However, mea-
suring click-throughs is insufficient in other online ad-
vertising settings. One such setting is mobile advertis-
ing, which is becoming a dominating part of online ad-
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vertising. Even though mobile ads have a great effect,
click-throughs are an insufficient measure of their utility,
since it is unlikely, due to small displays and the casual
nature of mobile browsing, that a user will click on an
ad and, say, purchase a car using his mobile device. An-
other setting where click rate measurement is unsatisfac-
tory is advertising of offline goods, like groceries, where
the purchase itself is done offline.1

An alternative method of measuring ad performance is
to compare the list of people who have seen an ad with
those who have completed a transaction. These lists are
held by the advertiser (say, Google or Facebook), and by
merchants, respectively. It is often possible to identify
users on both ends, using identifiers such as credit card
numbers, email addresses, etc. A simple solution, which
ignores privacy, is for one side to disclose its list of cus-
tomers to the other side, which then computes the nec-
essary statistics. Another option is to run a PSI protocol
between the two parties. (The protocol should probably
be a variant of PSI, e.g. compute total revenues from
customers who have seen an ad. Such protocols can be
derived from basic PSI protocols.) In fact, Facebook is
running a service of this type with Datalogix, Epsilon
and Acxiom, companies which have transaction records
for a large part of loyalty card holders in the US. Accord-
ing to reports2, the computation is done using a variant of
the insecure naive hashing PSI protocol that we describe
in §3.1. Our results show that it can be computed using
secure protocols even for large data sets.

Security incident information sharing Security inci-
dent handlers can benefit from information sharing since
it provides them with a global view during incidents.
However, incident data is often sensitive and potentially
embarrassing. The shared information might reveal in-
formation about the business of the company that pro-
vided it, or of its customers. Therefore, information is
typically shared rather sparsely and protected using legal
agreements. Automated large scale sharing will improve
security, and there is in fact work to that end, such as the
IETF Managed Incident Lightweight Exchange (MILE)
effort. Many computations that are applied to the shared
data compute the intersection and its variants. Applying
PSI to perform these computations can simplify the le-
gal issues of information sharing. Efficient PSI protocols
will enable it to be run often and in large scale.

Private contact discovery When a new user registers
to a service it is often essential to identify current regis-

1See, e.g., http://www.reuters.com/article/2012/10/01/
us-facebook-ads-idUSBRE8900I120121001 .

2See, e.g., https://www.eff.org/deeplinks/2012/09/deep

-dive-facebook-and-datalogix-whats-actually-getting

-shared-and-how-you-can-opt.

tered users who are also contacts of the new user. This
operation can be done by simply revealing the user’s con-
tact list to the service, but can also be done in a pri-
vacy preserving manner by running a PSI protocol be-
tween the user’s contact list and the registered users of
the service. This latter approach is used by the TextSe-
cure and Secret applications, but for performance rea-
sons they use the insecure naive hashing PSI protocol
described in §3.1.3

In these cases each user has a small number of
records n2, e.g., n2 = 256, whereas the service has mil-
lions of registered users (in our experiments we use
n1 = 224). It therefore holds that n2 � n1. In our
best PSI protocol, the client needs only O(n2 logn1)
memory, O(n2) symmetric cryptographic operations and
O(n1) cheap hash table lookups, and the communication
is O(n1 logn1). (The communication overhead is indeed
high as it depends on n1, but this seems inevitable if brute
force searches are to be prevented.)

1.2 Our Contributions
Our goal in this work is to enable PSI computations for
large scale sets that were previously beyond the capabil-
ities of state-of-the-art protocols. The constructions that
we design in this work improve performance by more
than an order of magnitude. We obtain these improve-
ments by generalizing the hashing approach of [22] and
applying it to generic secure computation-based PSI pro-
tocols. We replace the hash function in [22] by a permu-
tation which enables us to reduce the bit-length of inter-
nal representations. Moreover, we suggest several im-
provements to the OT-based PSI protocol of [22]. We
explain our contributions in more detail next:

Phasing: Using permutation-based hashing to reduce
the bit-length of representations. The overhead of the
best current PSI protocol [22] is linear in the length of the
representations of items in the sets (i.e., the ids of items
in the sets). The protocol maps items into bins, and since
each bin has very few items in it, it is tempting to hash
the ids to shorter values and trust the birthday paradox
to ensure that no two items in the same bin are hashed
to the same representation. However, a closer examina-
tion shows that to ensure that the collision probability is
smaller than 2−λ , the length of the representation must
be at least λ bits, which is too long.

In this work we utilize the permutation-based hashing
techniques of [1] to reduce the bit-length of the ids of
items that are mapped to bins. These ideas were sug-
gested in an algorithmic setting to reduce memory us-

3See https://whispersystems.org/blog/contact-disco

very/ and https://medium.com/@davidbyttow/demystifying

-secret-12ab82fda29f , respectively.
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age, and as far as we know this is the first time that they
are used in a cryptographic or security setting to improve
performance. Essentially, when using β bins the first
logβ bits in an item’s hashed representation define the
bin to which the item is mapped, and the other bits are
used in a way which provably prevents collisions. This
approach reduces the bit-length of the values used in the
PSI protocol by logβ bits, and this yields reduced over-
head by up to 60%-75% for the settings we examined.

Circuit-Phasing: Improved circuit-based PSI. As
we discuss in §3.4 there is a great advantage in using
generic secure computation for computing PSI, since this
enables to easily compute variants of the basic PSI func-
tionality. Generic secure computation protocols evalu-
ate Boolean circuits computing the desired functionality.
The best known circuit for computing PSI was based on
the Sort-Compare-Shuffle circuit of [12]. We describe
Circuit-Phasing, a new generic protocol that uses hash-
ing (specifically, Cuckoo hashing and simple hashing)
and secure circuit evaluation. In comparison with the
previous approach, our circuits have a smaller number
of AND gates, a lower depth of the circuit (which affects
the number of communication rounds in some protocols),
and a much smaller memory footprint. These factors lead
to a significantly better performance.

OT-Phasing: Improved OT-based PSI. We introduce
the OT-Phasing protocol which improves the OT-based
PSI protocol of [22] as follows:
• Improved computation and memory. We reduce

the length of the strings that are processed in the
OT from O(log2 n) to O(logn), which results in a
reduction of computation and memory complexity
for the client from O(n log2 n) to O(n logn).

• 3-way Cuckoo hashing. We use 3 instead of 2
hash functions to generate a more densely populated
Cuckoo table and thus decrease the overall number
of bins and hence OTs.

OT-Phasing improves over state-of-the-art PSI both in
terms of run-time and communication. Compared to the
previously fastest PSI protocol of [22], our protocol im-
proves run-time by up to factor 10 in the WAN setting
and by up to factor 20 in the LAN setting. Furthermore,
our OT-Phasing protocol in some cases achieves similar
communication as [18], which was shown to achieve the
lowest communication of all PSI protocols [22].

1.3 Outline

We give preliminary information in §2 and summarize
related work in §3. In §4 we describe Phasing, our op-
timization for permutation-based hashing that reduces

the bit-length of elements in PSI. Afterwards, we ap-
ply Phasing to generic secure computation protocols, and
present Circuit-Phasing, our new approach for circuit-
based PSI §5. Thereafter, we apply Phasing to the previ-
ously fastest OT-based PSI protocol of [22] and present
several optimizations in §6. In §7 we analyze the hashing
failure probability of Circuit- and OT-Phasing. Finally,
we provide an evaluation of our PSI protocols in §8.

2 Preliminaries

2.1 Notation
We denote the parties as P1 and P2. For all protocols we
assume that P2 obtains the output. The respective input
sets are denoted as X and Y , with sizes n1 = |X | and n2 =
|Y |. Often n1 = n2 and we use the notation n = n1 = n2.
We assume that elements are of bit-length σ .

We call the symmetric security parameter κ , the bit-
length of the elliptic curves ϕ , and the statistical security
parameter λ . Throughout the paper we assume 128-bit
security, i.e., κ = 128, ϕ = 283 (using Koblitz-curves),
and λ = 40. For symmetric encryption we use AES-128.

We refer to the concatenation of bit-strings by ||, to
the exclusive-OR (XOR) operation by ⊕, and to the i-th
element in a sequence S by S[i]. In many protocols, we
shorten the size of hash values that are sent to � = λ +
log2(n1)+ log2(n2) instead of 2κ . This yields collision
probability 2−λ , which is suited for most applications.

2.2 Security
Two types of adversaries are typically discussed in the
secure computation literature: A semi-honest adversary
is trusted to follow the protocol, but attempts to learn as
much information as possible from the messages it re-
ceives. This adversary model is appropriate for scenar-
ios where execution of the correct software is enforced
by software attestation or where an attacker might ob-
tain the transcript of the protocol after its execution, ei-
ther by stealing it or by legally enforcing its disclosure.
In contrast, a malicious adversary can behave arbitrar-
ily. Most work on PSI was in the semi-honest setting.
Protocols that are secure against malicious adversaries,
e.g., [9, 10, 14], are considerably less efficient. We focus
on optimal performance and therefore design protocols
secure against semi-honest adversaries only. Further-
more, the security of the protocols is proven in the ran-
dom oracle model, as is justified in the full version [21].

2.3 Hashing to Bins
Our protocols hash the input items to bins and then op-
erate on each bin separately. In general, our hashing
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schemes use a table T consisting of β bins. An element e
is mapped to the table by computing an address a = H(e)
using a hash function H that is modeled as a random
function. A value related to e is then stored in bin T [a].

There is a rich literature on hashing schemes, which
differ in the methods for coping with collisions, the com-
plexity for insertion/deletion/look-up, and the utilization
of storage space. In [9, 10, 22], hashing to bins was
used to improve the number of comparisons that are per-
formed in PSI protocols. In the following, we detail the
two most promising hashing schemes for use in PSI, ac-
cording to [22]: simple hashing and Cuckoo hashing. For
the OT-based PSI protocol of [22] it was shown that a
combination of simple hashing (for P1) and Cuckoo hash-
ing (for P2) results in the best performance.

2.3.1 Simple Hashing

Simple hashing builds the table T by mapping each ele-
ment e to bin T [H(e)] and appending e to the bin. Each
bin must, of course, be able to store more than one ele-
ment. The size of the most populated bin was analyzed
in [23], and depends on the relation between the num-
ber of bins and the total number of elements. Most im-
portantly for our application, when hashing n elements
into β = n bins, it was shown that the maximum number
of elements in a bin is lnn

ln lnn (1+ o(1)). In §7.1 we give
a theoretical and an empirical analysis of the maximum
number of elements in a bin.

2.3.2 Cuckoo Hashing

Cuckoo hashing [19] uses h hash functions H1, ...,Hh to
map an element e to a bin using either one of the h hash
functions. (Typically, h is set to be h = 2; we also use
h = 3.) In contrast to simple hashing, it allows at most
one element to be stored in a bin. If a collision occurs,
Cuckoo hashing evicts the element in the bin and per-
forms the insertion again for the evicted element. This
process is repeated until an empty bin is found for the
evicted element. If the resulting sequence of insertion at-
tempts fails a certain number of times, the current evicted
element is placed in a special bin called stash. In [16] it
was shown that for h = 2 hash functions, β = 2(1+ ε)n
bins, and a stash of size s≤ lnn, the insertion of elements
fails with small probability of O(n−s), which is smaller
than n−(s−1) for sufficiently large values of n (cf. §7.2).

2.4 Oblivious Transfer
1-ouf-of-2 oblivious transfer (OT) [8] is a protocol where
the receiver with choice bit c, chooses one of two strings
(x0,x1) held by the sender. The receiver receives xc but
gains no information about x1−c, while the sender gains
no information about c.

OT extension protocols [2, 17] precompute a small
number (say, κ = 128) of “real” public-key-based OTs,
and then compute any polynomial number of OTs using
symmetric-key cryptography alone. The most efficient
OT variant that we use computes random OT. In that pro-
tocol the sender has no input but obtains random (x0,x1)
as output, while the receiver with input c obtains xc [2].
The advantage of this protocol is that the sender does not
need to send messages based on its inputs, as it does not
have any inputs, and instead computes them on-the-fly
during the OT extension protocol. As a result, the com-
munication overhead of the protocol is greatly reduced.

An additional improvement that we use, described
in [17], efficiently computes 1-out-of-N OT for short
strings. The communication for a random 1-out-of-N OT
(for 3 ≤ N ≤ 256) is only 2κ-bits, whereas the commu-
nication for a random 1-out-of-2 OT is κ-bits. The com-
putation for a random 1-out-of-N OT amounts to four
pseudo-random generator (PRG) and one correlation-
robust function (CRF) evaluations for the receiver and
two PRG and N CRF evaluations for the sender. In addi-
tion, if the sender only requires i ≤ N outputs of the OT,
it only needs to perform i CRF evaluations.

We use 1-out-of-N OT since we have to perform OTs
for every bit of an element. By using 1-out-of-N OT for
N = 2µ , we process µ bits in parallel with communica-
tion equal to that of processing two bits. We denote m
1-out-of-N OTs on �-bit strings by

(N
1

)
-OTm

� .

2.5 Generic Secure Computation
Generic secure two-party computation protocols allow
two parties to securely evaluate any function that can
be expressed as a Boolean circuit. The communica-
tion overhead and the number of cryptographic opera-
tions that are computed are linear in the number of non-
linear (AND) gates in the circuit, since linear (XOR)
gates can be evaluated “for free” in current protocols.
Furthermore, some protocols require a number of inter-
action rounds that are linear in the AND depth of the
circuit. The two main approaches for generic secure
two-party computation on Boolean circuits are Yao’s gar-
bled circuits [25] and the protocol by Goldreich-Micali-
Wigderson [11]. We give a summary of these protocols
in the full version [21].

3 Related Work

We reflect on existing PSI protocols by following the
classification of PSI protocols in [22]: the naive hash-
ing protocol (§3.1), server-aided PSI protocols (§3.2),
public-key cryptography-based PSI protocols (§3.3),
generic secure computation-based PSI protocols (§3.4),
and OT-based PSI protocols (§3.5). For each category,
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we review existing work and outline the best performing
protocol, according to [22].

3.1 (Insecure) Naive Hashing
In the naive hashing protocol, detailed in the full ver-
sion [21], P1 permutes and hashes its elements, and sends
the results to P2 which compares these values to the
hashes of its elements. This approach is very efficient
and is currently employed in practice, but it allows P2 to
brute-force the elements of P1 if they do not have high en-
tropy. Furthermore, even if inputs elements have high en-
tropy, forward-secrecy is not provided since P2 can check
at any later time whether an element was in X .

3.2 Server-Aided PSI
To increase the efficiency of PSI, protocols that use a
semi-trusted third party were proposed [15]. These pro-
tocols are secure as long as the third party does not col-
lude with any of the participants. We mention this set of
protocols here for completeness, as they require different
trust assumptions as protocols involving no third party.

The protocol of [15] has only a slightly higher over-
head than the naive hashing PSI solution described
in §3.1. In that protocol, P1 samples a random κ-bit
key k and sends it to P2. Both parties compute hi = Fk(xi)
(resp. h′j = Fk(y j)), where Fk is a pseudo-random permu-
tation that is parametrized by k. Both parties then send
the hashes to the third party (in randomly permuted or-
der) who then computes I = hi∩h′j, for all 1 ≤ i ≤ n1 and
1 ≤ j ≤ n2 and sends I to P2. P2 obtains the intersection
by computing F−1

k (e) for each e ∈ I.

3.3 Public-Key Cryptography based PSI
The first protocols for PSI were outlined in [13, 18] and
were based on the Diffie-Hellmann (DH) key exchange.
The overhead of these protocols is O(n) exponentiations.
In [9, 10], a PSI protocol based on El-Gamal encryption
was introduced that uses oblivious polynomial evaluation
and requires O(n log log(n)) public-key encryptions (the
advantage of that protocol was that its security was not
based on the random oracle model). A PSI protocol that
uses blind-RSA was introduced in [3].

We implement the DH-based protocol of [13, 18]
based on elliptic-curve-cryptography, which was shown
to achieve lowest communication in [22]. We describe
the protocol in the full version [21].

3.4 PSI based on Generic Protocols
Generic secure computation can be used to perform PSI
by encoding the intersection functionality as a Boolean

circuit. The most straightforward method for this encod-
ing is to perform a pairwise-comparison which compares
each element of one party to all elements of the other
party. However, this circuit uses O(n2) comparisons and
hence scales very poorly for larger set sizes [12]. The
Sort-Compare-Shuffle (SCS) circuit of [12] is much more
efficient. As indicated by its name, the circuit first sorts
the union of the elements of both parties, then compares
adjacent elements for equality, and finally shuffles the re-
sult to avoid information leakage. The sort and shuffle
operations are implemented using a sorting network of
only O(n logn) comparisons, and the comparison step re-
quires only O(n) comparisons.

The work of [12] describes a size-optimized ver-
sion of this circuit for use in Yao’s garbled circuits;
[22] describes a depth-optimized version for use in the
GMW protocol. The size-optimized SCS circuit has
σ(3n log2 n + 4n) AND gates4 and AND depth (σ +
2) log2(2n)+log2(σ)+1 while the depth-optimized SCS
circuit has about the same number of gates and AND
depth of (log2(σ)+4) log2(2n), for n = (n1 +n2)/2.

PSI protocols based on generic secure computation
have higher run-time and communication complexity
than most special-purpose PSI protocols [4, 22]. Yet,
these protocols are of great importance since they en-
able to easily compute any functionality that is based
on basic PSI. Consider, for example, an application that
needs to find if the size of the intersection is greater than
some threshold, or compute the sum of revenues from
items in the intersection. Computing these functionali-
ties using specialized PSI protocols requires to change
the protocols, whereas a PSI protocol based on generic
computation can be adapted to compute these functional-
ities by using a slightly modified circuit. In other words,
changing specialized protocols to have a new functional-
ity requires to employ a cryptographer to design a new
protocol variant, whereas changing the functionality of
a generic protocol only requires to design a new circuit
computing the new functionality. The latter task is of
course much simpler. An approximate PSI protocol that
uses generic secure computation protocols in combina-
tion with Bloom filters was given in [24].

3.5 OT-based PSI
OT-based PSI protocols are the most recent category of
PSI protocols. Their research has been motivated by re-
cent efficiency improvements in OT extension. The gar-
bled Bloom filter protocol of [7] was the first OT-based
PSI protocol and was improved in [22]. A novel OT-
based PSI protocol, which we denote OT-PSI protocol,

4The original description of the SCS circuit in [12] embedded input
keys into AND gates in the sort circuit to reduce communication. We
did not use this optimization in our implementation.
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was introduced in [22], combining OT and hashing to
achieve the best run-time among all analyzed PSI pro-
tocols. We next summarize the OT-PSI protocol of [22]
and give a detailed description in the full version [21].

The abstract idea of the OT-PSI protocol is to have
both parties hash their elements into bins using the same
hash function (Step 1, cf. §3.5.1) and compare the ele-
ments mapped to the same bin. The comparison is done
using OTs that generate random masks from the elements
(Step 2, cf. §3.5.2), such that the intersection of the ran-
dom masks corresponds to the intersection of the original
inputs (Step 3, cf. §3.5.3). Finally, the intersection of the
elements in the stash is computed (§3.5.4). We give the
overhead of the protocol in §3.5.5.

3.5.1 PSI via Hashing to Bins

In the first step of the protocol, the parties map their el-
ements into their respective hash tables T1 and T2, con-
sisting of β = h(1+ ε)n2 bins (cf. §7). P2 uses Cuckoo
hashing with h hash functions (with h = 2), and obtains
a one-dimensional hash table T2. P1 hashes each item h
times (once for each hash function) using simple hash-
ing and obtains a two-dimensional hash table T1 (where
the first dimension addresses the bin and the second di-
mension the elements in the bin). Each party then pads
all bins in its table to the maximum size using respective
dummy elements: P1 pads each bin to maxβ elements
using a dummy element d1 (where maxβ is computed us-
ing β and n1 as detailed in §7 to set the probability of
mapping more items to a bin to be negligible), while P2
fills each empty bin with dummy element d2 (different
than d1). The padding is performed to hide the number
of elements that were mapped to a specific bin, which
would leak information about the input.

3.5.2 Masking via OT

After the hashing, the parties use OT to generate an �-bit
random mask for each element in their hash table.

Naively, for each bin, and for each item that P2 mapped
to the bin, the parties run a 1-out-of-2 OT for each bit
of this item. P2 is the receiver and its input to the OT
is the value of the corresponding bit in the single item
that it mapped to the bin. P1’s input is two random �-bit
strings. After running these OTs for all σ bits of the item,
P1 sends to P2 the XOR of the strings corresponding to
the bits of P1’s item. Note that if P1’s item is equal to
that of P2 then the sent value is equal to the XOR of the
output strings that P2 received in the OTs. Otherwise the
values are different with high probability, which depends
on the length � of the output strings.

This basic protocol was improved upon in [22] in sev-
eral ways:

• Recall that OT extension is more efficient when ap-
plied to 1-out-of-N OT [17]. Therefore, the proto-
col uses µ-bit characters instead of a binary repre-
sentation. It splits the elements into t µ-bit charac-
ters, and uses t invocations of 1-out-of-N OT where
N = 2µ , instead of tµ invocations of 1-out-of-2 OT.

• In each bin the parties run OTs for all maxβ items
that P1 mapped to the bin, and to all characters in
these items. P2’s inputs are the same for all maxβ
OTs corresponding to the same character. Thus, the
parties could replace them with a single OT, where
the output string of the OT has maxβ longer size.

• Recall that random OT, where the protocol ran-
domly defines the inputs of P1, is more efficient
than an OT where P1 chooses these inputs by itself.
For the purpose of PSI the protocol can use random
OT. It is also important to note that if P1 mapped
m < maxβ elements to a bin, it only needs to eval-
uate inputs for m random OTs in this bin and not
for all maxβ random OTs that are taking place. This
improves the overhead of the protocol.

3.5.3 Intersection

The parties compute the intersection of their elements us-
ing the random masks (XOR values) generated during
Step 2: P1 generates a set V as the masks for all of its
non-dummy elements. P1 then randomly permutes the
set V to hide information about the number of elements
in each bin, and sends V to P2. P2 computes the inter-
section X ∩Y by computing the plaintext intersection be-
tween V and the set of XOR values that it computed.

3.5.4 Including a Stash

The OT-based PSI protocol of [22] uses Cuckoo hashing
with a stash of size s. The intersection of P2’s elements
with P1’s elements is done by running the masking pro-
cedure of Step 2 for all s items in the stash, comparing
them with all n1 items in P1’s input. Finally, P1 sends the
masks it computed to P2 (in randomly permuted order)
which can then check the intersection as in Step 3.

3.5.5 Overhead

The overhead of this protocol is linear in the bit-length
of the input elements. Therefore, any reduction in the
bit-length of the inputs directly results in a similar im-
provement in the overhead.

For readers interested in the exact overhead of the pro-
tocol, we describe here the details of the overhead. In
total, the parties have to evaluate random

(N
1

)
-OTβ t

maxβ �

+
(N

1

)
-OTst

n1�
and send (h + s)n1 masks of �-bit length,

where β = h(n2 + ε), N = 2µ , t = �σ/µ�, � = λ +
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log2(n1) + log2(n2), and s is the size of the stash. To
be exact, the server has to perform 2t(β + s) pseudo-
random generator evaluations during OT extension, (h+
s)n1t correlation-robust function evaluations to gener-
ate the random masks, and send (2 + s)n1� bits. The
client has to perform 4t(β + s) pseudo-random generator
evaluations during OT extension, n2tmaxβ �/o+ sn1t�/o
correlation-robust function evaluations to generate the
random masks, and send 2(β + s)tκ bits during OT ex-
tension, where o is the output length of the correlation-
robust function. Note especially that the client has to
evaluate the correlation-robust function O(n log2 n) times
to generate the random bits which represent the masks of
the server’s elements. This cost can become prohibitive
for larger sets, as we will show in our evaluation in §8.

4 Permutation-based Hashing

The overhead of the OT-based PSI protocol of [22] and
of the circuit-based PSI protocols we describe in §5 de-
pends on the bit-lengths of the items that the parties map
to bins. The bit-length of the stored items can be re-
duced based on a permutation-based hashing technique
that was suggested in [1] for reducing the memory usage
of Cuckoo hashing. That construction was presented in
an algorithmic setting to improve memory usage. As far
as we know this is the first time that it is used in secure
computation or in a cryptographic context.

The construction uses a Feistel-like structure. Let
x = xL|xR be the bit representation of an input item,
where |xL| = logβ , i.e. is equal to the bit-length of an
index of an entry in the hash table. (We assume here that
the number of bins β in the hash table is a power of 2.
It was shown in [1] how to handle the general case.) Let
f () be a random function whose range is [0,β −1]. Then
item x is mapped to bin xL ⊕ f (xR). The value that is
stored in the bin is xR, which has a length that is shorter
by logβ bits than the length of the original item. This is a
great improvement, since the length of the stored data is
significantly reduced, especially if |x| is not much greater
than logβ . As for the security, it can be shown based on
the results in [1] that if the function f is k-wise indepen-
dent, where k = polylogn, then the maximum load of a
bin is logn with high probability.

The structure of the mapping function ensures that if
two items x,x′ store the same value in the same bin then it
must hold that x = x′: if the two items are mapped to the
same bin, then xL ⊕ f (xR) = x′L ⊕ f (x′R). Since the stored
values satisfy xR = x′R it must also hold that xL = x′L, and
therefore x = x′.

As a concrete example, assume that |x| = 32 and that
the table has β = 220 bins. Then the values that are stored
in each bin are only 12 bits long, instead of 32 bits in the
original scheme. Note also that the computation of the

bin location requires a single instantiation of f , which
can be implemented with a medium-size lookup table.

A comment about an alternative approach An al-
ternative, and more straightforward approach for reduc-
ing the bit-length could map x using a random permuta-
tion p() to a random |x|-bit string p(x). The first logβ
bits of p(x) are used to define the bin to which x is
mapped, and the value stored in that bin holds the re-
maining |x| − logβ bits of p(x). This construction, too,
has a shorter length for the values that are stored in the
bins, but it suffers from two drawbacks: From a perfor-
mance perspective, this construction requires the usage
of a random permutation on |x| bits, which is harder to
compute than a random function. From a theoretical per-
spective, it is impossible to have efficient constructions
of k-wise independent permutations, and therefore we
only know how to prove the logn maximum load of the
bins under the stronger assumption that the permutation
is random.

5 Circuit-Phasing

PSI protocols that are based on generic secure compu-
tation are of great importance due to their flexibility (cf.
§3.4 for details). The best known construction of a circuit
computing the intersection (of σ -bit elements) is the SCS
circuit of [12] with about 3nσ log2 n AND gates and an
AND depth of Θ(log2 σ · log2 n). We describe a new con-
struction of circuits with the same order of AND gates
(but with smaller constants), and a much smaller depth.
Our experiments, detailed in §8.1, demonstrate that the
new circuits result in much better performance.

The new protocol, which we denote as Circuit-
Phasing, is based on the two parties mapping their inputs
to hash tables before applying the circuit. The idea is
similar to the OT-based PSI protocol of [22] described
in §3.5, but instead of using OTs for the comparisons,
the protocol evaluates a pairwise-comparison circuit be-
tween each bin of P1 and P2 in parallel:
• Both parties use a table of size β = O(n) to store

their elements. Our analysis (§7) shows that setting
β = 2.4n reduces the error probability to be negligi-
ble for reasonable input sizes (28 ≤ n ≤ 224) when
setting the stash size according to Tab. 4.

• P2 maps its input elements to β bins using Cuckoo
hashing with two hash functions and a stash; empty
bins are padded with a dummy element d2.

• P1 maps its input elements into β bins using sim-
ple hashing. The size of the bins is set to be maxβ ,
a parameter that is set to ensure that no bin over-
flows (see §7.1). The remaining slots in each bin are
padded with a dummy element d1 �= d2. The analy-

7



522 24th USENIX Security Symposium USENIX Association

sis described in §7.1 shows how maxβ is computed
and is set to a value smaller than log2 n.

• The parties securely evaluate a circuit that compares
the element that was mapped to a bin by P2 to each
of the maxβ elements mapped to it by P1.

• Finally, each element in P2’s stash is checked for
equality with all n1 input elements of P1 by securely
evaluating a circuit computing this functionality.

• To reduce the bit-length of the elements in the
bins, and respectively the circuit size, the protocol
uses permutation-based hashing as described in §4.
(Note that using this technique is impossible with
SCS circuits of [12].)

A detailed analysis of the circuit size and depth
Let m be the size of P1’s input to the circuit with m =
βmaxβ + sn1, i.e., for each of the β bins, P1 inputs maxβ
items as well as n1 items for each of the s positions in
the stash. The circuit computes a total of m comparisons
between the elements of the two parties. Each element
is of length σ ′ bits, which is the reduced length of the
elements after being mapped to bins using permutation-
based hashing, i.e. σ ′ = σ − log2 β .

A comparison of two σ ′-bit elements is done by com-
puting the bitwise XOR of the elements and then a tree
of σ ′ − 1 OR gates, with depth �log2 σ ′�. The topmost
gate of this tree is a NOR gate. Afterwards, the circuit
computes the XOR of the results of all comparisons in-
volving each item of P2. (Note that at most one of the
comparisons results in a match, therefore the circuit can
compute the XOR, rather than the OR, of the results of
the comparisons.) Overall, the circuit consists of about
m · (σ ′ − 1) ≈ n1 · (maxβ + s) · (σ ′ − 1) non-linear gates
and has an AND depth of �log2 σ�.

Advantages Circuit-Phasing has several advantages
over the SCS circuit:
• Compared to the number of AND gates in the SCS

circuit, which is 3nσ logn, and recalling that σ ′ <
σ , and that maxβ was shown in our experiments
to be no greater than logn, the number of non-
linear gates in Circuit-Phasing is smaller by a factor
greater than 3 compared to the number of non-linear
gates in the SCS circuit (even though both circuits
have the same big “O” asymptotic sizes).

• The main advantage of Circuit-Phasing is the low
AND depth of log2(σ), which is also independent
of the number of elements n. This affects the over-
head of the GMW protocol that requires a round of
interaction for every level in the circuit.

• Another advantage of Circuit-Phasing is its simple
structure: the same small comparison circuit is eval-
uated for each bin. This property allows for a SIMD

(Single Instruction Multiple Data) evaluation with a
very low memory footprint and easy parallelization.

Hashing failures: The correct performance of the pro-
tocol depends on the successful completion of the hash-
ing operations: The Cuckoo hashing must succeed, and
the simple hashing must not place more than maxβ ele-
ments in each bin. Tables of size 2(1+ ε)n and maxβ =
O(logn) guarantee these properties with high probabil-
ity. We analyze the exactly required table sizes in §7 and
set them to be negligible in the statistical security param-
eter λ .

6 OT-Phasing

We improve the OT-PSI protocol of [22] by applying the
following changes to the protocol:
• Reducing the bit-length of the items using the

permutation-based hashing technique described
in §4. This improvement reduces the length of the
items from |x| bits to |x|−β bits, where β is the size
of the tables, and consequently reduces the number
of OTs by a factor of β/|x|.

• Using OTs on a single mask instead of on O(logn)
masks before. This improvement is detailed in §6.1.

• Improving the utilization of bins by using 3-way
Cuckoo hashing (§6.2).

We call the resulting PSI protocol that combines all these
optimizations OT-Phasing. In the full version [21], we
evaluate the performance gain of each optimization indi-
vidually and micro-benchmark the resulting protocol.

6.1 A Single Mask per Bin

In order to hide information about the number of items
that were mapped to a bin, the original OT-PSI proto-
col of [22] (cf. §3.5) padded all bins to a maximum size
of maxβ =O(logn). The protocol then ran OTs on maxβ
masks of �-bit length where the parties had to generate
and process all of the maxβ masks. We describe here
a new construction that enables the parties to compute
only a constant number of masks per element, regardless
of the number of elements that were mapped to the bin
by P1. While this change seems only small, it greatly
increases the performance and scalability of the proto-
col (cf. iterative performance improvements in the full
version [21]). In particular, this change results in two im-
provements to the protocol:
• The number of symmetric cryptographic operations

to generate the masks is reduced from O(log2 n) to
O(logn). Furthermore, note that P2 had to compute
the plaintext intersection between his n2maxβ gen-
erated masks and the 2n1 masks sent by P1. This

8
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also greatly improves the memory footprint and
plaintext intersection.

• In the previous OT-based protocol, a larger value of
the parameter maxβ reduced the failure probability
of the simple hashing procedure used by P1, but in-
creased the string size in the OTs. In the new proto-
col the value of maxβ does not affect the overhead.
Therefore P1 can use arbitrarily large bins and en-
sure that the mapping that it performs never fails.

Recall that in the OT-based PSI protocol of [22]
(cf. §3.5) the parties had inputs of t characters, where
each character was µ bits long, and we used the no-
tation N = 2µ . The parties performed OTs on strings
of maxβ masks per bin. Each mask had length � =
λ + log2(n1)+ log2(n2) bits, corresponded to an element
that P1 mapped to the bin, and included a 1-out-of-N
random-OT for each of the t characters of this element.
P1 was the sender, received all the N sender input-strings
of each OT, and chose from them the one correspond-
ing to the value of the character in its own element. P2
was the receiver and received the string corresponding to
the value of the character in its own element. Then P1
computed the XOR of the t strings corresponding to the
t characters of its element and sent this XOR value to P2,
which compared it to the XOR of its t outputs from OT.

The protocol can be improved by running the t 1-out-
of-N OTs on a single mask per bin. Denote by u the
actual number of items mapped by P1 to a bin. The
value of u is not revealed to P2 in the new protocol and
therefore there is no need to pad the bin with dummy
items. Denote the single item that P2 mapped to the bin
as y= y1, . . . ,yt , and the u items that P1 mapped to the bin
as x1, . . . ,xu, where each xi is defined as xi = xi

1, . . . ,x
i
t .

Define the input strings to the j-th OT as {s j,�}�=1...N .
The protocol that is executed is a random OT and there-
fore these strings are chosen by the protocol and not
by P1. The parties run a single set of t OTs and P2
learns the t strings s1,y1 , . . . ,st,yt . It computes their XOR
SP2 = s1,y1 ⊕·· ·⊕ st,yt , and the value H(SP2), where H()
is a hash function modeled as a random oracle.

P1 learns all the Nt strings generated in the random-
OT protocols. For each input element xi that P1 mapped
to the bin, it computes the XOR of the strings corre-
sponding to the characters of the input, namely Si

P1
=

s1,xi
1
⊕ ·· · ⊕ st,xi

t
, and then computes the value H(Si

P1
).

Note that over all bins, P1 needs to perform this compu-
tation only O(n1) times and compute O(n1) hash values.
P1 then sends all these values to P2 in randomly permuted
order. P2 computes the intersection between these values
and the H(SP2) values that it computed in the protocol.

Efficiency: P2 computes only a single set of t OTs per
bin on one mask, compared to t OTs on maxβ masks in
the OT-based protocol of [22]. As for P1’s work, it com-
putes a single set of OTs per bin, and in addition com-

putes a XOR of strings and a hash for each of its O(n1)
input elements. This is a factor of maxβ =O(logn1) less
work as before. Communication is only O(nσ) strings,
as before.

Security: Assuming that the OT protocols are secure
and that the parties are semi-honest, the only informa-
tion that is received by any party in the protocol is the
H(Si

P1
) values that are sent from P1 to P2. For all val-

ues in the intersection of the input sets of the two parties,
P1 sends to P2 the same hash values as those computed
by P2. Consider the set of input elements X̄ that are part
of P1’s input and are not in P2’s input, and the set of XOR
values corresponding to X̄ . There might be linear depen-
dencies between the XOR values of X̄ , but it holds with
overwhelming probability that all these values are differ-
ent, and they are also all different from the XOR values
computed by P2. Therefore, the result of applying a ran-
dom hash function H() to these values is a set of random
elements in the range of the hash function. This prop-
erty enables to easily provide a simulation based proof
of security for the protocol.

6.2 3-Way Cuckoo Hashing
The original OT-based PSI protocol of [22] uses Cuckoo
hashing which employs two hash functions to map ele-
ments into bins. It was shown in [20] that if n elements
are mapped to 2(1+ ε)n bins, Cuckoo hashing succeeds
with high probability for ε > 0. This means that Cuckoo
hashing achieves around 50% utilization of the bins. If
the number of hash functions h is increased to h > 2, a
much better utilization of bins can be achieved [6]. How-
ever, using h hash functions in our protocol requires P1 to
map each element h times into its bins using simple hash-
ing and requires P1 to send hn1 masks in the intersection
step of the protocol.

We detail in Tab. 1 the utilization and total communi-
cation of our PSI protocol for n1 = n2 = 220 and n2 =
28 � n1 = 220, for σ = 32-bit elements with different
numbers of hash functions. We observe that there is a
tradeoff between the communication for the OTs and the
communication for the masks that are sent by P1. Our
goal is to minimize the total communication, and this is
achieved for h= 3 hash functions in the setting of n1 = n2
and for h = 2 in the setting of n2 � n1. For n1 = n2 using
h = 3 instead of h = 2, as in the original protocol of [22],
reduces the overall communication by 33%.

Hashing failures: We observe that with OT-Phasing,
there is essentially no bound on the number of items that
the server can map to each specific bin, since the client
does not observe this value in any way (the message that
the client receives only depends on the total number of
items that the server has). However, the parameters used
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h Util. [%] #OTs #Masks Comm. [MB]
n1 = n2 n2 � n1

2 50.0 2.00n2 t 2n1� 148.0 17.0
3 91.8 1.09n2 t 3n1� 99.8 25.5
4 97.7 1.02n2 t 4n1� 105.3 34.0
5 99.2 1.01n2 t 5n1� 114.6 42.5

Table 1: Overall communication for a larger number of
hash functions h. Communication is given for a) n1 =
n2 = 220 and b) n2 = 28 � n1 = 220 elements of σ = 32-
bit length. Utilization according to [6].

in the protocol do need to ensure that the Cuckoo hashing
procedure does not fail. The analysis appears in §7.

7 Hashing Failures

The PSI schemes we presented use simple hashing (by
P1), and Cuckoo hashing (by P2). In both hashing
schemes, the usage of bins (or a stash) of constant size,
might result in hashing failures if the number of items
mapped to a bin (or the stash) exceeds its capacity.

When hashing fails, the party which performed the
hashing has two options: (1) Ignore the item that can-
not be mapped by the hashing scheme. This essentially
means that this item is removed from the party’s input to
the PSI protocol. Consequently, the output of the compu-
tation might not be correct (although, if this type of event
happens rarely, the effect on correctness is likely to be
marginal). (2) Attempt to use a different set of hash func-
tions, and recompute the hash of all items. In this case
the other party must be informed that new hash functions
are used. This is essentially a privacy leak: for example,
the other party can check if the input set S of the first
party might be equal to a set S′ (if a hashing failure does
not occur for S′ then clearly S′ �= S). The effect of this
leak is likely to be weak, too, but it is hard to quantify.

The effect of hashing failures is likely to be marginal,
and might be acceptable in many usage settings (for ex-
ample, when measuring ad conversion rates it typically
does not matter if the revenue from a single ad view is
ignored). However, it is preferable to set the probability
of hashing failures to be negligibly small.

In OT-Phasing, P2 does not learn the number of items
that P1 maps to each bin, and therefore P1 can set the size
of the bins to be arbitrarily large. However, in that PSI
protocol P1 knows the size of the stash that is used in
the Cuckoo hashing done by P2. In Circuit-Phasing, each
party knows the size of the bins (or stash) that is used by
the other party. We are therefore interested in learning
the failures probabilities of the following schemes, and
bound them to be negligible, i.e., at most 2−40:
• §7.1: Simple hashing in the Circuit-Phasing

scheme, where n items are mapped using two in-
dependent functions to 2.4n bins. This is equivalent

to mapping 2n items to 2.4n bins.
• §7.2: Cuckoo hashing, using 2.4n bins and either 2-

way hashing (for Circuit-Phasing), or 3-way hash-
ing (for OT-Phasing). The failure probability for
3-way hashing is smaller than for 2-way hashing
(since there is an additional bin to which each item
can be mapped), and therefore we will only examine
the failure probability of 2-way Cuckoo hashing.

7.1 Simple Hashing
It was shown in [23] that when n balls are mapped at
random to n bins then the maximum number of elements
in a bin is with high probability lnn

ln lnn (1+ o(1)). Let us
examine in more detail the probability of the following
event, “2n balls are mapped at random to 2.4n bins, and
the most occupied bin has at least k balls”:

Pr(∃bin with ≥ k balls) (1)
≤ 2.4n ·Pr(bin #1 has ≥ k balls) (2)

≤ 2.4n
(

2n
k

)(
1

2.4n

)k

(3)

≤
(

2ne
k

)k ( 1
2.4n

)k−1

(4)

= n
(

2e
k

)k ( 1
2.4

)k−1

. (5)

It is straightforward to see that this probability can be
bounded to be at most 2−40 by setting

k ≥ max(6,2e logn/ log logn). (6)

We calculated for some values of n the desired bin sizes
based on the upper bound of Eq. (6) and the tighter cal-
culation of Eq. (5), and chose the minimal value of k that
reduces the failure probability to below 2−40. The results
are in Table 2. It is clear that Eq. (5) results in smaller
bins for sufficiently large n, and therefore the maximal
bin size should be set according to Eq. (5).

n 212 216 220 224

Eq. (5) 18 19 20 21
Eq. (6) 19 22 26 29

Table 2: The bin sizes maxβ that are required to ensure
that no overflow occurs when mapping 2n items to 2.4n
bins, according to Eq. (5) and Eq. (6).

7.2 Cuckoo Hashing
It was shown in [16] that Cuckoo hashing with a stash
of size s fails with probability O(n−s). The constants in
the big “O” notation are unclear, but it is obvious that
O(n−s)≤ n−(s−1) for sufficiently large values of n.

10
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s 211 212 213 214

0 1,068,592,289 1,070,826,935 1,072,132,187 1,072,845,430
1 4,994,200 2,861,137 1,592,951 891,497
2 147,893 52,038 16,404 4,840
3 7,005 1,647 274 56
4 407 62 8 1
5 28 5 0 0
6 2 0 0 0

Table 3: Required stash sizes s accumulated
over 230 Cuckoo hashing repetitions mapping
n ∈ {211,212,213,214} elements to 2.4n bins.

We would like to find the exact size of the stash that
ensures that the failure probability is smaller than 2−40.
We ran 230 repetitions of Cuckoo hashing, mapping n
items to 2.4n bins, for n ∈ {211,212,213,214}, and
recorded the stash size s that was needed for Cuckoo
hashing to be successful. Tab. 3 depicts the number of
repetitions where we required a stash of size s. From the
results we can observe that, to achieve 2−30 failure prob-
ability of Cuckoo hashing, we would require a stash of
size s = 6 for n = 211, s = 5 for n = 212, and s = 4 for
both n = 213 and n = 214 elements.

However, in our experiments we need the stash sizes
for larger values of n ≥ 214 to achieve a Cuckoo hashing
failure probability of 2−40. To obtain the failure proba-
bilities for larger values of n, we extrapolate the results
from Tab. 3 using linear regression and illustrate the re-
sults in Fig. 1. We observe that the stash size for achiev-
ing a failure probability of 2−40 is drastically reduced for
higher values of n: for n = 216 we need a stash of size
s = 4, for n = 220 we need s = 3, and for n = 224 we
need s = 2. This observation is in line with the asymp-
totic failure probability of O(n−s).

Finally, we extrapolate the required stash sizes s to
achieve a failure probability of 2−40 for smaller values of
n ∈ {28,212} and give the results together with the stash
sizes for n ∈ {216,220,224} in Tab. 4.

number of elements n 28 212 216 220 224

stash size s 12 6 4 3 2

Table 4: Required stash sizes s to achieve 2−40 error
probability when mapping n elements into 2.4n bins.

8 Evaluation

We report on our empirical performance evaluation of
Circuit-Phasing (§5) and OT-Phasing (§6) next. We eval-
uate their performance separately (§8.1 and §8.2), since
special purpose protocols for set intersection were shown
to greatly outperform circuit-based solutions in [22].
(The latter are nevertheless of independent interest be-
cause their functionality can be easily modified.)
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Figure 1: Error probability when mapping n elements to
2.4n bins using 2-way Cuckoo hashing for stash sizes
1 ≤ s ≤ 6. The solid lines correspond to actual measure-
ments, the dashed lines were extrapolated using linear
regression. Both axes are in logarithmic scale.

Benchmarking Environment We consider two
benchmark settings: a LAN setting and a WAN setting.
The LAN setting consists of two desktop PCs (Intel
Haswell i7-4770K with 3.5 GHz and 16GB RAM)
connected by Gigabit LAN. The WAN setting consists
of two Amazon EC2 m3.medium instances (Intel Xeon
E5-2670 CPU with 2.6 GHz and 3.75 GB RAM)
located in the US east coast (North Virginia) and Europe
(Frankfurt) with an average bandwidth of 50 MB/s and
average latency (round-trip time) of 96 ms.

We perform all experiments for a symmetric security
parameter κ = 128-bit and statistical security parameter
λ = 40 (cf. §2.1), using a single thread (except for GMW,
where we use two threads to compute OT extension), and
average the results over 10 executions. In our experi-
ments, we frequently encountered outliers in the WAN
setting with more than twice of the average run-time, for
which we repeated the execution. The resulting variance
decreased with increasing input set size; it was between
0.5%−8.0% in the LAN setting and between 4%−16%
in the WAN setting. Note that all machines that we per-
form our experiments on are equipped with the AES-NI
extensions which allows for very fast AES evaluation.

Implementation Details We instantiate the random or-
acle, the function for hashing into smaller domains,
and the correlation-robust function in OT extension with
SHA256. We instantiate the pseudo-random generator
using AES-CTR and the pseudo-random permutation in
the server-aided protocol of [15] using AES. To com-
pute the

(2µ

1

)
-OTt

� functionality, we use the random 1-
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out-of-N OT extension of [17] and set µ = 8, i.e., use
N = 256, since this was shown to result in minimal over-
head in [22]. We measure the times for the function eval-
uation including the cost for precomputing the OT exten-
sion protocol and build on the OT extension implementa-
tion of [2]. Our OT-Phasing implementation is available
online at https://github.com/encryptogroup/PSI
and our Circuit-Phasing implementation is available as
part of the ABY framework of [5] at https://github
.com/encryptogroup/ABY.

For simple hashing we use the maximum bin sizes that
were computed using Equation 5 in §7.1 (cf. Tab. 2). For
Cuckoo hashing, we set ε = 0.2 and map n elements to
2(1+ε)n bins for 2-way Cuckoo hashing and to (1+ε)n
bins for 3-way Cuckoo hashing with a stash size accord-
ing to Tab. 4. The only exception for the stash size are
the experiments with different set sizes in §8.2.2, where
we use no stash for our OT-Phasing protocol.

For OT-based PSI [22] and OT-Phasing, where the
performance depends on the bit-length of elements, we
hash the σ -bit input elements into a � = λ + log2(n1)+
log2(n2)-bit representation using SHA256 if σ > �.

We use a garbled circuits implementation with most
recent optimizations (cf. full version [21] for details).

We emphasize that all implementations are done in
the same programming language (C++), use the same
underlying libraries for evaluating cryptographic opera-
tions (OpenSSL for symmetric cryptography and Miracl
for elliptic curve cryptography), perform the plaintext-
intersection of elements using a standard hash map, are
all executed using a single thread (except for the GMW
implementation which uses two threads), and run in the
same benchmarking environment.

8.1 Generic Secure Computation-based
PSI Protocols

For the generic secure computation-based PSI protocols,
we perform the evaluation on a number of elements vary-
ing from 28 to 220 and a fixed bit-length of σ = 32-
bit. For n = 220 all implementations, except Circuit-
Phasing with GMW, exceeded the available memory,
which is due to the large number of AND gates in the
SCS circuit (estimated 2 billion AND gates) and the re-
quirement to represent bits as keys for Circuit-Phasing
with Yao, where storing only the input wire labels to
the circuit requires 1 GB. A more careful implementa-
tion, however, could allow the evaluation of these cir-
cuits. We compare the sort-compare-shuffle (SCS) cir-
cuit of [12] and its depth-optimized version of [22], with
Circuit-Phasing (§5), by evaluating both constructions
using Yao’s garbled circuits protocol [25] and the GMW
protocol [11] in the LAN and WAN setting. We use the
size-optimized version of the SCS circuit in Yao’s gar-

bled circuit and the depth-optimized version of the cir-
cuit in the GMW protocol (cf. §3.4). For the evalua-
tion in Circuit-Phasing, we set the maximum bin size in
simple hashing according to Equation 5 (cf. Tab. 2, set
ε = 0.2, set the stash size according to Tab. 4, and assume
n = n1 = n2. The run-time of Circuit-Phasing would in-
crease linear in the bin size maxβ , while the stash size s
would have a smaller impact on the total run-time as the
concrete factors are smaller.

Run-Time (Tab. 5) Our main observation is that
Circuit-Phasing outperforms the SCS circuit of [12] for
all parameters except Yao’s garbled circuits with small
set sizes n = 28. In this case, the high stash size of s = 12
greatly impacts the run-time of Circuit-Phasing. When
evaluated using Yao’s garbled circuits, Circuit-Phasing
outperforms the SCS circuit by a factor of 1-2, and when
evaluated using GMW it outperforms SCS by a factor
of 2-5. Furthermore, the run-time for Circuit-Phasing
grows slower with n than for the SCS circuit for all set-
tings except for GMW in the WAN setting. There, the
run-time of the SCS circuit grows slower than that of
Circuit-Phasing. This can be explained by the high num-
ber of communication rounds of the SCS based protocol,
which are slowly being amortized with increasing val-
ues of n. The slower increase of the run-time of Circuit-
Phasing with increasing n is due to the smaller increase
of the bin size maxβ ∈O( lnn

ln lnn ) vs. O(logn) for the SCS
circuit, and the use of permutation-based hashing, which
reduces the bit-length of the inputs to the circuit. Note
that our Yao’s garbled circuits implementation suffers
from similar performance drawbacks in the WAN setting
as our GMW implementation, although being a constant
round protocol. This can be explained by the pipelining
optimization we implement, where the parties pipeline
the garbled circuits generation and evaluation. The per-
formance drawback could be reduced by using an im-
plementation that uses independent threads for sending /
receiving.

Communication (Tab. 6) Analogously to the run-time
results, Circuit-Phasing improves the communication of
the SCS circuit by factor of 1-4 and grows slower with
increasing values of n. The improvement of the round
complexity, which is mostly important for GMW, is even
more drastic. Here, Circuit-Phasing outperforms the SCS
circuit by a factor of 16-38. Note that the round complex-
ity of Circuit-Phasing only depends on the bit-length of
items and is independent of the number of elements.

8.2 Special Purpose PSI Protocols
For the special purpose PSI protocols we perform the
experimental evaluation for equally sized sets n1 =

12
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Protocol LAN WAN
n = 28 n = 212 n = 216 n = 220 n = 28 n = 212 n = 216 n = 220

Yao’s garbled circuits [25]
SCS [12] 309 3,464 63,857 — 2,878 20,184 301,512 —
Circuit-Phasing §5 376 3,154 39,785 — 3,004 17,133 178,865 —

Goldreich-Micali-Wigderson [11]
SCS [12] 626 2,175 38,727 — 11,870 21,030 218,378 —
Circuit-Phasing §5 280 1,290 14,149 168,397 2,681 8,681 81,534 846,510

Table 5: Run-time in ms for generic secure PSI protocols in the LAN and WAN setting on σ = 32-bit elements.

Protocol n = 28 n = 212 n = 216 n = 220 Asymptotic
Number of AND gates
SCS [12] 229,120 5,238,784 107,479,009 ∗2,000,000,000 σ(3n log2(n)+4n)
Circuit-Phasing §5 297,852 3,946,776 49,964,540 600,833,968 (σ − log2(n)−2)(6(1+ ε)n lnn

ln lnn + sn)

Communication in MB for Yao’s garbled circuits [25] and GMW [11]
SCS [12] 7 169 3,485 ∗64,850 2κσ(3n log2(n)+4n)
Circuit-Phasing §5 9 122 1,550 18,736 2κ(σ − log2(n)−2)(6(1+ ε)n lnn

ln lnn + sn)

Number of communication rounds for GMW [11]
SCS [12] 85 121 157 193 (log2(σ)+4) log2(2n)+4
Circuit-Phasing §5 5 5 5 5 log2(σ)

Table 6: Number of AND gates, concrete communication in MB, round complexity, and failure probability for generic
secure PSI protocols on σ = 32-bit elements. Numbers with ∗ are estimated.

n2 (§8.2.1) and differently sized sets n2 � n1 (§8.2.2),
for set sizes ranging from 28 to 224 in the LAN setting
and from 28 to 220 in the WAN setting.

We compare OT-Phasing (§6) to the original OT-based
PSI protocol of [22], the naive hashing solution (§3.1),
the semi-honest server-aided protocol of [15] (§3.2), and
the Diffie-Hellmann (DH)-based protocol of [18] (§3.3)
using elliptic curves. Note that the naive hashing proto-
col and the server-aided protocol of [15] have different
security assumptions and cannot directly be compared to
the remaining protocols. We nevertheless included them
in our comparison to serve as a base-line on the efficiency
of PSI. For the protocol of [15], we run the server rou-
tine that computes the intersection between the sets on
the machine located at the US east coast (North Virginia)
and the server and client routine on the machine in Eu-
rope (Frankfurt). For the original OT-based PSI and OT-
Phasing, we give the run-time and communication for
three bit-lengths: short σ = 32 (e.g., for IPv4 addresses),
medium σ = 64 (e.g., for credit card numbers), and long
σ = 128 (for set intersection between arbitrary inputs).

Note that the OT-based PSI protocol of [22] and our
OT-Phasing protocol both evaluate public-key cryptogra-
phy during the base-OTs, which dominates the run-time
for small sets. However, these base-OTs only need to
be computed once and can be re-used over multiple ses-
sions. In the LAN setting, the average run-time for com-
puting the 256 base-OTs was 125 ms while in the WAN
setting the run-time was 245 ms. Nevertheless, our re-
sults all contain the time for the base-OTs to provide an
estimation of the total run-time.

8.2.1 Experiments with Equal Input Sizes

In the experiments for input sets of equal size n= n1 = n2
we set n ∈ {28,212,216,220,224} in the LAN setting and
n ∈ {28,212,216,220} in the WAN setting. Note that for
larger bit-lengths σ ≥ 64 and for n = 224 elements, the
memory needed for the OT-based PSI protocol of [22]
exceeded the available memory.

Run-Time (Tab. 7) As expected, the lowest run-time
for the equal set-size experiments is achieved by the (in-
secure) naive hashing protocol followed by the server-
aided protocol of [15], which has around twice the run-
time. In the LAN setting, however, for short bit-length
σ = 32, our OT-Phasing protocol nearly achieves the
same run-time as both of these solutions (which are in
a different security model). In particular, when comput-
ing the intersection for n= 224 elements, our OT-Phasing
protocol requires only 3.5 more time than the naive hash-
ing protocol and 2.5 more time than the server-aided pro-
tocol. In comparison, for the same parameters, the origi-
nal OT-based PSI protocol of [22] has a 68 times higher
run-time than the naive hashing protocol, and the DH-
based ECC protocol of [18] has a four orders of magni-
tude higher run-time compared to naive hashing.

While the run-time of our OT-Phasing protocol in-
creases with the bit-length of elements, for σ = 128-bit
its run-time is only 15 times higher than the naive hash-
ing protocol, and is still nearly two orders of magnitude
better than the DH-based ECC protocol.

Overall, in the LAN setting and for larger sets (e.g.,
n = 224), the run time of OT-Phasing is 20x better than
that of the original OT-based PSI protocol of [22], and
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Setting LAN WAN
Protocol n = 28 n = 212 n = 216 n = 220 n = 224 n = 28 n = 212 n = 216 n = 220

Naive Hashing(∗) §3.1 1 4 48 712 13,665 97 111 558 3,538
Server-Aided(∗) [15] 1 5 78 1,250 20,053 198 548 2,024 7,737
DH-based ECC [18] 231 3,238 51,380 818,318 13,065,904 628 10,158 161,850 2,584,212

Bit-length σ = 32-bit
OT PSI [22] 184 216 3,681 62,048 929,685 957 1,820 9,556 157,332
OT-Phasing §6 179 202 437 4,260 46,631 912 1,590 3,065 14,567

Bit-length σ = 64-bit
OT PSI [22] 201 485 7,302 125,697 — 977 1,873 18,998 315,115
OT-Phasing §6 180 240 865 10,128 137,036 1,010 1,780 5,009 29,387

Bit-length σ = 128-bit
OT PSI [22] 201 485 8,478 155,051 — 980 1,879 21,273 392,265
OT-Phasing §6 181 240 915 13,485 204,593 1,010 1,780 5,536 37,422

Table 7: Run-time in ms for protocols with n = n1 = n2 elements. (Protocols with (∗) are in a different security model.)

Protocol n = 28 n = 212 n = 216 n = 220 n = 224 Asymptotic [bit]

Naive Hashing(∗) §3.1 0.01 0.03 0.56 10.0 176.0 n1�

Server-Aided(∗) [15] 0.01 0.16 2.5 40.0 640.0 (n1 +n2 + |X ∩Y |)κ
DH-based ECC [18] 0.02 0.28 4.56 74.0 1,200.0 (n1 +n2)ϕ +n1�

Bit-length σ = 32-bit
OT PSI [22] 0.09 1.39 22.58 367.20 5,971.20 0.6n2σκ +6n1�

OT-Phasing §6 0.06 0.73 8.74 136.8 1,494.4 2.4n2κ(� σ−�log2(1.2n2)�
8 �)+(3+ s)n1�

Bit-length σ = 64-bit
OT PSI [22] 0.14 2.59 41.78 674.4 10,886.4 0.6n2κ ∗min(�,σ)+6n1�

OT-Phasing §6 0.09 1.34 18.34 290.4 3,952.0 2.4n2κ(� min(�,σ)−log2(n2)
8 �)+(3+ s)n1�

Bit-length σ = 128-bit
OT PSI [22] 0.14 2.59 46.58 828.0 14,572.8 0.6n2�κ +6n1�

OT-Phasing §6 0.09 1.34 20.74 367.2 5,795.2 2.4n2κ(� �−log2(n2)
8 �)+(3+ s)n1�

Table 8: Communication in MB for PSI protocols with n = n1 = n2 elements. �= λ + log2(n1)+ log2(n2). Assuming
intersection of size 1/2 ·n for TTP-based protocol. (Protocols with (∗) are in a different security model.)

60-278x better than that of the DH-ECC protocol of [18].
When switching to the WAN setting, the run-times of

the protocols are all increased by a factor of 2-6. Note
that the faster protocols suffer from a greater perfor-
mance loss (factors of 5 and 6 for 220 elements, for the
naive hashing protocol and server-aided protocol) than
the slower protocols (factor 3 for the DH-based and our
OT-Phasing protocol and 2.5 for the OT-based PSI pro-
tocol of [22]). This difference can be explained by the
greater impact of the high latency of 97 ms on the run-
time of the protocols. The relative performance among
the protocols remains similar to the LAN setting.

Communication (Tab. 8) The amount of communica-
tion performed during protocol execution is often more
limiting than the required computation power, since the
latter can be scaled up more easily by using more ma-
chines. The naive hashing approach has the lowest com-
munication among all protocols, followed by the server-
aided solution of [15]. Among the secure two-party PSI
protocols, the DH-based ECC protocol of [18] has the
lowest communication. In the setting for n = 224 el-
ements of short bit-length σ = 32 bit, our OT-Phasing
protocol nearly achieves the same complexity as the
DH-based ECC protocol, which is due to the use of

permutation-based hashing. This is quite surprising, as
protocols that use public-key cryptography, in particular
elliptic curves, were believed to have much lower com-
munication complexity than protocols based on other
cryptographic techniques.

In comparison to the original OT-based PSI protocol
of [22], OT-Phasing reduces the communication for all
combinations of elements and bit-lengths by factor 2.5 -
4. We also observe that OT-Phasing reduces the impact
when performing PSI on elements of longer bit-length.
In fact, it even has a lower communication for σ = 128
than the original OT-based PSI protocol has for σ = 32.

8.2.2 Experiments with Different Input Sizes

For examining the setting where the two parties have
different input sizes, we set n1 ∈ {216,220,224} and
n2 ∈ {28,212} and run the protocols on all combinations
such that n2 � n1. Note that we excluded the origi-
nal OT-based PSI protocol of [22] from the compari-
son, since the bin size maxβ becomes large when β � n
and the memory requirement when padding all bins to
maxβ elements quickly exceeded the available memory.
In this setting, unlike the equal input sizes experiments
in §8.2.1, we use h = 2 hash functions instead of h = 3,
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Setting LAN WAN

Protocol n2 = 28 n2 = 212 n2 = 28 n2 = 212

n1 = 216 n1 = 220 n1 = 224 n1 = 216 n1 = 220 n1 = 224 n1 = 216 n1 = 220 n1 = 216 n1 = 220

Naive Hashing(∗) §3.1 33 464 7,739 35 466 7,836 560 2,775 562 2,797
Server-Aided(∗) [15] 74 680 8,935 75 696 8,965 629 2,923 731 2,951
DH-based ECC [18] 28,387 421,115 6,848,215 29,810 422,712 6,849,534 112,336 1,743,400 111,642 1,753,595

OT-Phasing §6
Bit-length σ = 32 360 906 9,465 369 2,949 12,634 2,139 4,780 3,143 11,399
Bit-length σ = 64 555 1,506 15,789 581 6,146 22,368 3,349 6,879 3,923 20,345
Bit-length σ = 128 571 1,942 21,843 649 7,291 31,932 3,352 7,999 4,391 23,209

Table 9: Run-time in ms for PSI protocols with n2 � n1 elements. (Protocols with (∗) are in a different security model.)

Protocol n2 = 28 n2 = 212
Asymptotic [bit]

n1 = 216 n1 = 220 n1 = 224 n1 = 216 n1 = 220 n1 = 224

Naive Hashing(∗) §3.1 0.5 8.5 144.0 0.5 9.0 152.0 n1�

Server-Aided(∗) [15] 1.0 16.0 256.0 1.1 16.1 256.1 (n1 +n2 + |X ∩Y |)κ
DH-based ECC [18] 2.5 40.5 656.0 2.7 41.1 664.1 (n1 +n2)ϕ +n1�

OT-Phasing §6
Bit-length σ = 32 1.1 18.1 288.1 2.0 18.9 320.9 4.8n2κ(� σ−�log2(2.4n2)�

8 �)+2n1�

Bit-length σ = 64 1.1 18.1 288.1 3.2 20.1 322.1 4.8n2κ(� σ−�log2(2.4n2)�
8 �)+2n1�

Bit-length σ = 128 1.1 18.2 288.2 3.5 20.4 322.7 4.8n2κ(� σ−�log2(2.4n2)�
8 �)+2n1�

Table 10: Communication in MB for special purpose PSI protocols with n2 � n1 elements. � = λ + log2(n1) +
log2(n2). Assuming intersection of size 1/2 · n2 for the TTP-based protocol. (Protocols with (∗) are in a different
security model.)

since this results in less total computation and commu-
nication (cf. §6.2). Since we use h = 2 hash functions,
we also increase the number of bins from 1.2n2 to 2.4n2.
Furthermore, we do not use a stash for our OT-Phasing
protocol with different input sizes, since the stash would
greatly increase the overall communication. However,
not using a stash reveals some information on P2’s set
(cf. §7). We show how to secure our protocol at a much
lower cost by increasing the number of bins in the full
version [21].

Run-Time (Tab. 9) Similar to the results for equal set
sizes, the naive hashing protocol is the fastest protocol
for all parameters. The server-aided protocol of [15]
is the second fastest protocol but it scales better than
the naive hashing protocol for increasing number of ele-
ments. The best scaling protocol is our OT-Phasing pro-
tocol. It achieves the same performance as the server-
aided protocol for n2 = 28, n1 = 224 with short bit-length
σ = 32. For n1 = 224 its run-time is at most twice that of
the server-aided protocol in both network settings.

When switching to the WAN setting, the run-times of
all protocols are increased by a factor 4-6 while the rela-
tive performance between the protocols remains similar,
analogously to the equal set size experiments.

Communication (Tab. 10) As expected, the naive
hashing solution again has the lowest communica-
tion overhead. Surprisingly, our OT-Phasing protocol
achieves nearly the same communication as the server-

aided protocol of [15] and has only two times the com-
munication of the naive hashing protocol for all bit-
lengths. Furthermore, our OT-Phasing protocol requires
a factor of 2-3 less communication than the DH-based
ECC protocol of [18] for nearly all parameters. The low
communication of our OT-Phasing protocol for unequal
set sizes is due to the low number of OTs performed.
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Abstract

Secure two-party computation (TPC) based on Yao’s gar-
bled circuits has seen a lot of progress over the past
decade. Yet, compared with generic computation, TPC
is still multiple orders of magnitude slower. To improve
the efficiency of secure computation based on Yao’s
protocol, we propose a practical parallelization scheme.
Its advances over existing parallelization approaches are
twofold. First, we present a compiler that detects paral-
lelism at the source code level and automatically trans-
forms C code into parallel circuits. Second, by switching
the roles of circuit generator and evaluator between both
computing parties in the semi-honest model, our scheme
makes better use of computation and network resources.
This inter-party parallelization approach leads to signifi-
cant efficiency increases already on single-core hardware
without compromising security. Multiple implementa-
tions illustrate the practicality of our approach. For in-
stance, we report speed-ups of up to 2.18 on 2 cores and
4.36 on 4 cores for the example application of parallel
modular exponentiation.

1 Introduction

In the thirty years since Yao’s seminal paper [34], Secure
Multiparty Computation (MPC) and Secure Two-Party
Computation (TPC) have transitioned from purely theo-
retic constructions to practical tools. In TPC, two parties
jointly evaluate a function f over two inputs x and y pro-
vided by the parties in such a way that each party keeps
its input unknown to the other. TPC enables the con-
struction of privacy-enhancing technologies which pro-
tect sensitive data during processing steps in untrusted
environments.

Many privacy enhancing implementations use the ap-
proach of “garbled circuits” introduced by Yao in the
1980s, where f is transformed into a Boolean circuit Cf
and encrypted in a special way. Beginning with the real-

ization of the first practical implementation of Yao’s pro-
tocol by Fairplay in 2004 [27], theoretical and practical
advances, including Garbled-row-reduction [31], free-
XOR [21], garbling from fixed-key blockciphers [5] and
others have led to a significant speed-up of Yao’s original
protocol. Furthermore, high-level language compilers
[14, 22, 23] that demonstrate the usability of Yao’s pro-
tocol have been developed. Nowadays, millions of gates
can be garbled on off-the-shelf hardware within seconds.
Nonetheless, compared with generic computation, Yao’s
garbled circuits protocol is still multiple orders of mag-
nitudes slower. Even worse, recently Zahur et al. [36]
indicated that the information theoretic lower bound on
the number of ciphertexts for gate-by-gate garbling tech-
niques has been reached. Hence, further simplification
of computations is unlikely.

Observing the ongoing trend towards parallel hard-
ware, e.g., many-core architectures on a single chip, we
investigate whether parallelism within Yao’s protocol tar-
geting security against semi-honest adversaries can be
exploited to further enhance its performance. To the
best of our knowledge, all previous parallelization efforts
have focused on Yao’s protocol secure against malicious
adversaries, which is easily parallelizable by “design”, or
explored the parallelization possibilities of semi-honest
Yao to only limited extent (see § 2) by using manually
annotated parallism in handcrafted circuits.

Therefore, in this paper we systematically look at three
different levels of automatic parallelization that have the
potential to significantly speed up applications based on
secure computation:

Fine-grained parallelization (FGP). As the first step,
we observe that independent gates, i.e., gates that do not
provide input to each other, can be garbled and evaluated
in parallel. Therefore, a straight forward parallelization
approach is to garble gates in parallel that are located at
the same circuit depth, because these are guaranteed to be
independent. We refer to this approach as fine-grained
parallelization (FGP) and show that this approach can
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be efficient for circuits of suitable shape. For example,
when securely computing a matrix-vector multiplication
with 3 million gates, we report a speed-up of 2.4 on 4
cores and 7.5 on 16 cores. Nevertheless, the achievable
speed-up heavily depends on circuit properties such as
the average circuit width, which can be comparably low
even for larger problems when compiling from a high-
level language, as we show.
Coarse-grained parallelization (CGP). To overcome
the limitations of FGP for inadequately shaped circuits,
we make use of high-level circuit descriptions, such as
program blocks, to automatically detect larger coherent
clusters of gates that can be garbled independently. We
refer to this parallelization as coarse-grained paralleliza-
tion (CGP). As one of our main contributions, we ex-
tend the CBMC-GC compiler of Holzer et al. [14], which
translates functionalities described in ANSI-C into cir-
cuits, with the capability to detect concurrency at the
source code level. This enables the compilation of par-
allel circuits. Hence, one large circuit is automatically
divided into multiple smaller, independently executable
circuits. We show that these circuits lead to more scal-
able and faster execution on parallel hardware. For
example, the matrix-vector multiplication circuit, men-
tioned above, scales with a speed-up of 3.9 on 4 cores
and a speed-up of 12 on 16 cores, thus, significantly out-
performing FGP. Furthermore, integrating automatic de-
tection of parallel regions into a circuit compiler gives
potential users the opportunity to exploit parallelism
without knowledge of the internals of Yao’s garbled cir-
cuits and relieves them of writing parallel circuits.
Inter-party parallelization (IPP). Finally, we present
an extension to Yao’s garbled circuit protocol secure
against semi-honest adversaries to balance the compu-
tation costs of both parties. In the original protocol (us-
ing the defacto standard point-and-permute optimization
[4, 27]), the garbling party has to perform four times the
cryptographic work than the evaluating party. Hence, as-
suming similar computational capabilities the overall ex-
ecution time is dominated by the garbling costs. Given
the identified coarse-grained parallelism, the idea of our
protocol is to divide the work in a symmetric manner be-
tween both parties by switching the roles of the garbling
and evaluating party to achieve better computational re-
source utilization without compromising security in the
semi-honest model. This approach can greatly reduce the
overall runtime. By combining CGP and IPP, we report a
speed-up over a serial implementation of 2.14 when us-
ing 2 cores and a speed-up of 4.34 when using 4 cores
for the example application of a modular exponentiation.

Summarizing our results, the performance of Yao’s
protocols secure against semi-honest adversaries can sig-
nificantly be improved by using automatic paralleliza-
tion.

Outline. Next, we discuss related work. An introduc-
tion of the used primitives and tools is given in § 3. In
§ 4 we discuss FGP, CGP, and present our parallel cir-
cuit compiler. Moreover, we introduce the IPP protocol
in § 5. In § 6 we evaluate our approaches on practical
example applications.

2 Related Work

We give a short overview on parallelization approaches
for Yao’s garbled circuits in the semi-honest model, be-
fore discussing solutions in the malicious model. Fur-
thermore, we discuss parallel compilation approaches for
multi-party computation.

Semi-honest model. Husted et al. [17] showed a CPU
and GPU parallelization with significant speed-ups on
both architectures. Their approach is based on the idea of
integrating an additional encryption layer between every
circuit level to enable efficient fine-grained paralleliza-
tion. However, their approach significantly increases the
communication costs by sending one additional cipher-
text per XOR gate. Moreover, bandwidth saving opti-
mizations, such as garbled row reduction, are incompati-
ble. This is undesirable, as network bandwidth is already
a significant bottleneck.

Barni et al. [3] proposed a parallelization scheme simi-
lar to ours, which distinguishes between fine- and coarse-
grained parallelism. Their approach showed speed-ups
for two example applications. However, their coarse-
grained approach requires manual user interaction to an-
notate parallelism in handcrafted circuits. Unfortunately,
their timing results are hardly comparable with other
work, due to the missing implementation of concurrent
circuit generation and evaluation, which is required to
garble larger circuits.

Most recently, Nayak et al. [30] presented an orthog-
onal and complementary work to ours. Their framework
GraphSC supports the parallel computation of graph ori-
ented applications using RAM based secure computa-
tion. GraphSC shows very good scalability for data in-
tensive computations. Parallelism has to be annotated
manually and has to follow the Pregel [26] pattern. To
exploit further parallelism within different computing
nodes of GraphSC, the ideas presented in this work could
be exploited.

Malicious model. The “Billion gates” framework by
Kreuter et al. [23] was designed to execute large circuits
on cluster architectures. The framework supports paral-
lelization in the malicious model using message passing
technologies. Frederiksen et al. [11] also addressed the
malicious model, yet they targeted the GPU as execu-
tion environment. In both cases, the protocol is based
upon the idea of cut-and-choose, which consists of mul-
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tiple independent executions of Yao’s protocol secure
against semi-honest adversaries. This independence en-
ables naive parallelization up to the constant number of
circuits required for cut-and-choose. Unfortunately, this
degree of parallelism cannot be transferred to the semi-
honest setting considered in this paper.

Parallel compiler. Zhang et al. [37] presented a com-
piler for distributed secure computation with applications
for parallelization. Their compiler converts manually an-
notated parallelism in an extension of C into secure im-
plementations. Even so the compiler is targeting MPC
and not TPC, it could be used as an additional front-end
to the ideas presented in this work.

In summary, up to now there is no work that ad-
dresses parallelization of Yao’s protocol in the semi-
honest model without making compromises towards the
communication costs or relying on manually annotated
parallism in handcrafted circuits.

3 Preliminaries

In this section, we give a short introduction into existing
tools and techniques required for our parallelization ap-
proach. First, we give a brief overview of Yao’s protocol
(§ 3.1). Next, we introduce the compiler CBMC-GC that
transfers ANSI-C to garbled circuits (§ 3.2), followed by
an introduction of the Par4all framework that detects par-
allelism on source code level (§ 3.3).

3.1 TPC and Yao’s protocol
In the following paragraphs, we give a short introduc-
tion into Yao’s TPC protocol. For a complete descrip-
tion, we refer the reader to the detailed work of Lindell
and Pinkas [25].

Semi-honest adversary model. In this work, we use
the semi-honest (passive) adversary model. TPC proto-
cols secure against semi-honest adversaries ensure cor-
rectness and guarantee that the participating parties do
not learn more about the other party’s input than they
could already derive from the observed output of the joint
computation. The semi-honest model is opposed the ma-
licious model, where the adversary is allowed to actively
violate the protocol. TPC protocols in the semi-honest
model are used for many privacy-preserving applications
and are therefore interesting on their own. A discussion
on example applications is given in § 5.3.

Oblivious transfers. An Oblivious transfer protocol
(OT) is a protocol in which a sender transfers one of
multiple messages to a receiver, but it remains oblivious
which piece has been transferred. In this paper, we use
1-out-of-2 OTs, where the sender inputs two l-bit strings
m0,m1 and the receiver inputs a bit c ∈ {0,1}. At the

end of the protocol, the receiver obliviously receives mc
such that neither the sender learns the choice c nor the
receiver learns anything about the other message m1−c.
In 2003 Ishai et al. [18] presented the idea of OT Exten-
sion, which significantly reduces the computational costs
of OTs for most interesting applications of TPC. We use
OTn

l to denote a number n of 1-out-of-2 oblivious trans-
fers with message bit length l.
Yao’s protocol. Yao’s garbled circuits protocol, pro-
posed in the 1980s [35], is a TPC protocol secure in the
semi-honest model. The protocol is executed by two par-
ties PA, PB and operates on functionality descriptions in
form of Boolean circuits denoted with Cf . A Boolean cir-
cuit consists of n Boolean gates, two sets of inputs wires
(one for each party), and a set of output wires. A gate is
described by two input wires wl ,wr, one output wire wo,
and a Boolean function γ = g(α,β ) mapping two input
bits to one output bit. The output of each gate can be
used as input to multiple subsequent gates.

During protocol execution, one party becomes the cir-
cuit generator (the garbling party), the other the circuit
evaluator. The generator initializes the protocol by as-
signing each wire wi in the circuit two random labels w0

i
and w1

i of length κ (the security parameter) representing
the respective values 0 and 1. For each gate the genera-
tor computes a garbled truth table. Each table consists of
four encrypted entries of the output wire labels wγ

o. These
are encrypted according to the gate’s Boolean functional-
ity using the input wire labels wα

l and wβ
r as keys. Thus,

an entry in the table is encrypted as

Ewα
l
(E

wβ
r
(wg(α,β )

o )).

After their creation, the garbled tables are randomly per-
muted and sent to the evaluator, who, so far, is unable
to decrypt a single row of any garbled table due to the
random choice of wire labels.

To initiate the circuit evaluation, the generator sends
its input bits x in form of input wire labels to the evalu-
ator. Moreover, the evaluator’s input y is transferred via
an OT m

κ protocol with the generator being the OT sender
and m being the number of input bits. After the OT step,
the evaluator is in possession of the garbled circuit and
one input label per input wire. With this information the
evaluator is able to iteratively decrypt the circuit from
input wires to output wires. Once all gates are evalu-
ated, all output wire labels are known to the evaluator. In
the last step of the protocol, the generator sends an out-
put description table (ODT) to the evaluator, containing
a mapping between output label and actual bit value. The
decrypted output is then shared with the generator.
Optimizations. Yao’s original protocol has seen multi-
ple optimizations in the recent past. Most important are
pipe-lining [15], which is nescessary for the evaluation

3
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of larger circuits and a faster online execution of Yao’s
protocol, garbled-row-reduction (GRR) [31], which re-
duces the number of ciphertexts that are needed to be
transferred per gate, and free-XOR [21], which allows
to evaluate linear gates (XOR/XNOR) essentially for
“free” without any encryption or communication costs.
Most recently, Zahur et al. [36] presented an communi-
cation optimal garbling scheme, which only requires two
ciphertexts per non-linear gate while being compatible
with free-XOR.

3.2 CBMC-GC

In 2012, Holzer et al. [14] presented the first compiler for
a large subset of C to garbled circuits, named CBMC-
GC. The compiler unrolls all loops and recursive state-
ments present in the input program up to a given or stati-
cally determined bound. Afterwards, each statement is
transformed to a Boolean formula preserving the bit-
precise semantics of C. The Boolean formula is then
translated into a circuit, which is optimized for Yao’s gar-
bled circuits [10].

The only difference between C code and code for TPC
is a special naming convention introduced by CBMC-
GC. Listing 1 shows example source code for the mil-
lionaires’ problem. The shown procedure is a standard
C procedure, where only the input and output variables
are specifically marked as designated input of party PA
or PB (Lines 2 and 3) or as output (Line 4). Aside from
this naming convention, arbitrary C computations are al-
lowed to produce the desired result, in this case a simple
comparison (Line 5).

1 void millionaires () {

2 int INPUT_A_income;

3 int INPUT_B_income;

4 int OUTPUT_result = 0;

5 if (INPUT_A_income > INPUT_B_income)

6 OUTPUT_result = 1;

7 }

Listing 1: CBMC-GC Code for Yao’s Millionaires’ Problem.

3.3 Automatic source code parallelization

In 2012, Amini et al. [1] presented Par4all, an automatic
parallelizing and optimizing compiler for C. It was de-
veloped to integrate several compilation tools into one
single powerful compiler. Par4all is based on the Pips [6]
source-to-source compiler infrastructure that detects par-
allelism and uses the POCC [32] polyhedral loop opti-
mizer to perform memory access optimizations. Par4all
is capable of producing parallel OpenMP [7], Cuda and
OpenCL code. Par4all operates on any ANSI-C code
as input, automatically detects parallel control flow and

either annotates or exports parallel regions. Annota-
tions are realized with the OpenMP language, parallel
executable kernels for Cuda/OpenCL are exported using
static code analysis techniques. In this work, we mainly
build upon the OpenMP output.

4 Parallelizing of Yao’s Garbled Circuits

To exploit parallelism in Yao’s protocol, groups of gates
that can be garbled independently need to be identified.
Independent gates can be garbled in parallel by the gen-
erator, as well as evaluated in parallel by the evaluator.
However, detecting independent, similar sized groups of
gates is known as the NP-hard graph partitioning prob-
lem [28]. The common approach to circumvent the ex-
pensive search for an optimal solution is to use heuris-
tics. In this section, we first discuss sequential and paral-
lel composition of functionalities (§ 4.1) and show how
circuits can be garbled in parallel (§ 4.2), before intro-
ducing the fine-grained parallelization heuristic (§ 4.3)
and the coarse-grained parallelization heuristic (§ 4.4).

4.1 Parallel and sequential decomposition

Throughout this paper, we consider functionali-
ties f (x,y) with two input bit strings x, y and an output
bit string o. Furthermore, we use Cf to denote the
circuit that represents functionality f . We refer to a
functionality f as sequentially decomposable into sub
functionalities f1 and f2 iff f (x,y) = f2( f1(x,y),x,y).

Moreover, we consider a functionality f (x,y) as
parallel decomposable into sub functionalities f1(x,y)
and f2(x,y) with non-zero output bit length, if a
bit string permutation σ f exists such that f (x,y) =
σ f ( f1(x,y)|| f2(x,y)), where || donates a bitwise concate-
nation operator. Thus, functionality f can directly be
evaluated by independent evaluation of f1 and f2. We
note that f1 and f2 do not necessarily have to be defined
over all bits of x and y. Depending on f they could share
none, some, or all input bits.

We use the operator � to express a parallel composi-
tion of two functionalities through the existence of a per-
mutation σ . Thus, we write f (x,y) = f1(x,y,) � f2(x,y)
if there exists a permutation σ f such that f (x,y) =
σ f ( f1(x,y)|| f2(x,y)).

We call a parallelization of f to be efficient if the cir-
cuit size (i.e., number of gates) of the parallelized func-
tionality is roughly equal to the circuit size of the se-
quential functionality: size(Cf ) ≈ size(Cf1)+ size(Cf2).
Due to the different garbling methods for linear and non-
linear gates in Yao’s protocol using the free-XOR tech-
nique, size(Cf ) is better measured by the number of non-
linear gates. Furthermore, we refer to a parallelization as
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symmetric if sub functionalities have almost equal circuit
sizes: size(Cf1)≈ size(Cf2).

Finally, we refer to functionalities that can be de-
composed into a sequential and a parallel part as mixed
functionalities. For example the functionality f (x,y) =
f3( f1(x,y) � f2(x,y),x,y) can first be decomposed se-
quentially in f3 and f1 � f2, where the latter part can then
be further decomposed in f1 and f2.

Without an explicit definition, we note that all defini-
tions can be extended from the dual case f1 and f2 to the
general case f1, f2, . . . , fn.

4.2 Parallel circuit creation and evaluation

A circuit that consists of annotated sequential and paral-
lel parts can be garbled in parallel as follows. Sequential
regions of a circuit can be garbled using standard tech-
niques by iterating topologically over all gates. Once a
parallel decomposable region of a circuit is reached, par-
allelization is applied. All independent sub circuits in
every parallel region can be garbled in any order by any
available thread (see Figure 1). We note that the gar-
bling order has no impact on the security [25]. After
every parallel region a synchronization between the dif-
ferent threads is needed to guarantee that all wire labels
for the next region of the circuit are computed. Multiple
subsequent parallel regions with different degrees of par-
allelism can be garbled, when ensuring synchronization
in-between.

The circuit evaluation can be parallelized in the same
manner. Sequential regions are computed sequentially,
parallel regions are computed in parallel by different
threads. After every parallel region a thread synchroniza-
tion is required to ensure data consistency.

When using pipe-lining the garbled tables have to be
transmitted in an identifiable order to ensure data con-
sistency between generator and evaluator. We propose
three different variants. First, all garbled tables can be
enriched with a numbering, e.g., an index, which allows
a unordered transfer to the evaluator. The evaluator is
then able to reconstruct the original order based on the
introduced numbering. This approach has the disadvan-
tage of an increased communication cost. The second
approach is that garbled tables are sent in a synchronized
and predefined order. This approach functions without
additional communication, yet can lead to an undesir-
able ‘pulsed’ communication pattern. The third approach
functions by strictly separating the communication chan-
nels for every sub circuit. This can either be realized by
multiplexing within the TPC framework or by exploiting
the capabilities of the underlying operating system. Due
to the aforementioned reasons, our implementation of a
parallel framework (presented in § 6.1) builds upon the
latter approach.

CPUcircuit 
generator

circuit 
evaluator

sync. transfer of labels

parallel
gates

n

n - 1
sync.

network

CPU CPU

CPU CPU

Figure 1: Interaction between a parallel circuit generator and
evaluator. The layer n of the presented circuit is garbled and
evaluated in parallel. The independent partitions of the circuit
can be garbled and evaluated by different threads in any order.

4.3 Fine-grained parallelism
A first heuristic to decompose a circuit into parallel
parts is the fine-grained gate level approach, described
in the following. Similar to the evaluation of a stan-
dard Boolean circuit, gates in garbled circuits are pro-
cessed in topological execution order. Gates provide in-
put to other gates and hence, can be ordered by the circuit
level (depth) when all their inputs are ready or the level
when their output is required for succeeding gates. Con-
sequently and as proposed by others [3, 17], gates on the
same level can be garbled in parallel. Thus, a circuit is
sequentially decomposable into different levels and each
level is further decomposable in parallel with a granular-
ity up to the number of gates. Figure 2 illustrates fine-
grained decomposition of a circuit into three levels L1,
L2 and L3.

To achieve an efficient distribution of gates onto
threads during protocol execution, it is useful to iden-
tify the circuit levels during the circuit compilation pro-
cess. Furthermore, a reasonable heuristic to symmetri-
cally distribute the workload onto all threads when using
the free-XOR optimization is to divide linear and non-
linear gates independently. Hence, each thread gets as-
signed the same number of linear and non-linear gates
to garble. Therefore, we extended the circuit compiler
CBMC-GC with the capability to mark levels and to
strictly separate linear from non-linear gates within each
level. This information is stored in the circuit descrip-
tion.

Overhead. In practice, multi-threading introduces an
computational overhead to enable thread management
and thread synchronization. Therefore, it is useful to ex-
perimentally determine a system dependent threshold τ
that describes the minimal number of gates that are re-
quired per level to profit from parallel execution. In prac-
tical settings (see § 6) we observe that at least ∼ 8 non-
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Figure 2: Circuit decomposition. Each level L1, L2 and L3
consists of multiple gates that can be garbled using FGP with
synchronization in-between. The circuit can also be decom-
posed in two coarse-grained partitions P1 and P2.

linear gates per core are required to observe first speed-
ups. Achieving a parallelization efficiency of 90%, i.e,
a speed up of 1.8 on 2 cores, requires at least 512 non-
linear gates per core. In the next section we present an
approach that overcomes the limitations of FGP.

4.4 Coarse-grained parallelism

Another useful heuristic to partition a circuit is the us-
age of high-level functionality descriptions. Given a cir-
cuit description in a high-level language, parallelizable
regions of the code can be identified using programming
language techniques. These detected code regions can
then be tracked during the circuit compilation process
to produce parallel decomposable circuits. The differ-
ent sub circuits are guaranteed to be independent of each
other and therefore can be garbled in parallel. We re-
fer to this parallelization scheme as coarse-grained par-
allelization (CGP). Figure 2 illustrates an example de-
composition in two coarse-grained partitions P1 and P2.
Furthermore, we note that FGP and CGP can be com-
bined by utilizing FGP within all coarse partations. In
the following paragraphs, we introduce our CBMC-GC
compiler extension that automatically produces coarse-
grained parallel circuits.

Compiler for parallel circuits. Our parallel circuit
complier ParCC extends the CBMC-GC compiler and
builds on top of the Par4all compiler introduced in § 3.
ParCC takes C code as input, which carries annotations
according the CBMC-GC notation. Hence, TPC input
and output variables of both parties are marked as such.
ParCC detects parallelism within this code with the help
of Par4all and produces one global circuit that is inter-
rupted by one or multiple sub circuits for every parallel
region. If a parallel region follows the single-instruction-

multiple-data paradigm (SIMD), only one sub circuit per
parallel region is compiled, which reduces the circuit
storage costs. During protocol runtime, the sub circuit
is unrolled and garbled in full extent. The global and sub
circuits are interconnected by explicitly defining inner
input and output wires. These are not exposed as TPC
inputs or outputs, but have to be used by TPC frame-
works to recompose the complete and parallel executable
circuit. The compilation process itself consists of four
different steps:
(1) In the first step, parallelism in C code is detected by
Par4all and annotated using the OpenMP notation and
source-to-source transformations.
(2) The annotated C code is parsed by ParCC in the
second step. The source code is decomposed using
source-to-source techniques into a global sequentially
executable part, which is interrupted by one or multiple
parallel executable sub parts. Additionally, functional
OpenMP annotations, such as reduction statements, are
replaced with C code that is compiled into the circuits.
Furthermore, information about the degree of detected
parallelism as well as the interconnection between the
global and sub parts is extracted for later compilation
steps.
(3) Given the decomposed source code, the different
parts are compiled independently with CBMC-GC.
(4) In the final step information about the mapping of
wires between gates in the global and the sub circuits is
exported for use in TPC frameworks. For performance
reasons, we distinguish static wires that are shared be-
tween parallel sub circuits and wires that are dedicated
for each individual sub circuit.
Example. To illustrate the functionality of ParCC, we
discuss the source-to-source compilation steps on a small
fork and join task, namely the dot product of two vectors
a and b:

r = a ·b = a0 ·b0 + · · ·+an ·bn.

The source code of the function dot product() is pre-
sented in Listing 2.

1 int mult(int a, int b) {

2 return a * b;

3 }

4 void dot_product () {

5 int INPUT_A_a [100] , INPUT_B_b [100];

6 int res = 0;

7 for(i = 0; i < 100; i++)

8 res += mult(INPUT_A_a[i], \

9 INPUT_B_b[i]);

10 int OUTPUT_res = res;

11 }

Listing 2: Dot vector product written in C with CBMC-GC
input/output notation.

6
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In this example code, two parties provide input for
two vectors in form of constant length integer ar-
rays (Line 5). A loop iterates pairwise over all ar-
ray elements (Line 7), multiplies the elements and
aggregates the result. In the first compilation step,
Par4all detects the parallelism in the loop body and
annotates this parallel region accordingly. Therefore,
Par4all adds the statement #pragma omp parallel

for reduction(+:res) before the for loop in Line 7.
ParCC parses the annotations in the second compila-

tion step to export the loop body, in this case the sub
function mult(), printed in Listing 3.

1 void mult(int INPUT_A_a , int INPUT_A_b ,

2 int OUTPUT_return)

3 {

4 int a = INPUT_A_a;

5 int b = INPUT_A_b;

6 OUTPUT_return = a*b;

7 }

Listing 3: Exported sub function with CBMC-GC input-
output notation.

The functions arguments are rewritten according the no-
tation of CBMC-GC. Thus, the two arguments a and
b of mult() become inner inputs of the sub circuit,
and the return statement becomes an inner output vari-
able. Note, that during the protocol execution all inner
wires are not assigned to any party, instead they con-
nect global and sub circuits. Yet, to keep compatibility
with CBMC-GC a concrete assignment for the party PA
is specified. The later exported mapping information is
used to distinguish between inner wires and actual input
wires of both parties. In the same step, the global func-
tion dot product(), printed in Listing 4, is transformed
by ParCC to replace and unroll the loop.

1 void dot_product () {

2 int INPUT_A_a [100], INPUT_B_b [100];

3 int res = 0;

4 int OUTPUT_SUB_a [100];

5 int OUTPUT_SUB_b [100];

6 int i;

7 for(i = 0; i <= 99; i++) {

8 OUTPUT_SUB_a[i] = INPUT_A_a[i];

9 OUTPUT_SUB_b[i] = INPUT_B_b[i];

10 }

11 int INPUT_A_SUB_res [100];

12 for(i = 0; i <= 99; i++)

13 res += INPUT_A_SUB_res[i];

14 int OUTPUT_res = res;

15 }

Listing 4: Rewritten dot product(). The loop has been re-
placed by inner input/output variables (marked with SUB).

Therefore, the two input arrays INPUT A a and
INPUT B b are exposed as inner output variables begin-
ning in Line 4. Therefore, two new output arrays using
CBMC-GC notation are added based on the statically de-

termined information about parallel variables. Further-
more, an inner input array for the intermediate results is
introduced in Line 11. Finally, the reduction statement is
substituted by synthesized additions over all intermediate
results in Line 13.

In the third and fourth compilation step, the two cir-
cuits are compiled and the mapping of wires between
global and sub circuits is exported.

5 Inter-Party Parallelization (IPP)

In this section, we describe a novel protocol extension
to Yao’s protocol to balance computation between par-
ties, assuming symmetric efficiently parallelizable func-
tionalities. We refer to this protocol extension as inter-
party parallelization (IPP). Without compromising secu-
rity, we show in § 6 that the protocol runtime can be re-
duced in practical applications when using IPP. This is
also the case when using only one CPU core per party.

We recap the initial motivation: The computational
costs that each party has to invest in semi-honest Yao
is driven by the encryption and decryption costs of the
garbled tables as well as the communication costs. Con-
sidering the garbling technique with the least number of
cryptographic operations, namely GRR combined with
free-XOR, the generator has to compute four ciphertexts
per non-linear gate, whereas the evaluator has to compute
only one ciphertext per non-linear gate. When consider-
ing the communication optimal half-gate approach [36],
the generator has to compute four and the evaluator two
ciphertexts per non-linear gate. Assuming two parties
that are equipped with similar computational power, a
better overall resource utilization would be achieved, if
both parties could be equally involved in the computa-
tion process. This can be realized by sharing the roles
generator and evaluator. Consequently, the overall pro-
tocol runtime could be decreased. Figure 3 illustrates this
efficiency gain.

In the following sections we first discuss how to ex-
tend Yao’s protocol to use IPP for purely parallel func-
tionalities. In a second step we generalize this approach
by showing how mixed functionalities profit from IPP.

5.1 Parallel functionalities
We assume that two parties PA and PB agree to compute a
functionality f (x,y) with x being PA’s input and y being
PB’s input. Moreover, we assume f (x,y) to be paralleliz-
able into two (or more) sub functionalities f0, . . . , fn:

f (x,y) = f0(x,y)� f1(x,y)� . . .� fn(x,y).

Given such a decomposition, all sub functionalities
can be computed independently with any TPC proto-
cols (secure against semi-honest adversaries) without
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Figure 3: The idea and performance gain of IPP visualized.
The OT phase and output sharing are omitted. In Figure 3(a)
the sequential execution of Yao’s protocol is visualized. Given
a parallel decomposition by two circuits representing parallal
program regions as displayed in Figure 3(b), the protocol run-
time can be reduced when sharing the roles generator and eval-
uator, as displayed in Figure 3(c).

any sacrifices towards the security [12]. This obser-
vation allows us to run two independent executions of
Yao’s protocol, each for one half of f ’s sub functional-
ities, instead of computing f with a single execution of
Yao’s protocol. Hence, PA could garble one half of f ’s
sub functionalities, for example feven = f0, f2, . . . , and
PA could evaluate the other half fodd = f1, f3, . . . . Vice
versa, PB could evaluate feven and garble fodd . Follow-
ing this approach, PA and PB have to switch their roles
for the OT phase of Yao’s protocol. In the output phase,
both parties share their output labels and description ta-
bles (ODT) with each other.
Analytical performance gain. As discussed, the com-
putational costs for Yao’s protocol are dominated by en-
crypting and decrypting garbled truth tables. Thus, ide-
alizing and highly abstracted, the time spent to perform
a computation ttotal is dominated by the time to garble a
circuit tgarble. Using GRR with free-XOR and assuming
that tgarble is approximately four times the time to evalu-
ate a circuit teval , by symmetrically sharing this task the
total time could be reduced to:

t ′total ≈
(tgarble + teval)

2
≈ (4 · teval + teval)

2
≈ 2.5 · teval .

This result translates to a theoretical speed-up of
ttotal/t ′total = 4/2.5 = 1.6. When using the half-gate ap-
proach the approximate computational speed-up is 1.33.

5.2 Mixed functionalities
To exploit IPP in mixed functionalities, a protocol ex-
tension is required, allowing to switch from sequential
(dedicated roles) to IPP (shared roles) without violating
the privacy property of TPC. Therefore, we introduce the
notion of transfering roles to securely interchange be-
tween IPP and sequential execution.
Transferring roles We introduce the idea of transfer-
ring roles in two steps. First we sketch an insecure pro-
tocol, which is then made secure in a second step. To

switch the roles of evaluator and generator during execu-
tion, we consider two parties PA, PB and the sequentially
composed functionality f (x,y) = f2( f1(x,y),x,y). In the
following description, f1 is computed using Yao’s proto-
col with PA being generator and PB being evaluator, f2 is
computed with reversed roles.

The transfer protocol begins by computing f1(x,y)
with Yao’s original protocol. Once f1 is computed, the
roles have to be switched. Naı̈vely, the parties ‘open’
the circuit by interchanging output wires and the ODT.
This reveals the intermediate result o1 = f1(x,y) to both
parties. In the second phase of the protocol, f2 is com-
puted using Yao’s protocol. This time, PA and PB switch
roles, such that PB garbles f2 and PA evaluates f2. The de-
crypted output bits o1 = f1(x,y) are used by PA as input in
the OT protocol. After garbling f2, the output labels and
the ODT are shared between both parties. This proto-
col resembles a pause/continue pattern and preserves cor-
rectness. However, this protocol leaks o1 to both parties,
which violates the privacy requirement of TPC. There-
fore, we propose to use an XOR-blinding during the role
switch. The full protocol is printed below.

Protocol: Transferring Roles
PA and PB agree to securely compute the se-
quentially decomposable functionality f (x,y) =
f2( f1(x,y),x,y) without revealing the intermediate
result f1(x,y) to either party, where x is PA’s input
bit string, y is PB’s input bit string. The protocol
consists of two phases, one per sub functionality.
Phase 1: Secure computation of f1(x,y)

1. f1 is extended with a XOR blinding for ev-
ery output bit. Thus, the new output o′1 =
f ′1(x,y||yr) = f1(x,y)⊕ yr is calculated by xor-
ing the output of f1 with additional, randomly
drawn input bits by the evaluator of f1.

2. PA and PB securely compute f ′1 using Yao’s pro-
tocol. We assume PA to be the generator. Addi-
tional randomly drawn input bits are then input
of PB.

3. The blinded output o′1 of the secure computa-
tion is only made visible to the generator PA.
This is realized by transmitting the output wire
labels to PA, but not sharing the ODT with PB.

Phase 2: Secure computation of f2(o1,x,y)

1. The circuit representing f2 is extended with
a XOR unblinding for every input bit of o′1.
Hence, f ′2(o

′
1,x,y,yr) = f2(o′1 ⊕ yr,x,y).
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2. PA and PB securely compute f ′2 using Yao’s pro-
tocol. We assume PB to be the generator. PA
provides the input o′1 and PB provides the input
bits for the blinding with yr.

3. The output of the computation is shared with
both parties.

We observe that, informally speaking the protocol pre-
serves privacy, since the intermediate state o1 is shared
securely between both parties. A detailed formal proof
on sequential decomposed functionalities is given by
Hazay and Lindell [12, page 42ff]. Correctness is pre-
served due to blinding and unblinding with the equal bit
string yr:

f ′2( f ′1(x,y||yr),x,y,yr) = f ′2( f1(x,y)⊕ yr,x,y,yr)

= f2( f1(x,y)⊕ yr ⊕ yr,x,y)

= f2( f1(x,y),x,y).

Finally, we note that transferring roles protocol can
further be improved. Demmler et al. [8] presented an
approach to securely share a state of Yao’s protocol that
uses the point-and-permute bits [27] as a blinding. This
approach has equivalent costs in the number of cryp-
tographic operations, yet removes the need of an ODT
transfer. Our implementation uses this optimization.

Transferring roles for mixed functionalities. With
the idea of transferring roles, IPP can be realized for
mixed functionalities. In the following paragraphs, we
show how to switch from IPP to sequential computation.
Switching into the other direction, namely from sequen-
tial to IPP can be realized analogously. With protocols to
switch in both directions, it is possible to garble and eval-
uate any functionality that consists of an arbitrary num-
ber of sequential and parallel regions.

To show the switch from IPP to sequential computa-
tion, we assume a functionality that is sequentially de-
composable into a parallel and a sequential functionality:

f (x,y) = f3( f1(x,y)� f2(x,y),x,y).

Note that f1, f2 and f3 could further be composed of
any sequential and parallel functionalities. We observe
that f3 can be merged with f1 (or f2) into one combined
functionality fc. Thus, f (x,y) can also be decomposed
as f (x,y) = fc( f2(x,y),x,y) with fc being the sequen-
tial composition of f3 and f1. Given such a decomposi-
tion, fc and f2 can be computed with alternating roles in
Yao’s protocol by following the transferring roles proto-
col. Hence, fc could be garbled by PA while f2 could be
garbled by PB to securely compute f .

EVLGEN EVL GEN

GEN EVL

PA PB

f1,f2

f3

x yyr

o1'
OTP

OTP

OTP

OTP

Inp

Figure 4: The IPP protocol for a mixed functionality with a
switch from parallel to sequential computation. Functionality
f1 � f2 is garbled in parallel using IPP, f3 is garbled sequen-
tially in combination with f1. No interaction between parties is
shown. The blinded output o′1 of f1 is only made visible to PA
and used as additional input for the computation of f2 using the
transferring roles protocol.

As a second observation we note that the output of f2
is not required to start the computation of fc. Therefore,
the computation of fc can start in parallel to the compu-
tation of f2. This inter-party parallelism can be exploited
to achieve further speed-ups. Figure 4 illustrates this ap-
proach. Party PA garbles fc and PB garbles f2. The first
part of fc, namely f1 can be garbled in parallel to f2.
Once the blinded output o′1 of f2 is computed, the par-
ties can start computing the second part of fc, namely
f3. Switching from sequential to IPP computation can be
realized in the same manner.

We remark that FGP, CGP and IPP can be combined
to achieve even further speed-ups. Therefore, every par-
allel region has first be decomposed in two parts for IPP.
If the parts can further be decomposed in parallel func-
tionalities, these could be garbled following the ideas of
CGP and FGP.

Overhead. Investigating the overhead of IPP, we ob-
serve that during the cost intensive garbling and evalua-
tion phase, no computational complexity is added. Par-
ticularly, the number of cryptographic operations and
messages is left unchanged. However, when using OT
Extension, a constant one-time overhead for base OTs
in the size of the security parameter k is introduced to
establish bi-directional OT Extension. To switch from
and to IPP in mixed functionalities, additional OTs in the
size of the intermediate state are required. Thus, the per-
formance gain through IPP for mixed functionalities not
only depends on the ratio between parallel and sequen-
tial regions, but also on the ratio of circuit size and shared
state. These ratios are application dependent. A practical
evaluation of the trade-off between overhead and perfor-
mance gain is presented in § 6.5.
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5.3 Security implications and applications

As discussed in the previous section, Yao’s protocol and
IPP are secure against semi-honest adversaries. Never-
theless, semi-honest Yao’s garbled circuits are often used
to bootstrap TPC protocols secure against active adver-
saries. Therefore, in this section, we sketch the security
implications of IPP and its compatibility with the most
common techniques to strengthen Yao’s protocol. Fur-
thermore, we depict applications and protocols the could
profit from IPP.

Yao’s original protocol is already secure against ma-
licious evaluators (when using an OT protocol secure
against malicious adversaries), yet not secure against ma-
licious generators. We note that this one-sided secu-
rity does not longer hold when using IPP because both
parties incorporate the role of a circuit generator. Con-
sequently, cut-and-choose protocols [24], which garble
multiple copies of the same circuit to achieve active se-
curity, are incompatible with IPP because they are built
on the assumption that only one party can actively ma-
nipulate the protocol. A similar observation can be made
for Dual-execution protocols [29, 16] that prevent an ac-
tive adversary from learning more than a small number
of bits during the protocol execution. Even so the con-
cept of Dual-execution is close the the idea of IPP, i.e.,
symmetrically sharing the roles of generator and evalua-
tor, it also requires one-sided security against malicious
evaluators and is therefore incompatible with IPP.

Applications of IPP. IPP can be applied in all appli-
cation scenarios where semi-honest model is sufficient.
These are scenarios where either the behaviour is oth-
erwise restricted, e.g. limited physical access, or where
the parties have sufficient trust into each other. More-
over, IPP can be used in all the scenarios where the par-
ties inputs and seeds could be revealed at a later point
to identify cheating parties. Examples might be nego-
tiations (auctions) or games, such as online poker. An-
other field of application is the joint challenge creation,
e.g. RSA factorization. Using secure computation, two
parties could jointly create a problem instance without
already knowing the solution. This allows them to create
a problem and to participate in the challenge at the same
time without a computational advantage. Once a solution
is computed, all parts of the secure computation can be
verified in hindsight.

For further work, we note that the core idea of IPP
could be applied in other TPC protocols. To profit from
IPP, a state sharing mechanism in the protocols security
model is required as well as an asymmetric workload
between the parties. One example might be the highly
asymmetric STC protocol by Jarecki and Shmatikov [19]
that uses zero-knowledge proofs over every gate.

6 Evaluation

In this section, we evaluate the three proposed paral-
lelization schemes. We begin by introducing our paral-
lel STC framework named UltraSFE and benchmark its
performance on a single core in § 6.1. The applications
and their circuit descriptions used for benchmarking are
described in § 6.2. We evaluate the offline garbling per-
formance of the proposed parallelization techniques in
§ 6.3, before integrating and evaluating the promising
coarse-grained parallelization (CGP) in a online setting
in § 6.4. Finally, in § 6.5 we benchmark the inter-party
parallelization (IPP) approach.

6.1 UltraSFE
UltraSFE1 is a parallel framework for Yao’s garbled
circuits built up on the JustGarble (JG) [5] garbling
scheme. To realize efficient parallelization, data struc-
tures and memory layout are optimized with the purpose
of parallelization in mind. This is, to the best of our
knowledge, not the case with existing open source frame-
works. Therefore, we adapted the JustGarble garbling
scheme to support parallelization.

UltraSFE is written in C++ using SSE4, OpenMP and
Pthreads to realize multi-core parallelization. Conceptu-
ally UltraSFE is using ideas from the Java based memory
efficient ME SFE framework [13], which itself is based
on the popular FastGC framework [15]. The fast hard-
ware AES extension in current CPU generations is ex-
ploited by the JustGarble garbling scheme. Oblivious
transfers are realized with the help of the highly efficient
and parallelized OTExtension library written by Asharov
et al. [2]. Moreover, UltraSFE adopts techniques from
many recent theoretical and practical advances of Yao’s
protocol. This includes pipe-lining, point-and-permute,
garbled row reduction, free-XOR and the half-gate ap-
proach [15, 21, 27, 31, 36].
Framework comparison. To illustrate that UltraSFE is
suited to evaluate the scalability of different paralleliza-
tion approaches, we present a comparison of its garbling
performance with other state of the art frameworks using
a CPU architecture in Table 1. Namely, we compare the
single core garbling speed of UltraSFE, which is prac-
tically identical to JG, with the parallel frameworks by
Barni et al. (BCPU) [3], Husted et al. (HCPU) [17] and
Kreuter et al. (KSS) [23]. Note, these results are com-
pared in the offline setting, i.e., truth tables are written to
memory. This is because circuit garbling is the most cost
intensive part of Yao’s protocol and therefore the most
interesting when comparing the performance of different
frameworks. The previous parallelization efforts HCPU

1UltraSFE will be made available as open source on
http://www.seceng.informatik.tu-darmstadt.de/research/software/
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Ours / JG [5] BCPU [3] HCPU[17] KSS [23]
gps 8.3M 0.11M <0.25M 0.1M
cpg 108 >3500 - >6500 [5]
arch E5-2680 E5-2609 E5-2620 i7-970

Table 1: Single core garbling speed comparison of different
frameworks on circuits with more than 5 million gates. Metrics
are non-linear gates per second (gps) in millions (M) and clocks
per gate (cpg). All results have been observed on the Intel pro-
cessor specified in row arch. Note, for HCPU [17] only circuit
evaluation times have been reported on the CPU, the garbling
speed can be assumed to be lower.

and BCPU actually abstained from implementing an on-
line version of Yao’s protocol that supports pipe-lining.
As metrics we use garbled gates per second (gps) and the
average number of CPU clock cycles per gate (cpg), as
proposed in [5]. The numbers are taken from the cited
publications and if not given, the cpq results are calcu-
lated based on the CPU specifications (arch). Even when
considering theses numbers only as rough estimates, due
to the different CPU types, we observe that UltraSFE per-
forms approximately 1-2 orders of magnitude faster than
existing parallelizations of Yao’s protocol. This is mostly
due to the efficient fixed-key garbling scheme using the
AES-NI hardware extension and a carefully optimized
implementation using SSE4. Summarizing, UltraSFE
shows competitive garbling performance on a single core
and hence, is a very promising candidate for paralleliza-
tion.

6.2 Evaluation methodology

To evaluate the different parallelization approaches we
use three example applications that have been used to
benchmark and compare the performance of Yao’s gar-
bled circuits in the past.

Biometric matching (BioMatch). The first application
that we use is privacy-preserving biometric matching. In
this application a party matches one biometric sample
against the other’s party database of biometric templates.
Example scenarios are face-recognition or fingerprint-
matching [9]. One of the encompassing concepts is the
computation of the Euclidean distance between the sam-
ple and all database entries. Once all distances have
been computed, the minimal distance determines the best
match. Thus, the task is to securely compute the minimal
distance min

(
∑d

i=1(si,1 − ei)
2, . . . ,∑d

i=1(si,n − ei)
2
)

with
si being the sample of degree d provided by the first party
and e1, . . . ,en being the database elements with the same
degree provided by the other party. Following the exam-
ples of [8, 20], the chosen parameters for this circuit are
the number of elements in the database n = 512, the de-
gree of each element d = 4 and the integer size b= 64bit.

BioMatch MExp MVMul
Code size 22 LOC 28 LOC 10 LOC
Circuit size 66M 21.5M 3.3M
Non-linear gates 25% 41% 37%
# Input bits PA/PB 131K/256 1K/1K 17K/1K
Offline garbling time 2.07s 1.136s 0.154s

Table 2: Circuit properties. Presented are the code size, the
overall circuit size in the number of gates, the fraction of non-
linear gates that determine the majority of computing costs, the
number of input bits as well as the sequential offline garbling
time with UltraSFE.

Modular exponentiation (MExp). The second ap-
plication that we benchmark is parallel modular expo-
nentiation. Modular exponentiation has been used be-
fore to benchmark the performance of Yao’s garbled cir-
cuits [5, 8, 23]. It has many applications in privacy-
preserving computation. For example, blind signatures
where the message to be signed should not be revealed
to the signing party. For this application, we differentiate
the circuit by the number of iterated executions k = 32,
as well as the integer width b = 32.

Matrix-vector multiplication (MVMul). Algebraic
operations such a matrix multiplication or the dot vector
product are building blocks for many privacy-preserving
applications and have been used before to benchmark
Yao’s garbled circuits [14, 22]. We use a Matrix-vector
multiplication as required in the learning with errors
(LWE) cryptosystem [33]. We parametrize this task ac-
cording the size of the matrix m×k = 16×16 and vector
k= 16, as well the integer size of each element b= 64 bit.

Circuit creation. All circuits are compiled twice, once
with CBMC-GC and once with ParCC using textbook
C implementations. The time limit for the circuit mini-
mization through CBMC-GC is set to 10 minutes. The
resulting circuits and their properties are shown in Ta-
ble 2. The BioMatch circuit is the largest circuit and
shows the most input bits. The MVMul circuit garbles
in a fraction of a second and thus, fits to evaluated the
performance of parallelelization on smaller circuits. The
MExp circuit shows a large circuit complexity in com-
parison to the number of input bits. Even so not shown
here, we note that the sequential (CBMC-GC) and paral-
lel (ParCC) circuits slightly differ in the overall number
of non-linear gates due to the circuit minimization tech-
niques of CBMC-GC, which profit from decomposition.

Environment. As testing environment we used Amazon
EC2 cloud instances. These provide a scalable number
of CPUs and can be deployed at different sites around
the globe. If not state otherwise, for all experiments in-
stances of type c3.8xlarge have been used. These in-
stances report 16 physical cores on 2 sockets with CPUs
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of type Intel Xeon E5-2680v2, and are equipped with
a 10Gbps ethernet connection. A fresh installation of
Ubuntu 14.04 was used to ensure as little background
noise as possible. UltraSFE was compiled with gcc 4.8

-O2 and numactl was utilized when benchmarking with
only a fraction of the available CPUs. Numactl allows
memory, core and socket binding of processes. Results
have been averaged 10 executions.
Methodology. Circuit garbling is the most expensive
task in Yao’s protocol. Therefore, we begin by evaluating
FGP and CGP for circuit garbling independent of other
parts of Yao’s protocol. This allows an isolated evalua-
tion of the computational performance gains through par-
allelization. Following the offline circuit garbling phase
is an evaluation of Yao’s full protocol in an online LAN
setting. This evaluation also considers the bandwidth
requirements of Yao’s protocol. Finally, we present an
evaluation of the IPP approach in the same LAN setting.
Therefore, we first evaluate the performance of IPP on a
single core, before evaluating its performance in combi-
nation with CGP. The main metric in all experiments is
the overall runtime and the number of non-linear gates
that can be garbled per second.

6.3 Circuit garbling (offline)
We begin our evaluation of FGP and CGP with the offline
task of circuit garbling. In practice the efficiency of any
parallelization is driven by the ratio between computa-
tional workload per thread and synchronization between
threads. When garbling a circuit with FGP, the workload
is bound by the width of each level, when garbling with
CGP the workload is bound by the size of parallel parti-
tions. Both parameters are circuit and hence, application
dependent.
Artificial circuits and thread utilization. To get a bet-
ter insight, we first empirically evaluate the possible effi-
ciency gain for different sized workloads, independent of
any application. This also allows to observe a system de-
pendent threshold τ , introduced in § 4.3, which describes
the minimal number of gates required per thread to profit
from parallelization. Therefore, we run the following ex-
periment: For every level width w = 24,25, . . . ,210 we
created artificial circuits of depth d = 1000. The width is
kept homogeneous in all levels. Furthermore, the wiring
between gates is randomized and only non-linear gates
are used. Each circuit is garbled using FGP and we mea-
sured the parallelization efficiency (speed-up divided by
the number of cores) when computing with a different
numbers of threads. The results are illustrated in Fig-
ure 5.

The experiment shows that on the tested system τ ≈ 8
non-linear gates per thread are sufficient to observe first
performance gains through parallelization. To achieve
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Figure 5: Level-width experiment. Displayed is the efficiency
of FGP for different circuit level widths. A larger width in-
creases the efficiency of parallelization. The gap between 8
(one socket) and 16 cores (two sockets) is due the communica-
tion latency between two sockets.

an efficiency of 90% approximately 512 non-linear gates
per thread are required. Investigating the results for 16
parallel threads, we observe that a significantly larger
workload per thread (at least one order of magnitude)
is required to overcome the communication latency be-
tween the sockets on the testing hardware.
Example applications. We evaluated the speed-up of
circuit garbling when using FGP and CGP for the three
applications BioMatch, MExp and MVMul compiled
with CBMC-GC (FGP) and ParCC (CGP). The speed-up
is calculated in relation to the single core garbling per-
formance given in Table 2. The results are presented in
Figure 6. The results have been observed for a security
level of k = 128 bit. We note, that in this experiment
no significant differences where observable when using
a smaller security level, e.g., κ = 80 bit, due to the fixed
block size of AES-NI. Discussing the results for FGP,
we observe that all applications profit from paralleliza-
tion. BioMatch and MExp show very limited scalability,
whereas the MVMul circuit is executable with a speed-
up of 7.5 on 16 cores. Analyzing the performance of
CGP, we observe that all applications achieve practically
ideal parallelization when using up to 4 threads. In con-
trast to the FGP approach, scalability with high efficiency
is observable with up to 8 threads. Further speed-ups
when using the CPU located on the second socket are no-
ticeable in the MExp and MVMul experiments, achiev-
ing a throughput of more than 100M non-linear gates per
second.

In summary, for all presented applications the CGP ap-
proach significantly outperforms the FGP approach re-
garding scalability and efficiency due to its coarser gran-
ularity, which implies a better thread utilization.
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Circuit width analysis. The limited scalability of FGP
is explainable when investigating the different circuit
properties. In Figure 7 the distribution of level widths
for all circuits is illustrated.
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Figure 7: Number of non-linear gates per level and circuit.

For the MVMul application, the CBMC-GC compiler
produces a circuit with a median level width of 2352
non-linear gates per level, whereas the BioMatch and
MExp circuits only show a median width below 100
non-linear gates per level. The major reasons for small
circuit widths in comparison to the overall circuit size
is that high-level TPC compilers such as CBMC-GC or
the compiler by Kreuter et al. [23] have been developed
with a focus on minimizing the number of non-linear
gates. Minimizing the circuit depth or maximizing the
median circuit width barely influence the sequential run-
time of Yao’s protocol and is therefore not addressed in
the first place. Looking at the building blocks that are
used in CBMC-GC, we observe that arithmetic blocks
(e.g. adder, multiplier) show a linear increase in the av-
erage circuit width when increasing the input size. How-
ever, multiplexers, as used for dynamic array accesses
and for ‘if’ statements, show a circuit width that is in-
dependent (constant) of the number of choices. Thus,

a 2-1 multiplexer and a n-1 multiplexer are compiled to
circuits with similar sized levels, yet with different cir-
cuit depths. Moreover, comparisons have a constant cir-
cuit width for any input bit size. Based on these insights
we deduce, that the MVMul circuit shows a significantly
larger median circuit width, because of the absence of
any dynamic array access, conditionals or comparisons.
This is not the case with the BioMatch and MExp appli-
cations. Considering that every insufficient saturation of
threads leads to an efficiency loss of parallelization, we
conclude that scalability of FGP is not guaranteed when
increasing input sizes.

6.4 Full protocol (online)

To motivate that the parallelization of circuit garbling can
be used in Yao’s full protocol, we evaluated the protocol
for all applications running on two separated cloud in-
stances in the same Amazon region (LAN setting). We
observed an average round trip time of 0.6±0.3ms and a
transfer bandwidth of 5.0±0.4 Gbps using iperf. Fol-
lowing the results of the offline experiments, we bench-
mark the more promising CGP approach in the online
setting.

To measure the benefits of parallelization, we first
benchmark the single core performance of Yao’s protocol
in the described network environment. Table 3 shows the
sequential runtime for all applications using two security
levels κ = 80 bit (short term) and κ = 128 bit (long term).
This runtime includes the time spent on the input as well
as the output phase. Furthermore, the observed through-
put, measured in non-linear gates per second, as well as
the required bandwidth are presented. We observe that
for security levels of κ = 80 and κ = 128 a similar gate
throughput is achieved. Consequently, we deduce that
in this setup the available bandwidth is not stalling the
computation. We also observe that that the time spent on
OTs in all applications is practically negligible (< 5%)
in comparison with the time spent on circuit garbling.

In Figure 8 the performance gain of CGP is presented.
The speed-up is measured in relation to the sequential
total runtime. The timing results show that CGP scales
almost linearly with up to 4 threads when using κ = 80
bit labels. Using κ = 128 bit labels, no further speed-
up beyond 3 threads is noticeable. Thus, the impact of
the network limits is immediately visible. Five (κ = 80
bit), respectively three (κ = 128 bit) threads are sufficient
to saturate the available bandwidth in this experiment.
Achieving further speed-ups is impossible without in-
creasing the available bandwidth or developing new TPC
techniques. However, to the best of our knowledge with
6M non-linear gates per second on a single core, as well
as with approximately 32M non-linear gates per second
on a single socket, we report the fastest garbling speed in
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Circuits BioMatch MExp MVMul

ttotal κ = 128 2.71±0.02 1.43±0.01 0.20±0.00
[s] κ = 80 2.56±0.03 1.42±0.01 0.19±0.00

gps κ = 128 6.23±0.04 6.17±0.05 6.22±0.00
[M] κ = 80 6.56±0.07 6.21±0.04 6.43±0.00

bw κ = 128 1.48±0.01 1.47±0.01 1.48±0.00
[Gbps] κ = 80 0.97±0.01 0.92±0.01 0.95±0.00

tinput κ = 128 <0.02s <0.01s < 0.01s
[s] κ = 80 <0.02s <0.01s < 0.01s

Table 3: Yao’s protocol, single-core performance. The run-
time (ttotal), non-linear gate throughput in million gates per
second (gps), required bandwidth (bw) and time spent in the
input phase (tinput ), including the OTs when executing Yao’s
protocol for all applications in a LAN setting.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0  1  2  3  4  5  6  7  8
 0

 1

 2

 3

 4

 5

 6

 7

 8

S
p

e
e

d
-u

p

Threads

ideal parallelization
MExp k=80

BioMatch k=80
MVMul k=80

MVMul k=128
BioMatch k=128

MExp k=128
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security.

an online setting of Yao’s protocol. We abstain from an
evaluation in a WAN setting due to the high bandwidth
that is required to show the scalability of parallelization.
The best bandwidth that we could observe during our
experiments between two cloud regions was 350 Mbps,
which is insufficient to benchmark parallel scalability.

6.5 Inter-party parallelization
A new application of parallelization in Yao’s protocol is
presented in § 5. We performed two experiments to show
the applicability of IPP in practical settings. The first
experiment measures the computational efficiency gain
in the same setting as described in § 6.4. In the second
experiment the benefits of IPP in a WAN setting with
limited bandwidth are presented.

Computational efficiency gain. In this experiment the
raw IPP performance for all example applications, as
well as the combination of CGP and IPP techniques is
explored. To realize IPP, our implementation uses multi-

ple threads per core to utilize the load balancing capabili-
ties of the underlying OS without implementing a sophis-
ticated load balancer. Due to the heterogeneous hard-
ware environment, e.g. unpredictable caching and net-
working behaviour, we evaluated three different work-
load distribution strategies. The first strategy uses one
thread per core and thus only functions with at least two
cores. Then, each party has exactly one garbling and one
evaluating thread. The second and third strategy use two
or four independent threads per core to garble and eval-
uate at the same time. Moreover, to illustrate that IPP
is a modular concept, all circuits are evaluated using a
sequential code block that exposes all inner input and
output wires before and after every parallel region. This
guarantees the evaluation of mixed functionalities. Con-
sequently, all results include the time spent on transfer-
ring all required input bits to and from parallel regions.
Otherwise applications such as the MVMul application,
which is a pure parallel functionality, would profit more
easily from IPP. Even though this weakens the results
for the example applications, we are convinced that this
procedure provides a better insight into the practical per-
formance of IPP.

The results of this experiment are reported in Table 4.
We first observe that only the MExp application signif-
icantly profits from IPP. This is due to the small shar-
ing state in comparison to the circuit complexity. For
both security levels IPP outperforms the raw CGP ap-
proach with an additional speed-up of 10-30% on all
cores. The performance of the MVMul applications ac-
tually decreases when using IPP. This is because of the
large state that needs to be transferred. The performance
gain through IPP cannot overcome the newly introduced
overhead of 31ms, which is more than 15% of the se-
quential run-time.

In summary, parallelizable applications that show a
small switching surface (measured in number of bits
compared to the overall circuit size) profit from IPP.
Thus, IPP is a promising extension to Yao’s protocol that
utilizes circuit decomposition beyond naive paralleliza-
tion, independently of other optimization techniques.

Bi-directional bandwidth exploitation. The second
experiment aims towards increasing the available band-
width by exploiting bidirectional data transfers. Com-
monly, Ethernet connections have support for full duplex
(bi-directional) communication. When using standard
Yao’s garbled circuits, only one communication direc-
tion is fully utilized. However, with IPP the available
bandwidth can be doubled by symmetrically exploiting
both communication channels. This practical insight is
evaluated in a WAN setting between two cloud instances
of type m3.xlarge with 100±10ms latency and a mea-
sured bandwidth of 92± 27Mbps. Each hosts runs two
threads (a garbling and a evaluating thread) using only
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κ = 80 κ = 128
Environment BioMatch MExp MVMul BioMatch MExp MVMul

Cores IPP time[s] S time[s] S time[s] S time[s] S time[s] S time[s] S

1
none 2.559 1.000 1.423 1.000 0.192 1.000 2.712 1.000 1.485 1.000 0.199 1.000

2 2.624 0.975 1.287 1.106 0.206 0.932 2.781 0.975 1.370 1.084 0.215 0.926
4 2.556 1.001 1.285 1.107 0.208 0.923 2.707 1.002 1.386 1.071 0.218 0.913

2

none 1.384 1.849 0.734 1.939 0.103 1.864 1.497 1.812 0.780 1.904 0.108 1.844
1 1.524 1.679 0.686 2.074 0.126 1.524 1.535 1.767 0.699 2.124 0.134 1.485
2 1.472 1.738 0.699 2.036 0.132 1.455 1.516 1.789 0.726 2.045 0.137 1.453
4 1.396 1.833 0.654 2.176 0.124 1.548 1.465 1.851 0.693 2.143 0.131 1.519

4

none 0.795 3.219 0.395 3.603 0.057 3.368 0.937 2.894 0.450 3.300 0.064 3.088
1 0.996 2.569 0.426 3.340 0.084 2.286 1.041 2.605 0.452 3.285 0.087 2.287
2 0.830 3.083 0.336 4.235 0.085 2.259 0.874 3.103 0.356 4.171 0.088 2.261
4 0.818 3.128 0.329 4.325 0.081 2.370 0.856 3.168 0.341 4.355 0.084 2.369

8

none 0.652 3.925 0.298 4.775 0.045 4.267 0.872 3.110 0.364 4.080 0.048 4.189
1 0.676 3.786 0.239 5.954 0.072 2.667 0.947 2.864 0.303 4.901 0.080 2.488
2 0.629 4.068 0.204 6.975 0.077 2.494 0.861 3.150 0.342 4.342 0.075 2.653
4 0.636 4.024 0.233 6.107 0.070 2.743 0.871 3.114 0.337 4.407 0.073 2.726

Transferring roles 0.231s 0.076s 0.031s 0.257s 0.082s 0.031s

Table 4: Evaluation of IPP in a LAN setting. Column IPP specifies the number of threads used per core for load balancing. The
total protocol run-time is measured in seconds and the speed-up in comparison with CGP is presented in column S. Marked in bold
are settings, where IPP leads to performance gains. The time spent on the transferring roles protocol is presented in the last row.

a single core. The results of this experiment are illus-
trated in Table 5. IPP leads to significant speed-ups of
BioMatch and MExp, showing the successful exploita-
tion of bi-directional data transfers. MVMul shows lim-
ited performance gains because the time spent on the
newly introduced communication rounds for the trans-
ferring roles protocol becomes significant. Summariz-
ing, IPP can be very useful for TPC in bandwidth limited
environments.

BioMatch MExp MVMul

κ = 128
raw 45.02±0.49s 24.13±0.21s 4.83±0.05s
IPP 29.94±0.31s 16.05±0.12s 4.66 ±0.35s
S 1.50 1.50 1.03

κ = 80
raw 30.34±0.62s 14.56±0.21s 4.31±0.23s
IPP 19.13±0.47s 11.16±0.32s 3.84±0.12s
S 1.58 1.30 1.12

Table 5: Evaluation of IPP on a single core with limitted net-
working capabilities. Measured is the total protocol runtime,
when sequentially (raw) computing and with IPP (IPP). Fur-
thermore, the speed-up (S) between the two measurements is
calculated.

7 Conclusion and Future Work

TPC based on Yao’s garbled circuits protocol can greatly
benefit from automatic parallelization. The FGP ap-
proach can be efficient for some circuits, yet its scala-
bility highly depends on the circuit’s width. The CGP

approach shows a more efficient parallelization, given
parallel decomposable applications. In contrast to pre-
vious work, a complete compile chain, which takes C
code as input and automatically compiles parallel cir-
cuits, supports the practicability of our parallelization
scheme. Moreover, we proposed the idea of IPP to
achieve a symmetric workload distribution between two
computing parties. With this technique, IPP achieves
speed-ups through parallelization, even when using a sin-
gle physical core. Concluding, in this work we presented
an efficient, versatile and practical parallelization scheme
for Yao’s garbled circuits.

Further work includes the investigation of different
parallel compilation targets for ParCC, such as the GMW
protocol or RAM based secure computation frameworks.
Also worthwhile for future investigations is the compila-
tion of circuits optimized for FGP. Likewise, the applica-
tion of IPP to other protocols is of interest.
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Abstract
Conventional cryptographic services such as

hardware-security modules and software-based key-
management systems offer the ability to apply a
pseudorandom function (PRF) such as HMAC to inputs
of a client’s choosing. These services are used, for
example, to harden stored password hashes against
offline brute-force attacks.

We propose a modern PRF service called PYTHIA de-
signed to offer a level of flexibility, security, and ease-
of-deployability lacking in prior approaches. The key-
stone of PYTHIA is a new cryptographic primitive called
a verifiable partially-oblivious PRF that reveals a por-
tion of an input message to the service but hides the
rest. We give a construction that additionally supports
efficient bulk rotation of previously obtained PRF val-
ues to new keys. Performance measurements show that
our construction, which relies on bilinear pairings and
zero-knowledge proofs, is highly practical. We also give
accompanying formal definitions and proofs of security.

We implement PYTHIA as a multi-tenant, scalable
PRF service that can scale up to hundreds of millions
of distinct client applications on commodity systems. In
our prototype implementation, query latencies are 15 ms
in local-area settings and throughput is within a factor
of two of a standard HTTPS server. We further report
on implementations of two applications using PYTHIA,
showing how to bring its security benefits to a new en-
terprise password storage system and a new brainwallet
system for Bitcoin.

1 Introduction

Security improves in a number of settings when appli-
cations can make use of a cryptographic key stored on
a remote system. As an important example, consider
the compromise of enterprise password databases. Best
practice dictates that passwords be hashed and salted be-

fore storage, but attackers can still mount highly effective
brute-force cracking attacks against stolen databases.

Well-resourced enterprises such as Facebook [38]
have therefore incorporated remote cryptographic oper-
ations to harden password databases. Before a password
is stored or verified, it is sent to a PRF service external
to the database. The PRF service applies a cryptographic
function such as HMAC to client-selected inputs under
a service-held secret key. Barring compromise of the
PRF service, its use ensures that stolen password hashes
(due to web server compromise) cannot be cracked using
an offline brute-force attack: an attacker must query the
PRF service from a compromised server for each pass-
word guess. Such online cracking attempts can be mon-
itored for anomalous volumes or patterns of access and
throttled as needed.

While PRF services offer compelling security im-
provements, they are not without problems. Even large
organizations can implement them incorrectly. For ex-
ample, Adobe hardened passwords using 3DES but in
ECB mode instead of CBC-MAC (or another secure PRF
construction) [23], a poor choice that resulted in disclo-
sure of many of its customers’ passwords after a breach.
Perhaps more fundamental is that existing PRF services
do not offer graceful remediation if a compromise is de-
tected by a client. Ideally it should be possible to cryp-
tographically erase (i.e., render useless via key deletion)
any PRF values previously used by the client, without
requiring action by end users and without affecting other
clients. In general, PRF services are so inaccessible and
cumbersome today that their use is unfortunately rare.

In this paper, we present a next-generation PRF ser-
vice called PYTHIA to democratize cryptographic hard-
ening. PYTHIA can be deployed within an enterprise to
solve the issues mentioned above, but also as a public,
multi-tenant web service suitable for use by any type of
organization or even individuals. PYTHIA offers several
security features absent in today’s conventional PRF ser-
vices that are critical to achieving the scaling and flexibil-
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ity required to simultaneously support a variety of clients
and applications. As we now explain, achieving these
features necessitated innovations in both cryptographic
primitive design and system architecture.

Key features and challenges. We refer to an entity us-
ing PYTHIA as a client. For example, a client might be
a web server that performs password-based authentica-
tion for all of its end users. Intuitively, PYTHIA allows
such a client to query the service and obtain the PRF out-
put Y = Fk(t,m) for a message m and a tweak t of the
client’s choosing under a client-specific secret key k held
by the service. Here, the tweak t is typically a unique
identifier for an end user (e.g., a random salt). In our
running password storage example, the web server stores
Y in a database to authenticate subsequent logins.

PYTHIA offers security features that at, first glance,
sound mutually exclusive. First, PYTHIA achieves mes-
sage privacy for m while requiring clients to reveal t to
the server. Message privacy ensures that the PRF ser-
vice obtains no information about the message m; in our
password-storage example, m is a user’s password. At
the same time, though, by revealing t to the PRF ser-
vice, the service can perform fine-grained monitoring of
related requests: a high volume or otherwise anomalous
pattern of queries on the same t would in our running ex-
ample be indicative of an ongoing brute-force attack and
might trigger throttling by the PRF service.

By using a unique secret key k for each client, PYTHIA
supports individual key rotation should the value Y be
stolen (or feared to be stolen). With traditional PRF
services and password storage, such key rotation is a
headache, and in many settings impractical, because it
requires transitioning stored values Y1, . . . , Yn (one for
each user account) to a new PRF key. The only way to
do so previously was to have all n users re-enter or reset
their passwords. In contrast, the new primitive employed
for Fk in PYTHIA supports fast key rotation: the server
can erase k, replace it with a new key k′, and issue a
compact (constant-sized) token with which the client can
quickly update all of its PRF outputs. This feature also
enables forward-security in the sense that the client can
proactively rotate k without disrupting its operation.

PYTHIA provides other features as well, but we defer
their discussion to Section 2. Already, those listed above
surface some of the challenging cryptographic tensions
that PYTHIA resolves. For example, the most obvious
primitive on which to base PYTHIA is an oblivious PRF
(OPRF) [27], which provides message privacy. But for
rate-limiting, PYTHIA requires clients to reveal t, and ex-
isting OPRFs cannot hide only a portion of a PRF input.
Additionally, the most efficient OPRFs (c.f., [28]) are not
amenable to key rotation. We discuss at length other re-

lated concepts (of which there are many) in Section 7.

Partially-oblivious PRFs. We introduce partially
oblivious PRFs (PO-PRFs) to rectify the above ten-
sion between fine-grained key management and bulk key
management and achieve a primitive that supports batch
key rotation. We give a PO-PRF protocol in the random
oracle model (ROM) similar to the core of the identity-
based non-interactive key exchange protocol of Sakai,
Ohgishi, and Kasahara [44]. This same construction
was also considered as a left-or-right constrained PRF
by Boneh and Waters [13]. That said, the functional-
ity achieved by our PO-PRF is distinct from these prior
works and new security analyses are required. Despite
relying on pairings, we show that the full primitive is fast
even in our prototype implementation.

In addition to a lack of well-matched cryptographic
primitives, we find no supporting formal definitions that
can be adapted for verifiable PO-PRFs. (Briefly, previous
definitions and proofs for fast OPRFs rely on hashing in
the ROM before outputting a value [16, 28]; in our set-
ting, hashing breaks key rotation.) We propose a new as-
sumption (a one-more bilinear decisional Diffie-Hellman
assumption), give suitable security definitions, and prove
the security of the core primitive in PYTHIA under these
definitions (in the appendix; complete results in [25]).
Our new definitions and technical approaches may be of
independent interest.

Using PYTHIA in applications. We implement
PYTHIA and show that it offers highly practical per-
formance on Amazon EC2 instances. Our experiments
demonstrate that PYTHIA is practical to deploy using off-
the-shelf components, with combined computation cost
of client and server under 12 milliseconds. A single
8-core virtualized server can comfortably support over
1,000 requests per second, which is already within a fac-
tor of two of a standard HTTPS server in the same con-
figuration. (Our PYTHIA implementation performs all
communication over TLS.) We discuss scaling to han-
dle more traffic volume in the body; it is straightforward
given current techniques.

We demonstrate the benefits and practicality of
PYTHIA for use in a diverse set of applications. First is
our running example above: we build a new password-
database system using a password “onion” that com-
bines parallelized calls to PYTHIA and a conventional
key hashing mechanism. Our onion supports PYTHIA
key rotation, hides back-end latency to PYTHIA during
logins (which is particularly important when accessing
PYTHIA as a remote third-party service), and achieves
high security in a number of compromise scenarios.

Finally, we show that PYTHIA provides valuable fea-
tures for different settings apart from enterprise pass-
word storage. We implement a client that hardens a type

2



USENIX Association  24th USENIX Security Symposium 549

Figure 1: Diagram of PRF derivations enabled by
PYTHIA. Everything inside the large box is operated by
the server, which only learns tweaks and not the shaded
messages.

of password-protected virtual-currency account called a
“brainwallet” [14]; use of PYTHIA here prevents offline
brute-force attacks of the type that have been common in
Bitcoin.

Our prototype implementation of PYTHIA is built with
open-source components and itself is open-source. We
have also released Amazon EC2 images to allow com-
panies, individuals, and researchers to spin-up PYTHIA
instances for experimentation.

2 Overview and Challenges

We now give a high-level overview of PYTHIA, the moti-
vations for its features, what prior approaches we inves-
tigated, and the threat models we assume. First we fix
some terminology and a high-level conceptual view of
what a PRF service would ideally provide. The service
is provisioned with a master secret key msk. This will
be used to build a tree that represents derived sub-keys
and, finally, output values. See Figure 1, which depicts
an example derivation tree associated with PYTHIA as
well as which portions of the tree are held by the server
(within the large box) and which are held by the client
(the leaves). Keys of various kinds are denoted by cir-
cles and inputs by squares.

From the msk we derive a number of ensemble keys.
Each ensemble key is used by a client for a set of re-
lated PRF invocations — the ensemble keys give rise
to isolated PRF instances. We label each ensemble key
in the diagram by K[w]. Here w indicates a client-
chosen ensemble selector. An ensemble pre-key K[w] is
a large random value chosen and held by the server. To-
gether, msk and K[w] are used to derive the ensemble key
kw = HMAC(msk,K[w]). A table is necessary to sup-
port cryptographic erasure of (or updates to) individual
ensemble keys, which amounts to deleting (or updating)
a table entry.

Each ensemble key can be used to obtain PRF outputs
of the form Fkw

(t,m) where F is a (to-be-defined) PRF
keyed by kw, and the input is split into two parts. We
call t a tweak following [30] and m the message. Look-
ing ahead t will be made public to PYTHIA while m will
be private. This is indicated by the shading of the PRF
output boxes in the figure.

Deployment scenarios. To motivate our design choices
and security goals, we relay several envisioned deploy-
ment scenarios for PYTHIA.

Enterprise deployment: A single enterprise can deploy
PYTHIA internally, giving query access only to other sys-
tems they control. A typical setup is that PYTHIA fields
queries from web servers and other public-facing sys-
tems that are, unfortunately, at high risk of compromise.
PRF queries to PYTHIA harden values stored on these
vulnerable servers. This is particularly suited to storing
check-values for passwords or other low-entropy authen-
tication tokens, where one can store Fkw(t,m) where t
is a randomly chosen, per-user identifier (a salt) and m is
the low-entropy password or authentication token. Here
w can be distinct for each server using PYTHIA.

Public cloud service: A public cloud such as Ama-
zon EC2, Google Compute Engine, or Microsoft Azure
can deploy PYTHIA as an internal, multi-tenant service
for their customers. Multi-tenant here means that differ-
ent customers query the same PYTHIA service, and the
cloud provider manages the service, ensemble pre-key
table, etc. This enables smaller organizations to obtain
the benefits of using PYTHIA for other cloud properties
(e.g., web servers running on virtual machine instances)
while leaving management of PYTHIA itself to experts.

Public Internet service: One can take the public cloud
service deployment to the extreme and run PYTHIA in-
stances that can be used from anywhere on the Internet.
This raises additional performance concerns, as one can-
not rely on fast intra-datacenter network latencies (sub-
millisecond) but rather on wide-area latencies (tens of
milliseconds). The benefit is that PYTHIA could then be
used by arbitrary web clients, for example we will ex-
plore this scenario in the context of hardening brainwal-
lets via PYTHIA.

One could tailor a PRF service to each of these set-
tings, however it is better to design a single, application-
agnostic service that supports all of these settings si-
multaneously. A single design permits reuse of open-
source implementations; standardized, secure-by-default
configurations; and simplifies the landscape of PRF ser-
vices.

Security and functionality goals. Providing a single
suitable design requires balancing a number of security
and functionality goals. The most obvious requirements
are for a service that: provides low-latency protocols
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(i.e., single round-trip and amenable for implementation
as simple web interfaces); scales to hundreds of millions
of ensembles; and produces outputs indistinguishable
from random values even when adversaries can query the
service. To this list of basic requirements we add:

• Message privacy: The PRF service must learn noth-
ing about m. Message privacy supports clients that
require sensitive values such as passwords to remain
private even if the service is compromised, or to
promote psychological acceptability in the case that
a separate organization (e.g., a cloud provider) man-
ages the service.

• Tweak visibility: The server must learn tweak t to
permit fine-grained rate-limiting of requests.1 In the
password storage example, a distinct tweak is as-
signed to each user account, allowing the service to
detect and limit guessing attempts against individ-
ual user accounts.

• Verifiability: A client must be able to verify that
a PRF service has correctly computed Fkw for a
ensemble selector w and tweak/message pair t,m.
This ensures, after first use of an ensemble by a
client, that a subsequently compromised server can-
not surreptitiously reply to PRF queries with incor-
rect values.2

• Client-requested ensemble key rotations: A client
must be permitted to request a rotation of its en-
semble pre-key K[w] to a new one K̂[w]. The server
must be able to provide an update token ∆w to roll
forward PRF outputs under K[w] to become PRF
outputs under K̂[w], meaning that the PRF is key-
updatable with respect to ensemble keys. Addition-
ally, ∆w must be compact, i.e., constant in the num-
ber of PRF invocations already performed under w.
Clients can mandate that rotation requests be au-
thenticated (to prevent malicious key deletion). A
client must additionally be able to transfer an en-
semble from one selector w to another selector w′.

• Master secret rotations: The server must be able to
rotate the master secret key msk with minimal im-
pact on clients. Specifically, the PRF must be key-
updatable with respect to the master secret key msk
so that PRF outputs under msk can be rolled for-
ward to a new master secret m̂sk. When such a
rotation occurs, the server must provide a compact
update token δw for each ensemble w.

1In principle, the server need only be able to link requests involv-
ing the same t, not learn t. Explicit presentation of t is the simplest
mechanism that satisfies this requirement.

2This matters, for example, if an attacker compromises the commu-
nication channel but not the server’s secrets (msk and K[w]). Such an
attacker must not be able to convince the client that arbitrary or incor-
rect values are correct.

• Forward security: Rotation of an ensemble key or
master secret key results in complete erasure of the
old key and the update token.

Two sets of challenges arise in designing PYTHIA.
The first is cryptographic. It turns out that the combi-
nation of requirements above are not satisfied by any ex-
isting protocols we could find. Ultimately we realized
a new type of cryptographic primitive was needed that
proves to be a slight variant of oblivious PRFs and blind
signatures. We discuss the new primitive, and our effi-
cient protocol realizing it, in the next section. The second
set of challenges surrounds building a full-featured ser-
vice that provides the core cryptographic protocol, which
we treat in Section 4.

3 Partially-oblivious PRFs

We introduce the notion of a (verifiable) partially-
oblivious PRF. This is a two-party protocol that allows
the secure computation of Fkw

(t,m), where F is a PRF
with server-held key kw and t,m are the input values.
The client can verify the correctness of Fkw

(t,m) rel-
ative to a public key associated to kw. Following our
terminology, t is a tweak and m is a message. We say
the PRF is partially oblivious because t is revealed to the
server, but m is hidden from the server.

Partially oblivious PRFs are closely related to, but dis-
tinct from, a number of existing primitives. A standard
oblivious PRF [27], or its verifiable version [28], would
hide both t and m, but masking both prevents granular
rate limiting by the server. Partially blind signatures [1]
allow a client to obtain a signature on a similarly par-
tially blinded input, but these signatures are randomized
and the analysis is only for unforgeability which is insuf-
ficient for security in all of our applications.

We provide more comparisons with related work in
Section 7 and a formal definition of the new primitive in
Appendix B. Here we will present the protocol that suf-
fices for PYTHIA. It uses an admissible bilinear pairing
e : G1 × G2 → GT over groups G1,G2,GT of prime
order q, and a pair of hash functions H1 : {0, 1}∗ → G1

and H2 : {0, 1}∗ → G2 (that we will model as ran-
dom oracles). More details on pairings are provided in
Appendix B. A secret key kw is an element of p. The
PRF F that the protocol computes is:

Fkw
(t,m) = e

(
H1(t), H2(m)

)kw
.

This construction coincides with the Sakai, Ohgishi, and
Kasahara [44] construction for non-interactive identity-
based key exchange, where t and m would be different
identities and kw a secret held by a trusted key authority.
Likewise, this construction is equivalent to the left-or-
right constrained PRF of Boneh and Waters [13]. The
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PRF-Cl (w, t,m)
PRF-Srv (msk)

r ←$ q

x ← H2(m)r

w, t, x�
x̃ ← e(H1(t), x)

kw ← HMAC(msk,K[w])

pw ← gkw

y ← x̃kw

pw, y, π�
π ←$ ZKP(DLg(pw) = DLx̃(y))

If pw matches &
π verifies then

Ret y1/r

Else Ret ⊥

Figure 2: The partially-oblivious PRF protocol used
in PYTHIA. The value π is a non-interactive zero-
knowledge proof that the indicated discrete logs match.
The client also checks that pw matches ones seen previ-
ously when using selector w.

contexts of these prior works are distinct from ours and
our analyses will necessarily be different, but we note
that all three settings similarly exploit the algebraic struc-
ture of the bilinear pairing. See Section 7 for further dis-
cussion of related work.

The client-server protocol that computes Fkw(t,m) in
a partially-oblivious manner is given in Figure 2. There
we let g be a generator of G1. We now explain how the
protocol achieves our requirements described in the last
section.

Blinding the message: In our protocol, the client
blinds the message m, hiding it from the server, by rais-
ing it to a randomly selected exponent r←$ q . As
e
(
H1(t), H2(m)r

)
= e

(
H1(t), H2(m)

)r
, the client can

unblind the output y of PRF-Srv by raising it to 1/r. This
protocol hides m unconditionally, as H2(m)r is a uni-
formly random element of G2.

Verifiability: The protocol enables a client to verify that
the output of PRF-Srv is correct, assuming the client has
previously stored pw. The server accompanies the output
y of the PRF with a zero-knowledge proof π of correct-
ness.

Specifically, for a public key pw = gkw , where g
is a generator of G1, the server proves DLg(pw) =
DLx̃(y). Standard techniques (see, e.g., Camenisch and
Stadler [17]) permit efficient ZK proofs of this kind in the
random oracle model. 3 The notable computational costs
for the server are one pairing and one exponentiation in

3Some details: The prover picks v ←$ q and then computes t1 =
gv and t2 = x̃v and c ← H3(g, pw, x̃, y, t1, t2). Let u = v − c ·k.
The proof is π = (c, u). The verifier computes t′1 = gu · pcw and
t′2 = x̃uyc. It outputs true if c = H3(g, pw, x̃, y, t′1, t

′
2).

GT ; for the client, one pairing and two exponentiations
in GT . 4

Efficient key updates: The server can quickly and
easily update the key kw for a given ensemble selec-
tor w by replacing the table entry s = K[w] with a
new, randomly selected value s′, thereby changing kw =
HMAC(msk, s) to k′w = HMAC(msk, s′). It can then
transmit to the client an update token of the form ∆w =
k′w/kw ∈ q .

The client can update any stored PRF value
Fkw(t,m) = e

(
H1(t), H2(m)

)kw by raising it to ∆w;
it is easy to see that Fkw

(t,m)∆w = Fk′
w
(t,m).

The server can use the same mechanism to update
msk, which requires generating a new update token for
each w and pushing these tokens to clients as needed.

Unblinded variants. For deployments where oblivious-
ness of messages is unnecessary, we can use a faster, un-
blinded variant of the PYTHIA protocol that dispenses
with pairings. The only changes are that the client sends
m to the server, there is no unblinding of the server’s re-
sponse, and, instead of computing

x̃ ← e(H1(t), x)

the server computes

x̃ ← H3(t ‖m) .

All group operations in this unblinded variant are over a
standard elliptic curve group G = 〈g〉 of order q and we
use a hash function H3 : {0, 1}∗ → G.

An alternative unblinded construction would be to
have the server apply the Boneh-Lynn-Shacham short
signatures [12] to the client-submitted t ‖m; verification
of correctness can be done using the signature verifica-
tion routine, and we can thereby avoid ZKPs. This BLS
variant may save a small amount of bandwidth.

These unblinded variants provide the same services
(verifiability and efficient key updates) and security with
the obvious exception of the secrecy of the message m.
In some deployment contexts an unblinded protocol may
be sufficient, for example when the client can maintain
state and submit a salted hash m instead of m directly.
In this context, the salt should be held as a secret on the
client and never sent to the server.

4 The PYTHIA Service Design

Figure 3 gives the high-level API exposed by PYTHIA
to a client. We now describe its functions in terms of
the lifecycle of an ensemble key. We assume a security
parameter n specifying symmetric key lengths; a typical
choice would be n = 128.

4The client’s pairing can be pre-computed while waiting for the
server’s reply.
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Command Description
Init(w [, options]) Create table entry K[w] (for ensemble

key kw)

Eval(w, t,m) Return PRF output Fkw (t,m)

Reset(w, authtoken) Update K[w] (and thus kw); return
update token ∆w

GetAuth(w) Send one-time authentication token
authtoken to client

Figure 3: The basic PYTHIA API.

We defer to later sections the underlying client-server
protocols and to Appendix A details on key lifecycle
management options, additional API calls for token man-
agement and ensemble transfer, and a discussion of mas-
ter secret key rotation.

Ensemble initialization. To begin using the PYTHIA
service, a client creates an ensemble key for selector w
by invoking Init(w [, options]). PYTHIA generates a
fresh, random table entry K[w]. Recall that ensemble
key kw = HMAC(msk,K[w]). So Init creates kw as
a byproduct.

Ideally, w should be an unguessable byte string. (An
easily guessed one may allow attackers to squat on a key
selector, thereby mounting a denial-of-service (DoS) at-
tack.) For some applications, as we explain below, this
isn’t always possible. If an ensemble key for w already
exists, then the PYTHIA service returns an error to the
client. Otherwise, the client receives a message signify-
ing that initialization is successful.
Init includes a number of options we detail in Ap-

pendix A.

PRF evaluation. To obtain a PRF value, a client can
perform an evaluation query Eval(w, t,m), which re-
turns Fkw

(t,m). Here t is a tweak and m is a mes-
sage. To compute the PRF output, the client and server
perform a one-round cryptographic protocol (meaning a
single message from client to server, and one message
back). We present details in Section 3, but remind the
reader that t is visible to the server in the client-server
protocol invoked by Eval, while m is blinded.

The server rate-limits requests based on the tweak t,
and can also raise an alert if the rate limit is exceeded.
We give example rate limiting policies in Section 5.

Ensemble-key reset. A client can request that an en-
semble key kw be reset by invoking Reset(w). This reset
is accomplished by overwriting K[w] with a fresh, ran-
dom value. The name service returns a compact (e.g.,
256-bit) update token ∆w that the client may use to up-
date all PRF outputs for the ensemble. It stores this to-
ken locally, encrypted under a public key specified by the
client, as explained below.

Note that reset results in erasure of the old value of kw.
Thus a client that wishes to delete an ensemble key kw
permanently at the end of its lifecycle can do so with a
Reset call.
Reset is an authenticated call, and thus requires the

following capability.

Authentication. To authenticate itself for API calls, the
client must first invoke GetAuth, which has the server
transmit an (encrypted) authentication token authtoken
to the client out-of-band. The token expires after a pe-
riod of time determined by a configuration parameter in
PYTHIA. Our current implementation uses e-mail for
this, see Appendix A for more details. Of course, in
some deployments one may want authentication to be
performed in other ways, such as tokens dispensed by
administrators (for enterprise settings) or simply given
out on a first-come-first-serve basis for each ensemble
identifier (for public Internet services).

4.1 Implementation

We implemented a prototype PYTHIA PRF service as
a web application accessed over HTTPS. All requests
are first handled by an nginx web server with uWsgi as
the application server gateway that relays requests to a
Django back-end. The PRF-Srv functionality is imple-
mented as a Django module written in Python. Storage
for the server’s key table and rate-limiting information is
done in MongoDB.

We use the Relic cryptographic library [2] (written
in C) with our own Python wrapper. We use Barreto-
Naehrig 254-bit prime order curves (BN-254) [4]. These
curves provide approximately 128-bits of security.

In our experiments the service is run on a single (vir-
tual) machine, but our software stack permits compo-
nents (web server, application sever, database) to be dis-
tributed among multiple machines with updates to con-
figuration files.

For the purpose of comparison, we implemented three
variants of the PYTHIA service. The first two are the un-
blinded protocols described in Section 3. In these two
schemes, the client sends m in the clear (possibly hashed
with a secret salt value first) and the server replies with
y = H1(t ‖m)k. In the first scheme, denoted UNB,
the server provides p = gk1 and a zero-knowledge proof
where g1 is a generator of G1. The second scheme, de-
noted BLS, uses a BLS signature for verification. The
server provides p = gk2 where g2 is a generator of G2 and
the client verifies the response by computing and com-
paring the values: e(y, g2) = e(H1(t ‖m), p).

Our partially-oblivious scheme is denoted PO.

For the evaluation below we use a Python client im-
plementing PRF-Cl for all three schemes using the same
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Time (µs)
Group Group Op Exp Hashing
G1 5.7 175 77
G2 6.7 572 210
GT 9.8 1145 –

pairing operation (e) takes 1005 µs

Figure 4: Time taken by each operation in BN-254
groups. Hashing times are for 64-byte inputs.

libraries indicated above for the server and httplib2 to
perform HTTPS requests.

4.2 Performance

For performance and scalability evaluation we hosted
our PYTHIA server implementation on Amazon’s Elastic
Compute Cloud (EC2) using a c4.xlarge instance which
provides 8 virtual CPUs (Intel Xeon third generation,
2.9GHz), 15 GB of main memory, and solid state storage.
The web server, nginx, was configured with basic set-
tings recommended for production deployment including
one worker process per CPU.

Latency. We measured client query latency for each
protocol using two clients: one within the same Amazon
Web Service (AWS) availability zone (also c4.xlarge)
and one hosted at the University of Wisconsin–Madison
with an Intel Core i7 CPU (3.4 GHz). We refer to the first
as the LAN (local-area network) setting and the second
as the WAN (wide-area network) setting. In the LAN set-
tings we used the AWS internal IP address. All queries
were made over TLS and measurements include the time
required for clients to blind messages and unblind results
(PO), as well as verify proofs provided by the server (un-
less indicated otherwise). All machines used for evalua-
tion were running Ubuntu 14.04.

Microbenchmarks for group operations appear in
Figure 4 and Figure 5 shows the timing of individual op-
erations that comprise a single PRF evaluation. All re-
sults are mean values computed over 10,000 operations.
These values were captured on an EC2 c4.xlarge instance
using the Python profiling library line profiler. The most
expensive operations, by a large margin, are exponentia-
tion in Gt and the pairing operation. By extension, PO
sign, prove, and verify operations become expensive.

We measured latencies averaged over 1,000 PRF re-
quests (with 100 warmup requests) for each scheme and
the results appear in Figure 6. Computation time domi-
nates in the LAN setting due to the almost negligible net-
work latency. The WAN case with cold connections (no
HTTP KeepAlive) pays a performance penalty due to the
four round-trips required to set up a new TCP and TLS
connection. While even 400 ms latencies are not pro-
hibitive in our applications, straightforward engineering

Server Op Time (ms)
Table 1.2

Rate-limit 0.9
UNB BLS PO

Sign 0.3 0.3 1.5
Prove 0.5 0.3 2.5

Client Op UNB BLS PO
Blind - - 0.3

Unblind - - 1.2
Verify 0.9 2.0 4.0

Figure 5: Computation time for major operations to
perform a PRF evaluation. Table retrieves K[w] from
database; Rate-limit updates rate-limiting record in
database; and Sign generates the PRF output;

Latency (ms)
LAN WAN

Scheme Cold Hot No π Cold Hot No π
UNB 7.0 3.8 2.4 389 82 80
BLS 7.9 4.9 2.4 392 85 80

PO 14.9 11.8 5.2 403 96 84
RTT ping 0.1 82

Figure 6: Average latency to complete a PRF-Cl with
client-server communication over HTTPS. LAN: client
and server in the same EC2 availability zone. WAN:
server in EC2 US-West (California) and client in Madi-
son, WI. Hot connections made with HTTP KeepAlive
enabled; cold connections with KeepAlive disabled. No
π: KeepAlive enabled; prove and verify computations
are skipped.

improvements would vastly improve WAN timing: us-
ing TLS session resumption, using lower-latency secure
protocol like QUIC [43], or even switching to a custom
UDP protocol (for an example one for oblivious PRFs,
see [5]).

Throughput. We used the distributed load testing tool
autobench to measure maximum throughput for each
scheme. We compare to a static page containing a typi-
cal PRF response served over HTTPS as a baseline. We
used two clients in the same AWS region as the server.
All connections were cold: no TLS session resumption
or HTTP KeepAlive. The maximum throughput for a
static page is 2,200 connections per second (cps); UNB
and BLS 1,400 cps; and PO 1,350 cps. Thus our PYTHIA
implementation can handle a large number of clients on
a single EC2 instance. If needed, the implementation can
be scaled with standard techniques (e.g., a larger number
of web servers and application servers on the front-end
with a distributed key-value store on the back-end).

Storage. Our implementation stores all ensemble pre-
key table (K) entries and rate-limiting information in
MongoDB. A table entry is two 32 byte values: a SHA-

7
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256 hash of the ensemble selector w and its associated
value K[w]. In MongoDB the average storage size is 195
bytes per entry (measured as the average of 100K en-
tries), including database overheads and indexes. This
implementation scales easily to 100 M clients with under
20 GB of storage.

To rate-limit queries, our implementation stores tweak
values along with a counter and a timestamp (to ex-
pire old entries) in MongoDB. Tweak values are also
hashed using SHA-256 which ensures entries are of con-
stant length. In our implementation each distinct tweak
requires an average of 144 bytes per entry (including
overheads and indexes). Note however that rate limit-
ing entries are purged periodically as counts are only
required for one rate-limiting period. Our implementa-
tion imposes rate-limits at hour granularity. Assuming a
maximum throughput of 2,000 requests per second, rate-
limiting storage never exceeds 1 GB.

All told, with only 20 GB stored data, PYTHIA can
serve over 100 M clients and perform rate-limiting at
hour granularity. Thus fielding a database for PYTHIA
can be accomplished on commodity hardware.

5 Password Onions

Web servers and other systems frequently store pass-
words in hashed form. A password onion is the result of
additionally invoking a PRF service to harden the hash.
In currently suggested onions, one sequentially combines
local hashing and application of the PRF service.

We now present a service that we have implemented
on top of PYTHIA for managing password onions. First,
we describe the limitations of contemporary systems
as exemplified by a recently disclosed architecture em-
ployed by Facebook [39]. Then we show how our
password-onion system, which was easily engineered on
top of PYTHIA, can address these limitations.

In what follows, we use the term “client” or “web
server” to denote the server performing authentication
and storing derived values from passwords and “PRF
server” to denote the PYTHIA service.

5.1 Facebook password onion
An example of a contemporary system, used by Face-
book, is given in Figure 7.5 Their PRF service applies
HMAC using a service-held secret and returns the result.
In this architecture, an adversary that compromises the
web server and the password hashes it stores must still

5This figure is of “archaeological” interest. It appears that vul-
nerabilities in MD5 led to the addition of a layer of processing un-
der SHA-1; when vulnerabilities were found in SHA-1, Facebook then
added layers of SHA-256. As we explain later, full-blown replacement
of MD5 and SHA-1 with SHA-256 was not easily accomplished.

PW-Onion(pw)

h1 ← MD5(pw)

sa←$ {0, 1}160
h2 ← HMAC[SHA-1](h1, sa)

h3 ← PRF-Cl(h2) = HMAC[SHA-256](h2,msk)

h4 ← scrypt(h3, sa)

h5 ← HMAC[SHA-256](h4)

Ret (sa, h5)

Figure 7: The Facebook password onion. PRF-Cl(h2)
invokes the Facebook PRF service HMAC[SHA-
256](h2,Ks) with PRF-service secret key Ks.

mount an online attack against the PRF service to com-
promise accounts. This is a big advance on the hashing-
only practices that are commonly used.

The Facebook architecture nevertheless has some
shortcomings. It is easy to see from Figure 7 that Face-
book’s system, like most contemporary PRF services,
lacks several important features present in PYTHIA. One
is message privacy: the Facebook PRF service applies
HMAC to h2. This is the salted hash of the password,
and so learning the salt as well as compromising the PRF
service suffices to re-enable offline brute-force attacks.
This threat is avoided by PYTHIA due to blinding.

Another feature is batch key updates. In fact, the Face-
book PRF service doesn’t permit autonomous key up-
dates at all, in the sense of an update to msk that can be
propagated into PRF output updates. Should the client
(password database) be compromised, the only way to
reconstitute a hash in an existing password onion is to
wait until a user logs in and furnishes pw. It is not
clear whether the Facebook PRF service performs granu-
lar rate-limiting, although no such capability is indicated
in [38]. PYTHIA, as we shall see, addresses all of these
issues by design in our password onion system.

The Facebook onion also presents a subtle perfor-
mance issue. By applying cryptographic primitives se-
rially, the time to hash a password equals the time for
local computations, call it tlocal, plus the time for the
round-trip PRF service call, call it tprf . An attacker that
compromises the web service and PRF service incurs no
network latency, and thus may gain a considerable ad-
vantage in guessing time over an honest web server. In
our PYTHIA-based password onion service, we address
this issue by observing that it is possible to avoid seri-
alization of key derivation functions on the web server
and the PRF service call. That is, we introduce in our
PYTHIA-based service the idea of parallelizable pass-
word onions.

8
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UpParOnion(w, sa, pw)

z ← PBKDF(pw, sa)

u ← PRF-Cl(w, sa, pw)

h ← uz

Ret (h, sa)

Figure 8: An updatable, parallelizable password onion.
PRF-Cl returns elements of a group G. The value w is a
unique PRF-service identifier for the web server (e.g., a
random 256-bit string) and sa is a random per-user salt
value.

5.2 PYTHIA password onion
The onion algorithm we construct for PYTHIA is shown
in Figure 8. For PYTHIA, the output of PRF-Cl is
an element of a group GT . To use this service, a
web server stores (h, sa) upon password registration;
it verifies a proffered password pw′ by checking that
UpParOnion(w, sa, pw′) = h. Written out we have that:

h = uz = e(H1(sa), H2(pw))
kwz.

This design ensures that the key update functions in the
PYTHIA API may be used to update onions as well. For
example, to update an ensemble key kw to k′w, the service
computes and furnishes to the web server an update token
∆w = k′w/kw. The web server may compute h∆w for
each stored value h.

Parallelization. Password verification here is paral-
lelizable in the sense that z and u may be computed in-
dependently and then combined. Such parallel imple-
mentation of the onion achieves a password verification
latency of max{tlocal, tprf} (plus a single exponentia-
tion), as opposed to tlocal + tprf in a serialized imple-
mentation.

A web server generally aims to achieve a verification
latency equal to some latency target T that is high enough
to slow offline brute-force attacks, but low enough not to
burden users. For a parallelized onion a web server can
meet its latency target by setting tlocal, tprf ≈ T . At the
same time an offline attacker that has compromised the
web server and PYTHIA must perform about tlocal+tF >
T work to check a single password guess, where tF is
the computation time of Fkw (i.e., tprf minus network
latency). An attacker can parallelize, but her total work
still goes up relative to the serial onion approach for the
same latency target T .

We estimate the security improvement of parallel
onions over serial onions using our benchmarks from
Section 4.2. We fix a login latency budget of T =
300ms.6 The latency costs for a PYTHIA query with

6This is the default setting for Python’s bcrypt and scrypt modules,
though all PBDKFs are tunable so one can choose T to be any value
desired.

hot connections are 12 ms (LAN) and 96 ms (WAN). If
one performs computations serially with a fixed T then
PBKDF computations need to be reduced by 4% (LAN)
and 32% (WAN) compared to the parallel approach. In
the event that the PYTHIA server and password database
are compromised, the serial onion enables speedup of of-
fline dictionary attacks by the same percentages.

Rate limiting and logging. The transparency of tweaks
enables the PYTHIA PRF service in this setting to execute
any of a wide range of rate-limiting policies with per-
account visibility (in contrast to what may be in Face-
book an account-blind PRF service). As an example
demonstrating the flexibility of our architecture, in our
implementation PYTHIA performs a tiered rate-limiting:
for a given account (t), it limits queries to at most 10 per
hour per account, and at most 300 per month. (In ex-
pectation, guessing a random 4-digit PIN would require
1.4 years under this policy.) It logs violations of these
thresholds. In a production environment, it could also
send alerts to security administrators.

We emphasize that a wide range of other rate-limiting
policies is possible. We also point out that PYTHIA’s rate
limiting supplements that normally implemented at the
web server for remote login requests. PYTHIA performs
rate limiting and may issue alerts even if the web server
is compromised.

Key update. The key update calls in the PYTHIA API,
and the ability to rotate either kw or msk efficiently,
propagates up to the password onion service. Key up-
dates instantly invalidate the web server’s existing pass-
word database—a useful capability in case of compro-
mise. A compromised database becomes useless to an
attacker attempting to recover passwords, even with the
ability to query PYTHIA. Using a key update token, the
web server can then recover from compromise by re-
freshing its database.

We created a client simulator with MongoDB and
the mongoengine Python module. With this we bench-
marked key updates with 100,000 database entries. The
client requested a key update from PYTHIA, received the
update token ∆w, and updated each database entry. The
complete update required less than 1 ms per entry, and
terminated in less than 97 seconds for all 100,000 en-
tries. For a larger database we assume updates scale lin-
early, and so an update for 1 million users completes in
under 17 minutes.

The web server need not need lock the database to per-
form updates; it can execute them in parallel with normal
login operations. Doing so does require additional ver-
sioning information for each entry to indicate the version
of kw (in the simplest form, whether or not it has received
the latest update).

9
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6 Hardened Brainwallets

Brainwallets are a common but dangerous way to se-
cure accounts in the popular cryptocurrency Bitcoin, as
well as in less popular cryptocurrencies such as Litecoin.
Here we describe how the PYTHIA service can be used
directly as a means to harden brainwallets. This appli-
cation showcases the ease with which a wide variety of
applications can be engineered around PYTHIA.

How brainwallets work. Every Bitcoin account has an
associated private / public key pair (sk, pk). The private
key sk is used to produce digital (ECDSA) signatures
that authorize payments from the account. The public
key pk permits verification of these signatures. It also
acts as an account identifier; a Bitcoin address is derived
by hashing pk (under SHA-256 and RIPEMD-160) and
encoding it (in base 58, with a check value).

Knowledge of the private key sk equates with control
of the account. If a user loses a private key, she therefore
loses control over her account. For example, if a high en-
tropy key sk is stored exclusively on a device such as a
mobile phone or laptop, and the device is seized or physi-
cally destroyed, the account assets become irrecoverable.

Brainwallets offer an attractive remedy for such phys-
ical risks of key loss. A brainwallet is simply a password
or passphrase P memorized by a Bitcoin account holder.
The private key sk is generated directly from P . Thus
the user’s memory serves as the only instrument needed
to authorize access to the account.

In more detail, the passphrase is typically hashed using
SHA-256 to obtain a 256-bit string sk = SHA-256(P ).
Bitcoin employs ECDSA signatures on the secp256k1
elliptic curve; with high probability (≈ 1 − 2−126), sk
is less than the group order, and a valid ECDSA pri-
vate key. (Some websites employ stronger key derivation
functions. For example, WrapWallet by keybase.io [29]
derives sk from an XOR of each of PBKDF2 and scrypt
applied to P and permits use of a user-supplied salt.)

Since a brainwallet employs only P as a secret, and
does not necessarily use any additional security mea-
sures, an attacker that guesses P can seize control of a
user’s account. As account addresses are posted publicly
in the Bitcoin system (in the “blockchain”), an attacker
can easily confirm a correct guess. Brainwallets are thus
vulnerable to brute-force, offline guessing attacks. Nu-
merous incidents have come to light showing that brain-
wallet cracking is pandemic [14].7

7At one point, rumor had it that cracking brainwallets was more
profitable than “mining,”, the basic process of generating fresh Bit-
coins.

6.1 A PYTHIA-hardened brainwallet

PYTHIA offers a simple, powerful means of protecting
brainwallets against offline attack. Hardening P in the
same manner as an ordinary password yields a strong key
P̃ that can serve in lieu of P to derive sk.

To use PYTHIA, a user chooses a unique identifier id,
e.g., her e-mail address, an account identifier acct, and a
passphrase P . The identifier acct might be used to distin-
guish among Bitcoin accounts for users who wish to use
the same password for multiple wallets. The client then
sends (w = id, t = id ‖ acct,m = P ) to the PYTHIA
service to obtain the hardened value Fkw(t,m) = P̃ .
Here, id is used both as an account identifier and as part
of the salt. Message privacy in PYTHIA ensures that the
service learns nothing about P . Then P̃ is hashed with
SHA-256 to yield sk. The corresponding public key
pk and address are generated in the standard way from
sk [7].

PYTHIA forces a would-be brainwallet attacker to
mount an online attack to compromise an account. Not
only is an online attack much slower, but it may be rate-
limited by PYTHIA and detected and flagged. As the
PYTHIA service derives P̃ using a user-specific key, it
additionally prevents an attacker from mounting a dictio-
nary attack against multiple accounts. While in the con-
ventional brainwallet setting, two users who make use
of the same secret P will end up controlling the same
account, PYTHIA ensures that the same password P pro-
duces distinct per-user key pairs.

Should an attacker compromise the PYTHIA service
and steal msk and K, the attacker must still perform an
offline brute-force attack against the user’s brainwallet.
So in the worst case, a user obtains security with PYTHIA
at least as good as without it.

Additional security issues. A few subtle security issues
deserve brief discussion:

• Stronger KDFs: To protect against brute-force
attack in the event of PYTHIA compromise,
a resource-intensive key-derivation function may
be desirable, as is normally used in password
databases. This can be achieved by replacing the
SHA-256 hash of P̃ above with an appropriate KDF
computation, or alternatively using an onion ap-
proach described in Section 5.

• Denial-of-service: By performing rate-limiting,
PYTHIA creates the risk of targeted denial-of-
service attacks against Bitcoin users. As Bitcoin
is pseudonymous, use of an e-mail address as a
PYTHIA key-selector suffices to prevent such at-
tacks against users based on their Bitcoin addresses
alone. Users also have the option, of course, of us-
ing a semi-secret id. A general DoS attack against
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the PYTHIA service is also possible, but of similar
concern for Bitcoin itself [8].

• Key rotation: Rotation of an ensemble key kw (or
the master key msk) induces a new value of P̃ and
thus a new (sk, pk) pair and account. A client can
handle such rotations in the naı̈ve way: transfer
funds from the old address to the new one.

• Catastrophic failure of PYTHIA: If a PYTHIA ser-
vice fails catastrophically, e.g., msk or K is lost,
then in a typical setting, it is possible simply to
reset users’ passwords. In the brainwallet case,
the result would be loss of virtual-currency assets
protected by the server—a familiar event for Bit-
coin users [35]. This problem can be avoided,
for instance, using a threshold implementation of
PYTHIA, as mentioned in Section 6.2 or storing sk
in a secure, offline manner like a safe-deposit box
for disaster recovery.

6.2 Threshold Security
In order to gain both redundancy and security, we give
a threshold scheme that can be used with a number of
Pythia servers to protect a secret under a single pass-
word. This scheme uses Shamir’s secret sharing thresh-
old scheme [45] and gives (k, n) threshold security. That
is, initially, n Pythia servers are contacted and used to
protect a secret s, and then any k servers can be used to
recover s and any adversary that has compromised fewer
than k Pythia servers learns no information about s.

Preparation. The client chooses an ensemble key se-
lector w, tweak t, password P , and contacts n Pythia
servers to compute qi = PRF-Cli(w, t, P ) mod p for
0 < i ≤ n. The client selects a random polynomial
of degree k − 1 with coefficients from ∗

p where p is
a suitably large prime: f(x) =

∑k−1
j=0 x

jaj . Let the
secret s = a0. Next the client computes the vector
Φ = (φ1, ..., φn) where φi = f(i) − qi. The client
durably stores the value Φ, but does not need to protect
it (it’s not secret). The client also stores public keys pi
from each Pythia server to validate proofs when issuing
future queries.

Recovery. The client can reconstruct s if she has Φ by
querying any k Pythia servers giving k values qi. These
qi values can be applied to the corresponding Φ values
to retrieve k distinct points that lie on the curve f(x).
With k points on a degree k − 1 curve, the client can
use interpolation to recover the unique polynomial f(x),
which includes the curve’s intercept a0 = s.

Security. If an adversary is given Φ, w, t, the public
keys pi, a ciphertext based on s, and the secrets from
m < k Pythia servers, the adversary has no information

that will permit her to verify password guesses offline.
Compared to [45], this scheme reduces the problem of
storing n secrets to having access to n secure OPRFs and
durable (but non-secret) storage of the values Φ and pub-
lic keys pi.

Verification. Verification of server responses occurs
within the Pythia protocol. If a server is detected to be
dishonest (or goes out of service), it can be easily re-
placed by the client without changing the secret s. To re-
place a Pythia server that is suspected to be compromised
or detected as dishonest, the client reconstructs the secret
s using any k servers, executes Reset operations on all
remaining servers: this effects a cryptographic erasure
on the values Φ and f(x). The client then selects a new,
random polynomial, keeping a0 fixed, and generates and
stores an updated Φ′ that maps to the new polynomial.

7 Related Work

We investigated a number of designs based on exist-
ing cryptographic primitives in the course of our work,
though as mentioned none satisfied all of our design
goals. Conventional PRFs built from block ciphers or
hash functions fail to offer message privacy or key rota-
tion. Consider instead the construction H(t ‖m)kw for
H : {0, 1}∗ → G a cryptographic hash function map-
ping onto a group G. This was shown secure as a con-
ventional PRF by Naor, Pinkas, and Reingold assum-
ing decisional Diffie-Hellman (DDH) is hard in G and
when modeling H as a random oracle [40]. It supports
key rotations (in fact it is key-homomorphic [11]) and
verifiability can be handled using non-interactive zero-
knowledge proofs (ZKP) as in PYTHIA. But this ap-
proach fails to provide message privacy if we submit both
t and m to the server and have it compute the full hash.

One can achieve message-hiding by using blinding:
have the client submit X = H(t ‖m)r for random
r ∈ |G| and the server reply with Xkw as well as a ZKP
proving this was done correctly. The resulting scheme
is originally due to Chaum and Pedersen [19], and sug-
gested for use by Ford and Kaliski [26] in the context
of threshold password-authenticated secret sharing (see
also [3, 15, 20, 34]). There an end user interacts with
one or more blind signature servers to derive a secret au-
thentication token. If G comes equipped with a bilin-
ear pairing, one can dispense with ZKPs. The resulting
scheme is Boldyreva’s blinded version [10] of BLS sig-
natures [12]. However, neither approach provides gran-
ular rate limiting when blinding is used: the tweak t is
hidden from the server. Even if the client sends t as well,
the server cannot verify that it matches the one used to
compute X and attackers can thereby bypass rate limits.

To fix this, one might use Ford-Kaliski with a sep-
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arate secret key for each tweak. This would result in
having a different key for each unique w, t pair. Mes-
sage privacy is maintained by the blinding, and querying
w, t,H(t′ ‖m)r for t �= t′ does not help an attacker cir-
cumvent per-tweak rate limiting. But now the server-side
storage grows in the number of unique w, t pairs, a client
using a single ensemble w must now track N public keys
when they use the service for N different tweaks, and
key rotation requires N interactions with the PRF server
to get N separate update tokens (one per unique tweak
for which a PRF output is stored). When N is large and
the number of ensembles w is small as in our password
storage application, these inefficiencies add significant
overheads.

Another issue with the above suggestions is that their
security was only previously analyzed in the context of
one-more unforgeability [42] as targeted by blind signa-
tures [18] and partially blind signatures [1]. (Some were
analyzed as conventional PRFs, but that is in a model
where adversaries do not get access to a blinded server
oracle.) The password onion application requires more
than unforgeability because message privacy is needed.
(A signature could be unforgeable but include the en-
tire message in its signature, and this would obviate the
benefits of a PRF service for most applications.) These
schemes, however, can be proven to be one-more PRFs,
the notion we introduce, under suitable one-more DDH
style assumptions using the same proof techniques found
in Appendix B.

Fully oblivious PRFs [27] and their verifiable ver-
sions [28] also do not allow granular rate limiting. We
note that the Jarecki, Kiayias, and Krawczyk construc-
tions of verifiable OPRFs [28] in the RO model are
essentially the Ford-Kaliski protocol above, but with
an extra hash computation, making the PRF output
H ′(t ‖m ‖H(t ‖m)kw). Our notion of one-more un-
predictability in the appendix captures the necessary re-
quirements on the inner cryptographic component, and
might modularize and simplify their proofs. Their trans-
form is similar to the unique blind signature to OPRF
transformation of Camenisch, Neven, and shelat [16].
None of these efficient oblivious PRF protocols support
key rotations (with compact tokens or otherwise) as the
final hashing step destroys updatability.

The setting of capture-resilient devices shares with
ours the use of an off-system key-holding server and the
desire to perform cryptographic erasure [32, 33]. They
only perform protocols for encryption and signing func-
tionalities, however, and not (more broadly useful) PRFs.
They also do not support granular rate limiting and mas-
ter secret key rotation.

Our main construction coincides with prior ones
for other contexts. The Sakai, Ohgishi, and Kasa-
hara [44] identity-based non-interactive key exchange

protocol computes a symmetric encryption key as
e(H1(ID1), H2(ID2))

k for k a master secret held by
a trusted party and ID1 and ID2 being the identities
of the parties. See [41] for a formal analysis of their
scheme. Boneh and Waters suggest the same construc-
tion as a left-or-right constrained PRF [13]. The settings
and their goals are different from ours, and in particular
one cannot use either as-is for our applications. Naı̈vely
one might hope that returning the constrained PRF key
H1(t)

kw to the client suffices for our applications, but
in fact this totally breaks rate-limiting. Security analysis
of our protocol requires new techniques, and in particu-
lar security must be shown to hold when the adversary
has access to a half-blinded oracle — this rules out the
techniques used in [13, 41].

Key-updatable encryption [11] and proxy re-
encryption [9] both support key rotation, and could
be used to encrypt password hashes in a way support-
ing compact update tokens and that prevents offline
brute-force attacks. But this would require encryption
and decryption to be handled by the hardening service,
preventing message privacy.

Verifiable PRFs as defined by [21,22,31,36] allow one
to verify that a known PRF output is correct relative to a
public key. Previous verifiable PRF constructions are not
oblivious, let alone partially oblivious.

Threshold and distributed PRFs [21, 37, 40] as well as
distributed key distribution centers [40] enable a suffi-
ciently large subset of servers to compute a PRF output,
but previous constructions do not provide the granular
rate limiting and key rotation we desire. However, it is
clear that there are situations where applications would
benefit from a threshold implementation of PYTHIA, for
both redundancy and distribution of trust, as discussed in
Section 6.2 for the case of brainwallets.

8 Conclusion

We presented the design and implementation of PYTHIA,
a modern PRF service. Prior works have explored the use
of remote cryptographic services to harden keys derived
from passwords or otherwise improve resilience to com-
promise. PYTHIA, however, transcends existing designs
to simultaneously support granular rate limiting, efficient
key rotation, and cryptographic erasure. This set of fea-
tures, which stems from practical requirements in appli-
cations such as enterprise password storage, proves to
require a new cryptographic primitive that we refer to as
a partially oblivious PRF.

Unlike a (fully) oblivious PRF, a partially oblivious
PRF causes one portion of an input to be revealed to
the server to enable rate limiting and detection of on-
line brute-force attacks. We provided a bilinear-pairing
based construction for partially oblivious PRFs that is
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highly efficient and simple to implement (given a pair-
ings library), and also supports efficient key rotations. A
formal proof of security is unobtainable using existing
techniques (such as those developed for fully oblivious
PRFs). We thus gave new definitions and proof tech-
niques that may be of independent interest.

We implemented PYTHIA and show how it may be
easily integrated it into a range of applications. We de-
signed a new enterprise “password onion” system that
improves upon the one recently reported in use at Face-
book. Our system permits fast key rotations, enabling
practical reactive and proactive key management, and
uses a parallelizable onion design which, for a given au-
thentication latency, imposes more computational effort
on attackers after a compromise. We also explored the
use of PYTHIA to harden brainwallets for cryptocurren-
cies.
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A Additional PYTHIA API details

Many PYTHIA-dependent services can benefit from ad-
ditional API features and calls beyond the primary ones
discussed in the body of the paper. (For example, the
PYTHIA password onion system in Section 5 uses the
Transfer API call.) We detail these other API features in
this appendix.

Key-management options. The client can specify a
number of options in the call Init regarding management
of the ensemble key kw. The client can provide a contact
email address to which alerts and authentication tokens
may be sent. (If no e-mail is given, no API calls requiring
authentication are permitted at present and no alerts are
provided. Later versions of PYTHIA will support other
authentication and alerting methods.)

Selector option Description
Email Contact email for selector
Resettable Whether client-requested rotations allowed
Limit Establish rate-limit per t
Time-out Date/time to delete kw
Public-key Key under which to encrypt and store up-

date and authentication tokens
Alerts Whether to email contact upon rate limit vi-

olation

Figure 9: Optional settings for establishing key selectors
in PYTHIA.

Command Description
Transfer(w,w′ [, options]) Creates new ensemble

w′; outputs update token
∆w→w′ ; resets kw

SendTokens(w, authtoken) Sends stored update tokens to
client

PurgeTokens(w, authtoken) Purges all stored update to-
kens for ensemble w

Figure 10: The PYTHIA API. The individual calls are
explained in detail in the text.

The client can specify whether kw should be resettable
(default is “yes”). The client can specify a limit on the
total number of Fkw

queries that should be allowed be-
fore resetting K[w] (default is unlimited) and/or an ab-
solute expiration date and time in UTC at which point
K[w] is deleted (default is no time-out). Either of these
options overrides the resettable flag. The client can spec-
ify a public key pkcl for a public-key encryption scheme
under which to encrypt authentication tokens and update
tokens (for Reset, Transfer, as described below, and for
master secret key rotations). Finally, the client can re-
quest that alerts be sent to the contact email address in
the case of rate limit violations. This option is ignored
if no contact email is provided. The options are summa-
rized in Figure 9.

PYTHIA also offers some additional API calls, given
in Figure 10, which we now describe.

Ensemble transfer. A client can create a new ensemble
w′ (with the same options as in Init) while receiving an
update token that allows PRF outputs under ensemble w
to be rolled forward to w′. This is useful for importing
a password database to a new server. The PYTHIA ser-
vice returns an update token ∆w→w′ for this purpose and
stores it encrypted under pkcl. For the case w′ = w, this
call also allows option updates on an existing ensemble
w.

Update-token handling. The PYTHIA service stores
update tokens encrypted under pkcl, with accom-
panying timestamps for versioning. The API call
SendTokens causes these to be e-mailed to the client,
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while PurgeTokens causes update-token ciphertexts to
be deleted from PYTHIA.

Note that once an update token is deleted, old PRF
values to which the token was not applied become cryp-
tographically erased — they become random values un-
related to any messages. A client can therefore delete the
key associated with an ensemble by calling Reset and
PurgeTokens.

Master secret rotations. PYTHIA can also rotate its
master secret key msk to a new key msk′. Recall that en-
semble keys are computed as kw = HMAC(msk,K[w]),
so rotation of msk results in rotation of all ensemble
keys. To rotate to a new msk′, the server computes kw
for all ensembles w with entries in K, and stores δw en-
crypted under pkcl. If no encryption key is set, then the
token is stored in the clear. This is a forward-security
issue while it remains, but only for that particular key
ensemble. At this point msk is safe to delete. Clients
can be informed of the key rotation via e-mail.

Subsequent SendTokens requests will return the re-
sulting update token, along with any other stored update
tokens for the ensemble. If multiple rotations occur be-
tween client requests, then these can be aggregated in the
stored update token for each ensemble. This is trivial if
they are stored in the clear (just multiply the new token
against the old) and also works if they are encrypted with
an appropriately homomorphic encryption scheme such
as ElGamal [24].

B Formal Security Analyses

We provide formal security notions for partially oblivi-
ous PRFs, and proofs of security relative to them for our
scheme from Section 3.

Partially-oblivious PRFs. A partially oblivious PRF
protocol Π = (K, PRF-Cl, PRF-Srv, F ) consists of the
following. The key generation algorithm K outputs a
public key and private key pair (pk, sk). We assume
that from sk one can compute pk easily. The PRF-Srv
algorithm takes input the secret key sk and a client re-
quest message (a bit string) and returns a server re-
sponse message (another bit string). The client algo-
rithm PRF-Cl takes inputs a tweak t and message m,
can make a single call to PRF-Srv, and outputs a value.
Finally we associate to the protocol a keyed function
Fsk : {0, 1}∗ × {0, 1}∗ → {0, 1}∗. A scheme is correct
if executing PRF-ClPRF-Srvsk(·)(t,m) with fresh coins
matches Fsk(t,m) with probability one. In words, the
protocol computes the appropriate function of t,m.

Bilinear pairing setups. Let G1,G2,GT be groups
all of order p that have associated to them an admissi-
ble bilinear pairing e : G1 × G2 → GT . Recall that

for generators g1 ∈ G1, g2 ∈ G2, there exists a gen-
erator gT ∈ GT such that e(gα1 , g

β
2 ) = gαβT for all

α, β ∈ p. As shorthand for below we refer to a pair-
ing setup G = (g1, g2, gT ,G1,G2,GT , e) and assume
some compact description of G as a bit-string where ap-
propriate.

The scheme. The partially-oblivious PRF at the core8 of
our bilinear pairing scheme from Section 3 is as follows
for some fixed pairing setup G. Let H1 : {0, 1}∗ → G1

and H2 : {0, 1}∗ → G2 be hash functions that we will
later model as random oracles.

Key generation K picks a random exponent sk and
computes a public key pk = gs1k. The PRF-Cl(t,m)
algorithm computes a mask r←$ p and sends t and
x = H2(m)r to the server. The PRF-Srv(sk, t, x) com-
putes y = e(H1(t), x)

sk and a ZKP π that DLg1(pk) =
DLx̃(y) where x̃ = e(H1(t), x). It sends pk, y, π to the
client, who verifies the ZKP, deletes it, and then outputs
y1/r. The correctness of the scheme follows from the
correctness of the ZKP and the properties of the pairing.

The ZKP is used to ensure that a malicious server re-
sponds as per the protocol. In the following security
analyses we focus primarily on malicious clients, and for
simplicity analyze a simpler version of the protocol that
omits the ZKP. The proofs found below can be extended
to the full protocol by applying the zero-knowledge se-
curity of the proof systems that we use (i.e., use the
zero-knowledge simulator to produce fake, but realistic-
looking to the client, proofs).

B.1 Unpredictability Security

We define a one-more unpredictability security notion.
It modifies one-more unforgeability [42] to be suitable
for the setting of unpredictable functions (as opposed to
publicly verifiable signatures). The game is shown in
Figure 11. We associate to any protocol Π, adversary A,
and query number q the one-more-unpredictability ad-
vantage defined as

Advom-unp
Π,q (A) = Pr

[
om-UNPA

Π,q ⇒ true
]
.

The probability here (and for games defined later below)
is over all random coins used by the procedures and the
adversary. The event refers to the probability that the
value returned by the main procedure is true. In words,
the definition requires that an adversary cannot produce �
outputs of the PRF using less than � queries on partially-
blinded inputs to the server. One can easily extend this
notion to deal with full blinded inputs as well, but we
will not need this.

8For brevity we omit key selectors here, and instead focus on ana-
lyzing security for a single key instance. Assuming properly generated
keys for each selector, one can show that security for a single key in-
stance implies security for many.
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Game om-UNPA
Π

(pk, sk)←$ K
c ← 0

(t1,m1, σ1), . . . , (t�,m�, σ�)←$ APRF-Srv,H1,H2

If ∃i �= j . (ti,mi) = (tj ,mj) then Ret false
Ret (∧i(σi = FH1,H2

sk (ti,mi)) ∧ c < �)

PRF-Srv(t, Y )

c ← c+ 1

Ret PRF-SrvH1,H2
sk (t, Y )

Figure 11: Security game for one-more unpredictability.

This notion of security is sufficient for PYTHIA in ap-
plications where the output of the protocol is not stored,
but rather used as an unforgeable credential such as with
our hardened Brainwallet application (Section 6).

The security of our scheme is based on the fol-
lowing one-more bilinear computational Diffie-Hellman
(BCDH) problem, an extension of the one-more CDH
assumption given by Boldyreva [10]. To the best
of our knowledge this assumption is new, but it is
a straightforward adaptation of previous one-more as-
sumptions [6, 10] to our setting. For a pairing setup G,
game om-BCDHG is defined in Figure 12. In words, the
adversary gets a group element gs1k ∈ G1 as well as
target oracles Targ1,Targ2 that return random group ele-
ments in G1,G2 respectively. Finally the adversary can
query a helper oracle Help that raises GT elements to the
k. To win, it must compute � values e(Xi, Yj)

k for �
larger than the number of helper queries and each Xi, Yj

a unique pair of (distinct) values returned by the target or-
acle. Let Advom-cdh

G (B) = Pr
[

om-BCDHB
G ⇒ true

]
.

We have the following theorem establishing the one-
more unpredictability of our scheme The proof is essen-
tially identical to the proof of Boldyreva’s blind signa-
tures [10].

Theorem 1 Let Π be the simplified partially oblivious
PRF protocol for a pairing setup G and H1, H2 mod-
eled as random oracles. Then for any one-more un-
predictability adversary A making at most q PRF-Srv
queries, we give in the proof below a one-more CDH ad-
versary B such that

Advom-unp
Π (A) ≤ Advom-cdh

G (B)
where B runs in time that of A plus O(q) group opera-
tions.

Proof: We assume without loss of generality that A
never repeats a query to either random oracle and makes
a random oracle H1(ti) and H2(mi) query for each
(ti,mi, σi) triple it outputs. The adversary B will work
as follows when given inputs G, X and access to oracles
Targ1,Targ2,Help. First, it runs A. Whenever A makes

Game om-BCDHB
G

sk ←$ p

qh, q1,t, q2,t ← 0

(i1, j1, σ1), . . . , (i�, j�, σ�)←$ ATarg1,Targ2,Help(G, gs1k)

If qh ≥ � then Ret false
If ∃α . (iα > q1,t) ∨ (jα > q2,t) then Ret false
If ∃α �= β . (iα, jα) = (iβ , jβ) then Ret false
Ret ∀α . e(Xiα , Yjα)

k = σα

Targ1

q1,t ← q1,t + 1 ; Xq1,t ←$ G1 ; Ret Xq1,t

Targ2

q2,t ← q2,t + 1 ; Yq2,t ←$ G2 ; Ret Yq2,t

Help(Z)

qh ← qh + 1 ; Ret Zsk

Figure 12: Security game for a one-more
BCDH assumption for bilinear pairing setting
G = (g1, g2, gt,G1,G2,GT , e).

an H1(t) query, B queries Targ1 to obtain a G1-element
that we will denote X[t], sets ct to be the number of H1

queries so far (including the current), and returns X[t]
to A. Whenever A makes an H2(m) server query, B
queries Targ2, obtains a G2-element that we will denote
Y [m], sets dm to be the number of H2 queries so far (in-
cluding the current), and returns Y [m] to A. Whenever
A makes a PRF-Srv(t, Y ) query, the adversary B com-
putes Z ← e(H1(t), Y ), and then queries Z to its helper
oracle Help to obtain a value σ ∈ GT . It returns σ to A.

Eventually A outputs a series of triples
(t1,m1, σ1), . . . , (tq,mq, σq). At this point
adversary B outputs the sequence of pairs
(ct1 , dm1

, σ1), . . . , (cmq
, dmq

, σq).
Suppose A wins its game. Then it made at most q − 1

queries to PRF-Srv and so B makes at most q−1 queries
to Help. It is also the case that all predictions by A are
for unique tag, message pairs, meaning that B’s output
will also be for unique pairs of targets. Finally, it is clear
that correct predictions σi are also BCDH solutions.

B.2 Pseudorandomness Security
See the full version of this paper [25] for one-more PRF
security definitions and associated proofs.
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Abstract
Cybercriminals misuse accounts on online services (e.g.,
webmails and online social networks) to perform ma-
licious activity, such as spreading malicious content or
stealing sensitive information. In this paper, we show
that accounts that are accessed by botnets are a popular
choice by cybercriminals. Since botnets are composed
of a finite number of infected computers, we observe that
cybercriminals tend to have their bots connect to multiple
online accounts to perform malicious activity.

We present EVILCOHORT, a system that detects on-
line accounts that are accessed by a common set of in-
fected machines. EVILCOHORT only needs the mapping
between an online account and an IP address to operate,
and can therefore detect malicious accounts on any on-
line service (webmail services, online social networks,
storage services) regardless of the type of malicious ac-
tivity that these accounts perform. Unlike previous work,
our system can identify malicious accounts that are con-
trolled by botnets but do not post any malicious content
(e.g., spam) on the service. We evaluated EVILCOHORT
on multiple online services of different types (a webmail
service and four online social networks), and show that
it accurately identifies malicious accounts.

1 Introduction

Online services, such as online social networks (OSNs),
webmail, and blogs, are frequently abused by cyber-
criminals. For example, miscreants create fake ac-
counts on popular OSNs or webmail providers and then
use these accounts to spread malicious content, such
as links pointing to spam pages, malware, or phishing
scams [27, 31, 40]. A large fraction of the malicious
activity that occurs on online services is driven by bot-
nets, networks of compromised computers acting under
the control of the same cybercriminal [9].

Leveraging existing services to spread malicious con-
tent provides three advantages to the attacker. First, it is

easy to reach many victims, since popular online services
have many millions of users that are well connected. In
traditional email spam operations miscreants have to har-
vest a large number of victim email addresses (on the
web or from infected hosts) before they can start sending
spam. On online services such as OSNs, on the other
hand, cybercriminals can easily find and contact their
victims or leverage existing friends of compromised ac-
counts [15]. In some cases, such as blog and forum spam,
cybercriminals do not even have to collect a list of vic-
tims, because their malicious content will be shown to
anybody who is visiting the web page on which the spam
comment is posted [21,31]. A second advantage of using
online services to spread malicious content is that while
users have become aware of the threats associated with
email, they are not as familiar with scams and spam that
spreads through other communication channels (such as
social networks) [5, 18, 27]. The third advantage is that
while online services have good defenses against threats
coming from the outside (e.g., emails coming from dif-
ferent domains), they have a much harder time detecting
misuse that originates from accounts within the service
itself (e.g., emails sent by accounts on the service to other
accounts on the same one) [28].

To carry out malicious campaigns via online services,
attackers need two resources: online accounts and con-
nection points. Almost all online services require users
to sign up and create accounts before they can access
the functionality that these services offer. Accounts al-
low online services to associate data with users (such
as emails, posts, pictures, etc.), and they also serve as a
convenient way to regulate and restrict access. Connec-
tion points are the means through which attackers access
online accounts. They are the devices (hosts) that run
the client software (e.g., web browsers or dedicated mo-
bile applications) that allow the miscreants to connect to
online services. Often, connection points are malware-
infected machines (bots) that serve as a convenient way
for the attacker to log into the targeted service and issue
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the necessary commands to send spam or harvest per-
sonal information of legitimate users. However, mali-
cious connection points do not need to be bots. They can
also be compromised servers, or even the personal device
of a cybercriminal.

In this paper, we propose EVILCOHORT, a novel ap-
proach that detects accounts on online services that are
controlled by cybercriminals. Our approach is based on
the analysis of the interactions between attackers and an
online service. More precisely, we look at the interplay
between accounts, connection points, and actions. That
is, we observe which account carries out what action, and
which connection point is responsible for triggering it.

The intuition behind our approach is that cybercrim-
inals use online services differently than regular users.
Cybercriminals need to make money, and this often re-
quires operations at a large scale. Thus, when such oper-
ations are carried out, they involve many accounts, con-
nection points, and actions. Moreover, accounts and con-
nection points are related in interesting ways that can
be leveraged for detection. A key reason for these in-
teresting relationships is the fact that attackers use bots
(as connection points) to access the online accounts that
participate in an orchestrated campaign. By linking ac-
counts and the connection points that are used to ac-
cess these accounts, we see that malicious communities
emerge, and these communities can be detected.

EVILCOHORT works by identifying communities
(sets) of online accounts that are all accessed from a
number of shared connection points (we use IP addresses
to identify these connection points). That is, we observe
a number of IP addresses and accounts, and each account
is accessed by a non-trivial portion of these IP addresses.
Typically, these IP addresses correspond to bot-infected
machines, and they are used to log into the accounts that
are under the control of the attacker. To identify com-
munities, we consume a log of interaction events that the
online service records. An interaction event can be any
action that a user performs in relation to an account on
an online service, such as logging in, sending an email,
or making a friend request. Each event also contains the
account that is involved, as well as the IP address that
sends the request. Our results show that the overwhelm-
ing majority of accounts that are identified by our com-
munity detection approach are actually malicious, and
that therefore the detection by EVILCOHORT is reliable
enough on its own. As an additional step to better under-
stand the detected communities and help us assess po-
tential false positives we present techniques to analyze
the characteristics of accounts within a community and
identify typical behaviors that are indicative of malicious
activity. Such characteristics include suspicious activity
frequencies over time, synchronized activity of the ac-
counts in the community, and the distribution of the types

of browsers used by the infected machines to connect to
the online accounts.

One key advantage of our approach is that it is generic,
as it does not rely on service-specific information. This is
different from previous research, which typically lever-
ages service-specific information to perform detection.
For example, BOTGRAPH [39] looks at accounts that
are accessed by multiple IP addresses, similarly to our
approach, but relies on heuristics based on the email-
sending behavior of such accounts to limit false posi-
tives. This fact not only makes deployment more prob-
lematic, but also limits the applicability of the system to
accounts that are misused to send spam. Contrast this
with our broad definition of interaction events that is sat-
isfied by a large variety of data that naturally accumulates
at online service providers, and makes our approach ap-
plicable to any online service that requires users to cre-
ate an account to interact with it. We demonstrate this by
leveraging our approach to detect spammers on a web-
mail service, as well as to identify malicious accounts on
multiple OSNs.

An additional advantage of our approach is that it can
be applied to different types of actions. These actions
can include account generation and login operations. In
these cases, it might be possible to detect malicious ac-
counts before they distribute any malicious content, as an
early warning system. Also, it can help to identify abuses
where no malicious content is distributed at all. An ex-
ample of this are botnets that use social networks as part
of their command-and-control (C&C) infrastructure [26],
or botnets that crawl the online profiles of users harvest-
ing personal information [17]. To show the versatility of
our approach, we apply it to two different types of inter-
action events: on the webmail service we look at events
that correspond to the sending of emails, while on the
OSNs an interaction event is recorded when a user logs
into her account. Over a period of five months, EVILCO-
HORT detected more than one million online accounts as
malicious on the analyzed services. In summary, this pa-
per makes the following contributions:

• We show that a significant amount of malicious ac-
tivity is carried out by accounts that form commu-
nities (when looking at the connection points that
access them). We also find that these accounts tend
to remain active for extended periods of time on a
large webmail provider.

• We present EVILCOHORT, a novel approach to de-
tect malicious communities (and hence, accounts
controlled by cybercriminals) on online services.
This approach works by detecting accounts that are
accessed by a common, shared set of IP addresses.

• We evaluated EVILCOHORT on datasets of different
types of interactions collected on five different on-
line services. Over a period of five months, EVIL-
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COHORT detected more than one million accounts
used to perform malicious activities. We show that
EVILCOHORT is effective in detecting malicious
communities regardless of the type of accounts an-
alyzed, making it a valuable tool to protect a variety
of online services.

2 Motivation: Analysis of Malicious Activ-
ity on a Webmail Service

We want to understand the way in which cybercrimi-
nals abuse accounts on online services, to identify weak
points that we could leverage for detection. To this end,
we observed the email-sending activity on a large web-
mail service. Our dataset was composed of the emails
generated by 21,387,006 distinct online accounts over
a period of one day. In total, this dataset contained
72,471,992 emails. We call the dataset containing in-
formation about this email-sending activity T. For each
email-sending event, the dataset T contains the IP ad-
dress that accessed the account, the user ID of the ac-
count that sent the email, and a timestamp. In addi-
tion, each email-sending event contains information on
whether the email was considered as spam by the web-
mail provider or not. Note that the dataset T only con-
tains information about sent emails, and provides no in-
sights on the number of times an account is accessed
without sending any email (e.g., to check the account’s
inbox).
Two Types of Malicious Accounts. We analyzed the
accounts that sent spam in the dataset T. We identify
two types of malicious accounts:

1. Accounts that are used in isolation. Each account is
accessed by a single IP address, which could be the
attacker’s computer or a single infected machine.

2. Accounts that are accessed by multiple IP ad-
dresses. The same account is accessed by multiple
infected computers.

We looked at how many malicious accounts of each
type are active on the webmail service. For this analysis
we considered an account as malicious if the account sent
at least 10 emails during the day under consideration, and
the majority of these emails were flagged as spam by the
webmail provider. We selected this threshold because we
needed a set of “labeled” accounts that sent spam on the
webmail provider. Picking accounts whose majority of
emails was flagged as spam by the email provider gives
us confidence that this dataset does not contain false pos-
itives. Note that this preliminary analysis was purely
qualitative, and it was used to give us an idea on the be-
havior of malicious accounts on a webmail service. We
call this set of labeled accounts L. In total, L is com-
posed of 66,509 malicious accounts that were accessed
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Figure 1: Average time (in days) before a spamming ac-
count was suspended in L, given the number of IP ad-
dresses accessing that account.

by a single IP address, and 103,918 malicious accounts
that were accessed by two or more.
Accounts Shared by Many IP Addresses Are More
Dangerous. We then investigated the effectiveness of
the two identified types of spam accounts in sending
emails, and their ability to evade detection by the web-
mail provider. With detection, we mean triggering a
mechanism on the webmail provider that leads to the ac-
count being suspended. Figure 1 shows the average time
(in days) that it took for a malicious account in L to be
suspended after it sent the first spam email, given the
number of IP addresses that accessed that account. As
it can be seen, accounts that are used in isolation have a
shorter lifespan than the ones that are used by multiple
IP addresses: accounts that are only accessed by a single
IP address are typically detected and suspended within a
day, while ones that are accessed by many different IPs
can survive for as long as a week.

We then studied the difference in the activity of the
two types of accounts with regards to the number of spam
emails sent. Figure 2 shows that accounts that are used
in isolation are less effective for cybercriminals, as they
send a smaller number of emails per day before being
shut down. Alternatively, attackers can have each of their
infected computers send a small number of emails and
stay under the radar. Figure 3 shows that IP addresses
accessing accounts used in isolation send 19 emails per
day on average before being blocked, while having mul-
tiple computers accessing the same account allows cy-
bercriminals to have each IP address send a lower num-
ber of emails, as low as one email per IP address in some
cases. The longevity of the accounts that are accessed
by more than one IP address suggests that the webmail
service lacks effective countermeasures to prevent abuse
of the service by such accounts. We acknowledge that
this could be due to shortcomings in the countermeasures
deployed by this particular webmail service, but it still
shows us that accounts that are accessed by a multitude
of infected computers are a problem for online services.
Detecting Malicious Accounts Shared by Many IP
Addresses. Can we use the fact that malicious accounts
tend to be accessed by many IP addresses to flag these
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Figure 2: Average number of spam emails sent per day
per account accessed by a certain number of IP addresses.
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Figure 3: Average number of spam emails sent per day
per IP address that accessed a certain account.

accounts as malicious? Unfortunately, the number of IP
addresses that accessed an account is not a strong enough
indicator and basing a detection system only on this ele-
ment would generate a number of false positives that is
too high for most practical purposes. For example, con-
sidering as malicious accounts that were accessed by two
or more IP addresses in T would cause 77% of the to-
tal detections to be false positives (i.e., accounts that did
not send any spam email). This makes sense, because
many users access their webmail account from different
devices, such as a mobile phone and a desktop computer.
Even looking at accounts accessed by a higher number
of IP addresses does not solve the false positive problem:
looking at accounts that were accessed by ten or more
distinct IP addresses in T 32% would be labeled mali-
cious incorrectly (i.e., false positives); by increasing the
number of required IP addresses false positives decrease,
but they remain well above the level considered accept-
able in a production environment.

To overcome the false positive problem, we leverage
another property of cybercriminal operations that use on-
line services: cybercriminals can only count on a lim-
ited number of infected machines (bots) [26], as well
as a limited number of accounts on the online service.
Because of this limitation, and to make their operations
more resilient to takedowns, cybercriminals have multi-
ple bots connect to the same set of accounts over time.
We can think of a set of accounts that are accessed by the
same set of bots as a community. In the following, we
present EVILCOHORT, a system that detects communi-
ties of accounts that are accessed by a common set of IP
addresses. We show that, by looking at these communi-
ties of accounts, we can detect most of the malicious ac-
counts that are accessed by multiple IP addresses, while
generating a false positive rate that is orders of magni-
tude lower than just looking at accounts in isolation. In
Appendix 5.2, we compare the two methods in detail,
and show that EVILCOHORT outperforms the method
that looks at individual accounts only.

3 EVILCOHORT: Overview

EVILCOHORT operates on inputs in the form of account
interaction events. Users create their own accounts and
connect to online services to perform a number of ac-
tions. Depending on the service, these actions range from
sending messages to the user’s friends and colleagues, to
performing friend requests, to browsing pictures, to up-
dating the user’s profile. Accounts allow the online ser-
vice to attribute any activity performed to a specific user,
in a more precise way than source IP addresses do. For
instance, it is possible to correctly attribute the activity
of a certain user regardless of the place she is connect-
ing from (her home computer, her office, or her mobile
phone). We define a user interaction with an online ser-
vice as a tuple

A =< H,U, T >,

where H is the host that the user is connecting from
(identified by an IP address), U is her user ID on the
online service, and T is a timestamp.
Approach Overview. EVILCOHORT works in three
phases. First, it collects interaction events from the mon-
itored online service, and builds a bipartite graph where
one set of vertices is the online accounts observed and
the other set of vertices is the list of IP addresses that ac-
cessed them. Then, it computes the weighted one-mode
projection of the bipartite graph onto the account vertex
set. The result of this phase is a graph, which we call
projected graph representation, in which the vertices are
the accounts and the edge labels (i.e., weights) indicate
how many shared IP addresses connected to each pair
of accounts. As a third phase, EVILCOHORT performs
clustering on the projected graph representation to find
communities of online accounts that were accessed by a
common set of IP addresses. A last, optional step con-
sists of analyzing the discovered communities, to charac-
terize them and possibly identify security relevant activ-
ity, such as campaigns. In the remainder of this section,
we provide more details about the three steps involved in
identifying communities.
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3.1 Data Collection
In the first phase, EVILCOHORT collects interaction
events on an online service for a given observation period
(a day in our current implementation). Based on these in-
teraction events, EVILCOHORT builds a bipartite graph
where the first set of vertices A are the online accounts
that generated the events, while the second set of vertices
I are the IP addresses that accessed these accounts. An
account vertex has an edge to an IP address vertex if that
account was accessed by that IP address. We call this
bipartite graph GA.

3.2 Building the Projected Graph Repre-
sentation

We expect that cybercriminals instruct their bots to con-
nect to multiple accounts under their control. As dis-
cussed in Section 2, this is because they have control of
a limited number of bots and want to optimize the effec-
tiveness of their malicious operation. For this reason, we
represent the relation between online accounts and IP ad-
dresses as a weighted graph. To this end, we perform the
weighted one-mode projection of the bipartite graph GA

onto the account vertex set A. More precisely, we define
the projected graph representation of the set of accounts
A as

R =< V,E >,

where each element in the set of vertices V is one of the
accounts in A, and the set of edges E is weighted as fol-
lows: for each pair of accounts u1, u2 ∈ V, the edge
connecting them has a weight equal to the number of IP
addresses that u1 and u2 share, based on the bipartite
graph GA. If the accounts u1 and u2 do not share any IP
address, there is no edge between them.

As we showed in Section 2, many legitimate accounts
are accessed by more than one IP address. To focus on
detecting communities of accounts that share a higher
number of IP addresses, we filter the bipartite graph GA

on the in-degree of the accounts in A. More precisely,
we introduce a threshold s, and consider as inputs for
the projection only those accounts that have a degree
higher than s, which means that they were accessed by
more than s IP addresses during the observation period.
Since the number of IP addresses that legitimate accounts
share is low, communities of accounts sharing many IP
addresses are suspicious. We investigate the possible
choices for the threshold s in Section 5.1. By increasing
the value of s we can reduce false positive considerably,
but we also reduce the number of accounts that EVIL-
COHORT can detect as malicious. The graph R is then
passed to the next phase of our approach, which finds
communities of online accounts that are accessed by a
common set of IP addresses.

3.3 Finding Communities
After obtaining the projected graph representation R, we
identify communities of accounts. To this end, we use
the “Louvain Method” [6]. This clustering method lever-
ages an iterative algorithm based on modularity opti-
mization, and is particularly well-suited to operate on
sparse graphs, as most graphs obtained from “real life”
situations are [12]. In their paper, Blondel et al. [6]
show that their method outperforms several community-
detection algorithms that are based on heuristics.

The Louvain method operates in two steps, which are
iteratively repeated until convergence is reached. At the
beginning, each vertex in R is assigned to its own com-
munity of size one. Each iteration of the algorithm pro-
ceeds as follows:

1. For each account u1 in U, we consider each of its
neighbors u2, and we calculate a gain value g that
represents the effect of removing u1 from its com-
munity and adding it to u2’s community. We ex-
plain how we calculate g later in this section. If
any of the gain values g is positive, we move u1 to
the community of the account that yields the highest
gain.

2. We rebuild the graph R, whose nodes are now
the communities built during the previous step.
Each edge between two communities c1 and c2 is
weighted with the number of IP addresses that are
shared between the two communities.

The algorithm repeats these two steps until convergence.
Blondel et al. [6] describe how the gain value g is calcu-
lated in detail. In a nutshell, the gain obtained by moving
an account i to a community C is

gin = [
∑

in +ki,in
2m − (

∑
tot +ki
2m )2] − [

∑
in

2m − (
∑

tot
2m )2 − (

ki
2m )2],

where
∑

in is the sum of the weights of the edges be-
tween the accounts in C,

∑
tot is the sum of the weights

of the edges incident to the accounts in C, ki is the sum
of the weights of the edges incident to i, ki,in is the sum
of the weights of the edges that connect i to the accounts
in C, and m is the number of edges in R. Blondel et
al. show how a similar weight is calculated for the gain
obtained by removing an account i from its community
(gout) [6]. If the sum of the two gains g = gin + gout is
positive, the account i gets added to the community C.

3.4 Optional Step: Characterizing Com-
munities

As an optional step, after the detection of (mali-
cious) communities, we propose a number of techniques
that extract interesting properties of these communities.
These properties allow the operator of EVILCOHORT
to easily characterize security-relevant behaviors of the
communities. As we will see later, these properties
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can be useful to both assess false positives and iden-
tify whether the accounts in a community are fake (i.e.,
Sybils) or compromised accounts that are accessed both
by cybercriminals and by their legitimate owners. To
gain insight into the behavior of accounts associated with
communities these properties can incorporate auxiliary
sources of information that are not strictly part of the
collected account interaction events (e.g., web-browser
user agents).
User agent correlation. Regular users of online services
likely connect to their accounts from a limited set of de-
vices corresponding to a largely consistent set of con-
nection points. During the course of a day, a typical user
would access, for example, her account from home using
her personal browser, then from work using the browser
mandated by company policy, and finally from her phone
using her mobile client. In other words, we expect to
have a one-to-one relation between the connection points
and the client programs (agents) that run on these ma-
chines and are used to perform the activity. When on-
line services are accessed via the web, the client used
to perform the activity can be identified by the HTTP
user agent field. Proprietary clients often have similar at-
tributes that can be used for this purpose. On iOS, for
example, the system-provided HTTP library uses the ap-
plication’s name and version as the user agent string.

For malicious communities, the activity is no longer
generated by humans operating a browser. Instead,
the activity is frequently generated by autonomous pro-
grams, such as bots, or programs used to administer mul-
tiple accounts at once. These programs can be designed
to use either hard-coded user agent strings, or, as we ob-
served in recent malware, slight variations of legitimate
user agent strings. Presumably, this is a technique aimed
at evading detection mechanisms. However, these prac-
tices significantly change the distribution of user agent
strings and their corresponding connection points.

To measure the correlation between connection points
and user agents within a community c, we compute the
following ratio:

log(c) = log

(
number of user agents

number of IP addresses

)
(1)

For a typical benign user, the correlation is very strong
because there is a one-to-one relationship between con-
nection point and user agent: That is, each connection
point is associated with a different user agent, and as a
result log(c) tends towards 0. For malicious communi-
ties, where the relationship becomes one-to-n, negative
values will be observed in case of hard-coded user agent
strings, and positive values in case of permutations of the
user agent strings. Note that we exclude from the com-
putation user agent strings coming from mobile phones
or tablets because these mobile devices can be connected

to any network, meaning that no correlation can be ex-
pected in this case.

Event-based time series. This property captures ac-
count interaction events in a community over time. Time
series represent the frequency of events per time period.
As we will show in Section 6, the time series repre-
sentations fundamentally differ for legitimate accounts
and those in malicious communities. Time series for le-
gitimate users commonly contain daily activity patterns
depending on the night and day cycle. Furthermore,
weekly patterns can often be identified too. Automated
malicious activity, however, commonly results in either
highly regular activity (e.g., botnets using the online ser-
vice as their command and control service), or irregular
bursts (e.g., during the execution of a spam campaign).

IP address and account usage. This analysis, similarly
to the previous one, relies on timing analysis. The main
difference is that events are no longer aggregated for the
entire community but, instead, individual IP addresses
and accounts are represented separately over time.

The IP addresses usage graph is generated in the fol-
lowing way: Time is represented on the x-axis, and each
unique IP address is represented by a separate entry on
the y-axis of the graph. Events are then plotted as points
in the graph using this set of coordinates. The account
usage graph is generated in a similar way, with unique
accounts instead of IPs on the y-axis. We will show
an example for IP address and account usage graphs in
Section 6. Similar to the above time series represen-
tation, malicious communities show a high degree of
synchronization, which is not present for communities
formed by legitimate users. This observation has been
confirmed by independent research that has been recently
published [7]. Using this type of representation, any sus-
picious alignment in the events recorded for different IP
addresses or different accounts can easily be identified.

Automated post-processing. In our current implemen-
tation we exclusively use the analysis of community
properties to infer interesting characteristics of identi-
fied communities. Our analysis indicates that communi-
ties formed by malicious accounts exhibit vastly different
characteristics than those formed by legitimate accounts,
as we show in Section 6. Thus, the techniques described
in this section could also be used to automatically distin-
guish malicious from legitimate communities. Similar to
Jacob et al. [17], detection could be implemented based
on automated classifiers working on statistical features
characterizing the shape of a time series or plot. While
such an automated post-processing approach would be a
potential avenue for reducing the false positives of EVIL-
COHORT even further, our current false positives are al-
ready well within the range where a deployment would
benefit an online service. An implementation of this



USENIX Association  24th USENIX Security Symposium 569

automated post-processing step is, thus, left for future
work.

4 Description of the Datasets

In Section 2, we analyzed T, a labeled dataset of email-
sending events on an webmail provider. Since EVILCO-
HORT only takes into account the mapping between IP
address and online account of an event, however, it can
operate on any online service that allows users to create
accounts. Such services include web-based email ser-
vices, online social networks, blogs, forums, and many
others. In addition, EVILCOHORT can operate on ac-
tivities of different type, such as login events, message
postings, message shares, etc. To show the versatility of
our approach, we evaluated it on multiple datasets of ac-
tivities on five different online services. The first dataset
is composed of email sending events logged by a large
webmail service, with similar characteristics to T. The
second dataset is composed of login events recorded on
four different online social networks. In the following,
we describe these datasets in more detail.

4.1 Webmail Activity Dataset
Our first dataset is composed of email-sending events
logged by a large webmail provider. Every time an email
is sent, an activity is logged. We call this dataset D1.
Note that the email-sending events in this dataset are gen-
erated by accounts on the webmail service, which send
emails to other email addresses.

The dataset D1 contains the events logged over a five-
month period by the webmail provider for a subset of
the accounts that were active on the service during that
period. In total, this dataset contains 1.2 billion email-
sending events, generated by an average of 25 million
accounts per day. This data was collected according to
the webmail provider’s terms of service, and was only ac-
cessed on their premises by a company’s employee. Be-
yond the above-discussed information, no further email
related information was accessible to our research team
(i.e., no content, no recipients). In addition to the activity
events, the webmail provider logged whether the email
was flagged as spam by their anti-spam systems. The
dataset T presented in Section 2 is a subset of D1. We
used T to study in-depth the properties of legitimate and
malicious accounts on a webmail service (see Section 2).
As we explained in Section 2, T is a dataset containing
email events observed on a large webmail provider over
a period of one day, while L contains the accounts in
T that are heavy senders of spam (meaning that they sent
10 or more emails during the day of observation, and that
a majority of these emails was detected as spam by the
defenses in place at the webmail provider).

It is worth noting that L does not contain all the ac-
counts that sent spam in T. Such ground truth does not
exist, because if a perfect detection system existed we
would not need new approaches such as EVILCOHORT.
Instead, L contains a set of “vetted” spam accounts that
were detected by the webmail provider, and using this
dataset as a reference allows us to get a good idea of
how well EVILCOHORT works in detecting previously-
unseen malicious accounts on online services.

4.2 Online Social Network Login Dataset

Online Social Network OSN1 OSN2 OSN3 OSN4

Login events 14,077,316 311,144 83,128 42,655
Unique Accounts 6,491,452 16,056 25,090 21,066
Unique IPs 6,263,419 17,915 11,736 4,725
Avg. daily events 2,067,486 51,832 11,897 6,601
Account singletons 74.6% 40.0% 51.7% 72.2%

Table 1: Statistics of activity events of the dataset D2.

Our second dataset is composed of login events col-
lected from four different OSNs, spanning a period of
8 days. We call this dataset D2. We obtained the
dataset D2 from a security company. For each activity
event, the dataset contained additional information such
as the user agent of the web browser performing the login
and the HTTP headers of the response. Sensitive infor-
mation such as the user IDs and the IP addresses was
anonymized. Note that this does not affect our commu-
nity detection algorithm at all.

Statistics on the number of login events for each social
network can be found in Table 1. These statistics reflect
the size and activity observed on these networks, rang-
ing from tens of thousands up to 14 million login events.
One interesting observation is the high percentage of ac-
count singletons on a daily basis, i.e., the percentage of
users connecting at most once a day. On a weekly ba-
sis, the percentage tends to drop but remain surprisingly
high. These users are probably legitimate users that are
not very active on the social network.

5 Evaluation

In this section, we analyze how EVILCOHORT performs
in the real world. We first study the effectiveness of
our approach by using the dataset T and its subset L
of labeled malicious accounts. We then select a suit-
able threshold s that allows us to have a small number of
false positives. Finally, we run EVILCOHORT on multi-
ple real-world datasets, and we analyze the communities
of malicious accounts that we detected.
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Value of s # of accounts # of communities Known accounts in L Additional detections over L FP communities FP accounts
(% of tot. accounts in L) (% of add. detections over L) (% of tot. communities) (% of tot. accounts)

2 135,602 3,133 94,874 (58%) 40,728 (23.8%) 1,327 (42%) 12,350 (9.1%)
5 77,910 1,291 51,868 (30.4%) 26,042 (15.2%) 580 (44.9%) 2,337 (3%)
10 25,490 116 16,626 (9.7%) 8,864 (5.2%) 48 (41.3%) 433 (1.7%)
65 1,331 6 1,247 (0.7%) 84 (0.04%) 0 0

Table 2: Summary of the results reported by EVILCOHORT for different values of the threshold s.

5.1 In-degree Threshold Selection
As with every detection system, EVILCOHORT has to
make a trade-off between false negatives and false pos-
itives. As we mentioned in Section 3.2, we can adjust
the value of the minimum in-degree for account vertices
that we use to generate the one-mode projection graph R
to influence the quality of EVILCOHORT’s results. We
call this threshold s. In particular, increasing the value
of s decreases the number of false positives of our sys-
tem, but also reduces the number of accounts that can be
detected. That is, any account that is accessed by less
than s IP addresses during an observation period is ex-
cluded from evaluation for community membership, and
thus cannot be detected as malicious by EVILCOHORT.

In this section we run EVILCOHORT on the datasets T
and L and analyze the quality of its results. The goal is to
identify a suitable value of s for running EVILCOHORT
in the wild. Recall that L is the set of accounts that were
classified as malicious as explained in Section 2. In the
absence of complete ground-truth, we use L as a partial
ground-truth to help us assess how well EVILCOHORT
operates.

The first element that we use to evaluate the effective-
ness of EVILCOHORT is the fraction of accounts in L
that our system is able to detect. Ideally, we want EVIL-
COHORT to detect a large fraction of our labeled mali-
cious accounts. Unfortunately, as discussed above, in-
creasing the value of s decreases the number of accounts
that EVILCOHORT can possibly detect. The percentage
of malicious accounts in L detected by EVILCOHORT
provides us with an estimate of the false negatives that
EVILCOHORT would report if it was run in the wild.

As a second element of effectiveness, we look at the
set of accounts that EVILCOHORT detects as malicious
in T, but that were missed by the anti-spam systems de-
ployed by the webmail provider. These are malicious
accounts not in L. We refer to this number as additional
detections. This value gives us an estimate on the over-
all effectiveness of EVILCOHORT. Ideally, we want this
number to be high, so that if EVILCOHORT were to be
deployed in conjunction with the defenses that are al-
ready in place on the online service, it would increase
the number of malicious accounts that can be detected
and blocked.

The third element that we consider is the confidence
that the communities detected by EVILCOHORT are in-

deed malicious. To this end, we look at the fraction of ac-
counts in L that are present in each detected community.
We consider a community as malicious (i.e., a true pos-
itive) if at least 10% of the accounts belonging to it are
part of our labeled dataset of malicious accounts. Other-
wise, we consider it as a false positive of EVILCOHORT.
We empirically found that this 10% fraction of vetted
bad accounts gives us a good confidence that the com-
munities are indeed malicious. Recall that L is a dataset
composed of “repeated offenders.” In other words it con-
tains accounts that have a consistent history of sending
spam, therefore having a small fraction of accounts from
this set in a community is a strong indicator of the entire
community being malicious. As we show in Section 5.3,
if we relax the method that we use to assess true posi-
tives (for example we consider an account as malicious
if it sent a single email flagged as spam by the webmail
provider) then the majority of the accounts in commu-
nities detected by EVILCOHORT are confirmed as mali-
cious. In Section 6 we show that by observing additional
properties of the communities detected by EVILCOHORT
we are able to confirm almost the totality of them as ma-
licious.

Table 2 provides a summary of the results that we ob-
tained when running EVILCOHORT on T, based on dif-
ferent values of the threshold s. As one can see, the frac-
tion of accounts in L that our system detects decreases
quickly as we increase s. With a threshold of 2, EVIL-
COHORT only detects 58% of the labeled accounts.With
a threshold of 10 the fraction of accounts in L that are
covered is only 10%. Once we reach higher thresholds,
the fraction of detected accounts that are part of L be-
comes very small. The additional detections performed
by EVILCOHORT over the webmail provider’s detection
system also decrease as we increase s. With a thresh-
old of 2 we detect 23% malicious accounts that existing
approaches miss. A threshold of 10 still ensures 5.5%
additional detections over the dataset L. False positives
decrease rapidly as we increase s as well. Setting s to 2
results in 9% false positives. A threshold of 10 reduces
false positives to 1.7%. By setting s to 65, EVILCOHORT
does not mistakenly flag any legitimate account as mali-
cious. Unfortunately, the number of detections at this
threshold is quite low.

Given the results reported in this section, we decided
to use 10 as a value of s for our experiments. At this
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threshold false positives are low (1.7%), but the system
is still able to significantly improve the detections per-
formed by the existing countermeasures deployed by the
webmail provider, and detects 116 communities.

It is interesting to notice that although the number
of accounts misclassified by EVILCOHORT is generally
low, percentages are higher when looking at communi-
ties: with a threshold of 10, for example, 40% of the
detected communities are considered to be false positive
accounts. Interestingly, however, the size of true positive
and false positive communities varies consistently: false
positive communities are composed of 9 accounts on av-
erage, while malicious ones are composed of 370 or more
accounts. An explanation for this is that small commu-
nities could be a side effect of computers behind a NAT
which constantly change their IP address through DHCP.
As previous research showed, some ISPs change the IP
address of their customers very often [26]. The small size
of such communities, however, shows that filtering on
the number of accounts in a community could be an ef-
fective filter to further reduce false positives. We did not
include a threshold on the size of a community in EVIL-
COHORT because we wanted to keep the system general.
However, in a production setting an additional threshold
on the community size could be a straight-forward way
to reduce false positives even further. In addition, Sec-
tion 6 illustrates that false positive communities expose
distinct behavioral characteristics. These characteristics
can be leveraged to further reduce false positives.

5.2 Comparison between EVILCOHORT
and the Single Account Method.

As we discussed in Section 2, EVILCOHORT outper-
forms detection approaches that look at single accounts
accessed by a high number of IP addresses by orders of
magnitude. At a threshold of 10, where EVILCOHORT
reports a false positive rate of 1.7%, the single-account
method has a false positive rate of 32%. Even by dra-
matically increasing the threshold, the number of false
positives of the single-account method remains high. At
a threshold of 65, at which EVILCOHORT reports no
wrong detections, the single-account method has a false
positive rate of 1.2%. Even at a threshold of 100, the
single-account method has a small number of false posi-
tives.

The last question to answer is whether accounts that
are accessed by a high number of IP addresses do form
communities, in other words whether EVILCOHORT is
able to detect most malicious accounts that were ac-
cessed by a number of IP addresses s. To answer this
question, we looked at single accounts accessed by a
number of IP addresses n (from one to 100), and labeled
them as malicious or benign in the same way we labelled
the communities in the previous experiment. We then

proceeded as follows: for each value of n, we considered
the single-account method to have perfect recall (i.e., no
false negatives). We then looked at how many of the ac-
counts detected by this method would have formed com-
munities, and therefore be detected by EVILCOHORT.
The fraction of malicious accounts that form commu-
nities is generally very high. With a threshold of 10,
EVILCOHORT detected 93% of the malicious accounts
detected by the single-account method. With a threshold
of 20 this fraction becomes 95%, while with a thresh-
old of 50 it becomes 98%. We conclude that the vast
majority of accounts accessed by a high number of IP
addresses form communities, and that therefore EVIL-
COHORT is a suitable alternative to the single-account
method for what concerns false negatives, and it reduces
false positives by orders of magnitude compared to the
single account method.

5.3 Detection in the Wild
We applied EVILCOHORT to the datasets D1 and D2. In
the following, we show that EVILCOHORT is able to de-
tect a large number of malicious online service accounts,
regardless of the type of online service that it is run on.
Detection on the webmail activity dataset. The dataset
D1 is composed of email-sending activities logged on
a large webmail provider. Over a period of 5 months,
EVILCOHORT detected M = 1,217,830 accounts as ma-
licious. In total, these accounts were part of 17,803 ma-
licious communities.

We first wanted to understand the number of false pos-
itives generated by EVILCOHORT in the wild. We tried
to answer this question from two vantage points. First,
we performed the same false positive analysis explained
in Section 5.1. That is, we considered an account to be
vetted as malicious if the majority of the emails sent by
it during the day of observation were detected as spam
by the webmail operator. We then considered a commu-
nity as a false positive by EVILCOHORT if less than 10%
of the accounts in the community belonged to our set of
vetted malicious accounts. In total, we found 23,269 ac-
counts to be potential false positives (1.9% of the total
accounts in M). This is in line with the validation results
from Section 5.1, in which we reported 1.7% false posi-
tives by using the same threshold. As a second method of
assessment, we manually analyzed 100 randomly picked
communities among the ones detected by EVILCOHORT.
For each of these communities we could identify signs of
automated activity and possible maliciousness. For ex-
ample, the user IDs of the accounts used by some com-
munities had been clearly automatically generated: in
one case, all the accounts belonging to the community
were composed of two dictionary words concatenated
with a four-digit number. In another case, all the user IDs
were 20-letter random alphanumeric characters. In an-
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Day 1 2 3 4 5 6 7 8
OSN1 24 30 6 4 4 4 5 2
OSN2 1 0 0 0 0 0 0 0
OSN3 0 0 0 0 1 1 1 0
OSN4 0 0 0 0 0 0 0 0

Table 3: Number of malicious communities detected per
day by EVILCOHORT on the dataset D2.

other case, the accounts belonging to a community were
accounts with a long history of legitimate activity, which
suddenly started being accessed by a large, common set
of IP addresses. We highly suspect that this community
of accounts was composed of legitimate accounts that
had been compromised by cybercriminals.

We then wanted to evaluate the false negatives re-
ported by EVILCOHORT. 94.6% of the vetted malicious
accounts used in the false positive analysis at the oper-
ating threshold formed communities, and were therefore
detected by EVILCOHORT. The false negatives would
therefore account for 5.4% of the total accounts in M.
This shows that malicious accounts accessed by a large
number of IP addresses are typically accessed by botnets,
and confirms the usefulness of our approach.

We then looked at how many accounts detected by
EVILCOHORT sent at least one email that was flagged as
spam by the webmail provider during the day in which
EVILCOHORT detected them. In total, 715,671 accounts
fall in this category (i.e., 59% of M). This also shows
that relaxing our ground truth assumptions and look-
ing at accounts that sent a single spam email as mali-
cious instead of a vetted dataset results in having the
majority of the accounts detected by EVILCOHORT con-
firmed by the defenses already in place at the webmail
provider. Conversely, EVILCOHORT proves to be able to
grow the set of malicious accounts detected by the web-
mail provider consistently, since it detected 502,159 ad-
ditional accounts as malicious (41% of the total).

On average, our prototype implementation of EVIL-
COHORT processes one day of data in about ten minutes
using a COTS server with 16GB of RAM.
Detection on the social network login dataset. The
dataset D2 is composed of login events from online social
networks. In the following, we applied EVILCOHORT
to this second dataset to demonstrate the viability of the
approach for different types of services. We used the
same threshold as selected in Section 5.1 on this dataset
too. Unfortunately, no labeled dataset was available for
these experiments. To confirm that the accounts belong-
ing to the identified communities were indeed malicious,
we performed a post-processing analysis. We discuss the
results of these experiments in Section 6.

Over eight days, EVILCOHORT was able to detect
a total of 83 communities, which represents a total of
111,647 unique accounts. The number of detected com-

Social Network OSN1 OSN2 OSN3 OSN4

Accounts (Avg) 3,662 2 2 0
Accounts (Med) 13 2 2 0
Accounts (Max) 66,764 2 2 0
IPs (Avg) 2,381 14 10 0
IPs (Med) 19 14 10 0
IPs (Max) 3,9884 14 10 0

Table 4: Size of the malicious communities detected by
EVILCOHORT on the dataset D2. Numbers (Average,
Median and Maximum) are expressed per community.

munities and the size of these communities evolve daily,
as one can see in Table 3 and Table 4. Unsurprisingly,
our numbers heavily depend on the size of the social net-
work. OSN1 is by far the largest network; consequently,
this is where we observed the highest number of commu-
nities, as well as the largest communities. Interestingly,
we observe an important drop in the number of commu-
nities on the third day. This might indicate that accounts
were taken down by the network. The remaining com-
munities tend to be of smaller size. In OSN2 and OSN3,
we only detect isolated communities of very small size:
two accounts accessed by ten different IP addresses. The
activity for OSN4 was too little to detect any interesting
community with the selected threshold.

To understand the evolution of the detected communi-
ties, we studied their similarity over time. A community
remains stable over time if it is found similar to a com-
munity detected the day before. We qualitatively con-
sider two communities as similar if they share more than
50% of their accounts. In OSN1, one of the largest com-
munities, with more than 66,000 accounts, was stable
over five days, with a similarity ranging between 53%
to 85%. Two communities of smaller size, with about
10,000 accounts each, were found stable over the two
first days but they disappeared on the third day as pre-
viously observed. The community detected in OSN3 is
only made up of two accounts and it is stable over three
days before being brought down.

6 Application of Post-processing Tech-
niques

As we mentioned in Section 2, EVILCOHORT was mo-
tivated by observations performed on a webmail service.
Given the generality of our approach, however, we can
apply it to any online service that makes use of accounts.
For this reason, we tested EVILCOHORT on the OSN
dataset D2. The question remains on how well EVILCO-
HORT works on such a different dataset. Unfortunately,
the dataset D2 came without ground truth. For this rea-
son, we used the techniques described in Section 3.4 to
assess the maliciousness of the detected communities.
In a nutshell, we analyze the communities detected by
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Figure 4: Correlation between user agents and IPs: legit-
imate accounts (left) and malicious accounts (right).

EVILCOHORT on the dataset D2, and consider them as
true positives if the accounts belonging to it show pat-
terns that are indicative of automated activity or of bot-
net use. These techniques are not part of EVILCOHORT’s
core detection, but as we will show they are helpful in as-
sessing how well our approach performs.

The results show that most communities of accounts
detected by EVILCOHORT show very different charac-
teristics than legitimate accounts, and are, therefore,
very likely malicious. Specifically, of the 83 malicious
communities detected by EVILCOHORT on D2 only 5
showed characteristics that are similar to regular ac-
counts and are therefore possibly false positives. In par-
ticular, we observed a very large community of 5,727 ac-
counts, and four smaller ones of 7, 3, 3, and 2 accounts
respectively. Given the size of the largest community, we
wanted to understand whether it was really a false posi-
tive. Looking at its characteristics, we observed a mix of
IP address accessing a single account and a large popu-
lation of IP addresses accessing many different accounts,
which makes us believe that such accounts might have
been compromised and being accessed by both their le-
gitimate owners and the hijackers. As such, this commu-
nity is not a false positive, as it was actually accessed by
a botnet. We provide further evidence that this is the case
in the following sections. The other communities, on the
other hand, are very likely to be false positives by EVIL-
COHORT, because they show a consistent human like be-
havior. Given their small size (15 accounts in total, out of
111,647 total detected accounts), however, we can con-
clude that the false positives generated by EVILCOHORT
on the dataset D2 are minimal. In the following, we de-
scribe our analysis in detail.
User-agent correlation. Information about user agents
was only available for OSN1 and OSN2 in D2. Conse-
quently, we excluded OSN3 and OSN4 from this analy-
sis. We also excluded all the account singletons, because
the notion of ratio then becomes meaningless.

Based on the description in Section 3.4, we plot the
correlation between user agents and IP addresses in Fig-
ure 4. The left distribution is generated for legitimate ac-
counts that do not form communities, whereas the right

distribution corresponds to accounts in identified mali-
cious communities. The distribution for malicious com-
munities is shifted and no longer aligned on the origin.
For legitimate accounts, the average of log(c) was 0.08,
which is close to zero, as expected (with a standard de-
viation of 0.43). For malicious communities, the average
shifts to -0.85 with a standard deviation of 1.24.

For the accounts in two of the potential false posi-
tive communities described before, the correlation index
log(c) was very close to zero, making them very similar
to what is expected for regular accounts. For the remain-
ing potential false positive communities this metric did
not reveal any anomalous behavior.
Event-based time series. Time series become only sig-
nificant if the amount of data is sufficiently large to make
a measure statistically meaningful. For this reason, we
only computed the event-based time series (introduced
in Section 3.4) for OSN1. Unfortunately, the volume of
login events observed for OSN2, OSN3 and OSN4 made
this approach impractical for these networks.

The assumption behind the time series analysis is that
part of the events observed in malicious communities are
the result of automation. This results in a distinct shape
of activity from communities of legitimate users where
events are triggered by humans [17]. To verify this as-
sumption, we plotted the time series associated with the
activity of the biggest malicious communities detected in
OSN1. The experiments show that the time series gen-
erated for malicious communities differ fundamentally
in shape from regular user activity, even when users are
grouped behind a NAT.

Concrete examples are plotted in Figure 5 The left
time series represents the activity of all users from OSN1

over 8 days. The reader can clearly see the daily pat-
terns in the activity. The middle time series represents
the activity generated by the largest community detected
in OSN1. As can be seen, there are fundamental dif-
ferences: disappearance of the daily patterns and higher
stability on the long term. The right time series is repre-
sentative of most of the time series obtained for smaller
communities of OSN1: the volume of events remains
low but one can clearly observe regular bursts of activity.
This bursty shape is also observed for the potential false
positive community of 5,727 accounts mentioned previ-
ously, which supports our assumption that this commu-
nity might be composed of compromised accounts that
alternate legitimate and malicious activity. The smaller
false positive communities, on the other hand, show di-
urnal patterns similar to the ones observed for legitimate
accounts, which support the conclusions that these com-
munities are false positives.
IP addresses and account usage. An alternative rep-
resentation of account activity over time is to plot the
usage graphs for IP addresses and accounts as detailed
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Figure 5: Time series plotting login event over time: legitimate accounts behind a NAT (left plot) and malicious
communities (center and right plots).

in Section 3.4. For malicious communities, the usage
graphs will exhibit suspicious patterns, indicating syn-
chronization across accounts and IP addresses. For ref-
erence, Figure 6 presents the usage graphs for the users
behind a NAT. IP address usage is not really relevant for
a single IP address, but one can clearly see the daily in-
terruptions over night, as well as the randomness of the
events during day time. If we look at malicious commu-
nities as plotted in Figure 8, one can see the suspicious
vertical patterns appearing. Looking at the IP addresses
usage graphs, IP addresses are active in synchronized
groups. Previous research already observed that mali-
cious accounts are often used in a synchronized fash-
ion by cybercriminals, and leveraged this property for
detection [7]. This gives us additional confidence that
the detection performed by EVILCOHORT on the dataset
D2 identifies accounts that are indeed malicious. This
anomalous synchronization can be observed for all de-
tected communities of OSN1, OSN2, and OSN3 with the
exception of the five potential false positive communities
previously mentioned, for which the usage resembles the
one of legitimate accounts.

If we look at the large false positive community, how-
ever, one can see in Figure 7 that the usage graphs are
overall similar to the behavior shown by regular users be-
hind a NAT. However, looking more closely, one can ob-
serve multiple darker vertical patterns in the graphs. The
mix of legitimate and malicious activities makes us even
more confident that such community is indeed composed
of compromised accounts accessed by a botnet, and is
therefore a true positive detected by EVILCOHORT.

7 Discussion

We showed that EVILCOHORT can be applied to a va-
riety of online services and to any type of activity on
these services. This versatility, together with the fact that
it complements detections by state-of-the-art systems,
makes EVILCOHORT a useful tool in the fight against

malicious activity on online services. We hope that, in
the future, other researchers will be able to apply the
techniques presented in this paper to other online ser-
vices and types of activity.

As any detection system, EVILCOHORT has some lim-
itations. The main limitation of EVILCOHORT, as we al-
ready mentioned, is that it can only detect malicious ac-
counts that are accessed by communities of IP addresses.
As we showed in Section 2, however, such accounts are
more dangerous than the ones that are accessed by sin-
gle IP addresses, and existing countermeasures are able
to shut down this second type of accounts much quicker.

Another shortcoming is that EVILCOHORT relies on a
threshold to limit the number of false positives. An on-
line service that decided to use our approach would have
to select a value of s that suits their needs. In this paper
we showed that the number of false positives decreases
rapidly as we increase s. Applied to our dataset, con-
sisting of millions of events every day, this observation
allowed us to reduce false positives to practically zero.
Operators can easily tune the value of s by performing
sensitivity analysis similar to what we did in Section 5.1.

A last shortcoming is that the accounts used by cy-
bercriminals are not necessarily fake accounts, but could
be legitimate accounts that have been compromised. In
our current implementation, EVILCOHORT cannot dis-
tinguish between the two types of accounts. Dealing
with compromised accounts is more difficult, because
the online service cannot just suspend them, but has to
go through expensive password-reset operations. As we
showed in Section 6, it is possible detect whether the de-
tected accounts are fake or compromised by using the
postprocessing techniques. A human operator could then
decide how to deal with the malicious accounts, depend-
ing on their nature.

As with any detection system, a cybercriminal who
is aware of EVILCOHORT could attempt to evade it. A
straightforward way of doing this would be to have each
of the online accounts under his control accessed by a
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Figure 6: Activity of legitimate users behind a NAT: IP address usage (left) and account usage (right).

Figure 7: Activity of false positive community: IP address usage (left) and account usage (right). The fact that syn-
chronized activity is interleaved to regular user activity makes us believe that this community is made of compromised
accounts.

Figure 8: Activity of malicious communities: IP address usage (left) and accounts usage (right).
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single IP address. Although this would evade detection
by our system, it would make the cybercriminal opera-
tion less robust: every time the online service detects and
shuts down an account as malicious one of the bots in
the botnet becomes useless, while conversely every time
a bot is taken offline there is an account on the online
service that is not used any more. For this reason EVIL-
COHORT can be evaded, but by doing so a cybercriminal
makes his operation less efficient and profitable.

Since EVILCOHORT can work on any type of activ-
ity events, including login events, it has the potential of
detecting an account as malicious and blocking it before
it performs any malicious activity. In our current imple-
mentation, the system works in batches, on time intervals
of one day. In the future, we plan to extend it to handle
a stream of data, and operate in real time. This way, the
system could continuously build communities, and flag
an account as malicious as soon as it joins a community.

A source of false alarms for EVILCOHORT could be
users who access a service via an IP anonymization ser-
vice such as Tor. In this case, the set of exit nodes would
appear as a community. To mitigate these false positives,
we could use the post-processing techniques that we de-
scribed in Section 3.4. Also, Tor-related communities
can be easily identified by comparing the set of IP ad-
dresses to the known list of Tor exit nodes. As future
work, we plan to explore different tradeoffs between the
number of IP addresses accessing a community and the
characteristics of such communities.

8 Related Work

A wealth of research has been conducted on detecting
malicious activity on online services. Previous work falls
into three categories: content analysis, detection of mali-
cious hosts, and detection of malicious accounts.
Content analysis. A corpus of work focuses on detect-
ing malicious content that is shared on online services.
Multiple papers dealt with detecting email content that
is typical of spam by using machine learning [10, 25].
Other works check whether the URLs posted on an on-
line service are malicious [29,34]. Pitsillidis et al. devel-
oped a system that extracts templates from spam [22].

Content analysis systems are effective in detecting
and blocking malicious content posted on online ser-
vices. However, they suffer from two major limitations.
The first limitation is that such techniques are typically
resource-intensive, and this limits their applicability on
busy online services [28]. The second limitation is that
such systems can make a detection only when the mali-
cious party tries to posts their content. On the other hand,
EVILCOHORT can detect an account (or an IP address) as
malicious even if the account does not post any content
on the online service.

Detection of malicious hosts (bots). Online services can
check in real time if an IP address is known to be a bot
by querying DNS blacklists [1]. DNS blacklists are heav-
ily used in anti-spam systems for emails because, unlike
content analysis systems, they are lightweight. How-
ever, previous research showed that DNS blacklists have
a very high number of false negatives [23]. To improve
the coverage offered by DNS blacklists, several methods
have been proposed. Sinha et al. [24] propose to deter-
mine the reputation of an IP address on a global scale,
instead of doing it on a local (provider-scale) one. Hao
et al. presented SNARE, a system that establishes the
reputation of an IP address based on a number of behav-
ioral features (such as the geographical distance between
the sender and the recipient) [16].
Detection of malicious accounts. To perform malicious
activity on online services, miscreants have to get access
to accounts on such services. To this end, they can pay
workers to create account for them [33], purchase mass-
created fake accounts [30], or buy credentials to compro-
mised accounts on such services [26]. Given the mag-
nitude of the problem, numerous approaches have been
proposed to detect accounts that perform malicious ac-
tivities on online services.

A number of systems analyze the characteristics of ac-
counts on online services, looking for indicators that are
typical of mass-created fake accounts (such as the num-
ber of people that an account follows) [3, 14, 19, 27, 36,
38]. Yu et al. [37] proposed a system to detect fake social
network accounts; the system looks at the network struc-
ture, and flags accounts that are not well-connected with
their peers in the network as possibly malicious. Ben-
evenuto et al. presented a system to detect accounts that
leverage the Youtube service to spread malicious con-
tent [4]. Gao et al. [13] developed a system that clusters
messages posted on social networks, looking for large-
scale spam campaigns. Other approaches look at how
messages propagate on social networks, looking for mes-
sages that spread anomalously, such as worms [8, 35].
Wang et al. [32] proposed a technique to detect mali-
cious accounts on social networks, based on the sequence
of clicks that the people (or the programs) controlling
such accounts perform. Jacob et al. [17] presented PUB-
CRAWL, a system that detects accounts that are used
to crawl online services. Egele et al. [11] developed
COMPA, a system that learns they typical behavior of
social network accounts, and considers any change in be-
havior as the sign of a possible compromise. Cao et al.
presented SynchroTrap [7], a system that detects mali-
cious activity by grouping together social network ac-
counts that performed similar actions during the same
period of time. EVILCOHORT improves over Synchro-
Trap, because accounts do not have to act synchronously
to be detected.
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Although systems that detect malicious accounts are
useful to detect and block malicious activity on online
services, they typically rely on a single threat model, and
can only detect malicious accounts that operate following
that threat model. Conversely, EVILCOHORT leverages
the observation that cybercriminals use a set of (compro-
mised) IP addresses and a set of online accounts. For this
reason, EVILCOHORT can detect online accounts con-
trolled by cybercriminals, regardless of the purpose for
which these accounts are used.
Studying communities of interest. A large corpus of re-
search has been conducted over the years to study com-
munities of interest in networks [2, 20]. Such commu-
nities are collections of hosts that share the same goal.
Studying communities of interest is useful to model the
typical behavior of related hosts, and detect anomalies in
their behavior that can be indicative of malicious activity.
The communities that we study in this paper are different
in nature, because they are composed of online accounts
instead of hosts and are consistently used for malicious
purposes by miscreants.

The closest work to EVILCOHORT is BOT-
GRAPH [39]. Similar to EVILCOHORT, this system
looks at accounts that are accessed by a common set of
IP addresses. However, BOTGRAPH relies on heuristics
that are dependent on the email-sending habits of
accounts to perform detection, and therefore limit its
applicability to the spam-fighting domain. Conversely,
EVILCOHORT is principled, and can be applied on any
online service without pre-existing domain knowledge.
In addition, the fact that EVILCOHORT can be applied
on activity other than email-sending events (for example
login events) allows us to detect malicious activity other
than sending malicious content ( e.g., online accounts
used as a C&C channel). Another difference is that
BOTGRAPH calculates its threshold over a 30-day
period, and therefore is not suited to perform detection
on freshly-created accounts. In this paper, on the
other hand, we showed that EVILCOHORT can work in
one-day batches, and detect as malicious accounts that
were created during that same day.

9 Conclusions

We presented EVILCOHORT, a system that detects ma-
licious accounts on online services by identifying com-
munities of accounts that are accessed by a common set
of computers. Our results show that the vast majority of
the accounts that form such communities are used for
malicious purposes. In the rare cases in which legiti-
mate communities of accounts form, we show that such
communities present characteristics that are very differ-
ent than the ones of malicious communities. These dif-
ferences can be used to perform more accurate detection.

We ran EVILCOHORT on two real-world datasets, and
detected more than one million malicious accounts.
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Abstract

In this work we expose wide-spread efforts by crimi-
nals to abuse the Chrome Web Store as a platform for
distributing malicious extensions. A central compo-
nent of our study is the design and implementation of
WebEval, the first system that broadly identifies mali-
cious extensions with a concrete, measurable detection
rate of 96.5%. Over the last three years we detected
9,523 malicious extensions: nearly 10% of every ex-
tension submitted to the store. Despite a short window
of operation—we removed 50% of malware within 25
minutes of creation— a handful of under 100 extensions
escaped immediate detection and infected over 50 mil-
lion Chrome users. Our results highlight that the exten-
sion abuse ecosystem is drastically different from ma-
licious binaries: miscreants profit from web traffic and
user tracking rather than email spam or banking theft.

1 Introduction

Browsers have evolved over recent years to mediate a
wealth of user interactions with sensitive data. Part of
this rich engagement includes extensions: add-ons that
allow clients to customize their browsing experience by
altering the core functionality of Chrome, Firefox, and
Internet Explorer. Canonical examples include search
toolbars, password managers, and ad blockers that once
installed intercept webpage content through well-defined
APIs to modify every page a user visits.

Criminals have responded in kind by developing ma-
licious extensions that interpose on a victim’s brows-
ing sessions to steal information, forge authenticated re-
quests, or otherwise tamper with page content for finan-
cial gain. Poignant malware strains include Facebook
account hijackers, ad injectors, and password stealers
that exist purely as man-in-the-browser attacks [21, 25,
37, 41]. While many of these threats have binary-based
equivalents—for instance the Torpig banking trojan that

injected rogue phishing forms into banking webpages or
the ZeroAccess bot that tampered with page advertise-
ments [27, 34]—extensions bridge the semantic gap be-
tween binaries and browsers, trivializing broad access to
complex web interactions.

In this paper we expose wide-spread efforts by crim-
inals to abuse the Chrome Web Store as a platform for
distributing malicious extensions. Our evaluation cov-
ers roughly 100,000 unique extensions submitted to the
Chrome Web Store over a three year span from January
2012–2015. Of these, we deem nearly one in ten to
be malicious. This threat is part of a larger movement
among malware authors to pollute official marketplaces
provided by Chrome, Firefox, iOS, and Android with
malware [7, 10, 42].

A central component of our study is the design and
implementation of WebEval, the first system that broadly
identifies malicious extensions with a concrete, measur-
able detection rate of 96.5%. We arrive at a verdict
by classifying an extension’s behaviors, code base, and
developer reputation. In the process, we incorporate
existing techniques that detect specific malware strains
and suspicious extension behaviors and evaluate each of
their effectiveness in comparison to our own [21,37,41].
WebEval also faces a unique challenge: live deployment
protecting the Chrome Web Store where attackers have
a strong incentive to adapt to our infrastructure. We ex-
plore the impact that evasive threats have on our overall
accuracy throughout our deployment and the necessity of
human experts to correct for model drift.

In total, we removed 9,523 malicious extensions from
the Chrome Web Store. The most prominent threats in-
cluded social network session hijackers that generated
synthetic likes, friend requests, and fans; ad injectors
that rewrote DOM content to laden pages with addi-
tional advertisements; and information stealers that in-
jected rogue tracking pixels and covertly siphoned search
keywords. Despite a short window of operation—we re-
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ported 50% of malware within 25 minutes of creation—
a handful of under 100 malicious extensions distributed
via binary payloads were able to infect nearly 50 million
users before removal. We distill these observations into
a number of key challenges facing app marketplaces that
extend beyond just the Chrome Web Store.

In summary, we frame our contributions as follows:

• We present a comprehensive view of how malicious
extensions in the Chrome Web Store have evolved
and monetized victims over the last three years.

• We detail the design and implementation of our
security framework that combines dynamic analy-
sis, static analysis, and reputation tracking to detect
96.5% of all known malicious extensions.

• We highlight the importance of human experts in
operating any large-scale, live deployment of a se-
curity scanner to address evasive malware strains.

• We explore the virulent impact of malicious exten-
sions that garner over 50 million installs; the single
largest threat infecting 10.7 million Chrome users.

2 Background

We provide a brief background on how users ob-
tain extensions and the control extensions have over the
Chrome browser that simplify malware development.

2.1 Chrome Web Store

The Chrome Web Store is the central repository of all
Chrome extensions. While initially the store was an op-
tional ecosystem, rampant abuse outside of the store lead
to Chrome locking down all Windows machines in May
2014 [13]. With this policy decision, Chrome now au-
tomatically blocks all extensions not present in the store
from installation.

The Chrome Web Store relies on built in protections
against malware that subject every extension to an abuse
review. This approach is not unique to Chrome: Fire-
fox, iOS, and Android all rely on application reviews to
protect their user base from malware [1, 14, 17]. Mali-
cious extensions detected during preliminary review are
never exposed to the public. In the event the Chrome
Web Store retroactively detects a malicious extension,
the store can take down the offending code and signal for
all Chrome clients to expunge the extension [16]. This
defense layer provides a homogeneous enforcement pol-
icy for all Chrome users compared to the heterogeneous
security environments of their desktop systems that may
have no recourse against malicious extensions.1

1Chrome extensions are not supported on Android or other mobile
platforms. As such, we limit our discussion of malicious extensions to

2.2 Chrome Extension Architecture

Developers author extensions much like websites us-
ing a combination of JavaScript, CSS, and HTML. Un-
like websites, extensions are exempt from same ori-
gin protections and are afforded a range of Chrome
and document-level controls that allow customizing how
users interact with the Internet.

Permissions: Extensions may interact with privileged
Chrome resources such as tabs, cookies, and network
traffic through a Chrome-specific API. Chrome me-
diates these sensitive capabilities through a coarsely
defined permission model where a permission con-
sists of a resource (e.g., cookies) and a scope
(e.g., https://mail.google.com) [4]. When a developer au-
thors an extension, she lists all desired permissions in a
static manifest. As discussed by Carlini et al., this design
favors “benign but buggy” extensions where the author
adheres to a principle of least privilege [9]. The model
provides no protection against malicious extensions be-
yond explicitly signaling broad capabilities (e.g., inter-
cepting all network traffic).

Background Page & Content Scripts: Chrome loads
an extension’s core logic into a long running process
called a background page. This privileged process ob-
tains access to all of the Chrome API resources speci-
fied in the extension’s permission manifest. To prevent
permission re-delegation attacks, Chrome isolates back-
ground pages from all other extensions and web sites.
Chrome eases this isolation by allowing extensions to
register content scripts that run directly in the context of a
web page as though part of the same origin (and thus with
access to all of the origin’s DOM content, DOM meth-
ods, and session cookies). Background pages communi-
cate with content scripts through a thin message passing
layer provided by Chrome. As with the Chrome API,
extensions must specify content scripts and the targeted
domains in an extension’s manifest.

3 System Overview

We develop our system called WebEval to protect the
Chrome Web Store from malicious extensions. The chal-
lenge is messy and fraught with evasive malware strains
that adapt to our detection techniques. We rely on a blend
of automated systems and human experts who work in
conjunction to identify threats and correct for failures
surfaced by user reports of abuse. Before diving into de-
tailed system operations, we highlight the design princi-
ples that guided our development and offer a birds eye
view of the entire architecture’s operation.

desktop environments.
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3.1 Design Goals

At its heart, WebEval is designed to return a verdict for
whether an extension is malicious. If the extension is
pending publication, the Chrome Web Store should block
the extension from release. Previously published exten-
sions must be taken down and uninstalled from all af-
fected Chrome instances. Arriving at a malware verdict
is constrained by multiple requirements:

1. Minimize malware installs. Our foremost goal with
WebEval is to minimize the number of users ex-
posed to malicious extensions. However, near-zero
false positives are imperative as Chrome expunges
an extension’s entire user base if we return a mal-
ware verdict incorrectly. We design our system such
that human experts vet every verdict prior to action-
ing.

2. Simplify human verification. Whenever possible,
our system should be fully automated to minimize
the time required from human experts to confirm an
extension is malicious.

3. Time-constrained. Our system embargoes exten-
sions from public release until we reach a verdict.
Its critical that we return a decision within one hour.
Relatedly, our system must scale to the throughput
of newly submitted items to the Chrome Web Store
and weekly re-evaluated extensions that we estimate
at roughly 19,000 reviews/day.

4. Comprehensible, historical reports. Any automated
reports produced by our system must be com-
prehensible to human analysts, including machine
learning verdicts. Similarly, all reports should con-
tain some annotation to allow a historical perspec-
tive on the evolution of malicious extensions.

5. Tolerant to feature drift. Finally, our system must
keep pace with the evasive nature of malware and
adaptations in monetization strategies. This in-
cludes allowing experts to easily deploy new rules
to capture emerging threats that are then automati-
cally incorporated into long-running detection mod-
ules.

3.2 System Flow

WebEval is a living system that has evolved over the last
three years in response to threats facing the Chrome Web
Store. We describe our current pipeline for classifying an
extension as malicious in Figure 1. The system consists
of four stages: (�) a scheduler that submits extensions
for evaluation; (�) our extension execution framework
that captures behavioral signals; (�) an annotation phase

that incorporates content similarity, domain reputation,
and anti-virus signatures; and finally (�) scoring where
manually curated rules, an automated classifier, and hu-
man experts reach a verdict for whether an extension is
malicious.

Scheduler: We feed every extension uploaded to the
Chrome Web Store, either new or updated, into our sys-
tem and analyze it within one hour of submission. In
total, we analyzed 99,818 Chrome extensions submitted
over the course of January 2012–January 2015. This set
includes extensions that were blocked prior to public re-
lease.2 Furthermore, we have access to each revision of
the extension’s code base: over 472,978 unique variants
(measured by SHA1 sums). Each revision triggers a re-
scan in addition to a weekly re-scan aimed at extensions
that fetch dynamic, remote resources that can become
malicious.

Evaluation: We subject every extension to an evalu-
ation phase that extracts behavioral signals for classi-
fication. This includes a reputation scan of the pub-
lisher, static analysis of the extension’s code base, and
dynamic analysis that emulates common tasks performed
in Chrome: querying search engines, visiting social me-
dia, and browsing popular news sites. We store all raw
features for posterity, totaling over 45 TB. Our philoso-
phy is to retain everything (even packet contents) in or-
der to enable offline analysis in the event an extension
becomes defunct due to dead or broken remotely fetched
resources. This storage simultaneously enables tracking
trends in malware behavior over time and retroactively
applying new malware signatures. We present the full
details of our evaluation framework in Section 4.

Annotation: We practice a defense in depth strategy that
incorporates domain blacklists, anti-virus engines, and
content similarity that contextualizes an extension’s be-
haviors against the larger ecosystem of malicious devel-
opers and extensions. We include these signals as anno-
tations to an extension’s evaluation in the event our own
behavioral suites fail to surface any malicious logic. We
present the annotation process in greater detail at the end
of Section 4.

Scoring: The final step of WebEval returns a verdict
for whether to expunge a malicious extension. We use
a combination of manually curated rules and a logistic
regression classifier re-trained daily over all previously
detected malicious extensions to generate a score. A hu-
man expert then confirms our automated verdict before
passing our decision on to the Chrome Web Store to take
action. We present our technique for training, regulariza-

2We note that any extensions blocked prior to release are absent
from the previous work by Kapravelos et al. [21] that studied malicious
extensions found in the Chrome Web Store.
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Figure 1: Our pipeline for detecting malicious extensions. WebEval’s architecture consists of a scheduler, extension execution
framework, an annotator that incorporates third-party security intelligence, and finally scoring where we return a malware verdict.

tion, and manual decision rules in Section 5. We discuss
our approach for obtaining labeled data and evaluating
our system’s accuracy later in Section 6.

4 Evaluating Extensions

WebEval’s core automation systems generate a report
that surfaces signals about an extension’s code base, the
impact it has a user’s browsing experience, and who de-
veloped the extension. With a few exceptions, none of
these signals in isolation indicate outright malice: we
leave it up to our classifier and human experts to deter-
mine which combinations of features clearly distinguish
malware.

4.1 Static Analysis

Apart from remotely fetched resources, all of an exten-
sion’s HTML, CSS, JavaScript, and manifest are self-
contained and available to the Chrome Web Store upon
submission. We scan through these components to iden-
tify potential threats.

Permissions & Content Scripts: We enumerate all an
extension’s permissions, content scripts, and contexts.
Permissions in particular offer some indication of an ex-
tension’s capabilities such as intercepting and modify-
ing traffic (proxy, webRequest), triggering on a page load
(tabs), introspecting on all cookies (cookies), and unin-
stalling or disabling other extensions (management). As
part of this process we also identify broad contexts (e.g.,
<all urls>, https://*) that allow an extension to interact
with every page.

Code Obfuscation: We scan for the presence of three
types of code obfuscation: minification, encoding, and
packing. We build on the detection strategy of Kaplan
et al. that identifies common character substrings found
in obfuscated vs. unobfuscated code [20]. Instead of de-
tecting individual characters, we develop a set of regular
expressions that identifies boilerplate initialization tied

to the most prominent packers (e.g., jsmini.com, jscom-
press.com, and /packer/ ). We employ a similar approach
for detecting long encoded character strings. Finally, we
detect minification by measuring the distance between a
prettified version of an extension’s JavaScript against the
original supplied by the developer.

Files and Directory Structure: We extract the file
names and directory structure of an extension as well
as text shingles of the contents of every file. We rely
on these features for detecting near-duplicate extensions
(discussed in Section 4.4) as well as identifying com-
monly imported libraries and malicious files.

4.2 Dynamic Analysis

We collect the majority of our malware signals by black-
box testing each extension with a barrage of behavioral
suites that simulate common browsing experiences as
well as custom tailored detection modules that trigger
malicious logic. While more exhaustive approaches such
as symbolic JavaScript execution exist [32], in practice
we obtain sufficient enough behavioral coverage to reach
accurate malware verdicts as discussed in Section 6.

Sandbox Environment: Our testing environment con-
sists of a Windows virtual machine outfitted with two
logging components: (1) a system monitor that captures
low-level environment changes such as Windows set-
tings, Chrome settings, and file creation; and (2) an in-
browser activity logger that interposes on and logs all
DOM events and Chrome API calls. This activity logger
is natively built into Chrome explicitly for monitoring
the behavior of extensions [28]. We note that Chrome
isolates extensions from this logging infrastructure. Ex-
tensions cannot tamper with our results unless they com-
promise Chrome itself.

We supplement our monitoring infrastructure by rout-
ing all network traffic through a network logging proxy.
This proxy also serves as a replay cache. For each test

4
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suite we develop, we first record the network events pro-
duced by Chrome absent any extension installed. During
dynamic evaluation we replay any network events from
the cache that match. If a cache miss occurs, we route
requests out of our sandbox to the Internet. This proxy
allows us to minimize page dynamism, guarantee that
test suites are consistent across executions absent new
dynamic behavior, and reduce overall network round trip
time. Similarly, we can easily flag network requests pro-
duced by our test actions (e.g., a click or fetching ad con-
tent) versus those produced by an extension.

The output of our dynamic analysis is a list of all net-
work requests, DOM operations, and Chrome API calls
made by an extension. Each of these include the page the
event occurred on as well as the remote target of XHR
requests and injected scripts. We supply all of these as
raw features to our classifier as well as to human experts
who can generate manual rules that capture sequences of
events tied to known malware strains.

Behavioral Suites: The event driven nature of exten-
sions requires that we replay realistic browsing scenar-
ios to trigger malware. Our system allows human ex-
perts to record complex interactions (e.g., clicks, text
entry, etc) with webpages that we then replay against
every extension to detect malicious behaviors. These
simulations, called behavioral suites, cover querying
google.com with multiple searches; logging into face-
book.com via a test account and viewing the account’s
news feed; shopping on amazon.com and walmart.com;
and lastly browsing popular media sites including ny-
times.com and youtube.com. As new threats arise, ana-
lysts can easily deploy new behavioral suites to trigger a
malicious extension’s logic.

Generic Suites: Our replay suites are by no means ex-
haustive; we rely on a generic set of test suites to simulate
a wider variety of browser events. These tests are dupli-
cates of the techniques previously discussed by Kaprav-
elos et al. for Hulk [21] and include simulating network
requests to popular news, video, shopping, and banking
sites to trigger an extension’s webRequest handler as well
as using HoneyPages that create dummy elements on the
fly to satisfy JavaScript requests from extensions.

Malicious Logic Suites: We supplement our browsing
actions by explicitly testing an extension’s logic against
known threats: uninstalling other extensions (e.g., anti-
virus, Facebook malware remover); preventing unin-
stallation by terminating or redirecting tabs opening
chrome://extensions; and stripping or modifying Content
Security Policy headers. We explicitly flag each of these
activities in addition to the log signals produced through-
out the extension’s evaluation.

4.3 Developer Analysis

The closed-garden nature of the Chrome Web Store en-
ables tracking fine-grained reputation about developers
and the extensions they author. We monitor where devel-
opers log in from, the email domain they use to register,
the age of the developer account, and the total number of
extensions authored thus far. These signals help us de-
tect fake developer accounts that miscreants register via
commonly abused email providers and proxies, staples
of abusive account creation [39]. We note that newly
registered developers must pay a nominal one-time fee
of $5 that increases the overhead of churning out fake
accounts [15].

In the event a malicious extension escapes initial de-
tection, we also incorporate signals generated from users
interacting with the Chrome Web Store. These includes
the number of installs an extension receives, the number
of users who have rated the extension, and the average
rating. Our intuition is that highly used extensions that
never receive any feedback are suspicious as are exten-
sions that receive many low ratings.

4.4 Annotation

In the event the signals we collect during evaluation are
insufficient, we rely on a defense in depth strategy that
incorporates intelligence from the broader security com-
munity. In particular, we scan all of the files included in
an extension with multiple anti-virus engines similar to
VirusTotal.3 If any single anti-virus vendor reports a file
as malicious we flag the file in our report. We extend a
similar strategy to all of the outgoing network requests
produced by an extension where we scan the domains
contacted against Google Safe Browsing and a collection
of domain blacklists.

We also evaluate an extension in the context of all
previously scanned extensions. We take the text shin-
gles of an extension’s code base computed during static
analysis and identify near-duplicate extensions that share
80% of the same code. This approach allows us to detect
extension developers that routinely re-upload previously
detected malicious extensions. We extend this cluster-
ing logic to group extensions based on common embed-
ded strings such as Google Analytics UIDs, Facebook
App IDs, and Amazon Affiliate IDs. Finally, for exten-
sions that evade initial detection and are released to the
Chrome Web Store, we cluster the extensions based on
the referrer of all incoming install requests to identify
common websites involved in social engineering. We
surface these clusters to human experts along with the
ratio of known malware in each cluster.

3Due to licensing agreements, we are unable to disclose which anti-
virus software we scan with.
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5 Scoring Extensions

We reach a concrete verdict of an extension’s malice
by flagging any extension caught by our automated clas-
sifier or manually constructed heuristics. A human ex-
pert then verifies our decision and removes the offending
extension from the Chrome Web Store if appropriate.

5.1 Automated Detection

Our automated detection uses a proprietary implemen-
tation of an online gradient descent logistic regression
with L1 regularization to reduce the size of our feature
space [6]. We believe similar accuracy can be achieved in
a distributed fashion with the open source machine learn-
ing libraries provided by Spark [33]. We train a model
daily over all previously scanned extensions with labeled
training data originating from human experts (discussed
shortly in Section 6).

Our feature set for classification consist of a collection
of over 20 million signals. For each extension we con-
struct a sparse string feature vector that contains every
requested permission, the contexts the extension oper-
ates on, whether obfuscation was present, and a string
representation of all of the extension’s file names and
directory structure. From dynamic analysis we include
a feature for every DOM operation, Chrome API call,
XHR request, remotely contacted domain, and a bit for
whether the extension uninstalled a security related ex-
tension, prevented uninstallation, or modified CSP head-
ers. From the developer analysis we include the email
domain, last login geolocation, and a discretized bucket
of the developer account’s age.

We exclude annotation signals from learning; they are
only used by human experts for manually curating rules
and analyzing clusters of badness. We also exclude text
shingles both to limit our feature space and retain mean-
ingful signals. Our philosophy is that any input to the
classifier should have a direct translation to an activity
that analysts can recognize rather than loosely contextu-
alized text blobs.

As part of the learning stage, we assign each feature a
weight which we optimize using a gradient descent on a
logistic regression model. In particular, we use L1 reg-
ularization to reduce our feature set to roughly 1,000 of
the most impactful features. These features become de-
cision rules, which we use to classify new extensions.
Because human reviewers cannot look at every single ex-
tensions in the Web Store, we have variable confidence
in the malware or benign labels assigned to training in-
stances. To compensate for this, we multiply the gradi-
ent descent learning rate with a correction factor that is
proportional to an approximate confidence level. Every
known malware items gets a correction factor of 1.0 due

to prior vetting by a human expert. On the other hand,
the learning rate for benign items is scaled down by the
following factor:

f =
min( P

Pt
,1.0)+min( A

At
,1.0)

2

We represent the popularity of an extension P as the num-
ber of existing installs and the age of an extension A as
the number of days since the extension was published.
Pt and At represent thresholds above which we omit any
penalty. This correction factor captures the risk that a
new extensions with no user base is malicious and yet
to be identified, while seasoned extensions with tens of
thousands of users are likely benign.

For the sake of tuning the learning pipeline, we use
5-folds cross validation to confirm we do not overfit the
model. The final model we use in production is trained
on 100% of the data available. For the purposes of our
study, we evaluate our model based on its accuracy the
next day rather than relying on a holdout golden dataset.

5.2 Manual Rules

We supplement our automated detection with manually
curated rules generated by human experts that address
many of the most prominent threats facing the Chrome
Web Store (discussed later in Section 7). While these
rules are fall backs in the event our automated classi-
fier fails, they are immensely helpful in contextualizing
the monetization strategy of malicious extensions that we
track over time. We note that all extensions surfaced by
these rules are still subject to expert verification.

Facebook Hijacking: Initial reports of malicious exten-
sions hijacking a victim’s Facebook account to post sta-
tus updates, send chat messages, befriend users, or “like”
content without consent first emerged in 2012 and have
persisted ever since [29]. We detect these extensions by
scanning network logs produced during dynamic eval-
uation for outgoing network POSTs to resources (e.g.,
ajax/follow/follow profile.php) that may indicate unau-
thorized account behavior.

Ad Injection: Ad injection extensions insert or replace
web advertisements. We identify this behavior by com-
paring the origin of inserted DOM elements and injected
scripts against a list of known advertisers derived from
third party ad block software, previous reports on ad in-
jection affiliate programs [37, 41], and domains surfaced
during manual review. We also scan for DOM operations
that replace existing advertisements on any of the pages
visited during our behavioral suites where we know ad
positions a priori.
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Search Leakage: Search leakage broadly refers to any
extension that funnels search queries to third parties, typ-
ically for modifying search results, injecting advertise-
ments, or tracking user interests. We detect search leak-
age by scanning outgoing network requests to determine
whether they contain the same keywords our behavioral
suite supplies to google.com. This module may poten-
tially miss term leakage in the event of encrypted or ob-
fuscated network parameters.

User Tracking: We rely on a heuristic to detect user
tracking that involves scanning all DOM operations for
the insertion of 0×0, 1×1, or hidden image during dy-
namic analysis. We consider any such operation a likely
indicator of inserting a tracking pixel.

6 Evaluation

We evaluate WebEval under a live deployment and
track daily accuracy as vetted by human experts. As part
of our analysis we offer insights into the most important
features for classification and the role of human experts
in correcting for evasive strains.

6.1 Dataset

Our evaluation dataset consists of 99,818 extensions
scored by WebEval between January 2012–2015. Hu-
man experts provided our ground truth labels. Due to the
possibility of delayed detection we continue to update
labels one month after the cut off for our dataset. In to-
tal, experts identified 9,523 malicious extensions (9.4%
of all extensions created during the same window). For
the purposes of our evaluation, we define WebEval’s ver-
dict as a false positive if WebEval returned a malware
label that was either rejected as incorrect by human ex-
perts or later refuted by the extension’s developer and
overturned upon secondary review. Similarly, we define
a false negative as any extensions surfaced by human ex-
perts or external reports despite our system returning a
benign verdict. We likely underestimate false negatives
as some threats are bound to escape both automated and
external review.

6.2 Overall Accuracy

We measure the precision and recall of WebEval as a
function of all scored extensions over the last three years.
In total, our machine learning pipeline and manually cu-
rated rule sets surfaced 93.3% of all known malicious
extensions to human experts (recall). Of the extension’s
that WebEval flagged as potentially malicious, human
experts agreed 73.7% of the time (precision). If we re-
strict our calculation to the last year, WebEval had a
recall of 96.5% and a precision of 81%. We find that
accuracy is a living process that we detail in Figure 2.

�

�

�

�

� �

�

�

� �

�

�

� �
�

�

�

�

�
�

�

�
�

�
�

�
� �

�
�

�

40%

60%

80%

100%

07/12 01/13 07/13 01/14 07/14 01/15

M
ea

su
re

� precision recall

Figure 2: Monthly precision and recall of all scoring systems
in aggregate from 2012–2015.
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Figure 3: Weekly precision and recall of logistic regression
classifier from 2014–2015.

We experience drops in recall when new threats emerge
which we subsequently recover from via updated rules
and daily retraining of our classifier with new samples.
We consistently value recall over precision: we would
rather burden human experts with more reviews rather
than expose users to malicious extensions. Nevertheless,
our precision is reasonable enough as to not force human
experts to review every extension in our dataset.

6.3 Automated Classifier Accuracy

Ideally WebEval can run in a purely automated fashion
without curated rules or expert verification. We evaluate
this possibility by calculating the precision and recall of
our logistic model, shown in Figure 3. Over the last year
our classifier surfaced 77% of known threats. Human ex-
perts agreed with our model’s verdict 86% of the time.
Overall performance has steadily increased over time
with the addition of new features, an increasing train-
ing corpus, and increasingly frequent model retraining.
Accuracy of the classifier during the final two weeks of
our evaluation boasted 98% precision and 91% recall—
on par with human experts. However, new threats al-
ways require human intervention as indicated by consis-
tent drops in recall throughout time: while the model can
quickly recover with daily retraining, we maintain that

7



586 24th USENIX Security Symposium USENIX Association

Requested Permission Precision Recall

tabs 12% 84%
webRequest 23% 39%
webRequestBlocking 22% 27%
notifications 14% 27%
contextMenus 15% 26%
storage 9% 25%
webNavigation 21% 19%
cookies 10% 14%
unlimitedStorage 14% 13%
idle 27% 10%

Table 1: Top 10 permissions requested in extension manifest.

Chrome API Precision Recall

runtime.onInstalled 12% 79%
tabs.onUpdated 29% 61%
runtime.connect 21% 50%
extension.getURL 25% 34%
tabs.executeScript 47% 31%
tabs.query 31% 27%
runtime.onConnect 46% 25%
tabs.get 43% 24%
browserAction.setBadgeText 28% 23%
browserAction.setBadgeBackgroundCol... 39% 21%

Table 2: Top 10 Chrome API calls performed during dynamic
execution.

experts must always be part of our pipeline to minimize
both false positives and false negatives. This is an imme-
diate consequence of a centralized market for extensions
where there are limited external sources of labeled train-
ing data. In contrast, email and telephony spam systems
can rely on honeypots and informed users to readily gen-
erate representative daily training data. While our human
throughput currently scales to the size of the Chrome
Web Store, larger ecosystems face a significant challenge
for sustainable accuracy.

6.4 Relevance of Individual Signals

WebEval is an amalgam of behavioral signals where no
single feature captures the majority of malicious exten-
sions. We examine assumptions we had of certain be-
haviors, whether they are unique to malware, and which
signals are the most important to classification.

Requested Permissions: We list the most popular per-
missions used by malware and benign extensions in Ta-
ble 1. These permissions include allowing an extension
to trigger when Chrome creates a new tab (84% of all
malware) or when Chrome generates a network request
(39%). While these behaviors appear fundamental to
malware they are equally prevalent in benign applica-

DOM Operation Precision Recall

eval 10% 76%
Window.navigator 19% 59%
XMLHttpRequest.onreadystatechange 31% 56%
XMLHttpRequest.open 21% 53%
Document.createElement 20% 47%
Window.setTimeout 18% 46%
Node.appendChild 20% 45%
HTMLElement.onload 25% 30%
HTMLScriptElement.src 51% 25%
Window.location 23% 12%

Table 3: Top 10 DOM operations performed during dynamic
execution.

Behavioral Signal Precision Recall

XHR Request 30% 52%
Code Obfucsation 21% 25%
Script Injected 50% 19%
HTTP 400 Error 41% 9%
Modifies CSP Headers 86% 2%
Uninstalls Extension 96% 0.5%
Prevents Uninstallation 100% 0.1%

Table 4: Precision and recall of individual behavioral signa-
tures.

tions. This observation captures a significant limitation
of the current Chrome permission model as applied to-
wards security judgments: coarse permissions required
by all extensions provide no indication that an exten-
sion is malicious. Similarly, 93% of all malicious ex-
tensions request to interact with every URL as do 57%
of all other extensions. These broad contexts make it dif-
ficult to determine the pages an extension interacts with,
further complicating dynamic analysis.

Chrome API Calls & DOM Operations: We find the
strongest features for detecting malware originate from a
mixture of Chrome API calls and DOM operations. We
provide a list of the most common operations in Table 2
and Table 3. The majority of malware (and benign exten-
sions) rely on injecting scripts, generating XHR requests,
and adding new DOM elements that target newly created
tabs. What distinguishes the two are the aggregate set
of events triggered as well as the domains of remote re-
sources loaded into a page (e.g., injected scripts or con-
tent). Our model effectively learns which resources are
commonly fetched by malware in addition to common
strategies for tampering with pages.

Malicious Logic: Recent work by Kapravelos et al. pro-
posed a number of behavioral flags they deemed “suspi-
cious” for extensions. We evaluate the effectiveness of
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Figure 4: CDF of the delay before catching a malicious exten-
sion after it is first submitted to the Chrome Web Store. We
catch malicious extensions within a median of 25 minutes.
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Figure 5: Actions taken against malicious extensions in the
Chrome Web Store over time. Our systems are becoming in-
creasingly proactive at blocking malware rather than reactive.

these signals in Table 4. We find that behaviors such as
modifying CSP headers, uninstalling extensions, or pre-
venting uninstallation are exclusive to malware, though
rare. Contrastingly, Hulk’s decision to surface exten-
sions that produce network request errors or inject scripts
would overly burden human experts due to low precision.
These signals still have value, but they must be combined
with the other features collected by our system in order
to generate a precise verdict.

6.5 Detection Latency

A critical metric of WebEval’s performance is our vul-
nerability window: the time between when a developer
submits a malicious extension to the Chrome Web Store
until its detection. This metric represents a worst case
scenario where we assume an extension is malicious
from its onset rather than after an update or a remote
resource begins including malicious functions. Over
the last year it took a median of 25 minutes before we
flagged an extension as malicious—within the one hour
window an extension is embargoed from public access.

However, this delay has a long tail as shown in Figure 4.
We catch 70% of malicious extensions within 5 days and
90% within 3 months. During this period, users are ex-
posed to malicious content, the impact of which we eval-
uate in Section 7. Over time, our verdicts have become
increasingly proactive rather than reactive as shown in
Figure 5. Blocked extensions never reach the public,
while extensions taken down by the Chrome Web Store
leave users vulnerable for a short period. As we discuss
shortly, proactive blocking has a substantial impact on
reducing the number of known victims exposed to mal-
ware.

6.6 Manual Review Effort

WebEval relies heavily on human experts to validate the
verdicts of automated classification and manual rules to
guarantee high precision. In the last year, we surfaced
10,120 suspicious extensions for review, entailing a to-
tal of 464 hours of analysis—an average of 2.75 minutes
per extension. This process is simplified by access to all
of WebEval’s dynamic and static analysis and concrete
training features as previously discussed in Section 4 and
Section 5. We recognize that manual review by experts
represents a scarce resource that is challenging to scale.
Consequently, we continuously look for ways to improve
automated verdicts to achieve a precision on par with hu-
man experts.

7 Trends in Malicious Extensions

Consistently high recall over the last three years al-
lows us to provide a retrospective on how malicious ex-
tensions have evolved over time. This includes the mon-
etization vectors used, the breadth of users impacted, and
the developers responsible.

7.1 Abuse Vectors

Despite hundreds of new monthly malicious extensions,
we find the strategies for abusing Chrome users have re-
mained largely constant. Figure 6 shows a breakdown of
abuse strategies of extensions per month where a manu-
ally curated label is available;4 we categorize extensions
flagged by automated systems that provide no context
on abuse vectors as “other”. Noticeably absent from the
top threats are banking trojans, password theft, and email
spam. While these are all within the realm of a malicious
extension’s capabilities—and have cropped up from time
to time—such threats are dwarfed by Facebook hijack-
ing, ad injection, and information theft.

4Labels are not guaranteed to be unique; an extension can simul-
taneously hijack Facebook credentials, inject ads, and insert tracking
pixels.
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Figure 6: Malware varietals detected each month from 2012–
2015.
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Figure 7: CDF of installs broken down by those originating
from the Chrome Web Store and an extension’s active pings
that capture both store-based and sideloaded installs.

Facebook Hijacking: Our findings show that Facebook
malware remains a persistent threat with over 4,809 vari-
ants in the last three years. These malicious extensions
purport to offer enhancements such as removing the
Facebook Timeline, adding a “dislike” button, or chang-
ing the theme of the Facebook interface. The hook has
evolved over time. The latest rendition tricks users into
installing an extension masquerading as a video codec
required to view a video posted by a friend. Once in-
stalled, the extension hijacks the victim’s credentials to
post status updates that propagate the malware. How
the extensions monetize Facebook accounts is not en-
tirely clear, but appears to involve inflating likes, fans,
and friend counts much like previously studied fake en-
gagement contagions on Twitter [36, 38].

Ad Injection: Ad injection is the second most prevalent
threat in the Chrome Web Store comprising 3,496 exten-
sions. These extensions rely on content scripts that run
on every page that allow the extension to scan DOMs for

common banners to replace with rogue advertisements
or simply insert new ads into pages. We note that ad in-
jection is not expressly prohibited by the Chrome Web
Store: the extensions flagged also performed some other
malicious behavior or violated one of the store’s policies
as determined by a human expert.

Other Variants: In recent months we have witnessed a
larger variety of abuse vectors. In depth investigations
of a sample of these extensions reveal malware tamper-
ing with bitcoin wallets, injecting into banking sessions
for Brazilian institutions, and modifying Amazon affili-
ate URLs. While we lack manual rules for these specific
abuse vectors, we are nevertheless able to catch them via
our classifier.

7.2 Installs

Malicious extensions obtain installs in one of two fash-
ions: (1) via binaries that modify Chrome’s user pro-
file to sideload extensions,5 or (2) via social engineering
where miscreants direct users to the Chrome Web Store
or prompt users with an install dialogue on a third-party
site. We measure both approaches using two metrics. We
define an extension’s active user base as the total number
of Chrome clients who ping the Chrome Web Store with
update requests (sent by all extensions, including side-
loaded extensions). This value changes each day as users
install or uninstall extensions, so we select the all-time
maximum. We define an extension’s web store installs as
the total number of install dialogues Chrome clients initi-
ate with the Chrome Web Store. We note that a third op-
tion exists for miscreants to obtain installs: paying an ex-
isting, legitimate extension developer to hand over their
app. In practice, we found only 6 malicious extensions
(0.06%) that involved an ownership transfer.

Evidence of Side Loading: We provide a breakdown of
both install metrics in Figure 7. We find that 51% of ma-
licious extensions never received any active user base or
Web Store installs due to early detection. Evidence of
sideloading is relatively rare: only 290 extensions had
a larger active user base than Web Store installs. How-
ever, these extensions were immensely popular with over
43.5 million combined active users. In contrast, all mali-
cious extensions combined received 29.6 million installs
via the Chrome Web Store. As such, it would appear that
binary distribution of malicious extensions contributed
substantially to user infections. This allows malware au-
thors to rely on the same distribution models of the past
(e.g., drive-by downloads [30], exploit packs [18], pay-
per-install [8]) while tapping into the extension API as a
means for simplifying exploitation.

5The extension still must be in the Chrome Web Store due to the
lockdown policy discussed previously in Section 2
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Figure 8: Malware installations via the Chrome Web Store for
the past three years broken down by abuse vector. This ex-
cludes binaries sideloading extensions.

Country Infected Users Popularity

United States 2,375,363 8%
Brazil 1,982,570 7%
Mexico 1,942,288 6%
Colombia 1,634,933 5%
Turkey 1,569,949 5%
Argentina 1,525,364 5%
India 1,475,228 5%
Russia 1,244,932 4%
Peru 955,695 3%
Vietnam 806,625 3%

Table 5: Top 10 regions impacted by malicious extensions
downloaded via the Chrome Web Store.

Equally problematic, installs follow a long tail distri-
bution. We find that 64 extensions (1% of all malware)
attained an aggregate 46.6 million active users, 83% of
all installations. The top two most popular threats were
ad injectors and search hijackers that each garnered over
10 million active users. Miscreants distributed each ex-
tension solely via binaries flagged as malware by Google
Safe Browsing. Our results emphasize that seemingly
small false negative detection rates can have substantial
negative impact on Chrome users. This drastically differs
from email and telephony spam where an incorrectly la-
beled message typically impacts only a single user—not
millions.

Popular Social Engineering Campaigns: Focusing ex-
clusively on installs mediated by the Chrome Web Store,
we investigate which abuse vectors achieved the most
new installs per month and the country of origin of in-
stalls. Figure 8 tracks the rise and fall of various mon-
etization strategies over time. Despite a short window

0

50

100

150

2004 2006 2008 2010 2012 2014

M
on

th
ly

 n
ew

 m
al

wa
re

 a
ut

ho
rs

Figure 9: Registration time of malware authors. Most authors
rely on accounts created in the last three years.

before catching malicious extensions we still find that so-
cial engineering campaigns enticed millions of new users
each month to install Facebook malware, ad injection
software, and information stealers. The downward trend
in recent months is the result of proactive blocking rather
than retroactive takedowns that expose users to malware
for a short window. We find no single country is dis-
proportionately represented as the source of installs, as
shown in Table 5. Our results highlight the global scale
and negative impact that malicious extensions have on
users and the need for greater research attention to the
problem.

7.3 Malicious Developers

We identify 2,339 malicious extension developers
throughout the course of our study. While 50% of de-
velopers authored their malicious extension within 3 to
4 months of registering, there is a long tail of potentially
compromised accounts used to interact with the Chrome
Web Store as shown in Figure 9. We find miscreants ac-
cess 31% of developer accounts from IPs within Turkey
followed in popularity by range of other countries de-
tailed in Table 6. Many of the countries with the highest
infection counts were also prominent locations for mali-
cious developers indicating threats were likely localized.
Re-use of malicious developer accounts was fairly lim-
ited: 50% of accounts authored fewer than 2 malicious
extensions while 90% authored fewer than 10.

8 Discussion

With multiple years spent fighting malicious exten-
sions, we reflect on some of the lessons we have learned,
limitations of our approach, and potential technical and
policy improvements that can help prevent malicious ex-
tensions in the future.

11
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Country Developers Popularity

Turkey 552 31%
United States 164 9%
Dominican Republic 126 7%
Brazil 106 6%
Vietnam 83 4%
Russia 60 3%
Germany 43 2%
Peru 43 2%
India 43 2%
Israel 39 2%

Table 6: Top 10 login geolocations of malicious developers.

8.1 Lessons Learned

When we first set out to identify malicious extensions
our expectation was to find banking trojans and pass-
word stealers that duplicated the strategies pioneered by
Zeus and SpyEye. In practice, the abusive extension
ecosystem is drastically different from malicious bina-
ries. Monetization hinges on direct or indirect relation-
ships with syndicated search partners and ad injection af-
filiate programs, some of which earn millions of dollars
from infected users [37]. Miscreants derive wealth from
traffic and user targeting rather than the computing re-
sources or privileged access mediated via the browser. It
may simply be that the authors of malicious binaries have
little incentive (or external pressure) to change, leaving
extensions to a distinct set of actors. This uncertainty is
a strong motivation for exploring the extension ecosys-
tem further.

A second lesson is the importance of equipping an
abuse prevention team with the tools necessary to rapidly
respond to new, unforeseen threats. As we have shown,
even momentary lapses in protection have drastic con-
sequences on Chrome users. This is especially true in
the case of social engineering campaigns like those used
to distribute malicious Facebook extensions that spread
exponentially. We argue that evaluating a detection sys-
tem purely on precision and recall is not effective when
the ultimate goal is to protect users from malware in-
stallations. Instead, we must weigh false negatives by
their consequences—the number of victims exposed to
malware. In this light, our system has continuously im-
proved over the last three years.

In the long term we believe the Chrome Web Store
must extricate itself from the current fire-fighting ap-
proach to malicious extensions and outright disrupt the
malicious actors involved. This reflects a nascent strat-
egy within the research community to pursue criminal
relationships such as those underpinning spammed phar-
maceuticals [26]. However, to arrive at this point we
must first lay a foundation for how to study the extension

ecosystem. As the research community develops the nec-
essary understanding this abuse space—and in particular
the ad and search relationships involved—there must be
a system to both protect users as well as generate longi-
tudinal data on abuse strategies and their support infras-
tructure. WebEval satisfies both of these requirements.

8.2 Role of Policy

Research primarily considers technical solutions to
abuse, but we argue that policy decisions prove equally
effective at protecting users. When Chrome first released
extensions there was no requirement of developers up-
loading their code to the Chrome Web Store. This en-
abled malicious developers to side-load extensions via
binaries and left Chrome users with little room for dis-
covering the installation or recourse. The subsequent
Chrome lockdown forced all malicious extensions to at
least be surfaced to the Chrome Web Store and cre-
ated a homogeneous enforcement policy for all Chrome
users. While binaries can still side-load extensions in the
Chrome Web Store, WebEval now incorporates signals
to detect organic versus silent installs.

It is worth noting the Chrome lockdown policy has
some limitations. Anecdotally, we have observed bina-
ries distributing payloads that overwrite the local content
of legitimate extensions previously installed by a user.
Because only the legitimate extension is in the store,
WebEval cannot offer any protection. Chrome has since
responded to this threat by introducing extension content
verification, but this is just a single stage in an increasing
arms race.

8.3 Limitations

Dynamic analysis and security crawlers consistently run
the risk of overlooking malicious behaviors due to cloak-
ing [2, 23, 31]. Extension analysis is equally vulnerable.
Potential threats include malware delaying execution un-
til after WebEval’s evaluation; supplying benign versions
of remotely fetched JavaScript until after evaluation; or
malware developers fingerprinting our evaluation envi-
ronment and IP addresses. A separate issue is code cov-
erage: our behavioral suites are not guaranteed to trig-
ger all of an extension’s logic during evaluation. Worse,
we face an intractably broad threat surface that we must
test as the majority of malware requests access to every
page a user visits. While symbolic execution systems
exist for Javascript [32], they rely on fuzzing that is not
guaranteed to trigger malicious behavior due to the im-
plicit event-driven nature of extensions where activation
requires a specific sequence of listeners to fire. Solutions
to these challenges remain elusive; we currently rely on
human experts and abuse reports to surface false nega-
tives so we can adapt our detection framework.
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8.4 Improving Detection

Fundamentally improving WebEval (and by proxy other
security scanners) requires we break from evaluating
extensions in a sandboxed environment vulnerable to
cloaking and instead move to in situ monitoring of
Chrome users. This strategy, previously considered by
researchers to improve drive-by download detection [35],
applies equally to malicious extensions. However, such
a move creates a new challenge of balancing early infec-
tions of clients, user privacy, and anonymous but feature-
rich reporting of an extension’s behaviors with enough
details to detect malice.

Furthermore, while we can retrain our a model of ma-
licious extensions to incorporate client logs, the process
would be immensely aided by the cooperation of website
developers who label DOM resources as sensitive. We
should take these labels as hints, not facts, to account for
overzealous developers who label every DOM element as
sensitive in an effort to dissuade extension modifications,
even when desired by users. We believe this combined
approach strikes the best balance between Chrome’s cur-
rent philosophy of allowing users to alter their browsing
experience in any way with the necessity of early detec-
tion of malicious modifications.

9 Related Work

Security Sandboxes & Malware Detection: WebEval
borrows heavily from a history of malware analysis
sandboxes that capture system calls and network traf-
fic. Examples include Anubis [5], CWSandbox [40],
and GQ [24] among a breadth other architectures [12].
However, malicious extensions pose a unique set of chal-
lenges that limit the effectiveness of these sandboxes
without modification. Unlike standalone applications,
Chrome extensions run in the context of a webpage mak-
ing it harder for traditional system-wide malware moni-
toring techniques to isolate malware activity from that of
the browser. Our system manages to achieve this isola-
tion by comparing extension activity to baseline activity
captured while the extension was not running as well as
by tapping natively into Chrome’s JavaScript and API
modules.

The closest system to our own is Hulk which cap-
tures in-browser activity logs [21]. Unlike Hulk, our
system goes beyond identifying suspicious behaviors to
return a concrete verdict of malice. This is imperative
as the signals proposed by Hulk are insufficient at de-
tecting most malicious extensions as we showed in Sec-
tion 6. Research has also explored competing strate-
gies such as information flow tracking in JavaScript with
tainted inputs [11] or tracking common API calls made
by Browser Helper Objects installed by adware [22].

These techniques influence our design but only capture
a subset of the malicious extensions we identify.

Buggy & Malicious Extensions: Most research into
browser extensions has focused on their security and
permission model in light of the possible vulnerabili-
ties [3, 4, 9, 19]. Only recently has research shifted to-
wards the threat of outright malicious extensions. This
includes re-imagining application-based attacks as man-
in-the-browser threats [25]; examining the role of exten-
sions in the ad injection ecosystem [37, 41]; and charac-
terizing malicious extensions found in the Chrome Web
Store [21]. Our observations agree with many of these
former studies. We expand upon these works by offer-
ing a complete perspective of how malicious extension
monetization techniques have evolved over the last three
years and the techniques malware developers use to dis-
tribute extensions.

10 Conclusion

In this work we exposed wide-spread efforts by crim-
inals to abuse the Chrome Web Store as a platform for
distributing malicious extensions. As part of our study,
we presented the design and implementation of a frame-
work that automatically classifies an extension’s behav-
iors, code base, and author reputation to surface mal-
ware. Due to our live deployment, this system cannot
run in a fully automated fashion: we required regular in-
puts from human experts to correct for false negatives
surfaced via Chrome user reports and manual investiga-
tions. Our unique combination of automated and human
systems yielded a framework that identified 96.5% of all
known malware submitted to the Chrome Web Store be-
tween January 2012–2015.

In total, we detected 9,523 malicious extensions that
hijacked social networking sessions to generate synthetic
likes, friend requests, and fans; ad injectors and affili-
ate fraudsters that rewrote DOM content to laden pages
with additional advertisements; and information steal-
ers that injected rogue tracking pixels and covertly si-
phoned search keywords. Despite a short window of
operation—we disabled 50% of malware within 25 min-
utes of creation—a handful of under 100 malicious ex-
tensions were able to infect over 50 million users before
removal. Our results highlight key challenges of protect-
ing app marketplaces that are broadly applicable beyond
the Chrome Web Store.
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Abstract

Website defacements and website vandalism can inflict sig-
nificant harm on the website owner through the loss of sales,
the loss in reputation, or because of legal ramifications.

Prior work on website defacements detection focused on
detecting unauthorized changes to the web server, e.g., via
host-based intrusion detection systems or file-based integrity
checks. However, most prior approaches lack the capabili-
ties to detect the most prevailing defacement techniques used
today: code and/or data injection attacks, and DNS hijack-
ing. This is because these attacks do not actually modify the
code or configuration of the website, but instead they intro-
duce new content or redirect the user to a different website.

In this paper, we approach the problem of defacement
detection from a different angle: we use computer vision
techniques to recognize if a website was defaced, similarly
to how a human analyst decides if a website was defaced
when viewing it in a web browser. We introduce MEERKAT,
a defacement detection system that requires no prior
knowledge about the website’s content or its structure, but
only its URL. Upon detection of a defacement, the system
notifies the website operator that his website is defaced, who
can then take appropriate action. To detect defacements,
MEERKAT automatically learns high-level features from
screenshots of defaced websites by combining recent
advances in machine learning, like stacked autoencoders
and deep neural networks, with techniques from computer
vision. These features are then used to create models that
allow for the detection of newly-defaced websites.

We show the practicality of MEERKAT on the largest web-
site defacement dataset to date, comprising of 10,053,772
defacements observed between January 1998 and May 2014,
and 2,554,905 legitimate websites. Overall, MEERKAT
achieves true positive rates between 97.422% and 98.816%,
false positive rates between 0.547% and 1.528%, and
Bayesian detection rates1 between 98.583% and 99.845%,
thus significantly outperforming existing approaches.

1The Bayesian detection rate is the likelihood that if we detect a
website as defaced, it actually is defaced, i.e., P(true positive|positive).

1 Introduction
The defacement and vandalism of websites is an attack

that disrupts the operation of companies and organizations,
tarnishes their brand, and plagues websites of all sizes,
from those of large corporations to the websites of single
individuals [1–3].

In a website defacement, an attacker replaces the content
of a legitimate website with some of his/her own content. A
website might be defaced for many different reasons and in
many different ways: For example, an attacker might deface
the website by brute-forcing the administrator’s credentials,
by leveraging a SQL injection to introduce content or code,
or by hijacking the domain name; however, all defaced
websites share one characteristic: the defacer leaves a
message that is shown to the visitors of the website instead
of the legitimate content, changing the visual appearance
of the website.

Although nearly all defacers vandalize websites for their
“15 minutes of fame,” and to get a platform to publicize
their message, their messages vary: some embarrass the
website’s operator, others make a political or religious point,
and others again do it simply for “bragging rights.” For
instance, in the beginning of November 2014, as reported
by the BBC [4], attackers defaced the website of the
Keighley Cougars, a professional rugby club from England
competing in League 1. The defacers modified the website
so that visitors were greeted with a message in support
of the terrorist organization “Islamic State of Iraq and the
Levant/Syria” (ISIL/ISIS). Similarly, in late 2012, defacers
close to the Syrian regime defaced the homepage of the
prominent Qatari television network Al Jazeera, and instead
of being shown news articles, visitors were greeted by a
message alleging Al Jazeera of “spreading false fabricated
news.” Reliably detecting such website defacements is
challenging, as there are many ways in which an attacker
can tamper with the website’s appearance, including
re-routing the traffic to a different website, which does not
affect the legitimate website’s content directly in any way.

In this paper, we introduce MEERKAT, a website
monitoring system that automatically detects if a website
has been defaced. MEERKAT detects website defacements
by rendering the website in a browser, like a normal visitor
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(a) Normal, non-defaced version. (b) Defaced version.

Figure 1: Screenshots of the Keighley Cougars homepage, non-defaced and defaced in an attack on November 2, 2014. (a) shows how the
website looks normally, (b) shows how the defaced website looked like after being defaced by Team System Dz, a defacer group close to the terrorist
organization Islamic State of Iraq and the Levant/Syria (ISIL/ISIS).

would, and deciding, based on features learned exclusively
from screenshots of defacements and legitimate websites
observed in the past, if the website’s look and feel is that of
a defaced or a legitimate website. If the website is detected
as being defaced, the system notifies the operator, who,
in turn, can, depending on the confidence in MEERKAT’s
decision, put the website (automatically) in maintenance
mode or restore a known good state to reduce the damage.

Our technical contributions in this paper are:

� We introduce MEERKAT, a website defacement
detection system that learns a high-level feature set from
the visual representation of the website, i.e., it learns
a compressed representation of the look and feel of
website defacements and legitimate websites. Based on
the learned features, the system then produces a model
to differentiate between defaced and legitimate websites,
which it uses to detect website defacements in the wild.
In addition, the system notifies the website’s operator
upon detection (Section 3).

� We evaluate MEERKAT on the largest website deface-
ment dataset to date, comprising of 10,053,772 website
defacements observed between January 1998 to May
2014, and 2,554,905 legitimate and (supposedly) not
defaced websites from Alexa’s, MajesticSEO’s, and
QuantCast’s top 1 million lists (Section 4).

In the remainder of this paper, we make a compelling case
for the need of an accurate and lightweight website mon-
itoring system that detects website defacements (Section 2),
discuss how MEERKAT works in detail (Section 3), evaluate
our system on the largest defacement dataset to date
(Section 4), discuss some limitations of website defacement
detection systems (Section 5), compare MEERKAT to related
work (Section 6), and, finally, we conclude (Section 7).

2 Motivation
Lately, the detection of website defacements as a research

topic has not received much attention from the scientific
community, while, at the same time, defacements became
more prominent than they have ever been. The number of
reported defacements has been exceeding the number of
reported phishing pages since October 2006 by a factor of
7 on average, and reached up to 33.39 defacements being re-

ported to Zone-H2 per phishing page reported to PhishTank3

(see Figure 2). Yet, website vandalism is often played down
as a problem instead of being acknowledged and addressed.

The increase in defacements is evident (see Figure 2):
while a mere 783 verified defacements were reported
on average each day to Zone-H in 2003, the number of
reports increased to 3,258 verified defacements per day
for the year 2012, to an all-time high of over 4,785 verified
defacements being reported each day to Zone-H in 2014.
This corresponds to an increase of websites being defaced
by 46.87% from 2012 to 2014 [5].

Similarly, according to the Malaysian Computer
Emergency Response Team (CERT), 26.04% of all reported
incidents in 2013 were website defacements, but only 1.5%
of the reported incidents were defacements in 2003, and
10.81% were website defacements in 2007 [7, 8].

Furthermore, in 2014, attackers confirmedly defaced over
53,000 websites ranked on Alexa’s, MajesticSEO’s, and
QuantCast’s top 1 million lists. Corroborating that not only
websites that are “low-hanging fruit” are being defaced, but
that high-profile ones are being attacked alike (see Table 1).

This recent resurgence and the increase in defacements
and “cyber-vandalism” is generally attributed to the rise of
hacktivist groups, like anonymous or LulzSec [9, 10], but
also gained traction through the escalation of international
conflicts [11, 12]. Although the scientific consensus is
that the attacks employed to deface a website are usually
rather primitive in nature [9], hacktivist groups and other
politically- and religiously-motivated defacers have been
extremely successful in the past: in February 2015, Google
Vietnam was defaced by Lizard Squad for several hours [13];
in January 2015, the website of Malaysia Airlines was de-
faced by Cyber Caliphate [3]; in late 2014, the defacer group
Team System Dz defaced over 1,700 websites to speak out
against the actions of the US in the Syrian civil war and to ad-
vocate for ISIS/ISIL [2]; in April 2014, over 100 websites be-

2Zone-H [5] is an archive containing only defaced websites, all
reported defacements are mirrored locally and manually verified [6]. Upon
manual inspection, a reported defacement is removed from the archive
if it does not constitute a defacement, or it is marked as verified.

3PhishTank is the largest public clearinghouse of data about phishing
scams, users report potential phishing scams and other users agree or
disagree with the submitter, resulting in a user-assigned phishing score.
Phishing pages are not being verified by expert analysts.

2
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Month Website
Alexa MajesticSEO QuantCast Page Views

per Month �US Global TLD1 Global US

Nov 2014
princeton.edu 999 3,412 17 273 3,444 796,000
volvo.com 54,607 57,046 3,757 7,323 568,058 -
cca.gov.in2 146,0393 780,660 - - - -

Aug 2014 openelec.tv 7,2264 48,754 184 93,894 - -
omicsonline.org 7,5613 42,030 5,068 63,924 - -

Jul 2014

ct.gov 2,454 10,976 72 2,054 3,548 809,000
us.to 2,8465 28,100 18 11,061 - -
sunnewsonline.com 686 9,958 31,315 58,277 236,740 -
newsmoments.in 3,725 39,262 - - - -

Jun 2014 wordpress.net 3,5227 41,295 1,410 28,021 321,317 -

May 2014 arynews.tv 728 5,308 949 536,436 - -
sundaytimes.lk 1209 38,591 6 39,866 209,083 -

Mar 2014 taylorswift.com 3,560 23,425 12,161 23,608 15,678 1.2 million
gbjobs.com 79810 9,181 - - - -

Dec 2013 openssl.net 5,994 16,409 80 933 - -

Oct 2013

avg.com 117 155 471 854 - 37 million
aljazeera.net 2511 1,831 37 920 2,196 28 million
bitdefender.com 5,934 5,898 1,132 2,094 3,963 1.4 million
avira.com 2412 1,108 1,275 2,361 6,081 480,000
leaseweb.com 3594 4,035 23,585 44,451 230,626 -
metasploit.com 124,365 175,570 33,537 59,816 120,839 -

2011-201314

telegraph.co.uk 2113 225 3 107 613 125 million
ups.com 71 231 319 549 101 40 million
nationalgeographic.com 483 1,006 94 139 125 37 million
acer.com 4,060 6,042 - - 1,995 2.9 million
theregister.co.uk 2,737 3,457 443 14 11,327 1 million
vodafone.com 7,05213 20,625 5,833 2,980 101,624 -

Table 1: Recent high-profile websites that were defaced, with their respective page rank according to Alexa, MajesticSEO, and QuantCast, and their monthly
page impressions. These defacements were reported to Zone-H and include a major logistics company (UPS), computer and information security vendors (BitDefender,
Avira, AVG, MetaSploit), news websites (Al Jazeera, Ary News, News Moments, Sunday Times, Sun News Online, Telegraph, The Register), a scientific society (National
Geographic), a hardware vendor (Acer), the world’s second largest telecommunications provider (Vodafone), a singer-songwriter/actress (Taylor Swift), the state of
Connecticut (ct.gov), an Indian federal ministry (cca.gov.in), an auto-mobile company (Volvo), an ivy-league university (Princeton), well-known open source projects
(OpenSSL, OpenELEC), and a hosting provider (Leaseweb). Missing fields represent unavailable data, data is unavailable due to being kept secret by the website operators
or requiring subscriptions to Alexa, MajesticSEO or QuantCast.
1 Top-level domain rank. 2 Government of India, Ministry of Communications & Information Technology. 3 Rank in India. 4 Rank in Netherlands.
5 Rank in Indonesia. 6 Rank in Nigeria. 7 Rank in Bulgaria. 8 Rank in Pakistan. 9 Rank in Sri Lanka. 10 Rank in China. 11 Rank in Yemen.
12 Rank in Iran. 13 Rank in United Kingdom. 14 Selected high-profile website defacements from Fortune 50 and Global 500 companies between 2011 to 2013.

longing to the government and major companies in Zambia
were defaced by Syrian and Saudi Arabian defacers to voice
against the Western world’s meddling in the Syrian civil
war [14]; in January 2014, the website of the popular mobile
game Angry Birds was defaced in protest of governmental
spying by the NSA and GHCQ [15]; and, in October 2013,
a Pakistani defacer group gained access to the domain regis-
trars of Suriname, Antigua & Barbados, and Saint Lucia and
defaced the regional websites of Audi, AVG, BlackBerry,
BMW, Canon, Coca-Cola, Fujitsu, Hitachi, Honda, IBM, In-
tel, Microsoft, Samsung, Symantec, Rolls-Royce, Vodafone,
and other companies simply for “bragging rights” [16].

A prime example that quantifies the impact of deface-
ments is the case of the Telegraph, a major UK daily
newspaper, which was defaced in September 2011. The
Telegraph is the third most-visited website in the United
Kingdom, according to MajesticSEO, and it is the 21st most
visited website in the United States, according to Alexa.
Each month, the homepage of the Telegraph is visited over
125 million times (48 times per second), and, since reports
state that the defacement lasted around three hours, we can
estimate that more than 500,000 people saw the defacement
instead of the legitimate website.4

4Since the website was defaced on a Sunday afternoon local time in
the United Kingdom, the number of visitors is likely much higher.

20
00
-0
1

20
01
-0
1

20
02
-0
1

20
03
-0
1

20
04
-0
1

20
05
-0
1

20
06
-0
1

20
07
-0
1

20
08
-0
1

20
09
-0
1

20
10
-0
1

20
11
-0
1

20
12
-0
1

20
13
-0
1

20
14
-0
1

Month

100

1,000

10,000

100,000

1,000,000

R
ep
or
te
d
W
eb
si
te
s

Reported Websites per Month

Defacements

Phishing Pages

Figure 2: Defacements reported to Zone-H and phishing pages
reported to PhishTank, per month from January 2000 to including
October 2014. The drops in reported defacements in February 2002,
February 2009, and March 2009 are because Zone-H was under
maintenance during that time and did not accept any new reports. No
data is available from PhishTank earlier than October 2006, when the
website was launched. The trend of an increasing number of defacements
per month, as well as the gap in the number of defacements to the number
of phishing pages of a factor of up to 33x are evident.

While the list of prominent defacements goes on [4,
17–25], it is important to note that most techniques to
deface a website, like code and data injection attacks
(such as SQL injections), improper access control, or
DNS hijacking and poisoning, have been well-studied
and protection mechanisms have been proposed by prior

3
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work [26, 27]. However, it is extremely hard to protect
against all defacement attacks simultaneously and at scale.

Even worse, organizations are often responsible for
hundreds (or thousands) of different websites, with different
levels of security [9]. A single insecure website that
is defaced, however, can inflict significant harm on the
organization: in qualitative terms because of the loss of
reputation, and in quantitative terms because of the cost
of having to investigate and remove the defacement.

Although defacements can inflict serious harm on the
website operator, a two-month study by Bartoli et al. [28]
shows that many website operators still react slowly to
defacements with an average response time of over 72
hours. Moreover, their study finds that mere 24% of the
defaced websites were restored within one day, about 50%
defacements were removed within the first week, while
more than 37% of the websites remained defaced for over
two weeks. Overall, their findings suggest that prior website
defacement protection techniques and detection methods
have not been widely adopted.

We argue that the logical first step is to reduce the harm
inflicted on the website operator by quickly detecting if
his/her website has been defaced, so that the operator can
put the website in maintenance mode or restore its content
to a known good state. As such, an automatic, accurate,
and lightweight defacement detection system that monitors
websites, notifies the website’s operator, and acts as an early
warning system is desired. In this paper, we propose one
such system, MEERKAT.

3 Meerkat
The approach MEERKAT takes to detect website

defacements is fundamentally different from prior work
for three reasons. First, while the system does leverage
machine learning for classification, it does not rely on
handpicked features that were selected based on prior
domain knowledge, i.e., it requires no feature engineering.
Instead, MEERKAT relies on recent advances in machine
learning, stacked autoencoders, to learn high-level features
directly from data. Second, MEERKAT does not require the
website operator to supply any information other than the
domain name at which his/her website can be accessed. We
designed our system in this way because other defacement
detection systems that require the operator to define
keywords and other metadata, provide a reference version
of his/her website, or describe the website’s legitimate
content, have been rarely adopted in the past. By reducing
the effort required from the website operator to actually
use a defacement detection system, we hope to improve on
this situation. Finally, MEERKAT approaches defacement
detection visually: the system analyzes the look and feel
of the website and how a user would experience it by
rendering it in a web browser and analyzing a screenshot of
the website, instead of analyzing its source code or content.

Approaching the problem of detecting website deface-
ments visually has several advantages over analyzing the
source code or content of a website: some defacements rely
heavily on JavaScript and Cascading Style Sheets (CSS)
to stylize the defacement, which all must be analyzed in an

overarching browser context, and others again rely heavily
on images. In fact, similar to spam, phishing, and many
scams, defacements often do not contain much textual
content, but include images to display text instead [29],
thus they trivially evade text-based detection approaches.
Furthermore, the source code of two websites can be vastly
different, yet they appear the same to the human eye when
rendered in a browser. Therefore, leveraging prior work,
such as DELTA [30], to analyze the DOM-tree, the website’s
code, or parts thereof, is unlikely to be successful when
trying to detect website defacements accurately, which is
why we opted for a perceptual approach that does not suffer
from the aforementioned problems.

Following, we describe how MEERKAT learns from
defacements and legitimate websites, and how it detects
defacements in the wild. Next, we motivate the structure
of our deep neural network briefly, then, we discuss the
concept and motivation of fine-tuning the network, then,
we provide some notes on our implementation, and, last, we
briefly recap how MEERKAT can be deployed in practice.

3.1 Training and Detection
Before MEERKAT can be trained, two crucial parameters

must be selected that determine how and from what data
the system learns the look and feel of defacements:

Window Size. MEERKAT is not trained on whole
screenshots of websites, but on a window “into” each
website (i.e., only a part of the screenshot), thus we must
select the size of these representative windows. Some
important considerations must be made before picking
the size of the windows that we extract.
A small window can be more accurate because it might
only contain the exact representative part of the deface-
ment but not any noise, like an irrelevant background
color. However, if the windows are too small, the system
will also have more false positives because the windows
are not representative of defacements; instead, they are
representative for only parts of the defacements, which
might also occur in legitimate websites.
On the other hand, when using larger windows, it will
take significantly longer to train the network initially,
but the network might learn a more accurate model.
However, if the windows are too large, then the system
will learn about specific kinds of defacements in-detail
and overfit; e.g., the system might learn that two
defacements are different, while the two defacements
are actually the same but have a slightly different,
dynamically-generated background image.
Considering the trade-offs for different window sizes, for
our implementation, we decided to extract windows that
are 160×160 pixels in size. Our evaluation later shows
that this window size works well in practice to detect
website defacements (see Section 4). We briefly explored
other window sizes, like 30×30, that fared worse.

Window Extraction Strategy. The strategy to extract the
representative window from a screenshot is fundamental
to learn the look and feel of defacements and legitimate
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websites. If the windows are extracted according
to some poorly chosen strategy, then we expect the
classification accuracy to be poor as well. For instance,
if the strategy always extracts the part of a website that is
just a plain background, the system will only detect plain
backgrounds. Therefore, it is crucial that the window
extraction strategy is chosen well, and we compare some
suitable strategies, like extracting the window always
from the center or at random, later (see Section 3.1.2).

After selecting these parameters carefully, the system
can be trained. This is where most of the complexity of
MEERKAT lies. The training phase works as follows:

1. We collect a considerable amount of labeled website
defacements and legitimate websites, and we extract
their graphic representation (i.e., a screenshot of the
browser window; Section 3.1.1)

2. For each sample, we extract the 160×160 represen-
tative window from each screenshot according to the
selected extraction strategy (Section 3.1.2).

3. The representative windows are first used to learn the
features of our approach, and then to learn the model
for classification, for which we use a neural network
(Section 3.2).

Once the neural network is trained, MEERKAT detects
defacements in the wild. Its detection phase consists of
only two steps, on which we expand later:

1. The website is visited with a browser to retrieve a
representative screenshot (Section 3.1.1).

2. A sliding window approach is used to check if the website
is defaced and, if so, an alert is raised (Section 3.1.3).

3.1.1 Screenshot Collection

The first step to detect if a website has been defaced based on
its look and feel is to collect a screenshot of how the website
looks for a normal visitor. MEERKAT visits the website
with a browser that renders the website like any other
browser would, and takes a screenshot once the browser
finished rendering the website. In our implementation, we
use PhantomJS to collect the screenshots of the websites.
PhantomJS is a headless browser based on the Webkit layout
engine that renders websites (nearly) identical to Safari
or Google Chrome. PhantomJS also executes included
JavaScript code, renders Cascading Style Sheets (CSS),
and includes dynamic content, such as advertisements, like
a browser that a human would use.

Another important aspect in collecting a representative
screenshot of a website with a headless browser is the
resolution of the simulated screen. The resolution of the
display is important when collecting screenshots because
many websites render differently for different screen sizes,
such as for mobile devices, tablets, small notebooks, or
large displays. In our case, we decided to fix the resolution
to 1600×900 pixels, which is a display resolution often
found in budget and mid-range notebooks.

3.1.2 Window Extraction Techniques

For training the system, after collecting the screenshots,
we need to extract a representative window from each
screenshot so that we can train the neural network to detect
defacements. Various techniques can be used to extract
the representative window, which can be grouped into
deterministic and non-deterministic techniques. Hereinafter,
we discuss the trade-offs for four possible techniques: (i)
selecting the center window, (ii) selecting n non-overlapping
windows according to some measure (explained later),
(iii) uniformly selecting the window at random, and (iv)
randomly sampling the window’s center from a Gaussian
distribution for the x and y dimension separately.

Deterministic Window Extraction
The most straightforward deterministic technique is

to always extracts the window from the center of the
screenshot of the website. However, this makes evading
the system trivial. Generally, if an attacker can accurately
predict the window that will be extracted, he can force
the system to learn about defacements poorly, and, in
turn, deteriorate classification performance drastically.
Therefore, such a simple technique is unsuitable for a
detection system in an adversarial context.

Alternatively, one can extract the window according
to some measure. Identifying the most representative
window according to a measure (e.g., the Shannon entropy),
however, forces us to compute it for all possible windows
and then pick the top ranking one. In turn, for a1600×900
screenshot and a 160×160 window, we would need to
evaluate over 1 million candidate windows for each sample
in the dataset. In total, for our dataset, this would require
over 13 trillion computations of the measure just to extract
the representative windows. Clearly, this is impractical.

Nonetheless, a deterministic selection strategy based
on a clever measure can increase the accuracy of the system,
and it can also be extended trivially to extract multiple
top-ranking windows at no additional cost. However, using
more than one window per sample increases the dataset
size by a factor of n and prolongs training time. Therefore,
n would have to be chosen carefully.

Taking into account the trade-offs the different determin-
istic extraction strategies bear (increased training/detection
time, ease of evasion, or computationally impractical)
and considering that a comprehensive evaluation of them
would require at least an order of magnitude of additional
experiments,5 we decided to select a non-deterministic
extraction strategy that follows intuition and is based on
user interface and user experience design principles instead.
This selection makes our classification performance a lower
bound: other window extraction strategies might be more
accurate and/or robust, but (at the same time) they also incur
significant additional cost at training and/or detection time.

5Performing these additional experiments would require at least 6
months just in computational time on our current GPU infrastructure,
which is why we decided against performing them.
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Non-deterministic Window Extraction
A straightforward non-deterministic strategy to extract a

window from a screenshot is to select it uniformly at random.
However, one cannot simply take any point from the
website’s screenshot as the center of the window. Instead,
it must be sampled so that the whole window contains
only valid data, forcing us to sample its center from the
interval [80,1520] for x and [80,820] for y (these intervals
are specific to the screenshot (1600×900) and window
size (160×160)). Therefore, pixels at the border have a
slightly lower probability to occur in a window than those in
the center. Although this is an unintended side effect, it has
negligible impact in practice because the center of a website
is more likely to be descriptive anyways. Alternatively, we
could create an “infinite” image by wrapping the screenshot
at its borders, which would, however, yield artifacts because
we would combine parts of the top of the website with parts
of the bottom (and left and right, respectively), resulting
in windows that do not occur on the real website, which,
in turn, might disturb or confuse detection.

Alternatively to selecting the window’s center uniformly
at random, one can sample it from any other distribution, dis-
cretizing the sampled point. For instance, from a Gaussian
distribution to extract windows from mostly the center of the
screenshot, but not extracting from it exclusively. A focus on
the center of the website is often desirable because it is likely
to be more descriptive of the website’s look and feel. For
robustness, however, we also want to the system to not learn
exclusively from the center but to also learn about deface-
ments that occur at the border of the website. Therefore, for
our implementation, we extract a single window per website
with a Gaussian extraction strategy with µx = 800 and σx =
134.63975 for x and µy = 450 and σy = 61.00864 for y, so
that the windows at the border of the screenshot have a lower
probability to be sampled but are not ignored completely. If
x and y values outside of the screenshot are sampled, we sim-
ply resample the value for x or y respectively. We selected
the µ and σ values this specifically so that we sample values
outside of the screenshot only with likelihood 0.0001%.

3.1.3 Defacement Detection

After MEERKAT has been trained on a set of extracted
windows, it can detect if a website has been defaced.
Detecting website defacements with MEERKAT is
conceptually extremely simple:

1. We visit the website that we want to check with our
browser and we take a screenshot of the rendered website
(Section 3.1.1).

2. We apply a standard sliding window detection approach
on the screenshot we took to check if a part of the
screenshot is detected as being defaced, similarly to
prior work in image classification [31].

3. If a window is detected to be a defacement by MEERKAT,
we raise an alert and inform the website operator that
his/her website has been defaced.

Note that MEERKAT does not compare a possibly-defaced
website to an older, legitimate version of it, and, thus, does
not need to analyze or store an older version. Instead, it
detects defacements solely by examining how the current
version looks like.

Exclusively to improve performance, instead of starting in
a corner of the screenshot, our system starts in the center and
moves outward. This behavior is motivated by the fact that
the center of the website is likely more descriptive, and our
training set was focused on the center region of the screen-
shots. This does not mean, however, that MEERKAT misses
defacements that are at the border of a website, they will
be detected when the sliding window reaches the actually-
defaced part, the border. The same is also true if a website is
only partially defaced: once the sliding window reaches the
defaced area, MEERKAT detects that the website is defaced.

Additionally, a special case worth mentioning is that
a legitimate website might show a large promotional
screen or an advertisement with the same intention of
a website defacer: attracting attention. In turn, such a
promotional screen might be similar in its look and feel
to that of a website defacement. While MEERKAT might
currently (theoretically) mislabel them as defacements,
our evaluation shows that they do not matter much (see
Section 4). Furthermore, if they start to matter at one
point in the future, it is straightforward to consider them:
the defacement engine can make use of an advertisement
blocker, and the website operator could whitelist the system
to not be shown any promotional screens.

3.2 Neural Network Structure
In this section, we briefly discuss the design of our deep

neural network and how the different layers of the network
interact with the input image. The structure of our deep
neural network was notably inspired by prior work by Le
at al. [32], Krizhevsky et al. [33], Sermanet et al. [31], and
Girshick et al. [34]. We refer to them for further details.

The main components of our deep neural network are
autoencoders, which we stack on top of each other, and a
standard feed-forward neural network. Autoencoders are a
special type of neural network that are used for unsupervised
learning. The goal of an autoencoder is to find a compressed,
possibly approximated encoding/representation of the input,
which can be used to remove noise from the input, or, when
autoencoders are stacked, they can learn high-level features
directly from the input, like where edges in an image are,
or if cats or human faces are part of an image [32].

Overall, the structure of our deep neural network is based
on the following idea: first, we use a stacked autoencoder
to denoise the input image and learn a compressed
representation of both defaced and legitimate websites, i.e.,
we leverage the stacked autoencoder to learn high-level
features, similar to Le et al. [32]; second, we utilize a
feed-forward neural network with dropout for classification,
similar to Krizhevsky et al. [33].

The initial layer of our stacked autoencoder is comprised
of local receptive fields. This layer is motivated by the need
to scale the autoencoders to large images [32, 35–38], this
layer groups parts of the image to connect to the next layer
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Figure 3: Architecture of our deep neural network.

of the autoencoder, instead of allowing the whole image to
be used as input to each node of the following layer. It takes
20,164 (1422) sub-images of size 18×18 as input, extracted
at a stride of 1 from the 160×160 representative window
(see Figure 3; note that each pixel in each sub-image has
three dimensions for the three colors: red, green, and blue).
The second layer of our stacked autoencoder employs L2
pooling to denoise local deformations of the image and to
learn invariant features [37, 39–41]. Finally, the last layer
of our autoencoder performs local contrast normalization
for robustness [42].

The output of the stacked autoencoder is then used as
the input to a feed-forward neural network with dropout
that provides a 2-way softmax output. The 2-way softmax
output corresponds to the two classes that we want to detect:
defaced websites and legitimate websites. We use dropout
in our deep neural network to prevent overfitting of the
network, and to force it to learn more robust features by pre-
venting neurons to rely that other neurons of the network are
available (i.e., to prevent the co-adaptation of neurons) [43].

3.3 Fine-Tuning the Network’s Parameters
In an adversarial context, such as when trying to detect

if an attacker defaced a website, concept drift can be
introduced intentionally by the attacker and impede the
accuracy of the detection system drastically. Furthermore,
concept drift also occurs naturally, such as when the
style of defacements evolves over time in such a way that
the features cannot distinguish between legitimate and
defacement anymore. Therefore, concept drift can be a
severe limitation of any detection system, if it is not taken
into account and addressed properly (see Section 5.1).

MEERKAT can deal with concept drift in two different,
fully-automatic ways: fine-tuning the network’s parameters
(adjusting feature weights), and retraining the entire network
on new data. While the latter is conceptually straightforward
and addresses all kinds of concept drift, it is computationally
very expensive. The former, on the other hand, allows us
to deal with some forms of concept drift gracefully and is
computationally much less expensive. However, it requires
some further attention: when fine-tuning the neural network,
MEERKAT does not learn new features, but adjusts how
important the already learned features are. Therefore, fine-
tuning cannot address major concept drift for which the al-
ready learned features do not model defacements accurately
anymore. Instead, when we fine-tune the network’s param-
eters, we adjust the already learned weights of the deeper
layers of the neural network so that new observations of

defacements and legitimate websites are classified properly.
As such, fine-tuning the network to maintain an accurate
detection performance requires no additional information
about the websites at all, but only defacements and legiti-
mate websites that were not part of the training set before.

Conceptually speaking, when fine-tuning the network
given new defacements and legitimate websites, we search
for a better and, given the new data, more optimal set of
weights in the space of all possible weights. To do so more
efficiently, instead of initializing the weights at random,
we initialize them based on the previously-learned weights.

3.4 Implementation
For this paper, we implemented a prototype of MEERKAT

using Python and the “Convolutional Architecture for Fast
Feature Embedding” (Caffe) framework by Jia et al. [44].
Caffe was used because of its high-performance and ease
of use, however, it does not offer all functionality that our
neural network requires and some modifications were made.

Overall, the general architecture of MEERKAT is
embarrassingly parallel: the screenshot collection engine
is completely separate from the detection engine except
for providing its input. For instance, to quickly collect the
screenshots of all websites, we utilized 125 machines (with
2 cores and 2 GiB memory each), and collection peaked
at about 300 screenshots per second. Similarly, once the
neural network has been trained, the learned parameters
can be distributed to multiple machines and detection can
be scaled out horizontally, and, although the system is
trained on a GPU, once trained, the detection engine does
not require a GPU and can run on common CPUs instead.

Training the system, on the other hand, is not parallelized
to multiple machines yet, but some clever tricks can be used
to reduce training time significantly [33], which we leave
for future work.

3.5 Real-world Deployment
MEERKAT’s main deployment is as a monitoring service,

acting as an early warning system for website defacements,
to which a website operator subscribes with only the URL
at which his website can be reached. For each monitored
website, the system regularly checks, such as every few
minutes (or even seconds), that the website is not defaced.
If it detects it as being defaced, it notifies the website’s
operator, who, in turn, depending on the confidence in
the warning, manually investigates, or automatically puts
the website in maintenance mode or restores a known
good state. Acting as an early warning system, MEERKAT
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reduces the reaction time to defacements from hours, days,
and even weeks (see Section 2) down to minutes (or even
seconds), and, therefore, it reduces the damage inflicted
on the website’s operator by the defacement significantly.

Furthermore, MEERKAT can also reduce human labor:
currently, Zone-H manually vets all submissions for
defacements [6], of which nearly two thirds are invalid.
MEERKAT automates this significant amount of work.

4 Evaluation
We evaluate our implementation of MEERKAT in various

settings. However, first, we provide details on what data our
dataset is comprised of, and how we partition it to simulate
various defacement scenarios.

Our evaluation scenarios are traditional and simulations
of real-world events, such as a new defacer group emerging,
or how the system’s accuracy changes over time, with and
without fine-tuning the neural network.

In our experiments, a true positive is a website
defacement being detected as a defacement and a true
negative is a legitimate website being detected as legitimate.
Correspondingly, a false positive is a legitimate website
that is being detected as being defaced, and a false negative
is a defacement being detected as being legitimate.

4.1 Dataset
The dataset on which we evaluate MEERKAT contains

data from two different sources. First, it includes a com-
prehensive dataset of 10,053,772 defacements observed
from January 1998 to May 9, 2014; we obtained this data
through a subscription from Zone-H, but it is also freely
available from http://zone-h.org under a more re-
strictive license. From those defacements, 9,258,176 deface-
ments were verified manually by Zone-H [6]; the remaining
795,596 website defacements were pending verification and
we do not include them in our dataset. Second, our dataset
contains 2,554,905 unique (supposedly) undefaced websites
from the top 1 million lists from Alexa, MajesticSEO, and
QuantCast.6 Note that we cannot be certain that the legiti-
mate websites in our dataset are not defaced, and since man-
ual verification is impractical at such a large scale, the true
negative rate is actually a lower bound and the false positive
rate is an upper bound, correspondingly. In layman’s terms:
the system might be more accurate than our results suggest.7

To accurately evaluate the classification performance
of MEERKAT in a real-world deployment, we report its
accuracy in three different scenarios:

� Traditional, to compare to prior work, i.e., by performing
10-fold cross-validation by sampling from all data
uniformly at random, so that each bin contains 925,817
defacements and 255,490 legitimate websites.

6We made a list of all 2,554,905 legitimate websites included in our
dataset available at http://cs.ucsb.edu/~kevinbo/sec15-
meerkat/legitimate.txt.bz2.

7Over 191,000 website in our legitimate dataset have been defaced at
one point in the past, thus, it is likely that some of them are actually defaced
and therefore mislabeled; thus, if classified correctly as a defacement by
MEERKAT, they appear as false positives in our results.

� Reporter, to simulate a new defacer emerging, i.e., by
performing 10-fold cross-validation on the reporters
of a defacement and including only their defacements
in their respective bin; legitimate website are sampled
from the legitimate data uniformly at random.

� Time-wise, to evaluate the practicality of our approach
in a real-world setting, i.e., we start by training the
system on all data from December 2012 to December
2013, and, then, we detect defacements from January
to May 2014. We report the system’s detection accuracy
for each month.

We evaluate our system in these settings to prevent a positive
skew of our results that might be the result of the different
evaluation method and how the dataset is composed. For
instance, a reporter of a defacement might introduce an
inherit bias to the distribution of the defacement by only
reporting the defacements of one specific defacer (such
as themselves), or there might be a bias in how defacements
and how the web evolved. Those potential pitfalls might
skew the results positively or negatively and must be
considered for an accurate comparison to prior work.8

Finally, to account for the difference in the number of
samples of the legitimate websites (2,554,905) and defaced
websites (10,053,772), we report the Bayesian detection
rate [45]. The Bayesian detection rate is normalized to the
number of samples and corresponds to the likelihood if we
detect a website as being defaced, it is actually defaced (the
likelihood of a positive prediction being correct, that is a
true positive; i.e., P(true positive|positive)).

4.2 Features Learned
The features that MEERKAT learns depend on the data

it is being trained on. Although one can treat the system as
a black-box and not worry about its internal details, under-
standing how it comes to its final decision helps one to rea-
son about its robustness and to understand how difficult the
system is to evade or to estimate when the system must be re-
trained to retain its accuracy. In our experiments, MEERKAT
learned various features automatically and directly from
image data, of which we manually grouped some on a higher,
more conceptual level together. We manually identified the
learned features by evaluating which representative win-
dows activate the same neuron of the neural network, i.e.,
which windows trigger the same feature to be recognized by
MEERKAT. Note that all the features we discuss hereinafter
have been learned automatically from data and no domain
knowledge whatsoever was required to learn and use these
features; yet, the overlap with features that an analyst with
domain knowledge would use confirms the prospects of fea-
ture/representational learning for website defacement detec-
tion. Some of the learned features can be best described as:

Defacement group logos. MEERKAT learned to recog-
nize the individual logos of some of the most prolific
defacement groups directly (see Figure 4). Clearly, the

8We cannot compare prior work on our dataset directly as they do not
scale to its size, and we cannot compare on their datasets because they
are too small to train MEERKAT accurately (see Section 6.1).
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logos of the defacer groups themselves are extremely
descriptive of website defacements because they are
very unlikely to be included in legitimate websites.

Color combinations. MEERKAT also learned to recog-
nize unique or specific color combinations indicative
of legitimate and defaced websites, including but not
limited to one of the most prominent combinations:
bright red or green text on a black background, which is
an often used color combination by defacers, but rarely
seen on legitimate websites. On the other hand, small
black text on a white or brightly colored background
is being consulted as a non-definitive indicator for a
legitimate, non-defaced website.

Letter combinations. Interestingly, defacers often not
only mix colors, but also mix characters from different
alphabets right next to each other, such as Arabic or
Cyrillic script being mixed with Latin script, to promote
their message in both their native language and also in
English as the web’s lingua franca. Additionally, some-
times the defacement contains characters in a character
set encoding specific to the defacer’s native language,
like ISO-8859-13 for Baltic languages or Windows-1256
for Arabic. As such, characters appear differently or are
replaced by special characters if the browser does not sup-
port it, or if the website does not specify the character set
and if the browser’s fallback is different (like in our case,
as we fall back to UTF-8), resulting in a look and feel
that is descriptive of defacements, and, correspondingly,
it was automatically learned by MEERKAT.

Leetspeak. Similarly to letter combinations, MEERKAT
learned that defacers often use “leetspeak,” an English al-
phabet in which some characters are replaced by numbers
or special characters (e.g., “leetspeak” as “1337sp34k”)
and in which some words are deliberately misspelled
(“owned” as “pwned,” “the” as “teh,” or “hax0red” in-
stead of “hacked”). Defacers often use leetspeak to dis-
cern themselves from “common folks,” and to show that
they are “elite” and special, which, in turn, makes it often
a good indicator that a website has indeed been defaced.

Typographical and grammatical errors. While some
typographical mistakes are deliberate (as in the case
of leetspeak, see above), many defacers make other
unintentional typographical and grammatical mistakes,
which rarely occurred on the legitimate websites in
our dataset. Many defacers make these mistakes most
likely because they are not native English speakers (the
country of the reporter of the defacement, part of the
meta-data in our dataset, suggests that most defacers
do not speak English as their first language). MEERKAT
learned to detect some of these mistakes at training
and values them as a supporting indicator of a website
defacement. Some of the examples of (supposedly)
unintentional typographical and grammatical errors
include “greats to” (instead of “greets to”), “goals is”
(instead of “goals are”), or “visit us in our website”
(“visit us at our website” or just “visit our website”).

Note that, since MEERKAT works on image data, the system
is unaware that it analyzes text and the textual features, such
as unique letter combinations, leetspeak, or typographical
and grammatical errors, are actually being evaluated on ren-
dered text. As such, it seems likely that the textual features
are specific to the font, possibly overfitting on the specific
font type. However, we manually confirmed that the system
actually learned a more robust feature and is not overfitting:
it combines slight variances in the font family and size in
a single high-level feature. Furthermore, given the sliding
window approach MEERKAT employs for detection, the
features are also completely independent of the position
of the text in the representative window and website.

While some of the learned features can be evaded
theoretically, evading them almost always contradicts
the defacer’s goal: making a name for themselves in the
most “stylish” and personalized way possible, thus, it is
unlikely that these features will change drastically in the
near future. Furthermore, MEERKAT also consults features
that were not as easy to discern into high-level feature
groups manually, such as artifacts unique to legitimate
or defaced websites, or features that are indicative for one
group but are not definitive because they might appear more
often in defaced websites, but also sometimes legitimately.
MEERKAT can also be retrained easily and new features are
learned automatically once the old features do not model
defacements accurately anymore (i.e., if the concept of a
defacement drifted significantly). Finally, since MEERKAT
uses a non-linear classifier to combine those features, it
can learn more complex models about defacements and
legitimate websites, and simply evading only some features
will not be sufficient to evade detection.

Interestingly, some of the high-level features (letter and
color combinations) that MEERKAT learned automatically
from data have been leveraged to a smaller degree by prior
work [46, 47] (through manual feature engineering), while
others (logos, leetspeak, and typographical mistakes) had
not been utilized yet. Further suggesting that representation
learning and inspection of the learned features can yield
important insight into security challenges that were
dominated by feature engineering in the past, such as
intrusion, malware, or phishing detection.

4.3 Traditional Split
First, for an accurate comparison to prior work, we evalu-

ate MEERKAT on our dataset using 10-fold cross-validation,
i.e., we split the dataset into 10 bins that contain 925,817
website defacements and 255,490 legitimate websites each.
Note that we discard 6 website defacements and 5 legitimate
websites from our dataset at random to have the same
number of samples in each bin. Next, for each bin, we train
the system on the other 9 bins (training bins) and measure
its classification performance on the 10th bin (test bin).
Considering the 10 different 90% training and 10% test-set
partitions of our dataset separately, MEERKAT achieves
true positive rates between 97.422% and 98.375%, and
false positive rates ranging from 0.547% to 1.419%. The
Bayesian detection rate is between 99.603% and 99.845%.
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Figure 4: Defacement Group Logos. Example representative windows of logos of defacement groups that MEERKAT learned to recognized to be
a significant indicator for defacements. Note that MEERKAT also recognizes variations and that there are many other features used for classification.

More interestingly, as a partition-independent measure
of the system’s classification performance, the average
true positive rate is 97.878%, the average false positive
rate is 1.012%, and the average Bayesian detection rate
is 99.716%. If MEERKAT detects a defacement and raises
an alert, with likelihood 99.716% it is a website defacement.
Therefore, MEERKAT is significantly outperforming current
state-of-the-art approaches.

4.4 Reporter Split
For the reporter split, we partition our dataset by the

reporter of the defaced website. We deliberately designed
the experiment this way to show that MEERKAT is not
overfitting on specific defacements, which our results verify.

While a partition by reporter might seem counter-intuitive
at first, it becomes clear that such a split is meaningful and
that it can be used to evaluate that a new defacer group
emerges once it is taken into account that these groups
often have unique defacement designs and that defaced
websites are most often reported by the defacers themselves.
Therefore, if we split by reporter, we are practically splitting
by defacer group; meaning, we create the most difficult
scenario for a defacement detection system: detecting a
defacer and his/her defacement style although we have
never seen defacements from him/her before.

In the same way as for the traditional split, we employ
10-fold cross-validation. However, we do so slightly dif-
ferently: first, we separate the reporters of the defacements
into 10 bins uniformly at random (each bin containing
7,602 reporters). Second, we construct the corresponding
defacement bins, i.e., we construct a defacement bin for
each reporter bin so that it contains only the defacements
reported by these reporters. For each bin, we then train
MEERKAT on the remaining 9 bins and use the 10th bin for
testing. Note that the defacement bins contain a different
number of samples, simply because the number of reported
defacements varies per reporter (see Appendix A). We
account for the uneven distribution of defacements by
reporting the average true positive and false positive rate
weighted by the number of samples.

Overall, when simulating the emergence of a new defacer,
MEERKAT achieves a true positive rate of 97.882% and
a false positive rate of 1.528% if bins are weighted, and
97.933% and 1.546% if they are not (see Figure 5; the true
positive rate is between 97.061% and 98.465%, the false pos-
itive rate is between 0.661% and 2.564%). The Bayesian de-
tection rates for the reporter split are 99.567% (unweighted)
and 99.571% (weighted) respectively (per split, the
Bayesian detection rate is between 99.286% and 99.814%).
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Figure 5: True positive and false positive rates for the reporter split,
per bin of the 10-fold cross-validation set. Note that the scales for true
positives and false negatives are the same, but that the y-axis goes from
0.965 to 0.99 for the true positive rate and 0.005 to 0.03 for the false
positive rate. The weighted mean true positive rate is 97.882% and its false
positive rate is 1.528% (weighted by samples per bin). The unweighted
mean true positive rate is 97.933% and its false positive rate is 1.546%.

4.5 Time-wise Split
The time-wise experiment evaluates how well MEERKAT

detects website defacements in the wild, i.e., in a real-world
deployment. Here, we train the system on defacements
seen in the past, and we detect defacements in the present.
Similarly to the reporter split, the time-wise experiment
shows that MEERKAT does not overfit on past defacements,
and that it successfully detects present defacements.

Our training set selection follows a simple argument:
it is extremely unlikely that websites today will be defaced
in the same way as they were defaced in 2005 or even
1998. Including those defacements in our training set would
then very likely decrease classification performance for
defacement detection in 2014. Equivalently, one would
not include this data to train the system in practice.

We train MEERKAT on all defacements that were
reported between December 2012 and December 2013
(including, i.e., 13 months with 1,778,660 defacements
observed in total), and 1,762,966 legitimate websites that
we sample from all legitimate websites uniformly at random.
We then detect defacements over a five months time frame,
from January to May 2014, and we report the classification
performance for each month. The test data from January to
May 2014 spans a total of 1,538,878 unique samples that are
distributed as follows: 421,758 samples from January 2014,
364,168 samples from February 2014, 474,758 samples
from March 2014, 241,926 samples from April 2014, and
81,268 samples from the beginning of May 2014.
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Figure 6: True positive and false positive rates, and the difference
with and without fine-tuning, for the time-wise split. Note that the
scales for true positives and false negatives are the same, but that the
y-axis goes from 0.97 to 1 for the true positive rate and 0.01 to 0.04 for
the false positive rate. No significant change is visible for the true positive
rate in the beginning regardless if the network is fine-tuned regularly or
not, however, a non-negligible difference is observable for May 2014.
A difference is observable for the false positive rate starting in February
2014, after the network was first fine-tuned.

In detail, MEERKAT achieves a true positive rate between
98.310% and 98.816% when the system is fine-tuned
after each month on the data observed in that month, and
97.603% to 98.606% when it is not. Although there is no
significant difference in its accuracy from January to March
when the neural network is fine-tuned and when it is not
(see Figure 6), a non-negligible difference between their
accuracy can be observed for April and the beginning of
May (increase in 0.452 percentage points (pp) and 1.211 pp
for the true positive rate; decrease of 1.513 pp and 1.550 pp
for the false positive rate). The Bayesian detection rate if no
fine-tuning is used decreases from 98.583% in January 2014
to 97.666% in February (0.917 pp decrease) to 97.177%
in May (1.406 pp decrease to January). If fine-tuning
is utilized, the Bayesian detection rate increases from
98.583% in January 2014 to 98.717% in May (0.134 pp).

Unsurprisingly, the regularly fine-tuned system performs
better over time, probably because some defacers became
significantly more active in 2014, like Team System Dz, who
started to deface websites just in January 2014 and who
were not active before at all, and because some defacers
changed their defacements to spread a different message
as opposed to the one they spread the year before. When
the system is not fine-tuned, however, these minor changes
to the defacements allow attackers to evade detection
without actively trying to evade it, with a minor accuracy
deterioration already visible after just four to five months,
confirming that detection systems need to be able to tackle
even minor concept drift adequately and gracefully to
maintain accurate detection capabilities over time, like
MEERKAT does with fine-tuning.

5 Limitations
Similar to other systems leveraging machine learning,

our system has some limitations that can be used to evade de-
tection. We discuss some of these limitations and show how
they can be addressed for a real-world deployment. First,
we discuss concept drift, a problem all systems leveraging
machine learning have to deal with; second, we remark on
browser fingerprinting and delayed defacement, an issue
all client-based detection approaches have to address; and,
lastly, we introduce the concept of tiny defacements, a
limitation specific to defacement detection systems.
5.1 Concept Drift

Concept drift is the problem of predictive analysis ap-
proaches, such as detection systems, that the statistical prop-
erties of the input used to train the models change. In turn,
a direct result of concept drift is often a heavy deterioration
of the classification performance, up to the point where the
system cannot differentiate between good and bad behavior
anymore. For instance, prior work [48–55] has shown that
concept drift (in the sense of adversarial learning) can actu-
ally be leveraged to evade detection systems and classifiers
in practice. Therefore, a detection system must address it.

While concept drift is a major issue for all systems using
machine learning, it can generally be addressed, due to its
nature, by adopting a new feature space or retraining the
machine learning model on new data, or with an increased
weight on new data. However, often, old instances do not
follow the statistical properties of the new feature models,
and, therefore, they are classified less accurately than before.
This has little impact in practice, because old instances are
less likely to occur in the future anyways; yet, it is important
to realize that this approach allows attackers to evade the
system by oscillating their attack strategy regularly.

For MEERKAT, those shortcomings can be addressed
more easily than for traditional systems: for minor concept
drift, the system’s accuracy can be maintained by fine-tuning
the parameters of the network. Here, the system simply
needs to learn minor adjustments to the weights of existing
features from new data, because some features have become
more important and others have become less important (they
differ now more from other features than they did previously,
relatively speaking; since we start with already-initialized
weights, fine-tuning requires much less time than training
the whole system again). Here, the features still model
the differences between defacements and legitimate
websites, however, the weights are not optimal anymore
and need to be adjusted. Once the new weights are learned,
classification performance is restored. Therefore, to address
minor concept drift adequately, we recommend fine-tuning
the model regularly, e.g., every month (see Section 4.5).

While fine-tuning the system’s parameters can theoreti-
cally address major concept drift similar to retraining the sys-
tem on new data, in practice, we expect prediction accuracy
to decrease, since different or more features must be mod-
eled with the same amount of resources. Instead, for major
concept drift, increasing the number of hidden nodes of the
neural network that learn the compressed representation (the
features) and their weights, and then retraining the system

11
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Split True Positive Rate False Positive Rate Bayesian Detection Rate
Traditional 97.878% 1.012% 99.716%
Reporter (weighted) 97.882% 1.528% 99.571%

Reporter (unweighted) 97.933% 1.546% 99.567%

Time-wise with fine-tuning 98.310% - 98.816% 1.233% - 1.413% 98.583% - 98.767%

Time-wise without fine-tuning 97.603% - 98.606% 1.413% - 2.835% 97.177% - 98.583%

Table 2: Average true positive, false positive, and Bayesian detection rates for traditional and reporter split. Lower and upper bound of true
positive, false positive, and Bayesian detection rate for time-wise split from January to May 2014.

can maintain the system’s accuracy. Simply adding nodes to
the hidden layers of the neural network can counteract the is-
sue of major concept drift because we increase the number of
features that MEERKAT learns from data directly. Therefore,
introducing more hidden units allows the system to learn ad-
ditional and different internal representations about the look
and feel of defacements, while, at the same time, maintain-
ing a model of how the old defacements look like. However,
it requires computationally-costly retraining of the network
(previously, having those additional hidden units in the net-
work would result in overfitting because the system would
learn more complex representations than necessary, and each
would only differ little from one another; the system would
then be prone to missing minor variations of defacements).

It is important to note that in both cases, for minor and
major concept drift, MEERKAT requires no additional
feature engineering because the features are learned
automatically from data. In turn, this allows MEERKAT
to handle any form of concept drift much more gracefully
than approaches introduced by prior approaches, which
require manual feature engineering.

5.2 Fingerprinting and Delayed Defacement

A second limitation of detection systems is fingerprinting.
Since we are leveraging a web browser to collect the data
that we are analyzing, in our case fingerprinting corresponds
to IP-based and browser fingerprinting. For IP-based
fingerprinting, a set of VPNs and proxies can be used to
cloak and regularly change the browser’s IP address. In case
of browser fingerprinting, the server or some client-side
JavaScript code detects what browser is rendering the
website, and then displays the website differently for
different browsers. In its current form, the screenshot engine
from MEERKAT might be detectable (to some degree)
by browser fingerprinting. It is theoretically possible to
detect it because it is currently built on the headless browser
PhantomJS rather than a “headful” browser typically used
by a normal user, like Google Chrome. However, since
PhantomJS is built from the same components as Google
Chrome, fingerprinting the current screenshot engine is not
trivial and requires intimate knowledge of the differences
between the different versions of the components and
their interaction. Therefore, we argue that the evasion
through browser fingerprinting is unlikely. If, however, the
screenshot engine is evaded this way in the future, only some

minor engineering effort is required to utilize a browser
extension to retrieve the websites’ screenshots instead.9

Additionally, the issue of delaying the defacement
emerges, also referred to as the snapshot problem [30]. With
the increased popularity and use of JavaScript, client-side
rendering, and asynchronous requests to backends by
websites to provide a seamless and “reload-free” user
experience, it is uncertain at what point in time a website
is representative of how a user would experience it. This
then bears the issue of when a detection system can take
a representative snapshot of the website and stop executing
client-side scripts. For instance, if a detection system takes
a snapshot always after five seconds, to evade detection,
defacers could simply inject JavaScript that only defaces
the website if a user interacts with it for at least six seconds.

While delayed defacements are currently scarce, it
is likely that they will gain some traction once more
detection systems have been put in place, in a way similar
to mimicry attacks and the evasions of malware detection
systems [56, 57]. However, prior work can be leveraged
to detect evasions [58] or trigger the functionality [59] to
force the defacement to be shown. Both approaches are
complementary to MEERKAT and we leave their adoption
to defacement detection for future work, once delayed
defacements are actually occurring in the wild.

5.3 Tiny Defacements
A third limitation of all current defacement detection

systems, including MEERKAT, is the lack of detection ca-
pabilities for tiny defacements. Tiny defacements describe
a class of defacements in which only a very minor modifi-
cation is made to part of the content of the defaced website.
For instance, a defacer might be dissatisfied by an article
published by a newspaper. Instead of defacing the website
as a whole, the attacker modifies (or deletes) the news article.
It is clear that such defacements are very hard to differen-
tiate from the original content because they might only have
minor semantic changes to text or images. Thus, to detect
tiny defacements, the detection system must understand the
semantics of the website’s content, its language, and its gen-
eral behavior to derive a meaningful model for the website.

However, while those defacements exist, they are
extremely scarce in numbers, or they are rarely noticed.
In fact, it is seldom the case that a defacer wants to modify
a website without embarrassing the operator more publicly.
Most often, the goal of the defacer is to expose the insecurity

9In fact, we are migrating our screenshot engine to Chrome, eliminating
the problem that PhantomJS might be fingerprinted.
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of the website, ridicule the operator publicly, show their
own “superiority,” and place their opinion and beliefs in the
most public space possible. Therefore, tiny defacements are
currently of little interest to the defacers themselves, and,
hence, also of little impact for detection systems. However,
we acknowledge that tiny defacements must be addressed
once they increase in numbers, possibly leveraging recent
work to extract relevant changes from websites [60], and
advances in natural language processing.

6 Related Work
Hereinafter, we discuss related work that detects deface-

ment, and image-based detection used in computer security.

6.1 Defacement Detection
Similar to MEERKAT, Davanzo et al. [46] introduce

a system that acts a monitoring service for website
defacements. Their system utilizes the website’s HTML
source code for detection, and its features were selected
manually based on domain knowledge acquired a priori,
making the system prone to concept drift. On their,
comparatively, very small dataset containing only 300
legitimate websites and 320 defacements, they achieve false
positive rates ranging from 3.56% to 100% (depending
on the machine learning algorithm used; suggesting
extreme under- and over-fitting with some algorithms),
and true positive rates between 70.07% to 100% (in the
case of simply classifying everything as a defacement; i.e.,
extremely under-fitting the dataset). Overall, these results
are significantly worse than MEERKAT, both in terms of
false positives (1.012%) and true positives (97.878%).

Bartoli et al. [47] propose Goldrake, a website deface-
ment monitoring tool that is very similar to the tool proposed
by Davanzo et al. and leverages a superset of their features.
To learn an accurate model, Goldrake requires knowledge
about the monitored website to learn website-specific
parameters. However, it is unclear how well Goldrake
detects defacements in practice because it is evaluated on
a small and (likely) non-diverse dataset comprised of only
11 legitimate websites and 20 defacements, on which it
performs poorly with a high false negative rate (27%).

Medvet et al. [61] introduce a defacement detection
system based on work by Bartoli et al. and Davanzo et al.,
but the detection engine is replaced by a set of functions
that are learned through genetic programming. The learned
functions take the features by Bartoli et al. and Davanzo et
al. as input, but classification is more accurate on a dataset
comprised of 15 websites (between 0.71% and 23.38% false
positives, and about 97.52% true positives). It is, again, un-
clear how the system would fare in a real-world deployment
because of the small and (likely) non-diverse dataset.

Note that all text-based approaches have major short-
comings, similar as those encountered in spam and phishing
detection, such as using images to show text to evade detec-
tion. MEERKAT does not suffer from these shortcomings.

Lastly, most commercial products that detect website
defacements are built upon host-based intrusion detection
systems to monitor modifications of the files on the web
server, e.g. via file integrity checks (checksums) [62, 63].

Therefore, those approaches bear the major shortcoming
that they can only detect the subset of defacements that
modify files on disk, and that they cannot detect other
defacement attacks, such as through SQL injections; even
when the defacements look exactly the same to the website’s
visitors. MEERKAT does not suffer from this shortcoming.

6.2 Image-based Detection in Security
Since, to the best of our knowledge, no prior work applies

image-based methods to detect defacements, we compare
prior work to defacement detection that visually detects
phishing pages, or leverages image-based techniques as
part of a larger system.

Medvet et al. [64] propose a system to detect if a potential
phishing page is similar to a legitimate website. The system
leverages features such as parts of the visible text, the images
embedded in the website, and the overall appearance of the
website as rendered by the browser for detection. Similarity
is measured by comparing the 2-dimensional Haar wavelet
transformations of the screenshots. Their system achieves
a 92.6% true positive rate and a 0% false positive rate on
a dataset comprised of 41 real-world phishing pages.

Similarly, Liu et al. [65] present an antiphishing solution
that is deployed at an email server and detects linked
phishing pages by assessing the visual similarity to the
legitimate page, but only when analysis is triggered on
keyword detection. The system detects phishing pages by
comparing the suspicious website to the legitimate website
by measuring similarity between text and image properties,
like the font size and family used, or source of an image.

While detecting phishing pages by comparing the similar-
ity of two websites makes sense, for defacements the differ-
ence between them is more interesting. Instead of creating a
visually-similar page to trick users into submitting their cre-
dentials, a defacer wants to promote his message. Adopting
existing phishing detection systems to detect defacements
instead, i.e., by comparing if the website looks different
from its usual representation, however, bears two problems:
(a) the usual representation must be known and/or stored for
comparison, and (b) false positives are much more likely if
the website is dynamic or if it shows regularly-changing ads.

Anderson et al. [29] introduce image shingling, a
technique similar to w-shingling, to cluster screenshots of
scams into campaigns. However, in its current form, image
shingling cannot be used to detect defacements as it is trivial
to evade the clustering step with only minor modifications
that are invisible to the human eye, and, thus, the technique is
unsuitable for a detection system in an adversarial context.10

Nappa et al. [66] leverage perceptual hashing to group
visually similar icons of malicious executables under
the assumption that a similar icon suggests that the two
executables are part of the same malware distribution
campaign. While it is theoretically possible to detect
defacements through perceptual hashing-based techniques
and comparing the distance of the hashes, it is impractical
to do so on a large scale and in an adversarial context. For

10The authors acknowledge the shortcomings in an adversarial context
in Section 4.2, but they do not discuss any remediation techniques.
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once, one must have a ground-truth screenshot that is close
enough to the screenshot that one wants to classify; if
ground-truth is not available or slightly too different, a
system based on perceptual hashing will be unable to detect
the defacement. Furthermore, classification is not constant
in the number of defacements the system has seen in the
past: for each new screenshot we would want to classify,
we would need to compute the distance to the hashes of
at least some (or all) of the previously-seen defacements.11

Grier et al. [67] introduce their own image similarity
measure to cluster malicious executables that have similar
looking user-interface components after being executed in a
dynamic analysis environment. Two images are considered
similar if the root mean squared deviation between the
images’ histograms is below some manually-determined
threshold. Clearly, a defacement system based on this
technique is not suitable in an adversarial context: an
attacker can (and eventually will) simply change the colors
slightly or add dynamic content, so that the root mean
squared deviation is above the threshold, but remains
visually the same to the human eye. Furthermore, exactly
as for Nappa et al. [66], one needs to pair-wise compare
the histogram of the screenshot one wants to classify to
some or all of the already-seen defacements.11

MEERKAT does not suffer from these shortcomings: first,
it learns high-level features on the defacements’ general
look and feel to detect also previously unseen defacements,
and, second, its classification time is constant in the number
of already-seen defacements.

7 Conclusions
In this paper, we introduced MEERKAT, a monitoring

system to detect website defacements, which utilizes a novel
approach based on the look and feel of a website to identify
if the website has been defaced. To accurately identify
website defacements, MEERKAT leverages recent advances
in machine learning, like stacked autoencoders and deep
neural networks, and combines them with computer vision
techniques. Different from prior work, MEERKAT does not
rely on additional information supplied by the website’s op-
erator, or on manually-engineered features based on domain
knowledge acquired a priori, such as how defacements look.
Instead, MEERKAT automatically learns high-level features
from data directly. By deciding if a website has been defaced
based on a region of the screenshot of the website instead
of the whole screenshot, the system is robust to the normal
evolution of websites and defacements and can be used at
scale. Additionally, to prevent the evasion of the system
through changes to the look and feel of defacements and to
be robust against defacement variants, MEERKAT employs
various techniques, such as dropout and fine-tuning.

We showed the practicality of MEERKAT on the largest
website defacement dataset to date, spanning 10,053,772
defacements observed between January 1998 and May
2014, and 2,554,905 legitimate websites. On this dataset,
in different scenarios, the system accurately detects

11Detection time increases with each observed defacement; it is at best
in O(logn) and at worst in O(n), with n being all observed defacements.

defacements with a true positive rate between 97.422%
and 98.816%, a false positive rate between 0.547% and
1.528%, and a Bayesian detection rate between 98.583%
and 99.845%, thus significantly outperforming existing
state-of-the-art approaches.

8 Acknowledgments
We want to express our gratitude toward the reviewers for

their helpful feedback, valuable comments and suggestions
to improve the quality of the paper.

This work was supported by the Office of Naval Research
(ONR) under grant N00014-12-1-0165, the Army Research
Office (ARO) under grant W911NF-09-1-0553, the Depart-
ment of Homeland Security (DHS) under grant 2009-ST-
061-CI0001, the National Science Foundation (NSF) under
grant CNS-1408632, Lastline Inc., and SBA Research.

References
[1] G. Davanzo, E. Medvet, and A. Bartoli, “A Comparative Study of

Anomaly Detection Techniques in Web Site Defacement Detec-
tion”, in Proceedings of the IFIP 20th World Computer Congress,
Springer, 2008.

[2] Anonymous, Reference blinded for double-blind review process,
Nov. 2014. [Online]. Available: http://anonymized.

[3] Wall Street Journal (WSJ), Malaysia Airlines Website Hacked by
Group Calling Itself ‘Cyber Caliphate’, Jan. 26, 2015. [Online].
Available: http://goo.gl/RhO2tO.

[4] British Broadcasting Company (BBC), Keighley Cougars website
hacked to read ’I love you Isis’, Nov. 2014. [Online]. Available:
http://goo.gl/bzxJ8M.

[5] R. Preatoni, M. Almeida, K. Fernandez, and other unknown au-
thors, Zone-H.org - Unrestricted Information, since January 1998.
[Online]. Available: http://zone-h.org/.

[6] E. Kovacs, Softpedia Interview: Alberto Redi, Head of Zone-H,
Jun. 8, 2013. [Online]. Available: http://goo.gl/cwPBrW.

[7] Malaysian Computer Emergency Response Team, MyCERT In-
cident Statistics, Jan. 2014. [Online]. Available: http://goo.
gl/0LTRPj.

[8] CyberSecurity Malaysia, “MyCERT 2nd Quarter 2013 Summary
Report”, eSecurity Bulletin, vol. 34, Aug. 2013.

[9] S. Mansfield-Devine, “Hacktivism: assessing the damage”, Net-
work Security, vol. 2011, no. 8, 2011.

[10] M. Gorge, “Cyberterrorism: hype or reality?”, Computer Fraud &
Security, vol. 2007, no. 2, 2007.

[11] H. Kircher, “The Practice of War: Production, Reproduction and
Communication of Armed Violence”, in. Berghahn Books, Mar.
2011, ch. 12. Martyrs, Victims, Friends and Foes: Internet Repre-
sentations by Palestinian Islamists.

[12] G. Weimann, “Terror on the Internet: The New Arena, the New
Challenges”, in. US Institute of Peace Press, 2006, ch. 6. Fighting
Back: Responses to Terrorism on the Internet, and Their Cost.

[13] Wall Street Journal (WSJ), Google Access Is Disrupted in Vietnam,
Feb. 23, 2015. [Online]. Available: http://goo.gl/JlVtfW.

[14] L. Makani, 100+ Zambian websites hacked & defaced: Spar, Post-
dotnet, SEC, Home Affairs, Ministry of Finance, Apr. 2014. [On-
line]. Available: http://goo.gl/NvQsJM.

[15] British Broadcasting Company (BBC), Angry Birds website hacked
after NSA-GCHQ leaks, Jan. 2014. [Online]. Available: http:
//goo.gl/kHDIAj.

14



USENIX Association  24th USENIX Security Symposium 609

[16] A. Mittal, NIC of Suriname, Antigua & Barbuda and Saint Lucia
Hacked by Pakistani Hackers, Oct. 2013. [Online]. Available:
http://goo.gl/ynGG0y.

[17] J. Leyden, Islamist hackers attack Danish sites, Feb. 2006. [Online].
Available: http://goo.gl/jcE7iv.

[18] ——, Hacktivists attack UN.org, Aug. 2007. [Online]. Available:
http://goo.gl/SfvkUc.

[19] G. Maone, United Nations vs. SQL Injections, Aug. 2007. [Online].
Available: http://goo.gl/v8oXih.

[20] S. Reid, Hip-Hop Sites Hacked By Apparent Hate Group; SOHH,
AllHipHop Temporarily Suspend Access, Jun. 2008. [Online]. Avail-
able: http://goo.gl/VtW4i6.

[21] B. Acohido, State Department webpages defaced, Oct. 23, 2013.
[Online]. Available: http://goo.gl/698XRW.

[22] J. Leyden, Foxconn website defaced after iPhone assembly plant
suicides, May 2010. [Online]. Available: http://goo.gl/
6BtZbX.

[23] ——, Anti-Israel hackers deface central bank site, Apr. 2008.
[Online]. Available: http://goo.gl/7Ve2xT.

[24] British Broadcasting Company (BBC), Nottinghamshire Police
website hacked by AnonGhost, Nov. 2014. [Online]. Available:
http://goo.gl/Gbldxt.

[25] ——, Shropshire Fire Service website hacked by AnonGhost, Nov.
2014. [Online]. Available: http://goo.gl/3dq4Cq.

[26] D. Dagon, M. Antonakakis, P. Vixie, T. Jinmei, and W. Lee, “In-
creased DNS Forgery Resistance Through 0x20-Bit Encoding:
SecURItY viA LeET QueRieS”, in Proceedings of the 15th ACM
Conference on Computer and Communications Security (CCS),
ACM, 2008.

[27] G. Vigna and C. Kruegel, “Host-based Intrusion Detection”, Hand-
book of Information Security. John Wiley and Sons, 2005.

[28] A. Bartoli, G. Davanzo, and E. Medvet, “The Reaction Time to
Web Site Defacements”, Internet Computing, IEEE, vol. 13, no. 4,
2009.

[29] D. S. Anderson, C. Fleizach, S. Savage, and G. M. Voelker, “Spam-
scatter: Characterizing Internet Scam Hosting Infrastructure”, in
Proceedings of 16th USENIX Security Symposium on USENIX
Security Symposium, ser. SS’07, USENIX Association, 2007.

[30] K. Borgolte, C. Kruegel, and G. Vigna, “Delta: Automatic Iden-
tification of Unknown Web-based Infection Campaigns”, in Pro-
ceedings of the 20th ACM SIGSAC Conference on Computer and
Communications Security (CCS), ACM, 2013.

[31] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and
Y. LeCun, “OverFeat: Integrated Recognition, Localization and
Detection using Convolutional Networks”, in Proceedings of the
2nd International Conference on Learning Representations (ICLR),
CBLS, Apr. 2014.

[32] Q. Le, M. Ranzato, R. Monga, M. Devin, K. Chen, G. Corrado, J.
Dean, and A. Ng, “Building High-level Features Using Large Scale
Unsupervised Learning”, in Proceedings of the 29th International
Conference on Machine Learning (ICML), IMLS, Jun. 2012.

[33] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classifi-
cation with Deep Convolutional Neural Networks.”, in Advances
in Neural Information Processing Systems 25 (NIPS), vol. 1, 2012.

[34] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hi-
erarchies for accurate object detection and semantic segmentation”,
arXiv preprint arXiv:1311.2524, 2013.

[35] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition”, Proceedings of the
IEEE, vol. 86, no. 11, 1998.

[36] R. Raina, A. Madhavan, and A. Y. Ng, “Large-scale deep unsu-
pervised learning using graphics processors”, in Proceedings of
the 26th International Conference on Machine Learning (ICML),
2009.

[37] Q. V. Le, J. Ngiam, Z. Chen, D. J. hao Chia, P. W. Koh, A. Y. Ng,
and D. Chia, “Tiled convolutional neural networks.”, in Advances
in Neural Information Processing Systems 23 (NIPS), 2010.

[38] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, “Convolutional deep
belief networks for scalable unsupervised learning of hierarchical
representations”, in Proceedings of the 26th Annual International
Conference on Machine Learning (ICML), ACM, 2009.

[39] P. Sermanet, S. Chintala, and Y. LeCun, “Convolutional neural
networks applied to house numbers digit classification”, in Proceed-
ings of the 21st International Conference on Pattern Recognition
(ICPR), IEEE, 2012.

[40] A. Hyvärinen, J. Hurri, and P. O. Hoyer, Natural Image Statistics:
A Probabilistic Approach to Early Computational Vision. Springer,
2009, vol. 39.

[41] K. Gregor and Y. LeCun, “Emergence of complex-like cells in
a temporal product network with local receptive fields”, arXiv
preprint arXiv:1006.0448, 2010.

[42] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun, “What is
the best multi-stage architecture for object recognition?”, in Pro-
ceedings of the 12th IEEE International Conference on Computer
Vision, IEEE, 2009.

[43] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R.
Salakhutdinov, “Improving neural networks by preventing co-
adaptation of feature detectors”, arXiv preprint arXiv:1207.0580,
2012.

[44] Y. Jia, Caffe: An Open Source Convolutional Architecture for Fast
Feature Embedding, 2013. [Online]. Available: http://goo.
gl/Fo9YO8.

[45] S. Axelsson, “The Base-Rate Fallacy and the Difficulty of Intrusion
Detection”, ACM Transactions on Information and System Security
(TISSEC), vol. 3, no. 3, 2000.

[46] G. Davanzo, E. Medvet, and A. Bartoli, “Anomaly Detection
Techniques for a Web Defacement Monitoring Service”, Expert
Systems with Applications, vol. 38, no. 10, 2011.

[47] A. Bartoli and E. Medvet, “Automatic Integrity Checks for Remote
Web Resources”, Internet Computing, IEEE, vol. 10, no. 6, 2006.

[48] L. Huang, A. D. Joseph, B. Nelson, B. I. Rubinstein, and J. Tygar,
“Adversarial Machine Learning”, in Proceedings of the 4th ACM
Workshop on Security and Artificial Intelligence (AISEC), ACM,
Oct. 2011.

[49] M. Barreno, B. Nelson, A. D. Joseph, and J. Tygar, “The Security
of Machine Learning”, Machine Learning, vol. 81, no. 2, 2010.

[50] M. Barreno, B. Nelson, R. Sears, A. D. Joseph, and J. D. Tygar,
“Can machine learning be secure?”, in Proceedings of the 13th
ACM Symposium on Information, Computer and Communications
Security (CCS), ACM, Oct. 2006.

[51] N. Šrndic and P. Laskov, “Practical Evasion of a Learning-Based
Classifier: A Case Study”, in Proceedings of the 35th IEEE Sympo-
sium on Security and Privacy (Oakland), IEEE, May 2014.

[52] D. Lowd and C. Meek, “Adversarial Learning”, in Proceedings of
the 11th ACM SIGKDD International Conference on Knowledge
Discovery in Data Mining (KDD), ACM, Aug. 2005.

[53] N. Dalvi, P. Domingos, Mausam, S. Sanghai, and D. Verma, “Ad-
versarial Classification”, in Proceedings of the 10th ACM SIGKDD
International Conference on Knowledge Discovery and Data Min-
ing (KDD), ACM, 2004.

15



610 24th USENIX Security Symposium USENIX Association

[54] A. Globerson and S. Roweis, “Nightmare at Test Time: Robust
Learning by Feature Deletion”, in Proceedings of the 23rd Interna-
tional Conference on Machine Learning (ICML), ACM, 2006.

[55] H. Xiao, H. Xiao, and C. Eckert, “Adversarial label flips attack on
support vector machines”, in Proceedings of the 20th European
Conference on Artificial Intelligence (ECAI), Aug. 2012.

[56] D. Wagner and P. Soto, “Mimicry Attacks on Host-based Intrusion
Detection Systems”, in Proceedings of the 9th ACM Conference on
Computer and Communications Security (CCS), ACM, 2002.

[57] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna, “Au-
tomating Mimicry Attacks Using Static Binary Analysis”, in Pro-
ceedings of the 14th Conference on USENIX Security Symposium,
USENIX Association, 2005.

[58] A. Kapravelos, Y. Shoshitaishvili, M. Cova, C. Kruegel, and G.
Vigna, “Revolver: An Automated Approach to the Detection of
Evasive Web-based Malware”, in Proceedings of the 22nd USENIX
Security Symposium, 2013.

[59] C. Kolbitsch, E. Kirda, and C. Kruegel, “The Power of Procrasti-
nation: Detection and Mitigation of Execution-stalling Malicious
Code”, in Proceedings of the 18th ACM Conference on Computer
and Communications Security (CCS), ACM, 2011.

[60] K. Borgolte, C. Kruegel, and G. Vigna, “Relevant Change De-
tection: Framework for the Precise Extraction of Modified and
Novel Web-based Content as a Filtering Technique for Analysis
Engines”, in Proceedings of the Companion Publication of the 23rd
International World Wide Web Conference (WWW), IW3C2, 2014.

[61] E. Medvet, C. Fillon, and A. Bartoli, “Detection of Web Deface-
ments by Means of Genetic Programming”, in Proceedings of
the 3rd International Symposium on Information Assurance and
Security, IEEE Computer Society, 2007.

[62] G. H. Kim and E. H. Spafford, “The Design and Implementation of
Tripwire: A File System Integrity Checker”, in Proceedings of the
2nd ACM Conference on Computer and Communications Security
(CCS), ACM, 1994.

[63] A. G. Pennington, J. D. Strunk, J. L. Griffin, C. A. N. Soules, G. R.
Goodson, and G. R. Ganger, “Storage-based Intrusion Detection:
Watching Storage Activity for Suspicious Behavior”, in Proceed-
ings of the 12th Conference on USENIX Security Symposium,
USENIX Association, 2003.

[64] E. Medvet, E. Kirda, and C. Kruegel, “Visual-similarity-based
Phishing Detection”, in Proceedings of the 4th International Con-
ference on Security and Privacy in Communication Networks
(SecureComm), ACM, 2008.

[65] W. Liu, X. Deng, G. Huang, and A. Y. Fu, “An Antiphishing Strat-
egy Based on Visual Similarity Assessment”, Internet Computing,
IEEE, vol. 10, no. 2, 2006.

[66] A. Nappa, M. Rafique, and J. Caballero, “Driving in the Cloud: An
Analysis of Drive-by Download Operations and Abuse Reporting”,
English, in Detection of Intrusions and Malware, and Vulnerability
Assessment, ser. Lecture Notes in Computer Science, K. Rieck,
P. Stewin, and J.-P. Seifert, Eds., vol. 7967, Springer Berlin Heidel-
berg, 2013. [Online]. Available: http://goo.gl/Z2IJ4D.

[67] C. Grier, L. Ballard, J. Caballero, N. Chachra, C. J. Dietrich, K.
Levchenko, P. Mavrommatis, D. McCoy, A. Nappa, A. Pitsillidis,
N. Provos, M. Z. Rafique, M. A. Rajab, C. Rossow, K. Thomas,
V. Paxson, S. Savage, and G. M. Voelker, “Manufacturing Com-
promise: The Emergence of Exploit-as-a-Service”, in Proceedings
of the 2012 ACM Conference on Computer and Communications
Security, ser. CCS ’12, ACM, 2012. [Online]. Available: http:
//goo.gl/M1DOdZ.

Appendix
A Reporter Cross-validation Split
In our reporter split experiment (Section 4.4), we split the
dataset by reporter to simulate that a new defacer group
emerges. Each cross-validation bin contains the same
amount of reporters, but because they reported different
numbers of defacements, bins do not contain the same
amount of samples. We account for the size difference in
our experiments by weighting each bin. Table 3 lists the
number of samples per bin.

Bin Defacements Legitimate Websites

1 1,116,808 308,202
2 992,232 273,823
3 712,270 196,563
4 907,306 250,387
5 696,069 192,092
6 734,208 202,617
7 1,276,764 352,345
8 789,895 217,985
9 979,309 270,257
10 1,053,147 290,634

Total 9,258,008 2,554,905

Table 3: Number of samples per cross-validation bins used for the
reporter split. Note that the total number of defacements in the reporter
split contains 168 defacements less than available in the whole dataset
because otherwise reporters would be distributed unevenly per bin.
However, due to the considerable size of the dataset, omitting these
defacements has negligible impact.

B Image-based Object Recognition
Much prior work has been carried out in computer vision

to classify images and recognize objects in images. Most
recently, object recognition underwent a “new spring” with
the rise of deep learning. Deep learning gained traction
because training them on large datasets became computa-
tionally feasible, and they consistently outperformed other
algorithms. We discuss our two main inspirations.

Le et al. [32] introduce a feature learning approach that
leverages unsupervised learning with a deep networks
comprised of stacked sparse autoencoders utilizing pooling
and local contrast normalization. The main idea is to learn
high-level features from only unlabeled data (10 million
pictures from random Youtube videos); high-level features
such as if the image contains a cat, or a human face or body
part. After training, the network improves relatively to prior
state-of-the-art by 70% on the ImageNet dataset.

Krizhevsky et al. [33] employed supervised learning to
train a deep convolutional neural network to classify 1.2
million images spanning 1,000 classes from a subset of the
ImageNet dataset and they improve considerably on the
state-of-the-art with a top-1 error rate of 37.5% (the classifier
is correct for 62.5%) and a top-5 error of 17.0% (for 83% im-
ages, the correct class is among top 5 classes). To not overfit
the dataset and to reduce the network’s training time, they
use rectified linear units as the neurons’ output functions.
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Abstract

Binary analysis facilitates many important applications
like malware detection and automatically fixing vulner-
able software. In this paper, we propose to apply ar-
tificial neural networks to solve important yet difficult
problems in binary analysis. Specifically, we tackle the
problem of function identification, a crucial first step
in many binary analysis techniques. Although neural
networks have undergone a renaissance in the past few
years, achieving breakthrough results in multiple appli-
cation domains such as visual object recognition, lan-
guage modeling, and speech recognition, no researchers
have yet attempted to apply these techniques to problems
in binary analysis. Using a dataset from prior work, we
show that recurrent neural networks can identify func-
tions in binaries with greater accuracy and efficiency than
the state-of-the-art machine-learning-based method. We
can train the model an order of magnitude faster and eval-
uate it on binaries hundreds of times faster. Furthermore,
it halves the error rate on six out of eight benchmarks,
and performs comparably on the remaining two.

1 Introduction

Binary analysis enables many useful applications in
computer security, given the plethora of possible situ-
ations in which the original high-level source code is
unavailable, has been lost, or is otherwise inconvenient
to use. For example, detection of malware, hardening
software against common vulnerabilities, and protocol
reverse-engineering are most useful when the procedures
involved can directly operate on binaries.

The central challenge of binary analysis is perhaps the
lack of high-level semantic structure within binaries, as
compilers discard it from the source code during the pro-
cess of compilation. Malware authors often go a step fur-
ther and obfuscate their output in an attempt to frustrate
any possible analysis by researchers.

Functions are a seemingly basic yet fundamental piece
of structure in all programs, but most binaries come as an
undifferentiated sequence of machine-language instruc-
tions without any information about how parts group
into functions. Therefore, the many binary analysis
techniques which rely on function boundary information
must first attempt to recover it through function identi-
fication. For instance, function identification can assist
the addition of control-flow integrity enforcement to bi-
naries, in restricting jumps appropriately. Similarly, de-
compilers and debuggers need to know the locations of
functions to provide useful output to the user [2].

Several previous works have attempted the function
identification task, ranging from simple heuristics to ap-
proaches using machine learning. The problem might
seem simple at first glance, but Bao et al. showed with
ByteWeight [2], a recently-proposed machine-learning-
based approach, that the simpler techniques used by pop-
ular tools like IDA Pro and the CMU Binary Analysis
Platform have relatively poor accuracy. By construct-
ing signatures of function starts as weighted prefix trees,
ByteWeight greatly improves on the accuracy of function
identification results compared to past work. Neverthe-
less, it leaves much room for improvement, especially
in terms of computational efficiency: the authors report
that training on their dataset of 2,064 binaries required
587 compute-hours, whereas running the method on the
dataset took on the order of several compute-days. Also,
while ByteWeight achieves about 98% accuracy on some
benchmarks, it performs at just 92-93% on some others.

In this paper, we propose a new approach to function
identification leveraging artificial neural networks. First
proposed in the 1940s, artificial neural networks arose
as a simple approximation of interconnected biological
neurons in the central nervous systems of animals, and
have remained an active area of of research since then.
However, in the past few years, neural networks have
experienced a significant surge in popularity (often un-
der the name “deep learning”), largely been driven by
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new empirical results. The vastly larger amounts of pro-
cessing power and storage available today enabled re-
searchers to train much larger networks containing many
more stages of processing (hence the “deep” appellation)
and parameters than before, making full use of the mas-
sive labeled datasets available today; these factors have
led to repeated breakthroughs in benchmarks of the com-
puter vision and speech recognition communities, among
others.

We note some attractive features of neural networks.
First, they can learn directly from the original represen-
tation with minimal preprocessing (or “feature engineer-
ing”) needed. As an example, the preprocessing for im-
ages might discard information about the precise shad-
ing of objects; for binaries, Bao et al. disassembles the
code into instructions and removes immediate operands
from them. Second, neural networks can learn end-to-
end, where each of its constituent stages are trained si-
multaneously in order to best solve the end goal. In con-
trast, other state-of-the-art approaches to tasks like ma-
chine translation or question answering use pipelines of
discrete components trained separately at an unrelated
task, such as parsers or part-of-speech taggers. Empir-
ical evidence suggests that end-to-end learning enables
each stage to directly learn the intermediate representa-
tions necessary to solve the task, with less need for pre-
conceived notions (such as syntax trees) about what they
should look like.

Given the success that neural networks have shown in
other applications, we raise the question of whether they
would also prove adept at problems in binary analysis,
such as function identification. Our search turned up no
other works which attempted using neural networks to
solve problems in binary analysis. Nevertheless, our ex-
perimental results show that they can successfully solve
the function identification task accurately and efficiently.
If the experience in other fields can serve as a guide, they
may also prove useful for more complicated tasks in pro-
gram and binary analysis, especially for those which re-
quire complicated modeling or analysis difficult to spec-
ify by hand. Furthermore, advances with neural networks
in other applications might prove directly adaptable and
lead to “free” gains in performance; this work certainly
relies on general advances within neural networks tar-
geted at entirely different applications.

With our proposed solution, we train a recurrent neu-
ral network to take bytes of the binary as input, and pre-
dict, for each location, whether a function boundary is
present at that location. We found that we did not need
to perform any preprocessing, such as disassembly or
normalization of immediates, in order to obtain good re-
sults. We evaluate our approach using the dataset pro-
vided by Bao et al. [2], enabling a direct comparison.
We found that recurrent neural networks can learn much

more efficiently than ByteWeight, which reported using
587 compute-hours; we can train on the same dataset
in 80 compute-hours, while achieving similar or better
accuracy. Testing the method on the dataset takes only
about 43 minutes of computation, whereas Bao et al. [2]
reported needing over 2 weeks.

In the rest of the paper, we first precisely define the
problem at hand. We explain the necessary background
in neural networks, and describe the particular architec-
ture we chose to use for our method. We give the re-
sults of our empirical evaluation, describe some related
works in the areas of function identification and neural
networks, and then conclude with some discussion.

We make the following contributions in this paper:

• We find that neural networks are a viable approach
towards solving some problems in binary analysis.

• In particular, we show that recurrent neural net-
works can solve the function identification problem
more efficiently than the previous state-of-the-art,
as shown by empirical evaluation on a dataset con-
sisting of multiple operating systems, architectures,
compilers, and compiler options.

• We describe the challenges we faced in correctly ap-
plying neural networks to this problem, and how to
address them.

2 Problem Definition

We first define notation so that we can precisely define
the function identification task that we address in this
paper. We then provide a formal definition of function
identification.

2.1 Notation
We concern ourselves with the machine code contained
within a program binary or library. A typical exe-
cutable contains many different sections containing var-
ious information in addition to the code: for example,
dynamically-linked libraries to load, constant strings,
and statically-allocated variables, all of which we ignore.

We treat the code C itself as a sequence of bytes
C[0],C[1], · · · ,C[l], where C[i] ∈ Z256 is the ith byte in
the sequence. We denote the n functions in the binary
as f1, · · · , fn. We label the indices of the bytes of code
which belong to each function fi (i.e., the bytes corre-
sponding to instructions which might get executed while
running that function) as fi,1, · · · , fi,li , where li is the to-
tal number of bytes in fi. Without loss of generality, we
assume fi,1 < fi,2 < · · ·< fi,k. Each byte may belong to
any number of functions, and functions may contain any
set of bytes, contiguous or not.
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Note that we defined the code and functions as sets
of bytes rather than instructions. In the x86 and x86-
64 ISAs, a sequence of bytes can have many plausible
instruction decodings depending on the offset at which
decoding begins; therefore each byte might belong to a
handful of possible instructions. Working in terms of
bytes allows us to avoid this ambiguity.

2.2 Task definition
Let us assume that we have access the code C of a binary,
but no information about the functions f1, · · · , fn within
the code. We define the following tasks:

• Function start identification: Given C, find
{ f1,1, · · · , fn,1}. In other words, recover the location
of the first byte of each function.

• Function end identification: Given C, find
{ f1,l1 , · · · , fn,ln}. In other words, find the bytes
where each of the n functions in the binary ends.
The length of each function is not given.

• Function boundary identification: Given C, find
{( f1,1, f1,l1) · · · ,( fn,1, fn,ln)}. In other words, dis-
cover the location of the first and last byte within
each function. This task is more than a simple com-
bination of function start and end identification. If
the starts and ends of functions have been identi-
fied separately, they need to be paired correctly so
that each pair contains the start and end of the same
function.

• General function identification: Given C, find
{( f1,1, f1,2, · · · , f1,l1) · · · ,( fn,1, fn,2, · · · fn,ln)}; i.e.,
determine the number of functions in the file, and
all of the bytes which make up each function.

Function boundary identification is a superset of func-
tion start and end identification, whereas general func-
tion identification is a superset of all other tasks. In this
paper, we attempt the first three problems, and leave the
fourth to future work.

2.3 Metrics
To evaluate results from the model, we use the precision,
recall, and F1 metrics. They have the following defini-
tions:

Precision =
TP

TP+FP

Recall =
TP

TP+FN

F1 =
2 ·Precision ·Recall
Precision+Recall

where TP is the number of true positive predictions, FP
is the number of false positive predictions, and FN is the
number of false negative predictions. The F1 score is the
harmonic mean of precision and recall and allows us to
conveniently compare different results using one number.

Since most bytes within a program do not begin or end
functions, these metrics can give a better picture of the
effectiveness of the model than the simple accuracy met-
ric. For example, predicting that there exists no func-
tions in the code would give greater than 99.9% accu-
racy, since fewer than 0.1% of the bytes begin or end a
function. The accuracy metric does not reveal that these
predictions would be mostly useless. In contrast, the 0%
recall these predictions would achieve makes it clear.

2.4 Examples

In Figure 1, we show an example of a short C function
and its corresponding binary code after compilation at
two different optimization levels.

The code in Figure 1b contains very clear markers of
function start and end: the function prologue of push
%rbp and mov %rsp,%rbp saves the caller’s stack frame,
and the function ends with retq which occurs nowhere
else within the function. In contrast, Figure 1c does not
use the stack at all, so the function begins with some ac-
cesses to the function arguments passed in edi and esi;
looking for push %rbp would fail. Moreover, similar
accesses to arguments occur again within the body of the
function, making it difficult to solely rely on that as a
marker of the function start. Likewise, retq occurs twice
within the code, and so predicting a function end when
we see this instruction would fail.

This example gives an instance of why function iden-
tification can pose much difficulty, with simple heuristics
unlikely to suffice, contrary to what intuition might sug-
gest.

3 Background

In this section, we describe what neural networks are and
how they are trained. In particular, we focus on the var-
ious forms of recurrent neural networks, which are the
class of model we use for our method.

3.1 Multi-layer perceptrons

A multi-layer perceptron (MLP), also referred to as a
feedforward neural network, is a function L : Rs → Rt

parameterized in a particular way. As its name implies,
a multi-layer perceptron consists of multiple layers Li,

3
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int mul_inv(int a, int b) {
int b0 = b, t, q;
int x0 = 0, x1 = 1;
if (b == 1) return 1;
while (a > 1) {

q = a / b;
t = b, b = a % b, a = t;
t = x0, x0 = x1 - q * x0, x1 = t;

}
if (x1 < 0) x1 += b0;
return x1;

}

(a) A C function which computes the
modular multiplicative inverse.

00000000004005a1 <mul_inv>:
4005a1: push %rbp
4005a2: mov %rsp,%rbp
4005a5: mov %edi,-0x24(%rbp)
4005a8: mov %esi,-0x28(%rbp)
4005ab: mov -0x28(%rbp),%eax

...
400615: jns 40061d <mul_inv+0x7c>
400617: mov -0xc(%rbp),%eax
40061a: add %eax,-0x8(%rbp)
40061d: mov -0x8(%rbp),%eax
400620: pop %rbp
400621: retq

(b) Compiled with gcc -O0.

0000000000400830 <mul_inv>:
400830: cmp $0x1,%esi
400833: mov %edi,%eax
400835: je 400878 <mul_inv+0x48>
400837: cmp $0x1,%edi
40083a: jle 400878 <mul_inv+0x48>
40083c: mov %esi,%ecx
40083e: mov $0x1,%r8d
400844: xor %edi,%edi
400846: jmp 400855 <mul_inv+0x25>
400848: nopl 0x0(%rax,%rax,1)
40084f:

...
400869: jg 400850 <mul_inv+0x20>
40086b: add %edi,%esi
40086d: mov %edi,%eax
40086f: test %edi,%edi
400871: cmovs %esi,%eax
400874: retq
400875: nopl (%rax)
400878: mov $0x1,%eax
40087d: retq
40087e: xchg %ax,%ax

(c) Compiled with gcc -O3. Function
ends at 40087d; 40087e is padding be-
tween this function and the next one.

Figure 1: An example function in C (taken from http://rosettacode.org/wiki/Modular_inverse#C), and its
corresponding machine code (with uninteresting parts omitted for brevity). The function was compiled using GCC
4.9.1 on Linux x86-64. The -O3 version does not contain a conventional function prologue and epilogue which
manipulates the stack or frame pointer.

each of which computes

Li : Rmi−1 → Rmi

G : R→ R
Li(x) = G(Wix+bi)

Wi ∈ Rmi×mi−1

bi ∈ Rmi

then the entirety (consisting of k layers) is simply these
layers composed together:

L(x) = Lk(Lk−1(· · ·(L1(x))))

m0 = s

mk = t

with the dimensions of the output of one layer matching
the dimensions of the input of the subsequent layer. The
mi are the dimensionality of the input and the ultimate
output of the network, as well as the intermediates pro-
duced by each of the layers.

The term “layer” is often used to refer to not the pa-
rameters of the functions Li, but the inputs or outputs of
these functions. In turn, each element of the inputs or
outputs of the functions are often called “units”, or by
analogy, “neurons”.

In this definition, G is referred to as an activation func-
tion or nonlinearity, and computed separately for each el-
ement. Without the activation function, L would simply

be an affine function which we could write as Wx+ b,
which does not enable the expressivity that we need.
Common nonlinearities are the logistic sigmoid function
and the hyperbolic tangent function:

σ(x) =
1

1+ e−x

tanh(x) =
e2x −1
e2x +1

which have the ranges of (0,1) and (−1,1), respectively.
Usually, the final layer will have no activation function

because we do not wish to bound the output to a limited
range, or a softmax function if we want to use the MLP
as a multi-class classifier, so that we can interpret the
values as a probability distribution. The softmax function
is computed as follows:

S(x)i =
exi

∑n
k=1 exk

Note that unlike the other activation functions, it does
not operate elementwise. Due to the normalization term
in the denominator, S(x) sums to 1. A multi-layer per-
ceptron consisting of one layer with a softmax activation
function is equivalent to multi-class logistic regression.

3.2 Loss functions
Now that we have defined multi-layer perceptrons as a
class of parameterized functions, we need a method to

4
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find appropriate parameters so that the neural network
does what we want. First, we define a loss function in
order to quantify how much differently the network be-
haves from our target. A common loss function is the
squared Euclidean distance:

d(y, ŷ) = ‖y− ŷ‖2
2

where y is the “true” output and ŷ is the one produced by
the neural network.

In the multi-class classification case, if y is the correct
class and π(x) is the probability distribution produced
by the neural network, then we can use the negative log
probability:

d(y,π(x)) =− logπ(x)y

Usually, we will have a list of correct input-output
pairs (x1,y1), · · · ,(xn,yn) for the purpose of training the
network. Then we can seek to minimize the mean of the
losses, or 1

n ∑n
i=1 d(yi, f (xi)). We use this type of loss

function throughout this paper.

3.3 Gradient descent and backpropagation
To minimize the loss, and therefore obtain a neural net-
work which performs our desired function, we can con-
sider various standard optimization methods. Specifi-
cally, we wish to minimize D defined as such:

θ = (W1,b1, · · · ,Wk,bk)

D(θ) =
1
n

n

∑
i=1

d(yi, fθ (xi))

min
θ

D(θ)

A typical way to minimize differentiable functions is
gradient descent, which works by repeated applications
of the following update:

θ ′ = θ −α · ∂D(θ)
∂θ

where α is generally a small number. Intuitively, the
derivative allows us to analytically determine which di-
rection we should move in within each dimension of θ
to reduce the value of F . Subtracting a small multiple of
the gradient performs this function.

If D is convex, this procedure is guaranteed to con-
verge at the optimal value of θ given appropriate choices
of α . Many machine learning models and classifiers in-
volve optimizing a convex function in a similar way. Un-
fortunately, neural networks are generally non-convex in
its parameters, allowing for a richer class of possible
functions, but which means that these theoretical guar-
antees do not hold. Instead, the procedure may lead us to

a local optimum or a saddle point where the derivative is
zero.

We now need the derivative of D. Estimating the
derivative numerically seems a simple and straightfor-
ward solution, but it is a highly inefficient one requir-
ing as many evaluations of D as the dimensionality of
θ . Instead, we can use a method called backpropagation
to compute the derivative analytically. We describe the
details of backpropagation in Section A.

3.4 Recurrent neural networks
While multi-layer perceptrons can approximate a wide
variety of functions, they can only operate on inputs of
fixed size and produce an output of fixed size. In princi-
ple, given a large input, we could divide it into fixed-size
pieces and give them separately to a multi-layer percep-
tron. However, the output of each piece depends only
on that input piece, and we cannot represent any depen-
dencies between parts of the input in one piece and the
output for a different piece.

Recurrent neural networks are one paradigm for ad-
dressing this conundrum, and map sequences to se-
quences (recursive neural networks, which have the same
initialism, are an alternative developed for computing on
trees).

We can formally define them in the following way:

L : Rm ×Rn → Rn

G : R→ R
L(x,h) = G(Whxx+Whhh+b)

Whx ∈ Rn×m

Whh ∈ Rn×n

b ∈ Rn

Given an input sequence (x1, · · · ,xT ) (where xi ∈ Rm), we
compute (h1, · · · ,hT ) like this:

h0 = 0
h1 = L(x1,h0)

...
hT = L(xT ,hT−1)

Note that the operation on each elements uses the same
weights. Nevertheless, the use of h enables the network
to remember information from past elements to use while
processing the current element, and propagate informa-
tion into the future.

We can use the hts as inputs to another recurrent neural
network, or apply to them a linear transformation possi-
bly with a softmax activation function (as done in the
final layer of a multi-layer perceptron):

yi = S(Wyhht +b)

5
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To define a loss function for a recurrent neural net-
work, we can apply a loss function for a multi-layer per-
ceptron separately to each input-output pair within the
sequence and simply sum the losses together:

d(y, ŷ) =
T

∑
i=1

d(yt , ŷt)

The input and output sequences of a recurrent neural
network need not have the same lengths. For instance,
we might allow an arbitrary number of inputs but only
one output to summarize the contents of the input in
some way. In this case, we can simply adjust the loss
function to only compute the loss at the relevant parts of
the output sequence. We can also train a recurrent neural
network to map an input sequence to an arbitrary num-
ber of output symbols, if we run the network to obtain
some number of outputs until it produces a special ‘stop’
output.

As with the multi-layer perceptron, we would like to
learn appropriate parameters so that the recurrent neu-
ral network parameterized with them computes a desired
function, using gradient descent. We can compute the
derivative of the RNN with respect to its parameters in
the same way as earlier. In particular, we can unroll
the RNN so that it becomes a long feedforward neu-
ral network which computes on a fixed-length sequence,
and compute the gradient for this network using an ap-
propriate loss function with backpropagation. After un-
rolling, note that the time-dependent layers should share
the same weights This procedure is also called backprop-
agation through time [16].

3.5 Limitations of recurrent neural net-
works

In this section, we point out some limitations of recurrent
neural networks which can limit their usefulness.

As specified in this paper, recurrent neural networks
cannot compute for an arbitrary number of timesteps be-
fore computing the answer. For example, RNNs can eas-
ily compute the parity of an arbitrarily long stream of
bits [15], as this requires a constant number of operations
per input. In contrast, we can reason that a RNN could
not multiply numbers of arbitrary size, as multiplication
is a O(n2) operation on the length of the numbers [22].

Also, h has a fixed size which we cannot easily adapt
if necessary in order to store more information. For ex-
ample, previous works have shown success with using
RNNs for machine translation, in which the RNN first
reads a sentence in the source language and stores its
meaning in h before producing the corresponding words
in the target language using the information in h. While
we can pick a size for h such that it has enough capacity

to store information on a typical-length sentence, we can
imagine that this scheme would break down for a sen-
tence of sufficient length.

The most-studied limitation revolves around difficul-
ties in training a recurrent neural network, due to what
are referred to as the vanishing gradient and exploding
gradient problems [16]. Consider that

∂hv

∂ht
= ∏

v≥i>t

∂hi

∂hi−1
= ∏

v≥i>t
WhhG′(hi−1)

The repeated multiplication with Whh (v− t times) can
cause ∂hv

∂ht
to grow exponentially large (“explodes”) or go

to 0 (“vanishes”) depending on whether the largest eigen-
value of Whh is greater or smaller than 1. Therefore, an
input will often have a very large or vanishingly small ef-
fect on an output which occurs far in the future, in terms
of the gradient computation. For exploding gradients, a
simple solution involves rescaling the gradient to a fixed
norm if its magnitude is too large. On the other hand,
dealing with vanishing gradients can prove more chal-
lenging.

3.6 Long Short-Term Memory and Gated
Recurrent Units

To avoid the exploding and vanishing gradient problems
with recurrent neural networks, previous work has pro-
posed RNN architectures carefully designed to remove
the long-range multiplicative characteristics of RNNs
which lead to these problems.

Long Short-Term Memory (LSTM), one of these ar-
chitectures, have enabled impressive empirical results in
areas such as speech recognition, machine translation,
and image captioning. Within this model, the state which
propagates through time has no multiplicative updates at
each step; instead, it is stored in a memory cell ct which
receives additive updates, combined with a mechanism
for erasing irrelevant information from the previous time
step. The “input modulation gate” (g) and the “forget
gate” ( f ), respectively, control whether the memory cell
receives the additive update or discards (some part of the)
previous memory cell contents.

Following the notation in Zaremba et al. [23], we can
formally define the LSTM:

xt ,ht−1,ct−1 → ht ,ct

i = σ(Wxixt +Whiht−1)

f = σ(Wx f xt +Wh f ht−1)

o = σ(Wxoxt +Whoht−1)

g = tanh(Wxgxt +Whght−1)

ct = f � ct−1 + i�g

ht = o� tanh(ct)

6
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Here, � represents element-wise multiplication.
In principle, these gates enable the gradient to propa-

gate across long time scales, since the LSTM can ignore
irrelevant inputs through the input modulation gate, re-
member information only until necessary using the for-
get gate, and output only relevant information using the
output gate. When the forget gate is “open”, i.e. close
to 1, then the gradient will propagate mostly unchanged.
The input and output at each time step only influences
the gradient when the corresponding gates are open.

Gated Recurrent Units (GRU) have been proposed
more recently as a simpler alternative to LSTMs, while
sharing the same goals of avoiding the long-range depen-
dency problems that have plagued RNNs. The main dif-
ferences lie in that there exists no separate memory state
ct from the hidden state ht , and the network exposes the
entire hidden state at each time step. The forget gate in-
terpolates between the previous hidden state and the new
input i, with no separate input modulation gate. Instead,
g modulates the amount of influence the previous hidden
state has on i.

We define the GRU formally:

xt ,ht−1 → ht

g = tanh(Wxgxt +Whght−1)

i = tanh(Wxixt +Whi(g�ht−1))

f = σ(Wx f xt +Wh f ht−1)

ht = f �ht−1 +(1− f )� i

While the GRU theoretically lacks some of the flexi-
bility provided by the LSTM, it is both simpler to imple-
ment and easier to compute, requiring about half as many
calculations in each time step compared to the LSTM.

4 Methods

In this section, we describe how we built upon the back-
ground in Section 3 to perform the task of function iden-
tification.

4.1 Basic architecture
Our simplest architecture uses a recurrent neural net-
work, described in Section 3.4, to process each byte and
and output a decision for that byte as to whether it begins
a function or not.

Recall that neural networks, as we have defined them,
take real-valued vectors Rm as input, containing m real
values. In contrast, a byte is a single 8-bit integer, which
can have one of 256 (= 28) possible values. We cannot
input a byte into the neural network directly and need to
convert them into a real-valued vector.

Converting the 8-bit integer into a single floating-point
number to input into the neural network might seem like

a reasonable solution; however, neural networks process
their inputs by multiplying them with the weight param-
eters, which only makes sense when the input values rep-
resent intensities (like brightness or loudness).

Instead, we use “one-hot encoding”, which converts a
byte into a R256 vector (since a byte can have 256 distinct
values) where exactly one of the values is 1 and all others
are 0. The byte’s identity determines the location of the
1 within the vector. For example, a NUL byte (0) would
be represented as

[1 0 · · · 0︸ ︷︷ ︸
255 elements

].

and a nop in x86 (0x90, or 144) would be

[ 0 · · · 0︸ ︷︷ ︸
144 elements

1 0 · · · 0︸ ︷︷ ︸
111 elements

].

Multiplying a matrix A with a one-hot vector x is
equivalent to extracting a column from A. In our case,
the RNN multiplies a parameter matrix Whx ∈ Rm×256

with the one-hot input x, which is equivalent to select-
ing a column from Whx. Effectively, each byte of input is
represented with a h-dimensional vector during computa-
tion of the RNN, with the precise representation learned
during training of the neural network. Such a mapping
is often referred to as an embedding. Such embeddings
have proved useful in other fields such as natural lan-
guage processing, with embeddings of words into high-
dimensional spaces showing interesting properties.

We could have instead considered encoding the byte
as a R8 vector, with the elements corresponding to the
eight bits and having values of 0 or 1. However, this rep-
resentation imposes the constraint that the embedding of
a particular byte is the sum of the embeddings of its con-
stituent bits, even though the bits do not have composi-
tional meaning in typical binary code. We do not further
discuss this approach in the paper.

We want our output to serve as a binary classifier at
each byte position. We use the softmax function to pro-
duce a probability distribution over whether the byte be-
gins (or ends) a function or not. During training, the loss
function sums over the error at each position within the
sequence. The error at each position is the negative log
of the probability that the neural network assigned to the
correct answer. We penalize each false positive and false
negative equally, without a weighting to discourage one
at the expense of the other.

4.2 Optimization with stochastic gradient
descent and rmsprop

In the beginning, we initialize the weights of the neural
network randomly, uniformly drawn from a small range

7
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Figure 2: A depiction of the basic architecture of our
approach.

near 0. A normal distribution with small variance and
mean 0 also sees much use for this purpose. Having the
proper initialization can prove crucial to whether we can
successfully learn useful parameters for the neural net-
work. We do not initialize the weights to 0, as this leaves
the loss function on a saddle point and prevents optimiza-
tion.

Recall the form of the loss function from Section 3. If
we have N different items in the training data, then the
loss function for the network requires evaluating the net-
work over all training examples, since it takes the form

1
N

N

∑
i=1

d(yi, ŷi).

Due to how backpropagation works, computing the gra-
dient also requires evaluating the network on all training
data. Since we need to compute the gradient a very large
number of times during optimization, we would like to
avoid performing such an expensive step as a part of it.

Instead of computing the loss over all N items, we
can instead compute it over a randomly-selected one at
a time. The expectation of the gradient computed in this
way equals the gradient averaged over all N examples.
Optimization using these gradients is called stochastic
gradient descent. It is possible to show that given a
well-behaved convex function, stochastic gradient de-
scent will find the minimum value. Even in the case of
neural networks, where we lack such theoretical guaran-
tees, experience shows that stochastic gradient descent
can work quite well; in fact, since computing each gra-
dient takes much less time, results show that stochastic
gradient descent allows for much faster convergence in
practice.

The most elementary gradient descent methods pre-
scribe changing the parameters in the direction of the
gradient each iteration, but optimization of some kinds of
functions can benefit from moving in a slightly different
direction. Consider a two-dimensional function, which
when graphed looks like an elliptical bowl. Then along
the axis in which we are closest to the minimum point,
the gradient will have the largest magnitude, as the sur-
face of the bowl is steeper in that direction, even though
we should move further in the other axis and only a little
bit in this one.

In this work, we use a method called rmsprop [19]; it
involves keeping a running average of the magnitude of
each dimension in the gradients seen so far. It then scales
each dimension in the gradient, enlarging the dimensions
which have a small average and shrinking those which
have a large one. This follows the intuition given in the
previous paragraph about the elliptical bowl.

We also scale the entire gradient each time by a step
size. If the step size is too big, then the optimiza-
tion might fail as the value of the function does not de-
crease; if the step size is too small, then optimization will
progress slowly or get stuck at a local minimum. Often it
makes sense to reduce the learning rate over time, since
in the beginning we expect radically-incorrect weights
(given their random initialization), whereas after some
iterations, the weights should have nearly reached an op-
timum value. For our experiments, we scaled the learn-
ing rate by the inverse square root of the current iteration
number (i.e., halved after 4 iterations, quartered after 16
iterations, and so on), which we found to work well.

4.3 Training with mini-batches
In stochastic gradient descent, we compute the gradient
of the weights with respect to only one example in each
iteration. However, this can cause a large variance in the
gradients since each example might significantly differ
from one to the next. So instead of computing the gradi-
ent over only one example at a time, it can help to average
the gradients from a small number of examples, called a
mini-batch.

While this increases the time needed for each iteration,
it does so more modestly than it may initially seem. Eval-
uating the neural network with a single example involves
a large number of matrix-vector multiplications, so we
can efficiently and simultaneously evaluate for many ex-
amples by replacing these with matrix-matrix multipli-
cations, especially when using highly-optimized linear
algebra libraries.

In our application, since each example is a sequence
of bytes from a binary, one might vary in length from
another. However, to compute with mini-batches effi-
ciently, we need to pack the examples together into a ma-
trix or tensor with padding to extend too-short examples.
Then all examples get evaluated for the same number of
time steps, so it helps to put examples of similar length
together in a mini-batch to avoid wasted computation.
Also, we need to take care as to avoid computing the loss
over those parts of the mini-batch added as padding.

4.4 Data preparation
For the task of function identification, we can intuitively
expect that solving the problem likely does not require

8
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Figure 3: A bi-directional RNN. Note the horizon-
tal arrows pointing in both directions. The forward-
propagated and backward-propagated hidden states, rep-
resented by the overlapping squares, do not directly in-
teract with each other. However, computing the output
uses a concatenation of the two states.

remembering information from hundreds of thousands of
bytes in the past or in the future. Code calling other func-
tions can occur far away from the location of that func-
tion, and theoretically, we might track such references
to help determine where functions occur. In practice,
functions typically perform some series of steps at entry
and exit, the patterns for which we can learn and should
largely suffice for detecting functions.

Therefore, we use fixed-length subsequences taken
from binaries instead of entire binaries themselves. Ex-
cept in rare cases where functions occur near the bound-
ary of the subsequence, there should be enough infor-
mation to make the determination of the existence of a
function or not. Similar to how stochastic gradient de-
scent enables faster convergence by speeding up each
update, computing the gradient on truncated sequences
takes much less time and enables faster iterations.

We also try reversing the order of bytes in the input
before providing it to the neural network, under the intu-
ition that the function prologue, which identifies the be-
ginning of a function and makes it recognizable as such,
occurs after the position where we want to predict the be-
ginning of a function. Since the RNN only has access to
bytes from before the current position, not after, revers-
ing the order should help the RNN learn.

4.5 Bi-directional RNNs
With the recurrent neural networks discussed in Sec-
tion 3.4, the output at each time step depends only on
the inputs which occur at that time step or before. This
model makes sense in some applications where there ex-
ists an inherent temporal component to the input; for ex-
ample, in real-time speech or handwriting recognition.
For binary analysis, we have access to the entire binary
at once, so there exists no need to confine ourselves in
this way.

An extension which allows access to both the past and
the future in making a prediction for the present is to
combine two recurrent neural networks, one which oper-
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byte 0 byte 1 byte 2 byte 3 byte 4 byte 5 byte 6 byte 7

Figure 4: A multi-layer RNN with three bi-directional
hidden layers. In the second and third layers, both
the forward-propagated and backward-propagated states
have access to either state from the previous layer.

ates from the beginning of the sequence to the end, and
another which operates in the other direction. Figure 3
illustrates the approach.

In terms of graphical models, we could say that reg-
ular (unidirectional) RNNs behave like hidden Markov
models, where the hidden state at each time step depends
on only the hidden state of the previous time step. Then
bidirectional RNNs are analogous to a chain conditional
random field, since the hidden state there relates to the
hidden states of both the previous and next time steps.

4.6 Multi-layer RNNs
The approaches we have described so far contain only
one hidden layer. Depending on the complexity of the
pattern we wish to learn, a single hidden layer may prove
insufficient due to its limited capacity. If we limit our-
selves to one hidden layer, achieving good results may
require a very large one, which can significantly increase
the amount of processing power required.

In other applications of neural networks like computer
vision and speech recognition, using many smaller hid-
den layers has worked better than using one hidden layer
of larger size. During the evaluation, we empirically ver-
ify the results of using one versus multiple hidden layers.
Figure 4 illustrates an example architecture.

5 Evaluation

In this section, we describe the empirical results we ob-
tained from training a variety of different models on a
dataset of binaries. We seek to answer the following
questions:

• Can recurrent neural networks successfully solve
the problem of function identification in binaries?

• How much computational power do recurrent neu-
ral networks require for solving this task?

9
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ELF x86 ELF x86-64 PE x86 PE x86-64
Number of binaries 1,032 1,032 68 68

Number of bytes 138,547,936 145,544,012 29,093,888 33,351,168
Number of functions 303,238 295,121 93,288 94,548

Average function length 448.84 499.54 292.85 330.03

Table 1: Characteristics of the binary dataset used for evaluation.

ELF x86 ELF x86-64
P R F1 P R F1

ByteWeight (func. start) 98.41% 97.94% 98.17% 99.14% 98.47% 98.80%
Our models (func. start) 99.56% 99.06% 99.31% 98.80% 97.80% 98.30%
Our models (func. end) 98.69% 97.87% 98.28% 97.45% 95.03% 96.22%

PE x86 PE x86-64
P R F1 P R F1

ByteWeight (func. start) 93.78% 95.37% 94.57% 97.88% 97.98% 97.93%
Our models (func. start) 99.01% 98.46% 98.74% 99.52% 99.09% 99.31%
Our models (func. end) 99.24% 98.35% 98.79% 99.28% 99.20% 99.24%

Table 2: Function start and end identification: summary of our best results, and comparison with previous work. “P”
is precision and “R” is recall. Results of previous work comes from Table 3 of Bao et al. [2]; they did not attempt to
identify function ends independently, so we lack those results here.

• How do variations in the model’s design affect the
performance?

We ran our experiments on Amazon EC2 using
c4.2xlarge instances, each of which contains 8 cores
of a 2.9 GHz Intel Xeon processor and 15 GB of RAM.

5.1 Dataset

Our dataset comes from Bao et al. [2], consisting of
2200 separate binaries. 2064 of the binaries were for
Linux, obtained from the coreutils, binutils, and
findutils packages. The remaining 136 for Windows
consist of binaries from popular open-source projects.
Half of the binaries were for x86, and the other half for
x86-64. Half of the Linux binaries were compiled with
Intel’s icc, while the other half used gcc. The binaries
for Windows were compiled using Microsoft Visual Stu-
dio. Each binary was compiled with one of four different
optimization levels. Table 1 summarizes some statistics
from the dataset.

Following the procedure in Bao et al. we trained a sep-
arate model for each of the four (architecture, OS) con-
figurations. To report comparable results, we also use 10-
fold cross-validation as in Bao et al.; we train ten models
for each of the four configurations, where each of the ten
models uses a different 10% of the binaries as the testing
set.

5.2 Implementation

We implemented our models in Python using Theano [4],
a linear algebra and automatic differentiation library de-
signed to aid in implementation of machine learning and
optimization methods. In Theano, we specify our model
as operations on symbolic variables, allowing for con-
struction of a computation graph that describes the op-
erations necessary to compute the result. It can convert
this graph into C/C++ code and automatically compute
partial derivatives of functions through application of the
chain rule.

While Theano can also compile code for use on the
GPU, we only used the CPU in our experiments for sim-
pler implementation. Also, while both training and eval-
uation of RNNs are amenable to parallelization, we also
did not use multi-threading for our experiments, and in-
stead ran an independent experiment on each core.

5.3 Summary of results

Tables 2 and 3 summarize our main experimental results.
In both tables, we compare to the results as reported by
Bao et al. [2], which are marked as “ByteWeight”.

For the function start identification problem, our meth-
ods consistently obtain F1 scores in the range of 98-99%.
This is in line with the results from Bao et al., except on
the PE x86 dataset where we improve by about 4 per-
centage points in F1 score.

For function boundary identification, we trained two
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ELF x86 ELF x86-64
P R F1 P R F1

ByteWeight 92.78% 92.29% 92.53% 93.22% 92.52% 92.87%
Our models 97.75% 95.34% 96.53% 94.85% 89.91% 92.32%

PE x86 PE x86-64
P R F1 P R F1

ByteWeight 92.30% 93.91% 93.10% 93.04% 93.13% 93.08%
Our models 97.53% 95.27% 96.39% 98.43% 97.33% 97.88%

Table 3: Function boundary identification: summary of our best results, and comparison with previous work. “P” is
precision and “R” is recall.

ELF x86 ELF x86-64 PE x86 PE x86-64
Our models (func. boundary) 1061.76 s 1017.90 s 236.93 s 264.50 s
ByteWeight (func. start only) 3296.98 s 5718.84 s 10269.19 s 11904.06 s
ByteWeight (func. boundary) 367018.53 s 412223.55 s 54482.30 s 87661.01 s

ByteWeight (func. boundary with RFCR) 457997.09 s 593169.73 s 84602.56 s 97627.44 s

Table 4: Computation time for testing on the data set of 2200 binaries. Numbers for ByteWeight are taken from Bao
et al. [2].

models separately for each dataset: one to find function
starts, and the other to find function ends. We combine
the predictions from each model using a simple heuristic:

• If we predict multiple function ends in sequence af-
ter a function start, ignore all but the last.

• If we predict multiple function starts in sequence
before a function end, ignore all but the first.

• Otherwise, pair adjacent function starts and ends
into a function boundary.

Except on the ELF x86-64 dataset, this allows us to ob-
tain 97-98% in F1 score. In contrast, Bao et al. report
92-93%.

To obtain these results, we used bidirectional models
with RNN hidden units (i.e., rather than GRU or LSTM)
and one hidden layer of size 16. We trained each model
on 100,000 randomly-extracted 1000-byte chunks from
the corresponding binaries (or 100 megabytes in total).
To clarify, this means that we run two separate recurrent
neural networks forward and backward on a 1000-byte
sequence from the binary. The forward and backward
RNN each computes a R16 hidden representation, which
are concatenated together and fed into a linear transfor-
mation and the softmax function, producing a probability
distribution (a R2 vector) over whether that byte corre-
sponds to the beginning (or end) of a function or not.

We used rmsprop with a step size of 0.1, which was
scaled by the inverse square root of the current number
of iterations. We used a batch size of 32, which means
that in each iteration, we computed the gradients for 32

of the 1000-byte chunks, averaged them together, and ap-
plied them to the current weights (per the description in
Section 4.3).

These hyper-parameters (like the step size, the batch
size, and the output size of the RNN), unlike the weights
in the neural network, cannot be trained using gradient
descent. They have to be selected manually or through an
exhaustive search. We selected ours informed by some
smaller-scale experiments and our intuition.

5.4 Computation time

Training. In many other applications, neural networks
have gained a reputation as requiring a lot of computa-
tional power to train. Indeed, it has become standard
to train large neural networks using GPUs (graphical
processing units), which excel at the large number of
linear algebra operations that training a neural network
requires. However, the networks we use are relatively
small, so training with the CPU seemed to work fine.

In addition, determining the precise number of itera-
tions to train a neural network remains more of an art
than a science. Due to noisy gradients in stochastic gra-
dient descent, and the non-convex objective, the accuracy
of the neural network does not improve monotonically or
predictably as the number of iterations increases. In fact,
training for too long can cause the parameters to overfit
the training data, and worsen the performance on the test
data.

To avoid the issue, we trained our neural networks for
the fixed time of two hours each, and report the per-
formance after that. We set the duration of training by

11
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ELF x86 ELF x86-64 PE x86 PE x86-64
Start 98.95% 98.02% 95.56% 98.37%
End 97.83% 95.51% 94.99% 98.06%

Boundary 95.89% 92.67% 92.45% 95.91%

Table 7: Results with when trained on 10% of the data
(F1 scores).

(wall-clock) elapsed time rather than the number of it-
erations or parameter updates, to avoid biasing in favor
of more complicated but powerful architectures which
might make more progress per iteration but also take
longer to compute each one.

Producing the results in Tables 2 and 3 requires train-
ing 40 models, since there are 4 ISA/OS combinations
and we used 10-fold cross-validation. Therefore, in to-
tal, 80 compute-hours were required. In contrast, Bao et
al. [2] report that ByteWeight took 586.44 compute hours
to train, over 7× longer.

Furthermore, we needed to train 40 models only for
the purposes of matching the 10-fold cross-validation
protocol used by Bao et al. We really only need four
models to achieve equivalent results, which would take
just 8 hours to produce. While abandoning cross-
validation for training ByteWeight would presumably
also save a significant amount of time, we can expect
the factor to be less than 10 since much of the compu-
tation (extracting counts of short instruction sequences)
occurs before splitting data for cross-validation, further
widening the gap between ByteWeight and our method.

Testing. Table 4 summarizes the amount of time
needed to run each method on the data set after training
completes. Our method is hundreds of times faster than
the equivalent complete version ByteWeight which com-
putes function boundaries instead of just function ends.

The disparity mainly arises as our method works
without conventional program analysis techniques, such
as the static control-flow graph generation used by
ByteWeight. We trained the neural network to directly
identify both function start and ends, and combine them
together using a simple algorithm to recover plausible
function boundaries. In addition, the neural network op-
erates directly on bytes rather than instructions, avoiding
the need for a disassembly step. In contrast, ByteWeight
computes a CFG starting from each identified function
start both to identify more functions, and to compute the
function boundary. These extra steps require a consider-
able amount of computation time, and yet our approach
gives better results without them.

5.5 Experiments
In this section, we describe some smaller-scale experi-
ments we performed in order to gain insight into how
various choices we made in designing our method affects
the accuracy of results. We trained each model for two
hours, and we did not use cross-validation for these ex-
periments to save on computation time.

Reducing training data. In Table 7, we describe re-
sults from training a randomly-selected 10% of the bina-
ries in the dataset and testing on the remainder (normally,
the fractions were switched), to simulate common appli-
cations of binary analysis where only a small amount of
representative training data is available. Despite this, the
results dropped by 2-3 points at most.

Unidirectional RNNs. For our main model, we used
bidirectional RNNs where the output at each position de-
pends on both previous and future inputs. In Table 5, we
compare how bidirectional RNNs fare against the sim-
pler unidirectional ones. As we might expect, the unidi-
rectional RNNs do significantly worse than the bidirec-
tional ones on every benchmark.

In Section 4.4, we speculated that on unidirectional
RNNs, reversing the order of the input might provide
better results if the bytes which come after, instead of be-
fore, a certain location in the binary provide more infor-
mation about whether that location is the start or end of a
function. We found that reversed inputs help with iden-
tifying ends of functions, and ordinary inputs with iden-
tifying starts. One reason for this may be that with op-
timization turned on, the compiler will insert no-ops be-
tween functions so that function starts occur at an aligned
offset; the model can identify these to help find the start
or the end.

Variations in model architecture. Table 5 also com-
pares how Gated Recurrent Unit (GRU) and Long Short-
term Memory (LSTM) fare against conventional RNNs.
As we might expect, GRU and LSTM perform better than
RNN in most of the benchmarks. The comparison be-
tween GRU and LSTM is more mixed. Since LSTMs
take more time to run each iteration, and we trained for
a fixed amount of computation time, they may not have
converged as much to optimal parameters. Also, while
GRU and LSTM are more powerful models than conven-
tional RNNs, this was not enough to beat the bidirec-
tional RNN.

We can also examine what happens when we vary the
number of hidden layers or the dimensionality of the hid-
den layer. Table 6 shows the different results obtained
using one hidden layer of size 8, two hidden layers of
size 8, or one hidden layer of size 16. The larger models
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Function start identification Function end identification
ELF x86 ELF x86-64 PE x86 PE x86-64 ELF x86 ELF x86-64 PE x86 PE x86-64

RNN 92.36% 86.51% 94.48% 97.07% 54.52% 61.20% 72.32% 77.34%
GRU 95.09% 92.64% 96.46% 98.26% 70.55% 72.21% 83.78% 85.95%

LSTM 94.32% 89.89% 95.72% 97.58% 70.69% 68.21% 79.58% 82.46%
RNN (rev.) 94.74% 76.05% 66.02% 83.47% 91.12% 84.91% 95.52% 95.68%
GRU (rev.) 95.92% 84.93% 78.97% 87.52% 95.33% 89.44% 96.77% 95.86%

LSTM (rev.) 94.18% 94.18% 72.48% 83.43% 94.84% 87.78% 97.09% 95.42%
Bidir. RNN 98.88% 96.06% 98.04% 99.42% 95.93% 92.94% 97.98% 99.25%

Table 5: Comparison of unidirectional RNNs with different hidden unit types and input directionality, on the function
start and end identification problems. “(rev.)” indicates that we trained and tested the model with bytes in the binary
reversed. All models (including the bidirectional RNN) had one layer and 8 hidden units. All percentages are F1
scores.

Function start identification Function end identification
ELF x86 ELF x86-64 PE x86 PE x86-64 ELF x86 ELF x86-64 PE x86 PE x86-64

Separate
h = 8, l = 1 98.88% 96.07% 98.04% 99.42% 95.93% 92.94% 97.98% 99.25%
h = 8, l = 2 99.03% 97.69% 98.00% 99.43% 97.71% 94.49% 98.30% 99.19%
h = 16, l = 1 99.24% 98.13% 98.33% 99.50% 98.09% 95.74% 98.56% 99.24%

Shared
h = 8, l = 1 97.79% 95.28% 97.30% 99.23% 95.86% 91.94% 97.08% 98.90%
h = 8, l = 2 98.60% 96.67% 97.96% 99.45% 97.41% 94.92% 97.58% 99.12%
h = 16, l = 1 98.29% 97.41% 98.42% 99.47% 97.20% 95.51% 98.32% 99.38%

Table 6: Comparison of bidirectional RNNs on the function start and end identification problems. Separate means two
models were trained separately for predicting starts and ends; shared means one model does both. h is the size of the
hidden layer and l is the number of layers. All percentages are F1 scores.

perform better, but it turns out that increasing the hid-
den layer size rather than the number of layers provides
a slightly greater benefit.

Task sharing. In our prior experiments, we trained two
separate neural networks for performing function start
and end identification. However, we could instead train
one model to recognize both; at each byte, the model
would decide among four possibilities instead of two.
This could halve the amount of training time required.
Also, what the network needs to learn in order to rec-
ognize function starts probably overlaps considerably
with learning to recognizing function ends, so a network
which simultaneously performs both tasks may also learn
faster and produce more accurate results.

Table 6 summarizes our experimental results for test-
ing this hypothesis. Overall, the single model which per-
forms both tasks seems to do slightly worse than having
separate neural networks for each task. Perhaps the dis-
advantage incurred from needing to keep track of more
information exceeds the advantages mentioned in the
previous paragraph.

6 Discussion

Limitations. As with most other machine learning ap-
proaches, ours assumes that the same underlying genera-
tive process has created both the training set and the test
set. If similar patterns from the training data do not ex-
hibit themselves in the test data, our approach will fail to
correctly identify the functions.

As a pathological case, consider what would happen if
long sequences of instructions which have no effect were
inserted at arbitrary locations in the binary, including in
the middle of function prologues. Such insertions would
cause the internal structure of the binary to differ from
what the model saw in the training data, even though
it has no affect on the functionality. We might easily
remove these instruction sequences if they were simply
NOPs (0x90 in x86), but we can imagine the ability to
create arbitrarily complicated ones especially if they are
allowed to be long. Results from computability theory,
such as Rice’s theorem, suggest that it could be very dif-
ficult (if not impossible) to filter out such sequences from
the binary through static analysis.

13
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ELF x86 ELF x86-64
gcc icc gcc icc

P R F1 P R F1 P R F1 P R F1
O0 99.89% 99.95% 99.92% 99.85% 99.94% 99.90% 99.72% 99.56% 99.64% 99.77% 99.51% 99.64%
O1 99.37% 98.29% 98.82% 99.62% 98.22% 98.91% 98.87% 96.80% 97.83% 99.35% 96.97% 98.15%
O2 99.20% 98.45% 98.82% 99.57% 99.28% 99.43% 97.18% 96.58% 96.88% 98.93% 97.76% 98.34%
O3 99.28% 98.77% 99.02% 99.50% 99.31% 99.40% 96.83% 96.69% 96.76% 98.99% 97.66% 98.33%

PE x86 PE x86-64
P R F1 P R F1

Od 98.96% 99.43% 99.19% 99.52% 99.39% 99.45%
O1 98.89% 97.21% 98.04% 99.48% 98.68% 99.08%
O2 99.05% 98.60% 98.82% 99.50% 99.14% 99.32%
Ox 99.16% 98.63% 98.90% 99.61% 99.14% 99.37%

Table 8: Performance of our function start identification model on different subsets of the dataset. Each percentage
value represents the precision, recall, or F1 score on the binaries of a particular architecture, compiler, and optimization
level combination.

As for RNNs, since they accumulate and transfer in-
formation in a sequential manner, the input from these
irrelevant instructions could easily overwrite the parts of
the hidden state necessary for making correct predictions
about the locations of the function boundaries.

In some cases, we can foresee that our approach will
require preprocessing of the data in order to obtain good
results. For example, binaries which decompress or de-
crypt themselves at runtime would not contain recogniz-
able code within the binary stored on disk. Given that
such obfuscations affect all static binary analysis tech-
niques, previous works have addressed the problem of
detecting and reversing such transformations [10, 21].

Segmented results. In Table 8, we delineate how the
accuracy results for function start identification with our
model (as described in Section 5.3) differed among dif-
ferent subsets of the binaries as further segmented by
compiler and optimization level.

As we might expect, the model does best when run on
binaries compiled without any optimizations (labeled as
O0 and Od in the table), given that those tend to have
very clear indications at the beginnings of functions.
Nevertheless, the model’s performance remains roughly
constant on binaries compiled with more optimizations,
with the exception of gcc on Linux for the x86-64 archi-
tecture where the F1 score decreased by about 2.9 per-
centage points. Given that the training data contains ex-
amples with every optimization level and compiler used
for testing, we would hope that the model can learn to
recognize functions in all such cases. However, it seems
that gcc can produce relatively challenging examples
with more optimizations enabled. Since the x86-64 ABI
passes some function arguments in registers, it is possible

to avoid any manipulation of the stack and base pointers
upon function entry.

Error analysis. We randomly sampled some of the bi-
naries to manually inspect the errors made by the model
in them. Specifically, we selected 5 binaries for each
combination of compiler, optimization level, architec-
ture, and OS, then examined the errors to identify some
common features between them.

Here are some observations we made:

• Given the bidirectionality of the model, it seems to
exploit the appearance of frequently-occurring se-
quences at the ends of the previous function in ad-
dition to typical function prologues. One obvious
example are ret and its variants, used to return
from function execution. The compiler also often
inserted padding between functions (such as nop

(0x90) and other no-op instructions with longer en-
codings, or in Windows binaries, int3 which trig-
gers an interrupt), the end of which the model would
use to recognize the beginnings of functions.

• As a consequence of the above, false positives of-
ten occurred after nop, ret, and other instructions
which usually appear at the end of a function. In
fact, it would also find false positives within imme-
diate values encoded into the code if they contained
0x90 or 0xc3, the encodings of those instructions.

• False negatives often occurred when instructions
that would typically occur in the middle of func-
tions occurred at the beginning of a function, as we
might expect. The first byte of the program was of-
ten also falsely not recognized as a function start,
presumably due to the lack of context previous to it.
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• As documented by Bao et al. [2], icc will generate
functions with multiple entry points. Many of the
false negatives occurred at the second entry points
to functions, given that the instructions before it are
not the ones which usually end functions.

• The behavior of the model was not easily character-
ized by simple rules on short sequences of instruc-
tions; for example, while many false positives oc-
curred after nop and ret, this did not mean that
the model marked all (or even a large fraction) of
such positions as function starts. For relatively dif-
ficult cases like these, the precise content of the sur-
rounding bytes might have a complicated effect on
the answer produced by the model.

Future work. Although we have seen some experi-
mental evidence about the performance of the RNN un-
der various conditions, we lack a clear explanation of
the internal mechanics of the model. One potential ap-
proach towards an explanation proceeds through an anal-
ysis of the eigenvector structure by linearizing the state
of the network as it evolves over time and analyzing
which eigenvectors of the linearized systems carry the
task-relevant information [12]. This analysis can provide
an understanding of how the network ignores irrelevant
information while selecting, integrating, and communi-
cating relevant information, and allows identification of
which eigenvector(s) of the linearized system are respon-
sible for these tasks performed by the network. However,
if the neural network’s parameters are available to adver-
saries interested in disrupting the accuracy of the model,
they may be able to use such analyses to more effectively
add extra instructions which are not orthogonal to the
eigenvectors carrying the task-relevant information, thus
preventing its transmission and significantly affecting the
RNN’s performance.

7 Related Work

Function identification. Given that function identifi-
cation serves as a basis for many applications within bi-
nary analysis, it should not surprise that many past papers
have discussed the topic. For example, Kruegel et al. [9]
identify functions as a prelude to static disassembly, and
Theiling [18] for inferring control-flow graphs. How-
ever, these do not focus specifically on function identi-
fication as a specific problem, so here we point out some
other works that do.

Rosenblum et al. [14] first framed the function identi-
fication problem as a task for machine learning. They
combine a logistic regression classifier that uses “id-
ioms” (short patterns of instructions) with a conditional

random field to impose some structure between predic-
tions for related instructions. Karampatziakis [8] tackles
the related problem of accurate static disassembly using
similar machine-learning tools, and Jacobson et al. [7]
extend the prior work by Rosenblum et al. to fingerprint-
ing library wrappers which appear in binaries. Bao et
al. [2] also address function identification using super-
vised learning, but use weighted prefix trees which re-
quire much less computation than Rosenblum et al.’s ap-
proach to train, but still seems to give results with high
accuracy.

Some tools built for binary analysis provide function
identification as part of their functionality, usually us-
ing relatively simple heuristics or hand-coded signatures:
Dyninst [6] and IDA Pro are some examples.

Neural networks. Much research using neural net-
works have focused on domains with continuous input
data, such as vision and speech. In contrast, binary code
contains discrete, multinomial values, where there typi-
cally exists no obvious ordering relationship between the
possible values (unlike intensities of light or sound, for
example).

Natural language processing also involves multino-
mial values (typically sequences of words), and neural
networks have been successfully used for some applica-
tions there. Bengio et al. [3] first used neural networks to
make a language model. Language models give a proba-
bility distribution over the next word in a sentence given
the words so far, and see usage in machine translation
and speech recognition. Mikolov et al. [11] moved to
using a RNN. More recently, Sutskever et al. [17], Bah-
danau et al. [1], and Cho et al. [5] have used RNNs for
machine translation, and Vinyals et al. [20] for parsing.

We could not find any previous works which applied
neural networks to binary code, but some use them on
source code. Zaremba and Sutskever [22] attempt to train
recurrent neural networks to evaluate short Python pro-
grams. Mou et al. [13] learn a vector representation from
ASTs for supervised classification of programs.

8 Conclusion

In this paper, we proposed a new machine-learning-based
approach for function identification in binary code based
on recurrent neural networks. To our knowledge, there
exists no previous works which apply neural networks
to any problems in binary analysis. We address this gap
by demonstrating how to use recurrent neural networks
for function identification, and empirically show drastic
reductions in computation time despite achieving com-
parable or better accuracy on a prior test suite. We hope
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that this work can serve as an inspiration for further ad-
vancements in binary analysis through neural networks.
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A Backpropagation

We can view backpropagation as repeated application of
the chain rule. We sketch how it works using the follow-
ing example of a three-layer network:

h1 = f1(x;θ1)

h2 = f2(h1;θ2)

ŷ = f3(h2;θ3)

where θi = (Wi,bi), and we have named all of the inter-
mediate hidden values for convenience of reference. We
wish to minimize the error between the predicted ŷ and
the true value y. For example:

L = d(y, ŷ) = ‖ŷ− y‖2

Then we can compute the following partial derivatives
using the chain rule:

∂L
∂ ŷ

= 2(ŷ− y)
∂L
∂θ3

=
∂L
∂ ŷ

∂ ŷ
∂θ3

∂L
∂h2
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∂h2

∂h2
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∂L
∂h1

=
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∂h2

∂h2

∂h1

∂L
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∂h1

∂θ1
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Abstract

Reverse engineering has many important applications in
computer security, one of which is retrofitting software
for safety and security hardening when source code is not
available. By surveying available commercial and aca-
demic reverse engineering tools, we surprisingly found
that no existing tool is able to disassemble executable
binaries into assembly code that can be correctly assem-
bled back in a fully automated manner, even for simple
programs. Actually in many cases, the resulted disas-
sembled code is far from a state that an assembler ac-
cepts, which is hard to fix even by manual effort. This
has become a severe obstacle. People have tried to over-
come it by patching or duplicating new code sections for
retrofitting of executables, which is not only inefficient
but also cumbersome and restrictive on what retrofitting
techniques can be applied to.

In this paper, we present UROBOROS, a tool that can
disassemble executables to the extent that the gener-
ated code can be assembled back to working binaries
without manual effort. By empirically studying 244
binaries, we summarize a set of rules that can make
the disassembled code relocatable, which is the key to
reassembleable disassembling. With UROBOROS, the
disassembly-reassembly process can be repeated thou-
sands of times. We have implemented a prototype of
UROBOROS and tested over the whole set of GNU Core-
utils, SPEC2006, and a set of other real-world applica-
tion and server programs. The experiment results show
that our tool is effective with a very modest cost.

1 Introduction

In computer security, many techniques and applications
depend on binary reverse engineering, i.e., analyzing and
retrofitting software binaries with the source code un-
available. For example, software fault isolation (SFI)
[33, 46, 2, 19, 18] rewrites untrusted programs at the in-

struction level to enforce certain security policies. To
ensure program control-flow integrity (CFI, meaning that
program execution is dictated to a predetermined control-
flow graph) [1, 4, 43, 17, 29, 37] without source code, the
original control-flow graph must be recovered from a bi-
nary executable and the binary must be retrofitted with
the CFI enforcement facility embedded [50, 49]. Sym-
bolic taint analysis [34] on binaries must recover assem-
bly code and data faithfully. The defending techniques
against return-oriented programming (ROP) attacks also
rely on binary analysis and reconstruction to identify and
eliminate ROP gadgets [44, 9, 47, 22, 39].

Despite the fact that many security hardening tech-
niques are highly dependent on reverse engineering, flex-
ible and easy-to-use binary manipulation itself remains
an unsolved problem. Current binary decompilation,
analysis, and reconstruction techniques still cannot fully
fulfill many of the requirements from downstream. To
the best of our knowledge, there is no reverse engineer-
ing tool that can disassemble an executable into assem-
bly code which can be reassembled back in a fully au-
tomated manner, especially when the processed objects
are commercial-off-the-shelf (COTS) binaries with most
symbol and relocation information stripped.

We have investigated many existing tools from both
the industry and academia, including IDA Pro [24],
Phoenix [42], Dagger [12], MC-Semantics [32], Second-
Write [3], BitBlaze [45], and BAP [8]. Unfortunately,
these tools focus more on recovering as much informa-
tion, such as data and control structures, as possible for
analysis purpose mainly, but less on producing assembly
code that can be readily assembled back without manual
effort. Hence, none of them provide the desired disas-
sembly and reassembly functionality that we consider,
even if the processed binary is small and simple.

Due to lack of support from reverse engineering tools,
people build high-level security hardening applications
based on partial binary retrofitting techniques, including
binary rewriting tools such as Alto [35], Vulcan [16],
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Diablo [13], and binary reuse tools such as BCR [11]
and TOP [48]. We consider binary rewriting as a par-
tial retrofitting technique because it can only instrument
or patch binaries, thus not suitable for program-wide
transformations and reconstructions. As for binary reuse
tools, they work by dynamically recording execution
traces and combining the traces back to an executable,
meaning the new binary is only an incomplete part of
the original binary due to the incomplete coverage of dy-
namic program analysis.

Partial retrofitting has notable drawbacks and limita-
tions:

• Patch-based rewriting could introduce non-
negligible runtime overhead. Since the patch
usually lives in an area different from the original
code of the binary, interactions between the patch
and the original code usually require a large amount
of control-flow transfers.

• Patch-based rewriting usually relocates instructions
at the patch point to somewhere else to make space
for the inserted code. As a result, it requires the
affected instructions to be relocatable by default.

• Instrumentation-based rewriting expands binary
sizes significantly, sometimes generating nearly
double-sized products.

• Binary reuse often requires a binary component to
be small enough for dynamic analysis to cover; oth-
erwise the correctness cannot be guaranteed.

Having investigated previous research on binary ma-
nipulation and reconstruction, we believe that it could be
a remarkable improvement if we are able to automati-
cally recover the assembly from binaries and make the
assembly code ready for reassembly. When a binary
can be reconstructed from assembly code, many high-
level and program-wide transformations become feasi-
ble, leading to new opportunities for research based on
binary retrofitting such as CFI, diversification, and ROP
defense.

Our goal is quite different from previous reverse engi-
neering research. Instead of trying to recover high-level
data and control structures from program binaries which
helps binary code analysis, we aim at a more basic objec-
tive, i.e., producing assembly code that can be readily re-
assembled back without manual effort, which we call the
reassembility of disassembling. Although the research
community has made notable progress on binary reverse
engineering, reassembility is still somewhat a blank due
to lack of attention. In this sense, our contribution is
complementary to existing work.

With that said, we believe that the technical challenge
is also a cause for the deficiency in binary reassembly

support from existing tools. We have confirmed that the
key to reassembility is making the assembly code relo-
catable. Relocation is a linker concept, which is basi-
cally for ensuring program elements defined in different
source files can correctly refer to each other after linked
together. Being relocatable is also a premise for support-
ing program-wide assembly transformations. In COTS
binaries, however, the information necessary for mak-
ing disassembly results relocatable is mostly unavailable.
There has been research trying to address the relocation
issue [11, 48, 26], but existing work mostly relies on dy-
namic analysis which is unlikely to cover the whole pro-
gram.

In this paper, we present UROBOROS, a disassembler
that does reassembleable disassembling. In UROBOROS,
we develop a set of methods to precisely recover each
part of a binary executable. In particular, we are the
first to be capable of not only recovering code, but also
data and meta-information from COTS binaries with-
out manual effort. We have implemented a prototype
of UROBOROS and tested it on 244 binaries, including
the whole set of GNU Coreutils and the C programs in
SPEC2006 (including both 32-bit and 64-bit versions).
In our experiments, most programs reassembled from
UROBOROS’s output can pass functionality tests with
negligible execution overhead, even after repeated dis-
assembly and reassembly. Our preliminary study shows
that UROBOROS can provide support for program-wide
transformations on COTS binaries.

In summary, we make the following contributions:

• We initiate a new focus on reverse engineering.
Complementary to historical work which mostly fo-
cuses on recovering high-level semantic informa-
tion from binary executables or providing support
for binary analysis, our work seeks to deliver re-
assembility, meaning we disassembles binaries in a
way that the disassembly results could be directly
assembled back into working executables, without
manual edits.

• We identify the key challenge is to make the disas-
sembled program relocatable, and propose our key
technique to recover references among immediate
values in the disassembled code, namely “symbol-
ization”.

• With reassembility, our research enables direct
binary-based transformation without resort to the
previously used patching method, and can poten-
tially become the foundation of binary-based soft-
ware retrofitting.

• We implement a prototype of UROBOROS and eval-
uate its strength on binary reassembly. We applied
our technique to 244 binaries, including the whole
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set of GNU Coreutils and SPEC2006 C binaries.
The experiment results show that our tool does cor-
rect disassembly and introduces only modest cost.

• Our disassembler produces “normal” assembly
code in the sense that binaries reassembled from
UROBOROS’s output assembly can again be dis-
assembled (and hence the name UROBOROS1), or
be used to accomplish other reverse engineering
tasks. We verify this by repeating the disassemble-
reassemble loop for thousands of times on different
binaries.

The remainder of the paper is organized as follows.
We first discuss the related work and challenges in §2
and §3, respectively. We then present the design and im-
plementation of UROBOROS in §5. The experimental re-
sults are presented in §6, followed by some discussions
in §7. We conclude the paper in §8.

2 Related Work

This section reviews literature on binary disassembly, bi-
nary rewriting, and binary reuse.

2.1 Disassembly

As aforementioned, there is no disassembler known to
us that can generate working assembly code from bina-
ries whose symbol and relocation information is stripped.
IDA Pro [24] is considered as the best commercial dis-
assembler available on the market. It can decode bina-
ries into assembly and further decompile assembly into C
code for program analysis. However, the assembly code
produced by IDA Pro cannot be directly used as the input
of any assembler. As stated in its manual [21], assembly
code produced by IDA Pro is meant for analysis and can-
not be directly reassembled or recompiled.

SecondWrite [3] leverages multiple static analysis
techniques to lift binaries into LLVM IR. It is reported
that the recovered LLVM IR can be converted back into
C code given the LLVM’s IR-to-C backend. However,
it is unclear to us how SecondWrite symbolizes the data
sections and recovers the meta-data information of the
binaries. The paper does not contain an evaluation on
this recompilation functionality. Moreover, the IR-to-C
backend has been removed from LLVM release since 3.1,
because it is not mature enough to handle non-trivial pro-
grams [30].

Dagger [12] is another tool that translates native code
into LLVM IR, but the implementation is far from com-
plete. There is a pre-release version available online.

1Uroboros is a symbol depicting a serpent eating its own tail.

We tried to use it to decompile a simple binary (com-
piled from a C program with only empty main function).
The decompiler reported several errors and generated an
LLVM IR file which cannot be compiled back into binary
due to lack of some symbol definitions.

MC-Semantics [32] is yet another tool for native code
to LLVM IR translation. We used MC-Semantics to de-
compile some quickly written mini programs. Although
the code produced by MC-Semantics can be made bina-
ries, the execution results of these binaries are not the
same as the originals, which we believe is due to incor-
rect symbol references. In addition, different from previ-
ously reviewed work, MC-Semantics works at the scale
of object files rather than executables. Lacking the abil-
ity to handle linked binary programs narrows its scope of
application.

BAP [8] is a binary analysis platform that comes with
a disassembler. It can lift assembly code to a BAP-
defined high-level intermediate representation that can
be further analyzed statically. Several reverse engineer-
ing tools have been built based on BAP, including the C
type recovery tool TIE [28] and the C control-flow re-
covery tool Phoenix [42]. Although BAP provides solid
support for binary analysis, the strength of its disassem-
bler is also limited to analysis only.

There could be multiple reasons that existing tools fail
on reassembling. One reason is the technical challenges
such as separating code and data, symbolizing the data
sections, etc. The other reason could be the difference
in the design goals. Most existing tools aim to produce
more readable code or code that can be analyzed, not for
the purpose of translation and reassembly. We emphasize
that the ability to reassemble the output from a disassem-
bler can provide an enabling infrastructure, facilitating
further research.

2.2 Binary Rewriting

Binary rewriting techniques can be either static or dy-
namic. Static binary rewriting is widely used in security
hardening such as control-flow hijacking mitigation [47],
software control-flow integrity enforcement [50, 49], and
binary instrumentation [3, 35, 13, 16]. Most static binary
rewriting tools make strong assumptions on the input bi-
naries. For example, Vulcan [16], Alto [35, 13], and Di-
ablo [13] require binaries to be compiled from specific
compilers or require symbol information not stripped.
SecondWrite [3] can patch binaries with new code and
data, but the original content in the binary shall remain
unmodified.

As aforementioned, typical static binary rewriting has
to relocate instructions at the patch point to make room
for newly inserted code. In order to make sure that the
rearranged instructions can be relocated while still pre-
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serving program semantics, a stub-based idea is adopted
to redirect control flow from the original location to the
relocated new place at run time [14, 50, 47]. Control
transfer instructions, i.e., stubs, are inserted at memory
addresses that are pointed to by some code pointers. This
strategy broadens the application scope of binary rewrit-
ing tools. However, there could be a large amount of
stubs inserted, thus incurring notable execution overhead
and size expansion on the rewritten binaries.

Dynamic binary rewriting tools, such as Pin [31] and
DynamoRIO [7], can trace the execution of a binary and
instrument or patch the program on the fly. Dynamic
rewriters are able to handle COTS binaries, whereas with
the cost of considerable performance penalty. Also, dy-
namic binary rewriting requires the rewriter itself to be
shipped with or embedded into the target binaries.

Dyninst [10, 20] is a tool that features both static and
dynamic binary rewriting. It supports performance mea-
surement and computational steering. It can disassem-
ble the stripped binaries and instrument them statically
or dynamically, but does not deliver reassembleable dis-
assembling either.

2.3 Binary Reuse
Binary reuse is mostly based on dynamic analysis. One
of the representative binary reuse tools is BCR [11].
BCR extracts and reuses functions from binaries with
a hybrid approach. BCR first executes binaries in a
monitored environment and records execution traces and
memory dumps. Binaries are then statically disassem-
bled starting from the entry point. In the disassembly
process, the dynamically collected information is used to
resolve the destinations of indirect branches. In the end
BCR manages to extract a “closure” of code reachable
from the entry point which can be reused by other pro-
grams. Clearly, the correctness of the reused code cannot
be guaranteed if BCR does not cover all feasible execu-
tion paths.

In addition to BCR, there are other binary reuse tools
that employs similar basic ideas, such as Inspector Gad-
get [26] and TOP [48]. While these tools have made im-
provements in different aspects, the fact that they all rely
on dynamic analysis leads to the incompleteness issue,
more or less. In general, these tools can only do partial
binary retrofitting.

3 Challenges

We have briefly discussed the technical challenges for
developing a disassembler which can deliver reassembil-
ity. In this section, we discuss these difficulties in more
details. In this research, we assume that the binaries to
disassemble are stripped COTS binaries, namely binaries

without any relocation information or symbols, except
those necessary for dynamic linking. We also assume
that the binaries are compiled from unobfuscated C pro-
grams, without self-modifying features. The target hard-
ware architectures of the binaries are x86 and x64. The
binary executable format is the Executable and Linkable
Format (ELF).

3.1 Raw Disassembly
In this paper, raw disassembly is referred to as the pro-
cess of parsing the binary form of a program to its raw
textual representation. The difficulty of raw disassem-
bly can vary a lot in different situations. In the most
general case, this problem is undecidable. One of the
reasons is that the problem of statically determining the
addresses of indirect jumps is undecidable [23]. Further-
more, the existence of advanced program features such
as self-modifying code makes the problem harder. An-
other issue is that current computer architectures do not
distinguish code and data, and there is no easy way for a
raw disassembler to distinguish them either. This prob-
lem is further worsened by the variable-length instruc-
tion encoding used by, for example, the x86 instruction
set architecture.

However, with years of intensive effort on improving
related techniques, the state of the art can already reach a
very high success rate when disassembling binaries com-
piled from practical legitimate C source code by main-
stream compilers. A recent paper by Zhang et al. [50]
proposed a novel raw disassembly method which com-
bines two existing disassembly algorithms together. We
reimplemented this algorithm and applied it to our eval-
uation set which includes 244 binaries. No errors were
reported by the raw disassembler and subsequent eval-
uation also verified the correctness of this algorithm on
our evaluation set. As a result, we do not consider raw
disassembly, or binary decoding, as a major challenge to
address in this research.

3.2 Reassembly
Successfully decoding the binaries is only the first step to
the goal of this research. Ideally, binary reverse engineer-
ing tools should be able to support at least the following
process:

• The reverse engineering tool disassembles the orig-
inal binary into assembly code.

• Users can perform static analysis on the disassem-
bled program.

• Users can perform transformations on the disassem-
bled program.
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• The transformed program can be assembled back
into an usable binary executable, with all transfor-
mation effects retained.

Although it may not be obvious, the feasibility of the
first three steps does not naturally imply the feasibil-
ity of the last step. There have been reverse engineer-
ing tools or platforms that can (partially) enable the first
three steps [8, 45], but support for reassembly is still a
blank.

As mentioned in the introduction, making the assem-
bly code relocatable is the crux of reassembility. Fig-
ure 1 is an artificial example comparing relocatable and
unrelocatable assembly code. In COTS binaries, infor-
mation required for making disassembly results relocat-
able is unavailable. Most program transformations in-
evitably change binary layouts, but a reverse engineering
tool has only very limited control over how the linkers
assign memory addresses of the program elements, lead-
ing to situations illustrated by Figure 1. Note the mem-
ory cell located at address 0xc0 in the original memory,
which is possibly a global variable. The raw disassem-
bly process does not recognize the concrete value 0xc0
in the code as a reference. Thus when this unrelocatable
assembly code is reassembled, the resulting binary will
very likely be defected because the content of the mem-
ory cell at 0xc0 in the original binary may not be placed
the same address in the new binary. In the relocatable
assembly, however, the data originally living at 0xc0 is
given a symbolic name, and the concrete address 0xc0
is replaced by a reference to this name. This is why re-
locatable assembly can be reassembled into a working
executable.

As suggested by the example, if a reverse engineering
tool seeks to reassemble the transformed assembly code
into a working executable, it has to identify program ele-
ments whose addresses could possibly change in the new
binary, and lift concrete memory addresses referring to
them to abstract symbolic references. Obtaining relocat-
able assembly from a COTS binary is non-trivial because
very little auxiliary information in the binary can be uti-
lized to help identify references among concrete values.
Essentially, the problem can be generalized as the fol-
lowing: given an immediate value in the assembly code
(either in a code section or data section), is it an memory
address or a constant? Although this looks like a typical
type analysis problem, in the context of binary reassem-
bly it becomes much more challenging. From a static
point of view, since most machine assembly languages
are untyped, type inference is difficult in the first place.
Compared to high-level programming languages, assem-
bly languages lack explicit syntax for denoting procedure
boundaries and basic control-flow logic, making static
analysis even more difficult. What is worse, many ref-
erences live in the data sections, some of which are in-

mov 0xc0, %eax

0xa080xc0:

binary

.text
mov 0xc0, %eax

.data

.long 0xa08

unrelocatable

.text
mov Glob, %eax

.data
Glob:
.long 0xa08

relocatable

mov 0xc0, %eax

0xa08

?0xc0:

mov Glob, %eax

0xa08Glob:

assemble

assemble

Figure 1: Relocatable and unrelocatable assembly code

directly referred to by the code via numerous reference
hops. At present, most proposed program analysis tech-
niques, either static or dynamic, are code oriented, lack-
ing the capability of analyzing the property of a given
data chunk. Finally, reassembly has almost zero toler-
ance for type inference errors, because a single false pos-
itive or false negative can place the reassembled binary
in a non-functional state.

Solving the relocatable problem in binary disassem-
bly is the main purpose and contribution of this paper. In
the rest of the paper, we call the process of identifying
references among immediate values in the raw assembly
the process of “symbolization”. To distinguish the con-
cept from the traditional meaning of disassembling, we
call our work reassembleable disassembling that gener-
ates relocatable assembly code.

In addition to relocation information, a full-fledged
disassembler also needs to recover some meta informa-
tion to make the reassembly feasible. Meta-data sections
in a binary executable provide information to direct some
link-time and runtime behavior of the program. They
should also be recovered properly in order to ensure the
reassembled binaries are semantic-equivalent to the orig-
inals.

4 Symbolization

This section describes the symbolization problem in de-
tail and presents our solution.

4.1 Classification
There are four types of symbol references that we need
to identify for reassembility. The classification is based
on two criteria—where a reference lives and where a ref-
erence points. Basically, we divide the binary into two
parts, i.e., the code sections and the data sections, whose
contents are as suggested by their names. For ELF bina-
ries on Unix-like platforms, typical code sections include
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fun1:
call fun2

fun2:
mov ptr, %eax
lea (%eax, %ebx, 4), %ecx
call *%ecx

handler1:
...

handler2:
...

ptr:
.long table

table:
.long handler1
.long handler2

Code Section Data Section

c2c
c2d

d2c

d2d

Figure 2: Different types of symbol references in assem-
bly code

.text and .init etc. Typical data sections include

.data, .rodata, .bss, etc. A symbol reference can
live in either code sections or data sections, and can point
to either code sections or data sections as well, leading to
a total of four types. Figure 2 is an example showing all
four types of symbol references. We give each of them a
short name, i.e., c2c, c2d, d2c, and d2d references.

4.2 Method
When it comes to solving the symbolization problem, we
have considered various potential solutions. Due to the
reasons listed in §3.2, we conclude that no existing pro-
gram analysis technique can handle the symbolization
problem in our special context. Hence, we decide to turn
to another direction. In this work, we identify the im-
mediate values which are actually symbol references by
applying several matching rules inferred from our study
on a large amount of binaries. Although some of these
strategies may not seem exciting at the first sight, they
work surprisingly well in our evaluation on 244 binaries
compiled from C code.

Since we are solving the symbolization problem in an
empirical way, the matching strategies are all based on
certain assumptions. Depending on whether an assump-
tion is accepted or not, different rules are applied for
symbolization. We now introduce the assumptions and
the corresponding symbolization strategies.

At the point of symbolization, we assume that we have
already obtained the raw assembly decoded from bina-
ries using the algorithm by Zhang et al. [50], so we can
get all immediate values that appear in a binary. There
are two kinds of immediate values—constants used as
instruction operands and the byte stream living in data
sections. Among all these immediate values, some can
be excluded from being considered for symbolization at
the first place. Unless a program intentionally causes
memory access errors, which is rarely the case, an im-

mediate value can be a reference to symbols only if this
value falls in the address space allocated for the binary.
For a binary of reasonable size, the utilization of address
space is usually sparse, so there is a wide range of ad-
dress space which is actually invalid.

Assuming all immediate values are potential symbol
references, we can filter out obviously invalid references
based on their target addresses. According to our sym-
bol reference classification in §4.1, a reference can only
point to code sections or data sections; especially, if a
reference points to code sections, the destination must be
the starting address of some instruction. Our study on
244 binaries shows that this simple filter is sufficient to
identify c2c and c2d symbol references with full correct-
ness.

The really challenging part is data section symboliza-
tion, i.e., identifying d2c and d2d references. The first
step of data section symbolization is to slice the data sec-
tions, which are continuous areas of binary bytes, into
individual values of different lengths. Since the raw dis-
assembly process does not assign the data sections any
semantics, there is no ready-made guidance on how they
should be sliced. Regarding this problem, we introduce
the first assumption which is about binary layout:

(A1) All symbol references stored in data sec-
tions are n-byte aligned, where n is 4 for 32-bit
binaries and 8 for 64-bit binaries.

Since unaligned memory accesses cause considerable
performance penalty, compilers tend to keep data aligned
by its size. For data alignment, compilers can even sac-
rifice memory efficiency by inserting padding into data
sections. With that said, A1 stays as an assumption be-
cause occasionally programmers do want non-aligned
data layout. For example, the “packed” attribute sup-
ported by GCC allows programmers to override the de-
fault alignment settings.

If we accept assumption A1, only n-byte long values
which are also n-byte aligned in data sections are consid-
ered for symbolization. Alternatively with A1 rejected,
all n-byte long memory content in data sections are con-
sidered for symbolization. This is implemented as an
n-byte sliding window which starts from the beginning
of a data section and scans through the entire section in
a first-fit manner. Each time the sliding window moves
forward 1 byte and check the value of the covered bytes.
If the value fulfills the basic requirements for being a d2d
or d2c reference, it will be considered for symbolization
and the sliding window advances n bytes forward. In
case that the value does not meet the requirements, the
sliding window moves forward 1 byte only.

In addition to assuming the characteristics of binaries,
making assumptions on user requirements for our tool
also helps improve its performance. As stated earlier,
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the goal of symbolization is to make assembly code relo-
catable so that users can perform program-wide transfor-
mations on the assembly and then assemble it back to a
working executable. From our experience, most transfor-
mations on assembly only touch the instructions without
modifying the original data. If we make the following
assumption

(A2) Users do not need to perform transforma-
tion on the original binary data.

then we can keep the starting addresses of data sections
the same as their old addresses when performing re-
assembly, by providing a directive script to the linker.
In this way, we can ignore d2d references during sym-
bolization simply because we do not need them to be
relocatable anymore. Thus, with A2 accepted, only the
immediate values that fall within code sections (d2c ref-
erences) are considered for symbolization. Contrarily,
without deterministically fixing the starting addresses of
data sections in the new binary, the immediate values that
fall within either code sections or data sections are con-
sidered for symbolization.

We want to avoid symbolizing d2d references because
they are used in a very flexible manner. On the other
hand, there are more common patterns in d2c references
which can be exploited by our symbolization method.
We summarize the patterns with the following assump-
tion:

(A3) d2c symbol references are only used as
function pointers or jump table entries.

By accepting A3, an n-byte value in data sections is lifted
to a d2c reference if it is the starting address of some
function, or it forms a jump table together with other n-
byte values adjacent to it. Otherwise with A3 rejected,
an n-byte data section value is symbolized whenever it is
within the address space of code sections.

When A3 is taken, we will need to know whether a
code section address is the start of a function. We also
need to clarify what a jump table would be in the bi-
nary form. Identifying function beginnings in a binary
is not a new research topic. Based on machine learn-
ing techniques, recent research [6] can reportedly iden-
tify function starting addresses with over 98% precision
and recall. To avoid reinventing the wheel, we assume
we have already known all the function start addresses.
Since the binaries used in our research are all compiled
from source code, we are able to get the ground truth by
controlling the compilation and linking process.

Regarding the identification of jump tables, our algo-
rithm is as follows:

• Jump table start. We traverse the data sections from
the beginning to the end. If the address of an n-byte

value is referred to by an instruction as the operand,
it is considered as the first entry of a new jump table.

• Jump table entry. If an n-byte value follows an al-
ready identified jump table entry, this value is also
considered as an entry as long as it refers to instruc-
tions within the same function that previous entries
point to.

The three assumptions A1, A2, and A3 are the basics
of our symbolization method. With different choices of
an assumption being applied or not, we can derive differ-
ent strategies when processing a binary. §6 has a detailed
evaluation on the correctness of reasonable combinations
of these assumptions.

5 Design and Implementation

5.1 Overview

The architecture of UROBOROS is shown in Figure 3.
UROBOROS consists of two main modules—the disas-
sembly module and the analysis module. The disassem-
bly module decodes instructions with raw disassembling
(§5.2) and dumps the data sections. The analysis mod-
ule symbolizes memory references in both code and data
sections (§4) and recovers the meta-information from the
dumped content (§5.4). UROBOROS also recovers part of
the control-flow structures from direct transfers so that it
provides basic support for program-wide transformation
(§5.3).

The disassembly module employs an interactive pro-
cess to validate disassembled code from a linear disas-
sembler. The linear disassembler decodes the code sec-
tions and dumps out all data and meta information sec-
tions. A validator is then invoked to correct disassembly
errors due to “data gaps” embedded inside code sections.
The details are presented in §5.2.

After the raw disassembly is over, the dumped code,
data, and meta-data are sent to the analysis module.
This module identifies symbol references among imme-
diate values in the code and data. As elaborated in §4,
we propose three assumptions for reassembleable dis-
assembling. The corresponding strategies are imple-
mented in UROBOROS to guide the symbolization pro-
cess. UROBOROS can be configured to utilize differ-
ent combinations of assumptions for symbolization. We
give a detailed evaluation on the correctness of different
strategies in §6.1.

Given the symbolized instructions, the analysis mod-
ule also partially recovers the control flows based on
direct control-flow transfers. With the relocatable as-
sembly and the basic control-flow structures, users of
UROBOROS can easily perform advanced program anal-



634 24th USENIX Security Symposium USENIX Association

Binary

Disassembly Module

Linear
Disassembler

Disassembly
Validator

Meta-Data

Data

Code

Analysis Module

Symbol Lifting

Control-Flow
Structure Recovery

Relocatable
Assembly

External
Analyses &

Transformations

Figure 3: The architecture of UROBOROS

ysis and program-wide transformations before they as-
semble the code back to binaries.

Finally, we emphasize that the assembly code gener-
ated and transformed by UROBOROS can be directly as-
sembled back as a working binary by normal assemblers.
In particular, the binary output is indeed a normal exe-
cutable file without any abnormal characteristics such as
patched or duplicated sections. Therefore, the reassem-
bled binary can be disassembled again by UROBOROS or
be processed by other reverse engineering tools.

We have implemented a prototype of UROBOROS in
OCaml and Python, with a total of 13,209 lines of code.
Our prototype works for both x86 and x64 ELF binaries.

5.2 Disassembly
In our prototypical implementation, the linear disas-
sembler employed by UROBOROS’s disassembly mod-
ule is objdump from GNU Binutils. We implement
an interactive disassembly process originally proposed
in BinCFI [50].2 In this process, the disassembler com-
municates with a validator which corrects disassembly
errors due to “data gaps” between adjacent code blocks.
The interactive procedure is as follows:

• objdump tries to decode the input binary for the
first time.

• The validator examines the output and check if there
are explicit errors reported by objdump. In case
there are no errors, the raw disassembly process ter-
minates. Otherwise, the validator assumes the er-
rors are caused by data embedded in code and com-
putes the upper and lower bounds of identified “data
gaps”.

• With the computed range of identified “gaps”, the
validator guides objdump to decode the binary
again, with those “gaps” skipped.

2The BinCFI tool is available open source. We choose to reimple-
ment the algorithm to make the codebase of UROBOROS more consis-
tent such that it is fully automated and easy to extend. We refer readers
to BinCFI [50] for the details of the disassembly process.

• Repeat this decode-validate process until no error
occurs or the running time of the whole process
reaches a time limit specified by users.

We leverage three rules proposed in BinCFI to validate
the disassembly results and locate the data “gaps”, i.e.,
“invalid opcode”, “direct control transfers outside the
current module”, and “direct control transfer to the mid-
dle of an instruction”. Since identifying bounds of each
data gap can rely on the control-flow information of de-
coded instructions, the validator occasionally leverages
UROBOROS’s analysis module to retrieve the control-
flow information.

5.3 Support for Program Transformation

UROBOROS provides basic support for program-wide
transformations by partially recovering control-flow
structures of the decoded instructions. We collect all the
control transfer instructions to divide each function into
multiple basic blocks. Control-flow graphs are rebuilt on
top of these basic blocks. As a prototype, UROBOROS
currently only processes direct control transfers. Regard-
ing the intractable indirect transfers, a potential solution
is to use value set analysis (VSA) [5] for destination
computation. We leave including indirect control trans-
fers in the CFG as future work.

5.4 Meta-Information Recovery

UROBOROS recovers the program-linkage table (PLT)
and the export table in ELF binaries. The PLT table sup-
ports dynamic linkage by redirecting intra-module trans-
fers on its stubs to external functions. As the base ad-
dress of the PLT table can change after reassembling, we
translate the memory references to PLT stubs to their cor-
responding external function names, and let the linker
to rebuild the PLT table with correct memory references
during link time. In particular, this table is dumped out
from the input binary and parsed into multiple entries,
each containing the memory address of a PLT stub with



USENIX Association  24th USENIX Security Symposium 635

its corresponding function name. Next, we scan the pro-
gram and identify the addresses that match to a table en-
try. These addresses are then replaced by the correspond-
ing function name.

Symbols need to be “exported” so that other compila-
tion units can refer to them. The exported symbols to-
gether with their memory addresses are recorded in the
export table. As ELF binaries do not keep a standalone
export table, we construct this table by searching for all
global objects in the symbol table. The symbol name of
each entry and its memory address are then kept in a map.
The export table can help identify functions and variables
that are only referred to by other compilation units. We
iterate each entry of the export table to insert symbols
and .globl macros to the corresponding addresses.

For typical ELF binaries compiled from C code,
.eh frame and .eh frame hdr sections are used
by compilers to store information for some rarely-used
compiler-specific features, such as the “cleanup” at-
tribute supported by GCC. For these sections, we dump
the content out and directly write them back to the out-
put. These sections are also used to store exception in-
formation for C++ programs. Regarding this, we have a
related discussion in §7.

5.5 Position Independent Code

Position independent code (PIC) typically employs a par-
ticular routine to obtain its memory address at run time.
This address is then added by a fixed memory offset to
access static data and code. According to our observa-
tion, the routine below is utilized by PIC code in 32-bit
binaries to achieve relative addressing.

804C452: mov (%esp),%ebx
804C456: ret

PIC code invokes this routine by a call instruction, and
register ebx is then assigned the value on top of the
stack, which equals the return address. UROBOROS iden-
tifies this instruction pattern, traces the usage of ebx,
and rewrites the instructions that add ebx with memory
offsets to a relocatable format.

An example is shown in Figure 4. Once we iden-
tify a call instruction targeting the above sequence, we
calculate the absolute address by adding 0x804c466
with offset 0x2b8e, which equals 0x804eff4. By
querying the section information from ELF headers,
0x804eff4 equals the starting address of .got.plt
table, and we rewrite offset 0x2b8e to the correspond-
ing symbol, which is GLOBAL OFFSET TABLE in
this case.

Theoretically PIC could use other patterns besides the
above sequence to obtain its own memory address; the
above instruction sequence is, however, the only PIC pat-

804c460: push %ebx
804c461: call 804c452
804c466: add $0x2b8e,%ebx
804c46c: sub $0x18,%esp

804c460: push %ebx
804c461: call S_0x804C452
804c466: add $_GLOBAL_OFFSET_TABLE_,%ebx
804c46c: sub $0x18,%esp

Figure 4: PIC code reuse

tern we encountered after testing a broad range of real
world applications (compiler and platform information
is disclosed in § 6).

As for x64 architectures, RIP-relative [25] memory
references allow assembly code to access data and code
relative to the current instruction by leveraging the rip
register and memory offsets, which makes the implemen-
tation of PIC more flexible. In the raw disassembly out-
put, instructions utilizing this mode are commented by
objdump with the absolute addresses they refer to. We
identify the comments, symbolize the memory offsets,
and insert labels to the corresponding absolute addresses.

5.6 Redundancy Trim

When a binary is dynamically linked to libc, the pro-
logue and epilogue functions of the library are auto-
matically added to the final product. UROBOROS at-
tempts to support multiple iterations of the disassemble-
reassemble process. Each time the binary is assembled, a
new copy of the prologue and epilogue functions are in-
serted, which unnecessarily expands binary size. Some
tentative experiments show that binary size can grow 5 to
6 times larger with respect to the original, if we perform
the disassemble-reassemble iteration for 1,000 times.

We cannot identify the prologue and epilogue func-
tions in COTS binaries as the symbol information has
been stripped. However, after the first disassemble-
reassemble attempt, we get an unstripped binary with
sufficient information indicating which functions are
added by the linker. If we are to do another disassemble-
reassemble round, UROBOROS can skip these functions
in the disassembly phase.

Another source of redundancy is the padding bytes in
data sections. In ELF binaries,there are three data sec-
tions (.data, .rodata, and .bss) that have padding
bytes at the beginning. As these padding bytes are not
used, we remove them from the recovered program be-
fore reassembling.
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With the code and data redundancy trimmed, binary
size expansion is reduced to almost zero, no matter how
many times a binary is disassembled and reassembled.

5.7 Main Function Identification

In a compiler-produced object file, the symbol informa-
tion of the main function is exported so that it can be ac-
cessed by the libc prologue functions in the linking pro-
cess. However, as this symbol information in executable
file is stripped in COTS binaries after linking, we need to
recover and export it before reassembling.

Through our investigation, we found that the code
sequence shown below is typically used to pass the
starting address of main to libc prologue function
libc start main.

push $0x80483b4
call 80482f0 <__libc_start_main@plt>
hlt

The first argument of libc start main, which is
0x80483b4 in this example, is recognized as the start-
ing address of the main function. We insert a label
named main and the type macro .globl main in the
output at this address.

5.8 Interface to External Transformation

As briefly discussed in §1, existing binary software
security applications mainly rely on patch-based or
instrumentation-based binary manipulations. We ar-
gue that given the assembly program and support for
program-wide transformation from UROBOROS, we can
bridge external instrumentation and analysis techniques
with binary retrofitting application development. The
program-wide security instrumentation such as CFI,
ROP attack mitigation, randomization and software di-
versification could be ported on the basis of UROBOROS
to legacy binaries, without the inefficiency, cumbersome-
ness and restriction brought by previous binary manipu-
lation methods.

In order to demonstrate that UROBOROS is an enabling
tool that makes analysis and transformations applicable
to legacy binaries in general, we implement a diversifi-
cation transformation based on basic block reordering.
After disassembly, we walk through each function and
randomly select two basic blocks from its CFG as the re-
ordering targets. Control-flow transfer instructions and
labels are inserted in the selected blocks, their prede-
cessors, and successors to guarantee semantic equiva-
lence. We perform this reordering iteratively, namely the
output of each iteration becomes the input of the next
round. We conducted a quick experiment on gzip. The

Table 1: Programs used in UROBOROS evaluation
Collection Size Content
COREUTILS 103 GNU Core Utilities
REAL 7 bc, ctags, gzip, mongoose,

nweb, oftpd, thttpd
SPEC 12 C programs in SPEC2006

disassembly-transformation-reassembly process was it-
erated 1,000 times. The effectiveness of the diversifica-
tion transformation is evaluated by the elimination rate
of ROP gadgets measured by the ROP gadget detector
ROPGadget [40]. From this preliminary study, we find
that it is much easier than binary rewriting to perform
binary-based software retrofitting based on UROBOROS.
As the ROP defense is not the focus of this research, we
omit the detailed results in this paper.

6 Evaluation

We evaluate UROBOROS with respect to correctness,
cost, and its ability to support program-wide transfor-
mation. The correctness verification examines whether
UROBOROS’s reassembly is semantic preserving. Eval-
uation on the cost of UROBOROS reveals its reassem-
bly’s impact on binary size and execution speed, and also
the running time of UROBOROS itself. As presented in
§5.8, we study UROBOROS’s support for binary-based
software retrofitting, by implementing a basic block re-
ordering algorithm to diversify disassembled binaries
and eliminate ROP gadgets. As we have emphasized,
UROBOROS is an enabling tool for other security hard-
ening techniques. However, as goal-driven software se-
curity hardening is out of the scope of this paper, we do
not present the detailed experiment results here.

We use three collections of binaries compiled from C
code to evaluate UROBOROS. The first set, referred to as
COREUTILS, is the entire GNU core utilities including
103 utility programs for file, shell, and text manipula-
tion. The second set, called REAL, consists of 7 real-
world programs picked by us, covering multiple cate-
gories such as floating-point and network programs. The
last set subsumes all the C programs in the SPEC2006
benchmark suit, thus will be denoted by SPEC. Details of
each collection are listed in Table 1. In the evaluation we
compile all programs for both 32-bit and 64-bit targets.
Since there are 122 programs, the number of tested bina-
ries is 244 in total. The compiler is GCC 4.6.3, using the
default configuration and optimization level of each pro-
gram. All experiments are undertaken on Ubuntu 12.04.
For each test case, we use the strip tool from GNU
Binutils to strip off the symbol information and debug
information before testing.
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Table 2: Functionality test input for REAL

Program Test Input
bc Test cases shipped with the program
gzip Test cases shipped with the program
ctags Parse a C source file of 152,270 lines
oftpd Login and fetch a large file
thttpd Request some web pages & a large file
mongoose Request some web pages & a large file
nweb Request some web pages & a large file

6.1 Correctness

We verify the correctness of UROBOROS’s reassembil-
ity in two steps. First, we execute binaries assembled
from UROBOROS’s output with test input shipped with
the software. Both COREUTILS and SPEC have test cases
shipped with the software by default. As for the REAL
programs, most of them do not have test cases, so we
develop input by ourselves to verify the major function-
ality. The input we use for testing the REAL collection is
listed in Table 2.

Second, we examine the false positives and false neg-
atives of our symbolization process for all the binaries of
the three collections. In our context, a false positive is an
immediate value that we mistakenly symbolize, while a
false negative is a symbol reference that we fail to iden-
tify.

As described in §4, we have different assumptions to
guide the symbolization process, so the correctness of
different assumption combinations are verified. Since the
three assumptions are orthogonal, there are eight differ-
ent combinations with the choices of the three assump-
tions. With limited resources, it is difficult to test all
244 programs on all assumption sets. With some ten-
tative experiments, we found that A1 is an assumption
which greatly improves the overall performance of our
disassembly and reassembly method. Therefore, we re-
duce the eight candidates to five by always including A1
except in the empty assumption set. In detail, the five
assumption sets applied are {} (empty set), {A1}, {A1,
A2}, {A1, A3}, and {A1, A2, A3}.

For all tested assumption sets, all reassembled binaries
from COREUTILS and REAL pass the functionality tests.
Some binaries from SPEC, however, fail to pass the tests,
which are listed in Table 3. With the assumption set {A1,
A2, A3}, only the 32-bit version of gobmk from SPEC
(out of 244 cases in total) fails the functionality test. By
inspecting this defected binary, we successfully locate
the cause of failure. Some 4-byte sequences in the data
sections happen to contain the same value as the start-
ing address of a function, but they are not code point-
ers. UROBOROS incorrectly symbolizes them, leading

to false positives. After we correct these errors, gobmk
successfully passes the test.

For symbol-level correctness verification, we provide
the statistics on false positives and false negatives of
symbolization. A false positive is an immediate value
that should not have been symbolized. A false negative
is an immediate value which should be symbolized but
failed to be after our symbolization process. We obtain
the ground truth by parsing the relocation information
provided by the linker.

We have verified all binaries in this step. Due to lim-
ited space, we only list the results for non-trivial cases,
namely programs with at least one symbolization false
positive or false negative with any assumption combina-
tion. Table 4 and 5 show the false positive and false nega-
tive analysis for 32-bit binaries, and Table 6 reports false
positive analysis for 64-bit binaries. There are no false
negatives on any of the 64-bit binaries. We emphasize in
particular that, with {A1, A2, A3} applied, among all the
244 binaries, only gobmk has a few false positives, and
none has false negatives.

The results of symbol-level verification are highly syn-
chronized with the results from the first stage—binaries
reassembled with no false positives or false negatives can
pass all test cases. The results show that symbolization
errors are found in gobmk no matter which assumption
set we apply. In particular, we have verified that sym-
bolization errors found in gobmk when applying {A1,
A2, A3} are all caused by program data colliding with
some function starting addresses. These collisions cause
a functionality test failure for 32-bit gobmk, but the 64-
bit version can pass the test due to the incompleteness
of test input. In summary, the two stages of verifica-
tion together imply that all three assumptions proposed
for symbolization are reasonable.

Although the symbolization errors occurring in the
case of gobmk seem conceptually “general”, our study
shows that the collisions are actually rare in practice, un-
less the disassembled binary has very large data sections
like gobmk does. See Appendix A for the symboliza-
tion errors in gobmk. On the other hand, UROBOROS
can successfully disassemble large and complicated bi-
naries like gcc and perlbench. Overall, the results
from two stages of correctness verification suggest that
UROBOROS is a promising tool with remarkable practi-
cal value.

6.2 Cost

The cost of UROBOROS manifests from three aspects:
size expansion of reassembled binaries, execution over-
head of reassembled binaries, and the processing time of
UROBOROS itself.Due to space restrictions, we only re-
port the evaluation results on 32-bit binaries in this paper.
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Table 3: Dynamic test results on reassembled binaries

Assumption Set Binaries Failing Functionality Tests
32-bit 64-bit

{} h264ref, gcc, gobmk, hmmer perlbench, gcc, gobmk, hmmer, sjeng, h264ref, lbm, sphinx3
{A1} h264ref, gcc, gobmk perlbench, gcc, gobmk
{A1, A2} h264ref, gcc, gobmk perlbench, gcc, gobmk
{A1, A3} gobmk gcc, gobmk
{A1, A2, A3} gobmk

Table 4: Symbolization false positives of 32-bit SPEC, REAL and COREUTILS (Others have zero false positive)

Benchmark # of Ref.
Assumption Set

{} {A1} {A1, A2} {A1, A3} {A1, A2, A3}
FP FP Rate FP FP Rate FP FP Rate FP FP Rate FP FP Rate

perlbench 76538 2 0.026‰ 0 0.000‰ 0 0.000‰ 0 0.000‰ 0 0.000‰
hmmer 13127 12 0.914‰ 0 0.000‰ 0 0.000‰ 0 0.000‰ 0 0.000‰
h264ref 20600 27 1.311‰ 1 0.049‰ 1 0.049‰ 0 0.000‰ 0 0.000‰
gcc 262698 49 0.187‰ 32 0.122‰ 32 0.122‰ 0 0.000‰ 0 0.000‰
gobmk 65244 1348 20.661‰ 985 15.097‰ 912 13.978‰ 78 1.196‰ 5 0.077‰
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Figure 5: Execution overhead for REAL and SPEC pro-
grams relative to the original versions

6.2.1 Execution Overhead

Some programs in COREUTILS are not suitable for per-
formance benchmarking, including su, nohup, and
timeout, etc. After excluding these programs, we
have 90 left to inspect in COREUTILS. The experiments
are conducted on a machine with Intel Core i7-3770
3.40GHz and 8GB memory running Ubuntu 12.04.

We present the execution slowdown of reassembled
binaries in Figure 5 and Figure 6. Since it is hard to
present the data of all 90 binaries from COREUTILS, we
sort COREUTILS programs by their names in alphabet
order and plot the data for the first and last 10 programs
in Figure 6. We report that the average slowdown for
is 0.44% for COREUTILS, 0.29% for SPEC and 0.52%
for REAL. The data suggests that UROBOROS does not
have any significant impact on the execution speed of re-
assembled binaries.
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Figure 6: Execution overhead for COREUTILS programs
relative to the original versions

6.2.2 Size Expansion

We use the stat program from GNU Coreutils to calcu-
late file size expansion of the reassembled binaries com-
pared to the originals. As the increase is generally negli-
gible, we only report the average data here. The average
expansion for COREUTILS is 0.83%, 0.00% for SPEC
and -0.02% for REAL. Data shows that UROBOROS
has almost zero impact on binary size when delivering
reassembility. As aforementioned in §5.6, subsequent
disassembly-reassembly iterations have zero expansion.

6.2.3 Processing Time

We measure how long it takes UROBOROS to disassem-
ble binaries. Figure 7 presents the processing time for
SPEC and REAL binaries. Figure 8 presents processing
time for COREUTILS binaries selected using a same al-
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Table 5: Symbolization false negatives of 32-bit SPEC, REAL and COREUTILS (Others have zero false negative)

Benchmark # of Ref.
Assumption Set

{} {A1} {A1, A2} {A1, A3} {A1, A2, A3}
FN FN Rate FN FN Rate FN FN Rate FN FN Rate FN FN Rate

perlbench 76538 2 0.026‰ 0 0.000‰ 0 0.000‰ 0 0.000‰ 0 0.000‰
hmmer 13127 12 0.914‰ 0 0.000‰ 0 0.000‰ 0 0.000‰ 0 0.000‰
h264ref 20600 27 1.311‰ 0 0.000‰ 0 0.000‰ 0 0.000‰ 0 0.000‰
gcc 262698 11 0.042‰ 0 0.000‰ 0 0.000‰ 0 0.000‰ 0 0.000‰
gobmk 65244 86 1.318‰ 0 0.000‰ 0 0.000‰ 0 0.000‰ 0 0.000‰

Table 6: Symbolization false positives of 64-bit SPEC, REAL and COREUTILS (Others have zero false positive). Also,
no false negatives are found for any binary.

Benchmark # of Ref.
Assumption Set

{} {A1} {A1, A2} {A1, A3} {A1, A2, A3}
FP FP Rate FP FP Rate FP FP Rate FP FP Rate FP FP Rate

perlbench 76952 32 0.416‰ 10 0.130‰ 10 0.130‰ 0 0.000‰ 0 0.000‰
gcc 259213 506 1.952‰ 126 0.486‰ 14 0.054‰ 112 0.432‰ 0 0.000‰
gobmk 65255 2437 37.346‰ 1079 16.535‰ 7 0.107‰ 1073 16.443‰ 1 0.015‰
hmmer 13165 11 0.836‰ 2 0.152‰ 0 0.000‰ 2 0.152‰ 0 0.000‰
sjeng 8837 22 2.490‰ 2 0.226‰ 0 0.000‰ 2 0.226‰ 0 0.000‰
h264ref 20264 15 0.740‰ 1 0.049‰ 0 0.000‰ 1 0.049‰ 0 0.000‰
lbm 248 1 4.032‰ 0 0.000‰ 0 0.000‰ 0 0.000‰ 0 0.000‰
sphinx3 8656 3 0.347‰ 0 0.000‰ 0 0.000‰ 0 0.000‰ 0 0.000‰
ctags 12997 2 0.154‰ 0 0.000‰ 0 0.000‰ 0 0.000‰ 0 0.000‰
gzip 3323 11 3.310‰ 0 0.000‰ 0 0.000‰ 0 0.000‰ 0 0.000‰
mongoose 3643 1 0.275‰ 0 0.000‰ 0 0.000‰ 0 0.000‰ 0 0.000‰
df 4202 1 0.238‰ 0 0.000‰ 0 0.000‰ 0 0.000‰ 0 0.000‰
du 4593 1 0.218‰ 0 0.000‰ 0 0.000‰ 0 0.000‰ 0 0.000‰
split 2851 1 0.351‰ 0 0.000‰ 0 0.000‰ 0 0.000‰ 0 0.000‰
timeout 1935 1 0.517‰ 0 0.000‰ 0 0.000‰ 0 0.000‰ 0 0.000‰
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Figure 7: Processing time for SPEC and REAL binaries

phabet order strategy. As expected, larger binaries take
more time to process. On average, UROBOROS spends
8.27 seconds on binaries from SPEC, 0.98 seconds on
binaries from REAL, and 0.57 seconds on binaries from
COREUTILS. We interpret this as a promising result, and
the efficiency of UROBOROS makes it a tool totally prac-
tical for production deployment.
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Figure 8: Processing time for COREUTILS binaries

7 Discussions and Limitations

Compiler Compatibility. Sometimes binary reverse
engineering is compiler dependent, but UROBOROS does
not explicitly depend on any compiler-specific features
as far as we know. To roughly investigate UROBOROS’s
compatibility with other compilers, we try to disassem-
ble and reassemble some binaries compiled by Clang,
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another widely used compiler different from GCC. We
only briefly present the results here due to limited space.
We repeat the same functionality verification described
in §6.1 on the 32-bit binaries in REAL, which are com-
piled by Clang this time. The applied assumption set in
this experiment is the empty assumption set, and all re-
assembled binaries can pass the functionality tests. We
plan to test UROBOROS’s compatibility in more depth in
the future.

C++ Binary Disassembly. The C++ programming lan-
guage has more specific features compared with C.
Binaries compiled from C++ programs often contain
more sections to store meta-information. At this point
UROBOROS still cannot fully support C++ disassembly,
but we have already worked out a blueprint on how to
recover these sections. There are two kinds of meta-
information sections specific to C++. We now briefly
discuss how to recover them.

• The .ctors and .init array sections contain
the addresses of constructor functions—functions
that need to be executed at start up before the main
function takes control. These sections can be di-
rectly dumped out and symbolized by treating them
as data sections.

• The .eh frame and .gcc except table
sections store the information used for stack un-
winding and exception handling for C++ programs
in the DWARF format [15]. There have been some
reverse engineering tools, e.g., Katana [38] and
IDA Pro, that can parse the DWARF data. By under-
standing the semantics of a DWARF entry, we can
adjust its content and make the reassembly flawless.

We leave fully supporting C++ binary disassembly as
part of our future work.

Availability of function starting addresses. We as-
sume the availability of the function starting addresses
in the input binary, as in this research we would like to
assess the assumptions and techniques we develop for the
symbolization problem. Identifying function starting ad-
dresses is an orthogonal research issue which has been
the focus of recent work [6, 41]. UROBOROS can lever-
age existing techniques to make the tool more practical.
Nevertheless, this is currently a limitation of UROBOROS
and we plan to investigate further in the future.

Data Section Relocation. By accepting the assump-
tion A2 (see §4), we fix the starting address of data sec-
tions, which leads to certain limitations related to the re-
location of data sections. However, data can still be ma-
nipulated as long as the starting addresses stay the same.

Besides, .bss section can be extended with new ele-
ments, as it is at the end of typical ELF binaries and the
increase of its size does not need to relocate other sec-
tions. In the future, it would be interesting to see whether
some more sophisticated heuristics or analysis can be de-
veloped to symbolize d2d references.

Extensions. We believe that we have built an enabling
technology that could be employed as the basis of many
important research and applications, such as software
fault isolation (SFI), control-flow integrity (CFI), ROP
defense, and in general software retrofitting for binary
code, which is extremely important for legacy code sys-
tems. Nevertheless, this is a first step in the toolchain
development. We plan to build and maintain a sustain-
able ecosystem, and also link to the existing ecosystems
such as LLVM [27] and CIL [36] by lifting assembly to
LLVM and CIL IR.

8 Conclusion

We have presented UROBOROS, a tool that can disassem-
ble stripped binaries and produce reassembleable assem-
bly code in a fully automated manner. We call this tech-
nique reassembleable disassembling and have developed
a prototype called UROBOROS. Our experiments show
that reassembled programs incur negligible execution
overhead, and thus UROBOROS can be potentially used
as a foundation for binary-based software retrofitting.
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A Symbolization Errors in gobmk

Among the 244 binaries from the COREUTILS, REAL,
and SPEC collections, we found 5 d2c reference sym-
bolization errors in gobmk, one of the largest SPEC pro-
grams, 4 of which are in the 32-bit version and 1 of which
is in the 64-bit version, all false positives.

The software gobmk is GNU Go (http://www.
gnu.org/software/gnugo/), a program for play-
ing the board game of Go. The program contains a fairly
large database of board configuration patterns. In order
to speed up pattern matching, it builds Deterministic Fi-
nite Automata (DFA) from the pattern database.

The five reference symbolization errors are
shown in Table 7 and Figure 9. In Figure 9,
the two arrays state owl attackpat and
state owl defendpat encode two DFAs with
24,701 and 34,044 entries, respectively. Each entry
represents a state in the corresponding DFA. Each
state has 5 numbers of the C short datatype, the current
state and its four neighbors, as Go games are played on
2-dimensional grid boards.

We found two consecutive states in DFA
state owl attackpat of the 64-bit gobmk
are {66,{0,0,0,0}},{70,{0,0,0,0}}. The two
C short int numbers 0 and 70 in the middle forms
0x460000 (little-endian), which happens to be the
starting address of function gtp trymove. Similar
patterns exist in the 32-bit gobmk. States in array
state owl defendpat forms value 0x080c0000
from two C short int numbers 0 and 2060 next to each
other (little-endian), which collides with the starting
address of function autohelperpat1029.

Table 7: Source code locations of symbolization errors
Program Location (file and line no.)
32-bit gobmk owl defendpat.c: 9688

owl defendpat.c: 9702
owl defendpat.c: 9703
owl defendpat.c: 9704
owl defendpat.c: 9761

64-bit gobmk owl attackpat.c: 5828

static const state_rt_t
state_owl_defendpat[34044] = {

...
{0,{2060,2061,2062,2063}}, ...
{0,{2060,2060,2060,2060}}, ...
{0,{2060,2060,2060,2060}}, ...
{0,{2060,2060,2060,2060}}, ...
{0,{2060,2060,2061,2060}}, ...

};

(a) 32-bit gobmk

static const state_rt_t
state_owl_attackpat[24701] = {

...
{66,{0,0,0,0}}, {70,{0,0,0,0}}, ...

};

(b) 64-bit gobmk

Figure 9: Source code of symbolization errors
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Abstract
Throughout the last few decades, computer software has

experienced an arms race between exploitation techniques
leveraging memory corruption and detection/protection
mechanisms. Effective mitigation techniques, such as
Address Space Layout Randomization, have significantly
increased the difficulty of successfully exploiting a vul-
nerability. A modern exploit is often two-stage: a first
information disclosure step to identify the memory layout,
and a second step with the actual exploit. However, be-
cause of the wide range of conditions under which memory
corruption occurs, retrieving memory layout information
from the program is not always possible.

In this paper, we present a technique that uses the
dynamic loader’s ability to identify the locations of critical
functions directly and call them, without requiring an
information leak. We identified several fundamental weak
points in the design of ELF standard and dynamic loader
implementations that can be exploited to resolve and
execute arbitrary library functions. Through these, we
are able to bypass specific security mitigation techniques,
including partial and full RELRO, which are specifically
designed to protect ELF data-structures from being co-
opted by attackers. We implemented a prototype tool,
Leakless, and evaluated it against different dynamic loader
implementations, previous attack techniques, and real-
life case studies to determine the impact of our findings.
Among other implications, Leakless provides attackers
with reliable and non-invasive attacks, less likely to trigger
intrusion detection systems.

1 Introduction

Since the first widely-exploited buffer overflow used by the
1998 Morris worm [27], the prevention, exploitation, and
mitigation of memory corruption vulnerabilities have oc-
cupied the time of security researchers and cybercriminals
alike. Even though the prevalence of memory corruption

vulnerabilities has finally begun to decrease in recent years,
classic buffer overflows remain the third most common
form of software vulnerability, and four other memory
corruption vulnerabilities pad out the top 25 [13].

One reason behind the decreased prevalence of mem-
ory corruption vulnerabilities is the heavy investment in
research on their prevention and mitigation. Specifically,
many mitigation techniques have been adopted in two
main areas: system-level hardening (such as CGroups [23],
AppArmor [4], Capsicum [41], and GRSecurity [18]) and
application-level hardening (such as stack canaries [3],
Address Space Layout Randomization (ASLR), and the
No-eXecute (NX) bit [8]).

In particular, Address Space Layout Randomization
(ASLR), by placing the dynamic libraries in a random lo-
cation in memory (unknown to the attacker), lead attackers
to perform exploits in two stages. In the first stage, the
attacker must use an information disclosure vulnerability,
in which information about the memory layout of the appli-
cation (and its libraries) is revealed, to identify the address
of code that represents security-critical functionality (such
as the system() library function). In the second stage, the
attacker uses a control flow redirection vulnerability to
redirect the program’s control flow to this functionality.

However, because of the wide range of conditions under
which memory corruptions occur, retrieving this informa-
tion from the program is not always possible. For example,
memory corruption vulnerabilities in parsing code (e.g.,
decoding images and video) often take place without a
direct line of communication to an attacker, precluding the
possibility of an information disclosure. Without this in-
formation, performing an exploit against ASLR-protected
binaries using current techniques is often infeasible or
unreliable.

As noted in [36], despite the race to harden applications
and systems, the security of some little-known aspects of
application binary formats and the system components
using them, have not received much scrutiny. In particular
we focus on the dynamic loader, a userspace component of
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the operating system, responsible for loading binaries, and
the libraries they depend upon, into memory. Binaries use
the dynamic loader to support the resolution of imported
symbols. Interestingly, this is the exact behavior that an
attacker of a hardened application attempts to reinvent by
leaking a library’s address and contents.

Our insight is that a technique to eliminate the need for
an information disclosure vulnerability could be developed
by abusing the functionality of the dynamic loader. Our
technique leverages weaknesses in the dynamic loader and
in the general design of the ELF format to resolve and exe-
cute arbitrary library functions, allowing us to successfully
exploit hardened applications without the need for an infor-
mation disclosure vulnerability. Any library function can
be executed with this technique, even if it is not otherwise
used by the exploited binary, as long as the library that it
resides in is loaded. Since almost every binary depends
on the C Library, this means our technique allows us to
execute security-critical functions such as system() and
execve(), allowing arbitrary command execution. We
will also show application-specific library functions can be
re-used to perform sophisticated and stealthy attacks. The
presented technique is reliable, architecture-agnostic, and
does not require the attacker to know the version, layout,
content, or any other unavailable information about the
library and library function in question.

We implemented our ideas in a prototype tool, called
Leakless1. To use Leakless, the attacker must possess
the target application, and have the ability to exploit the
vulnerability (i.e., hijack control flow). Given this infor-
mation, Leakless can automatically construct an exploit
that, without the requirement of an information disclosure,
invokes one or more critical library functions of interest.

To evaluate our technique’s impact, we performed a
survey of several different distributions of Linux (and
FreeBSD) and identified that the vast majority of binaries
in the default installation of these distributions are suscep-
tible to the attack carried out by Leakless, if a memory
corruption vulnerability is present in the target binary. We
also investigated the dynamic loader implementations of
various C Libraries, and found that most of them are sus-
ceptible to Leakless’ techniques. Additionally, we showed
that a popular mitigation technique, RELocation Read-
Only (RELRO), which protects library function calls from
being redirected by an attacker, is completely bypassable
by Leakless. Finally, we compared the length of Leakless’
ROP chains against ROP compilers implementing similar
functionality. Leakless produces significantly shorter ROP
chains than existing techniques, which, as we show, allows
it to be used along with a wider variety of exploits than
similar attacks created by traditional ROP compilers.

1The source code is available at: https://github.com/
ucsb-seclab/leakless

In summary, we make the following contributions:
• We develop a new, architecture- and platform-

agnostic attack, using functionality inherent in ELF-
based system that supports dynamic loading, to en-
able an attacker to execute arbitrary library functions
without an information disclosure vulnerability.

• We detail, and overcome, the challenges of imple-
menting our system for different dynamic loader
implementations and in the presence of multiple
mitigation techniques (including RELRO).

• Finally, we perform an in-depth evaluation, including
a case study of previously complicated exploits that
are made more manageable with our technique, an as-
sessment of the security of several different dynamic
loader implementations, a survey of the applicability
of our technique to different operating system config-
urations, and a measurement of the improvement in
the length of ROP chains produced by Leakless.

2 Related Work:
The Memory Corruption Arms Race

The memory corruption arms race (i.e., the process of
defenders developing countermeasures against known
exploit techniques, and attackers coming up with new
exploitation techniques to bypass these countermeasures)
has been ongoing for several decades. While the history
of this race has been documented elsewhere [37], this
section focuses on the sequence of events that has required
many modern exploits to be two-stage, that is, needing an
information disclosure step before an attacker can achieve
arbitrary code execution.

Early buffer overflow exploits relied on the ability to
inject binary code (termed shellcode) into a buffer, and
overwrite a return address on the stack to point into this
buffer. Subsequently, when the program would return from
its current function, execution would be redirected to the
attacker’s shellcode, and the attacker would gain control
of the program.

As a result, security researchers introduced another
mitigation technique: the NX bit. The NX bit has the effect
of preventing memory areas not supposed to contain code
(typically, the stack) from being executed.

The NX bit has pushed attackers to adapt the concept
of code reuse: using functionality already in the program
(such as system calls and security-critical library functions)
to accomplish their goals. In return-into-libc exploits [30,
39], an attacker redirects the control flow directly to a
sensitive libc function (such as system()) with the proper
arguments to perform malicious behavior, instead of using
injected shellcode.

To combat this technique, a system-level hardening
technique named Address Space Layout Randomization
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(ASLR) was developed. When ASLR is in place, the
attacker does not know the location of libraries, in fact,
the program’s memory layout (the locations of libraries,
the stack, and the heap) is randomized at each execution.
Because of this, the attacker does not know where in the
library to redirect the control flow in order to execute
specific functions. Worse, even if the attacker is able to
determine this information, he is still unable to identify
the location of specific functions inside the library unless
he is in possession of a copy of the library. As a result,
an attacker usually has to leak the contents of the library
itself and parse the code to identify the location of critical
functions. To leak these libraries, attackers often reuse
small chunks of code (called gadgets) in the program’s
code segment to disclose memory locations. These gadgets
are usually combined by writing their addresses onto
the stack and consecutively returning to them. Thus,
this technique is named Return Oriented Programming
(ROP) [35].

ROP is a powerful tool for attackers. In fact, it has been
shown that a “Turing-complete” set of ROP gadgets can be
found in many binaries and can be employed, with the help
of a ROP compiler, to carry out exploitation tasks [34].
However, because of their generality, ROP compilers tend
to produce long ROP chains that, depending on the specific
details of a vulnerability, are “too big to be useful” [22].
Later, we will show that Leakless produces relatively
short ROP chains, and, depending on present mitigations,
requires very few gadgets. Additionally, Leakless is able
to function without a Turing-complete gadget set.

In real-world exploits, an attacker usually uses an infor-
mation disclosure attack to leak the address or contents
of a library, then uses this information to calculate the
correct address of a security-critical library function (such
as system()), and finally sends a second payload to the
vulnerable application that redirects the control flow to
call the desired function.

In fact, we observed that that the goal of finding the
address of a specific library function is actually already
implemented by the dynamic loader, an OS component
that facilitates the resolution of dynamic symbols (i.e.,
determining the addresses of library functions). Thus,
we realized that we could leverage the dynamic loader to
remove the information disclosure step, and craft exploits,
which would work without the need of an information
disclosure attack. Since our attack does not require an
information leak step, we call it Leakless.

The concept of using the dynamic loader as part of the
exploitation process was briefly explored in the context of
return-into-libc attacks [15,21,30]. However, existing tech-
niques are extremely situational [30], platform-dependent,
require two stages [21], or are susceptible to current mit-
igation techniques such as RELRO [30], which we will
discuss in future sections. Leakless, on the other hand, is a

single-stage, platform-independent, general technique, and
is able to function in the presence of such mitigations.

In the next section, we will describe how the dynamic
loader works, and afterwards will show how we abuse this
functionality to perform our attack.

3 The Dynamic Loader

The dynamic loader is a component of the userspace
execution environment that facilitates loading the libraries
required by an application at start time and resolving
the dynamic symbols (functions or global variables) that
are exported by libraries and used by the application.
In this section, we will describe how dynamic symbol
resolution works on systems based on the ELF binary
object specification [33].

ELF is a standard format common to several Unix-like
platforms, including GNU/Linux and FreeBSD, and is
defined independently from any particular dynamic loader
implementation. Since Leakless mostly relies on standard
ELF features, it is easily applicable to a wide range of
systems.

3.1 The ELF Object
An application comprises a main binary ELF file (the

executable) and several dynamic libraries, also in ELF
format. Each ELF object is composed of segments, and
each segment holds one or more sections.

Each section has a conventional meaning. For instance,
the .text section contains the code of the program, the
.data section contains its writeable data (such as global
variables), and the .rodata section contains the read-only
data (such as constants and strings). The list of sections is
stored in the ELF file as an array of Elf Shdr structures.

Note that there are two versions of each ELF structure:
one version for 32-bit ELF binaries (e.g., Elf32 Rel) and
one for 64-bit (e.g., Elf64 Rel). We ignore this detail for
the sake of simplicity, except in specific cases where it is
relevant to our discussion.

3.2 Dynamic Symbols and Relocations
In this section, we will give a summary of the data

structures involved in ELF symbol resolution. Figure 1
gives an overview of these data structures and their mutual
relationships.

An ELF object can export symbols to and import sym-
bols from other ELF objects. A symbol represents a
function or a global variable and is identified by a name.

Each symbol is described by a corresponding Elf Sym
structure. This structure, instances of which comprise
the .dynsym ELF section, contains the following fields
relevant to our work:
st name. An offset, relative to the start of the .dynstr

section, where the string containing the name of the
symbol is located.
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Figure 1: The relationship between data structures involved
in symbol resolution (without symbol versioning). Shaded
background means read only memory.

st value. If the symbol is exported, the virtual address
of the exported function, NULL otherwise.

These structures are referenced to resolve imported
symbols. The resolution of imported symbols is supported
by relocations, described by the Elf Rel structure. In-
stances of this structure populate the .rel.plt section
(for imported functions) and the .rel.dyn section (for
imported global variables). In our discussion we are only
interested to the former section. The Elf Rel structure
has the following fields:
r info. The three least significant bytes of this field are

used as an unsigned index into the .dynsym section
to reference a symbol.

r offset. The location (as an absolute address) in mem-
ory where the address of the resolved symbol should
be written to.

When a program imports a certain function, the linker
will include a string with the function’s name in the
.dynstr section, a symbol (Elf Sym) that refers to it in
the .dynsym section, and a relocation (Elf Rel) pointing
to that symbol in the .rel.plt section.

The target of the relocation (the r offset field of the
Elf Rel struct) will be the address of an entry in a dedi-
cated table: the Global Offset Table (GOT). This table,
which is stored in the .got.plt section, is populated by
the dynamic loader as it resolves the relocations in the
.rel.plt section.

3.3 Lazy Symbol Resolution
Since resolving every imported symbol and applying all

relocations at application startup can be a costly operation,
symbols are resolved lazily. In lazy symbol resolution, the
address of a function (which corresponds to an entry in the
GOT) is only resolved when necessary (i.e., the first time
the imported function is called).

When a program wants to calls an imported function,
it instead calls a dedicated stub of code, located in the
Procedure Linkage Table (the .plt section). As shown in
Listing 1, each imported function has a stub in the PLT that
performs an unconditional indirect jump to the associated

entry in the GOT.
After symbol resolution, this GOT entry contains the

address of the actual function, in the imported library, and
execution continues seamlessly into this function. When
the function returns, control flow returns to the caller of
the PLT stub, and the rest of the PLT stub is not executed.
However, at program startup, GOT entries are initialized
with an address pointing to the second instruction of the
associated PLT stub. This part of the stub will push onto
the stack an identifier of the imported function (in the
form of an offset to an Elf Rel instance in the .rel.plt
section) and jump to the PLT0 stub, a piece of code at
the beginning of the .plt section. In turn, the PLT0 stub,
pushes the value of GOT[1] onto the stack and performs an
indirect jump to the address of GOT[2]. These two entries
in the GOT have a special meaning and the dynamic loader
populates them at application startup:
GOT[1]. A pointer to an internal data structure, of type

link map, which is used internally by the dynamic
loader and contains information about the current
ELF object needed to carry out symbol resolution.

GOT[2]. A pointer to a function of the dynamic loader,
called dl runtime resolve.

In summary, PLT entries basically perform the following
function call:

_dl_runtime_resolve(link_map_obj , reloc_index)

This function uses the link map obj parameter to ac-
cess the information it needs to resolve the desired im-
ported function (identified by the reloc index argument)
and writes the result into the appropriate GOT entry. Af-
ter dl runtime resolve resolves the imported function,
control flow is passed to that function, making the resolu-
tion process completely transparent to the caller. The next
time the PLT stub for the specified function is invoked
execution will be diverted directly to the target function.

Listing 1: Example PLT and GOT.
100 PLT0:
100 push *0x200
106 jmp *0x204
110 printf@plt:
110 jmp *0x208
116 push #0
11B jmp PLT0
120 read@plt:
120 jmp *0x20C
126 push #1
12B jmp PLT0

196 ; .plt.got start
196 ; Empty entry
196 0
200 ; link_map object
200 &link_map_obj
204 ; Resolver function
204 &_dl_runtime_resolve
208 ; printf entry
208 0x116
20C ; read entry
20C 0x126

The link map structure contains all the information
that the dynamic loader needs about a loaded ELF object.
Each link map instance is an entry in a doubly-linked list
containing the information about all loaded ELF objects.

3.4 Symbol Versioning
The ELF standard provides a mechanism to import a

symbol with a specific version associated with it. This
feature is used to require a function to be imported from a
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Table 1: Entries of the .dynamic section. d tag is the
key, while d value is the value.

d tag d value

DT SYMTAB .dynsym

DT STRTAB .dynstr

DT JMPREL .rel.plt

d tag d value

DT PLTGOT .got.plt

DT VERNEED .gnu.version

DT VERSYM .gnu.version r

specific version of a library. For instance, it is possible
to require the fopen C Standard Library function, as
implemented in version 2.2.5 of the GNU C Standard
Library, using the version identifier GLIBC 2.2.5. The
.gnu.version r section contains version definitions in
the form of Elf Verdef structures.

The association between a dynamic symbol and the
Elf Verdef structure that it refers to is kept in the
.gnu.version section, as an array of Elf Verneed struc-
tures, one for each entry in the dynamic symbol table.
These structures have a single field: a 16-bit integer that
represents an index into the .gnu.version r section.

Due to this layout, the index in the r info field of the
Elf Rel structure is used by the dynamic loader as an
index into both the .dynsym and .gnu.version sections.
This is important to understand, as Leakless will later
leverage this fact.

3.5 The .dynamic section and RELRO
The dynamic loader collects all the information that it

needs about the ELF object from the .dynamic section,
which is composed of Elf Dyn structures. An Elf Dyn is
a key-value pair that stores different types of information.
The relevant entries of this section, shown in Table 1, hold
the absolute addresses of specific sections. One exception
is the DT DEBUG entry, which holds a pointer to an internal
data structure of the dynamic loader. This is initialized by
the dynamic loader and is used for debugging purposes.

An attacker able to tamper with these values can pose
a security risk. For this reason, a protection mechanism
known as RELRO (RELocation Read Only) has been
introduced in dynamic loaders. RELRO comes in two
flavors: partial and full.
Partial RELRO In this mode, some sections, including

.dynamic, are marked as read-only after they have
been initialized by the dynamic loader.

Full RELRO In addition to partial RELRO, lazy resolu-
tion is disabled: all import symbols are resolved at
startup time, and the .got.plt section is completely
initialized with the final addresses of the target func-
tions and marked read-only. Moreover, since lazy
resolution is not enabled, the GOT[1] and GOT[2] en-
tries are not initialized with the values we mentioned
in Section 3.3.

As we will see, RELRO poses significant complications
that Leakless must (and does) address in order to operate

in the presence of these countermeasures.
Note that the previously mentioned link map structure

stores in the l info field an array of pointers to most of
entries in the .dynamic section for internal usage. Since
the dynamic loader trusts the content of this field implicitly,
Leakless will later be able to misuse this to its own ends.

4 The Attack

Leakless enables an attacker to call arbitrary library func-
tions, using only their name, without any information
about the memory layout of the vulnerable program’s
libraries. To achieve this, Leakless abuses the dynamic
loader, forcing it to resolve and call the requested func-
tion. This is possible for the same reason that memory
corruption vulnerabilities are so damaging: the mixing
of control data and non-control data in memory. In the
case of a stack overflow, the control data in question is a
stored return address. For the dynamic loader, the control
data is comprised of the various data structures that the
dynamic loader uses for symbol resolution. Specifically,
the name of the function, stored in the .dynstr section, is
analogous to a return address: it specifies a specific target
to execute when the function is invoked.

The dynamic loader makes the assumption that the
parameters it receives and its internal structures are trust-
worthy because it assumes that they are provided directly
by the ELF file or by itself during initialization. However,
when an attacker is able to modify this data, the assump-
tion is broken. Some dynamic loaders (FreeBSD) validate
the input they receive. However, they still implicitly trust
the control structures, which will be readily corrupted by
Leakless.

Leakless is designed to be used by an attacker who is
attempting to exploit an existing vulnerability. The input
to Leakless is comprised of the executable ELF file, a set
of ROP gadgets of the binary (we detail what gadgets an
attacker needs in Section 5.1), and the name of a library
function that the attacker wishes to call (typically, but not
necessarily, execve()). Given this information, Leakless
outputs a ROP payload that executes the needed library
function, bypassing various hardening techniques applied
to the binary in question. This ROP chain is generally very
short: depending on the mitigations present in the binary,
the chain is 3 to 12 write operations. Some examples
of the output produced by Leakless are available in the
documentation of the Leakless code repository [17].

Leakless does not require any information about the
addresses or contents of the libraries; we assume that
ASLR is enabled for all dynamic libraries and that no
knowledge about them is available. However we also
assume that the executable is not position-independent,
and, thus, is always loaded in a specific location in memory.
We discuss this limitation in detail in Section 7.2, and show
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(a) Example of the attack presented in Section 4.1. The attacker
is able to overwrite the value of the DT STRTAB dynamic entry,
tricking the dynamic loader into thinking that the .dynstr
section is in .bss, where he crafted a fake string table. When the
dynamic loader will try to resolve the symbol for printf it will
use a different base to reach the name of the function and will
actually resolve (and call) execve.

.rel.plt .bss

...

r info

r offset
...

Elf
Rel

r info

r offset

st name

st info
...

execve\0
...
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f
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Elf
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dl runtime resolve(l info, reloc index)

(b) Example of the attack presented in Section 4.2. The
reloc index passed to dl runtime resolve overflows the
.rel.plt section and ends up in .bss, where the attacker crafted
an Elf Rel structure. The relocation points to an Elf Sym lo-
cated right afterwards overflowing the .dynsym section. In
turn the symbol will contain an offset relative to .dynstr large
enough to reach the memory area after the symbol, which con-
tains the name of the function to invoke.

Figure 2: Illustration of some of the presented attacks. Shaded background means read only memory, white background
means writeable memory and bold or red means data crafted by the attacker.

how infrequently Position Independent Executables (PIE)
binaries occur in modern OS distributions in Section 6.2.

While in most cases, Leakless works independently of
the dynamic loader implementation and version that the
target system is running, some of our attacks require minor
modifications to accommodate different dynamic loaders.

Note that Leakless’s aim, obtaining the address of a
library function and call it, is similar to what the dlsym
function of libdl does. However, in practice this function
is rarely used by applications and, therefore, its address is
not generally known to the attacker.

4.1 The Base Case
As explained in Section 3 and illustrated in Figure 1, the

dynamic loader starts its work from a Elf Rel structure
in the .rel.plt, then follows the index into the .dynsym
section to locate the Elf Sym structure, and finally uses
that to identify the name (a string in the .dynstr section)
of the symbol to resolve. The simplest way to call an
arbitrary function would be to overwrite the string table
entry of an existing symbol with the name of the desired
function, and then invoke the dynamic loader, but this is
not possible, as the section containing the string table for
dynamic symbols, i.e., .dynstr, is not writeable.

However, the dynamic loader obtains the address of
the .dynstr section from the DT STRTAB entry of the
.dynamic section, which is at a known location and, by
default, writeable. Therefore, as shown in Figure 2a, it
is possible to overwrite the d val field of this dynamic
entry with a pointer to a memory area under the control of
the attacker (typically the .bss or .data section). This
memory area would then include a single string, for ex-

ample execve. At this point, the attacker needs to choose
an existing symbol pointing to the correct offset in the
fake string table and invoke the resolution of relocation
corresponding to that symbol. This can be done by pushing
the offset of this relocation on the stack and then jumping
to PLT0.

This approach is simple, but it is only effective against
binaries in which the .dynamic section is writeable. More
sophisticated attacks must be used against binary compiled
with partial or full RELRO.

4.2 Bypassing Partial RELRO
As we explained in Section 3.3, the second parameter

of the dl runtime resolve function is the offset of an
Elf Rel entry in the relocation table (.rel.plt section)
that corresponds to the requested function. The dynamic
loader takes this value and adds it to the base address of
the .rel.plt to obtain the absolute address of the target
Elf Rel structure. However most dynamic loader imple-
mentations do not check the boundaries of the relocation
table. This means that if a value larger than the size of the
.rel.plt is passed to dl runtime resolve, the loader
will use the Elf Rel at the specified location, despite
being outside the .rel.plt section.

As shown in Figure 2b, Leakless computes an index that
will lead dl runtime resolve to look into a memory
area under the control of the attacker. It then crafts an
Elf Rel structure that contains, in its r offset field, the
address of the writeable memory location where the ad-
dress of the function will be written. The r info field will,
in turn, contain an index that causes the dynamic loader to
look into the attacker-controlled memory. Leakless stores
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a crafted Elf Sym object at this location, which, likewise,
holds a st name field value large enough to point into
attacker-controlled memory. Finally, this location is where
Leakless stores the name of the desired function to call.

In sum, Leakless crafts the full chain of structures
involved in symbol resolution, co-opting the process to
invoke the function whose name Leakless has written into
attacker-controlled memory. After this, Leakless pushes
the computed offset to the fake Elf Rel structure onto the
stack and invokes PLT0.

However, this approach is subject to several constraints.
First, the symbol index in Elf Rel has to be positive,
since the r info field is defined by the ELF standard as an
unsigned integer. In practice, this means that the writable
memory area (e.g., the .bss section) must be located after
the .dynsym section. In our evaluation, this has always
been the case.

Another constraint arises when the ELF makes use of
the symbol versioning system described in Section 3.4.
In this case, the Elf Rel.r info field is not just used
as an index into the dynamic symbol table, but also as
an index in the symbol version table (the .gnu.version
section). In general, Leakless is able to automatically
satisfy these constraints, except for x86-64 small binaries
using huge pages [32]. We detail the additional constraints
introduced by symbol versioning in Appendix A. When the
constraints cannot be satisfied, an alternate approach must
be adopted. This involves abusing the dynamic loader by
corrupting its internal data structures to alter the dynamic
resolution process.

4.3 Corrupting Dynamic Loader Data
We recall that the first parameter to

dl runtime resolve is a pointer to a data struc-
ture of type link map. This structure contains information
about the ELF executable, and the contents of this structure
are implicitly trusted by the dynamic loader. Furthermore,
Leakless can obtain the address of this structure from the
second entry of the GOT of the vulnerable binary, whose
location is deterministically known.

Recall from Section 3.5 that the link map structure,
in the l info field, contains an array of pointers to the
entries of the .dynamic section. These are the pointers
that the dynamic loader uses to locate the objects that are
used during symbol resolution. As shown in Figure 3,
by overwriting part of this data structure, Leakless can
make the DT STRTAB entry of the l info field point to a
specially-crafted dynamic entry which, in turn, points to a
fake dynamic string table. Hence, the attacker can reduce
the situation back to the base case presented in Section 4.1.

This technique has wider applicability than the one
presented in the previous section, since there are no specific
constraints, and, in particular, it is applicable also against
small 64 bit ELF binaries using huge pages. However,
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Figure 3: Example of the attack presented in Section 4.3.
The attacker dereferences the second entry of the GOT
and reaches the link map structure. In this structure he
corrupts the entry of the l info field holding a pointer
to the DT STRTAB entry in the dynamic table. Its value is
set to the address of a fake dynamic entry which, in turn,
points to a fake dynamic string table in the .bss section.

while in the previous attacks we were relying exclusively
on standard ELF features, in this case (and in the one
presented in the next section) we assume the layout of
a glibc-specific structure (link map) to be known. Each
dynamic loader implements this structure in its own way,
so minor modifications might be required when targeting
a different dynamic loader. Note that link map’s layout
might change among versions of the same dynamic loader.
However, they tend to be quite stable, and, in particular, in
glibc no changes relevant to our attack have taken place
since 2004.

4.4 The Full RELRO Situation
Leakless is able to bypass full RELRO protection.
When full RELRO is applied, all the relocations are

resolved at load-time, no lazy resolving takes place,
and the addresses of the link map structure and of
dl runtime resolve in the GOT are never initialized.

Thus, it is not directly possible to know their addresses,
which is what the general technique to bypass partial
RELRO relies upon.

However, it is possible to indirectly recover these two
values through the DT DEBUG entry in the dynamic table.
The value of the DT DEBUG entry is set by the dynamic
loader at load-time to point to a data structure of type
r debug. This data structure contains information used
by debuggers to identify the base address of the dynamic
loader and to intercept certain events related to dynamic
loading. In addition, the r map field of this structure
holds a pointer to the head of the linked list of link map
structures.

Leakless corrupts the first entry of the list describing the
ELF executable so that the l info entry for DT STRTAB
points to a fake dynamic string table. This is presented in
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Figure 4: Example of the attack presented in Section 4.4. Shaded background means read only memory, white background
means writeable memory and bold or red means data crafted by the attacker. The attacker goes through the DT DEBUG
dynamic entry to reach the r debug structure, then, dereferencing the r map field, he gets to the link map structure of
the main executable, and corrupts l info[DT STRTAB] as already seen in Section 3.
Since the .got.plt section is read-only due to full RELRO, the attacker also have to forge a relocation. To do so, he
corrupts l info[DT JMPREL] making it point to a fake dynamic entry in turn pointing to a relocation. This relocation
refers to the existing printf symbol, but has an r offset pointing to a writeable memory area.
Then the attacker also needs to recover the pointer to the dl runtime resolve function, which is not available in the
GOT of the main executable due to full RELRO, therefore he dereferences the l info field of the first link map structure
and gets to the one describing the first shared library, which is not protected by full RELRO. The attacker accesses the
l info[DT PLTGOT] field and gets to the corresponding dynamic entry (the .dynamic on the right), and then to the
.plt.got section (always on the right), at the second entry of which he can find the address of dl runtime resolve.

Figure 4.

After this, Leakless must invoke dl runtime resolve,
passing the link map structure that it just corrupted as
the first argument and an offset into the new .dynsym as
the second parameter. However, as previously mentioned,
dl runtime resolve is not available in the GOT due to

full RELRO. Therefore, Leakless must look for its address
in the GOT of another ELF object, namely, a library loaded
by the application that is not protected by full RELRO.
In most cases, only ELF executables are compiled with
full RELRO, and libraries are not. This is due to the
fact that RELRO is designed to harden, at the cost of
performance, specific applications that are deemed “risky”.
Applying full RELRO to a shared library would impact the
performance of all applications making use of this library,
and thus, libraries are generally left unprotected. Since the

order of libraries in the linked list is deterministic, Leakless
can dereference the l next entry in link map to reach
the entry describing a library that is not protected by full
RELRO, dereference the entry in l info corresponding
to the DT PLTGOT dynamic entry, dereference its value
(i.e., the base address of that library’s GOT), and read the
address of dl runtime resolve from this GOT.

Leakless must then overcome a final issue:
dl runtime resolve will not only call the target

function, but will also try to write its address to the
appropriate GOT entry. If this happens, the program
will crash, as the GOT is read-only when full RELRO
is applied. We can circumvent this issue by faking the
DT JMPREL dynamic entry in the link map structure
that points to the .rel.dyn section. Leakless points it
to an attacker-controlled memory area and writes an
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Elf Rel structure, with a target (r offset field) pointing
to a writeable memory area, referring to the symbol we
are targeting. Therefore, when the library is resolved,
the address will be written to a writeable location, the
program will not crash, and the requested function will be
executed.

5 Implementation

Leakless analyzes a provided binary to identify which
of its techniques is applicable, crafts the necessary data
structures, and generates a ROP chain that implements the
chosen technique. The discovery of the initial vulnerability
itself, and the automatic extraction of usable gadgets from
a binary are orthogonal to the scope of our work, and have
been well-studied in the literature and implemented in the
real world [6, 16, 19, 20, 34, 38]. We designed Leakless to
be compatible with a number of gadget finding techniques,
and have implemented a manual backend (where gadgets
are provided by the user) and a backend that utilizes
ROPC [22], an automated ROP compiler prototype built
on the approach proposed by Q [34].

We also developed a small test suite, composed of a
small C program with a stack-based buffer overflow com-
piled, alternatively, with no protections, partial RELRO,
and full RELRO. The test suite runs on GNU/Linux with
the x86, x86-64 and ARM architectures and with FreeBSD
x86-64.

5.1 Required Gadgets
Leakless comprises four different techniques that are

used depending on the hardening techniques applied to the
binary. These different techniques require different gadgets
to be provided to Leakless. A summary of the types of
gadgets is presented in Table 2. The write memory gadget
is mainly used to craft data structures at known memory
locations, while the deref write gadget to traverse and
corrupt data structures (in particular link map). The
deref save and copy to stack gadgets are used only
in the full RELRO case. The aim of the former is to
save at a known location the address of link map and
dl runtime resolve, while the latter is used to copy
link map and the relocation index on the stack before
calling dl runtime resolve, since using PLT0 is not a
viable solution.

For the interested reader, we provide in-depth examples
of executions of Leakless in the presence of two different
sets of mitigation techniques in the documentation of the
Leakless code repository [17].

6 Evaluation

We evaluated Leakless in four ways. First, we determined
the applicability of our technique against different dy-

namic loader implementations. We then analyzed the
binaries distributed by several popular GNU/Linux and
BSD distributions (specifically, Ubuntu, Debian, Fedora,
and FreeBSD) to determine the percentage of binaries
that would be susceptible to our attack. Then we applied
Leakless in two real-world exploits against a vulnerable
version of Wireshark and in a more sophisticated attack
against Pidgin. Finally we used a Turing-complete ROP
compiler to implement the approach used in Leakless and
two other previously used techniques, and compared the
size of the resulting chains.

6.1 Dynamic Loaders
To show Leakless’ generality, especially across different

ELF-based platforms, we surveyed several implementa-
tions of dynamic loaders. In particular, we found that
the dynamic loader part of the GNU C Standard Library
(also known as glibc and widely used in GNU/Linux dis-
tributions), several other Linux implementations such as
dietlibc, uClibc and newlib (widespread in embedded sys-
tems) and the OpenBSD and NetBSD implementations are
vulnerable to Leakless. Another embedded library, musl,
instead, is not susceptible to our approach since it does not
support lazy loading. Bionic, the C Standard Library used
in Android, is also not vulnerable since it only supports
PIE binaries. The most interesting case, out of all the
loaders we analyzed, is FreeBSD’s implementation. In
fact, it is the only one which performs boundary checks
on arguments passed to dl runtime resolve. All other
loaders implicitly trust input arguments argument. Fur-
thermore, all analyzed loaders implicitly trust the control
structures that Leakless corrupts in the course of most of
its attacks.

In summary, out of all of the loaders we analyzed, only
two are immune to Leakless by design: musl, which does
not support lazy symbol resolution, and bionic, which
only supports PIE executables. Additionally, because
the FreeBSD dynamic loader performs bounds checking,
the technique explained in Section 4.2 is not applicable.
However, the other techniques still work.

6.2 Operating System Survey
To understand Leakless’ impact on real-world systems,

we performed a survey of all binaries installed in default
installations of several different Linux and BSD distribu-
tions. Specifically, we checked all binaries in /sbin, /bin,
/usr/sbin, and /usr/bin on these systems and classified
the binaries by the applicability of the techniques used
by Leakless. The distributions that we considered were
Ubuntu 14.10, Debian Wheezy, Fedora 20, and FreeBSD
10. We used both x86 and x86-64 versions of these sys-
tems. On Ubuntu and Debian, we additionally installed the
LAMP (Linux, Apache, MySQL, PHP) stack as an attempt
to simulate a typical server deployment configuration.

The five categories that we based our ratings on are as
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Table 2: Gadgets required for the various approaches. The “Signature” column represents the name of the gadget and the
parameters it accepts, while “Implementation” presents the behavior of the gadget in C-like pseudo code. The last four
columns indicate whether a certain gadget is required for the corresponding approach presented in Section 4. Under
RELRO, “N” indicates RELRO is disabled, “P” means partial RELRO is used, “H” stands for the partial RELRO and
small 64 bit binaries using huge pages, and “F” denotes that full RELRO is enabled.

RELRO
Signature Implementation N P H F

write memory(destination, value) ∗(destination) = value � � � �

deref write(pointer, o f f set, value) ∗(∗(pointer)+o f f set) = value � �

deref save(destination, pointer, o f f set) ∗(destination) = ∗(∗(pointer)+o f f set) �

copy to stack(o f f set, source) ∗(stack pointer+o f f set) = ∗(source) �

follows:

Unprotected. This category includes binaries that have
no RELRO or PIE. For these binaries, Leakless
can apply its base case technique, explained in Sec-
tion 4.1.

Partial RELRO. Binaries that have partial RELRO, but
lack PIE, fall into this category. In this case, Leakless
would apply the technique described in Section 4.2.

Partial RELRO (huge pages). Binaries in this category
have partial RELRO, use huge pages, and are very
small, therefore, they require Leakless to use the
technique described in Section 4.3. They are included
in this category.

Full RELRO. To attack binaries that use full RELRO,
which comprise this category, Leakless must apply
the technique presented in Section 4.4.

Not susceptible. Finally, we consider binaries that use
PIE to be insusceptible to Leakless (further discussion
on this in Section 7.2).

The results of the survey, normalized to the total number
of binaries in an installation, are presented in Figure 5.
We determined that, on Ubuntu, 84% of the binaries were
susceptible to at least one of our techniques and 16% were
protected with PIE. On Debian, Leakless can be used
on 86% of the binaries. Fedora has 76% of susceptible
binaries. Interestingly, FreeBSD ships no binaries with
RELRO or PIE, and is thus 100% susceptible to Leakless.

Additionally, we performed a survey on the shared
libraries of the systems we considered. We found that,
on average, only 11% of the libraries had full RELRO
protection. This has some interesting implications for
Leakless: for a given binary, the likelihood of finding a
loaded library without full RELRO is extremely high and,
even if a vulnerable binary employs RELRO, Leakless
can still apply its full RELRO attack to bypass this. This
has the effect of making RELRO basically useless as a
mitigation technique, unless it is applied system-wide.
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Figure 5: Classification of the binaries in default in-
stallations of target distributions. Binaries marked as
Unprotected, Partial RELRO, Partial RELRO HP and
Full RELRO require, respectively, to the attacks detailed in
Sections 4.1, 4.2, 4.3 and 4.4, while for Not susceptible
binaries, the Leakless approach is not applicable

6.3 Case Study: Wireshark
We carried out a case study in applying Leakless to a

vulnerability in a program that does not present a direct
line of communication to the attacker. In other words, the
exploit must be done in one-shot, with no knowledge of
the layout of the address space or the contents of libraries.

We picked a recent (April 2014) vulnerability [7], which
is a stack-based buffer overflow in Wireshark’s MPEG
protocol parser in versions 1.8.0 through 1.8.13 and 1.10.0
through 1.10.6. We carried out our experiments against a
Wireshark 1.8.2 binary compiled with partial RELRO and
one compiled with full RELRO. Both were compiled for
x86-64 on Debian Wheezy and used the GNU C Library,
without other protections such as PIE and stack canaries.

We used the manual Leakless backend to identify the
required gadgets to construct the four necessary primitives
(described in Section 5.1): write memory, deref write,
deref save and copy to stack. In the case of Wireshark, it
was trivial to find gadgets to satisfy all of these primitives.
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Leakless was able to construct a one-shot exploit using
the attacks presented in Section 4.2 and Section 4.4. In
both cases, the exploit leverages the dynamic loader in
order to call the execve function from glibc to launch an
executable of our choice.

6.4 Case Study: Pidgin
We also applied Leakless to Pidgin, a popular multi-

protocol instant-messaging client, to build a more so-
phisticated exploit. Specifically, we wanted to perform a
malicious operation without calling any anomalous sys-
tem call (e.g. execve("/bin/sh")) which could trigger
intrusion detection systems. We used Pidgin 2.10.7, build-
ing it from the official sources with RELRO enabled and
targeting the x86 architecture.

To this end, we crafted an exploit designed to mas-
querade itself in legitimate functionality present in the
application logic: tunneling connections through a proxy.
The idea of the attack is that an IM service provider ex-
ploits a vulnerability such as CVE-2013-6487 [14] to
gain code execution, and, using Pidgin’s global proxy
settings, redirects all IM traffic through a third-party server
to enable chat interception.

Once we identified the necessary gadgets to use Leak-
less with full RELRO protection, it was easy to invoke
functions contained in libpurple.so (where the core of
the application logic resides) to perform the equivalent of
the C code shown in Listing 2.

Listing 2: The Pidgin attack.

void *p, *a;
p = purple_proxy_get_setup (0);
purple_proxy_info_set_host(p, "legit.com");
purple_proxy_info_set_port(p, 8080);
purple_proxy_info_set_type(p, PURPLE_PROXY_HTTP);

a = purple_accounts_find("usr@xmpp", "prpl -xmpp");
purple_account_disconnect(a);
purple_account_connect(a);

Interestingly, some of this library-provided functionality
is not imported into the Pidgin executable itself, and
would be very challenging to accomplish in a single-stage
payload, without Leakless.

6.5 ROP chain size comparison
To prove the effectiveness of the Leakless approach, we

compared it with two existing techniques that allow an
attacker to call arbitrary library functions. The first consists
in scanning a library backwards, starting from an address in
the .plt.got section, until the ELF header is found, and
then scan forward to find a fingerprint of the function the
attacker wants to invoke. This approach is feasible, but not
very reliable, since different versions (or implementations)
of a library might not be uniquely identified with a single
fingerprint. The second technique is more reliable, since
it implements the full symbol resolution process, as it is
carried out by the dynamic loader.

Table 3: Size of the ROP chains generated by ROPC for
each technique presented in Section 6.5, and by Leakless’
manual backend (*). The second column represents the
size in bytes for the setup and the first call, while the
third column shows the additional cost (in bytes) for each
subsequent call. Finally, the fourth column indicates the
percentage of vulnerabilities used in Metasploit that would
be feasible to exploit with a ROP chain of the First call
size.

Technique First call Subsequent Feasibility

ROPC - scan library 3468 bytes +340 bytes 16.38%

ROPC - symbol resolution 7964 bytes +580 bytes 8.67%

Leakless partial RELRO 648 bytes +84 bytes 73.78%

Leakless full RELRO 2876 bytes +84 bytes 17.44%

Leakless* partial RELRO 292 bytes +48 bytes 95.24%

Leakless* full RELRO 448 bytes +48 bytes 88.9%

We implemented these two approaches using a Turing-
complete ROP compiler for x86, based on Q [34], called
ROPC [22]. We compare these approaches against that
of Leakless’ ROPC backend, in partial RELRO and full
RELRO modes. For completeness, we also include the
Leakless’ manual backend, with gadgets specified by the
user.

In fact, the size of a ROP payload is critical, vulnera-
bilities often involve an implicit limit on the size of the
payload that can be injected into a program. To measure
the impact of Leakless’ ROP chain size, we collected the
size limits imposed on payloads of all the vulnerability
descriptions included in the Metasploit Framework [31], a
turn-key solution for launching exploits against known
vulnerabilities in various software. We found that 946 of
the 1,303 vulnerability specifications included a maximum
payload size, with an average specified maximum payload
size of 1332 bytes. To demonstrate the increase in the
feasibility of automatically generating complex exploits,
we include, for each evaluated technique, the percentage
of Metasploit vulnerabilities for which the technique can
automatically produce short enough ROP chains.

The results, in terms of length of the ROP chain gener-
ated for ROPC’s test binaries and feasibility against the
vulnerabilities used in Metasploit, are shown in Table 3.
Leakless outperforms existing techniques, not only in the
absolute size of the ROP chain to perform the initial call,
but also in the cost of performing each additional call,
which is useful in a sophisticated attack such as the one
demonstrated in Section 6.4.
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7 Discussion

In this section, we will discuss several aspects relating to
Leakless: why the capabilities that it provides to attackers
are valuable, when it is most applicable, what its limitations
are, and what can be done to mitigate against them.

7.1 Leakless Applications
Leakless represents a powerful tool in the arsenal of

exploit developers, aiding them in three main areas: func-
tionality reuse, one-shot exploitation, and ROP chains
shortening.

One-shot exploitation. While almost any exploit can
be simplified by Leakless, we have designed it with the
goal of enabling exploits that, without it, require an infor-
mation disclosure vulnerability, but for which an informa-
tion disclosure is not feasible or desirable. A large class
of programs that fall under this category are file format
parsers.

Code that parses file formats is extremely complex and,
due to the complex, untrusted input that is involved, this
code is prone to memory corruption vulnerabilities. There
are many examples of this: the image parsing library
libpng had 27 CVE entries over the last decade [10], and
libtiff had 53 [11]. Parsers of complex formats suffer
even more: the multimedia library ffmpeg has accumu-
lated 170 CVE entries over the last five years alone [9].
This class of libraries is not limited to multimedia. Wire-
shark, a network packet analyzer, has 285 CVE entries,
most of which are vulnerabilities in network protocol
analysis plugins [12].

These libraries, and others like them, are often used
offline. The user might first download a media or PCAP
file, and then parse it with the library. At the point where
the vulnerability triggers, an attacker cannot count on
having a direct connection to the victim to receive an
information disclosure and send additional payloads. Fur-
thermore, most of these formats are passive, meaning that
(unlike, say, PDF), they cannot include scripts that the
attacker can use to simulate a two-step exploitation. As a
result, even though these libraries might be vulnerable,
exploits for them are either extremely complex, unreliable,
or completely infeasible. By avoiding the information
disclosure step, Leakless makes these exploits simpler,
reliable, and feasible.

Functionality reuse. Leakless empowers attackers
to call arbitrary functions from libraries loaded by the
vulnerable application. In fact, the vulnerable application
does not have to actually import this function; it just needs
to link against the library (i.e., call any other function in
the library). This is brings several benefits.

To begin with, the C Standard Library, which is linked
against by most applications, includes functions that wrap
almost every system call (e.g., read(), execve(), and so

on). This means that Leakless can be used to perform any
system call, in a short ROP chain, even without a system
call gadget.

Moreover, as demonstrated in Section 6.4, Leakless
enables easy reuse of existing functionality present in the
application logic. This is important for two reasons.

First, this helps an attacker perform stealthy attacks by
making it easier to masquerade an exploit as something
the application might normally do. This can be crucial
when a standard exploitation path is made infeasible by the
presence of protection mechanisms such as seccomp [2],
AppArmor [1], or SELinux [25].

Second, depending on the goals of the attacker, reusing
program functionality may be better than simply executing
arbitrary commands. Aside from the attack discussed
in our Pidgin case study, an attacker can, for example,
silently enable insecure cipher-suites, or versions of SSL,
in the Firefox web browser with a single function call to
SSL CipherPrefSetDefault [24].

Shorter ROP chains. As demonstrated in Section 6.5,
Leakless produces shorter ROP chains than existing tech-
niques. In fact, in many cases, Leakless is able to produce
ROP chains less than one kilobyte that lead to the execu-
tion of arbitrary functions. As many vulnerabilities have a
limit as to the maximum size of the input that they will
accept, this is an important result. For example, the vulner-
ability that we exploited in our Pidgin case study allowed
a maximum ROP chain of one kilobyte. Whereas normal
ROP compilation techniques would be unable to create au-
tomatic payloads for this vulnerability, Leakless was able
to call arbitrary functions via an automatically-produced
ROP chain that remained within the length limit.

7.2 Limitations
Leakless’ biggest limitation is the inability to handle

Position Independent Executables (PIEs) without a prior
information disclosure. This is a general problem to any
technique that uses ROP, as the absolute addresses of
gadgets must be provided in the ROP chain. Additionally,
without the base address of the binary, Leakless would be
unable to locate the dynamic loader structures that it needs
to corrupt.

When presented with a PIE executable, Leakless re-
quires the attacker to provide the application’s base ad-
dress, which is presumably acquired via an information
disclosure vulnerability (or, for example, by applying the
technique presented in BROP [5]). While this breaks Leak-
less’ ability to operate without an information disclosure,
Leakless is likely still the most convenient way to achieve
exploitation, as no library locations or library contents
have to be leaked. Additionally, depending on the situation,
the disclosure of just the address of the binary might be
more feasible than the disclosure of the contents of an
entire library. Unlike other techniques, which may need
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the latter, Leakless only requires the former.
In practice, PIEs are uncommon due to the associated

cost in terms of performance. Specifically, measurements
have shown that PIE overhead on x86 processors aver-
ages at 10%, while the overhead on x86-64 processors,
thanks to instruction-pointer-relative addressing, averages
at 3.6% [28].

Because of the overhead associated with PIE, most dis-
tributions ship with PIE enabled only for those applications
deemed “risky”. For example, according to their documen-
tation, Ubuntu ships only 27 of their officially supported
packages (i.e., packages in the “main” repository) with
PIE enabled, out of over 27,000 packages [40]. As shown
in Section 6.1, PIE executables comprise a minority of the
executables on all of the systems that we surveyed.

7.3 Countermeasures
There are several measures that can be taken against

Leakless, but they all have drawbacks. In this sections we
analyze the most relevant ones.

Position Independent Executables. A quick counter-
measure is to make every executable on the system position
independent. While this would block Leakless’s automatic
operation (as discussed in Section 7.2), it would still al-
low the application of the Leakless technique when any
information disclosure does occur. For that reason, and the
performance overhead associated with PIE, we consider
the other countermeasures described in this section to be
better solutions to the problem.

Disabling lazy loading. When the LD BIND NOW envi-
ronment variable is set, the dynamic loader will completely
disable lazy loading. That is, all imports, for the program
binary and any library it depends on, are resolved upon
program startup. As a side-effect of this, the address of
dl runtime resolve does not get loaded into the GOT

of any library, and Leakless cannot function. This is
equivalent to enable full RELRO on the whole system,
and consequently, it incurs in the same, non-negligible,
performance overhead.

Disabling DT DEBUG. Finally, Leakless also uses the
DT DEBUG dynamic entry, used by debuggers for inter-
cepting loading-related events, to bypass full RELRO.
Currently, this field is always initialized, opening the doors
for Leakless’ full RELRO bypass. To close this hole, the
dynamic loader could be modified to only initialize this
value when a debugger is present or in the presence of an
explicitly-set environment variable.

Better protection of loader control structures. Leak-
less heavily relies on the fact that dynamic loader control
structures are easily accessible in memory, and their lo-
cations are well-known. It would be beneficial for these
structures to be better protected, or hidden in memory,
instead of being loaded at a known location. For example,
as shown in [29], these structures, along with any sections

that provide control data for symbol resolution, could be
marked as read-only after initialization. Such a develop-
ment would eliminate Leakless’ ability to corrupt these
structures and would prevent the attack from redirecting
the control flow to sensitive functions.

Additionally, modifying the loading procedure
to use a table of link map structure, and letting
dl runtime resolve take an index in this table, instead

of a direct pointer, will break Leakless’ bypass of full
RELRO. However, this change would also break compat-
ibility with any binaries compiled before the change is
implemented.

Isolation of the dynamic loader. Isolating the dy-
namic loader from the address space of the target program
could be an effective countermeasure. For instance, on
Nokia’s Symbian OS, which has a micro-kernel, the dy-
namic loader is implemented in a separate process as a
system server which interfaces with the kernel [26]. This
guarantees that the control structures of the dynamic loader
cannot be corrupted by the program, and, therefore, this
makes Leakless virtually ineffective. However, such a
countermeasure would have a considerable impact on the
overall performance of applications due to the overhead of
IPC (Inter-Process Communication).

In general, the mitigations either represent a runtime
performance overhead (PIE or loader isolation), a load-
time performance overhead (non-lazy loading and system-
wide RELRO), or a modification of the loading process
(DT DEBUG disabling or loader control structure hiding). In
the long run, we believe that a redesign of the dynamic
loader, with security in mind, would be extremely benefi-
cial to the community. In the short term, there are options
available to protect against Leakless, but they all come
with a performance cost.

8 Conclusion

In this paper, we presented Leakless, a new technique that
leverages functionality provided by the dynamic loader to
enable attackers to use arbitrary, security-critical library
functions in their exploits, without having to know where
in the application’s memory these functions are located.
This capability allows exploits that, previously, required
an information disclosure step to function.

Since Leakless leverages features mandated in the ELF
binary format specification, the attacks it implements
are applicable across architectures, operating systems,
and dynamic loader implementations. Additionally, we
showed how our technique can be used to bypass hard-
ening schemes such as RELRO, which are designed to
protect important control structures used in the dynamic
resolution process. Finally, we proposed several counter-
measures against Leakless, discussing the advantages and
disadvantages of each one.
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A Symbol versioning challenges

In Section 3.4 we introduced the concept of symbol ver-
sioning, and in Section 4.2 we mentioned that its us-
age introduces additional constraints in the value that
Elf Rel.r info can assume. In this Appendix we illus-
trate these constraints, and how Leakless can automatically
verify and satisfy them.

A.1 Constraints due to symbol versioning
In presence of symbol versioning, the Elf Rel.r info

field is used both as an index into the dynamic sym-
bol table and as an index in the symbol version ta-
ble (the .gnu.version section), which is composed by
Elf Verneed values. An Elf Verneed value of zero or
one has a special meaning, and stops the processing of
the symbol version, which is a desirable situation for the
attacker.

To understand the constraints posed by this, we intro-
duce some definitions and naming conventions. idx is
the index in Elf Rel.r info that Leakless has computed,
baseof(x) is the function returning the base address of sec-
tion x, sizeof(y) is the function returning the size in bytes
of structure y, and ∗ is the pointer dereference operator.
We define the following variables:

sym = baseof(.dynsym)+ idx · sizeof(Elf Sym)

ver = baseof(.gnu.version)+
+idx · sizeof(Elf Verneed)

verde f = baseof(.gnu.version r)+

+∗ (ver) · sizeof(Elf Verdef)

To be able to carry on the attack, the following condi-
tions must hold:

1. sym points to a memory area controlled by the at-
tacker, and

2. one of the following holds:
(a) ver points to a memory area containing a zero

or a one, or
(b) ver points to a memory area controlled by the

attacker, which will write a zero value there, or
(c) verde f points to a memory area controlled by

the attacker, which will place there an appropri-
ately crafted Elf Verdef structure.

All the other options result in an access to an unmapped
memory area or the failure of the symbol resolution pro-
cess, both of which result in program termination.

Leakless is able to satisfy these constraints automatically
in most cases. The typical successful situation results in
an idx value that points to a version index with value zero
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or one in the .text section (which usually comes after
.gnu.version) and to a symbol in the .data or .bss
section. A notable exception, where this is impossible
to achieve, is in the case of small x86-64 ELF binaries
compiled with the support of huge pages [32]. Using huge
pages means that memory pages are aligned to boundaries
of 2 MiB and, therefore, the segment containing the read-
only sections (in particular, .gnu.version and .text) is
quite far from the writeable segment (containing .bss and
.data). This makes it hard to find a good value for idx.

A.2 The huge page issue
The effect of huge pages can be seen in the following

examples:

$ readelf --wide -l elf -without -huge -pages

Program Headers:
Type VirtAddr MemSiz Flg Align
...
LOAD 0x00400000 0x006468 R E 0x1000
LOAD 0x00407480 0x0005d0 RW 0x1000
...

$ readelf --wide -l elf -with -huge -pages

Program Headers:
Type VirtAddr MemSiz Flg Align
...
LOAD 0x00400000 0x00610c R E 0x200000
LOAD 0x00606e10 0x0005d0 RW 0x200000
...

While in the first case the distance between the begin-
ning of the executable and the writeable segments is in
the order of the kilobytes, with huge pages is more than
2 MiB, and a valid value for idx cannot be found.

There are two ways to resolve the problems posed to
Leakless by small 64-bit binaries.

The first option is to find a zero value for Elf Verneed
in the read-only segment (usually .text). Given ro start,
ro end and ro size, as the start and end virtual addresses
and the size of the read-only segment respectively, and
rw start, rw end and rw size as the respective values for
the writeable segment, the following must hold:

ro start ≤ ver < ro end
rw start ≤ sym < rw end

Here, the most difficult case to satisfy is if .dynsym or
.gnu.version start at ro start. If we assume that both
hold true, we can write the following:

idx · sizeof(Elf Verneed) < ro end − ro start
idx · sizeof(Elf Sym) ≥ rw start − ro start

Or, alternatively:

idx · sizeof(Elf Verneed) < ro size
idx · sizeof(Elf Sym) ≥ 2 MiB

Knowing that Elf Verneed and Elf Sym have, respec-
tively, a size of 2 and 24 bytes for 64 bit ELFs, we can
compute the minimum value of ro size to make this sys-
tem of inequalities satisfiable. The result is 170.7KiB. If
the .rodata section is smaller than this size, an alternative
method must be used.

The second option is to position Elf Verneed in the
writeable segment. In this case, the attack requirements
can be described by the following system of inequalities:

rw start ≤ ver < rw end
rw start ≤ sym < rw end

If we, once again, consider the most stringent constraints
and apply the previously mentioned assumptions, we get
the following:

idx · sizeof(Elf Verneed) ≥ rw start − ro start
idx · sizeof(Elf Sym) < rw start − ro start+

+rw size

Or, alternatively:

idx · sizeof(Elf Verneed) ≥ 2 MiB
idx · sizeof(Elf Sym) < 2 MiB+ rw size

We can now put a lower bound on the size of the
writeable segment (rw size) to make the system satisfiable:
22MiB. However, this is unreasonably large, and leads
us to the conclusion that this approach is not viable with
small 64 bit ELF binaries that use huge pages.
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Abstract

An app market’s vetting process is expected to be scal-
able and effective. However, today’s vetting mechanisms
are slow and less capable of catching new threats. In
our research, we found that a more powerful solution
can be found by exploiting the way Android malware is
constructed and disseminated, which is typically through
repackaging legitimate apps with similar malicious com-
ponents. As a result, such attack payloads often stand out
from those of the same repackaging origin and also show
up in the apps not supposed to relate to each other.

Based upon this observation, we developed a new
technique, called MassVet, for vetting apps at a mas-
sive scale, without knowing what malware looks like
and how it behaves. Unlike existing detection mecha-
nisms, which often utilize heavyweight program analy-
sis techniques, our approach simply compares a submit-
ted app with all those already on a market, focusing on
the difference between those sharing a similar UI struc-
ture (indicating a possible repackaging relation), and the
commonality among those seemingly unrelated. Once
public libraries and other legitimate code reuse are re-
moved, such diff/common program components become
highly suspicious. In our research, we built this “Diff-
Com” analysis on top of an efficient similarity compar-
ison algorithm, which maps the salient features of an
app’s UI structure or a method’s control-flow graph to
a value for a fast comparison. We implemented MassVet
over a stream processing engine and evaluated it nearly
1.2 million apps from 33 app markets around the world,
the scale of Google Play. Our study shows that the tech-
nique can vet an app within 10 seconds at a low false
detection rate. Also, it outperformed all 54 scanners in
VirusTotal (NOD32, Symantec, McAfee, etc.) in terms
of detection coverage, capturing over a hundred thou-
sand malicious apps, including over 20 likely zero-day
malware and those installed millions of times. A close
look at these apps brings to light intriguing new obser-

vations: e.g., Google’s detection strategy and malware
authors’ countermoves that cause the mysterious disap-
pearance and reappearance of some Google Play apps.

1 Introduction
The phenomenal growth of Android devices brings in
a vibrant application ecosystem. Millions of applica-
tions (app for short) have been installed by Android users
around the world from various app markets. Prominent
examples include Google Play, Amazon Appstore, Sam-
sung Galaxy Apps, and tens of smaller third-party mar-
kets. With this prosperity, the ecosystem is tainted by the
rampancy of Android malware, which masquerades as a
useful program, often through repackaging a legitimate
app, to wreak havoc, e.g., intercepting one’s messages,
stealing personal data, sending premium SMS messages,
etc. Countering this menace primarily relies on the effort
from the app markets, since they are at a unique position
to stop the spread of malware in the first place. Accom-
plishing this mission, however, is by no means trivial,
as highlighted by a recent report [8] that 99% of mobile
malware runs on Android devices.

Challenges in app vetting. More specifically, the pro-
tection today’s app market puts in place is a vetting pro-
cess, which screens uploaded apps by analyzing their
code and operations for suspicious activities. Particu-
larly, Google Play operates Bouncer [24], a security ser-
vice that statically scans an app for known malicious
code and then executes it within a simulated environ-
ment on Google’s cloud to detect hidden malicious be-
havior. The problem here is that the static approach does
not work on new threats (i.e., zero-day malware), while
the dynamic one can be circumvented by an app capable
of fingerprinting the testing environment, as discovered
by a prior study [30]. Also the dynamic analysis can be
heavyweight, which makes it hard to explore all execu-
tion paths of an app.

New designs of vetting techniques have recently been
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proposed by the research community [57, 28] for captur-
ing new apps associated with known suspicious behavior,
such as dynamic loading of binary code from a remote
untrusted website [57], operations related to component
hijacking [28], Intent injection [12], etc. All these ap-
proaches involve a heavyweight information-flow anal-
ysis and require a set of heuristics that characterize the
known threats. They often need a dynamic analysis in ad-
dition to the static inspection performed on app code [57]
and further human interventions to annotate the code or
even participate in the analysis [14]. Moreover, emula-
tors that most dynamic analysis tools employ can be de-
tected and evaded by malware [23]. Also importantly,
none of them has been put to a market-scale test to un-
derstand their effectiveness, nor has their performance
been clearly measured.

Catching unknown malice. Actually, a vast majority of
Android malware are repackaged apps [56], whose au-
thors typically attach the same attack payload to different
legitimate apps. In this way, not only do they hide their
malicious program logic behind the useful functionali-
ties of these apps, but they can also automate the repack-
aging process to quickly produce and distribute a large
number of Trojans1. On the other hand, this practice
makes such malware stand out from other repackaged
apps, which typically incorporate nothing but advertis-
ing libraries [2]. Also as a result of the approach, similar
code (typically in terms of Java methods) shows up in
unrelated apps that are not supposed to share anything
except popular libraries.

These observations present a new opportunity to catch
malicious repackaged apps, the mainstay of Android
malware, without using any heuristics to model their be-
havior. What we can do is to simply compare the code
of related apps (an app and its repackaged versions, or
those repackaged from the same app) to check their dif-
ferent part, and unrelated apps (those of different ori-
gins, signed by different parties) to inspect their com-
mon part to identify suspicious code segments (at the
method level). These segments, once found to be in-
explicable (e.g., not common libraries), are almost cer-
tain to be malicious, as discovered in our study (Sec-
tion 4.2). This DiffCom analysis is well suited for find-
ing previously unknown malicious behavior and also can
be done efficiently, without resorting to any heavyweight
information-flow technique.

Mass vetting at scale. Based on this simple idea, we de-
veloped a novel, highly-scalable vetting mechanism for
detecting repackaged Android malware on one market
or cross markets. We call the approach mass vetting or
simply MassVet, as it does not use malware signatures

1Those Trojans are typically signed by different keys to avoid
blocking of a specific signer.

and any models of expected malicious operations, and
instead, solely relies on the features of existing apps on
a market to vet new ones uploaded there. More specif-
ically, to inspect a new app, MassVet runs a highly ef-
ficient DiffCom analysis on it against the whole market.
Any existing app related to the new one (i.e., sharing the
same repackaging origin) is quickly identified from the
structural similarity of their user interfaces (aka., views),
which are known to be largely preserved during repack-
aging (Section 2). Then, a differential analysis happens
to those sharing the similar view structure (indicating a
repackaging relation between them) when a match has
been found. Also, an intersection analysis is performed
to compare the new app against those with different view
structures and signed by different certificates. The code
components of interest discovered in this way, either the
common (or similar) methods (through the intersection
analysis) or different ones (by the differential analysis),
are further inspected to remove common code reuses
(libraries, sample code, etc.) and collect evidence for
their security risks (dependence on other code, resource-
access API calls, etc.), before a red flag is raised.

Supporting this mass vetting mechanism are a suite
of techniques for high-performance view/code compar-
isons. Particularly, innovations are made to achieve a
scalable analysis of different apps’ user interfaces (Sec-
tion 3.2). The idea is to project a set of salient features of
an app’s view graph (i.e., the interconnections between
its user interfaces), such as types of widgets and events,
to a single dimension, using a unique index to represent
the app’s location within the dimension and the similar-
ity of its interface structure to those of others. In our
research, we calculated this index as a geometric center
of a view graph, called v-core. The v-cores of all the
apps on the market are sorted to enable a binary search
during the vetting of a new app, which makes this step
highly scalable. The high-level idea here was applied
to application clone detection [7], a technique that has
been utilized in our research (mapping the features of a
Java method to an index, called m-core in our research)
for finding common methods across different apps (Sec-
tion 3.3). It is important to note that for the view-graph
comparison, new tricks need to be played to handle the
structural changes caused by repackaging, e.g., when ad-
vertisement interfaces are added (Section 3.2).

Our findings. We implemented MassVet on a cloud
platform, nearly 1.2 million real-world apps collected
from 33 app markets around the world. Our experimen-
tal study demonstrates that MassVet vetted apps within
ten seconds, with a low false positive rate. Most impor-
tantly, from the 1.2 million apps, our approach discov-
ered 127,429 malware: among them at least 20 are likely
zero-day and 34,026 were missed by the majority of the
malware scanners run by VirusTotal, a website that syn-

2



USENIX Association  24th USENIX Security Symposium 661

dicates 54 different antivirus products [43]. Our study
further shows that MassVet achieved a better detection
coverage than any individual scanner within VirusTotal,
such as Kaspersky, Symantec, McAfee, etc. Other high-
lights of our findings include the discovery of malicious
apps in leading app markets (30,552 from Google Play),
and Google’s strategies to remove malware and malware
authors’ countermoves, which cause mysterious disap-
pearance and reappearance of apps on the Play Store.

Contributions. The contributions of the paper are sum-
marized as follows:
• New techniques. We developed a novel mass vet-
ting approach that detects new threats using nothing but
the code of the apps already on a market. An innova-
tive differential-intersection analysis (i.e., DiffCom) is
designed to exploit the unique features of repackaging
malware, catching the malicious apps even when their
behavior has not been profiled a priori. This analysis
is made scalable by its simple, static nature and the fea-
ture projection techniques that enable a cloud-based, fast
search for view/code differences and similarities. Note
that when the v-core and m-core datasets (only 100 GB
for 1.2 million apps) are shared among multiple markets,
MassVet can help one market to detect malicious submis-
sions using the apps hosted by all these markets.
• New discoveries. We implemented MassVet and eval-
uated it using nearly 1.2 million apps, a scale unparal-
leled in any prior study on Android malware detection,
up to our knowledge, and on a par with that of Google
Play, the largest app market in the world with 1.3 million
apps [39]. Our system captured tens of thousands of mal-
ware, including those slipping under the radar of most or
all existing scanners, achieved a higher detection cover-
age than all popular malware scanners within VirusTotal
and vetted new apps within ten seconds. Some malware
have over millions of installs. 5,000 malware were in-
stalled over 10,000 times each, impacting hundreds of
millions of mobile devices. A measurement study fur-
ther sheds light on such important issues as how effective
Google Play is in screening submissions, how malware
authors hide and distribute their attack payloads, etc.

2 Background
Android App markets. Publishing an app on a market
needs to go through an approval process. A submission
will be inspected for purposes such as quality control,
censorship, and also security protection. Since 2012,
Google Play has been under the protection of Bouncer.
This mechanism apparently contributes to the reduction
of malware on the Play store, about 0.1% of all apps
there as discovered by F-Secure [15]. On the other hand,
this security vetting mechanism was successfully cir-
cumvented by an app that fingerprints its simulator and

strategically adjusts its behavior [33]. Compared with
the Android official market, how third-party markets re-
view submitted apps is less clear. The picture painted by
F-Secure, however, is quite dark: notable markets like
Mumayi, AnZhi, Baidu, etc. were all found riddled with
malware infiltrations [16].

Attempts to enhance the current secure vetting mecha-
nisms mainly resort to conventional malware detection
techniques. Most of these approaches, such as Vet-
Droid [52], rely on tracking information flows within
an app and the malicious behavior modeling for detect-
ing malware. In the case that what the malware will do
is less clear to the market, these approaches no longer
help. Further, analyzing information flows requires se-
mantically interpreting each instruction and carefully-
designed techniques to avoid false positives, which are
often heavyweight. This casts doubt on the feasibility of
applying these techniques to a large-scale app vetting.

Repackaging. App repackaging is a process that mod-
ifies an app developed by another party and already re-
leased on markets to add in some new functionalities be-
fore redistributing the new app to the Android users. Ac-
cording to Trend Micro (July 15, 2014), nearly 80% of
the top 50 free apps on Google Play have repackaged
versions [49]. Even the Play store itself is reported to
host 1.2% repackaged apps [58]. This ratio becomes
5% to 13% for third-party markets, according to a prior
study [55]. These bogus apps are built for two purposes:
either for getting advertisement revenues or for distribut-
ing malware [7]. For example, one can wrap Angry-
Bird with ad libraries, including his own adverting ID
to benefit from its advertising revenue. Malware authors
also found that leveraging those popular legitimate apps
is the most effective and convenient avenue to distribute
their attack payloads: repackaging saves them a lot of ef-
fort to build the useful functionalities of a Trojan and the
process can also be automated using the tools like smal-
i/baksmali [36]; more importantly, they can free-ride the
popularity of these apps to quickly infect a large number
of victims. Indeed, research shows that the vast majority
of Android malware is repackaged apps, about 86% ac-
cording to a study [56]. A prominent feature shared by
all these repackaged apps, malicious or not, is that they
tend to keep the original user interfaces intact, so as to
impersonate popular legitimate apps.

Scope and assumptions. MassVet is designed to detect
repackaged Android malware. We do not consider the
situation that the malware author makes his malicious
payload an inseparable part of the repackaged app, which
needs much more effort to understand the legitimate app
than he does today. Also, MassVet can handle typi-
cal code obfuscation used in most Android apps (Sec-
tion 3). However, we assume that the code has not been
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Figure 1: The Architecture of MassVet.

obfuscated to the extent that even disassembly cannot go
through. When this happens, not only our approach but
also most of other static analyses will fail. Finally, we
assume that the app market under protection accommo-
dates a large number of highly-diverse apps, so that for
the malicious repackaged app uploaded, on the market
there will be either another app sharing its repackaging
origin or the one incorporating the same attack payload.
To make this more likely to happen, different markets
can share the feature datasets of their apps (i.e., v-cores
and m-cores) with each other. Note that such datasets are
very compact, only 100 GB for 1.2 million apps.

3 MassVet: Design and Implementation

3.1 Overview
Design and architecture. To detect unknown malware
at a large scale, we come up with a design illustrated in
Figure 1. It includes three key components: a prepro-
cessing module, a feature database system and a Diff-
Com module. The preprocessing module automatically
analyzes a submitted app, which includes extracting the
features of its view structure and methods, and then sum-
marizing them into the app’s v-cores and m-cores respec-
tively. The DiffCom component then works on these fea-
tures, searching for them within the app market’s v-core
and m-core databases. Matches found there are used to
identify suspicious different or common methods, which
are further screened to remove false positives.

How it works. Here we use an example to walk through
the work flow of the system. MassVet first processes all
the apps on a market to create a v-core database for view
structures and an m-core database for Java methods (Sec-
tion 3.4). Both databases are sorted to support a binary
search and are used for vetting new apps submitted to
the market. Consider a repackaged AngryBird. Once up-
loaded to the market, it is first automatically disassem-
bled at the preprocessing stage into a smali represen-
tation, from which its interface structures and methods
are identified. Their features (for views, user interfaces,
types of widgets and events, and for methods, control
flow graphs and bytecode) are mapped to a set of v-cores
(Section 3.2) and m-cores (Section 3.3) through calculat-

ing the geometric centers of the view graphs and control-
flow graphs respectively. The app’s v-cores are first used
to query the database through a binary search. Once a
match is found, which happens when there exists another
app with a similar AngryBird user interface structure, the
repackaged app is compared with the app already on the
market at the method level to identify their difference.
Such different methods (diff for short) are then automat-
ically analyzed to ensure that they are not ads libraries
and indeed suspicious, and if so, are reported to the mar-
ket (Section 3.2). When the search on the v-core database
comes back with nothing2, MassVet continues to look
for the AngryBird’s m-cores in the method database. If
a similar method has been found, our approach tries to
confirm that indeed the app including the method is un-
related to the submitted AngryBird and it is not a legit-
imate code reuse (Section 3.3). In this case, MassVet
reports that a suspicious app is found. All these steps are
fully automated, without human intervention.

3.2 Fast User-Interface Analysis
As discussed before, the way MassVet vets an app de-
pends on whether it is related to any other app already
on the market. Such a relation is established in our re-
search through a quick inspection of apps’ user inter-
faces (UI) to identify those with similar view structures.
When such apps are not “officially” connected, e.g., pro-
duced by the same party, the chance is that they are of
the same repackaging origin, and therefore their diffs
become interesting for malicious code detection. This
interface-based relation identification is an alternative to
code-based identification: a malicious repackaged app
can be obfuscated and junk code can be easily added
to make it look very different from the original version
in terms of the similarity between their code (e.g., per-
centage of similar methods shared between them). On
the other hand, a significant change to the user interface
needs more effort and most importantly affects user ex-
perience, making it more difficult for the adversary to
free ride the popularity of the original app. Therefore,
most repackaged apps preserve their original UI struc-
tures, as found by the prior research [50]. In our research,
we further discovered that many repackaged apps incor-
porate a large amount of new code, even more than that
in their original versions, but still keep those apps’ UI
structures largely intact.

The idea of using view structures to detect repack-
aged apps has been preliminarily explored in prior re-
search [50], which utilizes subgraph isomorphism algo-
rithms to measure the similarity between two apps. How-
ever, the approach is less effective for the apps with rel-
atively simple user-interface structures, and most impor-

2The market can also choose to perform both differential and inter-
action analyses for all new apps (Section 3.3).
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tantly, agonizingly slow: it took 11 seconds to compare
a pair of apps [50], which would need 165 days to ana-
lyze one submission against all 1.3 million apps on the
Google Play store.

Following we elaborate our new solution designed for
an accurate and high performance app-view analysis.

Feature extraction. An app’s user interface consists of a
set of views. Each view contains one or more visual wid-
gets such as Button, ListView, TextView, etc. These UI
components respond to users’ input events (e.g., tapping
and swiping) with the operations specified by the app de-
veloper. Such responses may cause visible changes to the
current view or transitions to other views. This intercon-
nection structure, together with the layouts and function-
alities of individual views, was found to be sufficiently
unique for characterizing each app [50].

In our research, we model such a UI structure as a view
graph, which is a directed weighted graph including all
views within an app and the navigation relations (that
is, the transition from one view to another) among them.
On such a graph, each node is a view, with the number of
its active widgets (those with proper event-response op-
erations) as its weight, and the arcs connecting the nodes
describe the navigation (triggered by the input events) re-
lations among them. According to the types of the events
(e.g., onClick, onFocusChange, onTouch, etc.),
edges can be differentiated from each other.

Such a view graph can effectively describe an app with
a reasonably complicated UI structure. However, it be-
comes less effective for the small apps with only a couple
of views and a rather straightforward connection struc-
ture. To address this issue, we enrich the view graph with
additional features, including other UIs and the types of
widgets that show up in a view. Specifically, in addi-
tion to view, which is displayed through invocation of
an Android Activity, the UIs such as AlertDialog are
also treated as nodes for the graph. Custom dialogs can
be handled by analyzing class inheritance. Further, each
type of widgets is given a unique value, with a sole pur-
pose of differentiating it from other types. In this way,
we can calculate a UI node’s weight by adding together
the values associated with the widgets it carries to make
a small view graph more distinctive from others. An ex-
ample is illustrated in Figure 2.

Note that we avoid using text labels on UI elements
or other attributes like size or color. All the features se-
lected here, including UIs, types of widgets and events
that cause transitions among UIs, are less manipulable:
in the absence of serious effort, any significant change
to them (e.g., adding junk widgets, modifying the widget
types, altering the transitions among views) will perceiv-
ably affect user experience, making it more difficult for
the adversary to use them to impersonate popular apps.

To construct the view graph for a submitted



  





  









 







 



 



Figure 2: A View-graph example.
Ac: Activity; Da: AlertDialog; Dt: TimePickerDialog

Dp: ProgressDialog; Dd: DatePickerDialog

app, the preprocessing module automatically an-
alyzes its code to recover all UI-related inter-
process communication (IPC), the channel through
which an Android app invokes user interfaces.
Such IPC calls include startActivity and
startActivityForResult. For each call,
our approach locates it within a UI and further identifies
the UI it triggers. Specifically, the program location of
the IPC is examined to determine whether it is inside a
UI-related class v. Its parameter is parsed to find out the
class it calls (v′). In this case, nodes are created on the
view graph for both classes (UIs) and an edge is added
to link v to v′. Also, the type of the edge is determined
by the event handler at which the IPC is located: for
example, when the call is found inside the onClick
function for a button, we know that this widget is used to
cause a view transition. All such widgets are identified
from each class for determining the weight of its node.
Design for scale. Once a view graph is recovered from
an app, we want to quickly compare it across a market (or
markets) to identify those related to the app. This opera-
tion needs to be of high-performance, capable of process-
ing over one million apps within seconds. To this end, we
applied a recently proposed similarity comparison algo-
rithm, called Centroids [7], to the view-graph analysis.
Centroid maps the features of a program’s control-flow
graph (CFG) into a value, which is calculated as the ge-
ometric center of the program. This value has a mono-
tonicity property: that is, whenever a minor change hap-
pens to the CFG, the value changes accordingly at a small
scale, reflecting the level of the difference made to the
program. This property localizes the global comparison
to a small number of “neighbors” to achieve high scal-
ability without losing accuracy. The approach was used
for the method comparison in our research (Section 3.3).
However, it cannot be directly adopted for analyzing the
UI structure, as the view graph is quite different from the
CFG. Also, an app’s graph is often fragmented due to the
unusual ways to trigger some of its modules: e.g., most
advertisement views are invoked through callbacks using
the APIs of their library; as a result, their graph becomes
separated from that of the main program. Here we de-
scribe how we address these issues.

5
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Given a set of subgraphs for an app UI, Gi=1···n, our
preprocess module analyzes them one by one to calcu-
late their individual geometric centers, i.e., v-cores. For
a subgraph Gi, the first thing that needs to be done is to
convert the features of each of its nodes (i.e., view) into
a three-dimensional vector c⃗ = {α ,β ,γ}. Here α is a
sequence number assigned to each node in Gi, which is
done through an ordered deep-first traversal of Gi: start-
ing from its main view, we select nodes to visit in the
order of the sizes of their subtrees, and use their individ-
ual weights to break a tie; each node traversed in this way
gets the number based upon its order of being visited. If
two subtrees have the same size, we select the one ac-
cording to their node types. In this way, we ensure that
the assignment of sequence numbers is unique, which
only depends on the structure of the directed weighted
graph. The second element, β , in the vector is the out de-
gree of the node: that is, the number of UIs the node can
lead to. Finally, γ is the number of “transition loops” the
current node is involved: i.e., the structure that from the
node, there exists a navigation path that by visiting each
node on the path only once, the user is able to navigate
back to the current view. Figure 2 presents an example
that show how such a vector is constructed.

After every node k on Gi has been given a vector c⃗k,
we can calculate its geometric center, i.e., v-core vci, as
follows:

vci =
∑e(p,q)∈Gi(wp⃗cp +wq⃗cq)

∑e(p,q)∈Gi(wp +wq)

where e(p,q) denotes an edge in Gi from node p to q
and wp is the weight of node p. With the monotonicity
of v-cores, we can sort them for a large number of apps
to support a binary search. In this way, the subgraph
Gi can be quickly compared with millions of graphs to
identify similar ones. Specifically, given another graph
Gt with a v-core vct , we consider that it matches Gi if
|vci − vct | ≤ τ , where τ is a threshold. Further, given
two apps sharing a subset of their view-graphs Gi(l=1···m),
we consider that these two apps are similar in their UI
structure when the following happens to at least one app:
∑l |Gi(l)|/∑i |Gi| ≥ θ : that is, most of the app’s view
structures also appear in the other app (with θ being a
threshold). This ensures that even when the adversary
adds many new views to an app (e.g., through fake ad-
vertisements), the relation between the repackaged app
and the original one can still be identified.

In our research, such thresholds were determined from
a training process using 50,000 randomly selected apps
(Section 3.3). We set different thresholds and measured
the corresponding false positive/negative rates. For false
positives, we randomly sampled 50 app pairs detected
by our approach under each threshold and manually
checked their relations. For false negatives, we utilized

100 app pairs known to have repackaging relations as the
ground truth to find out the number of pairs our approach
identified with different thresholds. The study shows that
when τ = 0 and θ = 0.8, we got both a low false posi-
tive rate (4%) and a low false negative rate (6%). Among
these 50,000 apps, we found that 26,317 app pairs had
repackaging relations, involving 3,742 apps in total.

Effectiveness of the view-graph analysis. Compared
with existing code-based approaches [7], the view-graph
analysis turns out to be more effective at detecting apps
of the same repackaging origin. Specifically, we ran-
domly selected 10,000 app pairs (involving 17,964 apps)
from those repackaged from the same programs, as dis-
covered from 1.2 million apps we collected (Section 4.1).
Many of these repackaging pairs involve the apps whose
code significantly differ from each other. Particularly,
in 14% of these pairs, two apps were found to have less
than 50% of their individual code in common. This could
be caused by a large library (often malicious) added to an
app during repackaging or junk code inserted for the pur-
pose of obfuscation. Since these apps look so different
based upon their code, their repackaging relations can-
not be easily determined by program analysis. However,
they were all caught by our approach, simply because the
apps’ view-graphs were almost identical.

3.3 DiffCom Analysis at Scale
For an app going through the mass vetting process, the
view-graph analysis first determines whether it is related
to any app already on the market. If so, these two apps
will be further compared to identify their diffs for a mal-
ware analysis. Otherwise, the app is checked against
the whole market at the method level, in an attempt to
find the program component it shares with other apps.
The diffs and common component are further inspected
to remove common code reuse (libraries, sample code,
etc.) and collect evidence for their security risks. This
“difference-commonality” analysis is performed by the
DiffCom module. We also present the brick and mor-
tar for efficient code-similarity analyzer and discuss the
evasion of DiffCom.

The brick and mortar. To vet apps at the market
scale, DiffCom needs a highly efficient code-similarity
analyzer. In our research, we chose Centroids [7] as
this building block. As discussed before, this approach
projects the CFG of a program to its geometric center, in
a way similar to the view-graph analysis. More specif-
ically, the algorithm takes a basic program block as a
node, which includes a sequence of consecutive state-
ments with only a single input and output. The weight of
the block is the number of the statements it contains. For
each node on the CFG, a sequence number is assigned,
together with the counts of the branches it connects and
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the number of loops it is involved in. These parameters
are used to calculate the geometric center of the program.

To prepare for mass vetting, our approach first goes
through all the apps on a market and breaks them into
methods. After removing common libraries, the pre-
processing module analyzes their code, calculates the
geometric centers for individual methods (i.e., the m-
cores) and then sorts them before storing the results in
the database. During the vetting process, if a submitted
app is found to share the view graph with another app,
their diffs are quickly identified by comparing the m-
cores of their individual methods. When the app needs to
go through the intersection step, its methods are used for
a binary search on the m-core database, which quickly
discovers those also included in existing apps. Here we
elaborate how these operations are performed. Their
overhead is measured in Section 4.2.

Analyzing diffs. Whenever an app is found to relate to
another one from their common view graph, we want to
inspect the difference part of their code to identify sus-
picious activities. The rationale is that repackaged apps
are the mainstay of Android malware, and the malicious
payloads are often injected automatically (using tools
like smali/baksmali) without any significant changes to
the code of the original app, which can therefore be lo-
cated by looking at the diffs between the apps of the same
repackaging origin. Such diffs are quickly identified by
comparing these two apps’ m-cores: given two ordered
sequences of m-cores L and L′, the diff between the apps
at the method level is found by merging these two lists
according to the orders of their elements and then re-
moving those matching their counterparts on the other
list; this can be done within min(|L|, |L′|) steps.

However, similarity of apps’ UIs does not always indi-
cate a repackaging relation between them. The problem
happens to the apps produced by the same party, indi-
vidual developers or an organization. In this case, it is
understandable that the same libraries and UIs could be
reused among their different products. It is even possible
that one app is actually an updated version of the other.
Also, among different developers, open UI SDKs such as
Appcelerator [3] and templates like Envatomarket [13]
are popular, which could cause the view structures of
unrelated apps to look similar. Further, even when the
apps are indeed repackaged, the difference between them
could be just advertisement (ad) libraries instead of mali-
cious payloads. A challenge here is how to identify these
situations and avoid bringing in false alarms.

To address these issues, MassVet first cleans up a sub-
mitted app’s methods, removing ad and other libraries,
before vetting the app against the market. Specifically,
we maintain a white list of legitimate ad libraries based
on [6], which includes popular mobile ad platforms such
as MobWin, Admob, etc. To identify less known ones,

we analyzed a training set of 50,000 apps randomly sam-
pled from three app markets, with half of them from
Google Play. From these apps, our analysis discovered
34,886 methods shared by at least 27,057 apps signed
by different parties. For each of these methods, we fur-
ther scanned its hosting apps using VirusTotal. If none of
them were found to be malicious, we placed the method
on the white list. In a similar way, popular view graphs
among these apps were identified and the libraries as-
sociated with these views are white-listed to avoid de-
tecting false repackaging relations during the view-graph
analysis. Also, other common libraries such as Admob
were also removed during this process, which we elab-
orate later. Given the significant size of the training set
(50,000 randomly selected apps), most if not all legiti-
mate libraries are almost certain to be identified. This
is particularly true for those associated with advertising,
as they need certain popularity to remain profitable. On
the other hand, it is possible that the approach may let
some zero-day malware fall through the cracks. In our re-
search, we further randomly selected 50 ad-related meth-
ods on the list and searched for them on the Web, and
confirmed that all of them were indeed legitimate. With
this false-negative risk, still our approach achieved a high
detection coverage, higher than any scanner integrated in
VirusTotal (Section 4.2).

When it comes to the apps produced by the same party,
the code they share is less popular and therefore may not
be identified by the approach. The simplest solution here
is to look at similar apps’ signatures: those signed by the
same party are not considered to be suspicious because
they do have a good reason to be related. This simple
treatment works most of time, since legitimate app ven-
dors typically sign their products using the same certifi-
cate. However, there are situations when two legitimate
apps are signed by different certificates but actually come
from the same source. When this happens, the diffs of
the apps will be reported and investigated as suspicious
code. To avoid the false alarm, we took a close look at
the legitimate diffs, which are characterized by their in-
tensive connections with other part of the app. They are
invoked by other methods and in the meantime call the
common part of the code between the apps. On the other
hand, the malicious payload packaged to a legitimate app
tends to stand alone, and can only be triggered from a few
(typically just one) program locations and rarely call the
components within the original program.

In our research, we leveraged this observation to dif-
ferentiate suspicious diffs from those likely to be legiti-
mate. For each diff detected, the DiffCom analyzer looks
for the calls it makes toward the rest of the program and
inspects the smali code of the app to identify the ref-
erences to the methods within the diff. These methods
will go through a further analysis only when such inter-

7



666 24th USENIX Security Symposium USENIX Association

actions are very limited, typically just an inward invoca-
tion, without any outbound call. Note that current mal-
ware authors do not make their code more connected to
the legitimate app they repackage, mainly because more
effort is needed to understand the code of the app and
carefully construct the attack. A further study is needed
to understand the additional cost required to build more
sophisticated malware to evade our detection.

For the diff found in this way, DiffCom takes fur-
ther measures to determine its risk. A simple approach
used in our implementation is to check the presence
of API calls (either Android framework APIs or those
associated with popular libraries) related to the oper-
ations considered to be dangerous. Examples include
getSimSerialNumber, sendTextMessage and
getLastKnownLocation. The findings here indi-
cate that the diff code indeed has the means to cause dam-
age to the mobile user’s information assets, though how
exactly this can happen is not specified. This is differ-
ent from existing behavior-based detection [27], which
looks for much more specific operation sequences such
as “reading from the contact list and then sending it to the
Internet”. Such a treatment helps suppress false alarms
and still preserves the generality of our design, which
aims at detecting unknown malicious activities.

Analyzing intersections. When no apparent connection
has been found between an app and those already on the
market, the vetting process needs to go through an in-
tersection analysis. This also happens when DiffCom is
configured to perform the analysis on the app that has not
been found to be malicious at the differential step. Identi-
fication of common methods a newly submitted app car-
ries is rather straightforward: each method of the app is
mapped to its m-core, which is used to search against the
m-core database. As discussed before, this can be done
through a binary search. Once a match is found, Diff-
Com further inspects it, removing legitimate connections
between the apps, and reports the finding to the market.

Again, the main challenge here is to determine
whether two apps are indeed unrelated. A simple sig-
nature check removes most of such connections but not
all. The “stand-alone” test, which checks whether a set
of methods intensively interact with the rest of an app,
does not work for the intersection test. The problem here
is that the common methods between two repackaged
apps may not be the complete picture of a malicious pay-
load, making them different from the diff identified in
the differential-analysis step: different malware authors
often use some common toolkits in their attack payloads,
which show up in the intersection between their apps;
these modules still include heavy interactions with other
components of the malware that are not found inside the
intersection. As a result, this feature, which works well
on diffs, cannot help to capture suspicious common code

among apps.
An alternative solution here is to look at how the seem-

ingly unrelated apps are actually connected. As dis-
cussed before, what causes the problem is the developers
or organizations that reuse code internally (e.g., a propri-
etary SDK) but sign the apps using different certificates.
Once such a relation is also identified, we will be more
confident about whether two apps sharing code are inde-
pendent from each other. In this case, the common code
becomes suspicious after all public libraries (e.g., those
on the list used in the prior research [6]) and code tem-
plates have been removed. Here we describe a simple
technique for detecting such a hidden relation.

From our training dataset, we found that most code
reused legitimately in this situation involves user inter-
faces: the developers tend to leverage existing view de-
signs to quickly build up new apps. With this practice,
even though two apps may not appear similar enough in
terms of their complete UI structures (therefore they are
considered to be “unrelated” by the view-graph analy-
sis), a close look at the subgraphs of their views may re-
veal that they actually share a significant portion of their
views and even subgraphs. Specifically, from the 50,000
apps in our training set, after removing public libraries,
we found 30,286 sharing at least 30% of their views with
other apps, 16,500 sharing 50% and 8,683 containing no
less than 80% common views. By randomly sampling
these apps (10 each time) and analyzing them manually,
we confirmed that when the portion goes above 50%, al-
most all the apps and their counterparts are either from
the same developers or organizations, or having the same
repackaging origins. Also, once the shared views be-
come 80% or more, almost always the apps are involved
in repackaging. Based upon this observation, we run an
additional correlation check on a pair of apps with com-
mon code: DiffCom compares their individual subgraphs
again and if a significant portion (50%) is found to be
similar, they are considered related and therefore their
intersection will not be reported to the market.

After the correlation check, all the apps going through
the intersection analysis are very likely to be unrelated.
Therefore, legitimate code shared between them, if any,
is almost always public libraries or templates. As de-
scribed before, we removed such common code through
white-listing popular libraries and further complemented
the list with those discovered from the training set: meth-
ods in at least 2,363 apps were considered legitimate
public resources if all these apps were cleared by Virus-
Total. Such code was further sampled and manually an-
alyzed in our study to ensure that it indeed did not in-
volve any suspicious activities. With all such libraries
removed, the shared code, particularly the method with
dangerous APIs (e.g., getSimSerialNumber), is re-
ported as possible malicious payload.
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Evading MassVet. To evade MassVet, the adversary
could try to obfuscate app code, which can be tolerated
to some degree by the similarity comparison algorithm
we use [7]. For example, common obfuscation tech-
niques, such as variable/method renaming, do not affect
centroids. Also the commonality analysis can only be
defeated when the adversary is willing to significantly
alter the attack payload (e.g., a malicious SDK) each
time when he uses it for repackaging. This is not sup-
ported by existing automatic tools like ADAM [53] and
DroidChameleon [32], which always convert the same
code to the same obfuscated form. Further, a deep obfus-
cation will arouse suspicion when the app is compared
with its repackaging origin that has not been obfuscated.
The adversary may also attempt to obfuscate the app’s
view graphs. This, however, is harder than obfuscat-
ing code, as key elements in the graph, like event func-
tions OnClick, OnDrag, etc., are hardcoded within
the Android framework and cannot be modified. Also
adding junk views can be more difficult than it appears
to be: the adversary cannot simply throw in views dis-
connected from existing sub-graphs, as they will not af-
fect how MassVet determines whether two view-graphs
match (Section 3.2); otherwise, he may connect such
views to existing sub-graphs (potentially allowing them
to be visited from the existing UI), which requires under-
standing a legitimate app’s UI structures to avoid affect-
ing user experience.

We further analyzed the effectiveness of existing ob-
fuscation techniques against our view-graph approach
over 100 randomly selected Google-Play apps. Popu-
lar obfuscation tools such as DexGuard [37] and Pro-
Guard [38] only work on Java bytecode, not the Dalvik
bytecode of these commercial apps. In our research, we
utilized ADAM [53] and DroidChameleon [32], which
are designed for Dalvik bytecode, and are highly effec-
tive according to prior studies [53, 32]. Supposedly they
can also work on view-related code within those apps.
However after running them on the apps, we found that
their v-cores, compared with those before the obfusca-
tion, did not change at all. This demonstrates that such
obfuscation is not effective on our view-graph approach.

On the other hand, we acknowledge that a new obfus-
cation tool could be built to defeat MassVet, particularly
its view-graph search and the Com step. The cost for do-
ing this, however, is less clear and needs further effort to
understand (Section 5).

3.4 System Building
In our research, we implemented a prototype of MassVet
using C and Python, nearly 1.2 million apps collected
from 33 markets, including over 400,000 from Google
Play (Section 4.1). Before these apps can be used to
vet new submissions, they need to be inspected to de-

tect malicious code already there. Analyzing apps of this
scale and utilizing them for a real-time vetting require
carefully designed techniques and a proper infrastructure
support, which we elaborate in this section.

System bootstrapping and malware detection. To
bootstrap our system, a market first needs to go through
all its existing apps using our techniques in an effi-
cient way. The APKs of these apps are decompiled into
smali (using the tool baksmali [36]3) to extract their
view graphs and individual methods, which are further
converted into v-cores and m-cores respectively. We use
NetworkX [29] to handle graphs and find loops. Then
these features (i.e., cores) are sorted and indexed before
stored into their individual databases. In our implemen-
tation, such data are preserved using the Sqlite database
system, which is characterized by its small size and ef-
ficiency. For all these apps, 1.5 GB was generated for
v-cores and 97 GB for m-cores.

The next step is to scan all these 1.2 million apps for
malicious content. A straightforward approach is to in-
spect them one by one through the binary search. This
will take tens of millions of steps for comparisons and
analysis. Our implementation includes an efficient al-
ternative. Specifically, on the v-core database, our sys-
tem goes through the whole sequence from one end (the
smallest element) to the other end, evaluating the ele-
ments along the way to form equivalent groups: all those
with identical v-cores are assigned to the same group4.

All the subgraphs within the same group match each
other. However, assembling them together to determine
the similarity between two apps turns out to be tricky.
This is because the UI of each app is typically broken
into around 20 subgraphs distributed across the whole
ordered v-core sequence. As such, any attempt to make
the comparison between two apps requires to go through
all equivalent groups. The fastest way to do that is to
maintain a table for the number of view subgraphs shared
between any two apps. However, this simple approach
requires a huge table, half of 1.2 million by 1.2 million in
the worst case, which cannot be completely loaded into
the memory. In our implementation, a trade-off is made
to save space by only inspecting 20,000 apps against the
rest 1.2 million each time, which requires going through
the equivalent groups for 60 times and uses about 100
GB memory at each round.

The inspection on m-cores is much simpler and does
not need to compare one app against all others. This
is because all we care about here are just the common
methods that already show up within individual equiva-

3Very few apps (0.01%) cannot be decompiled in our dataset due to
the limitation of the tool.

4In our implementation, we set the threshold τ to zero, which can
certainly be adjusted to tolerate some minor variations among similar
methods.
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Figure 3: Cloud framework for MassVet.

lent groups. Those methods are then further analyzed to
detect suspicious ones.
Cloud support. To support a high-performance vetting
of apps, MassVet is designed to work on the cloud, run-
ning on top of a stream processing framework (Figure 3).
Specifically, our implementation was built on Storm [40],
an open-source stream-processing engine that also pow-
ers leading web services such as WebMD, Alibaba, Yelp,
etc. Storm supports a large-scale analysis of a data
stream by a set of worker units that connect to each
other, forming a topology. In our implementation, the
work flow of the whole vetting process is converted into
such a topology: a submitted app is first disassembled
to extract view graphs and methods, which are checked
against the white list to remove legitimate libraries and
templates; then, the app’s v-cores and m-cores are calcu-
lated, and a binary search on the v-core database is per-
formed; depending on the results of the search, the differ-
ential analysis is first run, which can be followed by the
intersection analysis. Each operation here is delegated to
a worker unit on the topology and all the data associated
with the app are in a single stream. The Storm engine
is designed to support concurrently processing multiple
streams, which enables a market to efficiently vet a large
number of submissions.

4 Evaluation and Measurement
4.1 Setting the Stage
App collection. We collected 1.2 million apps from 33
Android markets, including over 400,000 from Google
Play, 596,437 from 28 app stores in China, 61,866 from
European stores and 27,047 from other US stores as elab-
orated in Table 5 in Appendix. We removed duplicated
apps according to their MD5. All the apps we down-
loaded from Google Play have complete meta data (up-
load date, size, number of downloads, developer, etc.),
while all those from third-party markets do not.

The apps from Google Play were selected from 42 cat-
egories, including Entertainment, Tools, Social, Com-
munication, etc. From each category, we first went for
its top 500 popular ones (in terms of number of installs)
and then randomly picked up 1000 to 30,000 across the

whole category. For each third-party market, we just ran-
domly collected a set of apps (Table 5) (190 to 108,736,
depending on market sizes). Our collection includes
high-profiled apps such as Facebook, Skype, Yelp, Pin-
terest, WeChat, etc. and those less popular ones. Their
sizes range from less than 1 MB to more than 100 MB.
Validation. For the suspicious apps reported by our pro-
totype, we validated them through VirusTotal and man-
ual evaluations. Virustotal is the most powerful public
malware detection system, which is a collection of 54
anti-malware products, including the most high-profile
commercial scanners. It also provides the scanning ser-
vice on mobile apps [44]. VirusTotal has two modes,
complete scanning (which we call new scan) and using
cached results (called cached scan). The latter is fast,
capable of going through 200 apps every minute, but
only covers those that have been scanned before. For
the programs it has never seen or uploaded only recently,
the outcome is just “unknown”. The former determines
whether an app is malicious by running on it all 54 scan-
ners integrated within VirusTotal. The result is more up-
to-date but the operation is much slower, taking 5 min-
utes for each app.

To validate tens of thousands suspicious cases detected
from the 1.2 million apps (Section 4.2), we first per-
formed the cached scan to confirm that most of our find-
ings were indeed malicious. The apps reported to be “un-
known” were further randomly sampled for a new scan.
For all the apps that VirusTotal did not find malicious,
we further picked up a few samples for a manual anal-
ysis. Particularly, for all suspicious apps identified by
the intersection analysis, we clustered them according to
their shared code. Within each cluster, whenever we ob-
served that most members were confirmed malware, we
concluded that highly likely the remaining apps there are
also suspicious, even if they were not flagged by Virus-
Total. The common code of these apps were further
inspected for suspicious activities such as information
leaks. A similar approach was employed to understand
the diff code extracted during the differential analysis.
We manually identified the activities performed by the
code and labeled it as suspicious when they could lead to
damages to the user’s information assets.

4.2 Effectiveness and Performance
Malware found and coverage. From our collection,
MassVet reported 127,429 suspicious apps (10.93%).
10,202 of them were caught by “Diff” and the rest
were discovered by “Com”. These suspicious apps are
from different markets: 30,552 from Google Play and
96,877 from the third-party markets, as illustrated in Ta-
ble 5. We first validated these findings by uploading them
to VirusTotal for a cached scan (i.e., quickly checking
the apps against the checksums cached by VirusTotal),
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AV Name # of Detection % Percentage

Ours (MassVet) 197 70.11
ESET-NOD32 171 60.85
VIPRE 136 48.40
NANO-Antivirus 120 42.70
AVware 87 30.96
Avira 79 28.11
Fortinet 71 25.27
AntiVir 60 21.35
Ikarus 60 21.35
TrendMicro-HouseCall 59 21.00
F-Prot 47 16.73
Sophos 46 16.37
McAfee 45 16.01

Table 1: The coverages of other leading AV scanners.

which came back with 91,648 confirmed cases (72%),
17,061 presumably false positives (13.38%, that is, the
apps whose checksums were in the cache but not found
to be malicious when they were scanned) and 13,492
unknown (10.59%, that is, the apps whose checksums
were not in VirusTotal’s cache). We further randomly
selected 2,486 samples from the unknown set and 1,045
from the “false-positive” set, and submitted to VirusTotal
again for a new scan (i.e., running all the scanners, with
the most up-to-date malware signatures, on the apps). It
turned out that 2,340 (94.12%) of unknown cases and
349 (33.40%) of “false positives” are actually malicious
apps, according to the new analysis. This gives us a false
detection rate (FDR: false positives vs. all detected) of
9.46% and a false positive rate (FPR: false positives vs.
all apps analyzed) of 1%, solely based upon VirusTotal’s
scan results. Note that the Com step found more mal-
ware than Diff, as Diff relies on the presence of two apps
of same repackaging origins in the dataset, while Com
only looks for common attack payloads shared among
apps. It turns out that many malicious-apps utilize same
malicious SDKs, which make them easier to catch.

We further randomly sampled 40 false positives re-
ported by the new scan for a manual validation and found
that 20 of them actually are highly suspicious. Specif-
ically, three of them load and execute suspicious code
dynamically; one takes pictures stealthily; one performs
sensitive operation to modify the booting sequence of
other apps; seven of them get sensitive user information
such as SIM card SN number and telephone number/ID;
several aggressive adware turn out to add phishing plug-
ins and app installation bars without the user’s consent.
The presence of these activities makes us believe that
very likely they are actually zero-day malware. We have
reported all of them to four Antivirus software vendors
such as Norton and F-Secure for a further analysis. If
all these cases are confirmed, then the FDR of MassVet
could further be reduced to 4.73%.

To understand the coverage of our approach, we
randomly sampled 2,700 apps from Google Play and
scanned them using MassVet and the 54 scanners within
VirusTotal. All together, VirusTotal detected 281 apps

# Apps Pre-Processing v-core database differential m-core database sumanalysis search search (Intersection)

10 5.84 0.15 0.33 1.80 8.12
50 5.85 0.15 0.34 1.99 8.33
100 5.85 0.14 0.35 2.23 8.57
200 5.88 0.16 0.35 3.13 9.52
500 5.88 0.16 0.35 3.56 9.95

Table 2: Performance: “Apps” here refers to the number of
concurrently submitted apps.

and among them our approach got 197 apps. The cover-
age of MassVet, with regard to the collective result of all
54 scanners, is 70.1%, better than what could be achieved
by any individual scanner integrated within VirusTo-
tal, including such top-of-the-line antivirus systems as
NOD32 (60.8%), Trend (21.0%), Symantec (5.3%) and
McAfee (16%). Most importantly, MassVet caught at
least 11% malware those scanners missed. The details
of the study are presented in Table 1 (top 12).
Vetting delay. We measured the performance of our
technique, on a server with 260 GB memory, 40 cores
at 2.8 GHz and 28 TB hard drives. Running on top of the
Storm stream processor, our prototype was tested against
1 to 500 concurrently submitted apps. The average delay
we observed is 9 seconds, from the submission of the app
to the completion of the whole process on it. This vetting
operation was performed against all 1.2 million apps.

Table 2 further shows the breakdown of the vetting
time at different vetting stages, including preprocessing
(v-core and m-core generation), search across the v-core
database, the differential analysis, search over the m-core
database and the intersection analysis. Overall, we show
that MassVet is indeed capable of scaling to the level of
real-world markets to provide a real-time vetting service.

4.3 Measurement and Findings
Over the 127,429 malicious apps detected in our study,
we performed a measurement study that brings to light
a few interesting observations important for understand-
ing the seriousness of the malware threat to the Android
ecosystem, as elaborated below.
Landscape. The malware we found are distributed
across the world: over 35,473 from North America,
4,852 from Europe and 87,104 from Asia. In terms of
the portion of malicious code within all apps, Chinese
app markets take the lead with 12.90%, which is fol-
lowed by US, with 8.28%. This observation points to
a possible lack of regulations and proper security protec-
tion in many Chinese markets, compared with those in
other countries. Even among the apps downloaded from
Google Play, over 7.61% are malicious, which is differ-
ent from a prior report of only 0.1% malware discovered
there [15]. Note that most of the malware here has been
confirmed by VirusTotal. This indicates that indeed the
portion of the apps with suspicious activities on leading
app stores could be higher than previously thought. De-
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Figure 4: The distribution of down-
loads for malicious or suspicious apps
in Google Play.

Figure 5: The distribution of rating for
malicious or suspicious apps in Google
Play.

Figure 6: The distribution of average
number of downloads for malicious or
suspicious apps in Google Play.

tailed numbers of malicious apps are shown in Appendix
(Table 5).

We observed that most scanners react slowly to the
emergence of new malware. For all 91,648 malicious
apps confirmed by VirusTotal, only 4.1% were alarmed
by at least 25 out of 54 scanners it hosts. The results are
present in Figure 7. This finding also demonstrates the
capability of MassVet to capture new malicious content
missed by most commercial scanners.












               


Figure 7: Number of malware detected by VirusTotal.

The impacts of those malicious apps are significant.
Over 5,000 such apps have already been installed over
10,000 times each (Figure 4). Also, there are a few
extremely popular ones, with the install count reaching
1 million or even more. Also, the Google-Play ratings
of the suspicious APKs are high (most of them ranging
from 3.6 to 4.6, Figure 5), with each being downloaded
for many times (100,000 to 250,000) on average (Fig-
ure 6). This suggests that hundreds of millions of mobile
devices might have already been infected.
Existing defense and disappeared apps. Apparently,
Google Play indeed makes effort to mitigate the malware
threat. However, our measurement study also shows the
challenge of this mission. As Figure 8 illustrates, most
malware we discovered were uploaded in the past 14
months. Also the more recently an app shows up, the
more likely it is problematic. This indicates that Google
Play continuously inspects the apps it hosts to remove
the suspicious ones. For the apps that have already been
there for a while, the chance is that they are quite legiti-
mate, with only 4.5% found to be malicious. On the other
hand, the newly released apps are much less trustworthy,
with 10.69% of them being suspicious. Also, these mali-
cious apps have a pretty long shelf time, as Google needs
up to 14 months to remove most of them. Among the
malware we discovered, 3 apps uploaded in Dec. 2010
are still there in Google Play.

Interestingly, 40 days after uploading 3,711 apps
(those we asked VirusTotal to run new scan upon, as
mentioned earlier) to VirusTotal, we found that 250 of
them disappeared from Google Play. 90 days later, an-
other 129 apps disappeared. Among the 379 disappeared
apps, 54 apps (14%) were detected by VirusTotal. Ap-
parently, Google does not run VirusTotal for its vetting
but pays close attention to the new malware it finds.

We further identified 2,265 developers of the 3,711
suspicious apps, using the apps’ meta data, and moni-
tored all their apps in the follow-up 15 weeks (November
2014 to February 2015). Within this period, we observed
that additional 204 apps under these developers disap-
peared, all of which were detected by MassVet, due to
the suspicious methods they shared with the malware we
caught before that period. The interesting part is that we
did not scan these apps within VirusTotal, which indi-
cates that it is likely that Google Play also looked into
their malicious components and utilized them to check
all other apps under the same developers. However, ap-
parently, Google did not do this across the whole market-
place, because we found that other apps carrying those
methods were still there on Google Play. If these apps
were missed due to the cost for scanning all the apps on
the Play Store, MassVet might actually be useful here:
our prototype is able to compare a method across all 1.2
million apps within 0.1 second.

Another interesting finding is that we saw that some of
these developers uploaded the same or similar malicious
apps again after they were removed. Actually, among the
2,125 reappeared apps, 604 confirmed malware (28.4%)
showed up in the Play Store unchanged, with the same
MD5 and same names. Further, those developers also
published 829 apps with the same malicious code (as that
of the malware) but under different names. The fact that
the apps with known malicious payloads still got slipped
in suggests that Google might not pay adequate attention
to even known malware.

Repackaging malware and malicious payload.
Among the small set of repackaging malware captured
by the differential analysis, most are from third-party
stores (92.35%). Interestingly, rarely did we observe
that malware authors repackaged Google Play apps
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Figure 8: Number of malicious apps overtime.

and distributed them to the third-party stores in China.
Instead, malware repackaging appears to be quite
localized, mostly between the app stores in the same
region or even on the same store. A possible explanation
could be the effort that malware authors need to make
on the original app so that it works for a new audience,
which is certainly higher than simply repackaging the
popular one in the local markets.

Figure 9 illustrates the distribution of common code
across malware, as discovered from the intersection anal-
ysis. A relatively small set of methods have been reused
by a large number of malicious apps. The leading one
has been utilized by 9,438 Google-Play malware and by
144 suspicious apps in the third-party markets. This
method turns out to be part of the library (“com/star-
tapp”) extensively used by malware. Over 98% of the
apps integrating this library were flagged as malicious
by VirusTotal and the rest were also found to be suspi-
cious through our manual validation. This method sends
users’ fine-grained location information to a suspicious
website. Similarly, all other popular methods are appar-
ently also part of malware-building toolkits. Examples
include “guohead”, “purchasesdk” and “SDKUtils”. The
malware integrating such libraries are signed by thou-
sands of different parties. An observation is that the use
of these malicious SDKs is pretty regional: in Chinese
markets, “purchasesdk” is popular, while “startapp” is
widely used in the US markets. We also noticed that a
number of libraries have been obfuscated. A close look
at these attack SDKs shows that they are used for getting
sensitive information like phone numbers, downloading
files and loading code dynamically.

Signatures and identities. For each confirmed mali-
cious app, we took a look at its “signature”, that is, the
public key on its X.509 certificate for verifying the in-
tegrity of the app. Some signatures have been utilized by
more than 1,000 malware each: apparently, some mal-
ware authors have produced a large number of malicious
apps and successfully disseminated them across differ-
ent markets (Table 3). Further, when we checked the
meta data for the malware discovered on Google Play,
we found that a few signatures have been associated with
many identities (e.g., the creator field in the meta-
data). Particularly, one signature has been linked to 604
identities, which indicates that the adversary might have










                          











Figure 9: The distribution of common code across malware.

Signature # of malicious apps

c673c8a5f021a5bdc5c036ee30541dde 1644
a2993eaecf1e3c2bcad4769cb79f1556 1258
3be7d6ee0dca7e8d76ec68cf0ccd3a4a 615
f8956f66b67be5490ba6ac24b5c26997 559
86c2331f1d3bb4af2e88f485ca5a4b3d 469

Table 3: Top 5 signatures used in apps.

created many accounts to distribute his app (Table 4).

Case studies. Among the suspicious apps MassVet re-
ported are a set of APKs not even VirusTotal found to
be malicious. We analyzed 40 samples randomly cho-
sen from this set and concluded that 20 of them were
indeed problematic through manual analysis, likely to be
zero-day malware. We have reported them to 4 malware
companies (F-Secure, Norton, Kaspersky, Trend Micro)
for further validations. The behaviors of these apps in-
clude installing apps without user’s consent, collecting
user’s private data (e.g., take screen shots of other apps)
even though such information does not serve apps’ stated
functionalities, loading and executing native binary for
command and control.

These apps use various techniques to evade detec-
tion. For example, some hide the suspicious function-
ality for weeks before starting to run it. “Durak card
game” is such an game, which has been downloaded over
5,000,000 times. It was on Google Play before BBC re-
ported it on February 4th 2015 [25]. So far, only two
scanners hosted by VirusTotal can detect it. This mal-
ware disguises as warning messages when the user un-
lock her Android smartphone. It waits for several weeks
before performing malicious activities. Its advertise-
ments also do not show up until at least one reboot. Al-
though Google removes “Durak card game”, other apps
with similar functionalities are still on the Play Store
now. We also found that some malicious apps conceal
their program logic inside native binaries. Some even
encrypt the binaries and dynamically decrypt them for
execution. Further some utilize Java reflection and other
obfuscation techniques to cover their malicious code.

Signature # of different identities

02d98ddfbcd202b13c49330182129e05 604
a2993eaecf1e3c2bcad4769cb79f1556 447
82fd3091310ce901a889676eb4531f1e 321
9187c187a43b469fa1f995833080e7c3 294
c0520c6e71446f9ebdf8047705b7bda9 145

Table 4: Top 5 signatures used by different identities.
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5 Discussion
As discussed before, MassVet aims at repackaging mal-
ware, the mainstay of potentially harmful mobile apps:
this is because malware authors typically cannot afford
to spend a lot of time and money to build a popular app
just for spreading malware, only to be forced to do this
all over again once it gets caught. Our technique ex-
ploits a weakness of their business model, which relies
on repackaging popular apps with a similar attack pay-
load to keep the cost for malware distribution low. With
the fundamentality of the issue and the effectiveness of
the technique on such malware, our current implementa-
tion, however, is still limited, particularly when it comes
to the defense against evasion.

Specifically, though simply adding the junk views con-
nected to an existing app’s view graph can affect user ex-
perience and therefore may not work well (Section 3.3),
a more effective alternative is to obfuscate the links be-
tween views (calls like StartActivity). However,
this treatment renders an app’s UI structure less clear
to our analyzer, which is highly suspicious, as the vast
majority of apps’ view graphs can be directly extracted.
What we could do is to perform a dynamic analysis on
such an app, using the tools like Monkey to explore the
connections between different views. Note that the over-
all performance impact here can still be limited, simply
because most apps submitted to an app store are legiti-
mate and their UI structures can be statically determined.

Further, to evade the commonality analysis, the ad-
versary could obfuscate the malicious methods. As dis-
cussed earlier (Section 3.3), this attempt itself is nontriv-
ial, as the m-cores of those methods can only be moved
significantly away from their original values through
substantial changes to their CFGs each time when a le-
gitimate app is repackaged. This can be done by adding
a large amount of junk code on the CFGs. Our current
implementation does not detect such an attack, since it is
still no there in real-world malware code. On the other
hand, further studies are certainly needed to better under-
stand and mitigate such a threat.

Critical to the success of our DiffCom analysis is re-
moval of legitimate libraries. As an example, we could
utilize a crawler to periodically gather shared libraries
and code templates from the web to update our whitelists.
Further, a set of high-profile legitimate apps can be ana-
lyzed to identify the shared code missed by the crawler.
What can also be leveraged here is a few unique re-
sources in the possession of the app market. For exam-
ple, it knows the account from which the apps are up-
loaded, even though they are signed by different certifi-
cates. It is likely that legitimate organizations are only
maintaining one account and even when they do have
multiple ones, they will not conceal the relations among
them. Using such information, the market can find out

whether two apps are actually related to identify the in-
ternal libraries they share. In general, given the fact that
MassVet uses a large number of existing apps (most of
which are legitimate) to vet a small set of submissions, it
is at the right position to identify and remove most if not
all legitimate shared code.

6 Related Work
Malicious app detection. App vetting largely relies on
the techniques for detecting Android malware. Most ex-
isting approaches identify malicious apps either based
upon how they look like (i.e., content-based signa-
ture) [20, 27, 21, 45, 51, 57, 19, 54, 17, 22, 4] or how
they act (behavior-based signature) [11, 31, 48, 47, 42,
18, 34]. Those approaches typically rely on heavyweight
static or dynamic analysis techniques, and cannot detect
the unknown malware whose behavior has not been mod-
eled a priori. MassVet is designed to address these is-
sues by leveraging unique properties of repackaging mal-
ware. Most related to our work is PiggyApp [54], which
utilizes the features (permissions, APIs, etc.) identified
from a major component shared between two apps to find
other apps also including this component, then clusters
the rest part of these apps’ code, called piggybacked pay-
loads, and samples from individual clusters to manually
determine whether the payloads there are indeed mali-
cious. In contrast, MassVet automatically detects mal-
ware through inspecting the code diff among apps with a
similar UI structure and the common methods shared be-
tween those unrelated. When it comes to the scale of our
study, ANDRUBIS [26, 46] dynamically examined the
operations of over 1 million apps in four years. Different
from ANDRUBIS, which is an off-line analyzer for re-
covering detailed behavior of individual malicious apps,
MassVet is meant to be a fast online scanner for iden-
tifying malware without knowing its behavior. It went
through 1.2 million of apps within a short period of time.

Repackaging and code reuse detection. Related to our
work is repackaging and code reuse detection [55, 21,
1, 9, 10, 41, 35, 5]. Most relevant to MassVet is the
Centroids similarity comparison [7], which is also pro-
posed for detecting code reuse. Although it is a building
block for our technique, the approach itself does not de-
tect malicious apps. Significant effort was made in our
research to build view-graph and code analysis on top of
it to achieve an accurate malware scan. Also, to defeat
code obfuscation, a recent proposal leverages the simi-
larity between repackaged apps’ UIs to detect their rela-
tions [50]. However, it is too slow, requiring 11 seconds
to process a pair of apps. In our research, we come up
with a more effective UI comparison technique, through
mapping the features of view graphs to their geometric
centers, as Centroids does. This significantly improves
the performance of the UI-based approach, enabling it to
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help vet a large number of apps in real time.

7 Conclusion
We present MassVet, an innovative malware detection
technique that compares a submitted app with all other
apps on a market, focusing on its diffs with those hav-
ing a similar UI structure and intersections with others.
Our implementation was used to analyze nearly 1.2 mil-
lion apps, a scale on par with that of Google Play, and
discovered 127,429 malicious apps, with 20 likely to be
zero-day. The approach also achieves a higher coverage
than leading anti-malware products in the market.
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8 Appendix

Appstore # of malicious apps # of total apps studied Percentage Country

Anzhi 17921 46055 38.91 China
Yidong 1088 3026 35.96 China
yy138 828 2950 28.07 China
Anfen 365 1572 23.22 China

Slideme 3285 15367 21.38 US
AndroidLeyuan 997 6053 16.47 China

gfun 17779 108736 16.35 China
16apk 4008 25714 15.59 China

Pandaapp 1577 10679 14.77 US
Lenovo 9799 68839 14.23 China

Haozhuo 1100 8052 13.66 China
Dangle 2992 22183 13.49 China

3533 world 1331 9886 13.46 China
Appchina 8396 62449 13.44 China
Wangyi 85 663 12.82 China
Youyi 408 3628 11.25 China
Nduo 20 190 10.53 China
Sogou 2414 23774 10.15 China

Huawei 148 1466 10.1 China
Yingyongbao 272 2812 9.67 China

AndroidRuanjian 198 2308 8.58 China
Anji 3467 41607 8.33 China

AndroidMarket 1997 24332 8.21 China
Opera 4852 61866 7.84 Europe

Mumayi 6129 79594 7.7 China
Google 30552 401549 7.61 US
Xiaomi 832 12139 6.85 China
others 2377 38648 6.15 China

Amazon 59 1001 5.89 US
Baidu 831 21122 3.93 China
7xiazi 898 26195 3.43 China
Liqu 394 26392 1.49 China

Gezila 30 5000 0.6 China

Table 5: App Collection & Malware in Different Markets.
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ABSTRACT

IME (input method editor) apps are the primary means

of interaction on mobile touch screen devices and thus

are usually granted with access to a wealth of private

user input. In order to understand the (in)security of

mobile IME apps, this paper first performs a systematic

study and uncovers that many IME apps may (intention-

ally or unintentionally) leak users’ sensitive data to the

outside world (mainly due to the incentives of improv-

ing the user’s experience). To thwart the threat of sen-

sitive information leakage while retaining the benefits of

an improved user experience, this paper then proposes

I-BOX, an app-transparent oblivious sandbox that mini-

mizes sensitive input leakage by confining untrusted IME

apps to predefined security policies. Several key chal-

lenges have to be addressed due to the proprietary and

closed-source nature of most IME apps and the fact that

an IME app can arbitrarily store and transform user input

before sending it out. By designing system-level transac-

tional execution, I-BOX works seamlessly and transpar-

ently with IME apps. Specifically, I-BOX first check-

points an IME app’s state before the first keystroke of an

input, monitors and analyzes the user’s input, and rolls

back the state to the checkpoint if it detects the poten-

tial danger that sensitive input may be leaked. A proof

of concept I-BOX prototype has been built for Android

and tested with a set of popular IME apps. Experimental

results show that I-BOX is able to thwart the leakage of

sensitive input for untrusted IME apps, while incurring

very small runtime overhead and little impact on user ex-

perience.

1 INTRODUCTION

The Problem. With large touch screens, modern mo-

bile devices typically feature software keyboards to al-

low users to enter text input. This is different compared

to traditional desktops where we use the hardware key-

boards. These soft keyboards are known as Input Method

Editor (IME) apps, and they convert users’ touch events

to text. Since IME apps process almost all of a user’s in-

put in mobile devices, it is critical to ensure that they are

not keyloggers and they do not leak any sensitive input

to the outside world.
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Figure 1: Download statistics of IME apps in our study.

While all mobile devices have a default IME app in-

stalled, users often demand third-party IME apps with

expanded feature sets in order to gain a better user ex-

perience. This is especially common for non-Latin lan-

guages. In order to accommodate this need, mobile oper-

ating systems such as Android and iOS provide an exten-

sible framework allowing alternate input methods. Due

to the ease of making third-party IME apps and high de-

mand for customization, there are currently thousands of

IME apps in major App market like Google Play and Ap-

ple’s App Store. Many of which have gained hundreds of

millions downloads, as shown in Fig. 1. For instance, the

Sogou IME apps has in total 1.6 billion downloads in

Google Play and several third party app vendors such as

360, and Baidu. Meanwhile, a recent survey [13] found

that 68.3% of smartphones in China are using third-party

IME apps. This survey did not include statistics from

Japan or Korea, where such apps are also very popular.

Unfortunately, despite these advantages, using a third-

party IME app also brings security and privacy concerns

(assume the default IME app does not have these prob-

lems). First, IME app developers have incentives to log

and collect user input in order to improve the user’s ex-

perience with their products, and user input is as valuable

as email content, from which they can learn user’s needs

and push customized advertising or other business activ-

ities. Although an IME app may state a policy of not

collecting certain input from a user, the policies imple-
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mented in the app may unintentionally send sensitive in-

put outside the phone. In §2.3 we show that such a threat

is real by observing the output of a popular IME app that

periodically sends out user input to a remote server. In

addition, we collected the network activities of a set of

IME apps during a user input study and showed that they

also likely send out private data. In light of this informa-

tion leakage threat, the Japanese government’s National

Information Security Center has warned its central gov-

ernment ministries, agencies, research institutions and

public universities to stop using IME apps offered by the

search engine provider Baidu [1].

Even if a user trusts benign IME apps to properly se-

cure private data, there is still a risk from repackaging

attacks targeting benign apps. In fact, prior study has

shown that around 86% of Android malware samples are

repackaged from legitimate apps [49]. It is also surpris-

ingly simple to repackage an IME app with a malicious

payload, as we demonstrate in §2. Essentially, a repack-

aged malicious IME app is essentially a keylogger, which

has been one of the most dangerous security threats for

years [39]. Also, evidence has shown that IME apps are

popular for attackers to inject malicious code [29].

Challenges. While it may seem trivial to detect these

repackaged malicious IME apps by comparing a hash of

the code with the corresponding vendor in the official

market, the widespread existence of third-party markets

makes such checks more difficult. It is also easy for at-

tackers to plant repackaged malware into these markets,

as is shown by the fact that a considerable amount of

repackaged malware has been found in them [48].

Of further concern is the fact that it is very challenging

to analyze whether even “benign” IME apps will leak any

sensitive data or not. There are several reasons why de-

tecting privacy leaks in IME apps is challenging. First,

many commercial IME apps use excessive amounts of

native code, which makes it very difficult to understand

how they log and process user input. Second, many of

the IME apps use unknown, proprietary protocols, which

makes it especially hard to analyze how they collect and

transform user input. Third, many of them utilize encryp-

tion, and their algorithms are also unknown. Therefore,

we eventually must treat the IME apps as black boxes

for current privacy-preserving techniques on mobile de-

vices, and users must either trust them completely (and

risk leaking their private data) or switch to the default

IME app (and lose the improved user experience).

At a high level, it would seem that existing techniques

such as taint tracking would be viable approaches to pre-

cisely tracking and containing sensitive input. For ex-

ample, TaintDroid [16, 17] and its follow-up work have

been shown to very effective to track sensitive input and

detect when it is leaked. There will still be the follow-

ing additional challenges to be overcome. First, current

IME apps tend to use excessive native code in their core

logic, and TaintDroid currently does not track tainted

data in native code. Second, it is a well-known problem

that data-flow based tracking for taint-tracking systems

to capture control-based propagation. In fact, many of

the keystrokes are generated through lookup tables, as

reported in Panorama [46]. Third, sensitive information

is often composed of a sequence of keystrokes, making it

challenging to have a well-defined policy to differentiate

between sensitive and non-sensitive keystrokes in Taint-

Droid. Therefore, we must look for new techniques.

Our approach. In this paper, we present I-BOX, an

app-oblivious IME sandbox that prevents IME apps from

leaking sensitive user input. In light of the opaque na-

ture of third-party IME apps, the key idea of I-BOX is

to make an IME app oblivious to sensitive input by run-

ning IME apps transactionally; I-BOX eliminates sensi-

tive data from untrusted IME apps when there is sensi-

tive input during this process. Specifically, I-BOX check-

points the states of an IME app before an input transac-

tion. It then analyzes the user’s input data using a pol-

icy engine to detect whether sensitive input is flowing

into an IME app. If so, I-BOX rolls back the IME app’s

states to the saved checkpoint, which essentially makes

an IME app oblivious to what a user has entered. Other-

wise, I-BOX commits the input transaction by discarding

the checkpoint, which enables the IME app to leverage

users’ input to improve the user experience.

One key challenge faced when building I-BOX is

how to make the checkpointing process efficient and

consistent, which is unfortunately complicated by An-

droid’s design, especially its hybrid execution (of Java

and C), multi-threading, and complex IPC mechanism

(e.g., Binder). Fortunately, I-BOX addresses this chal-

lenge by leveraging the event-driven nature of an IME

app. More specifically, we present a novel approach by

creating the checkpoint at a quiescent point, in which its

execution states are inactive. Such a design significantly

simplifies many issues such as handling residual states in

the local stack of native code, the Dalvik VM and IPCs.

We have implemented I-BOX based on Android 4.2.2

running on a Samsung Galaxy Nexus smartphone. Per-

formance evaluations show that I-BOX can checkpoint

and restore a set of third-party popular IME apps within a

very tiny amount of time, and thus cause little impact on

user experience. A security evaluation using a set of pop-

ular IME apps shows that I-BOX mitigates the leakage of

sensitive input. Case studies using a popular “benign”

IME app and a repackaged IME app confirm that I-BOX

accurately conforms to the predefined security policies to

prevent sending of sensitive input data.
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Figure 2: The workflow when using an IME app.

Contributions. In short, we make the following contri-

butions:

• New Problem. This is the first attempt to systemat-

ically understand the threat caused by the leakage of

private sensitive keystrokes in third-party IME apps.

Our discovery shows the pervasive presence of such

attacks, and the seriousness of the problem.

• New Technique. We introduce oblivious sand-

boxing for IME apps that embraces both security

and usability and quiescent points based check-

point/restore that significantly simplifies the design

and implementation of I-BOX.

• New System. We demonstrate a working prototype

of the techniques and a set of evaluations confirming

the security threat of commercial IME apps and the

effectiveness of I-BOX.

2 BACKGROUND AND MOTIVATION

In this section, we first describe the necessary back-

ground on IME architecture in Android, and then discuss

why commercial IME apps have the incentive to collect

a user’s data, followed by the case studies showing how

IME apps can leak users’ sensitive data to remote parties.

2.1 Input Method Editor

Though Android provides a default IME app for each

language, many end users prefer using third-party IME

apps for better user experiences, such as changing the

screen layout for faster input, generating personalized

phrases to provide intelligently associational input, and

providing more accurate translation from keystrokes to

the target languages. As a result, mobile operating sys-

tems such as Android provide an extensible IME infras-

tructure to allow third-party vendors to develop their own

IME apps.

Figure 2 gives an overview of the involved IME com-

ponents when entering text in a client app. Specifically,

third-party IME apps must conform to the IME frame-

work so that the Android Input Method Management

Service (IMMS) can recognize and manage them. For

example, every IME app contains a class that extends

from InputMethodService, which helps Android

recognize it as an input service and add it into the sys-

tem as an IME app. When an end user clicks a textbox

to invoke an IME app, Android IMMS will start the de-

fault IME activity and build an InputConnection
between the IME app and the client app that helps the

IME app to commit the user input to the client app. In

particular, the IME app first gets the touch event con-

taining the position data and translates it to meaningful

characters or words based on its keyboard layout and in-

ternal logic. Then it sends the keystrokes to the client

app through InputConnection.

The IME architecture is clean with well-defined

classes. This not only significantly saves pro-

grammer’s effort in developing a new IME app,

but also makes it easy for attackers to locate

key points of a victim IME app. For instance,

our study found that simply hooking the function

BaseInputConnection.commitText can inter-

cept all the user’s input in many IME apps. This

can be done by simply searching for the keyword

BaseInputConnection.commitText in the de-

compiled code to locate all of its occurrences.

2.2 Why IME Apps Collect Users’ Input

Third-party IME apps usually extend the standard IME

apps with lots of rich features to provide a better user ex-

perience. Such features usually require collecting users’

input data to learn users’ habits to allow personalizing

IME apps. Further, such data may also collectively be

used to improve experiences of other users, i.e., push-

ing phrases learned from a set of users to others. In fact,

there are many features that require collecting user input

data. The following lists a few of them:

• Personal dictionary. Commercial IME apps usu-

ally remember the words and phrases from user

input to speed up follow-up input (especially for

non-Latin languages) by prompting potential results

when input is not finished. To achieve this, they

need to maintain a personal dictionary for each user

to save frequently typed or self-made words.

• Cloud input. As users usually have multiple de-

vices and need to synchronize personal dictionary

among them, IME apps utilize cloud-based services

to store the dictionary and to synchronize the dic-

tionary and personal settings between different de-

vices.

Meanwhile, some non-Latin languages such as

those eastern languages differ from English in that

IMEs need to translate users’ keystrokes to words

in those languages. To accelerate input speed, IMEs
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may usually need to leverage cloud services to ana-

lyze and predict users’ intended words based on the

current input.

In addition, for some latin-based languages, some

IME apps provide a feature that leverages the cur-

rent input to predict the intended phrases and adjust

the layout of the soft keyboard to make the soft key

of the next character close to users’ current figure.

To better predict user intent, some IME apps usually

leverage the abundant resources in cloud to analyze

and predict user input. Meanwhile, they also collect

users’ habits to improve the accuracy of prediction.

• Search mediation. Some IME apps have a new

feature named “search mediation”, which intercepts

user input and returns some search result back to the

user. However, this means that user inputs will be

unrestrictedly sent to the search engine.

Note that due to the unstable network connectivity of

mobile devices, almost all IME apps can work properly

with and without network connections. When network is

disconnected, an IME app may store current input (like

frequently used phrases) for later use when the network

connection is on. Besides, Android’s configurable per-

mission model indicates that an IME app usually works

normally even without grants of certain permissions.

2.3 Possible Threats Posed by IME Apps

While third-party IME apps do offer useful features and

better user experiences, they may unduly collect user

data or be repackaged to be malicious. Next, we study

the possible threats an IME app could impose.

Privacy leakage in “benign” IME apps. Conventional

wisdom is to trust a respected service provider, in the

hope that the provider will enforce policies in the cloud

to faithfully provide user secrecy [30]. Unfortunately,

this exposes users’ sensitive keystrokes from two threats.

First, a curious or malicious operator may stealthily steal

such data [47, 41], which has been evidenced by numer-

ous insider data theft incidents even from reputed compa-

nies [40]. Second, even reputed cloud providers provide

no guarantee on the security of user data, which is evi-

denced by their user agreements. Hence, it is reasonable

to not trust an IME app to securely protect users’ data.

More specifically, a severe threat from “benign” IME

apps is that they may have unduly collected user data

without users’ awareness. Given that we do not have

their source code and they often use proprietary proto-

cols with encryption, it thus remains opaque to end users

how the IME apps really handle the sensitive input data.

At a high level, since they have been collecting user data

for better experiences (especially the personal dictionary

and cloud input), it is highly likely that much of a user’s

sensitive input has been leaked to these IME providers.

To confirm our hypothesis, we conducted an experi-

mental study by performing a man-in-the-middle attack

on a popular IME app, namely TouchPal Keyboard (in

version chubao 5.5.5.67049, cootek). This IME app

provides multiple rich functionalities such as cloud in-

put and a personal dictionary and has been installed

more than 7.09 million times from a third-party market.

By intercepting its network packages using Wireshark1,

we found that its cloud input is implemented using an

HTTP POST command which carries several parameters

in plain text. Therefore, we are able to see how it works

without any protocol reverse engineering and packet de-

cryption. A deep investigation revealed that these param-

eters include a userid, the keycode that a user just

entered, and the existing words of the target input con-

trol that user is focusing on. This contradicts its privacy

statement of “No collection of personal information that

you type” in a prior statement2, and thus poses a serious

threat to user privacy.

We suspect there may be many other commercial IME

apps that also leak users’ sensitive input. Currently,

we only used side-channel analysis [11] to analyze the

packet size between the IME apps and their servers. We

did notice there are notable differences in the number of

packets (as reported in §5.2).

Privacy leakage in malicious IME apps. Even if all

third-party IME apps did not leak any user’s private data,

there are still other attack vectors such as repackaging

attacks. In fact, a prior study uncovers that repackaged

malware samples account for 86% of all malware [49].

Moreover, there are also trojans that serve as key loggers

but masquerade as IME apps [29]. Finally, IME apps

may also be vulnerable to component-hijacking attacks.

It has been shown that input methods have been a popu-

lar means to inject malicious code [29]. While currently

we are not aware of any repackaged malicious IME apps

in Android, we envision that there will be such malware

given the large popularity of the official apps and the eas-

iness of repackaging them as shown below.

To understand the repackaging threat of IME apps,

we conducted an attack study by repackaging a popu-

lar commercial IME app called Baidu IME, which has

been downloaded more than 100 million times in a third-

party market. In this study, we repackage the IME app by

inserting a malicious payload into the original program.

The payload records all user input and sends them to a

specific server.

While the core logic of the Baidu IME app is written

1http://www.wireshark.org/
2We noted that the newer versions of TouchPal changed their pri-

vacy statement indicating that they will collect user privacy data.
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using C, the other components are written in Java

which enables an easy reverse engineering of the

bytecode especially with existing tools. Specifically,

we used baksmali [2], a popular Dalvik disassem-

bler to reverse classes.dex into an intermediate

representation in the form of smali files. Then we

directly modified smali code to insert our payload,

which captures the text committed by the function

BaseInputConnection.commitText and then

sends the data out. A caveat in this study is that we found

it would not work if we simply repackaged the app be-

cause the IME app has a checksum protection. However,

the protection mechanism is rather simple, as it just calls

a self-crash function when detecting repackaging. How-

ever, the self-crash function is not self-protected and thus

we rewrote it to return directly to disable the protection.

We conducted our experiment in a contained environ-

ment and did not upload this repackaged IME app to any

third-party Android market, but attackers can easily do

this, as reported before [49, 48]. We installed this repack-

aged IME app on our test smartphone and all data we

input through it was divulged. Our attack study shows

all critical data that a user inputs will be compromised if

the IME app is malicious. The popularity of third-party

markets aggravates this problem, especially considering

that 5% to 13% of apps are repackaged in a number of

third-party markets [48].

3 OVERVIEW

The goal of I-BOX is to protect users’ sensitive input,

while still preserving the usability of (curious or mali-

cious) IME apps such that users can still benefit from

the rich features. One possible approach might be let-

ting users switch to a trusted IME app when they want

to type some sensitive information. While this may work

for simple sensitive data like passwords, some users’ sen-

sitive input (like addresses and diseases) is scattered in a

long conversation. It is cumbersome for users to con-

stantly keep this in mind and do the switch. Another

intuitive approach would be to block all network con-

nections during user input, but doing so will negatively

affect the user experience. Besides, there are also other

channels like third-party content providers and external

storages that an IME app may temporally store input data

to be leaked later. Therefore, we have to look for new ap-

proaches.

Approach overview. As discussed, the key challenges

of securely using third-party IME apps are that such apps

are usually closed-source and they may do arbitrary pro-

cessing and transformation of users’ input data before

sending it out. It is thus hard to model or predict their

behavior. Hence, I-BOX instead treats an IME app as a

black box and makes it oblivious to users’ sensitive in-

put data. To achieve this, I-BOX borrows the idea from

execution transactions by running an IME app transac-

tionally. Consequently, if an IME app touches users’

sensitive input data, I-BOX will roll back the IME app’s

states to make it oblivious to what it has observed so as to

address the problem where an IME app stores and trans-

forms users’ input data.

I-BOX regards the user input process as a transaction,

which begins when a user starts to enter the input and

ends when the input session ends. A clean snapshot of an

IME app will be saved before an input transaction starts.

For normal input transactions without touching sensitive

input data, I-BOX will commit the IME app’s state such

that the IME app can use these data to improve the user

experience. To prevent malicious IME apps from send-

ing private data out during the input transaction, the net-

work connection of the IME app will be restricted when

the current transaction is marked as sensitive. When an

input session ends and thus the client app has received

all user input, I-BOX will abort the input transaction from

the view of the IME app, by restoring the IME app’s state

to a most-recent checkpoint. This makes the IME app

oblivious to the sensitive data it observed. Hence, even if

the IME app locally saves a user’s input to be sent later,

the input data will be swiped during restoring.

As input data is provided in a streaming fashion by a

user, there is no general way to know the input stream

in advance. Because the IME app gets the input data

prior to I-BOX, it would be too late to stop an IME app’s

leaking channels like network connection after it gets the

whole input since it may have sent it out or store it lo-

cally. Hence, it is generally impossible for an approach

not leaking any user input before I-BOX can determine if

the current input stream is sensitive or not.

As a result, I-BOX chooses to use a combination of

context-based and policy-driven approaches based on the

state of the IME app, with the goal of striking a balance

between user experience and privacy. For specific input

such as passwords, which I-BOX can determine through

input context, I-BOX can immediately know they are

sensitive and thus constrains IME app’s behavior (like

blocking networking for the app). For general input,

I-BOX uses a state-machine based policy engine to

predict whether the current input transaction is sensitive.

This is done continuously during the input process,

where I-BOX uses the current partial input stream to

determine if the next string is sensitive or not.

An architectural overview of I-BOX is presented in

Figure 3. I-BOX consists of an isolated user-level pol-

icy engine that decides whether I-BOX shall commit or

roll back the execution of an IME app’s state. The sand-

box module is implemented as a kernel module, which

saves and restores the states of an IME app as needed.
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Figure 3: An Architectural Overview of I-BOX

Challenges. To realize I-BOX, we are facing several

challenges. In particular:

• How to express and enforce security policies? As

users’ privacy policies are usually vague, it is criti-

cal to efficiently represent users’ policies such that

there won’t be a state explosion problem. This is

especially challenging to handle for non-Latin lan-

guages as they usually require an additional layer

of translation to represent them. Further, once the

policies are represented, it should also be relatively

easy to check the current input against the policies,

which is critical to the latency of the checking.

• How to efficiently perform the checkpoint and

rollback? As checkpoint and rollback are triggered

during input, lengthy checkpoint and rollback may

extend the latency of users’ input. However, tradi-

tional checkpoint and rollback usually require either

expensive copying of applications’ states, or heavy-

weight recording of applications’ execution. For

example, prior checkpointing on server platforms

takes around 600ms without copying files [28].

• How to ensure consistency upon rollback? By

considering the user’s input process as a transac-

tion, I-BOX can ignore the implementation details

of different IME apps and take them as normal pro-

cesses from the kernel’s viewpoint. However, there

also intensive cross-layer and cross-component in-

teractions between an IME app and the rest of the

environment, like the Dalvik VM, the application

framework and the client app. Further, the IME app

is essentially multi-threaded. Hence, consistently

checkpointing and rolling back an IME app’s states

while preserving the states of other components is

another key technical challenge for I-BOX.

Threat model and assumptions. As third-party IME

apps have the incentive to collect and send out users’ data
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Figure 4: I-BOX work flow.

and some IME apps are even malicious (repackaged or

even faked), I-BOX considers all third-party IME apps as

untrusted. However, I-BOX trusts the underlying smart-

phone OS, including the OS kernel, system services and

any process with root or system privileges. Also, we as-

sume the user’s smartphone has not been rooted such that

the untrusted IME app cannot break the default security

isolation between different apps, especially for system

and user-level apps.

I-BOX relies on input contexts and a user’s policy to

distinguish private data from normal input data. It is pos-

sible that I-BOX may leak sensitive user input if the pol-

icy is incomplete or inaccurate, or the user’s intent has

changed after specifying the policy. Further, depending

on the state machine, I-BOX may leak a prefix of some

sensitive input.

I-BOX also trusts the end user and rely on her as a

witness to prevent a malicious IME app from tampering

with the user’s input during typing. This should be easy

as she can tell the difference between what she typed and

what she observed from the input screen.

We consider the client app that uses the services from

an IME app as trusted. While a rogue or malicious client

app may also steal users’ sensitive input, a malicious

IME app causes more security impact than a malicious

client app as it leaks all user input to all client apps (in-

cluding system apps) in contrast to only input to a spe-

cific (third-party) client app. How to protect third-party

client apps is out of the scope of this work and many

prior efforts have intensively studied solutions to prevent

information leakage from apps [24, 51, 34].
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4 DESIGN AND IMPLEMENTATION

The work flow of how I-BOX works is illustrated in

Figure 4. Specifically, I-BOX intercepts a user’s input

data by placing hooks into Android Input Method Ser-

vice (IMS) and detects the sensitive data from the in-

put stream based on the policy engine. I-BOX uses

both context-based and prefix-matching policies (§4.1)

and enforces them using transactional execution (§4.2)

to protect sensitive data such as passwords. Before div-

ing into the details how we design and implement I-BOX,

we first use a running example to illustrate how it really

works.

A running example. Assuming a sensitive string “Is-

UsenixSec2015” is being typed by a user through an IME

app, I-BOX first makes a checkpoint of the IME app as a

clean snapshot before input. If this string is being typed

to a password textbox (context-based policy), I-BOX im-

mediately knows that the string to type is sensitive and

will restrict the IME app’s behavior (such as stopping

network connections). Otherwise, I-BOX intercepts the

characters and runs the analysis through the policy en-

gine. After getting the characters ‘I‘, ‘s‘, ‘U‘, and ‘s‘,

I-BOX predicts that the user may be typing the sensitive

string “IsUsenixSec2015” and I-BOX restricts the IME

app’s behavior immediately to prevent it from sending

further keystrokes out (prefix-matching policy). After-

wards, the IME app continues to accept input from users’

typing and I-BOX monitors the file operations of the IME

app to record the files that may log the input data. After

the user finishes typing, I-BOX confirms that a sensitive

string was typed into the IME app and restores the states

of the IME app with the checkpoint to clean the sensitive

string out.

4.1 Policy Engine

The policy engine of I-BOX separates sensitive input

from normal input such that different policies can be ap-

plied to different types of data. I-BOX uses both context-

based and prefix matching strategies to derive policies,

with the first strategy having higher priority.

Context-based policy. We first provide an automated

approach to deriving which input would be sensitive

based on the type of the input and execution context of

an app. Specifically, Android uses text fields to help the

user type text into client apps. Text fields can have dif-

ferent input types, such as numbers, dates, passwords,

or email addresses. In fact, the type information of text

fields in the client app has been used to help an IME app

to optimize its layout for frequently used characters. I-

BOX also leverages the type information of the text fields

to decide whether the input is sensitive or not, and pass-

words and email addresses are by default sensitive. In

addition, based on the user defined per-client app pol-

icy (e.g., an IME app is providing services to a banking

application), I-BOX will automatically treat all the input

consumed by a sensitive app according to context [44] as

sensitive.

Prefix-matching policy. For general input streams, I-

BOX leverages prefix matching to distinguish which in-

put stream is sensitive or not. One challenge for defining

policies for I-BOX is that IME apps may need to handle

multiple languages, including both Latin languages and

non-Latin languages. For non-Latin languages, I-BOX

can only get the text in the target languages after an IME

app has translated the keystrokes for the corresponding

text. Hence, it is not viable to simply use keystrokes

to represent the current input. To address this problem,

I-BOX instead uses the UTF-8 (8-bit Unicode Transfor-

mation Format) of the translated keystrokes to represent

current keystrokes as well as those in the policy engine.

As there may eventually be multiple data instances

that should be considered as sensitive, I-BOX uses a trie-

like structure to maintain which data should be consid-

ered as sensitive. A trie-like structure is very space-

efficient for data with a common prefix and is very ef-

ficient for look-up. I-BOX maintains a global trie struc-

ture to represent the global policy. I-BOX may also

provide an application-specific trie structure if an end

user demands more strict policy. During a query, I-BOX

queries the global and application-specific trie structures

in parallel but prefers application-specific policies over

the global one.

While much of the sensitive data like contacts and

cookies can be automatically translated to the trie struc-

ture as the default policies, I-BOX also allows end users

to use regular-expressions when they manually specify

the policy. For example, user may define “abc*” to in-

dicate any word starting with “abc” as sensitive input.

Associated with the regular expression, there is also an

acceptable disclosure rate (ADR), which defines how

many characters can be exposed in an input stream. The

larger the ADR, the more information may be leaked but

the more chances are allowed for cloud assistance. Using

regular expression is easy for experienced users to spec-

ify sensitive input, as it does not require them to fully

remember all such sensitive data and thus matches users’

ambiguous and incomplete memory. This also avoids

asking users to input full secrets to I-BOX. Alternatively,

average users may also specify full secret names (i.e., a

special case of regular expression) to I-BOX.

I-BOX provides a simple script to add such regular-

expressions to the trie-like structure and report any con-

flicts if they occur. For example, for a sensitive string of

15 characters (such as ‘IsUsenixSec2015’) and an ADR

of 0.2, I-BOX will restrict an IME app’s behavior when
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the first three characters (‘IsU’) are typed. I-BOX runs

the trie-structure as a state machine to predict the in-

put stream by matching the typed characters with the trie

structures. Since any substring in the input data may be

sensitive, I-BOX needs to check all of them. To speed

up this process, I-BOX searches all possible substrings

when a new character is typed. Intermediate states are

maintained so that only new characters need to be han-

dled instead of new substrings constructed by the char-

acter.

Note that currently I-BOX directly searches over the

plain text of the policy file and relies on the Android per-

mission system to protect it for simplicity. This can be

further enhanced by encrypting the policy file and us-

ing regular expressions to search over the encrypted file,

which was shown to have small runtime and space over-

head [36].

Prefix-substitution attacks. At first glance, the prefix-

matching policy used by I-BOX would appear to be vul-

nerable to a prefix-substitution attack by a malicious IME

App. Specifically, a malicious IME app might first re-

place the prefix of a typed string with a non-sensitive one

so that I-BOX wouldn’t recognize this prefix and thus no

oblivious sandbox would be applied for this input ses-

sion. Fortunately, we note that users, the ultimate wit-

ness, would immediately notice this by observing the dif-

ference between what they typed and what was displayed

on the screen.

Note that as I-BOX monitors all keystrokes sent from

IME apps to user apps, I-BOX will adjust the state ma-

chine accordingly for any cursor movement and special

characters like deletion. This can detect the case where a

malicious IME app stealthily moves the cursor to deceive

I-BOX on the input sensitivity.

Overall, I-BOX requires users’ awareness of what she

types from what she observes to detect malicious behav-

ior from an IME app. If a user does not pay enough at-

tention to the input process, a malicious IME app may

still have the chance to fool I-BOX about the sensitivity

of the input streams.

4.2 Enabling Transactional Execution

To enable transactional execution of an IME app, I-

BOX needs to provide a checkpoint and rollback mech-

anism. The key challenges here lie in how to provide

low-latency and ensure consistency, which are made es-

pecially difficult by Android’s unique design. For exam-

ple, Android uses a Dalvik virtual machine (VM) to run

the Java code of the IME app, which interacts intensively

with the application framework. Further, the native code

of an IME app also interacts with the Dalvik VM through

the Java Native Interface (JNI). Finally, Android inten-

sively uses Binder, a complex IPC mechanism for com-

munication among isolated apps. Such hybrid execution

and complex communication make it hard to efficiently

and consistently checkpoint the states of an IME app.

I-BOX addresses the above challenges by leveraging

a set of quiescent points. A quiescent point is a point

such that all threads of an application have stopped ex-

ecution and there are no pending states and requests to

be processed. Doing checkpointing at quiescent points

frees I-BOX from handling a number of subtle states like

residual states in stack or other communication peers.

Further, it also requires less states to be checkpointed.

Finally, when I-BOX rolls back the states of an IME app,

the states can be restored consistently without having to

deal with some subtle residual states in other apps.

In the following, we describe in greater detail how

we choose the quiescent points (§4.2.1), how I-BOX per-

forms the checkpoint and restore of the local states of an

IME app (§4.2.2), and how I-BOX handles interactions

of an IME app with others through IPCs (§4.2.3).

4.2.1 Quiescent Points

Our key observation is that an IME app is essentially

an event-driven app that provides services to the client

app. Consequently, it shall be usually in a quiescent point

when a user is not typing, as no event will be delivered

to the IME app at that time. At this state, the IME app’s

states are stable and consistent. Thus, I-BOX can be re-

laxed from handling a lot of complex and subtle local

states. To achieve this, I-BOX first checks if an IME app

is in a quiescent point by checking the process and thread

states (sleeping or not) and the IPC states. The checking

result is very likely to be true for most cases. Even if

the IME app refuses to cooperate with I-BOX and keeps

itself busy, I-BOX can first wait a short time and then

enforce a quiescent point by blocking new requests and

then forcing the IME app to sleep to do the checkpoint.

Here, a non-cooperative IME app could also be a sign

of being malicious. However, we never encountered this

case as the IME apps we tested always conform to An-

droid IME architecture. Even if so, I-BOX may always

roll back the IME app to a clean state checkpointed early.

4.2.2 Checkpointing and Restoring Local States

Since data typed by a user can be stored into any place of

the IME app in any form, it requires that all process states

restore in order to wipe out any sensitive data. The tra-

ditional way of doing checkpoints is copying all related

process states into storages, which is very heavyweight

and would incur long latency. As the main purpose of

I-BOX’s checkpoint is to either rollback or discard later,

I-BOX chooses a lightweight approach to checkpointing,

which creates a shadow process and then tracks all later

changes by using copy-on-write (COW) features pro-

vided by Linux.
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Saving and restoring file states. As typical IME apps

usually only modify a small amount of files during one

input transaction, I-BOX currently records and copies

such files during checkpointing and restores them during

rollback for simplicity. Another option is using a COW

file system like Btrfs or ext3cow to avoid copying. This

requires replacing Android’s file system with one with a

COW feature, which will be our future work.

Android provides several options to save persistent ap-

plication data. Based on the position where the data is

stored, we can divide these options into two categories:

internal and external storage. Every Android app will be

assigned with a private directory in the internal storage

to store files and data. By default, data saved to the in-

ternal storage are private to an app and other apps cannot

access them (nor can the user). I-BOX just copies all files

in the IME app’s private directory and then restores the

files modified during the input transaction upon rollback.

Since there are usually only a small number of files in the

internal storage for an IME app and the modified ones are

even less, the time cost is negligible.

For external storage, any Android apps with

proper permissions (e.g., android.permission.
WRITE EXTERNAL STORAGE) can access the whole

external storage. It would be very lengthy if I-BOX

scanned the whole external storage to find the modified

files. Hence, I-BOX records all the files modified by the

IME app during the input transaction and then restores

them as needed. Specifically, once I-BOX detects the

IME app tries to write some data into a file, it duplicates

the file for subsequent restoring.

Note that as the checkpointed files are created by

I-BOX, which runs as a system process, the files are with

system privilege and thus cannot be read/written by the

IME app itself. This ensures that an IME app cannot first

save sensitive key logs into such files and later read them

out. Actually, I-BOX also removes the checkpointed

files after rolling back an IME app.

Saving and restoring memory states. Memory states

include the IME app process’s data in memory and

process-related metadata maintained by the OS ker-

nel (i.e., Linux). Linux uses a lot of data structures

to manage a process and maintain its state, such as

task struct, thread info and others. I-BOX

relies on a kernel module to save and restore such data

structures. Specifically, this module maintains a shadow

process in the kernel to store the data of each running

IME app. The shadow process duplicates the process

states of the original IME app by copying the metadata

of the IME app into its own task struct but with

some modifications for consistency. For example, it

has its own kernel stack and redirects the stack pointer

in the task struct to its own one, although the

content on the stack is the same as in the original IME

app. For independent states like process ID or kernel

stack, I-BOX just copies the data into a buffer and writes

them back later. As for other states connected with

other processes or other events like a pipe or waitqueue,

I-BOX needs to record the states and the relationships

so that it can recover it correctly later. Besides this,

I-BOX also needs to save the process memory. Instead of

really copying the memory pages, I-BOX simply creates

a shadow page table that shares the memory with the

target IME app process and marks the page table of the

target process as COW. This omits lots of unnecessary

page copying since most pages will not be modified

during the input transaction and it just needs to switch

the page table root to restore the memory, which is very

fast. This helps reduce the stop-time of each IME app

process when I-BOX tries to do checkpoint and restore.

Multi-thread rollback. Most Android applications run

in the Dalvik virtual machine and have multiple threads

for different purposes. Besides the main thread for UI

and the core logic of the IME app, there are about another

10 threads for garbage collection, event handling, Binder

IPC, and so on. To roll back the process states of an IME

app correctly, I-BOX needs to deal with such threads

properly. Linux assigns task struct to a thread just

like a process to maintain its state and groups all threads

belonging to one process together through a list. So I-

BOX saves each thread with a separated shadow pro-

cess and groups these processes together through a list

to maintain their parent-child relationships just like the

original one. The sharing resources between threads will

be duplicated too. For example, I-BOX will save the pipe

states between two threads and restore it later.

4.2.3 Handling IPCs

One major challenge I-BOX faces in checkpoint and roll-

back is how to deal with the IPC states of an IME app

process. An IPC involves multiple processes or even

multiple machines, but I-BOX can only control one end

in the communication. One potential problem is that the

other side of an IPC may wait for a reply that will never

be sent, since the IME app process has forgotten this re-

quest after rollback. Another serious problem is that the

client app may communicate with an inactive IPC that

has been erased from the IME app process due to roll-

back.

As a result, I-BOX needs to find proper timing to do

checkpoint and rollback such that the consistency of an

IPC is not violated. Proper timing requires several condi-

tions. First, there should not be any data in transmission

between two processes; otherwise it will lead to a cor-

rupted request with incorrect semantics. Second, there

should be no pending IPC requests. This means an IME
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app shall wait for all replies before doing checkpoint and

ensure that no request is pending to the process before

rollback. Fortunately, it is not hard for I-BOX to find

suitable timing because I-BOX only does checkpoint and

rollback when a user does not input. In most cases, the

IME app processes should be sleeping at that point. If

not, we can safely enforce it without disturbing other

client apps since the user is not typing.

Inter-threads IPC. Linux provides a set of IPC mech-

anisms such as pipe, socket, and shared memory. An-

droid inherits such mechanisms but only uses them as a

method for communication between threads within a sin-

gle process. Hence, I-BOX can control both ends of these

inter-threads IPC, which avoids the inconsistency issues

due to unilateral actions. For example, the two commu-

nicating parties of a pipe in a single process have a pair

of pipe fd; the OS kernel allocates a buffer for them to

pass the message. To restore the pipe correctly, I-BOX

just keeps a record of current pipe status and its buffered

data, then restores it as needed. There is no restriction

on the timing for checkpoint and rollback. Other IPCs

within the same process are done similarly to this.

Android Binder. Android heavily uses its own IPC

mechanism: Binder, which helps the Android permission

system to provide access control to Android services and

resources. By mapping kernel memory into user space,

Binder IPC only requires one data copy for one transmis-

sion, i.e., from the sender’s user space to the kernel buffer

of the Binder driver. Then the receiver can directly read

the data from its read-only user space mapping, which is

more performance-friendly. There are two issues I-BOX

needs to take care for a consistent restore of the Binder.

More specifically:

• Reference counting for Binder proxies. An An-

droid app uses Binder proxies (e.g., BBinder, Bp-

Binder) as the reference to remote processes instead

of simple file descriptors. The Binder driver in the

kernel needs to manage the reference counter for

such proxies so that it can know whether a binder

instance is useless or not. I-BOX needs to track and

record modifications to references to Binder proxies

so that it can keep the consistency of the reference

counters.

• Conversation between the Binder request and re-

sponse. I-BOX also needs to keep the conversa-

tion between the Binder transaction request and re-

sponse. As an Android service provider, an IME

app process will accept a Binder transaction request

from the client app and it will send back the transac-

tion response after disposing the request. To achieve

this, I-BOX tracks the transaction request and re-

sponse to find a right timing when all requests have

been handled. It is not hard to find such a point be-

cause usually I-BOX tries to do checkpoint or roll-

back when IME is idle without new requests.

Content Provider. An IME app may also interact

with both third-party and system content providers.

For example, our analysis with TouchPal IME

app reveals that this app accesses third-party con-

tent providers like content://com.tencent.
mm.sdk.plugin.provider/sharedpref
and content://com.facebook.katana.
provider.AttributionIdProvider; our anal-

ysis with Guobi IME app shows that this app accesses

content://com.iflytek.speechcloud.
providers.LocalResourceProvider and

content://com.tencent.mm.sdk.plugin.
provider/sharedpref. TouchPal accesses the sys-

tem content provider like content://sms/inbox
and both TouchPal and Guobi access content://
telephony/carriers/preferapn. In Android,

all requests to content providers are issued through the

Binder mechanism, we rely on the Binder mechanism

to detect a quiescent point. Fortunately, we note that

accesses to content providers are request-oriented and

thus connection-less. Thus, there is no request on-the-fly

and thus I-BOX can checkpoint such states accordingly.

Network. Different from Binder, the network driver

does not expose any semantic information to an upper

layer’s connections. Hence, it seems hard to maintain

the consistency of request and response between an IME

app process and its cloud-based server. Fortunately, there

are two observations that help relax the strict consis-

tency requirement. First, network connections between

an IME app and the cloud-based server, like fetching

the words by sending the keystrokes, synchronizing the

user’s library, and downloading news or advertisements,

are usually stateless and non-transactional; a redo opera-

tion does not cause any consistency issues. Second, net-

work connections during input transactions are mostly

short-time synchronized requests that are finished when

input is done; hence they will not be affected by rollback.

Lessons Learned. While it is generally hard to check-

point a complex app like an IME app, the event-driven

nature of I-BOX greatly helps simplify the design and

implementation of I-BOX. By leveraging a quiescence-

point based approach and conduct checkpointing at the

time at which an IME app likely to be quiescent (e.g.,

before an input session start), I-BOX enjoys both less im-

plementation complexity and runtime overhead.

4.3 Restricting IME Apps’ Behavior

When I-BOX detects a sensitive input session, it needs to

restrict an IME app’s behavior such that no sensitive data
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should be leaked during this process. A malicious IME

app may leverage various means to store and transform

the data during this process. For example, it may directly

send input data to the network, or store the input data to

a content provider to be restored and sent out later. To

this end, I-BOX needs to restrict an IME app’s behavior

to stop such channels for a sensitive input stream.

I-BOX constrains an IME app from using network and

accesses to content provider and services during a sen-

sitive input session. Specifically, during a sensitive in-

put session, I-BOX only grants an IME app with read

accesses (like query) to such content providers and ser-

vices. This is done by interposing the binder transaction

and acts according to the access types from the transac-

tion code (i.e., query, insert, update or delete).

One potential issue would be that the IME app may not

function correctly without such accesses. Fortunately,

most Android apps (including IME apps) are designed

to work gracefully with different permissions, due to the

fact that the user may grant different permissions and an

IME app may work without network accesses. As a re-

sult, it is non-intrusive to dynamically deprive the IME

app from certain accesses as evidenced by prior research

on dynamic permissions on Android [32]. After a roll-

back, as all residual states inside an IME app have been

cleaned, any pending actions like insertion or deletion

will not cleared as if they never happen. Thus, there

won’t be any confusions to the content provider and ser-

vices.

5 EVALUATION

We have implemented I-BOX based on Android 4.2.2

and Linux kernel OMAP 3.0.72. It consists of two main

parts: i) a user-level modification of the Android appli-

cation framework to insert the I-BOX policy engine and

network control module; ii) a kernel module to handle

checkpoints and rollback of IME apps.

Experimental Setup. All of our experiments were per-

formed on a Samsung Galaxy Nexus smartphone with a

1.2 GHz TI OMAP4460 CPU, a 1GB memory and 16GB

internal storage. We evaluate I-BOX using 11 popular

IME apps to measure the performance overhead of I-

BOX. The 11 IME apps (as shown in the first column of

Table 1) are ranked among the highest in popularity in a

large third-party market3. Many of these IME apps have

been installed more than millions of times (Figure 1).

In our testing, we set the security policies to include all

contacts in the phone and all commonly used accounts

and passwords. This forms a trie containing around 400

words.

3http://www.wandoujia.com/

5.1 Performance Evaluation

The time overhead of I-BOX comes from three parts: (1)

time to find the quiescent points; (2) time to perform

memory checkpoint and rollback, and (3) time to per-

form file save and restore. To measure the performance

overhead, we asked a volunteer with an average typing

speed of about 100 characters per minute to enter a 10

word paragraph in an SMS app using the tested IME

apps. We did not use an automation tool like an Android

Monkey as it cannot handle the complex UI interface of

these IME apps.

Latency. As shown in Table 1, the time to find a quies-

cent point is very small (less than 14ms). This confirms

our observation that it is very easy and fast to find or

force a quiescent point to do checkpoint and rollback on

an IME app. The time of saving and restoring an IME

app’s memory state is also very small (less than 29ms)

since I-BOX does not really copy the whole memory but

just mark them as COW. Based on the files touched by

the IME app process during the typing, I-BOX needs to

restore a few files to prevent the IME app from conceal-

ing the secret inside files. Hence, the time for file save

and restore is a little bit lengthy (60 ms), which can fur-

ther be improved by using a copy-on-write file system. In

total, the maximum total time to do a checkpoint (includ-

ing finding a quiescent point) is less than 103ms (14ms

+ 29ms + 60ms). In contrast, the world record of texting

is typing a complicated 25 word message (159 charac-

ters) in 25.94 seconds [5], which corresponding to 163

ms/character and 1.0376 second/word. Hence, the time

to do checkpointing is very small compared to user typ-

ing. As the time to search the trie is negligible, we didn’t

report it here.

Power. To measure the power overhead incurred by I-

BOX, we used the TouchPal IME to input an article and

its non-Latin translation to a text-note app called Catch

and count its power status. The total input process spans

30 minutes for both unmodified Android and I-BOX-

capable Android. We found that in both cases the power

dropped from 100% to 99%, whose differences were in-

distinguishable. This is probably because the IME app

is not power-hungry and the additional power consumed

by I-BOX was evened by the reduced network transmis-

sions, which is thus hard to be distinguished without a

highly accurate power meter. In our future, we plan to

further characterize the power consumption using an ac-

curate power meter.

5.2 Security Evaluation

Here, we evaluate whether I-BOX indeed has mitigated

the leakage of a user’s sensitive keystrokes. We still use

the IME apps in our performance testing, along with a
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Quiescent Memory File

IME app C (ms) R (ms) C (ms) R (µs) C (ms) R (ms)

Sogou 13.3 14.1 22.8 91 30 30

Baidu 8.2 11.1 22.6 275 40 40

QQ 12 11.8 24.3 31 60 30

Pinyin 11.8 12 20.8 122 10 10

Vee 5.9 10.3 0.022 61 20 20

Guobi 7.4 9.5 25.5 61 10 10

Octopus 11.4 11 28.9 245 30 20

iFlytek 4.6 9.7 13.9 92 10 10

Slideit 13.2 15.2 13.5 152 20 30

Jinshou 3.1 6.5 28 91 60 50

TouchPal 7.8 13.3 22.1 183 30 30

Baidu∗ 3.3 10.9 9 61 30 40

Average 8.4 11.3 22.5 140 28.3 26.7

Table 1: Time overhead for finding a quiescent point,

doing checkpoint (C) and rollback (R).

repackaged malicious IME app (described in §2.3), to

evaluate its effectiveness. According to the accessibil-

ity of these IME apps, we conducted three sets of ex-

periments to determine effectiveness: black-box testing,

gray-box testing, and white-box testing.

5.2.1 Black-box Testing

Since most of the IME apps use proprietary unknown

protocols with unknown encryptions, we cannot directly

trace the network packets to confirm our effectiveness.

Therefore, we take a black-box approach to approximat-

ing our result. That is, instead of inspecting the packet

contents, we inspect the packet differences sent by the

IME-apps with I-BOX and without I-BOX, within an

identical experiment setup and time window.

In particular, we ran all these apps using a two-minute

time window, and we typed around 30 non-Latin words

with “aa@usenix.org” as the sensitive word and then ob-

served the packet differences using the Wireshark tool.

Usually, these IME apps will send some packages out

when a user types something that triggers the cloud input

function. Interestingly, we found 6 out of the 11 tested

apps have a different number of packages, as shown in

Table 2. With I-BOX being enabled, there are less pack-

ages to be sent out compared to normal ones. This is

because I-BOX controls the network of the target IME

app when it detects sensitive input data and prevents the

target IME app from leaking the data out.

While such side-channel based black-box testing can-

not fully confirm that we have prevented all leaks, we

believe it is highly likely that I-BOX has stopped them,

even for the other 5 apps that we did not observe pack-

age differences for. (It is highly likely that these IME

apps have buffered the input with the intent to send the

data out later. However, our oblivious sandboxing mech-

anism will clear the buffered sensitive data).

IME app w/o I-BOX w/ I-BOX

Baidu 17 6

Sogou 44 30

QQ 37 20

Octopus 32 16

TouchPal 70 28

Baidu∗ 30 18

Table 2: #packages observed for the testing apps.

Figure 5: Hexdump of the traced Touchpal package. The

leaked SSN is highlighted.

5.2.2 Gray-box Testing

Among these 11 IME apps, we are able to observe the

packet payload of TouchPal (as in discussed in §2.3) be-

cause it uses a plain-text protocol. Therefore, we con-

ducted gray-box testing to confirm I-BOX indeed miti-

gated the privacy leakage. In this experiment, we open a

client “SMS” app to send a short message to one friend

with a social security number (SSN), which is private and

sensitive by default. The text to send is a mixture of both

Latin and non-Latin languages, as well as the number.

Cloud input functionality will be triggered in this case.

Interestingly, without I-BOX’s protection, we found

that Touchpal uploaded not only the keycodes the user

typed as arguments of cloud input, but also the text mes-

sage before the current input cursor that includes the

sensitive social security number to the cloud through an

HTTP POST method. We intercepted this packet using a

man-in-the-middle attack. Part of the packet is displayed

in Figure 5. However, with I-BOX’s protection, we found

that I-BOX successfully detected the critical number and

shutdown its network to stop the leakage of data, and we

did not observe any network trace.

We also studied the privacy warnings generated by An-

droid on which data an IME may collect. Figure 6 shows

that Android generates privacy warnings for two popular

IME apps, Sogou and TouchPal, indicating that they may

collect users’ passwords, credit card number, etc. This

further confirms our conclusion that they collect users’

privacy data.
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Apps Without I-BOX With I-BOX

SMS (phone number) 6204562244 62045
SMS (message) Let’s meet tomorrow noon at room 302 Let’s meet tomorrow noon at room 302
Instagram (account) thisisfortest@gmail.com thisisf
Instagram (password) fakepassword
Facebook (account) thisisfortest@gmail.com thisisf
Facebook (password) dontbelieveit
Alipay nomoney@yahoo.com nomo
Gmail tosomeone@hotmail.com tosom
Google Play Ingress Ingress
browser How much is this PS3? How much is this PS3?

Table 3: Evaluation result w/ repackaged Baidu IME using different client apps.

(a) Sogou IME App (in Chinese) (b) TouchPal IME App (in English)

Figure 6: Privacy Warning by Android for two popular

IME apps. The left is shown in Chinese and the right is

shown in English; the essential meanings are the same.

5.2.3 White-box Testing

As discussed in §2.3, we repackaged a very popular

Baidu IME app to log all of the user input data and send

them out to a malicious server we controlled. Hence,

this repackaged IME app is essentially a keylogger. We

were able to perform white-box testing by inspecting the

packet payloads and confirming them with the source

code of our malicious payload. We installed this IME

app on our test phone and then used this phone to en-

ter some user-defined private sensitive data with differ-

ent client apps ranging from SMS, Facebook, and Gmail,

etc. Table 3 shows the data we collected at the server side

with and without I-BOX’s protection.

From this table we can clearly observe that without I-

BOX, the malicious IME app will steal all the data that

a user enters. Consequently, all sensitive data has been

leaked out; with I-BOX, it automatically blocks the net-

work connection so that the server cannot receive any

complete sensitive information. For instance, for pass-

words, the malicious server cannot receive anything as

shown in the Instagram and Facebook case. As I-BOX

shuts down the malicious IME app’s network when it

finds character sequences that have matched part of the

sensitive phrase in our security policy, the server side can

only receive the parts of the typed characters. For exam-

ple, when a user tries to type her Facebook account thi-

sisfortest@gmail.com, the server side can only receive a

part of it, i.e. thisisf 4. While partial sensitive input is

still being leaked, we believe it is still hard for attackers

to guess the original message.

5.3 Users Experience

One principal goal of I-BOX is to limit the negative influ-

ence on an end user’s experience as little as possible. To

evaluate this, we tested latency by determining how an

end user would feel when typing characters on devices

protected by I-BOX. For this, we invited a dozen stu-

dents (6 undergraduate and 6 master students) in our Lab

to install I-BOX on their phones, and asked them to use

our system and provide us with feedback. By default,

I-BOX uses the context-based policy and derives all sen-

sitive data from the contacts and cookies. Two of them

also tried to input their girl-friend’s names and birth dates

into I-BOX.

To our pleasure, none of the users complained of any

latency imposed by our system. As shown in Table 4,

there is only 0.4 milliseconds (ms) overhead per charac-

ter imposed by our policy checking. While network shut-

down takes about 180 ms, it is not executed per word and

is instead triggered only when certain sensitive words are

going to be formed. Therefore, the additional overhead

added by I-BOX cannot be detected by end users. This

is because the typing speed for a normal user is 625ms

per character, and the world fast record is 160 ms per

character, as shown in Table 4.

One complaint we received so far is that the users now

need to manually type their account instead of using the

automation features provided by the IME apps. We be-

lieve this is worthwhile for better privacy protection. An-

other complaint is that they need to specify their addi-

tional secrets manually; this will motivate us to design

better UI interface in our future work.

4Note that we regard the sequence after @ as one character because

an attacker can guess the rest by the first character most of the time.
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Policy Checking 0.4ms/char

Network Shutdown 180ms

Checkpoint/Restore 103ms

Guinness World Records of fastest texter 160ms/char

normal user speed 625ms/char

Table 4: Statistics regarding the usage latency of I-BOX.

6 DISCUSSIONS AND LIMITATIONS

While I-BOX has made a first step to mitigate keystroke

leakage against untrusted IME apps, there are still a num-

ber of limitations in its design and implementation.

Side-channel attacks It has been viable to use side

channels to infer some keystroke information [9, 4]. I-

BOX currently cannot prevent such side channel attacks.

However, such threats are usually less severe than those

of malicious IME apps, which can accurately observe all

user input. We leave it as our future work to address

issues related to the side-channel leakages.

Colluding malware As I-BOX currently only runs an

IME app inside in a sandbox transactionally, it is still

possible that an IME app could collude with another mal-

ware to leak information (i.e., the colluding attack [8]).

For example, an IME app could first save the user input

in a local file, and inform a colluding malware to read

the file when the transaction has not been rolled back and

then divulge the input. This essentially violates the poli-

cies of I-BOX. However, it is challenging for sandboxing

to reliably prevent this, as studied by TxBox [25].

Security of I-BOX Any new security tools may bring

new security implications as they usually touch security-

sensitive data and I-BOX is of no exception. As I-BOX

can essentially touch all users’ sensitive data, it is essen-

tially a key logger as well. Yet, I-BOX is much simpler

than close-sourced proprietary IME apps (1,700 LOCs

vs. hundreds of thousands LOCs). Regarding whether to

trust I-BOX or other IME apps, third-party agents need to

only audit the code of I-BOX instead of using gray-box

based approaches to auditing the behavior of dozens of

third-party IME apps. Meanwhile, I-BOX is completely

a local service and will not send any private data out of

the phone.

Permission Attacks As I-BOX’s security is based on

Android permission systems, it cannot defend against at-

tacks against the permissions like component hijacking

attacks and confused deputy attacks [23]. We consider

this out of the scope of this paper; actually there have

been a number of prior systems that statically and dy-

namically detect and prevent such attacks (e.g., [12, 43]).

Actually, Android has significantly improved its permis-

sion systems since version 4.2 [3].

Voice input Currently we limit input data protection

to handwriting input and keystroke input and do not con-

sider voice input as it does not have keystrokes. Yet,

users usually use dedicated system services like Apple

Siri, Google Now and Microsoft voice recognition. How

to handle voice input and preserve its privacy is very

challenging and will be our future work.

Beyond Mobile IME Apps Note that the approach of

I-BOX does not necessarily only apply to mobile plat-

forms; Similar techniques can also be applied to desk-

tops, which suffer from a similar dilemma between pri-

vacy and usability. We may provide a similar oblivious

sandbox for each IME app, which should be straightfor-

ward as Android actually runs atop Linux. We leave this

as our future work. Besides, other applications that re-

quires a tradeoff between privacy and usability may use

execution transaction like I-BOX.

7 RELATED WORK

Privacy leakage detection in mobile devices. Recently,

there have been significant efforts on the detection of pri-

vacy leakage in mobile devices. Early attempts include

TaintDroid [16, 17] and PiOS [15], and recent efforts

include such as Woodpecker [22], AndroidLeaks [20],

ContentScope [50], and Appprofiler [35]. In particu-

lar, TaintDroid [16] uses dynamic taint analysis to track

whether sensitive information (e.g., address book) can

be leaked through the network. PiOS [15] uses static

analysis and focuses on the privacy leakage in iOS apps.

Woodpecker [22] leverages an inter-procedural data-flow

analysis to inspect whether an untrusted app can obtain

unauthorized access to sensitive data. ContentScope [50]

detects passive content leak vulnerabilities, by which in-

app sensitive data can be leaked.

AndroidLeaks [20] instead uses static analysis to de-

tect data leakage in Android apps. Chan et al. [10] further

leverages mobile forensics to correlate user actions with

privacy leakages. Appprofiler [35] creates a mapping be-

tween high-level API calls and low-level privacy-related

behavior, which is then used to provide a high-level pro-

file of App’s privacy behavior. Besides, there have also

been interests in detecting privacy leakage due to mobile

ads [38]. In contrast, I-BOX focuses on preventing leak-

age of sensitive keystrokes.

Privacy leakage prevention in mobile devices. Other

than detecting privacy leakage, there are also a number

of systems that prevent private data from being leaked.

By extending TaintDroid [16], AppFence [24] prevents

applications from accessing sensitive information using

data shadowing, and it also blocks outgoing commu-

nications tainted by sensitive data. While I-BOX and

AppFence both block network communications when

sensitive data is to be leaked, there are substantial dif-

ferences: AppFence uses shadowing to provide an illu-

sion to the app such that it can continue performing its

taint tracking, whereas I-BOX does not use any illusion

nor any instruction-level taint tracking, due to the per-



USENIX Association  24th USENIX Security Symposium 689

vasive existence of native code. Meanwhile, AppFence

does not encounter the challenges we faced such as con-

sistent rollback, and it only simply blocks the network

communication, whereas I-BOX still has to keep the con-

nection and allow other data to be transferred.

TISSA [51] tames information stealing apps to stop

possible privacy leakage. SpanDex [14] further uses

symbolic execution to quantify and limit the implicit

flows through a sandbox, to prevent an untrusted applica-

tion from leaking passwords. Through automatic repack-

aging of Android apps, Aurasium [43] attaches sandbox-

ing and policy enforcement atop existing apps, to stop

malicious behaviors such as attempts to retrieve users’

sensitive information. Unlike Aurasium that adds a sand-

box to an app, πBox [30] shifts the sandboxing protec-

tion of private data from the app level to the system level,

and offers a platform for privacy-preserving apps. How-

ever πBox trusts a few app vendors to protect users’ pri-

vacy data, while I-BOX treats the vendor of IME apps

as untrusted, due to their incentives to collect users’ in-

put. TinMan [42] instead completely offload passwords-

like secret to a remote cloud, but only handles a class of

special secrets that are not necessary to be displayed in

mobile devices. ScreenPass [31] leverages a trusted soft-

ware keyboard to input and tag passwords and uses taint

tracking to ensure that a password is only used within

a specific domain. In contrast, while I-BOX also uses a

trusted software keyboard for password input, it focuses

more on preventing a malicious IME from leaking sensi-

tive data (not only passwords).

Checkpoint and restore. I-BOX employs a check-

point and restore mechanism to prevent privacy leakage.

Such a mechanism has been built for transactional mem-

ory [6], execution transactions [37], as well as whole-

system transactions [33]. Retro [26] leverages selective

re-execution for intrusion recovery. Storage Capsules [7]

also use checkpoint and restore to wipe off residual data

after an application has viewed data in a desktop. I-BOX

is an instance of a system transaction but designed spe-

cially for untrusted IME apps.

Sandboxing. There have been a large number of efforts

in building sandboxes to execute untrusted programs,

web applications, and native code. These tools were built

using a variety of approaches such as kernel-based sys-

tems [19], user-level approaches [27], system call inter-

positions [21], or binary code translation [18], and re-

compilation [45].

A sandbox that also contains transactions is the

TxBox [25], a tool built atop TxOS [33] for specula-

tive execution and automatic recovery. While I-BOX and

TxBox share the similarity of using transactions to build

a sandbox, there are still significant differences: the goal

of TxBox is to confine the execution of native x86 pro-

grams atop Linux kernel, whereas I-BOX is to confine

the IME apps atop Android OS. Consequently, I-BOX

faces additional challenges including resolving IPC bind-

ings. Further, using quiescent points in I-BOX signifi-

cantly simplifies the design and implementation.

8 CONCLUSION

This paper made a first systematic study on the

(in)security of third-party (trusted or untrusted) IME

apps, and revealed that these apps tend to leak users’

sensitive input (due to their incentives of improving

user’s experience). To enjoy the rich-experiences offered

by such apps while mitigating information leakages,

this paper described I-BOX as a first step towards this

direction. In light of the opaque nature of an IME

app, I-BOX leverages the idea of transactions to run an

IME app to make it oblivious to users’ sensitive input.

Experiments showed that I-BOX is efficient, incurs little

impact on users’ experiences and successfully thwarted

the leakage of sensitive user input.
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Abstract
We present the first concept for full-fledged app

sandboxing on stock Android. Our approach is based
on application virtualization and process-based priv-
ilege separation to securely encapsulate untrusted
apps in an isolated environment. In contrast to all
related work on stock Android, we eliminate the ne-
cessity to modify the code of monitored apps, and
thereby overcome existing legal concerns and deploy-
ment problems that rewriting-based approaches have
been facing. We realize our concept as a regular An-
droid app called Boxify that can be deployed without
firmware modifications or root privileges. A system-
atic evaluation of Boxify demonstrates its capability
to enforce established security policies without incur-
ring a significant runtime performance overhead.

1 Introduction

Security research of the past five years has shown that
the privacy of smartphone users—and in particular of
Android OS users, due to Android’s popularity and
open-source mindset—is jeopardized by a number
of different threats. Those include increasingly so-
phisticated malware and spyware [63, 39, 62], overly
curious libraries [25, 32], but also developer negli-
gence and absence of fail-safe defaults in the Android
SDK [33, 29]. To remedy this situation, the develop-
ment of new ways to protect the end-users’ privacy
has been an active topic of Android security research
during the last years.

Status quo of deploying Android security ex-
tensions. From a deployment perspective, the pro-
posed solutions followed two major directions: The
majority of the solutions [26, 44, 45, 16, 21, 64, 52, 56]
extended the UID-centered security architecture of
Android. In contrast, a number of solutions [38,
59, 23, 49, 22, 15] promote inlined reference moni-

toring (IRM) [28] as an alternative approach that
integrates security policy enforcement directly into
Android’s application layer, i.e., the apps’ code.

However, this dichotomy is unsatisfactory for end-
users: While OS security extensions provide stronger
security guarantees and are preferable in the long run,
they require extensive modifications to the operating
system and Android application framework. Since
the proposed solutions are rarely adopted [54, 53] by
Google or the device vendors, users have to resort to
customized aftermarket firmware [4, 6] if they wish
to deploy new security extensions on their devices.
However, installing a firmware forms a technological
barrier for most users. In addition, fragmentation of
the Android ecosystem [46] and vendor customiza-
tions impede the provisioning of custom-built ROMs
for all possible device configurations in the wild.

In contrast, solutions that rely on inlined reference
monitoring avoid this deployment problem by mov-
ing the reference monitor to the application layer
and allowing users to install security extensions in
the form of apps. However, the currently available
solutions provide only insufficient app sandboxing
functionality [36] as the reference monitor and the
untrusted application share the same process space.
Hence, they lack the strong isolation that would
ensure tamper-protection and non-bypassability of
the reference monitor. Moreover, inlining reference
monitors requires modification and hence re-signing
of applications, which violates Android’s signature-
based same-origin model and puts these solutions
into a legal gray area.

The sweet spot. The envisioned app sandboxing
solution provides immediate strong privacy protec-
tion against rogue applications. It would combine the
security guarantees of OS security extensions with
the deployability of IRM solutions, while simultane-
ously avoiding their respective drawbacks. Effectively,
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such a solution would provide an OS-isolated refer-
ence monitor that can be deployed entirely as an
app on stock Android without modifications to the
firmware or code of the monitored applications.

Our contributions. In this paper we present a
novel concept for Android app sandboxing based on
app virtualization, which provides tamper-protected
reference monitoring without firmware alterations,
root privileges or modifications of apps. The key idea
of our approach is to encapsulate untrusted apps in a
restricted execution environment within the context
of another, trusted sandbox application. To establish
a restricted execution environment, we leverage An-
droid’s “isolated process” feature, which allows apps
to totally de-privilege selected components—a fea-
ture that has so far received little attention beyond
the web browser. By loading untrusted apps into a
de-privileged, isolated process, we shift the problem
of sandboxing the untrusted apps from revoking their
privileges to granting their I/O operations whenever
the policy explicitly allows them. The I/O opera-
tions in question are syscalls (to access the file system,
network sockets, bluetooth, and other low-level re-
sources) and the Binder IPC kernel module (to access
the application framework). We introduce a novel
app virtualization environment that proxies all syscall
and Binder channels of isolated apps. By intercepting
any interaction between the app and the system (i.e.,
kernel and app framework), our solution is able to en-
force established and new privacy-protecting policies.
Additionally, it is carefully crafted to be transparent
to the encapsulated app in order to keep the app
agnostic about the sandbox and retain compatibility
to the regular Android execution environment. By
executing the untrusted code as a de-privileged pro-
cess with a UID that differs from the sandbox app’s
UID, the kernel securely and automatically isolates
at process-level the reference monitor implemented
by the sandbox app from the untrusted processes.
Technically, we build on techniques that were found
successful in related work (e.g., libc hooking [59])
while introducing new techniques such as Binder IPC
redirection through ServiceManager hooking. We re-
alize our concept as a regular app called Boxify that
can be deployed on stock Android. To the best of our
knowledge, Boxify is the first solution to introduce
application virtualization to stock Android.
In summary, we make the following contributions:

1. We present a novel concept for application virtual-
ization on Android that leverages the security pro-
vided by isolated processes to securely encapsulate
untrusted apps in a completely de-privileged exe-
cution environment within the context of a regular

Android app. To retain compatibility of isolated
apps with the standard Android app runtime, we
solved the key technical challenge of designing and
implementing an efficient app virtualization layer.

2. We realize our concept as an app called Boxify,
which is the first solution that ports app virtual-
ization to the Android OS. Boxify is deployable
as a regular app on stock Android (no firmware
modification and no root privileges required) and
avoids the need to modify sandboxed apps.

3. We systematically evaluate the efficacy and effi-
ciency of Boxify from different angles including
its security guarantees, different use-cases, perfor-
mance penalty, and Android API version depen-
dence across multiple Android OS versions.

The remainder of this paper is structured as follows.
In §2, we provide necessary technical background
information on Android. We define our objectives
and discuss related work in §3. In §4, we present our
Boxify design and implementation, which we evaluate
in §5. We conclude the paper in §6.

2 Background on Android OS

Android OS is an open-source software stack (see Fig-
ure 1) for mobile devices consisting of a Linux ker-
nel, the Android application framework, and system
apps. The application framework together with the
pre-installed system apps implement the Android
application API. The software stack can be extended
with third-party apps, e.g., from Google Play.

Android Security Model. On Android, each ap-
plication runs in a separate, simple sandboxed envi-
ronment that isolates data and code execution from
other apps. In contrast to traditional desktop operat-
ing systems where applications run with the privileges
of the invoking user, Android assigns a unique Linux
user ID (UID) to every application at installation
time. Based on this UID, the components of the
Android software stack enforce access control rules
that govern the app sandboxing. To understand the
placement of the enforcement points, one has to con-
sider how an app can interact with other apps (and
processes) in the system:

Like any other Linux process, an app process uses
syscalls to the Linux kernel to access low-level re-
sources, such as files. The kernel enforces discre-
tionary access control (DAC) on such syscalls based
on the UID of the application process. For instance,
each application has a private directory that is not
accessible by other applications and DAC ensures
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Figure 1: High-level view of interaction between apps,
application framework, and Linux kernel on Android.

that applications cannot access other apps’ private
directories. Since Android version 4.3 this discre-
tionary access control is complemented with SELinux
mandatory access control (MAC) to harden the sys-
tem against low-level privilege escalation attacks and
to reinforce this UID-based compartmentalization.

The primary channel for inter-application com-
munication is Binder Inter-Process Communica-
tion (IPC). It is the fundamental building block for
a number of more abstract inter-app communica-
tion protocols, most importantly Inter-Component
Communication (ICC) [27] among apps and the ap-
plication framework. For sandboxing applications at
the ICC level, each application UID is associated with
a set of platform permissions, which are checked at
runtime by reference monitors in the system services
and system apps that constitute the app framework
(e.g. LocationService). These reference monitors
rely on the Binder kernel module to provide the UID
of IPC senders to the IPC receivers.

In general, both enforcement points are imple-
mented callee-sided in the framework and kernel,
and hence agnostic to the exact call-site within the
app process. This means that enforcement applies
equally to all code executing in a process under the
app’s UID, i.e., to both Java and native code.

Additionally, Android verifies the integrity of ap-
plication packages during installation based on their
developer signature. The corresponding developer
certificate is afterwards used to enforce a same-origin
policy for application updates, i.e., newer app ver-
sions must be signed with the same signing key as
the already installed application.

Isolated Process. The Isolated Process, introduced
in Android version 4.1, is a security feature that has
received little attention so far. It allows an app de-
veloper to request that certain service components
within her app should run in a special process that
is isolated from the rest of the system and has no
permissions of its own [2]. The isolated process mech-
anism follows the concept of privilege separation [48],
which allows parts of an application to run at dif-
ferent levels of privilege. It is intended to provide

an additional layer of protection around code that
processes content from untrusted sources and is likely
to have security holes. Currently, this feature is pri-
marily geared towards web browsers [35] and is most
prominently used in the Chrome browser to contain
the impact of bugs in the complex rendering code.

An isolated process has far fewer privileges than a
regular app process. An isolated process runs under
a separate Linux user ID that is randomly assigned
on process startup and differs from any existing UID.
Consequently, the isolated process has no access to
the private app directory of the application. More
precisely, the process’ filesystem interaction is lim-
ited to reading/writing world readable/writable files.
Moreover, the isolated process’ access to the An-
droid middleware is severely restricted. The isolated
process runs with no permissions, regardless of the
permissions declared in the manifest of the appli-
cation. More importantly, the isolated process is
forbidden to perform any of the core Android IPC
functions: Sending Intents, starting Activities, bind-
ing to Services or accessing Content Providers. Only
the core middleware services that are essential to
running the service component are accessible to the
isolated process. This effectively bars the process
from any communication with other apps. The only
way to interact with the isolated process from other
application components is through the Service API
(binding and starting). Further, the transient UID of
an isolated process does not belong to any privileged
system groups and the kernel prevents the process
from using low-level device features such as network
communication, bluetooth or external storage. As
of Android v4.3, SELinux reinforces this isolation
through a dedicated process type. With all these
restrictions in place, code running in an isolated pro-
cess has only minimal access to the system, making
it the most restrictive runtime environment Android
has to offer.

3 Requirements Analysis and Exist-
ing Solutions

We first briefly formulate our objectives (see §3.1)
and afterwards discuss corresponding related work
(see §3.2 and Table 1).

3.1 Objectives and Threat Model
In this paper, we aim to combine the security benefits
of OS extensions with the deployability benefits of
application layer solutions. We identify the following
objectives:
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O1 No firmware modification: The solution
does not rely on or require customized Android
firmware, such as extensions to Android’s
middleware, kernel or the default configuration
files (e.g., policy files), and is able to run on
stock Android versions. This also excludes
availability of root privileges, since root can only
be acquired through a firmware modification
on newer Android versions due to increasingly
stringent SELinux policies.

O2 No app modification: The solution does not
rely on or require any modifications of monitored
apps’ code, such as rewriting existing code.

O3 Robust reference monitor: The solution
provides a robust reference monitor. This
encompasses: 1) the presence of a strong
security boundary, such as a process boundary,
between the reference monitor and untrusted
code; and 2) the monitor cannot be bypassed,
e.g., using a code representation that is not
monitored, such as native code.

O4 Secure isolation of untrusted code: This
objective encompasses fail-safe defaults and
complete mediation by the reference monitors.
The solution provides a reference monitor that
mediates all interaction between the untrusted
code and the Android system, or, in case
no complete mediation can be established,
enforces fail-safe defaults that isolate the app
on non-mediated channels in order to prevent
untrusted code from escalating its privileges.

Threat model. We assume that the Android OS is
trusted, including the Linux kernel and the Android
application framework. This includes the assumption
that an application cannot compromise the integrity
of the kernel or application framework at runtime.
If the kernel or application framework were com-
promised, no security guarantees could be upheld.
Protecting the kernel and framework integrity is an
orthogonal research direction for which different ap-
proaches already exist, such as trusted computing,
code hardening, or control flow integrity.

Furthermore, we assume that untrusted third-party
applications have full control over their process and
the associated memory address space. Hence the
attacker can modify its app’s code at runtime, e.g.,
using native code or Java’s reflection interface.

3.2 Existing Solutions
We systematically analyze prior solutions on app
sandboxing.

Application Framework App (UIDApp)

Linux Kernel

Binder IPC Module

Service / System App
(Platform Permissions) Components

Syscall API
(DAC + MAC)

Native Libs

SyscallBinder IPC

Service / System App

Syscall API

New Reference Monitor added

Figure 2: Instrumentation points for operating sys-
tem security extensions.
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O1: No system modification � � � �

O2: No application modification � � � �

O3: Robust reference monitor � � � �

O4: Secure isolation of untrusted code � � � �

�= applies; �= does not apply.

Table 1: Comparison of deployment options for An-
droid security extensions based on desired objectives.

3.2.1 Android Security Extensions

Many improvements to Android’s security model
have been proposed in the literature, addressing a
variety of shortcomings in protecting the end-user’s
privacy. In terms of deployment options, we can dis-
tinguish between solutions that extend the Android
OS and solutions that operate at the application
layer only.

Operating system extensions. The vast major-
ity of proposals from the literature (e.g. [26, 44, 45,
16, 21, 58]) statically enhance Android’s application
framework and Linux kernel with additional refer-
ence monitors and policy decision points (see Fig-
ure 2). The proposed security models include, for
instance, context-aware policies [21], app developer
policies [45], or Chinese wall policies [16]. More re-
cent approaches [52, 43, 56] avoid static changes to
the OS by dynamically instrumenting core system
services (like Binder and Zygote) or the Android
bootup scripts in order to interpose [47] untrusted
apps’ syscalls and IPC. Since in all approaches the
reference monitors are part of the application frame-
work and kernel, there inherently exists a strong
security boundary between the reference monitor
and untrusted code (O3: �). Moreover, this en-
tails that these reference monitors are by design part
of the callee-side of all interaction of the untrusted
app’s process with the system and cannot be by-
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Figure 3: Instrumentation points for application code
rewriting and inlining reference monitors.

passed (O4: �). On the downside, these solutions
require modification of the Android OS (image) or
root privileges to be deployed (O1: �; O2: �).

Additionally, a number of solutions exist that par-
ticularly target higher-security deployments [17, 51,
40, 13], such as government and enterprise. Commer-
cial products exist that implement these solutions
in the form of tailored mobile platforms (e.g., Black-
phone1, GreenHills2, or Cryptophone3). These prod-
ucts target specialized user groups with high security
requirements—not the average consumer—and are
thus deployed on a rather small scale.

Application layer solutions. At the application
layer, the situation for third-party security extensions
is bleak. Android’s UID-based sandboxing mecha-
nism strictly isolates different apps installed on the
same device. Android applications run with normal
user privileges and cannot elevate to root in order to
observe the behavior of other apps, e.g., like classical
trace or anti-virus programs on desktop operating
systems [31]. Also, Android does not offer any APIs
that would allow one app to monitor or restrict the
actions of another app at runtime. Only static infor-
mation about other apps on the device is available via
the Android API, i.e., application metadata, such as
the package name or signing certificate, and the com-
piled application code and resources.Consequently,
most commercially available security solutions are
limited to detecting potentially malicious apps, e.g.
by comparing metadata with predefined blacklists
or by checking the application code for known mal-
ware signatures, but they lack the ability to observe
or influence the runtime behavior of other applica-
tions. As a result, their effectiveness is, at best,
debatable [50, 62].

Few proposals in the academic literature [38, 59,
23, 49, 15] focus on application layer only solutions
(see Figure 3). Existing systems mostly focus on
access control by interposing security-sensitive APIs

1https://blackphone.ch
2http://www.ghs.com/mobile/
3http://esdcryptophone.com

App Framework Zero-Perm App (UIDApp)
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Syscall API
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Rewritten / Reference Monitor added

Dr. Android
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Figure 4: Dr. Android and Mr. Hide approach [38].

to redirect the control flow to an additionally in-
lined reference monitor within the app (e.g., Aura-
sium [59], I-ARM-Droid [23], RetroSkeleton [22],
AppGuard [15]). DroidForce [49] additionally pre-
processes target apps with static data flow analysis
to identify strategic policy enforcement points and
to redirect policy decision making to a separate app.

All these systems are based on rewriting the appli-
cation code to inline reference monitors or redirect
control flows, which works without modifications
to the firmware and is thus suitable for large-scale
deployment (O1: �; O2: �). However, app rewrit-
ing causes security problems and also a couple of
practical deployment problems. First, inlining the
reference monitor within the process of the untrusted
app itself might be suitable for “benign-but-buggy”
apps; however, apps that actively try to circumvent
the monitor will succeed as there exists no strong
security boundary between the app and the moni-
tor. In essence, this boils down to an arms race be-
tween hooking security critical functions and finding
new ways to compromise or bypass the monitor [36],
where currently native code gives the attacker the
advantage (O3: �; O4: �). Moreover, re-writing ap-
plication code requires re-signing of the app, which
breaks Android’s signature-based same origin policy
and additionally raises legal concerns about illicit
tampering with foreign code. Lastly, re-written apps
have to be reinstalled. This is not technically possi-
ble for pre-installed system apps; other apps have to
be uninstalled in order to install a fresh, rewritten
version, thereby incurring data loss.

Separate app. Dr. Android and Mr. Hide [38] (see
Figure 4) is a variant of inlined reference monitoring
(O1: �; O2: �) that improves upon the security of
the reference monitor by moving it out of the un-
trusted app and into a separate app. This establishes
a strong security boundary between the untrusted
app and the reference monitor as they run in separate
processes with different UIDs (O3: �). Additionally,
it revokes all Android platform permissions from the
untrusted app and applies code rewriting techniques
to replace well-known security-sensitive Android API
calls in the monitored app with calls to the separate
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reference monitor app that acts as a proxy to the
application framework. The benefit of this design is
that in contrast to inlined monitoring, the untrusted,
zero-permission app cannot gain additional permis-
sions by tampering with the inlined/rewritten code.
However, this enforcement only addresses the plat-
form permissions. The untrusted app process still
has a number of Linux privileges (such as access to
the Binder interface or file system), and it has been
shown that even a zero-permission app is still capa-
ble of escalating its privileges and violate the user’s
privacy [30, 33, 19, 18, 60, 42, 11, 12] (O4: �).

3.2.2 Sandboxing on traditional OSes

Restricting the access rights of untrusted applications
has a longstanding tradition in desktop and server
operating systems. Few solutions set up user-mode
only sandboxes without relying on operating system
functionality by making strong assumptions about
the interface between the target code and the sys-
tem (e.g., absence of programming language facilities
to make syscalls or direct memory manipulation).
Among the most notable user-space solutions are na-
tive client [61] to sandbox native code within browser
extensions and the Java virtual machine [5] to sand-
box untrusted Java applications.

Other solutions, which loosen the assumptions
about the target interface to the system rely on op-
erating system security features to establish process
sandboxes. For instance, Janus [31], one of the ear-
lier approaches, introduced an OS-supported sandbox
for untrusted applications on Solaris 2.4, which was
based on syscall monitoring and interception to re-
strict the untrusted process’ access to the underlying
operating system. The monitor was implemented as
a separate process with necessary privileges to moni-
tor and restrict other processes via the /proc kernel
interface. Modern browsers like Chromium [9, 3, 8]
employ different sandboxing OS facilities (e.g, sec-
comp mode) to mitigate the threat of web-based
attacks against clients by restricting the access of
untrusted code.

App virtualization. Sandboxing also plays a
role in more recent application virtualization solu-
tions [34, 10, 20, 41], where applications are trans-
parently encapsulated into execution environments
that replace (parts of) the environment with emu-
lation layers that abstract the underlying OS and
interpose all interaction between the app and the
OS. App virtualization is currently primarily used to
enable self-contained, OS-agnostic software, but also
provides security benefits by restricting the interface
and view the encapsulated app has of the system.

Isolated App A
(Target)

SyscallBinder IPC

Isolated App B
(Target)

Process
boundaries Broker (Reference Monitor)

Shim Shim

Linux Kernel

Binder Module Syscall API
(DAC + MAC)

App Framework
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Service / System App
(Platform Permissions)

Process
boundaries

Figure 5: Architecture overview of Boxify.

Similarly to these traditional sandboxes and in
particular to app virtualization, Boxify forms a user-
mode sandbox that builds on top of existing operating
system facilities of Android. Thereby, it establishes
app sandboxes that encapsulate Android apps with-
out the need to modify the OS and without the need
to make any assumptions about the apps’ code.

4 Boxify Architecture

We present the Boxify design and implementation.

4.1 Design Overview
The key idea of Boxify is to securely sandbox Android
apps, while avoiding any modification of the OS and
untrusted apps. Boxify accomplishes this by dynami-
cally loading and executing the untrusted app in one
of its own processes. The untrusted application is
not executed by the Android system itself, but runs
completely encapsulated within the runtime environ-
ment that Boxify provides and that can be installed
as a regular app on stock Android (see Figure 5).
This approach eliminates the need to modify the
code of the untrusted application and works without
altering the underlying OS (O1: �; O2: �). It thus
constitutes the first solution that ports the concept
of app virtualization to the stock Android OS.

The primary challenge for traditional application
sandboxing solutions is to completely mediate and
monitor all I/O between the sandboxed app and the
system in order to restrict the untrusted code’s priv-
ileges. The key insight for our Boxify approach is to
leverage the security provided by isolated processes
in order to isolate the untrusted code running within
the context of Boxify by executing it in a completely
de-privileged process that has no platform permis-
sions, no access to the Android middleware, nor the
ability to make persistent changes to the file system.

However, Android apps are tightly integrated
within the application framework, e.g., for lifecycle
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management and inter-component communication.
With the restrictions of an isolated process in place,
encapsulated apps are rendered dysfunctional. Thus,
the key challenge for Boxify essentially shifts from
constraining the capabilities of the untrusted app
to now gradually permitting I/O operations in a
controlled manner in order to securely re-integrate
the isolated app into the software stack. To this
end, Boxify creates two primary entities that run at
different levels of privilege: A privileged controller
process known as the Broker and one or more isolated
processes called the Target (see Figure 5).

The Broker is the main Boxify application process
and acts as a mandatory proxy for all I/O operations
of the Target that require privileges beyond the ones
of the isolated process. Thus, if the encapsulated app
bypasses the Broker, it is limited to the extremely con-
fined privilege set of its isolated process environment
(fail-safe defaults; O4: �). As a consequence, the
Broker is an ideal control-flow location in our Boxify
design to implement a reference monitor for any priv-
ileged interaction between a Target and the system.
Any syscalls and Android API calls from the Target
that are forwarded to the Broker are evaluated against
a security policy. Only policy-enabled calls are then
executed by the Broker and their results returned to
the Target process. To protect the Broker (and hence
reference monitor) from malicious app code, it runs
in a separate process under a different UID than the
isolated processes. This establishes a strong secu-
rity boundary between the reference monitor and the
untrusted code (O3: �). To transparently forward
the syscalls and Android API calls from the Target
across the process boundary to the Broker, Boxify
uses Android’s Binder IPC mechanism. Finally, the
Broker’s responsibilities also include managing the
application lifecycle of the Target and relaying ICC
between a Target and other (Target) components.

The Target hosts all untrusted code that will run
inside the sandbox. It consists of a shim that is able
to dynamically load other Android applications and
execute them. For the encapsulated app to interact
with the system, it sets up interceptors that interpose
system and middlware API calls. The interceptors do
not form a security boundary but establish a compat-
ibility layer when the code inside the sandbox needs
to perform otherwise restricted I/O by forwarding
the calls to the Broker. All resources that the Target
process uses have to be acquired by the Broker and
their handles duplicated into the Target process.

By encapsulating untrusted apps and interposing
all their (privileged) I/O operations, Boxify is able to
effectively enforce security- and privacy-protecting
policies. Based on syscall interposition, Boxify has
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Figure 6: Components of a Target process.

fine-grained control over network and filesystem op-
erations. Intercepting Binder IPC enables the en-
forcement of security policies that were so far only
achievable for OS extensions, but at application layer
only.

Moreover, with this architecture, Boxify can pro-
vide a number of interesting novel features. Boxify
is capable of monitoring multiple (untrusted) apps
at the same time. By creating a number of Target
processes, multiple apps can run in parallel yet se-
curely isolated in a single instance of Boxify. Since
the Broker fully controls all inter-component commu-
nication between the sandboxed apps, it is able to
not only separate different apps from one another but
also to allow controlled collaboration between them.
Further, Boxify has the ability to execute apps that
are not regularly installed on the phone: Since Boxify
executes other apps by dynamically loading their
code into one of its own processes and handles all the
interaction between the sandboxed application and
the OS, there is no need to register the untrusted app
with the Android system. Hence, applications can
be installed into, updated, or removed from Boxify
without involving the PackageInstaller or having
system privileges. A potential application of these
features are application containers (e.g., enterprise
app domain, see §5.4).

4.2 Target
The Target process contains four main entities
(see Figure 6): The SandboxService (1) provides the
Broker with a basic interface for starting and termi-
nating apps in the sandbox. It is also responsible for
setting up the interceptors for Binder IPC (2) and
syscalls (3), which transparently forward calls issued
by the untrusted application to the Broker.

1) SandboxService. Isolated processes on Android
are realized as specifically tagged Service compo-
nents (see §2). In Boxify each Target is implemented
as such a tagged SandboxService component of the
Boxify app. When a new Target should be spawned, a
new, dedicated SandboxService is spawned. The Sand-
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boxService provides an IPC interface that enables the
Broker to communicate with the isolated process and
to call two basic lifecycle operations for the Target:
prepare and terminate. The Broker invokes the
prepare function to initialize the sandbox environ-
ment for the execution of a hosted app. As part
of this preparation, the Broker and Target exchange
important configuration information for correct op-
eration of the Target, such as app meta-information
and Binder IPC handles that allow bi-directional IPC
between Broker and Target. The terminate function
shuts down the application running in the sandbox
and terminates the Target process.

The biggest technical challenge at this point was
“How to execute another third-party application within
the running isolated service process?” Naïvely, one
could consider, for instance, a warm-restart of the app
process with the new application code using the exec
syscall. However, we discovered that the most elegant
and reliable solution is to have the Broker initially im-
itate the ActivityManager by instructing the Target
process to load (i.e., bind) another application to its
process and afterwards to relay any lifecycle events
between the actual application framework and the
newly loaded application in the Target process. The
bind operation is supported by the standard Android
application framework and used during normal app
startup. The exact procedure is illustrated in Fig-
ure 7. The Broker first creates a new SandboxService
process ( 1 ), which executes with the privileges of an
isolated process. This step actually involves multiple
messages between the Broker process, the Target pro-
cess and the system server, which we omitted here for
the sake of readability. As a result, the Broker process
receives a Binder handle to communicate with the
newly spawned SandboxService. Next, the Broker uses
this handle to instruct the SandboxService to prepare
the loading of a sandboxed app ( 2 ) by setting up
the Binder IPC interceptor and syscall interceptor
(using the meta-information given as parameters of
the prepare call). The SandboxService returns the
Binder handle to its ApplicationThread to the Bro-
ker. The application thread is the main thread of a
process containing an Android runtime and is used
by the ActivityManager to issue commands to An-
droid application processes. At this point, the Broker
emulates the behavior of the ActivityManager ( 3 )
by instructing the ApplicationThread of the Target
with the bindApplication call to load the target app
into its Android runtime and start its execution. By
default, it would be the ActivityManagerService
as part of the application framework that uses this
call to instruct newly forked and specialized Zygote
processes to load and execute an application that
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should be started. After this step, the sandboxed
app is executing.

As an example how a sandboxed app can be used,
we briefly explain how an Activity component of
the sandboxed app can be launched, e.g., as result
of clicking its entry in a launcher. As explained
in §4.3, the Virtualization Layer creates a mapping
from generic Boxify components to Target compo-
nents. In this case, it maps the Activity compo-
nent of Target to an Activity component of Boxify.
The Broker requests the Activity launch from the
ActivityManager in the SystemServer ( 4 ), which
allocates the required resources. After allocation,
it schedules the launch of the Activity component
by signaling the ApplicationThread of the targeted
app ( 5 ), which in this case is the Boxify app. Thus,
the Virtualization Layer resolves the targeted Activity
component and relays the signal to the corresponding
Target process ( 6 ).

2) Binder IPC Interceptor. Android applications
use the Binder IPC mechanism to communicate with
the (remote) components of other applications, in-
cluding the application framework services and apps.
In order to interact via Binder IPC with a remote
component, apps must first acquire a Binder han-
dle that connects them to the desired component.
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To retrieve a Binder handle, applications query the
ServiceManager, a central service registry, that al-
lows clients to lookup system services by their com-
mon names. The ServiceManager is the core mech-
anism to bootstrap the communication of an ap-
plication with the Android application framework.
Binder handles to non-system services, such as ser-
vices provided by other apps, can be acquired from
the core framework services, most prominently the
ActivityManager.

Boxify leverages this choke point in the Binder
IPC interaction to efficiently intercept calls to the
framework in order to redirect them to the Bro-
ker. To this end, Boxify replaces references to the
ServiceManager handle in the memory of the Target
process with references to the Binder handle of the
Broker (as provided in the prepare function). These
references are constrained to a few places and can be
reliably modified using the Java Reflection API and
native code. Consequently, all calls directed to the
ServiceManager are redirected to the Broker pro-
cess instead, which can then manipulate the returned
Binder objects in such a way that any subsequent in-
teractions with requested services are also redirected
to the Broker. Furthermore, references to a few core
system services, such as the ActivityManager and
PackageManager, that are passed by default to new
Android app runtimes, need to be replaced as well.
By modifying only a small number of Binder handles,
Boxify intercepts all Binder IPC communication. The
technique is completely agnostic of the concrete inter-
face of the redirected service and can be universally
applied to all Binder interactions.
3) Syscall Interceptor. For system call inter-
ception, we rely on a technique called libc hook-
ing (used, for instance, also in [59]). Applications
use Android’s implementation of the Standard C
library Bionic libc to initiate system calls. With
libc hooking, we efficently intercept calls to libc
functions and redirect these calls to a service client
running in the Target process. This client forwards
the function calls via IPC to a custom service compo-
nent running in the Broker. Due to space constraints,
we refer to [7] for a detailed technical explanation of
libc hooking.

In contrast to the IPC interception, which redirects
all IPC communication to the Broker, the syscall in-
terception is much more selective about which calls
are forwarded: We do not redirect syscalls that would
be anyway granted to an isolated process, because
there is no security benefit from hooking these func-
tions: a malicious app could simply remove the hook
and would still succeed with the call. This exception
applies to calls to read world-readable files and to
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Figure 8: Architecture of the Broker.

most system calls that operate purely on file descrip-
tors (e.g. read, write). Naturally, by omitting the
indirection via our Broker, these exempted calls per-
form with native performance. However, Boxify still
hooks calls that are security-critical and that are not
permitted for isolated processes, such as system calls
to perform file system operations (e.g. open, mkdir,
unlink) and network I/O (socket, getaddrinfo). For
a few calls, such as file operations, whose success
depends on the given parameter, the syscall intercep-
tion is parameter-sensitive in its decision whether or
not to forward this operation to the Broker.

4.3 Broker
The Broker is the main application process of Boxify
and is thus not subject to the restrictions imposed by
the isolated process. It holds all platform permissions
assigned to the Boxify app and can normally interact
with the Android middleware. The Broker acts as
a mandatory proxy for all interactions between the
Target processes and the Android system and thus
embodies the reference monitor of Boxify. These
interactions are bi-directional: On the one hand, the
untrusted app running in the Target process issues
IPC and syscalls to the system; on the other hand,
the Android middleware initiates IPC calls to Target
(e.g., basic lifecycle operations) and the Broker has
to dispatch these events to the correct Target.

The Broker is organized into three main layers
(see Figure 8): The API Layer (4) abstracts from the
concrete characteristics of the Android-internal IPC
interfaces to provide compatibility across different
Android versions. It bridges the semantic gap be-
tween the raw IPC transactions forwarded by the
Target and the application framework semantics of
the Core Logic Layer (5), which implements the funda-
mental mechanics of the virtual runtime environment
that Boxify provides. All interaction with the system
happens through the Virtualization Layer (6), which
translates between the virtual environment inside of
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Boxify and the Android system on the outside. In the
following, we will look at every layer in more detail.
4) API Layer. The API Layer is responsible for
receiving and unwrapping the redirected syscall pa-
rameters from the Syscall Interceptor in the Target
and relaying them to the Core Logic Layer for monitor-
ing and execution. More importantly, it transforms
the raw Binder IPC parcels received from the IPC
Interceptor into a representation agnostic of the An-
droid version.

In order to (efficiently) sandbox applications at
the Binder IPC boundary, Boxify must semantically
interpret the intercepted Binder parcels. However,
intercepted parcels are in a raw representation that
consists only of native types that the kernel mod-
ule supports and the sender marshalled all higher-
level objects (e.g., Java classes) to this representa-
tion. This impedes an efficient sandboxing. To solve
this problem, Boxify leverages the default Android
toolchain for implementing Binder-based RPC pro-
tocols: To ensure that sender and receiver can actu-
ally communicate with each other, the receiver must
know how to unmarshal the raw parcel data (exactly
like Boxify). Android supports the developers in
this process through the Android Interface Definition
Language (AIDL), which allows definitions of Binder
interfaces very similar to Java interfaces, including
the names and signatures of remotely callable func-
tions. The Android SDK toolchain generates the
required boilerplate marshalling code from AIDL def-
initions both for the receiver (Stub) and the sender
(Proxy). For system services, these Stubs are auto-
matically generated during system build and Boxify
uses the generated Stubs (which ship with Android
OS and are conveniently accessible to third-party
application) to unmarshal the raw Binder IPC parcel
back to their application framework semantic (i.e.,
Java objects, etc). In essence, this allows us to gen-
erate the API layer of the Broker in an almost fully-
automatic way for each Android version on which
Boxify is deployed. Since Boxify is in full control of
the Binder handles of the encapsulated app (i.e., calls
to the ServiceManager, ActivityManager, etc.), it
can efficiently determine which Binder handle of the
app addresses which system service and hence which
Stub must be used to correctly unmarshal the raw
Binder parcel intercepted from each handle.

However, the exact structure of the unmarshalled
data and the functions (name and signature) depend
entirely on the AIDL file. Since the system service
interfaces describe the internal Android API, these
interfaces change frequently between Android ver-
sions. Hence Boxify would have to implement each
possible version of a Stub for every available Android

version. Since this Stub implementation, in contrast
to the marshalling logic, can not be automated, this
complicates efficient sandboxing of apps across multi-
ple Android versions. Consequently, it is desirable to
transform the unmarshalled IPC data into a version-
agnostic representation and then implement each
Stub once and for all for this version. To accomplish
this in Boxify, we borrow ideas from Google’s pro-
prietary SafeParcel class: In contrast to the regular
Binder parcel, the SafeParcel carries structural in-
formation about the data stored in it, which allows
the receiver of an IPC request to selectively read
parts of the payload without knowing its exact struc-
ture. We achieve the same result by transforming
the version-dependent parcel into a version-agnostic
key-value store (where keys are the parameter names
of methods declared in the interface definitions) and
adapting the Core Logic Layer and Stub implementa-
tions to work with these version-agnostic data stores.
Thus, while the API layer is version-dependent and
automatically generated for each Android version,
the remaining layers of Broker are version-agnostic
and implemented only once.
5) Core Logic Layer. The Core Logic Layer pro-
vides essential functionality required to run apps on
Android by replicating a small subset of the func-
tionality that Android’s core system services pro-
vide. Most prominently, this layer provides a mini-
mal implementation of the PackageManager, which
manages the packages installed into the Boxify en-
vironment. Every call to a system service that is
not emulated by the Core Logic Layer is passed on
to the Virtualization Layer and thus to the underly-
ing Android system. Other system services, such
as the LocationManager, which are not necessarily
required, can be instantiated at this layer as well,
in case encapsulated apps are supposed to use the
local, Boxify service implementation instead of the
pristine Android service (e.g., servicing sandboxed
apps with fake location data [64]). Hence, this layer
decides whether an Android API call is emulated
using a replicated service or forwarded to the sys-
tem (through the Virtualization Layer). This layer is
therefore responsible for managing the IPC communi-
cation between different sandboxed apps (abstractly
like an “ICC switch”).

Furthermore, the Core Logic Layer implements the
policy enforcement points (PEP) for Binder IPC ser-
vices and syscalls. Because the API Layer already
bridges the semantic gap between kernel-level IPC
and Android application framework semantics, this
removes the burden for dealing with low-level seman-
tics in the IPC PEPs. We emulate the integration of
enforcement points into pristine Android services by
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integrating these points into our mandatory service
proxies. This allows us to instantiate security models
from the area of OS security extensions (see §3.2), but
at the application layer. One default security model
that Boxify provides is the permission enforcement
and same origin model of Android. For instance, the
replicated ActivityManager will enforce permissions
on calls between components of two sandboxed apps.
We present further security models from related work
on OS security extensions that we integrated at this
layer in §5.4 and for future work we consider a pro-
grammable interface for extending Core Logic Layer
security in the spirit of ASM [37] and ASF [14]. For
calls that are not protected by a permission, the Bro-
ker can also choose to enable direct communication
between the target app and the requested Android
system service. This can improve performance for
non-critical services such as the SurfaceFlinger (for
GUI updates) at the cost of losing the ability to me-
diate calls to these services.

The syscall PEP enforces system call policies in the
spirit of [47] with respect to network and filesystem
operations. Its responsibilities are twofold: First,
it functions as a transparent compatibility layer by
emulating the file-system structure of the Android
data partition (e.g., chroot of sandboxed apps by
emulating a home directory for each sandboxed app4

within the home directory of the Boxify app). Second,
it emulates the access control of the Linux kernel, i.e.,
compartmentalization of sandboxed apps by ensuring
that they cannot access private files of other apps
as well as enforcing permissions (e.g., preventing a
sandboxed app without Internet permission from
creating a network socket).
6) Virtualization Layer. The sandbox environ-
ment must support communication between sand-
boxed apps and the Android application framework,
because certain system resources cannot be efficiently
emulated (e.g., SurfaceFlinger for GUI) or not em-
ulated at all (e.g., hardware resources like the cam-
era). However, the sandbox must be transparent to
the Target and all interaction with the application
framework must appear as in a regular app. At the
same time, the sandbox must be completely opaque
to the application framework and sandboxed apps
must be hidden from the framework; otherwise, this
leads to inconsistencies that the framework considers
as runtime (security) exceptions.

In Boxify, the Virtualization Layer is responsible
for translating the bi-directional communication be-
tween the Android application framework and the

4Recall that sandboxed apps are not installed in the system
but only in the Boxify environment, and hence do not have a
native home directory.

Target. It achieves the required semi-transparent com-
munication with a technique that can be abstractly
described as “ICC Network Address Translator” : On
outgoing calls from Target to framework, it ensures
that all ICC appears as coming from the Boxify app
instead of the sandboxed app. As described earlier,
all Binder handles of a Target are substituted with
handles of the Broker, which relays the calls to the
system. During relay of calls, the Virtualization Layer
manipulates the call arguments to hide components
of sandboxed apps by substituting the component
identifiers with identifiers of components of the Box-
ify app. On incoming calls from the framework, the
Virtualization Layer substitutes the addressed Boxify
component with the actually addressed component
of the sandboxed app and dispatches the call. In
order to correctly substitute addressed components,
the Virtualization Layer maintains a mapping between
Target and Boxify component names, or in case the
Target component is not addressed by a name but a
Binder handle that was given prior to the framework,
the mapping is between the released Binder handle
and its owning Target component.

A concrete example where this technique is applied
is requesting the launch of a Target Activity compo-
nent from the application framework (see Figure 7).
The Virtualization Layer substitutes the Activity com-
ponent with a generic Activity component of Boxify
if a call to the ActivityManager occurs. When the
service calls back for scheduling the Activity launch,
the Virtualization Layer dispatches the scheduling call
to the corresponding Target Activity component.

Lastly, we hook the application runtime of Boxify’s
Broker process (using a technique similar to [55]) in
order to gain control over the processing of incoming
Binder parcels. This enables the Broker to distinguish
between parcels addressed to Boxify itself and those
that need to be forwarded to the Target processes.

4.4 System Integration
Lastly, we discuss some aspects of integrating sand-
boxed apps into the default application framework.

Launcher. Since sandboxed apps have to be started
through Boxify (and are not regularly installed on
the system), they cannot be directly launched from
the default launcher. A straightforward solution is
to provide a custom launcher with Boxify in form
of a dedicated Activity. Alternatively, Boxify could
register as a launcher app and then run the default
launcher (or any launcher app of the user’s choice)
in the sandbox, presenting the union of the regularly
installed apps and apps installed in the sandbox envi-
ronment; or Boxify launcher widgets could be placed
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Table 2: Microbenchmarks Middleware (200 runs)
API Call Native on Boxify Overhead

Open Camera 103.24 ms 104.48 ms 1.24ms (1.2%)
Query Contacts 7.63 ms 8.55 ms 0.92 ms (12.0%)
Insert Contacts 66.49 ms 67.51 ms 1.02 ms (1.5%)
Delete Contacts 75.86 ms 76.81 ms 0.95 ms (0.9%)
Create Socket 120.83 ms 121.58 ms 0.75 ms (0.6%)

on the regular home screen to launch sandboxed apps
from there.

App stores. Particularly smooth is the integration
of Boxify with app store applications, such as the
Google Play Store. Since no special permissions are
required to install apps into the sandbox, we can
simply run the store apps provided by Google, ven-
dors, and third-parties in Boxify to install new apps
there. For example, clicking install in the sandboxed
Play Store App will directly install the new app into
Boxify. Furthermore, Play Store (and vendor stores)
even take care of automatically updating all apps
installed in Boxify, a feature that IRM systems have
to manually re-implement.

Statically registered resources. Some resources
of apps are statically registered in the system dur-
ing app installation. Since sandboxed apps are not
regularly installed, the system is unaware of their
resources. This concerns in particular Activity com-
ponents that can receive Intents for, e.g., content
sharing, or package resources like icons. However,
some resources like Broadcast Receiver components
can be dynamically registered at runtime and Boxify
uses this as a workaround to dynamically register
the Receivers declared statically in the Manifests of
sandboxed apps.

5 Evaluation

We discuss the prototypical implementation of Boxify
in terms of performance impact, security guarantees,
and app robustness, and present concrete use-cases
of Boxify. Our prototype comprises 11,901 lines of
Java code, of which 4,242 LoC are automatically
generated (API Layer), and 3,550 lines of additional
C/C++ code. All tests described in the following
were performed on an LG Nexus 5 running Android
4.4.4, which is currently the most widely used version
in the Android ecosystem.

5.1 Performance Impact
To evaluate the performance impact of Boxify on
monitored apps, we compare the results of common

Table 3: Microbenchmarks Syscalls (15k runs)
Libc Func. Native on Boxify Overhead

create 47.2 µs 162.4 µs 115.2 µs
open 9.5 µs 122.7 µs 113.2 µs
remove 49.5 µs 159.6 µs 110.1 µs
mkdir 88.4 µs 199.4 µs 111.0 µs
rmdir 71.2 µs 180.7 µs 109.5 µs

Table 4: Benchmark Tools (10 runs)
Tool Native on Boxify Loss

CF Bench v1.3 16082 Pts 15376 Pts 4.3%
Geekbench v3.3.1 1649 Pts 1621 Pts 1.6%
PassMark v1.0.4 3674 Pts 3497 Pts 4.8%
Quadrant v2.1.1 7820 Pts 7532 Pts 3.6%

benchmark apps and of custom micro-benchmarks
for encapsulated and native execution of apps.

Table 2 and Table 3 present the results of our micro-
benchmarks for common Android API calls and for
syscall performance. Intercepting calls to the appli-
cation framework imposes an overhead around 1%,
with the exception of the very fast Query Contacts
(12%). For syscalls, we measured the performance of
calls that request file descriptors for file I/O in pri-
vate app directories (or external storage) and that are
proxied by the Broker. We observe a constant perfor-
mance overhead of ≈ 100µs, which corresponds to the
required time of the additional IPC round trip for the
communication with the Broker on our test platform.
However, the syscall benchmarks depict a worst-case
estimation: The overall performance impact on apps
is much lower, since high-frequent follow up opera-
tions on acquired file descriptors (e.g., read/write)
need not to be intercepted and therefore run with
native speed. We measured the overall performance
penalty by excecuting several benchmarking apps on
top of Boxify, which show an acceptable performance
degradation of 1.6%–4.8% (see Table 4).

5.2 Runtime Robustness
To assess the robustness of encapsulated apps, we
executed 1079 of the most popular, free apps from
Google Play (retrieved in August 2014) on top of
Boxify. For each sandboxed app we used the mon-
keyrunner tool5 to exercise the app’s functionality by
injecting 500 random UI events. From the 1079 apps,
93 (8.6%) experienced a crash during testing. Man-
ual investigation of the dysfunctional apps revealed

5http://developer.android.com/tools/help/
monkeyrunner_concepts.html
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Table 5: Android versions supported by Boxify.
Version < 4.1 4.1 4.2 4.3 4.4 5.0 5.1

Supported �† � � � � � �

�: supported; �: not supported
†: no isolated proccess

that most errors were caused by apps executing ex-
otic syscalls or rarely used Android APIs which are
not covered by Boxify yet and thus fail due to the
lack of privileges of the Target process (fail-safe de-
faults). This leads to a slightly lower robustness than
reported for related work (e.g., [59, 15]) where by-
passed hooks do not cause the untrusted app to crash
but instead silently circumvent the reference monitor.
The remaining issues were due to unusual applica-
tion logic that relies on certain OS features (e.g., the
process information pseudo-filesystem proc), which
the current prototype of Boxify does not yet support.
However, all of these are technical and not concep-
tual shortcomings of the current implementation of
Boxify.

5.3 Portability
Table 5 summarizes the Android versions currently
supported by our prototypical Boxify implementa-
tion. Our prototype supports all Android versions
4.1 through 5.1 and can be deployed on nine out of
ten devices in the Android ecosystem [1]. Android
versions prior to 4.1 are not supported due to the
lack of the isolated process feature.

5.4 Use-cases
Boxify allows the instantiation of different security
models from the literature on Android security ex-
tensions. In the following, we present two selected
use-cases on fine-grained permission control and do-
main isolation that have received attention before in
the security community.

Fine-Grained Permission Control. The
TISSA [64] OS extension empowers users to flexi-
bly control in a fine-grained manner which personal
information will be accessible to applications. We
reimplemented the TISSA functionality as an exten-
sion to the Core Logic Layer of the Boxify Broker.
To this end, we instrumented the mandatory prox-
ies for core system services (e.g. LocationManager,
TelephonyService) so that they can return a fil-
tered or mock data set based on the user’s privacy
settings. Users can dynamically adjust their privacy
preferences through a management Activity added

to Boxify. In total, the TISSA functionality required
additional 351 lines of Java code to Core Logic Layer.

Domain Isolation. Particularly for enterprise de-
ployments, container solutions have been brought
forward to separate business apps from other (un-
trusted) apps [56, 17, 53].

We implemented a domain isolation solution based
on Boxify by installing business apps into the sand-
box environment. The Broker provides its own ver-
sion of the PackageManager to directly deliver inter-
component communication to sandboxed applications
without involving the regular PackageManager, en-
abling controlled collaboration between enterprise
apps while at the same time isolating and hiding
them from non-enterprise apps and the OS.

To separate the enterprise data from the user’s
private data, we exploit that the Broker is able to
run separate instances of system services (e.g., Con-
tacts, Calendar) within the sandbox. Our custom
ActivityManager proxy now selectively and trans-
parently redirects ContentProvider accesses by en-
terprise apps to the sandboxed counterparts of those
providers.

Alternatively, the above described domain isolation
concept was used to implement a privacy mode for
end users, where untrusted apps are installed into
a Boxify environment with empty (or faked) system
ContentProviders. Thus, users can test untrusted
apps in a safe environment without risking harm to
their mobile device or private data. The domain
isolation extension required 986 additional lines of
code in the Core Logic Layer of Boxify.

5.5 Security Discussion
Our solution builds on isolated processes as funda-
mental security primitive. An isolated process is the
most restrictive execution environment that stock
Android currently has to offer, and it provides Boxify
with better security guarantees than closest related
work [38]. In what follows, we identify different
security shortcomings and discuss potential future se-
curity primitives of stock Android that would benefit
Boxify and defensively programmed apps in general.

Privilege escalation. A malicious app could by-
pass the syscall and IPC interceptors, for instance,
by statically linking libc. For IPC, this does not
lead to a privilege escalation, since the application
framework apps and services will refuse to cooperate
with an isolated process. However, the kernel is un-
aware of the concept of an “isolated process” and will
enforce access control on syscalls according to the
process’ UID. Although the transient UIDs of isolated
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processes are very restricted in their filesystem access
(i.e., only world readable/writable files), a malicious
process has the entire kernel API as an attack vector
and might escalate its privileges through a root or
kernel exploit. In this sense, Boxify is not more secure
than existing approaches that rely on the assumption
that the stock Android kernel is hardened against
root and kernel exploits.

To remedy this situation, additional layers of se-
curity could be provided by the underlying kernel
to further restrict untrusted processes. This is com-
mon practice on other operating systems, e.g., on
modern Linux distributions, where Chromium—the
primary user of isolated process on Android—uses
the seccomp-bpf facility to selectively disable syscalls
of renderer processes and we expect this facility to
become available on future Android versions with
newer kernels. Similarly, common program tracing
facilities could be made available in order to interpose
syscalls more securely and efficiently [31, 47, 52].

Violating Least-Privilege Principle. The Broker
must hold the union set of all permissions required
by the apps hosted by Boxify in order to successfully
proxy calls to the Android API. Since it is hard to
predict a reasonable set of permissions beforehand,
this means that the Broker usually holds all available
permissions. This contradicts the principle of least
privilege and makes the Broker an attractive target
for the encapsulated app to increase its permission
set. A very elegant solution to this problem would be
a Broker that drops all unnecessary permissions. This
resembles the privilege separation pattern [48, 57]
of established Linux services like ssh, which drop
privileges of sub-processes based on setting their
UIDs, capabilities, or transitioning them to seccomp
mode. Unfortunately, Android does not (yet) provide
a way to selectively drop permissions at runtime.

Red Pill. Even though Boxify is designed to be
invisible to the sandboxed app, it cannot exclude
that the untrusted app gathers information about
its execution environment that allow the app to de-
duce that it is sandboxed (e.g., checking its runtime
UID or permissions). A malicious app can use this
knowledge to change its runtime behavior when being
sandboxed and thus hide its true intentions or refuse
to run in a sandboxed environment. Prevention of
this information leak is an arms race that a resolute
attacker will typically win. However, while this might
lead to refused functionality, it cannot be used to
escalate the app’s privileges.

6 Conclusion

We presented the first application virtualization so-
lution for the stock Android OS. By building on
isolated processes to restrict privileges of untrusted
apps and introducing a novel app virtualization envi-
ronment, we combine the strong security guarantees
of OS security extensions with the deployability of
application layer solutions. We implemented our so-
lution as a regular Android app called Boxify and
demonstrated its capability to enforce established se-
curity policies without incurring significant runtime
performance overhead.

Availability and Future Work. We will make
the Boxify source code freely available. Beyond the
immediate privacy benefits for the end-user presented
in this paper (see §5.4), Boxify offers all the security
advantages of traditional sandboxing techniques and
is thus of independent interest for future Android
security research. As future work, we are currently
investigating different application domains of Box-
ify, such as application-layer only taint-tracking for
sandboxed apps [24], programmable security APIs in
the spirit of ASM [37]/ASF [14] to facilitate the ex-
tensibility of Boxify, as well as Boxify-based malware
analysis tools.
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Abstract

A cookie can contain a “secure” flag, indicating that it
should be only sent over an HTTPS connection. Yet there
is no corresponding flag to indicate how a cookie was
set: attackers who act as a man-in-the-midddle even tem-
porarily on an HTTP session can inject cookies which
will be attached to subsequent HTTPS connections. Sim-
ilar attacks can also be launched by a web attacker from a
related domain. Although an acknowledged threat, it has
not yet been studied thoroughly. This paper aims to fill
this gap with an in-depth empirical assessment of cookie
injection attacks. We find that cookie-related vulnerabil-
ities are present in important sites (such as Google and
Bank of America), and can be made worse by the im-
plementation weaknesses we discovered in major web
browsers (such as Chrome, Firefox, and Safari). Our
successful attacks have included privacy violation, on-
line victimization, and even financial loss and account
hijacking. We also discuss mitigation strategies such as
HSTS, possible browser changes, and present a proof-of-
concept browser extension to provide better cookie iso-
lation between HTTP and HTTPS, and between related
domains.

1 Introduction

The same-origin policy (SOP) is a corner stone of web
security, guarding the web content of one domain from
the access from another domain. The most standard def-
inition of “origin” is a 3-tuple, consisting of the scheme,
the domain and the port number. However, the notion of
“origin” regarding cookies is fairly unusual – cookies are
not separated between different schemes like HTTP and
HTTPS, as well as port. The domain isolation of cookie
is also weak: different but related domains can have a
shared cookie scope. A cookie may have a “secure” flag,
indicating that it should only be presented over HTTPS,
ensuring confidentiality of its value against a network

man-in-the-middle (MITM). However, there is no similar
measure to protect its integrity from the same adversary:
an HTTP response is allowed to set a secure cookie for
its domain. An adversary controlling a related domain
is also capable to disrupt a cookie’s integrity by making
use of the shared cookie scope. Even worse, there is an
asymmetry between cookie’s read and write operations
involving pathing, enabling more subtle form of cookie
integrity violation.

The lack of cookie integrity is a known problem,
noted in the current specification [2]. However, the
real-world implications are under-appreciated. Although
the problem has been discussed by several previous re-
searchers [4, 5, 30, 32, 24, 23], none provided in-depth
and real-world empirical assessment. Attacks enabled by
merely injecting malicious cookies could be elusive, and
the consequence could be serious. For example, a cau-
tious user might only visit news websites at open wireless
networks like those at Starbucks. She might not know
that this is sufficient for a temporary MITM attacker to
inject malicious cookies to poison her browser, and com-
promise her bank account when she later logs on to her
bank site at home.

We aim to understand how could attackers launch
cookie inject attacks, and what are the damaging con-
sequences to real-world websites. Our study shows
that most websites are potentially susceptible to cookie
injection attacks by network attackers. For example,
only one site in the Alexa top 100 websites has fully
deployed HTTP Strict Transport Security (HSTS) on
its top-level domain, a sufficient server-side protection
to counter cookie injection attacks by network attack-
ers (Section 3). We also found a number of browser
vulnerabilities and implementation quirks that can be ex-
ploited by cookie injection attacks (Section 4). Notably,
all major browsers, except Internet Explorer (IE), respect
the “Set-Cookie” header in a 407-response (i.e., an Au-
thentication Required Response) when configured to use
a proxy. Because of this vulnerability, even websites
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adopting sufficient HSTS are subject to cookie injection
attacks by a malicious proxy.

Our study also shows that current cookie practices
have widespread problems when facing cookie injection
attacks (Section 5). We demonstrate multiple exploita-
tions against large websites. For example, we show that
an attacker can put his Gmail chat gadget on a victim’s
screen without affecting the victim’s use of Gmail and
other Google services. We also demonstrate that an at-
tacker can hijack a victim’s online deposit to his account,
or even deliver the victim’s online purchase to his ad-
dress. Other exploitations include user tracking, cross-
site scripting (XSS) attacks against large financial sites
embedded in injected cookies, etc..

We have developed a mitigation strategy (Section 6).
By modifying how browsers treat secure cookies, it is
possible to largely mitigate cookie injection attacks by
network attackers. We have also considered possible
browser enhancements to mitigate cookie injection from
web attackers. We implement our proposals as a proof-
of-concept browser extension. A preliminary evaluation
does not encounter compatibility issues.

In summary, this work makes the following main con-
tributions:

• We provided an evaluation of potential susceptible
websites to cookie injection attacks, including a de-
tailed measurement of full HSTS adoption and an
assessment of shared domains used by Content De-
livery Networks (CDNs).

• We examined both browser-side and server-side
cookie implementation, in which we found sev-
eral browser vulnerabilities and a number of non-
conforming and/or inconsistent implementations
that could be exploited in cookie injection attacks.

• We demonstrated the severity and prevalence of
cookie injection attacks in the real world. In par-
ticular, our exploitations against a variety of large
websites show that cookie injection enables compli-
cated interactions among implements, applications,
and various known attacks.

• We developed and implemented browser-side en-
hancements to provide better cookie isolation. Our
evaluation showed promising results in compatibil-
ity.

Together, this work provides a close-up picture of the
cookie integrity problem and the threats of cookie inject
attacks. We intend to provide a context for motivating
further discussion in research community and industry.

2 Background

2.1 Cookies

Cookies are a browser-side assisted state management
mechanism that are pervasively used by web applica-
tions [2]. Cookies can be set by either HTTP servers
using “Set-Cookie:” header or client side JavaScript
with a write to “document.cookie”. A cookie can
have five optional attributes: domain and path specify-
ing the cookie’s scope; expires stating when it should
be discarded; secure specifying that it should only be
sent over HTTPS connections, and HTTPOnly prevent-
ing browser-side scripts from reading the cookie. When
sending a request to a server, a web browser includes all
unexpired cookies whose domains and paths match the
requested URL, excluding those marked as secure from
the inclusion in an HTTP request.

Cookies have two fairly unusual behaviors. First,
there is a critical disconnection between cookie stor-
age and reading. Cookies are set and stored as a
name/domain/path to value attributes mapping, but only
name-value pairs are presented to both JavaScript and
web servers. This asymmetry allows cookies with the
same name but different domain and/or path scopes to be
written into browser; a subsequent reader can read out
all same name cookies together, yet cannot distinguish
them because the other attributes such as path are not
presented in the reading process. Another complication
occurs when writing a cookie, the writer can specify ar-
bitrary value for the path attribute, not limited by the
URL of the writer’s context.

Moreover, the security policy for cookies is not as
stringent as the classic SOP. In web security, the SOP
is the most important access control mechanism to seg-
regate static contents and active scripts from different
origins [3]. An origin for a given URL is defined by a
3-tuple: scheme (or protocol), e.g. HTTP or HTTPS, do-
main (or host), and port (not supported by IE (Internet
Explorer)). However, the security policy guarding cook-
ies does not provide separation based on either scheme or
port but only on domain [2]. In addition, a website can
set cookies with flexible domain scopes: 1) not shared
(i.e., host-only), 2) shared with its subdomains, or 3)
shared with its sibling domains (i.e., using its parent do-
main as the scope). For the third case, a restriction is en-
forced by browser to ensure that a cookie domain scope
is not “too wide”. For example, www.example.com can
set a cookie with the scope of .example.com, but it can-
not set a cookie with .com as the scope because .com is a
public top level domain (TLD). Unfortunately, there is no
clear definition of whether a domain scope is “too wide”
(See Section 3.2).

The combination of the read/write asymmetry and the

2
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lack of domain or scheme segregation implies that a do-
main cannot protect the integrity of its cookie from an ac-
tive MITM or a malicious/compromised related domain
that shares some cookie domain scope with it. There are
two forms of cookie integrity violations:

• Cookie Overwriting. If a cookie shares the domain
scope with a related domain, it can be directly over-
written by that domain using another cookie with
the exactly same name/domain/path. Of particular
note, although a secure cookie can only be read by
an HTTPS process, it can be written or overwritten
by an HTTP request.

• Cookie Shadowing. Alternatively, an attacker with
the control of a related domain can intentionally
shadow a cookie by injecting another one that has
the same name, but different domain/path scope.
For example, to shadow a cookie with “value=good;
domain=www.example.com; path=/; secure”, a
related domain evil.example.com can write a
cookie with “value=bad; domain=.example.com;
path=/home”. Later, when browser issues a re-
quest to https://www.example.com/home, both
cookies match the URL and are included. For
most browsers, the cookie header will be “Cookie:
value=bad; value=good;”. The “good” cookie could
be shadowed by the “bad” one if a website happens
to prefer the value of “bad” over “good”.

Note while the “good” cookie has a secure flag and
is sent over HTTPS, it can still be shadowed with a
cookie set from an HTTP connection.

2.2 HSTS
HSTS (HTTP Strict Transport Security) allows a server
to inform a client to only initiate communications over
HTTPS. It was originally proposed by Jackson and
Barth to address a number of MITM threats such as
cookie sniffing and SSL stripping [18], and is now
standardized in RFC6797 as a HTTP response header
Strict-Transport-Security [15].

The HSTS header requires a max-age attribute
indicating how long a browser should keep the
HSTS policy for that domain. An optional attribute
includeSubDomains tells a browser to apply the HSTS
policy to its all subdomains. After receiving an HSTS
header, a conforming browser ensures that all subse-
quent connections to that domain always take place over
HTTPS until the policy expires. Chrome and Firefox also
support a preloaded list that contains self-declared web-
sites supporting HSTS. For more information on HSTS,
please see [22].

HSTS coverage can often be incomplete. For example,
if example.com does not specify includeSubDomains

in its HSTS header, a browser will allow HTTP connec-
tion to foo.example.com. Worse, even if the HSTS
policy of example.com specifies includeSubDomains,
this will not be checked by a browser if a user only visits
bar.example.com unless the page includes a reference
to example.com.

2.3 Cookie Injection Attacks
It is a known vulnerability that cookies can be injected
by HTTP response into subsequent HTTPS request, and
from one domain to another related domain. Johnston
and Moore reported such problem in 2004 [19]. Their
report already pinpointed the root cause: the loosely
defined SOP for cookies. Unfortunately browsers ven-
dors did not fix the problem probably because they were
concerned of potential incompatibility issues. In 2008,
Evans described an attack called cookie forcing that ex-
ploits cookie integrity deficiency to overwrite cookies in
HTTPS sessions [7]. In 2013, GitHub migrated their do-
main for hosting users’ homepages from github.com to
github.io after they recognized the threat of cookie in-
jection from/to a shared domain whose subdomains be-
long to mutually untrusted users; they described detailed
steps of several possible cookie injection exploits and re-
ferred to them as cookie tossing [11].

The problem was also noted in several more formal
publications. Barth et al. discussed security impli-
cations of cookie overwriting on session initiation [4].
They also proposed a new header Cookie-Integrity
to provide additional information so that web server can
distinguish between cookies set from HTTP and those
set from HTTPS. Bortz et al. also reviewed the problem
and proposed a new header Origin-Cookie that guaran-
tees integrity by enforcing a complete 3-tuple SOP [5].
Singh et al. referred the difference between the classic
SOP and the cookie SOP as inconsistent principal la-
beling [30]. Both Zalewski’s book [32] and the current
cookie specification by Barth [2] explained the cookie
integrity deficiencies in great detail. We also learned of
two technical reports, one from Black Hat EU by Lun-
deen [23] and the other from Black Hat AD by Lun-
deen et al. [24], that illustrated several subtle attacks ini-
tiated by cookie injection.

Although a known threat, previous research fall short
of in-depth empirical assessment of its real-world secu-
rity implications. This work aims to fill this gap. We
provide a detailed comparison in Section 7.

3 Threat Analysis

We first present the threat model for cookie injection at-
tacks. For each type of attacker, we analyze its real-world
threat. Table 1 gives an overview.

3
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Attacker Root Cause Attack Surface Mitigation
Network
Attacker

Active MITM SOP without protocol &
complete domain isolation.

Websites and browsers that allow attackers to reply an unen-
crypted request to a related domain with forged response. Full HSTSMalicious Proxy

Web
Attacker

Full control of related domain SOP without complete do-
main isolation.

Websites using shared domains. Public suffix list
XSS on related domain Websites with compromised related domains. Out of scope

Table 1: Overview of the threats of cookie injection attacks

3.1 Threat Model
Two classes of attackers can manipulate a target site’s
cookies: an active network adversary or a remote adver-
sary able to host or inject content on a related domain.

The active MITM attacker (including the classic
MITM fully controlling the network and the Man-on-the-
Side (i.e., wiretapping and packet-injecting)) can load ar-
bitrary cookies through HTTP into the target’s cookie
store. The attacker modifies an unrelated HTTP re-
quest to create a hidden iframe in a web page. The at-
tacker’s iframe then creates a series of HTTP fetches to
the target domains, which the attacker responds to with
Set-Cookie headers to poison the victim’s cookie store.

A malicious proxy is at least as powerful as an active
MITM in terms of manipulating network traffic. More-
over, because the browser has extra protocol interactions
with the proxy, potential logic flaws or implementation
bugs might give the malicious proxy additional chances
to break in. Chen et al. highlighted this threat with a
number of logic flaws [6]. Our study also targets this
type of issues related to unexpected capabilities for a ma-
licious proxy to inject cookies.

Finally, if an attacker controls a related domain di-
rectly, he may launch cookie injection remotely. The at-
tacker does not need full control of the related server, just
the ability to host JavaScript. This attacker cannot target
arbitrary domains, but can target any other domain under
the same “top level” domain.

One key property of all these adversaries is its ability
to change state. For example, a victim might only visit
her bank from known-good networks, but an attacker can
poison the victim’s browser when the victim is on an
open wireless network. Only later, when the victim has
now returned to the “safe” network and visits her bank,
does the attack actually affect the victim.

3.2 Attack Surface
Network Attack Surface: The only current protection
against an active network attacker requires that the vic-
tim’s browser never issues an unencrypted HTTP con-
nection to a target site or any related domain. This con-
dition holds if 1) the target domain enables HSTS on its
base domain 1 (i.e. the first upper-level domain that is

1We learned this term from Kranch and Bonneau’s recent HSTS
study [22].

Domain Ranking
<10 10-102 102-103 103-104 104-105 > 105

Valid HTTPS 7 52 353 2,914 20,548 128,805
Full HSTS 0 1 7 35 212 997

Table 2: Ranking distribution of domains with valid
HTTPS and full HSTS.

considered “non-public”) with the includeSubDomains
option, which we refer to as full HSTS; 2) the browser
supports HSTS; and 3) the browser has received the full
HSTS policy from the base domain of the target domain.

Unfortunately, the support and adoption of HSTS in
the real world is unsatisfactory. First, all current ver-
sions of IE, a major browser with considerable mar-
ketshare, do not support HSTS (Microsoft announced
that its new browser will support HSTS [16]). Sec-
ond, there is limited adoption of full HSTS among sites.
We scanned 961,857 base domains from the Alexa top
one million websites and also examined if these do-
mains present in the Chrome’s preloaded HSTS list [28].
While we observed 152,679 (15.87%) domains have de-
ployed HTTPS with valid certificates, we only found
1,252 (0.13%) domains have enabled full HSTS. More-
over, most of the full HSTS domains are low ranked do-
mains (see Table 2). A recent study by Kranch and Bon-
neau also presented a similar total number of full HSTS
domains among the Alexa top one million websites [22].

Because of the prevalence of unsafe networks like
open wireless networks and the very limited deploy-
ment/availability of full HSTS protection, we consider
cookie injection by active network attackers a pervasive
and severe threat, especially for websites who have de-
ployed HTTPS to prevent active network attackers from
launching other possible attacks such as eavesdropping
or active script injection, yet have not enabled full HSTS.

Web Attack Surface: Generally, a web attacker
might be able to control a related domain in two ways.
First, for large websites that all subdomains are used in-
ternally, an attacker can fully control one subdomain by
compromising its DNS resolution or its hosting server.
The attacker can also exploit a XSS vulnerability on a
subdomain of a large website. A cookie injection attack
can then be launched to target other subdomains.

A greater concern is when a website either hosts user
content or shares a domain scope with other possibly
untrustworthy sites. This problem is inherent from the

4
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weaker cookie SOP. As we previously discussed in Sec-
tion 2.1, a domain is allowed to set cookies with wider
domain scope as long as the scope is not considered
public. Hence, a clear boundary between “public” and
“non-public” domain scope is needed to prevent cookie
injection from undesired shared cookie domain. How-
ever, this is not easy to define and implement clearly.
First, many top-level domains (a.k.a., TLDs), especially
country code top-level domains (a.k.a., ccTLDs) have
their own reserved suffixes such as .com.cn, .co.uk,
which are mostly TLD-specific. Second, many websites
use shared domains to assign subdomains to their mu-
tually untrusted clients. Such shared domain providers
include cloud hosting providers, web hosting providers,
blog providers, CDN providers etc. These shared do-
mains should also be considered as non-public in terms
of cookie domain scope.

The problem of cookie domain scope boundary is
partially remedied by a community effort initiated by
Mozilla called “public suffix list”, which maintains an
exceptional list containing TLDs, TLD-reserved suffixes,
and self-declared shared domains [25]. Public informa-
tion suggests that the list is enforced by major browser
vendors including IE, Chrome, Firefox, and Opera, while
our own tests confirm that Safari implements this list.

Our study of the public suffix list shows that the
public shared domains list still exposes an attack sur-
face for cookie injection. First, we empirically identi-
fied 45 shared domains from the Alexa top one million
websites, among which only 10 Google domains and 3
non-Google domains are included in the public suffix
list. Among the remaining domains, we found at least
4 domains (sinaapp.com, weebly.com, myshopify.
com, and forumotion.com) allow customized server-
side code or browser-side scripts. Websites hosting on
these domains are vulnerable to cookie injection attacks.

Another easy-to-miss corner case is shared domains
used by CDNs. CDNs commonly assign subdomains
or sub-directories of shared domains to their customers.
If a website directly uses a shared domain assigned by
its CDN provider, and the CDN provider does not han-
dle the shared domain carefully, then the website is sub-
ject to cookie injection attacks from malicious customers
of the same CDN provider. While websites rarely use
shared domains as their main domains, a common prac-
tice is to refer static resources (e.g., JavaScript files, im-
ages) using shared domain URLs. Although cookies un-
der these resource URLs are usually not processed by
server-side code or browser-side scripts, cookie injection
attacks could still cause serious consequences. For ex-
ample, suppose both websites A and B host their static
resource files under one shared domain from the same
CDN. Website A can inject garbage cookies from the
requests to his resource files with specific paths so that

Vendor Domain Publis Suffix List? Vulnerable?

Akamai

akamai.net No n/a 1

akamaiedge.net No n/a
akamaihd.net No n/a
edgesuite.net No n/a

Azure msecnd.net No Yes
windows.net No Yes

BitGravity bitgravity.com No n/a
CacheFly 2 cachefly.net No Yes
CDN77 cdn77.net No Yes
CDNetworks cdngc.net No n/a
CDN.net worldcdn.net No n/a
ChinaCache chinacache.net No n/a
ChinaNetCenter wscloudcdn.com No n/a
CloudFlare 3 cloudflare.net No Yes
CloudFront cloudfront.net Yes No
EdgeCast edgecasecdn.net No n/a
Exceda expresscdn.com No Yes
Fastly 3 fastly.net Yes Yes
Highwinds hwcdn.net No n/a
Incapsula incapsula.net No Yes
Internap internapcdn.net No n/a
Jiasule jiashule.com No Yes
KeyCDN 2 kxcdn.com No Yes
Level3 footprint.net No n/a
Limelight linwd.net No n/a
MaxCDN netdna-cdn.com No Yes
Squixa squixa.net No n/a

1: “n/a” refers to the case that we were not able to test.
2: CDNs attempting to defend cookie related attacks on shared do-
mains by filtering the Set-Cookie header.
3: CDNs allowing shared cookie scopes in customer-specific prefixes
of shared domains.

Table 3: Assessment of cookie injection attacks on
shared domains used by CDNs.

the injected cookies will be sent with the requests of re-
source files to website B. This type of cookie injection
attack could cause performance downgrade, bandwidth
consumption, and even denial-of-service (DoS) if the
amount of injected cookies exceeds the server’s header
size limitation2. In worst case, DoS of a critical resource
file like a JavaScript library could break the whole web-
site.

We empirically collected 28 shared domains used
by 23 CDNs 3, in which only 2 domains are reg-
istered in the public suffix list, as presented in Ta-
ble 3. We were also able to sign up and test 13
shared domains from 12 CDNs. While we confirmed
that cloudfront.net is immune because of its pres-
ence in the public suffix list, for each of the other 12
domains, we successfully launched DoS attack on one
test URL by injecting 72KB cookies from another test
URL. Our experiments also found two problematic be-
haviors. First, CacheFly and KeyCDN attempt to de-
fend cookie related attacks by filtering the Set-Cookie

header in response instead of utilizing the public suf-

2Although the current HTTP specification does not define any lim-
itation on the size of request header [9], most of web server implemen-
tations do so by default. For example, nginx by default limits a single
HTTP header not to exceed 8KB [26].

3We collected most of the CDNs from http://www.cdnplanet.

com/cdns/.
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fix list, which fails to prevent JavaScript from inject-
ing cookies. Second, although Fastly has declared sev-
eral subdomains of fastly.net as public suffix, its
naming mechanism enables shared scopes in customer-
specific prefixes, making its customers still vulnerable to
cookie injection attacks. For example, for a customer
foo.com, Fastly assigns a customer subdomain foo.

com.global.prod.fastly.net. Although the suffix
global.prod.fastly.net is present in the public suf-
fix list, the prefix causes a cookie scope com.global.

prod.fastly.net shared with other customer subdo-
mains such as bar.com.global.prod.fastly.net.
CloudFlare also has the same problem. We have reported
this problem to all vulnerable vendors. CloudFlare and
CDN77 have acknowledged our reports. The response
from CloudFlare said that they are considering to disable
direct access of all cloudflare.net URLs to defend
against this problem.

4 Pitfalls in Cookie Implementations

Based on the threat model and the understanding of po-
tential attack surfaces, we then turn to understand how
cookie related mechanisms are implemented in browsers
and web applications. Our study pinpointed a number
of inconsistent and/or non-conforming behaviors in ma-
jor browsers and web frameworks, as summarized in Ta-
ble 4. We also identified several vulnerabilities in ma-
jor browsers allowing an active network attacker to inject
cookies even when the full HSTS is deployed. We have
reported these vulnerabilities to browser vendors.

4.1 Uncovered Implementation Quirks
Browser-side Cookie Ordering. The current cookie
specification [2] suggests that browsers should rank
cookies first by path specificity and then by the creation
time in ascending order. We found all major browsers
follow this suggestion except Safari, which ranks cook-
ies first by the specificity of the domain attribute then by
the path specificity.

Server/script-side Cookie Preference. The cookie
header is semantically a list. For the same name cookies
in the list, the specification states that the server should
not rely upon cookie’s ordering presented by the browser.
We examined popular web programming languages, web
frameworks, and third-party libraries including PHP,
Python, Java, Go, ASP, ASP.NET, JavaScript, Node.js,
JQuery, JSF, SpringMVC. At the language level, only
Java, JavaScript and Go provide built-in or standard li-
brary interfaces to read cookies as a list. Other lan-
guages, and all web frameworks and third-party libraries
treat the cookie list as a name-value map that only returns
one value for each cookie name in the list. For cookies

with the same name, while the name-value map inter-
face in Python standard library prefers the last-ordered
cookie, all others prefers the first-ordered one. This ex-
plains why cookie shadowing is possible and the example
given in Section 2.1 works in many cases.

Cookie Storage Limitation. The specification has
several vague suggestions for browsers to limit the num-
ber and size of stored cookies. We found all major
browsers set the maximum size of a single cookie to 4
KB. Chrome, Firefox, and Opera implements a cookie jar
for every base domain, with the total numbers of cookies
limited to 180, 150, and 180, respectively. IE’s cookie jar
implementation is per cookie domain scope, with the to-
tal number of cookies limited to 50. We did not reach Sa-
fari’s cookie storage limit after writing and reading 1,000
cookies.

Cookie Header Size Limit. While Safari does not
seem to have a limit for the number of cookies, it trun-
cates the matching cookie list if the length of the cookie
header exceeds 8 KB. We did not observe similar behav-
iors in other browsers.

Cookie Name. The cookie name can contain all
US-ASCII values except control characters and sepa-
rator characters (see definition in [2] and [8]). We
found that Safari mistakenly stores cookie name in case-
insensitive manner. Some programming languages also
implement cookie names incorrectly. Previously Lun-
deen et al. reported that ASP.NET implements cookie
names case-insensitively [24]. We found that ASP makes
same mistake. In addition, PHP performs percent-
decoding on cookie names. For these languages, dif-
ferent cookie names sent by browser are possibly rec-
ognized as same name cookies, which embraces another
vector for cookie shadowing. For example, PHP inter-
prets a cookie header “%76alue=bad; value=good;” as
“value=bad; value=good;”, causing the “good” cookie to
be shadowed by the “bad” one.

Cookie Path. According to the specification, a cookie
matches a URL only when the path scope of the cookie is
a sub-directory of (or identical to) the URL path. When
a cookie does not specify the path scope, the browser
is required to set its default path as the directory-portion
of the URL path without any trailing slash. We found 4
violations to the standard: 1) Safari4 implements a sub-
string other than sub-directory matching rule; 2) Firefox
and IE match cookie path with not only the URL path,
but also the URL query and the URL fragment portion
match; 3) Firefox matches a cookie path with a URL
path when the former has one more slash than the later;
4) Chrome, Safari, and Opera (Linux and iOS versions)
include the trailing slash in default cookie path.

4Also Chrome on iOS, but as iOS browsers need to use Apple’s
rendering engine rather than their own, this is probably due to Apple’s
decision, not Google’s
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Cookie Property Specification Non-conforming/inconsistent behaviors
Browser-side priority Cookies SHOULD be ranked by specificity of

path then by creation time in ascending order.
1. Safari ranks cookies by specificity of domain then by specificity of path.

Server/script-side preference Server SHOULD NOT rely on cookie’s order-
ing presented by browsers.

1. Most standard libs and frameworks only provide name-value map interfaces;
2. For each name in the cookie list, Python prefers the last-ordered cookie, others
prefer the first-ordered one.

Cookie storage limitation Several vague suggestions 1. Safari seemingly does not have limitation on the number of stored cookies;
2. Chrome and Firefox limit the size of the cookie store per base domain, IE does
so per specific domain scope.

Cookie header size limitation Not specified 1. Safari truncates the cookie header not to exceed 8,192 bytes.
Cookie name US-ASCII values except control characters

and separator characters (see definition in [2]
and [8])

1. Safari is case-insensitive with cookie name;
2. ASP and ASP.NET are case-insensitive;
3. PHP performs percent-decoding on cookie name.

Cookie path 1. Cookie path and URL path MUST be iden-
tical or sub-directory matching;
2. Trailing slash MUST NOT be included in
default cookie path.

1. Firefox and IE matches cookie path not only with URL path, but also with URL
query and URL fragments;
2. Safari implements sub-string matching other than sub-directory matching;
3. Firefox allows cookie path has one more slash than the URL path;
4. Chrome, Safari, and Opera under some platforms include trailing slash in the
default cookie path.

Table 4: Summaries of non-conforming and inconsistent behaviors found in browser and web server cookie imple-
mentations.

4.2 Uncovered Vulnerabilities

Vulnerabilities in Handing Proxy Response. In [6],
Chen et al. found a number of flaws in major browsers.
The root problem resided in the handling of HTTPS re-
sponses. Essentially, all browsers at that time could not
differentiate an HTTPS response from a proxy and an
HTTPS response from the intended server. The flaws
were patched after disclosure. However, we found the
patches are incomplete: if a proxy replies to a HTTPS
CONNECT request with an unencrypted 407 (proxy au-
thentication required) response, all major browsers ex-
cept IE accept the cookies set in 407 response. While
some vulnerable browsers display a pop-up window,
some accept cookies silently (Table 5).

These vulnerabilities allow a malicious proxy to
launch cookie injection attacks against a full HSTS site.
Users who use proxies or have them set automatically,
these vulnerabilities can also be exploited by an active
MITM between the victim and the proxy, even if a victim
user does not intentionally use the attacker as the proxy.

Vulnerability in Handing Public Suffixes in Safari.
As described in Section 3.2, the public suffix list enforces
the boundary between public and non-public cookie do-
main scopes. However we found the implementation
of Safari is vulnerable under certain conditions. When
Safari issues a request http://tld/, it accepts cook-
ies in the response with domain scope as .tld, which
are shared by all subdomains.tld. Because HSTS is
not enabled on an entire TLD (in general, there is no A
record indicating a server at the TLDs), this vulnerability
is exploitable by active network attackers who can forge
a DNS response as well as an HTTP response.

Vulnerability in Safari’s HSTS Implementation.
We also found a vulnerability in Safari’s HSTS imple-
mentation. When receiving a URL, Safari does percent-

Windows Mac OS Linux Android iOS
IE – N/A N/A N/A N/A

Chrome � � � � �
Firefox � � � � N/A

Safari � � N/A N/A �
Opera � � N/A � N/A

�: cookie injection with pop-up window.
�: cookie injection without pop-up window.
�: cookie injection and script injeciton.

Table 5: Browser vulnerabilities in handling 407 re-
sponse by a malicious proxy.

decoding and upper-to-lower case conversion on its do-
main name before issuing a request. However, the HSTS
check is performed before the conversion process com-
pletes, enabling an attacker to bypass Safari’s HSTS
check if both capital and percent-encoding are used in
the domain name.

5 Real-World Exploitations

Our study aims at understanding the prevalence and
severity of potential exploitation by cookie injection in
real-world websites. In particular, we are curious about
how web developers use cookies, whether they are aware
of this problem explicitly and have developed best prac-
tices accordingly. With these questions in mind, we
conducted black box penetration tests on a number of
popular websites with our test accounts. We also re-
viewed several well-known open source web applica-
tions. For penetration tests, we first used browser exten-
sions like EditThisCookie [1] to test manually. For pos-
sible exploitations, we then implemented with Bro [27]
(for packet sniffing and injection with the rst tool) in an
open wireless network setting.

We found cookie injection attacks are possible with
very large websites and popular open source applications
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including Google, Amazon, eBay, Apple, Bank of Amer-
ica, BitBucket, China Construction Bank, China Union-
Pay, JD.com, phpMyAdmin, and MediaWiki, among
others. The consequences of attacks include, but are not
limited to, XSS, privacy leakage, bypassing of cross-site
request forgery (CSRF) defenses, financial loss, and ac-
count hijacking. The varieties of vulnerable web appli-
cations and exploitations suggest cookie injection is a
serious threat in the real world, and deserves a greater
attention from the web security community.

The exploitations we found indicate three common
cookie usages: 1) using cookies as authentication tokens;
2) associating important and session independent states
with cookies; 3) reflecting cookies into HTML. These
cookie usages often lead to cookie injection attacks if
specific defensive measures are not in place.

We present our exploitations based on these cate-
gories, along with the necessary background and addi-
tional observations. Please refer Section 4 and Table 4
for the details of different cookie implementations in-
volved in some cases. We extensively make use of cookie
shadowing. For these cases, unless otherwise specified,
we assume that the web server has the common behav-
ior of preferring the first-ordered cookie for each name
in the cookie list.

5.1 Cookies as Authentication Tokens

A common practice in web development is to use a
cookie to identify a user session. Many websites fur-
ther set long expiration durations on session cookies to
avoid having users sign in every time. This practice itself
is somewhat questionable, because session cookies are
sent along with HTTP requests automatically, which fa-
cilitate CSRF attacks. Nevertheless, Barth et al. showed
that CSRF attacks can be defeated with specific defen-
sive principles and techniques in web applications [4].

Also in [4], Barth et al. noted a special form of CSRF
which they called login CSRF. In this attack, an attacker
signs in with his own account on the victim’s browser.
If not noticed, the victim might visit targeted web site
on behalf of the attacker’s account, resulting in security
and privacy consequences such as search history leakage,
credit card stealing, and XSS. The authors also pointed
out that login CSRF is a special form of a threat they
called Authenticated-as-Attacker, which can also be car-
ried out by injecting malicious session cookies to over-
write original ones.

In fact, the consequences of cookie injection on ses-
sion cookies can go beyond those described in [4]. We
found that, by using cookie shadowing, similar attacks
could be carried out without noticeable evidences by the
victim. We call our attacks sub-session hijacking attacks.

5.1.1 Exploiting Google Chat and Search

We first present two exploits targeting Google, which
lead our observation of the sub-session hijacking attack.
Google’s base domain google.com is not protected with
full HSTS, so in most cases it is subject to cookie injec-
tion by an active network attacker.

Case-1: Gmail chat gadget hijacking. The web
interface of Gmail at https://mail.google.com/

shows a chat gadget at the bottom left corner. If an at-
tacker hijacks the gadget without affecting Gmail and
other Google services, he can fake the victim’s friend list
and chat with the victim to initiate advanced phishing,
intercept communication, or perform other disruptive ac-
tivity. This could be particularly deceptive in a targeted
attack scenario.

We have confirmed this attack. Although the browser
displays everything as one page, the chat gadget and
Gmail content are actually loaded with different URLs
then composed together. Both the chat gadget and Gmail
use cookies for authentication. If an attacker injects his
Google session cookies in a way that the injected cookies
shadow the original ones only at the chat gadget related
URLs, then the attacker can put his chat gadget on the
victim’s screen, without disturbing the victim’s use of
Gmail and other Google services.

We demonstrated this attack by injecting a total of 25
cookies: five session cookies “SID/SSID/HSID/APISID/
SAPISID”, each with five specific paths. Meanwhile
most Google services are not affected because the spe-
cific paths of the injected cookies do not match with their
URL paths. This is sufficient to cause the chat window
to load with the attacker’s cookies, while all other com-
ponents are loaded as the victim.

Case-2: “Invisible” Google search history steal-
ing. Another attack is to use cookie shadowing to steal
Google search history (which is automatically logged
and retrievable with the login cookie) without being no-
ticed. We assume that a user has visited https://

www.google.com/, which shows the search box and her
profile name and icon. When she types in the search
box, browser-side script issues AJAX requests to https:
//www.google.com/search to get search results.

Our original goal was to only shadow the session
cookies of the AJAX request, so that we could steal
search history without affecting the web interface loaded
by https://www.google.com/. But it turned out we
could not achieve this. We first injected three relevant
session cookies “SID/SSID/HSID” with path “/search”.
However, this attempt failed because we found the server
unusually preferred the last-ordered cookie, and the in-
jected cookies were ranked before the legitimate ones
because of the specific path. We then found out a way
to only shadow the session cookies of the AJAX re-
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quest on Safari by exploiting its cookie header limita-
tion (see Case-5 in Section 5.1.5 for the details). How-
ever, the server seemed to check whether session cook-
ies under https://www.google.com/search are con-
sistent with those under https://www.google.com/.
Once receiving inconsistent session cookies from the
AJAX request, it navigated the web interface to https:

//www.google.com/search, which still showed the at-
tacker’s profile name and icon.

Our final attack was to inject session cookies with do-
main scope “www.google.com” and path “/”, so that for
non-Safari browsers, the attacker could steal the victim’s
search history. Although this attack affects the web in-
terface, causing to show the attacker’s profile name and
icon, it does not affect most other Google services. We
also verified an invisible attack by spoofing the victim’s
profile name and icon.

5.1.2 Sub-session Hijacking Attacks

The two cases above show a common pattern: the at-
tacker intends to limit the effective scope of injected ses-
sion cookies as small as possible to reduce the visibility
of his attack.

Essentially, web applications require one or more
request-reply pairs with different URLs, which we view
as different sub-sessions. In a normal case, when a user
views a web page or performs a certain action through
a series of pages, the corresponding sub-sessions carry-
ing the same user authentication tokens are attributed to
the user’s account. However, when using cookies as au-
thentication tokens, the cookie-URL matching rules and
implementations often allow the attacker to selectively
associate one or more sub-sessions to the attacker’s ac-
count by cookie shadowing. That is why we call this type
of attack sub-session hijacking attacks.

The impact of such attacks varies by the applications.
In general, the attacker’s strategy is to select a minimum
set of sub-sessions that achieve his attack goals mean-
while keep the visibility of the attack as small as pos-
sible. However such attack could be made difficult by
some implementation choices.

First, in general, a victim could notice a sub-session
hijacking attack if she views abnormal changes of some
visual elements on her screen. Typically such elements
include username, email, a profile icon etc., which we
refer to as ID-indicators. If a website uses less URLs in
one page or one certain functionality, and makes the im-
portant URLs related with the ID-indicators, the attacker
is less likely to perform sub-session hijacking without
being noticed. For example, in Case-2, the attacker has
to hijack both of the URL that shows the search interface,
and the AJAX request that performs the search. This lim-
itation causes the expose of his profile name and icon,

which may be noticed by the victim. However, if the at-
tacker can only hijack an AJAX request which is not re-
lated to the interface, especially ID-indicators, the attack
could be launched invisibly.

Second, explicit and session dependent verifiers could
bind separate URLs together, so that the attacker needs
to hijack more URLs. One example is using a session
dependent nonce to counter CSRF attacks. Suppose the
attacker wants to steal some sensitive information sub-
mitted by a form which is fetched from URL GetForm

then submitted through URL SubmitForm. If the CSRF
protection of the form is session dependent, e.g. a nonce
associated with user session embedded in the form and
verified when submitting, the attacker must hijack both
GetForm and SubmitForm so that the CSRF verifica-
tion does not fail. Otherwise he only needs to hijack
SubmitForm.

It turns out that sub-session hijacking can be a pow-
erful attack against today’s websites. Because many
web applications do not adopt mechanisms to bind sub-
sessions together, and, for many operations, hijacking
one sub-session is sufficient to cause serious conse-
quences. Below we describe three common functional-
ities that are often vulnerable to sub-session hijacking,
demonstrated with real-world cases.

5.1.3 Payment Account Stealing

Many websites require users to associate one or more
payment accounts to pay their bills or online purchases.
If the attacker hijacks the payment account submission
form, he could get sensitive information, or even spend
money using the victim’s payment account.

Case-3: Credit card stealing on China UnionPay.
China UnionPay, a government-owned financial corpo-
ration in China, has an online third-party payment ser-
vice in which users can add their credit/debit cards. Al-
though the process of adding a card involves four URLs
as well as authentication via text message, all the URLs
merely use one session cookie “uc s key” for authentica-
tion and the actual data submission is performed at one
URL that is not related to any ID-indicator. We have
verified that by shadowing the session cookie at the sub-
mission URL, the attacker can hijack China UnionPay’s
credit card association invisibly to obtain the victim’s
(obfuscated) credit card number and its spending history
when the victim uses this interface in the future.

5.1.4 Online Deposit Hijacking

A common feature in many Chinese websites is the abil-
ity to deposit money from an online bank (or a third-party
payment service like Alipay) into a website for future
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spending. We found this feature is particularly vulnera-
ble to sub-session hijacking.

The process of online deposit usually includes six
steps: 1) the user enters deposit amount; 2) the website
generates an ID as a unique identifier of this transaction;
3) the website redirects the user to the selected online
bank with the transaction ID; 4) the user authenticates
and confirms to withdraw money from the online bank;
5) the online bank notifies the website with the transac-
tion ID and redirects the user back to the website; 6) the
website receives the notification from the online bank,
and adds the corresponding amount on the user’s account
according to the transaction ID. The bank site only shows
the transaction ID on its interface which is usually an un-
meaningful string. If the attacker can hijack the step 2 to
associate the transaction ID with his account without be-
ing noticed, the victim user is likely to finish all steps on
the online bank because there is no abnormal visual indi-
cation. Once the victim does so, the money is deposited
to the attacker’s account.

Case-4: Deposit hijacking on JD.com. JD.com is a
popular E-commerce website in China. In its implemen-
tation of the online deposit feature, the second step uses
an AJAX request that is not related to any ID-indicator.
We have verified that by shadowing JD.com’s session
cookie “ceshi3.com” at the AJAX request, the attacker can
hijack the online deposit invisibly, redirecting funds from
the victim into the attacker’s jd.com account.

5.1.5 Account Hijacking in SSO Association

Single Sign On (SSO) is a technique where an Identity
Provider (IdP) provides authentication assertions for a
logged-in user to relying parties (RP) for them to authen-
ticate the user. SSO usually enables automatic login on
the relying party, providing a better user experience and
in some cases better security. This is a popular technique
deployed by a number of large websites such as Google
and Facebook as IdPs, and many other web sites as rely-
ing parties. Popular web protocols used for SSO imple-
mentation include OpenID [10] and OAuth [14].

Under certain conditions, SSO systems face a threat
called association violation [31], in which a victim ac-
count on an RP is associated with an attacker’s account
on an IdP, so that the attacker gains control of the vic-
tim’s account on the RP. This is likely to happen when 1)
the victim is logged-in in the IdP as the attacker, 2) the
RP has a feature for its users to associate with their ac-
counts on the IdP, 3) the feature is implemented through
redirections without further confirmation. The first con-
dition can be mounted by cookie injection, and the web-
sites satisfying the latter two conditions are not hard to
find.

Case-5: Account hijacking against Google OAuth

and BitBucket. BitBucket, a popular code hosting
service, provides account association with Google by
OAuth. If a user is already logged in with Google
and has authorized BitBucket to access her Google pro-
file through OAuth, the association is accomplished
with two forth-and-back redirections with https://

accounts.google.com/o/oauth2/auth without con-
firmation except a final message saying “You’ve success-
fully connected your Google account”.

Our goal is to hijack the Google OAuth URL to in-
visibly cause an association violation. There are 5 rel-
evant session cookies: “SID/SSID/HSID” with domain
scope “.google.com” and path “/”, and “LSID/LSOSID”
with domain scope “.accounts.google.com” and path “/”.
This is challenging because the server seemingly has
deployed specific defense to counter cookie injection.
First, accounts.google.com has enabled HSTS with
includeSubDomains. Second, if we inject cookies with
the same names, the server redirects us to a “CookieMis-
match” warning page.

We successfully launch the attack on Safari by tak-
ing advantage of Safari’s quirks. First, we exploit the
HSTS implementation bug (Section 4.2) to inject the at-
tacker’s five session cookies with domain scope “.ac-
counts.google.com” and path “/o/oauth2/”. Recall that
Safari ranks cookies by domain specificness then by path
specificness, therefore the injected cookies shadows the
legitimate ones. Then, we make use of Safari’s 8 KB
limitation on the cookie header (see Section 4.1) to get
around the same name cookie detection. To achieve
this, we inject a number of cookies with specific names
and domain/path scopes, so that they are ranked be-
tween the injected session cookies and the legitimated
session cookies. We control the length of these cookies
to “overflow” the cookie list so that Safari truncates the
legitimated session cookies when issuing requests to the
OAuth URL. This allows us to bypassed all restrictions.

5.2 Cookies as References to Session Inde-
pendent States

Session fixation is a well-known attack in which an at-
tacker holds a session ID, then persuades a victim to au-
thenticate with that ID so that he gains control of the
victim’s account [21]. Cookie injection can be used to
exploit vulnerable websites that use cookies to store ses-
sion IDs. Standard defenses, e.g. regenerating session ID
after login, have been widely adopted.

However, we found that, although some websites have
implemented defenses for typical session fixation at-
tacks, they still have similar vulnerabilities for cookie
injection. The root cause is that they associate impor-
tant server-side states with long-term cookies. More-
over, they do not bind these states with user sessions.
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The attacker can fixate such cookies by cookie injec-
tion (e.g., through cookie overwriting) in order to access
and manipulate the associated states. Interestingly, most
of the vulnerable websites we found vulnerable are E-
commerce websites.

Case-6: Shopping cart tracking/manipulation on
popular E-commerce websites. We demonstrate this
type of issues on 3 popular E-commerce websites:
Apple, eBay, and JD.com. These websites allow unreg-
istered visitors to add items in shopping carts. For better
user experience, they never expire the shopping carts
on the server side, and use long-term cookies on the
browser side as references. We have verified that if the
attacker fixates the corresponding cookies using cookie
injection, he can track or manipulate shopping carts of
the unregistered visitors.

We also found similar problems on Amazon, which
are much more serious in terms of the real-world
consequences, because they compromise security for
registered users.5

Case-7: Browsing history and purchase track-
ing/hijacking on Amazon. Amazon’s E-commerce
websites use two long-term cookies “session-id” and
“ubid-main” to associate with a user’s browsing history
and the ongoing purchase. Surprisingly, these important
states are not associated with the user session (Not as its
name suggests, “session-id” is not used for user authen-
tication). Once the attacker fixates the two cookies, he
can launch various attacks remotely.

The first exploitation is to track and manipulate the
user’s browsing history. Amazon keeps all previous
viewed items in a user’s browsing history. Upon fixat-
ing the two referencing cookies, the attacker can track
what the victim have viewed on Amazon in real-time. He
can also inject unwanted items into the browsing history,
which affects the recommendation system.

Moreover, from what we observed, we infer that Ama-
zon keeps a session independent data structure for an
on-going purchase, which stores the user, the purchased
items, the total amount, the delivery address, and other
payment information. The structure is likely created by
clicking the “proceed to checkout” button, and released
after clicking of the “place your order” button. This
structure is associated with the same two cookies refer-
encing the browsing history. By fixating the two cookies
and consequently gaining access of the data structure, the
attacker has various ways to manipulate the victim’s pur-
chase remotely. Below we describe two exploitations:

• Tracking of all purchases. First, the attacker can

5However, we note that many E-commerce sites, including Ama-
zon, use mixed content, and thus are also vulnerable to attackers inject-
ing scripts into the insecure domain that remain in the browser cache.

track all purchases of the victim. To do so, he first
creates an on-going purchase, of which the internal
data structure is also shared with the victim. Later,
when the victim makes a purchase, the information
is updated to the shared data structure, consequently
retrieved by the attacker. On Amazon China, the at-
tacker can see all information of the victim’s pur-
chase including items, amount, the victim’s name,
delivery address, and cellphone number. On Ama-
zon U.S., the delivery address and cellphone num-
ber are not visible by the attacker.

• Potential hijacking of purchases. When detecting
an ongoing purchase by the victim, the attacker can
change the delivery address so that the purchase is
paid by the victim but sent to the attacker. If the
victim confirms the hijacked purchase, she cannot
even see where the purchase is hijacked to in her
order history, because Amazon only shows “Gift-
ing address”. The attacker can even manipulate the
purchase in such a way that it is paid by the vic-
tim, delivered to the attacker, and only recorded in
the attacker’s order history. The only limitation of
the attack is that if the delivery address is new to
the payment option, Amazon requires the victim to
confirm the card number, however the interface is
arguably not alarming. On Amazon China, this lim-
itation does not apply if the victim chooses to pay
with a third-party service like Alipay.

5.3 Cookies reflected into HTML

Another common practice is to store auxiliary variables
like preferred language or username as cookies, and re-
flect these cookies into HTML or script snippets. If not
implemented carefully, this practice could make websites
vulnerable to various attacks in face of cookie injection.

5.3.1 XSS via Cookie Injection

A direct threat is XSS: if reflected cookies are not
sanitized sufficiently, the attacker can embed malicious
scripts in reflected cookies to launch XSS attacks through
cookie injection.

Case-8: XSS via cookie injection on China Con-
struction Bank, Amazon Cloud Drive, eBay and oth-
ers. We found a number of websites do not validate re-
flected cookies sufficiently. Using cookie injection, we
successfully mounted XSS against China Construction
Bank, Amazon Cloud Drive, eBay and several other web-
sites.

Case-9: Insufficient cookie validation on Bank of
America. Among the XSS vulnerabilities we found, the
one on the Bank of America website is fairly unique. We
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found that one cookie with path “/” on Bank of Amer-
ica’s website could be exploited to inject XSS. At first,
our naı̈ve exploitation by overwriting the cookie with a
XSS payload failed. The limitation was that the website
performed a strict validation on the cookie at the login
URL. Only if the cookie was absent would the website
set a clean value on the cookie from the response of the
login URL, then used it in subsequent requests without
validation. Our naı̈ve exploitation was prevented by the
strict validation at the login URL.

We found a technique to bypass the limitation, so that
the XSS payload can be buried into the victim’s browser
and triggered when next time the victim logs in by in-
jecting multiple cookies. We injected two cookies. The
first one had the same 3-tuple identifier as the legitimate
one, but with an expired time to ensure the legitimate
cookie was discarded and absent at the login URL. The
second injected cookie contained the XSS payload and
had a different cookie path “/myaccount” that matched
with the first URL after login. Although the server set a
clean cookie in the response of the login URL, the spe-
cific path of the second injected cookie not only avoid
being overwritten by the clean cookie, but also shadowed
the clean cookie in subsequent requests, triggering a suc-
cessful XSS attack.

This case implies a possible misconception that per-
forming a complete cookie validation on one “entry
point” is sufficient. In fact, because of the asymmetry
between cookie read and write operations, every different
URL might bring different and unexpected cookie values
no matter how server set cookies in previous responses.
Developers must treat every request as a new entry point
and carefully validate all associated cookies.

5.3.2 BREACH Attacks through Cookie Injection

In 2002, Kelsey observed that when combining encryp-
tion with some compression algorithms, the size of com-
pressed data can be used as a side channel, potentially
causing plaintext leakage under certain conditions [20].
Rizzo and Duong found a real-world case in 2012, named
as CRIME attack, in which an active network attacker
initiates encrypted HTTP requests from a victim browser
with different URLs as partially-chosen plaintexts, then
infer embedded secrets like session cookies by observing
the sizes of the compressed and encrypted requests [29].
Rizzo and Duong also mentioned that a similar attack
could also be mounted to infer secrets in encrypted
HTTP responses. This was explored and demonstrated
by Gluck et al., named as the BREACH attack [12].

BREACH requires the attacker to be able to 1) inject a
partially-chosen plaintext into the HTTP response of one
webpage, and 2) measure the size of the compressed then
encrypted response. An active network attacker satisfies

the second condition. If a webpage contains a reflected
cookie, the attacker can abuse it with cookie injection
as the first vector to launch the BREACH attack to infer
secrets in this webpage.

Case-10: BREACH attacks on phpMyAdmin and
MediaWiki. We found phpMyAdmin, a popular open
source web application for remote database manage-
ment, reflects a cookie for language preference after
sanitization in error page if its value is invalid. The
BREACH attack using this cookie can reliably infer the
CSRF token in the error page, enabling further CSRF at-
tacks. Similarly, MediaWiki reflects a cookie into its lo-
gin form, also allowing the BREACH attack to infer the
CSRF token in the login page.

5.4 Summary
These exploitations show that cookie injection enables
undesired and complicated interactions among cookie
implementations, web applications, and various known
threats. It is clear that our empirical assessment only
touches a part of the whole problem space. Neverthe-
less, we believe these cases demonstrate that the security
implications of cookie’s lack of integrity are not well and
widely understood by the community, and current cookie
practices have widespread problems when cookie injec-
tion is taken into consideration.

Report and Response. We have reported all vulner-
abilities to the affected websites. Some have acknowl-
edged (e.g., Amazon), and some (e.g., Bank of America)
have fixed the issues.

6 Possible Defenses

Some existing techniques can help mitigate this threat,
including full HSTS, public suffix list, defensive cookie
practices, and anomaly detection.

Full HSTS and Public Suffix List. We strongly
recommend that websites deploy full HSTS to prevent
cookie injection from active network attackers, as this
provides complete protection once a site is pinned by a
user visit. The community should also make the effort to
raise the awareness of cookie injection attacks, and clar-
ify the different levels of security provided by HTTPS,
HSTS, and full HSTS. For websites that host shared do-
mains, the best practice is to use separate domains and
register them on the public suffix list. Efforts also should
be made to increase the awareness of cookie injection
from shared domains and the public suffix list.

Defensive Cookie Practices. For websites that can-
not enable full HSTS, and have concerns about cookie
injection from related domains, defensive cookie prac-
tices may mitigate certain cookie injection threats. For
example, frequently invalidating session cookies could

12
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reduce the risk of sub-session hijacking. Instead of using
cookies, Websites can also use new features in HTML5
like localStorage and sessionStorage to facilitate
browser-side state management, which does not have
cookie’s integrity deficiencies, although these mecha-
nisms are less convenient for cross-protocol and cross-
domain state sharing.

Anomaly Detection. Websites should consider de-
tecting same name cookies in the cookie header, as we
discussed in the accounts.google.com case. This is
reasonable because same name cookies should not be
considered a legitimate use according to both the spec-
ification and the inconsistent implementations. This de-
tection would protect non-Safari users from attacks using
cookie shadowing.

6.1 Proposed Browser Enhancements

We propose several browser-side enhancements to mit-
igate cookie injection attacks. Our proposals do not re-
quire any server-side change, so they would benefit many
legacy websites.

6.1.1 Mitigating Active Network Attackers

Currently, Chrome, Firefox and Safari, but not Internet
Explorer, have deployed the HSTS support. We believe
that if all major browsers could deploy it, websites with
full HSTS would be capable of defending against ac-
tive network attackers in most cases. However, deploy-
ing full HSTS needs all subdomains to support HTTPS
with valid certificates. There are a number of practical
hurdles for websites to satisfy such a strict requirement.
For example, Google cannot enable full HSTS, because
it is required to support non-HTTPS access for manda-
tory adult-content filtering at school and some other lo-
cations [13]. Kranch and Bonneau also reported the cur-
rent incapability of Facebook and Twitter to deploy full
HSTS [22]. Hence, we believe full HSTS is not likely to
be adopted widely in the near future.

To protect a site which cannot deploy full HSTS, a
browser must not allow an HTTP connection to replace
or shadow secure cookies, effectively adding an HSTS-
like pin for any secure cookie. We propose to modify the
semantics of the existing cookie store by adding a “do
not send” flag and changing the cookie store behavior
with the following semantics. We believe these semantic
change should provide protections while minimizing the
disruption to existing sites:

1. A browser MUST NOT accept a cookie presented
in an HTTP response with the secure flag set, nor
overwrite an unexpired secure cookie, except the
case in 5.

2. Cookies with the secure flag MUST be given
higher priority over non-secure cookies.

3. A browser MUST only send the highest priority
cookie for any cookie name.

4. In removing cookies due to a too-full cookie store,
the browser MUST NOT remove a secure cookie
when there are non-secure cookies that can be re-
moved.

5. The browser MUST allow an HTTP connection
to clear a secure cookie by setting an already-
expired expiration date, but the browser MUST
NOT remove the cookie from the store. Instead,
the browser MUST set the “do not send” flag and
maintain the original expiration date.

6. The browser MUST NOT send a cookie with the
“do not send” flag, nor send any non-secure cookie
with the same name.

The first rule prevents an active network attacker from
injecting or replacing secure cookies. The second and
third rules combined prevent an active network attacker
from shadowing a secure cookie. The fourth rule pre-
vents an attacker from flooding the cookie store to evict
secure cookies. The fifth and sixth rules are subtle but
necessary: mixed-content sites might have a “logout”
button in HTTP which clears secure session cookies.
We wish to enable this functionality without allowing at-
tackers to remove and replace a secure cookie.

Taken together, our proposals should add HSTS-like
pinning to secure cookies within the existing cookie
store. If a cookie was set with secure flag, an active
network attacker can only delete it, which largely miti-
gates cookie injection attacks 6.

Compatibility. We implemented the first three rules
as a Chrome extension7, and used the extension to
manually examined the Alexa top 40 websites. We
found one broken case: the signing out operation on
http://www.bing.com/ results in a request-reply with
http://login.live.com/logout.srf which expires
several secure session cookies under its SSO IdP do-
main live.com. Allowing HTTP to clear secure cook-
ies should improve compatibility with such signing-out
practice.

We also crawled the Alexa top 100,000 domains with
both HTTP and HTTPS. In total, 48,039 domains re-
sponded with cookies. 152 (0.32%) domains returned
secure cookies over HTTP; 570 (1.19%) domains re-
sponded with cookies that have same name yet different

6The non-conforming cookie name behaviors of PHP, ASP, and
ASP.NET described in Section 4.1 still expose some possibilities for
cookie shadowing. We suggest vendors to fix these incorrect imple-
mentations.

7https://github.com/seccookie/ExtSecureCookie
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domains and/or paths. These numbers suggest secure
cookies over HTTP (incompatible with the first rule) and
same name cookies (related to the second and third rules)
are rare in real-world websites. We manually examined
10 domains in each case with our extension and did not
observe evidence of broken behaviors.

While the results from our compatibility testing are
promising, we acknowledge they are preliminary. First,
we may have missed subtle incompatibility issues in our
manual testing. Second, some incompatibility behaviors
may only occur with logged-in sessions and/or specific
paths, which our testing may have failed to uncover. We
hope our limited experiments will motivate browser ven-
dors to conduct large-scale in-depth compatibility evalu-
ation.

6.1.2 Mitigating Web attackers

A domain can set cookies with a more specific domain
scope (e.g. host-only) to prevent cookie stealing by XSS
from sibling domains. But this currently has no effect
on cookie injection since injected cookies with shared
domain scopes yet longer paths are effective for cookie
shadowing, and longer paths are available in most cases
if an adversary is in control of a related domain. Combin-
ing the second rule of the above proposals, we suggest:

7. When issuing a request, the browser MUST rank the
cookie list by a) presence of the secure flag, and b)
specificity of the domain scope.

Together with the third rule presented above, this
should enable developers to prevent cookies from being
overwritten or shadowed by using specific domain scope
(together with the secure flag when using HTTPS). We
have also implemented this policy in the same Chrome
extension mentioned above.

7 Related Work

Comparison to Previous Work. We are aware of sev-
eral research papers that are directly related to cookie’s
weak SOP and integrity problem [4, 30, 24, 23, 5, 2,
32], and some other papers that are comparable to our
work [17, 22]. Among the directly related research,
Barth’s [2] and Zalewski’s work [32] focused on explain-
ing the cause of the cookie integrity problem. Most pre-
vious research only briefly touched cookie integrity as
a relevant subproblem rather than main topic [4, 30, 24,
23]. Bortz et al. ’s research is close to ours. Especially,
they introduced the notion of a related domain attacker
which we use throughout this paper. However, their work
is limited to high-level discussion [5]. In summary, pre-
vious research has discussed the problem of cookie’s lack

of integrity, its root cause, and its security implications.
However, prior understanding of the subtlety, prevalence,
and severity of this problem in the real world is limited.
We take a much closer look at the problem space, pro-
vide a number of new empirical assessments which we
believe will help the community understand the problem
more deeply and know the status quo better. Specifically,
we conduct a detailed measurement of full HSTS adop-
tion and reveal the threat to CDN customers. Prior to our
work, Kranch and Bonneau recently studied full HSTS
deployment practice but within a different context [22].
The cookie related problems revealed in our assessment
of browser and server libraries are largely unknown, ex-
cept a few fragmented knowledge from Lundeen’s [23]
and Lundeen et al. ’s work [24]. The attack cases we
present also supplement previous discussion on poten-
tial exploitations in both breadth and depth. Our close-
up study also leads us to find promising cookie isolation
enhancements that only require browser-side adoption.
In contrast, the previous proposed defenses need both
browser- and server-side changes [4, 5].

Broadly, our work can be viewed as an in-depth case
study of inconsistent access control policies in web.
Jackson and Barth’s [17] and Singh et al. ’s work [30]
explored this general problem, and each provided vari-
ous instances. One example illustrated by Jackson and
Barth is the ability of JavaScript to read all cookies with
matching domain scopes regardless of their paths [17].
This behavior has now been noted explicitly in the cur-
rent specification [2].

Security Related Cookie Measurement. Zhou and
Evans studied the rare deployment of the HTTPOnly

cookies at the time [33]. They believed that the require-
ment of both client and server changes played an impor-
tant hurdle in its adoption. Kranch and Bonneau found
many websites deploy HSTS yet do not marked their
cookies with the secure flag, which are vulnerable to
cookie theft in certain conditions [22]. These two mea-
surements were concerned with cookie’s confidentiality,
while our work looks at the other property, i.e. cookie’s
integrity. Singh et al. measured the real-world usages
of secure cookies (0.07%, 62 out of 89,222 sites) over
HTTP and same name cookies (they called duplicate
cookies) (5.48%, 4,893 out of 89,222 sites) [30]. Our
assessment obtains similar results.

8 Conclusions

Cookies lack integrity. Although long known in commu-
nity lore, the community has under-appreciated the im-
plications. We have attempted to systematically evaluate
the implications of cookie integrity, including evaluating
weaknesses and evaluation artifacts in both browser and
server libraries, building real-world attacks against ma-

14



USENIX Association  24th USENIX Security Symposium 721

jor sites including Google and Bank of America, includ-
ing subtle account-hijack attacks and XSS attacks buried
in injected cookies, and developing an alternate browser
cookie policy that mitigates the threat from network-
level attackers. We expect our work to raise the aware-
ness of the problem, and to provide a context for further
discussion among researchers, developers and vendors.
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Abstract

Modern Web sites frequently generate JavaScript on-the-
fly via server-side scripting, incorporating personalized
user data in the process. In general, cross-domain access
to such sensitive resources is prevented by the Same-
Origin Policy. The inclusion of remote scripts via the
HTML script tag, however, is exempt from this policy.
This exemption allows an adversary to import and exe-
cute dynamically generated scripts while a user visits an
attacker-controlled Web site. By observing the execution
behavior and the side effects the inclusion of the dynamic
script causes, the attacker is able to leak private user data
leading to severe consequences ranging from privacy vi-
olations up to full compromise of user accounts.

Although this issues has been known for several years
under the term Cross-Site Script Inclusion, it has not
been analyzed in-depth on the Web. Therefore, to sys-
tematically investigate the issue, we conduct a study on
its prevalence in a set of 150 top-ranked domains. We
observe that a third of the surveyed sites utilize dynamic
JavaScript. After evaluating the effectiveness of the de-
ployed countermeasures, we show that more than 80%
of the sites are susceptible to attacks via remote script
inclusion. Given the results of our study, we provide a
secure and functionally equivalent alternative to the use
of dynamic scripts.

1 Introduction

Since its beginning in the early nineties, the Web evolved
from a mechanism to publish and link static documents
into a sophisticated platform for distributed Web applica-
tions. This rapid transformation was driven by two tech-
nical cornerstones:

1. Server-side generation of code: For one, on the
server side, static HTML content was quickly replaced
by scripting to dynamically compose the Web server’s
HTTP responses and the contained HTML/JavaScript on

the fly. In turn, this enabled the transformation of the
Web’s initial document-centric nature into the versatile
platform that we know today.

2. Browser-driven Web front-ends: Furthermore, the
Web browser has proven to be a highly capable container
for server-provided user interfaces and application logic.
Thanks to the flexible nature of the underlying HTML
model and the power of client-side scripting via Java-
Script, the server can push arbitrary user interfaces to the
browser that rival their counterparts of desktop applica-
tion. In addition, and unlike monolithic desktop appli-
cations, however, browser-based UIs enable easy incor-
poration of content from multiple parties using HTML’s
inherent hypertext capabilities.

Based on this foundation, the recent years have shown
an ongoing shift from Web applications that host the ma-
jority of their application logic on the server side towards
rich client-side applications, which use JavaScript to re-
alize a significant portion of their functionality within the
user’s browser.

With the increase of the functionality implemented on
the client side, the necessity for the JavaScript code to
gain access to additional user data rises natrually. In this
paper, we explore a specific technique that is frequently
used to pull such data from the server to the client-side:
Dynamic JavaScript generation.

Similar to HTML, which is often generated dynam-
ically, JavaScript may also be composed on the fly
through server-side code. In this composition process,
user-specific data is often included in the resulting script
code, e.g., within the value of a variable. After deliv-
ering the script to the browser, this data is immediately
available to the client-side logic for further processing
and presentation. This practice is potentially dangerous
as the inclusion of script files is exempt from the Same-
Origin Policy [23]. Therefore, an attacker-controlled
Web page is able to import such a dynamically gener-
ated script and observe the side effects of the execu-
tion, since all included scripts share the global object
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of the embedding web document. Thus, if the script
contains user-specific data, this data might be accessi-
ble to other attacker-controlled JavaScript. Although this
attack, dubbed Cross-Site Script Inclusion (XSSI), has
been mentioned within the literature [31], the prevalence
of flaws which allow for this attack vector has not been
studied on real-world Web sites.

In this paper we therefore present the first, systematic
analysis of this vulnerability class and provide empirical
evidence on its severeness. First, we outline the general
attack patterns and vectors that can be used to conduct
such an attack. Furthermore, we present the results of an
empirical study on several high-profile domains, show-
ing how these domains incorporate dynamic scripts into
their applications. Thereby, we find evidence that many
of these scripts are not or only inadequately protected
against XSSI attacks. We demonstrate the sever conse-
quences of these data leaks by reporting on real-world
exploitation scenarios ranging from de-anonymization,
to targeted phishing attacks up to complete compromise
of a victim’s account.

To summarize, we make the following contributions:

• We elaborate on different ways an attacker is capa-
ble of leaking sensitive data via dynamically gener-
ated scripts, enabled by the object scoping and dy-
namic nature of JavaScript.

• We report on the results of an empirical study
on several high-ranked domains to investigate the
prevalence of dynamic scripts.

• Using the data collected during our empirical study,
we show that many dynamic scripts are not properly
protected against XSSI attacks. To demonstrate the
severity of the outlined vulnerabilities, we present
different exploitation scenarios ranging from de-
anonymization to complete hijacking of a victim’s
account.

• Based on the observed purposes of the dynamic
scripts encountered in our study, we discuss secure
ways of utilizing such data without the use of dy-
namically generated scripts.

The remainder of the paper is structured as follows: In
Section 2, we explain the technical foundations needed
for rest of the paper. Section 3 then covers the general at-
tack patterns and techniques to exploit cross-domain data
leakage vulnerabilities. In Section 4, we report on the re-
sults of our empirical study and analyze the underlying
purposes of dynamic scripts. Furthermore, in Section 5,
we provide a scheme that is functionally equivalent, but
is not prone to the attacks described in this paper. Sec-
tion 6 covers related work, Section 7 gives an outlook
and Section 8 concludes the paper.

2 Technical Background

In this section, we cover the technical background rele-
vant for this work.

2.1 The Same-Origin Policy
The Same-Origin Policy (SOP) is the principal security
policy in Web browsers. The SOP strongly separates mu-
tually distrusting Web content within the Web browser
through origin-based compartmentalization [23]. More
precisely, the SOP allows a given JavaScript access only
to resources that have the same origin. The origin is de-
fined as the triple consisting of scheme, host, and port
of the involved resources. Thus, for instance, a script
executed under the origin of attacker.org is not able
to access a user’s personal information rendered under
webmail.com.

While JavaScript execution is subject to the SOP, the
same does not hold true for cross-domain inclusion of
Web content using HTML tags. Following the initial hy-
pertext vision of the WWW HTML-tags, such as image,
may reference resources from foreign origins and include
them into the current Web document.

Using this mechanism, the HTML script tag can
point to external script resources, using the tag’s src at-
tribute. When the browser encounters such a tag, it issues
a request to the foreign domain to retrieve the referenced
script. Important to note in this instance is the fact that
the request also carries authentication credentials in the
form of cookies which the browser might have stored for
the remote host. When the response arrives, the script
code inherits the origin of the including document and is
executed in the context of the hosting page. This mecha-
nism is used widely in the Web, for instance to consume
third party JavaScript services, such as traffic analysis or
advertisement reselling [24].

2.2 JavaScript Language Features
In the following, we cover the most important JavaScript
concepts necessary for the rest of the paper.

Scoping In JavaScript, a scope is “a lexical environ-
ment in which a function object is executed” [6]. From a
developer’s point of view, a scope is the region in which
an identifier is defined. While C++ or Java make use
of block scoping, JavaScript utilizes so-called function
scoping. This means that the JavaScript engine creates
a new scope for each new function it encounters. As a
consequence, an identifier that is locally defined in such
a function is associated with the corresponding scope.
Only code that is defined within the same function is thus
able to access such a variable residing in the local scope,
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whereas global variables are associated with the global
scope.

Listing 1 shows an example for local and global vari-
ables. A local variable in JavaScript can be created by
utilizing the var keyword. All variables defined out-
side of a function are associated with the global scope,
whereas code within a function can define variables in
the global scope by either omitting the var keyword or
explicitly assigning to window.varname.

Listing 1 Example for global and local variables
// A global variable

var globalVariable1 = 5;

function globalFunction(){

// A local variable

var localVariable = 2;

// Another global variable

globalVariable2 = 3;

// Yet another global variable

window.globalVariable3 = 4;

}

The Prototype Chain As opposed to classical pro-
gramming languages such as C++ or Java, JavaScript is a
prototype-based language. This means that JavaScript’s
inheritance is not based on classes but directly on other
objects, whereas “each object has a link to another ob-
ject called its prototype” [21]. On creation of an object,
it either automatically inherits from Object.prototype

or if a prototype object is explicitly provided, the proto-
type property will point to this object. On access to an
object’s property, the JavaScript runtime checks whether
the current object contains a so-called own property with
the corresponding name.

If no such property exists, the object’s prototype is
queried for the same property and if lookup fails again,
the process is recursively repeated for the object’s pro-
totypes. Hence, objects in JavaScript form a so-called
prototype chain. Listing 2 gives a commented example
for this behavior.

Listing 2 The prototype chain
var object1 = {a: 1};

// object1 ---> Object.prototype ---> null

var object2 = Object.create(object1);

// object2 ---> object1

// ---> Object.prototype ---> null

console.log(object2.a); // 1 (inherited)

3 Cross-Domain Data Leakages

In this section, we show how an adversary can utilize
an external JavaScript file, which is dynamically gener-
ated at runtime, to leak security sensitive data. After first
covering the different types of these dynamic scripts, we
elaborate on the attacker model and then demonstrate dif-
ferent attack vectors that can be leveraged to leak sensi-
tive data from such a script.

3.1 Dynamic Scripts
As discussed in Section 2.1, Web pages can utilize
script-tags to import further JavaScript resources. For
the remainder of this paper, we define the term dynamic
script to describe such a JavaScript resource in case it
is generated by the Web server on the fly via server-side
code.

As opposed to static scripts, the contents of dynamic
scripts may vary depending on factors such as input pa-
rameters or session state. In the context of this paper, the
latter type is of special interest: If a dynamic JavaScript
is generated within a user’s authenticated Web session,
the contents of this script may contain privacy or secu-
rity sensitive data that is bound to the user’s session data.
Thus, an execution of the script can potentially lead to
side effects which leak information about this data.

3.2 Attack Method
HTML script tags are not subject to the Same-Origin
Policy (see Section 2.1). Hence, script resources can be
embedded into cross-domain Web pages. Although such
cross-domain Web pages cannot access the source code
of the script directly, this inclusion process causes the
browser to load and execute the script code in the context
of the cross-domain Web page, allowing the importing
page to observe the script’s behavior. If a dynamic script
exposes side effects dependent on sensitive data in the
script code, the execution of such a script may leak the
secret data.

Figure 1 depicts an example attack. A user is au-
thenticated to his mail provider at webmail.com, thus
his browser automatically attaches the corresponding
session cookies to all requests targeting webmail.com,
which utilizes session-state dependent dynamic scripts.
Thus, whenever a user is logged in, the script at
webmail.com/script.js creates a global variable
containing the current user’s email address. In the
same browser, the user now navigates to an attacker-
controlled Web site at attacker.org. The attacker in-
cludes the dynamic script in his own Web page and sub-
sequently, the browser requests the script with attached
authentication cookies. Although the script originates
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Figure 1: Attacker Model

from webmail.com, it is now executed in the context
of attacker.org, creating the global variable with the
user’s email in the corresponding context. The global
variable is now accessible to any other script executed
by attacker.org. Hence, the attacker can simply ac-
cess the value of this global variable, effectively leaking
the user’s email address.

3.3 Attack Vectors

As previously explained, an attacker is able to leak sen-
sitive user data by including a script from a different do-
main and observing the results of the execution. In this
section we outline different situations in which sensitive
data is accessible to an attacker after the included script
has been executed.

3.3.1 Global Variables

As noted in the previous section, global variables created
by a dynamic script can be accessed by any other script
executed on the same Web document. Hence, whenever
sensitive user data is assigned to such a global variable
inside a script, an attacker can gain access to the corre-
sponding data. In order to do so, he simply includes the
script and waits for the global variable to be created. As
soon as the value assignment has occurred, the attacker’s
code can read the sensitive data and leak it back to his
backend.

3.3.2 Redefinition of Global APIs

Due to JavaScript’s dynamic nature, (almost) any func-
tion can be overwritten by an attacker, including a num-
ber of globally available APIs. If a dynamic script passes
a security-sensitive value to such a function, the attacker

may overwrite it beforehand and hence retrieve the se-
cret value. Listing 3 demonstrates how an attacker can,
for example, change the behavior of the global function
JSON.stringify. In order to conduct an attack, the at-
tacker overrides the function first and then includes a dy-
namic script which passes a sensitive data value to the
function. When the user visits the attacker’s Web site,
his browser retrieves and executes the dynamic script.
Rather than invoking the native JSON.stringify func-
tion, the contained code invokes the attacker-controlled
function. In this case, instead of serializing the object,
the function sends the user’s data back to the attacker’s
server.

Listing 3 Passing a variable to a global function
// Attacker’s script overwriting a global function

JSON.stringify = function(data){

sendToAttackerBackend(data);

}

---------------------------------------------------

//Within the dynamic script

function myFunction() {

var myVar = { secret: "secret value"};

// Calling a predefined global function

return JSON.stringify(myVar);

}

3.3.3 Prototype Tampering

As outlined in the previous section, variables are avail-
able in the scope in which they were defined unless the
var keyword is omitted. Listing 4 shows an example of
code making use of this paradigm. The function allocates
an array with three secret values using the var keyword
and therefore, as it seems, protects the array from access
by outside code. As discussed in Section 2.2, JavaScript
is a prototype-based language. Hence, when requesting
a property of an object, the JavaScript interpreter walks
up the prototype chain until it finds a matching property.
In our example shown in Listing 4, the function slice

is called on the array named arr. By default, an array
object does not provide the slice function itself. There-
fore, the call is made to the function in the array’s proto-
type, which points to the object Array.prototype. In
a scenario where the script is included without any ma-
licious intent, the programmer may assume that the call
will eventually trigger invocation of the slice method
for arrays.

This behavior may, however, be changed by an at-
tacker. Listing 5 depicts a small snippet of code that is
provided by the attacker. Similar to what we discussed
earlier with respect to overwriting global functions, the
snippet overwrites the slice method in the array’s pro-
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Listing 4 Variable protected in a closure
(function(){

var arr = ["secret1","secret2","secret3"];

// intents to slice out first entry

var x = arr.slice(1);

...

})();

totype. Since by default all arrays in JavaScript share the
same prototype, the call to slice in Listing 4 is passed
to the attacker-provided function. Since the function is
called on the arr object, the attacker can use the this

keyword to gain a reference to the object. Therefore,
rather than exhibiting the intended behavior of slicing
out a part of the array, the attacker’s code now sends the
otherwise properly protected information back to the at-
tacker. This attack works for any object that has a glob-
ally accessible prototype, i.e., it is feasible on any built-in
objects such as Strings or Functions.

Listing 5 Leaking data via the this keyword
Array.prototype.slice = function(){

//leaks ["secret1","secret2","secret3"]

sendToAttackerBackend(this);

};

3.4 Distinction towards CSRF

On first view, the described attack method is related to
Cross-site Request Forgery (CSRF) [1], as it follows a
similar attack pattern.

In fact, leaking sensitive information via cross-domain
script includes belongs to a larger class of Web attacks
which function via creating authenticated requests in the
context of an authenticated Web user (including CSRF,
ClickJacking [12] and reflected Cross-site Scripting [2]).

However, the goal and consequences of the attack dif-
fer significantly from other attack variants: CSRF is an
attack in which an attacker generates requests to cause
state-changing actions in the name of the user. Thereby
the attacker is by no means able to read content from a
response to a CSRF request. To prevent CSRF devel-
opers are advised to conduct state-changing actions only
via HTTP POST requests and to protect all these post
requests with CSRF tokens.

As opposed to this, dynamic scripts are neither de-
signed to conduct state-changing actions on the server-
side nor are these scripts ever fetched via POST requests.
Those scripts are stateless and are fetched via GET re-
quests through script tags and, hence, are not classified
as a critical endpoint in the context of CSRF, i.e., not
contained in the application’s CSRF protection surface.

4 Empirical Study

In this section we report on the results of an empirical
study designed to gain insights into the prevalence and
exploitability of data leakages due to the use of dynamic
script generation on the server side. We first discuss
the methodology of our study and report on the general
prevalence of dynamically generated JavaScript files in
the wild. Based on the gathered data, we analyze the un-
derlying purposes of these scripts, discuss the types of
security-sensitive data contained in the scripts and high-
light who these can be leaked, allowing us specific ex-
ploits against a number of sites. We end the section with
a discussion of situations in which we could not exploit
a dynamic script due to the use of adequate protection
measures.

4.1 Methodology
In the following, we cover our research questions, ex-
plain our detection methodology and describe our data
set.

4.1.1 Research Questions

This study provides an in-depth analysis of dynamic
script includes. Before diving into the security aspects of
these scripts, we aim at collecting data on this technique
in general. Hence, we are first interested in the gen-
eral prevalence of dynamically generate scripts. More
specifically, the goal is to find out how common dynamic
script generation is in today’s Web and how often these
dynamic scripts are dependent on a user’s session state.
The study sheds light on the purpose of these scripts and
the contained data. Finally, we investigate the security
aspects by investigating the exploitability and discussing
potential countermeasures.

4.1.2 Detecting State-dependent Scripts

As a basis for our empirical study, we needed a means to
easily detect state-dependent dynamic scripts. Therefore,
we implemented a Chrome browser extension that fulfills
two separate tasks:

1. Collecting scripts: The first step towards analyz-
ing Web pages for dynamic scripts is the collection
of all external script resources included by the Web
page. For this purpose, we created a browser ex-
tension that collects all included scripts of a page
by using a so-called Mutation Observer [22]. As
soon as a new script node is found, it is immediately
passed on to our analysis module.

2. Detecting dynamic code generation based on au-
thentication credentials: Whenever the analysis is
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invoked, our extension requests the script file twice:
once with authentication credentials attached to the
request, and once without authentication creden-
tials. After the responses have been received, the
extension compares both and if they differ, stores
them in a central database for later analysis.

In order to allow for valid credentials to be sent
along with the request, a necessary prerequisite are
valid session cookies. To obtain these, the user
needs to manually log in to the application under
investigation beforehand.

The final step in this phase is the manual analysis
of the gathered data to precisely determine which
scripts have a dynamic nature depending on the
user’s session state rather than randomness (such as
banner rotation scripts).

4.1.3 Data Set

Unlike general vulnerabilities, the detection of potential
data leakages through dynamic JavaScript generation re-
quires an active user account (or a similar stateful rela-
tionship) at the tested site, so that the scripts are gener-
ated in the context of an authenticated Web session.

Since this requires initial manual registration and ac-
count set up on sites we want to test, the size and the na-
ture of our data set is limited. We therefore chose the 150
highest ranking (according to Alexa) Web pages match-
ing the following criteria:

1. Account registration and login is freely available for
anyone. This excludes, services that have only paid
subscription models or require country-dependent
prerequisites (such as a mobile phone number).

2. Available in either German, English or a Web site
which can be translated using Google Translate. If
this is not given, the set up of meaningful user ac-
counts was not feasible.

3. Not a duplicate or localized variant of an already
investigated site (e.g. google.com vs. google.co.in)

After manually registering accounts on these sites,
we investigated the site employing the methodology and
techniques previously explained, thoroughly interacting
with the complete functionality of the sites by adding,
processing and viewing plausible data within the differ-
ent Web applications.

4.2 Prevalence of Dynamic Scripts
The first goal of our study was to count the number of
Web sites that make use of dynamic script generation.
In the course of this study, using our aforementioned

methodology, we gathered a total of 9,059 script files
spread across 334 domains and their subdomains. Al-
though our data set only consists of 150 different do-
mains, we gathered scripts from such a large number of
domains due to the fact that the investigated Web sites in-
clude third-party frames pointing to, e.g., advertisement
providers. In a first step, we therefore filtered out scripts
from all sites not directly related to the domains under
investigation.

Out of these, we found that over half of the sites—81
out of the 150 analyzed domains—utilized some form of
dynamic script generation. In a subsequent manual ex-
amination step we removed dynamic scripts which only
exposed changes in apparently random token values (see
below for details), resulting in 209 unique scripts on 49
domains, that were dependent on a user’s session state.
In relation to our initial data set of 150 domains, this
shows that the usage of state-dependent dynamic scripts
is widespread, namely one third of the investigated do-
mains.

4.3 Purposes of Dynamic Scripts

We analyzed the applications to ascertain the underlying
purpose motivating the utilization of the dynamic scripts.
In doing so, we found three categories of use cases as
well as a few purposes which could not be categorized.
Since these were only single use cases specific to one
application, we do not outline these any further but in-
stead put them in the Others category. The results of our
categorization are depicted in Table 1, showing the total
amount of domains per category as well as the highest
Alexa rank.

The most commonly applied use case was retrieval
of user-specific data, such as the name, email address
or preferences for the logged-in user. This information
was used both to greet users on the start page as well as
to retrieve user-provided settings and profile data on the
corresponding edit pages. We observed that a number
of Web applications utilized modal dialogs to present the
profile data forms to the user, whereas the HTML code of
said form was embedded into the document already and
all currently stored values were retrieved by including a
dynamic script.

The second category of scripts we found was service
bootstrapping, i.e., setting up variables necessary for a
rich client-side application to work. One example of such
a bootstrapping process was observed in a popular free-
mail service’s file storage system in which the UI was
implemented completely in JavaScript. When initially
loading the page, the dynamic script we found provided
a secret token which was later used by the application to
interact with the server using XMLHttpRequests.
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Category # domains Highest rank

Retrieval of user-specific data 16 7
Service bootstrapping 15 5
Cross-service data sharing 5 8
Others 13 1

Table 1: Amounts and highest Alexa rank of domains
with respect to their use case

The third widely witnessed use case was cross-service
data sharing, which was often applied to allow for sin-
gle sign-on solutions across multiple services of the same
provider or for tracking of users on different domains
through a single tracking service. The latter was evi-
denced by the same script being included across a multi-
tude of domains from different service providers.

4.4 Types of Security Sensitive Data

In a next step, we conducted a manual analysis of the
scripts’ data that changed its value, depending on the
authentication state of the script request. Within our
data, we identified four categories of potentially security-
critical data:

• Login state: The first type of data that could be
extracted from dynamic scripts was a user’s login
state to a certain application. We found that this
happened either explicitly, i.e., assign a variable dif-
ferently if a user is logged in – or implicitly, e.g. in
cases where a script did not contain any code if a
user was not logged in.

• Unique identifiers: The second category we dis-
covered was the leakage of data that uniquely iden-
tified the user. Among these values are customer or
user IDs as well as email addresses with which a
user was registered to a specific application.

• Personal data: In this category we classified all
those pieces of data which do not necessarily
uniquely identify a user, but provide additional in-
formation on him, such as his real name, his loca-
tion or his date of birth.

• Tokens & Session IDs: The last category we en-
countered were tokens and session identifiers for an
authenticated user. These tokens potentially provide
an attacker with the necessary information to inter-
act with the application in the name of the user.

Table 2 depicts our study’s results with respect to the
occurrences of each category. Please note, that a given

Data domains exploitable highest rank

Login state 49 40 1
Unique Identifiers 34 28 5
Personal data 15 11 11
Tokens & Session IDs 7 4 107

Table 2: Sensitive data contained in dynamic scripts

domain may carry more than one script containing secu-
rity sensitive information and that a given script may fit
into more than one of the four categories.

The following sections give a more detailed insight
into these numbers. The final column shows the high-
est rank of any domain on which we could successfully
extract the corresponding data, i.e., on which we could
bypass encountered protection mechanisms.

4.5 Exploitation
In the following, we discuss several attacks which lever-
age the leakage of sensitive user information. After
outlining potential attack scenarios, we discuss several
concrete examples of attacks we successfully conducted
against our own test accounts.

4.5.1 Utilizing Login Oracles

In the previous section, we discussed that 49 domains
had scripts which returned somewhat different content
if the cookies for the logged in user were removed. In
our notion, we call these scripts login oracles since they
provide an attacker with either explicit or implicit infor-
mation on whether a user is currently logged into an ac-
count on a given website or not. However, out of these
domains, nine domains had scripts with unguessable to-
kens in the URL, therefore these cannot be utilized as
login oracles unless the tokens are known, leaving 40 do-
mains with login oracles.

The most prominent script we found to show such
a behavior is hosted by Google and is part of the
API for Google Plus. This script, which has a seem-
ingly static address, shows differences in three differ-
ent variables, namely isLoggedIn, isPlusUser and
useFirstPartyAuthV2 and hence enables an attacker
to ascertain a user’s login status with Google.

The information obtained from the oracles can be
utilized to provide additional bits to fingerprinting ap-
proaches [7]. It may however also be used by an attacker
to perform a service-specific phishing attack against his
victim. Oftentimes, spam emails try to phish user cre-
dentials from banks or services the receiving user does
not even have an account on. If, however, the attacker
knows with certainty that the user currently visiting his
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website is logged in to, e.g., google.com, he can display
a phishing form specifically aimed at users of Google.
This attack can also be improved if additional informa-
tion about the user is known – we will discuss this attack
later in this section.

4.5.2 Tracking Users

Out of the 40 domains which provided a login oracle, 28
also provided some pieces of data which uniquely iden-
tify a user. Among these features, the most common
identifier was the email address used to register for the
corresponding service, followed by some form of user ID
(such as login name or customer ID). These features can
be used to track users even across device platforms, given
that they log in to a service leaking this information. The
highest-rated service leaking this kind of unique identi-
fier was a top-ranked Chinese search engine. Following
that, we found that a highly-frequented page which fea-
tures a calendar function also contained a script leaking
the email address of the currently logged in user. Since
the owning company also owns other domains which all
use a single sign-on, logging in to any of these sites also
enabled the attack.

4.5.3 Personalized Social Engineering

In many applications, we found that email addresses
were being leaked to an attacker. This information can
be leveraged to construct highly-personalized phishing
attacks against users. As Downs et al. [5] discovered,
users tend to react on phishing emails in more of the
cases if they have a standing business relationship with
the sending entity, i.e. have an account on a given site, or
the email appears to be for them personally.

Hence, gathering information on sites a user has an
account on as well as retrieving additional information
such as his name can aid an attacker in a personalized at-
tack. An attacker may choose to abuse this in two ways –
first and foremost, trying to send phishing mails to users
based on the services they have accounts. However, by
learning the email address and hence email provider of
the user, an attacker may also try to phish the user’s mail
account. In our study, we found that 14 different domains
leak email addresses and out of these, ten domains also
revealed (at least) the first name of the logged in user.

In addition, two domains leaked the date of birth and
one script, hosted on a Chinese Web site, even contained
the (verified) mobile phone number of the victim. We
believe that, especially considering the discoveries by
Downs et al., all this information can be leveraged to-
wards creating highly-personalized phishing attacks.

Another form of personalized social engineering at-
tacks enabled by our findings is targeted advertisement.

We found that two online shopping platforms utilize a
dynamic script which provides the application with the
user’s wish list. This information can be leveraged by an
attacker to either provide targeted advertisements aimed
at profiting (e.g. linking to the products on Amazon, us-
ing the attacker’s affiliate ID) or to sell fake products
matching the user’s wishes.

Application-Specific Attacks Alongside the theoreti-
cal attack scenarios we discussed so far, we found multi-
ple applications with issues related to the analyzed leak-
ing scripts as well as several domains with CSRF flaws.
In the following, we discuss these attacks briefly.

Extracting Calendar Entries: One of the most promi-
nent Web sites we could successfully exploit was a mail
service which offers a multitude of additional functional-
ity such as management of contacts and a calendar. The
latter is implemented mostly in JavaScript and retrieves
the necessary bootstrap information when the calendar is
loaded. This script, in the form a function call to a cus-
tom JavaScript API, provides the application with all of
the user’s calendars as well as the corresponding entries.
This script was not protected against inclusion by third-
party hosts and hence, leaks this sensitive information
to an attacker. Alongside the calendar’s and entries, the
script also leaks the e-mail address of the victim, there-
fore allowing the attacker to associate the appointments
to their owner.

Reading Email Senders and Subjects: When logging
in to the portal for a big Chinese Web service provider,
we found that the main page shows the last five emails
for the currently logged in user. Our browser exten-
sion determined that this information was provided by
an external script, solely using cookies to authenticate
the user. The script contained the username, amount of
unread emails and additionally the senders and subjects
as well as the received dates for the last five emails of
the victim. An abbreviated excerpt is shown in Listing 6.
Although this attack does not allow for an actual extrac-
tion of the content of an email, at the very least contacts
and topics of current discussions of the victim are leaked
which we believe to be a major privacy issue.

Listing 6 Excerpt of the script leaking mail information
var mailinfo = {

"email": "user@domain.com",

...,

"maillist": [{

"mid": "0253FE71.....001",

"mailfrom":"First Last <firstlast@gmail.com>",

"subject":"Top secret insider information",

"ctime": "2014-05-02 21:11:46"}]

..}
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Session Hijacking Vulnerabilities: During the course
of our study, we found that two German file storage ser-
vices contained session hijacking vulnerabilitie. Both
these services are implemented as a JavaScript applica-
tion, which utilizes XMLHttpRequest to retrieve direc-
tory listings and manage files in the storage. To avoid
unauthorized access to the system, both applications re-
quire a session key to be present within a cookie as well
as in an additional HTTP header. When first visiting
the file storage service, the application loads an external
script called userdata.js which contains the two nec-
essary secrets to access the service: the username and the
aforementioned session key. We found that this script is
not properly protected against cross-domain data leak-
age, allowing an attacker to leak the secret information.
With this information at hand, we were able to list and
access any file in the victim’s file storage. Furthermore,
it enabled us to invoke arbitrary actions in the name of
the user such as creating new files or deleting existing
ones.

One minor drawback in this attack is the need for the
attacker to know the victim’s username in advance, since
the dynamic script requires a GET parameter with the
username. Regardless, we believe that by either targeted
phishing emails or retrieving the email address through
another service (as discussed earlier) this attack is still
quite feasible.

Circumventing CSRF Protection: One way of pre-
venting cross-domain attacks is the use of CSRF tokens,
namely secrets that are either part of the URL (as a GET
parameter) or need to be posted in a form and can then
be verified by the server. Although CSRF tokens are a
well-understood means of preventing these attacks and
provide adequate security, the proper implementation is
a key factor. In our analysis, we found that two domains
contained scripts which leaked just these critical tokens.

The first one was present on a new domain, which re-
quired the knowledge of two secrets in order to change
profile data of the user – a 25 byte long token as well as
the numerical user ID. While browsing the Web site, our
extension detected a state-dependent dynamic script that
exactly contained these two values. As a consequence,
we were able to leak this data and use it to send a properly
authenticated profile change request to the correspond-
ing API. As a consequence, we were able to arbitrarily
change a user’s profile data. Interestingly, one field that
was only visible to the user himself contained a stored
XSS vulnerability. Hence, we were able to send a Cross-
Site Scripting payload within this field to exploit the, oth-
erwise unexploitable, XSS flaw.

Apart from the obvious issues an XSS attack could
cause, for a user logged in via the Facebook Social Lo-
gin, we could retrieve the Facebook API access token and
hence interact with the Facebook API in the name of the

user, accessing profile information and even make posts
in the name of the user.

Similar to the first finding, we found an issue on the
highly-ranked domain of a weather service. The appli-
cation provides an API for changing a user’s profile as
well as the password, whereas the old password does not
need to be entered to set a new one. Nevertheless, the
API requires knowledge of the email address of the cur-
rently logged in user, thereby employing at least a vari-
ant of a CSRF token. Similar to the previously outlined
flaw, we found a script that provides information on the
user – among which also the email address is contained.
Hence, we could successfully automate the attack by first
retrieving the necessary token (email) from the leaking
script and subsequently sending a password change re-
quest to the API. Afterwards, we sent both the email ad-
dress (which is also used as the login name) and the new
password back to our servers, essentially taking over the
user’s account in a fully automated manner.

4.5.4 Notification of Vulnerable Sites

In order to allow affected pages to fix the vulnerabili-
ties before they can be exploited, we notified the security
teams of all domains for which we could successfully
craft exploits. To allow for a better understanding of the
general vulnerability as well as the specifics of each do-
main, we created a Web site detailing the problem asso-
ciated with cross-domain includes of JavaScript and the
attack pattern. In addition, we created proof-of-concept
exploits for each flaw and shared this information, aug-
mented by a description of the problem and its impact,
e.g., the potential to hijack a user’s session, with the do-
mains owners.

As of this writing, we received only three replies stat-
ing that the flaw was either being dealt with or had
been fixed already. However, none of the affected sites
agreed to be mentioned in the paper, therefore we opted
to anonymize all the vulnerable services we discovered.

4.5.5 Summary of Our Findings

In total, we found that out of the 49 domains which are
dependent on the user’s login state, 40 lack adequate pro-
tection and can therefore be used to deduce if a user is
logged into a certain application. On 28 of these do-
mains, dynamic scripts allowed for unique identification
of the current user through various means like customer
IDs or email addresses.

Additionally and partly overlapping with the afore-
mentioned scripts, we found that personal data (such as
the name or location) was contained in scripts on 13 do-
mains. Last but not least, we encountered four domains
which allow for extraction of tokens that could in turn be
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used to control the target application in the name of the
victimized user. An overview of these results is depicted
in Table 2.

4.6 Non-exploitable Situations
As shown in Table 2, we were not able to leak data from
all of the dynamic scripts we found. In general, we iden-
tified two different reasons for this: Either the URL of
the script was not guessable by an attacker or the Web
site utilized referrer checking to avoid the inclusion of
resources by third parties. While these mechanisms pro-
tected some Web sites from being exploitable, we believe
that the corresponding countermeasures were not placed
intentionally against the described attack, but were rather
in place because of the used application framework (Re-
ferrer checking) or because of the application’s design
(unguessable URLs). In this section, we briefly discuss
and analyze these situations.

4.6.1 Unguessable URLs

A prerequisite for the attack described in this paper is
that an attacker is able to include a certain script file into
his page during a user’s visit. For this, the attacker needs
to know the exact URL under which a certain dynamic
script is available.

Some of the scripts we found required a session ID or
another unguessable token to be present in a GET param-
eter of the URL. As the attacker is in general not able to
obtain such a session ID, the script cannot be included by
the attacker and hence sensitive data cannot be leaked.

4.6.2 Referrer Checking

Another technique that prevented us from exploiting a
script leakage vulnerability was referrer checking. When
a browser generates an HTTP request for an embedded
script, it adds the Referer header containing the URL
of the embedding site. Many Web pages tend to misuse
this header as a security feature [31]. By checking the
domain of the referrer, a Web site is in theory able to
ascertain the origin of the page requesting a resource.

In 2006, however, Johns showed that referrer check-
ing has several pitfalls [17]. As the Referer header was
never intended to serve as a security feature, it should
not be used as a reliable source of information. So, for
example, many proxies and middle boxes remove the
Referer header due to privacy concerns. Furthermore,
several situations exist in which a browser does not attach
a Referer header to a request and as discussed by Ko-
towicz, an attacker can intentionally remove the header
from requests [19].

As a consequence, servers should not rely on the pres-
ence of the Referer header. Hence, if a server receives

a request for a dynamic script that does not provide a
Referer header, it needs to decide whether to allow the
request or whether to block it. If the request is allowed,
the attacker may force the removal of the referrer as dis-
cussed before. On the other hand, if the server blocks
the request (strict referrer checking), it might break the
application for users behind privacy-aware proxies.

We found several domains that implemented referrer
checking. However, of seven pages that conducted such
a check, only two conducted strict referrer checking. As
a consequence, the other five Web sites were still ex-
ploitable by intentionally removing the Referer header.
Listing 7 shows the attack we utilized aiming at stripping
the Referer header. In this example, we use a data URI
assigned to an iframe to embed the leaking script.

Listing 7 Using a data URL within a frame to send a
request without a Referer header
var url = "data:text/html,"

+ "<script src=’"

+ "http://example.org/dynamic_script.js"

+ "’></script>"

+ "<script>"

+ "function leakData(){ ... }; "

+ "leakData();"

+ "</script>";

// create a new iframe

var frame = document.createElement(’iframe’);

// assign the previously created data url

frame.src = url;

body.appendChild(frame);

5 Protection Approach

In our study, we observed a surprisingly high number
of popular Web sites utilizing the dangerous pattern of
using external, dynamically-generated scripts to provide
user-specific data to an application. It seems that de-
velopers are not aware of the severe consequences this
practice has. In order to improve this situation, we pro-
vide a secure and functionally-equivalent solution. The
main problem of dynamically generated script includes is
the incorporation of sensitive user data into files that are
not completely protected by the Same-Origin Policy. We
discourage this practice and advise developers to strictly
separate JavaScript code from sensitive user data.

Figure 2 depicts our design proposal. In this pro-
posal script code is never generated on the fly, but al-
ways pulled from a static file. Sensitive and dynamic
data values should be kept in a separate file, which cannot
be interpreted by the browser as JavaScript. When the
static JavaScript gets executed, it sends an XMLHttpRe-
quest to the file containing the data. By default access
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Figure 2: Protection scheme

to the response of an XMLHttpRequest is governed by
the Same-Origin Policy. Hence, third-party sites cannot
request the file within the user’s authentication context.
As a consequence, attackers cannot access the data con-
tained within this file. By using Cross-Origin Resource
Sharing (CORS) [28], Web developers are able to selec-
tively grant access to the file to any third party service
that requires access.

While the attacker is able to include and execute the
static JavaScript file within his page, the corresponding
code will be executed in the origin of the attacker’s Web
site. Hence, when the script code requests the data file,
which resides in the origin of the legitimate Web site, the
two origins do not match and hence the Same-Origin Pol-
icy protects the file’s content from being accessed by the
attacker. If, however, the legitimate site requests the data
files, the two origins match and thus access is granted.

As the data file does not contain valid JavaScript code,
it cannot be included and executed by the attacker via the
HTML script tag. To completely avoid this risk, Web
developers can either include a so-called unparseable
cruft to the beginning of file which causes a compile time
failure or add valid JavaScript that effectively stops exe-
cution during run time, such as an uncatchable exception
(cp. Figure 2) [31].

6 Related Work

Conceptually closest to the attacks presented in Sec-
tion 4.5 is JSON Hijacking, an exploitation technique
initially presented by Grossman in 2006 [9]. In his at-
tack he utilized a cross-domain script include pointing
to a JSON-array resource, which originally was intended
as an end-point for an XMLHttpRequest. Via using a
non-standard redefinition of JavaScript’s object construc-
tor, he was able obtain the content of the user’s GMail

address book. Grossman reported the issue to Google,
where the term Cross-Site Script Inclusion (XSSI) was
coined by Christoph Kern. Kern later mentioned the term
publicly for the first time in his book from 2007 [18].
Several other authors later on picked up this term to refer
to slight variations of the attack [27, 31].

At the same time Chess et al. [3] picked up Gross-
man’s technique, slightly generalized it and coined the
term JavaScript Hijacking. Unlike the vulnerabilities in
this paper, these attacks do not target dynamic JavaScript
resources. Instead they use script-tags in combination
with a non-standard JavaScript quirk (that has been re-
moved from all major browsers in the meantime) to leak
data that is encoded in the JSON-array format.

Furthermore, in 2013, Grossman [11] discussed the
idea of utilizing resources which are only accessible by
users that are logged in to determine the logon status of
a user. He also proposed to employ click-jacking attacks
on the user to force him to like the attacker’s Facebook
or Google+ site. In doing so and in comparing the latest
addition to his followers, an attacker could thereby de-
duce the identity of the user currently visiting his web-
site. The idea of determining a user logon status was
picked up by Evans [8], who demonstrated a login or-
acle on myspace.com by including a Cascading Style
Sheet file from the service which changed certain prop-
erties based on whether the user was logged in or not.

In 2015, Takeshi Terada presented another variation of
the attack that he called Identifier-based XSSI [27]. Ter-
ada used script tags to reference CSV files from third-
party domains. A CSV file usually consists of a comma
separated list of alphanumeric words. Under certain cir-
cumstances this list also represents a syntactically correct
list of JavaScript variable declarations. Hence, by refer-
encing such a file the JavaScript engine will create a set
of global variables named like the values in the CSV file.
By enumerating all globally accessible variables, Terada
was able leak the contents of the file.

Other related work has focused on CSS-based history
leakage [13, 10, 14]. Analogously to login state leakage,
retrieval of a user’s history allows an attacker to deduce
that a victim has an account on a given site, hence en-
abling him to start target phishing attacks similar to the
ones we outlined in Section 4.5.3.

Another means of utilizing history leakage was dis-
cussed in 2010 by Wondracek et al. [30], who proposed
a scheme capable of de-anonymizing users based on their
group membership in OSNs. To do so, they utilized the
stolen history of a user to determine the group sites the
user had previously visited. Comparing these to a list
of the members of the corresponding groups allowed the
authors to determine the user’s identity. Recently, for
a poster, Jia et al. [16] discussed the notion of utilizing
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timing side-channels on the browser cache to ascertain a
user’s geo location.

In 2012, Nikiforakis et al [24] conducted a large-scale
analysis of remote JavaScript, focusing mainly on the po-
tential security issues from including third-party code.
For W2SP 2011, two groups [20, 15] conducted an anal-
ysis of cross-domain policies for Flash, aiming specifi-
cally at determining those domains which allow access
from any domain. Since Flash attaches the cookies for
the target domain to said requests, they discussed attack
scenarios in which a malicious Flash applet is used to
retrieve proprietary information.

In addition to these attacks, Paul Stone demonstrated
another means of stealing sensitive information across
origin boundaries. To do so, he leveraged a timing side
channel, allowing him to leak a framed document pixel
by pixel [26].

7 Outlook

The goal of this paper was to conduct an initial study
into the usage and potential pitfalls of dynamic scripts
in real world applications. Our data set of 150 highly
ranked domains gives a good glimpse into the problems
caused by such scripts. Nevertheless, we believe that a
large-scale study could provide additional key insights
into the severity of the issue. To enable such a study,
an important problem to solve is the automation of the
analysis—starting from fully automated account regis-
tration and ranging to meaningful interaction with the
application. Therefore, implementing such a generic, yet
intelligent crawler and investigating how well it can im-
itate user interaction is a challenging task we leave for
future work. Along with such a broader study, enhance-
ments have to be made to cope with the increased amount
of data. As an example, our Chrome extension could use
advanced comparisons based on syntactical and seman-
tical differences of the JavaScript code rather than based
on content. Since our data set was limited by the fact that
our analysis required manual interaction with the inves-
tigated applications, the need to automate the secondary
analysis steps, i.e., examination of the differences and
verification of a vulnerability, did not arise.

Recently, the W3C has proposed a new security mech-
anism called Content Security Policy (CSP), which is a
“declarative policy that lets authors of a web application
inform the client from where the application expects to
load resources” [25]. In its default setting, CSP forbids
the usage of inline scripts and hence, programmers are
compelled to put the code into external scripts. During
our study we noticed that many of these inline scripts
are also generated dynamically and incorporate sensitive
user data. If all these current inline scripts are naively
transformed into dynamic, external script resources, it is

highly likely that the attack surface of this paper’s attacks
will grow considerably.

For instance, Doupé et al. [4] developed a tool called
deDacota which automatically rewrites applications to
adhere to the CSP paradigms by moving all inline script
code to external scripts. As our work has shown, these
external scripts – if not protected properly – may be in-
cluded by any third-party application and hence might
leak secret data. Therefore, we believe that it is imper-
ative that measures are taken to ensure the secure, yet
flexible client-side access to sensitive data and that the
changing application landscape caused by CSP adoption
is closely monitored. As discussed by Weissbacher et al.,
however, CSP is not yet widely deployed and signifi-
cantly lags behind other security measures [29].

Furthermore, in this paper, we exclusively focused on
dynamic JavaScript that is pulled into the browser via
script-tags. This is not necessarily the only method,
how server generated script content is communicated.
An alternative to script tags is to transport the code
via XMLHttpRequests bodies, which are subsequently
passed to the eval() API. In future work, we plan to
investigate such XMLHttpRequests endpoints in respect
to their susceptibility to attack variants related to this pa-
per’s topic.

Finally, as related work has indicated, internal appli-
cation information, such as the login state of a user, may
also be leaked via images or style sheets. In this case,
the observed effects of a cross-domain element inclusion
manifest themselves through side effects on the DOM
level, as opposed to a footprint in the global script object.
Hence, a systematical further analysis on other classes of
server-side content generation that might enable related
attacks would be a coherent extension of our work.

8 Summary & Conclusion

In this paper, we conducted a study into the prevalence
of a class of vulnerabilities dubbed Cross-Site Script In-
clusion. Whenever a script is generated on the fly and
incorporates user-specific data in the process, an attacker
is able to include the script to observe its execution be-
havior. By doing so, the attacker can potentially extract
the user-specific data to learn information which he oth-
erwise wouldn’t be able to know.

To investigate this class of security vulnerabilities, we
developed a browser extension capable of detecting such
scripts. Utilizing this extension, we conducted an empir-
ical study of 150 domains in the Alexa Top 500, aimed
at gaining insights into prevalence and purpose of these
scripts as well as security issues related to the contained
sensitive information.

Our analysis showed that out of these 150 domains, 49
domains utilize server-side JavaScript generation. On 40
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domains we were able to leak user-specific data leading
to attacks such as deanonymizing up to full account hi-
jacking. Our practical experiments show that even high-
profile sites are vulnerable to this kind of attacks.

After having demonstrated the severe impact these
flaws can incur, we proposed a secure alternative using
well-known security concepts, namely the Same-Origin
Policy and Cross-Origin Resource Sharing, to thwart the
identified security issues.
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Abstract
Modern web applications are increasingly moving pro-
gram code to the client in the form of JavaScript. With the
growing adoption of HTML5APIs such as postMessage,
client-side validation (CSV) vulnerabilities are conse-
quently becoming increasingly important to address as
well. However, while detecting and preventing attacks
against web applications is a well-studied topic on the
server, considerably less work has been performed for
the client. Exacerbating this issue is the problem that de-
fenses against CSVsmust, in the general case, fundamen-
tally exist in the browser, rendering current server-side
defenses inadequate.
In this paper, we present ZigZag, a system for hard-

ening JavaScript-based web applications against client-
side validation attacks. ZigZag transparently instru-
ments client-side code to perform dynamic invariant de-
tection on security-sensitive code, generating models
that describe how – and with whom – client-side com-
ponents interact. ZigZag is capable of handling tem-
plated JavaScript, avoiding full re-instrumentation when
JavaScript programs are structurally similar. Learned in-
variants are then enforced through a subsequent instru-
mentation step. Our evaluation demonstrates that ZigZag
is capable of automatically hardening client-side code
against both known and previously-unknown vulnerabil-
ities. Finally, we show that ZigZag introduces acceptable
overhead in many cases, and is compatible with popular
websites drawn from the Alexa Top 20 without developer
or user intervention.

1 Introduction

Most of the over 2 billion Internet users [1] regularly ac-
cess the World Wide Web, performing a wide variety of
tasks that range from searching for information to the pur-
chase of goods and online banking transactions. Unfortu-
nately, the popularity of web-based services and the fact

that the web is used for business transactions has also at-
tracted a large number of malicious actors. These actors
compromise both web servers and end-user machines to
steal sensitive information, to violate user privacy by spy-
ing on browsing habits and accessing confidential data,
or simply to turn them into “zombie” hosts as part of a
botnet.
As a consequence, significant effort has been invested

to either produce more secure web applications, or to de-
fend existing web applications against attacks. Examples
of these approaches include applying static and dynamic
program analyses to discover vulnerabilities or prove
the absence of vulnerabilities in programs [2, 3, 4, 5],
language-based approaches to render the introduction of
certain classes of vulnerabilities impossible [6, 7, 8],
sandboxing of potentially vulnerable code, and signature-
and anomaly-based schemes to detect attacks against
legacy programs.
However, despite the large amount of research on pre-

venting attacks against web applications, vulnerabilities
persist. This is due to a combination of factors, including
the difficulty of training developers to make use of more
secure development frameworks or sandboxes, as well as
the continuing evolution of the web platform itself.
In particular, advances in browser JavaScript engines

and the adoption of HTML5 APIs has led to an explo-
sion of highly complex web applications where the ma-
jority of application code has been pushed to the client.
Client-side JavaScript components from different origins
often co-exist within the same browser, and make use of
HTML5 APIs such as postMessage to interact with each
other in highly dynamic ways.

postMessage enables applications to communicate
with each other purely within the browser, and are not
subject to the classical same origin policy (SOP) that de-
fines how code from mutually untrusted principals are
separated. While SOP automatically prevents client-side
code from distinct origins from interfering with each oth-
ers’ code and data, code that makes use of postMessage
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is expected to define and enforce their own security pol-
icy. While this provides much greater flexibility to appli-
cation developers, it also opens the door for vulnerabili-
ties to be introduced into web applications due to insuf-
ficient origin checks or other programming mistakes.

postMessage is but one potential vector for the more
general problem of insufficient client-side validation
(CSV) vulnerabilities. These vulnerabilities can be ex-
ploited by input from untrusted sources – e.g., the cross-
window communication interface, referrer data, and oth-
ers. An important property of these vulnerabilities is that
attacks cannot be detected on the server side, and there-
fore any framework for defending against them at run-
time must execute within the browser. Also, in contrast
to other popular web attack classes such as Cross-Site
Scripting (XSS), CSVs represent application logic flaws
that are closely tied to the intended behavior of the appli-
cation and, consequently, can be difficult to identify and
defend against in a generic, automated fashion.
In this paper, we propose ZigZag, a system for hard-

ening JavaScript-based web applications against client-
side validation attacks. ZigZag transparently instruments
client-side code to perform dynamic invariant detection
over live browser executions. From this, it derives mod-
els of the normal behavior of client-side code that capture
essential properties of how – and with whom – client-side
web application components interact, as well as proper-
ties related to control flows and data values within the
browser. Using these models, ZigZag can then automati-
cally detect deviations from these models that are highly
correlated with client-side validation attacks.
We describe an implementation of ZigZag as a proxy,

and demonstrate that it can effectively defend against vul-
nerabilities found in the wild against real web applica-
tions without modifications to the browser or application
itself aside from automated instrumentation. In addition,
we show that ZigZag is efficient, and can be deployed in
realistic environments without a significant impact on the
user experience.
In summary, this paper makes the following contribu-

tions:

• We present a novel in-browser anomaly detection
system based on dynamic invariant detection that
defends clients against previously unknown client-
side validation attacks.

• We present a new technique we term invariant
patching for extending dynamic invariant detection
to server-side JavaScript templates, a very common
technique for lightweight parameterization of client-
side code.

• We extensively evaluate both the performance and
security benefits of ZigZag, and show that it can
be effectively deployed in several real scenarios, in-

cluding as a transparent proxy or through direct ap-
plication integration by developers.

The rest of the paper is organized as follows. In Sec-
tion 2, we motivate the need for defending against client-
side validation vulnerabilities through the introduction of
a running example and define our threat model. In Sec-
tion 3, we present the high-level design of ZigZag. Sec-
tions 4 and 5 describe the details of ZigZag’s invariant
detection and enforcement. We then evaluate a proto-
type implementation of ZigZag in Section 6. Finally,
Sections 7 and 8 discuss related work and conclude the
paper.

2 Motivation and Threat Model

To contextualize ZigZag and motivate the problem of
client-slide validation vulnerabilities, we consider a hy-
pothetical webmail service. This application is composed
of code and resources belonging both to the application
itself as well as advertisements from multiple origins.
Since these origins are distinct, the same origin policy
applies, and code from each of these origins cannot inter-
fere with the others. This type of origin-based separation
is typical for modern web applications.
However, in this example, the webmail compo-

nent communicates with the advertising network via
postMessage to request targeted ads given a profile it
has generated for its users. The ad network can respond
that it has successfully placed ads, or else request fur-
ther information in the case that a suitable ad could not
be found. Figure 1 shows one side of this communica-
tion channel, where the advertising component both reg-
isters an onMessage event listener to receive messages
from the webmail component, as well as sends responses
using the postMessagemethod. In this case, because the
ad network does not verify the origin of the messages
it receives, it is vulnerable to a client-side validation at-
tack [9].
To tamper with the ad network, an attacker must be

able to invoke postMessage in the same context. This
can be achieved by exploiting XSS vulnerabilities from
user content, framing the webmail service, or exploiting
a logic vulnerability. Hence, the attacker has to send an
email to a victim user that contains XSS code, or lure the
victim to a site that will frame the webmail service.
Despite the fact that the ad network component is

vulnerable, ZigZag prevents successful exploitation of
the vulnerability. With ZigZag, the webmail service is
used through a transparent proxy that instruments the
JavaScript code, augmenting each component with mon-
itoring code. The webmail service then runs in a training
phase where execution traces of the JavaScript programs
are collected. Collected data points include function pa-
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1 // Handle a received message
2 var receiveMessage = function(e) {
3 // Missing check on e.origin!
4 }
5
6 var sendMessage = function(e) {
7 // Send data to window ‘w’
8 w.postMessage(data, ’*’);
9 }

10
11 // Register for messages
12 window.addEventListener(”message”, receiveMessage, false);

Figure 1: Insecure usage of the postMessage API in a
hypothetical webmail client-side component.

rameters, caller/callee pairs, and return values. Once
enough execution traces have been collected, ZigZag
uses invariant detection to establish a model of normal
behavior. Next, the original program is extended with
enforcement code that detects deviations from the base-
line established during training. Execution is compared
against this baseline, and violations are treated as attacks.
In this example, ZigZag would recognize that mes-

sages received by the ad network must originate from the
webmail component’s origin, and would terminate exe-
cution if a message is received from another origin – for
instance, from the user content origin. Due to the na-
ture of CSV vulnerabilities, this attack would go unno-
ticed for server-side invariant detection systems such as
Swaddler [10] as they focus on more traditional web at-
tacks against server-side code. These attacks can either
happen on the client alone, where such systems have no
visibility, or when server interaction is triggered through
exploitation of a CSV vulnerability. In addition, these
requests are indistinguishable from benign user interac-
tion. We stress that this protection requires no changes to
the browser or application on the server, and is therefore
transparent to both developers and users alike.
We expand upon this example service with more vul-

nerabilities and learned invariants in following sections.

2.1 Threat model
The threat model we assume for this work is as follows.
ZigZag aims to defend benign-but-buggy JavaScript ap-
plications against attacks targeting client-side validation
vulnerabilities, where CSV vulnerabilities represent bugs
in JavaScript programs that allow for unauthorized ac-
tions via untrusted input.
The attacker can provide input to JavaScript programs

through cross-window communication (e.g., postMes-
sage), or window/frame cross-domain properties. This
can be performed by operating in an otherwise iso-
lated JavaScript context within the same browser. How-
ever, the attacker cannot run arbitrary code in a ZigZag-
protected context without first bypassing ZigZag, an
eventuality we aim to prevent. In particular, we presume

the presence of complementary defenses against XSS-
based code injection attacks such as Content Security
Policy (CSP) [11] or rigorous template auto-sanitization.
Therefore, we assume that attackers cannot directly tam-
per with ZigZag invariant learning and enforcement by,
for instance, overwriting these functions in the JavaScript
context without first evading the system.
Because ZigZag depends on a training set to learn

dynamic invariants, we assume that the training data is
trusted and, in particular, attack-free. This is a general
limitation of anomaly-based detection schemes, though
one that also has partial solutions [12].

3 System Overview

ZigZag is an in-browser anomaly detection system that
defends against client-side validation (CSV) vulnerabil-
ities in JavaScript applications. ZigZag operates by in-
terposing between web servers and browsers in order to
transparently instrument JavaScript programs. This in-
strumentation process proceeds in two phases.
Learning phase. First, ZigZag rewrites programs

withmonitoring code to collect execution traces of client-
side code. These traces are fed to a dynamic invariant de-
tector that extracts likely invariants, or models. The in-
variants that ZigZag extracts are learned over data such
as function parameters, variable types, and function caller
and callee pairs.
Enforcement phase. In the second phase, the invari-

ants that were learned in the initial phase are used to
harden the client-side components of the application. The
hardened version of the web application preserves the
semantics of the original, but also incorporates runtime
checks to enforce that execution does not deviate from
what was observed during the initial learning phase. If a
deviation is detected, the system assumes that an attack
has occurred and execution is either aborted or the viola-
tion is reported to the user.
An overview of this system architecture is shown in

Figure 2. We note that instrumentation for both the learn-
ing phase and enforcement phase is performed once, and
subsequent accesses of an already instrumented program
re-use a cached version of that program.
In the following sections, we describe in detail each

phase of ZigZag’s approach to defending against client-
side validation vulnerabilities in web applications.

4 Invariant Detection

In this section, we focus on describing the invariants
ZigZag learns, why we selected these invariants to en-
force, and how we extract these invariants from client-
side code.
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Learning Phase

Instrumentation Invariant
Detection

Execution
Traces

Invariants

Browser

Web Server

(a) Learning phase. A JavaScript program is instrumented in
order to collect execution traces. Invariant detection is then
performed on the trace collection in order to produce a set of
likely invariants.

Enforcement Phase

Instrumentation Invariant
Violations

Browser

Web Server

Alerts Termination

Attacker

(b) Enforcement phase. Given a JavaScript program and the
invariants previously learned, instrumentation is again used to
enforce those invariants.

Figure 2: ZigZag overview. Instrumentation is used in both the learning and enforcement phases to produce and enforce
likely invariants, respectively. Note that instrumentation is only performed once in each case; subsequent loads use a
cached instrumented version of the program.

Data Type Invariants

All Types
Numbers Equality, inequality, oneOf
String Length, equality, oneOf, isJSON,

isPrintable, isEmail, isURL, isNumber
Boolean Equality
Objects All of the above for object properties
Functions Calling function, return value

Table 1: Invariants supported by ZigZag.

4.1 Invariant Detection

Dynamic program invariants are statistically-likely asser-
tions established by observing multiple program execu-
tions. We capture program state at checkpoints and com-
pare subsets of these states for each individual checkpoint
(we define checkpoints in further detail in Section 4.2).
The underlying assumption is that invariants should hold
not only for the observed executions, but also for future
ones.
However, there is no guarantee that invariants will also

hold in the future. Therefore, ZigZag only uses invariants
which should hold with a high probability. These invari-
ants are later used to decide whether a program execu-
tion is to be considered anomalous. By capturing state
dynamically, ZigZag has insight into user behavior that
purely static systems lack.
ZigZag uses program execution traces to generate

Daikon [13] dtrace files. These dtrace files are then gen-
eralized into likely invariants with a modified version of
Daikon we have developed. Daikon is capable of gen-
erating both univariate and multivariate invariants. Uni-
variate invariants describe properties of a single variable;
examples of this include the length of a string, the per-
centage of printable characters in a string, and the parity
of a number. Multivariate models, on the other hand, de-
scribe relations between two or more variables, for ex-
ample x== y, x+5 == y, or x < y.
ZigZag analyzes multivariate relationships within

function parameters, return values, and invoking func-
tions. In addition, we extended the invariants provided
by Daikon with additional ones, including checks on
whether a string is a valid JSON object, URL, or email
address.
For example, when used on a website with postMes-

sage, ZigZag could learn that the origin attribute of the
onMessage event is both printable and a URL, or equal to
a string. Depending on the number of different origins,
the system could also learn the legitimate set of sending
origins

v0.origin ∈ {o1, . . . ,on}.

As another example, since JavaScript is a dynamically
typed language, it has no type annotations in function sig-
natures. This language feature can lead to runtime errors
or be exploited by an attacker. By learning likely type in-
variants over function parameters and return values that
are checked during the enforcement phase, ZigZag can
(partially) retrofit types into JavaScript programs. For
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example, this can become security-relevant when devel-
opers use numeric values for input, and do not consider
other values during input sanitization. We describe an
example of parameter injection, and how the attack is
thwarted by ZigZag in Section 6.1.
One pitfall of anomaly detection is undertraining. To

reduce the impact on our system, we check function cov-
erage before issuing invariants for enforcement. We only
allow for enforcement of a particular function after exe-
cution traces from four or more training sessions were
collected, which was sufficient for the examples we con-
sidered. This threshold, however, is configurable and can
easily be increased if greater variability is observed dur-
ing invariant learning.
The full set of invariants supported by ZigZag is shown

in Table 1.

4.2 Program Instrumentation
Trace collection and enforcement code is inserted at pro-
gram points we refer to as checkpoints. The finest sup-
ported granularity is to insert checkpoints for every state-
ment. However, while this is possible, statement granu-
larity introduces unacceptable overhead with little bene-
fit. The CSV vulnerabilities we have observed in the wild
can be detected with a coarser and more efficient level of
granularity. Since events such as receiving cross-window
communication are handled by functions, function entry
and exit points are natural program points to analyze in-
put and return data. Consequently, for our prototype we
opted to insert checkpoints at function prologues and epi-
logues.
During instrumentation, ZigZag performs a

lightweight static analysis on the program’s abstract
syntax tree (AST) to prune the set of checkpoints that
must be injected. Functions which contain eval sinks,
XHR requests, access to the document object, and other
potentially harmful operations are labeled as important.
Only these functions are used in data collection and en-
forcement mode. As a consequence, large programs that
only have few potentially harmful operations will have
significantly less overhead as compared to instrumenting
the entire program, while at the same time preserving the
security of the overall approach. Aside from increased
performance, whitelisting functions that are known not
to be security-relevant also leads to a reduced risk of
false positives.
Each function labeled as important during the static

analysis phase is instrumented with pre- and post-
function body hooks called calltrace and exittrace.
The original return statement is inlined in the exittrace
function call and returned by it. These functions access
the instrumented function’s parameters through the stan-
dard arguments variable, and either records a program

1 function x(a, b) {
2 // function body
3 ...
4 return a+b;
5 }

(a) Function body before instrumentation

1 function x(a, b) {
2 var callcounter = __calltrace(functionid,
3 codeid,
4 sessionid);
5 // function body
6 ...
7 return __exittrace(functionid,
8 callcounter,
9 subexitid,

10 codeid,
11 sessionid,
12 a+b);
13 }

(b) Function body after instrumentation

Figure 3: Function instrumentation example.

state for invariant detection (learning phase) or checks
for an invariant violation (enforcement phase).
ZigZag uses a number of identifiers to label pro-

gram states at checkpoints. functionid uniquely iden-
tifies functions within a program, codeid labels distinct
JavaScript programs, and sessionid labels program exe-
cutions. The variables functionid and codeid are hard-
coded during program instrumentation, while sessionid
is generated for each request.
The callcounter variable is used instead to connect

call chains. Every invocation of calltrace increments
and returns a global callcounter to provide a unique
identifier such that calltrace and exittrace invoca-
tions can be matched. This is necessary since JavaScript
is re-entrant, and therefore multiple threads of execution
can invoke a function and yield before returning, po-
tentially resulting in out-of-order pre- and post-function
hook invocations.
ZigZag can not only instrument the code initially

loaded by a site, but also code dynamically downloaded
during execution. JavaScript programs can potentially
modify themselves at runtime, since a program can gen-
erate code for its own execution. We address this by
wrapping eval invocations, script tag insertion, and
writes to the DOM. Our wrapper sends the new program
code to the proxy and calls the original function with the
instrumented program. This technique has been shown
to be effective in prior work [14].
In our prototype implementation, each of these calls in-

curs a roundtrip to the server, where such code is treated
the same way as non-eval code. As a possible optimiza-
tion, the instrumented version of previously observed
data passed to eval could be inlined with the enclos-
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ing (instrumented) program, removing the need for sub-
sequent separate roundtrips. Furthermore, we often ob-
served eval to be used for JSON deserialization. If such
a use case is detected, instrumentation could be bypassed
entirely. However, we did not find it necessary to imple-
ment these features in our research prototype.
The calltrace and exittrace functions reside in the

same scope since theymust be callable from all functions.
An example of uninstrumented and instrumented code is
shown in Figures 3a and 3b, respectively.

5 Invariant Enforcement

Given a set of invariants collected during the learning
phase, ZigZag then instruments JavaScript programs to
enforce these invariants. Since templated JavaScript is a
prevalent technique on the modern web for lightweight
parameterization of client-side code, we then present a
technique for adapting invariants to handle this case. Fi-
nally, we discuss possible deployment scenarios and lim-
itations of the system.
Daikon supports invariant output for several lan-

guages, including C++, Java, and Perl. However, it
does not support JavaScript by default. Groeneveld et
al. implemented extensions to Daikon to support invari-
ant analysis using Daikon [15]. However, we found
that their implementation was not capable of generating
JavaScript for all of the invariants ZigZag must support,
and therefore we wrote our own implementation.
In our implementation, the calltrace and exittrace

functions perform a call to an enforcement function gen-
erated for each function labeled important during the
static analysis step. calltrace examines the function in-
put state, while exittrace examines the return value of
the original function. These functions are generated auto-
matically by ZigZag for each important function. Based
on the invoking program point, assertions corresponding
to learned invariants are executed. Should an assertion
be violated, a course of action is taken depending on the
system configuration. Options include terminating exe-
cution by navigating away from the current site, or alter-
natively reporting to the user that a violation occurred and
continuing execution. Figure 4 shows a possible instance
of the calltrace function, abbreviated for clarity.

5.1 Program Generalization

Modern web applications often make use of lightweight
templates on the server, and sometimes within the
browser as well. These templates usually take the form
of a program snippet or function that largely retains the
same structure with respect to the AST, but during instan-
tiation placeholders in the template are substituted with

1 __calltrace = function(functionid, codeid, sessionid) {
2 // Enforcement
3 var v0 = arguments.callee.caller.caller.arguments[0];
4 var v1 = ...
5
6 if ( functionid === 0 ) {
7 __assert(typeof(v0) === ’number’ && v0 > 5);
8 __assert(typeof(v1) === ’string’ && v1 === ”x”);
9 ...

10 } else if ( functionid === 1 ) {
11 ...
12 }
13 ...
14 return __incCallCounter();
15 }

Figure 4: Example of invariant enforcement over a func-
tion’s input state.

1 // Server-side JavaScript template
2 var state = {
3 user: {{username}},
4 session: {{sessionid}}
5 };
6
7 // Client-side JavaScript code after template instantiation
8 var state = {
9 user: ”UserX”,

10 session: 0
11 };

Figure 5: Example of a JavaScript template.

concrete data – for instance, a timestamp or user iden-
tifier. This is often done for performance, or to reduce
code duplication on the server. As an example, consider
the templated version of the webmail example shown in
Figure 5.
Due to the cost of instrumentation and the prevalence

of this technique, this mix of code and data poses a fun-
damental problem for ZigZag since a templated program
causes – in the worst case – instrumentation on every
resource load. Additionally, each template instantiation
would represent a singleton training set, leading to arti-
ficial undertraining. Therefore, it was necessary to de-
velop a technique for both recognizing when templated
JavaScript is present and, in that case, to generalize in-
variants from a previously instrumented template instan-
tiation to keep ZigZag tractable for real applications.
ZigZag handles this issue by using efficient structural

comparisons to identify cases where templated code is in
use, and then performing invariant patching to account
for the differences between template instantiations in a
cached instrumented version of the program.
Structural comparison. ZigZag defines two pro-

grams as structurally similar and, therefore, candidates
for generalization if they differ only in values assigned to
either primitive variables such as strings or integers, or as
members of an array or object. Objects play a special role
as in template instantiation properties can be omitted or
ordered non-deterministically. As a result ASTs are not
equal in all cases, only similar. Determining whether this



USENIX Association  24th USENIX Security Symposium 743

Invariant Patching

JavaScript
template

instantiations
Structurally-similar

ASTs
Script A invariants patched

for Script A’ using
merge description

Script A

Script A’

Invariants,
merge description
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Figure 6: Invariant patching overview. If ZigZag detects
that two JavaScript programs are structurally isomorphic
aside from constant assignments, a merge description is
generated that allows for efficient patching of previously-
generated invariants. This scheme allows ZigZag to
avoid re-instrumentation of templated JavaScript on each
load.

is the case could be performed by pairwise AST equal-
ity that ignores constant values in assignments and nor-
malizes objects. However, this straightforward approach
does not scale when a large number of programs have
been instrumented.
Therefore, we devised a string equality-based tech-

nique. From an AST, ZigZag extracts a string-based
summary that encodes a normalized AST that ignores
constant assignments. In particular, normalization strips
all constant assignments of primitive data types encoun-
tered in the program. Also, assignments to object proper-
ties that have primitive data types are removed. Objects,
however, cannot be removed completely as they can con-
tain functions which are important for program structure.
Removing primitive types is important as many websites
generate programs that depend on the user state – e.g.,
setting {logged_in: 1} or omitting that property de-
pending on whether a user is logged in or not. Removing
the assignment allows ZigZag to correctly handle cases
such as these.
Furthermore, normalization orders any remaining

object properties such as functions or enclosed ob-
jects, in order to avoid comparison issues due to non-
deterministic property orderings. Finally, the structural
summary is the hash of the reduced, normalized program.
As an optimization, if the AST contains no func-

tion definitions, ZigZag skips instrumentation and serves
the original program. This check is performed as part
of structural summary generation, and is possible since
ZigZag performs function-level instrumentation.
Code that is not enclosed by a function will not be

considered. Such code cannot be addressed through
event handlers and is not accessible through postMes-
sage. However, calls to eval would invoke a wrapped
function, which is instrumented and included in enforce-
ment rules.

Fast program merging. The first observed program
is handled as every other JavaScript program because
ZigZag cannot tell from one observation whether a pro-
gram represents a template instantiation. However, once
ZigZag has observed two structurally similar programs,
it transparently generates amerge description and invari-
ant patches for the second and future instances.
Themerge description represents an abstract version of

the observed template instantiation that can be patched
into a functional equivalent of new instantiations. To
generate a merge description, ZigZag traverses the full
AST of structurally similar programs pairwise to extract
differences between the instantiations. Matching AST
nodes are preserved as-is, while differences are replaced
with placeholders for later substitution. Next, ZigZag
compiles the merge description with our modified ver-
sion of the Closure compiler [16] to add instrumentation
code and optimize.
The merge description is then used every time the tem-

plated resource is subsequently accessed. The ASTs of
the current and original template instantiations are com-
pared to extract the current constant assignments, and the
merge description is then patched with these values for
both the program body as well as any invariants to be
enforced. By doing so, we bypass repeated, possibly ex-
pensive, compilations of the code.

5.2 Deployment Models

Wenote that several scenarios for ZigZag deployment are
possible. First, application developers or providers could
perform instrumentation on-site, protecting all users of
the application against CSV vulnerabilities. Since no
prior knowledge is necessary in order to apply ZigZag
to an application, this approach is feasible even for third
parties. And, in this case there is no overhead incurred
due to re-instrumentation on each resource load.
On the other hand, it is also possible to deploy ZigZag

as a proxy. In this scenario, network administrators
could transparently protect their users by rewriting all
web applications at the network gateway. Or, individ-
ual users could tunnel their web traffic through a personal
proxy, while sharing generated invariants within a trusted
crowd.

5.3 Limitations

ZigZag’s goal is to defend against attackers that desire to
achieve code execution within an origin, or act on behalf
of the victim. The system was not designed to be stealthy
or protect its own integrity if an attacker manages to gain
JavaScript code execution in the same origin. If attack-
ers were able to perform arbitrary JavaScript commands,
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any kind of in-program defense would be futile without
support from the browser.
Therefore, we presume (as discussed in Section 2.1)

the presence of complementary measures to defend
against XSS-based code injection. Examples of such
techniques that could be applied today include Content
Security Policy (CSP), or any of the number of template
auto-sanitization frameworks that prevent code injection
in web applications [17, 18, 6].
Another important limitation to keep in mind is that

anomaly detection relies on a benign training set of suffi-
cient size to represent the range of runtime behaviors that
could occur. If the training set contains attacks, the re-
sulting invariants might be prone to false negatives. We
believe that access to, or the ability to generate, benign
training data is a reasonable assumption in most cases.
For instance, traces could be generated from end-to-end
tests used during application development, or might be
collected during early beta testing using a population of
well-behaving users. However, in absence of absolute
ground truth, solutions to sanitize training data exist. For
instance, Cretu et al. present an approach that can sanitize
polluted training data sets [12].
If the training set is too small, false positives could oc-

cur. To limit the impact of undertraining, we only gen-
erate invariants for functions if we have more than four
sessions, whichwe found to be sufficient for the test cases
we evaluated. We note that the training threshold is con-
figurable, however, and can easily be increased if greater
variability is observed at invariant checkpoints. Under-
training, however, is not a limitation specific to ZigZag,
but rather a limitation of anomaly detection in general.
With respect to templated JavaScript, while ZigZag

can detect templates of previously observed programs by
generalizing, entirely new program code can not be en-
forced without previous training.
In cases where multiple users share programs instru-

mented by ZigZag, users might have legitimate privacy
concerns with respect to sensitive data leaking into in-
variants generated for enforcement. This can be ad-
dressed in large part by avoiding use of the oneOf invari-
ant, or by heuristically detecting whether an invariant ap-
plies to data that originates from password fields or other
sensitive input and selectively disabling the oneOf invari-
ant. Alternatively, oneOf invariants could be hashed to
avoid leaking user data in the enforcement code.

6 Evaluation

To evaluate ZigZag, we implemented a prototype of
the approach using the proxy deployment scenario. We
wrote Squid [19] ICAPmodules to interpose on HTTP(S)
traffic, and modified the Google Closure compiler [16] to
instrument JavaScript code.

1 // Dispatches received messages to appropriate function
2 if (e.data.action == ’markasread’) {
3 markEmailAsRead(e.data);
4 }
5
6 // Communication with the server to mark emails as read
7 function markEmailAsRead(data) {
8 var xhr = new XMLHttpRequest();
9 xhr.open(’POST’, serverurl, true);

10 xhr.send(’markasread=’ + data.markemail);
11 }
12
13 // Communication with the ad network iframe
14 function sendAds(e) {
15 adWindow.postMessage({
16 ’topic’: ’ads’,
17 ’action’: ’showads’,
18 ’content’: ’{JSON␣string}’
19 }, ”*”);
20 }

Figure 7: Vulnerable webmail component.

1 // Receive JSON object from webmail component
2 function showAds(data) {
3 var received = eval(’(’ + data.content + ’)’);
4 // Work with JSON object...
5 }

Figure 8: Vulnerable ad network component.

Our evaluation first investigates the security benefits
that ZigZag can be expected to provide to potentially
vulnerable JavaScript-based web applications. Second,
we evaluate ZigZag’s suitability for real-world deploy-
ment by measuring its performance overhead over mi-
crobenchmarks and real applications.

6.1 Synthetic Applications
Webmail service. We evaluated ZigZag on the hypo-
thetical webmail system first introduced in Section 2.
This application is composed of three components, each
isolated in iframeswith different origins that containmul-
tiple vulnerabilities. These iframes communicate with
each other using postMessage on window.top.frames.
We simulate a situation in which an attacker is able to

control one of the iframes, and wants to inject malicious
code into the other origins or steal personal information.
The source code snippets are described in Figures 7 and 8.
From the source code listings, it is evident that the

webmail component is vulnerable to parameter injection
through the markemail property. For instance, inject-
ing the value 1&deleteuser=1 could allow an attacker
to delete a victim’s profile. Also, the ad network uses an
eval construct for JSON deserialization. While highly
discouraged, this technique is still commonly used in the
wild and can be trivially exploited by sending code in-
stead of a JSON object.
We first used the vulnerable application through the

ZigZag proxy in a learning phase consisting of 30 ses-
sions over the course of half an hour. From this, ZigZag
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extracted statistically likely invariants from the resulting
execution traces. ZigZag then entered the enforcement
phase. Using the site in a benign fashion, we verified
that no invariants were violated in normal usage.
For the webmail component, and specifically the func-

tion handling the XMLHttpRequest, ZigZag generated
the following invariants.

1. The function is only called by one parent function
2. v0.topic === ’control’
3. v0.action === ’markasread’
4. typeof(v0.markemail) === ’number’

&& v0.markemail >= 0
5. typeof(v0.topic) === typeof(v0.action)

&& v0.topic < v0.action

For the ad network, ZigZag generated the following
invariants.

1. The function is only called by one parent function
2. v0.topic === ’ads’
3. v0.action === ’showads’
4. v0.content is JSON
5. v0.content is printable
6. typeof(v0.topic) === typeof(v0.action)

&& v0.topic < v0.action
7. typeof(v0.topic) === typeof(v0.content)

&& v0.topic < v0.content
8. typeof(v0.action) === typeof(v0.content)

&& v0.action < v0.content

Next, we attempted to exploit the webmail component
by injecting malicious parameters into the markemail
property. This attack generated an invariant violation
since the injected parameter was not a number greater
than or equal to zero.
Finally, we attempted to exploit the vulnerable ad net-

work component by sending JavaScript code instead of a
JSON object to the eval sink. However, this also gen-
erated an invariant violation, since ZigZag learned that
data.content should always be a JSON object – i.e., it
should not contain executable code.
URL fragments. Before postMessage became a

standard for cross-origin communication in the browser,
URL fragments were used as a workaround. The URL
fragment portion of a URL starts after a hash sign. A dis-
tinct difference between URL fragments and the rest of
the URL is that changes to the fragment will not trigger
a reload of the document. Furthermore, while SOP gen-
erally denies iframes of different origin mutual access to
resources, the document location can nevertheless be ac-
cessed. The combination of these two properties allows
for a channel of communication between iframes of dif-
ferent origins.
We evaluated ZigZag on a demo program that com-

municates via URL fragments. The program expects as

1 function getFragment ( ) {
2 return window.location.hash.substring(1);
3 }
4
5 function fetchEmailAddress() {
6 var email = getFragment();
7 document.write(”Welcome␣” + email);
8 // ...
9 }

Figure 9: Vulnerable fragment handling.

input an email address and uses it without proper sani-
tization in document.write. Another iframe could send
unexpected data to be written to the DOM. The code is
described in Figure 9.
After the training phase, we generated the following

invariants for the getFragment function.

1. The function is only called by one parent function
2. The return value is an email address
3. The return value is printable

6.2 Real-World Case Studies
In our next experiment, we tested ZigZag on four real-
world applications that contained different types of vul-
nerabilities. These vulnerabilities are a combination of
previously documented bugs as well as newly discovered
vulnerabilities.1
These applications are representative of different,

previously-identified classes of CSV vulnerabilities. In
particular, Son et al. [9] examined the prevalence of CSV
vulnerabilities in the Alexa Top 10K websites, found 84
examples, and classified them. The aim of this experi-
ment is to demonstrate that the invariants ZigZag gener-
ates can prevent exploitation of these known classes of
vulnerabilities.
For each of the following case studies, we first trained

ZigZag by manually browsing the application with one
user for five minutes, starting with a fresh browser state
four times. Next, we switched ZigZag to the enforcement
phase and attempted to exploit the applications. We con-
sider the test successful if the attacks are detected with no
false alarms. In each case, we list the relevant invariants
responsible for attack prevention.
Janrain. A code snippet used by janrain.com for

user management is vulnerable to a CSV attack. The
application checks the format of the string, but does not
check the origin of messages. Therefore, by iframing the
site, an attacker can execute arbitrary code if the message
has a specific format, such as capture:x;alert(3):.
This is due to the fact that the function that acts as a mes-
sage receiver will, under certain conditions, call a han-
dler that evaluates part of the untrusted message string

1For each vulnerability we discovered, we notified the respective
website owners.
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as code. Both functions were identified as important
by ZigZag’s lightweight static analysis. We note that
this vulnerability was previously reported in the litera-
ture [9]. As of writing, ten out of the 13 listed sites re-
main vulnerable, including wholefoodsmarket.com and
ladygaga.com.
For the event handler, ZigZag generated the following

invariants.

1. The function is only invoked from the global scope
or as an event handler

2. typeof(v0) === ’object’ && v0.origin ===
’https://dpsg.janraincapture.com’

3. v0.data === ’s1’ || v0.data === ’s2’2

4. v0.data is printable

For the function that is called by the event handler,
ZigZag generated the following invariants.

1. The function is only called by the receiver function
2. v0 === ’s1’ || v0 === ’s2’3

The attack is thwarted by restricting the receiver ori-
gin, only allowing two types of messages to be received,
and furthermore restricting control-flow to the dangerous
sink.
playforex.ru. This application contains an incor-

rect origin check that only tests whether the mes-
sage origin contains the expected origin (using in-
dexOf), not whether the origin equals or is a sub-
domain of the allowed origin. Therefore, any ori-
gin containing the string “playforex.ru” such as “play-
forex.ru.attacker.com” would be able to iframe the site
and evaluate arbitrary code in that context. We reported
the bug and it was promptly fixed. However, this is not
an isolated case. Related work [9] has shown that such
a flawed origin check was used by 71 hosts in the top
10,000 websites.
ZigZag generated the following relevant invariants.

1. The function is only invoked from the global scope
or as an event handler

2. typeof(v0) === ’object’
&& v0.origin === ’http://playforex.ru’

3. v0.data === ”$(’#right_buttons’).hide();”
|| v0.data === ’calculator()’

ZigZag detected that the onMessage event handler only
receives two types of messages, which manipulate the UI
to hide buttons or show a calculator. By only accepting
these two types of messages, arbitrary execution can be
prevented.
Yves Rocher. This application does not perform an

origin check on received messages, and all received code
2s1 and s2 were long strings, which we omitted for brevity.
3s1 and s2 were long strings, which we omitted for brevity.

is executed in an eval sink. The bug has been reported
to the website owners. 43 out of the top 10,000 web-
sites had previously been shown to be exploitable with
the same technique. ZigZag generated the following rel-
evant invariant.

1. v0.origin === ’http://static.ak.facebook.
com’ || v0.origin === ’https://s-static.
ak.facebook.com’

From our manual analysis, this program snippet is only
intended to communicate with Facebook, and therefore
the learned invariant above is correct in the sense that it
prevents exploitationwhile preserving intended function-
ality.
adition.com. This application is part of a European

ad network. It used a new Function statement to parse
untrusted JSON data, which is highly discouraged as it
is equivalent to an eval. In addition, no origin check is
performed. This vulnerability allows attackers that are
able to send messages in the context of the site to replace
ads without having full JavaScript execution.
ZigZag learned that only valid JSON data is received

by the function, which would prevent the attack based on
the content of received messages. This is different than
the Yves Rocher example, as data could be transferred
from different origins while still securing the site. The
bug was reported and fixed.
Summary. These are four attacks against CSV

vulnerabilities representative of the wider population.
postMessage receivers are used on 2,245 hosts out of
the top 10,000 websites. Such code is often included
through third-party libraries that can be changed without
the knowledge of website owners.

6.3 Performance Overhead
Instrumentation via a proxy incurs performance over-
head in terms of latency in displaying the website in the
browser. We quantify this overhead in a series of exper-
iments to evaluate the time required for instrumentation,
the worst-case runtime overhead due to instrumentation,
and the increase in page load latency for real web appli-
cations incurred by the entire system.
Instrumentation overhead. We tested the instrumen-

tation time of standalone files to measure ZigZag’s im-
pact on load times. As samples, we selected a range
of popular JavaScript programs and libraries: Mozilla
pdf.js, an in-browser pdf renderer; jQuery, a popular
client-side scripting library; and, d3.js, a library for data
visualization. Where available, we used compressed,
production versions of the libraries. As Mozilla pdf.js
is not minified by default, we applied the yui com-
pressor for simple minification before instrumenting.
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Figure 10: Instrumentation overhead for individual files.
While the initial instrumentation can take a significant
amount of time for large files, subsequent instrumenta-
tions have close to no overhead.

The worker file is at 1.5 MB uncompressed and repre-
sents an atypically large file. Additionally, we instru-
mented a simple function that returns the value of docu-
ment.cookie. We performed 10 runs for cold and warm
testing each. For cold runs, the database was reset after
every run.
Figure 10 shows that while the initial instrumentation

can be time-consuming for larger files, subsequent calls
will incur low overhead.
Microbenchmark. To measure small-scale runtime

enforcement overhead, we created a microbenchmark
consisting of a repeated postMessage invocation where
one iframe (A) sends a message to another iframe (B),
and B responds to A. Specifically, A sends a message
object containing a property process set to the constant
20. B calculates the Fibonacci number for process, and
responds with another object that contains the result.
We trained ZigZag on this simple program and then

enabled enforcement mode. Next, we ran the program in
both uninstrumented and instrumented forms. The sub-
ject of measurement was the elapsed time between send-
ing a message from A to B and reception of the response
from B to A. We used the high resolution timer API win-
dow.performance.now to measure the round trip time,
and ran the test 100 times each. The results of this bench-
mark are shown in Table 2.
ZigZag learned and enforced the following invariants

for the receiving side.

1. The function is only invoked from the global scope
or as an event handler

2. typeof(v0) === ’object’ &&
v0.origin === ’http://example.com’

3. v0.data.process === 20
4. typeof(v0) === typeof(v0.data)

Uninstrumented Instrumented

Average Runtime 3.11 ms 3.77 ms
Standard Deviation 1.80 0.54
Confidence (0.05) 0.11 0.35

Table 2: Microbenchmark overhead.

5. typeof(v0.timeStamp) === typeof(v0.data.
process) && v0.timeStamp > v0.data.process

For the message receiver that calculates the response,
ZigZag learned and enforced the following invariants.

1. The function is only invoked from the global scope
or as an event handler

2. typeof(v0) === ’object’
&& v0.origin === ’http://example.com’

3. typeof(v0.data.process) === ’number’
&& v0.data.process === 20

4. typeof(v0.timestamp) === typeof(v0.data.
process)

Finally, for the receiver of the response, ZigZag
learned and enforced the following invariants.

1. The function is only invoked from the global scope
or as an event handler

2. typeof(v0) === ’object’ &&
v0.origin === ’http://example.com’

3. v0.data.response === 6765
4. typeof(v0) === typeof(v0.data)
5. typeof(v0.timeStamp) === typeof(v0.data.

response) && v0.timeStamp > v0.data.
response

The above invariants represent a tight bound on the al-
lowable data types and values sent across between each
origin.
End-to-end benchmark. To quantify ZigZag’s im-

pact on the end-to-end user experience, we measured
page load times on the Alexa Top 20. First, we manu-
ally inspected the usability of the sites and established a
training set for enforcement mode. To do so, we browsed
the target websites for half an hour each.
We used Chrome to load the site and measure the

elapsed time from the initial request to the window.load
event, when the DOM completed loading (including all
sub-frames).4 The browser was unmodified, with only
one extension to display page load time.
Uninstrumented sites are loaded through the same

HTTP(S) proxy ZigZag resides on, but the program text
4We note, however, that websites can become usable before that

event fires.
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programs.
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Figure 11: End-to-end performance benchmark on the Alexa 20 most popular websites (excluding hao123.com as it
is incompatible with our prototype). A site is considered to be done loading content when the window.load event is
fired, indicating that the entire contents of the DOM has finished loading.

is not modified. Instrumented programs are loaded from
a ZigZag cache that has been previously filled with in-
strumented code and merge descriptions. However, we
do not cache original web content, which is freshly
loaded every time.
The performance overhead in absolute and relative

terms is depicted in Figure 11. We excluded hao123.com
from the measurement as it was incompatible with our
prototype.5 On average, load times took 4.8 seconds, rep-
resenting an overhead of 180.16%, with median values
of 2.01 seconds and an overhead of 112.10%. We found
server-side templated JavaScript to be popular with the
top-ranked websites. In particular, amazon.com served
15 such templates, and only 6 out of 19 serve no such
templates.

sina.com.cn is an obvious outlier, with an abso-
lute average overhead of 45 seconds. With 115 inlined
JavaScript snippets and 112 referenced JavaScript files,
this is also the strongest user of inline script. Further-
more, we noticed that the site fires the DOMContent-
Loaded event in less than 6 seconds. Hence, the web-
site appears to become usable quickly even though not
all sub-resources have finished loading.
In percentages, the highest overhead of 593.36% is in-

troduced for blogspot.com, which forwards to Google.
This site has the shortest uninstrumented loading time
(0.226 seconds) in our data set, hence an absolute over-
headwill have the strongest implications on relative over-

5We discovered, as others have before, that hao123.com does not
interact well with Squid. We attempted to work around the problem by
adjusting Squid’s configuration as suggested by Internet forum posts,
but this did not succeed. Due to time constraints, we did not expend
further effort in dealing with this particular site.

head. That is, in relative numbers, it seems higher than
the actual impact on end-users.
We note that we measure the load event, which means

that all elements (including ads) have been loaded. Web-
sites typically become usable before that event is fired.
Our research prototype could be further optimized to
reduce the impact of our technique for performance-
critical web applications, for example by porting our
ICAP Python code, including parsing libraries, to an
ECAP C module. However, generally speaking we be-
lieve that trading off some performance for improved se-
curity would be acceptable for high assurance web appli-
cations and security-conscious users.

6.4 Program Generalization
As discussed in Section 3, ZigZag supports structural
similarity matching and invariant patching for templated
JavaScript to avoid singleton training sets and exces-
sive instrumentation when templated code is used. We
measured the prevalence of templated JavaScript in the
Alexa Top 50, and found 185 instances of such code.
In addition, the median value per site was three. With-
out generalization and invariant patching, ZigZag would
not have generated useful invariants and, furthermore,
would perform significantly worse due to unnecessary re-
instrumentation on template instantiations.

6.5 Compatibility
To check that ZigZag is compatible with real web ap-
plications, we ran ZigZag on several complex, benign
JavaScript applications. Since ZigZag relies on user in-
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teraction and the functionality of a complex web applica-
tion is not easily quantifiable, we added manual quantita-
tive testing to augment automated tests. The testers were
familiar with the websites before using the instrumented
version, and we performed live instrumentation using the
proxy-based prototype.
For YouTube and Vimeo, the testers browsed the sites

and watched multiple videos, including pausing, resum-
ing, and restarting at different positions. Facebook was
tested by scrolling through several timelines and using
the chat functionality in a group setting. The testers also
posted to a timeline and deleted posts. For Google Docs,
the testers created and edited a document, closed it, and
re-opened it. For d3.js, the testers opened several of
the example visualizations and verified that they ran cor-
rectly. Finally, the testers sent and received emails with
Gmail and live.com.
In all cases, no enforcement violations were detected

when running the instrumented version of these web ap-
plications.

7 Related Work

In this section, we discuss ZigZag in the context of related
work.
Client-side validation vulnerabilities. CSV vulnera-

bilities were first highlighted by Saxena et al. [3]. In their
work, the authors propose FLAX, a framework for CSV
vulnerability discovery that combines dynamic taint anal-
ysis and fuzzing into taint-enhanced blackbox fuzzing.
The system operates in two steps. JavaScript programs
are first translated into a simplified intermediate language
called JASIL. Then, the JavaScript application under test
is executed to dynamically identify all data flows from
untrusted sources to critical sinks such as cookie writes,
eval, or XMLHttpRequest invocations. This flow in-
formation is processed into small executable programs
called acceptor slices. These programs accept the same
inputs as the original program but are reduced in size.
Second, the acceptor slices are fuzzed using an input-
aware technique to find inputs to the original program
that can be used to exploit a bug. A program is consid-
ered to be vulnerable when a data flow from an untrusted
source to a critical sink can be established.
Later, the same authors improved FLAX by replacing

the dynamic taint analysis component with a dynamic
symbolic execution framework [4]. Again, the goal of
the static analysis is to find unchecked data flows from
inputs to critical sinks. This method provides no com-
pleteness and can hence miss vulnerabilities.
The main difference between ZigZag and FLAX is

that FLAX focuses on detecting vulnerabilities in appli-
cations, while ZigZag is intended to defend unknown vul-
nerabilities against attacks.

DOM-based XSS. Cross-site scripting (XSS) is of-
ten classified as either stored, reflected, or DOM-based
XSS [20]. In this last type of XSS, attacks can be per-
formed entirely on the client-side such that no malicious
data is ever sent to the server. Programs become vul-
nerable to such attacks through unsafe handling of DOM
properties that are not controlled by the server; examples
include URL fragments or the referrer.
As a defense, browser manufacturers employ client-

side filtering, where the state-of-the-art is represented
by the Chrome XSS Auditor. However, the auditor has
shortcomings in regards to DOM-based XSS. Stock et
al. [21] have demonstrated filter evasion with a 73% suc-
cess rate and proposed a filter with runtime taint tracking.
DexterJS [22] rewrites insecure string interpolation

in JavaScript programs into safe equivalents to prevent
DOM-based XSS. The system executes programs with
dynamic taint analysis to identify vulnerable program
points and verifies them by generating exploits. DexterJS
then infers benign DOM templates to create patches that
can mitigate such exploits.
JavaScript code instrumentation. Proxy-based

instrumentation frameworks have been proposed be-
fore [23, 14]. JavaScript can be considered as self-
modifying code since a running program can generate in-
put code for its own execution. This renders complete in-
strumentation prior to execution impossible since writes
to code cannot be covered. Hence, programs must be in-
strumented before execution and all subsequent writes to
program code must be processed by separate instrumen-
tation steps.
Anomaly detection. Anomaly detection has found

wide application in security research. For instance,
Daikon [13] is a system that can infer likely invariants.
The system applies machine learning to make observa-
tions at runtime. Daikon supports multiple programming
languages, but can also be used over arbitrary data as
CSV files. In ZigZag, we extended Daikon with new
invariants specific to JavaScript applications for runtime
enforcement.
DIDUCE [24] is a tool that instruments Java bytecode

and builds hypotheses during execution. When violations
to these hypotheses occur, they can either be relaxed or
raise an alert. The program can be used to help in tracking
down bugs in programs semi-automatically.
ClearView [25] uses a modified version of DAIKON

to create patches for high-availability binaries based on
learned invariants. The focus of the system is to de-
tect and preventmemory corruption through changing the
program code at runtime. However, the embedded mon-
itors do not extend to detecting errors in program logic.
Attacks on the workflow of PHP applications have

been addressed by Swaddler [10]. Not all attacks on sys-
tems produce requests or, more generally, external be-
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havior that can be detected as anomalous. These attacks
can be detected by instrumenting the execution environ-
ment and generating models that are representative of be-
nign runs. Swaddler can be operated in three modes:
training, detection, and prevention. To model program
execution, profiles for each basic block are generated, us-
ing univariate and multivariate models. During training,
probability values are assigned to each profile by storing
themost anomalous score for benign data, a level of “nor-
mality” is established. In detection and prevention mode,
an anomaly score is calculated based on the probability of
the execution data being normal using a preset threshold.
Violations are assumed to be attacks. The results sug-
gest that anomaly detection on internal application state
allows a finer level of attack detection than exclusively
analyzing external behavior.
While Swaddler focuses on the server component of

web applications, ZigZag characterizes client-side be-
havior. ZigZag can protect against cross-domain at-
tacks within browsers that Swaddler has no visibility into.
Swaddler invokes detection for every basic block, while
we use a dynamic level of granularity based on the types
of sinks in the program, resulting in a dramatic reduction
in enforcement overhead.
Client-side policy enforcement. ICESHIELD [26] is

a policy enforcement tool for rules based on manual anal-
ysis. By adding JavaScript code before all other content,
ICESHIELD is invoked by the browser before other code
is executed. Through ECMAScript 5 features, DOM
properties are frozen to maintain the integrity of the de-
tection code. ICESHIELD protects users from drive-by
downloads and exploit websites. In contrast, ZigZag per-
forms online invariant detection and prevents previously
unknown attacks.
ConScript [27] allows developers to create fine-

grained security policies that specify the actions a script
is allowed to perform andwhat data it is allowed to access
or modify. Conscript can generate rules from static anal-
ysis performed on the server as well as by inspecting dy-
namic behavior on the client. However, it requires modi-
fications to the JavaScript engine, which ZigZag aims to
avoid.
The dynamic nature of JavaScript renders a purely

static approach infeasible. Chugh et al. propose a staged
approach [28] where they perform an initial analysis of
the program given a list of disallowed flow policies,
and then add residual policy enforcement code to pro-
gram points that dynamically load code. The analysis of
dynamically loaded code can be performed at runtime.
These policies can enforce integrity and confidentiality
properties, where policies are a list of tuples of disal-
lowed flows (from, to).
Content Security Policy (CSP) [29, 11] is a frame-

work for restricting JavaScript execution directly in the

browser. CSP can be effective at preventing signifi-
cant classes of code injection in web applications if ap-
plied correctly (e.g., without the use of unsafe-inline
and unsafe-eval) and if appropriate rules are enforced.
However, CSP does not defend against general CSV at-
tacks, and therefore we view it and other systems with
similar goals as complementary to ZigZag. In particular,
CSP could be highly useful to prevent code injection and
thereby protect the integrity of ZigZag in the browser.
Web standards. Although Barth et al. [30] made the

HTML5 postMessage API more secure, analysis of web-
sites suggests that it is nevertheless used in an insecure
manner. Authentication weaknesses of popular websites
have been discussed by Son et al. [9]. They showed that
84 of the top 10,000 websites were vulnerable to CSV
attacks, and moreover these sites often employ broken
origin authentication or no authentication at all. Their
proposed defenses rely on modifying either the websites
or the browser.
In ZigZag, we aim for a fine-grained, automated,

annotation-free approach that dynamically secures appli-
cations against unknown CSV attacks in an unmodified
browser.

8 Conclusion

Most websites rely on JavaScript to improve the user ex-
perience on the web. With new HTML5 communica-
tion primitives such as postMessage, inter-application
communication in the browser is possible. However,
these new APIs are not subject to the same origin policy
and, through software bugs such as broken or missing in-
put validation, applications can be vulnerable to attacks
against these client-side validation (CSV) vulnerabilities.
As these attacks occur on the client, server-side secu-
rity measures are ineffective in detecting and preventing
them.
In this paper, we present ZigZag, an approach to au-

tomatically defend benign-but-buggy JavaScript applica-
tions against CSV attacks. Our method leverages dy-
namic analysis and anomaly detection techniques to learn
and enforce statistically-likely, security-relevant invari-
ants. Based on these invariants, ZigZag generates as-
sertions that are enforced at runtime. ZigZag’s design
inherently protects against unknown vulnerabilities as it
enforces learned, benign behavior. Runtime enforcement
is carried out only on the client-side code, and does not
require modifications to the browser.
ZigZag can be deployed by either the website oper-

ator or a third party. Website owners can secure their
JavaScript applications by replacing their programs with
a version hardened by ZigZag, thereby protecting all
users of the application. Third parties, on the other hand,
can deploy ZigZag using a proxy that automatically hard-
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ens any website visited using it. This usage model of
ZigZag protects all users of the proxy, regardless of the
web application.
We evaluated ZigZag using a number of real-world

web applications, including complex examples such as
online word processors and video portals. Our evalua-
tion shows that ZigZag can successfully instrument com-
plex applications and prevent attacks while not impair-
ing the functionality of the tested web applications. Fur-
thermore, it does not incur an unreasonable performance
overhead and, thus, is suitable for real-world usage.
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Abstract

Mobile users are becoming increasingly aware of the pri-
vacy threats resulting from apps’ access of their loca-
tion. Few of the solutions proposed thus far to mitigate
these threats have been deployed as they require either
app or platform modifications. Mobile operating systems
(OSes) also provide users with location access controls.
In this paper, we analyze the efficacy of these controls in
combating the location-privacy threats. For this analysis,
we conducted the first location measurement campaign
of its kind, analyzing more than 1000 free apps from
Google Play and collecting detailed usage of location
by more than 400 location-aware apps and 70 Advertise-
ment and Analytics (A&A) libraries from more than 100
participants over a period ranging from 1 week to 1 year.
Surprisingly, 70% of the apps and the A&A libraries pose
considerable profiling threats even when they sporadi-
cally access the user’s location. Existing OS controls
are found ineffective and inefficient in mitigating these
threats, thus calling for a finer-grained location access
control. To meet this need, we propose LP-Doctor, a
light-weight user-level tool that allows Android users to
effectively utilize the OS’s location access controls while
maintaining the required app’s functionality as our user-
study (with 227 participants) shows.

1 Introduction

Mobile users are increasingly aware of the privacy
threats caused by apps’ access of their location [12,
42]. According to recent studies [14, 17, 42], users
are also taking measures against these threats ranging
from changing the way they run apps to disabling loca-
tion services all together on their mobile devices. How
to mitigate location-privacy threats has also been re-
searched for some time. Researchers have proposed
and even implemented location-privacy protection mech-
anisms (LPPMs) for mobile devices [2, 6, 12, 20, 30].

However, few of them have been deployed as they re-
quire app or system-level modifications, both of which
are unappealing/unrealistic to the ordinary users.

Faced with location-privacy threats, users are left
only with whatever controls the apps and OSes provide.
Some, but not all, apps allow the users to control their
location access. OSes have been improving on this front.
iOS includes a new permission to authorize location ac-
cess in the background, or when the app is not actively
used. Also, iOS, Windows OS, and Blackberry (An-
droid to follow suit) utilize per-app location-access per-
missions. The user authorizes location access at the very
first time an app accesses his location and has the option
to change this decision for every subsequent app invoca-
tion. We want to answer two important questions related
to this: (i) are these controls effective in protecting the
user’s location privacy and (ii) if not, how can they be
improved at the user level without modifying any app or
the underlying OS?

To answer these questions, we must understand the
location-privacy threats posed by mobile apps. This con-
sists of understanding the apps’ location-access patterns
and their usage patterns. For this, we instrumented and
analyzed the top 1165 downloaded free apps (that require
location-access permissions) from Google Play to study
their location-access patterns. We also studied the be-
havior of Advertisement and Analytics (A&A) libraries,
such as Flurry, embedded in the apps that might access
location. We analyzed only those apps/libraries that ac-
cess location through Android’s official location APIs.
While some apps/libraries might circumvent the OS in
accessing location, it is an orthogonal problem to that
addressed in this paper.

We then analyzed the users’ app-usage patterns by uti-
lizing three independent datasets. First, we collected and
analyzed app-tagged location traces through a 10-month
data collection campaign (Jan. 2013—Nov. 2013) for 24
Android smartphone users. Second, we recruited 95 An-
droid users through PhoneLab [31], a smartphone mea-
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surement testbed at New York State University at Buf-
falo, for 4 months. Finally, we utilized the dataset from
Livelab at Rice University [34] that contains app-usage
and location traces for 34 iPhone users for over a year.

Utimately, we were able to evaluate the privacy threats
posed by 425 apps and 77 third-party libraries. 70% of
the apps are found to have the potential of posing pro-
filing threats that have not yet been adequately studied
or addressed before [15, 16, 25, 41]. Moreover, the A&A
libraries pose significant profiling threats on more than
80% of the users as they aggregate location information
from multiple apps. Most of the users are unaware of
these threats as they can’t keep track of exposure of their
location information. The issue becomes more prob-
lematic in the case of A&A libraries where users are
oblivious to which apps these libraries are packed in and
whether they are receiving location updates.

Given the nature of the threats, we studied the effec-
tiveness of the existing OS controls. We found that these
controls are capable of thwarting only a fraction of the
underlying privacy threats, especially tracking threats.
As for profiling, the user only has the options of either
blocking or allowing location access. These two options
come at either of the two extremes of the privacy–utility
spectrum: the user either enjoys full privacy with no util-
ity, or full utility with no privacy. As for A&A libraries,
location accesses from a majority of the apps must be
blocked to thwart the location-privacy threats caused by
these libraries.

The main problem arises from the user’s inability to
exercise fine-grained control on when an app should re-
ceive a location update. The interface provided by ex-
isting controls makes it hard for the user to enforce
location-access control on a per visited place/session ba-
sis. Even if the user can dynamically change the control
of location access, he cannot estimate the privacy threats
at runtime. The location-privacy threat is a function of
the current location along with previously released loca-
tions. This makes it difficult to estimate the threat for
apps and even harder for A&A libraries.

To fill this gap, we propose LP-Doctor, a user-level
app, to protect the location privacy of smartphone users,
which offers three salient features. First, LP-Doctor
evaluates the privacy threat that the app might pose be-
fore launching it. If launching the app from the current
location poses a threat, then it acts to protect the user’s
privacy. It also warns the user of the potential threat in
a non-intrusive manner. Second, LP-Doctor is a user-
level app and does not require any modification to the
underlying OS or other apps. It acts as a control knob
for the underlying OS tools. Third, LP-Doctor lets the
user control, for each app, the privacy–utility tradeoff by
adjusting the protection level while running the app.

We implemented LP-Doctor as an Android app that

can be downloaded from Google Play. The privacy pro-
tection that LP-Doctor provides comes at a minimal
performance overhead. We recruited 227 participants
through Amazon Mechanical Turk and asked them to
download and use LP-Doctor from Google Play. The
overwhelming majority of the participants reported little
effect on the quality of service and user experience. More
than 77% of the participants indicated that they would in-
stall LP-Doctor to protect their location privacy.

In summary, we make the following main contribu-
tions:

• The first location data collection campaign of its
kind to measure, analyze, and model location-
privacy threats from the apps’ perspectives (Sec-
tions 3–6);

• Evaluation of the effectiveness of OS’s location pri-
vacy controls by anatomizing the location-privacy
threats posed by the apps (Sections 7–8);

• Design, implementation and evaluation of a novel
user-level app, LP-Doctor, based on our analysis
to fill the gaps in existing controls and improve their
effectiveness (Section 9).

2 Related Work

App-Based Studies: To the best of our knowledge, this
is the first attempt to quantify and model location privacy
from the apps’ perspective. Researchers already con-
cluded that many mobile apps and A&A libraries leak lo-
cation information about the users to the cloud [5,23,38].
These efforts are complimentary to ours; we study the
quantity and quality of location information that the apps
and libraries locally gather while assuming that they may
leak this information outside the device.

Analysis of Location Privacy: Influenced by exist-
ing location datasets (vehicular traces, cellular traces,
etc.), most of the existing studies view location privacy in
smartphones as if there were only one app continuously
accessing a user’s location [7, 11, 25, 26, 29, 33, 41]. Re-
searchers also proposed mechanisms [28, 29, 32] (their
effectiveness analyzed by Shokri et al. [36]) to pro-
tect against the resulting tracking-privacy threats. Such
mechanisms have shown to be ineffective in thwarting
the profiling threats [41] which are more prevalent as we
will show later.

Researchers started considering sporadic location-
access patterns as a source of location-privacy threat
that calls for a different treatment than the continuous
case [4]. Still, existing studies focus mostly on the track-
ing threat [3, 35]. The only exception to this is the work
by Freudiger et al. [15]. They assessed the erosion of the
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user’s privacy from sporadic location accesses as the por-
tion of the PoIs identified after downsampling the contin-
uous location trace. In this paper, we propose a formal
metric to model the profiling threats. Also, we show that
an app’s location-access behavior can’t be modeled as
simply downsampling the user’s mobility.

Location-Privacy Protection Proposals: Several so-
lutions have been proposed to protect mobile users’ lo-
cation privacy. MockDroid [6] allows for blocking apps’
location access to protect the user’s location privacy. LP-
Guardian [12] is another system aiming at protecting
the user’s location privacy by incorporating a myriad of
mechanisms. Both systems require platform modifica-
tions, hindering their deployment. Other mechanisms,
such as Caché [2] and the work by Micinski et al. [30],
provide apps with coarsened locations but require mod-
ifications to the apps. Koi [20] proposed a location pri-
vacy enhancing system that utilizes a cloud service, but
requires developers to use a different API to access loca-
tion. Apps on Google Play such as PlaceMask and Fake
GPS Location Spoofer rely on the user to manually feed
apps with fake locations, which reduce their usability.

Finally, researchers have proposed improved permis-
sion models for Android [1, 24]. In their models, the
users are aware of how much the apps access their loca-
tion and have the choice to enable/disable location access
for each app (AppOps provided such functionality in An-
droid 4.3). LP-Doctor improves on these in three ways.
First, it provides a privacy model that maps each app’s
location access to a privacy metric. This model includes
more information than just the number of location ac-
cesses by the app. Second, LP-Doctor makes some de-
cisions on behalf of the users to avoid interrupting their
tasks and to make privacy protection more usable. Third,
LP-Doctor employs per-session location-access granu-
larity which achieves a better privacy–utility tradeoff.

3 Background and Data Collection

To study the efficacy of location-access controls of differ-
ent mobile OSes, we had to first analyze location-privacy
threats from the apps’ perspectives. This includes study-
ing how different apps collect the user’s location. We
conduct a data collection campaign to achieve this us-
ing the Android platform. Our results, however, can be
generalized to other mobile platforms like iOS.

3.1 Location-Access Controls
Each mobile platform provides users with a set of
location-access controls to mitigate possible location-
privacy threats. Android (prior to Android M) provides a
one-time permission model that allows users to authorize
location access. Once the user approves the permission

Figure 1: Android’s permission list (left) and location
settings (right).

Figure 2: iOS’s location settings (left) and prompts
(right).

list (Fig. 1–left) for the app, it is installed and the permis-
sions can’t be revoked. It also provides a global location
knob (Fig. 1–right) to control location services. The user
can’t exercise per-app location-access control.

Other platforms, such as Blackberry OS and iOS, pro-
vide finer-grained location permissions. Each app has a
settings menu (Fig. 2–left) that indicates the resources it
is allowed to access, including location. The user can
at any point of time revoke resource access by any app.
The first time an app accesses location, the OS prompts
the user to authorize location access for the app in the
current and future sessions (Fig. 2–right). Also, Google,
starting from Android M, will provide a similar permis-
sion model (an evolution of the previously deployed Ap-
pOps in Android 4.3) to control access of location and
other resources. At present, iOS provides the users with
an additional option to authorize location access in the
background to prevent apps from tracking users.

In the rest of this paper, we study the following con-
trols: (1) one-time location permissions, (2) authoriza-
tion of location access in the background, and (3) finer-
grained per-app permissions.

3.2 System Model
We study location-privacy threats through apps and A&A
libraries that access the user’s location. These apps and
libraries then provide the service, and keep the location



756 24th USENIX Security Symposium USENIX Association

records indexed by a user ID, such as MAC address, An-
droid ID, IMEI, etc.

We assume that the app/library communicates all of
the user’s location samples to the service provider.1 This
allows us to model the location-privacy threats caused by
apps/libraries in the worst-case scenario. The app is the
only means by which the service provider can collect the
user’s location updates. We don’t consider cases where
the service provider obtains the user’s location via side
channels other than the official API, e.g., an app reads
the nearby access points and sends them to a localization
service, such as skyhook.

We preclude system and browsing apps from our study
for the following reasons. System apps are part of the OS
that already has access to the user’s location all the time.
Hence, analyzing their privacy implications isn’t very in-
formative. As for the browsing apps, the location sink
might be a visited website as well as the browser itself.
We decided not to monitor the user’s web history during
the data collection for privacy concerns. Also, app-usage
patterns differ from browsing patterns. The conclusions
derived for the former don’t necessarily translate to those
for the latter.

3.3 App and A&A libraries Analysis
In February 2014, we downloaded the top 100 apps of
each of Google Play’s 27 app categories. We were left
with 2588 unique apps, of which 1165 apps request lo-
cation permissions. We then instrumented Android to
intercept every location access invoked by both the app
and the packed A&A libraries.

The main goal of this analysis was to unravel the sit-
uations in which an app accesses location and whether it
feeds a packed A&A library. In Android, the app could
be running in the foreground, cached in the background,
or as a service. Using a real device, we ran every app
in foreground, moved it to background, and checked if it
forked a service, while recording its location requests.

Apps running in the foreground can access location
spontaneously or in response to some UI event. So, we
ran every app in two modes. In the first mode, the app
runs for a predefined period of time and then closes,
while in the second, we manually interact with each app
to trigger the location-based functionality. Finally, we
analyzed the functionality of every app and the required
location granularity to achieve this functionality.

3.4 Data Collection
As will be evident in Section 4, the app-usage pattern
is instrumental in determining the underlying location-
privacy threats. We collected the app-usage data using

1We refer to both the app developers and A&A agencies as the ser-
vice provider.

an app that we developed and published on Google Play.
Our study was deemed as not-requiring an IRB oversight
by the IRB at our institution; all the data we collected is
anonymous. Also, we clustered the participants’ location
on the device to extract their visited places. We define the
“place” as a center location with a radius of 50m and a
minimum visit time of 5 min. Then, we logged place IDs
instead of absolute location samples to further protect the
participants’ privacy.

PhoneLab: PhoneLab [31] is a testbed, deployed at
the NY State University at Buffalo, composed of 288
smartphone users. PhoneLab aims to free the researchers
from recruiting participants by providing a diverse set of
participants, which leads to stronger conclusions.

We recruited 95 participants to download and run our
app for the period between February 2014 and June 2014.
We collected detailed usage information for 625 apps, of
which 218 had location permissions and were also part
of the apps inspected in the app-analysis stage.

Our Institution: The second set consists of 24 par-
ticipants whom we recruited through personal relations
and class announcements. We launched this study from
January 2013 till November 2013, with the participation
period per user varying between 1 week and 10 months.
From this set, we collected usage data of 256 location-
aware apps.

We also collected location access patterns of some
apps from a subset of the participants. We handed 11
participants Galaxy Nexus devices with an instrumented
Android (4.1.2) that recorded app-tagged location ac-
cesses. We measured how frequently do ordinary users
invoke location-based functionality of apps that don’t
spontaneously access location (e.g., Whatsapp).

LiveLab: Finally, we utilize the Livelab dataset [34]
from Rice University. This dataset contains the app us-
age and mobility records for 34 iPhone users over the
course of a year (2010). We post-processed this dataset
to map app-usage records to the location where the apps
were invoked. We only considered those apps that over-
lapped with our Android dataset (35 apps).

4 Location-Access Patterns

We address the location-access patterns by analyzing
how different apps collect location information while
running in foreground and background. The former rep-
resents the state where the user actively interacts with the
app, while the latter represents the case where the app
runs in the background either as cached by Android or as
a persistent service.

As evident from Table 1, 74% of the apps solely ac-
cess location when running in the foreground, while only
3% continuously access the user’s location in the back-
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Table 1: Location-access patterns for smartphone apps
according to Android location permissions

Fore.
(%)

Cached
(%)

Back.
(%)

None
(%)

Gran.
Coarse (%)

Coarse 71 6 1 22 100

Fine 74 14 4 12 48

All 74 12 3 14 66

Table 2: Location-access patterns for A&A libraries

Total No Location
Access

App Feeds
Location

Auto Location Access

Coarse Fine Both

77 22 17 3 2 33

ground. Around 70% of the apps accessing location in
the foreground spontaneously perform such access pre-
ceding any user interaction. Examples of these apps in-
clude Angry Birds, Yelp, Airbnb, etc.

Android caches the app when the user exits it; depend-
ing on the app’s behavior it might still access location;
only 12% of the apps access the user’s location when
they are cached. Interestingly, for 14% of the apps, we
didn’t find any evidence that they access location in any
state.

We also analyzed the location-based functionality of
every app and the required location granularity to achieve
such functionality. We focused on two location gran-
ularity levels: fine and coarse. A fine location sam-
ple is one with block-level granularity or higher, while
coarse location is that with zipcode-level granularity or
lower. We manually interacted with each app to assess
the change in its functionality while feeding it locations
with different granularity. We show the percentage of
the apps that can accommodate coarse location without
noticeable loss of app functionality in Table 1 under the
column titled Gran. Coarse. One can notice that apps
abuse the location permissions: 48% of the apps request-
ing fine location permissions can accommodate locations
with coarser granularity without loss of functionality.

Finally, we analyzed the packed A&A libraries in
these apps. We were able to identify 77 of such libraries
packed in these apps. Table 2 shows basic statistics about
these libraries. Most (more than 70%) libraries require
location access where some are fed location from the
apps (22%). The rest of the libraries automatically access
location where 3 of them require coarse location permis-
sions, 2 require fine permissions, and the rest don’t spec-
ify a permission. Also, these libraries are included within
more than one location-aware app giving them the ability
to track the user’s location beyond what a single app can
do. For example, of 1165 analyzed apps, Google Ads is
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Figure 3: The distribution of app session lengths (left)
and inter-session intervals (right) for the three datasets.

packed within 499 apps, Flurry within 325 apps, Medi-
alets within 35 apps, etc.

5 App-Usage Patterns

As apps mostly access users’ location in the foreground,
the app-usage patterns (the way that users invoke differ-
ent apps) help determine how much location informa-
tion each app collects. Apps are shown to sporadically
sample the user’s location based on two facts. First, an
app session is equivalent to the place visited during the
session. Second, apps’ inter-session intervals follow a
Pareto-law distribution.

For foreground apps, we define a session as a sin-
gle app invocation—the period of time in which a user
runs the app then exits it. The session lengths are not
long enough to cover more than one place the user vis-
its, where 80% of these app sessions are shorter than 10
minutes (the left plot of Fig. 3). We confirmed this from
our PhoneLab dataset; 98% of the app sessions started
and ended at the same place.

This allows for collapsing an app session into one
location-access event. It doesn’t matter what frequency
the app polls the user’s location with. As long as the
app requests the user’s location at least once, while it
is running in the foreground, it will infer that the user
visited that location. We thus ignore the location-access
frequency of foreground apps, and instead focus on the
app-usage patterns.

We define the inter-session time as the interval sepa-
rating different invocations (sessions) of the same app by
the same user. The right plot of Fig. 3 shows the distri-
bution of the inter-session intervals for the three datasets.
More than 50% of the app sessions were separated by at
least one hour.

We also found that the inter-session intervals follow
a Pareto-law distribution rather than a uniform distribu-
tion. This indicates that apps don’t sample the user’s
location uniformly, indicating that existing models for
apps’ location access don’t match their actual behavior.
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Figure 4: The distribution of the inter-session times for
Facebook in Livelab dataset (left), and the QQ plot of
this distribution versus a Pareto law distribution (right).

Fig. 4 shows the distribution of the inter-session inter-
vals of a user running Facebook. It is evident that the
distribution of the inter-session intervals decays linearly
with respect to the increase of inter-session intervals. We
observed a similar trend with all other apps. This sug-
gests that the data decays according to a Pareto law (QQ
plot in Fig. 4). We followed the guidelines outlined by
Clauset et al. [10] to fit the data to the truncated Pareto
distribution. Three parameters (L, H, and α) define the
truncated Pareto law distribution:

pX (x)




(−α−1)L−α−1xα

1−( L
H )

−α−1 if L ≤ x ≤ H

0 otherwise.

After fitting the data, more than 97% of the app-usage
models are found to have α between -1 and -1.5. Accord-
ing to Vagna et al. [40], Pareto law fits different human
activity models with α between -1 and -2.

6 Privacy Model

Here we model the privacy threats caused by mobile
apps’/libraries’ access of the user’s location.

6.1 Preliminaries
Below we describe the models of user mobility, app-
usage, and adversaries that we will use throughout the
paper.

User Mobility Model: We assume there is a region
(e.g., city) of interest which includes set of places that
the user can visit. So, a domain of interest is represented
by the set Pl of all the places available in that domain:
Pl = {pl1, pl2, pl3 . . .}. Under this model, the user visits
a set of places, UPl ⊆ Pl, as part of his daily life, spends
time at pli running some apps and then moves to another
place pl j. We alternatively refer to these places as the
user’s Points of Interest (PoIs).

We associate every place pli with a visit probability
of pi, reflecting the portion of time the user spends at
pli. The user’s mobility profiles are defined as the set,
Upl , of places he visited and the probability, pi, of visit
to each place. The mobility profile is unique to each user
since a different user visits a different set of places with
a different probability distribution [41].

App-Usage Model: In Section 5, we showed that each
app session is equivalent to an observation of the user’s
visit to a place. The app accumulates observations of
the set of places that the user visits. The app will even-
tually observe that a user visited a certain place pli for
cpli times. So, we view the app as a random process that
samples the user’s entire location trace and outputs a his-
togram of places of dimension |UPl |. Each bin in the
histogram is the number of times, cpli , the app observes
the user at that specific place. The total number of visits
is represented as N = ∑|UPl |

i=1 cpli .
The histogram represents the app’s view of the user’s

mobility. Most apps don’t continuously monitor user’s
mobility as they don’t access location in the background.
As such, they can’t track users; the most these apps can
get from a user is the histogram of the places he visited,
which constitutes the source of location-privacy threats
in this case.

Adversary Model: The adversary in our model is not
necessarily a malicious entity seeking to steal the user’s
private information. It is rather a curious entity with pos-
session of the user’s location trace. The adversary will
process and analyze these traces to infer more informa-
tion about the user that allows for a more personalized
service. This is referred to as authentic apps [39]. The
objective of our analysis is to study the effect of the or-
dinary apps collecting location on the user’s privacy.

Apps accessing location in the foreground can’t track
the user (Section 8). So, the adversary seeks to profile the
user based on locations he visited. We use the term profil-
ing to represent the process of inferring more information
about the user through the collected location data. The
profiling can take place at multiple levels, ranging from
identifying preferences all the way to revealing the user’s
identity. Instead of modeling the adversary’s profiling
methods/attacks, we quantify the amount of information
that location data provides the adversary with. The intu-
ition behind our analysis of the profiling threat is that the
more descriptive the app’s histogram of the actual user’s
mobility pattern, the higher the threat is.

6.2 Privacy Metrics
Table 3 summarizes the set of metrics that we utilize to
quantify the privacy threats that each app poses from its
location access. The simplest metric is the fraction of the
users’ PoIs the app can identify [15]. We evaluate this
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Table 3: The metrics used for evaluating the location pri-
vacy threats.

Metric Description

PoItotal Fraction of the user’s PoIs
PoIpart Fraction of the user’s infrequently visited PoIs

Pro fcont
Distance between the user’s histogram and mobility pro-
file

Pro fbin χ2 test of the user’s histogram fitting the mobility profile

metric by looking at the apps’ actual collected location
traces, rather than a downsampled location trace. We will
henceforth refer to this metric as PoItotal .

We also consider a variant of the metric (referred to as
PoIpart ) as the portion of the sensitive PoIs that the apps
might identify. We define the sensitive PoIs as those that
have a very low probability of being visited. These PoIs
will exhibit abnormalities in the user’s behavior. Re-
search results in psychology [19, 21] indicated that peo-
ple regard deviant (abnormal) behavior as being more
private and sensitive. Places that an individual might
visit that are not part of his regular patterns might leak a
lot of information and are thus more sensitive in nature.

The histogram, as we mentioned before, is a sample
of the user’s mobility pattern. The second aspect of the
profiling is quantifying how descriptive of the user’s mo-
bility pattern (original distribution) the app’s histogram
(sample) is.

For the purpose of our analysis and the privacy-
preserving tool we propose later, we need two types of
metrics. The first is a continuous metric, Pro fcont , that
quantifies the profiling threat as the distance between
the original distribution (mobility profile) and the sam-
ple (app’s histogram). The second is a binary metric,
Pro fbin, that indicates whether a threat exists or not.

For Pro fcont , we use the KL-divergence [27] as a mea-
sure of the difference (in bits) between the histogram (H)
and the user’s mobility pattern. The K-L divergence is
given by DKL(H‖p) = ∑|UPl |

i=1 H(i) ln H(i)
pi

, where H(i) is
the probability of the user visiting place pli based on the
histogram, while pi is the probability of the user visit-
ing that place based on his mobility profile. The lower
(higher) the value of Pro fcont , the higher (lower) the
threat will be since the distance between the histogram
and mobility pattern will be smaller (larger).

Pro fcont is not useful in identifying histograms that
pose privacy threats. There is no intuitive way by which a
threshold can separate values that pose threats and those
not posing any threat. So, we need a criterion indicat-
ing whether or not a threat exists based on the app’s his-
togram. We use Pearson’s Chi-square goodness of fit
test to meet this need. This test indicates if the observed
sample differs from the original (theoretical) distribution.

Specifically, it checks if the null hypothesis of the sample
originating from an original distribution can be accepted
or not.

The test statistic, in our context, is χ2 =

∑|UPl |
i=1

(cpli−Ei)
2

Ei
where Ei = N.pi is the expected

number of visits to the place pli. The statistic converges
to a Chi-squared distribution with |UPl | − 1 degrees
of freedom when the null hypothesis holds. The test
yields a p-value which if smaller than the significance
level (α) then the null hypothesis can be rejected
(Pro fbin = 0—no threat), else Pro fbin = 1, where null
hypothesis can’t be rejected, indicating the existence of
a threat. In Sections 7 and 8, we employ the widely-used
value of 0.05 as the significance level.

A&A libraries: can aggregate location information
from the different apps in which they are packed and al-
lowed to access location. We can thus view the histogram
pertaining to an A&A library as the aggregate of the his-
tograms of the apps in which the library is packed. We
evaluate the same metrics for the aggregated histogram.

For the case of PoItotal and PoIpart metric, the aggre-
gate histogram will be representative of the threat posed
by the libraries. As for Pro fcont and Pro fbin, we consider
the aggregate histogram as well as the individual apps’
histograms. The threat per library is the highest of that
of the aggregate and individual histograms. The privacy
threat posed by the library is at least as bad as that of any
app that packs it in.

7 Anatomy

We now present the major findings from our measure-
ment campaign. We analyze the location trace of each
app and user, and hence, every data point in the subse-
quent plots belongs to an app–user combination. We con-
structed each app’s histogram by overlaying its location-
access pattern on its usage data for every user.

Privacy Threat Distribution: Fig. 5 shows the distri-
butions of PoItotal , PoIpart , and Pro fcont for both the apps
and A&A libraries. As to PoItotal , most of the apps can
identify at least 10% of the user’s PoIs; while for 20%
of the app–user combinations, apps were able to identify
most of the user’s PoIs. Apps can’t identify all of the
user’s PoIs for two reasons: (1) not all apps access the
user’s location every time, as highlighted in Section 4,
and (2) users don’t run their apps from every place they
visit. On the other hand, A&A libraries can identify more
of the user’s PoIs, with most of the libraries identifying
at least 20% of the user’s PoIs. Moreover, as the middle
plots of Fig. 5 indicate, around 30% of the apps were
able to identify some of the user’s sensitive (less fre-
quently visited) PoIs. More importantly, A&A libraries
were able to identify more of the user’s sensitive PoIs,
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Figure 5: The distributions of PoItotal (top), PoIpart (mid-
dle), and Pro fcont (bottom) for the apps (left) and A&A
libraries (right) from our datasets.

indicating the level of privacy threats they pose.
The two bottom plots of Fig. 5 show the distributions

of the profiling metric Pro fcont for the foreground apps
in the three datasets. The lower the value of the metric,
the higher the privacy threat is. There are two takeaways
from these two plots. First, apps do pose significant pri-
vacy threats; the distance between the apps’ histogram
and the user’s mobility pattern is less than 1 bit in 40%
of the app–user combinations for the three datasets. The
second observation has to do with the threat posed by
A&A libraries. It is clear from the comparison of the
left and right plots that these libraries pose considerably
higher threats. In more than 80% of user–library com-
binations, the distance between the observed histograms
and the user’s mobility profile is less than 1 bit.

Apps tend to even pose higher identification threats.
As evident from Fig. 5, some apps can identify a rela-
tively minor portion of the user’s mobility which might
not be sufficient to fully profile the user. Nevertheless,
the portion of PoIs tend to be those users frequently
visit (e.g., home and work) which may suffice to iden-
tify them [18, 25, 41]. This might not be a serious is-
sue for those apps, such as Facebook, that can learn the
user’s home and work from other methods. Other apps

0 500 1000 1500
0

0.2

0.4

0.6

0.8

1

# sessions

P
o

I to
ta

l

 

 

PhoneLab

Our Dataset

LiveLab

0 500 1000 1500
0

1

2

3

4

5

6

7

8

# sessions

P
ro

f c
o
n
t

 

 

PhoneLab

Our Dataset

LiveLab

Figure 6: The distribution of PoItotal (left) and Pro fcont
(right) vs. the number of app sessions.
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Figure 7: The distribution of Pro fcont vs. app categories.

and libraries (e.g., Angry Birds), however, might infer
the user’s identity even when he anonymously uses them
(without providing an identity or login information).

Fig. 5 also confirms our intuition in studying the lo-
cation traces from the apps’ perspective. If apps were
to uniformly sample the user’s mobility as has been as-
sumed in literature, Pro fcont should be mostly close to 0
(indicating no difference between the histogram and the
mobility pattern), which is not the case.

Privacy Threats and App-Usage: We also evaluated
the posed privacy threats vs. the app-usage rate as shown
in Fig. 6. As evident from the plots, there is little cor-
relation between the amount of posed threats and the
app-usage rate. Apps that are used more frequently, do
not necessarily pose higher threats, as user mobility, the
app’s location-access pattern, and the user’s app-usage
pattern affect the privacy threat.

With lower usage rates, both PoItotal and Pro fcont vary
significantly. Users with little diversity in their mobil-
ity pattern are likely to visit the same places more fre-
quently. Even the same user could invoke apps differ-
ently; he uses some apps mostly at unfamiliar places
(navigation apps), while using other apps more ubiqui-
tously (gaming apps), thus enabling the apps to identify
more of his PoIs.

Finally, we studied the distribution of the threat in re-
lation to app categories. Fig. 7 shows that the threat level
is fairly distributed across different app categories and
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Group D:
Spontaneous (18%)

Group E:
UI-trigerred (16%)

All Apps
 (100%)

High Threat 
(70%)

Group C:
Fine Location Needed

 (34%)

Group A:
Low Threat (30%)

Group B:
Coarse Location Needed (36%)

Figure 8: App categorization according to threat levels,
location requirements, and location-access patterns.

the same category. This confirms, again, that privacy
threats result from multiple sources and are a function
of both apps and users. Some app categories, however,
pose lower threats on average. For example, transporta-
tion apps (including navigation apps) pose lower threats
as users tend to use from unfamiliar places.

Threat Layout: Given the three datasets, we were
able to analyze the profiling threats as posed by 425
location-aware apps (Fig. 8). For this part, we use
Pro fbin metric to decide which apps pose privacy threats
and those which don’t. As apps pose different threats
depending on the users, we counted an app as posing a
threat if it poses a privacy threat to at least one user. Only
a minority of the apps (30%) pose negligible threats.

The rest of the apps pose a varying degree of pro-
filing threat. We analyzed their functionality: 52% of
such apps don’t require location with high granularity to
provide location-based functionality. For these apps, a
zipcode- or city-level granularity would be more than
enough (weather apps, games). This leaves us with
34% of the apps that require block-level or higher lo-
cation granularity to provide usable functionality. These
apps either spontaneously access location (18%) or in re-
sponse to a UI event (16%).

8 OS Controls

Having presented an anatomy for the location-privacy
threats posed by mobile apps, we are now ready to eval-
uate the effectiveness of existing OSes’ location access
controls in thwarting these threats.

Global Location Permissions: Android’s location
permissions attempt to serve two purposes: notification
and control. They notify the user that the app he is about
to install can access his location. Also, permissions aim
to control the granularity by which apps access location.
Apps with coarse-grained location permission can only
access location with both low granularity and frequency.

Fig. 9 compares the profiling threats (PoItotal and
Pro fcont ) posed by apps with fine location permissions
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Figure 9: The distribution of PoItotal (left) and Pro fcont
(right) for PhoneLab apps with different permissions.

and those with coarse location permissions. It also plots
the distribution of the privacy metrics for apps without
location permissions assuming that they accessed loca-
tion when running. While this might seems oblivious at
a first glance, we aim to compare the location-based us-
age of apps with different location permissions. This al-
lows us to study if the location permissions are effective
as a notification mechanism so that users use apps from
different places depending on the location permissions.

The apps with fine-grained location permissions ex-
hibited very similar usage pattern to those apps without
location access. The users ran the app from the same
places regardless of whether they have location permis-
sions or not. We conclude that this notification mecha-
nism does little to alert users on potential privacy threats
and has no effect on the app-usage behavior. Similar ob-
servations have also been made by others [17].

Almost a half of the apps (Table 1) that request fine-
grained location permissions are found to be able to
achieve the location-based functionality with coarser-
granularity location. This suggests that apps abuse loca-
tion permissions. If used appropriately, permissions can
be effective in thwarting the threats resulting from apps’
abuse of location access (∼40% of the apps — Group B
— according to Fig. 8).

Background Location Access: Background location
access is critical when it comes to tracking individuals. It
enables comprehensive access to the user’s mobility in-
formation including PoIs and frequent routes. Recently,
iOS 8 introduced a new location permission that allows
users to authorize location access in the background for
apps on their devices.

This permission strikes a balance between privacy and
QoS. We showed in Section 4 that apps rarely access
location in the background. Thus, this option affects a
very low portion of the user’s apps, but is effective in
terms of privacy protection, especially in thwarting track-
ing threats. We evaluated the tracking threat in terms of
tracking time per day [12, 22] for the three datasets for
foreground location access.



762 24th USENIX Security Symposium USENIX Association

0 50 100 150
0

0.2

0.4

0.6

0.8

1

Tracking (min/day)

C
D

F
Apps

 

 

PhoneLab

Our Dataset

LiveLab

10 Minutes

0 50 100 150
0

0.2

0.4

0.6

0.8

1

Tracking (min/day)

C
D

F

A&A libs

 

 

PhoneLab

Our Dataset

10 Minutes

Figure 10: The distribution of the tracking threat posed
by the foreground apps (left) and A&A libraries (right).

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Apps toBlock
Total Apps per Lib

C
D
F

PhoneLab

Our Dataset

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

Apps toBlock
Total Location−awareApps

C
D
F

PhoneLab

Our Dataset

Figure 11: The fraction of the user’s apps that must be
blocked from accessing location to protect against pri-
vacy threats posed by A&A libraries.

Fig. 10 (left) shows that in 90% of the app–user com-
binations, blocking background location access will limit
the location exposure to less than 10 minutes a day (from
foreground location access). The third-party libraries
tend to pose slightly higher tracking threats than apps
(Fig. 10 – right).

Per-app Location Permissions: To improve over
static permissions, iOS enables the user to allow/disallow
location access on a per-app basis. The users gain two
advantages from this model: (i) location access can be
blocked for a subset, but not all, of the apps, and (ii) the
apps retain some functionality even when the location
access is blocked.

Even if the user trusts an app with location access, the
app can still profile him through the places he visited
(Groups D and E in Fig. 8). To combat these threats, the
user has to either allow location access to fully exploit
the app and lose privacy, or gain his privacy while losing
the location-based app functionality. Currently, mobile
platforms offer no middle ground to balance privacy and
QoS requirements.

In Section 7, we showed that A&A libraries pose sig-
nificant threats that users are completely unaware of as
they access location from more than one app. The user
can’t identify which apps he must disallow to access lo-
cation in order to mitigate threats from third-party li-
braries. Fig. 11 shows the portion of the user’s apps

that must be disbarred from accessing location to thwart
threats from packed A&A libraries. It turns out (left plot
of Fig. 11) that in order to protect the user from privacy
threats posed by a single library, at least 50–70% of the
apps carrying the library must be disbarred from access-
ing location. This amounts to blocking location for more
than 10% of the apps installed on the device.

In conclusion, a static permission model suffers se-
rious limitations, blocking location access in the back-
ground is effective in mitigating the tracking threat but
not the profiling one, and per-app controls exhibit an un-
balanced tradeoff between privacy and QoS. Also, they
are ineffective against the threats caused by A&A li-
braries. Thus, a finer-grained location access control is
required, allowing control for each app session depend-
ing on the context. Per-session location access control
allows users to leverage better and more space in the
privacy–QoS spectrum.

9 LP-Doctor

Users can’t utilize the existing controls to achieve per-
session location-access controls for two reasons. First,
these controls are coarse-grained (providing only per-app
controls at best). For finer-level controls, the user has
to manually modify the location settings before launch-
ing each app, which is quite cumbersome and annoying.
Second, even if the user can easily change these settings,
making an informed decision is a different story. There-
fore, we propose LP-Doctor that helps users utilize the
existing OS controls to provide location-access control
on a per-session basis.

9.1 Design
LP-Doctor trusts the underlying OS and its associated
apps; it targets user-level apps accessing location while
running in the foreground, as we found that most apps
don’t access location in the background. LP-Doctor

focuses on the apps with fine location permissions as
they could pose higher threats. LP-Doctor automat-
ically coarsens location for apps requesting coarse lo-
cation permissions to ensure a commensurate privacy-
protection level.

The main operation of LP-Doctor consists of two
parts. The first involves the user-transparent operations
described below, while the second includes the interac-
tions with the user described in Section 9.2.

We bundled LP-Doctor with CyanogenMod’s app
launcher.2 It runs as a background service, intercepts
app-launch events, decides on the appropriate actions,
performs these actions, and then instructs the app to
launch. Fig. 12 shows the high-level execution flow of

2Source code: https://github.com/kmfawaz/LP-Doctor.
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Figure 12: The execution flow of LP-Doctor when a
location-aware app launches.

LP-Doctor. Next, we elaborate on LP-Doctor’s com-
ponents and their interactions.

App Session Manager: is responsible for monitoring
app launch and exit events. LP-Doctor needs to inter-
cept app-launch events to anonymize location.

Fortunately, Android (recently iOS as well) allow for
developing custom app launchers. Users can download
and install these launchers from the app store which will,
in turn, be responsible for listening to the user’s events
and executing the apps. We instrumented Cyanogen-
Mod’s app launcher (available as open source and under
Apache 2 license) to intercept app launch events.

Particularly, before the app launcher instructs the app
to execute, we stop the execution, save the state, and send
an intent to LP-Doctor’s background service (step 1 in
Fig. 12). LP-Doctor takes a set of actions and sends an
intent to the app launcher, signaling the app can launch
(steps 2 and 3 in Fig. 12). The app launcher then restores
the saved state and proceeds with execution of the app
(step 4 in Fig. 12). In Section 9.4, we will report the
additional delay incurred by this operation.

In the background, LP-Doctor frequently polls (once
every 10s) the current foreground app to detect if
the app is still running. For this purpose, it uses
getRecentTasks on older versions of Android and
AppUsageStats class for Android L. When an app is no
longer running in the foreground, LP-Doctor executes a
set of maintenance operations to be described later (steps
5 and 6 in Fig. 12).

Policy Manager: fetches the privacy policy for the
currently visited place and the launched app as shown in
Fig. 13.

At installation time, the user specifies a privacy policy
to be applied for the app. We call this the per-app pol-
icy which specifies three possible actions: block, allow,
and protect. If the per-app policy indicates privacy pro-

Per app 
policy

Allow location

Protect location

Block location

Per-
place 1

Per-
place 2

Block location

Protect location

Block location

Protect location

Figure 13: The policy hierarchy of LP-Doctor.
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Figure 14: The threat analyzer’s decision diagram.

tection, LP-Doctor asks the user to specify a per-place
policy for the app. The per-place policy indicates the pol-
icy that LP-Doctor must follow when the app launches
from a particular place. The policy manager passes the
app’s policy and the current place to the threat analyzer.

Place Detector & Mobility Manager: The place de-
tector monitors the user’s actual location, and applies
online clustering to extract the spatio-temporal clusters
which represent places that the users visit. Whenever the
user changes the place he is visiting, the place detector
module instructs the mobility manager to update the mo-
bility profile of the user as defined in Section 6.

Histogram Manager: maintains the histogram of the
places visited as observed by each app. It stores the his-
tograms in an SQLite table that contains the mapping
of each app–place combination to a number of observa-
tions. The threat analyzer module consults the histogram
manager to obtain two histograms whenever an app is
about to launch. The first is the current histogram of the
app (based on previous app events) which we refer to as
the “before” histogram. While the second one is the po-
tential histogram if the app were to access location from
the currently visiting place; we call this histogram as the
“after” one.

Threat Analyzer: decides on the course of action re-
garding apps associated with a protect policy. It basically
performs the decision diagram depicted in Fig. 14 to de-
cide whether to release the location or add noise.

The threat analyzer determines whether the “after”
histogram leaks more information than the old one
through computing Pro fcont for each histogram. If
Pro fcont increases LP-Doctor decides to release the lo-
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cation to the app. On the other hand, if Pro fcont de-
creases, LP-Doctor uses Pro fbin to decide if the “after”
histogram fits the user’s mobility pattern and whether to
release or anonymize location.

Pro fbin depends on the significance level, α , as we
specified in Section 6. In LP-Doctor, α is a function of
the privacy level chosen by the user. LP-Doctor recog-
nizes three privacy levels: low, medium, and high. Low
privacy corresponds to α = 0.1; medium privacy corre-
sponds to α = 0.05; and high privacy protection corre-
sponds to the most conservative α = 0.01.

The procedure depicted in Fig. 14 won’t hide places
that the user seldom visits but are sensitive to him. The
per-place policies allow the user to set a privacy policy
for each visited place, effectively allowing him to con-
trol the places he wants revealed to the service providers.
Also, LP-Doctor can be extended to support other pri-
vacy criteria that try to achieve optimal privacy by per-
turbing location data [9, 37].

Anonymization Actuator: receives an action to per-
form from the threat analyzer. If the action is to pro-
tect the current location, the actuator computes a fake
location by adding Laplacian noise [3] to ensure loca-
tion indistinguishability. The privacy level determines
the amount of noise to be added on top of the current lo-
cation. One the other hand, if the action is to block, the
actuator computes the fake location of < 0,0 >.

As specified by Andrés et al. [3], repetitive engage-
ment of Laplacian noise mechanism at the same loca-
tion leaks information about the location. To counter this
threat, LP-Doctor computes the anonymized location
once per location and protection-level combination, and
saves it. When the user visits the same location again,
LP-Doctor employs the same anonymized location that
was previously computed to prevent LP-Doctor from re-
computing a fake location for the same place.

After computing/fetching the fake location, the actua-
tor module will engage the mock location provider. The
mock location provider is an Android developer feature
to modify the location provided to the app from Android.
It requires no change in the OS or the app. The actuator
then displays a non-intrusive notification to the user, and
signals the session manager to start the app.

End-of-Session Maintenance: When the app finishes
execution, the actuator disengages the mock location
provider, if engaged. The location-access detector will
then detect if the app accessed location to update the
app’s histogram accordingly. The location access de-
tector performs a “dumpsys location” to exactly detect
if the app accessed location or not while running. If it
did access location, the location-access detector module
updates the app’s histogram (increment the number of
visits from the current location). It is worth noting that
LP-Doctor treats sessions of the same app within 1 min

App will belong to 
set appallow 

App will belong to 
set appblock 

App will belong to 
set appprotect 

Decides the value of α 
and noise level 

Figure 15: The installation menu.

as the same app session.

9.2 User Interactions
LP-Doctor interacts with the user to communicate
privacy-protection status. It also enables him to pop-
ulate the privacy profiles for different apps and places.
As will be evident below, the main philosophy guiding
LP-Doctor’s design is to minimize the user interactions,
especially intrusive ones. We satisfy two design princi-
ples proposed by Felt et al. [13] that should guide the
design of a permission granting UI. The first principle
is to conserve user attention by not issuing excessively
repetitive prompts. The second is to avoid interrupting
the user’s primary tasks.

Bootstrapping Menu: The first communication in-
stance with LP-Doctor takes place upon its installation.
LP-Doctor will ask the user to set general configura-
tion options. These options include (1) alerting the user
when visiting a new location to set the per-place poli-
cies and (2) invoking protection for A&A libraries. The
menu will also instruct the user to enable the mock lo-
cation provider and grant the app “DUMP” permissions
through ADB. This interaction takes place only once per
LP-Doctor’s lifetime.

Installation Menu: LP-Doctor prompts the user
when a new (non-system and location-aware) app is in-
stalled. The menu enables the user to set the per-app
profiles. Fig. 15 shows the displayed menu when an app
(“uber” in this case) has finished installation. The user
can choose one of three options which populates three
app sets: appallow, appblock, and appprotect .

Logically, this menu resembles the per-app location
settings for iOS, except that it provides users with an
additional option of privacy protection. The protection
option acts as a middle-ground between completely al-
lowing and blocking location access to the app. The user
will interact with this menu; only once per app, and only
for non-system apps that requests the fine location per-
mission. Based on our PhoneLab dataset, we estimate
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Figure 16: LP-Doctor’s notification when adding noise.

that the user will be issued this menu on average for one
app he installs per five installed apps on the device.

Per-Place Prompts: LP-Doctor relies on the user
to decide its actions in different visited places, if he
agrees to get prompted when visiting new places. Specif-
ically, whenever the user visits a new place, LP-Doctor
prompts him to decide on actions to perform when run-
ning apps that the user chose to protect. We call these
per-place policies (Fig. 13).

The per-place policies apply for apps belonging to the
set appprotect . The user has the option to specify whether
to block location access completely, or apply protec-
tion. Applying protection will proceed to execute the
operations of the threat analyzer as defined in Fig. 14.
LP-Doctor allows the user to modify the policies for
each app–place combination.
LP-Doctor issues this prompt only when the user

launched an app of the set appprotect from a new loca-
tion. From our PhoneLab dataset, we estimate that such
a prompt will be issued to the user at most once a week.

Notifications: As specified earlier, the threat actuator
displays a non-intrusive notification (Fig. 16) to the user
to inform him about the action being taken.

If the action is to allow location access (because the
policy dictates so or there is no threat), LP-Doctor no-
tifies the user that there is no action being taken. The
user has the option to invoke privacy protection for the
current app session. If the user instructs LP-Doctor to
add noise for a single app over two consecutive sessions
from the same place, LP-Doctor will create a per-place
policy for the app and move it to the appprotect set if it
were part of appallow.

On the other hand, if LP-Doctor decides to add
noise to location or block it, it will notify the user of it
(Fig. 16). The notification includes two actions that the
user can make: remove or reduce noise. If the user over-
rides LP-Doctor’s actions for two consecutive sessions
of an app from the same place, LP-Doctor remembers
the decision for future reuse.
LP-Doctor leverages the user’s behavior to learn the

protection level that achieves a favorable privacy–utility
tradeoff. Since the mapping between the chosen pri-
vacy and noise levels is independent of the running
app, the functionality of certain apps might be affected.
LP-Doctor allows the user to fine-tune this noise level
and then remembers his preference for future reuse.

Reducing the noise level will involve recomputing the
fake location with a lower noise value (if no such location
has been computed before). One could show that leak of
information (from lowering noise level successively) will
be capped by that corresponding to the fake location with
the lowest noise level released to the service provider.

Using our own and PhoneLab’s datasets, we estimate
LP-Doctor’s need to issue such non-intrusive notifica-
tion (indicating protection taking place) for only 12% of
the sessions on average for each app.

9.3 Limitations
The user-level nature of LP-Doctor introduces some
limitations related to certain classes of apps. First,
LP-Doctor, like other mechanisms, is inapplicable to
apps that require accurate location access such as navi-
gation apps for elongated period of times.

Second, LP-Doctor can’t protect the user against apps
utilizing unofficial location sources such as “WeChat.”
Such apps might scan for nearby WiFi access points and
then use scan results to compute location. LP-Doctor

can’t anonymize location fed to such apps, though it can
warn the user of the privacy threat incurred if the user
is to invoke the location-based functionality. Also, it can
offer the user the option to turn off the WiFi on the device
to prevent accurate localization by the app when running.

Finally, LP-Doctor doesn’t apply privacy protection
to the apps continuously accessing location while run-
ning in the background. Constantly invoking the mock
location provider affects the usability of apps that require
fresh and accurate location when running. Fortunately,
we found that the majority of the apps don’t access lo-
cation in the background (Section 4). Nevertheless, this
still highlights the need for OS support to control apps’
location access in the background (like the one that iOS
currently provides).

9.4 Evaluation
We now evaluate and report LP-Doctor’s overhead on
performance, Quality of Service (QoS), and usability.

9.4.1 Performance

LP-Doctor performs a set of operations which delay the
app launching. We evaluate this delay on two devices:
Samsung Galaxy S4 running Android 4.2.2, and Sam-
sung Galaxy S5 running Android 4.4.4. We recorded
the delay in launching a set of apps while running
LP-Doctor. We partitioned those apps into two sets.
The first (set 1) includes the apps which LP-Doctor

doesn’t target, while the second (set 2) includes non-
system apps that request fine location permissions.

Fig. 17 plots the delay distribution for both devices
and for the two app sets. Clearly, apps that belong to the
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Figure 17: The app launch delay caused by LP-Doctor.

first set experience very minimal delay, varying between
1 and 3ms. The second set of apps experience longer de-
lays without exceeding 50ms for both devices. We also
tested LP-Doctor’s impact on the battery by recording
the battery depletion time when LP-Doctor was running
in the background and when it was not. We found that
LP-Doctor has less than 10% energy overhead (mea-
sured as the difference in battery depletion time). Be-
sides, LP-Doctor runs the same logic as our PhoneLab
survey app in the background which 95 users ran over 4
months and reported no performance or battery issues.

9.4.2 User Study
To evaluate the usability of LP-Doctor and its effect on
QoS, we conducted a user study over Amazon Mechan-
ical Turk. We designed two Human Intelligence Tasks
(HITs), each evaluating a different representative testing
scenario of LP-Doctor.

Apps that provide location-based services (LBSes)
fall into several categories. On one dimension, an app
can pull information to the user based on the current
location, or it can push the user’s current location to
other users. On another dimension, the app can access
the user’s location continuously or sporadically to pro-
vide the LBS. One can then categorize apps as: pull-
sporadic (e.g., weather, Yelp, etc.), pull-continuous (e.g.,
Google Now), push-sporadic (e.g., geo-tagging, Face-
book check-in, etc. ), or push-continuous (e.g., Google
Latitude). As LP-Doctor isn’t effective against apps
continuously accessing the user’s location (which are a
minority to start with), we focus on studying the user’s
experience of LP-Doctor while using Yelp, as a repre-
sentative example of pull-sporadic apps, and Facebook,
as representative example of push-sporadic apps.

We recruited 120 participants for the Yelp HIT and an-
other 122 for the Facebook HIT3; we had 227 unique
participants in total. On average, each participant com-
pleted the HIT in 20min and was compensated $3 for his
response. We didn’t ask the users for any personal infor-
mation and nor did LP-Doctor . We limited the study to
Android users.

Of the participants: 28% were females vs. 72% males;

3https://kabru.eecs.umich.edu/wordpress/wp-

content/uploads/lp-doctor-survey-fb.pdf

32% had high school education, 47% with BS degree or
equivalent; and 37% are older than 30 years. Also, 52%
of the participants reported that they have taken steps to
mitigate privacy threats. Interestingly, 93% of the par-
ticipants didn’t have mock locations enabled on their de-
vices indicating the participants are not tech-savvy.

We constructed the study with a set of connected
tasks. In every task, the online form displays a set
of instructions/questions that the participant user must
follow/answer. After successfully completing the task,
LP-Doctor displays a special code that the participant
must input to proceed to the next task. In what follows,
we describe the various tasks that we asked users to per-
form and how they responded.

Installing and configuring LP-Doctor: The par-
ticipants’ first task was to download LP-Doctor from
Google Play and enable mock locations. We asked the
users to rate how difficult it was to enable mock loca-
tions on the scale of 1 (easy) to 5 (difficult). 83% of the
participants answered with a value of 1 or 2 implying that
LP-Doctor is easy to install.

Installation menu: In their second task, the partici-
pants interacted with the installation menu (Fig. 15). The
users had to install (re-install if already installed) either
Yelp or Facebook. Just when either app completes in-
stallation, LP-Doctor presents the user with the menu
to input the privacy options. The participants reported
a positive experience with this menu; 83% reported it
was easy to use (rated 1 or 2 on a scale of 1 (easy) to
5 (hard)); 86% said it was informative; 83% thought it
provides them with more control than Android’s permis-
sion; 79% answered it is useful (rated 1 or 2 on a scale
of 1 (useful) to 5 (useless)); and 74% would like to have
such menu appearing whenever they install a location-
aware app (12% answered with not sure).

Impact on QoS: The survey version of LP-Doctor
adds noise on top of the user’s location regardless of
his previous choice. This allowed us to test the im-
pact of adding noise (Laplacian with 1000m radius) to
the location accessed by either Yelp or Facebook. We
didn’t ask the participants to assess the effect of location
anonymization on the QoS directly. Rather, we asked
the Yelp respondents to report their satisfaction with the
list of restaurants returned by the app. While we asked
the Facebook respondents to indicate whether the list of
places to check-in from is relevant to them. The partic-
ipants in the first HIT indicated that Yelp ran normally
(82%), the restaurant search results were relevant (73%),
the user experience didn’t change (76%), and Yelp need
not access the user’s accurate location (67%).

The Facebook HIT participants exhibited similar re-
sults: Facebook ran normally (80%), the list of places
to check-in was relevant (60%), user experience didn’t
change (80%), and Facebook need not access the user’s
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Figure 18: The distribution of percentage of sessions
where apps maintain QoS for apps (left) and A&A li-
braries (right).

accurate location (80%).
Fig. 18 shows the percentage of sessions (for all app–

user combinations) that won’t experience any noise ad-
dition according to our datasets. It is obvious that the
percentage of sessions with potential loss in QoS (when
LP-Doctor adds noise) is minimal (less than 20%, a bit
higher if the user opts for A&A libraries protection). Our
user study shows that more than 70% of the users won’t
experience loss in QoS in these sessions. For those users
who do face loss in QoS, LP-Doctor provides them with
the option of adjusting the noise level at runtime through
the notifications.

Notifications: In the final task, we asked the partic-
ipants to test the noise reduction feature that allows for
a personalized privacy–utility trade-off. After they re-
duced the noise level, they would invoke the location-
based feature in both Yelp and Facebook and check if the
results were improved. Indeed, most of the participants
who reported loss in QoS reported the Yelp’s search re-
sults (64%) and Facebook’s check-in places (70%) im-
proved after reducing the noise.

The participants also indicated the the noise reduction
feature is easy to use (75%). 86% of the participants
won’t mind having this feature whenever they launch a
location-aware app.

Post-study questions: As we couldn’t control the per-
place prompts given our study design, we asked the par-
ticipants for their opinion about being prompted when
visiting new places (per-place prompts). Only 54% an-
swered they would prefer prompted, 37% answered neg-
atively, and the rest answered “I am not sure.” These re-
sponses are consistent with our design decision; the user
has to approve per-place prompts when initially config-
uring LP-Doctor as they are not automatically enabled.

Also, 82% of the participants felt comfortable that
Facebook (80%) and Yelp (85%) didn’t access their ac-
curate location. Finally, 77% of the participants an-
swered “Yes” when asked about installing LP-Doctor

or other tool to protect their location privacy. Only 11%

answered “No” and the rest answered with “I am not
sure.” This result comes at an improvement over the 52%
who initially said they took steps in the past to address
location-privacy threat.

In summary, we conducted one of the few studies
(e.g., [8]) that evaluate a location-privacy protection
mechanism in the wild. We showed that location-privacy
protection is feasible in practice where a balance between
QoS, usability, and privacy could be achieved.

10 Conclusion

In this paper, we posed a question about the effective-
ness of OS-based location-access controls and whether
they can be improved. To answer this question, we
conducted a location-collection campaign that consid-
ers location-privacy threats from the perspective of mo-
bile apps. From this campaign, we observed, modeled,
and categorized profiling as being the prominent privacy
threat from location access for both apps and A&A li-
braries. We concluded that controlling location access
per session is needed to balance between loss in QoS and
privacy protection. As existing OS controls don’t read-
ily provide such functionality, we proposed LP-Doctor,
a user-level tool that helps the user better utilize existing
OS-based location-access controls. LP-Doctor is shown
to be able to mitigate privacy threats from both apps and
A&A libraries with little effect on usability and QoS. In
future, we would like to test LP-Doctor in the wild and
use it to explore the dynamics that affect users’ decisions
to install a location-privacy protection mechanism.
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Abstract
Usage behaviors of different smartphone apps capture
different views of an individual’s life, and are largely in-
dependent of each other. However, in the current mobile
app ecosystem, a curious party can covertly link and ag-
gregate usage behaviors of the same user across different
apps. We refer to this as unregulated aggregation of app-
usage behaviors. In this paper, we present a fresh per-
spective of unregulated aggregation, focusing on moni-
toring, characterizing and reducing the underlying linka-
bility across apps. The cornerstone of our study is the
Dynamic Linkability Graph (DLG) which tracks app-
level linkability during runtime. We observed how DLG
evolves on real-world users and identified real-world ev-
idence of apps abusing IPCs and OS-level identifying in-
formation to establish linkability. Based on these obser-
vations, we propose a linkability-aware extension to cur-
rent mobile operating systems, called LinkDroid, which
provides runtime monitoring and mediation of linkabil-
ity across different apps. LinkDroid is a client-side
solution and compatible with the existing smartphone
ecosystem. It helps end-users “sense” this emerging
threat and provides them intuitive opt-out options.

1 Introduction

Mobile users run apps for various purposes, and exhibit
very different or even unrelated behaviors in running dif-
ferent apps. For example, a user may expose his chatting
history to WhatsApp, mobility traces to Maps, and po-
litical interests to CNN. Information about a single user,
therefore, is scattered across different apps and each app
acquires only a partial view of the user. Ideally, these
views should remain as ‘isolated islands of information’
confined within each of the different apps. In practice,
however, once the users’ behavioral information is at the
hands of the apps, it may be shared or leaked in an ar-
bitrary way without the users’ control or consent. This
makes it possible for a curious adversary to aggregate

usage behaviors of the same user across multiple apps
without his knowledge and consent, which we refer to as
unregulated aggregation of app-usage behaviors.

In the current mobile ecosystem, many parties are in-
terested in conducting unregulated aggregation, includ-
ing:

• Advertising Agencies embed ad libraries in different
apps, establishing an explicit channel of cross-app
usage aggregation. For example, Grindr is a geoso-
cial app geared towards gay users, and BabyBump
is a social network for expecting parents. Both apps
include the same advertising library, MoPub, which
can aggregate their information and recommend re-
lated ads, such as on gay parenting books. However,
users may not want this type of unsolicited aggre-
gation, especially across sensitive aspects of their
lives.

• Surveillance Agencies monitor all aspects of the
population for various precautionary purposes,
some of which may cross the ‘red line’ of individu-
als’ privacy. It has been widely publicized that NSA
and GCHQ are conducting public surveillance by
aggregating information leaked via mobile apps, in-
cluding popular ones such as Angry Birds [3]. A
recent study [26] shows that a similar adversary is
able to attribute up to 50% of the mobile traffic to
the “monitored” users, and extract detailed personal
interests, such as political views and sexual orienta-
tions.

• IT Companies in the mobile industry frequently
acquire other app companies, harvesting vast user
base and data. Yahoo alone acquired more than 10
mobile app companies in 2013, with Facebook and
Google following closely behind [1]. These acquisi-
tions allow an IT company to link and aggregate be-
haviors of the same user from multiple apps without
the user’s consent. Moreover, if the acquiring com-
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pany (such as Facebook) already knows the users’
real identities, usage behaviors of all the apps it ac-
quires become identifiable.

These scenarios of unregulated aggregation are realis-
tic, financially motivated, and are only becoming more
prevalent in the foreseeable future. In spite of this grave
privacy threat, the process of unregulated aggregation is
unobservable and works as a black box — no one knows
what information has actually been aggregated and what
really happens in the cloud. Users, therefore, are largely
unaware of this threat and have no opt-out options. Exist-
ing proposals disallow apps from collecting user behav-
iors and shift part of the app logic (e.g., personalization)
to the mobile OS or trusted cloud providers [7, 17]. This,
albeit effective, is against the incentive of app developers
and requires construction of a new ecosystem. There-
fore, there is an urgent need for a practical solution that
is compatible with the existing mobile ecosystem.

In this paper, we propose a new way of addressing the
unregulated aggregation problem by monitoring, charac-
terizing and reducing the underlying linkability across
apps. Two apps are linkable if they can associate their
usage behaviors of the same user. This linkability is the
prerequisite of conducting unregulated aggregation and
represents an upper-bound of the potential threat. Re-
searchers studied linkability under domain-specific sce-
narios, such as on movie reviews [19] and social net-
works [16]. In contrast, we focus on the linkability that
is ubiquitous in the mobile ecosystem and introduced
by domain-independent factors, such as device IDs, ac-
count numbers, location and inter-app communications.
Specifically, we model mobile apps on the same device
as a Dynamic Linkability Graph (DLG) which moni-
tors apps’ access to OS-level identifying information and
cross-app communication channels. DLG quantifies the
potential threat of unregulated aggregation and allows us
to monitor the linkability across apps during runtime.

We implemented DLG as an Android extension and
observed how it evolved on 13 users during a period of
47 days. The results reveal an alarming view of the app-
level linkability in the wild. Two random apps (installed
by the same user) are linkable with a probability of 0.81.
Specifically, 86% of the apps a user installed are directly
linkable to the Facebook app, namely, his real iden-
tity. In particular, we found that apps frequently abuse
OS-level information and inter-process communication
(IPC) channels in unexpected ways, establishing the link-
ability that is unrelated to app functionalities. For exam-
ple, we found that many of the apps requesting account
information collect all of the user’s accounts even when
they only need one to function correctly. We also no-
ticed that some advertising agencies, such as Admob and
Facebook, use IPCs to share user identifiers with other

apps, completely bypassing system permissions and con-
trols. Furthermore, we identified cases when different
apps write and read the same persistent file in shared stor-
age to exchange user identifiers. The end-users should
be promptly warned about these unexpected behaviors to
reduce unnecessary linkability.

Based on the above observations, we propose
LinkDroid, a linkability-aware extension to Android
which provides runtime monitoring and mediation of the
linkability across apps. LinkDroid introduces a new di-
mension to privacy protection on smartphones. Instead
of checking whether some app behavior poses direct pri-
vacy threat, LinkDroidwarns users about how it implic-
itly affects the linkability across apps. Practicality is a
main driver for the design of LinkDroid. It extends the
widely-deployed (both runtime and install-time) permis-
sion model on the mobile OS that end-users are already
familiar with. Specifically, LinkDroid provides the fol-
lowing privacy-enhancing features:

• Install-Time Obfuscation: LinkDroid obfuscates
device-specific identifiers that have no influence on
most app functionalities, such as IMEI, Android ID,
etc. We perform this during install-time to maintain
the consistency of these identifiers within each app.

• Runtime Linkability Monitoring: When an app
tries to perform a certain action that introduces ad-
ditional linkability, users will receive a just-in-time
prompt and an intuitive risk indicator. Users can
then exercise runtime access control and choose any
of the opt-out options provided by LinkDroid.

• Unlinkable Mode: The user can start an app in un-
linkable mode. This will create a new instance of
the app which is unlinkable with other apps. All
actions that may establish a direct association with
other apps will be denied by default. This way, users
can enjoy finer-grained privacy protection, unlink-
ing only a set of app sessions.

We evaluated LinkDroid on the same set of 13 users
as in our measurement and found that LinkDroid re-
duces the cross-app linkability substantially with little
loss of app performance. The probability of two random
apps being linkable is reduced from 0.81 to 0.21, and the
percentage of apps that are directly linkable to Facebook
drops from 86% to 18%. On average, a user only needs
to handle 1.06 prompts per day in the 47-day experiments
and the performance overhead is marginal.

This paper makes the following contributions:

1. Introduction of a novel perspective of defending
against unregulated aggregation by addressing the
underlying linkability across apps (Section 2).
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2. Proposal of the Dynamic Linkability Graph (DLG)
which enables runtime monitoring of cross-app
linkability (Section 3).

3. Identification of real-world evidence of how apps
abuse IPCs and OS-level information to establish
linkability across apps (Section 4).

4. Addition of a new dimension to access control
based on the runtime linkability, and development
of a practical countermeasure, LinkDroid, to de-
fend against unregulated aggregation (Section 5).

2 Privacy Threats: A New Perspective

In this section, we will first introduce our threat model
of unregulated aggregation and then propose a novel per-
spective of addressing it by monitoring, characterizing
and reducing the linkability across apps. We will also
summarize the explicit/implicit sources of linkability in
the current mobile app ecosystem.

2.1 Threat Model

In this paper, we target unregulated aggregation across
app-usage behaviors, i.e., when an adversary aggre-
gates usage behaviors across multiple functionally-
independent apps without users’ knowledge or consent.
In our threat model, an adversary can be any party that
collects information from multiple apps or controls mul-
tiple apps, such as a widely-adopted advertising agency,
an IT company in charge of multiple authentic apps, or a
set of malicious colluding apps. We assume the mobile
operating system and network operators are trustworthy
and will not collude with the adversary.

2.2 Linkability: A New Perspective

There are many parties interested in conducting unregu-
lated aggregation across apps. In practice, however, this
process is unobservable and works as a black box — no
one knows what information an adversary has collected
and whether it has been aggregated in the cloud. Ex-
isting studies propose to disable mobile apps from col-
lecting usage behaviors and shift part of the app logic
to trusted cloud providers or mobile OS [7, 17]. These
solutions, albeit effective, require building a new ecosys-
tem and greatly restrict functionalities of the apps. Here,
we address unregulated aggregation from a very differ-
ent angle by monitoring, characterizing and reducing the
underlying linkability across mobile apps. Two apps
are linkable if they can associate usage behaviors of the
same user. This linkability is the prerequisite of conduct-
ing unregulated aggregation, and represents an “upper-
bound” of the potential threat. In the current mobile

Type 2013-3 2013-10 2014-8 2015-1
Android ID 80% 84% 87% 91%

IMEI 61% 64% 65% 68%
MAC 28% 42% 51% 55%

Account 24% 29% 32% 35%
Contacts 21% 26% 33% 37%

Table 1: Apps are increasingly interested in requesting persis-
tent and consistent identifying information during the past few
years.

app ecosystem, there are various sources of linkability
that an adversary can exploit. Researchers have stud-
ied linkability under several domain-specific scenarios,
such as movie reviews [19] and social networks [16].
Here, we focus on the linkability that is ubiquitous and
domain-independent. Specifically, we group its con-
tributing sources into the following two fundamental cat-
egories.

OS-Level Information The mobile OS provides apps
ubiquitous access to various system information, many
of which can be used as consistent user identifiers across
apps. These identifiers can be device-specific, such as
MAC address and IMEI, user-specific, such as phone
number or account number, or context-based, such as lo-
cation or IP clusters. We conducted a longitudinal mea-
surement study from March 2013 to January 2015, on the
top 100 free Android apps in each category. We excluded
the apps that are rarely downloaded, and considered only
those with more than 1 million downloads. We found
that apps are getting increasingly interested in request-
ing persistent and consistent identifying information, as
shown in Table 1. By January 2015, 96% of top free apps
request both the Internet access and at least one persis-
tent identifying information. These identifying vectors,
either explicit or implicit, allow two apps to link their
knowledge of the same user at a remote side without even
trying to bypass on-device isolation of the mobile OS.

Inter-Process Communications The mobile OS pro-
vides explicit Inter-Process Communication (IPC) chan-
nels, allowing apps to communicate with each other and
perform certain tasks, such as export a location from
Browser and open it with Maps. Since there is no exist-
ing control on IPC, colluding apps can exchange iden-
tifying information of the user and establish linkabil-
ity covertly, without the user’s knowledge. They can
even synchronize and agree on a randomly-generated se-
quence as a custom user identifier, without accessing any
system resource or permission. This problem gets more
complex since apps can also conduct IPC implicitly by
reading and writing shared persistent storage (SD card
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Figure 1: An illustrative example of DLG. Edges of different
types represent linkability introduced by different sources.

and databases). As we will show in Section 4, these ex-
ploitations are not hypothetical and have already been
utilized by real-world apps.

3 Dynamic Linkability Graph

The cornerstone of our work is the Dynamic Linkability
Graph (DLG). It enables us to monitor app-level linka-
bility during runtime and quantify the linkability intro-
duced by different contributing sources. In what follows,
we will elaborate on the definition of DLG, the linka-
bility sources it considers, and describe how it can be
implemented as an extension of Android.

3.1 Basic Concepts

We model linkability across different apps on the same
device as an undirected graph, which is called the Dy-
namic Linkability Graph (DLG). Nodes in DLG repre-
sent apps and edges represent linkability introduced by
different contributing sources. DLG monitors the linka-
bility during runtime by tracking the apps’ access to var-
ious OS-level information and IPC channels. An edge
exists between two apps if they accessed the same identi-
fying information or engaged in an IPC. Fig. 15 presents
an illustrative example of DLG.

DLG presents a comprehensive view of the linkability
across all installed apps. An individual adversary, how-
ever, may only observe a subgraph of the DLG. For ex-
ample, an advertising agency only controls those apps
(nodes) that incorporate the same advertising library; an
IT corporate only controls those apps (nodes) it has al-
ready acquired. In the rest of the paper, we focus on the
generalized case (the entire DLG) instead of considering
each adversary individually (subgraphs of DLG).

3.2 Definitions and Metrics

Linkable Two apps a and b are linkable if there is a
path between them. In Fig. 15, app A and F are linkable,
app A and H are not linkable.

Gap is defined as the number of nodes (excluding the
end nodes) on the shortest path between two linkable
apps a and b. It represents how many additional apps
an adversary needs to control in order to link informa-
tion across a and b. For example, in Fig. 15, gapA,D = 0,
gapA,E = 1, gapA,G = 2.

Linking Ratio (LR) of an app is defined as the number
of apps it is linkable to, divided by the number of all
installed apps. LR ranges from 0 to 1 and characterizes
to what extent an app is linkable to others. In DLG, LR
equals to the size of the Largest Connected Component
(LCC) this app resides in, excluding itself, divided by the
size of the entire graph, also excluding itself:

LRa =
size(LCCa)−1
size(DLG)−1

Linking Effort (LE) of an app is defined as the Link-
ing Effort (LE) of an app as the average gap between
it and all the apps it is linkable to. LEa characterizes
the difficulty in establishing linkability with a. LEa = 0
means that to link information from app a and any ran-
dom app it is linkable to, an adversary does not need ad-
ditional information from a third app.

LEa = ∑
b∈LCCa

b �=a

gapa,b

size(LCCa)−1

LR and LE describe two orthogonal views of the
DLG. In general, LR represents the quantity of links,
describing the percentage of all installed apps that are
linkable to a certain app, whereas LE characterizes the
quality of links, describing the average amount of ef-
fort an adversary needs to make to link a certain app
with other apps. In Fig. 15, LRA = 6/8, LRH = 1/8;
LEA = 0+0+0+1+1+2

7−1 = 4/6, LEH = 0.

GLR and GLE Both LR and LE are defined for a sin-
gle app, and we also need two similar definitions for
the entire graph. So, we introduce Global Linking Ra-
tio (GLR) and Global Linking Effort (GLE). GLR repre-
sents the probability of two randomly selected apps be-
ing linkable, while GLE represents the number of apps
an adversary needs to control to link two random apps.

GLR = ∑
a

LRa

size(DLG)
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GLE =
1

∑a size(LCCa)− 1 ∑
b

∑
c∈LCCb

c�=b

gapb,c

In graph theory, GLE is also known as the Charac-
teristic Path Length (CPL) of a graph, which is widely
used in Social Network Analysis (SNA) to characterize
whether the network is easily negotiable or not.

3.3 Sources of Linkability

DLG maintains a dynamic view of app-level linkability
by monitoring runtime behaviors of the apps. Specif-
ically, it keeps track of apps’ access to device-specific
identifiers (IMEI, Android ID, MAC), user-specific iden-
tifiers (Phone Number, Accounts, Subscriber ID, ICC Se-
rial Number), and context-based information (IP, Nearby
APs, Location). It also monitors explicit IPC channels
(Intent, Service Binding) and implicit IPC channel (In-
direct RW, i.e., reading and writing the same file or
database). This is not an exhaustive list but covers most
standard and widely-used aggregating channels. Table 2
presents a list of all the contributing sources we consider
and the details of each source will be elaborated in Sec-
tion 3.4.

The criterion of two apps being linkable differs de-
pending on the linkability source. For consistent iden-
tifiers that are obviously unique — Android ID, IMEI,
Phone Number, MAC, Subscriber ID, Account, ICC Se-
rial Number — two apps are linkable if they both ac-
cessed the same type of identifier. For pair-wise IPCs
— intents, service bindings, and indirect RW — the two
communicating parties involved are linkable. For im-
plicit and fuzzy information, such as location, nearby
APs, and IP, there are well-known ways to establish link-
ability as well. User-specific location clusters (Points of
Interests, or PoIs) is already known to be able to uniquely
identify a user [11, 15, 29]. Therefore, an adversary can
link different apps by checking whether the location in-
formation they collected reveal the same PoIs. Here,
the PoIs are extracted using a lightweight algorithm as
used in [5, 10]. We select the top 2 PoIs as the link-
ing standard, which typically correspond to home and
work addresses. Similarly, the consistency and persis-
tence of a user’s PoIs are also reflected on its AP clusters
and frequently-used IP addresses. This property allows
us to establish linkability across apps using these fuzzy
contextual information.

3.4 DLG: A Mobile OS Extension

DLG gives us the capability to construct cross-app link-
ability from runtime behaviors of the apps. Here, we in-
troduce how it can be implemented as an extension to

Category Type Source

OS-level Info.

Device
IMEI

Android ID

MAC

Personal

Phone #

Account

Subscriber ID

ICC Serial #

Contextual
IP

Nearby APs

Location (PoIs)

IPC Channel

Explicit
Intent

Service Binding

Implicit Indirect RW

Table 2: DLG considers the linkability introduced by 10 types
of OS-level information and 3 IPC channels.

current mobile operating systems, using Android as an
illustrative example. We also considered other imple-
mentation options, such as user-level interception (Aura-
sium [28]) or dynamic OS instrumentation (Xposed
Framework [27]). The former is insecure since the exten-
sion resides in the attacker’s address space and the latter
is not comprehensive because it cannot handle the native
code of an app. However, the developer can always im-
plement a useful subset of DLG using one of these more
deployable techniques.

Android Basics Android is a Linux-based mobile OS
developed by Google. By default, each app is assigned a
different Linux uid and lives in its own sandbox. Inter-
Process Communications (IPCs) are provided across dif-
ferent sandboxes, based on the Binder protocol which is
inherently a lightweight RPC (Remote Procedure Call)
mechanism. There are four different types of compo-
nents in an Android app: Activity, Service, Content
Provider, and Broadcast Receiver. Each component rep-
resents a different way to interact with the underlying
system: Activity corresponds to a single screen support-
ing user interactions; Service runs in the background to
perform long-running operations and processing; Con-
tent Provider is responsible for managing and querying
of persistent data such as database; and Broadcast Re-
ceiver listens to system-wide broadcasts and filters those
it is interested in. Next, we describe how we instru-
ment the Android framework to monitor app’s interac-
tions with the system and each other via these compo-
nents.

Implementation Details In order to construct a DLG
in Android, we need to track apps’ access to various OS-
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Figure 3: We extend the centralized intent filter in Android (com.android.server.firewall.IntentFirewall) to intercept
all the intents across apps.

Figure 2: We instrument system services (red shaded region)
to record which app accessed which identifier using Wi-Fi ser-
vice as an example.

level information as well as IPCs between apps. Next, we
describe how we achieve this by instrumenting different
components of the Android framework.

Apps access most identifying information, such as
IMEI and MAC, by interacting with different system ser-
vices. These system services are parts of the Android
framework and have clear interfaces defined in AIDL
(Android Interface Definition Language). By instru-
menting the public functions in each service that return
persistent identifiers, we can have a timestamped record
of which app accessed what type of identifying informa-
tion via which service. Fig. 2 gives a detailed view of
where to instrument using the Wi-Fi service as an exam-
ple.

On the other hand, apps access some identifying in-
formation, such as Android ID, by querying system con-
tent providers. Android framework has a universal choke
point for all access to remote content providers — the
server-side stub class ContentProvider.Transport.
By instrumenting this class, we know which database
(uri) an app is accessing and with what parameters and
actions. Fig. 4 illustrates how an app accesses remote
Content Provider and explains which part to modify in
order to log the information we need.

Figure 4: We instrument Content Provider (shaded region) to
record which app accessed which database with what parame-
ters.

Apps can launch IPCs explicitly, using Intents.
Intent is an abstract description of an operation to
be performed. It can either be sent to a specific
target (app component), or broadcast to the entire
system. Android has a centralized filter which enforces
system-wide policies for all Intents. We extend this filter
(com.android.server.firewall.IntentFirewall)
to record and intercept all Intent communications across
apps (see Fig. 3). In addition to Intents, Android also
allows an app to communicate explicitly with another
app by binding to one of the services it exports. Once
the binding is established, the two apps can commu-
nicate under a client-server model. We instrument
com.android.server.am.ActiveServices in the
Activity Manager to monitor all the attempts to establish
service bindings across apps.

Apps can also conduct IPCs implicitly by exploiting
shared persistent storage. For example, two apps can
write and read the same file in the SD card to exchange
identifying information. Therefore, we need to monitor
read and write access to persistent storage. External stor-
age in Android are wrapped by a FUSE (Filesystem in
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Figure 5: We customize the FUSE daemon under
/system/core/sdcard/sdcard.c to intercept apps’ access
to shared external storage.

Userspace) daemon which enables user-level permission
control. By modifying this daemon, we can track which
app reads or writes which files (see Fig. 5). This allows
us to implement a Read-Write monitor which captures
implicit communications via reading a file which has pre-
viously been written by another app. Besides external
storage, our Read-Write monitor also considers similar
indirect communications via system Content Providers.

We described how to monitor all formal ways an app
can interact with system components (Services, Content
Providers) and other apps (Intents, service bindings, and
indirect RW). This methodology is fundamental and can
be extended to cover other potential linkability sources
(beyond our list) as long as a clear definition is given.
By placing hooks at the aforementioned locations in the
system framework, we get all the information needed to
construct a DLG. For our measurement study, we sim-
ply log and upload these statistics to a remote server for
analysis. In our countermeasure solutions, these are used
locally to derive dynamic defense decisions.

4 Linkability in Real World

In this section, we study app-level linkability in the real
world. We first present an overview of linkability, show-
ing the current threats we’re facing. Then, we go through
the linkability sources and analyze to what extent each of
the sources is contributing to the linkability. Finally, we
shed light on how these sources can be or have been ex-
ploited for reasons unrelated to app functionalities. This
paves the way for us to develop a practical countermea-
sure.

4.1 Deployment and Settings

We prototyped DLG on Cyanogenmod 11 (based on An-
droid 4.4.1) and installed the extended OS on 7 Samsung
Galaxy IV devices and 6 Nexus V devices. We recruited
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Figure 6: For an average user, more than 80% of the apps
are installed in the first two weeks after deployment; each app
accesses most of the linkability sources it’s interested in during
the first day of its installation.

13 participants from the students and staff in our insti-
tution, spanning over 8 different academic departments.
Of the 13 participants, 6 of the participants are females
and 7 are males. Before using our experimental devices,
7 of them were Android users and 6 were iPhone users.
Participants are asked to operate their devices normally
without any extra requirement. They are given the op-
tion to temporarily turn off our extension if they want
more privacy when performing certain tasks. Logs are
uploaded once per hour when the device is connected to
Wi-Fi. We exclude built-in system apps (since the mobile
OS is assumed to be benign in our threat model) and con-
sider only third-party apps that are installed by the users
themselves. Note that our study is limited in its size and
the results may not generalize.

4.2 Data and Findings

We observed a total of 215 unique apps during a 47-
day period for 13 users. On average, each user installed
26 apps and each app accessed 4.8 different linkability
sources. We noticed that more than 80% of the apps are
installed within the first two weeks after deployment, and
apps would access most of the linkability sources they
are interested in during the first day of their installation
(see Fig. 6). This suggests that a relative short-term (a
few weeks) measurement would be enough to capture a
representative view of the problem.

Overview: Our measurement indicates an alarming
view of the threat: two random apps are linkable with
a probability of 0.81, and an adversary only needs to
control 2.2 apps (0.2 additional app), on average, to link
them. This means that an adversary in the current ecosys-
tem can aggregate information from most apps without
additional efforts (i.e., controlling a third app). Specif-
ically, we found that 86% of the apps a user installed
on his device are directly linkable to the Facebook app,
namely, his real identity. This means almost all the activ-
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Figure 7: The percentage of apps accessing each source, and
the linkability (LR) an app can get by exploiting each source.

ities a user exhibited using mobile apps are identifiable,
and can be linked to the real person.

Breakdown by Source: This vast linkability is con-
tributed by various sources in the mobile ecosystem.
Here, we report the percentage of apps accessing each
source and the linkability (LR) an app can acquire by ex-
ploiting each source. The results are provided in Fig. 7.
We observed that except for device identifiers, many
other sources contributed to the linkability substantially.
For example, an app can be linked to 39% of all in-
stalled apps (LR=0.39) using only account information,
and 36% (LR=0.36) using only Intents. The linkability
an app can get from a source is roughly equal to the per-
centage of apps that accessed that source, except for the
case of contextual information: IP, Location and Nearby
APs. This is because the contextual information an app
collected does not always contain effectively identifying
information. For example, Yelp is mostly used at infre-
quent locations to find nearby restaurants, but is rarely
used at consistent PoIs, such as home or office. This ren-
ders location information useless in establishing linka-
bility with Yelp.

The effort required to aggregate two apps also differs
for different linkability sources, as shown in Fig. 8. De-
vice identifiers have LE=0, meaning that any two apps
accessing the same device identifier can be directly ag-
gregated without requiring control of an additional third
app. Linking apps using IPC channels, such as Intents
and Indirect RW, requires the adversary to control an av-
erage of 0.6 additional app as the connecting nodes. This
indicates that, from an adversary’s perspective, exploit-
ing consistent identifiers is easier than building pair-wise
associations.

Breakdown by Category: We group the linkability
sources into four categories — device, personal, contex-
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Figure 8: The (average) Linking Efforts (LE) of all the apps
that are linkable due to a certain linkability source.

Category GLR GLE LRFacebook
Device 0.52 (0.13) 0.03 (0.03) 0.68 (0.12)

Personal 0.30 (0.10) 0.30 (0.11) 0.54 (0.11)
Contextual 0.20 (0.13) 0.33 (0.20) 0.44 (0.25)

IPC 0.32 (0.13) 0.78 (0.06) 0.59 (0.15)

Table 3: Linkability contributed by different categories of
sources.

tual, and IPC — and study the linkability contributed by
each category (see Table 3). As expected, device-specific
information introduces substantial linkability and allows
the adversary to conduct across-app aggregation effort-
lessly. Surprisingly, the other three categories of linka-
bility sources also introduce considerable linkability. In
particular, only using fuzzy contextual information, an
adversary can link more than 40% of the installed apps
to Facebook, the user’s real identity. This suggests the
naive solution of anonymizing device ids is not enough,
and hence a comprehensive solution is needed to make a
trade-off between app functionality and privacy.

4.3 Functional Analysis

Device identifiers (IMEI, Android ID, MAC) introduce
vast amount of linkability. We manually went through
162 mobile apps that request these device-specific iden-
tifiers, but could rarely identify any explicit functional-
ity that requires accessing the actual identifier. In fact,
for the majority of these apps, their functionalities are
device-independent, and therefore independent of device
IDs. This indicates that device-specific identifier can be
obfuscated across apps without noticeable loss of app
functionality. The only requirement for device ID is that
it should be unique to each device.

As to personal information (Account Number, Phone
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<?xml version=’1.0’ encoding=’utf-8’ standalone=’yes’ ?>
<map>

<long name="timestamp" value="1419049777098" />
<long name="t2" value="1419049776889" />
<string name="UTDID">VJT7MTV268gDACiZN6xEh8af</string>
<string name="DID">356565055348652</string>
<long name="S" value="1634341681" />
<string name="SI">310260981039000</string>
<string name="EI">356565055348652</string>

</map>

Figure 9: Real-world example of indirect RW: an app
(fm.qingting.qradio) writes user identifiers to an xml file in SD
card which was later read by three other apps. This file contains
the IMEI (DID) and SubscriberID (SI) of the user.

Number, Installed Apps, etc.), we also observed many
unexpected accesses that resulted in unnecessary linka-
bility. We found that many apps that request account
information collected all user accounts even when they
only needed one to function correctly; many apps request
access to phone number even when it is unrelated to their
app functionalities. Since the legitimacy of a request de-
pends both on the user’s functional needs and the specific
app context, end-users should be prompted about the ac-
cess and make the final decision.

The linkability introduced by contextual information
(Location, Nearby AP) also requires better regulation.
Many apps request permission for precise location, but
not all of them actually need it to function properly.
In many scenarios, apps only require coarse-grained lo-
cation information and shouldn’t reveal any identifying
points of interest (PoIs). Nearby AP information, which
is only expected to be used by Wi-Fi tools/managing
apps, is also abused for other purposes. We noticed that
many apps frequently collect Nearby AP information to
build an internal mapping between locations and access
points (APs). For example, we found that even if we turn
off all system location services, WeChat (an instant mes-
saging app) can still infer the user’s location only with
Nearby AP information. To reduce the linkability intro-
duced by these unexpected usages, the users should have
finer-grained control on when and how the contextual in-
formation can be used.

Moreover, we found that IPC channels can be ex-
ploited in various ways to establish linkability across
apps. Apps can establish linkabililty using Intents, shar-
ing and aggregating app-specific information. For in-
stance, we observed that WeChat receives Intents from
three different apps right after their installations, report-
ing their existence on the same device. Apps can also
establish linkability with each other via service binding.
For example, both AdMob and Facebook allow an app
to bind to its service and exchanging the user identi-
fier, completely bypassing the system permissions and
controls. Apps can also establish linkabililty through
Indirect RW, by writing and reading the same persis-

tent file. Fig. 9 shows a real-world example: an app
(fm.qingting.qradio) writes user identifiers to an xml file
in the SD card which was later read by three other apps.
The end-user should be promptly warned about these un-
expected communications across apps to reduce unnec-
essary linkability.

5 LinkDroid: A Practical Countermeasure

Based on our observation and findings on linkability
across real-world apps, we propose a practical counter-
measure, LinkDroid, on top of DLG. We first intro-
duce the basic design principle of LinkDroid and its
three major privacy-enhancing features: install-time ob-
fuscation, runtime linkability monitoring, and unlinkable
mode support. We then evaluate the effectiveness of
LinkDroid with the same set of participants as in our
measurement study.

5.1 Design Overview

LinkDroid is designed with practicality in mind. Nu-
merous extensions, paradigms and ecosystems have been
proposed for mobile privacy, but access control (runtime
for iOS and install-time for Android) is the only de-
ployed mechanism. LinkDroid adds a new dimension
to access control on smartphone devices. Unlike exist-
ing approaches that check if some app behavior poses di-
rect privacy threats, LinkDroid warns users about how
it implicitly builds the linkability across apps. This
helps users reduce unnecessary links introduced by abus-
ing OS-level information and IPCs, which happens fre-
quently in reality as our measurement study indicated.

As shown in Fig. 10, LinkDroid provides runtime
monitoring and mediation of linkability by

• monitoring and intercepting app behaviors that may
introduce linkability (including interactions with
various system services, content providers, shared
external storage and other apps);

• querying a standalone linkability service to get the
user’s decision regarding this app behavior;

• prompting the user about the potential risk if the
user has not yet made a decision, getting his deci-
sion and updating the linkability graph (DLG).

We have already described in Section 3.4 how to in-
strument the Android framework to build the monitor-
ing components (corresponding to boxes A, B, C, D in
Fig. 10). In this section, we focus on how the linkability
service operates.



778 24th USENIX Security Symposium USENIX Association

Figure 10: An overview of LinkDroid. Shaded areas (red) represent the parts we need to extend/add in Android. (We already
explained how to extend A, B, C and D in Section 3.4.)

5.2 Install-Time Obfuscation

As mentioned earlier, app functionalities are largely in-
dependent of device identifiers. This allows us to obfus-
cate these identifiers and cut off many unnecessary edges
in the DLG. In our case, the list of device identifiers in-
cludes IMEI, Android ID and MAC. Every time an app
gets installed, the linkability service receives the app’s
uid and then generates a random mask code for it. The
mask code together with the types of obfuscated device
identifiers will be pushed into the decision database. This
way, when an app a tries to fetch the device identifier of a
certain type t, it will only get a hash of the real identifier
salted with the app-specific mask code:

IDa
t = hash(IDt +maska).

Note that we do this at install-time instead of during
each session because we still want to guarantee the rela-
tive consistency of the device identifiers within each app.
Otherwise, it will let the app think the user is switching to
a different device and trigger some security/verification
mechanisms. The user can always cancel this default ob-
fuscation in the privacy manager (Fig. 12) if he finds it
necessary to reveal real device identifiers to certain apps.

5.3 Runtime Linkability Monitoring

Except for device-specific identifiers, obfuscating other
sources of linkability is likely to interfere with the
app functionalities. Whether there is a functional in-
terference or not is highly user-specific and context-
dependent. To make a useful trade-off, the user should
be involved in this decision-making process. Here,
LinkDroid provides just-in-time prompts before an
edge creates in the DLG. Specifically, if the linkabil-
ity service could not find an existing decision regarding
some app behavior, it will issue the user a prompt, in-
forming him: 1) what app behavior triggers the prompt;
2) what’s the quantitative risk of allowing this behavior;

Figure 11: The UI prompt of LinkDroid’s runtime access
control, consisting of a behavioral description, descriptive and
quantitative risk indicators, and opt-out options.

and 3) what’re the opt-out options. Fig. 11 gives an illus-
trative example of the UI of the prompt.

Description of App Behavior Before the user can
make a decision, he first needs to know what app behav-
ior triggers the prompt. Basically, we report two types
of description: access to OS-level information and cross-
app communications. To help the user understand the sit-
uation, we use a high-level descriptive language instead
of the exact technical terms. For example, when an app
tries to access Subscriber ID or IccSerialNumber, we re-
port that “App X asks for sim-card information.” When
an app tries to send Intents to other apps, we report “App
X tries to share content with App Y”. During our experi-
ments with real users (introduced later in the evaluation),
11 out of the 13 participants find these descriptions clear
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Figure 12: LinkDroid provides a centralized linkability man-
ager. The user can review and modify all of his previous deci-
sions regarding each app.

and informative.

Risk Indicator LinkDroid reports two types of risk
indicators to users: one is descriptive and the other is
quantitative. The descriptive indicator tells what apps
will be directly linkable to an app if the user allows its
current behavior. By ‘directly linkable,’ we mean with-
out requiring a third app as the connecting nodes. The
quantitative indicator, on the other hand, reflects the in-
fluence on the overall linkability of the running app, in-
cluding those apps that are not directly linkable to it.
Here, the overall linkability is reported as a combination
of the linking ratio (LR) and linking effort (LE):

La = LRa × e−LEa .

The quantitative risk indicator is defined as ∆La. A
user will be warned of a larger risk if the total number
of linkable apps significantly increases, or the average
linking effort decreases substantially. We transform the
quantitative risk linearly into a scale of 4 and report the
risk as Low, Medium, High, and Severe.

Opt-out Options In each prompt, the user has at least
two options: Allow or Deny. If the user chooses Deny,
LinkDroid will obfuscate the information this app tries
to get or shut down the communication channel this
app requests. For some types of identifying informa-
tion, such as Accounts and Location, we provide finer-
grained trade-offs. For Location, the user can select from
zip-code level (1km) or city-level (10km) precision; for
Accounts, the user can choose which specific account
he wants to share instead of exposing all his accounts.

LinkDroid also allows the user to set up a VPN (Virtual
Private Network) service to anonymize network identi-
fiers. When the user switches from a cellular network to
Wi-Fi, LinkDroid will automatically initialize the VPN
service to hide the user’s public IP. This may incur addi-
tional energy consumption and latency (see Section 5.5).
All choices made by the user will be stored in the de-
cision database for future reuse. We provide a central-
ized privacy manager such that the user can review and
change all previously made decisions (see Fig. 12).

5.4 Unlinkable Mode

Once a link is established in DLG, it cannot be removed.
This is because once a piece of identifying information
is accessed or a communication channel is established, it
can never be revoked. However, the user may sometimes
want to perform privacy-preserving tasks which have no
interference with the links that have already been intro-
duced. For example, when the user wants to write an
anonymous post in Reddit, he doesn’t want it to be link-
able with any of his previous posts as well as other apps.
LinkDroid provides an unlinkable mode to meet such
a need. The user can start an app in unlinkable mode
by pressing its icon for long in the app launcher. A new
uid as well as isolated storage will be allocated to this
unlinkable app instance. By default, access to all OS-
level identifying information and inter-app communica-
tions will be denied. This way, LinkDroid creates the il-
lusion that this app has just been installed on a brand-new
device. The unlinkable mode allows LinkDroid to pro-
vide finer-grained (session-level) control, unlinking only
a certain set of app sessions.

5.5 Evaluation

We evaluate LinkDroid in terms of its overheads in us-
ability and performance, as well as its effectiveness in re-
ducing linkability. We replay the traces of the 13 partic-
ipants of our measurement study (see Section 4), prompt
them about the privacy threat and ask for their decisions.
This gives us the exact picture of the same set of users
using LinkDroid during the same period of time. We
instruct the user to make a decision in the most conser-
vative way: the user will Deny a request only when he
believes the prompted app behavior is not applicable to
any useful scenario; otherwise, he will Accept the re-
quest.

The overhead of LinkDroid mainly comes from two
parts: the usability burden of dealing with UI prompts
and the performance degradation of querying the linka-
bility service. Our experimental results show that, on av-
erage, each user was prompted only 1.06 times per day
during the 47-day period. The performance degradation
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Figure 13: The Global Linking Ratio (GLR) of different cate-
gories of sources before and after using LinkDroid.
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Figure 14: The Global Linking Ratio (GLR) of different users
before and after using LinkDroid.

introduced by the linkability service is also marginal. It
only occurs when apps access certain OS-level informa-
tion or conduct cross-app IPCs. These sensitive oper-
ations happened rather infrequently — once every 12.7
seconds during our experiments. These results suggest
that LinkDroid has limited impact on system perfor-
mance and usability.

We found that after applying LinkDroid, the Global
Linking Ratio (GLR) dropped from 81% to 21%. Fig. 13
shows the breakdown of linkability drop in different cat-
egories of sources. The majority of the remaining link-
ability comes from inter-app communications, most of
which are genuine from the user’s perspective. Not only
fewer apps are linkable, LinkDroid also makes it harder
for an adversary to aggregate information from two link-
able apps. The Global Linking Effort (GLE) increases
significantly after applying LinkDroid: from 0.22 to
0.68. Specifically, the percentage of apps that are directly
linkable to Facebook dropped from 86% to 18%. Fig. 15
gives an illustrative example of how DLG changes after
applying LinkDroid. We also noticed that that the effec-
tiveness of LinkDroid differs across users, as shown in
Fig. 14. In general, LinkDroid is more effective for the
users who have diverse mobility patterns, are cautious
about sharing information across apps and/or maintain

(a)

(b)

Figure 15: DLG of a representative user before (a) and
after (b) applying LinkDroid. Red circle represents the
Facebook app.

different accounts for different services.
LinkDroid takes VPN as a plug-in solution to ob-

fuscate network identifiers. The potential drawback of
using VPN is its influence on device energy consump-
tion and network latency. We measured the device en-
ergy consumption of using VPN on a Samsung Galaxy 4
device, with Monsoon Power Monitor. Specifically, we
tested two network-intensive workloads: online videos
and browsing. We observed a 5% increase in energy con-
sumption for the first workload, and no observable dif-
ference for the second. To measure the network latency,
we measured the ping time (average of 10 trials) to Alexa
Top 20 domains and found a 13% increase (17ms). These
results indicate that the overhead of using VPN on smart-
phone device is noticeable but not significant. Seven of
13 participants in our evaluation were willing to use VPN
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services to achieve better privacy.
We interviewed the 13 participants after the experi-

ments. Questions are designed on a scale of 1 to 5 and
a score of 4 or higher is regarded as “agree.” Eleven of
the participants find the UI prompt informative and clear
and nine are willing to use LinkDroid on a daily basis
to inform them about the risk and provide opt-out op-
tions. However, these responses might not be represen-
tative due to the limited size and diversity of the partic-
ipants. We also noticed that users care a lot about the
linkability of sensitive apps, such as Snapchat and Face-
book. Some participants clearly state that they do not
want any app to be associated with the Facebook app,
except for very necessary occasions. This also supports
the rationale behind the design of LinkDroid’s unlink-
able mode.

6 Related Work

There have been other proposals [7, 17] which also ad-
dress the privacy threats of information aggregation by
mobile apps. They shift the responsibility of informa-
tion personalization and aggregation from mobile apps
to the mobile OS or trusted cloud providers, requiring
re-development of mobile apps and extensive modifi-
cations on the entire mobile ecosystem. In contrast,
LinkDroid is a client-side solution which is compati-
ble with existing ecosystem — it focuses on character-
izing the threat in current mobile ecosystem and making
a practical trade-off, instead of proposing new computa-
tion (advertising) paradigm.

Existing studies investigated linkability under several
domain-specific scenarios. Arvind et al. [19] showed
that a user’s profile in Netflix can be effectively linked
to his in IMDB, using long-tailed (unpopular) movies.
Sebastian et al. [16] described how to link the profiles of
the same user in different social networks using friends
topologies. This type of linkability is restricted to a small
scope, and may only exist across different apps in the
same domain. Here, we focus on the linkability that are
domain-independent and ubiquitous to all apps, regard-
less of the type and semantics of each app.

The capability of advertising agency on conducting
profiling and aggregation has been extensively stud-
ied [12, 23]. Various countermeasures have been pro-
posed, such as enforcing finer-grained isolation between
ad library and the app [21, 22], or adopting a privacy-
preserving advertising paradigm [4]. However, unlike
LinkDroid, they only consider a very specific and re-
stricted scenario — advertising library — which in-
volves few functional trade-offs. LinkDroid, instead,
introduces a general linkability model, considers various
sources of linkability and suits a diverse set of adver-
saries.

There have also been numerous studies on informa-
tion access control on smartphone [6, 8, 9, 13, 14, 20, 24].
Many of these studies have already proposed to provide
apps with fake identifiers and other types of sensitive in-
formation [13, 20, 27]. These studies focus on the ex-
plicit privacy concern of accessing and leaking sensi-
tive user information, by malicious mobile apps or third-
party libraries. Our work addresses information access
control from a very different perspective, investigating
the implicit linkability introduced by accessing various
OS-level information and IPC channels.

Many modern browsers provide a private (incognito)
mode. These are used to defend against local attackers,
such as users sharing the same computer, from stealing
cookies or browse history from each other [2]. This is
inherently different from LinkDroid’s unlinkable mode
which targets unregulated aggregation by remote attack-
ers.

7 Discussion

In this paper, we proposed a new metric, linkability, to
quantify the ability of different apps to link and aggre-
gate their usage behaviors. This metric, albeit useful, is
only a coarse upper-bound of the actual privacy threat,
especially in the case of IPCs. Communication between
two apps does not necessarily mean that they have con-
ducted, or are capable of conducting, information aggre-
gation. However, deciding on the actual intention of each
IPC is by itself a difficult task. It requires an automatic
and extensible way of conducting semantic introspection
on IPCs, and is a challenging research problem on its
own.
LinkDroid aims to reduce the linkability introduced

covertly without the user’s consent or knowledge —
it couldn’t and doesn’t try to eliminate the linkability
explicitly introduced by users. For example, a user
may post photos of himself or exhibit very identifi-
able purchasing behavior in two different apps, thus
establishing linkability. This type of linkability is
app-specific, domain-dependent and beyond the control
of LinkDroid. Identifiability or linkability of these
domain-specific usage behaviors are of particular inter-
est to other areas, such as anonymous payment [25],
anonymous query processing [18] and data anonymiza-
tion techniques.

The list of identifying information we considered in
this paper is well-formatted and widely-used. These
ubiquitous identifiers contribute the most to informa-
tion aggregation, since they are persistent and consis-
tent across different apps. We didn’t consider some un-
common identifiers, such as walking patterns and mi-
crophone signatures, because we haven’t yet observed
any real-world adoption of these techniques by commer-
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cial apps. However, LinkDroid can easily include other
types of identifying information, as long as a clear defi-
nition is given.

DLG introduces another dimension — linkability —
to privacy protection on mobile OS and has some other
potential usages. For example, when the user wants to
perform a certain task in Android and has multiple op-
tional apps, the OS can recommend him to choose the
app which is the least linkable with others. We also
noticed some interesting side-effect of LinkDroid’s un-
linkable mode. Since unlinkable mode allows users to
enjoy finer-grained (session-level) unlinkability, it can be
used to stop a certain app from continuously identifying a
user. This can be exploited to infringe the benefits of app
developers in the case of copyright protection, etc. For
example, NYTimes only allows an unregistered user to
read up to 10 articles every month. However, by restart-
ing the app in unlinkable mode in each session, a user
can stop NYTimes from linking himself across different
sessions and bypass this quota restriction.

8 Conclusion

In this paper, we addressed the privacy threat of unreg-
ulated aggregation from a new perspective by monitor-
ing, characterizing and reducing the underlying linka-
bility across apps. This allows us to measure the po-
tential threat of unregulated aggregation during runtime
and promptly warn users of the associated risks. We ob-
served how real-world apps abuse OS-level information
and IPCs to establish linkability, and proposed a prac-
tical countermeasure, LinkDroid. It provides runtime
monitoring and mediation of linkability across apps, in-
troducing a new dimension to privacy protection on mo-
bile device. Our evaluation on real users has shown that
LinkDroid is effective in reducing the linkability across
apps and only incurs marginal overheads.
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Abstract

Modern mobile platforms like Android enable applica-
tions to read aggregate power usage on the phone. This
information is considered harmless and reading it re-
quires no user permission or notification. We show that
by simply reading the phone’s aggregate power con-
sumption over a period of a few minutes an application
can learn information about the user’s location. Aggre-
gate phone power consumption data is extremely noisy
due to the multitude of components and applications that
simultaneously consume power. Nevertheless, by using
machine learning algorithms we are able to successfully
infer the phone’s location. We discuss several ways in
which this privacy leak can be remedied.

1 Introduction

Our phones are always within reach and their location is
mostly the same as our location. In effect, tracking the
location of a phone is practically the same as tracking the
location of its owner. Since users generally prefer that
their location not be tracked by arbitrary 3rd parties, all
mobile platforms consider the device’s location as sensi-
tive information and go to considerable lengths to protect
it: applications need explicit user permission to access
the phone’s GPS and even reading coarse location data
based on cellular and WiFi connectivity requires explicit
user permission.

In this work we show that despite these restrictions ap-
plications can covertly learn the phone’s location. They
can do so using a seemingly benign sensor: the phone’s
power meter that measures the phone’s power consump-
tion over a period of time. Our work is based on the ob-
servation that the phone’s location significantly affects
the power consumed by the phone’s cellular radio. The
power consumption is affected both by the distance to
the cellular base station to which the phone is currently
attached (free-space path loss) and by obstacles, such
as buildings and trees, between them (shadowing). The
closer the phone is to the base station and the fewer ob-
stacles between them the less power the phone consumes.

The strength of the cellular signal is a major factor affect-
ing the power used by the cellular radio [29]. Moreover,
the cellular radio is one of the most dominant power con-
sumers on the phone [14].

Suppose an attacker measures in advance the power
profile consumed by a phone as it moves along a set of
known routes or in a predetermined area such as a city.
We show that this enables the attacker to infer the tar-
get phone’s location over those routes or areas by simply
analyzing the target phone’s power consumption over a
period of time. This can be done with no knowledge of
the base stations to which the phone is attached.

A major technical challenge is that power is consumed
simultaneously by many components and applications on
the phone in addition to the cellular radio. A user may
launch applications, listen to music, turn the screen on
and off, receive a phone call, and so on. All these activ-
ities affect the phone’s power consumption and result in
a very noisy approximation of the cellular radio’s power
usage. Moreover, the cellular radio’s power consumption
itself depends on the phone’s activity, as well as the dis-
tance to the base-station: during a voice call or data trans-
mission the cellular radio consumes more power than
when it is idle. All of these factors contribute to the
phone’s power consumption variability and add noise to
the attacker’s view: the power meter only provides ag-
gregate power usage and cannot be used to measure the
power used by an individual component such as the cel-
lular radio.

Nevertheless, using machine learning, we show that
the phone’s aggregate power consumption over time
completely reveals the phone’s location and movement.
Intuitively, the reason why all this noise does not mislead
our algorithms is that the noise is not correlated with the
phone’s location. Therefore, a sufficiently long power
measurement (several minutes) enables the learning al-
gorithm to “see” through the noise. We refer to power
consumption measurements as time-series and use meth-
ods for comparing time-series to obtain classification and
pattern matching algorithms for power consumption pro-
files.

In this work we use machine learning to identify the

1
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routes taken by the victim based on previously collected
power consumption data. We study three types of user
tracking goals:

1. Route distinguishability: First, we ask whether an
attacker can tell what route the user is taking among
a fixed set of possible routes.

2. Real-time motion tracking: Assuming the user is
taking a certain known route, we ask whether an at-
tacker can identify her location along the route and
track the device’s position on the route in real-time.

3. New route inference: Finally, suppose a user is
moving along an arbitrary (long) route. We ask if
an attacker can learn the user’s route using the previ-
ously measured power profile of many (short) road
segments in that area. The attacker composes the
power profile of the short road segments to identify
the user’s route and location at the end of the route.

We emphasize that our approach is based on measuring
the phone’s aggregate power consumption and nothing
else. In particular, we do not use the phone’s signal
strength as this data is protected on Android and iOS de-
vices and reading it requires user permission. In contrast,
reading the phone’s power meter requires no special per-
missions.

On Android reading the phone’s aggregate power me-
ter is done by repeatedly reading the following two files:

/sys/class/power supply/battery/voltage now

/sys/class/power supply/battery/current now

Over a hundred applications in the Play Store access
these files. While most of these simply monitor battery
usage, our work shows that all of them can also easily
track the user’s location.

Our contributions. Our work makes the following con-
tributions:

• We show that the power meter available on modern
phones can reveal potentially private information.

• We develop the machine learning techniques needed
to use data collected from the power meter to infer
location information. The technical details of our
algorithms are presented in sections 4, 5 and 6, fol-
lowed by experimental results.

• In sections 8 and 9 we discuss potential continuation
to this work, as well as defenses to prevent this type
of information leakage.

2 Threat Models

We assume a malicious application is installed on the vic-
tim’s device and runs in the background. The application

has no permission to access the GPS or any other loca-
tion data such as the cellular or WiFi components. In
particular, the application has no permission to query the
identity of visible cellular base stations or the SSID of
visible WiFi networks.

We only assume access to power data (which requires
no special permissions on Android) and permission to
communicate with a remote server. Network connectiv-
ity is needed to generate dummy low rate traffic to pre-
vent the cellular radio from going into low power state.
In our setup we also use network connectivity to send
data to a central server for processing. However, it may
be possible to do all processing on the phone.1

As noted earlier, the application can only read the ag-
gregate power consumed by the phone. It cannot mea-
sure the power consumed by the cellular radio alone.
This presents a significant challenge since many compo-
nents on the phone consume variable amounts of power
at any given time. Consequently, all the measurements
are extremely noisy and we need a way to “see” though
the noise.

To locate the phone, we assume the attacker has prior
knowledge of the area or routes through which the victim
is traveling. This knowledge allows the attacker to mea-
sure the power consumption profile of different routes in
that area in advance. Our system correlates this data with
the phone’s measured power usage and we show that, de-
spite the noisy measurements, we are able to correctly lo-
cate the phone. Alternatively, as for many other machine
learning cases, the training data can also be collected af-
ter obtaining the unlabeled query data. For instance, an
attacker obtained a power consumption profile of a user,
the past location of whom it is extremely important to
determine. She can still collect, after the fact, reference
profiles for a limited area in which the user has likely
been driving and carry out the attack.

For this to work we need the tracked phone to be mov-
ing by a car or a bus while being tracked. Our system
cannot locate a phone that is standing still since that only
provides the power profile for a single location. We need
multiple adjacent locations for the attack to work.

Given the resources at our disposal, the focus of this
work is on locating a phone among a set of local routes in
a pre-determined area. A larger effort is needed to scale
the system to cover the entire world by pre-measuring the
power profile of all road segments worldwide. Neverthe-
less, our localized experiments already show that track-
ing users who follow a daily routine is quite possible. For
example, a mobile device owner might choose one of a
small number of routes to get from home to work. The

1It is important to mention here that while a network access per-
mission will appear in the permission list for an installed application,
it does not currently appear in the list of required permissions prior to
application installation.
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system correctly identifies what route was chosen and in
real-time identifies where the phone is along that route.
This already serves as a cautionary note about the type of
information that can be leaked by a seemingly innocuous
sensor like the power meter.

We note that scaling the system to cover worldwide
road segments can be done by crowd-sourcing: a popular
app, or perhaps even the core OS, can record the power
profile of streets traveled by different users and report
the results to a central server. Over time the resulting
dataset will cover a significant fraction of the world. On
the positive side, our work shows that service providers
can legitimately use this dataset to improve the accuracy
of location services. On the negative side, tracking apps
can use it to covertly locate users. Given that all that is
required is one widespread application, many actors in
the mobile space are in a position to build the required
dataset of power profiles and use it as they will.

3 Background

In this section we provide technical background on the
relation between a phone’s location and its cellular power
consumption. We start with a description of how loca-
tion is related to signal strength, then we describe how
signal strength is related to power consumption. Fi-
nally, we present examples of this phenomenon, and we
demonstrate how obtaining access to power measure-
ments could leak information about a phone’s location.

3.1 Location affects signal strength and
power consumption

Distance to the base station is the primary factor that de-
termines a phone’s signal strength. The reason for this is,
for signals propagating in free space, the signal’s power
loss is proportional to the square of the distance it travels
over [11]. Signal strength is not only determined by path
loss, it is also affected by objects in the signal path, such
as trees and buildings, that attenuate the signal. Finally,
signal strength also depends on multi-path interference
caused by objects that reflect the radio signal back to the
phone through various paths having different lengths.

In wireless communication theory signal strength is
often modeled as random variation (e.g., log-normal
shadowing [11]) to simulate many different environ-
ments2. However, in one location signal strength can be
fairly consistent as base stations, attenuators, and reflec-
tors are mostly stationary.

A phone’s received signal strength to its base sta-
tion affects its cellular modem power consumption.

2Parameters of the model can be calibrated to better match a specific
environment of interest.

Namely, phone cellular modems consume less instanta-
neous power when transmitting and receiving at high sig-
nal strength compared to low signal strength. Schulman
et. al. [29] observed this phenomenon on several differ-
ent cellular devices operating on different cellular proto-
cols. They showed that communication at a poor signal
location can result in a device power draw that is 50%
higher than at a good signal location.

The primary reason for this phenomenon is the
phone’s power amplifier used for transmission which in-
creases its gain as signal strength drops [11]. This effect
also occurs when a phone is only receiving packets. The
reason for this is cellular protocols which require con-
stant transmission of channel quality and acknowledg-
ments to base stations.

3.2 Power usage can reveal location

The following results from driving experiments demon-
strate the potential of leaking location from power mea-
surements.

We first demonstrate that signal strength in each loca-
tion on a drive can be static over the course of several
days. We collected signal strength measurements from
a smartphone once, and again several days later. In Fig-
ure 1 we plot the signal strength observed on these two
drives. In this figure it is apparent that (1) the segments
of the drive where signal strength is high (green) and low
(red) are in the same locations across both days, and (2)
that the progression of signal strength along the drive ap-
pears to be a unique irregular pattern.

Next, we demonstrate that just like signal strength,
power measurements of a smartphone, while it commu-
nicates, can reveal a stable, unique pattern for a partic-
ular drive. Unlike signal strength, power measurements
are less likely to be stable across drives because power
depends on how the cellular modem reacts to changing
signal strength: a small difference in signal strength be-
tween two drives may put the cellular modem in a mode
that has a large difference in power consumption. For ex-
ample, a small difference in signal strength may cause a
phone to hand-off to a different cellular base station and
stay attached to it for some time (Section 3.3).

Figure 2 shows power measurements for two Nexus 4
phones in the same vehicle, transmitting packets over
their cellular link, while driving on the same path. The
power consumption variations of the Nexus 4 phones
are similar, indicating that power measurements can be
mostly stable across devices.

Finally, we demonstrate that power measurements
could be stable across different models of smartphones.
This stability would allow an attacker to obtain a ref-
erence power measurement for a drive without using
the same phone as the victim’s. We recorded power

3
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Figure 1: Signal strength profiles measured on two different days are stable.

200 400 600 800 1000 1200 1400 1600 1800

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

Time [sec]

P
o
w

e
r 

[W
a
tt

]

 

 

Device 1

Device 2

Figure 2: For two phones of the same model, power vari-
ations on the same drive are similar.
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Figure 3: For two different phone models, power varia-
tions on the same drive are similar.

measurements, while transmitting packets over cellular,
using two different smartphone models (Nexus 4 and
Nexus 5) during the same ride, and we aligned the power
samples, according to absolute time.

The results presented in Figure 3 indicate that there is
similarity between different models that could allow one
model to be used as a reference for another. This ex-
periment serves as a proof of concept: we leave further
evaluation of such an attack scenario, where the attacker
and victim use different phone models, to future work. In
this paper, we assume that the attacker can obtain refer-
ence power measurements using the same phone model
as the victim.

3.3 Hysteresis

A phone attaches to the base station having the strongest
signal. Therefore, one might expect that the base station
to which a phone is attached and the signal strength will
be the same in one location. Nonetheless, it is shown
in [29] that signal strength can be significantly different
at a location based on how the device arrived there, for
example, the direction of arrival. This is due to the hys-
teresis algorithm used to decide when to hand-off to a
new base station. A phone hands-off from its base sta-
tion only when its received signal strength dips below
the signal strength from the next base station by more
than a given threshold [26]. Thus, two phones that reside
in the same location can be attached to two different base
stations.

Hysteresis has two implications for determining a vic-
tim’s location from power measurements: (1) an attacker
can only use the same direction of travel as a reference
power measurement, and (2) it will complicate inferring
new routes from power measurements collected from in-
dividual road segments (Section 6).

3.4 Background summary and challenges

The initial measurements in this section suggest that the
power consumed by the cellular radio is a side chan-
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nel that leaks information about the location of a smart-
phone. However, there are four significant challenges
that must be overcome to infer location from the power
meter. First, during the pre-measurement phase the at-
tacker may have traveled at a different speed and en-
countered different stops than the target phone. Second,
the attacker will have to identify the target’s power pro-
file from among many pre-collected power profiles along
different routes. Third, once the attacker determines the
target’s path, the exact location of the target on the path
may be ambiguous because of similarities in the path’s
power profile. Finally, the target may travel along a
path that the attacker only partially covered during the
pre-measurement phase: the attacker may have only pre-
collected measurements for a subset of segments in the
target’s route. In the following sections we describe tech-
niques that address each of these challenges and experi-
ment with their accuracy.

4 Route distinguishability

As a warm-up we show how the phone’s power profile
can be used to identify what route the user is taking from
among a small set of possible routes (say, 30 routes). Al-
though we view it as a warm-up, building towards our
main results, route distinguishability is still quite useful.
For example, if the attacker is familiar with the user’s
routine then the attacker can pre-measure all the user’s
normal routes and then repeatedly locate the user among
those routes.

Route distinguishability is a classification problem:
we collected power profiles associated with known
routes and want to classify new samples based on this
training set. We treat each power profile as a time series
which needs to be compared to other time series. A score
is assigned after each comparison, and based on these
scores we select the most likely matching route. Because
different rides along the same route can vary in speed
at different locations along the ride, and because routes
having the same label can vary slightly at certain points
(especially before getting to a highway and after exiting
it), we need to compare profile features that can vary in
time and length and allow for a certain amount of differ-
ence. We also have to compensate for different baselines
in power consumption due to constant components that
depend on the running applications and on differences in
device models.

We use a classification method based on Dynamic
Time Warping (DTW) [23], an algorithm for measur-
ing similarity between temporal sequences that are mis-
aligned and vary in time or speed. We compute the DTW
distance3 between the new power profile and all refer-

3In fact we compute a normalized DTW distance, as we have to

ence profiles associated with known routes, selecting the
known route that yields the minimal distance. More for-
mally, if the reference profiles are given by sequences
{X}n

i=1, and the unclassified profile is given by sequence
Y , we choose the route i such that

i = argmin
i

DTW(Y,Xi)

which is equivalent to 1-NN classification given DTW
metric.

Because the profiles might have different baselines
and variability, we perform the following normalization
for each profile prior to computing the DTW distance:
we calculate the mean and subtract it, and divide the re-
sult by the standard deviation. We also apply some pre-
processing in the form of smoothing the profiles using
a moving average (MA) filter in order to reduce noise
and obtain the general power consumption trend, and we
downsample by a factor of 10 to reduce computational
complexity.

5 Real-time mobile device tracking

In this section we consider the following task: the at-
tacker knows that a mobile user is traveling along a par-
ticular route and our objective is to track the mobile de-
vice as it is moving along the route. We do not assume
a particular starting point along the route, meaning, in
probabilistic terms, that our prior on the initial location
is uniform. The attacker has reference power profiles col-
lected in advance for the target route, and constantly re-
ceives new power measurements from an application in-
stalled on the target phone. Its goal is to locate the device
along the route, and continue tracking it in real-time as it
travels along the route.

5.1 Tracking via Dynamic Time Warping
This approach is similar to that of route distinguishabil-
ity, but we use only the measurements collected up to this
point, which comprise a sub-sequence of the entire route
profile. We use the Subsequence DTW algorithm [23],
rather than the classic DTW, to search a sub-sequence in
a larger sequence, and return a distance measure as well
as the corresponding start and end offsets.

We search for the sequence of measurements we have
accumulated since the beginning of the drive in all our
reference profiles and select the profile that yields the
minimal DTW distance. The location estimate corre-
sponds to the location associated with the end offset re-
turned by the algorithm.

compensate for difference in lengths of different routes - a longer route
might yield larger DTW distance despite being more similar to the
tested sequence.

5
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5.2 Improved tracking via a motion model

While the previous approach can make mistakes in loca-
tion estimation due to a match with an incorrect location,
we can further improve the estimation by imposing rules
based on a sensible motion model. We first need to know
when we are “locked” on the target. For this purpose we
define a similarity threshold so that if the minimal DTW
distance is above this threshold, we are in a locked state.
Once we are locked on the target, we perform a simple
sanity check at each iteration: “Has the target displaced
by more than X?”

If the sanity check does not pass we consider the esti-
mate unlikely to be accurate, and simply output the pre-
vious estimate as the new estimated location. If the sim-
ilarity is below the threshold, we switch to an unlocked
state, and stop performing this sanity check until we are
“locked” again. Algorithm 1 presents this logic as pseu-
docode.

Algorithm 1 Improved tracking using a simple motion
model

locked ← f alse � Are we locked on the target?
while target moving do

loc[i],score ← estimateLocation()
d ← getDistance(loc[i], loc[i−1])
if locked and d > MAX DISP then

loc[i]← loc[i−1] � Reuse previous estimate
end if
if score > T HRESHOLD then

locked ← true
end if

end while

5.3 Tracking using Optimal Subsequence
Bijection

Optimal Subsequence Bijection (OSB) [17] is a tech-
nique, similar to DTW, that enables aligning two se-
quences. In DTW, we align the query sequence with the
target sequence without skipping elements in the query
sequence, thereby assuming that the query sequence con-
tains no noise. OSB, on the other hand, copes with
noise in both sequences by allowing to skip elements.
A fixed jump-cost is incurred with every skip in either
the query or the target sequence. This extra degree of
freedom has potential for aligning noisy subsequences
more efficiently in our case. In the evaluation section we
present results obtained by using OSB and compare them
to those obtained using DTW.

6 Inference of new routes

In Section 4 we addressed the problem of identifying
the route traversed by the phone, assuming the poten-
tial routes are known in advance. This assumption al-
lowed us to train our algorithm specifically for the po-
tential routes. As previously mentioned, there are indeed
many real-world scenarios where it is applicable. Nev-
ertheless, in this section we set out to tackle a broader
tracking problem, where the future potential routes are
not explicitly known. Here we specifically aim to iden-
tify the final location of the phone after it traversed an
unknown route. We assume that the area in which the
mobile device owner moves is known, however the num-
ber of all possible routes in that area may be too large to
practically pre-record each one. Such an area can be, for
instance, a university campus, a neighborhood, a small
town or a highway network.

We address this problem by pre-recording the power
profiles of all the road segments within the given area.
Each possible route a mobile device may take is a con-
catenation of some subset of these road segments. Given
a power profile of the tracked device, we will reconstruct
the unknown route using the reference power profiles
corresponding to the road segments. The reconstructed
route will enable us to estimate the phone’s final loca-
tion. Note that, due to the hysteresis of hand-offs be-
tween cellular base stations, a power consumption is not
only dependent on the traveled road segment, but also on
the previous road segment the device came from.

In Appendix A we formalize this problem as a hid-
den Markov model (HMM) [27]. In the following we
describe a method to solve the problem using a particle
filter. The performance of the algorithm will be exam-
ined in the next section.

6.1 Particle Filter

A particle filter [1] is a method that estimates the state
of a HMM at each step based on observations up to that
step. The estimation is done using a Monte Carlo approx-
imation where a set of samples (particles) is generated at
each step that approximate the probability distribution of
the states at the corresponding steps. A comprehensive
introduction to particle filters and their relation to gen-
eral state-space models is provided in [28].

We implement the particle filter as follows. We denote
Or =

{
or

xyz
}

, where or
xyz is a power profile prerecorded

over segment (y,z) while the segment (x,y) had been tra-
versed just before it. We use a discrete time resolution
τ = 3 seconds. We denote ∆yz

min and ∆yz
max to be the min-

imum and maximum time duration to traverse road seg-
ment (y,z), respectively. We assume these bounds can be
derived from prerecordings of the segments. At each it-
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eration i we have a sample set of N routes Pi = {(Q,T )}.
The initial set of routes P0 are chosen according to Π. At
each step, we execute the following algorithm:

Algorithm 2 Particle filter for new routes estimation
for all route p in P do

tend ← end time of p
(x,y)← last segment of p
z ← next intersection to traverse (distributed by A)

Wp ← min
t∈[∆yz

min,∆
yz
max]

or
xyz∈Or

xyz

{
DTW(O[tend,tend+t],o

r
xyz)

}

p ← p||(y,z)
Update the end time of p

end for
Resample P according to the weights Wp

At each iteration, we append a new segment, chosen
according to the prior A, to each possible route (repre-
sented by a particle). Then, the traversal time of the new
segment is chosen so that it will have a minimal DTW
distance to the respective time interval of the tracked
power profile. We take this minimal distance as the
weight of the new route. After normalizing the weights
of all routes, a resampling phase takes place. N routes
are chosen from the existing set of routes according to
the particle weights distribution4. The new resampled set
of routes is the input to the next iteration of the particle
filter. The total number of iterations should not exceed an
upper bound on the number of segments that the tracked
device can traverse. Note however that a route may ex-
haust the examined power profile before the last iteration
(namely, the end time of that route reached tmax). In such
a case we do not update the route in all subsequent itera-
tions (this case is not described in Algorithm 2 to facili-
tate fluency of exposition).

Before calculating the DTW distance of a pair of
power profiles the profiles are preprocessed to remove
as much noise as possible. We first normalize the power
profile by subtracting its mean and dividing by the stan-
dard deviation of all values included in that profile. Then,
we zero out all power values below a threshold per-
centile. This last step allows us to focus only on the peaks
in power consumption where the radio’s power consump-
tion is dominant while ignoring the lower power values
for which the radio’s power has a lesser effect. The per-
centile threshold we use in this paper is 90%.

Upon its completion, the particle filter outputs a set
of N routes of various lengths. To select the best esti-
mate route the simple approach is to choose the route
that appears the most number of times in the output set

4Note that the resampling of the new routes can have repetitions.
Namely, the same route can be chosen more than one time

as it has the highest probability to occur. Nonetheless,
since a route is composed of multiple segments chosen
at separate steps, at each step the weight of a route is de-
termined solely based on the last segment added to the
route. Therefore, the output route set is biased in favor
of routes ending with segments that were given higher
weights, while the weights of the initial segments have
a diminishing effect on the route distribution with every
new iteration. To counter this bias, we choose another es-
timate route using a procedure we call iterative majority
vote, described is Appendix B.

7 Experiments

7.1 Data collection
Our experiments required collecting real power con-
sumption data from smartphone devices along different
routes. We developed the PowerSpy android applica-
tion5 that collects various measurements including signal
strength, voltage, current, GPS coordinates, temperature,
state of discharge (battery level) and cell identifier. The
recordings were performed using Nexus 4, Nexus 5 and
HTC mobile devices.

7.2 Assumptions and limitations
Exploring the limits of our attack, i.e. establishing the
minimal necessary conditions for it to work, is beyond
our resources. For this reason, we state the assumptions
on which we rely in our methods.

We assume there is enough variability in power con-
sumption along a route to exhibit unique features. Lack
of variability may be due to high density of cellular an-
tennas that flatten the signal strength profile. We also
assume that enough communication is occurring for the
signal strength to have an effect on power consumption.
This is a reasonable assumption, since background syn-
chronization of data happens frequently in smartphone
devices. Moreover, the driver might be using navigation
software or streaming music. However, at this stage, it
is difficult to determine how inconsistent phone usage
across different rides will affect our attacks.

Identifying which route the user took involves under-
standing which power measurements collected from her
mobile device occurred during driving activity. Here
we simply assume that we can identify driving activity.
Other works (e.g., [22]) address this question by using
data from other sensors that require no permissions, such
as gyroscopes and accelerometers.

Some events that occur while driving, such as an in-
coming phone call, can have a significant effect on power

5Source code can be obtained from
https://bitbucket.org/ymcrcat/powerspy.
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Figure 4: Power profile with a phone call occurring be-
tween 50-90 seconds. Profile region during phone call is
marked in red.

consumption. Figure 4 shows the power profile of a
device at rest when a phone call takes place (the part
marked in red). The peak immediately after the phone
call is caused by using the phone to terminate the phone
call and turn off the display. We can see that this event
appears prominently in the power profile and can cope
with such transient effects by identifying and truncating
peaks that stand out in the profile. In addition, smooth-
ing the profile by a moving average should mitigate these
transient effects.

7.3 Route distinguishability
To evaluate the algorithm for distinguishing routes (sec-
tion 4) we recorded reference profiles for multiple differ-
ent routes. The profiles include measurements from both
Nexus 4 and Nexus 5 models. In total we had a dataset
of 294 profiles, representing 36 unique routes. Driving
in different directions along the same roads (from point
A to B vs. from point B to A) is considered two differ-
ent routes. We perform cross validation using multiple
iterations (100 iterations), each time using a random por-
tion of the profiles as a training set, and requiring equal
number of samples for each possible class. The sizes of
the training and test sets depend on how many reference
routes per profile we require each time. Naturally, the
more reference profiles we have, the higher the identifi-
cation rate.

One evaluation round included 29 unique routes, with
only 1 reference profile per route in the training set, and
211 test routes. It resulted in correct identification rate
of 40%. That is compared to the random guess prob-
ability of only 3%. Another round included 25 unique
routes, with 2 reference profiles per route in the training
set and 182 routes in the test set, and resulted in cor-
rect identification rate of 53% (compared to the random
guess probability of only 4%). Having 5 reference pro-
files per route (for 17 unique routes) raises the identifi-

cation rate to 71%, compared to the random guess prob-
ability of 5.8%. And finally, for 8 reference profiles per
route we get 85% correct identification. The results are
summarized in table 1.

We can see that an attacker can have a significant ad-
vantage in guessing the route taken by a user.

7.4 Real-time mobile device tracking

We evaluate the algorithm for real-time mobile device
tracking (section 5) using a set of 10 training profiles
and an additional test profile. The evaluation simulates
the conditions of real-time tracking by serially feeding
samples to the algorithm as if they are received from an
application installed on the device. We calculate the esti-
mation error, i.e. the distance between the estimated co-
ordinates and the true location of the mobile device at
each step of the simulation. We are interested in the con-
vergence time, i.e. the number of samples it takes until
the location estimate is close enough to the true loca-
tion, as well as in the distribution of the estimation errors
given by a histogram of the absolute values of the dis-
tances.

Figure 5 illustrates the performance of our tracking al-
gorithm for one of the routes, which was about 19 kilo-
meters long. At the beginning, when there are very few
power samples, the location estimation is extremely inac-
curate, but after two minutes we lock on the true location.
We obtained a precise estimate from 2 minutes up until
20 minutes on the route, where our estimate slightly di-
verges, due to increased velocity on a freeway segment.
Around 26 minutes (in figure 5a) we have a large esti-
mation error, but as we mentioned earlier, these kind of
errors are easy to prevent by imposing a simple motion
model (section 5.2). Most of the errors are small com-
pared to the length of the route: 80% of the estimation
errors are less than 1 km.

We also tested the improved tracking algorithm ex-
plained in section 5.2. Figure 5b presents the estimation
error over time, and we can see that the big errors towards
the end of the route that appeared in 5a are not present in
fig. 5b. Moreover, now almost 90% of the estimation er-
rors are below 1 km (fig. 6).

We provide animations visualizing our results for real-
time tracking at the following links. The animations,
generated using our estimations of the target’s location,
depict a moving target along the route and our estimation
of its location. The first one corresponds to the method
described in 5.1, and the second to the one described in
5.2 that uses the motion model based correction:
crypto.stanford.edu/powerspy/tracking1.mov

crypto.stanford.edu/powerspy/tracking2.mov

8
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# Unique Routes # Ref. Profiles/Route # Test Routes Correct Identification % Random Guess %
8 10 55 85 13

17 5 119 71 6
17 4 136 68 6
21 3 157 61 5
25 2 182 53 4
29 1 211 40 3

Table 1: Route distinguishability evaluation results. First column indicates the number of unique routes in the training
set. Second column indicates the number of training samples per route at the attacker’s disposal. Number of test routes
indicates the number of power profiles the attacker is trying to classify. Correct identification percentage indicates the
percentage of correctly identified routes as a fraction of the third column (test set size), which could be then compared
to the expected success of random guessing in the last column.

(a) Convergence to true location.
(b) Location estimation error for improved tracking
algorithm.

Figure 5: Location estimation error for online tracking.

(a) Errors histogram. Almost 90% of the errors are
less than 1 km.

(b) Error cumulative distribution.

Figure 6: Estimation errors distribution for motion-model tracking.

9
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Figure 7: Comparison of DTW and OSB for real-time
tracking.

7.4.1 OSB vs. DTW

We compare the performance of Dynamic Time Warping
to that of Optimal Subsequence Bijection (section 5.3).
Figure 7 present such a comparison for the same route,
using two different recordings. The tracking was per-
formed without compensating for errors using a motion
model, to evaluate the performance of the subsequence
matching algorithms as they are. We can see that, in both
cases, Optimal Subsequence Bijection outperforms the
standard Subsequence-DTW most of the time. There-
fore, we suggest that further experimentation with OSB
could potentially be beneficial for this task.

7.5 Inference of new routes
7.5.1 Setup

For the evaluation of the particle filter presented in Sec-
tion 6 we considered an area depicted in Figure 8. The
area has 13 intersections having 35 road segments6. The
average length of a road segment is about 400 meters.
The average travel time over the segments is around 70
seconds. The area is located in the center of Haifa, a city
located in northern Israel, having a population density
comparable to Philadelphia or Miami. Traffic conges-
tion in this area varies across segments and time of day.
For each power recording, the track traversed at least one

6Three of the segments are one way streets.

Figure 8: Map of area and intersections for route infer-
ence.

congested segment. Most of the 13 intersections have
traffic lights, and about a quarter of the road segments
pass through them.

We had three pre-recording sessions which in total
covered all segments. Each road segment was entered
from every possible direction to account for the hystere-
sis effects. The pre-recording sessions were done using
the same Nexus 4 phone.

We set the following parameters of the HMM (as they
are defined in Appendix A):

1. A – This set defines the transition probabil-
ities between the road segments. We set
these probabilities to be uniformly distributed
over all possible transitions. Namely, axyz ={

1/|Iy| |Iy = {w|(y,w) ∈ R,w �= x}
}

.

2. B – This set defines the distribution of power pro-
file observations over each state. These probabili-
ties depend on the road segments and their location
relative to the nearby based stations. We do not need
an explicit formulation of these probabilities to em-
ploy the particle filter. The likelihood of a a power
profile to be associated with a road segment is esti-
mated by the DTW distance of the power profile to
prerecorded power profiles of that segment.

3. Π – This set defines the initial state distribution.
We assume that the starting intersection of the
tracked device is known. This applies to scenar-
ios where the tracking begins from well-known lo-
cations, such as the user’s home, office, or another
location the attacker knows in advance.

For testing, we used 4 phones: two Nexus 4 (differ-
ent from the one used for the pre-recordings), a Nexus 5

10
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Phone Track
Nexus 4 #1 8-5-6-7-1-2-3-4-5-6-4-3-2-1-7-8
Nexus 4 #2 7-1-2-3-4-5-8-7-6-5-4-2-1-7-8

Nexus 5 3-2-4-9-10-12-11-9-4-5-6-4-3-2-1-7-6-5-8-7
HTC Desire 10-12-11-9-4-2-1-7-6-5-8

Table 2: Test Routes

and an HTC Desire. Each phone was used to record
the power profile of a different route. The four routes
combined cover almost all of the road segments in the
area. Table 2 details the routes by their corresponding
sequences of intersection identifiers. These route record-
ings were done on different days, different time of day
and varying weather conditions.

As noted, we can only measure the aggregate power
consumption which can be significantly affected by ap-
plications that run continuously. To have a better sense
of the effects of these applications the phones were
run with different number of background applications.
Nexus 4 #1, Nexus 5 and HTC Desire have a relatively
modest number of applications which included (beyond
the default Android apps): Email (corporate account),
Gmail, and Google Calender. Nexus 4 #2 has a much
higher number of application which included on top of
the applications of phone #1: Facebook, Twitter, Skype,
Waze, and WhatsApp. All those applications periodi-
cally send and receive traffic.

For each of the four tracks we derived all possible sub-
tracks having 3 to 7 road segments. We estimated each
such sub-track. In total we estimated around 200 sub-
tracks. For each sub-track we employed Algorithms 2
and 3 to get two best estimates for the sub-track.

Tables 3 to 5 summarize the results of route estimation
for each of the four phones. For each route we have two
alternatives for picking an estimate (1) the most frequent
route in the particle set as output by Algorithm 2; (2)
the route output by Algorithm 3. For each alternative we
note the road segment in which the phone is estimated to
be after the completion of its track and compare it with
the final road segment of the true route. This allows us to
measure the accuracy of the algorithm for estimating the
location of the user’s destination (the end of the track).
This is the most important metric for many attack sce-
narios where the attacker wishes to learn the destination
of the victim.

In some cases it may also be beneficial for the attacker
to know the actual route through which the victim tra-
versed on his way to the destination. For this purpose,
we also calculate for each alternative estimate the Leven-
shtein distance between it and the true route. The Leven-
shtein distance is a standard metric for measuring the dif-
ference between two sequences [18]. It equals the mini-
mum number of updates required in order to change one

random frequent Alg. 3 combined
Nexus 4 #1 33% 65% 48% 80%
Nexus 4 #2 31% 48% 56% 72%

Nexus 5 20% 33% 32% 55%
HTC Desire 22% 40% 41% 65%

Table 3: Destination localization

sequence to the next. In this context, we treat a route as
a sequence of intersections. The distance is normalized
by the length of the longer route of the two. This allows
us to measure the accuracy of the algorithm for estimat-
ing the full track the user traversed. For each estimate
we also note whether it is an exact fit with the true route
(i.e., zero distance). The percentage of successful local-
ization of destination, average Levenshtein distance and
percentage of exact full route fits are calculated for each
type of estimated route. We also calculate these metrics
for both estimates combined while taking into account
for each track the best of the two estimates. To bench-
mark the results we note in each table the performance
of a random estimation algorithm which simply outputs
a random, albeit feasible, route.

The results in Table 3 show the accuracy of destination
identification. It is evident that the performance of the
most frequent route output by the particle filter is com-
parable to the performance of the best estimate output by
Algorithm 3. However, their combined performance is
significantly better than either estimates alone and pre-
dict more accurately the final destination of the phone.
This result suggests that Algorithm 3 extracts significant
amount of information from the routes output by the par-
ticle filter beyond the information gleaned from the most
frequent route.

Table 3 indicates that for Nexus 4 #1 the combined
route estimates were able to identify the final road seg-
ment for 80% of all scenarios. For Nexus 4 #2 which was
running many applications the final destination estimates
are somewhat less accurate (72%). This is attributed to
the more noisy measurements of the aggregate power
consumption. The accuracy for the two models – Nexus
5 and HTC Desire – is lower than the accuracy achieved
for Nexus 4. Remember that all our pre-recordings were
done using a Nexus 4. These results may indicate that the
power consumption profile of the cellular radio is depen-
dent on the phone’s model. Nonetheless, for both phones
we achieve significantly higher accuracy of destination
localization (55% and 65%) as compared to the random
case (about 20%).

Tables 4 and 5 present measures – Levenshtein dis-
tance and exact full route fit – of the accuracy of esti-
mates for the full route the phone took to its destination.
Here, again, the algorithm presented for Nexus 4 #1 su-
perior performance. It was able to exactly estimate 45%

11
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random frequent Alg. 3 combined
Nexus 4 #1 0.61 0.38 0.27 0.24
Nexus 4 #2 0.63 0.61 0.59 0.52

Nexus 5 0.68 0.6 0.55 0.45
HTC Desire 0.65 0.59 0.5 0.45

Table 4: Levenshtein distance
random frequent Alg. 3 combined

Nexus 4 #1 4% 38% 22% 45%
Nexus 4 #2 5% 8.5% 5% 15%

Nexus 5 3% 15% 9% 20%
HTC Desire 5% 10% 12% 17%

Table 5: Exact full route fit

of the full route to the destination. On the other hand, for
the more busy Nexus 4 #2 and the other model phones
the performance was worse. It is evident from the re-
sults that for these three phones the algorithm had diffi-
culties producing an accurate estimate of the full route.
Nonetheless, in all cases the accuracy is always markedly
higher than that of the random case.

To have a better sense of the distance metric used
to evaluate the quality of the estimated routes Figure 9
depicts three cases of estimation errors and their corre-
sponding distance values in increasing order. It can be
seen that even estimation error having relatively high dis-
tances can have a significant amount of information re-
garding the true route.

8 Future directions

In this section we discuss ideas for further research, im-
provements, and additions to our method.

8.1 Power consumption inference

While new (yet very common) smartphone models con-
tain an internal ampere-meter and provide access to cur-
rent data, other models (for instance Galaxy S III) sup-
ply voltage but not current measurements. Therefore on
these models we cannot directly calculate the power con-
sumption. V-edge [31] proposes using voltage dynamics
to model a mobile device’s power consumption. That and
any other similar technique would extend our method
and make it applicable to additional smartphone models.

Ref. [33] presents PowerTutor, an application that es-
timates power consumption by different components of
the smartphone device based on voltage and state of dis-
charge measurements. Isolating the power consumed
by the cellular connectivity will improve our method by
eliminating the noise introduced by other components
such as audio/Bluetooth/WiFi etc. that do not directly
depend on the route.

8.2 State of Discharge (SOD)

The time derivative of the State-of-Discharge (the bat-
tery level) is basically a very coarse indicator of power
consumption. While it seemed to be too inaccurate for
our purpose, there is a chance that extracting better fea-
tures from it or having few possible routes may ren-
der distinguishing routes based on SOD profiles feasi-
ble. Putting it to the test is even more interesting given
the HTML 5 Battery API that enables obtaining certain
battery statistics from a web-page via JavaScript. Our
findings demonstrate how future increases in the sam-
pling resolution of the battery stats may turn this API
even more dangerous, allowing web-based attacks.

8.3 Choice of reference routes

Successful classification depends among other factors
on good matching between the power profile we want
to classify and the reference power profiles. Optimal
matching might be a matter of month, time of day, traffic
on the road, and more. We can possibly improve our clas-
sification if we tag the reference profiles with those asso-
ciated conditions and select reference profiles matching
the current conditions when trying to distinguish a route.
That of course requires collecting many more reference
profiles.

8.4 Collecting a massive dataset

Collecting a massive dataset of power profiles associated
with GPS coordinates is a feasible task given vendors’
capability to legally collect analytics about users’ use of
their smartphones. Obtaining such big dataset will en-
able us to better understand how well our approach can
scale and whether it can be used with much less prior
knowledge about the users.

9 Defenses

9.1 Non-defenses

One might think that by adding noise or limiting the sam-
pling rate or the resolution of the voltage and current
measurements one could protect location privacy. How-
ever, our method does not rely on high sampling fre-
quency or resolution. In fact, our method works well
with profiles much coarser than what we can directly get
from the raw power data, and for the route distinguish-
ing task we actually performed smoothing and downsam-
pling of the data yet obtained good results. Our method
also works well with signal strength, which is provided
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Figure 9: Examples of estimation errors and their corresponding distances (partial map is depicted). The true route is
green and the estimated route is red.

with much lower resolution and sampling frequency7.

9.2 Risky combination of power data and
network access

One way of reporting voltage and current measurements
to the attacker is via a network connection to the at-
tacker’s server. Warning the user of this risky combi-
nation may somewhat raise the bar for this attack. There
are of course other ways to leak this information. For
instance, a malicious application disguised as a diagnos-
tic software can access power data and log it to a file,
without attempting to make a network connection, while
another, seemingly unrelated, application reads the data
from that file and sends it over the network.

9.3 Secure hardware design
The problem with access to total power consumption is
that it leaks the power consumed by the transceiver cir-
cuitry and communication related tasks that indicate sig-
nal strength. While power measurements can be useful
for profiling applications, in many cases, examining the
power consumed by the processors executing the soft-
ware logic might be enough. We therefore suggest that
supplying only measurements of the power consumed by
the processors (excluding the power consumed by the
TX/RX chain) could be a reasonable trade-off between
functionality and privacy.

9.4 Requiring superuser privileges
A simple yet effective prevention may be requiring su-
peruser privileges (or being root) to access power supply
data on the phone. Thus, developers and power-users
can install diagnostic software or run a version of their

7In fact, since it reflects more directly the environmental conditions,
signal strength data can provide even better route identification and
tracking. We did not focus on signal strength since accessing it re-
quires access permissions and has already drawn research attention to
it as useful for localization.

application that collects power data on a rooted phone,
whereas the release version of the software excludes this
functionality. This would of course prevent the collection
of anonymous performance statistics from the install-
base, but as we have shown, such data can indicate much
more than performance.

9.5 Power consumption as a coarse loca-
tion indicator

Same as the cell identifier is defined as a coarse location
indicator, and requires appropriate permissions to be ac-
cessed, power consumption data can also be defined as
one. The user will then be aware, when installing ap-
plications that access voltage and current data, of the
application’s potential capabilities, and the risk poten-
tially posed to her privacy. This defense may actually
be the most consistent with the current security policies
of smartphone operating systems like Android and iOS,
and their current permission schemes.

10 Related work

Power analysis is known to be a powerful side-channel.
The most well-known example is the use of high sam-
ple rate (∼20 MHz) power traces from externally con-
nected power monitors to recover private encryption keys
from a cryptographic system [15]. Prior work has also
established the relationship between signal strength and
power consumption in smartphones [6,29]. Further, Bar-
tendr [29] demonstrated that paths of signal strength
measurements are stable across several drives.

PowerSpy combines these insights on power analy-
sis and improving smartphone energy efficiency to re-
veal a new privacy attack. Specifically, we demonstrate
that an attacker can determine a user’s location simply by
monitoring the cellular modem’s changes in power con-
sumption with the smartphone’s alarmingly unprotected
∼100 Hz internal power monitor.

13
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10.1 Many sensors can leak location

Prior work has demonstrated that data from cellular
modems can be used to localize a mobile device (an ex-
tensive overview appears in Gentile et al. [10]). Similar
to PowerSpy, these works fingerprint the area of interest
with pre-recorded radio maps. Others use signal strength
to calculate distances to base stations at known loca-
tions. All of these methods [16, 24, 25, 30] require sig-
nal strength measurements and base station ID or WiFi
network name (SSID), which is now protected on An-
droid and iOS. Our work does not rely on the signal
strength, cell ID, or SSID. PowerSpy only requires ac-
cess to power measurements, which are currently unpro-
tected on Android.

PowerSpy builds on a large body of work that has
shown how a variety of unprotected sensors can leak lo-
cation information. Zhou et al. [34] reveal that audio
on/off status is a side-channel for location tracking with-
out permissions. In particular, they extract a sequence
of intervals where audio is on and off while driving in-
structions are being played by Google’s navigation ap-
plication. By comparing these intervals with reference
sequences, the authors were able to identify routes taken
by the user. SurroundSense [3] demonstrates that ambi-
ent sound and light can be used for mobile phone local-
ization. They focus on legitimate use-cases, but the same
methods could be leveraged for breaching privacy. AC-
Complice [12] demonstrates how continuous measure-
ments from unprotected accelerometers in smartphones
can reveal a user’s location. Hua et al. [13] extend AC-
Complice by showing that accelerometers can also reveal
where a user is located in a metropolitan train system.

10.2 Other private information leaked
from smartphone sensors

An emerging line of work shows that various phone sen-
sors can leak private information other than location. In
future work we will continue analyzing power measure-
ments to determine if other private information is leaked.

Prior work has demonstrated how smartphone sensors
can be used to fingerprint specific devices. AccelPrint [9]
shows that smartphones can be fingerprinted by tracking
imperfections in their accelerometer measurements. Fin-
gerprinting of mobile devices by the characteristics of
their loudspeakers is proposed in [7, 8]. Further, Boji-
nov et. al. [4] showed that various sensors in smart-
phones can be used to identify a mobile device by its
unique hardware characteristics. Lukas et. al. [20] pro-
posed a method for digital camera fingerprinting by noise
patterns present in the images. [19] enhances the method
enabling identification of not only the model but also par-
ticular cameras.

Sensors can also reveal a user’s input such as speech
and touch gestures. The Gyrophone study [21] showed
that gyroscopes on smartphones can be used for eaves-
dropping on a conversation in the vicinity of the phone
and identifying the speakers. Several works [2, 5, 32]
have shown that the accelerometer and gyroscope can
leak information about touch and swipe inputs to a fore-
ground application.

11 Conclusion

PowerSpy shows that applications with access to a smart-
phone’s power monitor can gain information about the
location of a mobile device – without accessing the GPS
or any other coarse location indicators. Our approach
enables known route identification, real-time tracking,
and identification of a new route by only analyzing the
phone’s power consumption. We evaluated PowerSpy on
real-world data collected from popular smartphones that
have a significant mobile market share, and demonstrated
their effectiveness. We believe that with more data, our
approach can be made more accurate and reveal more in-
formation about the phone’s location.

Our work is an example of the unintended conse-
quences that result from giving 3rd party applications ac-
cess to sensors. It suggests that even seemingly benign
sensors need to be protected by permissions, or at the
very least, that more security modeling needs to be done
before giving 3rd party applications access to sensors.
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A Formal model of new route inference

In this section we formalize the problem of the new route
inference (Section 6) as a hidden Markov model (HMM)
[27]. Let I denote the set of intersections in an area in
which we wish to track a mobile device. A road segment
is given by an ordered pair of intersections (x,y), defined
to be a continuous road between intersection x and inter-
section y. We denote the set of road segments as R.
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We assume that once a device starts to traverse a road
segment it does not change the direction of its movement
until it reaches the end of the segment. We define a state
for each road segment. We say that the tracked device
is in state sxy if the device is currently traversing a road
segment (x,y), where x,y ∈ I. We denote the route of the
tracked device as a (Q,T ), where

Q =
{

q1 = sx1x2 ,q2 = sx2x3 , ...
}

T = {t1, t2, ...}

For such a route the device has traversed from xi to
xi+1 during time interval [ti−1, ti] (t0 = 0, ti−1 < ti ∀i > 0).

Let A =
{

axyz|∀x,y,z ∈ I
}

be the state transition prob-
ability distribution, where

axyz = p
{

qi+1 = syz|qi = sxy
}

(1)

Note that axyz = 0 if there is no road between intersec-
tions x and y or no road between intersections y and z.
A traversal of the device over a road segment yields a
power consumption profile of length equal to the dura-
tion of that movement. We denote a power consumption
profile as an observation o. Let B be the probability dis-
tribution of yielding a given power profile while the de-
vice traversed a given segment. Due to the hysteresis of
hand-offs between cellular base stations, this probability
depends on the previous segment the device traversed.
Finally, let Π =

{
πxy

}
be the initial state distribution,

where πxy is the probability that the device initially tra-
versed segment (x,y). If there is no road segment be-
tween intersections x and y, then πxy = 0. In our model
we treat this initial state as the state of the device before
the start of the observed power profile. We need to take
this state into account due to the hysteresis effect. Note
that an HMM is characterized by A, B, and Π.

The route inference problem is defined as follows.
Given an observation of a power profile O over time in-
terval [0, tmax], and given a model A, B and Π, we need
to find a route (Q,T ) such that p{(Q,T )|O} is maxi-
mized. In the following we denote the part of O which
begins at time t ′ and ends at time t ′′ by O[t ′,t ′′]. Note that
O = O[0,tmax]. We consider the time interval [0, tmax] as
having a discrete resolution of τ .

B Choosing the best inferred route

Upon its completion, the particle filter described in sec-
tion 6.1 outputs a set of N routes of various lengths. We
denote this set by Pfinal. This set exhibits an estimate
of the distribution of routes given the power profile of
the tracked device. The simple approach to select the
best estimate is to choose the route that appears most fre-
quently in Pfinal as it has the highest probability to occur.
Nonetheless, since a route is composed of multiple seg-
ments chosen at separate steps, at each step the weight

of a route is determined solely based on the last segment
added to the route. Therefore, in Pfinal there is a bias
in favor of routes ending with segments that were given
higher weights, while the weights of the initial segments
have a diminishing effect on the route distribution with
every new iteration.

To counter this bias, we choose another estimate using
a procedure we call iterative majority vote. This proce-
dure ranks the routes based on the prevalence of their pre-
fixes. At each iteration i the procedure calculates – Pre-
fix[i] – a list of prefixes of length i ranked by their preva-
lence out of the all routes that has a prefix in Prefix[i-1].
Prefix[i][n] denotes the prefix of rank n. The operation
p|| j – where p is a route and j is an intersection – denotes
the appending of j to p. At each iteration i algorithm 3 is
executed. In the following we denote RoutePrefixed(R,
p) to be the subset of routes out of the set R having p as
their prefix.

Algorithm 3 Iterative majority vote
I′ ← I
while not all prefixes found do

Prf ← next prefix from Prefix[i].
Find j ∈ I′ that maximizes

RoutePrefixed(RoutePrefixed(Pfinal,Prf),Prf|| j)
if no such j is found then

I′ = I
continue loop

end if
Prefix[i+1]← Prefix[i+1]∪{Prf|| j}
I′ = I′ −{ j}

end while

At each iteration i we rank the prefixes based on the
ranks of the previous iteration. Namely, prefixes which
are extensions of a shorter prefix having a higher rank in
a previous iteration will always get higher ranking over
prefixes which are extensions of a lower rank prefix. At
each iteration the we first find the most common prefixes
of length i+ 1, which start with the most common pre-
fix of length i found in the previous iteration, and rank
them according to their prevalence. Then we look for
common prefixes of length i+ 1, that start with the sec-
ond most common prefix of length i found in the previ-
ous iteration, and so on until all prefixes of length i+ 1
are found. The intuition is as follows. The procedure
prefers routes traversing segments that are commonly
traversed by other routes. Those received a high score
when were chosen. Since we cannot pick the most com-
mon segments separately from each step (a continuous
route probably will not emerge), we iteratively pick the
most common segment out of the routes that are prefixed
with the segments that were already chosen.
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Abstract

In this paper, we investigate the current use of data
compression in network services that are at the core of
modern web-based applications. While compression re-
duces network traffic, if not properly implemented it may
make an application vulnerable to DoS attacks. De-
spite the popularity of similar attacks in the past, such
as zip bombs or XML bombs, current protocol specifica-
tions and design patterns indicate that developers are still
mostly unaware of the proper way to handle compressed
streams in protocols and web applications. In this paper,
we show that denial of services due to improper handling
of data compression is a persistent and widespread threat.
In our experiments, we review three popular commu-
nication protocols and test 19 implementations against
highly-compressed protocol messages. Based on the re-
sults of our analysis, we list 12 common pitfalls that we
observed at the implementation, specification, and con-
figuration levels. Additionally, we discuss a number of
previously unknown resource exhaustion vulnerabilities
that can be exploited to mount DoS attacks against pop-
ular network service implementations.

1 Introduction

Modern web-based software applications rely on a num-
ber of core network services that provide the basic com-
munication between software components. For instance,
the list includes Web servers, email servers, and instant
messaging (IM) services, just to name some of the more
widespread ones. As a consequence of their popularity,
Denial of Service (DoS) may have very severe conse-
quences on the availability of many web services. In
fact, according to the 2014 Global Report on the Cost
of Cyber Crime [35], the impact of application DoS is
dramatic: 50% of the organizations have suffered from
such an attack, and the average cost of a single attack is
estimated to be over $166K US [35].

For performance reasons, many network services ex-
tensively use data compression to reduce the amount of
data transferred between the communicating parties. The
use of compression can be mandated by protocol speci-
fications or it can be an implementation-dependent fea-
ture. While compression indeed reduces network traffic,
at the same time, if not properly implemented, it may
also make applications vulnerable to DoS attacks. The
problem was first brought to users’ attention in 1996 in
the form of a recursively highly-compressed file archive
prepared with the only goal of exhausting the resources
of programs that attempt to inspect its content. In the
past, these zip bombs were used, for example, to mount
DoS attacks against bulletin board systems [1] and an-
tivirus software [2, 57].

While this may now seem an old, unsophisticated, and
easily avoidable threat, we discovered that developers
did not fully learn from prior mistakes. As a result,
the risks of supporting data compression are still often
overlooked, and descriptions of the proper way to han-
dle compressed messages are either lacking or mislead-
ing. In this paper, we investigate the current use of data
compression in several popular protocol and network ser-
vices. Through a number of experiments and by review-
ing the source code of several applications, we have iden-
tified a number of improper ways to handle data com-
pression at the implementation, specification, and config-
uration levels. These common mistakes are widespread
in many popular applications, including Apache HTTPD
and three of the top five most popular XMPP servers.
Similar to the zip bombs of 20 years ago, our experi-
ments show that these flaws can easily be exploited to
exhaust the server resources and mount a denial of ser-
vice attack.

The task of handling data compression is not as simple
as it may sound. In general, compression amplifies the
amount of data that a network service needs to process,
and some components may not be designed to handle this
volume of data. This may result in the exhaustion of re-
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sources for applications that were otherwise considered
secure. However, in this paper we show that these mis-
takes are not only caused by unbounded buffers, and nei-
ther are they localized into single components. In fact,
as message processing involves different modules, im-
proper communication may result in a lack of synchro-
nization, eventually causing an excessive consumption of
resources. Additionally, we show similar mistakes when
third-party modules and libraries are used. Here, mis-
leading documentation may create a false sense of secu-
rity in which the web application developers believe that
the data amplification risks are already addressed at the
network service level.

To summarize, this paper makes the following contri-
butions:

• We show that resource exhaustion vulnerabilities due
to highly-compressed messages are (still) a real threat
that can be exploited by remote attackers to mount
denial of service attacks;

• We present a list of 12 common pitfalls and suscep-
tibilities that affect the implementation, specification,
and configuration levels;

• We tested 11 network services and 10 third-party ex-
tensions and web application frameworks for a total of
19 implementations against compression-based DoS
attacks;

• We discovered and reported nine previously unknown
vulnerabilities, which would allow a remote attacker
to mount a denial of service attack.

This paper is organized as follows. In Section 2, we
introduce the case studies. Then, in Section 3, we dis-
cuss the security risks associated with data compression,
revisit popular attacks, and outline the current situation.
In Section 4, we detail the current situation and present
a list of 12 pitfalls at the implementation, specification,
and configuration levels. Then, in Section 5, we de-
scribe the experiments and present previously-unknown
resource exhaustion vulnerabilities. In Section 6, we re-
view related works, and finally, in Sections 7 and 8, we
outline future work and draw some conclusions.

2 Data Compression

Data compression is a coding technique that aims at re-
ducing the number of bits required to represent a string
by removing redundant data. Compression is lossless
when it is possible to reconstruct an exact copy of the
original string, or lossy otherwise. For a detailed sur-
vey on compression algorithms please refer to Salomon
et al. [45]. Since the focus of our paper is on the incorrect

Prot. Network Service Native External

XMPP ejabberd � -
Openfire � -
Prosody � -
jabberd2 � -
Tigase � -

HTTP Apache HTTPD � -
mod-php - �
CSJRPC - �
mod-gsoap - �
mod-dav � -

Apache Tomcat - �
Axis2 - �
CXF � �
jsonrpc4j - �
json-rpc - �
lib-json-rpc - �

Axis2 standalone � -
gSOAP standalone � -

IMAP Dovecot � -
Cyrus � -

Table 1: Case studies and Implementations

use of compression and it is independent of the algorithm
itself, we will discuss our finding and examples using the
popular Deflate algorithm.

Deflate is a lossless data compression technique that
combines together a Huffman encoding with a variant of
the LZ78 algorithm. It is specified in the Request For
Comments (RFC) number 1951 [13], released in May
1996, and it is now implemented by the widely used
zlib library [19], the gzip compression tool [18], and
the zip file archiver tool [22], just to name few popular
examples.

Deflate is widely used in many Internet protocols such
as the HyperText Transfer Protocol (HTTP) [17], the eX-
tensible Messaging and Presence Protocol (XMPP) [42],
the Internet Message Access Protocol (IMAP) [11], the
Transport Layer Security (TLS) protocol [26], the Point-
to-Point Protocol (PPP) [60], and the Internet Protocol
(IP) [33]. The list includes both text-based and binary
protocols. However, since the first category contains
fields of arbitrary length where the decompression over-
head is more evident, we decided to focus our study on
three popular text-based protocols: HTTP, XMPP and
IMAP. For each protocol we selected a number of imple-
mentations, summarized in Table 1. The columns Native
and External show if the compression is natively sup-
ported by the application or if it is provided by an exter-
nal component.

HTTP - Starting from version 1.1, HTTP supports com-
pression of the HTTP response body using different com-
pression algorithms (including Deflate) [17]. While the
specification only covers the compression of the response
body, we manually verified that several HTTP server im-

2
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HTTP server No. Perc.

Apache HTTPD 248 24.8%
NGINX HTTPD 202 20.2%
Google HTTPD 81 8.1%
MS IIS HTTPD 64 6.4%
Apache Tomcat 22 2.2%
Others (20 servers) 102 10.2%
Unknown 218 21.8%
Errors 63 6.3%

Tot. no. of domains 1000 100%

(a) HTTP servers of the first 1000 domains of
the Alexa DB of 2013-10-05.

XMPP server No. Perc.

ejabberd 56 52.8%
Openfire 11 10.4%
Prosody 9 8.5%
jabberd2 3 2.8%
Tigase 2 1.9%
Other (1 server) 1 0.9%
Unknown 1 0.9%
Errors 23 21.7%

Tot. no. of domains 106 100%

(b) XMPP servers of the 106 domains from
xmpp.net of 2013-09-03.

IMAP server No. Perc.

Dovecot 31 42.5%
Courier 19 26.0%
Zimbra 6 8.2%
Cyrus 3 4.1%
MS Exchange 2 2.7%
Others (5 servers) 6 8.2%
Unknown 6 8.2%

Servers discovered 73 100.00%

(c) IMAP servers of the first 1000 domains of
the Alexa DB

Table 2: Service detection for HTTP, XMPP, and IMAP servers

plementations additionally support the compression of
the request body. Table 2a shows the result of the HTTP
service detection1 in order to identify the most popular
HTTP server implementations among the top 1000 do-
mains of the Alexa Top Sites database2. From Table 2a,
we selected Apache HTTPD 2.2.22 [53] and Apache
Tomcat 7 [52] as they are available for GNU/Linux. The
former supports message decompression via the mod-
ule mod-deflate, while the latter can be extended with
third-party filters. In this paper, we used the 2Way HTTP
Compression Servlet Filter 1.2 [37] (2Way for short) and
Webutilities 0.0.6 [32].

In our experiments, we considered three use cases that
may benefit from request compression: distributed com-
puting, web applications, and sharing static resources.
For Apache HTTPD, we selected gSOAP 2.8.7 [59] to
develop SOAP-based RPC servers, CSJRPC 0.1 [9] to
develop PHP-based JSON RPC servers, the PHP Apache
module [55] (mod-php, for short) to develop PHP-based
web applications, and WebDAV [21] (as implemented by
the built-in Apache module mod-dav) to share static files.
For Tomcat, we selected Apache CXF 2.2.7 [51], Apache
Axis 2 [50], jsonrpc4j 1.0 [15], json-rpc 1.1 [41], and lib-
json-rpc 1.1.2 [7].

We test web servers with the following HTTP request:

POST $resource HTTP /1.1\r\n

Host: $domain\r\n

Content -Encoding: gzip\r\n

\r\n

$payload

\r\n

where $resource is the path to the resource, $domain
the web server domain, and $payload is the compressed
payload, or the compression bomb. The type of payload
varies according to the implementation under test, i.e.,

1Service detection is a technique to identify the name of a network
service by analyzing the server response against a database of finger-
prints. In this paper, we used the Nmap Security Scanner tool [30]).

2See http://www.alexa.com/

JSON or SOAP message requests, and HTML form pa-
rameters. For example, the SOAP compression bomb is
the following:

<soapenv:Envelope [...]>

$spaces

<soapenv:Body >[...] </ soapenv:

Body >

</soapenv:Envelope >

where $spaces can be, for example, a 4GB-long string
of blank spaces. Once compressed, this payload is re-
duced to about 4MB with a compression ratio of about
1:1000, a value close to the maximum compression fac-
tor that can be achieved with Zlib, i.e., 1:1024 [19]. It
might be possible to generate payloads with higher ra-
tios, for instance, by modifying the compressor to return
shorter, but still legal, strings. However, in this paper, we
did not investigate this direction and leave this as future
work.

XMPP - XMPP is an XML-based protocol offering mes-
saging and presence, and request-response services [43,
44]. XMPP is at the core of several public and IM ser-
vices, such as Google Talk, in which users exchange
text-based messages in real-time. We performed ser-
vice detection on the list of XMPP services available
at xmpp.net3. Table 2b shows the result of the ser-
vice detection. We selected the five most popular XMPP
servers for our tests: ejabberd 2.1.10 [38], Openfire
3.9.1 [27], Prosody 0.9.3 [56], jabberd2 2.2.8 [54], and
Tigase 5.2.0 [58].

To test XMPP servers, we used a similar trick as used
in SOAP compression bombs. The highly-compressed
XMPP message (i.e., xmppbomb) is the following:

<?xml version =’1.0’ ?>

<stream:stream

3xmpp.net maintains a publicly accessible list of XMPP services:
http://xmpp.net/services.xml. We retrieved it on 2013-09-03
and it contained 106 domains.

3



804 24th USENIX Security Symposium USENIX Association

$spaces

to=’server ’ xmlns=’jabber:

client ’

[...] >

where $spaces can be a 4GB-long string of blank
spaces. Also in this case, the compression ratio is about
1:1000.

IMAP - IMAP is a command-response protocol that al-
lows a client to manage emails and mailboxes on a re-
mote server [11]. The protocol supports compression
algorithms to reduce the size of both commands and re-
sponses [23]. We obtained a list of popular IMAP servers
from the first 1000 domains of the Alexa database. We
first resolved the Mail eXchange (MX) domain and then
we performed service detection. Table 2c shows the re-
sults of the service detection. As opposed to HTTP, we
report percentages of the total number of the discovered
servers because the majority of MX domains do not of-
fer IMAP access to the email boxes. Two of the five
IMAP servers were available for GNU/Linux and sup-
ported data compression: Dovecot 2.0.19 [16] and Cyrus
2.4.12 [8].

To test for IMAP, we crafted an email which can be
compressed with a ratio of about 1:1000. The structure
of the email is the following:

From: sender@foo\r\n

To: receiver@foo\r\n

Subject: I am a bomb!\r\n

$spaces

where $spaces can be a 4GB-long string of blank
spaces4.

3 Decompression Security Risks

Applications can use the Deflate decompression algo-
rithm in three main ways. First, they can invoke the
functions provided by widely available libraries, such as
zlib for C and java.util.zip for Java. Second, they
can adopt a high-level wrapper built around one of the
previously mentioned libraries (e.g., the zlib module
in Python or the Zlib module in PHP). Finally, appli-
cations can implement their own version of the Deflate
algorithm. Either way, in this paper we show that it is
not trivial to properly decompress user-generated data
streams. The risk arises from three aspects of the com-
pression/decompression process:

1. Decompression is a computationally intensive task
entailing an extensive use of CPU, memory, and disk
space. If not properly limited, this process can be

4Due to limitations of the IMAP servers, in our experiments we
used a 2GB-long string.

abused to stall an application and cause a denial of
service;

2. Decompression amplifies the amount of data that soft-
ware needs to process. Other components may not be
designed to handle this volume of data. Therefore, the
use of other functionalities on compressed data may
result in the exhaustion of resources for components
that were otherwise considered secure;

3. Compressed data can often be pre-computed by an at-
tacker, thus creating a largely unbalanced scenario in
which the input can be sent very fast, but the server
needs to invest a lot of resources to process it. More-
over, the compressed input can often be meaningless
or even malformed, because applications are often de-
signed to discard bad inputs only after they are en-
tirely decompressed.

3.1 The Past: Zip Bombs and Billion
Laughs

Abusing data amplification to cause application or sys-
tem denial of services is an old trick. The first docu-
mented DoS attack via a highly-compressed file archive
dates back to 1996 when an attacker uploaded a mali-
cious compressed file archive (a zip bomb) to the Bul-
letin Board System (BBS) of Fidonet, waiting for the
system administrator to decompress it [1]. The classic
zip bomb was a 42-kilobyte zip file archive that con-
tained five nested layer of compressed files whose to-
tal size amounted to 4.5 petabytes. In 2001, zip bombs
were used by attackers as email attachments [57] to dis-
able anti-virus software designed to scan incoming mes-
sages [2].

A second popular exploitation of data amplification
flaws was the so-called Billion Laughs attack [49] in
2003 (CVE-2003-1564). The Billion Laughs attack, also
called the Exponential Entity Expansion attack, is an at-
tack that exploits resource exhaustion vulnerabilities of
XML document parsers when processing recursive en-
tity definitions. An attacker may exploit this behavior by
crafting a valid XML document (an XML bomb) which
will cause the parser to generate an exponential amount
of data. This results in CPU monopolization and memory
exhaustion that can be exploited to mount a denial of ser-
vice attack. This vulnerability was first reported in 2003
as a weakness of libxml2 (CVE-2003-1564), an XML
parser library. The same vulnerability was later discov-
ered in some network servers, e.g., in 2009 in WebDAV
as implemented by Apache HTTPD (CVE-2009-1955),
and in a number of XMPP servers in 2011 (see, for ex-
ample, CVE-2011-1755 and CVE-2011-3288).

4
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3.2 The present
Despite the popularity of previous attacks, a quick look
at current protocol specifications, coding rules, and de-
sign patterns suggests that developers remain mostly un-
aware of the risks of using data compression. The risks of
using compression are often overlooked, and guidelines
on the proper way to handle compressed messages are
either misleading or completely missing. In the rest of
this section we briefly describe what protocol specifica-
tions, design patterns, and secure coding practices men-
tion about the security issues related to data compression.
Then, in Section 4, we show how this lack of common
knowledge and understanding about the possible decom-
pression attack vectors leads to a multitude of mistakes
in many popular applications and protocols. Finally, in
Section 5, we show experiments and the software vulner-
abilities that we discovered on our case studies.

3.2.1 Protocol Specifications

A closer look at the specifications of the case studies re-
vealed that none of them discuss potential security is-
sues related to the use of data compression at the protocol
level.

The Deflate specifications are mainly concerned
with data integrity issues, suggesting developers imple-
ment means of validating the integrity of compressed
data [13]. The HTTP protocol is concerned with loss
of data confidentiality and unauthorized access, e.g., via
path traversal attacks [17]. HTTP also addresses other
DoS-related issues, such as broken clients when han-
dling the status code 100 and with HTTP proxies [17].
The XMPP stream compression [25] does not describe
any XMPP-specific security concern due to the use of
data compression. Instead, it refers to SSL/TLS [26],
which is concerned with data leakage, buffer overrun in
the compression library, and enforcing packet size limits
for uncompressed data. However, the specifications do
not elaborate on how these concerns apply to XMPP, and
therefore the developer may be left to personal interpre-
tation that, ultimately, translates into vulnerable imple-
mentations. Finally, the IMAP compression specifica-
tion [23] refers again to the SSL/TLS specifications for
everything related to the decompression process.

3.2.2 Security Design Patterns

Security design patterns [3] are used to prevent vulner-
abilities during the software design phase as well as to
mitigate security risks. They address security concerns
at a high level of abstraction (i.e., DoS Safety, Compart-
mentalization, and Small Process [24]) but unfortunately
lack the details to address the specific concerns at the im-
plementation level.

Valid. Decompr. Parser

Logger

Appl.M

evt evt evt evt

Authn.

evt

Figure 1: Message Pipeline

3.2.3 Secure Development Rules

Secure development rules suggest ways to write secure
source code via secure code patterns (See, for example,
coding rules for Java [29] and C++ [46]) or by means
of software testing (see, for example, the OWASP Test-
ing Guide [31]). The only existing rule on processing
securely compressed data suggests a technique to vali-
date a zip archive file before decompressing it. Sadly,
the rule proposes an insecure technique, making the ap-
plications that implement it vulnerable to DoS via disk
space exhaustion. We give more details of this rule in
Section 4.2.

4 Common Pitfalls

In our study, we analyzed the implementation and docu-
mentation of our case studies, the protocol specifications
(i.e., [11, 13, 17, 23, 25, 42]), and the software develop-
ment best practices (i.e., [3, 24, 29, 31, 46]) looking for
proper and incorrect ways to handle data compression.
In this section, we distill our findings into 12 common
pitfalls we observed at the implementation, specification,
and configuration levels. Table 3 shows the list of pitfalls
and maps them to the implementations of Table 1 that are
affected by them.

4.1 Implementation Level
We start our survey of common compression-related mis-
takes by looking at the software implementation. As
mentioned in Section 3, the decompression of a user-
provided input is a delicate task that is prone to many
errors. Software developers may be unaware of or un-
derestimate the risks involved in this process, leading to
implementation mistakes that can introduce denial of ser-
vice vulnerabilities in the final product.

In this section, we list common pitfalls using a pipeline
that processes incoming compressed requests. A pipeline
is a linear chain of processing units in which the output of
a unit is the input of the following one. Data pipelines are
used to process incoming messages in blocks, in which
each unit processes a single piece of information at the
time, and provides an input to the next unit. Data com-
pression can be used at different stages of message pro-
cessing. For instance, it can be the first processing unit,

5
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XMPP ejabberd - - - - - - - - - - - -
Openfire - - - � � � - - - � � -
Prosody - � - - � � - - - � - -
jabberd2 - - - - - - - - - - - -
Tigase - - - - � � - - - � � -

HTTP Apache HTTPD Static document � - - - � � � - - � - -
mod-php scripts � - � - - � � - - � - -
mod-php CSJRPC � - � - - � � - - � - -
mod-gsoap � - � - - � � - - � - �
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jsonrpc4j � - - - - � � - � � - �
json-rpc � - - - � - � - � � - �
lib-json-rpc � - - - � - � - � � - �

Axis2 standalone � - - - � � � - � � - �
gSOAP standalone � - � - - � � - � � - �

IMAP Dovecot - - - - - - - - - - - -
Cyrus - - - - - - - - - - - -

Table 3: Distribution of the pitfalls within the implementations under test

as it is for XMPP messages, or it can be placed after the
message parsing, as implemented by the HTTP message
processing.

Figure 1 shows a generic data pipeline to process an
incoming message M. This pipeline is extracted from
our case studies and is used to guide the description of
the pitfalls. The pipeline has four processing units: user
authentication, message validation, message decompres-
sor, and message parser. The user authentication verifies
that the request is sent by an authenticated user. This step
may not be present in certain protocols, e.g., HTTP. The
message validation unit implements a decision procedure
to establish whether the incoming message can be ac-
cepted. The decompressor implements the data decom-
pression algorithm to reconstruct the original message.
Finally, the message parser performs a syntactic analysis
of the message according to the rules of the communica-
tion protocol. As we already mentioned, the actual or-
der of the blocks can be different, to reflect the protocol
specification. The four units can send messages to the
logger in order to store errors or unusual events in a log
file. Finally, the output of the pipeline is consumed by
the application logic. Here, by application we refer to an
abstract representation of a message consumer. The con-
sumer can be the rest of the software, e.g., a web applica-
tion, as well as an additional component used to support
application software, e.g., a web-based RPC framework.

4.1.1 Improper Input Validation during Decom-
pression

One of the first mistakes we observed in our study is re-
lated to the erroneous way in which the size of incoming
compressed messages is validated. We observed three
ways to validate the message size: validation of the com-
pressed message size, validation of the decompressed
message size, and validation of the compression ratio of
the message.

The first approach is the most straightforward to im-
plement. Unfortunately, it is hard to estimate the size of a
message by looking at its compressed form. For instance,
while accepting an input no longer than 1MB could be in-
sufficient for many types of data (e.g., when uploading a
compressed picture), the same value is already sufficient
for an attacker to generate extremely large decompressed
output (e.g., by compressing a very repetitive string of
bytes) that may cause an application denial of service.

The second approach consists in checking the size of
the message by setting a limit to the amount of decom-
pressed data. While this is a better solution, the valida-
tion of the decompressed size of an object is not straight-
forward to implement. To the best of our knowledge, we
are not aware of any technique that allows one to com-
pute the uncompressed size without first decompressing
the input. Unfortunately, if the application needs to fully
decompress the data before checking its size, it cannot
protect itself against DoS attacks. However, many li-
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braries (such as zlib and other language-specific wrap-
pers) allow the application to decompress the incoming
message in chunks. The size of each chunk is controlled
by the application, which creates two buffers to store the
compressed and the decompressed data streams. These
two buffers are passed to the decompressor function of
the library, which reads from one and writes to the other.
The decompressor function returns when there are no
more input bytes to process or when the output buffer
is full. At this point, the application can provide more
data or empty the output buffer. This interface allows an
application to decompress a large message a piece at a
time, constantly monitoring the amount of decompressed
data. If a threshold is reached, the application can reject
the input without the need to fully decompress the entire
message.

The third approach consists of calculating the com-
pression ratio. The compression ratio is the ratio between
the sizes of the compressed and the decompressed mes-
sages. If the value exceeds a certain threshold, the de-
compression is halted and the message discarded. How-
ever, the compression ratio may vary according to the re-
dundancies contained in the original message and it may
cause the rejection of valid inputs. Moreover, the prob-
lem of deciding the appropriate threshold for the ratio
must be solved. This may not be a simple task, as its
value may depend on the protocol itself and on the way
it is used by the application. Developers may leave the
choice to educated guesses, experience, or experiments.
This can result in under- or overestimation of this param-
eter. The former may increase the risk of rejecting valid
messages, while the latter may introduce an uncontrolled
use of resources.

To summarize, the first approach is a security mistake,
the second is correct (if properly implemented), and the
third one is potentially risky.

Apache HTTPD and gSOAP standalone provide ex-
amples of all three of these approaches. The first, vul-
nerable, approach is used by mod-deflate when it decom-
presses data for mod-php or mod-gsoap. This approach
is insecure and we will discuss the details of this vulner-
ability in Section 5.4. When a message enters Apache
HTTPD, it is processed by a chain of filters which trans-
form the message and perform additional checks. The
core module of Apache HTTPD offers a basic filter that
allows setting a limit on the size of any incoming request
body5. If the body exceeds the limit, then the message
is rejected. However, the limit refers only to the com-
pressed body size and it may render applications vulner-
able to resource exhaustion.

The second approach is also implemented by mod-
deflate, this time when it decompresses XML messages

5Via the configuration parameter LimitRequestBody

for mod-dav. The core module of Apache HTTPD offers
a second parameter to limit the size of XML body ob-
jects6. As opposed to the previous one, the limit correctly
applies to the decompressed form of the body. The third
approach is now implemented by the patched versions of
mod-deflate and gSOAP standalone. mod-deflate allows
the user to configure a threshold for the compression ra-
tio and the number of violations of the ratio that are al-
lowed. gSOAP instead has the ratio built into the source
code. In this case, the decompression is halted upon one
violation.

4.1.2 Use of Compression before Authentication

We observed a great variety of practices for enforc-
ing user authentication before the message decompres-
sion. For example, authentication is mandatory in SS-
L/TLS [14], recommended in XMPP [25], and undefined
in IMAP [23]. In some cases, the implementation may
even diverge from the specifications to postpone the use
of compression (e.g., as done by OpenSSH), or to use
compression where not prescribed (e.g., decompression
of HTTP requests). This great variety of cases clearly
indicates the lack of a consistent best practice. This may
lead developers to underestimate the risk and overlook
the recommendation. For example, we discovered that
Prosody accepts compressed messages before user au-
thentication, thus violating the recommendation of the
XMPP protocol [25].

4.1.3 Improper Inter-Units Communication

When a processing unit in the pipeline detects a fault, i.e.,
the buffer limit is reached, then the unit should halt and
notify the other units and the logger of this event. The
communication between units can be direct or indirect
via a third-party component, i.e., the pipeline manager.
If a unit does not halt the execution, then the application
may continue to consume resources until the resources
are exhausted.

We observed this problem in Apache HTTPD in the
interaction between mod-deflate and mod-php. mod-php
can limit the size of the incoming request body via the
parameter post max size. This parameter applies to
the amount of data received in input by mod-php. How-
ever, if the incoming message is compressed, then it is
first decompressed and then passed to mod-php. In this
case, once the limit is reached, mod-php has no means to
signal mod-deflate to stop processing the incoming data.
As result, mod-deflate will keep on decompressing data,
thus wasting system resources. The same problem was
also observed between mod-deflate and mod-gsoap. The

6Via the configuration parameter LimitXMLRequestBody
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developers of mod-php and mod-gsoap confirmed this
behavior.

4.1.4 Logging Decompressed Messages

Log files are used to store events generated by a running
program (or an entire operating system), and they are
particularly important to monitor the execution of back-
ground processes that have little interaction with the user,
as is the case for web services. The information stored
in log files can cover a wide range of events, including
warning messages, malfunction errors, and verbose re-
ports of the current activity of a given process.

While the use of log files is a good practice, both de-
velopers and users should carefully select the frequency
and the verbosity of the generated events. An excessive
level of verbosity may be useful to debug unusual behav-
iors, but it may have side effects from a security perspec-
tive. In particular, when the unusual behavior is caused
by compressed data, developers and users may underesti-
mate the resources needed to generate and store the event
and, as a result, the application can exhaust all the avail-
able resources.

For instance, we observed this type of issue in Apache
CXF. Upon receiving an invalid request, Apache CXF
stores the request in a temporary file, and then adds an
entry in the log file containing the first 100 KB of the
request. However, if the invalid message is compressed,
Apache CXF decompresses the entire request on disk just
to extract the 100KB header to log. As a result, in our
experiments we observed that a single request of 4MB
(containing 4GB of data after decompression) can cause
Apache CXF to store on the disk 8 GB of temporary data.

4.1.5 Unbounded Resource Usage

In general, the best way to avoid DoS attacks against an
application is to properly limit the size of decompressed
inputs. However, whenever such thresholds need to be
set very high because the application has to accept large
amounts of user-provided data, the developers should
carefully design the code to bound the CPU and mem-
ory usage of the decompression routine. We found un-
bounded CPU and memory usage in different applica-
tions. Below, we discuss these pitfalls separately.

Unbounded Memory - The data amplification intro-
duced by a decompressor may be underestimated by the
developers who may leave buffers uncontrolled on the
size both in peripheral (e.g., input validation compo-
nents) and internal components (e.g., message parsers).
For example, we observed this type of mistake in
Prosody and json-rpc. Prosody decompresses incom-
ing messages in chunks. Each chunk is passed to the
XMPP message parser, which internally accumulates the

chunks without bounds before the processing. A single
highly-compressed message results in consuming all the
available memory and, finally, being terminated by the
operating system. A similar behavior was observed in
json-rpc. Upon receiving a JSON request, json-rpc accu-
mulates the uncompressed request into a memory buffer
until no more memory is available.

Unbounded CPU - Decompressors are CPU-bound
software procedures, as they tend to monopolize the CPU
usage for the entire duration of the operation. If an at-
tacker can influence their execution, then she may de-
grade system performance and mount a CPU DoS attack.

Unfortunately, best practices in secure software cod-
ing [29, 46] do not provide techniques for controlling
CPU-bound tasks. As a result, developers may not be
aware of the risks and leave the CPU usage unbounded.
One way to control CPU-bound operations is to intro-
duce idle time intervals in which a task is suspended for
a period of time. The size of the interval and the moment
in which it is introduced can be decided at run-time by
taking into account the current status of the process. For
example, a task may introduce idle times in order to keep
constant the bandwidth of the decompressor throughput.

We observed an unbounded CPU usage in many im-
plementations of our case studies, including Apache
mod-deflate, Apache CXF, Webutilities, 2Way, Prosody,
and Tigase. On the other hand, we found that CPU con-
trols via idle time intervals were already implemented by
ejabberd and jabberd2.

4.2 Specification Level

In this section, we review common data compression pit-
falls stemming from imprecise protocol specifications,
misleading documentation, and erroneous best practices.

4.2.1 Misleading Documentation

Modern software is a collection of reusable components.
The developers of each component should carefully doc-
ument the security risks related to the usage of their
own components in order to allow a more secure integra-
tion. For this purpose, we reviewed the documentation
of Apache mod-deflate, Webutilities, 2Way Filter, Axis
2, and gSOAP. None of the above components discuss
the security risks related to the use of data compression.
Even worse, the user documentation of Webutilities and
2Way even reassure their users that (i) a developer can
plug in the decompression “without changing the source
code” [37], and (ii) that “nothing [else is] needed” [32]
from the user. In general, misleading documentation may
create a false sense of security in which a developer may
believe that she does not need to address the problem

8



USENIX Association  24th USENIX Security Symposium 809

in her application because the possible security concerns
are already addressed at the underlying level.

4.2.2 Erroneous Best Practices

Unawareness and underestimation of the risks in using
data compression may also affect best practices. In our
review of secure coding rules, we found out that the se-
curity risks specific to the decompression of compressed
messages are not properly addressed. Design patterns
are too generic to address the specificity of data com-
pression, and secure code patterns address only the risks
of storage exhaustion due to zip archive bombs [29]. Fi-
nally, testing guides only propose tests against informa-
tion leakage vulnerabilities caused by the simultaneous
usage of data compression and data encryption [31].

Interestingly enough, we discovered that the only
available pattern on the topic is also insecure7. In fact,
it suggests developers verify the decompressed size re-
ported in the file headers before accepting a Zip archive.
Unfortunately, this information can be easily forged by
an attacker to contain any arbitrary value, thus success-
fully bypassing the security checks. We disclosed the
flaw in the pattern to the authors, who marked it as vul-
nerable and provided a newer, secure version.

4.2.3 API Specifications Inconsistency

Data compression is an optional feature and it is transpar-
ent from the point of view of the application. However,
in our review we found out that the use of compression
may also violate the contract of other APIs. For example,
the method ServletRequest.getContentLength()

of J2EE 7 is supposed to return the length of the request
body as it is made available through the input stream.
The input stream refers to the object used by the servlet
developer to access the content of the body of the mes-
sage. This parameter may be used in the logic of the
servlet to allocate a buffer, or to accept or reject the re-
source. Unfortunately, when the HTTP decompression is
enabled, getContentLength returns a wrong value. In
our experiments, we verified that getContentLength
returns the value stored in the Content-Length HTTP
header, while the input stream contains the much larger
uncompressed body.

4.3 Configuration Level

In this section, we list common pitfalls in the way com-
pression can be configured in different services.

7See https://www.securecoding.cert.org/confluence/display/
java/IDS04-J.+Safely+extract+files+from+ZipInputStream

4.3.1 Insufficient Configuration Options

In Section 4.1, we described a number of secure ap-
proaches to handle data compression at the implemen-
tation level. These solutions allow one to control the re-
source consumption by setting limits to the amount of
resources to be used. The actual threshold may vary de-
pending from a number of factors. For example, a web
application that manages an online storage service may
require the web server to accept large input messages to
upload big files. In order to allow use of network ser-
vices in different scenarios, the resource limits need to be
parametric and the proper thresholds should be selected
by the user during the deployment phase.

However, we observed that the number of configura-
tion parameters provided by common servers is often in-
sufficient. This is mainly due to the lack of implemen-
tations of the resource consumption controls. For exam-
ple, Prosody only allows the use of data compression to
be enabled or disabled; it does not offer any parameters
to specify the maximum size of decompressed data to be
accepted, nor the output bandwidth of the decompressor.

4.3.2 Insecure Default Values

Recently, it has been demonstrated that compression may
be problematic when used together with data encryption,
as it can lead to information leakage (e.g., CRIME [39]
and BREACH [36]). The exploitation of these flaws may
depend on the deployment scenario and the capability of
the attacker to choose the plaintext. For these reasons,
the use of data compression should be at the discretion
of the user, who should assess the characteristics of the
deployment scenario and the usage of the service.

While data compression should be an optional feature,
in our survey we observed network service configura-
tions in which data compression was enabled by default,
such as in Openfire and Tigase.

4.3.3 Decentralized Configuration Parameters

The time to identify and resolve an attack is critical to
contain the costs of a cyber-incident [34]. The response
to an attack may require changing the configuration of a
running system, and this task is simplified if the security-
relevant configuration parameters are easily accessible to
the security response team. In our survey, we verified
that this is not always the case. For example, compres-
sion in CXF can be enabled in two ways. First, it can be
enabled by adding the decompressor filter in the config-
uration of the servlet (i.e., the web.xml file). Second, it
can be enabled within the Java code of the service using
a Java annotation. In both cases, in order to disable the
compression, the security response team needs to mod-
ify the configuration of all the servlets or, in the worst
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case, to modify even their source code. However, the re-
sponse team may not have access to the source code. As
a result, they may need to involve developers in this ac-
tivity, which may increase the time required to react to
an attack.

5 Analysis

In this section, we describe the experiments that we
performed to detect resource exhaustion vulnerabilities.
This section is organized as follows. In Section 5.1, we
describe the experiment setup. Then, in Section 5.2 we
present our results, and in Section 5.3 we discuss them.
Finally, in Section 5.4, we present the complete list of
vulnerabilities.

5.1 Experiment Setup

The services we tested in our experiments are devel-
oped using different programming languages, including
C, C++, Java, PHP, Erlang, and Lua. While automatic
code-based techniques could be used to detect software
vulnerabilities, these techniques are language-dependent
and therefore cannot be used in our analysis. For this rea-
son, we followed a black-box testing approach in which
we probed the implementation with malicious inputs,
and then measured the resource consumption and the ser-
vice availability.

Tests - Each test consists of two parts: baseline test and
attack. The baseline test measures the point of reference
for resource consumption and service availability when
compression is not used and there are no attacks. Base-
line measurements are sampled over a period of 60 sec-
onds by probing the target with 4MB-long, honest proto-
col messages. The attack measures instead the resource
consumption and service availability when stressing the
implementation with malicious messages sent by one,
12, and 24 simultaneous attackers—a very low number
compared with the number of clients that participate in
most of the distributed DoS attacks. Malicious messages
are presented in Section 2. Both the baseline and the at-
tack requests have a 4MB payload in order to rule out the
overhead of transferring the data over the network.

Testbed - We performed the experiments on a testbed
of three machines to host, respectively, the server, the
attackers, and the honest client. The server machine runs
the IUT and the internal monitor, the attackers execute
the test cases to send highly-compressed messages to the
server, and the client executes baseline tests to measure
the availability of the service.

To test the HTTP services, we used (i) a 4MB static file
resource; (ii) two PHP scripts for mod-php, each using a

Prot. Network Service C
PU

M
em

.

D
is

k

XMPP ejabberd - - -
Openfire � � �
Prosody � � -
jabberd2 - - -
Tigase � � -

HTTP Apache HTTPD Static document � � -
mod-php scripts � - -
mod-php CSJRPC � - -
mod-gsoap � - -
mod-dav � - -

Apache Tomcat Axis2 � � -
CXF � - �
jsonrpc4j � - -
json-rpc - � -
lib-json-rpc - � -

Axis2 standalone � � -
gSOAP standalone � - -

IMAP Dovecot - - �
Cyrus - - �

Table 4: Resource Consumption Vulnerabilities

different PHP interface8 to read the content of the request
body; and (iii) PHP, Java, and C++ classes and functions
to be deployed as a web services with CSJRPC, Axis 2,
CXF, jsonrpc4j, json-rpc, lib-json-rpc, and gSOAP (both
mod-gsoap and standalone). To test the XMPP and the
IMAP servers, we created user accounts for both the at-
tackers and the honest client. In our tests, we considered
different IUT configurations. For example, we tested
Apache HTTPD, mod-php, Apache Tomcat, ejabberd,
and jabberd2 with different maximum message sizes.

Monitoring - We monitored the IUT with a combination
of internal and external monitors. The external moni-
tor measures the service availability in terms of num-
ber of honest messages processed per second. We used
the client to continuously provide the server with honest
messages and measure the server’s response time. The
internal monitor is a modified version of pidstat from
the sysstat tool suite [20], which repeatedly polls the
/proc filesystem. It measures (1) CPU usage, (2) vir-
tual size (VSZ) and the resident set size (RSS) memory
and (3) disk I/O of the processes associated with the IUT.

5.2 Results

Table 4 shows a summary of the results of our ex-
periments on the 19 implementations. Out of them,
only four implemented the compression in a secure way.
Both ejabberd and jabberd2 keep a constant resource us-
age even during multiple simultaneous attacks. In fact,
through a manual source code analysis, we were able to

8php://input interface and $HTTP RAW POST DATA

10



USENIX Association  24th USENIX Security Symposium 811

verify that both servers implement two separate mecha-
nisms to limit the use of memory and CPU usage dur-
ing decompression. Table 4 shows a possible disk-based
DoS attack against Dovecot and Cyrus; however, this is
not to be considered a vulnerability, as IMAP servers are
designed to store on disk the email used as the attack
vector. All the other 15 services we tested showed an
uncontrolled increase in at least one of the three sys-
tem resources, making them potentially vulnerable to
decompression-based DoS attacks. All results were re-
ported to (and confirmed by) the developers of the corre-
sponding applications and libraries.

Table 5 shows an excerpt of our experiments on three
vulnerable implementations: Prosody, Apache HTTPD,
and Apache CXF with the WebUtilities filter. For each
implementation in Table 5, we performed four experi-
ments (col. Attackers): the baseline and three attacks re-
spectively with one, 12, and 24 parallel attackers. For
each experiment, we report the requests response time
(col. Resp.), the median value of the CPU usage (col.
Mdn), the maximum virtual size memory allocated (col.
VSZ), the maximum resident set size9 allocated (col.
RSS), and the total amount of data written to disk (col.
WR). The columns mult report the ratio between the mea-
sured value during the attack and the baseline. In the rest
of this section we detail the results of Table 5.

Prosody allocates up to 7.8GB of RSS memory and
22GB of VSZ memory when processing a single mali-
cious request. The process is then killed by the operat-
ing system due to a system out of memory error. Even
worse, Prosody also exhibits the same behavior when
we sent the malicious message before the user authen-
tication. Similarly as seen for Prosody, the measure-
ments for Apache CXF show a significant resource uti-
lization: starting from 0.03 GB of the baseline, Apache
CXF can write about 1 TB, which is 3243 times the base-
line. These value indicates that Apache CXF may be vul-
nerable to disk space exhaustion. Other services, while
still potentially vulnerable, had a more controlled behav-
ior. For instance, Apache HTTPD monopolizes the CPU
at about 100% for 17 seconds with a single attacker, and
up to 140 seconds by sending 24 malicious payloads in
parallel.

5.3 Experiment Results Discussion
In this section, we discuss three factors that play an im-
portant role in our black-box experiments.

First, the baseline sets the amplitude of the propor-
tions with the measurements done during the attack. The
choice of the baseline is crucial because it can affect the
conclusion of the analysis. As we already explained, the
choice of the baseline was to offer a reference point that

9The total RAM size of the server machine is 8 GB.

rules out network delay. This results in ratio values that
cannot be directly transferred to real-size servers.

Second, the quantification of the severity of the ob-
served degradation heavily depends on a number of vari-
ables that our testbed does not realistically reproduce,
e.g., number of CPU cores, size of main memory, disk
space, and average load of the server. Small-size servers
can be DoSed with few requests, while large and pow-
erful servers may be able to sustain a higher load before
showing signs of resource exhaustion. As a result, to ob-
tain an externally visible effect, it may be necessary to
use a larger number of simultaneous attackers.

Finally, it is hard to develop an automated procedure
to detect DoS vulnerabilities on the basis of the data we
collected. The measures do not offer an accurate view of
the internal behavior of the application, and the figures
depend on so many factors that sometimes it is hard to
make a final conclusion. For this reason, we manually
verified each case, often complementing the experiments
with a source code analysis of the affected components.
Moreover, we discussed each problem with the develop-
ers, and obtained confirmation of each vulnerability re-
ported in this paper.

5.4 Vulnerabilities
Our experiments led to the discovery of nine vulnerabil-
ities. After we completed our experiments, our results
were also reproduced on other three additional XMPP
network services (M-Link, Metronome, and Mongoo-
seIM), discovering resource exhaustion vulnerabilities
also in these products as well.

We followed the principle of responsible disclosure
and informed the developers, the community, and the se-
curity response teams. In most of the cases, developers
reacted to our first reports and worked on a patch. If de-
velopers were unresponsive for over a month, we tried
a second time and then alerted the US CERT to support
the disclosure. Eventually, all the developers acknowl-
edge the reported vulnerabilities. The way in which each
product was patched is described in the rest of this sec-
tion.

5.4.1 HTTP

Apache HTTPD - The component that caused CPU and
memory consumption is mod-deflate. This affected mod-
php, CSJRPC, and mod-gsoap applications. Unfortu-
nately, mod-php and mod-gsoap developers are unable to
solve this issue on their components, as they are unaware
of a suitable interface to control mod-deflate. As a result,
we escalated the issue to the Apache Security Team. The
security team acknowledged the presence of the vulner-
ability, fixed it in Apache HTTPD 2.4.10, and disclosed
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Attacks CPU Memory Disk
Prot. Network Service No. Resp. Mdn mult. RSS mult. VSZ mult. WR mult.

XMPP Prosody baseline > 0 s 1% x1 0.01 GB x1 0.05 GB x1 0.00 GB -
1 204 s 18% x18 7.68 GB x1397 10.71 GB x210 0.00 GB -

12 222 s 21% x21 7.60 GB x1383 18.40 GB x361 0.00 GB -
24 531 s 34% x34 7.71 GB x1402 22.96 GB x451 0.00 GB -

HTTP Apache HTTPD baseline 1 s 21% x1 0.05 GB x1 0.55 GB x1 0.00 GB -
1 17 s 114% x6 0.10 GB x2 0.78 GB x1 0.00 GB -

12 72 s 297% x14 0.58 GB x11 2.36 GB x4 0.00 GB -
24 142 s 229% x11 0.84 GB x15 2.75 GB x5 0.00 GB -

Apache CXF WU baseline 1 s 57% x1 0.33 GB x1 3.03 GB x1 0.03 GB x1
1 149 s 55% x1 0.38 GB x1 3.03 GB x1 9.10 GB x317

12 1135 s 109% x2 0.73 GB x2 6.09 GB x2 84.90 GB x2958
24 1296 s 109% x2 0.44 GB x1 3.08 GB x1 93.07 GB x3243

Table 5: Excerpt of the experiment results

it publicly (CVE-2014-0118). Our contribution was also
rewarded by the bounty program of Hackerone10.

Apache HTTPD developers implemented two new
mechanisms to control CPU and memory consumptions
that can be configured via the following new pa-
rameters: DeflateInflateLimitRequestBody,
DeflateInflateRatioLimit, and
DeflateInflateRatioBurst. The first parame-
ter limits the maximum amount of memory that can be
allocated to decompress incoming HTTP requests. The
second enforces a ratio between the compressed and
decompressed message. This mechanism also allows
specifying the number of tolerated violations of the
ratio before halting the decompression. While this
mechanism limits the use of resources in the presence of
highly-compressed messages (not necessarily compres-
sion bombs), it does not limit the amount of CPU used
by the decompressor.

gSOAP - gSOAP standalone suffers from uncontrolled
CPU usage. The developers acknowledged the presence
of the vulnerability and released a patch. The patch im-
plements a ratio-based technique similar to the mecha-
nism implemented now by mod-deflate. However, as op-
posed to mod-deflate, the ratio is not parametric but it is
built into the source code.

Webutilities and 2Way - Webutilities and 2Way filters
are the components that cause unbounded CPU usage
in Axis 2, CXF, and jsonrpc4j. After our reports, the
developers of Webutilities fixed the vulnerability using
a CPU throttling mechanism that can be configured via
a new parameter, decompressMaxBytesPerSecond.
This mechanism monitors the throughput in bytes per
second of the decompressor and, if the limit is reached, it
introduces idle time intervals in which the decompressor
is suspended from execution for a short period of time.
The developers of 2Way acknowledged the presence of

10See https://hackerone.com/reports/20861

the issue and are working on a patch (still unavailable at
the time of writing).

Apache CXF - Apache CXF suffers from a disk exhaus-
tion vulnerability. We reported the issue to the Apache
Security Team. The security team acknowledged the
presence of the vulnerability in two branches of the soft-
ware, fixed it in version 2.6.14 and 2.7.11, and disclosed
it publicly (CVE-2014-0109 and CVE-2014-0110). This
vulnerability is described in Section 4.1.4.

json-rpc and lib-json-rpc - json-rpc and lib-json-rpc
suffer from an uncontrolled memory vulnerability. Upon
receiving a JSON request, both frameworks try to store
all of the uncompressed data in a single memory buffer,
causing an out of memory error. The developers ac-
knowledged the issue and are currently working on a
patch.

5.4.2 XMPP

The disclosure of the XMPP vulnerabilities was con-
ducted with the involvement of the XMPP community.
We supported the community in coordinating the dis-
closure and preparing a common secure notice about
the multiple vulnerabilities. In total, our experiments
directly discovered four vulnerabilities in three XMPP
servers, and three other servers were found vulnerable
during the disclosure. All the vulnerabilities are fixed
and new versions of the servers are already available11.
Also in this case, our contribution and efforts were re-
warded by the bounty program of Hackerone12.

Openfire - Openfire does not properly restrict the re-
sources used in processing incoming XMPP messages
(see, CVE-2014-2741 and VU#495476).

Prosody - Prosody suffers from memory exhaustion due

11See http://xmpp.org/resources/security-notices/
12See https://hackerone.com/reports/5928
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to an uncontrolled buffer (CVE-2014-2745) and allows
unauthenticated users to use data compression (CVE-
2014-2744).

Tigase - Tigase does not properly limit the memory
used to process incoming XMPP messages (CVE-2014-
2746).

M-Link - M-Link does not properly restrict the resources
used in processing incoming XMPP messages (CVE-
2014-2742).

Metronome - Metronome suffers from unbounded mem-
ory consumption (CVE-2014-2743) and allows the use
of compression before user authentication (CVE-2014-
2744, shared with Prosody).

MongooseIM - MongooseIM does not properly restrict
the resources used in processing incoming XMPP mes-
sages (CVE-2014-2829).

6 Related Work

In this section, we review works that are related to this
paper from different perspectives. In particular, we dis-
cuss attacks that exploit data amplification, leakage due
to the use of data compression, worst-case complexity,
and bandwidth exhaustion.

Data Amplification Attacks - To the best of our knowl-
edge, zip bombs [1] and XML bombs [49] are among
the first documented abuses of data amplification. We al-
ready discussed the details of these attacks in Section 3.
Data amplification can also be achieved by using exter-
nal servers for which the response size is bigger than the
request size [40]. An attacker can spoof the network ad-
dress of a victim and sends small request packets to a
large number of servers. These requests trigger volumi-
nous response traffic that accumulates on the network
link of the victim and leads to bandwidth exhaustion.
Similar to an asymmetry in the request/response traffic
volume, our work considers an asymmetry in creating
and processing compressed data for attack amplification.

Compression and Encryption - Data compression can
lead to information leakage when used together with en-
cryption. CRIME [39] and BREACH [36] are two at-
tacks that exploit the change of size of a ciphertext due
to the compression of the plaintext. These attacks target
the SSL/TLS layer when used to carry HTTP conversa-
tions and rely on an attacker that is capable of performing
a chosen-plaintext attack. These attacks and our work
show orthogonal security issues in using data compres-
sion. While CRIME and BEAST aim at breaking the
SSL/TLS encryption layer, our paper addresses software
vulnerabilities due to the data amplification of decom-
pression algorithms.

Algorithmic Attacks - Resource exhaustion can also re-
sult from the worst-case performance of the data struc-
ture algorithms [12] and rule matching algorithms [47].
Similarly to these attacks, in this paper we exploit
the worst-case scenario of decompression algorithms in
which the attacker can cause resource exhaustion with a
compression rate of 1:1000.

Bandwidth Exhaustion - A variety of DoS attacks target
network bandwidth exhaustion [6, 28, 48]. The Coremelt
attack [48] and the Crossfire attack [28] achieve DoS
through network bandwidth exhaustion of a targeted Au-
tonomous System backbone routers. The attacker does
not connect to the victim, but instead she uses machines
under her control to exchange data over the link used
by the victim. As both Coremelt and Crossfire work
by exposing network links to high traffic, their effects
can arguably be mitigated by using compression. How-
ever, the results presented in this paper demonstrate that
there is a catch to such strategies, as compression bears
risks for the communication’s end nodes. Büscher and
Holz [6] show that the vast majority of attacks launched
by the DirtJumper/Ruskill botnet target HTTP port 80 [6]
and that an average number of 185 DoS threads is suffi-
cient to saturate the link between the botnet and the vic-
tim. Our results indicate that service disruptions can be
achieved with a much lesser number if compression is
used, thereby circumventing the detection and analysis
proposed in the paper [6].

7 Future Work

As future work, we plan to investigate two directions:
secure data compression, and automated detection tech-
niques for resource exhaustion vulnerabilities.

Solving the mistakes presented in Section 4 is only
part of the problem. Data compression introduces an un-
balanced scenario in which the sender can generate of-
fline compressed messages while the receiver needs to
perform online decompression. This gives a large advan-
tage to the attacker. The first direction of our research is
to tackle this problem by studying new techniques that
introduce fairness in data compression. The idea is to
allow the receiver to decompress an incoming message
when it has evidence that the sender has performed the
compression online. The evidence can be provided by
the means of single-use or session-based compression
keys.

The problem of detecting resource exhaustion vulner-
abilities has been addressed in the past [4, 5, 10]. How-
ever, existing techniques are fragmented and suffer from
a number of limitations which hinder their use: they can-
not scale to real programs (See [5]), are not fully auto-
mated (See [4]), and can be applied only to a subset of

13
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the resource exhaustion vulnerabilities (See [10]). As a
second research direction, we plan to develop an intelli-
gent fuzzer which combines code analysis and blackbox
testing: The code analysis can be responsible for extract-
ing a set of program constraints that the fuzzer would
then use to generate inputs using a constraint solver.

8 Conclusion

In this paper, we presented a study on the current use
of data decompression in three popular network services
that are at the core of modern web-based applications.
We analyzed 19 network services and extensions, proto-
col specifications, and documentation looking for proper
and incorrect ways to handle data compression. We
grouped our findings into 12 common pitfalls that we ob-
served at the implementation, specification, and configu-
ration levels. Furthermore, in our tests we discovered and
reported nine previously unknown vulnerabilities. While
these problems have been now being patched, we believe
that this paper shows how the risks of supporting data
compression are still too often overlooked, even by very
popular web and network services.
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Abstract
DDoS defense today relies on expensive and propri-
etary hardware appliances deployed at fixed locations.
This introduces key limitations with respect to flexibil-
ity (e.g., complex routing to get traffic to these “choke-
points”) and elasticity in handling changing attack pat-
terns. We observe an opportunity to address these limita-
tions using new networking paradigms such as software-
defined networking (SDN) and network functions virtu-
alization (NFV). Based on this observation, we design
and implement Bohatei, a flexible and elastic DDoS de-
fense system. In designing Bohatei, we address key
challenges with respect to scalability, responsiveness,
and adversary-resilience. We have implemented de-
fenses for several DDoS attacks using Bohatei. Our
evaluations show that Bohatei is scalable (handling 500
Gbps attacks), responsive (mitigating attacks within one
minute), and resilient to dynamic adversaries.

1 Introduction
In spite of extensive industrial and academic efforts
(e.g., [3, 41, 42]), distributed denial-of-service (DDoS)
attacks continue to plague the Internet. Over the last
few years, we have observed a dramatic escalation
in the number, scale, and diversity of DDoS attacks.
For instance, recent estimates suggest that over 20,000
DDoS attacks occur per day [44], with peak volumes
of 0.5 Tbps [14, 30]. At the same time, new vec-
tors [37, 55] and variations of known attacks [49] are
constantly emerging. The damage that these DDoS at-
tacks cause to organizations is well-known and include
both monetary losses (e.g., $40,000 per hour [12]) and
loss of customer trust.

DDoS defense today is implemented using expensive
and proprietary hardware appliances (deployed in-house
or in the cloud [8, 19]) that are fixed in terms of place-
ment, functionality, and capacity. First, they are typi-
cally deployed at fixed network aggregation points (e.g.,
a peering edge link of an ISP). Second, they provide

fixed functionality with respect to the types of DDoS at-
tacks they can handle. Third, they have a fixed capacity
with respect to the maximum volume of traffic they can
process. This fixed nature of today’s approach leaves
network operators with two unpleasant options: (1) to
overprovision by deploying defense appliances that can
handle a high (but pre-defined) volume of every known
attack type at each of the aggregation points, or (2) to
deploy a smaller number of defense appliances at a cen-
tral location (e.g., a scrubbing center) and reroute traf-
fic to this location. While option (2) might be more
cost-effective, it raises two other challenges. First, op-
erators run the risk of underprovisioning. Second, traf-
fic needs to be explicitly routed through a fixed central
location, which introduces additional traffic latency and
requires complex routing hacks (e.g., [57]). Either way,
handling larger volumes or new types of attacks typically
mandates purchasing and deploying new hardware appli-
ances.

Ideally, a DDoS defense architecture should provide
the flexibility to seamlessly place defense mechanisms
where they are needed and the elasticity to launch de-
fenses as needed depending on the type and scale of the
attack. We observe that similar problems in other ar-
eas of network management have been tackled by tak-
ing advantage of two new paradigms: software-defined
networking (SDN) [32, 40] and network functions vir-
tualization (NFV) [43]. SDN simplifies routing by de-
coupling the control plane (i.e., routing policy) from the
data plane (i.e., switches). In parallel, the use of virtual-
ized network functions via NFV reduces cost and enables
elastic scaling and reduced time-to-deploy akin to cloud
computing [43]. These potential benefits have led major
industry players (e.g., Verizon, AT&T) to embrace SDN
and NFV [4, 6, 15, 23].1

In this paper, we present Bohatei2, a flexible and

1To quote the SEVP of AT&T: “To say that we are both feet in [on
SDN] would be an understatement. We are literally all in [4].”

2It means breakwater in Japanese, used to defend against tsunamis.
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elastic DDoS defense system that demonstrates the ben-
efits of these new network management paradigms in the
context of DDoS defense. Bohatei leverages NFV ca-
pabilities to elastically vary the required scale (e.g., 10
Gbps vs. 100 Gbps attacks) and type (e.g., SYN proxy
vs. DNS reflector defense) of DDoS defense realized by
defense virtual machines (VMs). Using the flexibility
of SDN, Bohatei steers suspicious traffic through the de-
fense VMs while minimizing user-perceived latency and
network congestion.

In designing Bohatei, we address three key algorith-
mic and system design challenges. First, the resource
management problem to determine the number and loca-
tion of defense VMs is NP-hard and takes hours to solve.
Second, existing SDN solutions are fundamentally un-
suitable for DDoS defense (and even introduce new at-
tack avenues) because they rely on a per-flow orchestra-
tion paradigm, where switches need to contact a network
controller each time they receive a new flow. Finally,
an intelligent DDoS adversary can attempt to evade an
elastic defense, or alternatively induce provisioning inef-
ficiencies by dynamically changing attack patterns.

We have implemented a Bohatei controller using
OpenDaylight [17], an industry-grade SDN platform.
We have used a combination of open source tools (e.g.,
OpenvSwitch [16], Snort [48], Bro [46], iptables [13]) as
defense modules. We have developed a scalable resource
management algorithm. Our evaluation, performed on a
real testbed as well as using simulations, shows that Bo-
hatei effectively defends against several different DDoS
attack types, scales to scenarios involving 500 Gbps at-
tacks and ISPs with about 200 backbone routers, and can
effectively cope with dynamic adversaries.

Contributions and roadmap: In summary, this paper
makes the following contributions:
• Identifying new opportunities via SDN/NFV to im-

prove the current DDoS defense practice (§2);

• Highlighting the challenges of applying existing
SDN/NFV techniques in the context of DDoS
defense(§3);

• Designing a responsive resource management algo-
rithm that is 4-5 orders of magnitude faster than the
state-of-the-art solvers (§4);

• Engineering a practical and scalable network or-
chestration mechanism using proactive tag-based for-
warding that avoids the pitfalls of existing SDN so-
lutions (§5);

• An adaptation strategy to handle dynamic adversaries
that can change the DDoS attack mix over time (§6);

• A proof-of-concept implementation to handle several
known DDoS attack types using industry-grade SD-
N/NFV platforms (§7); and

• A systematic demonstration of the scalability and ef-
fectiveness of Bohatei (§8).

We discuss related work (§9) before concluding (§10).

2 Background and Motivation
In this section, we give a brief overview of software-
defined networking (SDN) and network functions virtu-
alization (NFV) and discuss new opportunities these can
enable in the context of DDoS defense.

2.1 New network management trends
Software-defined networking (SDN): Traditionally,
network control tasks (e.g., routing, traffic engineering,
and access control) have been tightly coupled with their
data plane implementations (e.g., distributed routing pro-
tocols, ad hoc ACLs). This practice has made net-
work management complex, brittle, and error-prone [32].
SDN simplifies network management by decoupling the
network control plane (e.g., an intended routing policy)
from the network data plane (e.g., packet forwarding
by individual switches). Using SDN, a network opera-
tor can centrally program the network behavior through
APIs such as OpenFlow [40]. This flexibility has mo-
tivated several real world deployments to transition to
SDN-based architectures (e.g., [34]).
Network functions virtualization (NFV): Today, net-
work functions (e.g., firewalls, IDSes) are implemented
using specialized hardware. While this practice was nec-
essary for performance reasons, it leads to high cost and
inflexibility. These limitations have motivated the use
of virtual network functions (e.g., a virtual firewall) on
general-purpose servers [43]. Similar to traditional vir-
tualization, NFV reduces costs and enables new opportu-
nities (e.g., elastic scaling). Indeed, leading vendors al-
ready offer virtual appliance products (e.g., [24]). Given
these benefits, major ISPs have deployed (or are planning
to deploy) datacenters to run virtualized functions that re-
place existing specialized hardware [6, 15, 23]. One po-
tential concern with NFV is low packet processing per-
formance. Fortunately, several recent advances enable
line-rate (e.g., 10-40Gbps) packet processing by soft-
ware running on commodity hardware [47]. Thus, such
performance concerns are increasingly a non-issue and
will further diminish given constantly improving hard-
ware support [18].

2.2 New opportunities in DDoS defense
Next, we briefly highlight new opportunities that SDN
and NFV can enable for DDoS defense.
Lower capital costs: Current DDoS defense is based
on specialized hardware appliances (e.g., [3, 20]). Net-
work operators either deploy them on-premises, or out-
source DDoS defense to a remote packet scrubbing site
(e.g., [8]). In either case, DDoS defense is expensive.
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For instance, based on public estimates from the Gen-
eral Services Administration (GSA) Schedule, a 10 Gbps
DDoS defense appliance costs ≈$128,000 [11]. To put
this in context, a commodity server with a 10 Gbps Net-
work Interface Card (NIC) costs about $3,000 [10]. This
suggests roughly 1-2 orders of magnitude potential re-
duction in capital expenses (ignoring software and de-
velopment costs) by moving from specialized appliances
to commodity hardware.3

Time to market: As new and larger attacks emerge,
enterprises today need to frequently purchase more ca-
pable hardware appliances and integrate them into the
network infrastructure. This is an expensive and tedious
process [43]. In contrast, launching a VM customized for
a new type of attack, or launching more VMs to handle
larger-scale attacks, is trivial using SDN and NFV.

Elasticity with respect to attack volume: Today,
DDoS defense appliances deployed at network choke-
points need to be provisioned to handle a predefined
maximum attack volume. As an illustrative example,
consider an enterprise network where a DDoS scrubber
appliance is deployed at each ingress point. Suppose the
projected resource footprint (i.e., defense resource us-
age over time) to defend against a SYN flood attack at
times t1, t2, and t3 is 40, 80, and 10 Gbps, respectively.4

The total resource footprint over this entire time period
is 3×max{40,80,10}= 240 Gbps, as we need to provi-
sion for the worst case. However, if we could elastically
scale the defense capacity, we would only introduce a re-
source footprint of 40+80+10 = 130 Gbps—a 45% re-
duction in defense resource footprint. This reduced hard-
ware footprint can yield energy savings and allow ISPs to
repurpose the hardware for other services.

Flexibility with respect to attack types: Building on
the above example, suppose in addition to the SYN flood
attack, the projected resource footprint for a DNS ampli-
fication attack in time intervals t1, t2, and t3 is 20, 40,
and 80 Gbps, respectively. Launching only the required
types of defense VMs as opposed to using monolithic
appliances (which handle both attacks), drops the hard-
ware footprint by 40%; i.e., from 3× (max{40,80,10}+
max{20,40,80}) = 480 to 270.

Flexibility with respect to vendors: Today, network
operators are locked-in to the defense capabilities offered
by specific vendors. In contrast, with SDN and NFV,
they can launch appropriate best-of-breed defenses. For
example, suppose vendor 1 is better for SYN flood de-
fense, but vendor 2 is better for DNS flood defense. The
physical constraints today may force an ISP to pick only

3Operational expenses are harder to compare due to the lack of pub-
licly available data.

4For brevity, we use the traffic volume as a proxy for the memory
consumption and CPU cycles required to handle the traffic.

Figure 1: DDoS defense routing efficiency enabled by
SDN and NFV.

one hardware appliance. With SDN/NFV we can avoid
the undesirable situation of picking only one vendor and
rather have a deployment with both types of VMs each
for a certain type of attack. Looking even further, we
also envision that network operators can mix and match
capabilities from different vendors; e.g., if vendor 1 has
better detection capabilities but vendor 2’s blocking al-
gorithm is more effective, then we can flexibly combine
these two to create a more powerful defense platform.

Simplified and efficient routing: Network operators
today need to employ complex routing hacks (e.g., [57])
to steer traffic through a fixed-location DDoS hardware
appliance (deployed either on-premises or in a remote
site). As Figure 1 illustrates, this causes additional la-
tency. Consider two end-to-end flows f low1 and f low2.
Way-pointing f low2 through the appliance (the left hand
side of the figure) makes the total path lengths 3 hops.
But if we could launch VMs where they are needed (the
right hand side of the figure), we could drop the total
path lengths to 2 hops—a 33% decrease in traffic foot-
print. Using NFV we can launch defense VMs on the
closest location to where they are currently needed, and
using SDN we can flexibly route traffic through them.

In summary, we observe new opportunities to build a
flexible and elastic DDoS defense mechanism via SD-
N/NFV. In the next section, we highlight the challenges
in realizing these benefits.

3 System Overview
In this section, we envision the deployment model and
workflow of Bohatei, highlight the challenges in realiz-
ing our vision, and outline our key ideas to address these
challenges.

3.1 Problem scope

Deployment scenario: For concreteness, we focus on
an ISP-centric deployment model, where an ISP offers
DDoS-defense-as-a-service to its customers. Note that
several ISPs already have such commercial offerings
(e.g., [5]). We envision different monetization avenues.
For example, an ISP can offer a value-added security ser-
vice to its customers that can replace the customers’ in-
house DDoS defense hardware. Alternatively, the ISP
can allow its customers to use Bohatei as a cloudburst-
ing option when the attack exceeds the customers’ on-
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Figure 2: Bohatei system overview and workflow.

premise hardware. While we describe our work in an ISP
setting, our ideas are general and can be applied to other
deployment models; e.g., CDN-based DDoS defense or
deployments inside cloud providers [19].

In addition to traditional backbone routers and inter-
connecting links, we envision the ISP has deployed mul-
tiple datacenters as shown in Figure 2. Note that this
is not a new requirement; ISPs already have several in-
network datacenters and are planning additional rollouts
in the near future [15,23]. Each datacenter has commod-
ity hardware servers and can run standard virtualized net-
work functions [45].

Threat model: We focus on a general DDoS threat
against the victim, who is a customer of the ISP. The
adversary’s aim is to exhaust the network bandwidth of
the victim. The adversary can flexibly choose from a set
of candidate attacks AttackSet = {Aa}a. As a concrete
starting point, we consider the following types of DDoS
attacks: TCP SYN flood, UDP flood, DNS amplification,
and elephant flow. We assume the adversary controls a
large number of bots, but the total budget in terms of the
maximum volume of attack traffic it can launch at any
given time is fixed. Given the budget, the adversary has
a complete control over the choice of (1) type and mix
of attacks from the AttackSet (e.g., 60% SYN and 40%
DNS) and (2) the set of ISP ingress locations at which
the attack traffic enters the ISP. For instance, a simple ad-
versary may launch a single fixed attack Aa arriving at a
single ingress, while an advanced adversary may choose
a mix of various attack types and multiple ingresses. For
clarity, we restrict our presentation to focus on a single
customer noting that it is straightforward to extend our
design to support multiple customers.

Defenses: We assume the ISP has a pre-defined library
of defenses specifying a defense strategy for each attack
type. For each attack type Aa, the defense strategy is
specified as a directed acyclic graph DAGa representing a
typical multi-stage attack analysis and mitigation proce-
dure. Each node of the graph represents a logical module
and the edges are tagged with the result of the previous

Figure 3: A sample defense against UDP flood.
nodes processing (e.g., “benign” or “attack” or “analyze
further”). Each logical node will be realized by one (or
more) virtual appliance(s) depending on the attack vol-
ume. Figure 3 shows an example strategy graph with 4
modules used for defending against a UDP flood attack.
Here, the first module tracks the number of UDP pack-
ets each source sends and performs a simple threshold-
based check to decide whether the source needs to be let
through or throttled.

Our goal here is not to develop new defense algorithms
but to develop the system orchestration capabilities to en-
able flexible and elastic defense. As such, we assume the
DAGs have been provided by domain experts, DDoS de-
fense vendors, or by consulting best practices.

3.2 Bohatei workflow and challenges
The workflow of Bohatei has four steps (see Figure 2):
1. Attack detection: We assume the ISP uses some out-

of-band anomaly detection technique to flag whether
a customer is under a DDoS attack [27]. The de-
sign of this detection algorithm is outside the scope
of this paper. The detection algorithm gives a coarse-
grained specification of the suspicious traffic, indi-
cating the customer under attack and some coarse
identifications of the type and sources of the attack;
e.g., “srcprefix=*,dstprefix=cust,type=SYN”.

2. Attack estimation: Once suspicious traffic is de-
tected, the strategy module estimates the volume of
suspicious traffic of each attack type arriving at each
ingress.

3. Resource management: The resource manager then
uses these estimates as well as the library of defenses
to determine the type, number, and the location of
defense VMs that need to be instantiated. The goal of
the resource manager is to efficiently assign available
network resources to the defense while minimizing
user-perceived latency and network congestion.

4. Network orchestration: Finally, the network orches-
tration module sets up the required network forward-
ing rules to steer suspicious traffic to the defense
VMs as mandated by the resource manager.

Given this workflow, we highlight the three challenges
we need to address to realize our vision:

C1. Responsive resource management: We need an
efficient way of assigning the ISP’s available compute
and network resources to DDoS defense. Specifically,
we need to decide how many VMs of each type to run
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on each server of each datacenter location so that attack
traffic is handled properly while minimizing the latency
experienced by legitimate traffic. Doing so in a respon-
sive manner (e.g., within tens of seconds), however, is
challenging. Specifically, this entails solving a large NP-
hard optimization problem, which can take several hours
to solve even with state-of-the-art solvers.

C2. Scalable network orchestration: The canonical
view in SDN is to set up switch forwarding rules in a
per-flow and reactive manner [40]. That is, every time
a switch receives a flow for which it does not have a
forwarding entry, the switch queries the SDN controller
to get the forwarding rule. Unfortunately, this per-flow
and reactive paradigm is fundamentally unsuitable for
DDoS defense. First, an adversary can easily saturate the
control plane bandwidth as well as the controller com-
pute resources [54]. Second, installing per-flow rules on
the switches will quickly exhaust the limited rule space
(≈4K TCAM rules). Note that unlike traffic engineering
applications of SDN [34], coarse-grained IP prefix-based
forwarding policies would not suffice in the context of
DDoS defense, as we cannot predict the IP prefixes of
future attack traffic.

C3. Dynamic adversaries: Consider a dynamic ad-
versary who can rapidly change the attack mix (i.e., at-
tack type, volume, and ingress point). This behavior can
make the ISP choose between two undesirable choices:
(1) wasting compute resources by overprovisioning for
attack scenarios that may not ever arrive, (2) not instan-
tiating the required defenses (to save resources), which
will let attack traffic reach the customer.

3.3 High-level approach
Next we highlight our key ideas to address C1–C3:

• Hierarchical optimization decomposition (§4): To
address C1, we use a hierarchical decomposition of
the resource optimization problem into two stages.
First, the Bohatei global (i.e., ISP-wide) controller
uses coarse-grained information (e.g., total spare ca-
pacity of each datacenter) to determine how many
and what types of VMs to run in each datacen-
ter. Then, each local (i.e., per-datacenter) controller
uses more fine-grained information (e.g., location of
available servers) to determine the specific server on
which each defense VM will run.

• Proactive tag-based forwarding (§5): To address
C2, we design a scalable orchestration mechanism
using two key ideas. First, switch forwarding rules
are based on per-VM tags rather than per-flow to dra-
matically reduce the size of the forwarding tables.
Second, we proactively configure the switches to
eliminate frequent interactions between the switches
and the control plane [40].

Figure 4: An illustration of strategy vs. annotated vs.
physical graphs. Given annotated graphs and suspi-
cious traffic volumes, the resource manager computes
physical graphs.

• Online adaptation (§6): To handle a dynamic adver-
sary that changes the attack mix (C3), we design a de-
fense strategy adaptation approach inspired by clas-
sical online algorithms for regret minimization [36].

4 Resource Manager
The goal of the resource management module is to effi-
ciently determine network and compute resources to ana-
lyze and take action on suspicious traffic. The key here is
responsiveness—a slow algorithm enables adversaries to
nullify the defense by rapidly changing their attack char-
acteristics. In this section, we describe the optimization
problem that Bohatei needs to solve and then present a
scalable heuristic that achieves near optimal results.

4.1 Problem inputs
Before we describe the resource management problem,
we establish the main input parameters: the ISP’s com-
pute and network parameters and the defense processing
requirements of traffic of different attack types. We con-
sider an ISP composed of a set of edge PoPs5 E = {Ee}e
and a set of datacenters D = {Dd}d.
ISP constraints: Each datacenter’s traffic processing
capacity is determined by a pre-provisioned uplink ca-
pacity Clink

d and compute capacity Ccompute
d . The com-

pute capacity is specified in terms of the number of VM
slots, where each VM slot has a given capacity specifica-
tion (e.g., instance sizes in EC2 [2]).
Processing requirements: As discussed earlier in §3.1,
different attacks require different strategy graphs. How-
ever, the notion of a strategy graph by itself will not suf-

5We use the terms “edge PoP” and “ingress” interchangeably.
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fice for resource management, as it is does not specify
the traffic volume that at each module should process.

The input to the resource manager is in form of an-
notated graphs as shown in Figure 4. An annotated
graph DAGannotated

a is a strategy graph annotated with
edge weights, where each weight represents the fraction
of the total input traffic to the graph that is expected to
traverse the corresponding edge. These weights are pre-
computed based on prior network monitoring data (e.g.,
using NetFlow) and from our adaptation module (§6).
Te,a denotes the volume of suspicious traffic of type a
arriving at edge PoP e. For example, in Figure 4, weight
0.48 from node A2 to node R2 means 48% of the total in-
put traffic to the graph (i.e., to A1) is expected to traverse
edge A2 → R2.

Since modules may vary in terms of compute com-
plexity and the traffic rate that can be handled per VM-
slot, we need to account for the parameter Pa,i that is
the traffic processing capacity of a VM (e.g., in terms of
compute requirements) for the logical module va,i, where
va,i is node i of graph DAGannotated

a .

Network footprint: We denote the network-level cost
of transferring the unit of traffic from ingress e to data-
center d by Le,d; e.g., this can represent the path latency
per byte of traffic. Similarly, within a datacenter, the
units of intra-rack and inter-rack traffic costs are denoted
by IntraUnitCost and InterUnitCost, respectively (e.g.,
they may represent latency such that IntraUnitCost <
InterUnitCost).

4.2 Problem statement
Our resource management problem is to translate the an-
notated graph into a physical graph (see Figure 4); i.e.,
each node i of the annotated graph DAGannotated

a will be
realized by one or more VMs each of which implement
the logical module va,i.

Fine-grained scaling: To generate physical graphs
given annotated graphs in a resource-efficient manner,
we adopt a fine-grained scaling approach, where each
logical module is scaled independently. We illustrate this
idea in Figure 5. Figure 5a shows an annotated graph
with three logical modules A, B, and C, receiving differ-
ent amounts of traffic and consuming different amounts
of compute resources. Once implemented as a physical
graph, suppose module C becomes the bottleneck due to
its processing capacity and input traffic volume. Using
a monolithic approach (e.g., running A, B, and C within
a single VM), we will need to scale the entire graph as
shown in Figure 5b. Instead, we decouple the modules
to enable scaling out individual VMs; this yields higher
resource efficiency as shown in Figure 5c.

Goals: Our objective here is to (a) instantiate the VMs
across the compute servers throughout the ISP, and (b)

(a) Annotated graph. (b) Monolithic. (c) Fine-grained.

Figure 5: An illustration of fine-grained elastic scal-
ing when module C becomes the bottleneck.

distribute the processing load across these servers to min-
imize the expected latency for legitimate traffic. Further,
we want to achieve (a) and (b) while minimizing the foot-
print of suspicious traffic.6

To this end, we need to assign values to two key sets
of decision variables: (1) the fraction of traffic Te,a to
send to each datacenter Dd (denoted by fe,a,d), and (2)
the number of VMs of type va,i to run on server s of dat-
acenter Dd. Naturally, these decisions must respect the
datacenters’ bandwidth and compute constraints.

Theoretically, we can formulate this resource manage-
ment problem as a constrained optimization via an In-
teger Linear Program (ILP). For completeness, we de-
scribe the full ILP in Appendix A. Solving the ILP for-
mulation gives an optimal solution to the resource man-
agement problem. However, if the ILP-based solution is
incorporated into Bohatei, an adversary can easily over-
whelm the system. This is because the ILP approach
takes several hours (see Table 2). By the time it computes
a solution, the adversary may have radically changed the
attack mix.

4.3 Hierarchical decomposition
To solve the resource management problem, we decom-
pose the optimization problem into two subproblems: (1)
the Bohatei global controller solves a Datacenter Selec-
tion Problem (DSP) to choose datacenters responsible for
processing suspicious traffic, and (2) given the solution
to the DSP, each local controller solves a Server Selec-
tion Problem (SSP) to assign servers inside each selected
datacenter to run the required VMs. This decomposition
is naturally scalable as the individual SSP problems can
be solved independently by datacenter controllers. Next,
we describe practical greedy heuristics for the DSP and
SSP problems that yield close-to-optimal solutions (see
Table 2).

Datacenter selection problem (DSP): We design a
greedy algorithm to solve DSP with the goal of reduc-
ing ISP-wide suspicious traffic footprint. To this end,
the algorithm first sorts suspicious traffic volumes (i.e.,

6While it is possible to explicitly minimize network conges-
tion [33], minimizing suspicious traffic footprint naturally helps reduce
network congestion as well.
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Te,a values) in a decreasing order. Then, for each sus-
picious traffic volume Te,a from the sorted list, the algo-
rithm tries to assign the traffic volume to the datacenter
with the least cost based on Le,d values. The algorithm
has two outputs: (1) fe,a,d values denoting what fraction
of suspicious traffic from each ingress should be steered
to each datacenter (as we will see in §5, these values will
be used by network orchestration to steer traffic corre-
spondingly), (2) the physical graph corresponding to at-
tack type a to be deployed by datacenter d. For complete-
ness, we show the pseudocode for the DSP algorithm in
Figure 16 in Appendix B.

Server selection problem (SSP): Intuitively, the SSP
algorithm attempts to preserve traffic locality by instan-
tiating nodes adjacent in the physical graph as close as
possible within the datacenter. Specifically, given the
physical graph, the SSP algorithm greedily tries to assign
nodes with higher capacities (based on Pa,i values) along
with its predecessors to the same server, or the same rack.
For completeness we show the pseudocode for the SSP
algorithm in Figure 17 in Appendix B.

5 Network Orchestration
Given the outputs of the resource manager module (i.e.,
assignment of datacenters to incoming suspicious traf-
fic and assignment of servers to defense VMs), the role
of the network orchestration module is to configure the
network to implement these decisions. This includes set-
ting up forwarding rules in the ISP backbone and inside
the datacenters. The main requirement is scalability in
the presence of attack traffic. In this section, we present
our tag-based and proactive forwarding approach to ad-
dress the limitations of the per-flow and reactive SDN
approach.

5.1 High-level idea
As discussed earlier in §3.2, the canonical SDN view of
setting up switch forwarding rules in a per-flow and re-
active manner is not suitable in the presence of DDoS
attacks. Furthermore, there are practical scalability and
deployability concerns with using SDN in ISP back-
bones [21,29]. There are two main ideas in our approach
to address these limitations:

• Following the hierarchical decomposition in re-
source management, we also decompose the net-
work orchestration problem into two-sub-problems:
(1) Wide-area routing to get traffic to datacenters,
and (2) Intra-datacenter routing to get traffic to the
right VM instances. This decomposition allows us
to use different network-layer techniques; e.g., SDN
is more suitable inside the datacenter while tradi-
tional MPLS-style routing is better suited for wide-
area routing.

• Instead of the controller reacting to each flow arrival,
we proactively install forwarding rules before traffic
arrives. Since we do not know the specific IP-level
suspicious flows that will arrive in the future, we use
logical tag-based forwarding rules with per-VM tags
instead of per-flow rules.

5.2 Wide-area orchestration
The Bohatei global controller sets up forwarding rules
on backbone routers so that traffic detected as suspicious
is steered from edge PoPs to datacenters according to
the resource management decisions specified by the fe,a,d
values (see §4.3).7

To avoid a forklift upgrade of the ISP backbone and
enable an immediate adoption of Bohatei, we use tra-
ditional tunneling mechanisms in the backbone (e.g.,
MPLS or IP tunneling). We proactively set up static
tunnels from each edge PoP to each datacenter. Once
the global controller has solved the DSP problem, the
controller configures backbone routers to split the traf-
fic according to the fe,a,d values. While our design is
not tied to any specific tunneling scheme, the widespread
use of MPLS and IP tunneling make them natural candi-
dates [34].

5.3 Intra-datacenter orchestration
Inside each datacenter, the traffic needs to be steered
through the intended sequence of VMs. There are two
main considerations here:
1. The next VM a packet needs to be sent to depends on

the context of the current VM. For example, the node
check UDP count of src in the graph shown in Fig-
ure 3 may send traffic to either forward to customer
or log depending on its analysis outcome.

2. With elastic scaling, we may instantiate several phys-
ical VMs for each logical node depending on the de-
mand. Conceptually, we need a “load balancer” at
every level of our annotated graph to distribute traf-
fic across different VM instances of a given logical
node.

Note that we can trivially address both requirements
using a per-flow and reactive solution. Specifically, a lo-
cal controller can track a packet as it traverses the phys-
ical graph, obtain the relevant context information from
each VM, and determine the next VM to route the traf-
fic to. However, this approach is clearly not scalable and
can introduce avenues for new attacks. The challenge
here is to meet these requirements without incurring the
overhead of this per-flow and reactive approach.
Encoding processing context: Instead of having the
controller track the context, our high-level idea is to en-

7We assume the ISP uses legacy mechanisms for forwarding non-
attack traffic and traffic to non-Bohatei customers, so these are not the
focus of our work.
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Figure 6: Context-dependent forwarding using tags.

code the necessary context as tags inside packet head-
ers [31]. Consider the example shown in Figure 6 com-
posed of VMs A1,1, A2,1, and R1,1. A1,1 encodes the pro-
cessing context of outgoing traffic as tag values embed-
ded in its outgoing packets (i.e., tag values 1 and 2 denote
benign and attack traffic, respectively). The switch then
uses this tag value to forward each packet to the correct
next VM.

Tag-based forwarding addresses the control channel
bottleneck and switch rule explosion. First, the tag gen-
eration and tag-based forwarding behavior of each VM
and switch is configured proactively once the local con-
troller has solved the SSP. We proactively assign a tag
for each VM and populate forwarding rules before flows
arrive; e.g., in Figure 6, the tag table of A1,1 and the for-
warding table of the router have been already populated
as shown. Second, this reduces router forwarding rules
as illustrated in Figure 6. Without tagging, there will be
one rule for each of the 1000 flows. Using tag-based for-
warding, we achieve the same forwarding behavior using
only two forwarding rules.

Scale-out load balancing: One could interconnect VMs
of the same physical graph as shown in Figure 7a us-
ing a dedicated load balancer (load balancer). However,
such a load balancer may itself become a bottleneck, as
it is on the path of every packet from any VM in the set
{A1,1,A1,2} to any VM in the set {R1,1,R1,2, ,R1,3}. To
circumvent this problem, we implement the distribution
strategy inside each VM so that the load balancer capa-
bility scales proportional to the current number of VMs.
Consider the example shown in Figure 7b where due to
an increase in attack traffic volume we have added one
more VM of type A1 (denoted by A1,2) and one more
VM of type R1 (denoted by R1,2). To load balance traffic
between the two VMs of type R1, the load balancer of
A1 VMs (shown as LB1,1 and LB1,2 in the figure) pick a
tag value from a tag pool (shown by {2,3} in the figure)
based on the processing context of the outgoing packet
and the intended load balancing scheme (e.g., uniformly
at random to distribute load equally). Note that this tag
pool is pre-populated by the local controller (given the
defense library and the output of the resource manager

(a) A naive load
balancer design.

(b) A distributed load balancer design.

Figure 7: Different load balancer design points.

module). This scheme, thus, satisfies the load balancing
requirement in a scalable manner.

Other issues: There are two remaining practical issues:
• Number of tag bits: We give a simple upper bound on

the required number of bits to encode tags. First, to
support context-dependent forwarding out of a VM
with k relevant contexts, we need k distinct tag val-
ues. Second. to support load balancing among l VMs
of the same logical type, each VM needs to be popu-
lated with a tag pool including l tags. Thus, at each
VM we need at most k× l distinct tag values. There-
fore, an upper bound on the total number of unique
tag values is kmax × lmax ×∑

a
| Vannotated

a |, where kmax

and lmax are the maximum number of contexts and
VMs of the same type in a graph, and Vannotated

a is
the set of vertices of annotated graph for attack type
a. To make this concrete, across the evaluation ex-
periments §8, the maximum value required tags was
800, that can be encoded in �log2(800)� = 10 bits.
In practice, this tag space requirement of Bohatei
can be easily satisfied given that datacenter grade
networking platforms already have extensible header
fields [56].

• Bidirectional processing: Some logical modules may
have bidirectional semantics. For example, in case
of a DNS amplification attack, request and response
traffic must be processed by the same VM. (In other
cases, such as the UDP flood attack, bidirectional-
ity is not required.). To enforce bidirectionality, ISP
edge switches use tag values of outgoing traffic so
that when the corresponding incoming traffic comes
back, edge switches sends it to the datacenter within
which the VM that processed the outgoing traffic is
located. Within the datacenter, using this tag value,
the traffic is steered to the VM.

6 Strategy Layer
As we saw in §4, a key input to the resource manager
module is the set of Te,a values, which represents the vol-
ume of suspicious traffic of each attack type a arriving at
each edge PoP e. This means we need to estimate the fu-
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ture attack mix based on observed measurements of the
network and then instantiate the required defenses. We
begin by describing an adversary that intends to thwart
a Bohatei-like system. Then, we discuss limitations of
strawman solutions before describing our online adapta-
tion mechanism.

Interaction model: We model the interaction between
the ISP running Bohatei and the adversary as a repeated
interaction over several epochs. The ISP’s “move” is
one epoch behind the adversary; i.e., it takes Bohatei an
epoch to react to a new attack scenario due to implemen-
tation delays in Bohatei operations. The epoch duration
is simply the sum of the time to detect the attack, run the
resource manager, and execute the network orchestration
logic. While we can engineer the system to minimize this
lag, there will still be non-zero delays in practice and thus
we need an adaptation strategy.

Objectives: Given this interaction model, the ISP has to
pre-allocate VMs and hardware resources for a specific
attack mix. An intelligent and dynamic adversary can
change its attack mix to meet two goals:

G1 Increase hardware resource consumption: The ad-
versary can cause ISP to overprovision defense VMs.
This may impact the ISP’s ability to accommodate
other attack types or reduce profits from other ser-
vices that could have used the infrastructure.

G2 Succeed in delivering attack traffic: If the ISP’s de-
tection and estimation logic is sub-optimal and does
not have the required defenses installed, then the ad-
versary can maximize the volume of attack traffic de-
livered to the target.

The adversary’s goal is to maximize these objectives,
while the ISPs goal is to minimize these to the extent pos-
sible. One could also consider a third objective of collat-
eral damage on legitimate traffic; e.g., introduce need-
less delays. We do not discuss this dimension because
our optimization algorithm from §4 will naturally push
the defense as close to the ISP edge (i.e., traffic ingress
points) as possible to minimize the impact on legitimate
traffic.

Threat model: We consider an adversary with a fixed
budget in terms of the total volume of attack traffic it can
launch at any given time. Note that the adversary can
apportion this budget across the types of attacks and the
ingress locations from which the attacks are launched.
Formally, we have ∑

e
∑
a

Te,a ≤ B, but there are no con-

straints on the specific Te,a values.

Limitations of strawman solutions: For simplicity, let
us consider a single ingress point. Let us consider a
strawman solution called PrevEpoch where we measure
the attack observed in the previous epoch and use it as the
estimate for the next epoch. Unfortunately, this can have

serious issues w.r.t. goals G1 and G2. To see why, con-
sider a simple scenario where we have two attack types
with a budget of 30 units and three epochs with the attack
volumes as follows: T1: A1= 10, A2=0; T2: A1=20,
A2=0; T3: A1=0; A2=30. Now consider the PrevEpoch
strategy starting at the 0,0 configuration. It has a total
wastage of 0,0,20 units and a total evasion of 10,10,30
units because it has overfit to the previous measurement.
We can also consider other strategies; e.g., a Uniform
strategy that provisions 15 units each for A1 and A2 or
extensions of these to overprovision where we multiply
the number of VMs given by the resource manager in the
last epoch by a fixed value γ > 1. However, these suffer
from the same problems and are not competitive.

Online adaptation: Our metric of success here is to
have low regret measured with respect to the best static
solution computed in hindsight [36]. Note that in gen-
eral, it is not possible to be competitive w.r.t. the best
dynamic solution since that presumes oracle knowledge
of the adversary, which is not practical.

Intuitively, if we have a non-adaptive adversary, using
the observed empirical average is the best possible static
hindsight estimation strategy; i.e., T∗

e,a = ∑t Te,a,t
|t| would

be the optimal solution (|t| denotes the total number of
epochs). However, an attacker who knows that we are
using this strategy can game the system by changing the
attack mix. To address this, we use a follow the per-
turbed leader (FPL) strategy [36] where our estimation
uses a combination of the past observed behavior of the
adversary and a randomized component. Intuitively, the
random component makes it impossible for the attacker
to predict the ISP’s estimates. This is a well-known ap-
proach in online algorithms to minimize the regret [36].
Specifically, the traffic estimates for the next epoch t +1,
denoted by T̂e,a,t+1 values, are calculated based on the
average of the past values plus a random component:

T̂e,a,t+1 =
∑t

t�=1 Te,a,t�
|t| + randperturb.

Here, Te,a,t � is the empirically observed value of the
attack traffic and randperturb is a random value drawn
uniformly from [0, 2×B

nextE poch×|E|×|A| ]. (This is assuming a
total defense of budget of 2×B.) It can be shown that
this is indeed a provably good regret minimization strat-
egy [36]; we do not show the proof for brevity.

7 Implementation
In this section, we briefly describe how we implemented
the key functions described in the previous sections. We
have made the source code available [1].

7.1 DDoS defense modules
The design of the Bohatei strategy layer is inspired by
the prior modular efforts in Click [7] and Bro [46]. This
modularity has two advantages. First, it allows us to
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adopt best of breed solutions and compose them for dif-
ferent attacks. Second, it enables more fine-grained scal-
ing. At a high level, there are two types of logical build-
ing blocks in our defense library:
1. Analysis (A): Each analysis module processes a sus-

picious flow and determines appropriate action (e.g.,
more analysis or specific response). It receives a
packet and outputs a tagged packet, and the tags are
used to steer traffic to subsequent analysis and re-
sponse module instances as discussed earlier.

2. Response (R): The input to an R module is a tagged
packet from some A module. Typical responses in-
clude forward to customer (for benign traffic), log,
drop, and rate limit. Response functions will depend
on the type of attack; e.g., sending RST packets in
case of a TCP SYN attack.

Next, we describe defenses we have implemented for
different DDoS attacks. Our goal here is to illustrate the
flexibility Bohatei provides in dealing with a diverse set
of known attacks rather than develop new defenses.
1. SYN flood (Figure 8): We track the number of open

TCP sessions for each source IP; if a source IP has
no asymmetry between SYNs and ACKs, then mark
its packets as benign. If a source IP never completes
a connection, then we can mark its future packets as
known attack packets. If we see a gray area where the
source IP has completed some connections but not
others, in which case we use a SYN-Proxy defense
(e.g., [9, 28]).

2. DNS amplification (Figure 9): We check if the DNS
server has been queried by some customer IP. This
example highlights another advantage—we can de-
couple fast (e.g., the header-based A LIGHTCHECK
module) and slow path analyses (e.g., the second A
module needs to look into payloads). The responses
are quite simple and implement logging, dropping, or
basic forwarding to the destination. We do not show
the code for brevity.

3. UDP flood: The analysis node A UDP identifies
source IPs that send an anomalously higher num-
ber of UDP packets and uses this to categorize each
packet as either attack or benign. The function
forward will direct the packet to the next node in the
defense strategy; i.e., R OK if benign, or R LOG if
attack.

4. Elephant flow: Here, the attacker launches legiti-
mate but very large flows. The A module detects ab-
normally large flows and flags them as attack flows.
The response is to randomly drop packets from these
large flows (not shown).

Attack detection: We use simple time series anomaly
detection using nfdump, a tool that provides NetFlow-

Figure 8: SYN Flood defense strategy graph.

Figure 9: DNS amplification defense strategy graph.

like capabilities, and custom code [27]. The output of the
detection module is sent to the Bohatei global controller
as a 3-tuple 〈Type,FlowSpec,Volume〉, where Type indi-
cates the type of DDoS attack (e.g., SYN flood, DNS am-
plification), FlowSpec provides a generic description of
the flow space of suspicious traffic (involving wildcards),
and Volume indicates the suspicious traffic volume based
on the flow records. Note that this FlowSpec does not
pinpoint specific attack flows; rather, it is a coarse-
grained hint on characteristics of suspicious traffic that
need further processing through the defense graphs.

7.2 SDN/NFV platform
Control plane: We use the OpenDayLight network
control platform, as it has gained significant traction
from key industry players [17]. We implemented the
Bohatei global and local control plane modules (i.e.,
strategy, resource management, and network orchestra-
tion) as separate OpenDayLight plugins. Bohatei uses
OpenFlow [40] for configuring switches; this is purely
for ease of prototyping, and it is easy to integrate other
network control APIs (e.g., YANG/NetCONF).
Data plane: Each physical node is realized using a
VM running on KVM. We use open source tools (e.g.,
Snort, Bro) to implement the different Analysis (A) and
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Attack
type

Analysis Response

UDP
flood

A UDP using Snort (inline
mode)

R LOG using iptables and
R RATELIMIT using tc li-
brary

DNS
amp.

both LIGHTCHECK and
MATCHRQST using net-
filter library, iptables, cus-
tom code

R LOG and R DROP us-
ing iptables

SYN
flood

A SYNFLOOD using Bro R SYNPROXY using
PF firewall, R LOG and
R DROP using iptables

Elephant
flow

A ELEPHANT using net-
filter library, iptables, cus-
tom code

R DROP using iptables

Table 1: Implementation of Bohatei modules.

Response (R) modules. Table 1 summarizes the specific
platforms we have used. These tools are instrumented us-
ing FlowTags [31] to add tags to outgoing packets to pro-
vide contextual information. We used OpenvSwitch [16]
to emulate switches in both datacenters and ISP back-
bone. The choice of OpenvSwitch is for ease of proto-
typing on our testbed.
Resource management algorithms: We implement the
DSP and SSP algorithms using custom Go code.

8 Evaluation
In this section, we show that:
1. Bohatei is scalable and handles attacks of hundreds

of Gbps in large ISPs and that our design decisions
are crucial for its scale and responsiveness (§8.1)

2. Bohatei enables a rapid (≤ 1 minute) response for
several canonical DDoS attack scenarios (§8.2)

3. Bohatei can successfully cope with several dynamic
attack strategies (§8.3)

Setup and methodology: We use a combination of real
testbed and trace-driven evaluations to demonstrate the
above benefits. Here we briefly describe our testbed,
topologies, and attack configurations:
• SDN Testbed: Our testbed has 13 Dell R720 ma-

chines (20-core 2.8 GHz Xeon CPUs, 128GB RAM).
Each machine runs KVM on CentOS 6.5 (Linux ker-
nel v2.6.32). On each machine, we assigned equal
amount of resources to each VM: 1 vCPU (virtual
CPU) and 512MB of memory.

• Network topologies: We emulate several router-
level ISP topologies (6–196 nodes) from the Internet
Topology Zoo [22]. We set the bandwidth of each
core link to be 100Gbps and link latency to be 10ms.
The number of datacenters, which are located ran-
domly, is 5% of the number of backbone switches
with a capacity of 4,000 VMs per datacenter.

• Benign traffic demands: We assume a gravity model
of traffic demands between ingress-egress switch

Topology #Nodes Run time (secs) Optimality
Baseline Bohatei Gap

Heanet 6 205 0.002 0.0003
OTEGlobe 92 2234 0.007 0.0004
Cogent 196 > 1 hr 0.01 0.0005

Table 2: Run time and optimality gap of Bohatei vs.
ILP formulation across different topologies.
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Figure 10: Bohatei control plane scalability.

pairs [50]. The total volume is scaled linearly with
the size of the network such that the average link load
on the topology backbone is 24Gbps with a maxi-
mum bottleneck link load of 55Gbps. We use iperf
and custom code to generate benign traffic.

• Attack traffic: We implemented custom modules to
generate attack traffic: (1) SYN flood attack by send-
ing only SYN packets with spoofed IP addresses at
a high rate; (2) DNS amplification using OpenDNS
server with BIND (version 9.8) and emulating an at-
tacker sending DNS requests with spoofed source
IPs; (3) We use iperf to create some fixed band-
width traffic to generate elephant flows, and (4) UDP
flood attacks. We randomly pick one edge PoP as
the target and vary the target across runs. We ramp
up the attack volume until it induces maximum re-
duction in throughput of benign flows to the target.
On our testbed, we can ramp up the volume up to
10 Gbps. For larger attacks, we use simulations.

8.1 Bohatei scalability

Resource management: Table 2 compares the run time
and optimality of the ILP-based algorithm and Bohatei
(i.e., DSP and SSP) for 3 ISP topologies of various sizes.
(We have results for several other topologies but do not
show it for brevity.) The ILP approach takes from sev-
eral tens of minutes to hours, whereas Bohatei takes only
a few milliseconds enabling rapid response to changing
traffic patterns. The optimality gap is ≤ 0.04%.

Control plane responsiveness: Figure 10 shows the
per-flow setup latency comparing Bohatei to the SDN
per-flow and reactive paradigm as the number of attack
flows in a DNS amplification attack increases. (The re-
sults are consistent for other types of attacks and are not
shown for brevity.) In both cases, we have a dedicated
machine for the controller with 8 2.8GHz cores and 64
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GB RAM. To put the number of flows in context, 200K
flows roughly corresponds to a 1 Gbps attack. Note that a
typical upper bound for switch flow set-up time is on the
order of a few milliseconds [59]. We see that Bohatei in-
curs zero rule setup latency, while the reactive approach
deteriorates rapidly as the attack volume increases.

Number of forwarding rules: Figure 11 shows the
maximum number of rules required on a switch across
different topologies for the SYN flood attack. Using to-
day’s flow-based forwarding, each new flow will require
a rule. Using tag-based forwarding, the number of rules
depends on the number of VM instances, which reduces
the switch rule space by four orders of magnitude. For
other attack types, we observed consistent results (not
shown). To put this in context, the typical capacity of an
SDN switch is 3K-4K rules (shared across various net-
work management tasks). This means that per-flow rules
will not suffice for attacks beyond 10Gbps. In contrast,
Bohatei can handle hundreds of Gbps of attack traffic;
e.g., a 1 Tbps attack will require < 1K rules on a switch.

Benefit of scale-out load balancing: We measured the
resources that would be consumed by a dedicated load
balancing solution. Across different types of attacks with
a fixed rate of 10Gbps, we observed that a dedicated load
balancer design requires between 220–300 VMs for load
balancing alone. By delegating the load balancing task
to the VMs, our design obviates the need for these extra
load balancers (not shown).

8.2 Bohatei end-to-end effectiveness
We evaluated the effectiveness of Bohatei under four dif-
ferent types of DDoS attacks. We launch the attack traf-
fic of the corresponding type at 10th second; the attack
is sustained for the duration of the experiment. In each
scenario, we choose the attack volume such that it is ca-
pable of bringing the throughput of the benign traffic to
zero. Figure 12 shows the impact of attack traffic on the
throughput of benign traffic. The Y axis for each sce-
nario shows the network-wide throughput for TCP traf-
fic (a total of 10Gbps if there is no attack). The results
shown in this figure are based on Cogent, the largest
topology with 196 switches; the results for other topolo-
gies were consistent and are not shown. While we do see

Attack type # VMs needed
Monolithic Fine-grained scaling

DNS Amplification 5,422 1,005
SYN Flood 3,167 856
Elephant flows 1,948 910
UDP flood 3,642 1,253

Table 3: Total hardware provisioning cost needed to
handle a 100 Gbps attack for different attacks.

some small differences across attacks, the overall reac-
tion time is short.
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Figure 12: Bohatei enables rapid response and re-
stores throughput of legitimate traffic.

The key takeaway is that Bohatei can help networks
respond rapidly (within one minute) to diverse attacks
and restore the performance of legitimate flows. We re-
peated the experiments with UDP as the benign traffic.
In this case, the recovery time was even shorter, as the
throughput does not suffer from the congestion control
mechanism of TCP.

Hardware cost: We measure the total number of VMs
needed to handle a given attack volume and compare two
cases: (1) monolithic VMs embedding the entire defense
logic for an attack, and (2) using Bohatei’s fine-grained
modular scaling. Table 3 shows the number of VMs
required to handle different types of 100 Gbps attacks.
Fine-grained scaling gives a 2.1–5.4× reduction in hard-
ware cost vs. monolithic VMs. Assuming a commodity
server costs $3,000 and can run 40VMs in Bohatei (as
we did), we see that it takes a total hardware cost of less
than about $32,000 to handle a 100 Gbps attack across
Table 3. This is in contrast to the total server cost of
about $160,000 for the same scenario if we use mono-
lithic VMs. Moreover, since Bohatei is horizontally scal-
able by construction, dealing with larger attacks simply
entails a linearly scale up of the number of VMs.

Routing efficiency: To quantify how Bohatei addresses
the routing inefficiency of existing solutions (§2.2), we
ran the following experiment. For each topology, we
measured the end-to-end latency in two equivalently pro-
visioned scenarios: (1) the location of the DDoS de-
fense appliance is the node with the highest between-
ness value8, and (2) Bohatei. As a baseline, we consider

8Betweenness is a measure of a node’s centrality, which is the frac-
tion of the network’s all-pairs shortest paths that pass through that node.
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Figure 14: Effect of different adaptation strategies
(bars) vs. different attacker strategies (X axis).

shortest path routing without attacks. The main conclu-
sion in Figure 13 is that Bohatei reduces traffic latency
by 20% to 65% across different scenarios.

8.3 Dynamic DDoS attacks
We consider the following dynamic DDoS attack strate-
gies: (1) RandIngress: In each epoch, pick a random
subset of attack ingresses and distribute the attack bud-
get evenly across attack types; (2) RandAttack: In each
epoch, pick a random subset of attack types and dis-
tribute the budget evenly across all ingresses; (3) Rand-
Hybrid: In each epoch, pick a random subset of ingresses
and attack types independently and distribute the attack
budget evenly across selected pairs; (4) Steady: The ad-
versary picks a random attack type and a subset of in-
gresses and sustains it during all epochs; and (5) Flip-
PrevEpoch: This is conceptually equivalent to conduct-
ing two Steady attacks A1 and A2 with each being active
during odd and even epochs, respectively.

Given the typical DDoS attack duration (≈ 6
hours [12]), we consider an attack lasting for 5000 5-
second epochs (i.e., ≈7 hours). Bohatei is initialized
with a zero starting point of attack estimates. The met-

ric of interest we report is the normalized regret with re-
spect to the best static decision in hindsight; i.e., if we
had to pick a single static strategy for the entire duration.
Figure 14a and Figure 14b show the regret w.r.t. the two
goals G1 (the number of VMs) and G2 (volume of suc-
cessful attack) for a 24-node topology. The results are
similar using other topologies and are not shown here.
Overall, Bohatei’s online adaptation achieves low regret
across the adversarial strategies compared to two straw-
man solutions: (1) uniform estimates, and (2) estimates
given the previous measurements.

9 Related Work
DDoS has a long history; we refer readers to surveys for a
taxonomy of DDoS attacks and defenses (e.g., [41]). We
have already discussed relevant SDN/NFV work in the
previous sections. Here, we briefly review other related
topics.

Attack detection: There are several algorithms for de-
tecting and filtering DDoS attacks. These include time
series detection techniques (e.g., [27]), use of backscat-
ter analysis (e.g., [42]), exploiting attack-specific fea-
tures (e.g., [35]), and network-wide analysis (e.g., [38]).
These are orthogonal to the focus of this paper.

DDoS-resilient Internet architectures: These include
the use of capabilities [58], better inter-domain routing
(e.g., [60]), inter-AS collaboration (e.g., [39]), packet
marking and unforgeable identifiers (e.g., [26]), and
traceback (e.g., [51]). However, they do not provide an
immediate deployment path or resolution for current net-
works. In contrast, Bohatei focuses on a more practical,
single-ISP context, and is aligned with economic incen-
tives for ISPs and their customers.

Overlay-based solutions: There are overlay-based so-
lutions (e.g., [25,52]) that act as a “buffer zone” between
attack sources and targets. The design contributions in
Bohatei can be applied to these as well.

SDN/NFV-based security: There are few efforts in
this space such as FRESCO [53] and AvantGuard [54].
As we saw earlier, these SDN solutions will introduce
new DDoS avenues because of the per-flow and reac-
tive model [54]. Solving this control bottleneck requires
hardware modifications to SDN switches to add “state-
ful” components, which is unlikely to be supported by
switch vendors soon [54]. In contrast, Bohatei chooses
a proactive approach of setting up tag-based forwarding
rules that is immune to these pitfalls.

10 Conclusions
Bohatei brings the flexibility and elasticity benefits of
recent networking trends, such as SDN and NFV, to
DDoS defense. We addressed practical challenges in
the design of Bohatei’s resource management algorithms
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and control/data plane mechanisms to ensure that these
do not become bottlenecks for DDoS defense. We
implemented a full-featured Bohatei prototype built on
industry-standard SDN control platforms and commod-
ity network appliances. Our evaluations on a real testbed
show that Bohatei (1) is scalable and responds rapidly to
attacks, (2) outperforms naive SDN implementations that
do not address the control/data plane bottlenecks, and (3)
enables resilient defenses against dynamic adversaries.
Looking forward, we believe that these design principles
can also be applied to other aspects of network security.
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[28] R. Cáceres, F. Douglis, A. Feldmann, G. Glass, and M. Rabinovich. Web
proxy caching: The devil is in the details. SIGMETRICS Perform. Eval.
Rev., 26(3):11–15, Dec. 1998.

[29] M. Casado, T. Koponen, S. Shenker, and A. Tootoonchian. Fabric: A ret-
rospective on evolving sdn. In Proc. HotSDN, 2012.

[30] J. Czyz, M. Kallitsis, M. Gharaibeh, C. Papadopoulos, M. Bailey, and
M. Karir. Taming the 800 pound gorilla: The rise and decline of ntp ddos
attacks. In Proc. IMC, 2014.

[31] S. K. Fayazbakhsh, L. Chiang, V. Sekar, M. Yu, and J. C. Mogul. Enforcing
network-wide policies in the presence of dynamic middlebox actions using
FlowTags. In Proc. NSDI, 2014.

[32] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers, J. Rexford, G. Xie,
H. Yan, J. Zhan, and H. Zhang. A clean slate 4D approach to network
control and management. ACM CCR, 2005.

[33] V. Heorhiadi, S. K. Fayaz, M. Reiter, and V. Sekar. Frenetic: A network
programming language. Information Systems Security, 2014.

[34] Jain et al. B4: Experience with a globally-deployed software defined wan.
In Proc. SIGCOMM, 2013.

[35] C. Jin, H. Wang, and K. G. Shin. Hop-count filtering: An effective defense
against spoofed ddos traffic. In Proc. CCS, 2003.

[36] A. Kalai and S. Vempala. Efficient algorithms for online decision problems.
J. Comput. Syst. Sci., 2005.

[37] M. S. Kang, S. B. Lee, and V. Gligor. The crossfire attack. In Proc. IEEE
Security and Privacy, 2013.

[38] A. Lakhina, M. Crovella, and C. Diot. Mining Anomalies Using Traffic
Feature Distributions. In Proc. SIGCOMM, 2005.

[39] R. Mahajan et al. Controlling high bandwidth aggregates in the network.
CCR, 2001.

[40] N. McKeown et al. OpenFlow: enabling innovation in campus networks.
CCR, March 2008.

[41] J. Mirkovic and P. Reiher. A taxonomy of ddos attack and ddos defense
mechanisms. In CCR, 2004.

[42] D. Moore, C. Shannon, D. J. Brown, G. M. Voelker, and S. Savage. Infer-
ring internet denial-of-service activity. ACM Trans. Comput. Syst., 2006.

[43] Network functions virtualisation – introductory white paper. http://
portal.etsi.org/NFV/NFV_White_Paper.pdf.

[44] A. Networks. ATLAS Summary Report: Global Denial of Service. http:
//atlas.arbor.net/summary/dos.

[45] P. Patel et al. Ananta: cloud scale load balancing. In Proc. ACM SIG-
COMM, 2013.

[46] V. Paxson. Bro: A system for detecting network intruders in real-time. In
Computer Networks, 1999.

[47] S. Peter, J. Li, I. Zhang, D. R. K. Ports, D. Woos, A. Krishnamurthy, T. An-
derson, and T. Roscoe. Arrakis: The operating system is the control plane.
In Proc. OSDI, 2014.

[48] M. Roesch. Snort - Lightweight Intrusion Detection for Networks. In LISA,
1999.

[49] C. Rossow. Amplification hell: Revisiting network protocols for ddos
abuse. In Proc. USENIX Security, 2014.

[50] M. Roughan. Simplifying the Synthesis of Internet Traffic Matrices. ACM
SIGCOMM CCR, 2005.

[51] S. Savage, D. Wetherall, A. Karlin, and T. Anderson. Practical network
support for ip traceback. In Proc. SIGCOMM, 2000.

[52] E. Shi, I. Stoica, D. Andersen, and A. Perrig. OverDoSe: A generic DDoS
protection service using an overlay network. Technical Report CMU-CS-
06-114, School of Computer Science, Carnegie Mellon University, 2006.

[53] S. Shin, P. Porras, V. Yegneswaran, M. Fong, G. Gu, and M. Tyson.
FRESCO: Modular composable security services for software-defined net-
works. In Proc. NDSS, 2013.

[54] S. Shin, V. Yegneswaran, P. Porras, and G. Gu. AVANT-GUARD: Scal-
able and vigilant switch flow management in software-defined networks.
In Proc. CCS, 2013.

[55] A. Studer and A. Perrig. The coremelt attack. In Proc. ESORICS, 2009.
[56] T. Koponen et al. Network virtualization in multi-tenant datacenters. In

Proc. NSDI, 2014.
[57] P. Verkaik, D. Pei, T. Schollf, A. Shaikh, A. C. Snoeren, and J. E. van der

Merwe. Wresting Control from BGP: Scalable Fine-grained Route Control.
In Proc. USENIX ATC, 2007.

[58] X. Yang, D. Wetherall, and T. Anderson. A dos-limiting network architec-
ture. In Proc. SIGCOMM, 2005.

[59] S. Yeganeh, A. Tootoonchian, and Y. Ganjali. On scalability of software-
defined networking. Communications Magazine, IEEE, 2013.

[60] X. Zhang, H.-C. Hsiao, G. Hasker, H. Chan, A. Perrig, and D. G. Andersen.
Scion: Scalability, control, and isolation on next-generation networks. In
Proc. IEEE Security and Privacy, 2011.

A ILP Formulation
The ILP formulation for an optimal resource manage-

ment (mentioned in §4.2) is shown in Figure 15.

Vairables: In addition to the parameters and variables
that we have defined earlier in §4, we define the binary
variable qd,a,i,vm,s,i�,vm�,s�,l as follows: if it is 1, VM vm of
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1 Minimize α ×∑
e

∑
a

∑
d

fe,a,d ×Te,a ×Le,d +∑
d

dscd

s.t.
2 ∀e,a : ∑

d
fe,a,d = 1� all suspicious traffic should be served

3 ∀a,d : ta,d = ∑
e

fe,a,d ×Te,a � traffic of each type to each datacenter

4 ∀d : ∑
a

ta,d ≤ Clink
d � datacenter link capacity

5 ∀d,a, i : ∑
s∈Sd

nd,s
a,i ≥ ta,d ×

∑
i� :(i� ,i)=eannotated

a,i�→i

Wa,i�→i

Pa,i
� provisioning sufficient VMs (Sd is the set of d’s servers.)

6 ∀d,s ∈ Sd : ∑
a

∑
i

nd,s
a,i ≤ Ccompute

d,s � server compute capacity

7 ∀d : dscd = intraRd × IntraUnitCost+ interRd × InterUnitCost � total cost within each datacenter

8 ∀d : intraRd = ∑
a

∑
(i,i�)=eannotated

a,i→i�
∑

(s,s�)∈sameRack

MaxVM
∑

vm=1

MaxVM
∑

vm�=1

MaxVol
∑

l=1
qd,a,i,vm,s,i�,vm�,s�,l � intra-rack cost

9 ∀d : interRd = ∑
a

∑
(i,i�)=eannotated

a,i→i�
∑

(s,s�)/∈sameRack

MaxVM
∑

vm=1

MaxVM
∑

vm�=1

MaxVol
∑

l=1
qd,a,i,vm,s,i�,vm�,s�,l � inter-rack cost

10 ∀d,a, i�,vm� : ∑
s

∑
s�

∑
i:(i,i�)=eannotated

a,i→i�

MaxVM
∑

vm=1

MaxVol
∑

l=1
qd,a,i,vm,s,i�,vm�,s�,l ≤ Pa,i� � enforcing VMs capacities

11 ∀d,s ∈ Sd,a, i� : nd,s
a,i� ×Pa,i� ≥

MaxVM
∑

vm=1

MaxVM
∑

vm�=1
∑

i:(i,i�)=eannotated
a,i→i�

∑
s�

MaxVol
∑

l=1
qd,a,i,vm,s,i�,vm�,s�,l � bound traffic volumes

12 ∀d,s ∈ Sd,a, i� : nd,s
a,i� ×Pa,i� ≤

MaxVM
∑

vm=1

MaxVM
∑

vm�=1
∑

i:(i,i�)=eannotated
a,i→i�

∑
s�

MaxVol
∑

l=1
qd,a,i,vm,s,i�,vm�,s�,l +1� bound traffic volumes

13 � flow conservation for VM vm of type logical node k that has both predecessor(s) and successor(s)

∀d,a,k,vm :
MaxVM

∑
vm�=1

∑
g:(g,k)=eannotated

a,g→k

∑
s

∑
s�

MaxVol
∑

l=1
qd,a,g,vm�,s�,k,vm,s,l =

MaxVM
∑

vm�=1
∑

h:(k,h)=eannotated
a,k→h

∑
s

∑
s�

MaxVol
∑

l=1
qd,a,k,vm,s,h,vm�,s�,l

14 ∀link ∈ ISP backbone : ∑
link∈Pathe→d

∑
a

fe,a,d ×Te,a ≤ β ×MaxLinkCapacity� per-link traffic load control

15 fe,a,d ∈ [0,1],qd,a,i,vm,s,i�,vm�,s�,l ∈ {0,1},nd
a,i,n

d,s
a,i ∈ {0,1, . . .}, ta,d, interRd, intraRd,dscd ∈ R� variables

Figure 15: ILP formulation for an optimal resource management.

type va,i runs on server s and sends 1 unit of traffic (e.g., 1
Gbps) to VM vm� of type va,i� that runs on server s�, where
eannotated

a,i→i� ∈ Eannotated
a , and servers s and s� are located in

datacenter d; otherwise, qd,a,i,vm,s,i�,vm�,s�,l = 0. Here l is
an auxiliary subscript indicating that the one unit of traf-
fic associated with q is the lth one out of MaxVol possible
units of traffic. The maximum required number of VMs
of any type is denoted by MaxVM.

The ILP involves two key decision variables: (1) fe,a,d
is the fraction of traffic Te,a to send to datacenter Dd, and
(2) nd,s

a,i is the number of VMs of type va,i on server s of

datacenter d, hence physical graphs DAGphysical
a .

Objective function: The objective function (1) is
composed of inter-datacenter and intra-datacenter costs,
where constant α > 0 reflects the relative importance of
inter-datacenter cost to intra datacenter cost.

Constraints: Equation (2) ensures all suspicious traf-
fic will be sent to data centers for processing. Equation
(3) computes the amount of traffic of each attack type
going to each datacenter, which is ensured to be within
datacenters bandwidth capacity using (4). Equation (5) is

intended to ensure sufficient numbers of VMs of the re-
quired types in each datacenter. Servers compute capaci-
ties are enforced using (6). Equation (7) sums up the cost
associated with each datacenter, which is composed of
two components: intra-rack cost, given by (8), and inter-
rack component, given by (9). Equation (10) ensures the
traffic processing capacity of each VM is not exceeded.
Equations (11) and (12) tie the variables for number
of VMs (i.e., nd,s

a,i ) and traffic (i.e., qd,a,i,vm,s,i�,vm�,s�,l) to
each other. Flow conservation of nodes is guaranteed
by (13). Inequality (14) ensures no ISP backbone link
gets congested (i.e., by getting a traffic volume of more
than a fixed fraction β of its maximum capacity), while
Pathe→d is a path from a precomputed set of paths from
e to d. The ILP decision variables are shown in (15).

B DSP and SSP Algorithms
As described in §4.3, due to the impractically long time
needed to solve the ILP formulation, we design the DSP
and SSP heuristics for resource management. The ISP
global controller solves the DSP problem to assign sus-
picious incoming traffic to data centers. Then each lo-
cal controller solves an SSP problem to assign servers to
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VMs. Figure 16 and 17 show the detailed pseudocode
for the DSP and SSP heuristics, respectively.

1 � Inputs: L, T , DAGannotated
a , Clink

d , and Ccompute
d

2 � Outputs: DAGphysical
a,d and fe,a,d values

3
4 Build max-heap TmaxHeap of attack volumes T
5 while !Empty(TmaxHeap)
6 do t ← ExtractMax(TmaxHeap)
7 d ← datacenter with min. Lt.e,t.d and cap.> 0
8 � enforcing datacenter link capacity
9 t1 ← min(t,Clink

d )
10 � compute capacity of d for traffic type a

11 t2 ← CCompute
d

∑
i

∑
i�

Wa,i�→i

Pa,i

12 � enforcing datacenter compute capacity
13 tassigned ← min(t1, t2)
14 fe,a,d ← tassigned

Tt.e,t.a

15 for each module type i
16 do � update nd

a,i given new assignment

17 nd
a,i = nd

a,i + tdassigned

∑
i�

Wa,i�→i

Pa,i

18 Clink
d ← Clink

d − tassigned

19 Ccompute
d ← Ccompute

d − tassigned∑
i

∑
i�

Wa,i�→i

Pa,i

20 � leftover traffic
21 tunassigned = t− tassigned
22 if (tunassigned > 0)
23 then Insert(TmaxHeap, tunassigned)
24 for each datacenter d and attack type a
25 do Given nd

a,i and DAGannotated
a , compute DAGphysical

a,d

Figure 16: Heuristic for datacenter selection prob-
lem (DSP).

1 � Inputs: DAGphysical
a,d , IntraUnitCost, InterUnitCost,

and Ccompute
d,s values

2 � Outputs: nd,s
a,i values

3
4 while entire DAGphysical

a,d is not assigned to d’s servers
5 do N ← vannotated

a,i whose all predecessors are assigned
6 if (N == NIL)
7 then N ← vannotated

a with max Pa,i

8 localize(nodes of DAGphysical
a,d corresponding to N)

9
10 � function localize tries to assign all of its

input physical nodes to the same server or rack
11 localize(inNodes){
12 assign all inNodes to emptiest server
13 if failed
14 then assign all inNodes to emptiest rack
15 if failed
16 then split inNodes Vphysical

a across racks
17 update nd,s

a,i values
18 }

Figure 17: Heuristic for server selection problem
(SSP) at datacenter d.
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Abstract
The high price of incoming international calls is a

common method of subsidizing telephony infrastructure
in the developing world. Accordingly, international tele-
phone system interconnects are regulated to ensure call
quality and accurate billing. High call tariffs create
a strong incentive to evade such interconnects and de-
liver costly international calls illicitly. Specifically, ad-
versaries use VoIP-GSM gateways informally known as
“simboxes” to receive incoming calls over wired data
connections and deliver them into a cellular voice net-
work through a local call that appears to originate from
a customer’s phone. This practice is not only extremely
profitable for simboxers, but also dramatically degrades
network experience for legitimate customers, violates
telecommunications laws in many countries, and results
in significant revenue loss. In this paper, we present a
passive detection technique for combating simboxes at a
cellular base station. Our system relies on the raw voice
data received by the tower during a call to distinguish
errors in GSM transmission from the distinct audio arti-
facts caused by delivering the call over a VoIP link. Our
experiments demonstrate that this approach is highly ef-
fective, and can detect 87% of real simbox calls in only
30 seconds of audio with no false positives. Moreover,
we demonstrate that evading our detection across multi-
ple calls is only possible with a small probability. In so
doing, we demonstrate that fraud that degrades network
quality and costs telecommunications billions of dollars
annually can easily be detected and counteracted in real
time.

1 Introduction

Cellular networks provide digital communications for
more than five billion people around the globe. As such,
they represent one of the largest, most integral pieces of
critical infrastructure in the modern world. Deploying

these networks requires billions of dollars in capital by
providers, and often necessitates government subsidies
in poorer nations where such investments may not pro-
duce returns for many decades. As a means of maintain-
ing these systems, international calls destined for such
networks are often charged a significant tariff, which dis-
tributes the costs of critical but expensive cellular infras-
tructure to callers from around the world.

Many individuals seek to avoid such tariffs by any
means necessary through a class of attacks known as
interconnect bypass fraud. Specifically, by avoiding
the regulated network interconnects and instead finding
unintended entrances to the provider network, a caller
can be connected while dramatically lowering his or her
costs. Such fraud constitutes a “free rider” problem, a
term from economics in which some participants enjoy
the benefits of expensive infrastructure without paying
to support it. The most common implementation of in-
terconnect bypass fraud is known as simboxing. Enabled
by VoIP GSM gateways (i.e., “simboxes”), simboxing
connects incoming VoIP calls to local cellular voice net-
work via a collection of SIM cards and cellular radios.
Such calls appear to originate from a customer phone to
the network provider and are delivered at the subsidized
domestic rate, free of international call tariffs. Intercon-
nection bypass fraud negatively impacts availability, re-
liability and quality for legitimate consumers by creating
network hotspots through the injection of huge volumes
of tunneled calls into underprovisioned cells, and costs
operators over $2 Billion annually [28].

In this paper, we present Ammit1, a system for de-
tecting simboxing designed to be deployed in a cellu-
lar network. Our solution relies on the fact that audio
transmitted over the Internet before being delivered to
the GSM network will be degraded in measurable, dis-
tinctive ways. We develop novel techniques and build

1Ammit was an Egyptian funerary deity who was believed to sep-
arate pure and impure souls, preventing the latter from achieving im-
mortality in the afterlife.

1
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on mechanisms from the Pindr0p call fingerprinting sys-
tem [25] to measure these degradations by applying a
number of light-weight signal processing methods to the
received call audio and examining the results for distin-
guishing characteristics. These techniques rapidly and
automatically identify simboxed calls and the SIMs used
to make such connections, thereby allowing us to quickly
shut down these rogue accounts. In so doing, our ap-
proach makes these attacks far less likely to be successful
and stable, thereby largely closing these illegal entrances
to provider networks.

We make the following contributions:

• Identify audio characteristics useful for detect-
ing simboxes: We identify features in simboxed
call audio that make it easily differentiable from tra-
ditional GSM cellular calls and argue why such fea-
tures are difficult for adversaries to avoid.

• Develop rapid detection architecture for the net-
work edge: We design and implement Ammit, a
detection tool that uses signal processing techniques
for identifying illicitly tunneled VoIP audio in a
GSM network, and demonstrate that our techniques
can easily execute in real time. Such performance
means that our solution can be practically deployed
at the cellular network edge.

• Demonstrate high detection rate for SIM cards
used in simboxes: Through experimental analysis
on a real simbox, we show that Ammit can quickly
profile and terminate 87% of simboxed calls with no
false positives. Such a high detection rate arguably
makes interconnect bypass fraud uneconomical.

We note that our techniques differ significantly from
related work, which requires either large-scale post
hoc analysis [42] or serendipitous test calls to network
probes [10, 13, 15, 16, 18]. Our approach is intended
to be used in real time, allowing for rapid detection and
elimination of simboxes. We specifically characterize
these techniques in Section 8.

It should be noted that the authors are not attempt-
ing to combat the spread of inexpensive VoIP calls in
this paper. Traditional VoIP calls, which connect users
through IP or a licensed VoIP-PSTN (Public Switched
Telephone Network) gateway, are not considered a prob-
lem in countries that combat simboxes. Instead, we seek
to prevent the creation of unauthorized entry points into
private cellular networks that degrade performance for
legitimate users and cost providers and governments two
billion dollars annually. This is analogous to the problem
of rogue Wi-Fi access points; simboxing prevents net-
work administrators from controlling access to the net-
work and can degrade service for other users. Moreover,

similar to other economic free rider problems, failure to
combat such behavior can lead to both underprovision-
ing and the overuse of such networks, making quality
and stability difficult to achieve [49]. Failure to combat
simbox fraud may ultimately lead to raising prices and
lower reliability for subsidized domestic calls in devel-
oping nations, where the majority of citizens can rarely
afford such cost increases.

The remainder of this paper is organized as follows:
Section 2 provides background information on cellular
networks; Section 3 describes simbox operation and their
consequences; Section 4 presents our detection method-
ology; Section 6 describes our experimental methodol-
ogy; Section 7 discusses our results; Section 8 offers
an overview of important related work; and Section 9
presents our final remarks.

2 Background

2.1 Cellular Networks

The Global System for Mobile Communications (GSM)
is a suite of standards used to implement cellular com-
munications. It is used by the majority of carriers in
the US and throughout Europe, Africa, and Asia. GSM
is a “second generation” (2G) cellular network and has
evolved into UMTS (3G) and LTE (4G) standards. We
focus on GSM because it is the most available for direct
experimentation. Note that the methods we present in the
paper can easily be ported to other cellular standards.

GSM manages user access to the network by issuing
users a small smartcard called a Subscriber Identity Mod-
ule (SIM card) that contains identity and cryptographic
materials. A carrier SIM card can be placed in any de-
vice authorized to operate on a carrier’s network. Be-
cause GSM networks cryptographically authenticate al-
most every network transaction, cellular network activity
can always be attributed to a specific SIM card. In the
past, the ability to clone a SIM card negated this guar-
antee; however, modern SIM cards now have hardware
protections that prevent practical key recovery and card
cloning.

In addition to describing network functionality, the
GSM standards also specify a method for encoding au-
dio known as the GSM Full Rate (GSM-FR) codec [23].
Although designed for mobile networks, it is also used
as a general purpose audio codec and is frequently im-
plemented in VoIP software. To avoid ambiguity, we use
“GSM” or “air transmission” to mean GSM cellular net-
works and “GSM-FR” to indicate the audio codec.

2
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2.2 VoIP
Voice over Internet Protocol (VoIP) is a technology that
implements telephony over IP networks such as the In-
ternet. Two clients can complete a VoIP call using ex-
clusively the Internet, or calls may also be routed from
a VoIP client to a PSTN line (or vice-versa) through a
VoIP Gateway. Providers including Vonage, Skype, and
Google Voice provide both IP-only and IP-PSTN calls.
The majority of VoIP calls are set up using a text-based
protocol called the Session Initiation Protocol (SIP). One
of the jobs of SIP is to establish which audio codec will
be used for the call. Once a call has been established, au-
dio flows between callers using the Realtime Transport
Protocol (RTP), which is typically carried over UDP.

VoIP call quality is affected by packet loss and jitter.
Absent packets, whether they are the result of actual loss
or jitter, cause gaps in audio. Such gaps are filled in with
silence by default. Some VoIP clients attempt to improve
over this standard behavior and implement Packet Loss
Concealment (PLC) algorithms to fill in missing pack-
ets with repeated or generated audio. Specifically, PLC
algorithms take advantage of the fact that speech wave-
forms are more or less stationary for short time periods,
so clients can generate a plausible section of audio from
previous packets. Many codecs have mandatory PLCs,
although some are optional (as in the case of the G.711
audio codec) or are not implemented (as is frequently
the case when GSM-FR is used outside of cellular net-
works). Some VoIP software (including Asterisk) im-
plements their own PLC algorithms, but do not activate
them unless configured by an administrator.

3 What is a Simbox?

A simbox is a device that connects VoIP calls to a GSM
voice (not data) network. A simple mental model for a
simbox is a VoIP client whose audio inputs and outputs
are connected to a mobile phone. The term “simbox”
derives from the fact that the device requires one or more
SIM cards to wirelessly connect to a GSM network.

There is a strong legitimate market for these devices in
private enterprise telephone networks. GSM-VoIP gate-
ways are sold to enterprises to allow them to use a cellu-
lar calling plan to terminate2 calls originating in an office
VoIP network to mobile devices. This is typically a cost
saving measure because the cost of maintaining a mobile
calling plan is often lower that the cost of paying termi-
nation fees to deliver the VoIP call through a VoIP PSTN
provider (as well as the cost to the receiving party). Such
a setup is done with the permission of a licensed telecom-

2In cellular and telephone networks, “terminating a call” has the
counterintuitive meaning of “establishing a complete circuit from the
caller to the callee.”

munications provider and is only done for domestic calls.
This is in direct opposition to simboxers, who purchase
subsidized SIM cards to deliver traffic onto a local net-
work without paying the legally mandated tariffs.

Because there is a high demand for GSM-VoIP gate-
ways, they span a wide range of features and number
of concurrent calls supported. Some gateways support
limited functionality and only a single SIM card, while
others hold hundreds of cards and support many audio
codecs. Some simboxes used in simbox fraud rings are
actually distributed, with one device holding hundreds of
cards in a “SIM server” while one or more radio inter-
faces connect calls using the “virtual SIM cards” from
the server. This allows for simple provisioning of SIM
cards, as well as the ability to rotate the cards to prevent
high-use or location-based fraud detection.

3.1 How Simbox Fraud Works

Simboxing is a lucrative attack. Because simboxers can
terminate calls at local calling rates, they can signifi-
cantly undercut the official rate for international calls
while still making a handsome profit. In doing so, sim-
boxers are effectively acting as an unlicensed and unreg-
ulated telecommunications carrier. Simboxers’ principal
costs include simbox equipment (which can represent an
investment up to $200,000 US in some cases), SIM cards
for local cellular networks, airtime, and an Internet con-
nection. Successfully combating this type of fraud can be
accomplished by making any of these costs prohibitively
high.

Figure 1 demonstrates in greater detail how simbox-
ing compares to typical legitimate international call ter-
mination. Figure 1 shows two international call paths: a
typical path (Figure 1a) and one simbox path (Figure 1b).

In the typical case, when Alice calls Bob, her call
is routed through the telephone network in her country
(labeled “Foreign PSTN Core”) to an interconnect be-
tween her network and Bob’s network. The call is passed
through the interconnect, routed through Bob’s domes-
tic telephone network (“Domestic PSTN Core”) to Bob’s
phone. If Alice and Bob are not in neighboring coun-
tries, there may be several interconnects and intermedi-
ate networks between Alice and Bob. The process essen-
tially remains the same if Alice or Bob are using mobile
phones. The interconnect in this scenario is crucial —
interconnects are heavily regulated and monitored to en-
sure both call quality and billing accuracy (especially for
tariffs).

In the simbox case, Alice’s call is routed through
her domestic telephone network, but rather than passing
through a regulated interconnect, her call is routed over
IP to a simbox in the destination country. The simbox
then places a separate call on the cellular network in the

3
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Domestic 
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Interconnect

(RI)

(a) A typical international call is routed through a regulated interconnect. Note that VoIP calls from services such as Skype that
terminate on a mobile phone also pass through this regulated interconnect and are not the target of this research.

Simboxed Call

Domestic 
PSTN CoreInternet GSMVoIP

Simbox

Foreign 
PSTN Core

International
Border Legitimate Local Call

Legitimate VoIP Call

RI

(b) A simboxed international call (gray box) avoids the regulated interconnect by routing the call to a simbox that completes the
call using the local cellular network.

Figure 1: Typical and Simboxed Calls

destination country, then routes the audio from the IP call
into the cellular call, which is routed to Bob through the
domestic telephone network.

In practice, simboxers execute this attack and profit in
one of two ways. The most common method is for the
simboxer to present themselves as a legitimate telecom-
munications company that offers call termination as a
service to other telecom companies. As a call is routed
through these intermediate networks, neither of the end
users is aware that the call is being routed through a
simbox. This agreement is analogous to a contract be-
tween two ISPs who have agreed to route traffic between
their networks. While the end user has no knowledge of
how his traffic is routed, the intermediate network own-
ers profit from reduced prices for routed traffic.

The second method simboxers use to profit is to offer
discounted call rates directly to end consumers, primar-
ily through the sale of international calling cards. Such
cards have a number that the user must dial before she
can dial the recipient’s number; this number will route to
a number provided by a VoIP provider that points to the
simbox in the recipient’s country. When the user calls
the number on her calling card, the simbox will answer,
prompt her to dial the recipient’s number, then the sim-
box will connect the call.

3.2 Consequences of Simbox Operation

The consequences of simboxing are significant to users
who place simbox calls, users who share the cellular net-
work with simboxers, and to cellular carriers and na-
tional governments.

As for the effects on users, Alice is likely unaware of
the details of her call routing. However, Alice and Bob
may both notice a degradation in quality, and Bob may
notice that the Caller ID for Alice does not show her cor-
rect number. Bob may blame his local carrier for poor
call quality, and so the carrier unfairly suffers in reputa-
tion.

Other users in the same cell as the simbox also suf-
fer negative consequences. Cellular networks are provi-
sioned to meet an expected demand of mobile users who
only use the network a fraction of the time, and accord-
ingly may only be able to support a few dozen simulta-
neous calls. When a simboxer sets up an unauthorized
carrier and routes dozens of calls through a cell provi-
sioned to support only a handful of simultaneous calls,
the availability of that cell to service legitimate calls is
significantly impaired. Connectivity within the cell may
be further impaired by the dramatic increase in control
traffic [50].

4
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4 Methodology

Legitimate VoIP calls and other international calls enter a
cellular network through a regulated interconnect or net-
work border gateway. To halt simboxed calls, we only
need to monitor incoming calls from devices containing
a SIM card. Figure 1b shows the path of legitimate and
simboxed audio, respectively, from the calling source to
the final destination. In both cases, the tower believes
it is servicing a voice call from a mobile phone. How-
ever, the audio received by the tower from a simboxed
call will contain losses, indicating that the audio signal
has traveled over an Internet connection, while the au-
dio from a legitimate call will not contain these losses,
having been recorded directly on the transmitting mobile
phone. As discussed in Section 2, jitter and loss in In-
ternet telephony manifest as unconcealed and concealed
gaps of audio to the receiving client (the simbox, in this
case). These features are inherent to VoIP transmission,
and the only variant is the frequency of these events. All
simboxed calls will have some amount of packet loss and
jitter, so we design Ammit to detect these audio degrada-
tions. Because the audio transmitted to the mobile de-
vice could have originated from a variety of connection
types, Ammit only analyzes audio received from mobile
devices. If the mobile device is a simbox, the character-
istics of this audio will exhibit the loss patters consistent
with a VoIP connection, making the call distinguishable
from audio recorded and sent by a mobile phone.

4.1 Inputs to Ammit

The most common codec supported by simboxes is
G.711 [3] (see the Appendix for details). The G.711
codec is computationally simple, royalty-free, and serves
as a least common denominator in VoIP systems. It was
originally developed in 1972 for digital trunking of au-
dio in the PSTN, and it is still the digital encoding used
in PSTN core networks. The original standard indicated
that G.711 should insert silence when packets are de-
layed or lost, so we examine G.711 using this setting.

Simboxers will have a clear incentive to configure
their simboxes to evade detection, and an obvious eva-
sion strategy is to ensure that audio is as close as possible
to legitimate audio by using the GSM-FR codec for the
VoIP link. Therefore, we show how Ammit accounts for
this difficult case where GSM-FR is used with and with-
out PLC. We discuss how Ammit addresses other evasion
techniques in Section 5.

In summary, Ammit must detect the two audio phe-
nomena characteristic of VoIP transmission: concealed
and unconcealed packet losses. The following subsec-
tions detail how Ammit detects these phenomena, but
first we briefly describe the data that Ammit receives

from the tower before detecting audio features.
In GSM, audio encoded with the GSM-FR codec is

transmitted between a mobile station (MS, i.e., a phone)
and a base transceiver station (BTS, i.e., a cell tower)
using a dedicated traffic channel. The encoding used
by GSM-FR causes certain bits in a frame to be of
greater importance than others. When an audio frame
is transmitted, frame bits are separated by their impor-
tance. “Class 1” bits containing the most important pa-
rameters are protected by a parity check and error cor-
recting codes, while “Class 2” bits are transmitted with
no protections because bit error in these bits has only a
small effect on the quality of the audio. The approach
of only protecting some bits is a compromise between
audio quality and the cost of the error correcting code.
When Class 1 bit errors cannot be corrected, the receiver
erases (i.e., drops) the entire frame. When Class 2 bits
are modified, the audio is modified, but the receiver has
no mechanism to detect or correct these modifications.
This is termed “bit error.” It should be noted that bit er-
ror and frame erasure are distinct concerns in GSM.

The receiving device (MS or BTS) may use PLC to
conceal this frame erasure. When a BTS erases a frame,
it conceals the loss before forwarding the audio into the
core network. Visibility into frame erasures motivates
our choice to place Ammit at the tower. However, there
are additional benefits to locating Ammit at a tower.
Specifically, this allows for scalable detection of sim-
boxes because a single Ammit instance is only respon-
sible for the dozens of calls that pass through the tower
instead of the thousands of concurrent calls in a region
or nation. Finally, if Ammit has a high confidence that a
call is simboxed (as defined by a network administrator
policy), ending a call at the tower is simpler than in other
parts of the network. This policy would further frustrate
the efforts of simboxers. It is also possible to deploy Am-
mit closer to the network core, perhaps at BSC or MSC
nodes, but GSM loss information would need to be for-
warded.

Ammit takes two inputs: a stream of GSM-encoded
audio frames and a vector indicating which audio frames
were erased (both of which can be collected by the BTS
connecting the call). Ammit uses the frame erasure vec-
tor to ignore the effects of the air interface on the call
audio. Ignoring erased frames ensures that losses on the
air interfaces are not misinterpreted as losses caused by
VoIP.

4.2 Detecting Unconcealed Losses

Ammit must detect two degradation types: unconcealed
packet loss and concealed packet loss. To detect uncon-
cealed loss, Ammit looks for portions of audio where
the energy of the audio drops to a minimum value then
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Figure 2: The short-term energy of speech during audio
can reveal silence insertion. Packet loss that falls in nat-
urally silent sections of audio is undetectable.

quickly rises again. This technique is also used in the
Pindr0p system. The following discussion describes the
Pindr0p approach to detecting unconcealed losses, with
additional implementation insight and details.

Figure 2 demonstrates unconcealed packet loss in a
clip of audio at 78 ms and 215 ms. At 78 ms, a packet
is lost and silence begins. A short time later, at 90 ms,
the energy rises again, indicating that a new packet has
arrived containing speech. Because the time between the
energy fall and rise is less than typical in speech, Ammit
marks that section of audio as containing a lost packet.

While the intuition is simple, there are several chal-
lenges to using this technique to detect losses from sim-
boxed audio. The first challenge is that many packet
losses will occur during naturally silent audio — mean-
ing that there will be no significant change in energy.
This fact merely limits the amount of detectable loss
events. The second challenge is that speech regularly has
short pauses (causing false positives). A third challenge
is that because there is no guarantee that VoIP frames are
fully contained within a single GSM frame, a VoIP loss
could begin in the middle of a GSM packet. Finally, un-
corrected packet losses will have very low but non-zero
energy because the pure silence is altered by bit errors in
air transmission or by degradations within the simbox.

The first step of detecting unconcealed packet loss is
to compute the energy of the audio signal. Ammit uses
Short Time Energy (STE) as its measure of signal energy.
Short time energy is a frequently used metric in speech
analysis [38]. STE is computed by taking small windows
of data and summing the squared values of the signal in
the window. More formally, STE can be written as

En =
n

∑
i=n−N+1

((x(i))w(n− i))2

where x is the audio signal, w is the window function, n
is the frame number and N is the frame size.

Ammit computes STE using a 10ms audio frame,
not the 20ms frames used in GSM-FR and many other
codecs, because 10ms is the minimum frame size used
by a VoIP codec, as standardized in RFC 3551 [47]. We
use the standard practice of using a Hamming window
half the length of the frame with a 50% overlap. There-
fore, each STE measurement covers 5ms of audio and
overlaps with 2.5ms of audio with the last window. This
fine-grained measurement of energy ensures that Ammit
can detect packet loss that begins in the middle of a GSM
air frame.

With STE computed, Ammit then computes the lower
envelope of the energy. In the presence of noise, the “si-
lence” inserted in the VoIP audio will have non-zero en-
ergy. We define the lower envelope as the mean of the
minimum energy found in the 10 ms frames. We also
determine a tolerance around the minimum energy con-
sisting of 50% of the lower envelope mean (this was de-
termined experimentally).

Once Ammit has determined the lower envelope, it
looks for energies that fall within the minimum envelope
tolerance but then rise after a short number of energy
samples. We experimentally chose 40ms as the maxi-
mum value for a sudden drop in packet energy, and our
experimental results reflect the fact that this period is
lower than the minimum for pauses in standard speech
(which is around 50–60ms).

Because this method simply looks for silence, it is ef-
fective for both codecs we study, and it is fundamentally
suited for all codecs that insert silence in the place of lost
packets.

4.3 Detecting Concealed Losses in GSM-
FR

Before we describe how Ammit detects GSM-FR packet
loss concealment, we first describe GSM-FR PLC [24]
at a high level. On the first frame erasure, the erased
frame is replaced entirely by the last good frame. On
each consecutive frame erasure, the previous frame is at-
tenuated before replacing the erased frame. After 320ms
(16 frames) of consecutive frame erasures, silence is in-
serted. Attenuation of repeated frames is motivated by
the fact that while speech is stationary in the short term,
longer-term prediction of audio has a high error that users
perceive as unnatural.

Repeating frames wholesale has the frequency domain
effect of introducing harmonics every 1

20ms = 50Hz [43].
Thus, there will be a spike in the cepstrum3 at the 20ms

3A “Cepstrum” is a signal representation defined as the inverse
Fourier transform of the logarithm of the Fourier transform. A rough
mental model is to think of the “cepstrum” as the “Fourier transform

6
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Figure 3: GSM-FR repeats and attenuates the last good
frame to conceal packet loss. This results in a clear peak
at 20ms in the cepstrum of the audio that can be used to
detect a simboxed call.

quefrency. Because 50Hz is well below human pitch, this
is a distinctive indicator of GSM packet loss. Figure 3
shows a clip of audio that has had GSM-FR packet loss
concealment applied and the corresponding cepstrum.
Note that the audio repeats (but is attenuated) every 20ms
resulting in a peak at the cepstrum at 20ms. To detect
GSM-FR PLC, Ammit computes the cepstrum of a win-
dow of three frames of audio and looks for a coefficient
amplitude in the 20ms quefrency bin that is double the
standard deviation of amplitudes of the other cepstral co-
efficients and not located in a silent frame.

4.4 Simbox Decision and SIM Detection
While concealed and unconcealed packet loss are mea-
surable indicators of simboxing, there is a small false
positive rate caused by the imperfection of our signal
processing techniques. Accordingly, a single instance of
a detected loss or concealed loss is not sufficient to con-
sider a call to be originated from a simbox. Instead, we
normalize the counts of loss events by the number of to-
tal frames in a call and consider a call as simboxed if
the loss event percentage is much higher than the aver-
age loss event percentage for legitimate audio. We show
in the following section that this approach is effective for
all but the highest quality VoIP links, which provide few
loss events to detect.

Even with this thresholding, some legitimate calls will
occasionally be marked as a simbox. To ensure detection
of simboxes with even improbably low loss rates, and
to reduce the impact of false positives, we propose that

of the Fourier Transform of a signal. ”The domain of the function is
termed “quefrency” and has the units of seconds

the network should keep track of the number of times
a call placed from a SIM is marked as a simboxed call.
We term this technique “SIM detection” and show in the
following sections that by using this technique we can
further discriminate the legitimate subscribers from sim-
boxers.

4.5 Efficiency of Ammit

Ammit is designed to analyze call audio in real time as it
is received by the cellular tower. So, the system must be
designed to function efficiently using minimal computa-
tion and network resources. To accomplish this, we avoid
using costly analysis associated with machine learning or
complex signal feature analysis, and instead apply sim-
ple threshold checks to processed audio signals. For each
time window collected by Ammit, we apply two itera-
tions of the Fast Fourier Transform (FFT) and a compar-
ison operation to the distinguishing criteria noted above.
The FFT is a well-known algorithm that can be run with
O(n logn) complexity, and is used to analyze audio in
real time for applications such as audio visualizers. We
further verify empirically that these operations can be ex-
ecuted in real time in Section 7.

In addition, any added load on the network will cause
a minimal impact on the overall throughput. While
Traynor et al. [50] demonstrated that added signaling
within the cellular network can cause a DDoS effect,
Ammit sends only a single message to the HLR for any
call flagged as a simboxed call. For this added messag-
ing to cause an effect on the internal cellular network,
a cell containing a simbox would have to simultaneously
send significantly more messages than there are channels
to handle cellular calls, which is not possible.

5 Threat Model and Evasion

To evade Ammit, simboxers must either compromise
Ammit’s measurement abilities or successfully prevent
or hide VoIP losses. While simboxers will take every
economically rational action to preserve their profitabil-
ity, attempting to evade Ammit will be difficult and likely
expensive. This will hold true even if simboxers are
aware of Ammit’s existence and detection techniques,
and even if simboxers are able to place arbitrary num-
bers of calls to test evasion techniques. In this section,
we outline basic assumptions about our adversary. We
then provide details about how Ammit can be expanded
to address stronger adversaries that could defeat the pro-
totype described in this paper.

7
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5.1 Security Assumptions

The effectiveness of Ammit relies on four reasonable
assumptions to ensure that Ammit cannot be trivially
evaded by simboxers. First, we assume that the Ammit
system (hardware and software) is no more accessible to
the attacker than any other core network system (includ-
ing routing and billing mechanisms). Second, we assume
that Ammit will be used to analyze all call audio so that
simboxers cannot evade a known evaluation period. We
show in Section 7.4 that Ammit can efficiently analyze
calls. Third, we assume that Ammit will report measure-
ments to a single location (like the HLR) so that simbox-
ers cannot evade Ammit by frequently changing towers.
Finally, we recommend that Ammit be widely deployed
throughout a carrier’s infrastructure because a wider de-
ployment will provide fewer places for simboxes to op-
erate.

5.2 Evasion

If the simboxer cannot avoid Ammit analysis, he must
hide or prevent VoIP packet loss and jitter. Hiding packet
loss and jitter was the very goal of over two decades of
intense academic and industrial research that has so far
only provided good but algorithmically detectable solu-
tions, including jitter buffering and loss concealment.

Extreme jitter buffering VoIP clients (including sim-
boxes) routinely use short audio buffers to prevent low
levels of jitter from causing delays in playback. Sim-
boxers could set the jitter buffer to a large value (say,
several seconds of audio) to prevent jitter from causing
noticeable audio artifacts. However, this would be in-
trusive to users, and Ammit could still detect true losses
as well as the added false starts and double talk. While
we leave the testing of this approach to future work, we
briefly describe how high jitter buffers could be detected
by measuring the incidence of double talk. Double talk is
the phenomenon where, after a lull in conversation, two
users begin to talk (apparently) simultaneously. Because
double talk increases with audio latency, increased dou-
ble talk will be indicative of increased latency. Because
an increased jitter buffer (combined with the already high
call latency from an international call) will lead to higher
than “normal” latency, detecting anomalous double talk
will help in detecting simboxing. Detecting double talk
is an important task in equipment quality testing, and
ITU-T standard P.502 provides an off-the-shelf method
for measuring it. Feasibility and appropriate thresholds
can be determined using call data through simboxes and
from legitimate subscribers. While such data is unavail-
able to outside researchers (including the authors of this

paper), it is available to the carriers who would be field-
ing such a system.

Alternative PLC approaches Ammit looks for brief
silences as one signal of VoIP loss, so simboxers could
replace silence with noise or other audio. This is a
well known form of Packet Loss Concealment. In gen-
eral, PLC algorithms (like the GSM-FR PLC) fall into
three categories: insertion, interpolation, and regenera-
tion [44]. Although there are a number of algorithms
in each category, the majority are published (and those
that are not are often similar to those that are). All will
have some artifacts that can lead to detection, and be-
cause the Pindr0p project has developed techniques to
identify other codecs[25], we leave detecting other PLCs
as future engineering work not essential to confirming
our hypothesis that audio features can identify simboxes.

Improved link quality In addition to jitter and loss
concealment, simboxers could reduce losses and jitter
with high-quality network links or a redundant transmis-
sion scheme, but there are several barriers to this. First,
finding a reliable provider may not be possible given the
low connectivity conditions in simboxing nations. If a
provider is available, the costs will likely be prohibitive.
For example, in Kenya one can expect to pay $200,000
US per month for a high-quality 1 Gbps link[40]. This
connection also guarantees little beyond the first routing
hop. Beyond the costs, having a better quality connection
than many universities and businesses may raise undesir-
able scrutiny and attention to the simboxers. Even if a
high-quality link is available, it would not remove degra-
dations from the call that occur before the call arrives at
the entry point to the simbox.

Garbled frame transmission Finally, Simboxers
could evade Ammit detection by failing to transmit valid
GSM air frames when an IP frame is lost. In effect, Am-
mit would believe that all VoIP losses were air losses and
would not detect VoIP losses. Ammit could detect this
evasion by noting anomalous air loss patterns.

Currently, conducting a simboxing operation requires
the technical sophistication of systems administrator.
This evasion technique will require significant engineer-
ing resources (with expertise in embedded system de-
sign, implementation, and production) because GSM
modems are typically sold as packages that accept an au-
dio stream and high-level control commands (e.g. “place
a call” or “send an SMS”). These tightly integrated chips
are not capable of sending damaged packets on com-
mand. While the Osmocom baseband project [20] could
provide a start for a custom radio, Osmocom targets in-
expensive (though relatively rare) feature phone variants

8
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and would not be a turnkey GSM baseband for a custom
simbox4. Finally, even if the simboxers develop such a
modem, they would have to conceal all detectable arti-
facts from both the final VoIP step as well as any inter-
mediate networks (like a caller’s mobile network). For
these reasons, this strategy would only be effective for
the most motivated and very well-funded simboxers.

However, in the event that simboxers do pursue this
strategy, we propose the following methodology to de-
tect such an attack. Given the considerable difficulty in
developing the attack as well as constructing a suitable
test environment, we leave testing this detection method-
ology to future work. We hypothesize that this a garbled
packet evasion strategy can be detected from anomalous
air interface loss patterns because simboxed calls will see
the ”typical” amount of loss plus the loss created by the
simboxer. Loss patterns may be anomalous for improba-
ble amounts of loss, or for improbably bursty sequences
of lost frames. These anomalies could be determined on
a tower-by-tower basis to take into account local trans-
mission conditions (like a tunnel affecting signal qual-
ity). Because mobile stations (i.e. phones) do not know
which frames are erased when they arrive at the tower,
simboxers will not be able to tune their loss rate to be
within the bounds used by this strategy.

6 Experimental Setup

In this section, we describe how we characterize Ammit
through the use of simulation and test its effectiveness
against a real simbox.

We simulate simboxed calls by taking a corpus of
recorded audio and passing them first through a VoIP
simulator then through a GSM air simulator (again, we
use the term “air” to distinguish GSM cellular transmis-
sion). The GSM air simulator provides Ammit with both
audio and a vector of GSM frame errors. To simulate
legitimate calls, we pass the audio corpus through the
air simulator only. We motivate the use of simulation in
Section 6.6.

We test Ammit against three simbox codec choices:
G.711 with no packet loss concealment and GSM-FR
with and without packet loss concealment (we discussed
this choice in Section 4. We evaluate single simbox call
detection and SIM detection at 1%, 2%, and 5% loss
rates (we justify this choice later in this section).

6.1 Speech corpus
The source of voice data for our experiments was
the TIMIT Acoustic-Phonetic Continuous Speech cor-
pus [33]. This is a de facto standard dataset for call audio

4We pursued this line of research ourselves before finally purchas-
ing a commercial simbox

testing. The TIMIT corpus consists of recordings of au-
dio of 630 English speakers from 8 distinct regions each
reading 10 “phonetically rich” standard sentences 5. The
recordings are 16kHz 16-bit signed Pulse Code Modu-
lation (PCM), which are downsampled to 8kHz to con-
form to telephone quality. For the single call detection
tests, we concatenate the 10 sentences for each of the 462
speakers into 1 call per speaker, creating a dataset of 462
calls 6. Each call is approximately 30 seconds in length.
The SIM detection test requires a larger call corpus, so
for 98 randomly selected speakers we generate 20 calls
for each speaker using permutations of the 10 sentences
for each speaker (for a total of 1960 calls). Calls con-
sist of only one speaker because Ammit analyzes each
direction of the call separately.

6.2 VoIP Degradation and Loss

VoIP simulation takes TIMIT call audio as input and out-
puts audio that has been degraded by VoIP transmission.
The simulator must convert the input audio from its orig-
inal format (PCM) to the VoIP codec simulated (GSM
or G.711), simulate loss, implement packet loss conceal-
ment in the case of GSM-FR, and output the final de-
graded audio. We examine these steps in greater detail in
this subsection.
Audio conversions: The input audio files, encoded using
PCM, must either be converted to G.711 or GSM-FR. We
use the widely-used open source utility sox [8] for all
codec transitions throughout the Ammit testing infras-
tructure. Note that these codec transitions are standard
practice throughout PSTN and VoIP networks.
Packet Loss Modeling: We model Internet losses
with the widely-used [39] Gilbert-Elliot packet loss
model [34]. The Gilbert-Elliot model is a 2-state Markov
model that models packet losses with bursty tendencies.
A given channel can be in either a “good” state or a “bad”
state. If the channel is in the “bad” state, packets are
dropped. The Gilbert-Elliot model can be described with
two parameters: p, the likelihood that the channel en-
ters the “bad” state, and r, the likelihood that the chan-
nel leaves the bad state. p controls the frequency of loss
events while r controls how long bursts last. We param-
eterize the model such that p is the target loss rate (for
these experiments, 1%,2%, and 5%) and r = 1− p. This
means that the higher the loss rate, the greater the ten-
dency of losses to be bursty.

Although jitter is a source of audio artifacts, we do not
model jitter explicitly. Instead, because the audio symp-

5N.B. We use a subset of 462 male and female speakers from all 8
regions

6We set aside 12 of these calls as a training set to develop and verify
our algorithms and set detection thresholds. These calls were not used
for testing.
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toms of jitter and packet loss are the same (i.e., audio
is not present when needed), we simply consider jitter
as a special case of packet loss, as is done by Jiang and
Schulzrinne [39].
Loss Rate Justification: The reader may note that we
are modeling loss rates that are considered high for In-
ternet loss. Our model is justified for several reasons.
The first consideration is that the typical Internet con-
nection conditions in simboxing countries are of much
lower quality than what most of Europe, East Asia, or
even North America experiences [40, 51], with loss rates
often exceeding 10%. Second, because conditions can
vary from hour to hour or even moment to moment, ex-
amining performance at higher loss rates than typical is
justified [39].
G.711 processing: To implement VoIP loss in G.711 au-
dio, we use a packet loss simulation tool from the G.711
reference implementation available in the ITU Software
Tools Library [7]. This tool implements concealed and
unconcealed loss on 16-bit 8kHz PCM audio. We use
sox to encode our input files to G.711 and back to 16-bit
PCM before processing by the tool. This step is required
because G.711 is a lossy codec, and the act of encoding
and decoding irreversibly changes the audio. The tool
takes a frame error vector as input, allowing us to use the
Gilbert-Elliot Model described above.
GSM-FR processing: We developed our own GSM-
FR VoIP loss simulator in Matlab. All audio process-
ing in this tool is done on GSM-FR encoded audio.
The tool implements the previously discussed packet loss
model, the GSM-FR PLC as defined in 3GPP Standard
46.011 [24], and unconcealed packet loss by inserting
GSM-FR silent frames.

6.3 GSM Air Loss

As we discussed in Section 6.6, we simulate simbox calls
out of necessity. To simulate GSM cellular transmission
(i.e., “air loss”) we modify a GSM Traffic Channel simu-
lation model for Simulink [41]. This model takes frames
of GSM-encoded audio and encodes them as transmis-
sion frames for transmission over a GSM traffic channel
as specified in 3GPP Standard 45.003 [21]. The trans-
mission encoding includes interleaving as well as the er-
ror correcting codes and parity checks applied to Class 1
bits (as discussed in Section 4).

The model then simulates the modulation and trans-
mission of the encoded frame using GMSK (Gaussian
Minimum Shift Keying) in the presence of Gaussian
white noise in the RF channel. This white noise is the
source of random transmission errors in the model.

The model then demodulates the transmitted channel
frame, evaluates the error correcting codes, and com-
putes the parity check to determine if the frame is erased

Internet GSMVoIP
SimboxTIMIT 

Audio
Audio Soft

Phone

PlanetLab
OpenBTS
Asterisk

Simbox 
Audio

Base Station

Figure 4: Our detection mechanisms are run against a
real simbox deployment (Hybertone GoIP-1) communi-
cating to a modified Range Networks OpenBTS base sta-
tion.

or not. Finally, the model outputs the received audio and
a vector indicating which frames were erased.

The channel model signal-to-noise ratio is tuned to
produce a frame erasure rate (FER) of 3% at the receiver,
which is considered nominal according to 3GPP Stan-
dard 45.005 [22].

6.4 Simboxing SIM Detection Test

Our SIM detection mechanism is tailored to reduce the
effect of a single false positive or false negative call judg-
ment by examining multiple calls.

To measure the effectiveness of this mechanism, we
use 20 audio files from 98 unique speakers (for a total
of 1960 calls) to simulate legitimate and simboxed calls
using our GSM and VoIP simulators. We examine legiti-
mate calls as well as simboxes covering all three codecs
(GSM-FR, GSM-FR with PLC, and G.711) at 1%, 2%,
and 5% loss rates. We model individual SIM cards as
groups of 20 calls. For legitimate SIM cards, all calls
from a particular speaker are assigned to a single SIM
card, while simbox SIM cards consist of groups of ran-
domly selected calls. This models the fact that simbox
SIMs will rarely be used to provide service for the same
user twice.

We analyzed all legitimate and simboxed calls with
Ammit, then computed the percentage of calls in each
SIM card group that were marked as simboxed. We con-
sider a SIM to be used in a simbox if at least 25% of
the calls it makes are marked as simboxed by Ammit call
analysis.

6.5 Real Simbox Tests

We collect audio traces from calls made through a real
simbox to validate our simulation experiments.

Figure 4 shows a schematic diagram of our experimen-
tal setup. We use 100 randomly selected audio files from
the single call detection corpus (discussed in Section 6.1)
to model the original call source. The call path begins at
a PJSIP soft phone at a PlanetLab node located in Thai-

10



USENIX Association  24th USENIX Security Symposium 843

Range Networks OpenBTS

Cell Phone

HyberTone GoIP-1 
Simbox

Figure 5: Our simbox experimental apparatus, including
our OpenBTS GSM base station, mobile phone to model
legitimate calls, and our GoIP-1 simbox.

land, a country with major simboxing problems [46]7.
This step emulates the arrival of a call to a simboxer.

The call originates from a soft phone and is routed
through an Asterisk PBX8 (not shown in the figure) to
our Hybertone GoIP-1 simbox in the United States. Hy-
bertone simboxes offer useful features to simboxing, in-
cluding the ability to automatically change the IMEI
number broadcast to evade filtering and detection sys-
tems like those presented in prior work [42]. Hyber-
tone products have been advertised for sale specifically
for simboxing [2], and entrepreneurs even sell value-
added management consoles specifically for simboxers
[1]. While the GoIP-1 supports several incoming codecs,
it does not disclose which PLC algorithm it uses. We
have determined experimentally that it is using a variant
of the GSM-FR PLC.

The simbox delivers the call to a cellular base station
under our control. Our base station is a Range Networks
Professional Development Kit running the OpenBTS 5.0
open-source base station software and Asterisk 11.7.
This base station is a low-power research femtocell and
allows us to record call audio digitally as the base station
receives it – including frame erasure information. To de-
termine false positives, we create control calls by playing
the same 100 randomly-selected audio files into a BLU
Samba Jr. Plus feature phone and capturing the call au-
dio at the base station. Figure 4 shows our base station
and simbox experimental apparatus.

7Note that Thailand is the only major simboxing country with func-
tional PlanetLab node at the time of writing

8A Private Branch Exchange (PBX) is a telephony switch analogous
to an intelligent router in the Internet

6.6 Technical Considerations
Our experimental setup uses both simulation and real
simbox data we collect ourselves for several reasons.
First, simulations provide the best way to examine the
effects of codec choice, packet loss concealment, and
loss rates reproducibly and accurately. Second, they al-
low us to build generic models of simboxes so that our
detection mechanism is not tied to any particular sim-
box model. Third, because we use tools and models
that are extensively studied, verified, and frequently used
throughout the literature [25, 52, 34, 39, 7, 41], we can
have confidence that our results are correct. We supple-
ment our simulations with data collected through a com-
monly used simbox to support and confirm our simula-
tion results.

The reader will note that our real simbox calls were
originated in a simboxing country, not terminated there.
While simboxing is a global problem [42], we wanted to
focus on areas where the problem is endemic and has a
substantial impact. However, logistical, economic, and
legal considerations prevented us from placing our sim-
box and research base station abroad. Instead, we cap-
ture the exact loss and jitter characteristics of the Inter-
net connections in a simboxing country by originating
the call there while terminating the call in our lab.

Legal and privacy concerns prevent us from receiv-
ing simbox audio from mobile operators (since the audio
would be from callers who could not give their consent
for such use). However, we note that there are no ad-
ditional privacy concerns created when an operator de-
ploys Ammit in a real network. Operators regularly use
automated techniques to monitor call quality of ongoing
conversations, and Ammit does no analysis that could be
used to identify either the speakers or the semantic con-
tent of the call.

Finally, we note that the use of TIMIT audio is ex-
tremely conservative; it presumes pristine audio quality
before the call transits an IP link. In fact, there will be
detectable degradations from the PSTN even before the
VoIP transmission. Chief among these will be GSM-FR
PLC applied if Alice calls from a mobile phone. Because
mobile phones regularly see high loss rates9, simboxers
carrying mobile-originated traffic will be even more vul-
nerable to detection by Ammit than this methodology re-
flects.

7 Detection Results

This section demonstrates how Ammit detects simbox
fraud. We first discussed Ammit’s effectiveness at iden-
tifying a real simbox, followed by a discussion of the

9Recall from 3GPP standard 45.005 [22] that 3% loss is considered
nominal
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Figure 6: Ammit detection depends on the loss rate and
Simbox codec used. For a 2% loss rate, Ammit detects
over 55% of simboxed calls with less than a 1% false
positive rate. This performance makes SIM detection
(shown in Fig. 7) very reliable.

results of detecting simulated simboxed calls. We then
examine how Ammit can be used to identify SIM cards
used in simboxing fraud. Finally, we show that Ammit is
fast enough to be effective in real networks.

7.1 Simulated Call Analysis
In this subsection, we evaluate Ammit’s ability to detect
individual simboxed calls and SIM cards used in simbox-
ing.

Figure 6 presents the percentage of simboxed calls de-
tected for three simbox types at three different loss rates.
At the still plausible 5% loss rate, Ammit detects from
87% to 100% of simboxed calls. Lower detection rates
for low loss rates are simply a result of fewer loss events
for Ammit to detect. However, in the case of no packet
loss concealment, Ammit still detects from 15–66% of
the simboxed calls for 1 and 2% loss. As discussed in
the previous section, these loss rates include the effect of
jitter, so loss rates as low as 1% and 2% are unlikely to
be encountered often in practice [40, 51].

Third, the lowest dotted line in Figure 6 shows the low
(but non-zero) detection rate for the control group of sim-
ulated legitimate calls — less than 1% (0.87% to be ex-
act).

Figure 7 shows the percentage of simbox SIM cards
that can be automatically disabled at the threshold of
25% of calls. For a 5% loss rate, our policy can identify
100% of SIM cards used in simboxes. For calls using
GSM-FR with packet loss concealment our policy can
also detect 100% of SIM cards. As the loss rates de-
crease, we identify fewer SIM cards for codecs without
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Figure 7: Even with unusually high-quality network con-
nections, Ammit can be used to identify SIM cards used
for simboxing.

packet concealment. In the case of 2% loss, we identify
96% and 100% of SIMs used in GSM-FR and G.711 sim-
boxes, respectively. In the case of 1% loss, we still iden-
tify 43% of G.711 SIMs and 28% of GSM-FR SIMs. Our
threshold results in a false positive rate of 1% and was de-
termined experimentally from a ROC curve (omitted for
space reasons). To counter the effects of false positives,
the operator could implement a simple policy step allow-
ing users to reactivate canceled SIM after some verifica-
tion. One possibility is requiring flagged users to verify
the National ID numbers used to register the SIM card
over the phone or in person at a sales agent.

7.2 Detection of Real Simboxes
We begin with the most important result that Ammit is
effective at detecting real simboxes. We find Ammit can
detect 87% of real simboxed calls with zero false pos-
itives on the call set. These figures are the result of
running our GSM-FR packet loss concealment after tun-
ing on simulated individual call data; improved detection
may be possible at a cost of a low false positive rate.
While simulations produce useful insights about Am-
mit’s performance in a wide range of conditions, these
results confirm our hypothesis that call audio can be used
to effectively combat simbox fraud.

7.3 Discussion
We make three observations from the individual call sim-
ulations. First, the results show a clear relationship be-
tween the loss rate of a call and Ammit’s ability to detect
a call. Second, Figure 6 shows the counterintuitive result
that using GSM-FR packet loss concealment makes calls

12
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Figure 8: Ammit analyzes audio much faster than real
time and is efficient enough to deploy in cell towers.

easier to detect. Even at a 1% loss rate, Ammit detects
30% of simboxed calls using GSM-FR PLC. Ammit is
so effective at detecting concealed packet loss events be-
cause the GSM-FR PLC cepstral peak is distinctive and
rare in speech. The corollary to this finding is that sim-
boxers will have an incentive to disable packet loss con-
cealment. This will noticeably impair call quality and
user acceptability. Third, the non-zero false positive rate
means that discretion will be required when Ammit indi-
cates a positive simbox call.

Our SIM detection results show that Ammit can be
used not only to detect single calls but as a larger ini-
tiative against simboxing. At 2% and 5% loss, we can
detect and disable a single SIM card after at most 20
calls. Even at 1% loss, we can still detect and disable
many SIM cards. Given that SIM cards come at a non-
trivial cost (either at a legitimate point of sale or on a
black market), by reducing the lifetime of a SIM card we
make simboxers unable to operate.

Finally, we make two observations from the real sim-
box results. First, we note that our simulations were ef-
fective for tuning Ammit before applying real data. This
validates our methodological strategy. Second, our simu-
lation false positive rates were conservatively high; while
we saw 1% false positives on our simulated data, we saw
no false positives on our actual data.

7.4 Ammit Performance

To show that Ammit is scalable and performant, we ex-
amine the amount of time Ammit requires to analyze a
call for concealed and unconcealed packet losses. Al-

though in the previous subsections we analyzed Ammit’s
performance for 30 second calls, we hypothesize that
longer analyses would lead to even better results, espe-
cially for lower loss rate calls. We tested Ammit’s per-
formance on a set of 10 calls of approximately 30s, 60s,
and 120s; we present the averages of 10 analyses of each
call in Figure 8.

We test Ammit on a late 2011 iMac with a quadcore
3.4 GHz Intel Core i7, 16GB RAM, and a 1TB solid
state disk running OS X 10.9. Although this is capa-
ble hardware, the detection is done entirely with Matlab
in a single thread, and the detection code is correct but
far from optimal. Optimizing the Matlab code for effi-
ciency would likely reduce analysis time. Beyond that,
implementing Ammit in a more performant language like
C could reduce analysis time further. For a commercial
implementation, code customized for a digital signal pro-
cessor could further improve performance. Ammit may
be deployed directly as a BTS or BSC software update or
as inexpensive standalone hardware.

As Figure 8 shows, the majority of analysis time is
spent detecting concealed packet loss. Nevertheless,
calls can be analyzed 150 times faster than real time, in-
dicating that a single thread of execution could analyze
approximately 150 calls per unit time. Even our unopti-
mized code would be able to analyze all traffic at a tower
in real time.

8 Related work

Although this work is concerned with detecting simbox
fraud, the techniques used belong to the long tradition of
non-intrusive call quality measurement. Non-intrusive
measurements are taken passively and without a refer-
ence audio; this is in opposition to intrusive measure-
ments [4, 6] which measure the degradation of a known
reference signal. Traditional call quality metrics mea-
sure listener experience, and imperceptible degradations
do not significantly affect these scores. These scores
have been shown to vary widely based on random condi-
tions, language choice [48] or VoIP client [26]. The most
widely used non-intrusive measurement standard is ITU
specification P.563 [5], but other metrics have been de-
veloped for holistic quality measurements [32, 37, 30]
and for individual artifacts like robotization [43] and
temporal clipping [36]. Because call quality metrics like
P.563 are only concerned with perceptible degradation
and vary widely in results, they are unsuitable for detec-
tion of simbox fraud.

Telephony fraud detection is a well-studied problem,
and efforts to fight telecommunications fraud have pri-
marily depended on call records. Machine learning and
data mining have been used extensively to detect fraudu-
lent activity using call records [27, 29, 35, 45].

13
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Given the importance of the simboxing problem in af-
fected countries, there are a number of commercial sim-
box detection products, as well as two published research
papers [31, 42]. Most simbox detection systems use one
of two techniques: test call generation and call record
analysis. A few products use hybrid techniques [14, 17].
Test call generation approaches [10, 13, 15, 16, 18] use
probes widely deployed in many networks to verify that
the CLI (i.e. Caller-ID) records on calls are correct —
if a simbox is used, the CLI record would indicate the
MSISDN (i.e. the phone number) of the SIM card rout-
ing the call and not the originating probe. Test call meth-
ods only work for certain kinds of simboxing (when a
simboxer sells services to another telecom, not through
the common case of selling calling cards to consumers).
By contrast, call record analysis detect all types of sim-
boxing. Those approaches rely on the fact that SIMs
used in simboxes have usage patterns distinct from legiti-
mate customers [31, 9, 11, 12, 19]. These techniques are
prone to false positives and active evasion by simboxers.
In recent work, Murynets et al. published a call record
analysis approach that used machine learning to iden-
tify IMEIs (device identifiers) used by simboxes [42].
The authors’ published accuracy rates measure identify-
ing individual calls (not simbox devices) only after sim-
boxes are identified, and thus are not directly compara-
ble to the accuracy figures for Ammit. Additionally, that
work identifies IMEIs (which are an asserted — and thus
spoofable — identifier) of devices only after a simbox
makes dozens or hundreds of calls with a single SIM
card; even if the work described in that paper is deployed,
simboxing will continue to be profitable. Our work is
an improvement over the state of the art because we can
reliably detect simboxed calls using features inherent to
simboxing at the time of the call, thus making simboxing
unprofitable.

While Ammit is the first system to combat simboxing
using call audio, our system is a refinement of the ideas
used in the Pindr0p system developed by Balasubrama-
nian et al˙ [25].

The Pindr0p system combats telephony fraud by iden-
tifying callers using audio “fingerprints.” These finger-
prints consist of noise characteristics and indicators of
different codecs used by the different PSTN and VoIP
networks that route a call. For Pindr0p, capturing char-
acteristics of end-to-end call path is essential to identify
repeat callers. For Ammit, it is sufficient to hear audio
that has been degraded by any prior network.

Ammit’s techniques are tailored to better combat sim-
boxing in several important ways.

First, for simbox detection, Pindr0p’s greatest weak-
ness is that it is designed to identify codec transitions.
Accordingly, Pindr0p would fail to detect a simbox call
that uses a single codec (i.e. the GSM codec) end to end.

If Pindr0p were employed to combat simboxing, sim-
box operators would simply migrate to single-codec so-
lutions. Accordingly, Ammit will detect simboxed calls
that Pindr0p would fail to detect. In fact, by using loss in-
formation from the tower (and not endpoint audio) Am-
mit excels at this case better than any other tested.

Second, we showed that Pindr0p techniques used on
individual calls may result in unacceptable false posi-
tives. This was especially true for the silence insertion
detection methods proposed in that work. For Pindr0p,
a classification error may prompt a call center worker to
request additional authentication. For Ammit, a classi-
fication error will prompt a dropped call or suspended
account — a much higher burden to the user. Ammit en-
hances Pindr0p by developing and verifying a SIM de-
tection method that reduces false positives and increases
confidence in classification.

Third, Pindr0p was designed to quickly fingerprint au-
dio based on a short segment using a large number of fea-
tures fed to a machine learning classifier. While we were
unable to obtain access to Pindr0p for a direct compar-
ison, we do show in this work that Ammit’s techniques
will enable real-time processing of all call audio at mo-
bile network base stations.

9 Conclusions

Cellular networks in developing nations rely on tar-
iffs collected at regulated interconnects in order to
subsidize the cost of their deployment and operation.
These charges can result in significant expense to for-
eign callers and create incentive for such callers to find
less expensive, albeit unlawful, means of terminating
their calls. Simboxes enable such interconnect bypass
fraud by tunneling traffic from a VoIP connection into
a provider network without proper authorization. In this
paper, we develop the Ammit tool, which allows us to de-
tect simboxes based on measurable differences between
true GSM and tunneled VoIP audio. Ammit uses fast sig-
nal processing techniques to identify whether individual
calls are likely made by a simbox and then to develop
profiles of SIM cards. This approach allows a provider
to deactivate the associated SIMs rapidly, and virtually
eliminates the economic incentive to conduct such fraud.
In so doing, we demonstrate that the subsidized rates that
allow much of the developing world to be connected can
be protected against the impact of this fraud.
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A Appendix

Table 1: Commercial VoIP GSM Gateway Survey

Brand Selected Codecs
2N VoiceBlue Next G.711, G.729ab
2N StarGate G.711, G.729a
OpenVox VoxStack G.711, G.729, GSM
Dinstar DWG2000B G.711, G.729ab
ElGato K32 G.711, G.729
Gempro GP-708 G.711, GSM
iQsim M400 G.711, G.729(a&ab)
Nicherons SpoGSM-G4 G.711, GSM, G729
PORTech MV-378 G.711, G.729(a&ab)
SunComm SC-024-S G.711, G.729ab
Hybertone GoIP-1 G.711, G.729ab, GSM
Yeastar NeoGate TG800 G.711, G.729a
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Abstract 
Air-gapped networks are isolated, separated both 
logically and physically from public networks. 
Although the feasibility of invading such systems has 
been demonstrated in recent years, exfiltration of data 
from air-gapped networks is still a challenging task. In 
this paper we present GSMem, a malware that can 
exfiltrate data through an air-gap over cellular 
frequencies. Rogue software on an infected target 
computer modulates and transmits electromagnetic 
signals at cellular frequencies by invoking specific 
memory-related instructions and utilizing the multi-
channel memory architecture to amplify the 
transmission. Furthermore, we show that the 
transmitted signals can be received and demodulated by 
a rootkit placed in the baseband firmware of a nearby 
cellular phone. We present crucial design issues such as 
signal generation and reception, data modulation, and 
transmission detection. We implement a prototype of 
GSMem consisting of a transmitter and a receiver and 
evaluate its performance and limitations. Our current 
results demonstrate its efficacy and feasibility, 
achieving an effective transmission distance of 1 - 5.5 
meters with a standard mobile phone. When using a 
dedicated, yet affordable hardware receiver, the 
effective distance reached over 30 meters. 

1. Introduction 
Security-aware organizations take various steps to 
prevent possible theft or leakage of sensitive 
information. The computers responsible for storing and 
processing sensitive information often operate on air-
gapped networks. These networks are physically 
disconnected from non-essential networks, primarily 
those in the public domain. With the growing 
awareness of negligent or malicious insiders 
compromising air-gapped networks, as evidenced in 
several incidents [1] [2], some organizations have 
begun to restrict USB access, to prevent malware 
infection or data leakage via USB thumb-drives [3]. 

Acknowledging the security risks of mobile phones 
equipped with cameras, Wi-Fi, or Bluetooth, some 
organizations has restricted their use, forbidding them 

in classified areas. For instance, an Intel Corporation 
best-practices document [4] asserts: "Currently, 
manufacturing employees can use only basic corporate-
owned cell phones with voice and text messaging 
features. These phones have no camera, video, or Wi-
Fi." In another case, visitors at one of Lockheed-
Martin’s facilities [5] are instructed as follows: 
"Because ATL is a secure facility, the following items 
are not allowed to our floor of the building: cameras 
(film, video, digital), imaging equipment, tape 
recorders, sound recording devices. Cell phones are 
allowed, but camera/recording features may not be 
used." Similar regulations are likely to be found in 
many other security-aware organizations. Clearly, the 
issue of information leakage associated with basic 
cellular phones or a phone without a camera, Wi-Fi and 
the like, has been overlooked in cases in which such 
phones are allowed in the vicinity of air-gapped 
computers.  However, modern computers are electronic 
devices and are bound to emit some electromagnetic 
radiation (EMR) at various wavelengths and strengths. 
Furthermore, cellular phones are agile receivers of 
EMR signals. Combined, these two factors create an 
invitation for attackers seeking to exfiltrate data over a 
covert channel. 

In this paper, we present an adversarial attack model in 
which any basic desktop computer can covertly 
transmit data to a nearby mobile phone. Transmission is 
accomplished by invoking specific memory-related 
CPU instructions that produce baseband compliant 
EMR at GSM, UMTS, and LTE frequencies. By using 
the functionality of multi-channel memory architecture, 
the signals are amplified and transmitted with increased 
power. These signals are received and decoded by a 
rootkit installed at the baseband of a standard mobile 
phone. To demonstrate the feasibility of the attack 
model, we developed GSMem, a bifurcated malware 
that consists of a transmitter that operates on a desktop 
computer and a receiver that runs on a GSM mobile 
phone. We implemented communication protocols for 
data modulation and channel reliability and provide 
extensive experimental results.  
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As will be explained later, the proposed method is 
applicable with GSM, UMTS, and LTE basebands. In 
this paper we focus on a prototype using a GSM mobile 
phone as receiver, hence the codename, GSMem. 

 
Figure 1: Demonstration of the covert channel in a working 
environment. Signals at GSM frequencies are emitted from 
the workstation and received by the nearby compromised 
mobile phone. 

Figure 1 demonstrates the covert channel in a typical 
real-life scenario, in which rogue software on a 
computer (1) modulates sensitive information and 
transmits it over GSM cellular frequencies. The 
transmissions take place while the computer is at work, 
without affecting the user experience. A baseband level 
rootkit on the cellular phone (2) receives the signals and 
demodulates them, converting them into meaningful 
information. Note that the components exploited by the 
proposed model are present on virtually all computers 
and cellular devices, even on low-end cellular devices 
which are often allowed into classified environments. 

1.1. The Closed Nature of the Baseband Industry 
The baseband chip of a cellular device manages the 
low-level Radio Frequency (RF) connection with the 
cellular network, thereby making it an indispensable 
component. The baseband processor runs a real time 
operating system (RTOS), stored in its firmware. The 
code is closed to the public, and only the device 
manufacturer can access the baseband chip’s 
functionality through a limited interface [6]. The RTOS 
source code, along with the protocol stack and other 
implementation details, are well-guarded trade secrets, 
kept off-limits by the protective baseband industry, 
which is led by a handful of high-ranking players that 
dominate the market [7]. Lacking access to this 
information, including documentation and 
implementation details, independent software vendors 
cannot intelligently develop new products and 
interfacing technologies for baseband chips. 

It can be argued that the current state of affairs 
promotes "security through obscurity" by masking the 
internal workings of the baseband systems. However, 
this policy has only limited effectiveness. Skilled 
hackers working on behalf of advanced persistent 
attackers eventually manage to exploit baseband 
systems—obscure and isolated though they may be. 
Baseband exploitation and attacks are thoroughly 
discussed by Weinmann [8] [9] [10]. Welte and 
Markgraf [6] also point out several security problems 
associated with current commercial baseband 
technology and practices. 

1.2. Paper Contributions 
While emission security (EMSEC) in itself is not a new 
concept [11], this paper offers the following original 
contributions: (1) a novel method for transmitting 
signals at cellular frequency bands from an ordinary 
desktop computer, using multi-channel memory related 
CPU instructions without any special or additional 
hardware, and (2) a novel method for receiving and 
demodulating EMR signals using a rootkit in the 
baseband firmware of a mobile phone, thus turning 
virtually any mobile phone into an effective EMR 
eavesdropping device without the use of specialized 
equipment. We believe the proposed adversarial attack 
model constitutes a new security threat that security 
experts should be aware of. 

While the bulk of this paper focuses on the mobile 
phone as a receiver, we also evaluate an alternative 
communication method in which the transmitter uses 
memory-related CPU instructions to emit EMR, and the 
receiver uses software defined radio (SDR) with 
dedicated, yet affordable hardware. This allows us to 
study the capabilities and boundaries of the 
transmission method on a wider scale. 

The remainder of this paper is organized as follows: In 
Section 2 we present assorted related works, along with 
a concise review of our contributions. Next, in 
Section 3, we present the adversarial attack model. In 
Section 4 we present the essential technical 
background. Section 5 provides a detailed description 
of the transmitter, followed by Section 6 which 
describes the receiver. In Section 7 we evaluate 
GSMem and present the results. Next, in Section 8, we 
discuss possible defensive countermeasures. Finally, we 
conclude in Section 9. 

2. Related Work 
EMSEC, reviewed by Anderson [11], addresses attacks 
which use compromised emanations of either conducted 
or radiated electromagnetic signals. Concern about this 
issue dates back to World War I, but for decades it was 
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relegated solely to governmental and military agencies 
[12]. However in 1985, van Eck [13] showed how the 
so-called TEMPEST exploits can be conducted using 
affordable equipment. He managed to reconstruct an 
image from electromagnetic signals produced by a 
video card at a considerable distance, using a modified 
TV set. Around 2000, Kuhn and Anderson released 
several publications related to TEMPEST [14] [15], 
demonstrating that EMR emissions originating from a 
desktop computer can be manipulated by appropriate 
software, in either a defensive or offensive manner. 
Public interest in EMSEC and TEMPEST was 
amplified by web publications, offering a glimpse into 
classified TEMPEST-related official standards [16], or 
providing ‘do it yourself’ tutorials related to TEMPEST 
exploits. Thiele [17]  provides an open source program 
dubbed “TEMPEST for Eliza”, utilizing the computer 
CRT monitor to modulate and transmit radio signals at 
AM frequencies.  

Note that side-channels have a variety of possible uses, 
beyond intentional exfiltration of information as 
described in this paper. Side-channels may be used for 
eavesdropping, attacking sophisticated encryption 
methods, defensive detection of hidden malicious 
activities, and other uses. Furthermore, side-channels 
are not limited to electromagnetic radiation (EMR). 
Clark, Ransford et al [18] refer to power consumption 
as a side-channel that can reveal hidden information or 
activities. They present ‘WattsUpDoc’, a system that 
detects the presence of malware on medical embedded 
devices by measuring their power consumption. 
Rührmair et al [19] discuss the use of power and timing 
side-channels to attack physical unclonable functions 
(PUFs). Other researchers investigating side-channels 
go beyond EMR emanations. Halevy and Saxena [20], 
explore acoustical eavesdropping, focusing on keyboard 
acoustical emanations. Hanspach and Goetz [21] 
present so-called “covert acoustical networks”. Their 
method is based on near-ultrasonic waves, transmitted 
by the speaker of one laptop computer and received by 
the microphone of a nearby laptop computer. Callan et 
al [22] provide a method for measuring the so-called 
“signal available to the attacker” (SAVAT), with a side-
channel based on instruction-level events. Their method 
is based on the EMR emitted by rather generic 
CPU/memory operations. The receiver, however, 
comprises expensive dedicated equipment, and the 
range of explored distances is quite limited. Guri et al 
[23] present AirHopper, a bifurcated malware in which 
the transmitter exploits the EMR emanated by the VGA 
cable. The receiver is an FM-enabled standard cellular 
phone. 

2.1 Comparison of Relevant Covert Channels 
Current state-of-the-art covert channels methods that 
could be used to exfiltrate data from air-gapped 
networks involve various physical effects, such as FM 
transmissions from a display cable [23], ultrasonic 
acoustic emissions from a speaker [21] [24], EMR 
emitted by generic CPU operations [22], and thermal 
emission [25]. Our method, GSMem, uses emissions 
produced by multi-channel memory data bus. Table 1 
provides a brief comparison between GSMem and other 
current models. 

Method Transmitter Receiver Distance 
(m) 

Rate 
(bit/s) 

AirHopper 
[23] (78MHz 

-108MHz) 

Display cable Cellular FM 
receiver 

7 104-480 

Ultrasonic 
[21] [24] 

Speaker Microphone 19.7 20 

SAVAT [22] 
(~80KHz) 

CPU/memory 
(laptops) 

Dedicated 
equipment 

1.0 N/A 

BitWhisper 
[25] 

Computer 
CPU/GPU  

Computer 
Heat Sensors  

0.4 8 
bit/hour 

GSMem 
(cellular 

frequencies) 

RAM bus 
(multi-channel) 

Baseband 5.5 1-2 

Dedicated 
equipment 

30+ 100-
1000 

Table 1: Comparison of current covert channels for air-
gapped networks 

As can be seen, all five methods utilize basic computer 
equipment as the transmitter. However, whereas a 
display cable or a speaker may not be present on every 
conceivable computer configuration [26], the CPU and 
memory, utilized by GSMem and SAVAT, are always 
present. On the receiver’s end, a microphone may not 
be present on every computer, particularly within a 
classified zone [26]. A cellular FM receiver (as used by 
AirHopper) may not be present on every mobile phone, 
while the baseband processor (used by GSMem) is an 
integral part of any mobile phone.  

In terms of bandwidth, with the dedicated hardware 
receiver we achieved bit rates of 100 to 1000 bit/s. 
However, when using a mobile phone as the receiver, 
the bit rate was much slower (2 bit/s) – making this 
equipment suitable for leaking small amount of data. It 
is important to note that our concept was demonstrated 
on a nine year old low-end phone, the only available 
alternative with open source firmware, given the 
protective nature of the baseband industry. 
Demonstrating the same concept on newer basebands 
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will likely yield better results, and is left as a future 
research direction.    

3. The Adversarial Attack Model 
GSMem, viewed as a concept, contributes to the 
general domain of covert channels. However, we 
describe a particular attack model which might utilize 
this covert channel for the purpose of data exfiltration. 
The adversarial attack model is bifurcated since it 
requires both a contaminated computer to serve as a 
transmitter and a contaminated mobile phone to serve 
as a receiver. Infecting a computer within an air-gapped 
network can be accomplished, as demonstrated by the 
attacks involving Stuxnet [27] [28], Agent.Btz [2] and 
others [1] [29] [30] [31]. Compromising a mobile 
phone can occur via social engineering, malicious apps, 
USB interface, or physical access [32] [33] [34]. Once a 
compromised mobile phone is in the vicinity of an 
infected computer, it can detect, receive and decode any 
transmitted signals and store the relevant acquired 
information. Later, the phone can transmit the data to 
the attacker via mobile-data, SMS, or Wi-Fi (in the case 
of smartphones). Although this attack model is 
somewhat complicated, attackers have grown more 
sophisticated, and complex attack patterns have 
increasingly been proven feasible during the last few 
years [35] [36] [37] [38]. 

4. Technical Background 
The exfiltration channel is based on the emission of 
electromagnetic signals, in the frequencies allocated to 
cellular bands. These signals can be picked up by a 
malicious component located at the baseband level of a 
nearby mobile phone. In this section, we provide an 
overview and some helpful technical background 
information about cellular networks and frequency 
bands, along with the basics of baseband components in 
mobile phones. 

4.1. Cellular Networks 
2G, and the newer 3G and 4G networks are three 
‘generations’ of mobile networks. Each generation has 
its own set of standards, network architecture, 
infrastructure, and protocol. 2G, 3G, and 4G networks 
are commonly referred to as GSM, UMTS, and LTE 
respectively, generally reflecting, the implementation of 
these standards. In this paper, we use the terms GSM, 
UMTS, and LTE to denote the three generations. 

4.1.1. Cellular Network Bands 
Wireless communication between mobile-handsets (i.e., 
mobile phones) and the cellular network takes place 
through a base transceiver station (BTS), which handles 
the radio link protocols with the handsets. 
Communication with the BTS takes place over 

‘frequency bands’ allocated for the cellular network. 
Various standards define the radio frequencies allocated 
to each band. In practice, the standard in use depends 
on the country, region, and support of the cellular 
provider. Modern mobile phones support all common 
frequency bands for GSM, UMTS, and LTE, although 
some phones are region specific. Table 2 shows the 
main frequency bands supported by modern mobile 
phones. Each band encompasses frequencies within a 
range surrounding (above and below) the main 
frequency. For example, GSM-850 has a frequency 
range between 824.2MHz and 894.2MHz. Lists of 
bands and their allocated frequencies are specified by 
the standards [39]. 

Standard Frequency band (MHz) 

GSM 850 / 900 / 1800 / 1900 

UMTS 850 / 900 / 1900 / 2100 

LTE 800 / 850 / 900 / 1800 / 1900 / 2100 / 2600 
Table 2: The main frequency bands for GSM, UMTS and 
LTE cellular networks. 

4.1.2. ARFCN 
The communication (transmission and reception) 
between the mobile phone and the BTS occurs over a 
subset of frequencies within the entire frequency band. 
The absolute radio-frequency channel number 
(ARFCN) specifies a pair of radio carriers used for 
transmission (uplink) and reception (downlink) in GSM 
networks. For example, the GSM-850 band consists of 
123 ARFCN codes (ARFCN 128 to ARFCN 251), in 
which the ARFCN 128 code represents the uplink 
frequency of 824.2MHz and the downlink frequency of 
869.2MHz. In UMTS and LTE, the ARFCN are 
replaced with UARFCN and EARFCN respectively. 
The mapping of each ARFCN on the corresponding 
carrier frequency is given in [40]. 

4.2. Baseband in Mobile Phones 
Modern mobile phones consist of at least two separate 
processors [9] [41]. The application processor runs the 
main operating system (e.g., Android or iOS) and is 
responsible for handling the graphical user interface, 
memory management and process scheduling. The 
baseband processor runs a dedicated RTOS which 
manages the radio communication and maintains the 
protocol stack. The application processor and the 
baseband processor work independently from one 
another and have separate memory space. However, it 
is necessary to exchange data between the two 
processors on a routine basis, for example, when the 
dialer application initiates a call (application processor 
to baseband processor) or when an SMS notification is 
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received (baseband processor to application processor). 
Communication between the processors is commonly 
handled through a shared-memory segment or a 
dedicated serial interface [9] [41]. Unlike modern 
smartphones, low-end mobile phones, also referred to 
as feature-phones, employ a single processor to man-
age both user-interface and cellular communication. On 
feature-phones, this single processor is also referred to 
as a baseband processor. 

4.2.1. Baseband Chip Architecture 
The baseband processor is an integral part of the 
baseband chip. The chip consists of: (1) the RF 
frontend, (2) the analog baseband, (3) the digital 
baseband, and (4) the baseband processor [6] [41]. 

 
Figure 2: The baseband components and application processor 
in modern mobile phones. In low-end phones, an application 
processor doesn’t exist. 

The RF frontend handles received and transmitted 
signals on the physical level. This component consists 
of items such as: an antenna, a low-noise amplifier 
(LNA), and a mixer. The analog baseband contains, 
among other components, an analog to digital converter 
(ADC) and a digital to analog converter (DAC) to 
mediate between the digital baseband and the RF 
frontend. The digital baseband includes the digital 
signal processor (DSP) which is responsible for the 
lowest parts of the protocol stack (i.e., 
modulation/demodulation and error-correction). The 
baseband processor is responsible for handling the 
higher and more complex layers of the protocol stack.  
Communication between the DSP and the baseband 
processors takes place through a shared-memory 
interface (Figure 2). 

5. The Transmitter 
The physical effect underlying our transmission method 
is electromagnetic radiation (EMR), a form of energy 
emitted by certain electromagnetic processes. The 
emitted waves propagate through space in a radiant 
manner. Electromagnetic waves have two defining 
properties: the frequency 𝑓 measured in Hertz (Hz) and 
the amplitude (i.e., strength) measured in decibel-
milliwatts (dBm). In many cases, electronics (such as 
wiring, computer monitors, video cards, and 
communication cables) emit EMR in the radio 
frequency spectrum. Their frequencies and amplitudes 
depend on their internal currents and voltage. An 
exploitation of intentional and unintentional emissions 

from computer components has been addressed in 
previous research [14] [23] [13] [42]. 

We propose that a computer’s memory bus can be 
exploited to act as an antenna capable of transmitting 
information wirelessly to a remote location. When data 
is exchanged between the CPU and the RAM, radio 
waves are emitted from the bus’s long parallel circuits. 
The emission frequency is loosely wraps around the 
frequency of the RAM’s I/O bus clock with a marginal 
span of +/-200MHz.  The casual use of a computer does 
not generate these radio waves at significant amplitude, 
since it requires a major buildup of voltage in the 
circuitry. Therefore, we have found that by generating a 
continuous stream of data over the multi-channel 
memory buses, it is possible to raise the amplitude of 
the emitted radio waves. Using this observation, we are 
able to modulate binary data over these carrier waves 
by deterministically starting and stopping multi-channel 
transfers using special CPU instructions. 

In the remainder of this section, we describe the design 
and implementation of the transmitter from the bottom 
up. First, we discuss the carrier wave (channel 
frequency) of the emitted radio waves. Next, we discuss 
a method for modulating binary data over a bus. Last, 
we propose a simple bit framing protocol to help the 
receiver demodulate the received signal. It is important 
to note that since the focus of this paper is the 
feasibility of the proposed covert channel, we do not 
exhaustively explore all possible signal modulations or 
bit framing protocols. Improvements to the 
communication protocol are a subject of future 
research. 

5.1. EMR Emissions 
Multi-channel memory architecture is a technology that 
increases the data transfer rate between the memory 
modules and the memory controller by adding 
additional buses in between them. The address space in 
multi-channel memory is spread across the physical 
memory banks, consequentially enabling data to be 
simultaneously transferred via multiple (two, three, or 
four) data buses. In this way, more data can be 
transferred in each read/write operation. For example, 
motherboards with dual-channel support have 2x64 bit 
data channels. Some computers support triple-channel 
memory and modern systems even have quadruple-
channel support. Multi-channel architecture is 
implemented in all modern Intel and AMD 
motherboards. 

In Figure 3, the radio emissions from an ordinary 
desktop workstation with dual channel memory are 
plotted on the frequency plane, comparing emissions 

RF 
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Digital 
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(DSP)

Baseband 
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Processor (Android, 
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from casual activity to those associated with intentional 
actions. When all channels are used, the radio emissions 
from the buses increase (red) in comparison to the 
emissions from casual activity (blue). We observed an 
increase of at least 0.1 - 0.15 dB across the frequency 
band 750-1000MHz, where some specific sub-bands 
showed an increase of about 1 - 2.1dB. A full summary 
of the radio emissions of different motherboards and 
memory technologies can be found in Table 3. 

 
Figure 3: A plot of the amplitude of the radio waves emitted 
from a motherboard with an 800MHz I/O bus using DDR3-
1600 RAM. Blue: casual use of the computer. Red: our 
transmission algorithm while using the dual channel data 
paths. 

Based on our experiments, we have found that the use 
of three or four channels increases amplitude emissions 
across nearly the entire band depicted in Figure 3. This 
means that as the memory architectures mature, the 
quality of the proposed covert channel will increase. 
Note that these radio emissions fall within the 
frequency bands of GSM, UMTS and LTE, making 
them detectable by all modern basebands. 

Standard Name I/O bus clock (𝒇𝒄) EMR Range 

DDR3-1600 800MHz 600MHz-1100MHz 

DDR3-1866 933MHz 750MHz-1150MHz 

DDR4-2133 1066MHz 750MHz-943MHz 
(fragmented) 

1.04GHz-1.066GHz 

Table 3: Summary of radio emissions from different memory 
buses.  

5.2. Signal Modulation 
In communications, modulation is the process where 
analog waveforms are varied to carry information over 
some medium. Typically, a carrier wave (for wireless a 
radio wave at the frequency 𝑓�) is selected as the 

channel frequency, where most of the energy from the 
modulation can be found in the band around 𝑓�. 

There are many techniques for modulating a carrier 
wave to carry binary data. For simplicity and as a show 
of feasibility, we use a variant of the two level 
amplitude shift keying (B-ASK) modulation; to send a 
‘1’ or ‘0’ the transmitter raises or lowers the amplitude 
of 𝑓� accordingly over set time intervals 𝑇 (in seconds) 
[43]. In other words, the time domain is partitioned into 
intervals of length 𝑇, and the symbol (i.e., signal 
amplitude) that corresponds to the current bit is 
transmitted over that entire interval. Our variation of B-
ASK is that ‘0’ is not represented by a near zero 
amplitude, but rather by the average level of the casual 
emissions. It is assumed that the receiver can 
differentiate between average and high emission levels 
(described in detail later in Section 6). The motherboard 
bus’s radio emissions can be modulated to carry a B-
ASK signal in the following way: to transmit a ‘1’ all 
memory channels are utilized for 𝑇 seconds, and to 
transmit a ‘0’ nothing special is done (casual emissions 
are emitted). In this case, 𝑓� is the motherboard’s 
memory clock. 

5.3. Modulation Algorithm 
In order to transmit a ‘1’, it is necessary to consistently 
utilize multiple memory channels for 𝑇 seconds. To do 
this we generate a long random data transfer from the 
CPU to the main memory using the single instruction 
multiple data (SIMD) instruction set. SIMD utilizes 
special CPU registers of 64-bits and 128-bits in order to 
process wider chunks of data in a single instruction. 
SIMD instructions are usually used for vectorized 
calculations such as 2D/3D graphics processing, and 
includes instructions to load/store data between the 
main memory and special registers. 

 
 
We implemented the B-ASK modulation algorithm 
using the Streaming SIMD Extension (SSE) instruction 
set found in Intel and AMD CPUs. The SSE specifies a 
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set of 128-bit (quadword) registers numbered xmm0-
xmm16, and includes a group of instructions for 
moving data between these xmm registers and the main 
memory [44] [45]. Using these instructions it is 
possible to instruct the CPU to utilize the multi-channel 
data paths, thereby amplifying the radio emissions. 

One of the challenges we had to overcome resulted 
from the use of the CPU caching mechanisms. When 
the processor employs a cache hierarchy, transferring 
data between xmm registers and the main memory does 
not guarantee any immediate activity over the bus. This 
inconsistency presents an issue regarding the use of the 
proposed B-ASK modulation, since the symbols must 
start and stop precisely within the symbol interval (𝑇).  

Beginning with SSE version 2, there is a set of 
instructions that enable read/write operations directly 
to/from the main memory, while bypassing all cache 
levels (non-temporal). Specifically, we use the Move 
Double Quadword Non-Temporal instruction, 
MOVNTDQ m128, xmm. The intent of this instruction 
is for copying double quadwords from the xmm register 
to the 128-bit memory address, while minimizing 
pollution in the cache hierarchy. 

Our implementation of the B-ASK modulation 
(Algorithm 1) works in the following way. The 
transmit32() method receives the outbound binary as an 
array of 32 bits. A temporary buffer of 4096 bytes 
(32x128) is allocated on the heap (lines 1-2) as a 
destination for the MOVNTDQ memory operations. 
Note that the allocated memory has to be 16-bytes 
aligned, as required for SSE memory operands.  Next, 
on line 2, we set 𝑇 to 500ms. Although a shorter 𝑇 
would provide a faster bit transmission rate, doing so 
directly increases the error rate. For the tested Motorola 
C123 phone with the Calypso baseband, a value of 
500ms appears to provide satisfying results. Basebands 
of modern smartphones are probably capable of higher 
sampling quality, and therefore might require a shorter 
T. With specialized receiver hardware, setting 𝑇 to 1-
10ms provided good reception quality (Section 6). 

The outer loop (line 3) iterates over the 32-bit array and 
performs the memory operations to generate the radio 
emissions. When the current bit is a ‘1’ a loop 
repeatedly uses the MOVNTDQ instruction to copy 
data from xmm registers to the heap, until 𝑇 seconds 
have elapsed. Conversely, when the current bit is a ‘0’ 
the algorithm sleeps for 𝑇 seconds. 

5.4. Bit Framing 
As mentioned earlier, when our variant of B-ASK 
modulates a ‘0’ the amplitude of the transmitted signal 
is that of the bus’s average casual emissions, and 

anything significantly higher than that (by some 
threshold) is considered a ‘1’. This incurs two issues: 
(1) the receiver has no prior information as to what the 
optimum threshold should be making it difficult for the 
receiver to detect activity in its area, and (2) the 
strength of amplitudes surrounding 𝑓� is dependent on 
the distance between the transmitting desktop and the 
receiver; this means that if the mobile phone is moving 
during a transmission or other interference exists, a ‘1’ 
and ‘0’ can be decoded incorrectly. 

Therefore, in order to assist the receiver in dynamically 
synchronizing with the transmitter, we place the data 
into frames. The binary stream is partitioned into 
sequential payloads of 12 bits, and the payloads are 
transmitted with a header consisting of the preamble 
sequence ‘1010’ (Table 4). The preamble is used by the 
receiver to determine when a frame is being transmitted 
and to determine the amplitude levels of a ‘1’ and a ‘0’. 
This process is discussed in depth in Section 6. The 
framing process takes place before data transmission. 
Once the frame has been built, it is passed to Algorithm 
1 as the outbound data. 

Preamble Payload Preamble Payload 
1010 12 bits 1010 12 bits 

Table 4: The basic frame format used to send segments of a 
bit stream, using the transmit32() function. 

5.5. Transmitter Stealth and Compatibility 
The transmitting program has a small memory and CPU 
footprint, making the activities of the transmitter easier 
to hide. In terms of memory consumption, the program 
consumes merely 4K of memory allocated on the heap. 
In terms of CPU intake, the transmitter runs on a single, 
independent thread. At the OS level, the transmitting 
process can be executed with no elevated privileges 
(e.g., root or admin). Finally, the code consists of bare 
CPU instructions, avoiding API calls to escape certain 
malware scanners. In short, the transmission code 
evades common security mechanisms such as API 
monitoring and resource tracing, making it hard to 
detect. 

As for compatibility, since 2004 SIMD instructions 
have been available for x86-64 Intel and AMD 
processors [46] [47], making the transmission method is 
applicable to most modern workstations and servers. 
Similar instructions on IBM's Power architecture have 
been in place since Power ISA v.2.03 was initiated [48]. 
The proposed transmitter has been implemented and 
successfully tested on several operating systems, 
including Microsoft Windows platform (Windows 7, 
64bit), Linux Fedora 20 and 21 (64bit), and Ubuntu 
12.1 (64bit). 
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6. The Receiver 
In this section we describe how a mobile phone in close 
proximity to a transmitting computer can successfully 
receive and decode emitted signals. We implement the 
GSMem receiver component by modifying the 
firmware of a mobile phone’s baseband. We present the 
receiver architecture and implementation, along with 
the modulation and decoding mechanisms.  
Interestingly, we found that under certain 
circumstances, the GSMem signals can be indirectly 
received by an application running on a modern 
Android smartphone with a non-modified baseband. 
This optional implementation yields rather limited 
effective distance of 10cm, and provides a conceptual 
rather than an immediate practical contribution. 
Therefore, to stay in line with the core of this paper, the 
description of this implementation is deferred to 
Appendix A. 

6.1. Receiver Implementation  
Reception of the transmitted data is accomplished in the 
following manner: (1) sample the amplitude of the 
carrier wave, (2) performs noise mitigation, (3) search 
for bit frame header (preamble detection), and (4) 
demodulate the frame’s payload. We will describe each 
of these steps in this order after discussing the 
implementation framework. 

6.1.1. Baseband Firmware 
As discussed in Section 1, the baseband industry is 
highly protective, keeping information about baseband 
architecture, the RTOS, and the protocol stack, guarded 
from the public [9] [10] [49]. The secrecy and 
complexity of the baseband technology makes it 
extremely difficult to make modifications at the binary 
level, particularly without the availability of 
information such as source code [10] [49]. However, 
there have clearly been cases where attackers have used 
explicit access to the device firmware in order to 
perform malicious activities [29] [31] [33] [50]. Our 
implementation of the GSMem receiver is based on 
‘OsmocomBB,’ an open source GSM baseband software 
implementation [51]. 

The open source project, launched in 2010, is the only 
way to freely examine the implementation of a mobile’s 
GSM baseband software. OsmocomBB provides source 
code for the GSM protocol stack, along with device 
drivers for digital and analog basebands chips. The 
project currently supports about 13 models of mobile 
phones. Most of the supported phones are OEM by 
Motorola and works with Calypso baseband chipsets 
made by Texas Instruments. For our experiments, we 
selected the Motorola C123 model [52] that supports 
2G bands but has no GPRS, Wi-Fi, or mobile data 

traffic capabilities. The Motorola C123 is a limited 
mobile phone, supporting our attack scenario described 
in Section 3. It is worthwhile to note that the baseband 
components of modern smartphones are more advanced 
in terms of RF reception, sampling rate and processing 
power due to the improved hardware and the support in 
new technologies such as the LTE [6] [53]. That means 
that implementation of the GSMem receiver on modern 
device may yield better results in terms of reception 
quality and transfer-rates. 

The GSM protocol stack at the baseband consists of 
three main layers [49]. Layer 1 is the most relevant 
layer in term of GSMem implementation. It handles the 
RF interface which modulates the data over the air. In 
OsmocomBB, the lower part of the layer 1 is handled 
by the DSP, while the baseband processor handles the 
upper layers. Layer 1 includes, among other 
functionalities, the power management, which is 
responsible for acquiring the raw signal power 
measurements (in dBm) of specific frequencies 
(ARFCNs). Note that measuring RF power levels is a 
basic functionality of any baseband chip [39].  The 
interaction between the baseband processor and the 
DSP is depicted in Figure 4. 

 
Figure 4: Interaction between the baseband processor and the 
DSP.  

6.1.2. Firmware Modification 
The receiver is implemented by patching the main event 
handler in the baseband RTOS. Figure 5 shows the 
outline of the OsmocomBB initialization and main 
loop. After initialization (lines 1-2), the baseband 
processor enters the event loop (line 3). The event loop 
continuously processes a sequence of event handlers, 
including the keypad handler, timer updates, and layers 
2 and 3 handlers, interrupts from the DSP, power 
measurements, etc. 

 
Figure 5: Calypso RTOS code outline 
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In order to implement the functionalities of the receiver, 
we added a routine of our own called 
ReceiverHandler() (line 8). Since it is placed in the 
main loop, the routine is run continuously at every 
iteration. 

The ReceiverHandler() has three possible states: (1) 
scan for best frequency (2) search for bit frame header 
(preamble), and (3) B-ASK signal demodulation. Scan 
state is the initial state of the routine. The pseudo code 
for ReceiverHandler() is presented in Algorithm 2. 

 
6.1.3. Signal Sampling  
The first step in detecting a GSMem transmission is to 
sample the amplitude of the carrier wave 𝑓�. Note that 
this step takes place only after 𝑓� has been determined 
in a initial scanning phase.  Each time the main loop 
runs ReceiverHandler(), Algorithm 2 causes the DSP 
module to sample the power level (amplitude) of 𝑓�  
(line 1) and stores it in a buffer (line 2). This data is 
used later in the demodulation routines. The function 
Measure() invokes an amplitude measurement request 
on the DSP using a function called l1a_l23_rx(). The 
DSP measurements are performed in bands of 0.2MHz. 
Our tests show that the tested Calypso baseband was 
able to sample power measurements at a rate of 1.8kHz, 
hence 1.8kbps is the fastest bit rate that this device can 
demodulate at. This is a much faster bit rate than we 
achieved due to the limited processing capabilities of 
the device. However,  the power measurements rate is 
an important consideration to take into account when 
implementing an improved GSMem receiver on a more 
advanced device in the future. 

6.1.4. Noise Mitigation 
After the power measurement, a noise mitigation 
function is applied to the current sample by averaging it 
with the last 𝑊 original samples. This operation is 
essentially a moving average filter, an effective 
technique for mitigating high frequency noise. In our 
experiments with the Motorola C123, we tried a 𝑊 of 

50-750 samples and found that the size of 𝑊 directly 
affects the bit rate. A larger 𝑊 provided better noise 
mitigation, while a smaller one produced a faster bit 
rate. 

6.1.5. Detecting the Best Carrier Wave 
In the SCAN state, the receiver searches for the best 𝑓� 
to use for demodulating GSMem transmissions. Note 
that since the radio emissions of the transmitter fallout 
across the GSM-850/GSM-900 bands (Figure 3, 
Section 5.1), the 𝑓� can be set in advance to any 
frequency in those bands. However, we observed that 
some frequencies have more interference than others 
(e.g., the channels actively used by nearby cellular base 
stations). Therefore, during the scanning state, the 
better 𝑓� is determined as the frequency that provides 
the best carrier to interference ratio (CIR). This 
frequency is found by scanning the range of the entire 
GSM-850 range and selecting the frequency with the 
minimum average amplitude (in dBm). The assumption 
is that the minimum average amplitude indicates a low 
level of interferences, making it easier to detect a ‘1’ 
using our variant of B-ASK. In our implementation, the 
scanning takes place after the device boots, and after 
every 30 seconds of noisy or lost signals. After the 𝑓� 
value is set, the algorithm moves to the PREAMBLE 
state. 

6.1.6. Preamble Detection and Demodulation 
If state is set to PREAMBLE, the receiver searches for a 
preamble sequence (lines 7-11 of Algorithm 2). If the 
sequence ‘1010’ is detected, then it is assumed to be the 
start of a frame, and state is changed to RECEIVE to 
complete the B-ASK demodulation process (lines 12-
18). The preamble sequence allows the GSMem 
receiver to: (1) synchronize with the GSMem 
transmitter (2) identify ‘1’ and ‘0’ amplitude levels 𝛿 
and (3) determine the signals’ duration  𝑡, if unknown.  
Dynamically setting 𝛿 for every frame is necessary for 
demodulating signals while the mobile is moving. For 
example, a frame may be received at close proximity to 
the transmitter where 𝑓� is much stronger thereby 
setting amplitude levels to be high. The subsequent 
frame may be sent while the mobile phone is farther 
away − where smaller amplitude would be more 
appropriate. Once a preamble has been detected, the 
payload is demodulated in a similar manner using the 
updated parameters. 

6.1.7. Signal Loss 
On line 15 in Algorithm 2, the state of the receiver 
returns to PREAMBLE if the whole payload has 
received, or if the signal has been lost. The function 
SignalLost() returns true if during the data reception, 
the measured signal power is weaker than the amplitude 
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of the ‘0’s from the preamble for three seconds straight. 
In this case, any partially received data discarded or 
marked appropriately. 

7. Evaluation 
In this section we evaluate GSMem’s performance as a 
communication channel. We present in detail the 
evaluation using a tampered cellular baseband receiver. 
We also examine the signal reception using a dedicated 
hardware receiver programmed via software defined 
radio (SDR). 

7.1. Experiment Setup 
We used the Motorola C123 with the modified 
firmware as the receiver for all experiments in this 
section. As for the transmitters, we used three different 
models of desktop workstations (WS), each with a 
different configuration and different case. The details of 
these computers and their tested settings can be found 
in Table 5. Note that WS3 is a much stronger 
transmitter than the others since its RAM has a quad 
channel operation mode, which employs wider data 
paths. In all the experiments, the transmitter used the 
4kb allocation method described in Section 5, with a 𝑇 
of 1.8 seconds. The receiver listened to the carrier 
frequency (𝑓𝑐) ARFCN 25 downlink (940MHz), unless 
otherwise mentioned. 

 WS1 WS2 WS3 
OS Linux Fedora 20 

Chassis 
(metal) infinity chassis 

GIGABYTE 
Setto 1020 

GZ-AX2CBS 
Silverstone 

RL04B 

CPU Intel i7-4790 Intel i7-3770 Intel i7-
5820K 

Motherboard GIGABYTE GA-
h87M-D3H 

GIGABYTE 
H77-D3H 

GIGABYTE 
GA-X99-UD4 

RAM Type 2 x 4GB 1600MHz 4 x 4GB 
2133MHz 

RAM 
Frequencies 

Tested 

1333/1600 
MHz 

1833/2133 
MHz 

RAM 
Operation 

Modes Tested 
Single / Dual Dual / Quad 

Table 5: Configuration of the transmitting workstations. 

There are several major factors that affect the quality of 
a wireless communication channel. Typically, the 
quality of a channel is measured by taking the signal to 
noise ratio (𝑆𝑁𝑅), where 𝑆𝑁𝑅 ≡ 10log (𝑃������/
𝑃�����) = 𝑃������𝑑𝐵 − 𝑃�����𝑑𝐵 and 𝑃 is the power 
level (a larger 𝑆𝑁𝑅 is better than a smaller one). The 
noise power 𝑃�����  can originate from naturally 
occurring noise and from other interferences such as the 
emissions from nearby computers in the same office 
space.  Therefore, in order to match our attack scenario 

from Section 3, the experiments in this section all take 
place in a regular work space with several active 
desktop workstations within a 10m radius.  

There are many factors which can decrease the SNR of 
a wireless channel when the location of the receiver is 
changed. Because we are dealing with a low power 
transmission, we do not consider properties such as 
multipath propagation (fading). Instead, we focus on 
how different receiver distances and positions affect the 
channel’s SNR. 

7.2. Channel Signal to Noise Ratio (SNR) 
The first set of experiments tests the SNR of the WSs 
from different distances. Figure 6, Figure 7 and Figure 
8 show the receiver’s maximum measured amplitudes 
at different distances from WSs 1, 2, and 3 respectively. 
Here, WSs 1 and 2 have their RAM set to dual mode at 
1600MHz, and WS3 has its RAM set dual / quad mode 
at 1833 / 2133MHz. As illustrated by Figure 9, the SNR 
remains positive (more signal power than noise) even 
up to a distance of 160cm. This gives a good indication 
of the proposed covert channel’s effective distance. 
Given these observations, we assume that a distance of 
160cm from a workstation is within the normal range 
where a mobile device is expected to be held while 
working on the workstation. 

Note that WS3 in dual mode has a significant advantage 
in range over WSs 2 and 3. This is due to the fact that 
WS3 uses a higher RAM frequency than all other WSs 
in the workplace scenario. This means that it is subject 
to less interference, thereby improving its SNR. When 
quad channel mode is used, the range increases further, 
demonstrating that a higher number of active memory 
channels increases the signal’s amplitude. 

 
Figure 6: Signal strength received from WS2 (1600MHz, 
Dual) at various distances from the backside of the chassis. 
The blue line can also be viewed as the casual emissions 
(noise). 
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Figure 7: Signal strength received from WS1 (1600MHz, 
Dual) at various distances from the backside of the chassis.  

 
Figure 8: Signal strength received from WS3 
(1833/2133MHz, dual/quad channels) at various distances 
from the front side of the chassis.  

 
Figure 9: Receiver SNR from WS1 and WS2 (1600MHz, 
Dual) at various distances from the backside of the chassis. 

During the experiments, we observed that the position 
of the receiver with respect to the transmitter has a 
significant impact on the SNR. For instance, using 
WS2, an SNR of 0.5 is achieved at a farther distance 
from the front of the chassis as opposed to the back. 
Furthermore, the best position for WS1 (using 
1600MHz) is from the front, while the best position for 
WS2 is from the back. These differences make sense 
considering that each case has variations in shape and 
metal content. In all cases, we observed that the 
optimum position for the receiver to be is in front of the 
chassis. This may have to do with the fact that the front 
of an ATX case is mainly made of plastic (blocking less 
of the signal). 

Figure 10 and Figure 11 depict the distance at which an 
SNR of 0.5dB can be achieved at different positions 
around the WSs. 

 
Figure 10: The distance at which an SNR of 0.5dB is achieved 
at various positions around the transmitters WS1 and WS2 
using dual mode and different clock speeds 

 
Figure 11: The distance at which at least 0.5dB of SNR is 
achieved at various positions around the transmitter WS3 
using quad mode and different clock speeds. 
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7.3. Bit Rates 
The GSMem receiver implemented using OsmocomBB 
on the nine year old mobile phone significantly limit 
the channel’s quality. Although this device provides the 
advantage of GSM baseband programmability, it has 
limited real-time processing power and inadequate 
access to the DSP’s full capabilities. Due to these 
limitations, we preferred using simple ASK type 
modulations over other more sophisticated options. 
Using the proposed B-ASK modulation with this 
device, we were able to receive binary data from the 
GSMem transmitter at a bit rate of 1 to 2 bit/s. This 
allows exfiltration of small amounts of information 
such as identifiers, passwords, and encryption keys, 
within several minutes. We examined the bit error rate 
(BER) by transmitting a set of 256-bit encryption keys 
from a workstation.  Figure 12 depicts the BER over 
varying distances between the transmitting workstation 
and a nearby mobile phone.   

 
Figure 12: The Motorola C123’s BER plot from a B-ASK 
transmission using WS1 as the transmitter. 

 

7.4. Software Defined Radio (SDR) 
Much higher bit rates - at even further distances - are 
achievable when more modern equipment is used and 
the full capabilities of the baseband component are 
accessible. To demonstrate this fact, we implemented a 
GSMem receiver using GNU-Radio software on an 
affordable SDR kit; the Ettus Research Universal 
Software Radio Peripheral (USRP) B210 [54], which is 
capable of capturing data at velocities up to 32 million 
samples per second. The USRP was connected to 
Lenovo ThinkPad T530 (through the USB 3.0 
interface), with dedicated software suitable for 
capturing signals from the USRP, i.e. GNU-Radio 
v3.7.5.1. The OS is Linux Ubuntu 14.10 (64 bit). 

Since we had full access to the DSP’s capabilities, we 
implemented the receiver using the frequency shift 
keying modulation scheme (FSK) where a ‘1’ and ‘0’ 
were modulated by using two distinct frequencies. 
Creating two carrier waves was accomplished by 
adding a slight delay inside the memory transfer 
operation loop. Since this version of the GSMem 
transmitter was not implemented on a cellular device, 
we omit the rest of its details from the body of this 
paper. Using this hardware, we were able to improve 
the signal quality and the reception distance 
significantly. At a distance of 2.6m and where 𝑇 =
0.001, we achieved a bit rate of 1000 bit/s, with a BER 
of approximately 0.087%. Table 6 summarizes the time 
needed to transfer certain pieces of sensitive 
information at the rates of T=0.5 (using Motorola C123) 
and T=0.001 (using USRP).  

Data Length 
(bit) 

Rx Time 
Motorola 

C123 

Rx Time 
USRP  

MAC Address 48 30 sec 48 ms 

Plain Password 64 40 sec 64 ms 

MD5 128 1.3 sec 128 ms 

GPS Coordinate 128 1.3 sec 128 ms 

SHA1 Hash 160 1.6 min 160 ms 

Disk Encryption Key 256 2.6 min 256 ms 

RSA Private Key 2048 21.3 min 2.04 sec 

Fingerprint Template 2800 29.1 min 2.8 sec 
Table 6: Transmission times 

In order to increase the effective distance, we used a 
directed printed circuit board (PCB) log periodic 
antenna [55], optimized for capturing signals at the 
range of 400 MHz – 1000 MHz. The antenna connected 
to the USRP via its standard connectors. 

We measured the signal levels of ‘1’ and ‘0’ emitted 
from a transmitting WS3 over varying distances. The 
transmitter resides in a regular work space with several 
active desktop workstations situated within a 10m 
radius. As can be seen in Figure 13, the signals were 
received in 30 meters and beyond. This is a significant 
improvement when compared to the mobile phone 
receiver. Furthermore, these results were obtained with 
a rather affordable hardware receiver, using commonly 
available components.  
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Figure 13: Signal strength received on 𝑓�� as transmitted from 
WS3 at distances of 0-40 meters from the front side of the 
chassis. 

8. Countermeasures 
Official governmental and military standards 
concerning EMSEC countermeasures are mainly 
classified, despite some occasional leaks [16], [56]. 
With the exfiltration method described in this paper, the 
"zones" approach may be used as a countermeasure, 
defining spatial regions where mobile phones, including 
simple devices, are prohibited. As discussed earlier, 
however, the signal reception distance may grow when 
dedicated hardware receiver is being used. In this 
context, the insulation of partition walls may help. 
Structural building elements, such as reinforced 
concrete floors, seem to provide insulation by acting as 
a Faraday cage. However, enclosing each computer 
within a Faraday cage seems impractical. Shielding the 
transmitting component within the computer, i.e., the 
multi-channel memory bus is a challenging task, 
particularly when compared to shielding other 
emanation sources, such as monitor cables.  Another 
defensive strategy may involve behavioral (dynamic) 
analysis and anomaly detection, trying to detect 
GSMem activities at runtime on the process level [9] 
[57]. However, when the baseband firmware is utilized 
as the GSMem receiver, it is particularly hard to detect 
because of the separation of the baseband component 
from the main operating system [49]. In this case, a 
meticulous forensic analysis of the device may be 
required. 

9. Conclusion 
In this paper we present GSMem, a method for 
exfiltrating data from air-gapped networks. Our major 
contributions include a unique covert channel, 
consisting of a feasible transmitting method, and a 
ubiquitous receiver that doesn’t arouse suspicion. The 
covert channel is based on electromagnetic waves 

emitted at frequency bands of GSM, UMTS and LTE 
cellular networks. The transmitting software exploits 
specific memory-related CPU instructions, utilizing the 
multi-channel memory bus to amplify the transmission 
power. Subsequently, the transmitted signals are 
received and demodulated by a rootkit residing at the 
baseband level of a cellular phone. Note that, unlike 
some other recent work in this field, GSMem exploits 
components that are virtually guaranteed to be present 
on any desktop/server computer and cellular phone. 
Furthermore, elementary cellular phones, those without 
Wi-Fi, camera, or other nonessential instrumentation, 
are often allowed into classified facilities, even in 
security-aware organizations. We provide essential 
technical background information about cellular 
networks and an overview of baseband components in 
mobile phones. Next, we discuss the design 
considerations of the transmitter and the receiver, 
regarding signal generation, data modulation, 
transmission detection, noise mitigation, and handling a 
moving receiver. Our GSMem transmission software - 
implemented on Windows and Linux - has a small 
computational footprint, which makes it hard to detect. 
The GSMem receiver is implemented on a mobile 
phone, by modifying the baseband firmware of a low-
end device. We present its architecture and discuss its 
capabilities and limitations. We go on to evaluate the 
method’s using extensive configurations, settings, and 
various parameters. Our current results demonstrate the 
overall feasibility of the method, at a distance of 1-5.5 
meters when using a standard cellular baseband 
receiver. We also evaluated the wider boundaries of 
GSMem using a dedicated yet affordable hardware 
receiver. The associated experiments yielded an 
effective distance of 30 meters and beyond. We believe 
that exposing this new covert channel will serve to raise 
professional awareness and academic interest. 
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Appendix A 
Receiver Implementation (Android Application Level) 
In this appendix we show how, under certain 
circumstances, the GSMem signals can be received by 
an application run on a modern Android smartphone 
with an untampered baseband. This technique is limited 
to close proximity to the transmitter (10cm).  

Android Radio Interface Layer (RIL) 
Android, as part of its open source framework, defines 
the upper software layers with respect to its hardware 
peripherals. In Android, the Radio Interface Layer 
(RIL) component interfaces between high level 
telephony services (android.telephony) and the 
baseband hardware. Each vendor supplies its own 
implementation for the RIL interface. The vendor RIL 
is closed source and shipped with the stock Android 
firmware as a shared object (.so) binary file. 

Signal Demodulation 
We developed a reception method which we refer as 
‘neighbor cell jamming’. According to the GSM 
standard, mobile equipment must periodically listen to 
the broadcasted pilot channels of neighboring cells in 
order to provide service reliability [58]. Generally, the 
mobile must always be registered to a cell preferably 
the one with the best reception. These broadcasts are 
sent over logical channels called broadcast control 
channels (BCCH), which carry information such as that 
cell’s ID and configuration. The GSM baseband 
component maintains a list of best neighboring cells 
along with their received power level (in dBm or 
equivalent units) and other information. Since GSMem 
operates at the same frequency as the neighboring 
BTSs, it is possible for a GSMem transmitter to affect a 
drop in the reception of a station that is rather far away. 
This jamming effect can be used as a side channel to 
detect the B-ASK modulation such a sudden drop in 
reception quality represent a ‘1’ and otherwise a ‘0’. 

Implementation 
Android allow obtaining the neighboring cells’ 
information from the baseband. E.g., by invoking the 
method telephonyManager.getNeighboringCellInfo().It 

includes the received signal strength indication (RSSI) 
of each neighboring cell. Our Android application 
repeated an algorithm similar to Algorithm 2 
(Section 6) with a few modifications. It continuously 
sampled and stored the signal strength of the weakest 
cell out of the neighboring cells (the cell which our 
transmission will likely override). The modulation is 
inversed: low RSSI represents ‘1’ (transmission 
occurred) and high RSSI represents ‘0’ (no 
transmission).  Figure 14 shows the reception of a 
single bit, as received by our application on the 
Samsung Galaxy S5 smartphone. The phone was 
located 10cm away from a transmitting workstation. 
The ‘jammed’ cell had signal strength of 23asu (equal 
to -67dBm) before it was jammed. At second 6, the 
GSMem at the workstation transmit ‘1’, causing a drop 
in the RSSI measurement for that cell. The transmission 
stops at second 8. 

 
Figure 14: Neighbor cell reception level during transmission 
of a single bit. 
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Abstract

Side channels remain a challenge to information flow
control and security in modern computing platforms. Re-
source partitioning techniques that minimise the number
of shared resources among processes are often used to
address this challenge. In this work, we focus on multi-
core platforms and we demonstrate that even seemingly
strong isolation techniques based on dedicated cores can
be circumvented through the use of thermal channels.
Specifically, we show that the processor core tempera-
ture can be used both as a side channel as well as a
covert communication channel even when the system im-
plements strong spatial and temporal partitioning. Our
experiments on an Intel Xeon server platform demon-
strate covert thermal channels that achieve up to 12.5 bps
and weak thermal side channels that can detect processes
executed on neighbouring cores. This work therefore
shows a limitation in the isolation that can be achieved
on existing multi-core systems.

1 Introduction

Covert and side channels have for a long time remained
an open threat to information flow control and isolation
techniques in a variety of contexts including cloud and
mobile computing [50, 71, 76]. Such channels can be
used for data exfiltration from a victim [17] and be ex-
ploited by colluding applications to covertly exchange
information [46].

A common technique to mitigate covert and side chan-
nel attacks that leverage co-location is to dedicate re-
sources (e.g. processor cores, memory) to individual pro-
cesses for the duration of their execution. Although
seemingly inefficient, such a technique is becoming vi-
able with the appearance of multi and many-core sys-
tems which contain hundreds of cores [12]. However,
it has already been shown that, due to their architec-
ture and use, multi-core systems do not trivially pro-

tect against all types of information leakage — covert
channels have been demonstrated by exploiting shared
caches [35], memory bus [34], network stacks [54], vir-
tual memory [72], I/O devices [64], etc. These covert
channels, however, still exploit the resources that par-
ticular multi-core platforms, for performance and other
reasons, share among the processes. The threats arising
from covert and side channel attacks led to the develop-
ment of mitigation techniques such as partitioning of the
shared resources when possible, for example, partition-
ing caches [68] and bus bandwidth [31].

In this paper, we show that even strong isolation tech-
niques based on dedicated cores and memory can be cir-
cumvented in multi-core systems through the use of a
thermal channel. For this, we leverage the temperature
information that is exposed to processes for performance
reasons on multi-core platforms and two aspects of the
thermal behaviour of these systems. First, the thermal
capacitance and resistance of computing platforms result
in remnant heat from computations, i.e. the heat is ob-
servable even after that computation has stopped. As a
result, information about one process may leak to another
that follows it in the execution schedule. Second, the
effects of heat resulting from processes running on one
core can be observed on other cores across the chip. This
leaks information about a process to its peers running on
other cores in a processor chip. We demonstrate our at-
tacks on commodity multi-core systems. So far, thermal
(heat) channels have not been studied on these systems.
There is a trend towards exposing thermal data to users
and allowing them to make thermal management deci-
sions based on it [21]. For example, temperature infor-
mation is accessible from user-space on modern Linux
systems [1]. This paper highlights the tension between
building thermally-efficient systems which requires ex-
posing high-quality temperature data to applications and
securing them.

In summary, we make the following contributions: (i)
We demonstrate the feasibility of using thermal covert



866 24th USENIX Security Symposium USENIX Association

channels for communication between colluding applica-
tions. We measure the throughput of such a channel on
an Intel Xeon server with two processors containing 8
cores each. The challenges in building such a channel in-
clude the system’s thermal capacitance, effect of cooling
on multi-core systems and resolution limitations of the
thermal sensors available on these platforms. Although
thermal covert channels have a low throughput, sensitive
data such as credit-cards (16 digits) can be transmitted
within 5 seconds to 4 minutes even on systems that use
resource partitioning. (ii) We explore the factors that in-
fluence the throughput of this covert channel — proces-
sor frequency and relative locations of the colluding ap-
plications (processes) and show the throughput varies be-
tween 0.33 bps and 12.5 bps. (iii) We demonstrate the ex-
istence of limited thermal side channel leakage from pro-
cesses running on adjacent cores that allow identification
of applications based on their thermal traces. On existing
systems, heat-based leakage is non-trivial to avoid with-
out a performance penalty; we discuss possible counter-
measures to eliminate or limit the impact of such attacks.

The rest of this paper is organised as follows. In Sec-
tion 2, we discuss the background and motivation for
our work. Section 3 discusses the thermal behaviour of
x86 platforms and Section 4 describes how these prop-
erties can be exploited to create thermal channels. In
Section 5, we demonstrate the feasibility of using ther-
mal channels for covert communication even in systems
with isolation based on resource partitioning. Section 6
demonstrates that limited side channel leakage can oc-
cur through thermal channels which can be exploited for
unauthorised application profiling. Section 7 and Sec-
tion 8 summarise countermeasures against thermal chan-
nels and related work respectively. Finally, we conclude
in Section 9.

2 Background and Motivation

In this section, we summarise the use of thermal infor-
mation in modern processors and resource partitioning-
based isolation techniques, as well as provide a motiva-
tion for our study.

2.1 Thermal Management
Thermal management is key to the safe and reliable op-
eration of modern computing systems. Today, thermal
sensors are incorporated into a number of system com-
ponents including hard-drives, DRAM, GPU, mother-
boards and the processor chip itself [9]. In this work, we
focus on the information available from thermal sensors
that are embedded in processor chips.

Ensuring the thermal stability of a processor is be-
coming increasingly challenging given the rising power-

density in modern processor chips. As a result, major
processor vendors (e.g. Intel, AMD, VIA) incorporate
thermal sensors to enable real-time monitoring of pro-
cessor temperature. ARM-based processors also include
thermal sensors inside the system-on-chip for power and
temperature management.

Initially, thermal management was done statically in
hardware and included mechanisms to power-off the pro-
cessor to prevent melt-downs. This later evolved to
more sophisticated dynamic frequency and voltage scal-
ing techniques that change processor frequency to lower
its temperature [13,39]. Hybrid software- and hardware-
approaches to thermal monitoring have become popular
over time; operating systems today poll temperature sen-
sors and use this to manage cooling mechanisms such
as processor frequency-scaling and fan-speed [2]. More
recently, there is a trend towards user-centric thermal
management that exposes thermal data to users and al-
lows them to implement customised thermal manage-
ment policies. For example, Linux-based systems today
enable users to configure thermal policies [14, 21].

The number and topology of thermal sensors de-
pend on the processor vendor and family. For example,
while Intel and VIA processors expose temperature data
for individual cores using on-die sensors, some AMD
(e.g. Opteron K10 series) processors only allow moni-
toring the overall temperature of the entire chip using a
sensor in the processor socket [1]. Optimising the num-
ber and placement of thermal sensors on processors is an
active research topic [47, 53, 55].

2.2 Resource Partitioning-based Isolation

Isolation techniques for multi-core platforms that are
based on resource partitioning offer a number of ben-
efits. First, resource management approaches that rely
on partitioning reduce the size of the software Trusted
Computing Base (TCB). In fact, resource partitioning is
gaining popularity as a means to create multiple, iso-
lated execution environments without the need for a soft-
ware TCB in servers [6] and networked embedded sys-
tems [57]. Second, the simplicity of partitioning-based
resource management eases formal verification and this
is leveraged by separation kernels like Muen [23]. Third,
modern processors rely on partitioning techniques to
build Trusted Execution Environments (TEEs). TEE
technologies such as Intel Trusted Execution Tech-
nology (TXT) [40], Intel Software Guard Extensions
(SGX) [52] and ARM TrustZone [15] protect the execu-
tion of security-sensitive software from a compromised
operating system. Intel TXT relies on temporal parti-
tioning of resources such as CPU and memory between
trusted and untrusted software. Intel SGX and ARM
TrustZone use temporal partitioning only for the CPU
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and implement spatial partitioning for memory resources
in the system.

Resource partitioning has already been proposed as
a countermeasure against covert channels [30] and side
channels [68]. This is because most covert and side chan-
nels exploit shared resources. For example, a process can
modify shared resources (e.g. cache, file) to communi-
cate covertly with another colluding process. An attacker
can also exfiltrate sensitive information from a victim
process by tracking the state of a shared resource such
as cache. Therefore, there have been proposals for min-
imising shared resources to reduce the number and effec-
tiveness of covert and side channels. Examples include
partitioning of caches [68] and bus-bandwidth [31].

2.3 Motivation

The main motivation behind this work is our observa-
tion that despite its security advantages, resource parti-
tioning on multi-core systems might not be able to com-
pletely eliminate some types of inference or communi-
cation across partitions. More specifically, we want to
investigate if the exposure of core temperature informa-
tion could be used to build both side channels and covert
communication channels between processes that execute
on different cores within a multi-core system. Our goal
is to study these channels primarily in terms of their fea-
sibility and throughput.

Thermal channels are particularly interesting in the
context of multi-core systems for two main reasons:
(i) today, these platforms expose the information from
thermal sensors to users and (ii) thermal channels can
be tested for their effectiveness under the resource
partitioning-based isolation mechanisms that multi-core
systems can support. To build thermal channels, it is nec-
essary to understand the type and quality of temperature
data available on systems today. One must also account
for the nature of temperature variations on such systems
and the factors that affect them. We focus on Intel x86
platforms for our study given their wide spread use.

3 Thermal Behaviour of x86 Platforms

In this section, we present theoretical and empirical as-
pects of the thermal behaviour of x86 systems. More
specifically, we first discuss recent attempts to analyse,
model, and simulate the thermal behaviour of the state-
of-the-art processors. Then, we discuss the on-die ther-
mal sensors available on Intel processors and the thermal
behaviour of these platforms under a CPU-intensive load.

3.1 Models of Thermal Behaviour

The most common abstraction of the thermal behaviour
of processors is the resistor-capacitor mesh network
model. This model is based on the well-known duality
between thermal and electrical phenomenon [36]. Each
physical layer of the processor is modelled separately as
a resistor-capacitor mesh. The heat flow between the lay-
ers itself and eventually to the environment is represented
by connecting the various meshes using additional resis-
tors and capacitors. Such an approach [28] assumes that
it is possible to approximate the thermal properties of a
processor using a linear model. It also captures factors
such as high thermal resistivity of silicon, heat-sinks and
fan cooling that affect overall processor temperature.

Alternative empirical approaches that approximate
thermal behaviour using measurements from on-die ther-
mal sensors and machine learning techniques have also
been explored (e.g. [60]). The advantage of such an
approach over using traditional models is that it does
not need information such as detailed design parameters
(e.g. floorplan of the processor) which are usually not
readily available.

Given the complexity of modern commodity proces-
sors and the lack of public information required to ac-
curately model them, in this paper, we focus on a more
empirical approach. We use measurements from the on-
die thermal sensors to understand the thermal behaviour
of commodity systems.

3.2 Temperature Sensors in Intel
Processors

Intel labels each of its processors with a maximum junc-
tion temperature which is the highest temperature that
is safe for the processor’s operation. If the processor’s
temperature exceeds this level, permanent silicon dam-
age may occur. To avoid such processor melt-down, Intel
facilitates processor temperature monitoring by incorpo-
rating one digital thermal sensor (DTS) into each of the
cores in a processor. The layout of the cores within a
processor chip can be identified using lstopo [7] on a
Linux machine. For example, on the Xeon server used
in our experiments, the cores are arranged along a line
(as shown in Section 5.1). Each DTS reports the dif-
ference between the core’s current temperature and the
maximum junction temperature [3]. The accuracy of the
DTS varies across different generations of Intel proces-
sors. They typically have a resolution of ±1◦C.

The absolute value of a core’s temperature in ◦C is
computed in software by subtracting the thermal sensor
reading from the maximum junction temperature. Ther-
mal data from a sensor can be obtained using special
CPU registers of the corresponding core. The data from
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Figure 1: Thermal Response of a CPU Intensive Ap-
plication. Temperature trace resulting from the execu-
tion of an application that does RSA decryption in a loop
for 100 s. The start and end times of the application’s
execution are indicated using the two red lines. Temper-
ature increases rapidly initially and saturates over time as
an application runs. Similarly, it falls rapidly as soon as
the core becomes idle and gradually returns to the ambi-
ent temperature.

all sensors is exposed using the coretemp kernel mod-
ule [1] on Linux systems. This information is accessible
from user space through the sysfs filesystem which is
refreshed every 2 ms.

3.3 Example Temperature Trace

To illustrate how computations affect the temperature of
a core, we ran a CPU intensive application – more specif-
ically, one that does an RSA decryption continuously in
a loop. We ran the application on core 3 of an octa-core
processor (for setup details, refer to Section 5.1). Fig-
ure 1 shows the recorded temperature trace of core 3 dur-
ing the execution of the application for 100 s (between
the dotted red lines) on it and for about 50 s thereafter
when the core cools. We observe that 25 ms after the ap-
plication begins execution, the temperature rises by 5◦C
from approximately 35 ◦C to 40 ◦C. Following this rapid
rise, the temperature increases very slowly and saturates
at 43◦C. As soon as the application stops executing, the
temperature falls rapidly to 38 ◦C in about 25 ms and
takes an additional 11 s to reach 35 ◦C.

The exponential nature of the temperature rise and fall
is a result of the system’s thermal capacitance and resis-
tance. The temperature fall curve shows that the temper-
ature changes caused by such an application’s execution
can be observed for sometime after it has stopped.
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Figure 2: Effect of Processor Frequency on Thermal
Behaviour. Temperature profiles produced by running a
CPU intensive application on a core at different proces-
sor frequencies for 100 s.

3.4 Factors Influencing a Core’s
Temperature

The major factors affecting the temperature at a par-
ticular core are the fan speed, processor frequency and
heat propagation from neighbouring cores. Since, in our
experiments, we do not control the server fan speed (see
Section 5.1), we only discuss the effect of the processor
frequency and heat propagation on a specific core’s
temperature below.

CPU Frequency. Most Intel processors are designed to
run at a set of discrete frequencies for optimising power
consumption. For example, in our setup (Section 5.1),
the Xeon server can run at frequencies between 1.2 GHz
and 2.9 GHz. All cores within a single processor chip
run at the same frequency. Changes in frequency at a
given core are reflected across all the other cores. The
actual frequency can be controlled either by the user or
by the kernel; for example, Ubuntu systems allow users
to control this using the sysctl interface.

Figure 2 shows how the processor frequency affects
temperature when a CPU-intensive application runs for
100 s. We can observe that higher frequencies result
in more heat and higher saturation temperatures. This
is because processor operation at a higher frequency
results in a larger power density and therefore, more heat.

Heat Propagation From a Neighbour. The heat
resulting from computations on one core will propagate
to neighbouring cores. As a result, the temperature at a
certain core depends not only on that core’s workload
(type of computation and schedule) but also those of its
neighbours.
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Figure 3: Heat Propagation from a Neighbouring Core. Effect of running a CPU-intensive application on core 3 of
an octa-core processor for 100 s on the temperature sensors of its adjacent cores.

Figure 3 shows the effects of a CPU-intensive applica-
tion executing on a central core (core 3) of an octa-core
processor for 100 s. We notice that the computation on
core 3 affects the temperature sensors of its neighbouring
cores which remain idle all through. Additionally, we
observe that the saturation temperature of a neighbour-
ing core decreases with increasing distance from core 3.
This effect is not symmetric as one would expect on ei-
ther side of core 3. We suspect that this is due to an
asymmetrically located processor hotspot or asymmetri-
cally positioned thermal sensor.

4 Exploiting Thermal Behaviour

In this section, we present the intuition underlying the
construction of thermal channels on multi-core systems.

4.1 Isolation based on Spatial and
Temporal Partitioning

Isolation techniques that rely on resource partitioning are
becoming increasingly popular and there have been a
number of proposals for using such partitioning to pre-
vent covert and side channels [31, 68]. In our work,

we consider two most common types of process isola-
tion and partitioning techniques: Spatial and Temporal
as shown in Figure 4. In spatially partitioned systems,
processes are isolated by being assigned exclusive com-
putation resources, i.e. no two processes share cores or
memory. Such an approach prevents certain types of side
channels between processes that execute concurrently.
For example, cache-partitioning prevents any informa-
tion leakage that may occur based on the state of the
cache-lines in a processor (e.g. how many cache-lines
are full). In such systems, processes do not share any
processor temperature sensors because they do not use
any common CPU resources.

In temporally partitioned systems, the processes share
the same resources but run in a time-multiplexed man-
ner. For example, this technique is used by TEEs like
Intel TXT in which only one of two partitions (trusted
or untrusted) are active at a time but have access to com-
mon cores and memory. In systems that employ temporal
partitioning, processes that share one or more cores have
access to the corresponding temperature sensor(s) during
their execution time-slice.

Thermal channels that leverage system thermal be-
haviour can be used to circumvent both these types of
isolation techniques as we describe below.
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Figure 4: Covert communication using Thermal Channels. We demonstrate that the temperature sensors on com-
modity multi-core platforms can be misused for covert communication by two colluding processes in spatially and
temporally isolated systems.

4.2 Constructing Thermal Channels

Based on our discussion in Section 3, we make two ob-
servations that can be used to construct thermal channels.

Remnant Heat. Since temperature variations that
result from a computation can be observed even after
it stops, these variations leak information regarding
the computation to the process that follows it in the
execution schedule especially if they share the same
core. This remnant heat can be exploited as a thermal
side channel and may allow a process to exfiltrate sensi-
tive information from its predecessor thereby violating
temporal partitioning. Furthermore, it can also be used
for communication between two colluding processes
that time-share a core. Note that while it is possible
to reset most resources (e.g. CPU registers, caches)
to prevent other types of channels before switching
between applications, the remnant heat from a compu-
tation (and hence, a thermal channel) is hard to eliminate.

Heat Propagation to a Neighbouring Core. The ther-
mal conductivity of the processor results in heat propaga-
tion between cores, i.e, the heat that results from a com-
putation not only affects its underlying core’s tempera-
ture but also its neighbouring cores. This heat flow can
be exploited as a thermal channel by an attacker to make
inferences about a potentially sensitive computation at a
neighbouring core. Colluding processes can also use the
heat flow to communicate covertly. Since it is hard to
eliminate heat flows within processors, thermal channels

are a viable threat even in spatially partitioned systems.
There are several challenges involved in the construc-

tion of thermal channels. First, the nature of temperature
changes makes it hard to control the effect that an ap-
plication’s execution will have on the temperature of its
own core and its neighbours. Second, the limited res-
olution of the temperature sensors available on current
x86 platforms prevents fine-grained temperature moni-
toring. Finally, fan-based cooling mechanisms affect the
rate and extent of temperature variations.

5 Covert Communication Using Thermal
Channels

In this section, we present the feasibility and through-
put of communication using thermal covert channels in
spatially and temporally partitioned multi-core systems.
We first describe our experimental setup that implements
such isolation mechanisms. Throughout, we refer to the
data sender as the source and the recipient as the sink.

5.1 Experimental Setup

Our setup is based on an Intel server containing two octa-
core Xeon processor chips and running an Open SUSE
installation (Figure 5). We use cpusets [4] to implement
spatial and temporal partitioning. Using cpusets, we re-
strict the OS to one of the processor chips (Processor 2)
and isolate it from the rest of the system. We achieve
spatial partitioning by running the source and the sink on
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Figure 5: Our Experimental Setup. Our framework
consists of an Intel Xeon-based server platform running
Suse Linux. We use cpusets to achieve spatially or tem-
porally isolated source and sink applications. We wrote
a custom source application that uses RSA decryption
operations to generate heat and a sink application that
records its own core’s temperature continuously.

separate cores on the Processor 1 with minimal interfer-
ence from the OS. To realise temporal partitioning, our
system incorporates a scheduler that controls the dura-
tion and cores on which the source and sink execute.

We wrote a custom application that performs an RSA
decryption (using PolarSSL [10]) continuously in a loop
and we use it as the source application of the covert chan-
nel. We chose a compute intense benchmark like RSA
because thermal sensors are typically located in the pro-
cessor’s region which is most likely to experience very
high temperatures, such as the ALU [53]. Hence, this
benchmark can quickly increase CPU temperature. This
choice of benchmark also complies with popular thermal
benchmarks (e.g. CStress [5], mprime [8]), that contain
applications which extensively use the CPU register file
and ALU.

We rely on the server fan for cooling the cores. Our
server allows the fan-speed to be configured only through
the BIOS. We set the fan-speed to the maximum allowed
value (15000 rpm) for our entire study. We chose this
setting because it is the most likely setting for servers
which run computationally intensive tasks. Our server is
currently in a room whose ambient temperature is around
22◦C. We also implemented a custom sink application
that records the temperature of the core on which it exe-
cutes continuously.

Our experimental framework is implemented using
C. It allows configuration of run-time parameters like
the processor frequency, set of applications to run, their
schedule and mapping to cores. Initialisation and tear
down of the measurement framework is performed using
a set of Perl and Bash scripts. Our setup allows us to

achieve spatial and temporal isolation; this makes it an
ideal platform for our investigation of thermal channels.

5.2 Covert Communication in Spatially
Partitioned Systems

This section addresses the construction of thermal
channels in the scenario where the source and sink appli-
cations run on dedicated cores and execute concurrently.
The sink has access only to its own core’s temperature
sensor and not that of the source as described in the
upper part of Figure 4. To communicate covertly in such
a scenario, the source exploits the heat propagation from
its own core to the sink that runs on a neighbouring
core. In this section, we demonstrate the feasibility
of achieving this on a commodity multi-core platform
and evaluate the throughput of such a communication
channel. Below, we first present the encoding scheme
that we use for data transmission and then describe the
experiments that realise covert communication using the
thermal channel.

Encoding and Decoding. The source and sink use On-
Off Keying for their communication. To send bit ‘1’,
the source application runs RSA decryption operations
to generate heat and to transmit bit ‘0’, it remains idle. It
is important that the source application runs long enough
to affect the sink’s temperature sensor on a neighbouring
core to send bit ‘1’, i.e. it must generate enough heat to
raise the temperature of the sink’s core above the ambient
temperature. We denote the minimum duration for which
the source application needs to execute to transmit a ‘1’
bit to the neighbouring cores as Tb. The source remains
idle for the same duration to send a ‘0’ bit. We assume
that the source and sink a priori agree on Tb and a fixed
preamble to mark the start of the data.

The sink that records the temperature of its own core
continuously does the following to decode the data. It
first searches the recorded temperature trace for a fixed
preamble. We choose a preamble starting with bit ‘1’
because it can clearly be identified by the sink. To detect
the start of the preamble, the sink searches for a ‘1’
bit by detecting the first rising edge, i.e. a temperature
increment ≥ 2◦C given its ambient temperature. We
use this threshold because the resolution of the sensors
on the platform is ±1◦C. It then tries to decode the bits
following this to see if they match the preamble. The
source repeats this until it recovers the preamble from
the temperature trace. It then decodes the remaining bits
using a simple edge detection mechanism in which a
rising edge indicates bit ‘1’, a falling edge indicates bit
‘0’ and a no-change implies that the value is the same as
the previous bit.
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Figure 6: Temperature Drift due to the Sink’s Execu-
tion. The temperature drift caused by the execution of
the sink itself is very slow as shown here. This trace was
recorded over 400 s by running the sink application on
core 3 with all the other cores idle. Note that the resolu-
tion of the sensor is ±1◦C.

Temperature Drift due to the Sink’s Execution. The
sink relies on the source to affect its core’s temperature
sensor for communication. However, to do this, it is
necessary to isolate any temperature drifts that may be
caused by the sink’s execution itself on its own tempera-
ture sensor.

To understand these drifts better, we run the sink for
a long time and observe its temperature. Figure 6 shows
the temperature trace of core 3 when the sink is running
on it for 400 s and the other cores are idle. The core’s
temperature remains stable at around 33◦C for 200 s and
later drifts slowly towards 34◦C. Therefore, we conclude
that the temperature changes caused by the execution of
the sink process itself is negligible over a long duration
of time (e.g., 200 s).

Calibration of Tb. Before the actual transmission of
data, we have to determine the optimal value of Tb, i.e.
the duration for which the source executes or remains
idle to send bit ‘1’ and bit ‘0’ respectively. Note that the
actual value of Tb depends on the relative locations of
the source and the sink. This is because the effect of the
source’s execution affects the cores farther away from it
to a lesser extent (see Section 3). For our first experi-
ments, we fix the source to execute on a core 3 because
it is a central core and the sink to execute on core 2. We
later describe the effects of increasing the distance be-
tween the source and the sink on Tb.

To estimate Tb, we first set it to a value between 50 ms
and 1500 ms. We then attempt to send 100 data bits from
the source on core 3 to the sink on core 2 and observe
the resulting temperature traces on core 2. We do this
by configuring the source application to be active and

Tb(ms)
Bit Error (%)

Core 2 Core 1
(1-hop) (2-hop)

250 18 –
500 14 –
750 13 –

1000 11 24
1250 9 26
1500 8 15

Table 1: Calibration of Tb in Spatially Partitioned
Systems. We send a block of 100 bits consisting of al-
ternating ones and zeroes using different Tb values from
the source (core 3) to the sink that runs at one and two
hop distances from it. The processor frequency was set
to 2.9 GHz and this table shows the resulting bit-error
rates (‘–’ indicates that the data could not be decoded).
We observe when Tb≥ 500 ms, we can decode data with
less than 15% error at one hop but this does not improve
much by increasing Tb to 1500 ms. We also notice that
the required Tb increases with greater distance from the
source. At a one hop distance, setting Tb = 750 ms and
using Hamming(7,4) error correction code results in a
channel throughput of up to 0.33 bps.

idle for Tb alternately. Our data consist of 50 alternating
ones and zeros. We choose this data sequence because
it is important to ensure that the chosen Tb consistently
results in the desired temperature increment on core 2.

We were unable to decode data when Tb was smaller
than 250 ms. We observe that data transmission using
Tb ≥ 500 ms results in about 10% bit errors (Table 1).
Furthermore, we notice that the bit error rate does
not improve much by increasing Tb from 500 ms to
1500 ms. Figure 7 shows the temperature traces of the
two cores during the data exchange using a Tb = 750 ms.
The data shown here has been post-processed to remove
noise using a smoothing function. We observe that the
temperatures of core 3 and core 2 are well-correlated
(correlation co-efficient � 0.55, p-value = 0).

Error Rate. To understand the nature of errors in ther-
mal channels, we send a pseudorandom sequence of a
1000 bits in 100-bit blocks. Each block begins with a
preamble to enable the sink to detect the start of data
transmission.

From our initial experiments, we observe that the tem-
perature traces of core 2 and core 3 are well-correlated
in time over a sequence of alternating ones and zeros
(Figure 7). Therefore, we choose a preamble of five
alternating ones and zeroes (10 bits in total). The source
and sink synchronise in 9 out of 10 tests and the average
error rate is 13.22 % (± 5.19) for a Tb value of 500 ms.
On increasing Tb to 750 ms and 1000 ms, the source and
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Figure 7: Thermal Communication in Spatially Iso-
lated Systems. Temperature traces recorded during the
transmission of the 30 bits (15 ones and 15 zeroes)
from the source (core 3) to the sink (core 2) using a
Tb = 750 ms.

sink synchronise over all 10 tests and the average er-
ror rate is 11.3% (± 2.83) and 11% (± 3.83) respectively.

Varying the Sink’s Location. We repeat similar experi-
ments by running the sink on core 1 and core 0 which are
two and three hops away from the core 3 to see how the
error rate varies with increasing distance from the source.
At a two hop distance, we observe that for a given Tb, the
error rate is higher than in the case of the one hop (Ta-
ble 1). At a three hop distance, we were unable to decode
data at 1500 ms. However, increasing the value of Tb suf-
ficiently will allow data transmission at a 3-hop distance.
For example, Figure 3(c) shows an extreme case in which
Tb is set to 200 s to transmit bit ‘1’.

The increased error rate and deterioration in the
ability to decode data is expected. This is because heat
resulting from computations at a given core affects the
cores closer to it more than the cores farther away. We
repeated the experiments to estimate the error rate from
the source (core 3) to a sink running on core 1 at a
two hop distance. We observe that the source and sink
synchronise successfully in 9 out of 10 tests. We can
transmit data at the rate of 1 bit in 1.5 s (Tb = 1500 s)
with an error rate of 18.33% (±4.21).

Effect of Frequency on Tb. To understand the effect of
processor frequency on Tb, we repeated our experiments
for 1-hop communication at lower frequencies, namely,
2.4 GHz and 1.9 GHz. As shown in Table 2, for a given
Tb, the error rate increases at lower processor frequen-
cies. When the processor frequency is set to 1.9 GHz,
we could not decode data even at 1500 ms. We note that
using a larger value for Tb would solve this problem and
can be done using the same methodology we used for

Tb(ms)
Bit Error (%)

2.9 GHz 2.4 GHz
250 18 –
500 14 23
750 13 24

1000 11 23
1250 9 14
1500 8 14

Table 2: Effect of Processor Frequency on Required
Tb. We send a block of 100 bits consisting of alternat-
ing ones and zeroes using different Tb values from the
source (core 3) to the sink (core 2). The table shows the
resulting bit-error rates at different processor frequencies
(‘–’ indicates that the data could not be decoded). We ob-
serve that when the processor runs at lower frequencies,
Tb has to be increased to achieve lower bit-error rates.

our experiments. This deterioration in error rates and the
ability to decode data itself is expected because lower
frequencies result in lesser heat generation from a given
computation. Therefore, the rise in temperature may not
be significant enough to detect a bit ‘1’ .

We repeated the data transmission experiments when
the processor frequency is set to 2.4 GHz. We transmit
a pseudo-random sequence of 1000 bits in 100-bit
blocks. Each block is preceded by a preamble and is
sent from the source (core 3) to the sink (core 2) using
Tb = 1250 ms and 1500 ms. In both cases, the source
and sink synchronise in all 10 tests. The observed error
rates in both cases is similar, i.e. 14.9% (± 3.9) and
15.9% (± 6.08) for Tb = 1250 ms and Tb = 1500 ms
respectively.

Throughput Estimation. From the above discussion,
we conclude that the throughput of thermal covert chan-
nels in spatially partitioned systems depends on number
of factors. This includes the time required to transmit one
bit of information (Tb) and error rates. Both these param-
eters in turn depend on the processor frequency and the
distance between the colluding processes.

At 1-hop distances, given a Tb of 750 ms, the through-
put would be 1.33 bps in the ideal case without any er-
rors. However, due to the 11% errors that we observe
in the experiments, actual communication would require
error correction to be implemented. When we analysed
the nature of the errors, we found that for every four bits,
with a probability of over 0.9, there was one or no er-
rors. Therefore, we could use a Hamming (7,4) error-
correction code to correct for these errors. This would re-
sult in 75% overhead and hence, an effective throughput
of 0.33 bps. When the frequency is changed to 2.4 GHz,
the throughput is about 0.2 bps using a Hamming (7,4)
error correction code. A similar trend was observed on
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Figure 8: Thermal Communication in Temporally Iso-
lated Systems. Temperature traces recorded during the
transmission of the 6 bits ( 3 ones and 3 zeroes) from the
source to the sink. The source and the sink execute in
alternate time-slots of 10 ms (marked in grey) on core 3.
The thick lines are the actual temperature traces recorded
by the sink and the dotted lines represent the temperature
changes that occur as a result of the source’s execution.

increasing the distance between the source and sink. Al-
though the thermal channel’s throughput is low, it still
allows the transfer of sensitive data like credit-card infor-
mation (16 digit) in a few minutes. We discuss other fac-
tors that affect the thermal channel’s throughput in Sec-
tion 5.4.

5.3 Covert Communication in Temporally
Partitioned Systems

Temporal partitioning schemes securely multiplex the
same resources (e.g. cores, memory) between several
applications. Systems that use this technique mitigate
information leakage through side channels by clearing
caches, registers, etc. while switching between pro-
cesses. However, the thermal footprint of an application
(the source) remains intact for observation by the other
application that executes after it on the same core
(the sink). This is a result of the thermal capacitance
and resistance of processors and can be exploited to
communicate covertly as our experiments demonstrate.

Scheduling, Encoding and Decoding Schemes. In
temporally partitioned systems, a scheduler determines
the order in which different partitions execute on a core.
Therefore, we implement a scheduler (Figure 5) that
realises this functionality. Since the sink and source
share the same core, they run in an interleaved manner
and the sink has access to the temperature sensors only
during its execution time-slice (ts). Note that ts is con-
trolled by the system’s scheduler while Tb is controlled

Tb(ms)
Bit Error (%)

2.9 GHz 2.4 GHz 1.9 GHz
10 0 4 0
15 0 1 1
20 0 0 1
25 0 0 0
30 0 0 0

Table 3: Effect of Processor Frequency on Required
Tb. We send a block of 100 bits consisting of alternat-
ing ones and zeroes using different Tb values from the
source (core 3) to the sink that runs on the same core.
The table shows the resulting bit-error rates at different
processor frequencies. We observe that the error rates do
not change much even at lower processor frequencies.
Setting the frequency to 2.9 GHz, Tb to 10 ms and using
Hamming(7,4) error correction code leads to the channel
throughput of up to 12.5 bps.

by the applications. If the execution time-slice (ts) ≤ Tb,
then communication becomes difficult because the
source cannot generate enough heat to transmit ‘1’ bits.
However, if ts ≥ Tb, then the source can choose to
execute for long enough to cause a temperature change
that the sink notices. Note that temperature variations
over the course of the source’s execution within one
time-slice are not visible to the sink; instead the sink
only has access to the final temperature after the source’s
execution time-slice. Therefore, in our implementation,
the source sends a single bit per time-slice (using the
temperature at the end of that time-slice) to the sink over
a thermal covert channel, i.e. Tb = ts. We use the same
On-Off keying technique as before in Section 5.2.

Calibration of Tb. We consider the scenario in which
the sink and the source share a core and run in a round-
robin fashion. The source heats up the processor (bit ‘1’)
or stays idle (bit ‘0’) to send one bit of information to the
sink application that runs immediately after.

In order to understand how fast one can transmit bits
over such a channel, we do the following. We try to
send an alternating sequence of 50 ones and 50 zeroes
from the source to the sink. We vary Tb between 10 ms
which is the minimum value that our framework allows
and 30 ms. The source and sink run on core 3 in our
experiments. Figure 8 shows an example temperature
trace that the sink records during its execution. Note
that the sink has access to the shared core’s temperature
sensor only during its own time-slice. We observed no
errors in the data that the sink decodes for Tb ≥ 10 ms
and therefore, use this value for further experiments. We
also repeated the experiment on the cores at the corners
(core 0 and core 7) and noticed similar results.
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Error Rate. To understand the nature of errors in this
channel, we send a pseudorandom stream of 1000 bits
in 100-bit blocks using Tb = 10 ms. We send 10 bits for
synchronisation at the beginning of every block similar
to the experiments in Section 5.2. The synchronisation
using the preamble was successful in all cases and the
data transmission resulted in error rates of 7.6% (± 1.9),
9.5% (± 4.86) and 7.1% (± 2.23) for experiments on
cores 0, core 3 and core 7 respectively.

Effect of processor frequency on Tb. We repeated
our experiments at two lower processor frequencies to
understand how it may affect the required Tb for reliable
communication. In the Tb calibration experiments,
the error rates remain low despite the decrease in
frequency (Table 3). In the actual data transmission tests
(of 1000 bits in 100 bit blocks) at 2.4 GHz, the source
and the sink successfully synchronise in all 10 tests
and the error rate is about 6.5% (±3.58). At 1.9 GHz
however, the synchronisation succeeds only 5 out of 10
times and the error rate is 9.5% (±2.55). This indicates
that a higher Tb value is required for more reliable
communication at this lower processor frequency.

Throughput Estimation. The throughput of the thermal
channel in temporally partitioned systems depends on the
execution schedule of the applications and the time re-
quired to send one bit of information (Tb = ts). We note
that typical Linux systems have a time-slice of about 100
ms which is 10 times bigger than the one we need for
implementing thermal covert channels.

When Tb is 10 ms, we would expect the throughput of
the thermal channel would be 50 bps. However, since
the communication is error prone and results in up to
10% error, the encoding scheme would have to incor-
porate error correction codes. On analysing the nature
of the errors during the transmission of a 1000 bits, we
see that with a probability of over 0.9, there is 1 or no
errors in every four data bits. Therefore, we can use a
Hamming(7,4) code to overcome these errors and this re-
sults in an effective throughput of about 12.5 bps. This
throughput is independent of which particular core the
source and sink share (core 0/3/7). A Tb of 10 ms re-
sults in low error rates even at a processor frequency of
2.4 GHz and hence, the throughput is roughly 12.5 bps.
We note that this data rate would allow the transmission
of sensitive information such as credit-card details (16
digits) in about 5 s.

5.4 Other Factors Affecting Throughput

We have explored how factors like processor frequency
and relative locations of the source and sink affect the
throughput of the thermal covert channel. Below we

discuss additional parameters that affect the throughput.
An exhaustive evaluation of these factors is beyond the
scope of the paper and is intended as part of future work.

Noise from Other Workloads. On a given system,
the throughput of a thermal communication channel
will depend on the actual workloads running on that
platform. In the case of thermal channels in spatially
partitioned systems, the exact effect of a concurrent
workload on the throughput will likely depend on the
nature of the workload and its relative distance from the
sink’s core. On the one hand, a workload that saturates
its own core’s temperature is only likely to increase
the sink’s temperature by a constant amount without
disturbing the actual communication patterns. On the
other hand, a workload that runs in the opposite schedule
as the source (i.e. it is active whenever the source is idle
and vice-versa) is likely to result in increased errors at
the sink’s core. Analogous discussions hold in the case
of temporal channels. Finally, if the attacker controls
more than one core on the platform, then he could
potentially generate more heat and build faster channels
but this requires further exploration.

Other Encoding and Error-Correction Schemes. In
our experiments, we used the On-Off keying technique
to transmit data. Instead, to improve throughput, one
could borrow techniques from signal processing and
telecommunications such as multi-level encoding. One
could alternatively use bi-phase encoding schemes such
as Manchester-coding that would lower the data rate
(e.g. by half) but also result in fewer errors. Further-
more, in order to detect and correct more than single-
bit errors, one could implement alternative error correc-
tion schemes such as Reed-Solomon [62] or BCH [18].
For example, a Reed-Solomon RS(32,28) code encodes
a 28-word data into a 32-word codeword and is capable
of correcting errors up to 2-words in length.

We note that our experiments were performed in con-
ditions that minimise any noise that may arise from other
concurrent workloads such as the OS. Given this and the
low resolution of the thermal sensors (±1◦C), we believe
that an order of magnitude improvement in the through-
put is unlikely.

6 Thermal Channels for Unauthorised
Profiling

In this section, we present a preliminary study of how
thermal side channels enable unauthorised thermal pro-
filing of processes even in systems that implement strong
isolation mechanisms like spatial resource partitioning.
In contrast to thermal covert channels in which the source
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and the sink collude to exchange data, thermal side chan-
nels allow an attacker to exfiltrate information from a vic-
tim without requiring any cooperation from the victim.

The heat generated from an application (which we
refer to as the victim) can be observed from its neigh-
bours. This may leak information regarding the nature
of its computation to processes at other cores. More
specifically, if the attacker has reference thermal traces
for victim applications, he can recognise if and when
such an application executes on a neighbouring partition.
For example, identifying that a sensitive or potentially
vulnerable application is running on a neighbouring
core may aid an attacker in preparing or launching an
attack. Application identification based on temperature
traces has not been addressed previously in literature.
Below we present a first study that tries to understand its
effectiveness as an attack vector.

Goal and Intuition of the Attack. We assume that
an attacker has access to a reference thermal trace of
the victim application (say RSA decryption). Such a
trace can be obtained by the attacker if he has access
to a similar platform as the one he is attacking. The
attacker’s goal is to verify if the temperature trace of
his core is a result of the victim application’s execution
on a neighbouring core. Note that the attacker does not
have access to the temperature trace of its neighbouring
core(s) but only to that of his own core. For simplicity,
we assume that only the attacker and the victim are
active during the attack and that they are collocated
on adjacent cores. The attacker continuously monitors
his own core’s temperature and then, correlates it with
a reference trace of the victim application. A strong
correlation indicates that the attacker’s temperature trace
was a result of the execution of the victim application
with high probability.

Experiments and Analysis. We chose a set of five CPU-
intensive applications including RSA decryption and
four applications from a benchmark suite, MiBench [32]
(ADPCM, Quick Sort, BitCount, BasicMath) and use
them as the universal set of applications that a victim
core (core 3) executes. We intentionally chose similar
applications all of which stress the ALU and register file
region of the core. This choice makes our task harder
than distinguishing between applications with very dis-
tinct thermal behaviour, for example, an idle applica-
tion vs. a thermal benchmark. A deeper exploration of
the thermal behaviour of different classes of applications
(memory intensive, I/O intensive, etc.) and their distin-
guishability is out of the scope of this work.

To understand the feasibility of identifying these ap-
plications, we ran each of them for 200 s on core 3 of our
setup (Section 5.1) and collected the temperature traces
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Figure 9: Example Temperature Traces of Different
Applications. We used a set of five CPU intensive
applications (RSA decryption, BitCount, QSort, Basic-
Math, ADPCM) from a popular MiBench benchmark
suite [32]. We ran each application for 200 s separately
and recorded the resulting temperature traces on a neigh-
bouring core.

of a neighbouring core (core 2). We repeated this five
times for each of the applications and Figure 9 shows
one such trace for each of them. We observe that the sat-
uration temperature for the RSA decryption application
is higher than the rest.

We use simple correlation as a metric to measure sim-
ilarity/differences between pairs of applications. We first
correlated the traces from the RSA application. Since
there are 5 runs, we have 10 pairs to correlate. We ob-
serve that the correlation is higher than 85% in seven
out of ten occasions. Using this same correlation thresh-
old of 85% also results in 28% false positives when the
RSA application is correlated with the others from the
benchmark suite. In general, traces belonging to the
same application have high correlation values (≥ 80%).
However, traces belonging to different applications also
show high correlation because they are all CPU inten-
sive and stress similar parts of the CPU (≥ 75%). There-
fore, we conclude that using a simple correlation metric
would only allow distinguishing applications that behave
very differently. More sensitive metrics (such as ther-
mal models [60] or machine-learning based classifiers)
are required for better accuracy in other cases.

Finally, more fine-grained data exfiltration such as de-
ducing AES or RSA keys on commodity x86-systems
using the thermal side channel is an open, unexplored
problem. A key challenge is the limited resolution of the
temperature sensors which is ±1◦C and the rate at which
the sensors are refreshed (currently, once every 2 ms).
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7 Discussion

In this section, we present possible countermeasures
against thermal channels and discuss their limitations.
We also discuss a potential security application for
thermal channels.

Countermeasures. Since we leveraged the tempera-
ture information exposed to software to construct ther-
mal channels, a natural solution to this problem would
be to restrict access to temperature sensors on the sys-
tem. However, such information cannot always remain
hidden. For example, centralised control and monitor-
ing of thermal states does not scale well with the ad-
vent of many-core processors [41]. Such processors con-
tain hundreds of cores and host a large number of au-
tonomous processes on separate cores. In fact, research
prototypes like Intel’s SCC platform [41] already allow
subsets of cores to administer their frequency and volt-
age independently for power-efficiency; temperature in-
formation is a vital input to this decision process. The
software at each core should track thermal information
to schedule intelligently and to detect if any of its threads
are misbehaving. Therefore, there is a tension between
securing platforms and improving their energy-efficiency
by exposing thermal data to software applications.

Even if one restricts access to the temperature sensors,
related parameters may still leak information about the
system’s thermal state. Examples of such parameters
are clock skew, fan speed and even processor frequency
in systems that allow dynamic frequency scaling. Since
all these parameters are usually common across cores
or subsets of cores within a processor chip, they can
still provide a signalling mechanism. Finally, while it
may be possible to separate processes temporally and
spatially to limit the effectiveness of thermal channels,
such resource allocation strategies are wasteful and
result in low resource utilisation.

Thermal Fingerprinting For Security. So far we dis-
cussed only how thermal behaviour of systems can be ex-
ploited by attackers. The same properties could be used
for achieving better security. Since temperature changes
resulting from computations are difficult to avoid, we hy-
pothesise that thermal profiling techniques can also be
used to detect any anomalous behaviour in the execution
of an application. More specifically, it is highly likely
that run-time compromise of an application results in a
temperature trace that does not match its original ther-
mal fingerprint. It has been shown to be possible to ex-
tract thermal models by monitoring the application under
controlled conditions [60, 61]. By comparing the actual
execution trace to the expected trace, it may be possible
to detect run-time compromise of software applications.

More generally, understanding the capacity of thermal
channels using information theory will help assess the
throughput of covert communication. Similarly, a the-
oretical estimation of the entropy of such channels will
help bound fingerprint accuracy and hence, side channel
leakage. A more detailed study along these lines is an
interesting direction for future work.

8 Related Work

We review previous work on covert and side channels
on x86 systems and on thermal channels in general.
We also provide examples of existing literature on
optimising computing systems for thermal efficiency
because it highlights the advantages of exposing thermal
data as opposed to the other work that misuses this data
to undermine security.

Thermal Channels and Attacks. There is no previous
work that demonstrates the feasibility of thermal covert
and side channels on commodity multi-core systems as
we do in this paper. Previously, two works discussed
and one implemented thermal covert channels on FPGA
boards [19, 38, 51]. There have also been attempts to
transmit data between two processes by changing fan-
speed [20]. The ability to remotely monitor a system’s
clock-skew (influenced by the changes in the system
temperature) has also been exploited in the past for ex-
posing anonymous servers [56, 75] and covert commu-
nication with a remote entity [74]. We note that although
some of these works [20, 74] use the term thermal chan-
nel, none of them use the thermal information available
on modern systems to covertly communicate between
processes on the same host as we do in this paper.

More recently, it has been shown that it is possible to
use temperature variations to induce processor faults [59]
which can in turn be also be used to extract sensitive in-
formation like RSA keys [37]. Thermal information can
also be used for coarse-grained data-exfiltration. For ex-
ample, since temperature directly reflects the intensity
of computation, it can be used to estimate the load or
resource utilisation of a machine. This was illustrated
by Liu et al. who computed the resource utilisation of
servers in Amazon’s EC2 using the temperature data that
is exposed to virtual machines [49].

Previous research has identified other security risks
that arise from hardware and software thermal manage-
ment techniques on modern systems. For example, mali-
cious processes may cause a denial-of-service by slowing
down the processor [33] or permanently damaging hard-
ware by causing thermal hotspots [27]. Such processes
could exploit the fact that certain architecture compo-
nents (e.g. instruction cache) are ignored by thermal op-
timisation approaches on processors [45].
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Covert and Side Channels on x86-Systems. Originally
defined by Lampson as part of the confinement prob-
lem [46], today, several covert channels have been iden-
tified and explored in the context of x86 systems. Covert
channels can be classified either as timing or storage
channels. Timing covert channels transmit information
in terms of the timing of certain events. Examples of
timing covert channels include cache-based and mem-
ory bus-based channels both of which were first demon-
strated by Hu [34, 35]. Wang et al. identify more timing
channels that arise out of processor extensions such as
multi-threading and speculative execution [68]. Wu et al.
achieve improved data rates on bus-based channels [71].
Covert timing channels that use other types of shared re-
sources like virtual memory deduplication [72] and input
devices such as keyboards [64] have also been studied.

In contrast to timing channels, storage channels rely
on the source writing the data (indirectly) into a shared
resource which the sink reads at a later point in time.
Lampson’s file system based covert channel [46] and
covert channels that exploit CPU registers (e.g. FPU reg-
isters that signal exceptions) [65] are examples of such
channels. Interestingly, certain types of covert channels
such as those based on the hard-disk [70] and processor
cache [22, 35] can be used to realise timing and storage
channels. We could classify the thermal covert channels
as storage channels because they use the CPU registers
to (indirectly) exchange information.

While covert channels rely on two colluding entities
for data exfiltration, side channels can be used to ex-
tract information from a unsuspecting victim without
any co-operation from it. Side channels can be clas-
sified as access-driven channels, trace-driven channels
and timing-driven channels. Access-driven side chan-
nels rely on a victim’s modifications to a shared resource
(e.g. cache) to extract sensitive information (e.g. AES
keys [76]). Trace-driven channels require measuring a
certain aspect of the system such as power (e.g. [43])
or electromagnetic emanations (e.g. [29]) continuously
as the victim executes. Finally, timing-based side chan-
nels measure the time consumed by sensitive opera-
tions (e.g. cryptographic functions) to extract informa-
tion (e.g. such as AES keys [17]). In general, side chan-
nels are used for cryptanalysis. Example attacks include
extraction of AES keys [11, 17, 42, 76], DES keys [58]
and RSA keys [22, 43, 44]. They can also be used
to extract more coarse-grained information such as co-
residency [63], existence of files [67], etc. The thermal
side channel can be viewed as a trace-driven side chan-
nel that continuously tracks temperature to identify the
computation at a neighbouring core.

One way to mitigate timing channels (both covert
and side channels) in general is to expose less accurate
timing information [34]. This technique is unlikely

to be effective against thermal channels because they
do not exploit timing information. Another general
approach against side and covert channels is to partition
system resources. This is for example used to mitigate
cache-based channels [68] and bus-based channels [31].
However, such partitioning techniques will not eliminate
temperature-based channels completely as demonstrated
in this paper.

Thermal Monitoring of Processors. Temperature man-
agement of computing systems has gained importance
over the last few years due to the increasing on-chip
temperatures of modern processors. This has resulted
in efforts to design and implement better thermal man-
agement techniques for processors. Examples include
optimisation of sensor placement (e.g. [53, 55]), im-
proving algorithms for dynamic temperature manage-
ment (e.g. [73]) and cooling techniques [25]. There are
also ongoing efforts to develop frameworks to thermally
profile applications [61], build temperature-aware sched-
ulers [24, 26] and micro-architectures [48, 66]. Thermal
profiling can further be used to detect compromised pro-
cess in embedded systems [69] and design schedulers
such that they do not leak information through thermal
fingerprints of applications [16].

9 Conclusion

In this paper, we demonstrated the feasibility and poten-
tial of thermal channels on commodity multi-core sys-
tems. We showed that such channels can be built by
exploiting the thermal behaviour of current platforms.
Thermal channels can be used to circumvent strong iso-
lation guarantees provided by temporal and spatial par-
titioning techniques. Our experiments indicate that it is
possible to use them for covert communication between
processes and achieve a throughput of up to 12.5 bps. We
also demonstrated that thermal channels can be exploited
to profile applications running on a neighbouring core.
Our work points to a limitation in the isolation guaran-
tees that resource partitioning techniques can provide.

Attacks based on thermal channels are further facil-
itated by the increasing trend towards exposing system
temperature information to users. This would enable
users to make thermal management decisions for effi-
cient system operation. This paper highlights the tension
between designing systems to support user-centric ther-
mal management for efficiency and security.
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Abstract

Sensing and actuation systems contain sensors to ob-
serve the environment and actuators to influence it. How-
ever, these sensors can be tricked by maliciously fabri-
cated physical properties. In this paper, we investigated
whether an adversary could incapacitate drones equipped
with Micro-Electro-Mechanical Systems (MEMS) gyro-
scopes using intentional sound noise. While MEMS gy-
roscopes are known to have resonant frequencies that de-
grade their accuracy, it is not known whether this prop-
erty can be exploited maliciously to disrupt the operation
of drones.

We first tested 15 kinds of MEMS gyroscopes against
sound noise and discovered the resonant frequencies of
seven MEMS gyroscopes by scanning the frequencies
under 30 kHz using a consumer-grade speaker. The stan-
dard deviation of the resonant output from those gyro-
scopes was dozens of times larger than that of the nor-
mal output. After analyzing a target drone’s flight control
system, we performed real-world experiments and a soft-
ware simulation to verify the effect of the crafted gyro-
scope output. Our real-world experiments showed that in
all 20 trials, one of two target drones equipped with vul-
nerable gyroscopes lost control and crashed shortly after
we started our attack. A few interesting applications and
countermeasures are discussed at the conclusion of this
paper.

1 Introduction

Sensors are devices that detect physical properties in na-
ture and convert them to quantitative values for actua-
tors and control systems. In many sensing and actuation
systems, actuations are determined on the basis of infor-
mation from sensors. However, these systems can mal-
function because of physical quantities that sensors fail
to measure or measure insensitively. Furthermore, most
sensors cannot distinguish between normal and abnormal

physical properties. Therefore, sensors can measure ma-
licious inputs that are intentionally crafted by an attacker
in addition to the physical stimuli that the sensors should
detect. Because providing detection capabilities for at-
tacks against sensors increases production costs, most
commercial devices with sensors are not equipped with
any ability to detect or protect against such attacks.

Recently, many sensor-equipped devices, such as
smartphones, wearable healthcare devices, and drones,
have been released to make the devices easier and more
convenient to use. In particular, commercial and open-
source drones have been widely used for aerial photog-
raphy, distribution delivery [2, 3], and private hobbies.
These drones have multiple sensors, such as gyroscopes,
accelerometers, and barometers. A gyroscope measures
changes in tilt, orientation, and rotation based on angu-
lar momentum. It is thus a core sensor for flight attitude
control and position balancing.

To make the flight control modules of drones small,
lightweight, and inexpensive, Micro-Electro-Mechanical
Systems (MEMS) gyroscopes are used. MEMS gyro-
scopes are designed as Integrated Circuit (IC) packages.
Each design has a unique mechanical structure in the IC
package. Depending on the structure of the MEMS gy-
roscope, resonance occurs as a result of sound noise at
resonant frequencies [37, 38, 39, 49]. This resonance
causes performance degradation of the gyroscope.

The resonant frequencies of MEMS gyroscopes are
usually designed to be higher than the audible frequency
band to prevent malfunctioning of the sensing and ac-
tuation systems. However, in our experiments, we dis-
covered that some MEMS gyroscopes that are popularly
used in commercial drones resonate at audible frequen-
cies as well as ultrasonic frequencies. Our experiments
were designed and conducted to analyze how drones are
affected by this phenomenon from an adversary point of
view. The flight control software of our target drone was
also analyzed to examine the propagation of this phe-
nomenon through the whole system. The results of our
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real-world experiments and a software simulation show
that this phenomenon could be exploited to launch inca-
pacitating attacks against commercial drones.

The contributions of this research to the field can be
summarized as follows:

• We found, using a consumer-grade speaker, that the
resonant frequencies of several popular MEMS gy-
roscopes are not only in the ultrasonic frequency
band but also in the audible frequency band, and we
analyzed their resonant output.

• We investigated the effect of the resonant output of
MEMS gyroscopes on the flight control of drones
via software analysis and simulations.

• We developed a novel approach to attacking drones
equipped with vulnerable MEMS gyroscopes us-
ing intentional sound noise, and we demonstrated
the consequences of our attack in real-world exper-
iments 1

This paper is organized as follows: Section 2 outlines
security research to date on sensor systems. Section 3
provides background information on drone systems and
MEMS gyroscopes. Section 4 describes the analyses and
experiments conducted in this study to investigate the ef-
fects of sound noise on MEMS gyroscopes. Analysis of
the flight control software, real-world experiments, and
simulations for attacking drones are described in Sec-
tion 5. A discussion of the results and conclusion drawn
from the results are presented in Sections 6 and 7, re-
spectively.

2 Related Work

The security of sensors recently started to draw atten-
tion with the introduction of consumer-grade sensing and
actuation systems. As this study was focused on input
spoofing attacks on gyroscopes, we review in this section
previous researches on 1) privacy issues related to gyro-
scopes, 2) resonant frequencies of gyroscopes, 3) secu-
rity analyses of commercial drones, and 4) input spoofing
attacks on sensing circuitry.
Privacy Issues Related to Gyroscopes: Embedded de-
vices can be used to record the private information of
users without their recognition. Because a gyroscope can
be used to measure changes in tilt, orientation, and rota-
tion, it can be used to steal a smartphone user’s keystroke
information, such as unlock passwords, banking pass-
words, and credit card numbers [36, 47]. By exploiting

1A demo video of our attack against the target drone in the
real world is available at https://sites.google.com/site/

rockingdrone/.

the capability of the gyroscopes of smartphones to mea-
sure acoustic vibrations at a low frequency band, a new
attack was proposed to eavesdrop speech [59]. The fo-
cus of these studies differed from that of this paper in
that they examined the use of gyroscopes to extract pri-
vate information, without affecting actuation.
Resonant Frequencies of Gyroscopes: Resonant fre-
quency has been identified as a problem that causes
the performance degradation of MEMS gyroscopes. In
general, the vibrating structures of MEMS gyroscopes
have resonant frequencies. Resonance can occur as a
result of sound noise [37, 38, 39]. Some mechanisms
for mitigating interference from sound have been pro-
posed. Roth suggested a simple and cheap defense
technique that involves surrounding the gyroscope with
foam [49]. Soobramaney proposed the use of an ad-
ditional structure in a gyroscope that responds only to
the resonant frequency to cancel out the resonant output
from the gyroscope [52]. Using an additional feedback
capacitor connected to the sensing electrode, the reso-
nant frequency and the magnitude of the resonance ef-
fect can be tuned [35, 43]. It is widely believed that
most consumer-grade MEMS gyroscopes have resonant
frequencies. However, these resonant frequencies are of-
ten considered to be commercial secrets or are designed
to be just higher than the audible frequency range.
Security Analysis of Commercial Drones: There were
a couple of works on hacking commercial drones. Sam-
land et. al. showed that AR.Drone [5] was vulnerable
to network attacks due to unencrypted Wireless LAN
(WLAN) communication and the lack of authentication
for Telnet and FTP [50]. Kamkar showed that a drone
can be hijacked by another drone using similar vulnera-
bilities [44]. Attacks such as these are focused on hijack-
ing network connections or system privileges.
Input Spoofing Attacks on Sensing Circuitry: All
sensing and actuation systems have sensing circuitry that
is composed of the sensor itself and a wire that connects
the sensor to other components of the system. Kune et.
al. showed that an adversary can inject an Electro Mag-
netic Interference (EMI) signal into the wire connect-
ing an analog sensor and Analog-to-Digital Converter
(ADC) to fake a sensing signal [45]. By injecting fake
waveforms, the researchers were able to inhibit pacing
or induce defibrillation shocks in Cardiac Implantable
Electrical Devices (CIEDs). Without affecting the sen-
sor itself, they were able to spoof the sensing signal by
injecting an EMI signal into the sensing circuitry.

It is also possible to affect the sensor itself. For exam-
ple, biometric imaging sensors have frequently been tar-
geted in sensor spoofing attacks. Tsutomu et al. showed
that a verification rate of more than 68 % could be
achieved against 11 different fingerprint systems using
artificial fingers [46]. Galbally et al. fabricated fake
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Figure 1: Block diagram of a typical drone system

fingerprints from standard minutiae templates, and more
than 70 % of the fake fingerprints were accepted by the
system tested [42]. In addition, a method for bypassing
the user authentication of facial cognitive biometric sys-
tems was proposed as an example of sensor input spoof-
ing against the imaging sensor systems of commercial
laptops [40].

We were able to find only one notable and relevant
study not related to biometric image sensors. Shoukry
et al. injected magnetic fields to spoof the wheel speed
of vehicles by placing a magnetic actuator near the Anti-
lock Braking System (ABS) wheel speed sensor of which
is also a magnetic sensor also [51]. In other words, the
researchers used the same physical property as that in-
tended to be sensed through the sensing channel of the
target sensor for their spoofing attack. This work is sim-
ilar to ours in that it explored intentional interference
with sensors to cause malfunctioning of actuators How-
ever, we investigated whether intentional sound noise at
the resonant frequency of a gyroscope can incapacitate
a drone. This means that our attack is an interference
attack through a channel other than the sensing channel
that has to be insensitive for the gyroscope. Note that a
MEMS gyroscope is the most basic sensor used in main-
taining a drone in an upright position without any exter-
nal torque.

3 Background

In this section, we explain the operation and characteris-
tics of the drone considered in this study, its flight control
system and a MEMS gyroscope.

3.1 Drone (Multicopter)

A drone is a kind of Unmanned Aerial Vehicle (UAV).
Drones are used not only for military purposes but also
for various non-military purposes such as delivery ser-
vices, aerial photography, search and rescue (S&R),
crop-dusting, and hobbies. Because of accessibility rea-
sons, military drones were not considered in this paper.
Many commercial drones have been released in recent

years as the non-military drone market has grown [2, 3].
Both finished drones and DIY drones with open-source
drone projects for the flight control software are commer-
cially available. AR.Drone [5] is a popular commercial
finished drone product. Multiwii [24] and ArduPilot [7]
are open-source flight control software used widely with
both DIY and commercial drones. These drones are also
known as multicopters (quadcoptors if they have four ro-
tors) because they usually have multiple rotors.

Typically, a drone system consists of multiple rotors,
one flight controller, one wireless receiver, and one wire-
less transmitter (remote controller). Figure 1 shows a
block diagram of a drone system. The flight controller
receives control signals from the wireless transmitter
through the receiver, and manipulates the speed of the
rotors in accordance with the user’s control supported by
the flight controller.

3.2 Flight Attitude Control

It is very important for the drone flight controller to ad-
just each rotor’s speed for horizontally leveling off in the
air, because multiple rotors are not always exactly the
same and the center of mass cannot always be ensured.
To stabilize a drone’s balance automatically, a flight at-
titude control system is implemented in the flight con-
trol software. This flight attitude control system com-
putes the proper control signal for multiple rotors with
algorithms based on the data from Inertial Measurement
Units (IMUs), including gyroscopes.

IMUs, which consist of sets of sensors, are funda-
mental components of flight control systems for air-
craft, spacecraft, and UAVs, including drones. An IMU
measures the orientation, rotation, and acceleration of a
drone, using a combination of a gyroscope and an ac-
celerometer, and in some cases also a magnetometer and
a Global Positioning System (GPS) [55]. MEMS gy-
roscopes are thus necessary components of drones and
must be robust to control drones successfully.

In the case of open-source flight control software [7,
24], the most common algorithm for flight attitude con-
trol is Proportional-Integral-Derivative (PID) control.
The PID control algorithm is a control loop feedback
mechanism that minimizes the difference between the
desired control and the current status. It is made up
of three terms: the proportional, the integral, and the
derivative terms, denoted by P, I, and D, respectively.
The P term applies control to the system in proportion
to the difference (error) between the current state and the
desired state to the system. The I term is used to re-
duce the steady-state error through proportional control
of the accumulation of past errors. The D term is used
to reduce overshoot and increase stability through pro-
portional control of the changing rate of errors. Each

3
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term has a gain (GP, GI , and GD) for tuning the control
system, and users can change each gain for stability and
sensitivity of drones of various types, sizes, and weights.

3.3 MEMS Gyroscope

3.3.1 Operation

The principle underlying the MEMS gyroscope [1, 9] is
the law of physics known as the Coriolis effect or Corio-
lis force. The Coriolis effect is the deflection of a moving
object in a rotating reference frame. This effect appears
only to an observer in the same rotating reference frame.
In the observer’s view, the path of the moving object is
observed to be bent by a fictitious force, i.e. the Corio-
lis force. In other words, when an object is moving in a
rotating container or package, the path of the moving ob-
ject is bent in a direction different from the moving direc-
tion. Therefore, the observer on the container or package
can sense this bending. Figure 2 illustrates the concept
of a MEMS gyroscope structure for one axis. To sense
motion with respect to one axis such as Z-axis rotation,
there is a mechanical structure called a sensing mass in
a MEMS gyroscope. While a sensing mass is continu-
ously vibrating at a certain frequency with respect to the
X-axis, the Coriolis force is applied in the Y-axis direc-
tion as a result of the Z-axis rotation. The amount of
rotation is proportional to the amount of bending.

Figure 3 shows an example of a MEMS gyroscope
structure with three axes. This gyroscope is manufac-
tured by STMicroelectronics [10]. In Figure 3, M1
through M4 correspond to continuous vibrations of the
sensing masses. Bending occurs in the direction orthog-
onal to both the vibrating axis and the rotating axis when
this structure rotates with respect to each axis [10].

MEMS gyroscopes support digital interfaces such as
Inter-Integrated Circuits (I2Cs) and Serial Peripheral In-
terfaces (SPIs) that communicate with the processors of
application systems. By reading registers of the gyro-
scopes that contain the sensed values, a system’s pro-
cessor can calculate the amount of rotation that occurs.
The maximum sampling frequency for reading the regis-
ters of the MEMS gyroscopes varies from a few hundred
to a few thousand samples per second. This means that
gyroscopes cannot sense and recover correctly from fast
changes in rotation over a few kHz without additional
signal processing, according to the sampling theorem.
The sampling theorem defines the minimum sampling
frequency as a frequency higher than 2×B Hz when the
given signal contains no frequency components higher
than B Hz. If this condition is not satisfied, distortion
occurs in the frequency response. This is referred to as
aliasing. Because of the aliasing problem, a frequency
analysis of the gyroscope output is not very useful.

Figure 2: Concept of MEMS gyroscope structure for one
axis

Figure 3: Operation of a three-axis MEMS gyro-
scope [10] (the X-, Y-, and Z-axes are defined as the
pitch, roll, and yaw, respectively.)

3.3.2 Acoustic Noise Effect

The accuracy degradation of MEMS gyroscopes by harsh
acoustic noise is well known to researchers who have
studied the performance of MEMS sensors [37, 38, 39,
49]. A MEMS gyroscope has a resonant frequency that
is related to the physical characteristics of its structure,
and high-amplitude acoustic noise at the resonant fre-
quency can produce resonance in the MEMS structure.
As a result of this resonance, the MEMS gyroscope gen-
erates an unexpected output that may cause the related
systems to malfunction. To minimize the resonance ef-
fect of acoustic noise in daily life, MEMS gyroscopes
are typically designed with resonant frequencies above
the audible frequency limit (i.e., above 20 kHz).

However, we found that some MEMS gyroscopes have
resonant frequencies in both the audible and ultrasonic
frequency ranges, and these sensors generate ghost out-
puts with injected sound noise by an attacker. In addi-
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Figure 4: Overview of our experiment

tion, these MEMS gyroscopes are widely used in drone
flight controllers and smartphones. The accuracy degra-
dation problem of MEMS gyroscopes has only been con-
sidered in the context of performance issues, but this phe-
nomenon can be used as a new attack vector. Therefore,
it is important to study this phenomenon as a vulnera-
bility that can cause critical loss of control of MEMS
gyroscope application systems, such as drones.

4 Analysis of Sound Noise Effects

To explore the effects of sound noise on drones, it is
necessary to identify the resonant frequencies of MEMS
gyroscopes used for drones precisely. However, the
datasheets of some MEMS gyroscopes do not include
information on their exact resonant frequencies, and the
resonant frequencies are even classified in some cases. A
simple and reliable way to find the resonant frequency of
a MEMS gyroscope is exhaustive search, i.e., scanning
with pure single-tone sound over a chosen frequency
band. In this section, the measurement and analysis of
the effect of sound noise on MEMS gyroscopes are de-
scribed.

4.1 Overview
An overview of our experiment is shown in Figure 4.
Python scripts to generate sound noise with a single fre-
quency and to collect data from the target gyroscopes are
run on a laptop computer. A consumer-grade speaker
connected to the laptop is used as the noise source and is
set 10 cm above the top of the target gyroscope. We used
Arduino [6], a programmable microprocessor board, to
read and write registers of the target sensors. A single-
tone sound noise scanning the sound frequency range

Figure 5: SPL and THD+N measurement using sound
measurement instrument (National Instruments USB-
4431)

was maintained until 1,000 samples had been collected
from the target gyroscopes. We generated single-tone
noises at frequencies from 100 Hz to 30 kHz at inter-
vals of 100 Hz. In other words, this experiment was per-
formed using not only audible noise (below 20 kHz) but
also ultrasonic noise (above 20 kHz).

We evaluated 15 kinds of MEMS gyroscopes manu-
factured by four vendors, which are readily available on
online websites. Most of the target gyroscopes were from
STMicroelectronics and InvenSense, two leading vendors
of MEMS gyroscopes [22]. Each kind of gyroscope re-
quires a different application circuit and register config-
uration for proper operation. We therefore implemented
simple application circuits and Arduino codes for the tar-
get gyroscopes by referring to their datasheets. The ef-
fects produced on each gyroscope by sound noise were
measured in an anechoic chamber (indicated by the dot-
ted line box in Figure 4).

4.2 Sound Source

We considered the loudness and linearity of the sound
source to select a sound source for further analysis.

A common noise measurement unit for the loudness of
sound is the Sound Pressure Level (SPL), because sound
is a pressure wave in a medium such as air or water. To
show the noise level generated by our sound source [12],
a consumer-grade speaker, SPL values were measured
with no weighting using a professional sound measure-
ment instrument [26] and a microphone [8]. The speaker
was placed 10 cm from the microphone, and single-tone
noises were generated from 100 Hz to 30 kHz at intervals
of 100 Hz. We used an audio amplifier to make the sound
noise sufficiently loud. In addition, we set the sampling
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Table 1: Summary of experiment results (investigation of the resonant frequencies of MEMS gyroscopes using inten-
tional sound noise)

Sensor Vender∗ Axis Inter-
face

Resonant freq. in
the datasheet (axis)

Resonant freq. in
the experiment (axis)

L3G4200D† STM X, Y, Z Digital no information 7,900 ∼ 8,300 Hz (X, Y, Z)
L3GD20† STM X, Y, Z Digital no information 19,700 ∼ 20,400Hz (X, Y, Z)
LSM330 STM X, Y, Z Digital no information 19,900 ∼ 20,000 Hz (X, Y, Z)

LPR5150AL STM X, Y Analog no information not found in our experiments
LPY503AL STM X, Z Analog no information not found in our experiments
MPU3050 IS X, Y, Z Digital 33 ± 3 kHz (X)

30 ± 3 kHz (Y)
27 ± 3 kHz (Z)

not found in our experiments
MPU6000† IS X, Y, Z Digital 26,200 ∼ 27,400 Hz (Z)
MPU6050 IS X, Y, Z Digital 25,800 ∼ 27,700 Hz (Z)
MPU6500 IS X, Y, Z Digital 27 ± 2 kHz (X, Y, Z) 26,500 ∼ 27,900 Hz (X, Y, Z)
MPU9150 IS X, Y, Z Digital 33 ± 3 kHz (X)

30 ± 3 kHz (Y)
27 ± 3 kHz (Z)

27,400 ∼ 28,600 Hz (Z)
IMU3000 IS X, Y, Z Digital not found in our experiments
ITG3200 IS X, Y, Z Digital not found in our experiments
IXZ650 IS X, Z Analog 24 ± 4 kHz (X), 30 ± 4 kHz (Z) not found in our experiments

ADXRS610 AD Z Analog 14.5 ± 2.5 kHz not found in our experiments
ENC-03MB Murata X Analog no information not found in our experiments
∗ STM: STMicroelectronics, IS: InvenSense, AD: Analog Devices
† 12 sample chips for experiments (2 sample chips for others)

Table 2: Effect of sound noise (standard deviations and their ratios for vulnerable gyroscopes, averaged for all sample
chips)

Sensor Without noise With noise Ratio
σXwo σYwo σZwo σXw σYw σZw σXw /σXwo σYw /σYwo σZw /σZwo

L3G4200D 3.15 2.69 2.88 12.1 22.04 4.45 3.84 8.21 1.55
L3GD20 2.92 2.47 2.3 62.03 76.67 3.09 21.21 31.04 1.35
LSM330 13.09 16.03 21.45 177.71 114.34 30.44 13.57 7.13 1.42

MPU6000 11.79 13.92 12.8 12.48 14.74 111.21 1.06 1.06 8.69
MPU6050 13.21 12.32 11.17 13.8 12.55 58.17 1.04 1.02 5.21
MPU6500 17.34 19.63 18.21 363.21 71.04 56.15 20.95 3.62 3.08
MPU9150 10.69 11.47 10.71 10.98 11.97 58.59 1.03 1.04 5.47

rate of the sound source to 96 kHz rather than 48 kHz to
remove aliasing of the generating sound signal.

Another important property of a sound source is To-
tal Harmonic Distortion plus Noise (THD+N), which is
the ratio of the power of the harmonics and noise com-
ponents to that of a fundamental component, expressed
as a percentage. Every speaker has a nonlinear charac-
teristic to its frequency response. This nonlinearity leads
to harmonic distortions and noise of output sound at fre-
quencies that are different from a fundamental frequency.
If the power of these harmonics and noise is high (i.e.,
high THD+N), it is hard to regard the identified response
as the effect from a single frequency. However, it is not
necessary for low THD+N of the sound source to attack.

Figure 5 shows the average values of both the SPL
and THD+N for all of the experiments. In most fre-

quency bands, the SPL values were above 80 dB and the
THD+N values were less than 2 %. Because the sound
source we used was a tweeter that is usually used for
high-frequency sound, the performance was not good in
the low-frequency region (below 1 kHz). It is usually dif-
ficult to hear sound noise at frequencies above approxi-
mately 15 kHz, although we set the maximum volume at
those frequencies. The measured SPL in our experiment
was equivalent to the noise level (around 90 dB SPL) of
a hand drill, hair dryer, heavy city traffic, noisy factory,
and subway in the real world.

4.3 Effect of Sound Noise
Raw data samples from the registers of the target gyro-
scopes were collected for use in this analysis. The tar-
get gyroscopes were fixed on a stable frame in an ane-
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(a) Standard deviation of raw data samples for 12 identical
L3G4200D chips (X-axis)

(b) Standard deviation of raw data samples for 12 identical
L3G4200D chips (Y-axis)

(c) Standard deviation of raw data samples for 12 identical
L3G4200D chips (Z-axis)

(d) Raw data samples of one L3G4200D chip with the single
tone sound noise at 8,000Hz

Figure 6: Sound noise effect on L3G4200D gyroscopes (all samples were collected as raw data stored in the gyro-
scope’s register)

choic chamber, with and without sound noise. Because
the standard deviation of the raw data samples should
ideally be zero without sound noise when the target gy-
roscopes are on the frame, we consider the difference in
the standard deviations with and without sound noise as
a criterion for the resonance of the target gyroscopes.

The results of the experiment are summarized in Ta-
ble 1. The third and fourth columns indicate the degrees
of freedom and the interface type of each gyroscope, re-
spectively. The resonant frequencies 2 and axes from the
datasheets [4, 13, 14, 15, 16, 17, 18, 19, 25, 28, 29, 30,
31, 32] are listed in the fifth column, and the resonant
frequencies identified in our experiment are listed in the
last column.

2These are described as mechanical frequencies in the datasheets
for the InvenSense gyroscopes.

Our results show that seven of these gyroscopes (i.e.,
vulnerable gyroscopes) resonated at their own resonant
frequencies in response to sound noise. Three of the
vulnerable gyroscopes were manufactured by STMicro-
electronics, and the others were manufactured by In-
verSense. No documentation on the resonant frequen-
cies of the tested gyroscopes was available from vendors
other than InvenSense and Analog Devices. We figured
out that the gyroscopes manufactured by STMicroelec-
tronics had resonant frequencies in the audible range (al-
most below 20 kHz), and that they were affected con-
siderably more along the X-axis and Y-axis than along
the Z-axis. In contrast, the gyroscopes manufactured by
InvenSense resonated in the ultrasound range (above 20
kHz) and were affected in the Z-axis direction only.

Both keeping resonant frequencies secret and raising
them to the higher-frequency region are good ways to

7
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(a) Raw data samples of one L3GD20 chip with
a single-tone sound noise at 20,100Hz

(b) Raw data samples of one MPU6000 chip with
a single-tone sound noise at 26,800Hz

Figure 7: Sound noise effects on two vulnerable MEMS
gyroscopes (all samples were collected as raw data stored
in the gyroscope’s register)

reduce resonance due to sound noise. However, as our
results show, resonance can be induced by a malicious
attacker, as long as resonant frequencies exist in gy-
roscopes. Additionally, the standard deviations of the
output data from these gyroscopes are largely increased
without any rotation or tilt when the resonance occurs as
a result of intentional sound noise. This abnormal out-
put can potentially make gyroscope application systems
malfunction.

We did not detect resonance effects for the other eight
gyroscopes evaluated in our experiments. Particularly,
for five of these gyroscopes, no resonant frequencies
were observed, even though their resonant frequencies
are described in their datasheets. We obtained additional
measurements with the frequency resolution enhanced
by a factor of two (50 Hz), but resonant frequencies were

not found. It might be possible that the frequency in-
tervals (100 Hz and 50 Hz) used in our tests were not
sufficiently narrow. The fact that resonant frequencies
were not detected in our experiments does not necessar-
ily mean that they do not exist in the frequency range
below 30 kHz.

A comparison between the standard deviations (σaxis)
with and without sound noise for the seven vulnerable
gyroscopes is presented in Table 2. To validate our at-
tack method, 12 individual gyroscope chips were tested
for L3G4200D, L3GD20, and MPU6000, whereas only
two chips were tested for the others. All of the values
shown in Table 2 are average for all outputs from the
same kind of vulnerable gyroscopes. The standard devi-
ations of the gyroscope outputs with sound noise at the
resonant frequencies are relatively large. The ratios of
the standard deviations with sound noise to those without
sound noise are summarized in the last three columns.
The standard deviations changed by factors up to dozens,
with the greatest change being by a factor of 31.04 (for
the Y-axis of L3GD20).

Figures 6(a), 6(b), and 6(c) show the standard devia-
tions of the raw data samples for each axis from the 12
individual L3G4200D chips. The different L3G4200D
chips have different output characteristics because of
manufacturing variances. However, every L3G4200D
chip has a peak in the range of 7,900 to 8,300 Hz. To
investigate what happens at these frequencies in more de-
tail, the raw data samples for one L3G4200D gyroscope
with and without sound noise at 8,000 Hz were com-
pared, as shown in Figure 6(d). This graph clearly shows
that resonances occur for all axes, and the amplitudes are
dozens of times larger than the normal output. These am-
plitudes are equivalent to the output produced by sudden
and fast shaking of the gyroscope or the target drone’s
body by hands or rapidly changing winds. Raw data
samples of two other vulnerable gyroscopes, L3GD20
and MPU6000, are shown in Figure 7. L3G4200D and
MPU6000, two of the vulnerable gyroscopes in our ex-
periments, were used in the target drones described in the
next section.

It should be noted that a speaker generates sound
from a vibrating membrane fixed to the enclosure of
the speaker, and thus vibration from the enclosure itself
was unavoidable in the experiments. However, our ex-
perimental results indicate that vibration had very little
effect on the identification of the resonant frequencies
of the target gyroscopes. Because we tested all of the
gyroscopes in the same environment, there should have
been consistent resonance frequencies for all of the gy-
roscopes if any enclosure vibration had influenced the
motion of the gyroscopes. In addition, some of the gyro-
scopes listed in Table 1 exhibited no resonance (i.e., al-
most constant standard deviation), which would not have

8



USENIX Association  24th USENIX Security Symposium 889

Figure 8: Propagation of the effect of sound noise

been possible if there had been a strong vibration due to
vibration of the enclosure.

5 Attacking Drone

As described in the previous section, the outputs of
MEMS gyroscopes fluctuate with the sound noise at the
gyroscopes’ own resonant frequencies. This section de-
scribes the impact of this fluctuation on the control of a
drone. To understand this, we first need to understand
how the user input from a remote controller and the in-
put from the gyroscope propagate to the operation of a
drone. Figure 8 shows each step in this propagation. The
flight control software calculates each control signal for
four rotors based on the user input and gyroscope out-
put. This control signal mechanically controls the speed
of each rotor, which determines the tilt, orientation, and
rotation of the drone in turn. This section describes the
analysis of how sound noise at the resonant frequency of
a gyroscope affects control of target drones.

We took the following three steps. 1) To understand
the reaction of the target drones as actuators to the fluc-
tuation of the gyroscope output as abnormal sensing, the
flight control software was analyzed statically. 2) We
then launched our attack on two target drones under real-
world conditions to assess the effect of the maximum
sound noise against them. 3) To identify cost-efficient
parameters for our attack, we performed software simu-
lations with gyroscope outputs varying from 1% to 100
% of the maximum noise.

5.1 Target Drones
For this experiment, two DIY drones were built for
use as the target drones, and they were equipped with
L3G4200D and MPU6000 respectively, two of the vul-
nerable gyroscopes. This approach was taken because
the gyroscopes on most finished drones are not user se-
lectable, and it was necessary to evaluate the effect of
sound noise in the sensing and actuation systems. The
main specifications of the two target drones are given in
Table 3. All DIY drones require calibration for stable

operation. Following the instructions in the manual for
the flight control software, we calibrated the IMU sen-
sors and four rotor controllers, and we adjusted the PID
gains (see Section 3.2) for stable flight.

5.2 Software Analysis
Target drone A’s flight control software, Multiwii [24],
supports various gyroscopes. However, the main routine
of this software is essentially the same for all gyroscopes
except with respect to the way the sensors are prepared
and the way the raw data are accessed. The main pro-
cessor reads the raw data from the gyroscope’s registers
through an I2C interface, along with the raw data from
the transmitter controlled by the user. Each raw data
sample for each axis was stored in two 8-bit registers.
These raw data were the main inputs to the flight control
software, and the outputs were the rotor control data cal-
culated by the PID control algorithm. The PID controller
seeks to minimize the difference between the measured
control and the desired control for the control systems.
While PID controller implementation and PID gains vary
depending on their application and the gyroscope used,
the fundamental algorithm remains the same.

Algorithm 1 describes a high-level implementation of
the default PID control algorithm in this flight control
software. The details of the software are omitted for sim-
plicity. Conceptually, the P, I, and D terms influence the
target drone’s control as follows:

• P is proportional to the present output of the gyro-
scope, and if the present output value (gyro[axis])
of the gyroscope is abnormally large, the desired
control from the transmitter (txCtrl[axis]) can be ig-
nored (line 7).

• I is proportional to the accumulated error between
the output from the transmitter and the gyroscope
(line 10), which can be ignored, because the default
value of the I term gain (GI) for the target drone is
very small.

Table 3: Specifications of two target drones for the real
world attacking experiment

Spec. Target
Drone A

Target
Drone B

Processor STM32F103CBT6 ATMEGA2560
Gyroscope L3G4200D MPU6000
Flight Ctrl.
Software

Multiwii [24] ArduPilot [7]

Diagonal
Frame Size

45 cm 55 cm

Propeller
Size

10 × 4.5 10 × 4.5

9
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Algorithm 1: Simplified PID algorithm of Multiwii
flight controller (calculating the rotor control data ac-
cording to the output of the gyroscope)

Input: The sensed data from the MEMS gyroscope
Input: The received data from the transmitter
Output: The data to control the rotor
1 initialization;
2 GP, GI , and GD: pre-configured P, I, and D gain by

user (configured as the default values);
3 while True do
4 read data from the gyroscope for 3 axes;
5 receive data from the transmitter for 4 channels

(3 axes and throttle);
6 for axis do
7 P = txCtrl[axis]−gyro[axis]×GP[axis];
8 error = txCtrl[axis]/GP[axis]−gyro[axis];
9 erroraccumulated = erroraccumulated + error;

10 I = erroraccumulated ×GI [axis];
11 delta = gyro[axis]−gyrolast [axis];
12 deltasum = sum of the last three delta values;
13 D = deltasum ×GD[axis];
14 PIDCtrl[axis] = P+ I −D;
15 end
16 for rotor do
17 for axis do
18 rotorCtrl[rotor] =

txCtrl[throttle]+PIDCtrl[axis];
19 end
20 limit rotorCtrl[rotor] within the pre-defined

MIN (1,150) and MAX (1,850) values;
21 end
22 actuate rotors;
23 end

• D is proportional to the changes (deltasum) between
the previous and present output values of the gyro-
scope (line 13).

These three terms directly affect the PID control val-
ues (PIDCtrl[axis]) for each axis (line 14). If the values
of P and D are abnormally large, the PID control val-
ues will also increase abnormally. The desired throttle
control (txCtrl[throttle]) can thus be ignored (line 18).
In the end, all rotor control values are constrained by
the pre-defined minimum and maximum values (line 20).
Throughout the process, the raw data from the gyroscope
were not checked, filtered, or verified. In other words,
the target drone system fully trusted the integrity of the
gyroscope output in its sensing and actuation. Therefore,
the control of the target drone could be directly affected
by our attack.

We also analyzed the flight control software of

ArduPilot [7] for target drone B. A manual software anal-
ysis shows that the PID algorithm used in ArduPilot is
essentially the same as that used with target drone A.
The only difference between two algorithms is in slight
changes of the gains that are multiplied to each of the P,
I, and D terms. This can be considered a discrepancy in
the configuration values of the sensors.

5.3 Real-World Experiment

While the software analysis described in the previ-
ous section led us to believe that the PIDCtrl[axis]
values would fluctuate when the gyroscope outputs
fluctuated, this information was not sufficient to an-
swer the following questions: 1) Given user inputs
txCtrl[throttle] and fluctuating PIDCtrl[axis], how much
does rotorCtrl[rotor] change? 2) How does a change in
rotorCtrl[rotor] affect the behavior of the drone? To an-
swer these questions, we decided to launch our attack in
the real world with sound noise causing the fluctuation.
Attack Setup: In this experiment, we attached a small
Bluetooth speaker above the target system’s gyroscope at
a distance of 10 cm to serve as an attacking sound source.
The SPL of the fundamental frequency component was
113 dB with the maximum volume of the speaker. Low
THD+N was not a consideration for the sound source
used in the attack. The sound noise was turned on while
the target drones were stably maintained in the air. To
observe the status of the target drones before, during, and
after the attack, sound noise at the resonant frequency
was turned off, turned on (attack), and turned off again
for every 10 seconds.
Attack Results: The results of our attack experiment are
summarized on two target drones (A and B) in Table 4.
Our attacks successfully disrupted control of target drone
A, but it did not affect target drone B. The reason of at-
tack failure on target drone B is that the gyroscope of
target drone B resonated only along the Z-axis. The Z-
axis of target drone B corresponds to the horizontal ori-
entation that is also sensed by the magnetometer on the
board.

We also attached a sonar device to gauge the altitude

Table 4: Result of attacking two target drones

Item Target
Drone A

Target
Drone B

Resonant Freq.
(Gyroscope)

8,200 Hz
(L3G4200D)

26,200 Hz
(MPU6000)

SPL at Resonant
Freq. 97 dB 95 dB

Affected Axes X, Y, Z Z
Attack Result Fall down Not affected

10
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(a) Raw data samples of the gyroscope (b) Received data samples from the transmitter

(c) Rotor control data samples (from the flight control software) (d) Altitude data samples from sonar

Figure 9: The results of our attack against target drone A in a real-world experiment (sound noise turned off, on, and
off every 10 seconds; note that the sonar’s sampling rate was different from that for the data in other figures)

and two Bluetooth-to-UART (Universal Asynchronous
Receiver/Transmitter) modules to collect real-time data
from target drone A. The Bluetooth-to-UART modules
were connected to a UART interface on target drone A’s
flight controller board and the sonar module. Using this
UART interface, we were able to communicate with a
computer for configuration purpose. We were also able
to monitor the status of target drone A, including the raw
data from the sensors and the rotor control data, using the
Multiwii [24] Graphical User Interface (GUI) program.
By analyzing the Multiwii source code, we were able to
understand the protocol used for the UART communica-
tion. Each request or response message consists of a 3-
bytes fixed header, 1 byte for the data length (n), a 1-byte
command, n bytes of data, and a 1-byte checksum. Us-
ing this protocol and the Bluetooth-to-UART modules,
we were able to record the resonant outputs of the gy-
roscope, the control data from the transmitter, the rotor

control data of the flight control software, and the alti-
tude data from target drone A in the air. Note that the al-
titude data were sampled at a different rate than the other
data because of a technical limitation of the sonar mod-
ule, and the minimum sensing distance of the sonar was
20 cm.

Figure 9 shows the detailed results of the attack against
target drone A in the real-world experiment. Region A in
Figure 9 corresponds to the period before the attack. The
user gradually raised the throttle (Figure 9(b)), and the
speeds of the four rotors were increased correspondingly
(Figure 9(c)). In response, target drone A rose over 100
cm in the air (Figure 9(d)). When the attack was started
(Region B), the output of the gyroscope fluctuated be-
cause of the sound noise at the resonant frequency (Fig-
ure 9(a)). According to the resonant output of the gyro-
scope, the rotor control data fluctuate between the max-
imum and minimum values (Region B in Figure 9(c)).

11
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Figure 10: Rotor control outputs from our software sim-
ulation (the maximum change of the rotor control output
was 700)

When the attack started, target drone A dropped instan-
taneously. During the attack, target drone A could not
ascend or recover its control, even though throttle control
was maintained to allow it to ascend slowly (Figure 9(b)).
After the attack was stopped (Region C), target drone A
ascended normally again and recovered its control. We
attacked target drone A 20 times in the real-world exper-
iments, and it lost control and crashed shortly after our
attack in every test.

To assess the effectiveness and practicality of our at-
tack, more real-world attack experiments are required.
However, there are obstacles such as the damage to the
target drone (e.g., broken arms) and the repetitive re-
calibration required after each crash, because the unpre-
dictable changes in the drone’s balancing are fed back
into the gyroscope by our attack (see the dotted line and
box in Figure 8).

5.4 Attack Distance

Our real-world experiments showed that an acoustic at-
tack can completely incapacitate a target drone equipped
with a gyroscope vulnerable to X-axis and Y-axis reso-
nance due to sound incidence. We also want to determine
the conditions or bounds of a cost-effective attack. For
example, we need to find out possible attack distance or
sound level of a sound source required to destabilizing a
target drone in the air.

We may try to conduct tests at various distances to dis-
cover either the approximate minimum distance or the
sound level required to incapacitate target drone A in the
air. However, it would disrupt the stability of the target
drone to attach a longer structure with the sound source
on the target drone. It is also difficult to take aim at

Figure 11: Sound noise effect on one L3G4200D gyro-
scope versus sound noise amplitude with theoretical rela-
tive SPL (data averaged for ten identical experiments and
1,000 raw data samples collected per experiment)

the target drone with sound noise from outside during
its flight without attaching any structure to it.

Therefore, to minimize the number of trials and over-
come the practical limitations mentioned above, we first
ran a simulation using the functions of Algorithm 1,
which were extracted from the source code for target
drone A. Based on the results of this simulation, we
found out the effective fluctuation (i.e., standard devi-
ation) of the gyroscope output with a few real-world
tests. Then, we measured the standard deviations of tar-
get drone A on a desk exposed to sounds of various am-
plitudes. By combining the results of this simulation
and our measurements, we were able to identify an ap-
proximate range of sound amplitude for testing the tar-
get drone in the air. We then derived the feasible attack
distance theoretically using the SPL value that we had
measured in our attack with the effective amplitude of
the sound noise.
Simulation: For the software simulation, the recorded
gyroscope output and the control data from the trans-
mitter in the real-world attack experiments were used as
the inputs. The recorded gyroscope output was linearly
scaled from 1 % to 100 % in increments of 1 %, and
the control data from the transmitter were the same as in
the real-world experiment. Figure 10 shows the results
of the simulation. Because the rotor control output was
bounded between 1,150 and 1,850 in Algorithm 1, the
maximum change of the rotor control output was 700.
The minimum scale of the gyroscope output that could
achieve the maximum change in all rotor controls was
37 % in our simulation (Figure 10).
Indoor Measurements: The standard deviation of the
gyroscope output with respect to the sound noise am-

12
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plitude was measured for the L3G4200D gyroscope of
target drone A on a desk. Figure 11 shows the rela-
tive standard deviation of the gyroscope output measured
at a 10 cm distance, which decreases logarithmically as
the sound level decreases. Theoretically, the relation-
ship between the sound amplitude and SPL is described
by Equation 1 [27]. At the point of the reference SPL
(SPLre f ), the amplitude of the sound noise signal is Are f .

SPL = SPLre f +20log
(

A
Are f

)
(1)

The relative SPL obtained by changing the amplitude
is the second term in Equation 1, and it is illustrated in
Figure 11, along with the measured relative standard de-
viations. The decreasing trend in our measurements is
similar to that for the theoretical relative SPLs, but the
amount of decrease in our measurements was smaller
than that for the theoretical relative SPLs from the am-
plitude range over 70 %. This mismatch is the typical
output characteristic of consumer-grade speakers at high
amplitude levels, which is caused by the nonlinear dis-
tortion that also leads to the leakage of sound energy into
harmonic and subharmonic frequencies.
Distance Analysis: The amplitude of the sound noise
corresponding to 37 % (-8.64 dB) of the standard devi-
ation in Figure 11 is approximately 27 %, because the
standard deviation of the gyroscope output is propor-
tional to the scale of the gyroscope output. Accordingly,
the sound noise greater than 27 % in amplitude can in-
duce the maximum changes in all rotor controls for target
drone A, if the drone is tested at the same environment
as that of our real-world attack.

In the real-world experiments, we changed the ampli-
tude of the sound noise in the same environment and ob-
served that around 30 % sound amplitude is the lower
bound for making target drone A crash. The SPL mea-
sured at this 30 % sound amplitude was 108.5 dB. Us-
ing the following relationship between the distance and
SPL [58], we can derive a possible attack distance of a
remotely located sound source, where the reference dis-
tance (dre f ) and SPL (SPLre f ) are those measured from
the real-world attack experiments.

SPL = SPLre f −20log
(

d
dre f

)
(2)

According to this prediction, the possible attack dis-
tance is approximately 16.78 cm using the same sound
source that we used for the real-world attack with the
maximum volume (113 dB). This attack distance range
might not be sufficient for a malicious attacker. How-
ever, attackers can overcome this distance limitation by
using a more powerful and directional source (e.g., a
loudspeaker array) than the single speaker used in our
experiments. For instance, SB-3F [23] from Meyersound

can generate sound of 120 dB at 100 m, and 450XL [21]
from LRAD and HyperShield [33] from UltraElectronics
can produce 140 dB at 1 m, which is equivalent to 108.5
dB at 37.58 m. Therefore, the possible attack distance
is 37.58 m, if an attacker uses a sound source that can
generate 140 dB of SPL at 1 m.

6 Discussion

In this section, we present a discussion of potential attack
scenarios and countermeasures.

6.1 Potential Attack Scenarios
The attack model used in this paper seems to be too
strong in two ways: 1) Use of audible sound can be easily
detected, and 2) the speaker is close to the drone body.
However, the more practical attack can be designed to
weaken this attack model from the analysis result of this
study.

First, several gyroscopes listed in Table 1 have res-
onant frequencies in the inaudible band (i.e., above 20
kHz). If the resonant frequency is above 20 kHz, a suc-
cessful attack is possible using an ultrasonic sound gen-
erator and transducer. In addition, sound at frequencies
higher than 15 kHz is difficult for humans to hear.

Second, the distance analysis shows that various re-
mote attacks are also possible using different types of
sound generators. Some of promising ways for the re-
mote attack are described below.
Compromising the Sound Source: It is not hard to
imagine drones with speakers (consider police and mil-
itary operations or search-and-rescue operations). If
one can compromise the source of the sound from the
speaker, the effect will be the same as that of our origi-
nal attack model. For example, insecurity of the Hybrid
Broadcast-Broadband Television (HbbTV) standard and
implementation would allow an adversary to control the
TV stream [48].
Drone to Drone Attack: In 2013, Kamkar demonstrated
the ‘SkyJack’ attack, in which an adversary drone hi-
jacks a victim drone using a wireless denial-of-service
attack [44]. A similar attack could involve following
and taking a picture of a moving object, which could be-
come a popular drone application. An adversary drone
equipped with a speaker could steer itself toward a victim
drone and generate a sound with the resonant frequency
of the victim’s gyroscope to drag it down. Of course, in
this case, the resonant frequency of the adversary’s gyro-
scope has to be different from that of the victim.
Long Range Acoustic Device: Long Range Acous-
tic Device (LRAD) [56] could be used as a sonic
weapon [57] or Acoustic Hailing Device (AHD) [54].
Sonic weapons can cause damages to human organs

13
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by inducing intense sound waves at certain frequencies,
even if the sound source is not in contact with oppo-
nents [41, 53]. AHDs are specially designed loudspeak-
ers that communicate over longer distances than normal
loudspeakers [21, 23, 33]. In both cases, the most im-
portant requirement is a high SPL in a specific frequency
band. Obviously, these technologies could be used to in-
crease the range of our attack.
Sonic Wall/Zone: Because drones can be made small,
they can be difficult to detect using radar. Therefore, it
might be desirable to enforce no-fly zones for drones, as
illustrated by recent drone incidents [11, 34]. One might
consider building a sonic wall or a zone that radiates con-
tinuous sound noise (at various frequencies) in a specific
area to enforce the no-fly zone.

6.2 Countermeasures

Several researches that have been conducted to improve
the performance of MEMS gyroscopes in harsh acoustic
environments are discussed below.
Physical Isolation: The simplest way to mitigate our
attack is to provide physical isolation from the sound
noise. This is the same concept as shielding against
Electro Magnetic Interference (EMI). For example, the
iPhone 5S, which is equipped with an L3G4200D gyro-
scope [20], would not be affected by our attack, because
of the compact casing of the hardware circuit. Surround-
ing the gyroscope with foam would also be a simple and
inexpensive countermeasure. Foam that is 1 inch thick
has approximately 120 dB insertion loss in SPL [49].

Figure 12 shows the result of physical isolation exper-
iments conducted using four different materials: a paper
box, an acrylic panel, an aluminum plate, and foam. We
put these materials between the sound source and the tar-
get gyroscope. The isolation performances of the differ-
ent materials were not very different. Using these mate-
rials, the effect of the sound noise on one L3G4200D gy-
roscope was decreased to 23.78%, 16.25%, and 60.49%
for the three axes.
Differential Comparator: While physical isolation is a
passive approach to mitigation, use of a differential com-
parator is an active approach to mitigation. Using an ad-
ditional gyroscope with a special structure that responds
only to the resonant frequency, the application systems
can cancel out the resonant output from the main gy-
roscope [52]. The concept of this countermeasure was
introduced by Kune et al. [45] to detect and cancel out
analog sensor input spoofing against CIEDs.
Resonance Tuning: In the operation of MEMS gyro-
scopes, the bending mentioned in Section 3.3.1 changes
the capacitance between the sensing mass and the sens-
ing electrode, and this capacitance change is sensed as
the output of the gyroscope. By using an additional feed-

Figure 12: Physical isolation test for one L3G4200D gy-
roscope with four different materials (data averaged for
ten identical experiments and 1,000 raw data samples
collected per experiment)

back capacitor connected to the sensing electrode, the
resonant frequency and the magnitude of the resonance
effect can be tuned [35, 43].

These countermeasures may be used to mitigate our
attack. However, physically surrounding the gyroscope
sensor with certain materials could cause several prob-
lems, such as affecting other sensors or components and
raising the temperature of the board. These problems
may cause malfunctions of the drone control systems.
In addition, use of a differential comparator with another
gyroscope implies an additional cost. The resonance tun-
ing countermeasure also has the limitation that the reso-
nant frequency does not disappear as a result of tuning.
Because the resonant frequency still exists, an attack at
that frequency remains possible.

7 Conclusions and Future Work

Many sensing and actuation systems trust their measure-
ments, and actuate according to them. Unfortunately, this
trust can lead to security vulnerabilities that cause criti-
cally unintended actuations. We found that the sound
channel can be used as a side channel for MEMS gyro-
scopes from a security point of view. In our experiment,
we tested 15 kinds of MEMS gyroscopes, and seven of
them were found to be vulnerable to disruption using
intentional sound noise. The output of the vulnerable
MEMS gyroscopes was found using a consumer-grade
spaeker to fluctuate up to dozens of times as a result of
sound noise.

To demonstrate the effects of this vulnerability, we im-
plemented an attack against two target drones equipped
with different kinds of vulnerable MEMS gyroscopes.
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As a result of a firmware analysis of the target drones
and a simulation of the flight control software output,
the control signals of four rotors were found to fluctu-
ate up to the maximum value and down to the minimum
value by the injected gyroscope output. One of the target
drones, which was equipped with with a small speaker,
lost control and crashed in all 20 real-world attack exper-
iments. We found in these experiments that an attacker
with only 30% of the amplitude of the maximum sound
noise could achieve almost the same effect at the same
distance.

The countermeasures that are mentioned in the last
subsection have limitations and require hardware modi-
fications and additional materials. Because these mitiga-
tions would increase the production costs, it is necessary
to develop a low-cost, software-based defense mecha-
nism against sensor attacks for various types of embed-
ded devices.

Some MEMS gyroscopes are integrated with ac-
celerometers in the same IC package. In our experi-
ments, we found that some accelerometers are also af-
fected by high-power sound noise at certain frequencies.
It would be interesting to further investigate this finding.
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[8] Brüel & Kjær Microphone Unit Type 4189-A-021.
http://www.bksv.com/Products/transducers/

acoustic/microphones/microphone-cartridges/4189.

[9] Design and Analysis of MEMS Gyroscopes (Tutorial at
IEEE Sensor 2013). http://ieee-sensors2013.org/

sites/ieee-sensors2013.org/files/Serrano_Slides_

Gyros2.pdf.

[10] Everything about STMicroelectronics’ 3-axis digital MEMS
gyroscopes. http://www.st.com/web/en/resource/

technical/document/technical_article/DM00034730.

pdf.

[11] German pirate party uses drone to crash angela merkel event.
http://www.slate.com/blogs/future_tense/2013/

09/18/german_pirate_party_uses_drone_to_crash_

event_with_chancellor_angela_merkel.html.

[12] Hi-Vi B1S Full Range Loudspeaker. https://www.

madisoundspeakerstore.com/approx-1-fullrange/

hi-vi-b1s-full-range/.

[13] InvenSense IMU3000 datasheet. http://www.invensense.

com/mems/gyro/documents/PS-IMU-3000A.pdf.

[14] InvenSense ITG3200 datasheet. http://www.invensense.

com/mems/gyro/documents/EB-ITG-3200-00-01.1.pdf.

[15] InvenSense IXZ650 datasheet. http://invensense.com/

mems/gyro/documents/PS-IXZ-0650B-00-01.pdf.

[16] InvenSense MPU3050 datasheet. http://www.invensense.

com/mems/gyro/documents/PS-MPU-3000A.pdf.

[17] InvenSense MPU6000/6050 datasheet. http:

//www.invensense.com/mems/gyro/documents/

PS-MPU-6000A-00v3.4.pdf.

[18] InvenSense MPU6500 datasheet. http://www.invensense.

com/mems/gyro/documents/PS-MPU-6500A-01.pdf.

[19] InvenSense MPU9150 datasheet. http://dlnmh9ip6v2uc.

cloudfront.net/datasheets/Sensors/IMU/

PS-MPU-9150A.pdf.

[20] iPhone 5s Teardown. https://www.ifixit.com/Teardown/

iPhone+5s+Teardown/17383.

[21] LRAD 450XL datasheet. http://www.lradx.com/

wp-content/uploads/2015/05/LRAD_Datasheet_450XL.

pdf.

[22] Market share information of MEMS gyroscope in 2013
(page 17). http://www.semiconwest.org/sites/

semiconwest.org/files/data14/docs/SW2014_JCEloy_

YoleDeveloppement_0.pdf.

[23] Meyersound SB-3F datasheet. http://www.meyersound.

com/sites/default/files/sb-3f_ppi.pdf.

[24] Multiwii (open-source drone project). https://github.com/

multiwii/baseflight and https://code.google.com/p/

multiwii/.

[25] Murata ENC-03MB datasheet. http://www.mouser.com/

catalog/specsheets/ENC-03M_ref.pdf.

[26] National Instruments USB-4431, Sound and Vibration Data Ac-
quisition Instrument. http://www.ni.com/pdf/products/

us/cat_usb4431.pdf.

[27] Relative Sound Pressure according to Amplitude. http://www.
indiana.edu/~emusic/acoustics/amplitude.htm.

[28] STMicroelectronics L3G4200D datasheet. http:

//www.st.com/web/en/resource/technical/document/

datasheet/CD00265057.pdf.

[29] STMicroelectronics L3GD20 datasheet. http://www.st.com/
st-web-ui/static/active/en/resource/technical/

document/datasheet/DM00036465.pdf.

[30] STMicroelectronics LPR5150AL datasheet. http:

//www.st.com/web/en/resource/technical/document/

datasheet/CD00237211.pdf.

[31] STMicroelectronics LPY503AL datasheet. http:

//www.st.com/web/en/resource/technical/document/

datasheet/CD00237199.pdf.

[32] STMicroelectronics LSM330 datasheet. http://www.st.com/
web/en/resource/technical/document/datasheet/

DM00059856.pdf.

15



896 24th USENIX Security Symposium USENIX Association

[33] UltraElectronics HyperShield datasheet. http:

//www.ultra-hyperspike.com/Data/Pages/

26fa8e2abe074313d60fe15a9af35440-HyperShield_

Dat_Sheet.pdf.

[34] White house drone crash described as a u.s. workers
drunken lark. http://www.nytimes.com/2015/01/28/us/

white-house-drone.html.

[35] ADAMS, S., BERTSCH, F., SHAW, K., HARTWELL, P., MAC-
DONALD, N. C., AND MOON, F. Capacitance Based Tunable
Micromechanical Resonators. In International Conference on
Solid-State Sensors and Actuators (1995).

[36] CAI, L., AND CHEN, H. On the practicality of motion based
keystroke inference attack. In Trust and Trustworthy Computing.
Springer Berlin Heidelberg, 2012.

[37] CASTRO, S., DEAN, R., ROTH, G., FLOWERS, G. T., AND
GRANTHAM, B. Influence of acoustic noise on the dynamic per-
formance of MEMS gyroscopes. In International Mechanical
Engineering Congress and Exposition (2007), American Society
of Mechanical Engineers.

[38] DEAN, R. N., CASTRO, S. T., FLOWERS, G. T., ROTH, G.,
AHMED, A., HODEL, A. S., GRANTHAM, B. E., BITTLE,
D. A., AND BRUNSCH, J. P. A characterization of the perfor-
mance of a MEMS gyroscope in acoustically harsh environments.
IEEE Transactions on Industrial Electronics 58 (2011).

[39] DEAN, R. N., FLOWERS, G. T., HODEL, A. S., ROTH, G.,
CASTRO, S., ZHOU, R., MOREIRA, A., AHMED, A., RIFKI,
R., GRANTHAM, B. E., ET AL. On the degradation of MEMS
gyroscope performance in the presence of high power acoustic
noise. In IEEE International Symposium on Industrial Electron-
ics (2007).

[40] DUC, N. M., AND MINH, B. Q. Your face is not your password
face authentication bypassing Lenovo–Asus–Toshiba. Black Hat
Briefings (2009).

[41] FOWLKES, J. B., AND HOLLAND, C. K. Section 4: Bioef-
fects in tissues with gas bodies. Journal of ultrasound in medicine
19 (2000).

[42] GALBALLY, J., CAPPELLI, R., LUMINI, A., MALTONI, D.,
AND FIERREZ, J. Fake fingertip generation from a minutiae tem-
plate. In International Conference on Pattern Recognition (2008).

[43] JEONG, C., SEOK, S., LEE, B., KIM, H., AND CHUN, K. A
study on resonant frequency and Q factor tunings for MEMS vi-
bratory gyroscopes. Journal of Micromechanics and Microengi-
neering 14 (2004).

[44] KAMKAR, S. SkyJack. http://samy.pl/skyjack/, 2013.

[45] KUNE, D. F., BACKES, J., CLARK, S. S., KRAMER, D.,
REYNOLDS, M., FU, K., KIM, Y., AND XU, W. Ghost talk:
mitigating EMI signal injection attacks against analog sensors.
In IEEE Symposium on Security and Privacy (2013).

[46] MATSUMOTO, T., MATSUMOTO, H., YAMADA, K., AND
HOSHINO, S. Impact of artificial gummy fingers on fingerprint
systems. In Electronic Imaging (2002), International Society for
Optics and Photonics.

[47] MILUZZO, E., VARSHAVSKY, A., BALAKRISHNAN, S., AND
CHOUDHURY, R. R. Tapprints: your finger taps have finger-
prints. In Proceedings of the ACM international conference on
Mobile Systems, Applications, and Services (2012).

[48] OREN, Y., AND KEROMYTIS, A. D. From the aether to the
ethernet–attacking the internet using broadcast digital television.
In Proceedings of the USENIX Security Symposium (2014).

[49] ROTH, G. Simulation of the Effects of Acoustic Noise on MEMS
Gyroscopes. Master’s thesis, Auburn University, 2009.

[50] SAMLAND, F., FRUTH, J., HILDEBRANDT, M., HOPPE, T.,
AND DITTMANN, J. AR.Drone: security threat analysis and
exemplary attack to track persons. In Society of Photo-Optical
Instrumentation Engineers Conference Series (2012).

[51] SHOUKRY, Y., MARTIN, P., TABUADA, P., AND SRIVASTAVA,
M. Non-invasive spoofing attacks for anti-lock braking systems.
In Cryptographic Hardware and Embedded Systems. Springer,
2013.

[52] SOOBRAMANEY, P. Mitigation of the Effects of High Levels
of High-Frequency Noise on MEMS Gyroscopes. PhD thesis,
Auburn University, 2013.

[53] TANDY, V., AND LAWRENCE, T. R. The ghost in the machine.
Journal of the Society for Psychical Research 62 (1998).

[54] WIKIPEDIA. Acoustic hailing device — wikipedia, the free en-
cyclopedia, 2015. [Online; accessed 17-June-2015].

[55] WIKIPEDIA. Inertial measurement unit — wikipedia, the free
encyclopedia, 2015. [Online; accessed 17-June-2015].

[56] WIKIPEDIA. Long range acoustic device — wikipedia, the free
encyclopedia, 2015. [Online; accessed 17-June-2015].

[57] WIKIPEDIA. Sonic weapon — wikipedia, the free encyclopedia,
2015. [Online; accessed 17-June-2015].

[58] WIKIPEDIA. Sound pressure — wikipedia, the free encyclopedia,
2015. [Online; accessed 17-June-2015].

[59] YAN MICHALEVSKY AND DAN BONEH AND GABI NAKIBLY.
Gyrophone: Recognizing speech from gyroscope signals. In Pro-
ceedings of the USENIX Security Symposium (2014).

16



USENIX Association  24th USENIX Security Symposium 897

Cache Template Attacks:
Automating Attacks on Inclusive Last-Level Caches

Daniel Gruss, Raphael Spreitzer, and Stefan Mangard
Graz University of Technology, Austria

Abstract

Recent work on cache attacks has shown that CPU
caches represent a powerful source of information leak-
age. However, existing attacks require manual identifi-
cation of vulnerabilities, i.e., data accesses or instruction
execution depending on secret information. In this pa-
per, we present Cache Template Attacks. This generic
attack technique allows us to profile and exploit cache-
based information leakage of any program automatically,
without prior knowledge of specific software versions or
even specific system information. Cache Template At-
tacks can be executed online on a remote system without
any prior offline computations or measurements.

Cache Template Attacks consist of two phases. In the
profiling phase, we determine dependencies between the
processing of secret information, e.g., specific key inputs
or private keys of cryptographic primitives, and specific
cache accesses. In the exploitation phase, we derive the
secret values based on observed cache accesses. We il-
lustrate the power of the presented approach in several
attacks, but also in a useful application for developers.
Among the presented attacks is the application of Cache
Template Attacks to infer keystrokes and—even more
severe—the identification of specific keys on Linux and
Windows user interfaces. More specifically, for lower-
case only passwords, we can reduce the entropy per char-
acter from log2(26) = 4.7 to 1.4 bits on Linux systems.
Furthermore, we perform an automated attack on the T-
table-based AES implementation of OpenSSL that is as
efficient as state-of-the-art manual cache attacks.

1 Introduction

Cache-based side-channel attacks have gained increas-
ing attention among the scientific community. First, in
terms of ever improving attacks against cryptographic
implementations, both symmetric [4, 6, 16, 39, 41, 53] as
well as asymmetric cryptography [3, 7, 9, 54], and sec-

ond, in terms of developing countermeasures to prevent
these types of attacks [31, 34]. Recently, Yarom and
Falkner [55] proposed the Flush+Reload attack, which
has been successfully applied against cryptographic im-
plementations [3, 17, 22]. Besides the possibility of
attacking cryptographic implementations, Yarom and
Falkner pointed out that their attack might also be used
to attack other software as well, for instance, to collect
keystroke timing information. However, no clear indica-
tion is given on how to exploit such vulnerabilities with
their attack. A similar attack has already been suggested
in 2009 by Ristenpart et al. [44], who reported being
able to gather keystroke timing information by observ-
ing cache activities on an otherwise idle machine.

The limiting factor of all existing attacks is that sophis-
ticated knowledge about the attacked algorithm or soft-
ware is necessary, i.e., access to the source code or even
modification of the source code [7] is required in order
to identify vulnerable memory accesses or the execution
of specific code fragments manually.

In this paper, we make use of the Flush+Reload at-
tack [55] and present the concept of Cache Template At-
tacks,1 a generic approach to exploit cache-based vul-
nerabilities in any program running on architectures with
shared inclusive last-level caches. Our attack exploits
four fundamental concepts of modern cache architectures
and operating systems.

1. Last-level caches are shared among all CPUs.
2. Last-level caches are inclusive, i.e., all data which

is cached within the L1 and L2 cache must also be
cached in the L3 cache. Thus, any modification of
the L3 cache on one core immediately influences
the cache behavior of all other cores.

3. Cache lines are shared among different processes.
4. The operating system allows programs to map any

other program binary or library, i.e., code and static
data, into their own address space.

1The basic framework can be found at https://github.com/
IAIK/cache_template_attacks.
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Based on these observations, we demonstrate how to per-
form Cache Template Attacks on any program automat-
ically in order to determine memory addresses which
are accessed depending on secret information or specific
events. Thus, we are not only able to attack crypto-
graphic implementations, but also any other event, e.g.,
keyboard input, which might be of interest to an attacker.

We demonstrate how to use Cache Template Attacks
to derive keystroke information with a deviation of less
than 1 microsecond from the actual keystroke and an
accuracy of almost 100%. With our approach, we are
not only able to infer keystroke timing information, but
even to infer specific keys pressed on the keyboard, both
for GTK-based Linux user interfaces and Windows user
interfaces. Furthermore, all attacks to date require so-
phisticated knowledge of the attacked software and the
executable itself. In contrast, our technique can be ap-
plied to any executable in a generic way. In order to
demonstrate this, we automatically attack the T-table-
based AES [10, 35] implementation of OpenSSL [37].

Besides demonstrating the power of Cache Template
Attacks to exploit cache-based vulnerabilities, we also
discuss how this generic concept supports developers in
detecting cache-based information leaks within their own
software, including third party libraries. Based on the in-
sights we gained during the development of the presented
concept, we also present possible countermeasures to
mitigate specific types of cache attacks.

Outline. The remaining paper is organized as follows.
In Section 2, we provide background information on
CPU caches, shared memory, and cache attacks in gen-
eral. We describe Cache Template Attacks in Section 3.
We illustrate the basic idea on an artificial example pro-
gram in Section 4 and demonstrate Cache Template At-
tacks against real-world applications in Section 5. In
Section 6, we discuss countermeasures against cache at-
tacks in general. Finally, we conclude in Section 7.

2 Background and Related Work

In this section, we give a basic introduction to the con-
cept of CPU caches and shared memory. Furthermore,
we provide a basic introduction to cache attacks.

2.1 CPU Caches

The basic idea of CPU caches is to hide memory ac-
cesses to the slow physical memory by buffering fre-
quently used data in a small and fast memory. Today,
most architectures employ set-associative caches, mean-
ing that the cache is divided into multiple cache sets and
each cache set consists of several cache lines (also called

ways). An index is used to map specific memory loca-
tions to the sets of the cache memory.

We distinguish between virtually indexed and physi-
cally indexed caches, which derive the index from the
virtual or physical address, respectively. In general, vir-
tually indexed caches are considered to be faster than
physically indexed caches. However, the drawback of
virtually indexed caches is that different virtual addresses
mapping to the same physical address are cached in dif-
ferent cache lines. In order to uniquely identify a spe-
cific cache line within a cache set, so-called tags are
used. Again, caches can be virtually tagged or physically
tagged. A virtual tag has the same drawback as a virtual
index. Physical tags, however, are less expensive than
physical indices as they can be computed simultaneously
with the virtual index.

In addition, there is a distinction between inclusive and
exclusive caches. On Intel systems, the L3 cache is an
inclusive cache, meaning that all data within the L1 and
L2 caches are also present within the L3 cache. Further-
more, the L3 cache is shared among all cores. Due to
the shared L3 cache, executing code or accessing data on
one core has immediate consequences for all other cores.
This is the basis for the Flush+Reload [55] attack as de-
scribed in Section 2.3.

Our test systems (Intel Core i5-2/3 CPUs) have
two 32 KB L1 caches—one for data and one for
instructions—per core, a unified L2 cache of 256 KB,
and a unified L3 cache of 3 MB (12 ways) shared among
all cores. The cache-line size is 64 bytes for all caches.

2.2 Shared Memory

Operating systems use shared memory to reduce memory
utilization. For instance, libraries used by several pro-
grams are shared among all processes using them. The
operating system loads the libraries into physical mem-
ory only once and maps the same physical pages into the
address space of each process.

The operating system employs shared memory in sev-
eral more cases. First, when forking a process, the mem-
ory is shared between the two processes. Only when
the data is modified, the corresponding memory regions
are copied. Second, a similar mechanism is used when
starting another instance of an already running program.
Third, it is also possible for user programs to request
shared memory using system calls like mmap.

The operating system tries to unify these three cate-
gories. On Linux, mapping a program file or a shared
library file as a read-only memory with mmap results
in sharing memory with all these programs, respec-
tively programs using the same shared library or pro-
gram binary. This is also possible on Windows using the
LoadLibrary function. Thus, even if a program is stat-

2
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ically linked, its memory is shared with other programs
which execute or map the same binary.

Another form of shared memory is content-based page
deduplication. The hypervisor or operating system scans
the physical memory for pages with identical content.
All mappings to identical pages are redirected to one
of the pages while the other pages are marked as free.
Thus, memory is shared between completely unrelated
processes and even between processes running in differ-
ent virtual machines. When the data is modified by one
process, memory is duplicated again. These examples
demonstrate that code as well as static data can be shared
among processes, even without their knowledge. Never-
theless, page deduplication can enhance system perfor-
mance and besides the application in cloud systems, it is
also relevant in smaller systems like smartphones.

User programs can retrieve information on their virtual
and physical memory using operating-system services
like /proc/<pid>/maps on Linux or tools like vmmap

on Windows. The list of mappings typically includes all
loaded shared-object files and the program binary.

2.3 Cache Attacks

Cache attacks are a specific type of side-channel attacks
that exploit the effects of the cache memory on the execu-
tion time of algorithms. The first theoretical attacks were
mentioned by Kocher [28] and Kelsey et al. [26]. Later
on, practical attacks for DES were proposed by Page [41]
as well as Tsunoo et al. [50]. In 2004, Bernstein [4]
proposed the first time-driven cache attack against AES.
This attack has been investigated quite extensively [36].

A more fine-grained attack has been proposed by Per-
cival [42], who suggested to measure the time to access
all ways of a cache set. As the access time correlates with
the number of occupied cache ways, an attacker can de-
termine the cache ways occupied by other processes. At
the same time, Osvik et al. [39] proposed two fundamen-
tal techniques that allow an attacker to determine which
specific cache sets have been accessed by a victim pro-
gram. The first technique is Evict+Time, which consists
of three steps. First, the victim program is executed and
its execution time is measured. Afterwards, an attacker
evicts one specific cache set and finally measures the ex-
ecution time of the victim again. If the execution time
increased, the cache set was probably accessed during
the execution.

The second technique is Prime+Probe, which is sim-
ilar to Percival’s attack. During the Prime step, the at-
tacker occupies specific cache sets. After the victim pro-
gram has been scheduled, the Probe step is used to deter-
mine which cache sets are still occupied.

Later on, Gullasch et al. [16] proposed a significantly
more powerful attack that exploits the fact that shared

memory is loaded into the same cache sets for differ-
ent processes. While Gullasch et al. attacked the L1
cache, Yarom and Falkner [55] presented an improve-
ment called Flush+Reload that targets the L3 cache.

Flush+Reload relies on the availability of shared mem-
ory and especially shared libraries between the attacker
and the victim program. An attacker constantly flushes
a cache line using the clflush instruction on an ad-
dress within the shared memory. After the victim has
been scheduled, the attacker measures the time it takes
to reaccess the same address again. The measured time
reveals whether the data has been loaded into the cache
by reaccessing it or whether the victim program loaded
the data into the cache before reaccessing. This allows
the attacker to determine the memory accesses of the vic-
tim process. As the L3 cache is shared among all cores,
it is not necessary to constantly interrupt the victim pro-
cess. Instead, both processes run on different cores while
still working on the same L3 cache. Furthermore, the
L3 cache is a unified inclusive cache and, thus, even al-
lows to determine when a certain instruction is executed.
Because of the size of the L3 cache, there are signifi-
cantly fewer false negative cache-hit detections caused
by evictions. Even though false positive cache-hit detec-
tions (as in Prime+Probe) are not possible because of the
shared-memory-based approach, false positive cache hits
can still occur if data is loaded into the cache acciden-
tally (e.g., by the prefetcher). Nevertheless, applications
of Flush+Reload have been shown to be quite reliable
and powerful, for example, to detect specific versions of
cryptographic libraries [23], to revive supposedly fixed
attacks (e.g., Lucky 13) [24] as well as to improve at-
tacks against T-table-based AES implementations [17].

As shared memory is not always available between
different virtual machines in the cloud, more recent cache
attacks use the Prime+Probe technique to perform cache
attacks across virtual machine borders. For example, Ira-
zoqui et al. [20] demonstrated a cross-VM attack on a
T-Table-based AES implementation and Liu et al. [32]
demonstrated a cross-VM attack on GnuPG. Both attacks
require manual identification of exploitable code and
data in targeted binaries. Similarly, Maurice et al. [33]
built a cache-index-agnostic cross-VM covert channel
based on Prime+Probe.

Simultaneous to our work, Oren et al. [38] devel-
oped a cache attack from within sandboxed JavaScript
to attack user-specific data like network traffic or mouse
movements. Contrary to existing attack approaches, we
present a general attack framework to exploit cache vul-
nerabilities automatically. We demonstrate the effective-
ness of this approach by inferring keystroke informa-
tion and, for comparison reasons, by attacking a T-table-
based AES implementation.

3
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3 Cache Template Attacks

Chari et al. [8] presented template attacks as one of
the strongest forms of side-channel attacks. First, side-
channel traces are generated on a device controlled by the
attacker. Based on these traces, the template—an exact
model of signal and noise—is generated. A single side-
channel trace from an identical device with unknown key
is then iteratively classified using the template to derive
the unknown key.

Similarly, Brumley and Hakala [7] described cache-
timing template attacks to automatically analyze and ex-
ploit cache vulnerabilities. Their attack is based on
Prime+Probe on the L1 cache and, thus, needs to run on
the same core as the spy program. Furthermore, they
describe a profiling phase for specific operations exe-
cuted in the attacked binary, which requires manual work
or even modification of the attacked software. In con-
trast, our attack only requires an attacker to know how
to trigger specific events in order to attack them. Subse-
quently, Brumley and Hakala match these timing tem-
plates against the cache timing observed. In contrast,
we match memory-access templates against the observed
memory accesses.

Inspired by their work we propose Cache Template At-
tacks. The presented approach of Cache Template At-
tacks allows the exploitation of any cache vulnerability
present in any program on any operating system executed
on architectures with shared inclusive last-level caches
and shared memory enabled. Cache Template Attacks
consist of two phases: 1) a profiling phase, and 2) an ex-
ploitation phase. In the profiling phase, we compute a
Cache Template matrix containing the cache-hit ratio on
an address given a specific target event in the binary un-
der attack. The exploitation phase uses this Cache Tem-
plate matrix to infer events from cache hits.

Both phases rely on Flush+Reload and, thus, attack
code and static data within binaries. In both phases the
attacked binary is mapped into read-only shared mem-
ory in the attacker process. By accessing its own vir-
tual addresses in the allocated read-only shared memory
region, the attacker accesses the same physical memory
and the same cache lines (due to the physically-indexed
last level cache) as the process under attack. Therefore,
the attacker completely bypasses address space layout
randomization (ASLR). Also, due to shared memory, the
additional memory consumption caused by the attacker
process is negligible, i.e., in the range of a few megabytes
at most.

In general, both phases are performed online on the
attacked system and, therefore, cannot be prevented
through differences in binaries due to different versions
or the concept of software diversity [12]. However, if
online profiling is not possible, e.g., in case the events

must be triggered by a user or Flush+Reload is not pos-
sible on the attacked system, it can also be performed in a
controlled environment. Below, we describe the profiling
phase and the exploitation phase in more detail.

3.1 Profiling Phase
The profiling phase measures how many cache hits occur
on a specific address during the execution of a specific
event, i.e., the cache-hit ratio. The cache-hit ratios for
different events are stored in the Cache Template matrix
which has one column per event and one row per address.
We refer to the column vector for an event as a profile.
Examples of Cache Template matrices can be found in
Section 4 and Section 5.1.

An event in terms of a Cache Template Attack can be
anything that involves code execution or data accesses,
e.g., low-frequency events, such as keystrokes or receiv-
ing an email, or high-frequency events, such as encryp-
tion with one or more key bits set to a specific value. To
automate the profiling phase, it must be possible to trig-
ger the event programmatically, e.g., by calling a func-
tion to simulate a keypress event, or executing a program.

The Cache Template matrix is computed in three steps.
The first step is the generation of the cache-hit trace and
the event trace. This is the main computation step of the
Cache Template Attack, where the data for the Template
is measured. In the second step, we extract the cache-hit
ratio for each trace and store it in the Cache Template
matrix. In a third post-processing step, we prune rows
and columns which contain redundant information from
the matrix. Algorithm 1 summarizes the profiling phase.
We explain the corresponding steps in detail below.

Algorithm 1: Profiling phase.
Input: Set of events E, target program binary B,

duration d
Output: Cache Template matrix T

Map binary B into memory
foreach event e in E do

foreach address a in binary B do
while duration d not passed do

simultaneously
Trigger event e and save event trace g(E)a,e
Flush+Reload attack on address a

and save cache-hit trace g(H)
a,e

end
Extract cache-hit ratio Ha,e from g(E)a,e

and g(H)
a,e and store it in T

end
end
Prune Cache Template matrix T

4
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Figure 1: Trace of a single keypress event for address
0x4ebc0 of libgdk.so.

Cache-Hit Trace and Event Trace. The generation of
the cache-hit trace and the event trace is repeated for each
event and address for the specified duration (the while
loop of Algorithm 1). The cache-hit trace g(H)

a,e is a binary
function which has value 1 for every timestamp t where
a cache hit has been observed. The function value re-
mains 1 until the next timestamp t where a cache miss has
been observed. We call subsequent cache hits a cache-hit
phase. The event trace g(E)a,e is a binary function which has
value 1 when the processing of one specific event e starts
or ends and value 0 for all other points.

In the measurement step, the binary under attack is
executed and the event is triggered constantly. Each ad-
dress of the attacked binary is profiled for a specific du-
ration d. It must be long enough to trigger one or more
events. Therefore, d depends only on the execution time
of the event to be measured. The more events triggered
within the specified duration d, the more accurate the re-
sulting profile is. However, increasing the duration d in-
creases the overall time required for the profiling phase.

The results of this measurement step are a cache-hit
trace and an event trace, which are generated for all ad-
dresses a in the binary and all events e we want to profile.
An excerpt of such a cache-hit trace and the correspond-
ing event trace is shown in Figure 1. The start of the
event is measured directly before the event is triggered.
As we monitor library code, the cache-hit phase is mea-
sured before the attacked binary observes the event.

The generation of the traces can be sped up by two
factors. First, in case of a cache miss, the CPU always
fetches a whole cache line. Thus, we cannot distinguish
between offsets of different accesses within a cache line
and we can deduce the same information by probing only
one address within each cache-line sized memory area.

Second, we reduce the overall number of triggered
events by profiling multiple addresses at the same time.
However, profiling multiple addresses on the same page
can cause prefetching of more data from this page.

Therefore, we can only profile addresses on different
pages simultaneously. Thus, profiling all pages only
takes as long as profiling a single page.

In case of low-frequency events, it is possible to pro-
file all pages within one binary in parallel. However, this
may lead to less accurate cache-hit traces g(H)

a,e , i.e., tim-
ing deviations above 1 microsecond from the real event,
which is only acceptable for low-frequency events.

Hit-Ratio Extraction. After the cache-hit trace and
the event trace have been computed for a specific event e
and a specific address a (the while loop of Algorithm 1),
we derive the cache-hit ratio for each event and address.
The cache-hit ratio Ha,e is either a simple value or a time-
dependent ratio function. In our case it is the ratio of
cache hits on address a and the number of times the event
e has been triggered within the profiling duration d.

To illustrate the difference between a cache-hit ratio
with time dependency and without time dependency, we
discuss two such functions. The cache-hit ratio with
time dependency can be defined as follows. The event
traces contain the start and end points of the processing
of one event e. These start and end points define the rel-
evant parts (denoted as slices) within the cache-hit trace.
The slices are stored in a vector and scaled to the same
length. Each slice contains a cache-hit pattern relative to
the event e. If we average over this vector, we get the
cache-hit ratio function for event e.

The second, much simpler approach is to define the
cache-hit ratio without time dependency. In this case, we
count the number of cache hits k on address a and divide
it by the number of times n the event e has been triggered
within the profiling duration d. That is, we define Ha,e =
k
n . In case of a low-noise side channel and event detection
through single cache hits, it is sufficient to use a simple
hit-ratio extraction function.

Like the previous step, this step is repeated for all ad-
dresses a in the binary b and all events e to be profiled.
The result is the full Cache Template matrix T . We de-
note the column vectors �pe as profiles for specific events.

Pruning. In the exploitation phase, we are limited re-
garding the number of addresses we can attack. There-
fore, we want to reduce the number of addresses in the
Cache Template. We remove redundant rows from the
Cache Template matrix and merge events which cannot
be distinguished based on their profiles �pe.

As cache hits can be independent of an event, the mea-
sured cache-hit ratio on a specific address can be inde-
pendent of the event, i.e., code which is always executed,
frequent data accesses by threads running all the time,
or code that is never executed and data that is never ac-
cessed. In order to be able to detect an event e, the set

5
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of events has to contain at least one event e′ which does
not include event e. For example, in order to be able to
detect the event “user pressed key A” we need to profile
at least one event where the user does not press key A.

The pruning happens in three steps on the matrix.
First, the removal of all addresses that have a small dif-
ference between minimum and maximum cache-hit ra-
tio for all events. Second, merging all similar columns
(events) into one set of events, i.e., events that cannot be
distinguished from each other are merged into one col-
umn. The similarity measure for this is, for example,
based on a mean squared error (MSE) function. Third,
the removal of redundant lines. These steps ensure that
we select the most interesting addresses and also allows
us to reduce the attack complexity by reducing the over-
all number of monitored addresses.

We measure the reliability of a cache-based side chan-
nel by true and false positives as well as true and false
negatives. Cache hits that coincide with an event are
counted as true positive and cache hits that do not coin-
cide with an event as false positive. Cache misses which
coincide with an event are counted as true negative and
cache misses which do not coincide with an event as false
negative. Based on these four values we can determine
the accuracy of our Template, for instance, by computing
the F-Score, which is defined as the harmonic mean of
the cache-hit ratio and the positive predictive value (per-
centage of true positives of the total cache hits). High
F-Score values show that we can distinguish the given
event accurately by attacking a specific address. In some
cases further lines can be pruned from the Cache Tem-
plate matrix based on these measures. The true positive
rate and the false positive rate for an event e can be de-
termined by the profile �pe of e and the average over all
profiles except e.

Runtime of the Profiling Phase. Measuring the
cache-hit ratio is the most expensive step in our attack.
To quantify the cost we give two examples. In both
cases we want to profile a 1 MB library, once for a low-
frequency event, e.g., a keypress, and once for a high-
frequency event, e.g., an encryption. In both cases, we
try to achieve a runtime which is realistic for offline and
online attacks while maintaining a high accuracy.

We choose a profiling duration of d = 0.8 seconds for
the low-frequency event. During 0.8 seconds we can trig-
ger around 200 events, which is enough to create a highly
accurate profile. Profiling each address in the library for
0.8 seconds would take 10 days. Profiling only cache-
line-aligned addresses still takes 4 hours. Applying both
optimizations, the full library is profiled in 17 seconds.

In case of the high-frequency event, we attack an en-
cryption. We assume that one encryption and the cor-
responding Flush+Reload measurement take 520 cycles

on average. As in the previous example, we profile each
address 200 times and, thus, we need 40–50 microsec-
onds per address, i.e., d = 50µs. The basic attack takes
less than 55 seconds to profile the full library for one
event. Profiling only cache-line-aligned addresses takes
less than 1 second and applying both optimizations re-
sults in a negligible runtime.

As already mentioned above, the accuracy of the re-
sulting profile depends on how many times an event can
be triggered during profiling duration d. In both cases we
chose durations which are more than sufficient to create
accurate profiles and still achieve reasonable execution
times for an online attack. Our observations showed that
it is necessary to profile each event at least 10 times to
get meaningful results. However, profiling an event more
than a few hundred times does not increase the accuracy
of the profile anymore.

3.2 Exploitation Phase
In the exploitation phase we execute a generic spy pro-
gram which performs either the Flush+Reload or the
Prime+Probe algorithm. For all addresses in the Cache
Template matrix resulting from the profiling phase, the
cache activity is constantly monitored.

We monitor all addresses and record whether a cache
hit occurred. This information is stored in a boolean vec-
tor�h. To determine which event occurred based on this
observation, we compute the similarity S(�h,�pe) between
�h and each profile �pe from the Cache Template matrix.
The similarity measure S can be based, for example, on
a mean squared error (MSE) function. Algorithm 2 sum-
marizes the exploitation phase.

Algorithm 2: Exploitation phase.
Input: Target program binary b,
Cache Template matrix T = (�pe1 ,�pe2 , ...,�pen)

Map binary b into memory
repeat

foreach address a in T do
Flush+Reload attack on address a
Store 0/1 in�h[a] for cache miss/cache hit

end
if �pe equals�h w.r.t. similarity measure then

Event e detected
end

The exploitation phase has the same requirements as
the underlying attack techniques. The attacker needs to
be able to execute a spy program on the attacked sys-
tem. In case of Flush+Reload, the spy program needs
no privileges, except opening the attacked program bi-
nary in a read-only shared memory. It is even possible
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1 i n t map [ 1 3 0 ] [ 1 0 2 4 ] = {{−1U} , . . . ,{ −1 3 0U}} ;
2 i n t main ( i n t argc , char∗∗ a rgv ) {
3 whi le ( 1 ) {
4 i n t c = g e t c h a r ( ) ; / / u n b u f f e r e d
5 i f ( map [ ( c % 128) + 1 ] [ 0 ] == 0)
6 e x i t (−1) ;
7 } }

Listing 1: Victim program with large array on Linux

to attack binaries running in a different virtual machine
on the same physical machine, if the hypervisor has page
deduplication enabled. In case of Prime+Probe, the spy
program needs no privileges at all and it is even possi-
ble to attack binaries running in a different virtual ma-
chine on the same physical machine, as shown by Irazo-
qui et al. [20]. However, the Prime+Probe technique is
more susceptible to noise and therefore the exploitation
phase will produce less reliable results, making attacks
on low-frequency events more difficult.

The result of the exploitation phase is a log file con-
taining all detected events and their corresponding times-
tamps. The interpretation of the log file still has to be
done manually by the attacker.

4 Attacks on Artificial Applications

Before we actually exploit cache-based vulnerabilities in
real applications in Section 5, we demonstrate the basic
working principle of Cache Template Attacks on two ar-
tificial victim programs. These illustrative attacks show
how Cache Template Attacks automatically profile and
exploit cache activity in any program. The two attack
scenarios we demonstrate are: 1) an attack on lookup
tables, and 2) an attack on executed instructions. Hence,
our ideal victim program or library either contains a large
lookup table which is accessed depending on secret in-
formation, e.g., depending on secret lookup indices, or
specific portions of program code which are executed
based on secret information.

Attack on Data Accesses. For demonstration pur-
poses, we spy on simple events like keypresses. In
our victim program, shown in Listing 1, each keypress
causes a memory access in a large array called map.
These key-based accesses are 4096 bytes apart from each
other to avoid triggering the prefetcher. The array is ini-
tialized with static values in order to place it in the data
segment and to guarantee that each page contains differ-
ent data and, thus, is not deduplicated in any way. It is
necessary to place it in the data segment in order to make
it shareable with the spy program.

In the profiling phase of the Cache Template Attack,
we simulate different keystroke events using the X11 au-
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Figure 2: Cache Template matrix for the artificial victim
program shown in Listing 1. Dark cells indicate high
cache-hit ratios.

tomation library libxdo. This library can be linked stat-
ically into the spy program, i.e., it does not need to be
installed. The Cache Template matrix is generated as de-
scribed in Section 3. Within a duration of d = 0.8 sec-
onds we simulated around 700 keypress events. The re-
sulting Cache Template matrix can be seen in Figure 2
for all number keys. We observe cache hits on addresses
that are exactly 4 096 bytes apart, which is due to the data
type and the dimension of the map array. In our measure-
ments, there were less than 0.3% false positive cache hits
on the corresponding addresses and less than 2% false
negative cache hits. The false positive and false negative
cache hits are due to the high key rate in the keypress
simulation.

For verification purposes, we executed the generated
keylogger for a period of 60 seconds and randomly
pressed keys on the keyboard. In this setting we mea-
sured no false positives and no false negatives at all.
This results from significantly lower key rates than in the
profiling phase. The table is not used by any process
other than the spy and the victim process and the proba-
bility that the array access happens exactly between the
reload and the flush instruction is rather small, as we have
longer idle periods than during the profiling phase. Thus,
we are able to uniquely identify each key without errors.

Attack on Instruction Executions. The same attack
can easily be performed on executed instructions. The
source code for this example is shown in Listing 2. Each
key is now processed in its own function, as defined by
the CASE(X) macro. The functions are page aligned to
avoid prefetcher activity. The NOP1024 macro generates
1024 nop instructions, which is enough to avoid acciden-
tal code prefetching of function code.

Our measurements show that there is no difference
between Cache Template Attacks on code and data ac-
cesses.

Performance Evaluation. To examine the perfor-
mance limits of the exploitation phase of Cache Template
Attacks, we evaluated the number of addresses which can

7
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1 # d e f i n e NOP1024 /∗ 1024 t i m e s asm ( ” nop ” ) ; ∗ /
2 # d e f i n e CASE(X) case X:\
3 { ALIGN(0 x1000 ) void f ##X( ) { NOP1024 } ;\
4 f ##X( ) ; break ; }
5 i n t main ( i n t argc , char∗∗ a rgv ) {
6 whi le ( 1 ) {
7 i n t c = g e t c h a r ( ) ; / / u n b u f f e r e d
8 sw i t ch ( c ) {
9 CASE ( 0 ) ;

10 / / . . .
11 CASE( 1 2 8 ) ;
12 } } }

Listing 2: Victim program with long functions on Linux

be accurately monitored simultaneously at different key
rates. At a key rate of 50 keys per second, we man-
aged to spy on 16000 addresses simultaneously on an
Intel i5 Sandy Bridge CPU without any false positives or
false negatives. The first errors occurred when monitor-
ing 18000 addresses simultaneously. At a key rate of 250
keys per second, which is the maximum on our system,
we were able to spy on 4000 addresses simultaneously
without any errors. The first errors occurred when moni-
toring 5000 addresses simultaneously. In both cases, we
monitor significantly more addresses than in any practi-
cal cache attack today.

However, monitoring that many addresses is only pos-
sible if their position in virtual memory is such that the
prefetcher remains inactive. Accessing several consec-
utive addresses on the same page causes prefetching of
more data, resulting in cache hits although no program
accessed the data. The limiting effect of the prefetcher
on the Flush+Reload attack has already been observed
by Yarom and Benger [54]. Based on these observations,
we discuss the possibility of using the prefetcher as an
effective countermeasure against cache attacks in Sec-
tion 6.3.

5 Attacks on Real-World Applications

In this section, we consider an attack scenario where an
attacker is able to execute an attack tool on a targeted
machine in unprivileged mode. By executing this at-
tack tool, the attacker extracts the cache-activity profiles
which are exploited subsequently. Afterwards, the at-
tacker collects the secret information acquired during the
exploitation phase.

For this rather realistic and powerful scenario we
present various case studies of attacks launched against
real applications. We demonstrate the power of automat-
ically launching cache attacks against any binary or li-
brary. First, we launch two attacks on Linux user inter-
faces, including GDK-based user interfaces, and an at-
tack against a Windows user interface. In all attacks we

simulate the user input in the profiling phase. Thus, the
attack can be automated on the device under attack. To
demonstrate the range of possible applications, we also
present an automated attack on the T-table-based AES
implementation of OpenSSL 1.0.2 [37].

5.1 Attack on Linux User Interfaces
There exists a variety of software-based side-channel at-
tacks on user input data. These attacks either measure
differences in the execution time of code in other pro-
grams or libraries [48], approximate keypresses through
CPU and cache activity [44], or exploit system ser-
vices leaking user input data [56]. In particular,
Zhang et al. [56] use information about other processes
from procfs on Linux to measure inter-keystroke tim-
ings and derive key sequences. Their proposed coun-
termeasures can be implemented with low costs and
prevent their attack completely. We, however, employ
Cache Template Attacks to find and exploit leaking side-
channel information in shared libraries automatically in
order to spy on keyboard input.

Given root access to the system, it is trivial to write
a keylogger on Linux using /dev/input/event* de-
vices. Furthermore, the xinput tool can also be used to
write a keylogger on Linux, but root access is required to
install it. However, using our approach of Cache Tem-
plate Attacks only requires the unprivileged execution
of untrusted code as well as the capability of opening
the attacked binaries or shared libraries in a read-only
shared memory. In the exploitation phase one round of
Flush+Reload on a single address takes less than 100
nanoseconds. If we measure the average latency between
keypress and cache hit, we can determine the actual key-
press timing up to a few hundred nanoseconds. Com-
pared to the existing attacks mentioned above, our at-
tack is significantly more accurate in terms of both event
detection (detection rates near 100%) and timing devia-
tions.

In all attacks presented in this section we compute
time-independent cache-hit ratios.

Attack on the GDK Library. Launching the Cache
Template profiling phase on different Linux applications
revealed thousands of addresses in different libraries, bi-
naries, and data files showing cache activity upon key-
presses. Subsequently, we targeted different keypress
events in order to find addresses distinguishing the differ-
ent keys. Figure 3 shows the Cache Template of a mem-
ory area in the GDK library libgdk-3.so.0.1000.8,
a part of the GTK framework which is the default user-
interface framework on many Linux distributions.

Figure 3 shows several addresses that yield a cache
hit with a high accuracy if and only if a certain key is
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Figure 3: Excerpt of the GDK Cache Template. Dark
cells indicate key-address-pairs with high cache-hit ra-
tios.

pressed. For instance, every keypress on key n results in
cache hit on address 0x7c800, whereas the same address
reacts in only 0.5% of our tests on other keypresses. Fur-
thermore, we found a high cache-hit ratio on some ad-
dresses when a key is pressed (i.e., 0x6cd00 in libgdk),
the mouse is moved (i.e., 0x28760 in libgdk) or a mod-
ifier key is pressed (i.e., 0x72fc0 in libgdk). We also
profiled the range of keys a–f but it is omitted from Fig-
ure 3 because no high cache-hit ratios have been ob-
served for the shown addresses.

We use the spy tool described in Section 3.2 in order
to spy on events based on the Cache Template. We are
able to accurately determine the following sets of pressed
keys: {i},{ j},{n},{q},{v},{l,w},{u,z},{g,h,k, t}. That
is, we cannot distinguish between keys in the same set,
but keys in one set from keys in other sets. Similarly, we
can deduce whether a key is contained in none of these
sets.

Not as part of our attack, but in order to understand
how keyboard input is processed in the GDK library, we
analyzed the binary and the source code. In general,
we found out that most of the addresses revealed in the
profiling phase point to code executed while processing
keyboard input. The address range discussed in this sec-
tion contains the array gdk_keysym_to_unicode_tab

which is used to translate key symbols to unicode special

characters. The library performs a binary search on this
array, which explains why we can identify certain keys
accurately, namely the leaf nodes in the binary search.

As the corresponding array is used for keyboard input
in all GDK user-interface components, including pass-
word fields, our spy tool works for all applications that
use the GDK library. This observation allows us to use
Cache Template Attacks to build powerful keyloggers
for GDK-based user interfaces automatically. Even if
we cannot distinguish all keys from each other, Cache
Template Attacks allow us to significantly reduce the
complexity of cracking a password. In this scenario,
we are able to identify 3 keys reliably, as well as the
total number of keypresses. Thus, in case of a lower-
case password we can reduce the entropy per character
from log2(26) = 4.7 to 4.0 bits. Attacking more than
3 addresses in order to identify more keys adds a sig-
nificant amount of noise to the results, as it triggers the
prefetcher. First experiments demonstrated the feasibil-
ity of attacking the lock screen of Linux distributions.
However, further evaluation is necessary in order to reli-
ably determine the effectiveness of this approach.

Attack on GDK Key Remapping. If an attacker has
additional knowledge about the attacked system or soft-
ware, more efficient and more powerful attacks are pos-
sible. Inspired by Tannous et al. [48] who performed a
timing attack on GDK key remapping, we demonstrate a
more powerful attack on the GDK library, by examining
how the remapping of keys influences the sets of iden-
tifiable keypresses. The remapping functionality uses a
large key-translation table gdk_keys_by_keyval which
spreads over more than four pages.

Hence, we repeated the Cache Template Attack on the
GDK library with a small modification. Before mea-
suring cache activity for an address during an event,
we remapped one key to the key code at that address,
retrieved from the gdk_keys_by_keyval table. We
found significant cache activity for some address and
key-remapping combinations.

When profiling each key remapping for d = 0.8 sec-
onds, we measured cache activity in 52 cache-line-sized
memory regions. In verification scans, we found 0.2-
2.5% false positive cache hits in these memory regions.
Thus, we have found another highly accurate side chan-
nel for specific key remappings. The results are shown in
the F-score graph in Figure 4. High values allow accu-
rate detection of keypresses if the key is remapped to this
address. Thus, we find more accurate results in terms of
timing in our automated attack than Tannous et al. [48].

We can only attack 8 addresses in the profiled mem-
ory area simultaneously, since it spreads over 4 pages
and we can only monitor 2 or 3 addresses without trig-
gering the prefetcher. Thus, we are able to remap any 8
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Figure 4: Excerpt of the F-score plot for the address
range of the gdk keys by keyval table. High values
reveal addresses that can be exploited.

keys to these addresses and reliably distinguish them. In
combination with the 3 addresses of our previous results,
we are able to distinguish at least 11 keys and observe
the timestamp of any keystroke in the system based on
cache accesses simultaneously.

It is also possible to remap more than one key to the
same key code. Hence, it is possible to distinguish be-
tween groups of keys. If we consider a lower-case pass-
word again, we can now reduce the entropy per character
from log2(26) = 4.7 to 1.4 bits.

We also profiled keypresses on capslock and shift. Al-
though we were able to log keypresses on both keys, we
did not consider upper case or mixed case input. The
exploitation phase automatically generates a log file con-
taining the information observed through the cache side
channel. However, interpretation of these results, such as
deriving a program state from a sequence of events (shift
key pressed or capslock active) and the influence of the
program state on subsequent events is up to analysis of
the results after the attack has been performed.

Tannous et al. [48] also described a login-detection
mechanism in order to avoid remapping keys unless the
user types in a password field. The spy program simply
watches /proc to see whether a login program is run-
ning. Then the keys are remapped. As soon as the user
pauses, the original key mappings are restored. The user
will then notice a password mismatch, but the next pass-
word entry will work as expected.

Our completely automated password keylogger is a
single binary which runs on the attacked system. It maps
the GDK library into its own address space and performs
the profiling phase. The profiling of each keypress re-
quires the simulation of the keypress into a hidden win-
dow. Furthermore, some events require the key remap-
ping we just described. Finally, the keylogger switches
into the exploit mode. As soon as a logon screen is de-
tected, for instance, after the screensaver was active or
the screen was locked, the keys are remapped and all key-
presses are logged into a file accessible by the attacker.
Thus, all steps from the deployment of the keylogger to
the final log file are fully automated.

5.2 Attacks on other Linux Applications

We also found leakage of accurate keypress timings in
other libraries, such as the ncurses library (i.e., off-
set 0xbf90 in libncurses.so), and in files used to
cache generated data related to user text input, such as
/usr/lib/locale/locale-archive. The latter one is
used to translate keypresses into the current locale. It is
a generated file which differs on each system and which
changes more frequently than the attacked libraries. In
consequence, it is not possible to perform an offline at-
tack, i.e., to use a pre-generated Cache Template in the
exploitation phase on another system. Still, our concept
of Cache Template Attacks allows us to perform an on-
line attack, as profiling is fully automated by generat-
ing keystrokes through libxdo or comparable libraries.
Thus, keystroke side channels are found within a few sec-
onds of profiling. All keypress-timing side channels we
found have a high accuracy and a timing deviation of less
than 1 microsecond to the actual keypress.

In order to demonstrate Cache Template Attacks on a
low-frequency event which is only indirectly connected
to keypresses, we attacked sshd, trying to detect when
input is sent over an active ssh connection. The received
characters are unrelated to the local user input. When
profiling for a duration of d = 0.8 seconds per address,
we found 428 addresses showing cache activity when
a character was received. We verified these results for
some addresses manually. None of these checked ad-
dresses showed false positive hits within a verification
period of 60 seconds. Thus, by exploiting the resulting
Cache Template matrix, we are able to gain accurate tim-
ings for the transmitted characters (significantly less than
1 microsecond deviation to the transmission of the char-
acter). These timings can be used to derive the transmit-
ted letters as shown by Zhang et al. [56].

5.3 Attack on Windows User Interfaces

We also performed Cache Template Attacks on Win-
dows applications. The attack works on Windows using
MinGW identically to Linux. Even the implementation
is the same, except for the keystroke simulation which
is now performed using the Windows API instead of the
libxdo library, and the file under attack is mapped using
LoadLibrary instead of mmap. We performed our attack
on Windows 7 and Windows 8.1 systems with the same
results on three different platforms, namely Intel Core
2 Duo, Intel i5 Sandy Bridge, and Intel i5 Ivy Bridge.
As in the attacks on Linux user interfaces, address space
layout randomization has been activated during both pro-
filing and exploitation phase.

In an automated attack, we found cache activity upon
keypresses in different libraries with reasonable accu-

10



USENIX Association  24th USENIX Security Symposium 907

racy. For instance, the Windows 7 common control li-
brary comctl32.dll can be used to detect keypresses
on different addresses. Probing 0xc5c40 results in cache
hits on every keypress and mouse click within text fields
accurately. Running the generated keypress logger in a
verification period of 60 seconds with keyboard input by
a real user, we found only a single false positive event
detection based on this address. Address 0xc6c00 reacts
only on keypresses and not on mouse clicks, but yields
more false positive cache hits in general. Again, we can
apply the attack proposed by Zhang et al. [56] to recover
typed words from inter-keystroke timings.

We did not disassemble the shared library and there-
fore do not know which function or data accesses cause
the cache hit. The addresses were found by starting the
Cache Template Attack with the same parameters as on
Linux, but on a Windows shared library instead of a
Linux shared library. As modern operating systems like
Windows 7 and Windows 8.1 employ an immense num-
ber of shared libraries, we profiled only a few of these
libraries. Hence, further investigations might even re-
veal addresses for a more accurate identification of key-
presses.

5.4 Attack on a T-table-based AES

Cache attacks have been shown to enable powerful at-
tacks against cryptographic implementations. Thus, ap-
propriate countermeasures have already been suggested
for the case of AES [15, 25, 30, 43]. Nevertheless, in or-
der to compare the presented approach of Cache Tem-
plate Attacks to related attacks, we launched an ef-
ficient and automated access-driven attack against the
AES T-table implementation of OpenSSL 1.0.2, which
is known to be insecure and susceptible to cache attacks
[2, 4, 5, 16, 21, 22, 39, 53]. Recall that the T-tables are ac-
cessed according to the plaintext p and the secret key k,
i.e., Tj[pi ⊕ ki] with i ≡ j mod 4 and 0 ≤ i < 16, dur-
ing the first round of the AES encryption. For the sake of
brevity, we omit the full details of an access-driven cache
attack against AES and refer the interested reader to the
work of Osvik et al. [39, 49].

Attack of Encryption Events. In a first step, we pro-
filed the two events “no encryption” and “encryption
with random key and random plaintext”. We profiled
each cache-line-aligned address in the OpenSSL library
during 100 encryptions. On our test system, one encryp-
tion takes around 320 cycles, which is very fast compared
to a latency of at least 200 cycles caused by a single cache
miss. In order to make the results more deterministically
reproducible, we measure whether a cache line was used
only after the encryption has finished. Thus, the profiling

phase does not run in parallel and only one cache hit or
miss is measured per triggered event.

This profiling step takes less than 200 seconds. We
detected cache activity on 0.2%-0.3% of the addresses.
Only 82 addresses showed a significant difference in
cache activity depending on the event. For 18 of these
addresses, the cache-hit ratio was 100% for the encryp-
tion event. Thus, our generated spy tool is able to accu-
rately detect whenever an encryption is performed.

For the remaining 64 addresses the cache-hit ratio was
around 92% for the encryption event. Thus, not each of
these addresses is accessed in every encryption, depend-
ing on key and plaintext. Since we attack a T-table-based
AES implementation, we know that these 64 addresses
must be the T-tables, which occupy 4 KB respectively 64
cache lines. Although this information is not used in the
first generated spy tool, it encourages performing a sec-
ond attack to target specific key-byte values.

Attack on Specific Key-Byte Values. Exploiting the
knowledge that we attack a T-table implementation, we
enhance the attack by profiling over different key-byte
values for a fixed plaintext, i.e., the set of events consists
of the different key-byte values. Our attack remains fully
automated, as we change only the values with which the
encryption is performed. The result is again a log file
containing the accurate timestamp of each event moni-
tored. The interpretation of the log file, of course, in-
volves manual work and is specific to the targeted events,
i.e., key bytes in this case.

For each key byte ki, we profile only the upper 4 bits of
ki as the lower 4 bits cannot be distinguished because of
the cache-line size of 64 bytes. This means that we need
to profile only 16 addresses for each key byte ki. Fur-
thermore, on average 92% of these addresses are already
in the cache and the Reload step of the Flush+Reload at-
tack is unlikely to trigger the prefetcher. Thus, we can
probe all addresses after a single encryption. Two pro-
files for different values of k0 are shown in Figure 5. The
two traces were generated using 1000 encryptions per
key byte and address to show the pattern more clearly.
According to Osvik et al. [39] and Spreitzer et al. [46]
these plots (or patterns) reveal at least the upper 4 bits of
a key byte and, hence, attacking the AES T-table imple-
mentation works as expected. In our case, experiments
showed that 1 to 10 encryptions per key byte are enough
to infer these upper 4 bits correctly.

In a T-table-based AES implementation, the index of
the T-table is determined by pi ⊕ ki. Therefore, the same
profiles can be generated by iterating over the different
plaintext byte values while encrypting with a fixed key.
Osvik et al. [39] show a similar plot, generated using the
Evict+Time attack. However, in our attack the profiles
are aggregated into the Cache Template matrix, as de-
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Figure 5: Excerpt of the Cache Template (address range
of the first T-table). The plot is transposed to match [39].
In the left trace k0 = 0x00, in the right trace k0 = 0x51.

scribed in Section 3.1.
In the exploitation phase, the automatically generated

spy tool monitors cache hits on the addresses from the
Cache Template in order to determine secret key-byte
values. We perform encryptions using chosen plaintexts.
We attack the 16 key bytes ki sequentially. In each step
i = 0, . . . ,15, the plaintext is random, except for the up-
per 4 bits of pi, which are fixed to the same chosen value
as in the profiling phase. Hence, the encryption is per-
formed over a chosen plaintext. The spy tool triggers an
encryption, detects when the encryption actually happens
and after each encryption, reports the set of possible val-
ues for the upper 4 bits of key byte ki. As soon as only
one candidate for the upper 4 bits of key byte ki remains,
we continue with the next key byte.

Using Cache Template Attacks, we are able to infer
64 bits of the secret key with only 16–160 encryptions in
a chosen-plaintext attack. Compared to the work of Os-
vik et al. [39] who require several hundred or thousands
encryptions (depending on the measurement approach)
targeting the L1 cache, and the work of Spreitzer and
Plos [46] who require millions of encryptions targeting
the L1 cache on the ARM platform, we clearly observe a
significant performance improvement. More recent work
shows that full key recovery is possible with less than
30000 encryptions [17] using Flush+Reload.

The benefit of our approach, compared to existing
cache attacks against AES, is that our attack is fully auto-
mated. Once the binary is deployed on the target system,
it performs both profiling and exploitation phase auto-
matically and finally returns a log file containing the key
byte candidates to the attacker. Moreover, we do not need
prior knowledge of the attacked system or the attacked
executable or library.

AES T-table implementations are already known to
be insecure and countermeasures have already been in-
tegrated, e.g., in the AES implementation of OpenSSL.
Performing our attack on a non-T-table implementation
(e.g., by employing AES-NI instructions) did not show
key dependent information leakage, but still, we can ac-
curately determine the start and end of the encryption
through the cache behavior. However, we leave it as an
interesting open issue to employ the presented approach

of cache template attacks for further investigations of
vulnerabilities in already protected implementations.

Trace-Driven Attack on AES. When attacking an in-
secure implementation of a cryptographic algorithm, an
attacker can often gain significantly more information if
it is possible to perform measurements during the en-
cryption [2, 13], i.e., in case the exact trace of cache hits
and cache misses can be observed. Even if we cannot in-
crease the frequency of the Flush+Reload attack, we are
able to slow down the encryption by constantly flush-
ing the 18 addresses which showed cache activity in ev-
ery profile. We managed to increase the encryption time
from 320 cycles to 16000–20000 cycles. Thus, a more
fine-grained trace of cache hits and cache misses can be
obtained which might even allow the implementation of
trace-driven cache attacks purely in software.

6 Countermeasures

We have demonstrated in Section 5 that Cache Template
Attacks are applicable to real-world applications without
knowledge of the system or the application. Therefore,
we emphasize the need for research on effective coun-
termeasures against cache attacks. In Section 6.1, we
discuss several countermeasures which have been pro-
posed so far. Subsequently, in Section 6.2, we discuss
how Cache Template Attacks can be employed by de-
velopers to detect and eliminate cache-based information
leakage and also by users to detect and prevent cache
attacks running actively on a system. Finally, in Sec-
tion 6.3, we propose changes to the prefetcher to build a
powerful countermeasure against cache attacks.

6.1 Discussion of Countermeasures
Removal of the clflush Instruction is not Effective.
The restriction of the clflush instruction has been sug-
gested as a possible countermeasure against cache at-
tacks in [54, 55, 58]. However, by adapting our spy tool
to evict the cache line without using the clflush in-
struction (Evict+Reload instead of Flush+Reload), we
demonstrate that this countermeasure is not effective at
all. Thereby, we show that cache attacks can be launched
successfully even without the clflush instruction.

Instead of using the clflush instruction, the eviction
is done by accessing physically congruent addresses in
a large array which is placed in large pages by the op-
erating system. In order to compute physically congru-
ent addresses we need to determine the lowest 18 bits of
the physical address to attack, which can then be used to
evict specific cache sets.

The actual mapping of virtual to physical addresses
can be retrieved from /proc/self/pagemap. Even if
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such a mapping is not available, methods to find con-
gruent addresses have been developed—simultaneously
to this work—by Irazoqui et al. [20] by exploiting large
pages, Oren et al. [38] by exploiting timing differences
in JavaScript, and Liu et al. [32] by exploiting timing
differences in native code.

The removal of the clflush instruction has also been
discussed as a countermeasure to protect against DRAM
disturbance errors (denoted as rowhammer bug). These
disturbance errors have been studied by Kim et al. [27]
and, later on, exploited by Seaborn et al. [45] to gain ker-
nel privileges. Several researchers have already claimed
to be able to exploit the rowhammer bug without the
clflush instruction [14], This can be done by exploit-
ing the Sandy Bridge cache mapping function, which has
been reverse engineered by Hund et al. [18], to find con-
gruent addresses.

Our eviction strategy only uses the lowest 18 bits and
therefore, we need more than 12 accesses to evict a cache
line. With 48 accessed addresses, we measured an evic-
tion rate close to 100%. For performance reasons we
use write accesses, as the CPU does not have to wait
for data fetches from the physical memory. In contrast
to the clflush instruction, which takes only 41 cycles,
our eviction function takes 325 cycles. This is still fast
enough for most Flush+Reload attacks.

While clflush always evicts the cache line, our evic-
tion rate is only near 100%. Therefore, false positive
cache hits occur if the line has not been evicted. Us-
ing Flush+Reload, there is a rather low probability for a
memory access on the monitored address to happen ex-
actly between the Reload step and the point where the
clflush takes effect. This probability is much higher
in the case of Evict+Reload, as the eviction step takes 8
times longer than the clflush instruction.

We compare the accuracy of Evict+Reload to
Flush+Reload using previously found cache vulnerabil-
ities. For instance, as described in Section 5.1, probing
address 0x7c800 of libgdk-3.so.0.1000.8 allows us
to detect keypresses on key n. The Flush+Reload spy
tool detects on average 98% of the keypresses on key n

with a 2% false positive rate (keypresses on other keys).
Using Evict+Reload, we still detect 90% of the key-
presses on key n with a 5% false positive rate. This
clearly shows that the restriction of clflush is not suf-
ficient to prevent this type of cache attack.

Disable Cache-Line Sharing. One prerequisite of
Flush+Reload attacks is shared memory. In cloud sce-
narios, shared memory across virtual machine borders is
established through page deduplication. Page dedupli-
cation between virtual machines is commonly disabled
in order to prevent more coarse-grained attacks like fin-
gerprinting operating systems and files [40, 47] as well

as Flush+Reload. Still, as shown by Irazoqui et al. [20],
it is possible to use Prime+Probe as a fallback. How-
ever, attacking low-frequency events like keypresses be-
comes infeasible, because Prime+Probe is significantly
more susceptible to noise.

Flush+Reload can also be prevented on a system by
preventing cache-line sharing, i.e., by disabling shared
memory. Unfortunately, operating systems make heavy
use of shared memory, and without modifying the operat-
ing system it is not possible for a user program to prevent
its own memory from being shared with an attacker, even
in the case of static linkage as discussed in Section 2.2.

With operating-system modifications, it would be pos-
sible to disable shared memory in all cases where a vic-
tim program cannot prevent an attack, i.e., shared pro-
gram binaries, shared libraries, shared generated files
(for instance, locale-archive). Furthermore, it would
be possible to provide a system call to user programs to
mark memory as “do-not-share.”

A hardware-based approach is to change cache tags.
Virtually tagged caches are either invalidated on context
switches or the virtual tag is combined with an address
space identifier. Therefore, shared memory is not shared
in the cache. Thus, Flush+Reload is not possible on vir-
tually tagged caches.

We emphasize that as long as shared cache lines are
available to an attacker, Flush+Reload or Evict+Reload
cannot be prevented completely.

Cache Set Associativity. Prime+Probe, Evict+Time
and Evict+Reload exploit set-associative caches. In all
three cases, it is necessary to fill all ways of a cache set,
either for eviction or for the detection of evicted cache
sets. Based on which cache set was reloaded (respec-
tively evicted), secret information is deduced. Fully as-
sociative caches have better security properties, as such
information deduction is not possible and cache eviction
can only be enforced by filling the whole cache. How-
ever, a timing attack would still be possible, e.g., due
to internal cache collisions [5] leading to different exe-
cution times. As fully associative caches are impractical
for larger caches, new cache architectures have been pro-
posed to provide similar security properties [29, 51, 52].
However, even fully associative caches only prevent at-
tacks which do not exploit cache-line sharing. Thus, a
combination of countermeasures is necessary to prevent
most types of cache attacks.

6.2 Proactive Prevention of Cache Attacks
Instrumenting cache attacks to detect co-residency [57]
with another virtual machine on the same physical ma-
chine, or even to detect cache attacks [58] and cache-
based side channels in general [11] has already been pro-
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posed in the past. Moreover, Brumley and Hakala [7]
even suggested that developers should use their attack
technique to detect and eliminate cache vulnerabilities
in their programs. Inspired by these works, we present
defense mechanisms against cache attacks which can be
improved by using Cache Template Attacks.

Detect Cache Vulnerabilities as a Developer. Similar
to Brumley and Hakala [7], we propose the employment
of Cache Template Attacks to find cache-based vulner-
abilities automatically. Compared to [7], Cache Tem-
plate Attacks allow developers to detect potential cache
side channels for specifically chosen events automati-
cally, which can subsequently be fixed by the developer.
A developer only needs to select the targeted events (e.g.,
keystrokes, window switches, or encryptions) and to trig-
ger these events automatically during the profiling phase,
which significantly eases the evaluation of cache side
channels. Ultimately, our approach even allows devel-
opers to find such cache vulnerabilities in third party li-
braries.

Detect and Impede Ongoing Attacks as a User.
Zhang et al. [58] stated the possibility to detect cache
attacks by performing a cache attack on one of the vul-
nerable addresses or cache sets. We propose running a
Cache Template Attack as a system service to detect code
and data under attack. If Flush+Reload prevention is suf-
ficient, we simply disable page sharing for all pages with
cache lines under attack. Otherwise, we disable caching
for these pages as proposed by Aciiçmez et al. [1] and,
thus, prevent all cache attacks. Only the performance for
critical code and data parts is reduced, as the cache is
only disabled for specific pages in virtual memory.

Furthermore, cache attacks can be impeded by per-
forming additional memory accesses, unrelated to the se-
cret information, or random cache flushes. Such obfus-
cation methods on the attacker’s measurements have al-
ready been proposed by Zhang et al. [59]. The idea of the
proposed obfuscation technique is to generate random
memory accesses, denoted as cache cleansing. How-
ever, it does not address the shared last-level cache. In
contrast, Cache Template Attacks can be used to iden-
tify possible cache-based information leaks and then to
specifically add noise to these specific locations by ac-
cessing or flushing the corresponding cache lines.

6.3 Enhancing the Prefetcher

During our experiments, we found that the prefetcher in-
fluences the cache activity of certain access patterns dur-
ing cache attacks, especially due to the spatial locality
of addresses, as also observed in other work [16, 39, 54].

However, we want to discuss the prefetcher in more de-
tail as it is crucial for the success of a cache attack.

Although the profiling phase of Cache Template At-
tacks is not restricted by the prefetcher, the spy pro-
gram performing the exploitation phase might be unable
to probe all leaking addresses simultaneously. For in-
stance, we found 255 addresses leaking side-channel in-
formation about keypresses in the GDK library but we
were only able to probe 8 of them simultaneously in the
exploitation phase, because the prefetcher loads multi-
ple cache lines in advance and, thus, generates numerous
false positive cache hits.

According to the Intel 64 and IA-32 Architectures Op-
timization Reference Manual [19], the prefetcher loads
multiple memory addresses in advance if “two cache
misses occur in the last level cache” and the correspond-
ing memory accesses are within a specific range (the so-
called trigger distance). Depending on the CPU model
this range is either 256 or 512 bytes, but does not ex-
ceed a page boundary of 4 KB. Due to this, we are able
to probe at least 2 addresses per page.

We suggest increasing the trigger distance of the
prefetcher beyond the 4 KB page boundary if the corre-
sponding page already exists in the translation lookaside
buffer. The granularity of the attack will then be too high
for many practical targets, especially attacks on executed
instructions will then be prevented.

As cache attacks constantly reaccess specific memory
locations, another suggestion is to adapt the prefetcher
to take temporal spatiality into consideration. If the
prefetcher were to prefetch data based on that temporal
distance, most existing attacks would be prevented.

Just as we did in Section 4, an attacker might still be
able to establish a communication channel targeted to
circumvent the prefetcher. However, the presented coun-
termeasures would prevent most cache attacks targeting
real-world applications.

7 Conclusion

In this paper, we introduced Cache Template Attacks,
a novel technique to find and exploit cache-based side
channels easily. Although specific knowledge of the at-
tacked machine and executed programs or libraries helps,
it is not required for a successful attack. The attack is
performed on closed-source and open-source binaries in
exactly the same way.

We studied various applications of Cache Template
Attacks. Our results show that an attacker is able to in-
fer highly accurate keystroke timings on Linux as well as
Windows. For Linux distributions we even demonstrated
a fully automatic keylogger that significantly reduces the
entropy of passwords. Hence, we conclude that cache-
based side-channel attacks are an even greater threat for
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today’s computer architectures than assumed so far. In
fact, even sensitive user input, like passwords, cannot be
considered secure on machines employing CPU caches.

We argue that fundamental concepts of computer ar-
chitectures and operating systems enable the automatic
exploitation of cache-based vulnerabilities. We observed
that many of the existing countermeasures do not pre-
vent such attacks as expected. Still, the combination of
multiple countermeasures can effectively mitigate cache
attacks. However, the fact that cache attacks can be
launched automatically marks a change of perspective,
from a more academic interest towards practical attacks,
which can be launched by less sophisticated attackers.
This shift emphasizes the need to develop and integrate
effective countermeasures immediately. In particular, it
is not sufficient to protect only specific cryptographic al-
gorithms like AES. More general countermeasures will
be necessary to counter the threat of automated cache at-
tacks.
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Abstract
Public infrastructure-as-a-service clouds, such as Amazon
EC2, Google Compute Engine (GCE) and Microsoft Azure
allow clients to run virtual machines (VMs) on shared phys-
ical infrastructure. This practice of multi-tenancy brings
economies of scale, but also introduces the risk of sharing a
physical server with an arbitrary and potentially malicious
VM. Past works have demonstrated how to place a VM
alongside a target victim (co-location) in early-generation
clouds and how to extract secret information via side-
channels. Although there have been numerous works on
side-channel attacks, there have been no studies on place-
ment vulnerabilities in public clouds since the adoption
of stronger isolation technologies such as Virtual Private
Clouds (VPCs).

We investigate this problem of placement vulnerabili-
ties and quantitatively evaluate three popular public clouds
for their susceptibility to co-location attacks. We find that
adoption of new technologies (e.g., VPC) makes many prior
attacks, such as cloud cartography, ineffective. We find new
ways to reliably test for co-location across Amazon EC2,
Google GCE, and Microsoft Azure. We also find ways to
detect co-location with victim web servers in a multi-tiered
cloud application located behind a load balancer.

We use our new co-residence tests and multiple customer
accounts to launch VM instances under different strategies
that seek to maximize the likelihood of co-residency.
We find that it is much easier (10× higher success rate)
and cheaper (up to $114 less) to achieve co-location in
these three clouds when compared to a secure reference
placement policy.

Keywords: co-location detection, multi-tenancy, cloud se-
curity

1 Introduction

Public cloud computing offers easy access to relatively
cheap compute and storage resources. Cloud providers are

∗Work primarily done while at the University of Wisconsin-Madison.

able to sustain this cost-effective solution through multi-
tenancy, where the infrastructure is shared between com-
putations run by arbitrary customers over the Internet. This
increases utilization compared to dedicated infrastructure,
allowing lower prices.

However, this practice of multi-tenancy also enables var-
ious security attacks in the public cloud. Should an ad-
versary be able to launch a virtual machine on the same
physical host as a victim, making the two VMs co-resident
(sometimes the term co-located is used), there exist attacks
that break the logical isolation provided by virtualization to
breach confidentiality [29, 32, 33, 35, 37, 38] or degrade the
performance [30, 39] of the victim. Perhaps most notable
are the side-channel attacks that steal private keys across
the virtual-machine isolation boundary by cleverly moni-
toring shared resource usage [35, 37, 38].

Less understood is the ability of adversaries to arrange
for co-residency in the first place. In general, doing so
consists of using a launch strategy together with a mech-
anism for co-residency detection. The only prior work
on obtaining co-residency [29] showed simple network-
topology-based co-residency checks along with low-cost
launch strategies that obtain a high probability of achieving
co-residency compared to simply launching as many VM
instances as possible. When such advantageous strategies
exist, we say the cloud suffers from a placement vulner-
ability. Since then, Amazon has made several changes to
their architecture, including removing the ability to do the
simplest co-residency check. Whether placement vulnera-
bilities exist in other public clouds has, to the best of our
knowledge, never been explored.

In this work, we provide a framework to systematically
evaluate public clouds for placement vulnerabilities and
show that three popular public cloud providers may be vul-
nerable to co-location attacks. More specifically, we set out
to answer four questions:

• Can co-residency be effectively detected in modern
public clouds?

• Are known launch strategies [29] still effective in
modern clouds?
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• Are there any new exploitable placement vulnerabili-
ties?

• Can we quantify the money and time required of an
adversary to achieve a certain probability of success?

We start by exploring the efficacy of prior co-residency
tests (§ 4) and develop more reliable tests for our place-
ment study (§ 4.1). We also find a novel test to detect co-
residency with VMs uncontrolled by the attacker by just us-
ing their public interface even when they are behind a load
balancer (§ 4.3).

We use multiple customer accounts across three popu-
lar cloud providers, launch VM instances under different
scenarios that may affect the placement algorithm, and test
for co-residency between all launched instances. We ana-
lyze three popular cloud providers, Amazon Elastic Com-
pute Cloud (EC2) [2], Google Compute Engine (GCE) [6]
and Microsoft Azure (Azure) [15], for vulnerabilities in
their placement algorithm. After exhaustive experimenta-
tion with each of these cloud providers and at least 190 runs
per cloud provider, we show that an attacker can still suc-
cessfully arrange for co-location (§ 5). We find new launch
strategies in these three clouds that obtain co-location faster
(10x higher success rate) and cheaper (up to $114 less)
when compared to a secure reference placement policy.

Next, we start by giving some background on public
clouds (§ 2) and then define our threat model (§ 3). We con-
clude the paper with related and future work (§ 6 and § 7,
respectively).

2 Background

Public clouds. Infrastructure-as-a-service (IaaS) public
clouds, such as Amazon EC2, Google Compute Engine and
Microsoft Azure, provide a management interface for cus-
tomers to launch and terminate VM instances with a user-
specified configuration. Typically, users register with the
cloud provider for an account and use the cloud interface
to specify VM configuration, which includes instance type,
disk image, data center or region to host the VMs, and then
launch VM instances. In addition, public clouds also pro-
vide many higher-level services that monitor load and auto-
matically launch or terminate instances based on the work-
load [4,8,13]. These services internally use the same mech-
anisms as users to configure, launch and terminate VMs.

The provider’s VM launch service receives from a client
a desired set of parameters describing the configuration of
the VM. The service then allocates resources for the new
VM; this process is called VM provisioning. We are most
interested in the portion of VM provisioning that selects
the physical host to run a VM, which we call the VM place-
ment algorithms. The resulting VM-to-host mapping we
call the VM placement. The placement for a specific virtual
machine may depend on many factors: the load on each
machine, the number of machines in the data center, the
number of concurrent VM launch requests, etc.

Type Variable
# of customers

# of instances launched per customer

Placement Instance type

Parameters Data Center (DC) or Region

Time launched

Cloud provider

Time of the day

Environment Days of the week

Variable Number of in-use VMs

Number of machines in DC

Figure 1: List of placement variables.

While cloud providers do not generally publish their VM
placement algorithms, there are several variables under the
control of the user that could affect the VM placement, such
as time-of-day, requested data center, and number of in-
stances. A list of some notable parameters are given in
Figure 1. By controlling these variables, an adversary can
partially influence the placement of VMs on physical ma-
chines that may also host a target set of VMs. We call these
variables placement variables and the set of values for these
variables form a launch strategy. An example launch strat-
egy is to launch 20 instances 10 minutes after triggering an
auto-scale event on a victim application. This is, in fact, a
launch strategy suggested by prior work [29].

Placement policies. VM placement algorithms used in
public clouds often aim to increase data center efficiency,
quality of service, or both by realizing some placement pol-
icy. For instance, a policy that aims to increase data center
utilization may pack launched VMs on a single machine.
Similarly policies that optimize the time to provision a VM,
which involves fetching an image over the network to the
physical machine and booting, may choose the last machine
that used the same VM image, as it may already have the
VM image cached on local disks. Policies may vary across
cloud providers, and even within a provider.

Public cloud placement policies, although undocu-
mented, often exhibit behavior that is externally observable.
One example is parallel placement locality [29], in which
VMs launched from different accounts within a short time
window are often placed on the same physical machine.
Two instances launched sequentially, where the first in-
stance is terminated before the launch of the second one, are
often placed on the same physical machine, a phenomenon
called sequential placement locality [29].

These placement behaviors are artifacts of the two place-
ment policies described earlier, respectively. Other exam-
ples of policies and resulting behaviors exist as well. VMs
launched from the same accounts may either be packed
on the same physical machine to maximize locality (and
hence co-resident with themselves) or striped across differ-
ent physical machines to maximize redundancy (and hence
never co-resident with themselves). In the course of normal
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usage, such behaviors are unlikely to be noticed, but they
can be measured with careful experiments.

Launch strategies. An adversary can exploit placement
behaviors to increase the likelihood of co-locating with tar-
get victims. As pointed out by Ristenpart et al. [29], parallel
placement locality can be exploited by triggering a scale-up
event on target victim by increasing their load, which will
cause more victim VMs to launch. The adversary can then
simultaneously (or after a time lag) launch multiple VMs
some of which may be co-located with the newly launched
victim VM(s).

In this study, we develop a framework to systematically
evaluate public clouds against launch strategies and un-
cover previously unknown placement behaviors. We ap-
proach this study by (i) identifying a set of placement vari-
ables that characterize a VM, (ii) enumerating the most in-
teresting values for these variables, and (iii) quantifying the
cost of such a strategy, if it in fact exposes a co-residency
vulnerability. We repeat this for three major public cloud
providers: Amazon EC2, Google Compute Engine, and Mi-
crosoft Azure. Note that the goal of this study is not to re-
verse engineer the exact details of the placement policies,
but rather to identify launch strategies that can be exploited
by an adversary.

Co-residency detection. A key technique for understand-
ing placement vulnerabilities is detecting when VMs are
co-resident on the same physical machine (also termed co-
locate). In 2009, Ristenpart et al. [29] proposed several co-
residency detection techniques and used them to identify
several placement vulnerabilities in Amazon EC2. As co-
resident status is not reported directly by the cloud provider,
these detection methods are usually referred to as side-
channel based techniques, which can be further classified
into two categories: logical side-channels or performance
side-channels.

Logical side-channels: Logical side-channels allow infor-
mation leakage via logical resources that are observable to
a software program, e.g., IP addresses, timestamp counter
values. Particularly in Amazon EC2, each VM is assigned
two IP addresses, a public IP address for communication
over the Internet, and a private or internal IP address for
intra-datacenter communications. The EC2 cloud infras-
tructure allowed translation of public IP addresses to their
internal counterparts. This translation revealed the topol-
ogy of the internal data center network, which allowed a
remote adversary to map the entire public cloud infrastruc-
ture and determine, for example, the availability zone and
instance type of a victim. Furthermore, co-resident VMs
tended to have adjacent internal IP addresses.

Logical side-channels can also be established via shared
timestamp counters. In prior work, skew in timestamp
counters were used to fingerprint a physical machine [27],
although this technique has not yet been explored for co-
residency detection. Co-residency detection via shared

state like interrupt counts and process statistics reported in
procfs also come under this category, but are only appli-
cable to container-based platform-as-a-service clouds.

Performance side-channels: Performance side-channels
are created when performance variations due to resource
contention are observable. Such variations can be used as
an indicator of co-residency. For instance, network perfor-
mance has been used for detecting co-residence [29, 30].
This is because hypervisors often directly relay network
traffic between VMs on the same host, providing detectably
shorter round-trip times than between VMs on different
hosts.

Covert channels, as a special case of side-channels, can
be established between two VMs that are cooperating in or-
der to detect co-residency. For purposes of co-residency
detection, covert channels based on shared hardware re-
sources, such as last level caches (LLCs) or local storage
disks, can be exploited by one VM to detect performance
degradation caused by a co-resident VM. Covert channel
detection techniques require control over both VMs, and
are usually used in experimentation rather than in practical
attacks. We later refer to such approaches as cooperative
co-residency detection.

Placement study in PaaS. While we mainly studied
placement vulnerabilities in the context of IaaS, we also
experimented with Platform-as-a-Service (PaaS) clouds.
PaaS clouds offer elastic application hosting services. Un-
like IaaS where users are granted full control of a VM, PaaS
provides managed compute tasks (or instances) for the exe-
cution of hosted web applications, and allow multiple such
instances to share the same operating system. These clouds
use either process-level isolation via file system access con-
trols, or increasingly Linux-style containers (see [38] for a
more detailed description). As such, logical side-channels
alone are usually sufficient for co-residency detection pur-
poses. For instance, in PaaS clouds, co-resident instances
often share the same public IP address as the host machine.
This is because the host-to-instance network is often con-
figured using Network Address Translation (NAT) and each
instance is assigned a unique port under the host IP address
for incoming connections.

We found that many such logical side-channel-based co-
residency detection approaches worked on PaaS clouds,
even on those using containers. Specifically, we used both
system-level interrupt statistics via /proc/interrupts

and shared public IP addresses of the instances to detect
co-location in Heroku [10].

Our brief investigation of co-location attacks in Heroku
showed that naı̈ve strategies like scaling two PaaS web ap-
plications to 30 instances with a time interval of 5 min-
utes between them, resulted in co-location in 6 out of 10
attempts. Moreover, since the co-location detection was
simple and quick including the time taken for application
scaling, we were able to do these experiments free of cost.
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This result reinforces prior findings on PaaS co-location
attacks [38] and confirms the existence of cheap launch
strategies to achieve co-location and easy detection mecha-
nisms to verify it. We do not investigate PaaS clouds further
in the rest of this paper.

3 Threat Model

Co-residency attacks in public clouds, as mentioned ear-
lier, involve two steps: a launch strategy and co-residency
detection. We assume that the adversary has access to tools
to identify a set of target victims, and either knows vic-
tim VMs’ launch characteristics or can directly trigger their
launches. The latter is possible by increasing load in order
to cause the victim to scale up by launching more instances.
The focus of this study is to identify if there exists any
launch strategy that an adversary can devise to increase the
chance of co-residency with a set of targeted victim VMs.

In our threat model, we assume that the cloud provider
is trusted and the attacker has no affiliation of any form
with the cloud provider. This also means that the adversary
has no internal knowledge of the placement policies that
are responsible for the VM placements in the public cloud.
An adversary also has the same interface for launching and
terminated VMs as regular customers, and no other special
interfaces. Even though there may be per-account limits
on the number of VMs that a cloud provider imposes, an
adversary has access to an unlimited number of accounts
and hence has no limit on the number of VMs he could
launch at any given time.

No resource-limited cloud provider is a match to an ad-
versary with limitless resources and hence realistically we
assume that the adversary is resource-limited. For the same
reason, a cloud provider is vulnerable to a launch strategy
only when it is trivial or cost-effective for an adversary. As
such, we aim to (i) quantify the cost of executing a launch
strategy by an adversary, (ii) define a reference placement
policy with which the placement policies of real clouds can
be compared, and (iii) define metrics to quantify placement
vulnerability.

Cost of a launch strategy. Quantifying the cost of a
launch strategy is straightforward: it is the cost of launching
a number of VMs and running tests to detect co-residency
with one or more target victim VMs. To be precise, the cost
of a launch strategy S is given by CS = a∗P(atype)∗Td(v,a),
where a is the number of attacker VMs of type atype
launched to get co-located with one of the v victim VMs.
P(atype) is the price of running one VM of type atype for
a unit time. Td(a,v) is the time to detect (in billing units)
co-residency between all pairs of a attackers and v victim
VMs, excluding pairs within each group. For simplicity, we
assume that the attacker is running all instances till the last
co-residency check is completed.

Reference placement policy. In order to define placement
vulnerability, we need a yardstick to compare various place-

ment policies and the launch strategies that they may be vul-
nerable to. To aid this purpose, we define a simple reference
placement policy that has good security properties against
co-residency attacks and use it to gauge the placement poli-
cies used in public clouds. Let there be N machines in a
data center and let each machine have unlimited capacity.
Given a set of unordered VM launch requests, the mapping
of each VM to a machine follows a uniform random distri-
bution. Let there be v victim VMs assigned to v unique ma-
chines among N, where v � N. The probability of at least
one collision (i.e. co-residency) under the random place-
ment policy and the above attack scenario when attacker
launches a instances is given by 1−

(
1− v/N

)a. We call
this probability the reference probability1. Recall that for
calculating cost of a launch strategy under this reference
policy, we also need to define the price function, P(vmtype).
For simplicity, we use the minimum price offered by any
cloud provider as the price for the compute resource under
the reference policy. For example, at the time of this study,
Amazon EC2 offered t2.small instances at $0.026 per hour
of instance activity, which was the cheapest price across all
three clouds considered in this study.

Note that the reference placement policy makes several
simplifying assumptions, but these only benefit the attacker.
This is conservative as we will compare our experimental
results to the best possible launch strategy under the ref-
erence policy. For instance, the assumption on unlimited
capacity of the servers only benefits the attacker as it never
limits the number of victim VMs an attacker could poten-
tially co-locate with. We use a conservative value of 1000
for N, which is at least an order-of-magnitude less than the
number of servers (50,000) in the smallest reported Ama-
zon EC2 data centers [5]. Similarly, the price function of
this placement policy also favors an attacker as it provides
the cheapest price possible in the market even though in re-
ality a secure placement policy may demand a higher price.
Hence, it would be troubling if the state-of-the-art place-
ment policies used in public clouds does not measure well
even against such a conservative reference placement pol-
icy.

Placement Vulnerability. Putting it all together, we de-
fine two metrics to gauge any launch strategy against a
placement policy: (i) normalized success rate, and (ii) cost-
benefit. The normalized success rate is the success rate of
the launch strategy in the cloud under test normalized to the
success rate of the same strategy under the reference place-
ment policy. The cost-benefit of a strategy is the additional
cost that is incurred by the adversary in the reference place-
ment policy to achieve the same success rate as the strat-
egy in the placement policy under test. We define that a
placement policy has a placement vulnerability if and only
if there exists a launch strategy with a normalized success
rate that is greater than 1.

1This probability event follows a hypergeometric distribution.
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Figure 2: Histogram of minimum network round trip times between pairs of VMs. The frequency is represented as a fraction of total
number of pairs in each category. The figure does not show the tail of the histogram.

Note that the normalized success rate quantifies how easy
it is to get co-location. On the other hand, the cost benefit
metric helps to quantify how cheap it is to get co-location
compared to a more secure placement policy. These metrics
can be used to compare launch strategies under different
placement policies, where a higher value for any of these
metrics indicate that the placement policy is relatively more
vulnerable to that launch strategy. An ideal placement pol-
icy should aim to reduce both the success rate and the cost
benefit of any strategy.

4 Detecting Co-Residence

An essential prerequisite for the placement vulnerability
study is access to a co-residency detection technique that
identifies whether two VMs are resident on the same phys-
ical machine in a third-party public cloud.

Challenges in modern clouds. Applying the detection
techniques mentioned in Section 2 is no longer feasible in
modern clouds. In part due to the vulnerability disclo-
sure by Ristenpart et al. [29], modern public clouds have
adopted new technologies that enhance the isolation be-
tween cloud tenants and thwart known co-residence detec-
tion techniques. In the network layer, virtual private clouds
(VPCs) have been broadly employed for data center man-
agement [17,20]. With VPCs, internal IP addresses are pri-
vate to a cloud tenant, and can no longer be used for cloud
cartography. Although EC2 allowed this in older genera-
tion instances (called EC2-classic), this is no longer pos-
sible under Amazon VPC setting. In addition, VPCs re-
quire communication between tenants to use public IP ad-
dresses for communication. As shown in Figure 2, the net-
work timing test is also defeated, as using public IP ad-
dresses seems to involve routing in the data center network
rather than short-circuiting through the hypervisor. Here,
the ground-truth of co-residency is detected using memory-
based covert-channel (described later in this section). No-
tice that there is no clear distinction between the frequency
distribution of the network round trip times of co-resident
and non-coresident pairs on all three clouds.

In the system layer, persistent storage using local disks

is no longer the default. For instance, many Amazon EC2
instance types do not support local storage [1]; GCE and
Azure provide only local Solid State Drives (SSD) [7, 14],
which are less susceptible to detectable delays from long
seeks. In addition, covert channels based on last-level
caches [29, 30, 33, 36] are less reliable in modern clouds
that use multiple CPU packages. Two VMs sharing the
same machine may not share LLCs to establish the covert
channel. Hence, these LLC-based covert-channels can only
capture a subset of co-resident instances.

As a result of these technology changes, none of the prior
techniques for detecting co-residency reliably work in mod-
ern clouds, compelling us to develop new approaches for
our study.

4.1 Co-residency Tests

We describe in this subsection a pair of tools for co-
residency tests, with the following design goals:

• Applicable to a variety of heterogeneous software and
hardware stacks used in public clouds.

• Detect co-residency with high confidence: the false de-
tection rate should be low even in the presence of back-
ground noise from other neighboring VMs.

• Detect co-residency fast enough to facilitate experimen-
tation among large sets of VMs.

We chose a performance covert-channel based detection
technique that exploits shared hardware resources, as this
type of covert-channels are often hard to remove and most
clouds are very likely to be vulnerable to it.

A covert-channel consists of a sender and a receiver. The
sender creates contention for a shared resource and uses it
to signal another tenant that potentially share the same re-
source. The receiver, on the other hand, senses this con-
tention by periodically measuring the performance of that
shared resource. A significant performance degradation
measured at the receiver results in a successful detection of
a sender’s signal. Here the reliability of the covert-channel
is highly dependent on the choice of the shared resource and
the level of contention created by the sender. The sender is
the key component of the co-residency detection techniques
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we developed as part of this study.

// allocate memory multiples of 64 bits
char_ptr = allocate_memory((N+1)*8)
//move half word up
unaligned_addr = char_ptr + 2
loop forever:

loop i from (1..N):
atomic_op(unaligned_addr + i, some_value)

end loop

Figure 3: Memory-locking – Sender.

Memory-locking sender. Modern x86 processors sup-
port atomic memory operations, such as XADD for atomic
addition, and maintain their atomicity using cache coher-
ence protocols. However, when a locked operation extends
across a cache-line boundary, the processor may lock the
memory bus temporarily [32]. This locking of the bus can
be detected as it slows down other uses of the bus, such
as fetching data from DRAM. Hence, when used properly,
it provides a timing covert channel to send a signal to an-
other VM. Unlike cache-based covert channels, this tech-
nique works regardless of whether VMs share a CPU core
or package.

We developed a sender exploiting this shared memory-
bus covert-channel. The psuedocode for the sender is
shown in Figure 3. The sender creates a memory buffer and
uses pointer arithmetic to force atomic operations on un-
aligned memory addresses. This indirectly locks the mem-
ory bus even on all modern processor architectures [32].

size = LLC_size * (LLC_ways +1)
stride = LLC_sets * cacheline_sz)
buffer = alloc_ptr_chasing_buff(size, stride)
loop sample from (1..10): //number of samples

start_rdtsc = rdtsc()
loop probes from (1..10000):

probe(buffer); //always hits memory
end loop
time_taken[sample] = (rdtsc() - start_rdtsc)

end loop

Figure 4: Memory-probing – Receiver.

Receivers. With the aforementioned memory-locking
sender, there are several ways to sense the memory-locking
contention induced by the sender in another co-resident ten-
ant instance. All the receivers measure the memory band-
width of the shared system. We present two types of re-
ceivers that we used in this study that works on heteroge-
neous hardware configurations.

Memory-probing receiver uses carefully crafted memory
requests that always miss in the cache hierarchy and al-
ways hit memory. Constricting the data accesses of the re-
ceiver into a single LLC set ensures this. In order to evade
hardware prefetching, we use a pointer-chasing buffer to
randomly access a list of memory addresses (pseudocode
shown in Figure 4). The time needed to complete a fixed
number of probes (e.g., 10,000) provides a signal of co-
residence: when the sender is performing locked opera-
tions, loads from memory proceed slowly.

Memory-locking receiver is similar to the sender but mea-
sures the number of unaligned atomic operations that could

be completed per unit time. Although it also measures the
memory bandwidth, unlike the memory-probing receiver,
it works even when the cache architecture of the machine
is unknown.

The sender along with these two receivers form our
two novel co-residency detection methods that we use in
this study: memory-probing test and memory-locking test
(named after their respective receivers). These comprise
our co-residency test suite. Each test in the suite starts by
running the receiver on one VM while keeping the other
idle. The performance measured by this run is the baseline
performance without contention. Then the receiver and the
sender are run together. If the receiver detects decreased
performance, the tests conclude that the two VMs are co-
resident. We use a slowdown threshold to detect when the
change in receiver performance indicates co-residence (dis-
cussed later in the section).

Machine Cores Memory Memory Socket
Architecture Probing Locking
Xeon E5645 6 3.51 1.79 Same

Xeon X5650 12 3.61 1.77 Same

Xeon X5650 12 3.46 1.55 Diff.

Figure 5: Memory-probing and -locking on testbed machines.
Slowdown relative to the baseline performance observed by the
receiver averaged across 10 samples. Same – sender and receiver
on different cores on the same socket, Diff. – sender and receiver
on different cores on different sockets. Xeon E5645 machine had
a single socket.

Evaluation on local testbed. In order to measure the effi-
cacy of this covert-channel we ran tests in our local testbed.
Results of running memory-probing and -locking tests un-
der various configurations are shown in Figure 5. The hard-
ware architectures of these machines are similar to what is
observed in the cloud [21]. Across these hardware con-
figurations, we observed a performance degradation of at
least 3.4× compared to not running memory-locking sender
on a non-coresident instance (i.e. a baseline run with idle
sender), indicating reliability. Note that this works even
when the co-resident instances are running on cores on dif-
ferent sockets, which does not share the same LLC (works
on heterogeneous hardware). Further, a single run takes one
tenth of a second to complete and hence is also quick.

Note that for this test suite to work in the real world,
an attacker requires control over both the VMs under test,
which includes the victim. We call this scenario as co-
residency detection under cooperative victims (in short, co-
operative co-residency detection). Such a mechanism is
sufficient to observe placement behavior in public clouds
(Section 4.2). We further investigated approaches to detect
co-residency under a realistic setting with an uncooperative
victim. In Section 4.3 we show how to adapt the memory-
probing test to detect co-location with one of the many web-
servers behind a load balancer.
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Figure 6: Distribution of performance degradation of memory-probing test. For varying number of pairs on each cloud (GCE:29,
EC2:300, Azure:278). Note the x-axis plots performance degradation. Also for EC2 x-axis range is cut short at 20 pairs for clarity.

4.2 Cooperative Co-residency Detection

In this section, we describe the methodology we used to
detect co-residency in public clouds. For the purposes of
studying placement policies, we had the flexibility to con-
trol both VMs that we test for co-residence. We did this by
launching VMs from two separate accounts and test them
for pairwise co-residence. We encountered several chal-
lenges when running the co-residency test suite on three
different public clouds - Google Computer Engine, Ama-
zon EC2 and Microsoft Azure.

First, we had to handle noise from neighboring VMs
sharing the same host. Second, hardware and software het-
erogeneity in the three different public clouds required spe-
cial tuning process for the co-residency detection tests. Fi-
nally, testing co-residency for a large set of VMs demanded
a scalable implementation. We elaborate on our solution to
these challenges below.

Handling noise. Any noise from neighboring VMs could
affect the performance of the receiver with and without the
signal (or baseline) and result in misdetection. To han-
dle such noise, we alternate between measuring the perfor-
mance with and without the sender’s signal, such that any
noise equally affects both the measurements. Secondly, we
take ten samples of each measurement and only detect co-
residence if the ratios of both the mean and median of these
samples exceed the threshold. As each run takes a frac-
tion of a second to complete, repeating 10 times is still fast
enough.

Cloud Machine Clock LLC
Provider Architecture (GHz) (Ways × Set)

EC2 Intel Xeon E5-2670 2.50 20 × 20480

GCE Generic Xeon* 2.60* 20 × 16384

Azure Intel E5-2660 2.20 20 × 16384

Azure AMD Opteron 4171 HE 2.10 48 × 1706

Figure 7: Machine configuration in public clouds. The machine
configurations observed over all runs with small instance types.
GCE did not reveal the exact microarchitecture of the physical
host (*). Ways × Sets × Word Size gives the LLC size. The word
size is 64 bytes on all these x86-64 machines.

Tuning thresholds. As expected, we encountered differ-
ent machine configurations on the three different public
clouds (shown in Figure 7) with heterogeneous cache di-
mensions, organizations and replacement policies [11, 26].
This affects the performance degradation observed by the
receivers with respect to the baseline and the ideal thresh-
old for detecting co-residency. This is important because
the thresholds we use to detect co-residence yield false pos-
itives, if set too low, and false negatives if set too high.
Hence, we tuned the threshold to each hardware we found
on all three clouds.

We started with a conservative threshold of 1.5x and
tuned to a final threshold of 2x for GCE and EC2 and
1.5x for Azure for both the memory-probing and -locking
tests. Figure 6 shows the distribution of performance degra-
dation under the memory-probing tests across Intel ma-
chines in EC2, GCE, and Azure. For GCE and EC2, a
performance degradation threshold of 2 clearly separates
co-resident from non-coresident instances. For all Intel
machines we encountered, although we ran both memory-
locking and -probing tests, memory-probing was sufficient
to detect co-residency. For Azure, overall we observe lower
performance degradation and the initial threshold of 1.5
was sufficient to detect co-location on Intel machines.

The picture for AMD machines in Azure differs signif-
icantly as shown in Figure 8. The distribution of perfor-
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mance degradation for both memory-locking and memory-
probing shows that, unlike for other architectures, co-
residency detection is highly sensitive to the choice of the
threshold for AMD machines. This may be due to the
more associative cache (48 ways vs. 20 for Intel), or differ-
ent handling of locked instructions. For these machines, a
threshold of 1.5 was high enough to have no false positives,
which we verified by hand checking the instances using the
two covert-channels and observed consistent performance
degradation of at least 50%. We determine a pair of VMs as
co-resident if the degradation in either of the tests is above
this threshold. We did not detect any cross-architecture
(false) co-residency detection in any of the runs.

Scaling co-residency detection tests. Testing co-
residency at scale is time-consuming and increases quadrat-
ically with the number of instances: checking 40 VM in-
stances, involves 780 pair-wise tests. Even if each run of
the entire co-residency test suite takes only 10 seconds, a
naı̈ve sequential execution of the tests on all the pairs will
take 2 hours. Parallel co-residency checks can speed check-
ing, but concurrent tests may interfere with each other.

To parallelize the test, we partition the set of all VM pairs
(
(v+a

2

)
) into sets of pairs with no VMs twice; we run one of

these sets at a time and record which pairs detected possible
co-residence. After running all sets, we have a set of can-
didate co-resident pairs, which we test sequentially. Paral-
lelizing co-residency tests significantly decreased the time
taken to test all co-residency pairs. For instance, the par-
allel version of the test on one of the cloud providers took
2.4 seconds per pair whereas the serial version took almost
46.3 seconds per pair (a speedup of 20x). While there are
faster ways to parallelize co-residency detection, we chose
this approach for simplicity.

Veracity of our tests. Notice that a performance degra-
dation of 1.5x, 2x and 4x corresponds to 50%, 100% and
300% performance degradation. Such high performance
degradation (even 50%) is clear enough signal to declare
co-residency due to resource sharing. Furthermore, we
hand checked by running the two tests in isolation on the
detected instance-pairs for a significant fraction of the runs
for all clouds and observed a consistent covert-channel sig-
nal. Thus our methodology did not detect any false pos-
itives, which are more detrimental to our study than false
negatives. Although co-residency here implies sharing of
memory channel, which may not always mean sharing of
cores or other per-core hardware resources.

4.3 Co-residency Detection on Uncoopera-
tive Victims

Until now, we described a method to detect co-residency
with a cooperative victim. In this section, we look at a
more realistic setting where an adversary wishes to de-
tect co-residency with a victim VM with accesses limited
to only public interfaces like HTTP or a key-value (KV)

store’s put-get interface. We show that the basic coopera-
tive co-residency detection can also be employed to detect
co-residency with an uncooperative victim in the wild.

Attack setting. Unlike previous attack scenarios, we as-
sume the attacker has no access to the victim VMs or its
application other than what is permitted to any user on the
Internet. That is, the victim application exposes a well-
known public interface (e.g., HTTP, FTP, KV-store proto-
col) that allows incoming requests, which is also the only
access point for the attacker to the victim. The front end
of this victim application can range from caching or data
storage services (e.g., memcached, cassandra) to generic
webservers. We also assume that there may be multiple
instances of this front-end service running behind a load
balancer. Under this scenario, the attacker wishes to de-
tect co-location with one or more of the front-facing victim
VMs.

Co-residency test. We adapt the memory tests used in pre-
vious section by running the memory-locking sender in the
attacker instance. For a receiver, we use the public interface
exposed by the victim by generating a set of requests that
potentially makes the victim VMs hit the memory bus. This
can be achieved by looping through a large number of re-
quests of sizes approximately equal or greater than the size
of the LLC. This creates a performance side-channel that
leaks co-residency information. This receiver runs in an in-
dependent VM under the adversary’s control, which we call
the co-residency detector.

Experiment setup. To evaluate the efficacy of this
method, we used the Olio multi-tier web application [12]
that is designed to mimic a social-networking application.
We used an instance of this workload from CloudSuite [22].
Although Olio supports several tiers (e.g., memcached to
cache results of database queries), we configured it with
two tiers, with each webserver and the database server
running in a separate VM of type t2.small on Amazon
EC2. Multiple of these webserver VMs are configured
behind a HAProxy-based load balancer [9] running in an
m3.medium instance (for better networking performance).
The load balancer follows the standard configuration of us-
ing round-robin load balancing algorithm with sticky client
sessions using cookies. We believe such a victim web appli-
cation and its configuration is a reasonable generalization of
real world applications running in the cloud.

For the attacker, we use an off-the-shelf HTTP perfor-
mance measurement utility called HTTPerf [28] as the re-
ceiver in the co-residency detection test. This receiver is
run inside a t2.micro instance (for free of charge). We used
a set of 212 requests that included web pages and web ob-
jects (images, PDF files). We gathered these requests using
the access log of manual navigation around the web appli-
cation from a web browser.

Evaluation methodology. We start with a known co-
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resident VM pair using the cooperative co-residency detec-
tion method. We configure one of the VMs as a victim web-
server VM and launch four more VMs: two webservers,
one database server and a load balancer, all of which are
not co-resident with the attacker VM.

Co-residency detection starts by measuring the average
request latency at the receiver inside the co-residency detec-
tor for the baseline (with idle attacker) and contended case
with the attacker running the memory-locking sender. A
significant performance degradation between the baseline
and the contended case across multiple samples reveal co-
residency of one of the victim VMs with the attacker VM.
On Amazon EC2, with the above setup we observed an av-
erage request latency of 4.66ms in the baseline case and
a 10.6ms in the memory-locked case, i.e., a performance
degradation of ≈ 2.3×.

Background noise. The above test was performed when
the victim web application was idle. In reality, any victim in
the cloud might experience constant or varying background
load on the system. False positives or negatives may occur
when there is spike in load on the victim servers. In such
case, we use the same solution as in Section 4.2 — alternat-
ing between measuring the idle and the contended case.

In order to gauge the efficacy of the test under con-
stant background load, we repeated the above experiment
with varying load on the victim. The result of this exper-
iment is summarized in Figure 9. Counterintuitively, we
found that a constant load on the background server exacer-
bates the performance degradation gap, hence resulting in
a clearer signal of co-residency. This is because running
memory-locking on the co-resident attacker increases the
service time of all requests as majority of the requests rely
on memory bandwidth. This increases the queuing delay
in the system and in turn increasing the overall request la-
tency. Interestingly, this aforementioned performance gap
stops widening at higher loads of 750 to 1000 concurrent
users as the system hits a bottleneck (in our case a network
bottleneck at the load balancer) even without running the
memory-locking sender. Thus, detecting co-residency with
a victim VM that is part of a highly loaded and bottlenecked
application would be hard using this test.

We also experimented with increasing the number of
victim webservers behind the load balancer beyond 3
(Figure 10). As expected, the co-residency signal grew
weaker with increasing victims, and at 9 webservers, the
performance degradation was too low to be useful for de-
tecting co-residency.

5 Placement Vulnerability Study

In this section, we evaluate three public clouds, Amazon
EC2, Google Compute Engine and Microsoft Azure, for
placement vulnerabilities and answer the following ques-
tions: (i) what are all the strategies that an adversary can
employ to increase the chance of co-location with one or
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more victim VMs? (ii) what are the chances of success
and cost of each strategy? and (iii) how do these strategies
compare against the reference placement policy introduced
in Section 3?

5.1 Experimental Methodology

Before presenting the results, we first describe the exper-
iment setting and methodology that we employed for this
placement vulnerability study.

Experiment settings. Recall VM placement depends on
several placement variables (shown in Figure 1). We as-
signed reasonable values to these placement variables and
enumerated through several launch strategies. A run corre-
sponds to one launch strategy and involves launching mul-
tiple VMs from two distinct accounts (i.e., subscriptions in
Azure and projects in GCE) and checking for co-residency
between all pairs of VMs launched. One account was des-
ignated as a proxy for the victim and the other for the adver-
sary. We denote a run configuration by v×a, where v is the
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number of victim instances and a is the number of attacker
instances launched in that run. We varied v and a for all v,
a ∈ {10,20,30} and restricted them to the inequality, v ≤ a,
as it increases the likelihood of achieving co-residency.

Other placement variables that are part of the run con-
figuration include: victim launch time (including time of
the day, day of the week), delay between victim and at-
tacker VM launches, victim and attacker instance types and
data center location or region where the VMs are launched.
We repeat each run multiple times across all three cloud
providers. The repetition of experiments is especially re-
quired to control the effect of certain environment variables
like time of day. We repeat experiments for each run con-
figuration over various times of the day and days of the
week. We fix the instance type of VMs to small instances
(t2.small on EC2, g1.small on GCE and small or Standard-
A1 on Azure) and data center regions to us-east for EC2,
us-central1-a for GCE and east-us for Azure, unless other-
wise noted. All experiments were conducted over 3 months
between December 2014 to February 2015.

We used a single, local Intel Core i7-2600 machine with
8 SMT cores to launch VM instances, log instance informa-
tion and run the co-residency detection test suite.

Implementation and the Cloud APIs. In order to auto-
mate our experiments, we used Python and the libcloud2

library [3] to interface with EC2 and GCE. Unfortunately,
libcloud did not support Azure. The only Azure cloud
API on Linux platform was a node.js library and a cross-
platform command-line interface (CLI). We built a wrap-
per around the CLI. There were no significant differences
across different cloud APIs except that Azure did not have
any explicit interface to launch multiple VMs simultane-
ously.

As mentioned in the experiment settings, we experi-
mented with various delays between the victim and attacker
VM launches (0, 1, 2, 4 . . . hours). To save money, we
reused the same set of victim instances for each of the
longer runs. That is, for the run configuration of 10x10 with
0, 1, 2, and 4 hours of delay between victim and attacker
VM launches, we launched the victim VMs only once at the
start of the experiment. After running co-residency tests on
the first set of VM pairs, we terminated all the attacker in-
stances and relaunched attacker VM instances after appro-
priate delays (say 1 hour) and rerun the tests with the same
set of victim VMs. We repeat this until we experiment with
all delays for this configuration. We call this methodology
the leap-frog method. It is also important to note that zero
delay here means parallel launch of VMs from our test ma-
chine (and not sequential launch of VMs from one account
after another), unless otherwise noted.

In the sections below, we take a closer look at the effect
of varying one placement variable while keeping other vari-
ables fixed across all the cloud providers. In each case, we

2We used libcloud version 0.15.1 for EC2, and a modified version of
0.16.0 for GCE to support the use of multiple accounts in GCE.

Delay (hr.) Config. Mean S.D. Min Median Max
0 10x10 0.11 0.33 0 0 1

0 10x20 0.2 0.42 0 0 1

0 10x30 0.5 0.71 0 0 2

0 20x20 0.43 0.65 0 0 2

0 20x30 1.67 1.22 0 2 4

0 30x30 1.6 1.65 0 1 5

1 10x10 0.25 0.46 0 0 1

1 10x20 0.33 0.5 0 0 1

1 10x30 1.6 1.07 0 2 3

1 20x20 1.27 1.22 0 1 4

1 20x30 2.44 1.51 0 3 4

1 30x30 3 1.12 1 3 5

Figure 11: Distribution of number of co-resident pairs on
GCE. Region: us-central1-a.

Delay (hr.) Config. Mean S.D. Min Median Max
0 ∗ 0 0 0 0 0

1 10x10 0.44 0.73 0 0 2

1 10x20 1.11 1.17 0 1 3

1 10x30 1.4 1.43 0 1.5 4

1 20x20 3.57 2.59 0 3.5 9

1 20x30 3.78 1.79 1 4 7

1 30x30 3.89 2.09 2 3 9

Figure 12: Distribution of number of co-resident pairs on EC2.
Region: us-east.

use three metrics to measure the degree of co-residency:
chances of getting at least one co-resident instance across
a number of runs (or success rate), average number of co-
resident instances over multiple runs and average coverage
(i.e., fraction of victim VMs with which attacker VMs were
co-resident). Although these experiments were done with
victim VMs under our control, the results can be extrapo-
lated to guide an attacker’s launch strategy for an uncoop-
erative victim. We also discuss a set of such strategic ques-
tions that the results help answer. At the end of this section,
we summarize and calculate the cost of several interesting
launch strategies and evaluate the public clouds against our
reference placement policy.

5.2 Effect of Number of Instances

In this section, we observe the placement behavior while
varying the number of victim and attacker instances. Intu-
itively, we expect the chances of co-residency to increase
with the number of attacker and victim instances.

Varying number of attacker instances. Keeping all the
placement variables constant including the number of vic-
tim instances, we measure the chance of co-residency over
multiple runs. The result of this experiment helps to answer
the question: How many VMs should an adversary launch
to increase the chance of co-residency?

As is shown in Figure 14, the placement behavior



USENIX Association  24th USENIX Security Symposium 923

Delay (hr.) Config. Mean S.D. Min Median Max
0 10x10 15.22 19.51 0 14 64

0 10x20 3.78 4.71 0 3 14

0 10x30 4.25 6.41 0 2.5 19

0 20x20 9.67 8.43 0 8 27

0 20x30 2.38 1.51 1 2 5

0 30x30 24.57 36.54 1 6 99

1 10x10 2.78 3.87 0 1 12

1 10x20 0.78 1.2 0 0 3

1 10x30 0.75 1.39 0 0 3

1 20x20 0.67 1.66 0 0 5

1 20x30 0.86 0.9 0 1 2

1 30x30 4.71 9.89 0 1 27

Figure 13: Distribution of number of co-resident pairs on
Azure. Region: East US 1.
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Figure 14: Chances of co-residency of 10 victim instances with
varying number of attacker instances. All results are from one
data center region (EC2: us-east, GCE: us-central1-a, Azure: East
US) and the delays between victim and attacker instance launch
were 1 hour. Results are over at least 9 runs per run configuration
with at least 3 runs per time of day.

changes across different cloud providers. For GCE and
EC2, we observe that higher the number of attacker in-
stances relative to the victim instances, the higher the
chance of co-residency is. Figure 11 and 12 show the dis-
tribution of number of co-resident VM pairs on GCE and
EC2, respectively. The number of co-resident VM pairs
also increases with the number of attacker instances, imply-
ing that the coverage of an attack could be increased with
larger fraction of attacker instances than the target VM in-
stances if the launch times are coordinated.

Contrary to our expectations, the placement behavior ob-
served on Azure is the inverse. The chances of co-residency
with 10 attacker instances are almost twice as high as
with 30 attacker instances. This is also reflected in the
distribution of number of co-residency VM pairs (shown
in Figure 13). Further investigation revealed a correla-
tion between the number of victim and attacker instances
launched and the chance of co-residency. That is, for the
run configuration of 10x10, 20x20 and 30x30, where num-
ber of victim and attacker instances are the same, and with
0 delay, the chance of co-residency were equally high for
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Figure 15: Chances of co-residency of 30 attacker instances
with varying number of victim instances. All results are from
one data center region (EC2: us-east, GCE: us-central1-a, Azure:
East US) and the delays between victim and attacker instance
launch were 1 hour. Results are over at least 9 runs per config-
uration with at least 3 runs per time of day.

all these configurations (between 0.9 to 1). This suggests a
possible placement policy that collates VM launch requests
together based on their request size and places them on the
same group of machines.

Varying number of victim instances. Similarly, we also
varied the number of victim instances by keeping the num-
ber of attacker instances and other placement variables con-
stant (results shown in Figure 15). We expect the chance
of co-residency to increase with the number of victims tar-
geted. Hence, the results presented here help an adversary
answer the question: What are the chances of co-residency
with varying sizes of target victims?

As expected, we see an increase in the chances of co-
residency with increasing number of victim VMs across
all cloud providers. We see that the absolute value of the
chance of co-residency is lower for Azure than other clouds.
This may be the result of significant additional delay be-
tween victim and attacker launch times in Azure as a result
of our methodology (more on this later).

5.3 Effect of Instance Launch Time

In this section, we answer two questions that aid an adver-
sary to design better launch strategies: How quickly should
an attacker launch VMs after the victim VMs are launched?
Is there any increase in chance associated with the time of
day of the launch?

Varying delay between attacker and victim
launches. The result of varying the delay between
0 (i.e., parallel launch) and 1 hour delay is shown
in Figure 16. We can make two immediate observations
from this result.

The first observation reveals a significant artifact of
EC2’s placement policy: VMs launched within a short time
window are never co-resident on the same machine. This
observation helps an adversary to avoid such a strategy.
We further investigated placement behaviors on EC2 with
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Figure 16: Chances of co-residency with varying delays be-
tween victim and attacker launches. Solid boxes correspond
to zero delay (simultaneous launches) and gauze-like boxes corre-
spond to 1 hour delay between victim and attacker launches. We
did not observe any co-resident instances for runs with zero delay
on EC2. All results are from one data center region (EC2: us-east,
GCE: us-central1-a, Azure: East US). Results are over at least 9
runs per run configuration with at least 3 runs per time of day.

Delay Mean S.D. Min Median Max Success
rate

0+ 0.6 1.07 0 0 3 0.30

5 min 1.38 0.92 0 1 3 0.88

1 hr 3.57 2.59 0 3.5 9 0.86

Figure 17: Distribution of number of co-resident pairs and suc-
cess rate or chances of co-residency for shorter delays under
20x20 run configuration in EC2. A delay with 0+ means victim
and attacker instances were launched sequentially, i.e. attacker in-
stances were not launched until all victim instances were running.
The results averaged are over 9 runs with 3 runs per time of day.

shorter non-zero delays in order to find the duration of this
time window in which there are zero co-residency (results
shown in Figure 17). We found that this time window is
very short and that even a sequential launch of instances
(denoted by 0+) could result in co-residency.

The second observation shows that non-zero delay on
GCE and zero delay on Azure increases the chance of co-
residency and hence directly benefits an attacker. It should
be noted that on Azure, the launch delays between victim
and attacker instances were longer than 1 hour due to our
leap-frog experimental methodology; the actual delays be-
tween the VM launches were, on average, 3 hours (with
a maximum delay of 10 hours for few runs). This higher
delay was more common in runs with larger number of
instances as there were significantly more false positives,
which required a separate sequential phase to resolve (see
Section 4.2).

We also experimented with longer delays on EC2 and
GCE to understand whether and how quickly the chance
of co-residency drops with increasing delay (results shown
in Figure 18). Contrary to our expectation, we did not find
the chance of co-residency to drop to zero even for delays as
high as 16 and 32 hours. We speculate that the reason for
this observation could be that the system was under con-
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Figure 18: Chances of co-residency over long periods. Results
include 9 runs over two weeks with 3 runs per time of day under
the 20x20 run configuration. Note that we only conducted 3 runs
for 32 hour delay as opposed to 9 runs for all other delays.

Chances of Co-residency
Cloud Morning Afternoon Night

02:00 - 10:00 10:00 - 18:00 18:00 - 02:00

GCE 0.68 0.61 0.78

EC2 0.89 0.73 0.6

Figure 19: Effect of time of day. Chances of co-residency when
an attacker changes the launch time of his instances. The results
were aggregated across all run configurations with 1 hour delay
between victim and attacker launch times. All times are in PT.

stant churn where some neighboring VMs on the victim’s
machine were terminated. Note that our leap-frog method-
ology may, in theory, interfere with the VM placement.
But it is noteworthy that we observed increased number of
unique co-resident pairs with increasing delays, suggesting
fresh co-residency with victim VMs over longer delays.

Effect of time of day. Prior works have shown that churn
or load is often correlated with the time of day [31]. Our
simple reference placement policy does not have a notion
of load and hence have no effect on time of day. In reality,
with limited number of servers in datacenters and limited
number of capacity per host, load on the system has direct
effect on the placement behavior of any placement policy.

As expected, we observe small effect on VM place-
ment based on the time of day when attacker instances are
launched (results shown in Figure 19). Specifically, there
is a slightly higher chance of co-residency if the attacker
instances are launched in the early morning for EC2 and at
night for GCE.

5.4 Effect of Data Center Location

All the above experiments were conducted on rela-
tively popular regions in each cloud (especially true for
EC2 [31]). In this section, we report the results on other
smaller and less popular regions. As the regions are less
popular and have relatively fewer machines, we expect
higher co-residency rates and more co-resident instances.
Figure 20 shows the median number of co-resident VM
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Figure 20: Median number of co-resident pairs across two re-
gions. The box plot shows the median number of co-resident pairs
excluding co-residency within the same account. Results are over
at least 3 run per run configuration (x-axis).

pairs placed in these regions alongside the results for pop-
ular regions. The distribution of number of co-resident in-
stances is not shown here in the interest of space.

The main observation from these experiments is that
there is a higher chance of co-residency in these smaller
regions than the larger, more popular regions. Note that we
placed at least one co-resident pair in all the runs in these
regions. Also the higher number of co-resident pairs also
suggests a larger coverage over victim VMs in these smaller
regions.

One anomaly that we found during two 20x20 runs on
EC2 between 30th and 31st of January 2015, when we ob-
served an unusually large number of co-resident instances
(including three VMs from the same account). We believe
this anomaly may be a result of an internal management
incident in the Amazon EC2 us-west-1 region.

5.5 Other Observations

We report several other interesting observations in this sec-
tion. First, we found more than two VMs can be co-resident
on the same host on both Azure and GCE, but not on EC2.
Figure 21 shows the distribution of number of co-resident
instances per host. Particularly, in one of the runs, we
placed 16 VMs on a single host.

Another interesting observation is related to co-resident
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Figure 21: Distribution of number of co-resident instances per
host on Azure. The results shown are across all the runs. We saw
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Figure 22: Launch strategy and co-residency detection execu-
tion times. The run configurations v× a indicates the number of
victims vs. number of attackers launched. The error bars show the
standard deviation across at least 7 runs.

instances from the same account. We term them as self-
co-resident instances. We observed many self-co-resident
pairs on GCE and Azure (not shown). On the other hand,
we never noticed any self co-resident pair on EC2 except
for the anomaly in us-west-1. Although we did not notice
any effect on the actual chance of co-residence, we believe
such placement behaviors (or the lack of) may affect VM
placement.

We also experimented with medium instances and suc-
cessfully placed few co-located VMs on both EC2 and
GCE by employing similar successful strategies learned
with small instances.

5.6 Cost of Launch Strategies

Recall that the cost of a launch strategy from Section 3,
CS = a ∗P(atype) ∗Td(v,a). In order to calculate this cost,
we need Td(v,a) which is the time taken to detect co-
location with a attackers and v victims. Figure 22 shows
the average time taken to complete launching attacker in-
stances and complete co-residency detection for each run
configuration. Here the measured co-residency detection is
the parallelized version discussed in Section 4.2 and also
includes time taken to detect co-residency within each ten-
ant account. Hence, for these reasons the time to detect
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Run Average Cost ($) Maximum Cost ($)
config. GCE EC2 Azure GCE EC2 Azure

10x10 0.137 0.260 0.494 0.140 0.260 0.819

10x20 0.370 0.520 1.171 0.412 0.520 1.358

10x30 1.049 0.780 2.754 1.088 1.560 3.257

20x20 0.770 0.520 2.235 1.595 1.040 3.255

20x30 1.482 1.560 3.792 1.581 1.560 4.420

30x30 1.866 1.560 5.304 2.433 1.560 7.965

Figure 23: Cost of running a launch strategy (in dollars). Max-
imum cost column refers to the maximum cost we incurred out
of all the runs for that particular configuration and cloud provider.
The cost per hour of small instances at the time of this study were:
0.05, 0.026 and 0.06 dollars for GCE, EC2 and Azure, respec-
tively. The minimum and maximum costs are in bold.

Run Config. 10x10 10x20 10x30 20x20 20x30 30x30

Pr [Ev
a > 0 ] 0.10 0.18 0.26 0.33 0.45 0.60

Figure 24: Probability of co-residency under the reference
placement policy.

co-location is an upper bound for a realistic and highly op-
timized co-residency detection mechanism.

We calculate the cost of executing each launch strat-
egy under the three public clouds. The result is summa-
rized in Figure 23. Note that we only consider the cost in-
curred by the compute instances because the cost for other
resources such as network and storage, was insignificant.
Also note that EC2 bills every hour even if an instance runs
less than an hour [16], whereas GCE and Azure charge per
minute of instance activity. This difference is considered
in our cost calculation. Overall, the maximum cost we in-
curred was about $8 for running 30 VMs for 4 hours 25
minutes on Azure and a minimum of 14 cents on GCE for
running 10 VMs for 17 minutes. We incurred the highest
cost for all the launch strategies in Azure because of overall
higher cost per hour and partly due to longer tests due to
our co-residency detection methodology.

5.7 Summary of Placement Vulnerabilities

In this section, we return to the secure reference placement
policy introduced in Section 3 and use it to identify place-
ment vulnerabilities across all the three clouds. Recall that
the probability of at least one pair of co-residency under
this random placement policy is given by Pr [Ev

a > 0 ] =
1− (1− v/N)a, where Ev

a is the random variable denoting
the number of co-location observed when placing a attacker
VMs among N = 1000 total machines where v machines
are already picked for the v victim VMs. First, we evaluate
this probability for various run configurations that we ex-
perimented with in the public clouds. The probabilities are
shown in Figure 24.

Recall that a launch strategy in a cloud implies a place-
ment vulnerability in that cloud’s placement policy if its
normalized success rate is greater than 1. The normalized

Strategy v & a a′ Cost benefit ($) Normalized Success
S1 & S2 10 688 113.87 10

S3 30 227 32.75 1.67

S4(i) 20 105 4.36 2.67

S4(ii) 20 342 53.76 3.03

S5 20 110 4.83 1.48

Figure 25: Cost benefit analysis. N = 1000, P(atype) = 0.026,
which is the cost per instance-hour on EC2 (the cheapest). For
simplicity Td(v,a) = (v ∗ a) ∗ 3.85, where 3.85 is fastest average
time to detect co-residency per instance-pair. Here, v× a is the
run configuration of the strategy under test. Note that the cost
benefit is the additional cost incurred under the reference policy,
hence is equal to cost incurred by a′ −a additional VMs.

success rate of the strategy is the ratio of the chance of co-
location under that launch strategy to the probability of co-
location in the reference policy (Pr [Ev

a > 0 ]). Below is a
list of selected launch strategies that escalate to placement
vulnerabilities using our reference policy with their normal-
ized success rate in parenthesis.

(S1) In Azure, launch ten attacker VMs closely after the
victim VMs are launched (1.0/0.10).

(S2) In EC2 and GCE, if there are known victims in any of
the smaller datacenters, launch at least ten attacker VMs
with a non-zero delay (1.0/0.10).

(S3) In all three clouds, launch 30 attacker instances, either
with no delay (Azure) or one hour delay (EC2, GCE)
from victim launch, to get co-located with one of the 30
victim instances (1.00/0.60).

(S4) (i) In Amazon EC2, launch 20 attacker VMs with a
delay of 5 minutes or more after the victims are launched
(0.88/0.33). (ii) The optimal delay between victim and
attacker VM launches is around 4 hours for a 20x20 run
(1.00/0.33).

(S5) In Amazon EC2, launch the attacker VMs with 1 hour
after the victim VMs are launched where the time of day
falls in the early morning, i.e., 02:00 to 10:00hrs PST
(0.89/0.60).

Cost benefit. Next, we quantify the cost benefit of each
of these strategies over the reference policy. As the success
rate of any launch strategy on a vulnerable placement pol-
icy is greater than what is possible in the reference policy,
we need more attacker instances in the reference policy to
achieve the same success rate. We calculate this number
of attacker instances a′ using: a′ = ln(1−Sv

a)/ ln(1−v/N),
where, Sv

a is the success rate of a strategy with run config-
uration of v× a. The result of this calculation is presented
in Figure 25. The result shows that the best strategy, S1 and
S2, on all three cloud providers is $114 cheaper than what
is possible in the reference policy.

It is also evident that these metrics enable evaluating and
comparing various launch strategies and their efficacy on
various placement policies both on robust placements and
attack cost. For example, note that although the normal-
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ized success rate of S3 is lower than S4, it has a higher cost
benefit for the attacker.

5.8 Limitations

Although we exhaustively experimented with a variety of
placement variables, the results have limitations. One ma-
jor limitation of this study is the number of placement vari-
ables and the set of values for the variables that we used to
experiment. For example, we limited our experiments with
only one instance type, one availability zone per region and
used only one account for the victim VMs. Although dif-
ferent instance types may exhibit different placement be-
havior, the presented results hold strong for the chosen in-
stance type. The only caveat that may affect the results
is if the placement policy uses account ID for VM place-
ment decisions. Since, we experimented with only one vic-
tim account (separate from the designated attacker account)
across all providers, these results, in the worst case, may
have captured the placement behavior of an unlucky vic-
tim account that was subject to similar placement decisions
(and hence co-resident) as that of the VMs from the desig-
nated attacker account.

Even though we ran at least 190 runs per cloud provider
over a period of 3 months to increase statistical significant
of our results, we were still limited to at most 9 runs per
run configuration (with 3 runs per time of day). These lim-
itations have only minor bearing on the results presented, if
any, and the reported results are significant and impactful
for cloud computing security research.

6 Related Work

VM placement vulnerability studies. Ristenpart et
al. [29] first studied the placement vulnerability in public
clouds, which showed that a malicious cloud tenant could
place one of his VMs on the same machine as a target
VM with high probability. Placement vulnerabilities ex-
ploited in their study include publicly available mapping of
VM’s public/internal IP addresses, disclosure of Dom0 IP
addresses, and a shortcut communication path between co-
resident VMs. Their study was followed by Xu et al. [33]
and further extended by Herzberg et al. [25]. However, the
results of these studies have been outdated by the recent
development of cloud technologies, which is the main mo-
tivation of our work.

Concurrent with our work, Xu et al. [34] conducted a sys-
tematic measurement study of co-resident threats in Ama-
zon EC2. Their focus, however, is in-depth evaluation
of co-residency detection using network route traces and
quantification of co-residence threats on older generation
instances with EC2’s classic networking (prior to Amazon
VPC). In contrast, we study placement vulnerabilities in the
context of VPC on EC2, as well as on Azure and GCE. The
two studies are mostly complementary and strengthen the
arguments made by each other.

New VM placement policies to defend against placement
attacks have been studied by Han et al. [23, 24] and Azar
et al. [18]. It is unclear, however, whether their proposed
policies work against the performance and reliability goals
of public cloud providers.

Co-residency detection techniques. Techniques for co-
residency detection have been studied in various contexts.
We categorize these techniques into one of the two classes:
side-channel approaches to detecting co-residency with un-
cooperative VMs and covert-channel approaches to detect-
ing co-residency with cooperative VMs.

Side-channels allow one party to exfiltrate secret infor-
mation from another; therefore these approaches may be
adapted in practical placement attack scenarios with targets
not controlled by the attackers. Network round-trip timing
side-channel was used by Ristenpart et al. [29] to detect
co-residency. Zhang et al. [36] developed a system called
HomeAlone to enable VMs to detect third-party VMs us-
ing timing side-channels in the last level caches. Bates et
al. [19] proposed a side-channel for co-residency detection
by causing network traffic congestion in the host NICs from
attacker-controlled VMs; the interference of target VM’s
performance, if the two VMs are co-resident, should be de-
tectable by remote clients. Kohno et al. [27] explored tech-
niques to fingerprint remote machines using timestamps in
TCP or ICMP based network probes, although their ap-
proach was not designed for co-residency detection. How-
ever, none of these approaches works effectively in modern
cloud infrastructures.

Covert-channels on shared hardware components can be
used for co-residency detection when both VMs under test
are cooperative. Coarse-grained covert-channels in CPU
caches and hard disk drives were used in Ristenpart et
al. [29] for co-residency confirmation. Xu et al. [33] estab-
lished covert-channels in shared last level caches between
two colluding VMs in the public clouds. Wu el al. [32]
exploited memory bus as a covert-channel on modern x86
processors, in which the sender issues atomic operations
on memory blocks spanning multiple cache lines to cause
memory bus locking or similar effects on recent processors.
However, covert-channels proposed in the latter two studies
were not designed for co-residency detection, while those
developed in our work are tuned for this purpose.

7 Conclusion and Future Work

Multi-tenancy in public clouds enable co-residency attacks.
In this paper, we revisited the problem of placement —
can an attacker achieve co-location? — in modern public
clouds. We find that while past techniques for verifying co-
location no longer work, insufficient performance isolation
in hardware still allows detection of co-location. Further-
more, we show that in the three popular cloud providers
(EC2, GCE and Azure), achieving co-location is surpris-
ingly simple and cheap. It is even simpler and costs noth-
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ing to achieve co-location in some PaaS clouds. Our results
demonstrate that even though cloud providers have massive
datacenters with numerous physical servers, the chances
of co-location are far higher than expected. More work is
needed to achieve a better balance of efficiency and security
using smarter co-location-aware placement policies.
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Abstract
As the most basic cloud service model, Infrastructure as a
Service (IaaS) has been widely used for serving the ever-
growing computing demand due to the prevalence of the
cloud. Using pools of hypervisors within the cloud, IaaS
can support a large number of Virtual Machines (VMs)
and scale services in a highly dynamic manner. How-
ever, it is well-known that the VMs in IaaS are vulnerable
to co-residence threat, which can be easily exploited to
launch different malicious attacks. In this measurement
study, we investigate how IaaS evolves in VM placement,
network management, and Virtual Private Cloud (VPC),
as well as the impact upon co-residence. Specifically,
through intensive measurement probing, we first profile
the dynamic environment of cloud instances inside the
cloud. Then using real experiments, we quantify the im-
pacts of VM placement and network management upon
co-residence. Moreover, we explore VPC, which is a de-
fensive network-based service of Amazon EC2 for se-
curity enhancement, from the routing perspective. On
one hand, our measurement shows that VPC is widely
used and can indeed suppress co-residence threat. On the
other hand, we demonstrate a new approach to achieving
co-residence in VPC, indicating that co-residence threat
still exists in the cloud.

1 Introduction

Entering the era of cloud computing, Infrastructure as
a Service(IaaS) has become prevalent in providing In-
formation Technology (IT) support. IT giants such as
Amazon [1], Microsoft [4], and Google [2] have de-
ployed large-scale IaaS services for public usage. Em-
ploying IaaS, individual IT service providers can achieve
high reliability with low operation cost and no longer
need to maintain their own computing infrastructures.
However, IaaS groups multiple third-party services to-
gether into one physical pool, and sharing physical re-
sources with other customers could lead to unexpected

security breaches such as side-channel [25] and covert
channel [19] attacks. It is well-known that IaaS is vul-
nerable to the co-residence threat, in which two cloud in-
stances (i.e., VMs) from different organizations share the
same physical machine. Co-residence with the victim is
the prerequisite for mounting a side-channel or covert-
channel attack.

The security issues induced by co-residence threat
have been studied in previous research. However, most
previous works focus on “what an attacker can do” [14,
19, 25], “what a victim user should do” [24], and “what
a cloud vendor would do” [12, 15, 26]. In contrast, to
the best of our knowledge, this measurement work ini-
tiates one of the first attempts to understand how cloud
service vendors have potentially reacted to co-residence
threat in the past few years and explore potential new
vulnerabilities of co-residence inside the cloud. While
Amazon Elastic Compute Cloud (EC2) is the pioneer of
IaaS, it has the largest business scale among mainstream
IaaS vendors [11, 18]. Therefore, we focus our study
on Amazon EC2. More specifically, our measurement is
mainly conducted in the largest data center hosting EC2
services: the northern Virginia data center, widely known
as US-East region.

In our measurement study, we first perform a 15-
day continuous measurement on the data center using
ZMap [10] to investigate the data center’s business scale
and some basic management policies. With the basic
knowledge of the cloud, we explore how EC2 has ad-
justed VM placement along with its impact on security.
We further evaluate how much effort an attacker needs
to expend to achieve co-residence in different circum-
stances. Comparing our evaluation results with those
from 2008 [14], we demonstrate that the VM placement
adjustment made by EC2 during the past few years has
mitigated the co-residence threat.

As network management plays a critical role in cloud
performance and security, we also investigate how the
networking management in EC2 has been calibrated to
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suppress co-residence threat. We conduct large scale
trace-routing from multiple sources. Based on our mea-
surements, we highlight how the current networking con-
figuration of EC2 is different from what it was and
demonstrate how such evolution impacts co-residence in-
side the cloud. In particular, we measure the change of
routing configuration made by EC2 to increase the diffi-
culty of cloud cartography. We also propose a new algo-
rithm to identify whether a rack is connected with Top of
Rack switch or End of Row switch. With this algorithm,
we are able to derive the network topology of EC2, which
is useful for achieving co-residence inside the cloud.

To provide tenants an isolated networking environ-
ment, EC2 has introduced the service of Virtual Private
Cloud (VPC). While VPC can isolate the instances from
the large networking pool of EC2, it does not physically
isolate the instances. After profiling the VPC usage and
the routing configurations in VPC, we propose a novel
approach to speculating the physical location of an in-
stance in VPC based on trace-routing information. Our
experiments show that even if a cloud instance is hid-
den behind VPC, an adversary can still gain co-residence
with the victim with some extra effort.

The remainder of the paper is organized as follows.
Section 2 introduces background and related work on
cloud measurement and security. Section 3 presents our
measurement results on understanding the overview of
Amazon EC2 and its basic management policies. Section
4 details our measurement on VM placement in EC2, in-
cluding co-residence quantification. Section 5 quantifies
the impact of EC2-improved network management upon
co-residence. Section 6 describes VPC, the most effec-
tive defense against co-residence threat, and reveals the
haunted co-residence threat in VPC. Section 7 proposes
potential solutions to make the cloud environment more
secure. Finally, Section 8 concludes our work.

2 Background and Related Work

To leverage physical resources efficiently and provide
high flexibility, IaaS vendors place multiple VMs owned
by different tenants on the same physical machine. Gen-
erally, a scenario where VMs from different tenants
are located on the same physical machine is called co-
residence. In this work, the definition of co-residence is
further relaxed. We define two VMs located in the same
physical rack as co-residence. Thus, two VMs located
in the same physical machine is considered as machine-
level co-residence, while two VMs located in the same
rack is defined as rack-level co-residence.

2.1 Co-residence threat
The threat of co-residence in the cloud was first identified
by Ristenpart et al. [14] in 2009. Their work demon-

strates that an attacker can place a malicious VM co-
resident with a target and then launch certain attacks such
as side channel and covert channel attacks. Following
Ristenpart’s work, Xu et al. [20] studied the bit rate of
cache-based covert channel in EC2. Wu et al. [19] con-
structed a new covert channel on a memory bus with a
much higher bit rate, resulting in more serious threats
in an IaaS cloud. Zhang et al. [25] proposed a new
framework to launch side channel attacks as well as ap-
proaches to detect and mitigate co-residence threat in the
cloud [24, 26]. Bates et al. [7] proposed a co-resident wa-
termarking scheme to detect co-residence by leveraging
active traffic analysis.

The reason we define different levels of co-residence
is that some attacks do not require VMs to be located on
the same physical machine, but rather in the same rack
or in a higher level network topology. For instance, Xu
et al. [23] proposed a new threat called power attack in
the cloud, in which an attacker can rent many VMs under
the same rack in a data center and cause a power out-
age. There are also some side channel and covert chan-
nel attacks that only require the co-residence in the same
sub-network [5].

In parallel with our work, Varadarajan et al. [16] per-
formed a systematical study on placement vulnerability
in different clouds. While their work mainly stands at
the attacker side to explore more effective launch strate-
gies for achieving co-residence in three different clouds,
our work performs an in-depth study to understand the
evolution of cloud management and the impact on co-
residence threat in Amazon EC2. The two complemen-
tary works both support the point that public clouds are
still vulnerable to co-residence threat.

2.2 Measurement in the cloud
In contrast to the measurement on private clouds from
an internal point of view[9], the measurement works on
public data centers are mostly conducted from the per-
spective of cloud customers. Wang et al. [17] demon-
strated that in a public cloud, the virtualization technique
induces a negative impact on network performance of
different instance types. The work of Xu et al. [21] mea-
sures network performance in Amazon EC2 and demon-
strates a long tail distribution of the latency. Their work
also analyzes the reason behind the long tails and pro-
poses a new VM deployment solution to address this is-
sue. Bermudez et al. [8] performed a large-scale mea-
surement on Amazon AWS traffic. Their study shows
that most web service traffic towards Amazon AWS goes
to the data center in Virginia, U.S. Some recent stud-
ies [11, 18] measure how web services are deployed
in public clouds. They found that although many top-
ranked domains deploy their subdomains into the cloud,
most subdomains are located in the same region or zone,
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Figure 1: The system used to scan EC2.

resulting in a relatively poor fault tolerance.
In contrast to those measurement efforts, our study

provides a measurement analysis from the perspective of
security to reveal the management policies of a public
cloud and their impact upon co-residence threat.

3 An Overview of EC2 Management
As the pioneer of IaaS, Amazon EC2 deploys its data
centers all around the world, hosting the largest scale of
IaaS business. In this section, we introduce some ter-
minology in EC2 and provide an overview of the EC2
environment.

3.1 Instance type
An instance represents a virtual machine (VM) in the
cloud, so we use the term “instance” and “VM” inter-
changeably throughout the rest of the paper. EC2 pro-
vides a list of instance types for clients to select while
launching a new instance. The type of an instance in-
dicates the configuration of the VM, determining the
amount of resources the VM can use. The instance type is
defined in the format XX.XXX such as m1.small. The first
part of the instance type reveals the model of the physi-
cal server that will host this type of instance. The second
part indicates the “size” of the VM, i.e., the amount of
resources allocated to the instance. The detailed config-
uration of different instance types can be found at [3].

3.2 Regions and zones
Amazon EC2 has the concept of “region,” which repre-
sents the physical area where the booted instance will
be placed. Amazon has 9 locations around the world
hosting EC2 services. Therefore, the instances in EC2
can be located in 9 regions: US east (northern Virginia),
US west (Oregon), US west (northern California), South
America (Sao Paulo), Asia Pacific southeast (Singapore),
Asia Pacific southeast (Sydney), Asia Pacific northeast
(Tokyo), EU west (Ireland), and EU central (Frankfurt).
As pointed out in previous work [11], the majority of
IaaS business is hosted in the US east region, e.g., in the
data center located in northern Virginia. Most existing
research on cloud measurement was conducted on this
region [8, 13, 14]. Therefore, we also focus our study
on the US east region. For the rest of the paper, we use

the term “cloud” to mean the EC2 US east region and the
term “data center” to mean the Amazon EC2 data center
in northern Virginia, US.

In addition to regions, Amazon EC2 also allows clients
to assign an instance to a certain “zone.” A zone is a
logical partition of the space within a region. Previous
work shows that the instances in the same zone share
common characters in private IP addresses, and likely in-
stances within the same zone are physically close to each
other [14, 19]. There are four availability zones in the
US east region: us-east-1a, us-east-1b, us-east-1c, and
us-east-1d.

3.3 Naming
The naming service is essential to cloud management.
On one hand, the naming service can help customers to
easily access their instances and simplify resource man-
agement. On the other hand, the naming service should
help the cloud vendor to manage the cloud efficiently
with high network performance.

In EC2, an instance is automatically assigned two do-
main names: one public and one private. The public
domain name is constructed based on the public IP ad-
dress of the instance, while the private domain name is
constructed based on either the private IP address or the
MAC address. Performing a DNS lookup outside EC2
returns the public IP of the instance, while performing
a DNS lookup inside EC2 returns the private IP of the
instance.

3.4 Scanning EC2 inside and outside
To better understand the environment and business scale
of EC2, we performed a 15-day continuous measurement
on the EC2 US east region.

Figure 1 illustrates our system to scan EC2. First we
deployed a scanner outside EC2 to scan the cloud through
a public IP address. Since EC2 publishes the IP range for
its IaaS instances, our scanner uses ZMap [10] to scan the
specified ranges of IP addresses. The ports we scanned
include: ports 20 and 21 used for FTP, port 22 used for
SSH, port 23 for telnet, ports 25 and 587 for SMTP, port
43 for WHOIS, port 53 for DNS, port 68 for DHCP, port
79 for Finger protocol, port 80 for HTTP, port 118 for
SQL, port 443 for HTTPS, and port 3306 for MySQL.
We also performed an ICMP echo scan. After scanning,
our outside scanner obtained a list of live hosts in EC2
with the corresponding public IP addresses. In the next
step, we performed automatic domain name generation.
As mentioned above, the public domain name of an in-
stance in EC2 can be derived using its public IP. This step
produces a list of public domain names of live hosts. The
generated public domain names were then sent to our in-
side scanner deployed inside EC2. Our inside scanner
then performed DNS lookups for these domain names.
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Due to the DNS lookup mechanism of EC2, the DNS
server in EC2 answered the queries with the private IP
addresses of the hosts. Reaching this point, our mea-
surement system can detect live hosts in EC2 with their
domain names, IP addresses, as well as the mapping be-
tween the public IP address and private IP address.

The scan interval is set to 20 minutes, which is a trade-
off between cost and accuracy. Scanning the entire EC2
US east region per port takes about 40 seconds, and we
have 14 ports to scan. This means that scanning all the
ports will take around 10 minutes. Note that our mea-
surement also includes DNS lookups for all the detected
live hosts. Performing these DNS lookups takes around
20 minutes, which is approximately the time for two
rounds of scanning.

Our scanning measurement provides us an overview
of the large business scale of EC2, the diversity of ser-
vices, and the dynamic running environment. This scan-
ning measurement also gives us the knowledge base to
understand co-residence threat. The detailed results and
analysis of our scanning measurement can be found in
the Appendix A and B.

4 The Impact of VM Placement upon Co-
residence

The VM placement policy of the cloud determines how
easy or hard it is for an attacker to achieve co-residence.
In this section, we present our measurement on VM
placement and quantification of achieving co-residence.
By comparing our measurement results with previous
work, we demonstrate how the VM placement policy has
been evolving in EC2 and its impact on mitigating co-
residence threats.

4.1 Basic understanding of VM placement
We first launched a sufficiently large number of in-
stances with different types in EC2. Then, we had two
tasks to fulfill: (1) collecting networking (i.e., loca-
tion) information of launched instances and (2) quan-
tifying co-residence threat, i.e., given the current VM
placement policy of EC2, how much effort an attacker
needs to make to achieve co-residence. Since the pro-
cess of achieving co-residence requires the knowledge
of instance location, we can complete the two tasks to-
gether. For every instance we launched while seeking
co-residence, we recorded its private IP address and pub-
lic IP address. We also performed an automatic trace-
route from the instance to its “neighbors” that share the
/24 prefix with it. This information can provide us the
basic knowledge of where the instances are placed.

During our measurement, we recorded the detailed
information of 2,200 instances of type t1.micro, 1,800
instances of type m1.small, 1,000 instances of type
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Figure 2: CDF of IP address distances between co-resident VMs.

m1.medium, 1,000 instances of type m3.medium, 80 in-
stances of m3.large, and 40 instances of m3.xlarge. We
selected some random samples from the instances we
recorded to study the internal IP distribution. We investi-
gated how private IP addresses are associated by the in-
stance type and availability zones, i.e., whether the VM
placement has type and zone locality. Our results demon-
strate that currently EC2 still exhibits certain type and
zone locality, i.e., instances with the same type in the
same zone are more likely to be placed close to one an-
other. However, compared with corresponding results in
2008 [14], such locality has been significantly weakened.
More details of locality comparison can be found in Ap-
pendix C.

After understanding the current VM placement in
EC2, we further investigate co-residence threats in EC2.

4.2 Quantifying machine level co-residence
To understand how VM placement will affect co-
residence, we assess the effort one needs to make to
achieve machine level co-residence in two scenarios. The
first scenario is to have a random pair of instances located
on the same physical machine, and the second scenario is
to have an instance co-reside with a targeted victim.

4.2.1 Random co-residence

To make our random co-residence quantification more
comprehensive, we perform our measurement with dif-
ferent instance types and in different availability zones.
Since zone us-east-1c is no longer hosting t1, m1, c1,
and m3 instances, our measurement is performed in zone
us-east-1a, us-east-1b, and us-east-1d. We achieve co-
residence pairs with t1.micro, m1.small, m1.medium,
and m3.medium. We did not achieve co-residence with
large, xlarge or 2xlarge instances, because there are only
1 to 4 such large instances on one physical machine and
it will be very difficult and costly to achieve co-residence
with these types. Overall, we conduct 12 sets of experi-
ments, with each set targeting a specific type of instances
in a specific availability zone.

In each set of experiments, we perform rounds of
co-residence probing until we find a co-residence pair.
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Figure 3: The service hour spent, i.e., the
number of instances booted to achieve co-
residence.
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Figure 4: The financial cost (in US dollar) to
achieve co-residence.
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Figure 5: The time spent to achieve co-
residence.

For the sake of robustness, EC2 has never placed in-
stances from the same user on the same physical ma-
chine [14]. Therefore, we set up two accounts to launch
instances simultaneously. Within one round, each ac-
count launches 20 instances, which will produce 400
pairs of co-residence candidates. Once a co-residence
pair is verified, this set of experiments are terminated
and the corresponding cost is recorded. If there is no co-
residence pair found in this round, we move on to the next
round by terminating all running instances and launching
another 20 instances in each account, and then repeat the
same procedure.

Given a pair of instances, verifying whether they are
located on the same physical machine involves two steps:
(1) pre-filtering unlikely pairs and (2) using a covert
channel to justify co-residence.

For the first step, we need to screen out those pairs that
are not likely to be co-resident to reduce probing space.
Since the private IP address of an instance can indicate
its physical location to some extent, and if the private
IP addresses of two instances are not close enough, the
two instances will have little chance to be co-resident.
Based on this heuristic, we use the share of /24 prefix
as the prerequisite of co-residence, i.e., if two instances
do not share the /24 prefix, we consider them as not be-
ing co-resident and bypass the highly costly step 2. The
rationale of setting the /24 prefix sharing as pre-filter is
twofold:

1. First, the prerequisite of the /24 prefix sharing will
not likely rule out any co-residence instance pairs.
The number of instances that are hosted on the same
physical machine is limited. Even for micro in-
stances, there are no more than 32 instances run-
ning on a physical machine. For the instance type
with larger size, there are even fewer instances run-
ning on a physical machine. In contrast, a /24
address space can contain 256 instances. There-
fore, two co-resident instances are unlikely to be
in different /24 subnets. Moreover, we obtained
some co-residence pairs without any pre-filtering
and recorded the private IP address distance be-
tween a pair of co-residence instances. Figure 2
illustrates the CDF of IP address distance between

two co-residence instances. The distance is calcu-
lated as the difference between the two 32-bit inte-
gers of the two IP addresses. From the results we
can figure out that most of these co-residence in-
stances share the /27 prefix, which further confirms
that the /24 prefix filtering will introduce very few,
if any, false negatives.

2. Second, the prerequisite of sharing the /24 prefix
can effectively narrow down the candidate space.
Each time we use one account to launch 20 instances
and use another account to launch another 20 in-
stances, we will have 400 candidate pairs. Dur-
ing our measurement, we generated more than 40
rounds of such 400-pair batches. The average num-
ber of instance pairs that share the /24 prefix among
400 candidates is only 4. This means the /24 prefix
sharing prerequisite can help us to screen out 99% of
the candidates, which significantly accelerates the
process of co-residence verification. During the 40
rounds of measurement, five co-residence pairs are
observed.

The second step is to use a covert channel to ver-
ify whether two instances are actually located on the
same physical machine. We use the technique intro-
duced by Wu et al. [19] to construct a memory-bus-based
covert channel between two instances. If the two in-
stances can communicate with each other via the covert
channel, then they are located on the same physical ma-
chine. This covert-channel-based verification can guar-
antee zero false positives.

The cost of achieving co-residence includes financial
cost and time. According to the pay-as-you-go billing
system, the financial cost is mainly determined by the
service hours consumed during the co-residence prob-
ing. Every time an instance is launched, one billing
hour is charged. Thus, the more probing instances an
attacker needs to launch, the higher financial cost it will
cause. In our experiments, we use only two accounts.
In a real world attack, an attacker could use more ac-
counts to launch the attack in parallel, which will result in
less time required to achieve co-residence. However, un-
der the same condition, regardless of attack process op-
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Figure 6: The service hour spent, i.e. the num-
ber of instances booted to achieve co-residence
with a target.
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Figure 7: The financial cost (in US dollar) to
achieve co-residence with a target.
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Figure 8: The time spent to achieve co-
residence with a target.

timization, the time spent to achieve co-residence should
have a positive correlation with the number of instances
to launch, i.e., the more instances need to launch, the
more time spent for detecting co-residence.

Figure 3 illustrates how many instances are required
to achieve co-residence, while Figure 4 illustrates the
actual financial cost. Figure 5 illustrates how much time
it takes to achieve co-residence, i.e., the time cost. For
each type of instance, the measurement repeats for five
times and the mean value is shown in the figures. From
the figures, it is evident that the cost for achieving co-
residence of different types in different availability zones
is quite different. Intuitively, as a larger instance has
higher resource charge, it costs more money to achieve
co-residence with those instances at a larger size. How-
ever, there is no such rule that the smaller size an instance
is, the lower time cost we need to pay for co-residence.

4.2.2 Target co-residence

In the quantification of achieving co-residence with a par-
ticular target, we first randomly launched one instance
with specific type from one account as the target. Then,
from the other account, we also performed many rounds
of co-residence probing until we found the instance that
is co-resident with the target. The process of verifying
co-residence remains the same. As demonstrated by the
verification results of random co-residence above, differ-
ent availability zones do not greatly impact the difficulty
of achieving co-residence. Here we only show the results
when our target instances are placed in zone us-east-1a.

Figures 6, 7 and 8 illustrate the number of instances to
launch, the financial cost, and the time taken to achieve
co-residence with a particular target, respectively. For
each type of instance, the measurement is repeated for
15 times and the mean value is illustrated. The error bar
with standard deviation is also shown in the figures. As
is intuitive, achieving co-residence with a particular tar-
get requires launching more instances than achieving ran-
dom co-residence. Getting a random co-residence pair
requires launching 200 to 300 instances with two ac-
counts (i.e., 100 to 150 instances per account), which
can be done in 5 to 8 rounds. In contrast, achieving
co-residence with a particular target requires launching

300 to 400 instances, which will take 15 to 20 rounds
with each round launching 20 instances from one ac-
count. However, achieving co-residence with a particular
target does not cost more time than achieving a random
co-residence pair. The reason for this is simple: To get
a random pair, we need to check 400 candidate pairs in
each round, but to get a co-residence pair with a target,
we only need to check 20 candidates in one round.

It is also possible that an attacker is unable to achieve
co-residence with a certain target due to various rea-
sons, e.g., the target physical machine reaches full capac-
ity. During our study, we failed to achieve co-residence
with two targets, one is m1.medium type and the other
is m3.medium type. By failing to achieve co-residence
we mean that after trying with more than 1,000 probing
instances in two different days, we still cannot achieve
co-residence with these two targets.

Overall, it is still very feasible to achieve co-residence
in EC2 nowadays. However, an attacker needs to launch
hundreds of instances to reach that goal, which may in-
troduce considerable cost. In Section 4.4, we will com-
pare our results to previous studies, demonstrating that
achieving machine-level co-residence has become much
more difficult than before, due to the change in cloud en-
vironments and VM placement policies.

4.3 Quantifying rack level co-residence
While covert channel and side channel attacks require
an attacker to obtain an instance located exactly on the
same physical machine with the victim, some malicious
activities only need coarse-grained co-residence. Xu et
al. [23] proposed a new attack called power attack. In
their threat model, the attacker attempts to significantly
increase power consumption of multiple machines con-
nected by the same power facility simultaneously to trip
the circuit breaker (CB). Since these machines located
in the same rack are likely to be connected by the same
CB, in a power attack the attack instances are not re-
quired to be placed on a same physical machine. Instead
the attacker should place many instances within the same
rack as the victim, i.e., achieving as much rack-level co-
residence as possible. We performed measurement on
how much effort is required to place a certain number of
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Table 1: The number of co-residence pairs achieved by one round of
probing in 2008 [14].

Account A Account B Co-residence

Zone 1
1 20 1

10 20 5
20 20 7

Zone 2
1 20 0

10 20 3
20 20 8

Zone 3
1 20 1

10 20 2
20 20 8

instances under the same rack.
We first use one account to launch 20 instances, and

then we check whether there are any instances in this
batch that are located within the same rack. If there are
no instances located in the same rack, we just randomly
pick an instance and set its hosting rack as the target rack.
Thanks to the Top of Rack(ToR) switch topology, verify-
ing whether two instances are in the same rack is simple.
Through a simple trace-routing, we can verify whether an
instance has the same ToR switch with our target rack.
This rack level co-residence can be further verified by
performing trace-route from the candidate instance to the
target instance. If the two instances are in the same rack,
there should be only one hop in the trace, i.e., they are
one hop away.

Figure 9 shows our measurement results. It is clear
that an attacker can easily have multiple instances lo-
cated within the same rack. The information of ToR
switch helps the attacker quickly verify the rack-level
co-residence. Since the malicious attack based on the
rack-level co-residence is newly proposed [23], EC2 is
unlikely to take any action to suppress rack-level co-
residence.

4.4 Battle in VM placement
Table 1 lists the data from the original work on co-
residence [14]. We can see that it was extremely easy
to achieve co-residence in 2008. With two accounts each
launching 20 instances, there were 7 or 8 co-residence
pairs observed. In the 2012 work [19], the cost of achiev-
ing a co-residence instance pair is also briefly reported: A
co-residence pair (micro) is achieved with 160 instances
booted.

As we can see, nowadays it is much more difficult to
achieve co-residence than in 2008 and 2012. EC2 could
have adjusted its VM placement policies to suppress co-
residence.

4.4.1 A larger pool

The business of EC2 is scaling fast, and thus it is intuitive
that Amazon keeps deploying more servers into EC2.
The measurement in 2008 [14] shows that there were
three availability zones in the US east region. At present,
the availability zones are expanded to four. Such expan-

sion in availability zones also indicates that the business
scale of EC2 is growing rapidly.

The measurement in 2008 [14] also shows 78 unique
Domain0 IP addresses with 1785 m1.small instances,
which means it only observed 78 physical machines that
host m1.small service. Due to the evolution in EC2 man-
agement, we are no longer able to identify Dom0. How-
ever, we have identified at least 59 racks of servers that
host m1.small instances. This suggests that the number
of physical machines hosting m1.small instances is sig-
nificantly larger than that in 2008. The enlarged pool pro-
vides EC2 with more flexibility to place incoming VMs,
which is one of the reasons that it is now much more dif-
ficult to achieve co-residence than before.

4.4.2 Time locality

Time locality can help to achieve co-residence. Time lo-
cality means if two accounts launch instances simultane-
ously, it is more likely that some of these instances with
time locality will be assigned to the same physical ma-
chine.

To verify whether such time locality exists in the cur-
rent EC2, we performed another measurement. We set
up four groups of experiments. In the first group, the two
accounts always launch 20 VMs simultaneously. In the
second group, the second account launches 20 VMs 10
minutes after the first account launches 20 VMs. In the
third group, the launching time of the second account is
one hour apart from that of the first account. In the fourth
group, the second account launches VMs four hours af-
ter the first account. All instances are t1.micro type. In
each group, the measurement terminates whenever a co-
residence pair is observed and the number of instances
required to achieve co-residence is recorded. All the ex-
periments are repeated 5 times and the average is noted.

Figure 10 illustrates the number of instances required
to achieve co-residence in each case. We can see that
the efforts required to achieve co-residence do not vary
significantly with the change of instance launching in-
tervals. This implies that time locality seems to be very
weak in the current EC2, which increases co-residence
cost.

4.4.3 Dynamic assignment

In 2008, the IP addresses and instances in EC2 were as-
signed in a relatively static manner [14]. However, as we
have demonstrated before, there are considerable map-
ping changes in our measurement, which indicates that
the IP assignment has introduced a certain dynamism.

Meanwhile, in 2008, the instances were placed strictly
based on the instance type, i.e., one physical machine
can only host one type of instance [14]. In contrast, our
measurement results show that such an assumption may
not hold anymore. First, some small instances use in-
ternal IP addresses that were used by micro instances
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Figure 9: Instances launched to place certain number of instances
within the same rack.
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Figure 10: Effort to achieve co-residence with different time lo-
cality.

before. Second, during our measurement, by accident
we observed that one live small instance has very close
IP to a medium instance. We then attempted to build
a covert channel between them. It turned out that the
covert channel did work, which verifies that these two in-
stances with different types are indeed located on a same
physical machine. Following such an observation, in the
rest of our rest measurement we also kept checking co-
residence between different types of instances. Overall,
five pairs of different-type co-residence instances are ob-
served throughout our study. Our results indicate that in
certain cases current VM placement policies in EC2 can
mix different types of instances on one physical machine,
potentially to reduce fragmentation. Such a policy also
increases the difficulty of achieving co-residence.

5 The Impact of Network Management
upon Co-residence

As network management plays a critical role in data
center management, it has a significant impact on co-
residence. On one hand, an attacker attempts to obtain
as much networking information inside the cloud as pos-
sible to ease the gaining process of co-residence. On the
other hand, the cloud vendors try to protect sensitive in-
formation while not degrading regular networking man-
agement and performance. In this section, we introduce
the adjustments made by EC2 in network management
during recent years to mitigate co-residence threat and
the effectiveness of these approaches.

5.1 Methodology
To study the adjustment made by EC2 in network man-
agement, we performed large scale trace-routing. First,
for the instances we booted, we performed “neighbor-
hood trace-routing” from our instances to their “neigh-
bors.” Here we define neighbors as all those instances
that share the /23 prefix of their private IP addresses with
our source instances. Such trace-routing can inform us of
the routing paths between an instance and other instances

in the same rack and neighboring racks.
We next performed trace-routing from several of our

instances (i.e., the instances we booted) to all the in-
stances in a target list. We use the live host list from our
scanning measurement (see Section 3.5 and Appendix A)
as the target list. Trace-routing from our instances to over
650,000 target instances takes more than 8 days, but it
can help us to understand network management in EC2
in a more comprehensive manner.

5.2 The evolution in routing configuration
The routing information has been leveraged to perform
cloud cartography [14], which can further be used to
launch co-residence-based attacks. However, our trace-
routing results demonstrate that, as a response to cloud
cartography, EC2 has adjusted its routing configurations
to enhance security in the past few years. The adjust-
ments we found are listed as follows.

5.2.1 Hidden Domain0

EC2 uses XEN as the virtualization technique in the
cloud. According to the networking I/O mechanism of
XEN [6], all the network traffic of guest VMs (instances)
should travel through the privileged instance: Domain-
0 (i.e, Dom0). Thus, Dom0 acts as the gateway of all
instances on the physical machine, and all instances on
this physical machine should have the same first-hop in
their routing paths. Such Dom0 information provides an
attacker with a very efficient probing technique: by sim-
ply checking the Dom0’s IP addresses of two instances,
one can know whether they are co-resident. Therefore,
to prevent this Dom0 information divulgation, EC2 has
hidden Dom0 in any and all routing paths, i.e. at present
the Dom0 does not appear in any trace-routing results.

5.2.2 Hidden hops

To suppress cloud cartography enabled by trace-routing,
EC2 has hidden certain hops in the routing paths. Ac-
cording to the work in May 2013 [13], traffic only needs
to traverse one hop between two instances on the same
physical machine and two hops between instances in
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Figure 11: A common tree topology of a data
center.

Figure 12: The topology with End of Row
switch.

Figure 13: The topology with Top of Rack
switch.

a same rack but not on the same physical machine.
The paths between instances in different racks typically
have 4 or 6 hops. However, our neighborhood trace-
routing results show that the routing management has
been changed in EC2.

First, a path of one hop does not necessarily indicate
co-residence anymore. Our neighborhood trace-routing
results show that an instance can have a very large num-
ber of 1-hop neighbors. For instance, one m1.small in-
stance can have more than 60 1-hop neighbors. It is
technically impractical to host so many instances on an
m1 machine. To verify our hypothesis, we selected sev-
eral pairs of instances with a 1-hop path and checked
co-residence using covert channel construction. Our co-
residence verification fails for most of these pairs, con-
firming that two instances with a 1-hop path do not neces-
sarily co-locate on the same physical machine. This ob-
servation indicates that EC2 even hides the ToR switches
in the routing path in some cases, leaving only one hop
in the path between two instances in the same rack.

Second, we observed many odd-hop paths, accounting
for 34.26% of all paths. In contrast, almost all the paths
in the measurement conducted in May 2013 are even-
hop [13]. This indicates that the network configuration
of EC2 has changed since May 2013.

Third, the ToR switch of a source instance is shown
as the first hop in the path, which indicates that the ToR
switch should be an L3 router. However, we cannot ob-
serve the ToR switch of a target instance in the traces, im-
plying that EC2 has configured the ToR switch to hide it-
self in the incoming traffic to the rack. Moreover, among
our traces, we observed that 76.11% of paths have at least
one hop filled with stars. The hops filled with stars can
be a result of the configuration of certain devices such as
L2 switches; it is also possible that EC2 has deliberately
obscured those hops for security reasons. These paths
with invisible or obscured hops significantly increase the
difficulty of conducting cloud cartography.

5.3 Introducing VPC
To suppress the threat from internal networks, EC2 pro-
poses a service called Virtual Private Cloud (VPC). VPC
is a logically isolated networking environment that has a
separate private IP space and routing configuration. Af-
ter creating a VPC, a customer can launch instances into

its VPC, instead of the large EC2 network pool. The
customer can also divide a VPC into multiple subnets,
where each subnet can have a preferred availability zone
to place instances.

Moreover, EC2 provides instance types that are ded-
icated for VPC instances. These instance types include
t2.micro, t2.small, and t2.medium. According to the in-
stance type naming policy, instances with t2 type should
be placed on those physical servers with the t2 model.

An instance in a VPC can only be detected through its
public IP address, and its private address can never be
known by any entity except the owner. Therefore, within
a VPC, an attacker can no longer speculate the physical
location of a target using its private IP address, which
significantly reduces the threat of co-residence.

5.4 Speculating network topology
Besides routing configuration, the knowledge of network
topology also helps to achieve co-residence, especially
for high level co-residence such as rack-level. Figure 11
depicts the typical network topology in a data center. The
core and aggregation switches construct a tree topology.
Before connecting to the aggregate switches, there are
two mainstream ways to connect servers in a rack/racks:
End of Row (EoR) switches and Top of Rack (ToR)
switches.

For EoR switches, as illustrated in Figure 12, servers
of several racks are connected to the same EoR switch.
To be more precise, an EoR switch can be a switch ar-
ray including a group of interconnected switches. These
switches can function as aggregate switches themselves.
For ToR switches, as illustrated in Figure 13, all servers
in a rack are first connected to a separate ToR switch, and
then the ToR switch is connected to aggregate switches.
Such a topology has currently become the mainstream
network topology in a data center.

There are several variants of EoR topology, such as
Middle of Rack (MoR) and ToR switch with EoR man-
agement. Meanwhile, there are other potential topolo-
gies such as OpenStack cluster in a data center. There-
fore, we classify the network topology of a rack/racks
into two classes: ToR connected and non-ToR connected.
To identify whether a rack uses a ToR switch or a non-
ToR switch, we analyze the neighborhood trace-routing
results of multiple instances. Based on our analysis, we
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proposed a method to identify the network topology of a
rack, ToR-connected or non-ToR-connected.

ToR-connected: a rack that deploys ToR switches
must satisfy all of the following conditions:

1. For an instance A in the rack, there should be at least
one instance B that is only one hop away from A.

2. For an instance A in the rack, there should be at least
8 instances that are two hops away from A.

3. For any two instances A and B, if (i) conditions 1
and 2 hold for both A and B, (ii) the trace-routing
path between A and B has no more than two hops,
and (iii) for any instance C, the first hop in the trace-
routing path from A to C is the same as the first hop
in the path from B to C, then A and B are considered
as being in the same ToR rack.

4. For an instance A in the rack, for any trace-routing
path with A as source and length larger than 2, the
first hop in the path should share the /16 prefix with
the private IP address of A.

The IP address of the first hop (i.e., ToR switch’s IP ad-
dress) is used to differentiate two ToR racks.

Non-ToR-connected: a rack that deploys non-ToR
switches must satisfy all of the following conditions:

1. For an instance A in the rack, there should be no
instance B such that the path between A and B has
two hops.

2. For an instance A in the rack, for any instance B
in EC2, either (i) A and B are machine-level co-
resident and the path between A and B has only one
hop or (ii) the path between A and B has more than
two hops.

3. For two instances A and B, if (i) conditions 1 and
2 hold for both A and B, (ii) A and B share the /24
prefix of their private IP, (iii) the trace-routing path
between A and B has 4 or 6 hops, and (iv) for any
instance C, the first hop in the path between A and
C is the same as the first hop in the path between B
and C, then A and B are considered as being in the
same non-ToR rack.

4. For an instance A in the rack, for any trace-routing
path with A as source and length larger than 2, the
first hop in the path should not share the /20 prefix
with the private IP address of A.

Again, the IP address of the first hop is used to differen-
tiate two non-ToR racks.

In EC2, there are two “generations” of instances. The
old generation carries all the instances with m1 type, and
the new generation covers all the instances with other
types. We applied our method on m1.small, m1.medium,
m3.medium, and m3.large type, which cover both old-
generation instances and new-generation instances.

Overall, we identified 59 distinct racks that host
m1.small instances, 18 racks that host m1.medium in-
stances, 22 racks that host m3.medium instances, and

10 racks that host m3.large instances. Among the 109
racks, there are only 14 racks identified as non-ToR-
connected while the rest are ToR-connected. Among the
14 non-ToR racks, we observed 12 old-generation racks,
in which 7 racks host m1.small instances and 5 racks host
m1.medium instances, and only 2 new-generation racks
host m3.medium instances.

Our results demonstrate that while both ToR racks and
non-ToR racks exist in EC2, ToR-connected is the dom-
inating topology in EC2. Moreover, it is evident that
new-generation machines are more likely to be located
in the ToR-connected topology, indicating that the ToR-
connected topology has become the main trend. While
the ToR-connected topology is easy to manage, the rout-
ing information is very straightforward since the first hop
reveals which rack the instance is in. Such information
can be leveraged by an attacker to achieve rack-level co-
residence.

6 A New Battle in VPC
Using VPC, customers can protect their instances in an
isolated network environment. However, VPC only logi-
cally isolates the networks. The instances from different
VPCs may still share the same physical machine, leaving
the opportunity to achieve co-residence. In this section,
we first take an overview on the usage of VPC in EC2,
and then we introduce a new method to attack instances
that are hidden behind VPCs.

6.1 The overview of VPC usage
For those instances in the default networks of EC2, our
inside scanner can obtain their private addresses via DNS
lookups. However, the DNS query for an instance in
a VPC will only return its public IP address. There-
fore, the instances in a VPC can be easily identified by
checking the DNS query results of our inside scanner,
i.e., any instance whose private IP address cannot be de-
tected by our inside scanner is an instance in a VPC. Fig-
ure 14 shows the VPC usage in EC2. As we can see,
all instances in VPC are assigned public IP addresses
in five different ranges: 107.20.0.0/14, 184.72.64.0/18,
54.208.0.0/15, 54.236.0.0/15, and 54.80.0.0/13. This im-
plies that all instances in a VPC are managed in a uni-
form manner. On average, in each round of our probing
we can observe 115,801 instances in a VPC, which are
around 17% of all live instances observed, demonstrat-
ing that VPC is widely used in EC2 to protect instances.

6.2 Routing paths of VPC instances
Since a VPC should be treated as a private network, the
routing policies for instances inside a VPC must be dif-
ferent from those in the default EC2 network. This rout-
ing difference can help us further understand the manage-
ment of a VPC. To connect a VPC to the public Internet, a
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Figure 14: The live instances in VPCs.

customer must create a gateway and attach it to the VPC.
The gateway must be included into the route table of the
VPC. All traffic from or to the Internet must go through
the gateway, but the traffic inside EC2 does not require
the gateway to be involved.

Besides the basic understanding of the routing config-
uration of a VPC, we also need to know how a VPC is
connected with the default EC2 network and other VPCs.
We created several VPCs with two different accounts.
The instances with different types are launched into these
VPCs. Trace-routing is performed in four different ways:
(1) trace-routing from an instance in a VPC to another
instance in the same VPC, (2) trace-routing from an in-
stance in a VPC to an instance in another VPC, (3) trace-
routing from an instance in a VPC to an instance in the
default EC2 network, and (4) trace-routing from an in-
stance in the default EC2 network to an instance in a
VPC.

6.2.1 Routing within VPC

Routing inside the same VPC is expected to be simple.
We performed trace-routing between two instances in the
same VPC, using both private and public IP addresses.
The results show that trace-routing with private IP or
public IP addresses will yield different routing paths. If
trace-routing is performed with the private IP of the tar-
get instance, the result path has only one-hop, i.e., the
direct connection to the destination, which is reasonable.
However, if trace-routing is performed with the public IP
of the target, trace-routing will return two hops with the
first hop obscured with stars. Apparently, EC2 intention-
ally hides some routing information. The routing infor-
mation between the two instances within the same VPC
is made transparent to customers. Such obscuration dis-
ables a customer from speculating the physical location
of the instances.

As discussed in Section V, even within the same VPC,
two instances can be located in different “subnets.” We
also performed trace-routing between two instances in
the same VPC but in different subnets. The resulting
paths do not differ from the paths between two instances
within the same subnet.

6.2.2 Routing between VPCs

The traffic between instances in different VPCs should
traverse multiple switches and routers. Surprisingly, we
found that any routing path between any two instances in
any two different VPCs only has two hops: the first hop is
obscured and the second hop is the destination. EC2 once
again obscures the routing path between VPCs to prevent
an adversary from revealing sensitive information of a
VPC, e.g., the IP address of a gateway.

6.2.3 Routing from VPC to default EC2 network

Although instances in a VPC no longer share a pri-
vate network with the default pool of EC2, the
switches/routers that connect VPCs might still be physi-
cally connected to the other switches/routers in the data
center. How EC2 routes the traffic between instances in a
VPC and instances in the default EC2 network can reveal
its network topology to some extent. Figure 15 shows
a sample trace-routing result from an instance in a VPC
to an instance in the default EC2 network. We can see
that the first two hops of the path are obscured. This pre-
vents us from knowing the switch/router that connects
the VPC, thereby hiding the physical location of VPC
instances. However, we can still see parts of the path
and can infer the end-to-end latency based on the trace-
routing result.

6.2.4 Routing from default EC2 network to VPC

Figure 16 shows a sample trace-routing result from an
instance in the default EC2 network to an instance in a
VPC. The path is almost symmetric to the path from a
VPC to the default EC2 network. Again, the last two
hops before reaching the destination are obscured to hide
the information of the router/switch.

Overall, EC2 manages a VPC in a transparent fashion,
i.e., to a customer it should look like all instances in a
VPC are connected by a dedicated switch, just like a real
private network. However, instances in the same VPC
are not physically located together. These instances are
still located in different racks and are connected to differ-
ent ToR or EoR switches. Thus, the traffic inside a VPC
might still traverse multiple switches/routers. Similarly,
the traffic between an instance in a VPC and an instance
in the default EC2 network can have a similar path to the
traffic between two instances in the default EC2 network.
However, EC2 hides or obscures certain hops in the path
to provide the image of “private network.”

6.3 Co-residence in VPC
The traditional way of achieving co-residence relies on
the knowledge of private IP address to seek potential can-
didates. With VPC, this approach no longer works as
VPC hides the private IP address of an instance. An alter-
native is to infer the physical location of a target based on
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Figure 15: A sample trace-routing result from an instance in VPC
to an instance in EC2.

Figure 16: A sample trace-routing result from an instance in EC2
to an instance in VPC.

the routing paths to the target. Unfortunately, our trace-
routing results show that sensitive information of a rout-
ing path is obscured by EC2, and therefore it also does
not work well.

However, in our trace-routing results we found that
the end-to-end latency to and from an instance in a VPC
varies with different instance types and the location of
the instance. This latency variation can be leveraged to
help an attacker speculate the type and location of a tar-
get instance. Moreover, while performing trace-routing
between an instance in a VPC and an instance in the de-
fault EC2 network, the number of hops required is not
obscured. Therefore, the number of hops in a path can
also be leveraged to derive useful information for achiev-
ing co-residence.

Based on our measurement analysis, we propose a new
method to achieve co-residence with instances in a VPC.
It has two steps: (1) speculate the type and availability
zone of a target and (2) launch probing instances with
the same type in the same availability zone and perform
co-residence verification.

6.3.1 Type and zone speculation

We collected statistical data of the end-to-end latency be-
tween a pair of instances with different types and in dif-
ferent zones. Table 2 shows part of the end-to-end latency
statistics. Each row represents an instance in a VPC with
a certain type and availability zone preference. Each col-
umn stands for an instance in the default EC2 network
with a certain type and availability zone preference. Each
value in the table is calculated as the average of 50 sam-
ples. Each sample is obtained with a distinct instance
pair and is averaged over five rounds of latency measure-
ment. With this latency table, we are able to construct a
latency vector for each target instance in a VPC and use
the latency vectors to speculate the type and availability
zone of a target.

There are three availability zones and each zone has
six types: t1.micro, m1.small, m1.medium, m1.large,
m3.medium, and m3.large. Thus, the complete version
of Table 2 has 18 rows and 18 columns, which can be
found in our technical report [22]. Note that each row
in the table can represent a latency vector, and such a
latency vector derived from our controlled sampling is
called a baseline vector.

In each different availability zone, we randomly se-

lect an instance for each different type, resulting in 18
(3×6) sample instances in total for testing type and zone
speculation. For each target in a VPC, we perform trace-
routing from each of our sample instances to the target for
5 times and record the average end-to-end latency of each
pair. Such measurement can provide us 18 end-to-end la-
tency values, which constitute an input vector of length
18. We then calculate the cosine similarity between the
input vector and these 18 baseline vectors. The baseline
latency vector that has the highest similarity with the tar-
get input vector is selected, and we can speculate that the
target instance has the same {instance type, availability
zone} as the instance in the selected baseline vector.

6.3.2 Verifying co-residence

To achieve co-residence with an instance in a VPC, our
probing instances are also launched in a VPC. There are
two reasons that we do not use the instances in the default
EC2 network as probing instances. First, it is possible
that EC2 uses a separate algorithm to place instances in
a VPC. In other words, compared to an instance in the
default EC2 network, an instance in a VPC may have a
better chance to achieve co-residence with an instance in
another VPC. Second, as we have observed, the end-to-
end latency between two instances in two different VPCs
is more stable than the latency between an instance in the
default EC2 network and an instance in a VPC, which
allows us to leverage latency for pre-filtering.

Similar to verifying co-residence in the default EC2
network, verifying co-residence in a VPC also includes
two steps: pre-filtering and covert channel construction.
While the way of using covert channel construction to
confirm co-residence remains the same, the pre-filtering
process in a VPC is different.

To verify whether an attack instance is co-resident with
a target, we rely on two rounds of pre-filtering to screen
out irrelevant candidates. First, we perform trace-routing
from our 18 sample instances to our attack instance and
the target instance. If any path from the sample instance
to the attack instance is not equivalent to the correspond-
ing path from the sample instance to the target in terms
of number of hops, this attack instance is abandoned.

Second, if all the paths match in the number of hops,
we measure end-to-end latency between our attack in-
stance and the target instance. Figure 17 shows a sam-
ple latency distribution between an instance in a VPC
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Table 2: End to end latency between different instances.

1a-t1.micro 1a-m1.small 1a-m1.medium 1b-t1.micro 1b-m1.small 1b-m1.medium
1a-t1.micro 1.224ms 1.123ms 1.025ms 2.237ms 2.221ms 2.304ms
1a-m1.small 1.361ms 1.059ms 1.100ms 2.208ms 2.055ms 2.198ms
1a-m1.medium 1.165ms 1.102ms 0.986ms 2.211ms 2.060ms 1.988ms
1b-t1.micro 2.101ms 2.235ms 2.188ms 1.108ms 1.243ms 1.202ms
1b-m1.small 2.202ms 2.003ms 2.190ms 1.131ms 0.968ms 1.048ms
1b-m1.medium 2.087ms 2.113ms 1.965ms 1.088ms 1.023ms 0.855ms
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Figure 17: End-to-end latency between an instance in VPC and all
other instances in other VPCs in EC2.

with the micro type in availability zone 1a to all live
VPC instances in EC2. As we can see, most end-to-end
latency values (over 99%) are above 1ms, and in very
rare cases (below 0.1%) the latency is below 0.850ms.
We perform such latency measurement from 18 sample
VPC instances with different types in different availabil-
ity zones, and similar distribution is repeatedly observed.
Based on such observations and the heuristics that in-
stances located on the same physical machine should
have lower latency than instances located in a different
physical location, we set a latency threshold for each type
of instance in each availability zone. The threshold is se-
lected so that for an instance in a VPC with certain type
and availability zone, the end-to-end latency between the
instance and 99.9% of all other VPC instances should
be above the threshold. For example, based on our mea-
surement introduced above, if we speculate that the target
VPC instance is located in availability zone 1a with mi-
cro type, the latency threshold is set to 0.850ms. Only
if the end-to-end latency between a probing instance and
a target instance is below the threshold, will the probing
instance be considered as a co-residence candidate.

If the probing instance passes the two rounds of filter-
ing, we will perform covert-channel construction to con-
firm co-residence.

6.4 VPC co-residence evaluation
To verify the feasibility of our VPC co-residence ap-
proach, we conducted a series of experiments in EC2. We
first tested whether our approach can speculate the type
and availability zone of a target instance correctly. We
launched VPC instances in three availability zones with
six different types. For each combination, 20 instances
were launched. We applied our approach to speculate
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Figure 18: The effort for co-residence with instances in VPC.

the type and availability zone of the target. If both the
type and availability zone are correctly inferred, we con-
sider that the target instance is correctly identified. Ta-
ble 3 lists our evaluation results. Each number in the
table indicates the number of the successfully identified
instances among the 20 launched instances for a zone-
type combination (e.g., 1a-t1.micro means t1.micro in-
stances launched in the us-east-1a zone). The results
show that our type/zone speculation can achieve an ac-
curacy of 77.8%.

We then evaluated the overall effectiveness of our ap-
proach for achieving co-residence. We launched 40 in-
stances in one VPC, with different types and availability
zones. We performed the full process of achieving co-
residence with VPC instances.

First, we measured the effectiveness of our two-stage
filtering technique. Among all the probing instances we
launched, 63.2% of them did not pass the first step fil-
tering. For the second stage, our technique filtered out
97.9% of the instances that passed the first stage filter-
ing. For all the instances passed the two-stages filter-
ing, 17.6% of them passed the covert-channel verifica-
tion, which are the instances actually co-resident with the
target.

Eventually, among 40 instances, we successfully
achieved co-residence with 18 of them. Figure 18 illus-
trates the effort we paid to achieve co-residence, showing
that to achieve co-residence in VPC is not an easy task.
An attacker may need to launch more than 1,000 probing
instances and such a process can take many hours.

Overall, we are the first to demonstrate that an attacker
can achieve co-resident with a target inside a VPC with
high cost, and hence VPC only mitigates co-residence
threat rather than eliminating the threat all together.
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Table 3: The number of successfully identified targets.

1a-t1.micro 1a-m1.small 1a-m1.medium 1a-m1.large 1a-m3.medium 1a-m3.large
Success 16 13 18 14 16 17

1b-t1.micro 1b-m1.small 1b-m1.medium 1b-m1.large 1b-m3.medium 1b-m3.large
Success 13 13 19 16 20 17

1d-t1.micro 1d-m1.small 1d-m1.medium 1d-m1.large 1d-m3.medium 1d-m3.large
Success 12 18 15 13 14 18

7 A More Secure Cloud

Based on our measurement analysis, we have proposed
some guidelines towards more secure IaaS cloud man-
agement.

First, the cloud should manage the naming system
properly. In general, a domain name is not sensitive
information. However, EC2’s automatic naming sys-
tem reveals its internal space. In contrast, Azure and
Rackspace employ flexible naming systems that can pre-
vent automatic location probing. However, automatic
domain name generation is more user-friendly since it
allows a user to launch instances in batch, while a cus-
tomer can only launch instances one by one in Azure and
Rackspace. Moreover, automatic domain name gener-
ation can help an IaaS vendor manage the cloud more
efficiently. To balance management efficiency and se-
curity, we suggest that IaaS clouds integrate automatic
domain name generation with a certain randomness. For
example, a random number that is derived from the cus-
tomer’s account information can be embedded into the
EC2 default domain name. This improved naming ap-
proach can prevent location probing while not degrading
management efficiency.

Second, it is controversial to publish all IP ranges of a
cloud. With the introduction of ZMap [10], it is not diffi-
cult to scan all public IPs in the cloud. We have demon-
strated that such scanning can cause serious security con-
cerns.

Third, the routing information should be well-
protected. While trace-routing is a tool for a customer to
diagnose a networking anomaly, it can also be exploited
by an attacker to infer the internal networking informa-
tion of the cloud. However, the approach taken by Azure
and Rackspace is too strict. The prohibition of network-
ing probing deprives a customer from self-diagnosis and
self-management. A good trade-off is to show only part
of the paths, but always obscure the first hop (ToR) and
the last second hop.

Fourth, VM placement should be more dynamic and
have more constraints. Locality reduction will make it
more difficult for an attacker to locate a target. IaaS
vendors can also leverage some historical information of
a user’s account to prevent the abuse of launching in-
stances. While EC2 has significantly increased the dif-
ficulty of achieving machine-level co-residence, it is also
necessary to suppress rack-level co-residence in the fu-

ture.

8 Conclusion
We have presented a systematic measurement study on
the co-residence threat in Amazon EC2, from the per-
spectives of VM placement, network management, and
VPC. In terms of VM placement, we have demonstrated
that time locality in VM placement is significantly re-
duced and VM placement in EC2 becomes more dy-
namic, indicating that EC2 has adjusted its VM place-
ment policy to mitigate co-residence. Regarding net-
work management, by conducting a large-scale trace-
routing measurement, we have shown that EC2 has re-
fined networking configurations and introduced VPC to
reduce the threat of co-residence. We have also pro-
posed a novel method to identify a ToR-connected or
non-ToR-connected topology, which can help an attacker
to achieve rack-level co-residence. As the first to in-
vestigate the co-residence threat in VPC, on one hand,
we have confirmed the effectiveness of VPC in mitigat-
ing the co-residence threat. On the other hand, we have
shown that an attacker can still achieve co-residence by
exploiting a latency-based probing method, indicating
that VPC only mitigates co-residence threat rather than
eliminating the threat.
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A Business scale of EC2

Figure 19 illustrates the number of all the detected live
instances in EC2 US east region during the measurement
period. We can see that the business scale in EC2 US east
region is very impressive. Our scanning can always de-
tect more than 650,000 live instances in the cloud. Dur-
ing the peak time, we can detect almost 700,000 live
instances. It is noteworthy that our system only scans
some common ports. Besides the instances we detected,
there are some instances with no common ports opened
or within the VPC that do not have public IP addresses.
Thus, the real number of live instances in the cloud could
be even larger.

Table 4 lists the break-down statistics, showing the
number of instances hosting a certain service on average.
It is obvious that web service still dominates the usage
in IaaS. Most customers rent the instances to host their
web services. Among these web services (i.e., HTTP),
more than half of them deploy HTTPS at the same time.
Since the default way of accessing an instance in EC2 is
through SSH, the number of instances listening on port
22 is the second largest. There are also considerable in-
stances hosting FTP service, DNS service, and database
service (MYSQL+SQL). For the rest of services, the
number of instances hosting them are less significant.
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Table 4: Number of instances hosting a certain service

FTP SSH Telnet SMTP WHOIS DNS DHCP Finger HTTP SQL HTTPS MYSQL
Live in-
stances 24,962 327,294 350 18,376 305 3,392 15 68 441,499 48 261,446 25,872
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Figure 22: The distribution of internal IP addresses of instances with dif-
ferent types in availability zone us-east-1a.
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Figure 23: The distribution of internal IP addresses of instances in differ-
ent availability zones.

B Dynamic environment of EC2

Our measurement can also reflect the dynamic environ-
ment of EC2 to some extent. First, as shown in Figure 19,
the number of live instances varies over time within a day.
We observed a similar pattern each day: the peak time is
around 5 p.m. (EST) while the service reaches a valley
around 4 a.m. (EST). Despite this diurnal pattern, the
difference in the number of live instances between peak
and valley is not as significant as we expected. There are
only 1,000 more live instances at peak than valley, which
is relatively small considering the overall 650,000 live in-
stances. The diurnal pattern is reasonable, as 4 a.m. EST
is very early morning for the US east coast and it is also
midnight for the US west coast. It is intuitive that at this
time period fewer users are using EC2. The small differ-
ence between peak and valley can be explained from two
aspects. First, most instances run stable services such as
web and database services. These instances remain active
all the time. Second, although the data center is located
in the US, the customers are distributed all around the
world. For instance, Bermudez et al. [8] demonstrated
that the Virginia data center is responsible for more than
85% of EC2 traffic in Italy. The time of 4 a.m. on the
US east coast is 10 a.m. in Italy when customers are very
active there.

We are also interested in how dynamic the cloud en-
vironment is. Figure 20 illustrates how many instances
are shutdown, newly booted, or re-located between each
round of measurement. We can see there are more than
15,000 hosts that are changed every 20 minutes, indicat-
ing that EC2 is a very dynamic environment with tens of
VMs booted and shut down every second.

Besides the dynamics of live instances, we are also in-
terested in the networking dynamics. During our mea-
surement, we observed overall 975,032 distinct private
IP addresses and 1,024,589 distinct public IP addresses.
We recorded all the mappings from public IP to private IP
and the mappings from private IP to public IP during our

measurement. We also recorded the mappings that are
changed during the measurement period. Over the course
of our 15-day measurement, 103,242 mappings changed.
This implies that EC2 has likely recruited dynamic NAT
for address translation.

Figure 21 shows the private IP addresses that are in-
cluded in the changed mappings. It is clear that the IP
address pool in the cloud is dynamic as well. The den-
sity of the IPs in a certain range is significantly higher
than other areas. This range of private IPs are mostly
assigned to micro and small instances. Since micro and
small instances are usually used for temporary purposes,
ON/OFF operations on them are more frequent, leading
to more frequent changes in private-public IP mappings.

C VM placement locality in EC2

To investigate the VM placement locality in EC2, we
launched numerous instances with different types and in
different availability zones to study whether the type or
zone will impact the physical location of an instance.

Figure 22 illustrates the private IP distribution of some
sample instances with different types in zone us-east-1a.
The IP distribution exhibits a certain type locality. We
can see from the figure that the instances of the same
type tend to have closer internal IPs, i.e., they are more
likely to be placed physically close to one another. How-
ever, compared with corresponding results in 2008 [14],
we can see that such type locality has been significantly
weakened.

We also study how availability zone could affect VM
placement. Figure 23 illustrates the internal IP distribu-
tion of instances in different availability zones. As we
can see, VM placement still has availability zone local-
ity, i.e., instances in the same zone are more likely to
have their internal IP addresses located within a certain
range. However, such locality is also much weaker than
in 2008 [14].
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Abstract

Android multitasking provides rich features to enhance
user experience and offers great flexibility for app de-
velopers to promote app personalization. However, the
security implication of Android multitasking remains
under-investigated. With a systematic study of the com-
plex tasks dynamics, we find design flaws of Android
multitasking which make all recent versions of An-
droid vulnerable to task hijacking attacks. We demon-
strate proof-of-concept examples utilizing the task hi-
jacking attack surface to implement UI spoofing, denial-
of-service and user monitoring attacks. Attackers may
steal login credentials, implement ransomware and spy
on user’s activities. We have collected and analyzed over
6.8 million apps from various Android markets. Our
analysis shows that the task hijacking risk is prevalent.
Since many apps depend on the current multitasking de-
sign, defeating task hijacking is not easy. We have noti-
fied the Android team about these issues and we discuss
possible mitigation techniques in this paper.

1 Introduction

In the PC world, computer multitasking means multiple
processes are running at the same period of time. In
Android systems, however, multitasking is a unique and
very different concept, as defined in Android documenta-
tion: “A task is a collection of activities that users interact
with when performing a certain job” [1]. In other words,
a task contains activities [4] (UI components) that may
belong to multiple apps, and each app can run in one or
multiple processes. The unique design of Android multi-
tasking helps users to organize the user sessions through
tasks and provides rich features such as the handy ap-
plication switching, background app state maintenance,
smooth task history navigation using the “back” button,
etc. By further exposing task control to app developers,
Android tasks have substantially enhanced user experi-

ence of the system and promoted personalized features
for app design.

Despite the merits, we find that the Android task man-
agement mechanism is plagued by severe security risks.
When abused, these convenient multitasking features can
backfire and trigger a wide spectrum of task hijacking at-
tacks. For instance, whenever the user launches an app,
the attacker can condition the system to display to the
user a spoofed UI under attacker’s control instead of the
real UI from the original app, without user’s awareness.
All apps on the user’s device are vulnerable, including
the privileged system apps. In another attack, the mal-
ware can be crafted as one type of ransomware, which
can effectively “lock” the tasks that any apps belong to
on the device (including system apps or packages like
“Settings” or “Package Installer”), i.e. restricting user
access to the app UIs and thus disabling the functionality
of the target apps; and there is no easy way for a normal
user to remove the ransomware from the system. More-
over, Android multitasking features can also be abused
to create a number of other attacks, such as phishing and
spyware. These attacks can lead to real harms, such as
sensitive information stolen, denial-of-service of the de-
vice, and user privacy infringement, etc.

The Android multitasking mechanism and the under-
lying feature provider, the Activity Manager Service
(AMS), haven’t been thoroughly studied before. In this
paper, we take the first step to systematically investi-
gate the security implications behind Android multitask-
ing design and the AMS. At the heart of the problem,
although the Android security model renders different
apps sandboxed and isolated from one another, Android
allows the UI components (i.e., activities) from differ-
ent apps to co-reside in the same task. Given the com-
plexity of task dynamics, as well as the vagaries of addi-
tional task controls available to developers, the attacker
can play tricky maneuvers to let malware reside side by
side with the victim apps in the same task and hijack the
user sessions of the victim apps. We call this task hijack-
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Attacks Consequences Vulnerable
Types system & apps

Spoofing Sensitive info stolen all; all

Denial-of-service Restriction of use access all; allto apps on device
Monitoring User privacy infringement Android 5.0.x; all

Table 1: Types of task hijacking attacks presented in this paper
(system versions considered - Android 3.x, 4.x, 5.0.x).

ing.
Given the security threats, it becomes important to

fully study Android multitasking behaviors in a system-
atic way. We approach this topic by projecting the task
behaviors into a state transition model and systematically
study the security hazards originated from the discrep-
ancies between the design assumptions and implementa-
tions of Android tasks. We find that there is a plethora
of opportunities of task hijacking exploitable to create a
wide spectrum of attacks. To showcase a subset of the
attack scenarios and their consequences, we implement
and present a set of proof-of-concept attacks as shown in
Table 1.

We do vulnerability assessment to the task hijacking
threats and discover that all recent Android versions, in-
cluding Android 5, can be affected by these threats, and
all apps (including all privileged system apps) are vul-
nerable to most of our proof-of-concept attacks on a vul-
nerable system. By investigating the employment of task
control features by app developers based on 6.8 million
apps in various Android markets, we find that despite the
serious security risks, the “security-sensitive” task con-
trol features are popular with developers and users. We
have reported our findings to the Android security team,
who responded to take a serious look into the issue. We
summarize our contributions below:

• To the best of our knowledge, we are the first to sys-
tematically study the security implications of An-
droid multitasking and the Activity Manager Ser-
vice design in depth.

• We discover a wide open attack surface in Android
multitasking design that poses severe threats to the
security of Android system and applications.

• Base on our vulnerability analysis over 6.8 million
apps, we find that this problem is prevalent and can
lead to a variety of serious security consequences.

• We provide mitigation suggestions towards a more
secure Android multitasking sub-system.

2 Background

Android Application Sandbox: The Android security
model treats third-party apps as untrusted and isolates

them from one another. The underlying Linux kernel en-
forces the Linux-user based protection and process iso-
lation, building a sandbox for each app. By default, the
components of one app run in the same Linux process
with an unique UID. Components from different apps
run in separate processes. One exception is that differ-
ent apps can run in one process only if they are from the
same developer (same public key certificate), and the de-
veloper explicitly specifies the same process in the man-
ifest file. The Linux sandbox provides the foundation for
app security in Android. In addition, Android provides a
permission model [12, 19] to extend app privileges based
on user agreement, and offers an inter-component com-
munication scheme guarded by permissions for inter-app
communication.

Activity: Activity is a type of app component. An ac-
tivity instance provides a graphic UI on screen. An app
typically has more than one activities for different user
interactions such as dialing phone numbers and reading
a contact list. All activities must be defined in an app’s
manifest file.

Intent: To cross the process boundaries and enable
communication between app components, Android pro-
vides an inter-component communication (ICC) scheme
supported by an efficient underlying IPC mechanism
called binder. To perform ICC with other components,
an component use intent, an abstract description of the
operations to be performed. An intent object is the mes-
sage carrier object used to request an action from another
component, e.g., starting an activity instance by calling
startActivity() function. Intent comes in two fla-
vors. Explicit intent specifies the component to start ex-
plicitly by name. Implicit intent instead encapsulates a
general type of action, category or data for a component
to take. The system will launch a component “capable”
of handling this intent. If more than one target activi-
ties exist in the system, the user is prompted to choose a
preferred one.

Activity Manager Service (AMS): AMS is an Android
system service that supervises all the activity instances
running in the system and controls their life cycles (cre-
ation, pause, resume, and destroy). The interaction
and communication protocols between activities and the
AMS are implemented by the Android framework code,
which is transparent to app developers, leaving devel-
opers focusing on the app functionality. While Win-
dow Manager Service (WMS) manages all windows in
the system and dispatches user inputs from the windows,
AMS organizes all the activities in the system into tasks,
and is responsible for managing the tasks and support-
ing the multitasking features as will be described in Sec-
tion 3.

2
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In addition, AMS is in charge of supervising ser-
vice components, intent routing, broadcasting, content
providers accesses, app process management, etc., mak-
ing itself one of the most critical system services in the
Android system.

3 Android Tasks State Transition Model

3.1 Task and Back Stack
In Android, a task [1] is a collection of activities that
users have visited in a particular job. The activities in a
task are kept in a stack, namely back stack, ordered by
the time the activities are visited, such that clicking the
“back” button would navigate the user back to the most
recent activity in the current task. The activities in the
back stack may be from the same or different apps.

The activity displayed on the screen is a foreground
activity (on the top of the back stack) and the task as-
sociated with it is a foreground task. Therefore, there is
only one foreground task at a time and all other tasks are
background tasks. When switched to the background,
all activities in a task stop, and remain intact in the back
stack of the task, such that when the users return they can
pick up from where they left off. This is the fundamental
feature that Android multitasking offers to users.

3.2 A Tasks State Transition Model
The status of tasks in a system keeps changing as a re-
sult of user interaction or app program behaviors. To
understand the complex task dynamics and its behind se-
curity implications, we view the task transitions through
time as a state transition model. The model is described
by (S,E,Λ,→), where S denotes a set of task states; E
and Λ are sets of events and conditions respectively; and
→ indicates a set of feasible transactions allowed by the
system under proper events and conditions.

1. Task state (s ∈ S): represents the state of all tasks
(specifically, the back stacks) in the system and their
foreground/background statuses. In other words,
the tasks in the system remain in one state i f f the
activity entries and their orders in the back stacks
stay the same, and the foreground task remains to
be the same task.

2. Event (e ∈ E): denotes the event(s) it takes to
trigger the state transition, for example, pressing
the “back” button or calling startActivity()
function.

3. Condition (λ ∈ Λ): the prerequisites or configura-
tions (usually default) that enable a state transition
under certain events. We denote λ de f ault as the sys-
tem default conditions in this paper.

Home 

Launcher Task App Task 

B 
A 

S2 

Home 

Launcher Task App Task 

A 

S1 

Home 

Launcher Task 

S0 
Foreground 

Foreground Foreground 

T1: T2: 

T3: T4: 

0 1( , , , )start newtasks s e  1 2( , , , )start defaults s e 

1 0( , , , )back defaults s e  2 1( , , , )back defaults s e 

Figure 1: A simple task state transition example.

4. Transition (→): stands for a feasible state transi-
tion. Not all task transitions are feasible, e.g., the
order of activities in back stack cannot be changed
arbitrarily (only push and pop are viable operations
over the stack). A viable transaction is also repre-
sented as s1 → s2, or (s1,s2,e,λ ), where s1,s2 ∈ S.

3.3 A Task State Transition Example
Given the state transition model, we depict a simple task
state transition example in Figure 1. The figure shows
three task states, and the state transitions reflect the pro-
cess in which the user first launches an app from the
home screen (s0 → s1), visits an additional activity UI
in the app (s1 → s2) and returns to the home screen by
pressing the “back” button twice (s2 → s1 → s0).

In each task state, we show all existing tasks and their
back stacks. For example, s0 is a task state in which no
task, except the launcher task, is running in the system.
The launcher task has only one activity in its back stack -
the home screen from which users can launch other apps.

In (s0,s1,estart ,λ newtask), a new app task is created and
brought to the foreground in the resulting state s1. estart

represents the event that startActivity() is called
by the home activity in the launcher task. This event
could happen when the user clicks the app’s icon on the
home screen. λ newtask specifies a special condition, i.e.,
the FLAG_ACTIVITY_NEW_TASK flag is set to the in-
put intent object to startActivity() function. This
flag notifies the AMS the intention of creating a new task
to host the new activity. Note that in this example most
state transitions are under default conditions, indicated
by λ de f ault , while here s0 → s1 is an exception because
the launcher app customizes the condition (λ newtask) for
a valid design purpose: start the app in a brand new task
when the user launches an new app. This is an example
where app developers can customize certain configurable
conditions to implement helpful app features. However,
condition like λ newtask can be abused in a task hijacking
attack, as discussed in Section 4.

Next, (s1,s2,estart ,λ de f ault ) is triggered by event estart

again (this time called by activity A instead), yet un-
der the default condition. By default, AMS pushes the
new activity instance B on top of the current back stack

3
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ActivityStack
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TaskRecord
TaskRecord

ActivityRecord
ActivityRecord
ActivityRecord

TaskRecord

TaskRecord
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Figure 2: Data structures of tasks, activities and back stacks
in the Activity Manager Service.

as shown in s2. The previous activity A is stopped and
its state is retained. In (s2,s1,eback,λ de f ault ), eback repre-
sents the event of user pressing the “back” button. As ex-
pected by the user, the next activity A on stack is brought
back to the screen, and its original state is resumed. Ac-
tivity B is popped from the back stack and destroyed by
the system. The initial state s0 is finally restored through
(s1,s0,eback,λ de f ault ) when the user presses “back” but-
ton again. The app’s task is destroyed because when the
popped activity is the last activity in the back stack, the
activity is destroyed together with the “empty” task.

Note that activities from different apps can co-reside
in the same task (e.g. activity A and B in this exam-
ple). In other words, although activities from different
apps are isolated and protected within their own process
sandboxes, Android allows different apps to co-exist in
a common task. This creates opportunities for malicious
activities to interfere with other activities once they are
placed in the same task, and the system passes the pro-
gram control to the malicious activities.

In reality, the amount of possible task states in a sys-
tem is big, and the state transitions can be complex, e.g.,
each state may again have numerous incoming and out-
going transitions connecting with other states. In Sec-
tion 4, we discuss what may go wrong during the com-
plex task state transitions.

3.4 Android Implementation

AMS maintains Android tasks and activities in a hier-
archy shown in Figure 2. AMS uses TaskRecord and
ActivityRecord objects to represent tasks and activ-
ities in the system respectively. A TaskRecord main-
tains a stack of ActivityRecord instances, which is
the back stack of that task. Similar to the activities in a
back stack, tasks are organized in a stack as well, main-
tained by a ActivityStack object, such that when
a task is destroyed, the next task on stack is resumed
and brought to the foreground. There are usually two
ActivityStack containers in the system - one con-
taining only the launcher’s tasks and the other holding
all remaining app tasks.
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Figure 3: Task state transition of spoofing attack (A: task state
transition by system-default. B: Hijacking state transition).

4 Task Hijacking in Android

In this section, we first discuss an example showing how
an attacker could manipulate the task state transitions to
his advantage, causing task hijacking attacks. We then
explore the extent of different task hijacking methods and
how they can be used for other various attack goals.

4.1 Motivating Example
Suppose attacker’s goal is to launch an UI spoofing at-
tack. Specifically, when the user launches a victim app
from the home screen, a spoofing activity with an UI
masquerading the victim app’s main activity (e.g. the lo-
gin screen of a bank app) shows up instead of the original
activity.

Figure 3 shows the task state transitions of the UI
spoofing attack. Initially in s0, the home screen is dis-
played to the user while a malware task waits in the back-
ground. Like the task state transition example just shown
in Section 3.3, when the user launches the victim app
from the launcher, state transition A is supposed to occur
by default, i.e. a new task is created and the app’s main
activity is displayed on screen. However, as shown in
state transition B, the malware can manipulate the task
state transition conditions such that the system instead
displays the spoofing UI of activity ”mal-main” by relo-
cating ”mal-main” from the background task to the top
of victim app’s back stack. The user has no way to detect
the spoofing UI since the original activity UI is not shown
on screen at all, and the ”mal-main” activity appears to
be part of the victim app’s task (perceivable in recent task
list). By this means, the victim task is smoothly hijacked
by the malware activity from launch time, and all user
behaviors within this task are now under malware’s con-
trol.

In this example, the attacker successfully misleads the
system and launches the spoofing UI by abusing some
task state transition conditions, i.e. taskAffinity
and allowTaskReparenting. We will introduce
them together with other exploitable conditions/events in
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Conditions
Intent Flags Activity Attribute(FLAG_ACTIVITY_*)
NEW_TASK

SINGLE_TOP launchMode
CLEAR_TOP allowTaskReparenting

REORDER_TO_FRONT taskAffinity
NO_HISTORY allowTaskReparenting
CLEAR_TASK documentLaunchMode (API 21)

NEW_DOCUMENT (API 21) finishOnTaskLaunch
MULTIPLE_TASK

Events
Callback Function Framework APIs

onBackPressed()
startActivity()

startActivities()
TaskStackBuilder class

Table 2: Task control knobs - configurable task state transition
conditions and events provided by Android.

Section 4.5 and 4.6.

4.2 Adversary Model
We assume the user’s Android device already has a mal-
ware installed (similar assumptions are made in [8, 25,
34, 38]). The malware pretends to seem harmless, requir-
ing only a minimum set of widely-requested permissions
such as INTERNET permission. The attacker’s goal is
clear: blend the malicious activities with the target app’s
activities in one task, and intercept the normal user oper-
ations to achieve malicious purposes.

4.3 Hijacking State Transition
A hijacked task state is a desirable state to attackers, in
which at least one task in the system contains both ma-
licious activities (from malware) and benign activities
(from the victim app). The task state s

′
1 in the spoof-

ing attack is an example of hijacked task state. A hijack-
ing state transition (HST) is a state transition which turns
the tasks in the system to a dangerous hijacked task state,
e.g., the task state transition B in the previous example.
Conceptually, there are two types of HSTs:

1. The malicious activity gets pushed onto the victim
task’s back stack (malware⇒victim);

2. The victim app activity is “tricked” by mal-
ware and pushed on the malware’s back stack
(victim⇒malware).

4.4 The Causes of HSTs
Android provides a rich set of task control features, i.e.,
task state transition conditions and events. We call these
features as task control knobs. The task control knobs
provide app developers with broad flexibility in control-
ling the launch of new activities, the relocation of ex-
isting activity to another task, “back” button behaviors,

even the visibility of a task in the recent task list (a.k.a
overview screen), etc. Table 2 lists such conditions and
events in four categories: activity attribute, intent flags,
call-back functions, and framework APIs. All these con-
trol flexibility further complicates task state transitions.

Due to HST’s potential threats to app and system se-
curity, understanding the extent of HSTs in the complex
task state transitions becomes important. To achieve this,
we simulate the task state transitions in a Android system
and try to capture all possible HSTs and hijacked task
states that occur during the state transitions.

In theory, there are a huge number of possible task
states (each app may have a number of activities, and an
activity can be instantiated for multiple times). We con-
fine the number of task states to more interesting cases
by adding two constraints: (1) each app only has two ac-
tivities - the main activity and another public exported
activity (can be invoked by other apps), and (2) each ac-
tivity can only be instantiated once. In the simulation,
we specify three apps in the system - namely, Alice, Bob
and Mallory (the malware) - as it covers most HST cases.

Given the task states, we generate the task state tran-
sition graph by connecting pairs of states with directed
edges. For instance, state s1 and s2 are connected only
if ∃e ∈ E,λ ∈ Λ, such that (s1,s2,e,λ ) or (s2,s1,e,λ )
are valid transitions, where E denotes all feasible events
and Λ represents all possible conditions in Table 2. After
constructing the task state transition graph, all hijacked
states and HSTs are highlighted. We show a sub-graph of
the resulting task state transition graph in Figure 4(a) and
visualize the task states in Figure 4(b). For clarity of the
presentation, we only show the interesting branches of
the over-sized graph and have skipped many duplicated
HST cases. Moreover, we zoom in each of the HSTs and
show their detailed information in Table 3, including the
conditions and events that trigger the HSTs. We manu-
ally verify all presented HSTs on real systems and these
HSTs are proven to be exploitable to launch real attacks
(indicated in the last column in Table 3).

We make two important observations from our result.
First, once exploited, the hijacked states shown in Fig-
ure 4(a) could result in serious security hazards. For ex-
ample, HST#3 is the task state transition of our exam-
ple attack discussed earlier. As a result of this HST, the
screen is under attacker’s control in state s14. As another
example, in HST#2, the benign activity B2 is tricked to
be placed in Mallory’s task instead of Alice’s task dur-
ing start-up. This can also lead to spoofing attack or GUI
confidentiality breaches.

Second, compared with the HST triggered by the
system-default conditions and events (e.g., HST#1),
more HST scenarios are produced under the configurable
conditions and events (HST#2-6) . It means that, by
abusing the flexible task control “knobs” readily offered
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Figure 4: (a) A sub-graph of the over-sized task state transition graph for a simulated system with three apps. The sub-graph shows
the typical cases of HSTs (red edges with HST indexes) and the resulting hijacked task states (red nodes). s0 represents the initial
state, i.e., no tasks except the launcher task exists in the system. (b) Visualization of task states of all nodes in figure (a). A, B and
M represent the activities from Alice, Bob and Mallory (the malware) respectively. We skip showing the launcher task in the task
states. Hijacked states are highlighted as red boxes. F and B denote foreground and background tasks respectively.

HST HST Type Conditions Events Attacks
# in Section 5
1 malware⇒victim Default A1: startActivity(M1) phishing I

2 victim⇒malware M1:taskAffinity=B2 A2: startActivity(B2) phishing IINEW_TASK intent flag set or B2:launchMode=”singleTask”

3 malware⇒victim M2:taskAffinity=A1; M2:allowTaskReparenting=”true” launcher: startActivity(A1) spoofingNEW TASK intent flag set

4 victim⇒malware M1:taskAffinity=A1; NEW_TASK intent flag set launcher: startActivity(A1) denial-of-use;
ransomware;

spyware

5 victim⇒malware M1:taskAffinity=B2; B2:allowTaskReparenting=”true” startActivities([M1, M2]) phishing IIIor use TaskStackBuilder

6 malware⇒victim M2:taskAffinity=A1 M1: startActivity(M2) -NEW_TASK intent flag set or M2:launchMode=”singleTask”

Table 3: Detailed information of the HSTs (red edges with HST indexes in Figure 4). E.g., condition “M1:taskAffinity=B2”
indicates that the taskAffinity attribute of activity M1 is set to that of B2; Event “launcher:startActivity(A1)” means that activity
A1 is started by the launcher.

by the Android system, the attacker can actively create a
plethora of HSTs that harm other apps. In Figure 4(a),
we only show several typical HST cases, yet there are
much more HST instances of these types in the complete
state transition graph.

The HST cases and their conditions/events summa-
rized in Table 3 may now look mysterious. We will de-
mystify these conditions and events in the rest of this sec-
tion.

4.5 Exploiting Conditions
In Table 3, HSTs #2, #4, #6 are similar with respect
to their state transition conditions, i.e. all three HSTs
occur by virtue of customized activity launch mode
(by setting launchMode attribute or NEW_TASK in-
tent flag). HSTs #3, #5 are similar as they both use
allowTaskReparenting attribute to enable activity
re-parenting.

4.5.1 Activity Attributes

One can define the attributes [2] of an activity in the
<activity> element in manifest file. The attributes

not explicitly defined are set to default values.

Task Affinity: Task affinity declares what task an
activity prefers to join. It is a hard-coded string defined
as <android:taskAffinity="affinity">,
where affinity is the task affinity string that can be
defined arbitrarily. By explicitly declaring a task affinity,
an activity is able to actively “choose” a preferable task
to join within its life cycle. If not explicitely specified
in the manifest, the task affinity of an activity is the app
package name, such that all activities in an app prefer
to reside in the same task by default. The affinity of a
task is determined by the task affinity of the task’s root
activity (the activity on the bottom of back stack).

Task affinity is a crucial condition used in most of
the HSTs in Table 3. There are two occasions in
which an activity can “choose” its preferred host task:
(1) when an activity attempts to be started as a new
task (i.e., “singleTask” launch mode or NEW_TASK
intent flag as in HST#2, #4, #6), and (2) if the
allowTaskReparenting activity attribute is set to
true, and another task with the same task affinity is
brought to the foreground (as in HST#3, #5). We explain
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the above two cases in detail in the following paragraphs.

Launch Mode: Activity launch mode defines how an
activity should be started by the system. Based on the
launch mode, the system determines: (1) if a new ac-
tivity instance needs to be created, and (2) if yes, what
task should the new instance be associated with. The
launch mode can be either statically declared by spec-
ifying <android:launchMode="value"> in the
manifest file or dynamically defined using intent flags
discussed in Section 4.5.2.

By default, launchMode="standard". In this
mode, the AMS would create a new activity instance and
put it on top of the back stack on which it is started. It’s
possible to create multiple instances of the same activ-
ity and those instances may or may not belong to the
same task. With launchMode="singleTask", the
decision-making of activity start-up is more complex.
An investigation into Android source code reveals three
major steps the AMS takes towards starting an activity.
First, if the activity instance already exists, Android re-
sumes the existing instance instead of creating a new one.
It means that there is at most one activity instance in the
system under this mode. Second, if creating a new ac-
tivity instance is necessary, the AMS selects a task to
host the newly created instance by finding a “matching”
one in all existing tasks. An activity “matches” a task
if they have the same task affinity. After finding such a
“matching” task, the AMS puts the new instance into the
“matching” task. This explains why in HST #2 and #6,
the newly-started and foreground activities (B2 and M2)
are put on other “matching” tasks (with the same task
affinity) instead of the tasks who start them. Third, with-
out finding a “matching” task, the AMS creates a new
task and makes the new activity instance the root activity
of the newly created task.

Task Re-parenting: By default, once an activity starts
and gets associated with a task, such association per-
sists for the activity’s entire life cycle. However, setting
allowTaskReparenting to true breaks this restric-
tion, allowing an existing activity (residing on an “alien”
task) to be re-parented to a newly created “native” task,
i.e., a task having the same task affinity as the activity.

For example, in HST#3 resembles the spoofing at-
tack example discussed in Section 4.1. M2 is sup-
posed to stay on Mallory’s task at all time. However,
M2 has its allowTaskReparenting set to true, and
taskAffinity set to Alice’s package name, such
that when Alice’s task is started (A1 as the root activ-
ity) by the launcher, M2 is re-parented to Alice’s new
task and the user sees M2 on screen instead of A1.
In this process, A1 is never brought to the screen at
all. Likewise, HST #5 occurs due to similar reason,

except that this time the benign activity B2 (with its
allowTaskReparenting set to true) is re-parented
to the malware task.

The above activity attributes offer attackers with great
flexibility. The attackers can put their malicious activ-
ities to a preferred hosting tasks under certain events,
e.g., singleTask launch mode during an activity start-
up and allowTaskReparenting during a new task
creation. Furthermore, an activity is free to choose any
app as their preferred task owner (including the privi-
leged system apps) by specifying the target app’s pack-
age name as their task affinity. These conditions lead to
a bulk of HSTs in the simulation, and these HSTs can
be employed to launch powerful task hijacking attacks
as we will see in Section 5.

4.5.2 Intent Flags

Before sending an intent to start an activity, one could
set intent flags to control how the activity should
be started and maintained in the system by calling
intent.setFlags(flags). intent is the intent
object to be sent, and flags is an int value (each bit
indicates a configuration flag to the AMS).

Noticeably, the FLAG_ACTIVITY_NEW_TASK in-
tent flag, if set, lets an activity be started as if its
launchMode="singleTask", i.e. the system goes
through the same procedures as explained in launch
mode to find a “matching” task or create a new task for
the new activity instance. This is the dynamic way of set-
ting activity’s launch mode. Launcher app always uses
this flag to start an app in a new task as in HST#4.

4.6 Exploiting Events

4.6.1 Callback Function

Android framework provides a variety of callback func-
tions for activities to customize their behaviors under
particular events, e.g., activity life cycle events (start,
pause, resume or stop), key pressing events, system
events, etc.
onBackPressed() is a callback function defined

in Activity class, and is invoked upon user pressing
the “back” button. The default implementation in frame-
work code simply stops and destroys the current activity,
and it then resumes the next activity on top of the current
back stack, as we have seen in Section 3.3. However, an
attacker can override this callback function for its mali-
cious activity and arbitrarily define a new behavior upon
“back” button pressing, or simply disable the “back” but-
ton by providing an empty function. As a result, once the
malicious activity is brought to the foreground, pressing
the “back” button triggers the code of attacker’s control.
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(a) (b) (c) (d) (e) (f)

Figure 5: The process of “back hijacking” phishing attack to a well-known bank app. (a) shows the main activity of the bank
app. A new user taps on the tutorial video link in the bank app; In (b), a system dialog prompts the user to choose a video player
available in the system; In (c), the video player activity is started, and the user later clicks “back” button, intending to “goes back”
to the original main activity; In (d) and (e), the back button directs the user to the phishing UIs, which spoof the user and steal bank
account credentials. The phishing activity then quits after user clicks “Sign On”; In (f), the original main activity is resumed, with
a log-in failure toast message displayed by the quitting malware.

4.6.2 Framework API

Android framework provides APIs to create new
tasks with established back stacks. For example,
TaskStackBuilder is a utility class that allows an
app developer to construct a back stack with specified
activities, and to start the back stack as a brand new task
in the system at a later time (e.g. using a PendingIntent).
Similarly, startActivities() in Activity class
achieves the same thing except that it builds and starts the
tasks in one API function call. These framework APIs
are helpful for attackers to build and launch new tasks
containing designated back stacks without explicitly dis-
playing all activities in the back stacks on screen.

5 Task Hijacking Attack Examples

In this section, we demonstrate more attack examples uti-
lizing exploitable HSTs in Table 3. These attacks can
breach the integrity, availability and confidentiality of
victim apps’ UIs respectively. We have tested these at-
tacks on Android 3.x, 4.x and 5.0.x.

5.1 Breaching UI Integrity
The UI integrity here means the “origin/source integrity”
of the victim app’s activities, instead of the “data in-
tegrity”. That is, instead of modifying the original ac-
tivities of the victim app, attackers deceive the user by
spoofing UIs, which can prevent the original UIs from
being displayed on screen.

5.1.1 Spoofing Attack

As we have already seen in Section 4.1 and 4.5,
by manipulating allowTaskReparenting and
taskAffinity, an attacker can successfully hijack

a new task with a spoofing activity. This attack affects
all apps on device including the most privileged system
apps (e.g., Settings). The attacker can even target
multiple apps on user device at the same time, as long as
the background malware tasks (targeting different task
affinity) are started in advance.
Stealthiness: In order to make the spoofing attack more
stealthy, the attacker could take advantage of other task
transition conditions and events to achieve this. For
example, the attacker can make its background mal-
ware tasks absent from the recent task list by setting
the activity attribute excludeFromRecents to true.
As another example, the user may accidentally resume
the app’s original activity (the root activity of victim
app’s task) by clicking the “back” button from the on-
screen spoofing activity. To prevent users from observ-
ing this abnormal app behavior, the attacker can override
onBackPressed() of the spoofing activity, bringing
the home screen back to the foreground, such that it gives
the user an illusion that it is in coherence with the sys-
tem’s default ”back” behavior.

5.1.2 Phishing Attack - “Back Hijacking”

The back button is popular with users because it allows
users to navigate back through the history of activities.
However, attackers may abuse the back button to mislead
the user into a phishing activity.

We devise three phishing attack methods that target the
same banking app, and demonstrate two of them in this
paper. Figure 5 shows the screen shots of the phishing
attack process. The phishing UIs show up when the user
returns from a third-party app activity, and the user un-
wittingly believes that he/she has returned to the original
bank activity.

Figure 6 shows the state transition diagrams of two
attack methods. The two attack methods differ in that,
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Figure 6: Tasks state transition diagrams of “back hijacking”
attacks. Figure (a) and (b) shows method I and II respectively.

user chooses a malicious video player in the first attack,
while in the second attack, even though the user chooses
a benign player, the bank task can still be hijacked when
the user launches the video player.
Method I: Figure 6(a) shows the state transition diagram
of the first attack method. We skip the unrelated task(s)
(e.g. launcher) in the system and only show tasks of in-
terest. In s1, the bank app task contains activities A and
B, in which B is the login activity. The HST occurs in
s1 → s2, triggered by the event that the user clicks the
tutorial video from the login UI, sending out a implicit
intent to look for an exported activity in the system capa-
ble of playing the tutorial video. Unfortunately, the user
selects the malicious video player activity “mal-player”
from the system pop-up and this results in the hijacked
state s2. After user finishes watching the video, s2 → s3
is triggered by user pressing the “back” button. How-
ever, the “back”-pressing event is modified by overrid-
ing onBackPressed() in the “mal-player” activity.
As a result, instead of resuming activity B, a new mali-
cious task is created (by using TaskStackBuilder)
and brought to the front. As can be seen, the HST takes
place under default conditions as in HST#1 (in Table 3).

The user session is hence hijacked to the malware
task, which contains “mal-A” and the foreground “mal-
B” phishing activities. Note that in this attack, the mal-
ware need to camouflage as a useful app (e.g. a video
player in this case) that users are likely to use.
Method II: As shown in Figure 6(b), the same phishing
attack can succeed even when the user selects a benign
video player. In s1, a malware task with two phishing ac-
tivities lurks in the background. Similarly, HST occurs in
s1 → s2, when the user launches a benign video player.
However, as shown in the resulting state s2, instead of
joining the banking task, the new video player activity is
pushed in the malware task’s back stack, such that press-
ing the “back” button after the video play resumes the
phishing activity “mal-B”.

This HST is similar to HST#2 (in Table 3) in that the
benign video player attempts to be started as a new task,
either because of the NEW_TASK flag set in the intent by
the bank activity, or the “singleTask” launch mode set by
the video player. Furthermore, the existing malware task
has its taskAffinity maliciously set to the benign
video player.
Stealthiness: We employ similar methods in the previ-
ous spoofing attack to ensure the stealthiness of the back-
ground malware tasks in both phishing attack methods.
Moreover, we disable the animation of task switching,
producing an illusion to the user that the screen transi-
tion is within the same task/app.

5.2 Breaching UI Availability
Task hijacking can also be leveraged to restrict the avail-
ability of an app’s UI components, or in other words, to
prohibit user access to part or all functionality of an vic-
tim app.

5.2.1 Preventing Apps from Being Uninstalled

In this example, the attacker is able to completely prevent
apps from being uninstalled.
Ways to Uninstall An App: There are generally three
ways for a user to uninstall an app from the device: (1)
uninstall from the system Settings app; (2) dragging the
app icon to the “trash bin” on home screen; or (3) unin-
stall with the help of a third-party app, e.g. an anti-virus
app. In these scenarios, the Settings, Launcher, and the
third-party apps will respectively generate an request to
uninstall the app. Such a request eventually reaches the
system package installer, which has the exclusive privi-
lege to install/uninstall apps. Upon receiving the request,
package installer pops up a dialog for the user to con-
firm. The dialog itself is an activity (namely uninstaller
activity) from the system package installer and is pushed
in the back stack of whoever is making the request (e.g.
s4 in Figure 7). No app can be uninstalled without user
confirmation on the uninstaller activity.
Attack Method: The attacker can prevent app un-
installation by restricting user access to the uninstaller
activity when it shows up on screen. In this attack, once
the uninstaller is found to be in the foreground, a mali-
cious activity is immediately pushed on top of the unin-
staller activity in the same back stack, such that the unin-
staller is “blocked” and becomes inaccessible to the user.

Figure 7 shows the state transition diagram of this at-
tack targeting Settings app. Similar methods can be eas-
ily adopted to block app un-installation from the launcher
or the anti-virus apps (e.g. when malware is detected).

In s1, a task with only one root activity (“mal-
root”) from the malware is waiting in the background,
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Figure 7: Tasks state transition diagram of application unin-
stall prevention attack.

with its taskAffinity set to the Settings app
(com.android.settings). The HST occurs in s1 → s2, trig-
gered when the user opens up the Settings from the home
screen (we skip Launcher task in the figure). In s2, in-
stead of hosting the newly-created “setting” activity in a
new task, “setting” activity is pushed on top of the mal-
ware’s back stack because the it is started by the launcher
with a NEW_TASK flag. As a result, upon start-up, the
privileged Settings app is unwittingly “sitting” on a task
owned by the malware. This is similar to HST#4 in Ta-
ble 3.

The user then goes through a few more sub-setting
menus to find the app (as shown in s3) and clicks
the uninstall button, after which the uninstaller activity
shows up for user confirmation (as shown in s4). Once
this happens, a malicious activity namely “mal-blocker”
is immediately (even without user awareness of the unin-
staller dialog) launched by a malicious background ser-
vice, which keeps monitoring the foreground activity.
The “mal-blocker” activity, started by a NEW_TASK
flagged intent and with the same task affinity as the Set-
tings app, is thus pushed in the same task, and effectively
blocks the uninstaller as shown in s5. The “mal-blocker”
activity has its “back” button disabled, such that the user
has no way to access the uninstaller activity right below
it in the back stack whatsoever, and thus cannot confirm
the app uninstalling operation.

In fact, the “back” button of “mal-blocker” is
not only disabled, but is also augmented with a
new event that triggers s5 → s6: invoking (call
startActivity()) the “mal-root” activity with an
intent having CLEAR_TOP flag set, which results in the
killing of the uninstaller and Settings activities in the
task.
Preventing Un-installation from adb: An advanced
user may resort to Android Debug Bridge (adb), a client-
server program used to connect Android devices from a

computer, and uninstall the malware from adb. However,
in order to use adb, the user needs to first enable USB de-
bugging in the Settings. The malware can block it in the
Settings using similar technique and prevent the use of
adb, as long as the USB debugging is not enabled before
the attack (which is the case for most normal users).

5.2.2 Ransomware

Ransomware blackmails people for money in exchange
of their data, and it has recently hit Android in a large
scale [5]. The attackers may use UI hijacking to imple-
ment ransomware.

The malicious background service mentioned above
takes the following two responsibilities and is difficult
to be completely stopped. (1) Assure the malicious root
activity (“mal-root”) is alive: it re-creates a new root
activity once the activity is found to be destroyed; and
(2) monitor the foreground activity: if the target activity
shows up, it immediately starts “mal-blocker” to block
user access to the target activity, as we have seen in
s4 → s5. To prevent itself from being killed, the ser-
vice registers itself in the system alarm service, who fires
a pending intent in every given fixed time interval, re-
launching the service if it is found to be killed.

By this mean, the ransomware is able to restrict user
access to any target apps of attacker’s choice, and can po-
tentially render the Android device completely useless.

5.3 Breaching UI Confidentiality

The attack method in Section 5.2 can also be deployed
to devise a new spyware, namely “TaskSpy” capable of
monitoring the activities within any tasks in the newest
Android 5.0.x systems (API 21), without requiring any
permissions.

In Android, the system regards the owner of the root
activity in a back stack to be the owner of the correspond-
ing task. Android 5.0 allows an app to get the informa-
tion of the caller app’s own tasks (including the activities
in the tasks) without requiring any permission. It means
that, if a spyware can “own” the tasks of all the apps
it intends to spy on, it is able to get the information of
these tasks that in fact contain the victim apps’ activi-
ties. Task hijacking is especially useful to “TaskSpy” in
this case. In other words, “TaskSpy” can use the HST
presented in Section 5.2 to “own” the tasks of any victim
apps and thus stealthily spy on their activities without us-
ing any permission. Chen et. al. have achieved the same
goal in their work [8] by monitoring and interpreting the
shared VM information via public side channels. Com-
pared with their attack, task hijacking can do this in a
more direct and reliable way on Android 5.0.x.
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Vul. Atk Vul. conditions % of Tol. %
app # vul. of vul.

V

I Send implicit intent for 93.9

93.9
exported activities

II
Send implicit intent for 65.5exported activities and use
intent flag NEW_TASK

S

II
Contains public exported 14.2

14.4activity and
lauchMode=“singleTask”

III
Contains public exported 1.4activity and

allowTaskReparenting=“true”

Table 4: Percentage of vulnerable victim apps (V) and “ser-
vice” apps (S) to the “back hijacking” phishing attacks respec-
tively, among 10,985 most popular Google Play apps.

6 Evaluation

We first seek to understand the extent of vulnerable sys-
tems and apps to the attacks we have presented in Sec-
tion 5. By doing large-scale app analysis across various
markets, we then provide the current use status of the task
control knobs in real implementations. Base on our in-
sights from the result, we provide mitigation suggestions
to defend against task hijacking threats in Section 7.

6.1 Vulnerability Analysis

Vulnerable Android Versions: We say an Android ver-
sion is vulnerable to a particular attack if a malware can
successfully launch the attack to a victim app on the sys-
tem. Since the unique multitasking is part of Android de-
sign and most features have been introduced early in An-
droid’s evolution, we find that recent Android versions,
including 3.x, 4.x and 5.0.x, are vulnerable to all our
presented attacks, except the “TaskSpy” attack. As dis-
cussed in Section 5.3, “TaskSpy” relies on specific APIs
introduced from API 21, and therefore, only affects the
newest Android 5.0.x systems.

Apps Vulnerable to Task Hijacking Attacks: As sum-
merized in Table 1, all the apps installed on a vulnerable
Android system (including the privileged system apps)
are vulnerable to all the attacks presented in this paper,
except the “Back Hijacking” phishing attacks, which re-
quire certain prerequisites for an app to be vulnerable.
Despite the prerequisites, the “Back Hijacking” phishing
attacks are extremely stealthy, can be easily crafted and
can cause serious consequnces. We try to further under-
stand the scale of apps vulnerable to the “Back Hijack-
ing” phishing attack by analyzing the most popular apps
in Google Play.

Apps Vulnerable to “Back Hijacking”: In a phishing
attack, the attacker would be likely to target the most
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Figure 8: (a) Breakdown of vulnerable victim apps in security-
sensitive app categories. (b) Breakdown of vulnerable “ser-
vice” apps in the most widely useful app categories.

popular and valuable apps. Therefore, we focus our vul-
nerability analysis on the most popular 10,985 apps from
Google Play, i.e., apps with over 1 million installs.

We indicate a vulnerable app in the phishing attacks
to be of either one or both of the following two types:
(1) victim app - the target victim app of the phishing
attack (e.g. the bank app); and (2) “service” app - the
benign app that provides publicly exported activities and
is exploitable by the attacker to conduct user phishing
on the victim apps (e.g. the benign video player). We
do static analysis on the apps. Specifically, we perform
inter-procedural analysis to identify all implicit intents
(without permissions guarded) and the associated flags,
and conduct manifest scan to find all activity attributes
and public exported activities (excluding the main activ-
ities which are always exported). Table 4 lists the vul-
nerability conditions, and shows the percentages of both
vulnerable victim apps and “service”apps to each and all
the attack methods respectively.

As can be seen, 93.9% of the most popular apps in
Google Play are vulnerable. This is partially because
most apps would send out implicit intents (without per-
missions guided), which could potentially invoke a mal-
ware activity as in attack I. By taking a closer look at the
results, among these apps, a majority (65% of apps) are
vulnerable to attack II, i.e., they are vulnerable to phish-
ing attack even if users launch trusted benign “service”
apps from these apps. Moreover, 14.36% “service” apps
can be exploited to “help” attack the apps who invoke
these “service” apps, even if the apps being attacked may
not be vulnerable by themselves.

The consequence and severity of a phishing attack de-
pend on the content and sensitivity of the stolen informa-
tion. To have a rough idea of the potential consequences
caused by the “Back Hijacking” phishing attacks, we se-
lectively show in Figure 8(a) the population of vulner-
able victim apps in a few security-sensitive app cate-
gories. Noticeably, We observe that a significant num-
ber of security-sensitive apps are vulnerable, including
the financial apps like banking and credit card payment
(e.g., Citibank, Chase, Google Wallet), the most popu-
lar communication and social media apps (e.g. Google
Hangouts, facebook), and shopping apps from the ma-

11
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Activity Attribute % of Intent Flag % of
Apps Apps

allowTaskReparenting=“true” 0.80 NEW_TASK 79.42
launchMode=“singleTask” 24.63 CLEAR_TOP 37.59

launchMode= other non-default modes 24.75 EXCLUDE_FROM_RECENTS 10.08
taskAffinity= own pck. name 2.36

taskAffinity= other 1.60 Events
excludeFromRecents=“true” 12.45 onBackPressed() 62.00

alwaysRetainTaskState=“true” 2.03 TaskStackBuilder 7.27
startActivities() 5.47

Table 5: Percentage of 6.8 million market apps that use each of the “security-
sensitive ” task control knobs.

Task Affinity # of
Apps

com.android.settings 492
com.android.camera 325
com.android.update 279

com.tencent.mm 273
com.gau.go.launcherex 237

com.fractalist 194
com.android.activity 158
com.xiaomi.payment 147

Table 6: Top package names specified as
the task affinity by other apps

jor electronic commerce companies (e.g. Ebay, Amazon
Shopping), etc. Similarly, in Figure 8(b), we show the
statistics of a few app categories in which the vulnerable
“service” apps and their functionality are most widely
used, including the most famous photo editing tools, doc-
ument editors, and file sharing services, etc.

6.2 Market-scale Study on the Use of Task
Control Knobs

Due to the task hijacking threats, we have a pressing
need for a defense strategy that can mitigate these threats
while minimizing the side effects on Android multitask-
ing features. To this end, it is important to first under-
stand the current status about the use of Android mul-
titasking features in real implementation, especially the
use of “security-sensitive” task control knobs.

We analyzed 6.8 million Android apps from a vari-
ety of markets including Google Play and other 12 popu-
lar third-party app markets worldwide (e.g., from China).
The analysis does not include duplicated apps (apps with
same package name, public key certificate and app ver-
sion number) distributed across multiple markets.

Table 5 shows the percentage of apps that use each of
the task control knobs respectively. As shown in the ta-
ble, a majority of the task control features are popular
with app developers and users. For example, “single-
Task” launch mode and NEW_TASK intent flag are used
in a significant portion of apps to control the association
of new activities with tasks. The flexibility of “back”
button customization is widely adopted (as high as 62%
apps). One reason is that the onBackPressed() call-
back function is heavily used by ad libs (which embed
ads in app activities) for data clean-up before the activi-
ties are destroyed. In addition, a significant portion of ac-
tivities can hide their associated tasks from the overview
screen (by defining “excludeFromRecents” attribute or
setting EXCLUDE_FROM_RECENTS intent flag).

Case Study - Task Affinity: Since task affinity can be
abused in the most dreadful attacks, we are particularly
interested in its use. 3.96% apps we studied explicitly

declare task affinity. A considerable portion (1.6% of all
apps) set their activities’ taskAffinity string without con-
taining their own package names. It means that, if there
are task affinity conflicts, these 1.6% apps (totally 109
thousand apps) may interfere with the multitasking be-
haviors of one another. They may even affect other apps
if the task affinity attributes are intentionally set to the
package name of other apps (recall that the taskAffin-
ity string can be set arbitrarily). We are especially inter-
ested in the latter case, and in our analysis, we find a total
of 3293 apps of this kind. Table 6 lists the top package
names designated as task affinity by these apps.

By reverse engineering a number of these apps, we
find that intentionally setting the task affinity as another
app is particularly useful in a class of “plug-in” apps,
i.e. apps that provide complementary features to exist-
ing (and usually popular) apps just like a web browser’s
plug-ins (except that here the “plug-in” itself is imple-
mented in a separate app). By being in the same task
with the popular app, the “plug-in” app can change nor-
mal user experience and fulfill its feature functionality
in the context of the app it serves. For example, an
phone call recorder app namely FonTel can display an
array of buttons on screen whenever there is a phone
call, letting users to control phone call recording. The
control buttons are contained in an mostly transparent
activity. By setting the task affinity of the activity to
com.android.phone, it can be pushed on top of the
Android telephony task when a phone call occurs, such
that users can access both the recording control buttons
and telephony activity at the same time.

In summary, despite the security risks, Android mul-
titasking features are popular with developers and even
become indispensable to the normal functions of a sig-
nificant number of apps that provide favorable features.

7 Defense Discussion

Given the pervasive use of the “security-sensative” task
control features, simply disabling these features would
greatly hurt app functions and user experience. Mitigat-
ing the task hijacking threats become a trade-off between
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app security and multitasking features.

7.1 Detection in Application Review
Existing app vetting processes such as Bouncer [31] may
conduct a inspection over the “sensitive” task control
knobs, a light-weight defense strategy without signifi-
cantly affecting existing multitasking features.

However, specifying a guideline balancing the secu-
rity/feature trade-off is non-trivial. For example, a ten-
tative guideline could be: taskAffinity attribute
should be specified in a strict format, e.g., with app pack-
age name followed by developer-defined affinity name
(now task affinity can be any string); and the task affinity
should not contain any other app’s package name, except
that the two apps are from the same developer. This ef-
fectively eliminates a big portion of hijacking state tran-
sitions where a malicious activity specifies the victim app
as its preferred affinity. However, this rule also restricts
useful features and contradicts with an important princi-
ple of Android multitasking design - give an activity the
freedom to live in its preferred task even though they are
from different apps. This contradiction cannot be solved
by app review alone in this case. We need system sup-
port together with app review to achieve a good balance
of security/feature trade-off.

Moreover, detecting problematic events can be some-
times difficult for the app review. For instance, one
could confine the behaviors in onBackPressed(),
preventing it from generating potential hijacking tran-
sition event. However, discovering all possible pro-
gram behaviors using static analysis is an undecid-
able problem. A skillful attacker can replace class
methods (onBackPressed() method in Activity
class) with another method by changing Dalvik inter-
nals using native code during runtime, and static anal-
ysis does not know this by simply looking at the original
onBackPressed() method. Dynamic analysis is of
little help as well since this behavior can be triggered
only after passing the app review.

As a result, completely mitigating task hijacking risks
and without affecting existing features in app review re-
mains challenging.

7.2 Secure Task Management
An alternative approach involves security enhancement
to the task management mechanism of Android system.

A more secure task management could introduce ad-
ditional security guides or logic, which draws develop-
ers’ awareness of the security risk and limits the attacker
surface. Take the above task affinity for example, an
additional boolean attribute can be introduced for each
app to decide if it allows the activities from other apps

to have the same affinity as the app. If the boolean is
“false” (also by default), the system would not uncondi-
tionally relocate the “alien” activities to the app’s task or
vice versa, even though the “alien” activities declare to
have the same task affinity as the app. Likewise, a finer-
grained boolean attribute can be further employed for
allowParentReparenting attribute - determining
if to allow “alien” activities to be re-parented to the app’s
task (even though defining the same task affinity is per-
mitted). For other “security-sensative” features, we sug-
gest first consider the same approach. Considering the
serious security hazards that can be prevented, it is well
worth of making such changes. At the very least, en-
hanced security scheme like this has to be applied to as-
sure the security of the most privileged system apps.

Completely defeating task hijacking is not easy. As
we have discussed in the last section, it is difficult to
identify the exact behavior of pressing “back” in an ac-
tivity during app review phase. For these popular and
security-sensitive features, more powerful runtime mon-
itoring mechanism is required to fully mitigate task hi-
jacking threats.

In summary, we advocate future support for security
guidance and/or mechanism, which can protect Android
apps from task hijacking threats and bring along a both
secure and feature-rich multitasking environment for An-
droid users and developers.

8 Related Work

GUI security : GUI security has been extensively stud-
ied in traditional desktop and browser environments [14,
29], e,g., UI spoofing [9], clickjacking [3, 17], etc. An-
droid, on the other hand, is unique in the design of its
GUI sub-systems. It has been shown that the GUI confi-
dentiality in Android can be breached by stealthily taking
screen shots due to adb flaws [22], via embedded mali-
cious UIs [28, 24], or through side channels, e.g. shared-
memory side channel [8] or reading device sensors infor-
mation [25, 34]. In contrast to existing work, this paper
focuses on the fundamental design flaws of the task man-
agement mechanism (supported by the AMS), the control
center that organizes and manages all existing UI compo-
nents in the Android system.

Android Vulnerability: The security threats in the inter-
component communication (ICC) has been widely stud-
ied [13, 23, 10, 20, 32]. Moreover, there has been con-
siderable prior work on emerging Android vulnerabili-
ties and their mitigation measures in many aspects [38,
40, 18, 33, 27, 7, 30, 15, 21]. However, the critical An-
droid multitasking mechanism and the feature provider,
the AMS, have not been deeply studied before. This pa-
per fills in this gap by systematically studying the An-
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droid multitasking and the security implications of this
design.

Android Malware: Many prior efforts focus on
large-scale detection of malicious or high-risk Android
apps [39], e.g., fingerprinting or heuristic-based meth-
ods [26, 41, 16], malware classification based on ma-
chine learning techniques [37, 6], and in-depth data flow
analysis for app behaviors [11, 35, 36, 6]. The attack sur-
face discovered in this paper can be easily employed by
attackers to create a wide spectrum of new malwares, as
discussed in Section 5. We report our threat assessment
based on over 6 million market apps and provide defense
suggestions in order to prevent the outburst of task hi-
jacking threats in advance.

9 Conclusion

This paper systematically investigated the security im-
plications of Android task design and task management
mechanism. We discover a plethora of task hijacking op-
portunities for attackers to launch different attacks that
may cause serious security consequences. We find that
these security hazards can affect all recent versions of
Android. Most of our proof-of-concept attacks are able
to attack all installed apps including the most privileged
system apps. We analyzed over 6.8 million apps and
found task hijacking risk prevalent. We notified the An-
droid team about these issues and we discussed possible
mitigation techniques.
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Abstract
Mobile computing is the new norm.  As people feel 
increasingly comfortable computing in public places 
such as coffee shops and transportation hubs, the threat 
of exposing sensitive information increases.  While 
solutions exist to guard the communication channels
used by mobile devices, the visual channel remains
largely open.  Shoulder surfing is becoming a viable 
threat in a world where users are often surrounded by 
high-power cameras, and sensitive information can be 
extracted from images using only modest computing 
power. 

In response, we present Cashtags: a system to defend 
against attacks on mobile devices based on visual 
observations.  The system allows users to safely access 
pieces of sensitive information in public by intercepting 
and replacing sensitive data elements with non-sensitive 
data elements before they are displayed on the screen. In 
addition, the system provides a means of computing 
with sensitive data in a non-observable way, while 
maintaining full functionality and legacy compatibility 
across applications.

1. Introduction
Shoulder surfing has become a concern in the context of
mobile computing. As mobile devices become 
increasingly capable, people are able to access a much 
richer set of applications in public places such as coffee 
shops and public transportation hubs. Inadvertently, 
users risk exposing sensitive information to bystanders
through the screen display. Such information exposure 
can increase the risk of personal, fiscal, and criminal 
identity theft.   Exposing trade or governmental secrets 
can lead to business losses, government espionage, and 
other forms of cyber terrorism [12, 13, 14].

This problem is exacerbated by the ubiquity of
surveillance and high-power cameras on mobile devices
such as smartphones and on emerging wearable 
computing devices such as Google Glass [57]. 
Additionally, the trend toward multicore machines, 
GPUs, and cloud computing makes computing cycles
more accessible and affordable for criminals or even 
seasoned hobbyists to extract sensitive information via 
off-the-shelf visual analysis tools [58].

This paper presents the design, implementation, and 
evaluation of Cashtags, a system that defends against 
shoulder surfing threats.  With Cashtags, sensitive 
information will be masked with user-defined aliases, 
and a user can use these aliases to compute in public.  
Our system is compatible with legacy features such as 
auto correct, and our deployment model requires no 
changes to applications and the underlying firmware,
with a performance overhead of less than 3%.

1.1 The shoulder-surfing threat 

The threat of exposing sensitive information on screen 
to bystanders is real. In a recent study of IT 
professionals, 85% of those surveyed admitted seeing
unauthorized sensitive on-screen data, and 82% 
admitted that their own sensitive on-screen data could 
be viewed by unauthorized personnel at times [1]. These 
results are consistent with other surveys indicating that
76% of the respondents were concerned about people 
observing their screens [2], while 80% admitted that 
they have attempted to shoulder surf the screen of a 
stranger [3].

The shoulder-surfing threat is worsening, as mobile
devices are replacing desktop computers. More devices 
are mobile (over 73% of annual technical device 
purchases [4]) and the world’s mobile worker 
population will reach 1.3 billion by 2015 [5]. More than 
80% of U.S. employees continues working after leaving
the office [6], and 67% regularly access sensitive data at 
unsafe locations [2]. Forty-four percent of organizations 
do not have any policy addressing these threats [1]. 
Advances in screen technology further increase the risk 
of exposure, with many new tablets claiming near 180-
degree screen viewing angles [8].

1.2 The dangers are everywhere

Observation-based attacks to obtain displayed sensitive 
information can come in many forms.  There are more 
than 3 billion camera-enabled phones in circulation [4].  
Some of these devices can capture images at 40 
megapixels of resolution and over 10 times optical 
zoom [7]. High-resolution and often insecure “security” 
cameras are abundant in major metropolitan areas. For 
example, the average resident of London is captured on 
CCTV over 300 times per day [9]. Finally, sensitive 
data can be captured by simple human sight.
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Observation-based attacks can be complex.  Partial 
images can be merged, sharpened, and reconstructed, 
even from reflections. Offline and cloud-based optical 
character recognition (OCR) solutions have only a small 
percentage of recognition errors, even on inexpensive 
low-end devices [10].

Personal information exposure can also enable other 
attacks, such as social engineering, phishing, and other 
personal identity theft threats.

1.3 The consequences can be severe

Observation-based leaks of sensitive information have
led to significant personal and business losses.
Recently, an S&P 500 company’s profit forecasts were 
leaked as a result of visual data exposure [4].  In a 
different case, government documents were leaked 
when a train passenger photographed sensitive data 
from a senior officer’s computer screen [11]. Security 
cameras captured the private details of Bank of America 
clients through windows [12]. Sensitive information 
relating to Prince William was captured and published 
because of a screen exposure to a bystander [13].  

The risk of loss from shoulder surfing is also hurting 
business productivity. Figures show that 57% of people 
have stopped working in a public place due to privacy 
concerns and 70% believe their productivity would 
increase if others could not see their screen [2].

1.4 Current solutions

Techniques are available to limit the visual exposure of 
sensitive information. However, the focus of these 
systems has been limited to password entries [22, 23, 
24, 25, 33, 34, 35]. Once the user has been successfully 
authenticated, all of the accessed sensitive information 
is displayed in full view.  Clearly, such measures are 
insufficient for general computing in public when the 
need to access sensitive information arises.  
Unfortunately, many techniques used to prevent visual 
password leaks cannot be readily generalized beyond
password protection, which motivates our work. 

2. Cashtags
We present Cashtags, a system that defends against 
observation-based attacks.  The system allows a user to 
access sensitive information in public without the fear 
of leaking sensitive information through the screen.  

2.1 Threat model

We define the threat model as passive, observation-
based attacks (e.g., captured video or physical 
observation by a human).  We assume the attacker can 
observe both the screen of the user as well as any touch 

sequences the user may make on the screen, physical 
buttons, or keyboards. We also assume the absence of 
an active attack; the observer cannot directly influence 
the user in any way.

Although sensitive information can be presented in 
many forms, we focus on textual information to 
demonstrate the feasibility of our framework.  
Protecting sensitive information in other forms (e.g., 
images and bitmaps) will be the subject of future work.

2.2 User model

Conceptually, Cashtags is configured with a user-
defined list of sensitive data items (Table 2), each with a 
respective Cashtags alias or a cashtag (e.g., $visa to
represent a 16-digit credit-card number). Whenever the 
sensitive term would be displayed on the screen, the 
system displays the predefined alias instead (Fig 2.1).  

Type Actual Alias
Name John Smith $name
Email jsmith@gmail.com $email
Username Jsmith1 $user
Password p@ssw0rd $pass
Street Address 123 Main St. $addr
Phone number 555-111-2222 $phone
Birthday 1/1/85 $bday
SSN 111-22-3333 $ssn
Credit Card 4321 5678 9012 1234 $visa
Account number 123456789 $acct

Table 2: Sample mapping of sensitive data to cashtag 
aliases.

Fig.  2.1: On-screen sensitive data (left) and data 
protected by masking with cashtag aliases (right).
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At the point at which the sensitive data would be used 
internally by the device or app, cashtags will be 
replaced by their represented sensitive data items, 
allowing whatever login, communication, computation, 
transmission, or upload to proceed normally.

Cashtags also provides secure data input. A user can 
type in a cashtag in place of the sensitive term, 
permitting complex data-sensitive tasks, such as filling 
out a reward-card application without risk of 
observation from a bystander.  In addition, cashtags are
easier to remember than the actual sensitive data term.  
For example, $visa can be used as a shortcut for
entering a 16-digit credit card number.

Users can interact with Cashtags by entering data in 
either alias or actual form. If the user enters the actual 
term, it will be converted into its corresponding alias 
once the full term is entered. This has the potential to 
inadvertently expose partial private data, an attacker
could potentially see all but the last character input. In 
practice, auto completion is likely to expand the 
sensitive information within the first few characters and 
display it in the alias form. Entering data into the 
system in alias form ensures that no such partial 
information exposure can occur during input and is the 
best option to maximize protection.

2.3 Compared to password managers

The user model of Cashtags is similar to that of a
password manager. To add an entry to a password 
manager, a user is required to key in the username and 
password pair. Typically, subsequent usage of the 
stored password involves only selecting the respective 
account pre-populated with the stored password.  
Therefore, an observer cannot see the keyed-in sequence
for passwords.  Similarly, Cashtags requires the user to 
pre-configure the system by first entering the sensitive 
term to be protected and the corresponding alias to 
represent the term.  When a sensitive term is displayed, 
our system replaces the sensitive term with its alias 
without user intervention.  To enter a sensitive term, the 
user can enter the alias, and our system will translate it 
into the sensitive term prior to being processed by the 
underlying apps.  

While a password-manager-like user model provides a
familiar interface, it also shares a similar threat vector of 
a centralized target and weakened protection in the case 
of physical theft. However, overcoming the 
shortcomings of password managers is orthogonal to the 
focus of this research and threat model.  As research in 
bettering password managers advances, we can apply 
those techniques to enhance our system.

2.4 Design overview

Although conceptually simple, Cashtags addresses a 
number of major design points.  

Intercepting sensitive data: Cashtags intercepts 
sensitive data items as they are sent to the display. For 
apps, this is at their common textual rendering library 
routines, and for users, this is at the routines that handle 
software keyboards and physical devices (e.g., USB and 
wireless input devices).  

User interface:  Users can type in cashtags instead of 
sensitive data items to compute in public.  This interface 
allows cashtags to be compatible with existing tools 
such as auto completion, spellcheckers, and cut and 
paste.  Thus, users can enter the first few characters and 
auto-complete the full cashtag.

Accessing sensitive data:  User-entered cashtags are 
converted internally to the sensitive data items before 
the apps access the data. This way, Cashtags will not 
break applications due to unanticipated input formats.  

Variants of data formats: Cashtags can leverage 
existing libraries to match sensitive data items 
represented in different formats (e.g., John Smith vs. 
John Q. Smith).

Development and deployment models:  Cashtags uses a 
code-injection framework.  This approach avoids 
modifying individual apps and the firmware, while 
altering the behavior of the overall system to 
incorporate Cashtags at runtime.  

Cashtag repository: The mapping of cashtags to 
sensitive data items is stored in a password-protected 
repository.

3. Cashtags Design
This section will detail each Cashtags design point.

3.1 Observation-resistant approaches

We considered screen-level-masking and data-entry-
tagging system design spaces prior to using the current 
keyword-oriented design.  While all of these approaches 
can prevent sensitive information from being displayed, 
the main differences are the interception granularity and 
the portability of the underlying mechanisms.

Screen-level masking:  One coarse-grained approach is 
to mask the full application window or screen regions 
when encountering sensitive information [61, 62].
While this approach prevents information leakage, it 
also prevents the user from computing using the 
sensitive information. For example, when encountering 
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an online purchase screen, the entire screen could be 
blurred due to sensitive information, making it 
unusable.

Tag-based approach:  A tag-based approach requires 
the user to predefine the data elements as sensitive. 
These data elements are then tracked as they propagate 
through the system [16]. If a tracked data element is to 
be displayed on the screen, the rendering is intercepted,
and the tracked data element is replaced with its 
corresponding alias. 

This approach requires a significant system 
modification to support this granularity of data tracking, 
making it less deployable. In addition, the system 
resources and required accounting to track the data 
result in significant processing overhead incurred by the 
system.

Keyword-based approach:  Another approach is to 
utilize keywords and perform pattern matching on on-
screen text elements. Like the tag-based approach, this 
option works at the individual data element or word 
granularity. It also has the requirement that the sensitive 
data element be specified to the system prior to the point 
of screen rendering and subsequent visual data 
exposure.

The primary difference, however, is the method in 
which the sensitive data is identified. Rather than 
tracking sensitive data as it propagates through the 
system, this method parses data fields prior to the screen 
display. If a predefined sensitive element is matched, it 
is replaced with its alias before being rendered to the 
screen. We chose this approach because it achieves 
word granularity protection without the tag-based 
overhead and deployment issues.

3.2 Where to intercept sensitive data

To decide where to intercept sensitive data, we first 
need to understand how sensitive data traverses from 
apps to the screen through various display data paths.  
Fig. 3.1 shows the display data paths under the Android 
application development platform.  Although different, 
the display data paths of iOS and Windows generally 
have one-to-one mappings of the components.

Window manager:  A typical app displays information 
by invoking some user-level display or graphics library 
routines.  Various routines eventually invoke routines in 
the underlying window management system (e.g., 
Surface Flinger for Android) before information is
processed by the OS and displayed on the screen.

Arguably, the window management system might seem 
to be a single point at which all sensitive data can be 
captured.  Unfortunately, by the time sensitive 

information arrives there, some sensitive information 
may have been translated into bitmaps.  While OCR 
techniques can be used to extract sensitive text, they are 
still too heavyweight to be used in the display data path, 
which is critical for user interactions. Replacing 
sensitive bitmaps with non-sensitive ones would pose
other obstacles we would like to avoid. 

Applications:  Another extreme is to intercept it at the 
app level, where the sensitive information is introduced.  
Potentially, we can modify a few popular, general-
purpose apps (e.g., browsers) and capture most of the
sensitive information.  However, such solutions may tie
users to specific tools. In addition, statistics show that 
specific app usage accounts for 86% of user time, 
trending away from general-purpose browsers [56].  
Thus, we would need to initially modify more apps and
track their updates to achieve a good coverage.  

Library routines:  Thus, an intermediary ground is to 
intercept sensitive data within a few key display and 
graphics library routines.

3.3 User interface

Early design:  In our early user-interface design, users-
defined English-like aliases in a repository to indicate 
sensitive data items that they wish not to be shown (e.g., 
use John to represent Joe).  To discern these aliases 
when processing, we used an alternative input channel 
to mark them.  This initial design proved problematic.  

Our initial prototype was a software keyboard app with 
elevated privilege to offer input across applications.  
This implementation would be easier to port across
platforms, deploy, install, and update.  However, 
changing keyboards in the midst of a stream of input is 

Fig.  3.1. Display data paths for the Android platform.
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cumbersome in practice.  This method also interacted 
poorly with legacy swipe-based inputs, emoticon 
support, auto correction, and custom dictionaries.

Further, we would need to replace the default keyboard 
with ours, and provide ways to switch modes between 
normal and sensitive entries (e.g., a screen tapping 
sequence).  By doing so, we could retain legacy 
functionalities such as auto correction.  On the other 
hand, the development effort of this approach would
have been much higher, and novice users might have 
trouble replacing the default keyboard.  

Direct input of cashtags:  While there are other input 
interface options, the need to switch input modes to 
allow aliases to appear as normal text seemed
superfluous (e.g., using “visa” to represent the 16-digit 
credit card number).    

Thus, we explored the use of cashtags, where aliases are 
prepended with a $ sign, to represent sensitive 
information.  By doing so, a user can directly enter 
cashtags, and the mode change is encoded in the cashtag 
alias (e.g., use $fname to represent John and $gmail
to represent jsmith@gmail.com).  This method can 
leverage the existing custom dictionary for auto 
completion, which makes it easier for the user to 
remember and input the cashtags.  This method can also 
utilize standard application-level development 
techniques, opening up the range of supported device 
platforms and decreasing development and installation 
efforts.

Direct input of sensitive information:  Another 
supported alternative input mechanism (with some 
information leak) is for a user to enter the initial 
characters of a sensitive data item.  As soon as the auto 
completion detects that, Jo is likely to mean Joe, for 
example, it will be automatically masked with $john.  
The user then can choose $john and proceed.

Additional Cashtags semantics:  Recursion is 
supported, so we can use $signature to represent 
$fname $lname $gmail, which in turn maps to 
John Smith, jsmith@gmail.com.  We disallow circular 
cashtags mappings (e.g., use $john to represent $joe, 
and $joe to represent $john).

3.4 Accessing sensitive information

One design issue addresses converting cashtags back to 
the sensitive data for access by apps.  Normally, when 
an app wants to access the sensitive information and to 
send it back to the hosting server, we must make sure
that the conversion is performed prior to access, so that 
the app would never cache, store, or transmit the 
cashtags.  The concern is that cashtags may break an 

app due to the violation of the type or formatting 
constraints.  

We also must make sure that the cashtags are actually 
entered by the user, not just pre-populated by the app.  
Otherwise, a malicious app can extract sensitive 
information just by displaying cashtags.  

There are certain exceptions where it is desirable to 
operate directly on cashtags instead of the sensitive 
information.  For example, the auto-completion task 
will auto complete cashtags ($fn to $fname), not the 
sensitive information it represents.  By doing so, the 
handling of text span issues is simplified because 
cashtags usually differ in text lengths when compared to 
the sensitive information they represent.  

3.5 Variants of data formats

Sensitive data may be represented in multiple formats.  
For example, names can be represented as combinations 
of first, last, and middle initials (e.g., John Smith; John 
Q. Smith).  Accounts and social security numbers can 
be represented using different spacing and/or 
hyphenation schemes (e.g., 123456789; 123-45-6789).  
Fortunately, we can leverage existing regular expression 
libraries (java.util.regex.*) to perform such 
matching.

Another issue involves the type restriction of the input 
field.  For example, a number field (e.g., SSN) may 
prevent the use of cashtags ($ssn).  To circumvent 
these restrictions, we allow users to define special 
aliases (e.g., 000-00-0000) to represent certain types of 
sensitive information (e.g., social security numbers).  

3.6 Deployment and development models

To avoid modifying individual applications, we
considered two options to provide system-level changes:  
(1) custom system firmware images (ROMs) and (2) 
code-injection frameworks (e.g., Android Xposed)

By utilizing a custom system firmware image, complete 
control of the operating system is provided. (This 
approach assumes that the full source is available.) In 
addition, ROM-based solutions can offer a more unified 
testing environment.  However, the changes would be 
restricted to device-specific builds. Only hardware for 
which the source is built would have access to the 
modified system.  This also limits user preference by 
restricting use only for a specific system image.  It 
would additionally require regular maintenance, and it 
would break vendor over-the-air update functionality.  

Instead, we used a code-injection framework, which 
overrides library routines and incorporates our 
framework into execution prior to the starting of apps.
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Code injection offers streamlined development, as 
standard application development tools can be used.  In 
addition, these modules can be distributed and deployed 
as applications. Because code injection only relies on 
the underlying system using the same set of libraries, 
the resulting system is more portable and less coupled to 
versions and configurations of system firmware.

The installation and use of the code-injection 
framework requires root access to the device. This is, 
however, not a firm requirement and exists only for this 
prototype; Vendors and OEMs can incorporate Cashtags 
into system firmware providing the same functionality 
without exposing root. This deployment model is 
advisable to further enhance security for a production 
system.

3.7 Cashtags app and repository

Cashtags aliases and sensitive data items are maintained 
in a repository.  The Cashtags app coordinates the
interactions between various apps and the repository.  
The app also provides password-protected access to add, 
edit, remove, import, and export sensitive terms and 
corresponding cashtags.

Cashtags provides per-application blacklisting, 
excluding specific applications from being code-
injected (or activated) with cashtag-replacement code. 
For example, the cashtag repository itself must be 
excluded due to circular dependencies.   To illustrate, 
suppose a cashtag entry maps $fname to Joe.  If 
Cashtags is enabled, the screen will show that $fname
is mapped to $fname; when saved, Joe will be mapped 
to Joe. Apps with a low risk to reveal sensitive 
information can be excluded for performance issues 
(e.g., games, application launchers, home screens).

4. Implementation
We prototyped Cashtags on the open-source Android 
platform. Our code-injection framework allows 
Cashtags to operate on any Android device with the 
same display and graphics libraries and root access.  
This section will first detail the Android display data 
paths, explain the code-injection framework, and 
discuss how various display data paths are intercepted 
and how cashtags are stored.

4.1 Android display elements

Fig 3.1 has shown a top-level view of the various ways
Android apps and browsers display information on the 
screen.  This section provides further background on
Android terminologies.  Corresponding terminologies 
for text widgets on Apple and Windows devices are 
listed in Table 4.

The Android display is composed of views, layouts, and 
widgets.  View is the base class for all on-screen user 
interface components. 

Widgets:  The term widget is used to describe any 
graphic on-screen element.  Different widgets can be 
used to display static text labels (e.g., TextView), user 
input boxes (e.g., EditText), controls (e.g., 
Buttons), and other media (e.g., ImageView). 

Views are organized into ViewGroups, the base class 
for all screen layouts. Layouts are arrangements of 
views within vertical or horizontal aligned containers 
(e.g., LinearLayout), or arranged relative to other 
views. Nesting of ViewGroups and Layouts allows 
complex custom composites to be defined.

Collectively, this tree of layouts and widgets forms a
view hierarchy. When the screen is drawn, the view 
hierarchy is converted from logical interface 
components into a screen bitmap.  Fig. 4.1 shows a 
simple user input form and its composition of various 
widgets and layouts. 

Text rendering:  Text can be rendered on the screen 
through several mechanisms (Fig 3.1), most frequently
the TextView widget. An EditText is an extension 
of the TextView that provides an interface for text 
input from the user via the on-screen software keyboard, 
hardware keypads, voice input, and gestures.  These 
widgets can be pre-filled with text by the app internally
or through suggestion or auto-correction interfaces.

Text can also be rendered on screen via OpenGL
Canvas, other graphic rendering libraries, browser 
rendering engines, and other methods, many of which 
do not inherit from the base TextView widget. This 
plethora of methods complicates practical capture of all 
possible ways text could get onto the screen.

Android Apple Windows
Text 
Labels

TextView UITextView TextBlock

OpenGL 
Text

GLES20
Canvas

GLKView Direct3D

Editable 
Text

TextView UITextView TextBlock

Webapp 
Text

WebView UIWebView WebView

Browser/
WebView

WebView UIWebView WebView

Table 4: Widget terminologies on Android, Apple, and 
Windows platforms.
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4.2 Android code-injection framework

Cashtags uses the Android Xposed code-injection 
framework.  The development cycle is accelerated by 
short-circuiting the need to perform complete device 
firmware rebuilds from scratch.

Underneath the hood, whenever an app is started, 
Android forks off a new virtual machine.  The Android 
Xposed framework allows overriding library routines to 
be inserted into the Java classpath, prior to the 
execution of the new virtual machines.  Thus, the 
overall system behavior is altered without modifying 
either the apps or the underlying firmware.  

Individual class methods can be hooked, allowing 
injected code to be executed prior to, following the 
completion of, or in place of the base-method calls.  
Private or protected member fields and functions can 
also be accessed and modified, and additional fields or 
functions can be added to the base class or object 
granularity.  

4.3 Sensitive data intercepting points

With the background of the Android display data paths 
(Fig. 3.1) and the code-injection framework, we can 
determine where and how to intercept sensitive 
information.  Since all text-displaying screen widgets 

are descendants of the TextView class (Fig. 4.2), we 
only needed to hook TextView 
(android.widget.TextView) to intercept all 
widgets containing static sensitive text.  For user input, 
we hooked EditText
(android.widget.EditText) to capture sensitive 
data or cashtags entered via on-screen software 
keyboards, (integrated, plugged, or wirelessly 
connected) hardware keypads, voice input, and gestures.  
For display through the OpenGL libraries, we 
intercepted GLText 
(android.view.GLES20Canvas).  For browsers, 
we intercepted WebView
(android.WebKit/WebView).

4.4 TextView

Fig. 4.3 shows a simplified version of the 
implementation of the TextView widget in the 
Android API, present since version 1 of the Android 
SDK.  The getText() and setText() methods of the 
TextViews are hooked and modified (the setText() 
method in TextView is inherited by EditText, to be 
detailed later).  We also added mAlias to map the 
sensitive text to the corresponding cashtag.  

4.5 EditText

In addition to the functionality inherited from 
TextView, EditText must also handle additional 
actions that can be performed by the user, app, or 
system to modify on-screen text. 

Fig.  4.2. Simplified inheritance hierarchy of Android
on-screen views and widgets.

View
android.view.View

TextView
android.widget.TextView

EditText
android.widget.EditText

AutoCompleteTextView
android.widget.AutoCompleteTextView

MultiAutoCompleteTextView
android.widget.MultiAutoCompleteTextView

CheckedTextView
android.widget.CheckedTextView

Button
android.widget.Button

CheckBox
android.widget.CheckBox

Switch
android.widget.Switch

RadioButton
android.widget.RadioButton

Fig.  4.1. Decomposition of on-screen views, layouts, 
and widgets of a simple app input form. 

FrameLayout

TextView EditText

LinearLayout
(vertical)

Button

ImageView

LinearLayout
(horizontal)

ImageView

TextView EditText

TextView EditText

TextView

…
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For cases where the system or app has pre-populated a 
text box with input, the TextView injection handles 
the cashtag replacement. Since the EditText class 
extends from the TextView base class, this 
functionality is provided through inheritance.  This is 
also the case for nearly every other on-screen text 
widget, which also descend from the base TextView.

Fig. 4.4 and Fig. 4.5 show how Cashtags interacts with 
TextView and EditText objects.  When these 
getText() and setText() methods are called by the 
app or through system processes, such as auto correct or 
to be rendered on screen, Cashtags will determine 
whether to return the alias or the sensitive data, 
depending on the caller.

User input can be entered through software keyboards 
or through physical devices.  In both cases, Cashtags 
operates similar to, and through the same interface, as 
the auto-correct service. This TextWatcher
(android.text.TextWatcher) interface handles 
events when on-screen text has been modified. 
EditTexts internally maintain an array of these 
TextWatcher event handlers.  Cashtags, as one of 
these handlers, is activated after any character is 
modified within the text field.

This functionality is also achieved through the view 
OnFocusChangeListener
(android.view.OnFocusChangeListener).  
This event handler works at the granularity of the full 
text field rather than the individual characters of the 
TextWatcher. This is more efficient, since the text 
replacement only occurs once per text field. It does, 
however, risk additional on-screen exposure of sensitive 
information, since direct input of actual sensitive terms 
would remain on-screen as long as the cursor remains in 
that text field.  The input of the cashtag alias does not 
have this risk and further reduces any partial exposure 
during term input. 

In both cases, the constructor of the EditText class is 
hooked and the corresponding 
OnFocusChangeListener or TextWatcher
object is attached at runtime.  User settings allow 
activation of either or both interception methods.

Fig.  4.5. Interactions among Cashtags, EditText, 
and other software components. setText() returns 
either the cashtag or actual text depending upon the 
service making the request.

Fig.  4.4. Interactions among Cashtags, TextView, and 
other software components. getText() returns either 
the cashtag or actual text depending upon the service 
making the request.

public class TextView extends View 
implements ViewTreeObserver.
OnPreDrawListener {
...
private CharSequence mText;
private CharSequence mAlias:
...
public CharSequence getText() {
return mText;

}
...
private void setText(CharSequence
text, BufferType type, boolean 
notifyBefore, int oldlen) {
...
mBufferType = type;
mText = text;

}
...

}

Fig.  4.3. Simplified TextView implementation. Bolded 
functions getText() and setText() are hooked and 
modified. An additional private field mAlias is added 
for mapping to a displayed cashtag, if applicable.
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4.6 OpenGLES Canvas

The implementation for OpenGLES Canvas is 
similar to the base TextView only with different 
parameter types. The only distinction is that no 
accompanying getText() equivalent is present in this 
object, so no manipulation is necessary beyond 
drawText().

4.7 WebView

Unlike the previous screen widgets, the relevant 
interception points for screen rendering for WebKit or 
Chromium browser engines are all below the accessible 
Android/Java layer. Thus, they cannot be code-injected 
through the same mechanisms used for previous screen 
widget cases. We attempted custom compilations of the 
browser engines with similar widget display 
interception, but abandoned the effort for portability 
concerns.

Instead, WebView interception is handled similarly to a 
web browser plug-in. This decision maintains the 
portability goal of the system design. 

Cashtags intercepts web rendering immediately before it 
is first displayed on-screen. The HTML is pre-processed
with JavaScript to extract the DOM. Cashtags iterates 
over the text nodes and makes the appropriate text 
replacements of sensitive data to corresponding 
cashtags.

Other options were explored using specific browser and 
proxy requests through the web server. However, all 
apps that use cross-platform frameworks (PhoneGap, 
Apache Cordova, JQuery Mobile, etc.) run locally and
could not easily be piped though this service. For this 
reason, we favored the plug-in approach over other 
alternatives.

4.8 Cashtags repository

Sensitive terms are stored as encrypted 
SharedPreference key/value pairs, which uses the 
AES encryption from the Java Cryptography 
Architecture (javax.crypto.*). This structure is 
accessed by enabled apps through the 
XposedSharedPreference interface.  

5. Evaluation Methods
Cashtags was evaluated for how well the intercepted 
points prevent specified information from being 
displayed on the screen, verified by screen captures and 
OCR processing.  This coverage was measured by
enumerating common paths sensitive text can traverse 
to the screen.  We also evaluated user input through 
popular apps, making sure that the cashtags reverted to 

the sensitive data items when accessed by the apps.  
Finally, we evaluated the performance overhead of 
Cashtags.

5.1 API coverage evaluation

For Android API coverage, we focus on the TextView
and EditText display data paths, which account for 
86% of usage hours for mobile devices [56], though 
Cashtags can also handle the remaining 14% of 
browser-based access.  The selected sensitive 
information (Table 2) is based on the Personally 
Identifiable Information (PII) specified by the U.S. 
government and NIST standards [59].  We enumerate 
all combinations of the input phrase type (e.g., numbers, 
strings), case sensitivity, common widget, layout, 
theme, and lifecycle for these data paths.  Each 
combination is used to demonstrate that the PII terms 
are not displayed on the screen from the app, as user 
input of the sensitive data, or as user input of the 
cashtag alias. In all three cases, we also demonstrate 
that the PII term is correctly returned from Cashtags 
when used by the app.

This totals 1,728 tests for the static text widgets and 
inputs, with 526 additional cases for widgets that permit 
user input via software keyboards as well as physical 
devices (on-board hardware, USB, or wireless input 
devices). Table 5.1 shows the full list of configurations.

For each combination, the Android Debug Bridge [60] 
and UIautomator tool [36] are used to capture the device 
layout view hierarchies and screenshots.  The contents 
of the actual and cashtag fields are compared for 
conversion correctness. The device screenshot is 
processed using Tessseract OCR [21] to confirm if the 
actual PII term has been properly masked on the screen.

For each combination, we also demonstrate that both 
text input as a sensitive term and cashtag are correctly 
converted to the sensitive term when accessed by the 
app.  Since the access of sensitive data within the app 
normally involves remote actions, we also emulated this 
scenario and performed remote verification. Once 
screen processing is completed, the app accesses the 
text fields and uploads them to Google Sheets/Form. 
The uploaded sensitive items and cashtag submissions 
are compared for accuracy based on expected values.

Our results show that Cashtags behaves correctly for all 
test cases. For each test case, Cashtags identified input 
containing sensitive data in both the actual and cashtag 
form, prevented the display on the screen of the 
sensitive term, and determined correctly when to 
convert back to the sensitive data.
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Email: AOSP Email, Gmail, K9 Mail:
User reads an email containing a sensitive term in its

cashtag form. A Cashtags-enabled system should 
display the email with two instances of the cashtag.

User composes an email with a sensitive term and its 
cashtag. Remote system not running Cashtags 
should display email with two sensitive term 
instances.

Messaging: Messaging, Hangouts, Snapchat:
User reads a message containing a sensitive term and 

cashtag.  A Cashtags-enabled system should display 
the message containing two instances of the cashtag.

User composes a message with a sensitive term and its
cashtag. A remote system not running Cashtags 
should receive the message with two sensitive term 
instances.

Social: Facebook, Twitter, Google+:
User reads text with a sensitive term and its cashtag 

from a tweet/post/update. A Cashtags-enabled 
system should display the tweet/post/update with 
two instances of the cashtag.

User composes a new tweet/post/update with a
sensitive term and its cashtag.  A remote system not 
running Cashtags should receive the tweet/
post/update with two sensitive term instances.

Storage: Dropbox, MS OneDrive, File Manager:
User opens an existing file containing a sensitive term 

and its cashtag.  A Cashtags-enabled system should 
display the file containing two instances of the 
cashtag.

User creates a file with a sensitive term and its 
cashtag. A remote system not running Cashtags 
should display file with two sensitive term 
instances.

Office: GoogleDocs, MS Office, QuickOffice:
User reads a document containing a sensitive term and 

its cashtag.  A Cashtags-enabled system should 
display the file with two instances of the cashtag.

User creates a document containing a sensitive term 
and its cashtag.  Remote system not running 
Cashtags should see two sensitive term instances.

Finance: Google Wallet, Paypal, Square:
User reads a document containing a sensitive term and 

its cashtag.  Cashtag-enabled system should display 
the document with two instances of cashtag.

User creates a document containing a sensitive term 
and its cashtag.  A remote system not running 
Cashtag should see two sensitive term instances.

Table 5.2: Per-category app test tasks.

5.2 App coverage evaluation

The Google Play market has more than one million of 
published applications accessible by thousands of 
different hardware devices [70], making the 
enumeration of all possible users, devices, and 
application scenarios infeasible.  Thus, we chose a 
representative subset of popular apps to demonstrate 
coverage of Cashtags.  Categorically, these application 
types are email, messaging, social media, cloud and 
local storage, office, and finance.  Table 5.2 shows the 
selected apps, arranged according to these categories. 
These apps were selected using download metrics from 
the Google Play marketplace, excluding games and 
utility apps for lack of relevance in terms of displaying 
sensitive data on screen. The presence of a form of 
external verification was also used in the application 
selection. Apps typically bundled with mobile devices 
were also tested for correct operation.

The operation performed on each is based on a 
commonly performed use case or task for each category. 
Table 5.2 shows the operation performed for each 
category and respective app. 

Input phrase type (4):
Alphabetic phrase, numeric phrase, alphanumeric 
phrase, Alphanumeric with symbols.
Phrase case (2):
Case Sensitive Text, Case In-sensitive Text
Widget type (9): 
TextView (android.widget.TextView),
CheckedTextView
(android.widget.CheckedTextView), 
Button (android.widget.Button), 
CheckBox (android.widget.CheckBox),
RadioButton
(android.widget.RadioButton), 
Switch (android.widget.Switch), 
EditText (android.widget.EditText),
AutoCompleteTextView (android.
widget.AutoCompleteTextView), 
MultiAutoCompleteTextView (android.
widget.MultiAutoCompleteTextView)
Layout type (2):
LinearLayout
(android.widget.LinearLayout), 
RelativeLayout
(android.widget. RelativeLayout)
Theme type (3):
Default theme, System theme, User-defined theme.
Generation method (2):
Static XML, Dynamic Java
Lifecycle type (2):
Activity-based lifecycle, Fragment-based lifecycle

Table 5.1: Android API test combinations.
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Our results show that Cashtags behaves correctly for 
97% of task and app combinations, except the MS 
Office Mobile tests.  The reason is because of the 
custom View (docRECanvasHost) used for the 
primary user interaction, which is not a descendant of an 
EditText.  Thus, our system does not intercept it. All 
of the other apps tested have user input through an 
EditText, or a custom class inheriting from an 
EditText. This exception, as well as other custom 
views could be made to work with Cashtags using case-
specific handling for internal functions and parameters 
that map to the equivalent EditText functions.

5.3 Overhead 

Regarding overhead, we measured the incremental lag 
Cashtags added to the system. We ran a modified 
version of the Android API coverage test (Section 5.1)
with and without Cashtags enabled. The screenshots, 
layout hierarchy dumping, and all other non-essential 
automation elements were removed prior to the test 
execution. The test execution durations are compared, 
and the additional lag introduced by the system was

calculated.  This test was run with and without the 
remote data verification to determine the effects of 
network lags on our system overhead. 

Fig. 5.1(a) shows the Cashtags system incurs an average 
1.9% increase in application runtime.  For tests 
including remote verification, Cashtags incurred an 
average of 1.1% increase over the baseline tests.  For 
tests excluding the time consuming remote verification, 
Fig. 5.1(b) shows that Cashtags incurred an average of 
2.6% over baseline. Therefore, the additional overhead 
of Cashtags would not be perceivable to the user. 

Testing was repeated using 50 and 100 items, which is
significantly more than the list of terms specified by PII.  
Fig. 5.2 show that the performance degrades linearly as 
the number of cashtags entries increases.  However, we 
can easily replace the data structure to make the 
increase sublinear.

Cashtags is additionally evaluated for boot-time 
overhead. Changes to the Cashtags repository currently 
require a reboot to take full effect. While this operation 
is not in the critical path, the overhead is relevant.  The 
results of the boot lag are shown in Fig. 5.3.

(a)

(b)

Fig.  5.1.  Comparison of mean app task execution time 
with and without Cashtags enabled, using system, 
software and hardware text input (a) with and (b) 
without web request for tests. Hardware refers to input 
from physically or wirelessly connected hardware 
keyboard and software refers to input via on-screen 
software keyboard.
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Fig.  5.2. Comparison of mean app task execution time 
with an increasing number of cashtag entries, using 
system and user inputs (a) with and (b) without web 
request for tests.
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5.4 Usability overhead 

To demonstrate the usability of Cashtags, we calculated 
the configuration and usage overhead seen by a typical 
user working on typical data. We used common 
sensitive data elements with known character lengths
(such as credit card numbers) as well as those for which 
published data on average term length was available
(such as common names) [63, 64]. 

For other elements without known average length 
availability, we substituted a typical minimum accepted 
value. Table 5.3 shows the comparison of these fields 
against the suggested cashtag alias length. 

In nearly every case, the cashtag alias is significantly 
shorter than the average length of the sensitive data 
element. On a keystroke count basis, the amortized 
effort of the initial configuration can be overcome with 
only two or three uses of the Cashtag alias. Longer 
names and emails require additional keystrokes for 
initial configuration but yield greater keystroke savings 
for each time the data element is entered. In addition, 
the aliases in the table are based on the suggested terms 
for ease of user recall; even shorter terms could be
substituted to reduce additional data entry overhead.

5.5 Quantification of the time savings for an end user 

The real efficiency savings for Cashtags is the ability to 
represent hard-to-recall terms (e.g., account numbers) 
with easy-to-recall aliases. The user simply assigns the 
sensitive data a memorable alias and can refer to them.

This also adds convenience when sensitive data 
changes. For example, consider the case of a stolen 
credit card. Once the replacement is issued, the user 
need only to update the underlying data element, 
continuing to use the alias without the need to memorize 
a new number. In some cases of personal information 
change, the defunct data could still be considered 
sensitive and be prevented from being displayed on the 
screen. In such cases, the defunct data element could be 

assigned to a new alias. For example, consider a street 
address change: the alias $street is assigned to the 
new data, and the past street address can be assigned to 
$street_old.

6. Related Work
Previous works include both systems that secure against 
observation-based attacks and those that provide similar
privacy protection over network channels.  

6.1 Visual authentication protection

Prior work on protection against visual exposure is 
focused on securing the act of authentication. By far the 
earliest is the technique of Xing out or not printing 
entered passwords on login screens [15]. Most others 
can be generalized as an augmentation or replacement 
of password entry mechanisms.

Password managers:  Password managers allow the 
user to select a predefined username and password pair 
from a list for entry into the login fields [14]. This also 
allows a user to use different passwords for different 
apps without the need to remember each individually.  

Hardware-based authentication:  Hardware-based 
authentication techniques utilize specialized USB 
dongles [17], audio jacks [18], short-range wireless 
communication [19], or Bluetooth connections [20] to 
connect to the authenticating machine.  Therefore, a 
bystander cannot obtain the authentication information
by observation.

Graphical passwords:  Graphical passwords or 
Graphical User Authentication (GUA) [22] replace the 
alpha-numeric password with a series of images, shapes, 
and colors.  The user needs to click a sequence of 

Type Actual Alias Alias Diff
First Name 6 $fname 6 0
Last Name 6 $lname 6 0
Email 20 $email 6 14
Username 9 $user 5 4
Password 9 $pass 5 4
Phone number 10 $cell 5 5
Birthday 10 $bday 5 5
SSN 9 $ssn 4 5
Credit Card 16 $visa 5 11
Acct. number 12 $acct 5 7

Table 5.3: Typical keystroke counts for common 
sensitive private data terms [63, 64] and corresponding 
suggested Cashtag alias.

Fig.  5.3. Comparison of device startup times with  
varying number of cashtag entries and with system 
disabled.
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human faces [23], object sequences as part of a story 
[24], or specific regions within a given image [25].

Biometrics:  Biometric authentication mechanisms 
augment password entry (something one knows) with a 
feature unique to one’s personal biology (something one 
is). The most commonly used of these biometric 
identifiers includes contours of the fingerprints [26], iris 
and retinal configuration of the eye [27], and geometries
of the face [28] and hand [29]. Behavioral 
characteristics such as keystroke latency [30], gait [31], 
and voice [32] can also be used.

Gesture-based authentication:  Gesture-based 
authentication techniques allow the user to perform 
specific tap [33], multi-finger presses [34], or swipe 
sequences on-screen [35] to represent a password. 

Cognitive challenges and obfuscation:  Other 
techniques have attempted to make games of the 
authentication procedure [37]. These techniques utilize 
challenge-response questions and cognitive tasks to 
increase the difficulty of the login session [38].  Other 
techniques use obfuscation (e.g., the hiding of cursors 
[39], confusion matrices [40], and recognition [41])
rather than recall-based methods, to confuse onlookers. 

Alternative sensory inputs:  Some systems utilize audio 
direction [42] or tactile and haptic feedback from the 
vibration motors on devices [43] to provide the user 
with the appropriate cue for the necessary response.  
The user then responds with the passphrase 
corresponding to the cue via traditional input methods.

There are also systems that extend GUAs by requiring 
sequential graphical inputs and use mechanics, such as
eye tracking, blinking and gaze-based interaction for the 
user to input the graphical sequence [44].  Systems have 
even demonstrated the capability of using brain waves 
for this task; a user may only need to think a specific 
thought to authenticate with a system [45].  These 
methods are also useful alternatives for authentication 
of people with visual or audio sensory disabilities [46]. 

6.2 Physical barriers and screen filters

Physical barriers can serve as a means of limiting the 
amount of screen exposure to bystanders. This can be 
as simple as office cubicles.  However, they are clearly 
not suitable for the increasingly mobile modern 
workforce. Other solutions, such as the 3M Privacy 
Filter [67] approach the problem by limiting the field of 
view of the screen. This may serve to reduce exposure, 
but larger screens are still visible for a larger area and 
can be seen by unauthorized viewers directly behind the 
device. 

The Lenovo Sun Visor [68] and Compubody Sock [69] 

reduce the screen visibility further by completely 
blocking out all non-direct visual exposure. However, 
this also blocks the user's own field of view, leaving 
them susceptible to external threats such as pick 
pocketing.

6.3 Wearable devices

Wearable headsets such as Google Glass [57] prevent 
screen exposure by moving the screen directly in front 
of the user’s eyes. However, the current generation 
devices have limited application support. In addition, 
much of the user input is performed by audio cues, 
which translates the visual sensitive data leaks to audio 
ones.

Oculus Rift [65] and Samsung Galaxy Wearable [66] 
permit similar private screen viewing.  However, they 
currently do not permit general-purpose computing.
Additionally, like physical barriers, these devices block 
the user’s field of view, increasing the vulnerability to 
external physical threats.

6.4 Digital communication channel protection

Many protocols and systems have been developed to 
handle other aspects of privacy-oriented attacks through 
the encryption of the digital communication channel.  
Transport Layer Security and Secure Sockets Layer can 
enhance security by providing session-based encryption 
[47]. Virtual Private Networks can be used to enhance 
security by offering point-to-point encryption to provide 
secure resources access across insecure network 
topologies [48].  Proxy servers [49] and onion routing 
protocols such as Tor [50], can add extra privacy by 
providing obfuscation of the location and 
anonymization of IP addresses.

Other solutions have been developed to enhance privacy 
of browsers. Do-not-track requests can be included in 
the HTTP headers to request that the web server or 
application disable its user and cross-site tracking 
mechanisms [51].  Many browser extensions and plug-
ins exist to block ads [52], analytics, beacons, and other 
tracking mechanisms [53]. Other systems alert the user 
when specific sensitive elements are leaked [54].  They
prevent the transmission of sensitive data without 
explicit user permission [55], and the cryptography 
secures access to sensitive data outside of trusted 
situations [16].

6.5 Compared to Cashtags

Despite the various mechanisms mentioned, the visual 
channel remains largely open.  A limited number of 
tools are available to obfuscate sensitive data other than 
during the act of authentication.  Other tools developed 
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for data encryption are not originally designed for such 
purposes.  

Password-based solutions and biometrics are effective 
in handling visual leaks during the act of authentication, 
but they cannot be generalized to handle other cases. No 
existing mechanism is in place to allow arbitrary data to 
be marked as sensitive. To our best knowledge, 
Cashtags is the only system that can protect general data 
from shoulder surfing. 

7. Discussion and Limitations
Increased coverage: Cashtags widget-level text 
manipulation works for apps that use standard text-
rendering methods. Should developers deviate from 
such standards, Cashtags would not capture such cases. 
Still, the additions required to incorporate these custom 
methods to work within Cashtags would be minimal if 
knowledge of the custom text display functions and 
parameters were provided.

Cashtags currently is optimized for coverage rather than 
performance.  Thus, one future direction is to explore 
better text-processing methods and data structures. 

Common names:  Commonly occurring names can be 
problematic. Consider a user John Smith, with Cashtag 
aliases of his name: John$fname, and 
Smith$lname. Therefore, all on-screen instances of 
John are masked as $fname. If John opens his browser 
and Googles the name John Travolta, all returned search 
results would be displayed with on-screen 
representations as $fname Travolta. If an on-looker 
was able to observe the above search queries, and was
aware of the operation of Cashtags, he or she might be 
able to derive the sensitive data from the context. This 
limitation is isolated to common phrases; numerical 
phrases would be less subject to this issue.

Data formatting:  For data formatting and types, many 
cases are handled through transformations of text fields,
including the removal of spaces and symbols, and 
capitalization mismatches. However, data that expands 
across TextViews is not recognized (e.g., input fields 
for a credit card split into parts rather than combined 
into a single field). Cashtags could handle this if each 
part of the credit-card number were added to the 
repository.

Handling business use cases: This paper presents 
Cashtags in light of protecting personal sensitive 
information.  However, with more advanced cashtag 
mapping rules internally implemented via regular 
expression templates, we can extend our framework to 
handle business use cases.  For example, for banking 

account apps, we can mask all of the dollar amounts to 
$#, with a fixed number of digits.  A user can specify 
common preset amounts using cashtags (e.g., pay
$rent to $apt_acct).  For database apps, we can 
mask fields with specific template formats (e.g., phone 
numbers, identification numbers with certain prefixes).  
While such extension will require ways to specify app-
specific rules, our core framework remains the same.

Generalization of approach: The Cashtags system was 
prototyped on Android. However, the general approach 
of screen rendering and user input interception can 
easily be generalized. 

Human subject study: One aspect that is important to 
system usability is the frequency that sensitive data is 
entered or displayed. The actual utility of Cashtags is 
directly related to how frequently personally identifiable 
information is accessed and input by the user. 
Unfortunately, to our best knowledge statistics on the 
frequency of such accesses are not available. A future 
human subjects study of Cashtags can help determine 
this frequency of sensitive data access, as well as further 
evaluate system effectiveness and usability.

8. Conclusion
Cashtags is a first step toward protection against visual 
leaks of on-screen data. The system demonstrates that it 
is possible to perform most mobile computing tasks in 
public locations without exposing sensitive information. 
The evaluation of the system shows that this can be
accomplished efficiently, with minimal perceived 
overhead. The app coverage test confirms that the 
system handles general-purpose tasks and maintains full 
functionality with nearly all tested common use cases.
These results suggest that Cashtags will likely work on 
most other mobile apps, providing unified, device-wide 
protection against shoulder surfing. 
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Abstract

While smartphones and mobile apps have been an essen-
tial part of our lives, privacy is a serious concern. Previ-
ous mobile privacy related research efforts have largely
focused on predefined known sources managed by smart-
phones. Sensitive user inputs through UI (User Inter-
face), another information source that may contain a lot
of sensitive information, have been mostly neglected.

In this paper, we examine the possibility of scalably
detecting sensitive user inputs from mobile apps. In par-
ticular, we design and implement SUPOR, a novel static
analysis tool that automatically examines the UIs to iden-
tify sensitive user inputs containing critical user data,
such as user credentials, finance, and medical data. SU-
POR enables existing privacy analysis approaches to be
applied on sensitive user inputs as well. To demonstrate
the usefulness of SUPOR, we build a system that detects
privacy disclosures of sensitive user inputs by combin-
ing SUPOR with off-the-shelf static taint analysis We
apply the system to 16,000 popular Android apps, and
conduct a measurement study on the privacy disclosures.
SUPOR achieves an average precision of 97.3% and an
average recall of 97.3% for sensitive user input identifi-
cation. SUPOR finds 355 apps with privacy disclosures
and the false positive rate is 8.7%. We discover inter-
esting cases related to national ID, username/password,
credit card and health information.

1 Introduction

Smartphones have become the dominant kind of end-
user devices with more units sold than traditional PCs.
With the ever-increasing number of apps, smartphones
are becoming capable of handling all kinds of needs from
users, and gain more and more access to sensitive and
private personal data. Despite the capabilities to meet
users’ needs, data privacy in smartphones becomes a ma-
jor concern.

Figure 1: Example sensitive user inputs.

Previous research on smartphone privacy protection
primarily focuses on sensitive data managed by the
phone OS and framework APIs, such as device identi-
fiers (phone number, IMEI, etc.), location, contact, cal-
endar, browser state, most of which are permission pro-
tected. Although these data sources are very important,
they do not cover all sensitive data related to users’ pri-
vacy. A major type of sensitive data that has been largely
neglected are the sensitive user inputs, which refers to
the sensitive information entered by users via the User
Interface (UI). Many apps today acquire sensitive cre-
dentials, financial, health, and medical information from
users through the UI. Therefore, to protect and respect
users’ privacy, apps must handle sensitive user inputs in
a secure manner that matches with users’ trust and ex-
pectations.

Figure 1 shows an example interface an app uses to ac-
quire users’ login credentials via input fields rendered in
the UI. When users click the button “Login”, the app use
the user ID and password to authenticate with a remote
service. As the developers may be unaware of the poten-
tial risk on the disclosures of such sensitive information,
the login credentials are sent in plain text over an inse-
cure channel (HTTP), which inadvertently compromises
users’ privacy.

In this paper, we propose SUPOR (Sensitive User
inPut detectOR), a static mobile app analysis tool for
detecting sensitive user inputs and identifying their as-
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sociated variables in the app code as sensitive informa-
tion sources. To the best of our knowledge, we are the
first to study scalable detection of sensitive user inputs
on smartphone platforms.

Previously, there are many existing research efforts [9,
10, 12, 23, 24, 30, 31, 34, 40] on studying the privacy re-
lated topics on predefined sensitive data sources on the
phone. Our approach enables those existing efforts to
be applied to sensitive user inputs as well. For exam-
ple, with proper static or dynamic taint analysis, one can
track the privacy disclosures of sensitive user inputs to
different sinks. With static program analysis, one can
also identify the vulnerabilities in the apps that may un-
intentionally disclosure such sensitive user inputs to pub-
lic or to the attacker controlled output. One could also
study how sensitive user inputs propagate to third-party
advertisement libraries, etc.

In this paper, to demonstrate the usefulness of our ap-
proach, we combine SUPOR with off-the-shelf static
taint analysis to detect privacy disclosures of sensitive
user inputs.

The major challenges of identifying sensitive user in-
puts are the following:

(i) How to systematically discover the input fields
from an app’s UI?

(ii) How to identify which input fields are sensitive?
(iii) How to associate the sensitive input fields to the

corresponding variables in the apps that store their
values?

In order to detect sensitive user inputs scalably, static
UI analysis is much appealing, because it is very difficult
to generate test inputs to trigger all the UI screens in an
app in a scalable way. For example, an app might require
login, which is difficult for tools to generate desirable in-
puts and existing approaches usually require human in-
tervention [26]. On the other hand, it is also extremely
challenging to launch static analysis to answer the afore-
mentioned three questions for general desktop applica-
tions.

To this end, we have studied major mobile OSes, such
as Android, iOS and Windows Phone systems, and made
a few important observations. Then, we implement SU-
POR for Android since it is most popular.

First, we find all these mobile OSes provide a stan-
dard rapid UI development kit as part of the development
framework, and most apps use such a homogeneous UI
framework to develop apps. Such UI framework usually
leverages a declarative language, such as XML based
layout languages, to describe the UI layout, which en-
ables us to statically discover the input fields on the UI.

Second, in order to identify which input fields are sen-
sitive, we have to be able to render the UI, because the
rendered UI screens contain important texts as hints that

guide users to enter their inputs, which can be used to
identify whether the inputs are sensitive. For instance, in
Figure 1, the text “User ID” describes the nature of the
first input field. Statically rendering UI screens is gener-
ally very hard for arbitrary desktop applications. How-
ever, with help of WYSIWYG (What You See is What
You Get) layout editing feature from the rapid UI de-
velopment kits of mobile OSes, we are able to statically
render the UI for most mobile apps in order to associate
the descriptive text labels with the corresponding input
fields. Furthermore, due to the relatively small screen
size of smartphones, most text labels are concise. As
such, current NLP (Natural Language processing) tech-
niques can achieve high accuracy on identifying sensitive
terms.

Third, all mobile OSes provide APIs to load the UI
layouts made by rapid UI development kits and to bind
with the app code. Such a binding mechanism provides
us opportunities to infer the relationship between the sen-
sitive input fields from UI layouts to the variables in the
app code that store their values.

Our work makes three major contributions:
First, we devise a UI sensitiveness analysis that identi-

fies the input fields that may accept sensitive information
by leveraging UI rendering, geometrical layout analysis
and NLP techniques. We modify the static rendering en-
gine from the ADT (Android Developer Tools), so that
the static rendering can be done with an APK binary in-
stead of source code, and accurately identify the coordi-
nates of text labels and input fields. Then, based on the
insight that users typically read the text label physically
close to the input field in the screen for understanding the
purpose of the input field, we design an algorithm to find
the optimal descriptive text label for each input field. We
further leverage NLP (nature language processing) tech-
niques [11, 22, 36] to select and map popular keywords
extracted from the UIs of a massive number of apps to
important sensitive categories, and use these keywords to
classify the sensitive text labels and identify sensitive in-
put fields. Our evaluation shows that SUPOR achieves
an average precision of 97.3% and an average recall of
97.3% for sensitive user inputs detection.

Second, we design a context-sensitive approach to as-
sociate sensitive UI input fields to the corresponding
variables in the app code. Instances of sensitive input
widgets in the app code can be located using our UI anal-
ysis results in a context-insensitive fashion (i.e. based on
widget IDs). We further reduce false positives by adding
context-sensitivity, i.e. we leverage backward slicing and
identify each input widget’s residing layout by tracing
back to the closest layout loading function. Only if both
widget and layout identifiers match with the sensitive in-
put field in the XML layout, we consider the widget in-
stance is associated with the sensitive input field.
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Finally, we implement a privacy disclosure detec-
tion system based on SUPOR and static taint analysis,
and apply the system to 16,000 popular free Android
apps collected from the Official Android Market (Google
Play). The system can process 11.1 apps per minute
on an eight-server cluster. Among all these apps, 355
apps are detected with sensitive user input disclosures.
Our manual validation on these suspicious apps shows
an overall detection accuracy of 91.3%. In addition, we
conduct detailed case studies on the apps we discovered,
and show interesting cases of unsafe disclosures of users’
national IDs, credentials, credit card and health related
information.

2 Background and Motivation Example

In this section, we provide background on sensitive user
input identification.

2.1 Necessary Support for Static Sensitive User In-

put Identification

Modern mobile OSes, such as Android, iOS and Win-
dows Phone system, provide frameworks and tools for
rapid UI design. They usually provide a large collection
of standard UI widgets, and different layouts to compose
the widgets together. They also provide a declarative lan-
guage, such as XML, to let the developer describe their
UI designs, and further provide GUI support for WYSI-
WYG UI design tools. In order to design a static analysis
tool for sensitive user input identification, we need four
basic supporting features. The rapid UI development de-
sign in modern mobile OSes makes it feasible to achieve
such features.
A: statically identify the input fields and text labels;
B: statically identify the attributes of input fields;
C: statically render the UI layout without launching the
app;
D: statically map the input fields defined in the UI lay-
outs to the app code.

These four features are necessary to statically identify
the sensitive input fields on UIs. In order to infer the se-
mantic meaning of an input field and decide whether it is
sensitive, we need (i) the attributes of the input field; (ii)
the surrounding descriptive text labels on the UI. Some
attributes of the input fields can help us quickly under-
stand its semantics and sensitiveness. For example, if the
input type is password, we know this is a password-like
input field. However, in many cases, the attributes alone
are not enough to decide the semantics and sensitiveness
of the input fields. In those cases, we have to rely on
UI analysis. A well-designed app has to allow the user
to easily identify the relevant texts for a particular input
field and provide appropriate inputs based on his under-
standing of the meaning of texts. Based on the above
observation, we need Feature C to render the UI and ob-

Table 1: UI features in different mobile OSes

Android iOS Windows Phone

Layout format XML NIB / XIB /
Storyboard

XAML/HTML

Static UI render ADT Xcode Visual Studio
APIs map widgets
to code

Yes Yes Yes

1 <LinearLayout android:orientation="vertical">
2 <TextView android:text="@string/tip_uid" />
3 <EditText android:id="@+id/uid" />
4 <TextView android:text="@string/tip_pwd" />
5 <EditText android:id="@+id/pwd"

android:inputType="textPassword" />
6 <Button android:id="@+id/login"

android:text="@string/tip_login"/>
7 </LinearLayout>

Figure 2: Simplified layout file login_activity.xml.

tain the coordinates of input fields and text labels, so that
we can associate them and further reason about the sen-
sitiveness of input fields. Once we identify the sensitive
input fields, we have to find the variable in the app code
used to store the values of the input field for further anal-
ysis.

We have studied Android, iOS and Windows Phone
systems. As shown in Table 1, all mobile OSes provide
standard formats for storing app UI layouts that we can
use to achieve features A and B. All of them have IDEs
that can statically render UI layouts for the WYSIWYG
UI design. If we reuse this functionality we can achieve
static rendering (feature C). Furthermore, all of them pro-
vide APIs for developers to map the widgets in layouts
to the variables in the app code that hold the user inputs.
Combined with static program analysis to understand the
mapping, we will be able to achieve feature D.

2.2 Android UI Rendering

For proof of concept, the current SUPOR is designed for
the Android platform. An Android app usually consists
of multiple activities. Each activity provides a window
to draw a UI. A UI is defined by a layout, which speci-
fies the dimension, spacing, and placement of the content
within the window. The layout consists of various inter-
active UI widgets (e.g., input fields and buttons) as well
as layout models (e.g., linear or relative layout) that de-
scribe how to arrange UI widgets.

At run time, when a layout file is loaded, the Android
framework parses the layout file and determines how to
render the UI widgets in the window by checking the lay-
out models and the relevant attributes of the UI widgets.
At the mean time, all UI widgets in the layout are instan-
tiated and then can be referenced in the code.

An example layout in XML is presented in Figure 2
and the code snippet of the corresponding activity is
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1 public class LoginActivity extends Activity
implements View.OnClickListener {

2 private EditText txtUid, txtPwd;
3 private Button btnReset;
4 protected void onCreate(Bundle bundle) {
5 super.onCreate(bundle);
6 setContentView(R.layout.login_activity);
7 txtUid = (EditText) findViewById(R.id.uid);
8 txtPwd = (EditText) findViewById(R.id.pwd);
9 btnLogin = (Button) findViewById(R.id.login);

10 btnLogin.setOnClickListener(this);
11 }
12 public void onClick(View view) {
13 String uid = txtUid.getText().toString();
14 String pwd = txtPwd.getText().toString();
15 String url = "http://www.plxx.com/Users/" +

"login?uid=" + uid + "&pwd=" + pwd;
16 HttpClient c = new DefaultHttpClient();
17 HttpGet g = new HttpGet(url);
18 Object o = c.execute(g, new

BasicResponseHandler());
19 // following operations are omitted
20 }
21 }

Figure 3: Simplified Activity example.

shown in Figure 3. This layout includes five UI wid-
gets: two text labels (TextView), two input fields
(EditText) and a button. They are aligned verti-
cally based on the LinearLayout at Line 1. The
first text label shows “User ID” based on the attribute
android:text=“@string/tip_uid”, which in-
dicates a string stored as a resource with the ID
tip_uid. The type attribute of the second input field
is android:inputType=“textPassword”, indi-
cating that it is designed for accepting a password, which
conceals the input after the users enter it. Instead of ex-
plicitly placing text labels as in Figure 2, some devel-
opers decorate an input field with a hint attribute, which
specifies a message that will be displayed when the input
is empty. For instance, developers may choose to dis-
play “User ID” and “Password” inside the corresponding
input fields using the hint attribute.

Figure 1 shows the rendered UI for the layout in Fig-
ure 2. The layout including all the inner widgets is loaded
into the screen by calling setContentView() at Line
6 in Figure 3. The argument of setContentView()
specifies the reference ID of the layout resource. Simi-
larly, a runtime instance of a widget can also be located
through a findViewById() call with the appropriate
reference ID. For example, the reference ID R.id.uid
is used to obtain a runtime instance of the input field at
Line 7 in Figure 3.

2.3 UI Sensitiveness Analysis

Existing techniques usually consider permission pro-
tected framework APIs as the predefined sensitive data
sources. However, generic framework APIs, such as
getText(), can also obtain sensitive data from the
user inputs. To precisely detect these sensitive sources,

S

VP NP

VB PRP NNNN

enter your   phone   numberyour   phone   number

Figure 4: Parse tree of an example sentence.

we need to determine which GUI input widgets are sen-
sitive.

Two kinds of information are useful for this purpose.
First, certain attributes of the widgets can be a good in-
dicator about whether the input is sensitive. Using the
inputType attribute with a value “textPassword”, we
can directly identify password fields. However, not all
sensitive input fields use this attribute value. The hint
attributes also may contain useful descriptive texts that
may indicate the sensitiveness of the input fields.

Besides attributes of UI widgets, we observe that
nearby text labels rendered in the UI also provide indi-
cation about the sensitiveness of the widgets. For exam-
ple, a user can easily understand he is typing a user ID
and a password when he sees the UI in Figure 1 because
the text labels state what the input fields accept. In other
words, these text labels explain the purposes of the UI
widgets, and guide users to provide their inputs. Based
on these observations, we propose to leverage the out-
come of UI rendering to build a precise model of the UI
and analyze the text labels and hints associated with the
widgets to determine their sensitiveness.

The major task of analyzing text labels is to analyze
the text labels’ texts, which are written in natural lan-
guage. As smartphones have relatively small screens,
the texts shown in the UI are usually very concise and
straightforward to understand. For example, these texts
typically are just noun/verb phrases or short sentences
(such as the ones shown in Figure 1), and tend to directly
state the purposes for the corresponding GUI widgets.
Since there is no need to analyze paragraphs or even long
sentences, we propose a light-weight keyword-based al-
gorithm that checks whether text labels contain any sen-
sitive keyword to determine the sensitiveness of the cor-
responding GUI widgets.

2.4 Natural Language Processing

With recent research advances in the area of natural
language processing (NLP), NLP techniques have been
shown to be fairly accurate in highlighting grammatical
structure of a natural language sentence. Recent work
has also shown promising results in using NLP tech-
niques for analyzing Android descriptions [13, 30]. In
our work, we adapt NLP techniques to extract nouns and
noun phrases from the texts collected from popular apps,
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and identify keywords from the extracted nouns and noun
phrases. We next briefly introduce the key NLP tech-
niques used in this work.

Our approach uses Parts Of Speech (POS) Tag-

ging [22,36] to identify interesting words, such as nouns,
and filter unrelated words, such as conjunctives like
“and/or”. The technique tags a word in a sentence as cor-
responding to a particular part of speech (such as iden-
tifying nouns, verbs, and adjectives), based on both its
definition and its relationship with adjacent and related
words in a phrase, sentence, or paragraph. The state-
of-the-art approaches can achieve around 97% [36] ac-
curacy in assigning POS tags for words in well-written
news articles.

Our approach uses Phrase and Clause Parsing to
identify phrases for further inspection. Phrase and clause
parsing divides a sentence into a constituent set of words
(i.e., phrases and clauses). These phrases and clauses
logically belong together, e.g., Noun Phrases and Verb
Phrases. The state-of-the-art approaches can achieve
around 90% [36] accuracy in identifying phrases and
clauses over well-written news articles.

Our approach uses Syntactic parsing [21], combined
with the above two techniques, to generate a parse-tree
structure for a sentence, and traverse the parse tree to
identify interesting phrases such as noun phrases. The
parse tree of a sentence shows the hierarchical view of
the syntax structure for the sentence. Figure 4 shows
the parse tree for an example sentence “enter your phone
number”. The root node of the tree is the sentence node
with the label S. The interior nodes of the parse tree are
labeled by non-terminal categories of the grammar (e.g.,

verb phrases VP and noun phrases NP), while the leaf
nodes are labeled by terminal categories (e.g., pronouns
PRP, nouns NN and verbs VB). The tree structure pro-
vides a basis for other tasks within NLP such as question
and answer, information extraction, and translation. The
state of the art parsers have an F1 score of 90.4% [37].

3 Design of SUPOR

In this section, we first present our threat model, fol-
lowed by an overview of SUPOR. Then, we describe
each component of SUPOR in details.

3.1 Threat Model

We position SUPOR as a static UI analysis tool for de-
tecting sensitive user inputs. Instead of focusing on ma-
licious apps that deliberately evade detection, SUPOR
is designed for efficient and scalable screening of a large
number of apps. Most of the apps in the app markets are
legitimate, whose developers try to monetize by gaining
user popularity, even though some of them might be a lit-
tle bit aggressive on exploiting user privacy for revenue.
Malware can be detected by existing works [5, 15, 39],
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Figure 5: Overview of SUPOR.

which is out of scope of this paper.
Though the developers sometimes dynamically gener-

ate UI elements in the code other than defining the UI
elements via layout files, we focus on identifying sensi-
tive user inputs statically defined in layout files in this
work.

3.2 Overview

Figure 5 shows the workflow of SUPOR. SUPOR con-
sists of three major components: Layout Analysis, UI

Sensitiveness Analysis, and Variable Binding. The lay-
out analysis component accepts an APK file of an app,
parses the layout files inside the APK file, and renders
the layout files containing input fields. Based on the
outcome of UI rendering, the UI sensitiveness analysis
component associates text labels to the input fields, and
determines the sensitiveness of the input fields by check-
ing the texts in the text labels against a predefined sensi-
tive keyword dataset (Section 3.6). The variable binding
component then searches the code to identify the vari-
ables that store the values of the sensitive input fields.
With variable binding, existing research efforts in study-
ing the privacy related topics on predefined well-known
sensitive data sources can be applied to sensitive user in-
puts. For example, one can use taint analysis to detect
disclosures of sensitive user inputs or other privacy anal-
ysis to analyze vulnerabilities of sensitive user inputs in
the apps. Next we describe each component in detail.

3.3 Layout Analysis

The goal of the layout analysis component is to render
the UIs of an Android app, and extract the information
of input fields: types, hints, and absolute coordinates,
which are later used for the UI sensitiveness analysis.

As we discussed in Section 2.3, if we cannot deter-
mine the sensitiveness of an input field based on its type
and hint, we need to find a text label that describes the
purpose of the input field. From the user’s perspective,
the text label that describes the purpose of an input field
must be physically close to the input field in the screen;
otherwise the user may correlate the text label with other
input fields and provide inappropriate inputs. Based on
this insight, the layout analysis component renders the
UIs as if the UIs are rendered in production runs, mim-
icking how users look at the UIs. Based on the rendered
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LinearLayout @ [0, 50, 480, 752]

TextView @ [16, 16, 60, 33],  TEXT=“User ID”

Button @ [16, 146, 464, 163]
ID=0x7f090002,  TEXT=“Login”

EditText @ [16, 33, 464, 81],  ID=0x7f090000

TextView @ [16, 81, 79, 98],  TEXT=“Password”

EditText @ [16, 98, 464, 146],  ID=0x7f090001

Figure 6: UI model for Figure 1 on 480x800 screen.
Only the ID, relative coordinates and text of the widgets
are presented here.

UIs, the distances between text labels and input fields are
computed, and these distances are used later to find the
best descriptive text labels for each input field. We next
describe the two major steps of the layout analysis com-
ponent.

The first step is to identify which layout files contain
input fields by parsing the layout files in the APK of an
Android app. In this work, we focus on input fields of
the type EditText and all possible sub-types, includ-
ing custom widgets in the apps. Each input field repre-
sents a potential sensitive source. However, according to
our previous discussion, the sensitiveness cannot be eas-
ily determined by analyzing only the layout files. Thus,
all the files containing input fields are used in the second
step for UI rendering.

The second step is to obtain the coordinate information
of the input fields by rendering the layout files. Using
the rapid UI development kit provided by Android, the
layout analysis component can effectively render stan-
dard UI widgets. For custom widgets that require more
complex rendering, the layout analysis component ren-
ders them by providing the closest library superclass to
obtain the best result. After rendering a layout file, the
layout analysis component obtains a UI model, which is
a tree-structure model where the nodes are UI widgets
and the edges describe the parent-child relationship be-
tween UI widgets. Figure 6 shows the UI model obtained
by rendering the layout file in Figure 2. For each ren-
dered UI widget, the coordinates are relative to its parent
container widget. Such relative coordinates cannot be di-
rectly used for measuring the distances between two UI
widgets, and thus SUPOR converts the relative coordi-
nates to absolute coordinates with regards to the screen
size.

Coordinate Conversion. SUPOR computes the ab-
solute coordinates of each UI widget level by level, start-
ing with the root container widget. For example, in Fig-
ure 6, the root container widget is a LinearLayout,
and its coordinates are (0, 50, 480, 752), represent-
ing the left, top, right, and bottom corners. There is

Algorithm 1 UI Widget Sensitiveness Analysis

Require: I as an input field, S as a set of text labels, KW

as a pre-defined sensitive keyword dataset
Ensure: R as whether I is sensitive

1: Divide the UI plane into nine partitions based on I’s
boundary

2: for all L ∈ S do

3: score = 0
4: for all (x,y) ∈ L do

5: score += distance(I,x,y)∗ posWeight(I,x,y)
6: end for

7: L.score = score / L.numO f Pixels

8: end for

9: T = min(S)
10: R = T.text matches KW

no need to convert the coordinates of the root UI wid-
get, since its coordinates are relative to the top left cor-
ner of the screen, and thus are already absolute coordi-
nates. For other UI widgets, SUPOR computes their
absolute coordinates based on their relative coordinates
and their parent container’s absolute coordinates. For ex-
ample, the relative coordinates of the second UI widget,
TextView, are (16, 16, 60, 33). Since it is a child wid-
get of the root UI widget, its absolute coordinates is com-
puted as (16, 66, 60, 83). This process is repeated until
the coordinates of every UI widget are converted.

In addition to coordinate conversion, SUPOR collects
other information of the UI widgets, such as the texts in
the text labels and the attributes for input fields (e.g., ID
and inputType).

3.4 UI Sensitiveness Analysis

Based on the information collected from the layout anal-
ysis, the UI sensitiveness analysis component determines
whether a given input field contains sensitive informa-
tion. This component consists of three major steps.

First, if the input field has been
assigned with certain attributes like
android:inputType="textPassword", it
is directly considered as sensitive. With such attribute,
the original inputs on the UI are concealed after users
type them. In most cases these inputs are passwords.

Second, if the input field contains any hint (i.e.,

tooltip), e.g., “Enter Password Here”, the words in the
hint are checked: if it contains any keyword in our sensi-
tive keyword dataset, the input field is considered sensi-
tive; otherwise, the third step is required to determine its
sensitiveness.

Third, SUPOR identifies the text label that describes
the purpose of the input field, and analyzes the text in the
label to determine the sensitiveness. In order to identify
text labels that are close to a given input field, we provide
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Input Field (Central) [6]

top [2]left top [4] right top [8]

left bottom [8] right bottom [10]

left [0.8] right [9]

bottom [9]

Figure 7: The partition of the UI is based on the boundary
of the input field.

Figure 8: Example for UI widget sensitiveness analysis.

an algorithm to compute correlation scores for each pair
of a text label and an input field based on their distances
and relative positions.

The details of our algorithm is shown in Algorithm 1.
At first, SUPOR divides the UI plane into nine parti-
tions based on the boundaries of the input field. Fig-
ure 7 shows the nine partitions divided by an input field.
Each text label can be placed in one or more partitions,
and the input field itself is placed in the central partition.
For a text label, we determine how it is correlated to an
input field by computing how each pixel in a text label
is correlated to the input field (Line 4). The correlation
score for a pixel consists of two parts (Line 5). The first
part is the Euclidean distance from the pixel to the input
field, computed using the absolute coordinates. The sec-
ond part is a weight based on their relative positions, i.e.,

which of the nine partitions the widget is in. We build
the position-based weight function based on our empir-
ical observations: if the layout of the apps is top-down
and left-right arranged, the text label that describes the
input field is usually placed at left or on top of the in-
put field while the left one is more likely to be the one if
it exists. We assign smallest weight to the pixels in the
left partition and second smallest for the top partition.
The right-bottom partition is least possible so we give
the largest weight to it. The detailed weights for each
partition is shown in Figure 7. Based on the correlation
scores of all the pixels, our algorithm uses the average
of the correlation scores as the correlation score for the
pair of the text label and the input field (Line 7). The
label with smaller correlation score is considered more
correlated to the input field.

After the correlation scores for all text labels are com-
puted, SUPOR selects the text label that has the smallest
score as the descriptive text label for the input field, and
uses the pre-defined sensitive keyword dataset to deter-
mine if the label contains any sensitive keyword. If yes,
the input field is considered as sensitive.

Example. Figure 8 shows an example UI that requires

Table 2: Scores of the text labels in Figure 8.

First Name Last Name

1st input field 46.80 218.81
2nd input field 211.29 46.84

Algorithm 1 for sensitiveness analysis. This example
shows a UI that requests a user to enter personal infor-
mation. This UI contains two input fields and two text
labels. Neither can SUPOR determine the sensitiveness
through their attributes, nor can SUPOR use any hint to
determine the sensitiveness. SUPOR then applies Algo-
rithm 1 on these two input fields to compute the corre-
lation scores for each pair of text labels and input fields.
The correlation scores are shown in Table 2. Accord-
ing to the correlation scores, SUPOR associates “First
Name” to the first input field and “Last Name” to the
second input field. Since our keyword dataset contains
keywords “first name” and “last name” for personal in-
formation, SUPOR can declare the two input fields are
sensitive.

Repeating the above steps for every input field in the
app, SUPOR obtains a list of sensitive input fields. It
assigns an contextual ID to each sensitive input field
in the form of <Layout_ID, Widget_ID>, where
Layout_ID is the ID of the layout that contains the in-
put field and Widget_ID is the ID of the input field
(i.e., the value of the attribute “android:id”).

3.5 Variable Binding

With the sensitive input fields identified in the previous
step, the variable binding component performs context-
sensitive analysis to bind the input fields to the variables
in the code. The sensitive input fields are identified using
contextual IDs, which include layout IDs and widget IDs.
These contextual IDs can be used to directly locate input
fields from the XML layout files. To find out the vari-
ables that store the values of the input fields, SUPOR
leverages the binding mechanism provided by Android
to load the UI layout and bind the UI widgets with the
code. Such a binding mechanism enables SUPOR to as-
sociate input fields with the proper variables. We refer to
these variables the widget variables that are bound to the
input fields.

The variable binding component identifies the in-
stances of the input fields in a context-insensitive fash-
ion via searching the code using the APIs provided by
the rapid UI development kit of Android. As shown in
Section 2.2, findViewById(ID) is an API that loads
a UI widget to the code. Its argument ID is the numeric
ID that specifies which widget defined in the XML to
load. Thus, to identify the instances of the input fields,
SUPOR searches the code for such method calls, and
compare their arguments to the widget IDs of the sensi-
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tive input fields. If the arguments match any widget ID of
the sensitive input fields, the return values of the corre-
sponding findViewById(ID) are considered as the
widget variables for the sensitive input fields.

One problem here is that developers may assign the
same widget ID to UI widgets in different layout files,
and thus different UI widgets are associated with the
same numeric ID in the code. Our preliminary analy-
sis on 5000 apps discovers that about 22% of the iden-
tified sensitive input fields have duplicate IDs within the
corresponding apps. Since the context-insensitive analy-
sis cannot distinguish the duplicate widget IDs between
layout files inside an app, a lot of false positives will be
presented.

To reduce false positives, SUPOR adds context-
sensitivity into the analysis, associating widget vari-
ables with their corresponding layouts. Similar to load-
ing a widget, the rapid UI development kit provides
APIs to load a UI layout into the code. For example,
setContentView(ID) with a numeric ID as the ar-
gument is used to load a UI layout to the code, as shown
at Line 6 in Figure 3. Any subsequent findViewById
with the ID WID as the argument returns the UI wid-
get identified by WID in the newly loaded UI layout,
not the UI widget identified by WID in the previous
UI layout. Thus, to find out which layout is associ-
ated with a given widget variable, SUPOR traces back
to identify the closest method call that loads a UI lay-
out1 along the program paths that lead to the invocation
of findViewById. We next describe how SUPOR
performs context-sensitive analysis to distinguish widget
IDs between layout files. For the description below, we
use setContentView() as an example API.

Given a widget variable, SUPOR first identifies the
method call findViewById, and computes an inter-
procedural backward slice [18] of its receiver object,
i.e., the activity object. This backward slice traces back
from findViewById, and includes all statements that
may affect the state of the activity object. SUPOR
then searches the slice backward for the method call
setContentView, and uses the argument of the first
found setContentView as the layout ID. For exam-
ple, in Figure 3, the widget variable txtUid is defined
by the findViewById at Line 7, and the activity object
of this method call is an instance of LoginActivity.
From the backward slice of the activity object, the first
method call setContentView is found at Line 6, and
thus its argument R.layout.login_activity is
associated with txtUid, whose widget ID is specified
by R.id.uid. Both R.layout.login_activity
and R.id.uid can be further resolved to identify their

1SUPOR considers both Activity.setContentView() and
LayoutInflater.inflate() as the methods to load UI layouts
due to their prevalence.

numeric IDs, and match with the contextual IDs of sensi-
tive input fields to determine whether txtUid is a wid-
get variable for a sensitive input field.

3.6 Keyword Dataset Construction

To collect the sensitive keyword dataset, we crawl all
texts in the resource files from 54,371 apps, including
layout files and string resource files. We split the col-
lected texts based on newline character (\n) to form a
list of texts, and extract words from the texts to form a
list of words. Both of these lists are then sorted based on
the frequencies of text lines and words, respectively. We
then systematically inspect these two lists with the help
of the adapted NLP techniques. Next we describe how
we identify sensitive keywords in detail.

First, we adapt NLP techniques to extract nouns and
noun phrases from the top 5,000 frequent text lines. Our
technique first uses Stanford parser [36] to parse each
text line into a syntactic tree as discussed in Section 2.4,
and then traverses the parse tree level by level to identify
nouns and noun phrases. For the text lines that do not
contain any noun or noun phrase, our technique filters
out these text lines, since such text lines usually con-
sist of only prepositions (e.g., to), verbs (e.g., update
please), or unrecognized symbols. From the top 5,000
frequent text lines, our technique extracts 4,795 nouns
and noun phrases. For the list of words, our technique
filters out words that are not nouns due to the similar rea-
sons. From the top 5,000 frequent words, our technique
obtains 3,624 words. We then manually inspect these two
sets of frequent nouns and noun phrases to identify sen-
sitive keywords. As phrases other than noun phrases may
indicate sensitive information, we further extract consec-
utive phrases consisting of two and three words from the
text lists and manually inspect the top 200 frequent two-
word and three-word phrases to expand our sensitive key-
word set.

Second, we expand the keyword set by searching the
list of text lines and the list of words using the identi-
fied words. For example, we further find “cvv code” for
credit card by searching the lists using the top-ranked
word “code”, and find “national ID” by searching the
lists using the top-ranked word “id”. We also expand
the keywords using synonyms of the keywords based on
WordNet [11].

Third, we further expand the keywords by using
Google Translate to translate the keywords from English
into other languages. Currently we support Chinese and
Korean besides English.

These keywords are manually classified into 10 cate-
gories, and part of the keyword dataset is presented in
Table 3. Note that we do not use “Address” for the cate-
gory “Personal Info”. Although personal address is sen-
sitive information, our preliminary results show that this
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Table 3: Part of keyword dataset.

Category Keywords

Credential pin code, pin number, password
Health weight, height, blood type, calories
Identity username, user ID, nickname
Credit Card credit card number, cvv code
SSN social security number, national ID
Personal Info first name, last name, gender, birthday
Financial Info deposit amount, income, payment
Contact phone number, e-mail, email, gmail
Account log in, sign in, register
Protection security answer, identification code

keyword also matches URL address bars in browsers,
causing many false positives. Also, we do not find in-
teresting privacy disclosures based on this keyword in
our preliminary results, and thus “Address” is not used
in our keyword dataset. Although this keyword dataset
is not a complete dataset that covers every sensitive key-
word appearing in Android apps, our evaluation results
(in Section 5) show that it is a relatively complete dataset
for the ten categories that we focus on in this work.

4 Implementation

In this section, we provide the details of our implementa-
tion of SUPOR, including the frameworks and tools we
built upon and certain tradeoffs we make to improve the
effectiveness.

SUPOR accepts APK files as inputs, and uses a tool
built on top of Apktool [1] to extract resource files and
bytecode from the APK file. The Dalvik bytecode is
translated into an intermediate representation (IR), which
is based on dexlib in Baksmali [3]. The IR is further
converted to WALA [4] static single assignment for-
mat (SSA). WALA [4] works as the underlying analy-
sis engine of SUPOR, providing various functionalities,
e.g., call graph building, dependency graph building, and
point-to analysis.

The UI rendering engine is built on the UI render-
ing engine from the ADT Eclipse plug-ins Besides im-
proving the engine to better render custom widgets, we
also make the rendering more resilient using all avail-
able themes. Due to SDK version compatibility, not ev-
ery layout can be rendered in every theme. We try mul-
tiple themes until we find a successful rendering. Al-
though different themes might make UI slightly differ-
ent, the effectiveness of our algorithm should not be af-
fected. The reason is that apps should not confuse users
in the successfully rendered themes, and thus our algo-
rithm designed to mimic what users see the UIs should
work accordingly.

To demonstrate the usefulness of SUPOR, we imple-
ment a privacy disclosure detection system by combining
SUPOR with static taint analysis. This system enables

us to conduct a study on the disclosures of sensitive user
inputs. We build a taint analysis engine on top of Daly-
sis [24] and make several customizations to improve the
effectiveness. The details of the customizations can be
found at Appendix A.2.

To identify sensitive user inputs, SUPOR includes to-
tally 11 source categories, including the 10 categories
listed in Section 3.6 and an additional category PwdLike

for the input fields identified as sensitive using their at-
tributes such as inputType. The PwdLike category is
prioritized if it has some overlapping with the other cat-
egories. Once the widget variables of the sensitive in-
put fields are found, we consider any subsequent method
calls on the variables that retrieve values from the input
fields as source locations, such as getText(). To iden-
tify privacy disclosures of the sensitive user inputs, SU-
POR mainly focuses on the information flows that trans-
fer the sensitive data to the following two types of sinks:
(1) the sinks of output channels that send the informa-
tion out from the phone (e.g., SMS and Network) and
(2) the sinks of public places on the phone (e.g., logging
and content provider writes). More details are shown in
Appendix A.1.

Our implementation, excluding the underlying li-
braries and the core taint analysis engine, accounts for
about 4K source lines of code (SLoC) in Java.

5 Evaluations and Experiments

We conducted comprehensive evaluations on SUPOR
over a large number of apps downloaded from the of-
ficial Google Play store. We first evaluated the perfor-
mance of SUPOR and demonstrated its scalability. We
then measured the accuracy of the UI sensitiveness anal-
ysis and the accuracy of SUPOR in detecting disclosures
of sensitive user inputs. In addition, our case studies on
selected apps present practical insights of sensitive user
input disclosures, which are expected to contribute to a
community awareness.

5.1 Evaluation Setup

The evaluations of SUPOR were conducted on a clus-
ter of eight servers with an Intel Xeon CPU E5-1650 and
64/128GB of RAM. During the evaluations, we launched
concurrent SUPOR instances on 64-bit JVM with a
maximum heap space of 16GB. On each server 3 apps
were concurrently analyzed, so the cluster handled 24
apps in parallel.

In our evaluations, we used the apps collected from
the official Google Play store in June 2013. We applied
SUPOR to analyze 6,000 apps ranked by top downloads,
with 200 apps for each category. Based on the results of
the 6,000 apps, we further applied SUPOR on another
10,000 apps in 20 selected categories. Each of the 20
categories is found to have at least two apps with sensi-
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Table 4: Statistics of 16,000 apps.

#Apps Percentage

Without Layout Files 625 3.91%
Without Input Fields 5,711 35.69%
Without Sensitive Input Fields 4,731 29.57%
With Sensitive Input Fields 4,922 30.76%
Parsing Errors 11 0.07%

TOTAL 16,000 100.00%

tive user input disclosures.
For each app, if it contains at least one input field in

layout files, the app is analyzed by the UI sensitiveness
analysis. If SUPOR identifies any sensitive input field of
the app, the app is further analyzed by the taint analysis
to detect sensitive user input disclosures. Table 4 shows
the statistics of these apps. A small portion of the apps
do not contain any layout files and about 1/3 of the apps
do not have any input field in layout files. This is rea-
sonable because many Game apps do not require users to
enter information. 35% of the apps without layout files
and 17% of the apps without input fields belong to dif-
ferent sub-categories of games. 11 apps (0.07%) cannot
be analyzed by SUPOR due to various parsing errors in
rendering their layout files. In total, 60.33% of the apps
contain input fields in their layout files, among which
more than half of the apps are further analyzed because
sensitive input fields are found via the UI sensitiveness
analysis.

As not every layout containing input fields is identified
with sensitive input fields, we show the statistics of the
layouts for the 4,922 apps identified with sensitive input
fields. Among these apps, 47,885 layouts contain input
fields and thus these layouts are rendered. Among the
rendered layouts, 19,265 (40.2%) are found to contain
sensitive keywords (no matter whether the keywords are
associated with any input field). This is the upper bound
of the number of layouts that can be identified with sen-
sitive input fields. In fact, 17,332 (90.0%) of the 19,265
layouts with sensitive keywords are identified with sen-
sitive input fields.

5.2 Performance Evaluation

The whole experiment for 16,000 apps takes 1439.8 min-
utes, making a throughput of 11.1 apps per minutes on
the eight-server cluster. The following analysis is only
for the 4,922 apps identified with sensitive input fields, if
not specified.

The UI analysis in SUPOR includes decompiling
APK files, rendering layouts, and performing UI sen-
sitiveness analysis. For each app with sensitive input
fields, SUPOR needs to perform the UI analysis for at
least 1 layout and at most 190 layouts, while the median
number is 7 and the average number is 9.7. Though the
largest execution time required for this analysis is about 2

minutes. 96.3% of the apps require less than 10 seconds
to render all layouts in an app. The median analysis time
is 5.2 seconds and the average time is 5.7 seconds for one
app. Compared with the other parts of SUPOR, the UI
analysis is quite efficient, accounting for only 2.5% of the
total analysis time on average. Also, the UI sensitiveness
analysis, including the correlation score computation and
keyword matching, accounts for less than 1% of the to-
tal UI analysis time, while decompiling APK files and
rendering layouts take most of the time.

To detect sensitive user input disclosures, our evalua-
tion sets a maximum analysis time of 20 minutes. 18.1%
of the apps time out in our experiments but 73.7% require
less than 10 minutes. The apps with many entry points
tend to get stuck in taint analysis, and are more likely
to timeout. Scalability of static taint analysis is a hard
problem, but we are not worse than related work. The
timeout mechanism is enforced for the whole analysis,
but the system will wait for I/O to get partial results. In
practice, we can allow a larger maximum analysis time
so that more apps can be analyzed. Among the apps fin-
ished in time, the median analysis time is 1.9 minutes
and the average analysis time is 3.7 minutes.

The performance results show that SUPOR is a scal-
able solution that can statically analyze UIs of a massive
number of apps and detect sensitive user input disclo-
sures on these apps. Compared with existing static taint
analysis techniques, the static UI analysis introduced in
this work is highly efficient, and its performance over-
head is negligible.

5.3 Effectiveness of UI Sensitiveness Analysis

To evaluate the accuracy of the UI sensitiveness analysis,
we randomly select 40 apps and manually inspect the UIs
of these 40 apps to measure the accuracy of the UI sen-
sitiveness analysis.

First, we randomly select 20 apps reported without

sensitive input fields, and manually inspect these apps
to measure the false negatives of SUPOR. In these apps,
the largest number of layouts SUPOR renders is 5 and
the total number of layouts containing input fields is 39
(1.95 layouts per app). SUPOR successfully renders 38
layouts and identifies 57 input fields (2.85 input fields
per app). SUPOR fails to render 1 layout due to the
lack of necessary themes for a third-party library. By an-
alyzing these 57 input fields, we confirm that SUPOR
has only one false negative (FN), i.e., failing to mark one
input field as sensitive in the app com.strlabs.appdietas.
This input field requests users to enter their weights, be-
longing to the Health category in our keyword dataset.
However, the text of the descriptive text label for the in-
put field is “Peso de hoy”, which is “Today Weight” in
Spanish. Since our keyword dataset focuses on sensitive
keywords in English, SUPOR has a false negative. Such
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false negatives can be reduced by expanding our keyword
dataset to support more languages.

Second, we randomly select 20 apps reported with sen-
sitive input fields. Table 5 shows the detailed analysis re-
sults. Column “#Layouts ” counts the number of layouts
containing input fields in each app, while Column “#Lay-
outs with Sensitive Input Fields” presents the number
of layouts reported with sensitive input fields. Column
“#Input Fields” lists the total number of input fields in
each app and Column “#Reported Sensitive Input Fields”
gives the detailed information about how many input
fields are identified by checking the inputType at-
tribute, by matching the hint text, and by analyzing the
associated text labels. Sub-Column “Total” presents the
total number of sensitive input fields identified by SU-
POR in each app. Columns “FP” and “FN” show the
number of false positives and the number of false neg-
atives produced by SUPOR in classifying input fields.
Column “Duplicate ID” shows if an app contains any
duplicate widget ID for sensitive input fields. These du-
plicate IDs belong to either sensitive input fields (rep-
resented by ◦) or non-sensitive input fields (•). For all
the layouts in these 20 apps, SUPOR successfully ren-
ders the layouts except for App 18, which has 29 layouts
containing input fields but SUPOR renders only 17 lay-
outs. The reason is that Apktool fails to decompile the
app completely.

The results show that for these 20 apps, SUPOR iden-
tifies 149 sensitive input fields with 4 FPs and 3 FNs, and
thus the achieved true positives (TP) is 145. Combined
with the 20 apps identified without sensitive input fields
(0 FP and 1 FN), SUPOR achieves an average precision
of 97.3% (precision = T P

T P+FP
= 145/149) and an average

recall of 97.3% (recall = T P
T P+FN

= 145/(145+(1+3)).
We next describe the reasons for the FNs and the FPs.

SUPOR has two false negatives in App 1, in which the
text label “Answer” is not identified as a sensitive key-
word. But according to the context, it means “secu-
rity answer”, which should be sensitive. Although this
phrase is modeled as a sensitive phrase in our keyword
dataset, SUPOR cannot easily associate “Answer” with
the phrase, resulting in a false negative. In App 8, SU-
POR marks an input field as sensitive because the asso-
ciated text label containing the keyword “Height”. How-
ever, based on the context, the app actually asks the user
to enter the expected page height of a PDF file. Such
issues can be alleviated by employing context-sensitive
NLP analysis [19].

SUPOR also has two FPs in App 6 and App 8 due to
the inaccuracy of text label association. In App 6 shown
in Figure 9, the hint of the “Delivery Instructions” in-
put field does not contain sensitive keywords, and thus
SUPOR identifies the close text label for determining
its sensitiveness. However, SUPOR incorrectly asso-

Figure 9: False positive example in UI sensitiveness
analysis.

ciates a description label of “Email” to the “Delivery
Instructions” input field based on their close distances.
Since this description contains sensitive keywords such
as email, SUPOR considers the “Delivery Instructions”
input field as sensitive, causing a false positive. Finally,
SUPOR has both FPs and FNs for App 14, since its ar-
rangements of input fields and their text labels are not
accurately captured by our position-based weights that
give preferences for left and top positioned text labels.

To evaluate the effectiveness of resolving duplicate
IDs, We instrumented SUPOR to output detailed in-
formation when identifying the widget variables. We
did not find any case where SUPOR incorrectly asso-
ciates the widget variables with the input fields based on
the contextual IDs, but potentially SUPOR may have
inaccurate results due to infeasible sequences of entry
points that can be executed. We next present an exam-
ple to show how backward slicing help SUPOR distin-
guish duplicate widget IDs. App 17 has two layouts with
the same hierarchy. Layout A contains a sensitive in-
put field with the ID w1 while Layout B contains a non-
sensitive input field with the same ID w1. Both layouts
are loaded via LayoutInflater.inflate and then
findViewById is invoked separately to obtain the en-
closed input fields. Without the backward slicing, SU-
POR considers the input field with the ID w1 in the
Layout B as sensitive, which is a false positive. With
the backward slicing, SUPOR can distinguish the input
field with the ID w1 in Layout B with the input field with
the ID w1 in Layout A, and correctly filter out the non-
sensitive input field in Layout B.

5.4 Accuracy of Detecting Sensitive User Input Dis-

closures

In our experiments, 355 apps are reported with sensitive
user input disclosures. The reported apps belong to 25
out of the 30 categories in Google Play Store and 20 cat-
egories have at least 2 apps reported. We next report the
accuracy of detecting sensitive user input disclosures.

Figure 10 shows the number of true positives and the
number of false positives by taint source and sink cat-
egories. If an app is reported with multiple disclosure
flows and one of them is a false positive, the app is con-
sidered as a false positive. Through manually evaluating
the 104 apps reported cases from the first 6,000 analyzed
apps, we find false positives in 9 apps. Therefore, the
overall false positive rate is about 8.7%, i.e., the accu-
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Table 5: UI analysis details for 20 randomly chosen apps.

App #Layouts #Input #Layouts with #Reported Sensitive Input Fields FP FN Duplicate
ID Fields Sensitive Input Fields Password Hint Label Total ID

1 8 18 4 6 0 3 9 2 ◦

2 37 77 2 0 0 8 8
3 3 3 1 0 1 0 1
4 4 9 3 0 0 6 6 ◦

5 5 7 1 1 0 0 1
6 17 52 10 6 12 12 30 1 ◦

7 4 5 2 0 0 3 3
8 15 22 9 8 3 2 13 1
9 3 7 1 1 1 0 2
10 7 16 1 0 0 1 1
11 5 6 1 1 1 0 2
12 17 33 8 8 9 0 17 ◦ •

13 26 60 10 0 0 12 12 ◦ •

14 2 8 2 1 0 4 5 2 1
15 14 26 5 2 3 0 5 ◦ •

16 4 7 1 1 0 0 1
17 4 8 3 2 3 0 5 •

18 29 25 4 4 0 6 10 ◦

19 24 37 8 9 6 1 16 ◦

20 1 2 1 0 2 0 2

Total 229 428 77 50 41 58 149 4 3
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Figure 10: True positives and false positives by
source/sink categories for the reported apps.

racy of privacy disclosure detection is 91.3%. We in-
vestigated the false positives and found that these false
positives were mostly resulted from the limitations of the
underlying taint analysis framework, such as the lack of
accurate modeling of arrays.

5.5 Case Studies

To improve the community’s awareness and understand-
ing of sensitive user input disclosures, we conducted
cases studies on four selected apps from the source cat-
egories SSN, PwdLike, Credit Card, and Health. These
case studies present interesting facts of sensitive user in-

put disclosures, and also demonstrate the usefulness of
SUPOR. We also inform the developers of the apps men-
tioned in this section about the detected disclosures.

com.yes123.mobile is an app for job hunting. The
users are required to register with their national ID and a
password to use the service. When the users input the ID
and password, and then click log in2, the app sends both
their national IDs and passwords via Internet without any
protection (e.g., hashing or through HTTPS channel).
Since national ID is quite sensitive (similar as Social Se-
curity Number), such limited protection in transmission
may lead to serious privacy disclosure problems.

The second example app (craigs.pro.plus) shows a le-
gitimate disclosure that uses HTTPS connections to send
user sensitive inputs to its server for authentication. Even
though the password itself is not encoded (e.g., hashing),
we believe HTTPS connections provide a better protec-
tion layer to resist the disclosures during communica-
tions. Also we find that popular apps developed by en-
terprise companies are more likely to adopt HTTPS, pro-
viding better protection for their users.

To better understand whether sensitive user inputs are
properly protected, we further inspect 104 apps, of which
44 apps send sensitive user inputs via network. Among
these 44 apps, only 10 of them adopt HTTPS connec-
tions, while the majority of apps transmit sensitive user
inputs in plain text via HTTP connections. Such study

2The UI is shown in Figure 12 in Appendix B.1.
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Figure 11: Case study: credit card information disclosure
example.

results indicate that most developers are still unaware of
the risks posed by sensitive user input disclosures, and
more efforts should be devoted to provide more protec-
tions on sensitive user inputs.

Our last example app (com.nitrogen.android) dis-
closes credit card information, a critical financial infor-
mation provided by the users. Figure 11 shows the ren-
dered UI of the app. The three input fields record credit
card number, credit card security number, and the card
holder’s name. Because these fields are not decorated
with textPassword input type and they do not con-
tain any hints, SUPOR uses the UI sensitiveness analysis
to compute correlation scores for each text label. As we
can see from the UI, the text label “Credit Card Num-
ber” and the text label “Credit Card Security Number”
are equally close to the first input field. As our algo-
rithm considers weights based on the relative positions
between text labels and input fields, SUPOR correctly
associates the corresponding text labels for these three
input fields, and the taint analysis identifies sensitive user
input disclosures for all these three input fields to log-
ging. SUPOR also identifies apps that disclose personal
health information to logging, and the example app is
shown in Appendix B.2.

Although Google tries to get rid of some of the known
sinks that contribute most of the public leaks by releasing
new Android versions, many people globally may still
continue using older Android releases for a very long
time (about 14.2% of Android phones globally using ver-
sions older than Jelly Bean [2]). If malware accesses
the logs on these devices, all the credit card information
can be exploited to malicious adversaries. Thus, certain
level of protection is necessary for older versions of apps.
Also, SUPOR finds that some apps actually sanitize the
sensitive user inputs (e.g., hashing) before these inputs
are disclosed in public places on the phone, indicating
that a portion of developers do pay attention to protect-
ing sensitive user input disclosures on the phone.

6 Discussion

SUPOR is designed as an effective and scalable solu-
tion to screening a large number of apps for sensitive

user inputs. In this work, we have demonstrated that
SUPOR can be combined with static taint analysis to
automatically detect potential sensitive user input disclo-
sures. Such analysis can be directly employed by app
markets to raise warnings, or by developers to verify
whether their apps accidentally disclose sensitive user in-
puts. Also, SUPOR can be paired with dynamic taint
analysis to alert users before the sensitive user inputs es-
cape from the phones.

SUPOR focuses on input fields, a major type of UI
widgets to collect user inputs. Such UI widgets record
what user type and contain high entropy, unlike yes/no
buttons which contain low entropy. It is quite straight-
forward to extend our current approach to handle more
diverse widgets.

SUPOR chooses the light-weight keyword-based
technique to determine the sensitiveness of input fields
since the texts contained in the associated text labels are
usually short and straightforward to understand. Our
evaluations show that in general these keywords are
highly effective in determining the sensitiveness of in-
put fields. Certain keywords may produce false positives
since these keywords have different meanings under dif-
ferent contexts. To alleviate such issues, we may lever-
age more advanced NLP techniques that consider con-
texts [19].

7 Related Work

Many great research works [6, 8–10, 12, 14, 16, 23, 24,
34, 38] focus on privacy leakage problems on predefined
sensitive data sources on the phone. SUPOR identifies
sensitive user inputs, and may enable most of the ex-
isting research on privacy studies to be applied to sen-
sitive user inputs. As a result, our research compli-
ments the existing works. FlowDroid [6] also employs
a limited form of sensitive input fields—password fields.
Compared with FlowDroid, we leverage static UI ren-
dering and NLP techniques to identify different cate-
gories of sensitive input fields in an extensible manner.
Susi [33] employs a machine learning approach to de-
tect pre-defined source/sinks from Android Framework.
In contrast, SUPOR focus on a totally different type of
sensitive sources–user inputs through GUI.

Moreover, a few approaches are designed for con-
trolling the known privacy leaks. AppFence [17] em-
ploys fake data or network blocking to protect privacy
leaks to Internet with user supplied policies. Nadkarni et

al.provide new OS mechanisms for proper information
sharing cross apps [28].

NLP techniques have been used to study app de-
scriptions [13, 30, 31]. WHYPER [30] and AutoCog
[31] leverages NLP techniques to understand whether
the application descriptions reflect the permission usage.
CHABADA [13] also applies topic modelling, an NLP
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technique to detecting malicious behaviors of Android
apps. It generates clusters according to the topic, which
consists of a cluster of words that frequently occur to-
gether. Then, it tries to detect the outliers as malicious
behaviors. CHABADA does not focus on detecting pri-
vacy leaks. On the other hand, SUPOR leverages NLP
techniques to identify sensitive keywords and further use
those keywords to classify the descriptive text labels and
the associated input fields.

Furthermore, there are a few important related works
using UI related information to detect different types of
vulnerabilities and attacks. AsDroid [20] checks UI text
to detect the contradiction between expected behavior in-
ferred from the UI and the program behavior represented
by APIs. Chen et al.study the GUI spoofing vulnerabil-
ities in IE browser [7]. Mulliner et al.discover GUI ele-
ment misuse (GEM), a type of GUI related access control
violation vulnerabilities and design GEM Miner to auto-
matically detect GEMs [27]. SUPOR focuses on sensi-
tive user input identification which is different from the
problems studied by these existing works.

The closest related work is UIPicker [29], which also
focuses on sensitive user input identification. UIPicker
uses supervised learning to train a classifier based on the
features extracted from the texts and the layout descrip-
tions of the UI elements. It also considers the texts of the
sibling elements in the layout file. Unlike UIPicker that
uses sibling elements in the layout file as the description
text for a UI widget, which could easily include unre-
lated texts as features, SUPOR selects only the text la-
bels that are physically close to input fields in the screen,
mimicking how users look at the UI, and uses the texts
in the text labels to determine the sensitiveness of the
input fields. Also, their techniques in extracting privacy-
related texts could complement our NLP techniques to
further improve our keyword dataset construction.

In the software engineering domain, there are quite a
few efforts on GUI reverse engineering [25, 26, 32, 35]
for GUI testing. GUITAR is a well-known framework
for general GUI testing, and GUI ripper [26], a com-
ponent of GUITAR targets general desktop applications,
uses dynamic analysis to extract GUI related informa-
tion and requires human intervention when the tools can-
not fill in proper information in the applications. In [25]
and [32], two different approaches have been proposed to
convert the hard-coded GUI layout to model-based lay-
out (such as XML/HTML layout). GUISurfer leverages
source code to derive the relationships between different
given UI widgets. In contract, SUPOR focuses on mo-
bile apps and in particular Android apps, and leverages
the facility from existing rapid UI development kits to
identify and render UI widgets statically.

8 Conclusions

In this paper, we study the possibility of scalably detect-
ing sensitive user inputs, an important yet mostly ne-
glected sensitive source in mobile apps. We leverage
the rapid UI development kits of modern mobile OSes
to detect sensitive input fields and correlate these input
fields to the app code, enabling various privacy analyses
on sensitive user inputs. We design and implement SU-
POR, a new static analysis tool that automatically iden-
tifies sensitive input fields by analyzing both input field
attributes and surrounding descriptive text labels through
static UI parsing and rendering. Leveraging NLP tech-
niques, we build mobile app specific sensitive word vo-
cabularies that can be used to determine the sensitiveness
of given texts. To enable various privacy analyses on sen-
sitive user inputs, we further propose a context-sensitive
approach to associate the input fields with corresponding
variables in the app code.

To demonstrate the usefulness of SUPOR, we build a
privacy disclosure discovery system by combining SU-
POR with static taint analysis to analyze the sensitive in-
formation of the variables that store the user inputs from
the identified sensitive input fields. We apply the system
to 16,000 popular Android apps, and SUPOR achieves
an average precision of 97.3% and also an average re-
call of 97.3% in detecting sensitive user inputs. SUPOR
finds 355 apps with privacy disclosures and the false pos-
itive rate is 8.7%. We also demonstrate interesting real-
world cases related to national ID, username/password,
credit card and health information.
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Appendix

A Taint Analysis

The details of sinks and customizations of the taint
analysi engine are shown in this section.
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A.1 Sink Dataset

The sink dataset includes five categories of sink
APIs, among which two categories are SMS send
(e.g.,SmsManager.sendTextMessage()) and
Network (e.g.,HttpClient.execute()). The
other three are related to local storage: log-
ging (e.g.,Log.d()), content provider writes
(e.g.,ContentResolver.insert()), and local
file writes (e.g.,OutputStream.write()). Totally
there are 236 APIs.

A.2 Customizations of Taint Analysis

Our taint analysis engine constraints the taint prop-
agation to only variables and method-call returns of
String type. Therefore, method calls that return prim-
itive types (e.g.,int) are ignored. There are two major
reasons for making this tradeoff. The first is that the sen-
sitive information categories we focus on are passwords,
user names, emails, and so on, and these are usually not
numeric values. The second is that empirically we found
a quite number of false positives related to flows of prim-
itive types due to the incompleteness of API models for
the Android framework. This observation-based refine-
ment suppresses many false positives. For example, one
false warning we observed is that the length of a tainted
string (tainted.length()) is logged, and tracking
such length causes too many false positives afterwards.
Since such flow does not disclose significant information
of the user inputs, removing the tracking of such primi-
tive values reduces the sources to track and improves the
precision of the tracking.

To further suppress false warnings, we model data
structures of key-value pairs, such as Bundle and
BasicNameValuePair. Bundle is widely used
for storing an activity’s previously frozen state, and
BasicNameValuePair is usually used to encode
name-value pairs for HTTP URL parameters or other
web transmission parameters, such as JSON. For each
detected disclosure flow, we record the keys when the

analysis finds method calls that insert values into the data
structures, e.g.,bundle.put("key1", tainted).
For any subsequent method call that retrieves values
from the data structures, e.g.,bundle.get("key2"),
we compare the key for retrieving values key2 with the
recorded keys. If no matches are found, we filter out the
disclosure flow.

B Example Apps in Case Studies

B.1 Example App for Disclosing National IDs

The UI for the first example app described in Section 5.5,
com.yes123.mobile, is shown in Figure 12.

Figure 13: Case study: health information disclosure.

B.2 Example App for Disclosing Health Informa-

tion

Figure 13 shows the rendered UI of the layout dpacacl

in app com.canofsleep.wwdiary, which belongs to the
category HEALTH && FITNESS. This app discloses
personal health information through the user inputs col-
lected from the UI. As we can see, even though all input
fields on the UI hold hint texts, these texts do not contain
any sensitive keywords. Therefore, SUPOR still needs
to identify the best descriptive text label for each input
field. Based on the UI sensitiveness analysis, SUPOR
successfully marks the first three input fields as sensi-
tive, i.e., the input fields that accept weight, height and
age. But based on the taint analysis, only the first two in-
put fields are detected with disclosure flows to logging.
Similar to financial information, such health information
about users’ wellness is also very sensitive to the users.
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Abstract

Identifying sensitive user inputs is a prerequisite for pri-

vacy protection. When it comes to today’s program anal-

ysis systems, however, only those data that go through

well-defined system APIs can be automatically labelled.

In our research, we show that this conventional approach

is far from adequate, as most sensitive inputs are actu-

ally entered by the user at an app’s runtime: in our re-

search, we inspect 17, 425 top apps from Google Play,

and find that 35.46% of them involve sensitive user in-

puts. Manually marking them involves a lot of effort, im-

peding a large-scale, automated analysis of apps for po-

tential information leaks. To address this important issue,

we present UIPicker, an adaptable framework for auto-

matic identification of sensitive user inputs. UIPicker is

designed to detect the semantic information within the

application layout resources and program code, and fur-

ther analyze it for the locations where security-critical

information may show up. This approach can support a

variety of existing security analysis on mobile apps. We

further develop a runtime protection mechanism on top

of the technique, which helps the user make informed

decisions when her sensitive data is about to leave the

device in an unexpected way. We evaluate our approach

over 200 randomly selected popular apps on Google-

Play. UIPicker is able to accurately label sensitive user

inputs most of the time, with 93.6% precision and 90.1%

recall.

1 Introduction

Protecting the privacy of user data within mobile appli-

cations (apps for short) has always been at the spotlight

of mobile security research. Already a variety of pro-

gram analysis techniques have been developed to evalu-

ate apps for potential information leaks, either dynami-

cally [19, 23, 41] or statically [15, 26]. Access control

mechanisms [27, 22, 33, 17] have also been proposed to

enforce fine-grained security policies on the way that pri-

vate user data can be handled on a mobile system. These

techniques are further employed by mobile app market-

places like Google Play (e.g., Bouncer [7]) to detect the

apps that conduct unauthorized collection of sensitive

user data.

Identifying sensitive user inputs. Critical to those pri-

vacy protection mechanisms is the labeling of sensitive

user data. Some of the data are provided by the operating

system (OS), e.g., the GPS locations that can be acquired

through system calls like getLastKnownLocation().

Protection of such information, which we call System

Centric Privacy data, can leverage relevant data-access

APIs to set the security tags for the data. More compli-

cated here is the content the user enters to a mobile app

through its user interface (UI), such as credit-card infor-

mation, username, password, etc. Safeguarding this type

of information, called User-Input Privacy (UIP) data in

this paper, requires understanding its semantics within

the app, before its locations can be determined, which

cannot be done automatically using existing techniques.

Just like the system-controlled user data (e.g., GPS),

the private content entered through the UI is equally vul-

nerable to a variety of information-leak threats. It has

been reported [5, 10, 4, 6] that adversaries can steal sen-

sitive user inputs through exploiting the weaknesses in-

side existing protection mechanisms. For example, fraud

banking apps to steal user’s financial credentials with

very similarity UIs. Besides, less security-savvy de-

velopers often inadvertently disclose sensitive user data,

for example, transmitting plaintext content across public

networks, which subjects the apps to eavesdropping at-

tacks. Recent work further shows that side channels [18]

and content-pollution vulnerabilities [42] can be lever-

aged to steal sensitive user inputs as well. In our re-

search, we found that among 17,425 top Google-Play

apps, 35.46% require users to enter their confidential in-

formation.

Given its importance, UIP data urgently needs protec-
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tion. However, its technical solution is by no means triv-

ial. Unlike system-managed user data, which can be eas-

ily identified from a few API functions, sensitive user

inputs cannot be found without interpreting the context

and semantics of UIs. A straightforward approach is to

mark all the inputs as sensitive [15], which is clearly an

overkill and will cause a large number of false positives.

Prior approaches [43, 15, 36, 38, 40] typically rely on

users, developers or app analysts to manually specify the

contents within apps that need to be protected. This re-

quires intensive human intervention and does not work

when it comes to a large-scale analysis of apps’ privacy

risks.

To protect sensitive user inputs against both deliberate

and inadvertent exposures, it is important to automati-

cally recognize the private content the user enters into

mobile apps. This is challenging due to the lack of fixed

structures for such content, which cannot be easily re-

covered without analyzing its semantics.

Our work. To address this issue, we propose our re-

search UIPicker, a novel framework for automatic, large-

scale User-Input Privacy identification within Android

apps. Our approach leverages the observation that most

privacy-related UI elements are well-described in lay-

out resource files or annotated by relevant keywords on

UI screens. These UI elements are automatically recov-

ered in our research with a novel combination of several

natural language processing, machine learning and pro-

gram analysis techniques. More specifically, UIPicker

first collects a training corpus of privacy-related con-

tents, according to a set of keywords and auto-labelled

data. Then, it utilizes the content to train a classifier that

identifies sensitive user inputs from an app’s layout re-

sources. It also performs a static analysis on the app’s

code to locate the elements that indeed accept user in-

puts, thus filtering out those that actually do not contain

private user data, even though apparently they are also

associated with certain sensitive keywords, e.g., a dialog

box explaining how a strong password should be con-

structed.

Based on UIPicker, we further develop a runtime pri-

vacy protection mechanism that warns users whenever

sensitive data leave the device. Using the security labels

set by UIPicker, our system can inform users of what

kind of information is about to be sent out insecurely

from the device. This enables the user to decide whether

to stop the transmission. UIPicker can be used by the

OS vendors or users to protect sensitive user data in the

presence of untrusted or vulnerable apps. It can be easily

deployed to support any existing static and dynamic taint

analysis tools as well as access control frameworks for

automatic labeling of private user information.

To the best of our knowledge, UIPicker is the first ap-

proach to help detect UIP data in a large scale. Although

the prototype of UIPicker is implemented for Android,

the idea can be applied to other platforms as well. We im-

plemented UIPicker based on FlowDroid [15] and built

our identification model using 17,425 popular Google

Play apps. Our evaluation of UIPicker over 200 ran-

domly selected popular apps shows that it achieves a high

precision (93.6%) and recall (90.1%).

Contributions. In summary, this paper makes the fol-

lowing contributions.

• We measure the distribution of UIP data based on

17,425 classified top free applications from differ-

ent categories. The results show that in some cate-

gories, more than half of applications contain UIP

data. Further protection of these UIP data is in ur-

gent need.

• We propose UIPicker, a series of techniques for au-

tomatically identifying UIP data in large scale. Lots

of existing tools can benefit from UIPicker for bet-

ter privacy recognition in mobile applications.

• Based on UIPicker, we propose a runtime security

enhancement mechanism for UIP data protection,

which helps user to make informed decisions when

such data prepare to leave the device with insecure

transmission.

• We conduct a series of evaluation to show the effec-

tiveness and precision of UIPicker.

Roadmap. The rest of this paper is organized as follows.

Section 2 gives the motivation, challenges and identifica-

tion scope of UIP data, then introduces some background

knowledge about Android layout resources. Section 3

gives an overview of UIPicker and illustrates the key

techniques applied for identifying UIP data. Section 4

describes the identification approach step by step. Sec-

tion 5 describes the runtime security enhancement frame-

work based on UIPicker’s identification results. Sec-

tion 6 gives some implementation details about UIPicker.

Section 7 gives evaluation and Section 8 discusses the

limitation of UIPicker. Section 9 describes related work,

and Section 10 concludes this work.

2 Problem Statement

In this section, we first provide a motivating example

of users’ sensitive input in two UI screens, then we in-

vestigate challenges in identifying such data and clarify

our identification scope of UIP data. We also give some

background knowledge about Android layout resources

for further usage.

2.1 Motivating Example

Figure 1 shows two UI screens that contain some criti-

cal sensitive information in the Amazon Online Store [1]

2
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Figure 1: Examples of User-Input Privacy (UIP) Data

app. In Figure 1(a), the user is required to input his/her

detailed address for delivering products. Figure 1(b) re-

quires user to input the credit card credential to accom-

plish the payment process. Many apps in mobile plat-

form would require such sensitive data for various func-

tional purposes. Most of such data are personal informa-

tion that users are unwilling to expose insecurely to the

public.

Although UIP data can be highly security-sensitive

and once improperly exposed, could have serious con-

sequences, little has been done so far to identify them at

a large scale. The key issue here is how to automatically

differentiate sensitive user inputs from other inputs. In

our research, we check the top 350 free apps on Google

Play, and find that on average each of them contains 11

fields across 6 UI screens to accept user inputs; however

many of these fields do not accommodate any sensitive

data. Static analysis tools like FlowDroid [15] only pro-

vide options to taint all user inputs as sensitive sources

(e.g. Element.getText()). Analyzing in this way would

get fairly poor results because sensitive user inputs we

focus are mixed in lots of other sources we do not care.

Such problem also exists in runtime protection on users’

sensitive inputs. For example, in order to prevent sensi-

tive user inputs insecurely leaking out, an ideal solution

would be warning users when such data leave the device.

Alerting all user inputs in this way would greatly annoy

the users and reduce the usability because many normal

inputs do not need to be treated as sensitive data.

2.2 Challenges

UIP data can be easily recognized by human. How-

ever, it is quite challenging for the machine to auto-

matically identify such data with existing approaches in

large-scale.

First, UIP data can not be identified through runtime

monitoring. As these sensitive data are highly unstruc-

tured, they can not be simply matched by regex expres-

sions when users input them. Besides, like any normal

inputs, privacy-related inputs are sparsely distributed in

various layouts in a single app, and most UI screens con-

tain such private data require login or complex trigger

conditions, which makes it very difficult for automatic

testing tools like [8, 34] to traverse such UI screens ex-

haustively without manual intervention.

Identifying UIP data by traditional static analysis ap-

proaches is also impractical. In program code’s seman-

tic, sensitive input does not have explicit difference com-

pared to normal input. Specifically, all of such input data

can be accepted by apps, then transmitted out or saved in

local storage in the same way, which makes it difficult to

distinguish them through static analysis approaches.

UIPicker identifies UIP data in apps from another

perspective, it analyzes texts describing sensitive inputs

other than data themselves. This is because texts in UI

screens usually contain semantic information that de-

scribes the sensitive input. Besides, layout description

texts in layout files also contain rich semantic informa-

tion to reveal what the specific element is intended to

be in the UI screen by developers. UIPicker is primar-

ily designed to help identify UIP data in benign apps.

The identification results can be further used for secu-

rity analysis or protection of users’ sensitive data. Note

that in this work we do not deal with malicious apps that

intentionally evade our analysis, e.g., malware that con-

structs its layout dynamically or uses pictures as labels

to guide users to input their sensitive data.

2.3 Identification Scope

UIP data could be any piece of data that users consider

to be sensitive from inputs. In the current version of

UIPicker, we consider the following 3 categories as they

cover most existing UIP data in current apps:

• Account Credentials and User Profiles: Informa-

tion that reveals users’ personal characters when

they login or register, which includes but not limited

to data such as username, user’s true name, pass-

word, email address, phone number, birth date.

• Location: Plain texts that represent address infor-

mation related to users. Different from system de-

rived location (latitude and longitude), what we fo-

cus here is location data from users’ input, e.g., the

delivering address in shopping apps or the billing

address for credit cards.

• Financial: Information related to users’ financial

activities, e.g., credit card number, expire date and

security code.

The objective of UIPicker is to automatically iden-

tify such data from app resources in large-scale. Note

3
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that UIP data might not be limited to items listed here.

UIPicker is capable of expanding its identification scope

easily, as further discussed in Section 4.2.

2.4 Android Layout Background

Here we give some background knowledge about An-

droid layout resources which UIPicker will use in our

identification approach.

Figure 2: Android Layout Description Resources

Layout resources define what will be drawn in the UI

screen(s) of the app. In Android, a User Interface is made

up of some basic elements (e.g., TextView, EditText, But-

ton) to display information or receive input. Android

mainly uses XML to construct app layouts, thus devel-

opers can quickly design UI layouts and screen elements

they wish to contain, with a series of elements such as

buttons, labels, or input fields. Each element has vari-

ous attributes or parameters which are made up of name-

value pairs to provide additional information about the

element.

Android layout resources are distributed in different

folders in the app package. Layout files for describ-

ing UI screens are located in folder res/layout. The

unique hex digit IDs for identifying each element in lay-

out files are in res/value/public.xml and texts showed in

UI screens to users are in res/values/strings.xml. Re-

sources in res/values/ are referenced by texts with spe-

cific syntax (e.g. @String, @id) in the layout files in

res/layout for ease of development and resource manage-

ment.

Figure 2 shows some layout resources used for

constructing the UI in Figure 1(b). The entry is a

layout file named add credit card.xml. It contains two

EditText elements to accept the credit card number and

the card holder’s name, three Dropdown list elements

(named as spinner in Android) to let user select card

type and expiration date. In the EditText for requesting

the card number, it uses @id/opl credit card number

to uniquely identify this element for the app. Syn-

tax like android:inputType=number suggests that

this EditText only accepts digital input. There is

also a TextView before EditText with attribute an-

droid:text=@string/opl new payment credit card number,

which means the content showed in this label will be

string referenced to opl new payment credit card -

number in /res/values/stings.xml.

3 System Overview

In this section, we give an overview of UIPicker and de-

scribe the key techniques applied in our identification

framework.

Overall Architecture. Figure 3 shows the overall archi-

tecture of UIPicker. UIPicker is made up of four com-

ponents to identify layout elements which contain UIP

data step by step. The major components can be divided

into two phases: model-training and identification. In

the model-training phase (Stage 1,2,3), UIPicker takes a

set of apps to train a classifier for identifying elements

contain UIP data from their textual semantics. In the

identification Phase (Stage 1,3,4), UIPicker uses both the

trained classifier (Stage 3) and program behavior (Stage

4) to identify UIP data elements.

Pre-Processing. In the Pre-Processing module, UIPicker

extracts the selected layout resource texts and reorga-

nizes them through natural language processing (NLP)

for further usage. This step includes word splitting, re-

dundant content removal and stemming for texts. Pre-

Process can greatly reduce the format variations of texts

in layout resources caused by developers’ different cod-

ing practice.

Privacy-related Texts Analysis. For identifying UIP

data from layout resources, the first challenge is how to

get privacy-related texts. One can easily come up with a

small set of words about UIP data, but it is very difficult

to get a complete dictionary to cover all such semantics.

In our case, leveraging an English dictionary like Word-

Net [14] for obtaining semantically related words is lim-

ited in the domain of our goals. Many words that are

semantically related in privacy may not be semantically

related in English, and many words that are semantically

related in English may not appear in layout resource texts

as well. For example, both “signup” and “register” repre-

sent to create a new account in an app’s login screen, but

4
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Figure 3: System Overview of UIPicker

they can not be correlated from a dictionary like Word-

Net.

Besides, UIP data in apps are often described with a

single word or very short phrases (e.g. “password” or

“input password”) in layout resources. Due to the lack

of complete sentences describing UIP data, natural lan-

guage processing techniques [35] like dependency rela-

tion pattern extraction is not suitable in our scenario.

UIPicker expands UIP semantic texts with a few

privacy-related seeds based on a specific feature extrac-

tion approach. It first automatically labels a subset of

layouts which could contain UIP data by heuristic rules,

then extracts privacy-related semantics from such layouts

by applying clustering algorithms. It helps us to auto-

matically extract privacy-related texts with little manual

effort. As a result, these inferred texts can be used as

features for identifying whether an element is privacy-

related or not in the next step.

UIP Data Element Identification. Based on the given

set of privacy-related textual semantics from the previ-

ous step, to what extent an element contains privacy-

related texts can be identified as sensitive? As previ-

ous work [37] showed, purely relying on keyword-based

search would result in a large number of false positives.

For example, sensitive item “username” could always be

split into “user” and “name” as two words in apps, and

none of the single word can represent “username”. Be-

sides, certain words like “address” have a confounding

meaning. For instance, such phrase showed in a layout

screen “address such problem” does not refer to location

information.

In this step, UIPicker uses a supervised machine learn-

ing approach to train a classifier based on a set of se-

mantic features generated in the previous stage. Besides,

it fully takes the element’s context in the whole layout

into consideration for deciding whether the element is

privacy-related or not. With this trained model, for any

given layout element with description texts, UIPicker can

tell whether it is related to UIP from its textual semantics.

Behavior Based Result Filtering. Besides identifying

elements that contain UIP data from their textual seman-

tics, we also need to check whether a privacy-related el-

ement is actually accepting user input. In other words,

we need to distinguish user inputs from other static ele-

ments such as buttons or labels for information illustra-

tion in layout screens. Although Android defines Edit-

Text for accepting user input, developers can design any

type of element by themselves (e.g. customized input

field named as com.abc.InputBox). Besides, apps also re-

ceive user inputs in an implicit way through other system

defined elements without typing the keyboard by users.

For example, in Figure 1(b), the expire date of credit card

is acquired by selecting digits from the Spinner element.

We observe that for each privacy-related element iden-

tified by UIPicker in the previous stage, the data should

be acquired by the app with user’s consent if it is actually

accepting user input. For example, the user clicks a but-

ton “OK” to submit data he/she inputs. When reflected in

the program code, the user input data should be acquired

by the system under certain event trigger functions. We

use static code analysis to check whether an arbitrary el-

ement can be matched with such behavior, thus filter out

irrelevant elements we do not expect.

4 IDENTIFICATION APPROACH

In this section, we explain the details of four stages in

UIPicker’s identification approach.

4.1 Stage 1: Pre-Processing

Resource Extraction. We first decode the Android APK

package with apktool [2] for extracting related resource

files we need. Our main interest is in UI-related content,

thus for each app, we extract UI Texts and Layout De-

scriptions from its decompiled layout files.

5
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Layout Resource Sample

UI Texts Add a new credit card, Credit Card Number

Expiration Date, Card Type, Cardholder’s name

@id/opl credit card number

Layout Descrioptions @string/opl new credit card expiration date month

@string/opl new credit card save buton

Table 1: Selected resources of Amazon Online’s “Add

Credit Card” screen

• UI Texts. UI texts are texts showed to users in the

layout screen. In Android, most of such texts are

located in /res/values/strings.xml and referenced by

syntax @String/[UI text identifier] in element’s at-

tribute. Some UI texts are directly written in lay-

out files as attribute values of UI elements, e.g., an-

droid:hint=‘Please input your home address here’.

• Layout Descriptions. Layout Descriptions are

texts only showed in layout files located in

/res/layout/. For these texts, we consider all strings

starting with syntax @id and @String to reflect

what the element is intended to be from their tex-

tual semantics.

The main difference between UI texts and layout de-

scriptions is that UI texts are purely made up of natu-

ral language while layout descriptions are mainly name

identifiers (both formatted and unformatted) with seman-

tic information. As developers have different naming

behaviors when constructing UIs, in most cases, seman-

tic information in layout descriptions is more ambiguous

than that in UI texts.

We extract these groups of resources for further analy-

sis because these selected targets can mostly reflect the

actual content of the app’s layout. For example, the

selected resources about Amazon’s “Add Credit Card”

screen in Figure 1(b) are showed in Table 1.

Word Splitting. Although most of layout descrip-

tions are meaningful identifiers for ease of read-

ing and program development, normally they are

delimiter-separated words or letter-case separated words.

For example, “phone number” can be described as

“phone number” or “PhoneNumber”. Thus we split such

strings into separated word sets. Besides, some of layout

descriptions are concatenated by multiple words without

any separated characters. For these data, we split them

out by iteratively matching the maximum length word in

WordNet [14] until the string cannot be split any more.

For example, string “confirmpasswordfield” will be split

into “confirm”, “password”, and “field”.

Redundant Content Removal. For all UI texts we ex-

tracted, we remove non-English strings through encod-

ing analysis. For each word, we also remove non-text

characters from all extracted resources such as digits,

punctuation. After this, we remove stop words. Stop

Figure 4: After Pre-Processing, texts in left are trans-

formed into formats in right

words are some of the most common words like “the”,

“is”, “have”. We remove such contents because they can

not provide meaningful help in our analysis process.

Stemming. Stemming is the process for reducing in-

flected (or sometimes derived) words to their stem, base

or root form. Stemming is essential to make words such

as “changed”, “changing” all match to the single com-

mon root “change”. Stemming can greatly improve the

results of later identification processes since they reduce

the number of words in our resources. We implement

Porter Stemmer [11] with python NLTK module [9].

Figure 4 shows part of texts before and after pre-

processing for Amazon’s “Add credit card” layout file.

As we can see, all texts concatenated by ‘ ’ are split into

separated words, “edthomephonecontact” is split into

“edt”, “home”, “phone” and “contact” instead. We also

transform words like “forgot”, “forget” into a single uni-

formed format as “forget”.

4.2 Stage 2: Privacy-related Texts Analysis

In this stage, we use Chi-Square test [39] to extract

privacy-related texts from a subset of specific layouts.

The intuition here is that privacy-related words prefer to

be correlated in specific UIs such as the login, registra-

tion or settings page of the app. If some words appear

together in these UI, they are likely to have semantic rel-

evance to users’ sensitive information. Thus, we use such

layouts to extract privacy-related texts in contrast to other

normal layouts.

Chi-Square Based Clustering. Chi-Square (Chi2) test

is a statistical test that is widely used to determine

whether the expected distributions of categorical vari-

ables significantly differ from those observed. Specifi-

cally in our case, it is leveraged to test whether a specific

term on UI screens is privacy-related or not according to

its occurrences in two opposite datasets (privacy-related

or non privacy-related).

Here we choose UI texts rather than layout descrip-

tions to generate privacy-related texts due to the follow-

6
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Figure 5: For each word assigned as the initial seed,

UIPicker calculates its Chi-Square test for each word in

positive samples and appends part of its top results into

the privacy-related texts feature set.

ing two reasons: First, layout descriptions are not well

structured as the naming behaviors vary very differently

between apps (or developers), while UI texts are in a rel-

atively uniformed format, thus making it easy to extract

privacy-related texts from them. For example, a layout

requesting a user’s password must contain term “pass-

word” in the UI screen, while in layout descriptions it

could be text like “pwd”, “passwd”, “pass”. Second, as

layout descriptions aim for describing layout elements,

it may contain too much noisy texts like “button”, “text”

which would bring negative impact to the privacy-related

text extraction.

Figure 5 shows how UIPicker generates privacy-

related texts. First, we give a few words that can ex-

plicitly represent users’ sensitive input we focus (e.g.,

email, location, credit card), and we call them initial

seeds. Each layout sample is made up of a set of UI texts

in its layout screen. Then, the initial seeds will be used

to identify whether a specific layout sample is privacy-

related or not based on the following two patterns:

• Logical relation between sensitive noun phrase (ini-

tial seed) and verb phrase, e.g., the pair (save, pass-

word).

• Logical relation between possessive (mainly word

“your”) and sensitive noun phrase (initial seed),

e.g., the pair (your, username).

As such patterns strongly imply actions that the app

is requesting the user’s sensitive input, for those layout

samples satisfying one of these two patterns, we label

them as privacy-related (positive samples). On the other

hand, for layout samples that do not contain any of texts

in the pattern (both noun phrase and verb, possessive

phase), we label them as negative samples. Note that we

do not label those layouts only containing initial seeds as

positive or negative because a single word is insufficient

for us to identify whether the layout is privacy-related or

not.

Based on the two classified sample sets, for all distinct

words appearing in positive samples, we use Chi-Square

test and rank their results in a descending order. As a re-

sult, texts with higher Chi-Square scores mean they are

more representative as privacy-related, which can easily

be picked up from the top-ranked words in the test re-

sults.

The following example explains our analysis approach

for finding financial-related textual semantics. We set

“credit card” as an initial seed, then the layout shown

in Figure 1(b) will be identified as a positive sample be-

cause both “credit card” and verb phrase “add” are in-

cluded in this layout. Thus in our dataset, other similar

layouts will be labeled as positive if it requires users to

input credit card information as well. As a result, the

positive sample will include more texts such as “expire”,

“date”, “year”, “month”, which are also related to finan-

cial credentials and ranked in top of the Chi-Square test

results.

Noisy Text Removal. Although Chi-Square test aims

to cluster privacy-related texts, it still unavoidably in-

troduces some irrelevant texts into its clustering results.

This is mainly because not all texts in privacy-related lay-

out are necessarily related to privacy. In order to generate

a highly precise cluster of privacy-related texts to elim-

inate false positives in the UIP data element identifica-

tion process, we introduce a little manual effort here for

filtering out such irrelevant texts from the clustering re-

sult. Since Chi-Square test already helps us extract texts

that are most probably related to privacy, looking through

such a list is quite simple and effortless.

Alternative Approaches. In our research, we compared

the Chi-Square test with two popular alternatives, fre-

quency based text extraction and TF-IDF [31], both of

which are found to be less effective. They all bring in

more irrelevant contents than the Chi-Square test, more

susceptible to the limitation of the layout level samples,

that is, privacy related UI screens often contain a lot of

normal texts, which become noises in our sensitive term

identification. Also, using these two approaches, we

need to continuously adjust their thresholds for select-

7
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ing privacy-related text when their sample sizes change.

This can be avoided when using the Chi-Square test.

Nevertheless, we acknowledge that there may exist other

feature extraction mechanisms that could perform better,

which is one of our future work.

4.3 Stage 3: UIP Data Element Identifica-

tion

In this stage, we explain the details of our machine-

learning approach, which automatically identifies UIP

data elements based on their textual semantics. UIPicker

uses supervised learning to train a classifier based on a

subset of element samples with privacy-related seman-

tic features. As a result, for a given unclassified UI ele-

ment, this step could identify whether it is semantically

privacy-related from its description texts.

Feature Selection. We use privacy-related texts inferred

from the previous stage as features for the identification

module. A single word alone usually does not provide

enough information to decide whether a given element is

privacy-related. However, all such features in combina-

tion can be used to train a precise classifier. The main

reason why these features work is that both UI texts and

layout descriptions do in fact reveal textual semantic in-

formation, which a machine learning approach such as

ours can discover and utilize. Note that in layout descrip-

tions, it is often the case that developers use text abbrevi-

ations for simplicity when naming identifiers. For exam-

ple, “address” in layout descriptions could be “addr”. For

this, we construct a mapping list of such texts we visited

during the manual analysis. Thus, for each word in lay-

out descriptions, we transform the abbreviation into com-

plete one if it is contained by any privacy-related texts.

Besides, we also take semantic features of layout

structure into consideration: the texts of this element’s

siblings. We observe that many elements are described

by texts in its siblings. For example, In Figure 1(b),

most of input fields are described by static labels which

contain privacy-related text as instructions for requesting

user inputs. As a result, texts from sibling elements can

bring more semantic information for better identification

results.

The classifier works on a matrix organized by one col-

umn per feature (one word) and one row per instance.

The dimension for each instance is the size of our feature

set (the number of texts from the previous step). The ad-

ditional column indicates whether or not this instance is

a privacy-related element.

Training Data. Since text fields can have different

input types for determining what kind of characters

are allowed inside the field, Android provides the an-

droid:inputType attribute to specify what kind of char-

acters are allowed for EditText. For example, an el-

ement with inputType valued textEmailAddress means

only email address is accepted in this input field. There

are several input types explicitly reflect the element con-

taining UIP data we focus on, which can be used as the

training data of the identification module. We list such

sensitive attribute values1 in the first column of Table 2.

Privacy Category Attribute Value

Account Credentials textEmailAddress textPersonName

& User Profile textPassword textVisiblePassword

password/email/phoneNumber

Location textPostalAddress

Table 2: Sensitive attribute values in layout descriptions

The training data is constructed as follows: First, we

automatically label all elements with sensitive attributes

as positive samples since they are a subset of UIP data

elements. We further manually label a set of elements

involving financial information from the category “Fi-

nancial” because such elements are covered by sensitive

attributes Android provides. Besides, a set of negative

samples are picked out through human labeling after fil-

tering out the elements that contain any of the privacy-

related texts we generated in Stage 2.

Classifier Selection. We utilize the standard support

vector machine (SVM) as our classifier. SVM is widely

used for classification and regression analysis. Given a

set of training examples with two different categories,

the algorithm tries to find a hyper-plane separating the

examples. As a result, it determines which side of hyper-

plane the new test examples belong to. In our case, for an

unclassified unknown layout element with corresponding

features (whether or not containing privacy-related texts

extracted in the previous step) the classifier can decide

whether it contains UIP data or not from its textual se-

mantics.

4.4 Stage 4: Behavior Based Result Filter-

ing

As a non-trivial approach for identifying UIP data, for

each element identified as privacy-related from its layout

descriptions, UIPicker inspects the behaviors reflected in

its program code to check whether it is accepting user in-

puts, thus filtering out irrelevant elements from the iden-

tification results in the previous step.

1In some older apps, developers also use specific attribute like “an-

droid:password=True” to achieve the same goal as inputType. We list

them in Table 2 and call them sensitive attribute values as well for sim-

plicity.

8



USENIX Association  24th USENIX Security Symposium 1001

Figure 6: Sample codes for requesting a user’s credit card

number

User input data is generated based on a user’s inter-

actions with the app during runtime. In other words,

the data will be acquired by the app under the user’s

consent. In Android, to get any data from a UI screen

is achieved by calling specific APIs. Getting such data

under user consent means these APIs are called under

user-triggered system callbacks. For example, code frag-

ments in Figure 6 shows the behavior reflected in the

program when the app gets the user’s credit card num-

ber in Figure 1(b). Here, the input field IB is defined

by IB=findViewById(21...1) in activity addCreditCard.

When the user clicks the “Add your card” button, in

the program code, the OnClick() function in class Ad-

dCardListener() will be triggered by pre-registered sys-

tem callback submitBtn.setOnClickListener(). Then, it

invokes sendText(IB), which sends the inputBox’s object

by parameter, and finally gets the user’s card number by

IB.getText(). One might consider why don’t catch UIP

data simply by checking whether the element is invoked

by getText() API. The reason is that sometimes develop-

ers may also get values from UI screens like static text

labels as well as user inputs, resulting in false negatives

for our identification approach.

5 Runtime Security Enhancement with

UIPicker

The security implications about UIP data are rooted from

the fact that users have to blindly trust apps when they

input sensitive data. With the help of UIPicker differen-

tiating UIP data from other normal inputs, we can use

taint tracking techniques to trace users’ sensitive inputs

and enable users to make informed decisions with a pop-

up window when such data insecurely leave the device,

thus effectively mitigating the potential threats posed by

apps.

For UIP data, we consider the following two situations

as insecure and should inform users to let them decide

whether to proceed or not.

Plain Text Transmission. We consider any piece of

UIP data should not be transmitted in plain text. Such sit-

uation can be easily identified by checking if the tainted

sink is HTTP connection in runtime.

Insecure SSL Transmission. Previous works [34]

showed that a large number of apps implement SSL with

inadequate validations (e.g., app contains code that al-

lows all hostnames or accepts all certificates). Insecure

SSL transmission could be more dangerous because they

may carry over critical sensitive data in most cases. UIP

data should not be transmitted in this way as well.

Since UIPicker is deployed in off-line analysis by cus-

tomized system vendors, one can also check whether the

apps have securely implemented SSL off-line at the same

time. We integrate a static analysis framework named

MalloDroid [20] with UIPicker to automatically check

SSL security risks by evaluating the SSL usage in apps.

As MalloDroid can only find broken SSL usage regard-

less what data is transmitted via this channel, we also use

FlowDroid to check if there exists data/control flow inter-

sections between UIP data sources and SSL library invo-

cation sinks in the app, thus confirming whether the UIP

data in the app will be transmitted with security risks.

6 IMPLEMENTATION

Dataset. We crawled apps from Google Play Store based

on its pre-classified 35 categories in Oct. 2014. For each

category, we downloaded the top 500 apps. Excepting

some connection errors occurred in the crawling process,

totally we collected 17,425 apps as our dataset. This

dataset will be used in both model training and evalua-

tion of UIPicker.

Identification Approach. We implement the prototype

of UIPicker as a mix of Python Scripts and Java code.

The first three steps of UIPicker are developed using

Python with 3,624 lines of code (LOC). The last step,

static analysis for result filtering, is implemented in Java,

which extends FlowDroid[15] and introduces additional

985 LOCs. All experiments are performed on a 32 core

Debian server with Linux 2.6.32 kernel and 64GB mem-

ory.

For privacy-related text analysis, the initial seeds are

assigned as texts in the second column of Table 3 for

each privacy category. For each initial seed, we run the

Chi-Square test using apps in our dataset. Since Android

allows developers to use nested layout structures for flex-

ibility, we also group sub-layout UI texts into their root

layouts. For each round, we collect the top 80 words

from the test results, this threshold is determined by bal-

ancing between the number of privacy-related terms that

can be detected and the amount of noisy text introduced.

After 7 (7 initial seeds) rounds of the Chi-Square test,

9
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we collect 273 words from layout samples (some texts

are overlapped in different round of Chi-Square test). We

then remove 45 words as the noisy text by manual anal-

ysis within less than 3 minutes. As a result, UIPicker

extracts 228 privacy-related terms from 13,392 distinct

words. We list part of them in the third column of Ta-

ble 3 corresponding to the privacy category they belong

to. Such data are used as features for privacy-related ele-

ment identification in the follow-up step.

Privacy Category Initial Seeds Representative Inferred Texts(Stemmed)

Login Credenticals username, password, email mobil phone middl profile cellphon

&User Profile account nicknam firstnam lastnam

person birth login confirm detail regist

Location address, location zip citi street postal locat countri

Financial credit card, bank secur month date pay year bill expir

debit transact mm yy pin code

Table 3: Initial seeds and part of inferred privacy-related

texts from Chi-Square test

The SVM classifier is implemented with scikit-

learn[13] in poly kernel. We optimize the classifier pa-

rameters (gamma=50 and degree=2) for performing the

best results.

For each element identified as privacy-related by the

machine learning classifier, UIPicker conducts static

taint analysis using FlowDroid[15] to check whether it

satisfies specific behavior described in Section 4.4. Since

FlowDroid successfully handles android life cycle (sys-

tem event based callbacks) and UI widgets, the data-

flow results should be both precise and complete. We

set FlowDroid’s layout mode as “ALL” to get each el-

ement’s propagation chain that starts with function find-

ViewById([elementId]) and ends in getText(). As a result,

for any element’s info-flow path which contains system

event function like OnClick(), the element can be identi-

fied as accepting user input.

Runtime Enhancement For each app, we use a

list of elements containing UIP data identified from

UIPicker with their unique IDs as the taint sources

of TaintDroid[19] build in Android 4.1. Since Taint-

Droid allows 32 different taint markings through a 32-bit

bitvector to encode the taint tag, for those UIP data el-

ements involved in insecure SSL usage, we label them

as “SSL Insecure” in the taint source list, thus provide

warnings to users when such data leave the device as

well. We add a pop-up window for showing the leaked

information to users when sensitive data leave the device.

Our modification to TaintDroid is implemented with 730

LOCs in total.

7 Evaluation

In this section, we present our evaluation results. We first

show the performance of UIPicker in Section 7.1, then

we discuss its effectiveness and precision in Section 7.2

and Section 7.3. Then we evaluate our runtime security

enhancement mechanism in Section 7.4.

7.1 Performance

During our experiment, the training phase of the clas-

sifier takes about 2.5 hours on average, the identifica-

tion phase for the whole dataset takes 30.5 hours (6.27

seconds per app). Pre-Processing time for apps is in-

cluded in both of these two phases. The static analy-

sis for behaviour based result filtering is proceeded in 32

threads concurrently. Since UIPicker mainly targets for

customized system vendors or security analysts, we con-

sider such overhead quite acceptable.

7.2 Effectiveness

UIP Data Distribution. We show the general identifi-

cation results of UIPicker in Table 4. In 17,425 apps,

UIPicker finds that 6,179 (35.46%) contain UIP data. We

list our results in a descending order of the identified to-

tal app amounts. As we can see, in 9 out of 35 categories,

more than half of apps contain UIP data.

We make the following observations from this ta-

ble. First, application categories such as BUSINESS,

FINANCE, SHOPPING, COMMUNICATION and SO-

CIAL are more likely to request Account Credentials

and User Profile information, which showed that these

apps are closely related to users’ personal activities.

APP WIDGETS (54.08%) is also ranked among top of

the table. It is a set of apps which have small UIs em-

bedded in the home screen of the device, e.g., Facebook,

Youtube, Twitter. Since most of such apps provide lo-

gin and account-specific functions, they prefer to request

more UIP data as well. The SHOPPING category con-

tains many location-related elements (1,605, 37%) be-

cause the delivering address are always generated from

user inputs. It is also reasonable that both FINANCE

and SHOPPING apps require many financial-related sen-

sitive inputs. We believe such apps containing rich UIP

data should be treated more carefully in both developing

and security vetting process in order to make sure that

sensitive data are well protected in both transmission and

storage.

Comparative Results. We illustrate the effectiveness of

UIPicker from two aspects. First, UIPicker identifies pri-

vacy data that system defined APIs do not touch but still

be sensitive to users. Second, UIPicker achieves far bet-

ter coverage than simply identifying UIP data by specific

sensitive attribute values from the Android design speci-

fication.

Comparison with System Defined Sensitive APIs.

As previously mentioned, specific sensitive resources
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Application Category
Account Credentials & User Profile Location Financial Total

#element %app #element %app #element %app #element %app

BUSINESS 4,314 61.52% 1,112 38.28% 399 18.04% 5,825 62.73%

WEATHER 1,102 46.18% 1,086 59.24% 32 3.01% 2,220 62.45%

FINANCE 4,821 50.90% 1,106 33.47% 1,815 30.46% 7,742 55.31%

COMMUNICATION 2,756 53.83% 439 21.77% 213 14.31% 3,408 55.24%

SHOPPING 3,380 51.80% 1,605 37.00% 609 24.80% 5,594 54.60%

APP WIDGETS 3,161 51.22% 816 31.43% 352 15.71% 4,329 54.08%

NEWS AND MAGAZINES 1,994 47.38% 529 34.68% 133 12.50% 2,656 54.03%

SOCIAL 2,889 52.62% 555 27.42% 146 8.27% 3,590 54.03%

TRAVEL AND LOCAL 2,826 49.00% 1,494 41.16% 452 16.87% 4,772 52.21%

PRODUCTIVITY 1,923 45.45% 394 18.59% 113 9.29% 2,430 48.69%

LIFESTYLE 2,243 43.29% 853 28.66% 341 14.03% 3,437 45.29%

TRANSPORTATION 1,634 39.00% 750 28.60% 273 11.00% 2,657 44.60%

SPORTS GAMES 2,023 41.70% 509 22.67% 151 6.68% 2,683 43.32%

MEDICAL 1,478 40.04% 302 15.49% 169 7.04% 1,949 40.24%

HEALTH AND FITNESS 1,795 39.56% 344 15.06% 165 8.43% 2,304 39.96%

MEDIA AND VIDEO 1,079 37.15% 170 13.05% 72 3.61% 1,321 38.55%

TOOLS 1,110 36.36% 252 16.16% 121 8.08% 1,483 38.38%

MUSIC AND AUDIO 1,053 37.20% 219 11.40% 91 3.20% 1,363 38.00%

PHOTOGRAPHY 1,008 26.65% 205 9.82% 122 5.21% 1,335 28.46%

ENTERTAINMENT 973 27.71% 249 9.24% 215 5.62% 1,437 28.31%

BOOKS AND REFERENCE 924 26.80% 213 9.80% 156 5.60% 1,293 27.40%

EDUCATION 1,753 20.68% 461 9.84% 83 5.02% 2,297 21.69%

COMICS 390 16.60% 84 4.00% 69 3.00% 543 17.20%

PERSONALIZATION 440 16.23% 77 3.85% 32 1.83% 549 16.43%

CARDS 360 14.20% 40 3.20% 58 4.60% 458 15.80%

GAME WIDGETS 302 13.25% 17 2.01% 56 4.42% 375 13.45%

ARCADE 390 12.22% 66 3.61% 24 0.80% 480 12.42%

LIBRARIES AND DEMO 302 10.84% 89 3.61% 136 3.01% 527 11.24%

GAME WALLPAPER 242 11.00% 21 2.00% 55 4.20% 318 11.00%

BRAIN 396 10.60% 102 4.00% 71 2.20% 569 10.80%

GAME 302 9.82% 53 3.81% 16 0.80% 371 10.22%

SPORTS 209 10.22% 26 1.40% 15 0.80% 250 10.22%

CASUAL 267 9.60% 23 2.60% 10 0.40% 300 9.60%

APP WALLPAPER 187 6.25% 34 2.42% 20 1.61% 241 6.65%

RACING 82 4.60% 16 0.40% 20 0.60% 118 4.60%

TOTAL 50,108 30.59% 14,311 16.26% 6,805 7.57% 71,224 35.46%

Table 4: UIP data distribution. #element denotes the number of UIP data elements in each category by different privacy

type. %app denotes the percentage of apps in which these elements appear (500 per category). The last column shows

the total number of UIP data elements and apps that contain UIP data.

Privacy Category Android System Defined APIs

Account Credentials android.tel...TelephonyManager getLine1Number()

& User Profile android.accounts.AccountManager getAccounts()

and...LocationManager getLastKnownLocation()

Location android.location.Location: getLongitude()

android.location.Location: getLatitude()

Table 6: System defined sensitive APIs related to

UIPicker’s identification scope

such as phonenumber, account and location can be regu-

lated by fixed system APIs which we list in Table 6. We

compare the amount of UIPicker’s identification results

with Android system derived sensitive data, which can

help us understand to what extent, system defined sensi-

tive APIs are insufficient to cover users’ privacy.

As Table 5 shows, in our dataset, 4,900 apps use sys-

tem defined APIs for requesting Account Credentials

and Profile Information while UIPicker identifies 5,330

(30.59%) apps containing UIP. UIPicker identifies 2,883

(16.26%) apps in the whole dataset that request location

privacy data from user inputs. Besides, 1,318 (7.57%)

apps request financial privacy data from users, and none

of system defined APIs can regulate such data. In gen-

eral, UIPicker identifies 6,179 (35.46%) apps contain-

ing at least one category of UIP data, which have been

largely neglected by previous work in privacy security

analysis and protection.

As Column 4 in Table 5 shows, there is some overlap

between system defined APIs and UIP data (1,340 for

Account Credentials & User Profile, 2,282 for Location

respectively). For each app, we check whether it contains

both the system defined APIs and the UIP data in the

same privacy category, e.g., invoking the getLastKnown-

Location() API and requesting address information from

the user input of the same app. In some cases, the same

piece data may come from either UI input or API call.

For example, using a phone number as the login account

of the app. However in most cases, the overlapped data

in the same privacy category may come from different

sources without overlapping in code paths. For example,

the invocation of get-location APIs is used for realtime

geographic locating, while some location input could be

11
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Privacy Category
System Defined APIs (#Apps) Elements with Sensitive Attribute Values (#Elements)

API UIPicker Overlap InputType UIPicker Incremental

Account Credentials 4,900 5,330 1,340 24,021 46,227 26,087

& User Profile

Location 15,221 2,883 2,282 941 14,311 13,370

Financial - 1,318 - - 6,353 -

Total 15,632 6,179 - 24,962 71,224 46,262

Table 5: We compare UIPicker’s identification results with apps containing system defined sensitive APIs (column

2-4) and elements containing sensitive attribute values (column 5-7).

a shopping address for delivering goods. Since precisely

analyzing which input element may overlap with system

defined APIs requires additional information-flow anal-

ysis, which is beyond this paper’s scope, we leave it as

future work for measuring the relationship between these

two types of sensitive data.

Comparing to sensitive attribute values. In Sec-

tion 4.3, we use elements containing sensitive attribute

values as part of training data for our identification mod-

ule. However, they can only cover a portion of UIP data

because they are not intended for this purpose. Here

we compare the amount of UIPicker’s identification re-

sults with elements containing sensitive attribute values

to show the effectiveness of UIPicker.

As Table 5 shows, in general, UIPicker identifies

46,262 more UIP data elements than simply identifying

them by sensitive attribute values (e.g. textPassword).

Especially for the Location category, UIPicker identifies

14,311 elements, which is nearly 15 times more than

simply identifying them based on attribute “textPostal-

Address”.

Types of UIP Elements. We list the identification results

of UIP data elements other than EditText in Table 7. In

general, UIPicker finds 18,403 (25.84%) elements other

than EditText to accept users’ sensitive inputs. It is inter-

esting to note that UIPicker also finds a large portion of

TextView as UIP data elements. In most cases, although

data in TextViews are not editable, they could be gener-

ated by users from other layouts and dynamically filled

in TextView later. For example, the data from previous

steps of a registration form, or fetched from the server

after users’ login. There are 5,075 (7.13%) customized

input elements and 1,962 (2.75%) dropdown lists (Spin-

ners) containing UIP data. Type “Others” in table con-

tains elements such as RadioButton, CheckBox.

7.3 Precision

For evaluating the precision of UIPicker, we perform

the evaluation of classifier based on the machine-leaning

dataset mentioned in Section 4. We also conduct a man-

ual validation for two reasons. First, since the training

Type # Elements % in UIP Data

TextView 10,582 14.86%

Customized 5,075 7.13%

Spinner 1,962 2.75%

Others 784 1.10%

Total 18,403 25.84%

Table 7: Types of UIP Elements Other than EditText

data of classifier is not absolutely randomly selected (part

of them are labeled by sensitive attributes automatically),

a manual validation is required to confirm that the iden-

tification results of the classifier carries over the entire

dataset. Second, the classifier is only capable of distin-

guishing UIP data elements from their textual semantics,

the manual validation can be used to check whether static

text labels are effectively excluded by UIPicker after be-

haviour based result filtering.

Evaluation of Classifier. The training set contains

53,094 elements in total, which includes 24,962 labeled

by sensitive attribute values and financial-related ele-

ments, with 25,331 negative samples labeled by manual

efforts.

We use ten-fold cross validation which is the standard

approach for evaluating machine-learning classifiers. We

randomly partition the entire set of sample elements into

10 subsets, and we train the classifier on nine of them and

then test the remaining 1 subset. The process is repeated

on each subset for 10 times. In the end, the average pre-

cision and recall is 92.5% and 85.43% respectively.

As shown in Table 8, we also compare the average

precision and recall with other two classifiers, i.e., One-

Class Support Vector Machine learning (OC-SVM) [32]

and Naive Bayes [30]. The results show that the stan-

dard SVM performs the best. We tried OC-SVM with

only positive samples (elements containing sensitive at-

tributes) to train the classifier. OC-SVM generated more

false negatives than the standard SVM due to the lack

of negative samples. Naive Bayes, a traditional proba-

bilistic learning algorithm, also produced very imprecise

results. This happens especially when it deals with ele-
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ments that contain low-frequency privacy-related texts.

Classifier Avg.Precision Avg.Recall

SVM 92.50% 85.43%

OC-SVM 93.74% 68.48%

Naive Bayes 95.42% 26.70%

Table 8: Classifier Comparison

Manual Validation. We envision UIPicker to be used as

an automated approach for labeling elements that con-

tain UIP data. UIPicker achieves this by using some eas-

ily available UIP data (elements containing sensitive at-

tributes or hand-annotated) and then using the classifier

to automatically explore larger parts of UIP data. Mea-

suring precision is hard in this setting as there is no entire

pre-annotated elements (labeling sensitive or insensitive

for all of them) for a set of apps that could compare with

UIPicker’s identification results.

As a best-effort solution, we randomly select 200 apps

from top 10 categories (20 in each) ordered by %apps

which UIP data appear most in Table 4 as the man-

ual validation dataset. As such categories may contain

much more UIP data than others, it provides the oppor-

tunity that our experts can walk through less apps (and

activities) to validate more UIP elements. The selected

apps are excluded from the classifier’s training process

to avoid overlap. Such way can greatly improve the ef-

fectiveness of the manual validation. Since the subset of

apps is randomly picked, we believe that the evaluation

results can provide a reasonable accuracy estimation on

the entire dataset. For each element that UIPicker iden-

tifies as UIP data, we check their corresponding descrip-

tions in XML layout files with some automated python

scripts for efficiency (quickly locating the element in lay-

out files and trying to understand it from descriptions).

If this is still insufficient for us to identify whether it is a

UIP data element, we confirm them by launching the app

and find the element in the layout screen. The manual

validation over 200 apps shows that UIPicker identifies

975 UIP data elements with 67 false positives and 107

false negatives.

False Positives: The false positive rate is 6.4%

(67/1042 elements UIPicker identifies). In most cases,

this is caused by the element’s neighbors. That is, the

element’s neighbors contain privacy-related texts while

the element itself is not privacy-related. Consider the

following example, an EditText with only one description

“message” while its previous element requires the user to

input username with many sensitive textual phrases. As

UIPicker takes neighbor elements’ texts into considera-

tion for better identification results, the privacy-related

texts in its neighbor make UIPicker falsely identify the

current element as UIP data. We consider such false

alarm as acceptable because once such false alarm hap-

pens, their neighbor elements (the actual UIP data ele-

ments) are very possible to be identified by UIPicker as

well.

False Negatives: We manually inspect each app in the

evaluation dataset by traversing their UI screens as much

as possible to see whether there exists UIP data elements

that missed by UIPicker. In 200 apps, we find 107 ele-

ments not identified by UIPicker as privacy-related, and

we conclude the reasons as follows: (1) Some very low-

frequency texts representing UIP were not inferred from

UIPicker by the privacy-related text analysis module.

For example, “CVV” represents the credit card’s security

code, however we find this only happened in 4 Chinese

apps. The low occurrence frequency of texts like “CVV”

in our croups makes UIPicker fail to add them as fea-

tures for the identification process. (2) In static analysis

for behavior-based element filtering, due to FlowDroid’s

limitations, the call trace of some element was broken

in inter-procedural analysis which makes UIPicker miss

such elements in the final output.

Based on the total number of TPs, FPs and FNs

(975, 67, 107), we compute the precision and recall of

UIPicker as follows:

Precision =
TP

TP+FP
Recall =

T P

TP+FN

Overall, UIPicker precisely identified most of UIP

data, with 93.6% precision and 90.1% recall.

7.4 Runtime Enhancement Evaluation

System Overhead. We compare the performance over-

head with TaintDroid using Antutu Benchmark [3]. We

run Antutu 10 times in both systems under a Nexus Prime

device, and the average scores are basically the same.

This is reasonable because our mechanism only provides

additional UIP data sources. We conclude that the secu-

rity enhancement mechanism does not introduce notice-

able additional performance overhead to TaintDroid.

Case Study. We find that some critical UIP data are

under threats in Android apps. In Figure 7, a popu-

lar travel app “Qunar”, which has 37 million downloads

in China [12], sends users’ credit card information with

vulnerable SSL implementation during the payment pro-

cess. The insecure transmission is reported to the user

with a pop-up window when such data leave the device,

thus the user can decide whether to proceed or use an

alternative payment method to avoid the security risk.
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Figure 7: Insecure Transmission of UIP data. We use

faked sensitive data in the experiment.

8 Discussion

In this section, we discuss the general applicability of

UIPicker, as well as limitations and future work.

UIPicker is able to efficiently handle UIP data which

previous work does not concentrate on, nor be able to

cover. Compared with existing approaches that focus on

System-Centric Privacy data, UIPicker rethinks privacy

from a new perspective: sensitive data generated from

user inputs, which is largely neglected for a long period.

UIPicker provides an opportunity for users to make in-

formed decisions in a timely manner when sensitive data

leave the device insecurely, instead of letting users as-

sume the app can be trusted.

UIPicker uses not only texts in UI screens but also

texts in layout descriptions for UIP data identification.

This framework is generic to all kinds of apps without lo-

cality limitation. The way UIPicker correlates UIP data

from layout descriptions could also be leveraged by ex-

isting work [37, 28] that attempts to map the permission

usage with app descriptions.

UIPicker has the following limitations. (1) UIPicker

does not consider dynamically generated UI elements,

although we have not found any UIP data element be-

ing generated at runtime in our experiments. Dynamic

UI elements could be analyzed through more sophis-

ticated static/dynamic analysis with the app’s program

code, which is our future work. (2) Currently, UIPicker

can not handle sensitive user inputs in Webview because

they are not included in app layout resources. In the fu-

ture, we plan to download such webpages by extracting

their URLs from the app, then analyze their text contents

as well.

9 RELATED WORK

Privacy source identification. Existing work [16, 29]

focuses on mapping Android system permissions with

API calls. PScout [16] proposes a version-independent

analysis tool for complete permission-to-API mapping

through static analysis. SUSI [29] uses a machine learn-

ing approach to classify and categorize more Android

sources and sinks which are missed by previous info-

flow taint tracking systems. The most similar work with

UIPicker is SUPOR [25], which also aims to automat-

ically identify sensitive user inputs using UI rendering,

geometrical layout analysis and NLP techniques. SU-

PER mainly focuses on specific type of UI elements

(EditText) while UIPicker is not limited to this.

Text analysis in Android app. Several studies utilize

UI text analysis for different security proposes. As-

Droid [24] detects stealthy behaviors in Android app by

UI textual semantics and program behavior contradic-

tion. However, it only uses a few keywords to cover

sensitive operations such as “send sms”, “call phone”.

CHABADA [21] checks application behaviors against

application descriptions. It groups apps that are sim-

ilar with each other according to their text descrip-

tions. The machine learning classifier OC-SVM is used

in CHABADA to identify apps whose used APIs dif-

fer from the common use of the APIs within the same

group. Whyper [37] uses natural language processing

(NLP) techniques to identify sentences that describe the

need for a given permission in the app description. It

uses Stanford Parser to extract short phrases and de-

pendency relation characters from app descriptions and

API documents related to permissions. AutoCog [28]

improves Whyper’s precision and coverage through a

learning-based algorithm to relate descriptions with per-

missions. UIPicker could potentially leverage their tech-

niques to generate more complete privacy-related texts

for UIP data identification.

Static analysis. There are lots of work [24, 26, 15, 20,

34] on using static analysis to detect privacy leakage,

malware or vulnerabilities in Android apps. AsDroid

takes control flow graphs and call graphs to search in-

tent from API call sites to top level functions (Activi-

ties). UIPicker’s behavior-based result filtering is sim-

ilar to AsDroid while they have different goals. SMV-

HUNTER [34] uses static analysis to detect possible

MITM vulnerabilities in large scale. The static analy-

sis extracts input information from layout files and iden-

tifies vulnerable entry points from the application pro-

gram code, which can be used to guide dynamic testing

for triggering the vulnerable code.

14
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10 CONCLUSION

In this paper, we propose UIPicker, a novel framework

for identifying UIP data in large scale based on a novel

combination of natural language processing, machine

learning and program analysis techniques. UIPicker

takes layout resources and program code to train a pre-

cise model for UIP data identification, which overcomes

existing challenges with both good precision and cover-

age. With the sensitive elements identified by UIPicker,

we also propose a runtime security enhancement mech-

anism to monitoring their sensitive inputs and provide

warnings when such data insecurely leave the device.

Our evaluation shows that UIPicker achieves 93.6% pre-

cision and 90.1% recall with manual validation on 200

popular apps. Our measurement in 17,425 top free apps

shows that UIP data are largely distributed in market

apps and our run-time monitoring mechanism based on

UIPicker can effectively help user to protect such data.
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FREISLEBEN, B., AND SMITH, M. Why eve and mallory love

android: an analysis of android ssl (in)security. In Proceedings

of the 2012 ACM SIGSAC Conference on Computer & Commu-

nications Security(CCS) (2012).

[21] GORLA, A., TAVECCHIA, I., GROSS, F., AND ZELLER, A.

Checking app behavior against app descriptions. In ICSE (2014),

pp. 1025–1035.

[22] HEUSER, S., NADKARNI, A., ENCK, W., AND SADEGHI, A.-

R. Asm: A programmable interface for extending android secu-

rity. In Proc. 23rd USENIX Security Symposium (SEC14) (2014).

[23] HORNYACK, P., HAN, S., JUNG, J., SCHECHTER, S., AND

WETHERALL, D. These arent the droids youre looking for.

Retrofitting Android to Protect Data from Imperious Applica-

tions. In: CCS (2011).

[24] HUANG, J., ZHANG, X., TAN, L., WANG, P., AND LIANG,

B. Asdroid: detecting stealthy behaviors in android applications

by user interface and program behavior contradiction. In ICSE

(2014), pp. 1036–1046.

[25] JIANJUN HUANG, PURDUE UNIVERSITY; ZHICHUN LI, X. X.,

AND WU, Z. Supor: Precise and scalable sensitive user input

detection for android apps. In Proc. of 24rd USENIX Security

Symposium (2015).

[26] LU, L., LI, Z., WU, Z., LEE, W., AND JIANG, G. Chex: stat-

ically vetting android apps for component hijacking vulnerabili-

ties. In Proceedings of the 2012 ACM conference on Computer

and communications security (2012), ACM, pp. 229–240.

[27] NAUMAN, M., KHAN, S., AND ZHANG, X. Apex: extend-

ing android permission model and enforcement with user-defined

runtime constraints. In Proceedings of the 5th ACM Symposium

on Information, Computer and Communications Security (2010),

ACM, pp. 328–332.

15



1008 24th USENIX Security Symposium USENIX Association

[28] QU, Z., RASTOGI, V., ZHANG, X., CHEN, Y., ZHU, T., AND

CHEN, Z. Autocog: Measuring the description-to-permission

fidelity in android applications. In Proceedings of the 2014 ACM

SIGSAC Conference on Computer and Communications Security

(2014), ACM, pp. 1354–1365.

[29] RASTHOFER, S., ARZT, S., AND BODDEN, E. A machine-

learning approach for classifying and categorizing android

sources and sinks. In 2014 Network and Distributed System Se-

curity Symposium (NDSS) (2014).

[30] RISH, I. An empirical study of the naive bayes classifier. In

IJCAI 2001 workshop on empirical methods in artificial intelli-

gence (2001), vol. 3, IBM New York, pp. 41–46.

[31] SALTON, G., WONG, A., AND YANG, C.-S. A vector space

model for automatic indexing. Communications of the ACM 18,

11 (1975), 613–620.
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Abstract
In this study we characterize the extent to which cyber
security incidents, such as those referenced by Verizon
in its annual Data Breach Investigations Reports (DBIR),
can be predicted based on externally observable prop-
erties of an organization’s network. We seek to proac-
tively forecast an organization’s breaches and to do so
without cooperation of the organization itself. To ac-
complish this goal, we collect 258 externally measur-
able features about an organization’s network from two
main categories: mismanagement symptoms, such as
misconfigured DNS or BGP within a network, and mali-
cious activity time series, which include spam, phishing,
and scanning activity sourced from these organizations.
Using these features we train and test a Random For-
est (RF) classifier against more than 1,000 incident re-
ports taken from the VERIS community database, Hack-
mageddon, and the Web Hacking Incidents Database that
cover events from mid-2013 to the end of 2014. The re-
sulting classifier is able to achieve a 90% True Positive
(TP) rate, a 10% False Positive (FP) rate, and an overall
90% accuracy.

1 Introduction

Recent data breaches, such as those at Target [35], JP
Morgan [25], and Home Depot [49] highlight the in-
creasing social and economic impact of such cyber inci-
dents. For example, the JP Morgan Chase attack was be-
lieved to be one of the largest in history, affecting nearly
76 million households [25]. Often, by the time a breach
is detected, it is already too late and the damage has al-
ready occurred. As a result, such events call into the
question whether these breaches could have been pre-
dicted and the damage avoided. In this study we seek
to understand the extent to which one can forecast if an
organization may suffer a cyber security incident in the
near future.

Machine learning has been used extensively in the
cyber security domain, most prominently for detection
of various malicious activities or entities, e.g., spam
[44, 45] and phishing[39]. It has been used far less for the
purpose of prediction, with the notable exception of [51],
where textual data is used to train classifiers to predict
whether a currently benign webpage may turn malicious
in the near future. The difference between detection and
prediction is analogous to the difference between diag-
nosing a patient who may already be ill (e.g., by using
biopsy) vs. projecting whether a presently healthy per-
son may become ill based on a variety of relevant fac-
tors. The former typically relies on identifying known
characteristics of the object to be detected, while the lat-
ter on factors believed to correlate with the prediction
objective.

To explore the effectiveness of forecasting security in-
cidences we begin by collecting externally observed data
on Internet organizations; we do not require information
on the internal workings of a network or its hosts. To do
so, we tap into a diverse set of data that captures different
aspects of a network’s security posture, ranging from the
explicit or behavioral, such as externally observed ma-
licious activities originating from a network (e.g., spam
and phishing) to the latent or relational, such as misman-
agement and misconfigurations in a network that deviate
from known best practices. From this data we extract 258
features and feed them to a Random Forest (RF) classi-
fier. We train and test the classifier on these features and
more than 1,000 incident reports taken from the VERIS
community database [55], Hackmageddon [42], and the
Web Hacking Incidents Database [31] that cover events
from mid-2013 to 2014. The resulting classifier can be
configured over a wide range of operating points includ-
ing one with 90% True Positive (TP) rate, 10% False Pos-
itive (FP) rate and an overall accuracy of 90%.

We posit that such cyber incident forecasting offers a
completely different set of characteristics as compared to
detection techniques, which in turn enables entirely new



1010 24th USENIX Security Symposium USENIX Association

classes of applications that are not feasible with detection
techniques alone. First and foremost, prediction allows
proactive policies and measures to be adopted rather than
reactive measures following the detection of an incident.
Effective proactive actions can substantially reduce the
potential cost incurred by an incident; in this sense pre-
diction is complementary to detection. Cyber incident
prediction also enables the development of effective risk
management schemes such as cyber insurance, which in-
troduces monetary incentives for the adoption of better
cyber security policies and technologies. In the wake of
recent breaches, the market for such policies has soared,
with current written annual premiums estimated to be be-
tween $500M and $1B [47].

The remainder of the paper is organized as follows.
Section 2 introduces the datasets used in this study and
details the rationale for their use as well as our processing
methodology. We then define the features we use in con-
structing the classifier and show why they are relevant
in predicting security incidents in Section 3. We present
the main prediction results as well as their implications in
Section 4. In Section 5 we discuss a number of observa-
tions and illustrate several major data breaches in 2014
in the context of this prediction methodology. Related
work is detailed in Section 6, and Section 7 concludes
the paper.

2 Data Collection and Processing

Our study draws from a variety of data sources that col-
lectively characterize the security posture of organiza-
tions, as well as security incident reports used to deter-
mine their security outcomes. These sources are summa-
rized in Table 1 and detailed below; a subset of these has
been made available at [7].

2.1 Security Posture Data

An organization’s network security posture may be mea-
sured in various ways. Here, we utilize two families of
measurement data. The first is measurements on a net-
work’s misconfigurations or deviations from standards
and other operational recommendations; the second is
measurements on malicious activities seen to originate
from that network. These two types of measurements are
related. In particular, in [58] Zhang et al. quantitatively
established varying degrees of correlation between eight
different mismanagement symptoms and the amount of
malicious activities from an organization. The combina-
tion of both of these datasets represents a fairly compre-
hensive view of an organization’s externally discernible
security posture.

2.1.1 Mismanagement Symptoms

We use the following five mismanagement symptoms in
our study, a subset of those studied in [58].

Open Recursive Resolvers: Misconfigured open DNS
resolvers can be easily used to facilitate massive ampli-
fication attacks that target others. In order to help the
network operations community address this wide spread
threat, the Open Resolver Project [14] actively sends a
DNS query to every public IPv4 address in port 53 to
identify misconfigured DNS resolvers. In this study, we
use a data snapshot collected on June 2, 2013. In total,
27.1 million open recursive resolvers were identified.

DNS Source Port Randomization: In order to minimize
the threat of DNS cache poisoning attacks [13], current
best practice (RFC 5452 [34]) recommends that DNS
servers implement both source port randomization and
a randomized query ID. Many servers however have not
been patched to implement source port randomization.
In [58], over 200,000 misconfigured DNS resolvers were
detected based on the analysis over a set of DNS queries
seen by VeriSign’s .com and .net TLD name server on
February 26, 2013. This is the data used in this study.

BGP Misconfiguration: BGP configuration errors or
reconfiguration events can cause unnecessary routing
protocol updates with short-lived announcements in the
global routing table [40]. Zhang et. al detected 42.4 mil-
lion short-lived routes with BGP updates from 12 BGP
listeners in the Route Views project [32] during the first
two weeks of June 2013 [58]; this data is used in our
study.

Untrusted HTTPS Certificates: Secure websites uti-
lize X.509 certificates as part of the TLS handshake in
order to prove their identity to clients. Properly config-
ured certificates should be signed by a browser-trusted
certificate authority. It is possible to detect misconfig-
ured websites by validating the certificate presented dur-
ing the TLS handshake [33]. An Internet scan performed
on March 22, 2013 found that only 10.3 million out of a
total of 21.4 million sites presented browser-trusted cer-
tificates [58]. We use this dataset in our study.

Open SMTP Mail Relays: Email servers should per-
form filtering on the message source or destination to
only allow users in their own domain to send email mes-
sages. This is documented in current best practice (RFC
2505 [38]), and misconfigured servers can be used in
large scale spam campaigns. Though small in number,
these represent a severe misconfiguration in an organiza-
tions’ infrastructure. In this study, we use data collected
on July 23, 2013, which detected 22,284 open mail relays
[58].

None of the datasets mentioned above is necessarily
directly related to a vulnerability. The presence of mis-
configurations in an organization’s networks and infras-
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Category Collection period Datasets
Mismanagement February 2013 - July 2013 Open Recursive Resolvers, DNS Source Port Randomization, BGP misconfiguration,
symptoms Untrusted HTTPS Certificates, Open SMTP Mail Relays [58]
Malicious activities May 2013 - December 2014 CBL[4] , SBL[22], SpamCop[19], WPBL[24], UCEPROTECT[23], SURBL[20],

PhishTank[16], hpHosts[11], Darknet scanners list, Dshield[5], OpenBL[15]
Incident reports August 2013 - December 2014 VERIS Community Database [55], Hackmageddon [42], Web Hacking Incidents [31]

Table 1: Summary of datasets used in this study. Mismanagement and malicious activity data are used to extract
features, while incident reports are used to generate labels for the training and testing of a classifier.

tructure is, however, an indicator of the lack of appro-
priate policies and technological solutions to detect such
failures. The latter increases the potential for a success-
ful data breach.

Also, note that all of the above datasets were collected
during roughly the first half of 2013. As we shall be
using the mismanagement symptoms as features in con-
structing a classifier/predictor, it is important that these
features reflect the condition of a network prior to the
incidents. Consequently, our incident datasets (detailed
in Section 2.2) cover incidents that occurred between
August 2013 and December 2014. Note also that we
use only a single snapshot of each of the symptoms;
this is because such symptomatic data is relatively slow-
changing over time, as systems are generally not recon-
figured on a daily or even weekly basis.

2.1.2 Malicious Activity Data

Another indicator of the lack of policy or technical
measures to improve security at an organization is the
level of malicious activities observed to originate from
its network assets and infrastructure. Such activity is
often observed by well-established monitoring systems
such as spam traps, darknet monitors, or DNS moni-
tors. These observations are then distilled into black-
lists. We use a set of reputation blacklists to measure the
level of malicious activities in a network. This set further
breaks down into three types: (1) those capturing spam
activities, including CBL[4] , SBL[22], SpamCop[19],
WPBL[24], and UCEPROTECT[23], (2) those capturing
phishing and malware activities, including SURBL[20],
PhishTank[16], and hpHosts[11], and (3) those capturing
scanning activities, including the Darknet scanners list,
Dshield[5], and OpenBL[15]. We use reputation black-
lists that have been collected over a period of more than
a year, starting in May 11, 2013 and ending in December
31, 2014. Each blacklist is refreshed on a daily basis and
consists of a set of IP addresses seen to be engaged in
some malicious activity. This longitudinal dataset allows
us to characterize not only the presence of malicious ac-
tivities from an organization, but also its dynamic beha-
vior over time.

2.2 Security Incident Data

In addition to the security posture data described in the
previous section, we require data on reported cyber-
security incidents to serve as ground-truth in our study;
such data is needed for the purpose of training the clas-
sifier, as well as for assessing its accuracy in predicting
incidents (testing). In general, we believe such incidents
are vastly under reported. In order to obtain a good cove-
rage, we employ three collections of publicly available
incident datasets. These are described below.

VERIS Community Database (VCDB) [55]: This
dataset represents a broad ranging public effort to gather
cyber security incident reports in a common format [55].
The collection is maintained by the Verizon RISK Team,
and is used by Verizon in its highly publicized annual
Data Breach Investigations Reports (DBIR) [56]. The
current repository contains more than 5,000 incident re-
ports, that cover a variety of different types of events
such as server breach, website defacements, and physi-
cally stolen assets. Table 7 (in the Appendix) provides
some example reports from this repository; a majority
(64.99%) is from the US.

Of the full set, roughly 700 unique incidents were rele-
vant to our study: we include only incidents that occurred
after mid-2013 so that they are aligned with the security
posture data, and those directly reflecting cyber-security
issues. We therefore exclude those due to physical at-
tacks, robbery, deliberate mis-operation by internal ac-
tors (e.g. disgruntled employees) and the like, as well as
unnamed or unverified attack targets. We show several
such examples in Table 2. Also note that even though the
same IPs may appear in both the malicious and incident
data, the independence of the features from ground-truth
data is maintained because malicious activities only re-
veal botnet presence, which is not considered an incident
type by or reported in any of our incident datasets.

Incident report Reason to exclude
Student of a college changed score Unknown target
Road construction sign hacked Physical tampering
Praxair Healthcare Inc. asset stolen Physical theft
Lucile Packard Child. Hosp.l asset stolen Physical theft
Medicare Privilege Misuse Deliberate internal misuse

Table 2: Examples of excluded VCDB incidents.
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Hackmageddon [42]: This is an independently main-
tained cyber incident blog that aggregates and documents
various public reports of cyber security incidents on a
monthly basis. From the overall set we extract 300 in-
cidents, in which the reported dates are aligned with our
security posture data, between October 2013 and Febru-
ary 2014, and for which we are able to clearly identify
the affected organizations.

The Web Hacking Incidents Database (WHID) [31]:
This is an actively maintained cyber security incident
repository; its goal is to raise awareness of cyber secu-
rity issues and to provide information for statistical anal-
ysis. From the overall dataset we identify and extract
roughly 150 incidents, for which the reported dates are
aligned with our security posture data, between January
2014 and November 2014.

A breakdown of the incidents by type from each of
these datasets is given in Table 5. Note that Hackmaged-
don and WHID have similar categories while VCDB has
much broader categories.

Incident type SQLi Hijacking Defacement DDoS
Hackmageddon 38 9 97 59

WHID 12 5 16 45
Incident type Crimeware Cyber Esp. Web app. Else

VCDB 59 16 368 213

Table 3: Reported cyber incidents by category. Only the
major categories in each set are shown. The “Else” cat-
egory by VCDB represents incidents lacking sufficient
detail for better classification.

2.3 Data Pre-processing

Though our diverse datasets give us substantial visibility
into the state of security at an organizational level, the
diversity also presents substantial challenges in aligning
the data in both time and space. All of the security pos-
ture datasets – mismanagement and malicious activities
– record information at the host IP-address level; e.g.,
they reveal whether a particular IP address is blacklisted
on a given day, or whether a host at a specific IP address
is misconfigured. On the other hand, a cyber incident
report is typically associated with a company or organi-
zation, not with a specific IP address within that domain.

Conceptually, it is more natural to predict incidents for
an organization for the following reasons. Firstly, our
interest is in predicting incidents broadly defined as a
way to assess organizational cyber risk. Secondly, while
some IP addresses are statically associated with a ma-
chine, e.g., a web server, others are dynamically assigned
due to mobility, e.g., through WiFi. In the latter case pre-
dicting for specific IP addresses no longer makes sense.

This mismatch in resolution means that we will have
to (1) map an organization reported in an incident to a
set of IP addresses and (2) aggregate mismanagement
and maliciousness information over this set of addresses.
To address the first step we will first retrieve a sam-
ple IP address in the network of the compromised or-
ganization, which is then used to identify an aggrega-
tion unit – a set of IP addresses – that allows us to re-
cover the network asset involved in the incident. Sample
IP addresses are obtained by manually processing each
incident report, and the aggregation units are identified
by using registration information from Regional Inter-
net Registries (RIR) databases. These databases are col-
lected separately from ARIN [3], LACNIC [12], APNIC
[2], AFRINIC [1] and RIPE [18], who keep records of
IP address blocks/prefixes that are allocated to an orga-
nization. ARIN, APNIC, AFRINIC and RIPE databases
keep track of the IP addresses that have been allocated,
along with the organizations they have been allocated to,
labeled with a maintainer ID. LACNIC provides a less
detailed database, only keeping track of allocated blocks
and not the owners. In this case, we take the last alloca-
tion that contains our sample IP address – note a single
IP address might be reallocated several times, as part of
different IP blocks – i.e., the smallest block, as its owner.

2.3.1 Mapping Process

In the following paragraphs we explain in detail the ma-
nual process of (1): (1a) extracting sample IP addresses
through a number of examples, and (1b) identifying the
aggregation unit using the sample IP address. The ge-
neral outline of the process for (1a) is that we first read
the report concerning each incident, and extract the web-
site of the company involved. If the website is the in-
trusion point in the breach, or indicative of the compro-
mised network, then we take the address of this website
to be our sample IP address. The website is determined
to be indicative of the compromised network when the
owner ID for the sample IP address matches the reported
name of the victim network. Occasionally the victim net-
work can be identified separately regardless of the web-
site address, but in most cases this is found to be an ef-
fective way of quickly obtaining the owner ID.

Our first example [21] is a website defacement target-
ing the official website of the City of Mansfield, Ohio.
Since the point of intrusion is clearly the website, we
take its address as our sample IP address for this inci-
dent. Note that in this case the website might be ma-
naged by a 3rd party hosting company, a possibility dis-
cussed further when we explain the process to address
(1b). The second example [6] is on Evernote resetting all
user passwords following an attack on its online system.
For this incident we identify said domain (evernote.com),
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and trace it to an IP block in ARIN’s database registered
to Evernote Corporation. Since this network is main-
tained by Evernote itself, we take evernote.com to be our
sample IP address. Our final example [10] involves the
defacement of Google Kenya and Google Burundi web-
sites. As the report suggests, the hackers altered the DNS
records of the domains by hacking into the Kenya and
Burundi NICs. Since the attack was not through directly
compromising the defaced websites, we excluded this
incident – the victim in this incident is neither Google
Kenya nor Google Burundi, but the networks owned by
the NICs.

The above examples provide insight into the manual
process of mapping incident to a network address. For
a large portion of the reports the incident descriptor is
unique and should therefore be treated as such; this is
the main reason that such a mapping is primarily done
manually. For a significant portion (∼ 95%) of the re-
ports we are able to identify the compromised network
with a high level of confidence – in such cases either the
report explicitly cites the website as the intrusion point
(first example), or the network identified by the website
is registered under the victim organization (second exam-
ple). When neither of these conditions is satisfied, this
incident is excluded unless we can identify the victim
network through alternative means; such cases are few.
Overall our process is a conservative one: we only in-
clude an incident when there is zero or minimal ambigu-
ity. Finally, we also remove duplicate owner IDs in order
to avoid a bias against commonly used hosting compa-
nies (e.g. Amazon, GoDaddy) in our training and testing
process.

We now explain the process used in (1b) to map an ob-
tained sample IP address (as well as the identified owner
ID) to network(s) operated by a single entity. The ge-
neral outline of this process is as follows: we take all
the IP blocks that have the same owner ID listed in the
RIR databases, excluding sub-blocks that have been re-
allocated to other organizations, as our aggregation unit.
Continuing with the same set of examples, in the case
of Evernote (second example) we reverse search ARIN’s
database and extract all IP blocks registered to Evernote
Corporation, giving us a total of 520 IP addresses. For
the case of the City of Mansfield website, using records
kept by ARIN we see that its web address belongs to Lin-
ode, a cloud hosting company. Obviously Linode is also
hosting other entities on its network without reported in-
cidents. Nonetheless, in this case we take the network
owned by Linode as our aggregation unit, since we can-
not further differentiate the source IP address(es) more
closely associated with the city. The inclusion of such
cases is a tradeoff as excluding them would have left
us with too few samples to perform a meaningful study.
More on this is discussed in Section 2.4.

2.3.2 A global table of aggregation units

The above explains how we process the incident reports
to identify network units that should be given a label
of “1”, i.e., victim organizations. For training and test-
ing purposes we also need to identify network units that
should be given a label of “0”, i.e., non-victim organi-
zations. To accomplish this, we built a global table us-
ing information gathered from the RIRs that provides us
with a global aggregation rule, containing both victim
and non-victim organizations. Our global table contains
4.4 million prefixes listed under 2.6 million owner IDs.
Note that the number of prefixes in the RIR databases
is considerably larger than the global BGP routing ta-
ble size, which includes roughly 550,000 unique prefixes
[41]. This is partly due to the fact that the prefixes in
our table can overlap for those that have been reallocated
multiple times. In other words, the RIR databases can
be viewed as a tree indicating all the ownership alloca-
tions and reallocations over the IP address space. On the
other hand, the BGP table tends to combine prefixes that
are located within the same Autonomous System (AS),
in order to reduce routing table sizes. Therefore, the RIR
databases provide us with a finer-grained look into the IP
address space. By taking all the IP addresses that have
been allocated to an organization, and have not been fur-
ther reallocated, we can break the IP address space into
mutually exclusive sets, each owned and/or maintained
by a single organization. Out of the 4.4 million prefixes,
300,000 of them are assigned by LACNIC and therefore
have no owner ID. Combined with the 2.6 million owner
IDs from the other registries, the IP address space is bro-
ken, by ownership (or LACNIC prefixes), into 2.9 mil-
lion sets. Each set constitutes an aggregation unit that is
given a label of “0”, except for those already identified
and labeled as “1” by the previous process.

2.3.3 Aggregation Process

Once these aggregation units are identified, the second
step (2) is relatively straightforward. For each misma-
nagement symptom we simply calculate the fraction of
symptomatic IPs within such a unit. For malicious acti-
vities, we count the number of unique IP addresses listed
on a given day (by a single blacklist, or by blacklists
monitoring the same type of malicious activities) that be-
long to this unit; this results in one or more time series
for each unit. This step is carried out in the same way for
both victim and non-victim organizations.

2.4 A Few Caveats
As already alluded to, our data processing consists of a
series of rules of thumb that we follow to make the data
useable, some perhaps less clear-cut than others. Below
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we summarize the typical challenges we encounter in this
process and their possible implications on the prediction
performance.

As described in Section 2.3, the aggregation units
are defined using ownership information from RIR
databases. One issue with the use of ownership infor-
mation is that big corporations tend to register their IP
address blocks under multiple owner IDs, and in our pro-
cessing these IDs are treated as separate organizations.
In principle, as long as each of the aggregation units is
non-trivial in size, each can have its own security pos-
ture assessed. Furthermore, in some cases it is more ac-
curate to treat such IDs separately, since they might rep-
resent different sections of an organization under differ-
ent management. The opposite issue also exists, where
it may be impossible to distinguish between the network
assets of multiple organizations; recall, e.g. our first ex-
ample where multiple organizations are hosted on the
same network. As mentioned before, we have chosen
in such cases to use the owner ID as the aggregation unit.
While this mapping process is clearly non-ideal, it is a
best-effort attempt at the problem, and will instead pro-
vide the classifier with the average value of the features
over all organizations hosted on the identified network.

The labels for our classifier are extracted from real in-
cident reports, and we can safely assume that the amount
of false positives in these reports, if any, is negligible.
However data breach incidents are only reported when
an external source detects the data breach (e.g. website
defacements), or an organization is obligated to report
the incident due to private customer information getting
compromised. In general, organizations tend not to an-
nounce incidents publicly, and security incidents remain
largely under-reported. This will affect our classifier in
two ways: First, by failing to incorporate all incidents in
our training set, we may fail to identify all of the factors
that might affect an organization’s likelihood of suffer-
ing a breach. Second, when choosing non-victim organi-
zations, it is possible that we select some of them from
unreported victims, which could further impact the ac-
curacy of our classifier. We have tried to overcome this
challenge by using three independently maintained in-
cident datasets. Ultimately, however, this can only be
addressed when timely incident reporting becomes the
norm; more on this is discussed in Section 5.

Last but not least, all the raw security posture data
(mismanagement symptoms and blacklists) could con-
tain error, which we have no easy way of calibrating.
However, two aspects of the present study help mitigate
the potential impact of these noises. Firstly, we use many
different datasets from independent sources; the diver-
sity and the total volume generally have a dampening
effect on the impact of the noise contained in any sin-
gle source. Secondly and perhaps more importantly, our

ultimate verification and evaluation of the prediction per-
formance are not based on the security posture data, but
on the incident reports (with their own issues as noted
above). In this sense, as long as the prediction perfor-
mance is satisfactory, the noise in the input data becomes
less relevant.

3 Forecasting Methodology

The key to our prediction framework is the construction
of a good classifier. We will primarily focus on the Ran-
dom Forest (RF) method [37], which is an ensemble cla-
ssifier and an enhancement to the classical random de-
cision tree method. It uses randomly selected subsets
of samples to construct different decision trees to form
a forest, and is generally considered to work well with
large and diverse feature sets. In particularly, it has been
observed to work well in several Internet measurement
studies, see e.g., [57]. As a reference, we will also pro-
vide performance comparison by using the Support Vec-
tor Machine (SVM) [27], one of the earliest and most
common classifiers. To train a classifier, we need to iden-
tify a set of features from the measurement data. Below,
we first detail the set of features used, and then present
the training and testing procedures.

3.1 Feature Set

We shall use two types of features, a primary set and a
secondary set. The primary set of features consists of the
raw data, while the secondary set is derived or extracted
from the raw data, i.e., in the form of various statistics.
In all, 258 features are used, including 5 mismanagement
features, 180 primary features, 72 secondary features,
and a last feature on the organization size.

3.1.1 Primary Features (186)

Mismanagement symptoms (5). There are five symp-
toms; each is measured by the ratio between the number
of misconfigured systems and the total number of sys-
tems in an organization. For instance, for the untrusted
HTTPS certificates, this ratio is between the number of
misconfigured certificates over the total number of cer-
tificates discovered in an organization. Similarly, for
open SMTP mail relay this ratio is between the num-
ber of misconfigured mail servers and the total number
of mail servers. The only exception is in the case of open
recursive resolver: since we do not know the total num-
ber of open resolvers, this ratio is between the number
of misconfigured open DNS resolvers and the total num-
ber of IPs in an organization. These ratios are denoted as
mi ∈ [0,1]5 for organization i.
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Malicious activity time series (60 × 3). For each or-
ganization we collect three separate time series, one for
each malicious activity type, namely spam, phishing, and
scan. Accordingly, for organization i, its time series data
are denoted by rSP

i ,rPH
i ,rSC

i . These time series data are
directly fed in their entirety into the classifier. Several
examples of rSP

i are given in Fig. 1; these are collected
over a two-month (60 days) period and show the total
number of unique IPs blacklisted on each day over all
spam blacklists in our dataset.
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Figure 1: Examples of malicious activity time series of
three organizations; Y-axis is the number of unique IP
addresses listed on all spam blacklists in each day over a
60-day period.

Size (1). This refers to the size of an organization in
terms of the number of IP addresses identified within that
organization’s aggregation unit as outlined in the previ-
ous section. For organization i, this is denoted by si.

The relevance of these symptoms to an organization’s
security posture is examined more closely by comparing
their distributions among the victim and the non-victim
populations, as shown in Fig. 2. We see a clear difference
between the two populations in their untrusted HTTPS
and Openresolver distributions. This difference suggests
that these symptoms are meaningful distinguishers, and
thus hold predictive power. This is indeed verified later
when these two symptoms emerge as the most indicative
of the five. By contrast, the other three mismanagement
symptoms appear much less powerful.

The relevance of the malicious activity time series will
be examined more closely in the next section, within the
context of their secondary features. Lastly, the organi-
zation size can to some extent capture the likelihood of
an organization becoming a target of intentional attacks,
and is therefore included in the feature set.

3.1.2 Secondary Features (72)

In determining what type of statistics to extract to serve
as secondary features, we aim to capture distinct beha-
vioral patterns in an organization’s malicious activities,
particularly concerning their dynamic changes. To illu-
strate, the three examples given in Fig. 1 show drastically
different behavior: Org. 1 shows a network with consis-
tently low level of observed malicious IPs (and possibly

within the noise inherent in the blacklists), while Exam-
ples 2 and 3 show much higher levels of activity in gen-
eral. These two, however, differ in how persistent they
are at those high levels. Example 2 shows a network
with high levels throughout this period, while Example
3 shows a network that fluctuates much more wildly. In-
tuitively, such dynamic behavior reflects to a large degree
how responsive the network operators are to blacklisting,
i.e., time to clean up, time to resurfacing of malicious ac-
tivities, and so on.
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Figure 3: Extracting secondary features. The solid red
line indicates time-average of the signal while the two
dotted lines denote the boundary of different regions.
The region above is “bad” with higher-than-average ma-
licious activities, while the region below is “good” with
lower-than-average activities. Persistency refers to the
duration the time series persist in the same region.

These observed differences motivate us to collect
statistics summarizing such behavioral patterns by mea-
suring their persistence and change, e.g., how big is the
change in the magnitude of malicious activities over time
and how frequently does it change. To balance the ex-
pressiveness of the features and their complexity, we
shall do so by first value-quantizing a time series into
three regions relative to its time average: “good”, “nor-
mal” and “bad”. An illustration is given in Fig. 3 using
one of the examples shown earlier (Org. 3). The solid
line marks the average magnitude of the time series over
the observation period; the dotted lines then outline the
“normal” region, i.e., a range of magnitude values that
are relatively close (either from above or below) to its
time-average. The region above the top dotted line is a-
ccordingly referred to as the “bad” region, showing large
number of malicious IPs, and the region below the bot-
tom dotted line the “good” region, with a smaller number
of malicious IPs, both relative to its average1.

An additional motivation behind this quantization step
is to capture certain onset and departure of “events”, such
as a wide-area infection, or scheduled patching and soft-
ware update, etc. Viewed this way, the duration an orga-

1The choice on the size of the normal region may lead to differences
in classifier performance, which is discussed in more detail in Section
5.3. In most of our experiments ±20% of the time average is used.
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Figure 2: Comparison of mismanagement symptoms between the victim and non-victim populations. There is a clear
separation under the first two, while the other three appear to be much weaker predictors.
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Figure 4: Profile of selected temporal features extracted from the scanning time series over the period Nov. 13-Dec.13.

nization spends in a “bad” region could be indicative of
the delay in responding to an event, and similarly, how
frequent it re-enters a “bad” region could be indicative
of the effectiveness of the solutions taken in remaining
clean.

Accordingly, for each region we then measure the ave-
rage magnitude (both normalized by the total number of
IPs in an organization and unnormalized), the average
duration that the time series persists in that region upon
each entry (in days), and the frequency at which the time
series enters that region. This results in four summary
statistics for each region, thus 12 values for each time se-
ries. Since each organization has three time series, one
for each malicious activity type, we obtain a total of 36
derived features per organization i. These will be collec-
tively denoted by the feature vector Fi. Note that the set
of 36 values are collected from time series of a certain
duration. Here we further distinguish between statistics
extracted from a longer period of time vs. from a shorter,
most recent period of time. In this study we use two such
feature vectors, one referred to as Recent-60 features that
are collected over a period of 60 days (typically leading
up to the time of incident) and the other Recent-14 fea-
tures collected over a period of 14 days (leading up to the
time of incident).

To give a sense of why these features may be expected
to hold predictive power, we similarly compare the dis-
tribution of these feature values among the victim and
non-victim populations. Fig. 4 shows this comparison
for four examples: un-normalized magnitude in a bad
period, normalized magnitude in a good period, average
duration during bad periods, and the frequency of enter-

ing a bad period. We see that in each case there is a clear
difference between the two populations in how these fea-
ture values are distributed, e.g., victim organizations tend
to have longer bad periods, indicative of slow response
time, and also higher bad/good magnitudes, etc. As we
discuss further in Section 4.4, these features have varying
degrees of influence over the prediction outcome.

3.2 Training and Testing Procedure
We now describe the construction of the predictor using
the set of features defined above. This consists of a train-
ing step and a testing step. The training step uses the
following two sets of subjects.

A subset of incident or victim organizations. This will
be referred to as Group(1) or the incident group. De-
pending on the experiments, this subset may be selected
from one of the three incident datasets (if we train the
classifier and conduct testing based solely on one inci-
dent dataset), or from the union of all three. This subset
is selected based on the time stamps of the reported in-
cidents, and its size is determined by a training-testing
ratio, e.g., 70-30 split or 50-50 split of the given dataset.
If we use a 50-50 split, it means that we select the first
half (in terms of time of occurrence) of the incidents as
Group(1); a 70-30 split means using the first 70% of in-
cidents as Group(1). The remaining victim organizations
are used in the testing step.

A randomly selected set of non-victim organizations
(with size comparable to that of Group(1) in any given
experiment). These are taken from the global table des-
cribed in Section 2.3.2. This will be referred to as
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Group(0), or the non-incident group. As mentioned ear-
lier, since there are close to three million non-victim
organizations compared to less than a thousand victim
organizations, the random sub-sampling is necessary to
avoid the common problem of imbalance in the machine
learning literature2; this issue has also been discussed in
[51]. This random selection of non-victim organizations
is repeated numerous times, each time training a diffe-
rent classifier. The reported testing results are averages
over all these versions.

For a victim organization i in Group(1), its complete
feature set xi includes the mismanagement symptoms mi,
the three time series rSP

i ,rPH
i ,rSC

i over the two months
prior to the month in which the incident in i occurred3,
secondary features Fi collected over the same time period
as the time series, namely Recent-60, and that collected
over the two weeks prior to the month of the incident
occurrence, namely Recent-14. Each such feature set is
associated with the label (or ground-truth or group infor-
mation in machine learning) Li = 1 for incident. For a
non-victim organization j in Group(0), its complete fea-
ture set x j consists of exactly the same components listed
above, with the only difference that the time series and
the secondary features are for the two months prior to
the month of the first incident in Group(1). It is also as-
sociated with the label L j = 0 for non-incident.

The collections of {[xi,Li]} and {[x j,L j]} constitute
the training data used to train the classifier. The testing
step then uses the following two inputs: (1) The subset
of victim organizations not included in Group(1); denote
this group by Group(1c). (2) A randomly selected set of
non-victim organizations not used in training. Unlike in
training where we try to keep a balance between the vic-
tim and non-victim sets, during testing we use a much
larger set of non-victim organizations to better character-
ize the classifier performance.

For these two subjects their complete feature sets
xi are obtained in exactly the same way as for those
used in training. For the non-victim organizations se-
lected for testing, the features are collected over the two
months prior to the incident month of the first incident
in Group(1c). For the victim organization used for test-
ing we further consider two scenarios. In the short-term
forecast scenario, we collect these features over the two
months prior to the incident month for an organization in
Group(1c), while in the long-term forecast scenario, we
collect these features over the two months prior to the
incident month of the first incident in Group(1c). In the

2If we use all three million non-victims in training, the resulting
classifier will simply label all of them as non-victims, and achieve per-
formance very close to 100% overall. But clearly this classifier would
be of little use, as it will also have 0 true positive probability.

3Most incident occurrences in our dataset are timestamped with
month and year information.

short-term forecast scenario, since in each incident test
case the incident occurred within a month of collecting
the features, the TP rate is essentially for a forecasting
window of one month. In the long-term forecast sce-
nario, an incident may occur months after collecting the
features (up to 12 months in the case of VCDB), thus the
TP rate is for a forecasting window of up to a year. Note
that the short-term forecast can be repeatedly done over
time to produce prediction for the immediate future. The
differences between these two forecast schemes are also
illustrated in Fig. 5.
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Figure 5: Feature extraction, short-term and long-term
forecasting. In training, features are extracted from the
most recent period leading up to an incident. In testing,
the same is done when we perform short-term forecast.
In long-term forecast, features are extracted from periods
leading up to the time of the first incident used in testing.

These inputs are then fed into the classifier to produce
a label (or prediction). The output of Random Forest is
actually a risk probability; a threshold is then imposed to
obtain a binary label. For instance, if we set the thresh-
old at 0.5, then all output > 0.5 means a label of 1. By
moving this threshold we obtain different prediction per-
formances, which constitute a ROC curve.

4 Incident Prediction

In this section, we present our main prediction results
and investigate their various implications.

4.1 Main Results

Using the methodology outlined in the previous section,
we performed prediction using the three incident datasets
separately, as well as collectively. When used collec-
tively, we removed duplicate reports of the same inci-
dent whenever applicable. The separation between train-
ing and testing for each dataset is done chronologically,
as shown in Table 4. For each dataset, these separations
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result in an approximate 50-50 split of the victim set be-
tween the training and testing sample sizes. In addition,
for each test we randomly sample non-victim test cases
from the non-victim organization set.

Hackmageddon VCDB WHID
Training Oct 13 – Dec 13 Aug 13 – Dec 13 Jan 14 – Mar 14
Testing Jan 14 – Feb 14 Jan 14 – Dec 14 Apr 14 – Nov 14

Table 4: Chronological separation between training and
testing samples for each incident dataset; the split is
roughly 50-50 among the victim population.

There is one point worth clarifying. When processing
non-sequential data, the split of samples for the purpose
of training and testing is often done randomly in the ma-
chine learning literature. In our context this would mean
to choose a later incident for training and use an earlier
incident for testing. Due to the sequential nature of our
data, we intentionally and strictly split the data by time:
earlier ones are for training and later ones for testing.
Because of this, our testing results are indeed “predic-
tion” results; for the same reason, we did not set aside a
third, separate dataset for the purpose of “more testing”
as is sometimes done in the literature, as this purpose is
already served by the second, test dataset.

The prediction results are summarized in the set of
ROC (receiver operating characteristic) curves shown in
Fig. 6. Recall that the RF classifier outputs a probabi-
lity of incident for each input sample. To test its accu-
racy, a threshold is adopted that maps this value into a
binary prediction: 1 if it exceeds the threshold and 0 oth-
erwise. This binary prediction is then compared against
the ground-truth: a sample from an incident dataset has
a true label of 1, while a sample from the non-victim or-
ganization set has a true label of 0. Since our non-victim
set for training (to balance) is randomly selected from the
total non-victim population, the above test is repeated 20
times for a given threshold value, each time for a differ-
ent random non-victim set. The average TP and FP over
these repeated tests form one point on the ROC curve.

We see the prediction performance varies slightly be-
tween the datasets, but remain very satisfactory, gene-
rally achieving combined (TP, FP) values of (90%,10%)
or (80%,5%). In particular, when we combine the three
datasets, we can achieve an accuracy level of (88%,4%).
A summary of some of the most desirable operating
points are given in Table 5.

The above prediction results substantially outperform
what has been shown in the literature to date; e.g., the
web maliciousness prediction study in [51] reported a
combination of (66%,17%) for (TP, FP). It is also worth
pointing out that TP and FP values are independent of the
sizes of the respective populations of the victim and non-
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Figure 6: Prediction results. There are variations be-
tween the datasets, but an operating point – combined
(TP, FP) values – of (90%,10%) or (80%,5%) is achiev-
able. In particular, when we use all three datasets to-
gether, we can achieve an accuracy level of (88%,4%).

Accuracy Hackmageddon VCDB WHID All
True Positive (TP) 96% 88% 80% 90%
False Positive (FP) 10% 10% 5% 10%

False Negative (FN) 4% 12% 20% 10%
Overall Accuracy 90% 90% 95% 90%

Table 5: Best operating points of the classifier for the
best combinations of (TP, FP) values.

victim organizations (these are conditional probability
estimates), whereas the overall accuracy does depend on
the two population sizes as it is the unconditioned prob-
ability of making correct predictions. Since based on our
dataset we have a minuscule victim population (account-
ing for � 1% of the overall population), the overall ac-
curacy is simply ∼ (1-FP). Therefore, if the overall ac-
curacy is of interest, the best classifier would be a naive
one that simply labels all inputs as “0”. This would lead
to 0% TP, 0% FP, and an overall accuracy of > 99%.
However, despite achieving maximum overall accuracy,
such a classifier is clearly useless. This point is also em-
phasized in [51] for similar reasons. Additionally, in the
context of forecasting, where the goal is to facilitate pre-
ventative measures at an organizational level, having a
high TP is perhaps more relevant than having a low FP;
this is in contrast to spam detection, where the cost of FP
is much higher than a missed detection. Therefore, the
three measures in Table 5 should be taken as a whole.

4.2 Impact of Training:Testing Ratio
The results in Fig. 6 are obtained under a 50-50 split of
the victim set into training and testing samples, based on
the incident time. Furthermore, they are obtained using
the short-term forecasting method described in Section
3.2. In general, one can improve the prediction perfor-
mance by increasing the training sample size. There is
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no exception in our study, as shown in Fig. 7 where we
compare results from a 70-30 training and testing sam-
ple split of the victim set to that from the 50-50 split, for
the VCDB data. A best operating point is now around
(94%,10%), indicating a clear improvement. Note that,
a 70-30 split is not generally regarded high in the ma-
chine learning literatures, see e.g., in [57] a 90-10 split
was used. We however believe a 50-50 split gives a more
objective measure of the prediction performance.
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Figure 7: The impact of larger training set and size
of forecasting window; all results are obtained using
VCDB. The three curves: (1) using a 50-50 split of the
victim set between training and testing under the short-
term forecasting scenario (this curve is identical to the
one in Fig 6); (2) using a 70-30 split of the victim set
between training and testing under the short-term fore-
casting scenario; (3) using a 50-50 split of the victim set
between training and testing under the long-term fore-
casting scenario.

4.3 Short-term vs. Long-term Forecast
Also shown in Fig. 7 are our long-term forecasting re-
sults under a 50-50 training and testing sample split of
the victim set, again for VCDB. As seen, the predic-
tion performance holds even when we move from a one-
month to a 12-month forecasting window. The use of
mismanagement symptoms and long-term malicious be-
haviors in the features contributes to this: they generally
remain stable over time and have relatively high impor-
tance in the prediction, discussed in greater detail in the
next section.

4.4 Relative Importance of the Features
In addition to the prediction output, the RF classifier also
outputs a normalized relevance score for each feature
used in training [17]; the higher the value, the more im-
portant the feature in the prediction. In this section, we
examine these scores more closely. This study will fur-
ther help us understand the extent to which different fea-

tures determine the chance of an organization becoming
breached in the near future. For brevity, the experiments
presented in this section are based on a combination of
all three datasets.

The importance of each category of features is sum-
marized in Table 6. We make a number of interesting ob-

Feature category Normalized importance
Mismanagement 0.3229
Time series data 0.2994
Recent-60 secondary features 0.2602
Organization size 0.0976
Recent-14 secondary features 0.02

Table 6: Feature importance by category. The misman-
agement features are the most important category in pre-
diction. Secondly, the Recent-60 secondary features are
almost as important as the time series data; the former
capture dynamic behavior over time within an organiza-
tion whereas the latter capture synchronized behavior be-
tween malicious activities of different organizations.

servations. First, note that the mismanagement features
stand out as the most important category in prediction.
Second, the Recent-60 secondary features are almost as
important as the time series data, despite the fact that the
former are derived from the latter. This is because the use
of time series data has the effect of capturing synchro-
nized behavior between malicious activities of different
organizations, while the secondary features are aimed at
capturing the dynamic behavior over time within an orga-
nization itself. That the latter adds value to the predictor
is thus validated by the above importance comparison.
Last but not least, the Recent-60 features appear much
more important than Recent-14 features.

A closer look into each category reveals that among
the mismanagement features, untrusted HTTPS is by
far the most important (0.1531), followed by Openre-
solver (0.0928), DNS random port (0.0469), Mail relay
(0.0169), and BGP misconfig. (0.0132). The more sig-
nificant role of untrusted HTTPS in prediction as com-
pared to Openresolver is consistent with the bigger dif-
ference in distributions seen earlier in Fig. 2; that is,
a victim organization tends to have a higher percentage
of mis-configured HTTPS for their network assets. A
possible explanation is that a majority of the incidents in
our dataset are web-page breaches; these correlate with
the untrusted HTTPS symptom, which reflect poorly ma-
naged web systems.

Similarly, a closer look at the secondary features (both
Recent-60 and Recent-14) suggests that the dynamic fea-
tures (duration and frequency together, totaling 0.1769)
are far more important than static features (magnitude,
totaling 0.0834). This suggests that dynamic changes
over time, or in other words, organizations’ response
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time in terms of cleaning up the origin of their malicious
activities, is more indicative of security risks.

4.5 The Power of Dataset Diversity
A question that naturally arises is what if only a sin-
gle feature category is used to train the classifier. For
instance, given the prominent score of mismanagement
features in prediction, would it be sufficient to only use
these in prediction? The answer, as shown in Fig. 8,
turns out to be negative. In this figure, we compare the
prediction performance by using the following four cat-
egories of features separately to build the classifier: mis-
management, time series data, organization size, and the
entire set of secondary features. While it is expected
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Figure 8: Independent prediction performance using
only one set of features. The secondary features are
shown to be the most powerful in prediction when used
alone. Mismanagement features perform the worst, even
though they have the highest importance factor. This is
because the factors reflect conditional importance, given
the presence of other features. This means that misma-
nagement features alone are poor predictors but they add
valuable information to the other features.

that using only one feature set leads to worse predic-
tion performance, it is somewhat surprising that the sec-
ondary features are more powerful than mismanagement
features or the time series when used separately. Recall
that the secondary features were designed specifically to
capture the organizational behavior, including their re-
sponsiveness and effectiveness in dealing with malicious
acti-vities. One explanation of this result is that the hu-
man and process element of an organization is the most
slow-changing compared to the change in the threat land-
scape, and thus holds the most predictive power.

Note that this is not inconsistent with the relative im-
portance given in Table 6, as the latter is a measure of
conditional importance of one feature given the presence
of other features. In other words, the relative importance
suggests how much we lose in performance if we leave
out a feature, whereas Fig. 8 shows how well we do when

using only that feature. What’s seen here is that misman-
agement features add very significant (orthogonal) infor-
mation to the other features, but they are poor predictors
in and by themselves. Perhaps most importantly, the re-
sults in Fig. 8 validate the idea of using a diverse set of
measurement data that collectively form predictive des-
criptions of an organization’s security risks.

4.6 Comparison with SVM
As a reference, we also trained classifiers using SVM;
the prediction results are much poorer compared to using
RF. For instance, using the VCDB data, the best operat-
ing point under SVM (with a 50-50 training-testing split
of the victim population and short-term forecasting) is
around (70%, 25%). This observation is consistent with
existing literature, see e.g., [57].

5 Discussion

5.1 Top Data Breaches of 2014
In Fig. 9, we plot the distribution (CDF) of the predic-
tor output values for the VCDB victim set and a ran-
domly selected non-victim set used in testing. We use
an example threshold of 0.85 for illustration. All points
to the right of a threshold is labeled “1”, indicating
positive prediction, and all to its left “0”. Three inci-
dent examples are also shown, falling into the categories
of true-positive (ACME), false-positive (AXTEL), and
false-negative (BJP Junagadh).

Also highlighted in Fig. 9 are the top five data
breaches of 2014 [43], namely JP Morgan Chase, Sony
pictures, Ebay, Home Depot, and Target. Using the
suggested threshold value, our prediction method would
have correctly labeled four of these incidents, and only
narrowly missed the Target incident. It is worth noting
that the Target incident was brought on by one of its con-
tractors; however, the fact that Target did not have a more
secure vendor policy in place is indicative of something
else amiss (e.g., lack of consistent procedure between IT
and procurement) that could also have manifested itself
in the data and features we examined.

These examples highlight that, in addition to enabling
proactive measures by an organization, there are poten-
tial business uses of the prediction method presented in
this study. The first is in vendor or third party evalua-
tion. Consider Online Tech, the hosting service used by
JP Morgan Chase, as an example. As shown in Fig. 9,
Online Tech posed very high security risks; this infor-
mation could have been used in determining whether to
use this vendor. Furthermore, information provided by
our prediction method can help underwriters better cus-
tomize terms of a cyber-insurance policy. The insurance
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Figure 9: Distribution of predictor outputs with an example threshold value 0.85 (with 91% TP, 10% FP). On the curve
with circles (non-victim) to the right of the threshold are FPs; on the curve with squares (victim) to the right of the
threshold are TPs. Three types of incidents are shown, presenting true-positive (ACME), false-positive (AXTEL), and
false-negative (BJP Junagadh). Also highlighted are top data breach events in 2014.

payout in the case of Target was reported to be around
$60M; with this much at stake, it is highly desirable to
be able to accurately predict the risk of an insured and
adjust terms of the contracts.

5.2 Prediction by Incident Type

For a majority of the incident types, we do not have
enough sample points to serve both training and testing
purposes, except for the 368 reports of the type “web ap-
plications incident” in VCDB. This allows us to train a
classifier to predict the probability of an organization be-
ing hit with a “web app incident”. The corresponding
results are similar in accuracy to those obtained earlier
(e.g., at (92%, 11%)). This suggests that our methodo-
logy has the potential to make more precise predictions
as we accumulate more incident data.

Similarly, the current forecasting methodology is not
aimed at predicting highly targeted attacks motivated by
geo-political reasons (e.g., the Sony Picture breach). Nor
does it use explicit business sector information (e.g., a
bank may be a bigger target than a public library sys-
tem). In this sense, our current results represent more the
likelihood of an organization falling victim provided it is
being targeted. However, an ever increasing swath of the
Internet is rapidly under cyber threats to the point that
all major organizations should simply assume that they
are someone’s target. The use of explicit business sec-
tor information does allow us to make more fine-grained
predictions. In a more recent study [48], we leverage
a broad array of publicly available business details on
victim organizations reported in VCDB, including busi-
ness sector, employee count, region of operation and web
statistics information from Alexa Web Information Ser-
vice (AWIS), to generate risk profiles, the conditional
probabilities of an organization suffering from specific
types of incident, given that an incident occurs.

5.3 Robustness against adversarial data
manipulation and other design choices

One design choice we made in the feature extraction pro-
cess is the parameter δ which determines how a time se-
ries is quantized to obtain secondary features. Below we
summarize the impact of of having different δ values. In
the results shown so far, a value of δ = 0.2 is used. In
Fig. 10 we test the cases with δ = 0.1 and δ = 0.3. We
see that this parameter choice has relatively minor effect:
with δ = 0.3 a desirable TP/FP combination is around
(91%,9%), and for δ = 0.1, we have (86%,6%). It ap-
pears that having a higher value of δ leads to slightly
better performance; a possible explanation is that quan-
tizing using δ = 0.2 retained more noise and fluctuation
in the time series, while quantizing using δ = 0.3 may be
more consistent with the actual onset of events.
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Figure 10: Experiment results under different δ.

Throughout the paper we have assumed the data are
truthfully reported (though with noise/error). It is thus
reasonable to question how robust is the prediction
against possible (malicious) manipulation of the data
used for training, a subject of increasing interest and
commonly referred to as adversarial machine learning.
For instance, an entity may attempt to set up fake net-
works with clean data (no malicious activities) but with
fake reported incidents, and vice versa, to mislead the
classifier. Without presenting a complete solution, which
remains a direction of future research, below we test the
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robustness of our current prediction technique using two
scenarios: (1) In the first we randomly flip the labels of
victim organizations from 1 to 0; those flipped to 0 are
now part of the non-victim group, thus contaminating the
training data. (2) In the second scenario we do the op-
posite: randomly flip the labels of non-victim organiza-
tions, effectively adding them to the victim group. Inci-
dentally, the former scenario is akin to under-reporting
by randomly selected organizations.

Experimental results suggest no performance differ-
ence for case (1). The reason lies in the imbalance be-
tween the victim and non-victim population sizes. Re-
call that because of this, in our experiment we randomly
select a subset of non-victim organizations with size
comparable to the victim organizations (on the order of
O(1,000)). Then in each training instance, the expected
number of victims selected as part of the non-victim set
is no more than Nv ·O(1,000)/N, with Nv denoting the
number of fake non-victims and N the total number of
non-victims. Since N ∼ O(1,000,000), even if one is
able to inject Nv ∼ O(100) victims into the non-victim
population, on average no more than one fake non-victim
will actually be selected for training, resulting in negli-
gible contamination effect unless such alterations can be
done on a scale larger than the actual victim population.

For case (2), we indeed observe performance degrada-
tion, albeit slight, in the true positive, as shown in Fig.
11 at the 20% contamination level (20% of non-victim
organization labels are flipped).
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Figure 11: Adversarial case (2) with 20% contamination.

5.4 Incident Reporting

One of the main obstacles in studies of this nature is the
acquisition of high quality incident data, without which
we can neither train nor verify with confidence. Our re-
sult here demonstrates that machine learning techniques
have the power to make accurate incident forecasts, but
data collection is lagging by comparison. The research
community would benefit enormously from more sys-
tematic and uniform incident reporting.

6 Related Work

As mentioned in the introduction, a large part of the lit-
erature focuses on detection rather than prediction. The
work in [44] is one such example. Among others, Lee et
al. [36] built sophisticated Hidden Markov Model tech-
niques to detect spam deobfuscation, and in [57] Wang
et al. applied (adversarial) machine learning techniques
to the detection of malicious accounts on Weibo.

Relatively fewer studies have focused on prediction;
even fewer are on the type of prediction presented in
this paper where the predicted variable (classifier out-
put) is of a different type from the input variables (fea-
ture input). For instance, the predictive IP-based black-
list works in [50, 30] have the same input and output
variables (content of the blacklist). Similarly, in [54]
the evolution of spam of a certain prefix is predicted
using past spam activities as input. Predictive studies
similar to ours include the aforementioned [51] that pre-
dicts whether a website will turn malicious by using tex-
tual and structural analysis of a webpage. The perfor-
mance comparison has been given earlier. It is worth
pointing out that the intended applications are also differ-
ent: whereas webpage maliciousness prediction can help
point to websites needing improvement or maintenance,
our prediction on the organizational level can help point
to networks facing heightened probability of a broader
class of security problems. Also as mentioned earlier,
our study [48] examines the prediction of incident types,
conditional on an incident occurring, by using an array
of industry, business and web visibility/population infor-
mation. Other predictive studies include [28], where it
is shown that by analyzing user browsing behavior one
can predict whether a user will encounter a malicious
page (attaining a 87% accuracy), [52], where risk fac-
tors are identified at the organization level (industry sec-
tor and number of employees) and the individual level
(job type, location) that are positively or negatively cor-
related with experiencing spear phishing targeted attacks,
and [53], where risk factors for web server compromise
are identified through analyzing features from sampled
web servers.

Also related are studies on reputation systems and pro-
filing of networks. These include e.g., [26], a reputation
assigning system trained using DNS features, reputation
systems [8, 9] based on monitoring Internet traffic data,
and those studied in [29, 46].

7 Conclusion

In this study, we characterize the extent to which cyber
security incidences can be predicted based on externally
observable properties of an organization’s network. Our
method is based on 258 externally measurable features
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collected from a network’s mismanagement symptoms
and malicious activity time series. Using these to train a
Random Forest classifier, it is shown that we can achieve
fairly high accuracy, such as a combination of 90% true
positive rate and 10% false positive rate. We further an-
alyzed the relative importance of the features sets in the
prediction performance, and showed our prediction out-
come for the top data breaches in 2014.
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APPENDIX

Incident Dataset
A snapshot of sample incident reports from VCDB
dataset (Table 7).

Incident type Time Report summary
Web site defacement May 2014 ”ybs-bank.com” a Malaysian

imitation of the real Yorkshire Bank website
Hacking Apr. 2014 4chan hacked by person targeting information

about users posting habits.
Web site defacement N/A 2013 AR Argentina Military website hacked.
Server breach N/A 2013 The systems of AdNet Telecom, a major

Romania-based telecommunications services
provider, have been breached.

Web site hacked May 2013 Albany International Airport website hacked.
Private key stolen Mar. 2014 Amazon Web Services, Inc.
Phishing N/A 2013 Bolivian tourist site was compromised and

a fraudulent secret shopper site was installed.

Table 7: Incidents from the VCDB Community Database
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Abstract
Most modern malware download attacks occur via the
browser, typically due to social engineering and drive-
by downloads. In this paper, we study the “origin” of
malware download attacks experienced by real network
users, with the objective of improving malware down-
load defenses. Specifically, we study the web paths fol-
lowed by users who eventually fall victim to different
types of malware downloads. To this end, we propose a
novel incident investigation system, named WebWitness.
Our system targets two main goals: 1) automatically
trace back and label the sequence of events (e.g., visited
web pages) preceding malware downloads, to highlight
how users reach attack pages on the web; and 2) leverage
these automatically labeled in-the-wild malware down-
load paths to better understand current attack trends, and
to develop more effective defenses.

We deployed WebWitness on a large academic net-
work for a period of ten months, where we collected and
categorized thousands of live malicious download paths.
An analysis of this labeled data allowed us to design a
new defense against drive-by downloads that rely on in-
jecting malicious content into (hacked) legitimate web
pages. For example, we show that by leveraging the inci-
dent investigation information output by WebWitness we
can decrease the infection rate for this type of drive-by
downloads by almost six times, on average, compared to
existing URL blacklisting approaches.

1 Introduction
Remote malware downloads currently represent the most
common infection vector. In particular, the vast majority
of malware downloads occur via the browser, typically
due to social engineering attacks and drive-by down-
loads. A large body of work exists on detecting drive-
by downloads (e.g., [10, 11, 19, 23, 33, 40]), and a few
efforts have been dedicated to studying social engineer-
ing attacks [6, 31, 37]. However, very little attention has

been dedicated to investigating and categorizing the web
browsing paths followed by users before they reach the
web pages from which the attacks start to unfold.
Our Work. In this paper, we study the web paths fol-
lowed by real users that become victims of different
types of malware downloads, including social engineer-
ing and drive-by downloads. We have two primary goals:
1) provide context to the attack by automatically identi-
fying and labeling the sequence of web pages visited by
the user prior to the attack, giving insight into how users
reach attack pages on the web; and 2) leverage these an-
notated in-the-wild malware download paths to better un-
derstand current attack trends and to develop more effec-
tive defenses.

To achieve these goals we propose a novel malware
download incident investigation system, named WebWit-
ness, that is designed to be deployed passively on en-
terprise scale networks. As shown in Figure 1, our sys-
tem consists of two main components: an attack path
traceback and categorization (ATC) module and a mal-
ware download defense (MDD) module. Given all (live)
network traffic generated by a user’s browsing activities
within a time window that includes a malware download
event, the ATC module is responsible for identifying and
linking together all HTTP requests and responses that
constitute the web path followed by the user from an
“origin” node (e.g., a search engine) to the actual mal-
ware download page, while filtering out all other irrele-
vant traffic. Afterwards, a statistical classifier automati-
cally divides all collected malware download paths into
update, social engineering and drive-by attacks. We refer
to the output of the ATC module as annotated malware
download paths (AMP).

The AMPs are continuously updated as new malware
downloads are witnessed in the live traffic, and can there-
fore be used to aid the study of recent attack trends. Fur-
thermore, the AMP data is instrumental in designing and
building new defenses that can be plugged into the MDD
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Figure 1: WebWitness – high-level system overview.

module (see Figure 1). As an example, by investigating
real-world web paths leading to drive-by malware down-
loads, we found that it is often possible to automatically
trace back the domain names typically used in drive-
by attacks to inject malicious code into compromised
web pages (e.g., via the source of a malicious script

or iframe tag). The injected code is normally used as
an attack trigger, directing the browser towards an actual
exploit and finally to a “transparent” malware download
and execution. We empirically show that automatically
discovering and promptly blocking the domain names
serving the injected malicious code is a much more ef-
fective defense, compared to the more common approach
of blacklisting the URLs that directly serve the drive-by
browser exploits themselves or the actual malware exe-
cutables (see Section 4.4).
Main Differences from Previous Work. Most previ-
ous works that study the network aspects of malware
downloads focus on building malware detection systems,
especially for drive-by exploit kits and related attacks
(e.g., [13, 30, 38, 40]).

Our work is different from these studies, because our
goal is not to build a drive-by detection system; rather,
we aim to passively trace back and automatically label
the network events that precede different types of in-the-
wild malware downloads, including both drive-by and
social engineering attacks. We show that our investiga-
tion approach can aid in the design of more effective mal-
ware download defenses.

Some recent studies focus primarily on detecting ma-
licious redirection chains as a way to identify possible
malware download events [16,18,20,36]. WebWitness is
different because we devise a generic path trace back ap-
proach that does not rely on the properties of redirection
chains. Our work aims to provide context around mali-
cious downloads by reconstructing the full web path (not
just redirection chains) that brought the victim from an
“origin” page to the download event. In addition Web-
Witness is able to classify the cause of the download
(e.g., drive-by or social engineering) and to identify the
roles of the domains involved in the attack (e.g., trick
page, code injection, exploit, or malware hosting). We
further discuss related work in Section 6.

Summary of Contributions. In summary, we make the
following contributions:

• We investigate the web paths followed by real net-
work users who eventually fall victim to different
types of malware downloads, including social engi-
neering and drive-by downloads. Through this in-
vestigation, we provide quantitative information on
attack scenarios that have been previously explained
only anecdotally or through limited case studies.

• To enable a continuous collection and study of web
paths leading to malware download attacks, we
build a system called WebWitness. Our system can
automatically trace back and categorize in-the-wild
malware downloads. We show that this information
can then be leveraged to design more effective de-
fenses against future malware download attacks.

• We deployed WebWitness on a large academic net-
work for a period of ten months, where we col-
lected and categorized thousands of live malicious
download paths. Using these web paths, we were
able to design a new defense against drive-by down-
loads that rely on injecting malicious content into
(hacked) legitimate web pages. For example, we
show that by leveraging the incident investigation
information output by WebWitness, on average we
can decrease the infection rate for this type of drive-
by downloads by almost six times, compared to ex-
isting URL blacklisting approaches.

2 In-The-Wild Malware Download Study
Goals: In this section we report the results of a large
study of in-the-wild malware downloads captured on a
live academic network. Through this study, we aim to
create a labeled dataset of download paths that can be
used to design (including feature engineering), train, and
evaluate the ATC and MDD modules of WebWitness
shown in Figure 1. A detailed discussion of ATC and
MDD is reported in Sections 3.

2.1 Collecting Executable File Downloads
To collect executable file downloads we use deep packet
inspection to perform on-the-fly TCP flow reconstruc-
tion, keeping a buffer of all recent HTTP transactions
(i.e., request-response pairs) observed on a live network.
For each transaction, we check the content of the re-
sponse to determine if it contains an executable file. If
so, we retrieve all buffered HTTP transactions related to
the client that initiated the download. Namely, we store
all HTTP traffic a client generated preceding (and includ-
ing) an executable file download; this allows us to study
what web path users follow before falling victim to mal-
ware downloads. All data is saved in accordance with the
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policies set forth by our Institutional Review Board and
are protected under a nondisclosure agreement.

2.2 Identifying Malicious Executables
Since many legitimate applications are installed or up-
dated via HTTP (e.g., Windows Update), we immedi-
ately exclude all executable downloads from a manually-
compiled whitelist of domain names consisting of ap-
proximately 120 effective second level domains (e2LDs)
of popular benign sites (e.g., microsoft.com, google.
com, etc.). For the remaining downloads, we scan
them with more than 40 antivirus (AV) engines, using
virustotal.com. In addition, we rescan them period-
ically because many “fresh” malware files are not im-
mediately detected by AV scanners, allowing us to also
take into account some “zero-day” downloads. We label
a file as malicious if at least one of the top five AV ven-
dors (w.r.t. market share) and a minimum of two other
AVs detect it as malicious. The remaining downloads
are considered benign until the rescan. In addition, we
discard binary samples that are assigned labels that are
too generic or based purely on AV detection heuristics.

2.3 Overview of Study Data
To gather our study data we deployed our collection
agent (Section 2.1) on a large academic network serv-
ing tens of thousands of users for a period of 6 months.
Notice that the system was deployed for a total of 10
months, with the study conducted in the first 6 months
and the evaluation in the 4 months that followed (see Sec-
tion 4 details on the evaluation). During these 6 months,
we collected a total of 174,376 executable downloads
from domains that were not on our whitelist. Using
the malicious executable identification process defined in
Section 2.2, we labeled 5,536 downloads as malicious.

However, many of these malicious downloads were re-
lated to adware. As we are primarily interested in study-
ing malware downloads, because they are potentially the
most damaging ones, we devised a number of “best ef-
fort” heuristics to separate adware from malware. For
example, given a malicious file, if the majority of AV
labels contain the term “adware”, or related empirically
derived keywords that identify specific unwanted appli-
cations (e.g., “not-a-virus”, “installer”, “PUP”, etc.), we
label the file as adware. The malicious executables not
labeled as adware by our heuristics were manually re-
viewed to determine if they were truly malware. This re-
sulted in 1,064 malware downloads, with a total of 533
unique samples.

For these 533 unique malware downloads, we per-
formed extensive manual analysis of their download
paths, including reverse engineering web pages, heavy
javascript deobfuscation, complex plugin content analy-
sis, etc. This time-consuming analysis produced a set of

labeled paths, with 164 drive-by, 41 social engineering
and 328 update/drop malware download events.
Study Data Limitations: Our collection agent was de-
ployed on an existing production network monitoring
sensor. This sensor had limited hardware resources; in
addition, our data collection system had to run along-
side production software whose functionality could not
be disrupted. We therefore collected downloads only
during off-peak hours, due to traffic volumes that would
oversubscribe the sensor and result in dropped packets
during other periods of the day. Thus, the malicious
downloads in our study represent only a sample of the
ones that occurred during the six month monitoring pe-
riod. In addition, our system monitors the network in
a purely passive way; therefore, any malicious down-
loads preemptively blocked by existing defenses (e.g.,
URL blacklists such as Google Safe Browsing) were not
observed. Yet, based on our extensive manual analysis,
we believe the 533 malware downloads to be sufficiently
diverse and representative of the overall set of malware
downloads that occurred during our study period.

2.4 Download Path Traceback Challenges
One of the goals of our system is to automatically trace
back the sequence of steps (i.e., HTTP transactions) that
lead victims to be infected via a malware download. One
may think that reconstructing the web path to infection
is fairly easy, because we could rely on the Referer and
Location header fields to link subsequent HTTP trans-
actions together (see RFC2616). For example, a simple
strategy would be to start from the download transaction
and “walk back” the sequence of transactions by follow-
ing the Referer header found in the HTTP requests.

Unfortunately, in practice download path traceback is
much more difficult than it may seem at first. Depend-
ing on the particular version of the browser, JavaScript
engine, and plugin software running on the client, the
Referer and/or Location headers may be suppressed
(e.g., see [14]), resulting in the inability to correctly re-
construct the entire sequence of download path transac-
tions in a given network trace.
Deriving and Measuring Surrogate Features: As part
of our study, we reviewed hundreds of malicious down-
load traces. In most cases we cannot rely completely on
the Referer and Location headers, and we therefore
derive surrogate “referrer indicator” features and heuris-
tics, which can be used to perform a more complete
download path traceback. Next, we define each of the
features we observed, and then provide a measure of how
prevalent they are for malware download paths. While in
this section we simply measure their prevalence, we later
use these features to automate path traceback (Section 3).

First, let us more precisely define what we mean with
download path traceback. Let Td indicate an HTTP
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transaction carrying an executable file download initi-
ated by client C. Given the recording of all web traffic
generated by C during a time window preceding (and in-
cluding) Td , we would like to reconstruct the sequence
of transactions (T1,T2, . . . ,Td) that led to the download,
while filtering out all unrelated traffic. This sequence
of transactions may be the consequence of both explicit
user interactions (e.g., a click on a link) and actions taken
by the browser during rendering (e.g., following a page
redirection). Notice that the traffic trace we are given
may contain a large number of transactions that are com-
pletely unrelated to the download path, simply because
the user may have multiple browser tabs open and multi-
ple web-based applications active in parallel. Thus, po-
tentially producing a large amount of overlapping unre-
lated traffic.

Let T1 and T2 be two HTTP transactions. We found
that the features/heuristics listed below can be used to
determine whether T1 is a likely source of T2, therefore
allowing us to “link” them with different levels of con-
fidence. Table 1 summarizes the prevalence of each fea-
ture in both drive-by and social engineering downloads
(we discuss how we can distinguish drive-by from social
engineering later in Section 2.5). A detailed discussion
of how WebWitness uses these features for automated
download path traceback is given in Section 3.
(1) Location: According to RFC2616, if transaction

T2’s URL matches T1’s Location header, it indi-
cates that T2 was reached as a consequence of a
server redirection from T1.

(2) Referrer: Similarly, if T1’s URL matches T2’s
Referer header, this indicates that the request for
T2 originated (either directly or through a redirec-
tion chain) from T1, for example as a consequence
of page rendering, a click on a hyperlink, etc.

(3) Domain-in-URL: We observed that advertisement
URLs often embed the URL of the page that dis-
played the ad. So, if T1’s domain name is “em-
bedded” in T2’s URL, it is likely that T1 was the
“source” of the request, even though the Referer

is not present. This is especially true if there is only
a small time gap between the transactions.

(4) URL-in-Content: If T1’s response content includes
T2’s URL (e.g., within an HTML or non-obfuscated
JavaScript code), this indicates there is (potentially)
a “source of” relationship that links T1 to T2.

(5) Same-Domain: By investigating numerous drive-by
malware downloads, we found that in many cases the
exploit code and the malware executable file itself
are served from the same domain. This approach is
likely chosen by the attackers because if the exploit
is successfully served, it means that the related mali-
cious domain is currently reachable and serving the
malware file from the same domain helps guarantee a

successful infection (a similar observation was made
in [13]). Therefore, if T1 and T2 share the same do-
main name and are temporally close, this likely indi-
cates that T1 is the “source of” T2.

(6) Commonly Exploitable Content (CEC): In our ob-
servations, most drive-by downloads use “commonly
exploitable” content (e.g., .jar, .swf, or .pdf files that
carry an exploit) to compromise their victims. The
exploit downloads the malicious executable; thus,
if T1 contains commonly exploitable content (CEC)
and T2 is an executable download that occurred
within a small time delta after T1, this indicates that
T1 may be the “source of” T2.

(7) Ad-to-Ad: In some cases, we observed chains
of ad-related transactions where the Referer and
Location header are missing (e.g., due to JavaScript
or plugin-driven redirections). Therefore, if T1 and
T2 are consecutive ad-related requests (e.g., identi-
fied by matching their URLs against a large list of
known ad-distribution sites) and were issued within
a small time delta, this indicates there may be a
“source of” relationship.

Table 1: Success rate of traceback method and “Source-
of” relationships in malware download paths. The num-
bers indicate the percentage of analyzed download paths.

Traceback method success rate Drive-by Social Eng.
Only Referrer and Location 0% 53%
All surrogate referrer features 96% 95%

Feature Drive-by Social Eng.
Location 69% 73%
Referrer 97% 100%
Domain-in-URL 0% 5%
URL-in-Content 17% 17%
Same-Domain 97% 20%
CEC 5% 0%
Ad-to-Ad 6% 10%

As a confirmation to the fact that tracing back malware
download paths is challenging, we found that not a single
drive-by download in our dataset could be traced back
by relying only on the Referer and Location head-
ers. For example, even if 97% of the drive-by download
paths contained at least one pair of requests linked via
the Referer, all drive-by paths contained at least some
subsequence of the path’s transactions that could not be
“linked” by simply using the Referer header.

For social engineering paths, we found that 53% of the
downloads could be traced back using only the Referer
and Location headers. When this was not possible,
the main cause was the presence of requests made via
JavaScript and browser plugins. In some cases, we were
not able to fully trace back the download path. The cause
for the majority of the untraceable drive-by (4%) and so-
cial engineering (5%) downloads, when using all the fea-
tures, was missing transactions likely due to our system
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not observing all related packets.

2.5 Drive-by vs. Social Engineering
We label a malware download path as social engineer-
ing if explicit user interaction (e.g., a mouse click) is re-
quired to initiate a malware download. In contrast, we
label as drive-by those malware downloads that are trans-
parently delivered to the victim via a browser exploit.
As mentioned earlier (Section 2.3), during our study, we
were able to manually review and label 164 drive-by and
41 social engineering malware downloads.
What distinguishes drive-by from social-engineering:
In the following we report the characteristics that we ob-
served for different types of paths. In particular, some of
these characteristics could be leveraged as statistical fea-
tures to build a classifier that automatically distinguishes
between drive-by and social engineering downloads (see
Section 3). We also discuss characteristics of malware
updates/drops that could be used to filter out download
paths that belong neither to the drive-by nor to the social-
engineering class. Table 2 summarizes the prevalence of
each of the characteristics described below.

Table 2: Download path properties.
Feature Drive-by Social eng.
Candidate Exploit Domain Age 0 -
Drive-by URL Similarity 69% 0%
Download Domain Recurrence 0.6% 34%
Download Referrer 0.6% 95%
Download Path Length 6 7
User-Agent Popularity 95% 98%

(1) Candidate Exploit Domain “Age”: Drive-by
download attacks often exploit their victims by de-
livering exploits via files of popular content types
such as .jar, .swf, or .pdf files; we simply re-
fer to these file types as “commonly exploitable”
content (CEC). For example, during our study, we
found that 94% of the drive-by download paths at
some point delivered the exploit via CEC. The do-
mains serving these exploits tend to be short-lived
compared to domains serving benign content of the
same type. Therefore, CEC served from a recently
registered domain is an indicator of a possible drive-
by download path. On the other hand, none of the so-
cial engineering download paths we observed during
our study had this property. Table 2 reports the me-
dian domain name “age”, computed as the number
of days of activities for the domain of a page serv-
ing CEC, measured over a very large passive DNS
database. The median age is less than one day for
drive-by paths, and is not indicated for social engi-
neering paths, because none of the nodes in the so-
cial engineering path served content of the type we
consider as CEC (the overall traffic traces included
HTTP transactions that carried content such as .swf

files, but none of those were on the download path).
(2) Drive-by URL Similarity: The majority of drive-

by downloads (about 70% of our observations) are
served by a small number of exploit kits. Therefore,
in many cases the exploit delivery URLs included in
drive-by download paths share a structural URL sim-
ilarity to known exploit kit URLs. Table 2 reports the
fraction of drive-by download paths that had a sim-
ilarity to known exploit kit URLs greater than 0.8,
measured using the approach proposed in [26].

(3) Download Domain Recurrence: Most domains
serving drive-by and social engineering malware
download are contacted rarely, and often only once
by one particular client at the time of the attack. On
the other hand, malicious software regularly checks
for executable updates. To approximately capture
this intuition, we measured the number of queries to
the malware download domain. As shown in Table 2,
only 0.6% of the malware download domains in our
drive-by paths are queried mulitple times within a
small time window (two days, in our measurements).
The higher percentage of social engineering malware
paths with download domain recurrence is due to the
fact that a significant fraction of the ones we ob-
served used a free file sharing website for the mal-
ware download and that we count the domain query
occurrences in aggregate, rather than per client.

(4) Download Referrer: In case of social engineering
attacks, the HTTP transaction that delivers the mali-
cious file download tends to carry a Referer, usu-
ally due to the direct user interaction that character-
izes them. On the other hand, drive-by attack mal-
ware file delivery happens via a browser exploit. The
request initiated from the shell code typically does
not have a Referer header. Similarly, malware up-
dates/drops initiated by malicious applications are
already running on a compromised machine, and
usually do not carry any referrer information. Ta-
ble 2 shows that only 0.6% of all drive-by paths, in
contrasts to 95% of social engineering paths, carried
a Referer in the download node.

(5) Download Path Length: Drive-by and social en-
gineering attacks typically generate download paths
consisting of several nodes, mainly because a user
has to first browse to a site that eventually leads to
the actual attack. In addition, the malware distribu-
tion infrastructure is often built in such ways that en-
ables malware downloads “as a service”, which en-
tails the use of a number of “redirection” steps. In
contrast, download paths related to malware updates
or drops tend to be very short. Table 2 reports the
median number of nodes for drive-by and social en-
gineering paths. In case of malware updates/drops,
the median length for the path was only one node.
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(6) User-Agent Popularity: The download paths for
both drive-by and social engineering downloads typ-
ically include several nodes that report a popular
browser user-agent string, as the victims use their
browser to reach the attack. On the other hand,
in most cases of a malware drop/update, it is not
the browser, but the update software making the re-
quests. In practice, we observed that the majority of
malware update download paths did not report a pop-
ular user-agent string (only 36% of them did). Ta-
ble 2 reports the percentage of paths that include a
popular user-agent string.

3 WebWitness
Inspired by our study of real-world malware download
paths, we develop a system called WebWitness that can
automate the investigation of new malware download at-
tacks. The primary goal of this system is to provide con-
text around malicious executable downloads. To this end,
given a traffic trace that includes all web traffic recorded
during a time window preceding (and including) a ma-
licious executable file download, WebWitness automati-
cally traces back and categorizes the web paths that led
the victim to the malicious download event.

In this section, we describe the components of our sys-
tem, which are shown in Figure 2.

3.1 ATC - Download Path Traceback
Given a malicious file download trace from a given
client, WebWitness aims to trace back the download path
consisting of the sequence of web pages visited by the
user that led her to a malware download attack (e.g., via
social engineering or to a drive-by exploit). As detailed
in Section 2.4, the trace may contain many HTTP trans-
actions that are unrelated to the download. Furthermore,
it is not always possible to correctly link two related con-
secutive HTTP transactions by simply leveraging their
HTTP Referer or Location headers.

To mitigate the limitations of referrer-only approaches
and more accurately trace back the download path,
we devise an algorithm that leverages the features and
heuristics we identified during our initial study of in-
the-wild malware downloads presented in Section 2.4.
In summary, we build a transactions graph, where
nodes are HTTP transactions within the download trace,
and edges connect transaction according to a “proba-
ble source of” relationship (explained in detail below).
Then, starting from the node (i.e., the HTTP transaction)
related to the malware file download, we walk back along
the most probable edges until we find a node with no pre-
decessor, which we label as the “origin” of the download
path. In the following, we provide more details on our
traceback algorithm.
Transactions Graph. Let D be the dataset of HTTP

traffic generated by host A before (and including) the
download event. We start by considering all HTTP trans-
actions in D, and construct a weighted directed graph
G = (V,E). The vertices are A’s HTTP transactions
and the edges represent the relation “probable source
of” for pairs of HTTP transactions. As an example, the
edge e = (v1 → v2) implies that HTTP transaction v1
likely produced HTTP transaction v2, either automati-
cally (e.g., via a server-imposed redirection, javascript,
etc.) or through explicit user interaction (e.g., via a hy-
perlink click). Thus, we can consider v1 as the “source
of” v2. Each edge has a weight that expresses the level
of confidence we have on the “link” between two nodes
(the weights are ordinal so their absolute values are not
important). For example, the higher the weight assigned
to e = (v1 → v2), the stronger the available evidence in
support of the conclusion that v1 is the “source of” v2
(edge weights are further discussed below). Also, let t1
and t2 be the timestamp of v1 and v2, respectively. Re-
gardless of any available evidence for a possible edge,
the two nodes may be linked only if t1 ≤ t2.
Heuristics and Edge Weights. To build the graph G
and draw its edges, we leverage the seven features that
we indentified in Section 2.4. Specifically, given two
nodes (essentially, two URLs) in the directed graph G
described earlier, an edge e = (v1 → v2) is created if any
of the seven features is satisfied. For example, if v1 and
v2 can be related via the “Domain-in-URL”, we draw an
edge between the two nodes. We associate a weight to
each of the seven features; the “stronger” the feature, the
higher its weight. For example, we assign a weight value
we = 7 to the “Location” feature, we = 6 to the “Refer-
rer” feature, and so on, with the “Ad-to-Ad” receiving a
weight we = 1. The weight values are conveniently as-
signed simply to express relative importance and prece-
dence among the edges to be considered by our greedy
algorithm. If more than one feature happens to link two
nodes, the edge will be assigned a weight equal to the
maximum weight among the matching features.
Traceback Algorithm. Once G has been built, we use
a greedy algorithm to construct an approximate “back-
trace path”. We start from the graph node related to the
executable download event, and walk backwards on the
graph by always choosing the next edge with the high-
est weight. Consider the example graph in Figure 3, in
which thicker edges have a higher weight. We start from
the download node d. At every step, we walk one node
backwards following the highest weight edge. We pro-
ceed until we reach a node with no predecessor, which
we mark as the origin of the download path. If a node
has more than one predecessor whose edges have the
same weight, we follow the edge related to the prede-
cessor node with the smaller time gap to the current node
(measured w.r.t. the corresponding HTTP transactions).
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Figure 3: Example of download path traceback.

Possible False and Missing Edges: Naturally, the
heuristics we use for tracing back the download path may
in some cases add “false edges” to the graph or miss
some edges. However, notice that these challenges are
mitigated (though not always completely eliminated) by
the following observations:

i) Our algorithm and heuristics aim to solve a much
narrower problem than finding the correct “link” be-
tween all possible HTTP transactions in a network
trace, because we are only concerned with tracing
back a sequence of HTTP transactions that termi-
nate into a malicious executable download.

ii) The “false edge” problem is mitigated by the fact
that we always follow the strongest evidence. For
example, consider Figure 3. Suppose the edge (2 →
3) was drawn due to rule (6), while edge (5 → 3)
was drawn due to rule (2). In this case, even though
edge (2 → 3) was mistakenly drawn (i.e., nodes 2
and 3 have no real “source of” relationship), the
mistake is irrelevant, because our algorithm will
choose (5 → 3) as part of the path, which is sup-
ported by stronger evidence.

iii) Our algorithm can output not only the sequence of
HTTP transactions, but also the nature (and confi-
dence) of every edge. Therefore, a threat analyst (or
a downstream post processing system) can take the
edge weights into account, before the reconstructed
download path is used to make further decisions
(e.g., remediation or takedown of certain domains
in the download path).

3.2 ATC - Download Cause Classification

After we trace back the download path, we aim to la-
bel the reconstructed path as either social engineering or
drive-by download. As shown in Figure 2, the output of
this classification step allows us to obtain the annotated
malware download paths (AMPs), which are then pro-
vided as input to the defense module (MDD).

While we are mainly interested in automatically iden-
tifying social engineering and drive-by download paths,
we build a three-class classifier that can distinguish be-
tween three broad download causes, namely social engi-
neering, drive-by, and update/drop. Essentially the up-
date/drop class allows us to more easily identify and ex-
clude malware downloads that are not caused by either
social engineering or drive-by attacks.

To automatically classify the “cause” of an executable
file download, WebWitness uses a supervised classifica-
tion approach. First, we describe how we derive the fea-
tures needed to translate malware download events into
feature vectors that can be given as input to a statistical
classifier. Then, we discuss how we derive the dataset
used to train the classifier. To actually build the classifier,
we used the random forest algorithm [7] (see Section 4).

Features: To discriminate between the three different
classes, we engineered six statistical features that reflect,
with a one-to-one mapping, the six characteristics of
drive-by and social-engineering malware download paths
that we discussed and measured in Section 2.5. For ex-
ample, we measure binary feature (1) “Download Refer-
rer” as true if the HTTP request that initiated the down-
load has a Referer header; a numerical feature (2) rep-
resenting the “age” of domains serving “commonly ex-
ploitable” content; etc.

Training dataset: To train the classifier, we use the
dataset of in-the-wild malware download paths that we
collected and manually labeled during our initial inves-
tigation of in-the-wild malware downloads discussed in
Section 2.5. Our training dataset contained the follow-
ing number of labeled download paths: 164 instances of
drive-by download paths, 191 instances of social engi-
neering paths, and 328 update/drop samples.
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3.3 MDD - Drive-by Defense
The annotated download paths output by ATC provide a
large and up-to-date dataset of real-world malware down-
load incidents, including the web paths followed by the
victims (see Figure 2). This information is very useful
for studying new attack trends and developing more ef-
fective defenses. As new defenses are developed, they
can be plugged into the MDD module, so that as new
malware download paths are discovered we can automat-
ically derive appropriate countermeasures.

As an example that demonstrates how WebWitness
can enable the development of more effective malware
download defenses, we develop a new defense against
drive-by download attacks based on code injections.
While code injection attacks are not new, current de-
fenses rely mainly on blacklisting the URLs serving the
actual drive-by exploit or malware download, rather than
blocking the URLs from which malicious code is in-
jected. Our results (Section 4) show that by automati-
cally tracing back drive-by download paths and identi-
fying the code injection URLs, we can enable better de-
fenses against future malware attacks.
Identifying code injection URLs: Given a drive-by
download path output by the ATC module, we aim to
automatically identify the landing, injection, and exploit
nodes within the download path.We tackle this problem
using a supervised classification approach. Namely, we
train a separate classifier for each of the three types of
nodes on a drive-by download path. The final output is a
labeled drive-by download path.
Exploit Page Classifier: The exploit classifier takes as
input a drive-by download path and labels its nodes as
exploit or non-exploit. We define an exploit node as a
page that carries content that exploits a vulnerability on
the victim’s machine, causing it to eventually download
a malicious executable. The search for exploit nodes pro-
ceed “backwards”, starting from the node prior to the ex-
ecutable download and ending at the root. It is not un-
common to have more than one exploit node in one path
(e.g., some exploit kits try several exploits before suc-
cess). Thus, multiple nodes could be labeled as exploit.

To build the classifier, we use the following features:
(1) Hops to the download page. Number of nodes on the

download path between the considered node and the
final malware download node. Intuition: It is typical
for the exploit node to only be a few hops away from
the actual download. In many cases, the node prior to
the download event is an exploit node, because once
the exploit succeeds the executable is downloaded
immediately.

(2) “Commonly exploitable” content. Boolean feature
that indicates if a node contains content for Java, Sil-
verlight, Flash or Adobe Reader. Intuition: Browser
plug-ins are a popular exploitation vector. The ex-

ploit is typically delivered though their content.
(3) Domain age. The number of days since the first ob-

servation of the node’s effective second level domain
in a large historic passive DNS database. Intuition:
Exploit domains tend to be short-lived and often only
active for one day.

(4) Same domain. Boolean feature that is true if the
node’s domain is equal to the download domain. In-
tuition: It is common for the exploit and download to
be served by the same domain, as also noted in [13].

Landing Page Classifier: Once the exploit node(s) is la-
beled, we attempt to locate the landing page URL. Essen-
tially, the landing page is the web page where the drive-
by attack path begins. Often, the landing page itself is
a non-malicious page that was previously compromised
(or “hacked”). The landing page classifier calculates the
probability that a node preceding the exploit node (la-
beled by the exploit page classifier discussed earlier) is
a landing page. Nodes with a probability higher than a
tunable detection threshold (50% in our experiments) are
classified as “candidate landing” nodes. If there are mul-
tiple candidates, the one with the highest probability is
labeled as the landing node.

To label a node as either landing or non-landing, we
engineered the following statistical features:
(1) Hops to the exploit page. This feature set consists

of the number of non-redirect nodes and unique ef-
fective second level domains between the node and
the exploit node. Intuition: Often, all the nodes
between the landing and exploit node are redirects
[36]. Also, most drive-by downloads use one to
three types of malicious domains (injection, exploit,
download). Therefore, in most cases there are zero
or one domains (the one being the injection domain)
on the download path between the landing and ex-
ploit nodes.

(2) Domain age. We use two features based on domain
age. The first feature is the age of the node’s effec-
tive second level domain as computed from a passive
DNS database. Intuition: The domains associated to
(“hacked”) landing pages tend to be long-lived. Fur-
thermore, “older” landing pages tend to offer more
benefits to the attackers, as they often attract more
visitors (i.e., potential victims), because it takes time
for legitimate pages to become popular. The sec-
ond feature is the age of the oldest domain between
the node and the exploit node. Intuition: Nodes on
the download path between the landing and exploit
nodes tend to be less than a year in age. This is be-
cause they are typically malicious and recently reg-
istered.

(3) Same domain. Boolean feature that is true if the
node’s domain is equal to the exploit domain. In-
tuition: It is uncommon for an exploit to be served
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from the same domain as the landing page. They are
typically kept separate because installing an exploit
kit on a compromised website may increase the like-
lihood of detection by the legitimate site’s webmas-
ter. In addition, it is much easier to manage a central-
ized exploit kit server than keep all the compromised
websites up-to-date with the latest exploits.

Injection Page Classifier: We define the injection page
to be the source of the code inserted into the “hacked”
landing page. Typically, the injection and exploit nodes
are separate and are served via different domain names.
This provides a level of indirection that allows the ex-
ploit domain to change without requiring an update to the
landing page. The injection node by definition is a suc-
cessor to the landing page, but depending on the injection
technique it may or may not be directly present in the
download path traced back by the ATC module. There-
fore, the classifier calculates the injection page probabil-
ity for each direct successor of the landing node in the
transactions graph, instead of only considering nodes in
the reconstructed download path. The successor of the
landing page node with the highest probability is labeled
as the injection page node.

To identify the injection page, for each successor of
the landing node we measure the following features:
(1) On path. Boolean feature indicating if the node is on

the download path. Intuition: Being on the download
path and a successor of the landing page, makes it a
good candidate for the injection node. However, the
injection node is not always on the download path
due to the structure of some drive-by downloads.

(2) Advertisement. Boolean feature that is true if the
node is an ad. Intuition: By definition, the injection
page is not an ad, but code injected into the landing
page. It is common for ads that are not related to the
malicious download to be served on a landing page.
This feature help us exclude those ad nodes.

(3) Domain age. The number of days since the first
observation of the node’s effective second level do-
main in passive DNS. Intuition: Injection pages typ-
ically have the sole purpose of injecting malicious
code. They are rarely hosted directly on compro-
mised pages, because this would expose the mali-
cious code to cleanup by the legitimate site owners,
ending the attacker’s ability to exploit visitors. Con-
sequently, injection pages are hosted on “young” do-
mains that are typically active for the lifetime of a
website compromise.

(4) Successors. There are two features that are derived
from the node’s successors. First is the number of
direct successors. Intuition: Injection nodes tend to
have only one direct successor. They typically per-
form an HTTP redirect or dynamically update the
DOM to include the URL of the exploit domain. Be-

nign pages often have more than one direct successor
because they load content from many different files
or sources. The second feature is boolean and it is
true if one of the node’s successors is on the down-
load path. It indicates there is a possible “source of”
relationship between it and a node on the download
path. Even though the node itself may not be on the
download path.

(5) Same domain. There are two boolean features that
compare domain names. The first checks for equal-
ity between the node’s domain and the landing do-
main. Intuition: It is uncommon for the landing do-
main to equal the injection domain for reasons simi-
lar to those described in the landing page classifier’s
“same domain” feature described earlier. The second
feature compares the node’s domain to the exploit
domain. Intuition: In approximately 70% of the ob-
servations in our measurement study (Section 2), the
exploit and injection domains were different.

4 Evaluation
In this section, we evaluate WebWitness’ ATC and MDD
modules. We also demonstrate the overall benefits of
our new defense approach against drive-by downloads,
by measuring the effectiveness of blacklisting the injec-
tion domains discovered by WebWitness. We show that
while blacklisting the injection domains provides a bet-
ter defense, compared to blacklisting only the exploit and
download domains, injection domains appear very rarely
in current blacklists, including Google Safe Browsing
and a variety of large public blacklists.

4.1 ATC - Download Cause Classification
The download cause classifier uses a supervised learning
approach to label each download path as either social
engineering, drive-by or update/drop (Section 3.2). To
evaluate its accuracy, we use WebWitness to traceback
and classify all malicious downloads collected from the
large academic network (Section 2) in the months fol-
lowing our initial study and development of the system.
Specifically, all download events and samples used dur-
ing evaluation have no overlap with the data we used for
the study presented in Section 2, to design WebWitness’
features and heuristics, or to train our classifiers. Each
malicious download observed during the testing period
was then classified as one of the following: drive-by, so-
cial engineering or update. From each of the three pre-
dicted classes we randomly sampled 50 downloads for
manual verification. We limited the sample size to a total
of 150 downloads because of the extensive manual anal-
ysis required to determine the ground truth, including re-
verse engineering web pages, heavy javascript deobfus-
cation, complex html and plugin content analysis, etc.
This time consuming review process allowed us to iden-
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tify the correct web path and the true cause of download,
creating our ground truth for the evaluation. Table 3 re-
ports the confusion matrix for the cause classifier.

Table 3: Cause Classifier - Confusion Matrix Results
Predicted Class

Class Drive-by Social Update/Drop

Ground Truth
Drive-by 47 1 0
Social 2 46 3
Update/Drop 1 3 47

The classifier correctly labeled over 93% of the down-
loads. Notice that these results represent the overall sys-
tem performance of the ATC module, because the down-
load paths used in the experiment (i.e., input to the cause
classifier) were extracted using our download path trace-
back algorithm (Section 3.1). The two social engineering
samples classified as drive-by downloads both had com-
monly exploitable content (CEC) on the download path.
They were misclassified even though the CEC domain
ages were greater than 200 days. The three update/drop
samples classified as social engineering was caused by
invalid download paths resulting from the false edges de-
scribed in the next section. Finally the three social en-
gineering downloads misclassified as update/drop was a
result of small downloads paths (all were length 3) and
high download domain recurrence (all greater than 20 of
the 48 hourly buckets).

4.2 ATC - Download Path Traceback
To evaluate the accuracy of our download path trace-
back algorithm (Section 3.1), we use the 150 manually
reviewed downloads; i.e., our ground truth, from Sec-
tion 4.1. For path traceback, we consider two types of
errors for review: (1) missing nodes: the traceback stops
short, before reaching the origin of the download path
(recall that the traceback algorithm works its way back-
wards from the download node to the path origin); (2)
false node: a node that should not appear in the download
path. Table 4 summarizes the results of our evaluation.

Table 4: Download Path Traceback Results.
Paths Correctly Traced Back Missing False

Drive-By 48 45 3 0
Social 51 46 2 3
Update/Drop 51 47 0 4

The results show that 92% of the download paths were
correctly traced back by our system. The 5 with miss-
ing nodes all had a referer header in the origin node’s
request, but a matching URL was not contained in the
trace. This was likely due to our system not observing
all the packets related to those transactions. The 7 with
the false nodes were all caused by the “same-domain”
heuristic incorrectly connecting the paths of an update
and a social engineering download. The heuristic failed

because the updates were performed by a malicious ex-
ecutable seconds after the user was socially engineered
into downloading it from the same domain as the update.

4.3 MDD - Detecting Injection Domains
As discussed in detail in Section 3.3, we aim to automati-
cally identify the malicious code injection domains often
employed in drive-by download attacks. To achieve this
goal, we use a cascade of three classifiers: an exploit, a
landing, and an injection classifier (Section 3.3). In the
following, we evaluate the performance of each one.

To build the training dataset, we use 117 drive-by mal-
ware downloads collected and manually labeled during
our six-month malware study described in Section 2.
These 117 drive-by paths contained 246 exploit nodes
(notice that it is not uncommon for a drive-by attack to
serve more than one exploit, especially when the first ex-
ploit attempt fails). There is only one landing node and
one injection node per download path.

Table 5: Node Labeling for Drive-By Download Paths
Experiment Classifier Correctly Labeled Incorrectly Labeled

Cross-Validation
Exploit 99.19% 0%
Landing 96.58% 0.17%
Injection 94.87% 0.07%

We performed 10-fold cross-validation tests using the
dataset described above. Table 5 summarizes the results.
As can be seen, all classifiers are highly accurate. The
results of the the injection page classifier represent the
performance of the final injection domain detection task.
This is due to fact that all tests were conducted using the
three classifiers (exploit, landing, and injection) in cas-
cade mode to mirror an actual deployment of WebWit-
ness’ MDD module. Thus, overall, we obtained a mini-
mum of 94.87% detection rate at 0.07% false positives.

There were a total 7 domains mislabeled as injection
by our system. The most common error was labeling the
exploit domain as the injection domain; i.e., missing the
fact that a separate injection domain existed. This was
the case for 5 of the 7 mislabeled domains. Since these
domains are malicious, blacklisting them will not cause
false positives. The other two domains were benign. One
of them had an Alexa rank over 260,000 and the other
above 1,600,000. To mitigate such false positives, the
newly discovered injection domains could be reviewed
by analysts before blacklisting. As WebWitness provides
the analyst with full details on the traffic collected before
the download and the reconstructed download path, this
information can make the analyst’s verification process
significantly less time-consuming.

4.4 MDD - Defense Efficacy & Advantages
Domain name and URL blacklisting are commonly prac-
ticed defenses [2]. However, blacklists are only effective
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if the blacklisted domains remain in use for some period
of time after they are detected. The longer-lived a mali-
cious domain, the more useful it is to blacklist it. As dis-
cussed in Sections 3.3 and 4.3, WebWitness is able not
only to identify the domains from which malware files
are downloaded, but also to identify the malicious code
injection and exploit domains within drive-by malware
download paths. Clearly, these domains are all candi-
dates for blacklisting.

To evaluate the efficacy of blacklisting the code injec-
tion domains, we demonstrate the advantages this pro-
vides compared to the currently more common approach
of blacklisting the exploit and download domains. To this
end, we use a set of 88 “complete” injection-based drive-
by download paths that we were able to collect from
a large academic network. These samples were “com-
plete” paths in the sense that they were manually veri-
fied to have an injection, exploit, and malware download
node (and related domain).

We evaluate the effect of blocking the different types
of drive-by path domains by counting the number of po-
tential victims that would be saved by doing so. Specifi-
cally, we define a potential victim as a unique client host
visiting a blacklisted domain. Notice that the actual num-
ber of hosts that get infected may be smaller than the
number of potential victims, because only some of the
hosts that visit a malicious domain involved in a drive-by
download attack will “successfully” download and run
the malware file (e.g., because an anti-virus blocked the
malware file from running on the machine). However,
we can use the potential victim count to provide a relative
comparison on the effectiveness of blacklisting injection
versus exploit and malware download domains.

To count the potential victims, we rely on a very large
passive DNS (pDNS) database that spans multiple In-
ternet Service Providers (ISPs) and corporate networks.
This pDNS dataset stores the historic mappings between
domains and IP addresses, and also provides a unique
source identifier for each host that queries a given do-
main name. This allows us to identify all the unique hosts
that queried a given domain in a given timeframe (e.g., a
given day). For each injection-based drive-by download
paths in our set, we compute the potential victims saved
by counting the number of unique hosts that query the
injection, exploit, and file download domains in the 30
days following the date when we observed and labeled
the download event. Figure 4 shows our results, in which
day-0 is the day when we detected a malicious down-
load path (the victims counts are aggregated, per day, for
all hosts contacting a malicious domain). We can im-
mediately see that the number of potential victims that
query the exploit or file download domains rapidly drops
as the exploit domain ages. On the other hand, injection
domains are longer lived, and blacklisting them would
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Figure 4: Potential victims saved by blocking the injec-
tion versus exploit/download domains on drive-by paths.

prevent a much larger number of potential victims from
being redirected to new (unknown) and frequently churn-
ing exploit and file download domains. Blacklisting the
injection domain saves almost 6 times more potential vic-
tims, compared to blacklisting the exploit domain.

4.5 Blacklists & Google Safe Browsing
In this section, we aim to gain additional insights into the
advantages that could be provided by our WebWitness’
MDD module, compared to existing domain blacklists.
Public Domain Blacklists First, given the entire set
of malicious domain names related to drive-by down-
loads discovered during our study and deployment of
WebWitness, we counted how many of these domains
appeared in popular public blacklists. We also mea-
sured the delay between when we first discovered the
domain on a malware download path and when it ap-
peared on a blacklist. This was possible because we
repeatedly collected all domain names reported by the
following set of public blacklists every day for more
than a year: support.clean-mx.de, malwaredomains.com,
zeustracker.abuse.ch, phishtank.com and malwaredo-
mainlist.com. Table 6 summarizes our findings.

Table 6: Public Blacklisting Results.
Uniq. Domains Days: Detect to Blacklist

Observed Blacklisted Min. Med. Mean
Exploit/Download 152 9 1 20 29
Injection 52 6 20 31 36

As shown in Table 6, from all drive-by download paths
that we were able to identify, reconstruct, and label, we
collected a total of 52 unique drive-by code injection do-
mains and 152 unique drive-by exploit and malware file
download domains. Overall, less than 10% of these do-
mains ever appeared on a public blacklist. As we can
see, more exploit/download domains (a total of 9) were
blacklisted, compared to the injection domains (only 6).
Furthermore, we can see that the minimum time it took
for an injection domain to appear in at least one blacklist
was 20 days, whereas some exploit domains were black-
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listed almost immediately (after only one day).
Because injection domains are typically longer lived

than exploit domains, and because the same injection do-
main is often used throughout the course of a drive-by
download campaign to redirect users to different (short-
lived) exploit domains, identifying and blocking injec-
tion domains has a significant advantage. By helping to
quickly identify and blacklist injection domains, Web-
Witness enables the creation of better defenses against
drive-by downloads, thus helping to significantly reduce
the number of potential malware victims, as we also
demonstrated in the previous Section 4.4.
Google Safe Browsing For the last few weeks of our de-
ployment of WebWitness, we checked the domain names
related to the drive-by download paths reconstructed by
our system against Google Safe Browsing (GSB) [2].
Specifically, given a malware download path and its ma-
licious domains, we queried GSB on the next day, com-
pared to the day the malware download was observed.
Overall, during this final deployment period we observed
34 drive-by download paths. GSB detected a total of 6
malicious domains that were related to only 4 out of the
34 downloads. The domains GSB detected were used to
serve drive-by exploits, the malware file themselves, or
were related to ads used to lead the victims to a browser
exploit. None of the domains detected by GSB were in-
jection domains, even though our 34 download paths in-
cluded 12 unique injection domains.

It is important to notice, however, that while GSB de-
tected malicious domains related to only 4 out of our 34
drive-by download paths, there may be many more mal-
ware downloads that WebWitness cannot observe, sim-
ply because they are blocked “up front” by GSB. Be-
cause WebWitness passively collects malware download
traces from the network whenever a malicious executable
file download is identified in the traffic, it is very possi-
ble that in many cases GSB simply prevented users who
were about to visit a drive-by-related domain from load-
ing the malicious content, and therefore from download-
ing the malware file in the first place. Nonetheless, the
fact that WebWitness automatically discovered 30 drive-
by download paths that were not known to GSB demon-
strates that our system can successfully complement ex-
isting defenses.

4.6 Case Studies
4.6.1 Social Engineering

Figure 5 shows the download path for an in-the-wild
social engineering attack, including the “link” relation-
ships between nodes in the path. The user first per-
forms a search on www.youtube.com (A) for a “face-
book private profile viewer”, which is the root of the
path. Next, the user clicks on the top search result lead-
ing to a “trick” page on www.youtube.com (B), which

hosts a video demonstrating a program that supposedly
allows the viewing of the private profiles of Facebook
users. A textual description under the video provides a
link to download a “profile viewer” application through
a URL shortener goo.gl (C). This shortened URL link
redirects the user to uploading.com (D), a free file
sharing site that prompts the user with a link to start
the download. This leads to another uploading.com

(E) page that thanks the user for downloading the file
and opens a new uploading.com (F) page that includes
an <iframe> with source fs689.uploading.com (G),
from which the executable file is downloaded. The file is
labeled as “Trojan Downloader” by some anti-virus scan-
ners.

www.youtube .com

www.youtube .comB

uploading .com

uploading .com

uploading .com

Redirect
ReferrerA

C D

E

F
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download page

goo .gl

G fs689.uploading .com

trick page

Figure 5: Social engineering download example.

Notice that no exploit appears to be involved in this
attack, and that the user (highly likely) had to explicitly
click on various links and on the downloaded malware
file itself to execute it.

4.6.2 Drive-by

Figure 6 shows the download path related to an in-the-
wild drive-by download.

coscoslidia .org smalltableschears .biz
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www.excelforum .com
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Redirect
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download page

exploit page

injection page

Figure 6: Drive-by download example.

The download path originates from (A)
www.google.com (the root page), where the user en-
tered the search terms “add years and months together.”
The first link in the search results, which the user clicked
on, is for a webpage (B) on www.excelforum[dot]com

(the landing page). Sadly, the page the user landed
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Figure 7: “Root” of malware download paths.

on was compromised several days earlier, result-
ing in the addition of a <script> tag with source
at coscoslidia[dot]org, which is the injection
page. The script is automatically retrieved from (C)
and executed, forcing an <iframe> to be added and
rendered. The source of the frame (D) is on the
site smalltableschears[dot]biz, from which the
content is immediately fetched and included in the
page. The newly loaded javascript served by (D) then
checks for the presence of vulnerable versions of several
browser plugins. It quickly matches a version of the
installed Adobe Flash Player to a known vulnerabil-
ity and dynamically adds another <iframe> to the
page, which pulls a malicious Flash exploit file from
(E) on the same smalltableschears[dot]biz site
(the exploit page). The Flash exploit succeeds and
the shellcode fetches a malware binary (labeled as
ZeroAccess by some AVs) from (F) on the same domain
smalltableschears[dot]biz (the download page).

4.7 “Origin” of Malware Download Paths
Figure 7 shows a breakdown of the drive-by and social
engineering “origins” behind the malware downloads.
For drive-by downloads, 64% of the download paths
started with a search. We noticed that the search query
keywords were typically very “normal” (e.g., searching
for a new car, social events, or simple tools, as shown
in the example in Section 4.6.2), but unfortunately the
search results linked to hacked websites that acted as the
“entry point” to exploit distribution sites and malware
downloads.

For social engineering downloads, about 60% of the
web paths started with a search. Search engine queries
that eventually led to social engineering attacks tended
to be related to less legitimate content. For example,
the search queries were often related to free streaming
links, pirated movies, or pirated versions of popular ex-
pensive software. In these cases, the search results con-
tained links offering content relevant to the search, but
the related search result pages would also encourage the

user to install malicious software disguised as some re-
quired application (e.g., a video codec or a software key
generator).

The second most common origin is direct links,
whereby a user arrives to a webpage directly (e.g., by
clicking on a link within a spam email), rather than
through a link from another site. Most of these direct
links point to a benign website that is either hacked or
displays malicious ads.

Facebook and Twitter represent a relatively infrequent
origin for malware downloads (7% and 3% of the cases,
respectively). While both Facebook and Twitter usually
rely on encrypted (HTTPS) communications, we were
able to determine if a download path originated from
their sites by noticing that Facebook makes sure that all
external requests carry a generic www.facebook.com re-
ferrer [14]. On the other hand, requests initiated by click-
ing on a link published on twitter carry a referrer contain-
ing a t.co shortening URL. During our entire deploy-
ment, we only observed one case in which a link from
Facebook or Twitter led directly to a drive-by exploit kit.
In all other cases, the links led first to a legitimate page
that was hacked or that displayed a malicious ad.

For the remaining malicious downloads (less than 3%,
overall) we were unable to trace them back to their origin
(e.g., due to missing traffic).

During our deployment, we also found that malicious
ads are responsible for a significant fraction of the mal-
ware downloads in our dataset. Specifically, malicious
ads were included in the web path of about 25% of drive-
by and 40% of social engineering malware downloads.
The malicious ads we observed were typically displayed
on relatively unpopular websites. We observed only one
example of a malicious ad served on a website with a US
Alexa ranking within the top 500.

5 Discussion and System Limitations
Our system only collected data during off-peak hours
because it was sharing hardware resources with a pro-
duction network monitoring system whose functionality
could not be disrupted. Thus, our data is just a sample
of the malicious downloads that occurred during this pe-
riod. Also, due to the significant efforts required to an-
alyze complex malware download traces, our evaluation
ground truth is limited to a representative sample of the
malicious downloads that occurred in the monitored net-
work. However, based on our extensive manual analysis,
we believe the samples to be very diverse because of the
various exploit kits, exploits, social engineering tricks
and malware observed, and therefore representative of
the overall set of malware downloads that occurred dur-
ing our deployment.

One may think that attackers could avoid detection by
simply distributing malicious files over encrypted web
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traffic, using HTTPS. However, it is worth noting that
in sensitive networks (e.g., enterprise and government
networks) it is now common practice to deploy SSL
Man-In-The-Middle (MITM) proxies, which allow for
inspecting and recording the content both HTTP and
HTTPS traffic (perhaps excluding the traffic towards
some whitelisted sides, such as banking applications,
etc.). WebWitness could simply work alongside such
SSL MITM proxies.

Because the detection of malicious executable files is
outside the scope of this paper, we have relied on a “de-
tection oracle” to extract malicious download traces from
the network traffic. For the sake of this study, we have
chosen to rely on multiple AV scanners. It is well known,
though, that AV scanners suffer from false positive and
negatives. In addition, the labels assigned by the AV are
often not completely meaningful. However, we should
consider that using multiple AV scanners reduces the
false negatives, and the set of filtering heuristics we dis-
cussed in Section 2.2 can mitigate the false positives. In
addition, we used re-scanning over a period of a month
for each of the downloaded executable files we collected,
to further improve our ground truth. Finally, we used the
AV labels to filter out adware downloads, because we are
mainly interested in the potentially most damaging mal-
ware infections. We empirically found that the AV labels
usually do a decent job at separating the broad adware
and malware classes. Also, we manually reviewed all
samples of malware downloads in our dataset, to further
mitigate possible mislabeling problems.

Attackers with knowledge of our system may try to
evade it by using a purposely crafted attack in attempt
to alter some of the features we use in Section 3 to per-
form path traceback, categorization and for node label-
ing. Most likely, the attacker will have as a primary goal
the evasion of our traceback algorithm. This, for exam-
ple, could be done by forcing a “disconnect” between the
final malware download node and its true predecessors.
Such an attack theoretically may be possible, especially
in case of drive-by attacks. In such events the browser is
compromised and is (in theory) under the full control of
the attacker. Now, if the malware download node is iso-
lated in the reconstructed download path, the cause clas-
sifier may label the download event a malware update,
thus preventing any further processing of the download
path (i.e., any attempt to identify the exploit and injec-
tion domains).

However, we should also notice that most drive-by
downloads are based on what we refer as “commonly ex-
ploitable” content in Section 3.3 (e.g., .jar, .swf, or .pdf
files that carry an exploit). For such type of drive-by
download attacks, the “commonly exploitable” content
feature should connect the exploit and the download, if
they occur in a small time window. If needed, the time

window could be extended by requiring the domain sev-
ering the content to be young by checking its “age” be-
fore making a connection. Since the exploit must occur
before the attacker has control of the browser, it is more
difficult to evade.

6 Related Work
Client honeypots actively visit webpages and detect
drive-by downloads though observing changes to the sys-
tem [1, 21, 22, 28, 29] or by analyzing responses for ma-
licious content [3, 10, 24]. These systems tend to have a
low false positive rate, but only find malicious websites
by visiting them with exploitable browser configurations;
also, they have limited range in the quantity of pages
they can crawl because they are much slower than static
crawlers. Often candidate URLs are selected by filtering
content from static crawlers [28, 29, 35], using heuristics
to visit parts of the web that are likely more malicious [8]
or using search engines to identify webpages that contain
content similar to known malicious ones [12].

A number of techniques have been developed to de-
tect drive-by downloads through examining content [10,
11, 15, 32, 34]. Signature based intrusion detection sys-
tems, such as Snort [34], passively search network traffic
content for patterns of known attacks. Both static [11]
and dynamic [10] analysis of JavaScript has been used to
detect attacks. The disadvantages of using content is that
it is complex and under the control of the attacker. Poly-
morphic malware and code obfuscation results in missed
attacks for signature and static analysis systems, and dy-
namic analysis can be detected by malware and subverted
by altering its execution path [15].

Other systems focus on the redirection chain that leads
to drive-by downloads. Stringhini et al [36] create redi-
rection graphs by aggregating redirection chains that end
at the same webpage. Features from the redirection
graph and visiting users are then used to classify the
webpage as malicious or benign. Mekky et al [20] build
browsing activity trees using the referrer and redirection
headers as well as URLs embedded in the content. Fea-
tures related to the redirection chain for each tree are ex-
tracted and used to classify the activity as malicious or
benign. Li et al [17] apply page rank from the dark and
bright side of the web to a partially labeled set of redirec-
tion chains to separate benign and malicious web paths.
They find the majority of malicious paths are directed
through traffic distribution systems. Using features from
the redirection chain, Surf [18] detects malicious web-
sites found in search engine results due to search poison-
ing and WarningBird [16] identifies malicious webpages
posted on Twitter. These systems focus on the redirection
chain and features extracted from it to classify a web ac-
tivity as benign or malicious. Whereas, WebWitness pro-
vides context to malicious downloads by reconstructing
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the full download path (not just the redirection chain),
classifying the cause of the download (drive-by, social,
update) and identifying the roles of the domains involved
in the attack.

Static blacklists [2] of domains/URLs and domain rep-
utation systems [4, 5] identify malicious websites to pre-
vent users from visiting them. Many of the domains on
static blacklists are exploit and download domains that
change frequently rendering them less effective. On the
other hand, reputation systems only provide a malicious
score for a domain and do not indicate their role or give
context to an attack. By analyzing the structure of a ma-
licious download, WebWitness can identify the type of
attack and the domain roles; providing the highest value
domains for blocking and reputation training data.

Recently researchers have proposed executable repu-
tation systems [13,30,38] due the limitations of signature
AV [27]. Instead of using content features from the exe-
cutable content, they focus on properties of the malware
distribution infrastructure. These systems can be very
effective at identifying malicious downloads. However,
they do not provide any context such as how and why
the user came to download a malicious executable. Pro-
viding download context is the goal of WebWitness not
malicious executable detection. We see these systems as
complementary to WebWitness and as good candidates
to replace our current oracle (signature AV) for malicious
executable detection.

Web traffic reconstruction has been studied for ex-
ample in [9, 25, 39]. WebPatrol [9] uses a client hon-
eypot and a modified web proxy to collect and replay
web-based malware scenarios. Unlike WebPatrol, Web-
Witness is not limited to drive-by downloads invoked
through client honeypots and can provide context to
drive-by and social engineering attacks on real users ob-
served on live networks. ReSurf [39] uses the referrer
header to build graphs of related HTTP transactions to
reconstruct web-surfing activities. As discussed in this
paper and evaluated in [25], this approach is very limited
especially in reconstructing the entire download path of
a malicious executable. Lastly, ClickMiner [25] recon-
structs user-browser interactions by replaying recorded
network traffic through an instrumented browser. Its
focus is on the user’s behavior that led to a webpage;
whereas, WebWitness identifies the cause and structure
of an attack that led to a malicious download.

7 Conclusion
We proposed a novel incident investigation system,
named WebWitness. Our system targets two main goals:
1) automatically trace back and label the chain of events
(e.g., visited web pages) preceding malware downloads,
to highlight how users reach attack pages on the web; and
2) leverage these automatically labeled in-the-wild mal-

ware download paths to better understand current attack
trends, and to develop more effective defenses.

We deployed WebWitness on a large academic net-
work for a period of 10 months, where we collected and
categorized thousands of live malware download paths.
An analysis of this labeled data allowed us to design a
new defense against drive-by downloads that rely on in-
jecting malicious content into (hacked) legitimate web
pages. For example, we show that on average by using
the results of WebWitness we can decrease the infection
rate of drive-by downloads based on malicious content
injection by almost 6 times, compared to existing URL
blacklisting approaches.
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Abstract
In recent years, the number of software vulnerabilities
discovered has grown significantly. This creates a need
for prioritizing the response to new disclosures by assess-
ing which vulnerabilities are likely to be exploited and by
quickly ruling out the vulnerabilities that are not actually
exploited in the real world. We conduct a quantitative
and qualitative exploration of the vulnerability-related
information disseminated on Twitter. We then describe
the design of a Twitter-based exploit detector, and we in-
troduce a threat model specific to our problem. In addi-
tion to response prioritization, our detection techniques
have applications in risk modeling for cyber-insurance
and they highlight the value of information provided by
the victims of attacks.

1 Introduction
The number of software vulnerabilities discovered has
grown significantly in recent years. For example, 2014
marked the first appearance of a 5 digit CVE, as the CVE
database [46], which assigns unique identifiers to vulner-
abilities, has adopted a new format that no longer caps
the number of CVE IDs at 10,000 per year. Additionally,
many vulnerabilities are made public through a coordi-
nated disclosure process [18], which specifies a period
when information about the vulnerability is kept confi-
dential to allow vendors to create a patch. However, this
process results in multi-vendor disclosure schedules that
sometimes align, causing a flood of disclosures. For ex-
ample, 254 vulnerabilities were disclosed on 14 October
2014 across a wide range of vendors including Microsoft,
Adobe, and Oracle [16].

To cope with the growing rate of vulnerability discov-
ery, the security community must prioritize the effort to
respond to new disclosures by assessing the risk that the
vulnerabilities will be exploited. The existing scoring
systems that are recommended for this purpose, such as
FIRST’s Common Vulnerability Scoring System (CVSS)

[54], Microsoft’s exploitability index [21] and Adobe’s
priority ratings [19], err on the side of caution by mark-
ing many vulnerabilities as likely to be exploited [24].
The situation in the real world is more nuanced. While
the disclosure process often produces proof of concept
exploits, which are publicly available, recent empirical
studies reported that only a small fraction of vulnerabili-
ties are exploited in the real world, and this fraction has
decreased over time [22,47]. At the same time, some vul-
nerabilities attract significant attention and are quickly
exploited; for example, exploits for the Heartbleed bug
in OpenSSL were detected 21 hours after the vulnera-
bility’s public disclosure [41]. To provide an adequate
response on such a short time frame, the security com-
munity must quickly determine which vulnerabilities are
exploited in the real world, while minimizing false posi-
tive detections.

The security vendors, system administrators, and
hackers, who discuss vulnerabilities on social media sites
like Twitter, constitute rich sources of information, as the
participants in coordinated disclosures discuss technical
details about exploits and the victims of attacks share
their experiences. This paper explores the opportuni-
ties for early exploit detection using information avail-
able on Twitter. We characterize the exploit-related dis-
course on Twitter, the information posted before vulner-
ability disclosures, and the users who post this informa-
tion. We also reexamine a prior experiment on predicting
the development of proof-of-concept exploits [36] and
find a considerable performance gap. This illuminates
the threat landscape evolution over the past decade and
the current challenges for early exploit detection.

Building on these insights, we describe techniques
for detecting exploits that are active in the real world.
Our techniques utilize supervised machine learning and
ground truth about exploits from ExploitDB [3], OS-
VDB [9], Microsoft security advisories [21] and the
descriptions of Symantec’s anti-virus and intrusion-
protection signatures [23]. We collect an unsampled cor-
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pus of tweets that contain the keyword “CVE,” posted
between February 2014 and January 2015, and we ex-
tract features for training and testing a support vector
machine (SVM) classifier. We evaluate the false posi-
tive and false negative rates and we assess the detection
lead time compared to existing data sets. Because Twit-
ter is an open and free service, we introduce a threat
model, considering realistic adversaries that can poison
both the training and the testing data sets but that may be
resource-bound, and we conduct simulations to evaluate
the resilience of our detector to such attacks. Finally, we
discuss the implications of our results for building secu-
rity systems without secrets, the applications of early ex-
ploit detection and the value of sharing information about
successful attacks.

In summary, we make three contributions:

• We characterize the landscape of threats related to
information leaks about vulnerabilities before their
public disclosure, and we identify features that can
be extracted automatically from the Twitter dis-
course to detect exploits.

• To our knowledge, we describe the first technique
for early detection of real-world exploits using so-
cial media.

• We introduce a threat model specific to our problem
and we evaluate the robustness of our detector to
adversarial interference.

Roadmap. In Sections 2 and 3 we formulate the prob-
lem of exploit detection and we describe the design of
our detector, respectively. Section 4 provides an empir-
ical analysis of the exploit-related information dissemi-
nated on Twitter, Section 5 presents our detection results,
and Section 6 evaluates attacks against our exploit detec-
tors. Section 7 reviews the related work, and Section 8
discusses the implications of our results.

2 The problem of exploit detection
We consider a vulnerability to be a software bug that has
security implications and that has been assigned a unique
identifier in the CVE database [46]. An exploit is a piece
of code that can be used by an attacker to subvert the
functionality of the vulnerable software. While many re-
searchers have investigated the techniques for creating
exploits, the utilization patterns of these exploits provide
another interesting dimension to their security implica-
tions. We consider real-world exploits to be the exploits
that are being used in real attacks against hosts and net-
works worldwide. In contrast, proof-of-concept (PoC)
exploits are often developed as part of the vulnerability
disclosure process and are included in penetration test-
ing suites. We further distinguish between public PoC

exploits, for which the exploit code is publicly available,
and private PoC exploits, for which we can find reliable
information that the exploit was developed, but it was
not released to the public. A PoC exploit may also be a
real-world exploit if it is used in attacks.

The existence of a real-world or PoC exploit gives
urgency to fixing the corresponding vulnerability, and
this knowledge can be utilized for prioritizing remedi-
ation actions. We investigate the opportunities for early
detection of such exploits by using information that is
available publicly, but is not included in existing vul-
nerability databases such as the National Vulnerability
Database (NVD) [7] or the Open Sourced Vulnerabil-
ity Database (OSVDB) [9]. Specifically, we analyze the
Twitter stream, which exemplifies the information avail-
able from social media feeds. On Twitter, a community
of hackers, security vendors and system administrators
discuss security vulnerabilities. In some cases, the vic-
tims of attacks report new vulnerability exploits. In other
cases, information leaks from the coordinated disclosure
process [18] through which the security community pre-
pares the response to the impending public disclosure of
a vulnerability.

The vulnerability-related discourse on Twitter is in-
fluenced by trend-setting vulnerabilities, such as Heart-
bleed (CVE-2014-0160), Shellshock (CVE-2014-6271,
CVE-2014-7169, and CVE-2014-6277) or Drupalged-
don (CVE-2014-3704) [41]. Such vulnerabilities are
mentioned by many users who otherwise do not provide
actionable information on exploits, which introduces a
significant amount of noise in the information retrieved
from the Twitter stream. Additionally, adversaries may
inject fake information into the Twitter stream, in an at-
tempt to poison our detector. Our goals in this paper are
(i) to identify the good sources of information about ex-
ploits and (ii) to assess the opportunities for early detec-
tion of exploits in the presence of benign and adversarial
noise. Specifically, we investigate techniques for mini-
mizing false-positive detections—vulnerabilities that are
not actually exploited—which is critical for prioritizing
response actions.

Non-goals. We do not consider the detection of zero-
day attacks [32], which exploit vulnerabilities before
their public disclosure; instead, we focus on detecting the
use of exploits against known vulnerabilities. Because
our aim is to assess the value of publicly available infor-
mation for exploit detection, we do not evaluate the ben-
efits of incorporating commercial or private data feeds.
The design of a complete system for early exploit detec-
tion, which likely requires mechanisms beyond the realm
of Twitter analytics (e.g., for managing the reputation of
data sources to prevent poisoning attacks), is also out of
scope for this paper.
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2.1 Challenges
To put our contributions in context, we review the three
primary challenges for predicting exploits in the ab-
sence of adversarial interference: class imbalance, data
scarcity, and ground truth biases.

Class imbalance. We aim to train a classifier that pro-
duces binary predictions: each vulnerability is classified
as either exploited or not exploited. If there are signifi-
cantly more vulnerabilities in one class than in the other
class, this biases the output of supervised machine learn-
ing algorithms. Prior research on predicting the existence
of proof-of-concept exploits suggests that this bias is not
large, as over half of the vulnerabilities disclosed before
2007 had such exploits [36]. However, few vulnerabili-
ties are exploited in the real world and the exploitation ra-
tios tend to decrease over time [47]. In consequence, our
data set exhibits a severe class imbalance: we were able
to find evidence of real-world exploitation for only 1.3%
of vulnerabilities disclosed during our observation pe-
riod. This class imbalance represents a significant chal-
lenge for simultaneously reducing the false positive and
false negative detections.

Data scarcity. Prior research efforts on Twitter ana-
lytics have been able to extract information from mil-
lions of tweets, by focusing on popular topics like
movies [27], flu outbreaks [20, 26], or large-scale threats
like spam [56]. In contrast, only a small subset of Twit-
ter users discuss vulnerability exploits (approximately
32,000 users), and they do not always mention the CVE
numbers in their tweets, which prevents us from identi-
fying the vulnerability discussed. In consequence, 90%
of the CVE numbers disclosed during our observation
period appear in fewer than 50 tweets. Worse, when
considering the known real-world exploits, close to half
have fewer than 50 associated tweets. This data scarcity
compounds the challenge of class imbalance for reducing
false positives and false negatives.

Quality of ground truth. Prior work on Twitter ana-
lytics focused on predicting quantities for which good
predictors are already available (modulo a time lag): the
Hollywood Stock Exchange for movie box-office rev-
enues [27], CDC reports for flu trends [45] and Twitter’s
internal detectors for highjacked accounts, which trig-
ger account suspensions [56]. These predictors can be
used as ground truth for training high-performance clas-
sifiers. In contrast, there is no comprehensive data set of
vulnerabilities that are exploited in the real world. We
employ as ground truth the set of vulnerabilities men-
tioned in the descriptions of Symantec’s anti-virus and
intrusion-protection signatures, which is, reportedly, the
best available indicator for the exploits included in ex-
ploit kits [23, 47]. However, this dataset has coverage

biases, since Symantec does not cover all platforms and
products uniformly. For example, since Symantec does
not provide a security product for Linux, Linux kernel
vulnerabilities are less likely to appear in our ground
truth dataset than exploits targeting software that runs on
the Windows platform.

2.2 Threat model

Research in adversarial machine learning [28, 29], dis-
tinguishes between exploratory attacks, which poison the
testing data, and causative attacks, which poison both the
testing and the training data sets. Because Twitter is an
open and free service, causative adversaries are a realis-
tic threat to a system that accepts inputs from all Twitter
users. We assume that these adversaries cannot prevent
the victims of attacks from tweeting about their obser-
vations, but they can inject additional tweets in order to
compromise the performance of our classifier. To test
the ramifications of these causative attacks, we develop a
threat model with three types of adversaries.

Blabbering adversary. Our weakest adversary is not
aware of the statistical properties of the training features
or labels. This adversary simply sends tweets with ran-
dom CVEs and random security-related keywords.

Word copycat adversary. A stronger adversary is
aware of the features we use for training and has access
to our ground truth (which comes from public sources).
This adversary uses fraudulent accounts to manipulate
the word features and total tweet counts in the training
data. However, this adversary is resource constrained
and cannot manipulate any user statistics which would
require either more expensive or time intensive account
acquisition and setup (e.g., creation date, verification,
follower and friend counts). The copycat adversary crafts
tweets by randomly selecting pairs of non-exploited and
exploited vulnerabilities and then sending tweets, so that
the word feature distributions between these two classes
become nearly identical.

Full copycat adversary. Our strongest adversary has
full knowledge of our feature set. Additionally, this ad-
versary has sufficient time and economic resources to
purchase or create Twitter accounts with arbitrary user
statistics, with the exception of verification and the ac-
count creation date. Therefore, the full copycat adversary
can use a set of fraudulent Twitter accounts to fully ma-
nipulate almost all word and user-based features, which
creates scenarios where relatively benign CVEs and real-
world exploit CVEs appear to have nearly identical Twit-
ter traffic at an abstracted statistical level.
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Figure 1: Overview of the system architecture.

3 A Twitter-based exploit detector
We present the design of a Twitter-based exploit detector,
using supervised machine learning techniques. Our de-
tector extracts vulnerability-related information from the
Twitter stream, and augments it with additional sources
of data about vulnerabilities and exploits.

3.1 Data collection

Figure 1 illustrates the architecture of our exploit detec-
tor. Twitter is an online social networking service that
enables users to send and read short 140-character mes-
sages called “tweets”, which then become publicly avail-
able. For collecting tweets mentioning vulnerabilities,
the system monitors occurrences of the “CVE” keyword
using Twitter’s Streaming API [15]. The policy of the
Streaming API implies that a client receives all the tweets
matching a keyword as long as the result does not ex-
ceed 1% of the entire Twitter hose, when the tweets be-
come samples of the entire matching volume. Because
the CVE tweeting volume is not high enough to reach
1% of the hose (as the API signals rate limiting), we con-
clude that our collection contains all references to CVEs,
except during the periods of downtime for our infrastruc-
ture.

We collect data over a period of one year, from Febru-
ary 2014 to January 2015. Out of the 1.1 billion tweets
collected during this period, 287,717 contain explicit ref-
erences to CVE IDs. We identify 7,560 distinct CVEs.
After filtering out the vulnerabilities disclosed before the
start of our observation period, for which we have missed
many tweets, we are left with 5,865 CVEs.

To obtain context about the vulnerabilities discussed
on Twitter, we query the National Vulnerability Database
(NVD) [7] for the CVSS scores, the products affected
and additional references about these vulnerabilities.
Additionally, we crawl the Open Sourced Vulnerability
Database (OSVDB) [9] for a few additional attributes,

including the disclosure dates and categories of the vul-
nerabilities in our study.1 Our data collection infrastruc-
ture consists of Python scripts, and the data is stored us-
ing Hadoop Distributed File System. From the raw data
collected, we extract multiple features using Apache PIG
and Spark, which run on top of a local Hadoop cluster.

Ground truth. We use three sources of ground truth.
We identify the set of vulnerabilities exploited in the real
world by extracting the CVE IDs mentioned in the de-
scriptions of Symantec’s anti-virus (AV) signatures [12]
and intrusion-protection (IPS) signatures [13]. Prior
work has suggested that this approach produces the best
available indicator for the vulnerabilities targeted in ex-
ploits kits available on the black market [23, 47]. Con-
sidering only the vulnerabilities included in our study,
this data set contains 77 vulnerabilities targeting prod-
ucts from 31 different vendors. We extract the creation
date from the descriptions of AV signatures to estimate
the date when the exploits were discovered. Unfortu-
nately, the IPS signatures do not provide this informa-
tion, so we query Symantec’s Worldwide Intelligence
Network Environment (WINE) [40] for the dates when
these signatures were triggered in the wild. For each real-
world exploit, we use the earliest date across these data
sources as an estimate for the date when the exploit be-
came known to the security community.

However, as mentioned in Section 2.1, this ground
truth does not cover all platforms and products uni-
formly. Nevertheless, we expect that some software ven-
dors, which have well established procedures for coor-
dinated disclosure, systematically notify security com-
panies of impending vulnerability disclosures to allow
them to release detection signatures on the date of disclo-
sure. For example, the members of Microsoft’s MAPP
program [5] receive vulnerability information in advance
of the monthly publication of security advisories. This
practice provides defense-in-depth, as system adminis-
trators can react to vulnerability disclosures either by de-
ploying the software patches or by updating their AV or
IPS signatures. To identify which products are well cov-
ered in this data set, we group the exploits by the ven-
dor of the affected product. Out of the 77 real-world
exploits, 41 (53%) target products from Microsoft and
Adobe, while no other vendor accounts for more than
3% of exploits. This suggests that our ground truth pro-
vides the best coverage for vulnerabilities in Microsoft
and Adobe products.

We identify the set of vulnerabilities with public proof-
of-concept exploits by querying ExploitDB [3], a collab-
orative project that collects vulnerability exploits. We

1In the past, OSVDB was called the Open Source Vulnerability
Database and released full dumps of their database. Since 2012, OS-
VDB no longer provides public dumps and actively blocks attempts to
crawl the website for most of the information in the database.
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identify exploits for 387 vulnerabilities disclosed during
our observation period. We use the date when the ex-
ploits were added to ExploitDB as an indicator for when
the vulnerabilities were exploited.

We also identify the set of vulnerabilities in Mi-
crosoft’s products for which private proof-of-concept ex-
ploits have been developed by using the Exploitabil-
ity Index [21] included in Microsoft security advisories.
This index ranges from 0 to 3: 0 for vulnerabilities that
are known to be exploited in the real world at the time
of release for a security bulletin,2 and 1 for vulnerabil-
ities that allowed the development of exploits with con-
sistent behavior. Vulnerabilities with scores of 2 and 3
are considered less likely and unlikely to be exploited,
respectively. We therefore consider that the vulnerabili-
ties with an exploitability index of 0 or 1 have an private
PoC exploit, and we identify 218 such vulnerabilities. 22
of these 218 vulnerabilities are considered real-world ex-
ploits in our Symantec ground truth.

3.2 Vulnerability categories
To quantify how these vulnerabilities and exploits are
discussed on Twitter, we group them into 7 categories,
based on their utility for an attacker: Code Execution, In-
formation Disclosure, Denial of Service, Protection By-
pass, Script Injection, Session Hijacking and Spoofing.
Although heterogeneous and unstructured, the summary
field from NVD entries provides sufficient information
for assigning a category to most of the vulnerabilities in
the study, using regular expressions comprised of domain
vocabulary.

Table 2 and Section 4 show how these categories inter-
sect with POC and real-world exploits. Since vulnerabil-
ities may belong to several categories (a code execution
exploit could also be used in a denial of service), the reg-
ular expressions are applied in order. If a match is found
for one category, the subsequent categories would not be
matched.

Aditionally, the Unknown category contains vulnera-
bilities not matched by the regular expressions and those
whose summaries explicitly state that the consequences
are unknown or unspecified.

3.3 Classifier feature selection
The features considered in this study can be classified
in 4 categories: Twitter Text, Twitter Statistics, CVSS
Information and Database Information.

For the Twitter features, we started with a set of 1000
keywords and 12 additional features based on the dis-
tribution of tweets for the CVEs, e.g. the total number

2We do not use this score as an indicator for the existence of real-
world exploits because the 0 rating is available only since August 2014,
toward the end of our observation period.

Keyword MI Wild MI PoC Keyword MI Wild MI PoC

advisory 0.0007 0.0005 ok 0.0015 0.0002
beware 0.0007 0.0005 mcafee 0.0005 0.0002
sample 0.0007 0.0005 windows 0.0012 0.0011
exploit 0.0026 0.0016 w 0.0004 0.0002
go 0.0007 0.0005 microsoft 0.0007 0.0005
xp 0.0007 0.0005 info 0.0007 X
ie 0.0015 0.0005 rce 0.0007 X
poc 0.0004 0.0006 patch 0.0007 X
web 0.0015 0.0005 piyolog 0.0007 X
java 0.0007 0.0005 tested 0.0007 X
working 0.0007 0.0005 and X 0.0005
fix 0.0012 0.0002 rt X 0.0005
bug 0.0007 0.0005 eset X 0.0005
blog 0.0007 0.0005 for X 0.0005
pc 0.0007 0.0005 redhat X 0.0002
reading 0.0007 0.0005 kali X 0.0005
iis 0.0007 0.0005 0day X 0.0009
ssl 0.0005 0.0003 vs X 0.0005
post 0.0007 0.0005 linux X 0.0009
day 0.0015 0.0005 new X 0.0002
bash 0.0015 0.0009

Table 1: Mutual information provided by the reduced set
of keywords with respect to both sources of ground truth
data. The “X” marks in the table indicate that the respec-
tive words were excluded from the final feature set due
to MI below 0.0001 nats.

of tweets related to the CVE, the average age of the ac-
counts posting about the vulnerability and the number
of retweets associated to the vulnerability. For each of
these initial features, we compute the mutual information
(MI) of the set of feature values X and the class labels
Y ∈ {exploited,not exploited}:

MI(Y,X) = ∑
x∈X

∑
y∈Y

p(x,y) ln
(

p(x,y)
p(x)p(y)

)

Mutual information, expressed in nats, compares the fre-
quencies of values from the joint distribution p(x,y) (i.e.
values from X and Y that occur together) with the prod-
uct of the frequencies from the two distributions p(x) and
p(y). MI measures how much knowing X reduces uncer-
tainty about Y , and can single out useful features sug-
gesting that the vulnerability is exploited as well as fea-
tures suggesting it is not. We prune the initial feature set
by excluding all features with mutual information below
0.0001 nats. For numerical features, we estimate proba-
bility distributions using a resolution of 50 bins per fea-
ture. After this feature selection process, we are left with
38 word features for real-world exploits.

Here, rather than use a wrapper method for feature
selection, we use this mutual information-based filter
method in order to facilitate the combination of au-
tomatic feature selection with intuition-driven manual
pruning. For example, keywords that correspond to
trend-setting vulnerabilities from 2014, like Heartbleed
and Shellshock, exhibit a higher mutual information than
many other potential keywords despite their relation to
only a small subset of vulnerabilities. Yet, such highly
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specific keywords are undesirable for classification due
to their transitory utility. Therefore, in order to reduce
susceptibility to concept drift, we manually prune these
word features for our classifiers to generate a final set of
31 out of 38 word features (listed in Table 1 with addi-
tional keyword intuition described in Section 4.1).

In order to improve performance and increase classi-
fier robustness to potential Twitter-based adversaries act-
ing through account hijacking and Sybil attacks, we also
derive features from NVD and OSVDB. We consider
all 7 CVSS score components, as well as features that
proved useful for predicting proof-of-concept exploits in
prior work [36], such as the number of unique references,
the presence of the token BUGTRAQ in the NVD refer-
ences, the vulnerability category from OSVDB and our
own vulnerability categories (see Section 3.2). This gives
us 17 additional features. The inclusion of these non-
Twitter features is useful for boosting the classifier’s re-
silience to adversarial noise. Figure 2 illustrates the most
useful features for detecting real-world or PoC exploits,
along with the corresponding mutual information.

3.4 Classifier training and evaluation
We train linear support vector machine (SVM) classi-
fiers [35, 38, 39, 43] in a feature space with 67 dimen-
sions that results from our feature selection step (Sec-
tion 3.3). SVMs seek to determine the maximum margin
hyperplane to separate the classes of exploited and non-
exploited vulnerabilities. When a hyperplane cannot per-
fectly separate the positive and negative class samples
based on the feature vectors used in training, the basic
SVM cost function is modified to include a regulariza-
tion penalty, C, and non-negative slack variables, ξi. By
varying C, we explore the trade-off between false nega-
tives and false positives in our classifiers.

We train SVM classifiers using multiple rounds of
stratified random sampling. We perform sampling be-
cause of the large imbalance in the class sizes be-
tween vulnerabilities exploited and vulnerabilities not
exploited. Typically, our classifier training consists of 10
random training shuffles where 50% of the available data
is used for training and the remaining 50% is used for
testing. We use the scikit-learn Python package [49]
to train our classifiers.

An important caveat, though, is that our one year
of data limits our ability to evaluate concept drift. In
most cases, our cross-validation data is temporally in-
termixed with the training data, since restricting sets of
training and testing CVEs to temporally adjacent blocks
confounds performance losses due to concept drift with
performance losses due to small sample sizes. Further-
more, performance differences between the vulnerabil-
ity database features of our classifiers and those explored
in [36] emphasize the benefit of periodically repeating

Category # CVEs Real-World PoC Both
All Data / Good Coverage

Code Execution 1249/322 66/39 192/14 28/8
Info Disclosure 1918/59 4/0 69/5 4/0
Denial Of Service 657/17 0/0 16/1 0/0
Protection Bypass 204/34 0/0 3/0 0/0
Script Injection 683/14 0/0 40/0 0/0
Session Hijacking 167/1 0/0 25/0 0/0
Spoofing 55/4 0/0 0/0 0/0
Unknown 981/51 7/0 42/6 5/0

Total 5914/502 77/39 387/26 37/8

Table 2: CVEs Categories and exploits summary. The
first sub-column represents the whole dataset, while the
second sub-column is restricted to Adobe and Microsoft
vulnerabilities, for which our ground truth of real-world
exploits provides good coverage.

previous experiments from the security literature in or-
der to properly assess whether the results are subject to
long-term concept drift.

Performance metrics. When evaluating our classi-
fiers, we rely on two standard performance metrics: pre-
cision and recall.3 Recall is equivalent to the true pos-
itive rate: Recall = T P

T P+FN , where T P is the number of
true positive classifications and FN is the number of false
negatives. The denominator is the total number of posi-
tive samples in the testing data. Precision is defined as:
Precision = T P

T P+FP where FP is the total number of false
positives identified by the classifier. When optimizing
classifier performance based on these criteria, the rela-
tive importance of these quantities is dependent on the
intended applications of the classifier. If avoiding false
negatives is priority, then recall must be high. However,
if avoiding false positives is more critical, then precision
is the more important metric. Because we envision uti-
lizing our classifier as a tool for prioritizing the response
to vulnerability disclosures, we focus on improving the
precision rather than the recall.

4 Exploit-related information on Twitter

Table 2 breaks down the vulnerabilities in our study ac-
cording to the categories described in Section 3.2. 1249
vulnerabilities allowing code execution were disclosed
during our observation period. 66 have real-world ex-
ploits, and 192 have public proof-of-concept exploits;
the intersection of these two sets includes 28 exploits.
If we consider only Microsoft and Adobe vulnerabilities,
for which we expect that our ground truth has good cov-
erage (see Section 3.1), the table shows that 322 code-

3We choose precision and recall because Receiver Operating Char-
acteristic (ROC) curves can present an overly optimistic view of a clas-
sifier’s performance when dealing with skewed data sets [?].
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Figure 2: Mutual information between real world and public proof of concept exploits for CVSS, Twitter user statistics,
NVD, and OSVDB features. CVSS Information - 0: CVSS Score, 1: Access Complexity, 2: Access Vector, 3:
Authentication, 4: Availability Impact, 5: Confidentiality Impact, 6: Integrity Impact. Twitter Traffic - 7: Number
of tweets, 8/9: # users with minimum T followers/friends, 10/11: # retweets/replies, 12: # tweets favorited, 13/14/15:
Avg # hashtags/URLs/user mentions per tweet, 16: # verified accounts, 17: Avg age of accounts, 18: Avg # of tweets
per account. Database Information - 19: # references in NVD, 20: # sources in NVD, 21/22: BUGTRAQ/SECUNIA
in NVD sources, 23: allow in NVD summay, 24: NVD last modified date - NVD published date, 25: NVD last
modified date - OSVDB disclosed date, 26: Number of tokens in OSVDB title, 27: Current date - NVD last modified
date, 28: OSVDB in NVD sources, 29: code in NVD summay, 30: # OSVDB entries, 31: OSVDB Category, 32:
Regex Category, 33: First vendor in NVD, 34: # vendors in NVD, 35: # affected products in NVD.

execution vulnerabilities were disclosed, 39 have real-
world exploits, 14 have public PoC exploits and 8 have
both real-world and public PoC exploits.

Information disclosure is the largest category of vul-
nerabilities from NVD and it has a large number of
PoC exploits, but we find few of these vulnerabilities
in our ground truth of real-world exploits (one excep-
tion is Heartbleed). Instead, most of the real-world ex-
ploits focus on code execution vulnerabilities. However,
many proof-of-concept exploits for such vulnerabilities
do not seem to be utilized in real-world attacks. To un-
derstand the factors that drive the differences between
real-world and proof-of-concept exploits, we examine
the CVSS base metrics, which describe the character-
istics of each vulnerability. This analysis reveals that
most of the real-world exploits allow remote code execu-
tion, while some PoC exploits require local host or local
network access. Moreover, while some PoC vulnerabil-
ities require authentication before a successful exploit,
real-world exploits focus on vulnerabilities that do not
require bypassing authentication mechanisms. In fact,
this is the only type of exploit we found in the segment
of our ground truth that has good coverage, suggesting
that remote code-execution exploits with no authentica-
tion required are strongly favored by real-world attack-
ers. Our ground truth does not provide good coverage
of web exploits, which explains the lack of Script In-
jection, Session Highjacking and Spoofing exploits from
our real-world data set.

Surprisingly, we find that, among the remote execution
vulnerabilities for which our ground truth provides good
coverage, there are more real-world exploits than public

PoC exploits. This could be explained by the increas-
ing prevalence of obfuscated disclosures, as reflected in
NVD vulnerability summaries that mention the possibil-
ity of exploitation “via unspecified vectors” (for exam-
ple, CVE-2014-8439). Such disclosures make it more
difficult to create PoC exploits, as the technical informa-
tion required is not readily available, but they may not
thwart determined attackers who have gained experience
in hacking the product in question.

4.1 Exploit-related discourse on Twitter

The Twitter discourse is dominated by a few vulnerabil-
ities. Heartbleed (CVE-2014-0160) received the highest
attention, with more than 25,000 tweets (8,000 posted in
the first day after disclosure). 24 vulnerabilities received
more than 1,000 tweets. 16 of these vulnerabilities were
exploited: 11 in the real-world, 12 in public proofs of
concept and 8 in private proofs of concept. The median
number of tweets across all the vulnerabilities in our data
set is 14.

The terms that Twitter users employ when discussing
exploits also provide interesting insights. Surprisingly,
the distribution of the keyword “0day” exhibits a high
mutual information with public proof-of-concept ex-
ploits, but not with real-world exploits. This could be
explained by confusion over the definition of the term
zero-day vulnerability: many Twitter users understand
this to mean simply a new vulnerability, rather than a vul-
nerability that was exploited in real-world attacks before
its public disclosure [32]. Conversely, the distribution of
the keyword “patch” has high mutual information only
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with the real-world exploits, because a common reason
for posting tweets about vulnerabilities is to alert other
users and point them to advisories for updating vulner-
able software versions after exploits are detected in the
wild. Certain words like “exploit” or “advisory” are use-
ful for detecting both real-world and PoC exploits.

4.2 Information posted before disclosure
For the vulnerabilities in our data set, Figure 3 com-
pares the dates of the earliest tweets mentioning the
corresponding CVE numbers with the public disclosure
dates for these vulnerabilities. Using the disclosure date
recorded in OSVDB, we identify 47 vulnerabilities that
were mentioned in the Twitter stream before their pub-
lic disclosure. We investigate these cases manually to
determine the sources of this information. 11 of these
cases represent misspelled CVE IDs (e.g. users mention-
ing 6172 but talking about 6271 – Shellshock), and we
are unable to determine the root cause for 5 additional
cases owing to the lack of sufficient information. The re-
maining cases can be classified into 3 general categories
of information leaks:

Disagreements about the planned disclosure date.
The vendor of the vulnerable software sometimes posts
links to a security bulletin ahead of the public disclosure
date. These cases are typically benign, as the security
advisories provide instructions for patching the vulnera-
bility. A more dangerous situation occurs when the party
who discovers the vulnerability and the vendor disagree
about the disclosure schedule, resulting in the publica-
tion of vulnerability details a few days before a patch is
made available [6,14,16,17]. We have found 13 cases of
disagreements about the disclosure date.

Coordination of the response to vulnerabilities dis-
covered in open-source software. The developers of
open-source software sometimes coordinate their re-
sponse to new vulnerabilities through social media, e.g.
mailing lists, blogs and Twitter. An example for this be-
havior is a tweet about a wget patch for CVE-2014-4877
posted by the patch developer, followed by retweets and
advice to update the binaries. If the public discussion
starts before a patch is completed, then this is potentially
dangerous. However, in the 5 such cases we identified,
the patching recommendations were first posted on Twit-
ter and followed by an increased retweet volume.

Leaks from the coordinated disclosure process. In
some cases, the participants in the coordinated disclosure
process leak information before disclosure. For example,
security researchers may tweet about having confirmed

Figure 3: Comparison of the disclosure dates with the
dates when the first tweets are posted for all the vulner-
abilities in our dataset. Plotted in red is the identity line
where the two dates coincide.

that a vulnerability is exploitable, along with the soft-
ware affected. This is the most dangerous situation, as
attackers may then contact the researcher with offers to
purchase the exploit, before the vendor is able to release
a patch. We have identified 13 such cases.

4.3 Users with information-rich tweets
The tweets we have collected were posted by approxi-
mately 32,000 unique users, but the messages posted by
these users are not equally informative. Therefore, we
quantify utility on a per user basis by computing the ra-
tio of CVE tweets related to real-world exploits as well
as the fraction of unique real-world exploits that a given
user tweets about. We rank user utility based on the har-
monic mean of these two quantities. This ranking penal-
izes users that tweet about many CVEs indiscriminately
(e.g. a security news bot) as well as the thousands of
users that only tweet about the most popular vulnera-
bilities (e.g. Shellshock and Heartbleed). We create a
whitelist with the top 20% most informative users, and
we use this whitelist in our experiments in the follow-
ing sections as a means of isolating our classifier from
potential adversarial attacks. Top ranked whitelist users
include computer repair servicemen posting about the
latest viruses discovered in their shops and security re-
searchers and enthusiasts sharing information about the
latest blog and news postings related to vulnerabilities
and exploits.

Figure 4 provides an example of how the information
about vulnerabilities and exploits propagates on Twitter
amongst all users. The “Futex” bug, which enables unau-
thorized root access on Linux systems, was disclosed on
June 6 as CVE-2014-3153. After identifying users who
posted messages that had retweets counting for at least
1% of the total tweet counts for this vulnerability and ap-
plying a thresholding based on the number of retweets,
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Figure 4: Tweet volume for CVE-2014-3153 and tweets
from the most influential users. These influential tweets
shape the volume of Twitter posts about the vulnerability.
The 8 marks represent important events in the vulnerabil-
ity’s lifecycle: 1 - disclosure, 2 - Android exploit called
Towelroot is reported and exploitation attempts are de-
tected in the wild, 3,4,5 - new technical details emerge,
including the Towelroot code, 6 - new mobile phones
continue to be vulnerable to this exploit, 7 - advisory
about the vulnerability is posted, 8 - exploit is included
in ExploitDB.

we identify 20 influential tweets that shaped the vol-
ume of Twitter messages. These tweets correspond to
8 important milestones in the vulnerability’s lifecycle, as
marked in the figure.

While CVE-2014-3153 is known to be exploited in the
wild, it is not included in our ground truth for real-world
exploits, which does not cover the Linux platform. This
example illustrates that monitoring a subset of users can
yield most of the vulnerability- and exploit-related infor-
mation available on Twitter. However, over reliance on a
small number of user accounts, even with manual anal-
ysis, can increase susceptibility to data manipulation via
adversarial account hijacking.

5 Detection of proof-of-concept and real-
world exploits

To provide a baseline for our ability to classify exploits,
we first examine the performance of a classifier that uses
only the CVSS score, which is currently recommended
as the reference assessment method for software secu-
rity [50]. We use the total CVSS score and the ex-
ploitability subscore as a means of establishing baseline
classifier performances. The exploitability subscore is
calculated as a combination of the CVSS access vector,
access complexity, and authentication components. Both
the total score and exploitability subscore range from
0-10. By varying a threshold across the full range of
values for each score, we can generate putative labels

Figure 5: Precision and recall for classifying real world
exploits with CVSS score thresholds.

where vulnerabilities with scores above the threshold are
marked as “real-world exploits” and vulnerabilities be-
low the threshold are labeled as “not exploited”. Unsur-
prisingly, since CVSS is designed as a high recall sys-
tem which errs on the side of caution for vulnerability
severity, the maximum possible precision for this base-
line classifier is less than 9%. Figure 5 shows the recall
and precision values for both total CVSS score thresh-
olds and CVSS exploitability subscore thresholds.

Thus, this high recall, low precision vulnerability
score is not useful by itself for real-world exploit iden-
tification, and boosting precision is a key area for im-
provement.

Classifiers for real-world exploits. Classifiers for
real-world exploits have to deal with a severe class im-
balance: we have found evidence of real-world exploita-
tion for only 1.3% of the vulnerabilities disclosed dur-
ing our observation period. To improve the classifica-
tion precision, we train linear SVM classifiers on a com-
bination of CVSS metadata features, features extracted
from security-related tweets, and features extracted from
NVD and OSVDB (see Figure 2). We tune these clas-
sifiers by varying the regularization parameter C, and
we illustrate the precision and recall achieved. Values
shown are for cross-validation testing averaged across
10 stratified random shuffles. Figure 6a shows the av-
erage cross-validated precision and recall that are simul-
taneously acheivable with our Twitter-enhanced feature
set. These classifiers can achieve higher precision than
a baseline classifier that uses only the CVSS score, but
there is still a tradeoff between precision and recall. We
can tune the classifier with regularization to decrease the
number of false positives (increasing precision), but this
comes at the cost of a larger number of false negatives
(decreasing recall).

9
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(a) Real-world exploits. (b) Public proof-of-concept exploits. (c) Private proof-of-concept exploits for vulner-
abilities in Microsoft products.

Figure 6: Precision and recall of our classifiers.

This result partially reflects an additional challenge for
our classifier: the fact that our ground truth is imperfect,
as Symantec does not have products for all the platforms
that are targeted in attacks. If our Twitter-based classifier
predicts that a vulnerability is exploited and the exploit
exists, but is absent from the Symantec signatures, we
will count this instance as a false positive, penalizing the
reported precision. To assess the magnitude of this prob-
lem, we restrict the training and evaluation of the clas-
sifier to the 477 vulnerabilities in Microsoft and Adobe
products, which are likely to have a good coverage in our
ground truth for real-world exploits (see Section 3.1). 41
of these 477 vulnerabilities are identified as real-world
exploits in our ground truth. For comparison, we include
the performance of this classifier in Figure 6a. Improv-
ing the quality of the ground truth allows us to bolster
the values of precision and recall which are simultane-
ously achievable, while still enabling classification pre-
cision an order of magnitude larger than a baseline CVSS
score-based classifier. Additionally, while restricting the
training of our classifier to a whitelist made up of the top
20% most informative Twitter users (as described in Sec-
tion 4.3) does not enhance classifier performance, it does
allow us to achieve a precision comparable to the previ-
ous experiments (Figure 6a). This is helpful for prevent-
ing an adversary from poisoning our classifier, as dis-
cussed in Section 6.

These results illustrate the current potential and limi-
tations for predicting real-world exploits using publicly-
available information. Further improvements in the
classification performance may be achieved through a
broader effort for sharing information about exploits ac-
tive in the wild, in order to assemble a high-coverage
ground truth for training of classifiers.

Classifiers for proof-of-concept exploits. We explore
two classification problems: predicting public proof-of-

concept exploits, for which the exploit code is publicly
available, and predicting private proof-of-concept ex-
ploits, for which we can find reliable information that
the exploit was developed, but it was not released to the
public. We consider these problems separately, as they
have different security implications and the Twitter users
are likely to discuss them in distinct ways.

First, we train a classifier to predict the availability
of exploits in ExploitDB [3], the largest archive of pub-
lic exploits. This is similar to the experiment reported
by Bozorgi et al. in [36], except that our feature set is
slightly different—in particular, we extract word features
from Twitter messages, rather than from the textual de-
scriptions of the vulnerabilities. However, we include the
most useful features for predicting proof-of-concept ex-
ploits, as reported in [36]. Additionally, Bozorgi et al.
determined the availability of proof-of-concept exploits
using information from OSVDB [9], which is typically
populated using references to ExploitDB but may also
include vulnerabilities for which the exploit is rumored
or private (approximately 17% of their exploit data set).
After training a classifier with the information extracted
about the vulnerabilities disclosed between 1991–2007,
they achieved a precision of 87.5%.

Surprisingly, we are not able to reproduce their per-
formance results, as seen in Figure 6b, when analyz-
ing the vulnerabilities that appear in ExploitDB in 2014.
The figure also illustrates the performance of a classi-
fier trained with exclusion threshold for CVEs that lack
sufficient quantities of tweets. These volume thresholds
improve performance, but not dramatically.4 In part, this
is due to our smaller data set compared to [36], made up
of vulnerabilities disclosed during one year rather than
a 16-year period. Moreover, our ground truth for public
proof-of-concept exploits also exhibits a high class im-

4In this case, we do not restrict the exploits to specific vendors, as
ExploitDB will incorporate any exploit submitted.
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balance: only 6.2% of the vulnerabilities disclosed dur-
ing our observation period have exploits available in Ex-
ploitDB. This is in stark contrast to the prior work, where
more than half of vulnerabilities had proof of concept ex-
ploits.

This result provides an interesting insight into the evo-
lution of the threat landscape: today, proof-of-concept
exploits are less centralized than in 2007, and ExploitDB
does not have total coverage of public proof-of-concept
exploits. We have found several tweets with links to
PoC exploits, published on blogs or mailing lists, that
were missing from ExploitDB (we further analyze these
instances in Section 4). This suggests that information
about public exploits is increasingly dispersed among
social media sources, rather than being included in a
centralized database like ExploitDB,5 which represents
a hurdle for prioritizing the response to vulnerability dis-
closures.

To address this concern, we explore the potential for
predicting the existence of private proof-of-concept ex-
ploits by considering only the vulnerabilities disclosed in
Microsoft products and by using Microsoft’s Exploitabil-
ity Index to derive our ground truth. Figure 6c illustrates
the performance of a classifier trained with a conserva-
tive ground truth in which we treat vulnerabilities with
scores of 1 or less as exploits. This classifier achieves
precision and recall higher than 80%, even when only
relying on database feature subsets. Unlike in our prior
experiments, for the Microsoft Exploitability Index the
classes are more balanced: 67% of the vulnerabilities
(218 out of 327) are labeled as having a private proof-of-
concept exploit. However, only 8% of the Microsoft vul-
nerabilities in our dataset are contained within our real-
world exploit ground truth. Thus, by using a conservative
ground truth that labels many vulnerabilities as exploits
we can achieve high precision and recall, but this classi-
fier performance does not readily translate to real-world
exploit prediction.

Contribution of various feature groups to the clas-
sifier performance. To understand how our features
contribute to the performance of our classifiers, in Fig-
ure 7 we compare the precision and recall of our real-
world exploit classifier when using different subgroups
of features. In particular, incorporating Twitter data into
the classifiers allows for improving the precision be-
yond the levels of precision achievable with data that
is currently available publicly in vulnerability databases.
Both user features and word features generated based on
tweets are capable of bolstering classifier precision in
comparison to CVSS and features extracted from NVD

5Indeed, OSVDB no longer seems to provide the exploitation avail-
ability flag.

Figure 7: Precision and recall for classification of real
world exploits with different feature subsets. Twitter fea-
tures allow higher-precision classification of real-world
exploits.

and OSVDB. Consequently, the analysis of social media
streams like Twitter is useful for boosting identification
of exploits active in the real-world.

5.1 Early detection of exploits

In this section we ask the question: How soon can we
detect exploits active in the real world by monitoring the
Twitter stream? Without rapid detecton capabilities that
leverage the real-time data availability inherent to social
media platforms, a Twiter-based vulnerability classifier
has little practical value. While the first tweets about
a vulnerability precede the creation of IPS or AV sig-
natures by a median time of 10 days, these first tweets
are typically not informative enough to determine that
the vulnerability is likely exploited. We therefore sim-
ulate a scenario where our classifier for real-world ex-
ploits is used in an online manner, in order to identify
the dates when the output of the classifier changes from
“not exploited” to “exploited” for each vulnerability in
our ground truth.

We draw 10 stratified random samples, each with 50%
coverage of “exploited” and “not exploited” vulnerabil-
ities, and we train a separate linear SVM classifier with
each one of these samples (C = 0.0003). We start testing
each of our 10 classifiers with a feature set that does not
include features extracted from tweets, to simulate the
activation of the online classifier. We then continue to
test the ensemble of classifiers incrementally, by adding
one tweet at a time to the testing set. We update the ag-
gregated prediction using a moving average with a win-
dow of 1000 tweets. Figure 8a highlights the tradeoff
between precision and early detection for a range of ag-
gregated SVM prediction thresholds. Notably, though,
large precision sacrifices do not necessarily lead to large

11



1052 24th USENIX Security Symposium USENIX Association

gains for the speed of detection. Therefore, we choose an
aggregated prediction threshold of 0.95, which achieves
45% precision and a median lead prediction time of two
days before the first Symantec AV or WINE IPS signa-
ture dates. Figure 8b shows how our classifier detection
lags behind first tweet appearances. The solid blue line
shows the cumulative distribution function (CDF) for the
number of days difference between the first tweet appear-
ance for a CVE and the first Symantec AV or IPS attack
signature. The green dashed line shows the CDF for the
day difference between 45% precision classification and
the signature creation. Negative day differences indicate
that Twitter events occur before the creation of the attack
signature. In approximately 20% of cases, early detec-
tion is impossible because the first tweet for a CVE oc-
curs after an attack signature has been created. For the
remaining vulnerabilities, Twitter data provides valuable
insights into the likelihood of exploitation.

Figure 8c illustrates early detection for the case of
Heartbleed (CVE-2014-1060). The green line indicates
the first appearance of the vulnerability in ExploitDB,
and the red line indicates the date when a Symantec at-
tack signature was published. The dashed black line
represents the earliest time when our online classifier is
able to detect this vulnerability as a real-world exploit at
45% precision. Our Twitter-based classifier provides an
“exploited” output 3 hours after the first tweet appears
related to this CVE on April 7, 2014. Heartbleed ex-
ploit traffic was detected 21 hours after the vulnerabil-
ity’s public disclosure [41]. Heartbleed appeared in Ex-
ploitDB on the day after disclosure (April 8, 2014), and
Symantec published the creation of an attack signature
on April 9, 2014. Additionally, by accepting lower lev-
els of precision, our Twitter-based classifiers can achieve
even faster exploit detection. For example, with classi-
fier precision set to approximately 25%, Heartbleed can
be detected as an exploit within 10 minutes of its first
appearance on Twitter.

6 Attacks against the exploit detectors

The public nature of Twitter data necessitates consider-
ing classification problems not only in an ideal environ-
ment, but also in an environment where adversaries may
seek to poison the classifiers. In causative adversarial
machine learning (AML) attacks, the adversaries make
efforts to have a direct influence by corrupting and alter-
ing the training data [28, 29, 31].

With Twitter data, learning the statistics of the train-
ing data is as simple as collecting tweets with either the
REST or Streaming APIs. Features that are likely to be
used in classification can then be extracted and evaluated
using criteria such as correlation, entropy, or mutual in-
formation, when ground truth data is publicly available.

In this regard, the most conservative assumption for se-
curity is that an adversary has complete knowledge of a
Twitter-based classifier’s training data as well as knowl-
edge of the feature set.

When we assume an adversary works to create both
false negatives and false positives (an availability AML
security violation), practical implementation of a ba-
sic causative AML attack on Twitter data is relatively
straightforward. Because of the popularity of spam on
Twitter, websites such as buyaccs.com cheaply sell
large volumes of fraudulent Twitter accounts. For ex-
ample, on February 16, 2015 on buyaccs.com, the base-
line price for 1000 AOL email-based Twitter accounts
was $17 with approximately 15,000 accounts available
for purchase. This makes it relatively cheap (less than
$300 as a base cost) to conduct an attack in which a
large number of users tweet fraudulent messages contain-
ing CVEs and keywords, which are likely to be used in
a Twitter-based classifier as features. Such an attacker
has two main limitations. The first limitation is that,
while the attacker can add an extremely large number of
tweets to the Twitter stream via a large number of differ-
ent accounts, the attacker has no straightforward mech-
anism for removing legitimate, potentially informative
tweets from the dataset. The second limitation is that
additional costs must be incurred if an attacker’s fraud-
ulent accounts are to avoid identification. Cheap Twitter
accounts purchased in bulk have low friend counts and
low follower counts. A user profile-based preprocess-
ing stage of analysis could easily eliminate such accounts
from the dataset if an adversary attempts to attack a Twit-
ter classification scheme in such a rudimentary manner.
Therefore, to help make fraudulent accounts seem more
legitimate and less readily detectable, an adversary must
also establish realistic user statistics for these accounts.

Here, we analyze the robustness of our Twitter-based
classifiers when facing three distinct causative attack
strategies. The first attack strategy is to launch a
causative attack without any knowledge of the training
data or ground truth. This blabbering adversary essen-
tially amounts to injecting noise into the system. The
second attack strategy corresponds to the word-copycat
adversary, who does not create a sophisticated network
between the fraudulent accounts and only manipulates
word features and the total tweet count for each CVE.
This attacker sends malicious tweets, so that the word
statistics for tweets about non-exploited and exploited
CVEs appear identical at a user-naive level of abstrac-
tion. The third, most powerful adversary we consider is
the full-copycat adversary. This adversary manipulates
the user statistics (friend, follower, and status counts)
of a large number of fraudulent accounts as well as the
text content of these CVE-related tweets to launch a
more sophisticated Sybil attack. The only user statis-
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(a) Tradeoff between classification speed and
precision.

(b) CDFs for day differences between first
tweet for a CVE, first classification, and attack
signature creation date.

(c) Heartbleed detection timeline between
April 7th and April 10th, 2014.

Figure 8: Early detection of real-world vulnerability exploits.

tics which we assume this full copycat adversary can-
not arbitrarily manipulate are account verification status
and account creation date, since modifying these features
would require account hijacking. The goal of this adver-
sary is for non-exploited and exploited CVEs to appear
as statistically identical as possible on Twitter at a user-
anonymized level of abstraction.

For all strategies, we assume that the attacker has pur-
chased a large number of fraudulent accounts. Fewer
than 1,000 out of the more than 32,000 Twitter users in
our CVE tweet dataset send more than 20 CVE-related
tweets in a year, and only 75 accounts send 200 or more
CVE-related tweets. Therefore, if an attacker wishes
to avoid tweet volume-based blacklisting, then each ac-
count cannot send a high number of CVE-related tweets.
Consequently, if the attacker sets a volume threshold of
20-50 CVE tweets per account, then 15,000 purchased
accounts would enable the attacker to send 300,000-
750,000 adversarial tweets.

The blabbering adversary, even when sending 1 mil-
lion fraudulent tweets, is not able to force the preci-
sion of our exploit detector below 50%. This suggests
that Twitter-based classifiers can be relatively robust to
this type of random noise-based attack (black circles in
Fig. 9). When dealing with the word-copycat adversary
(green squares in Fig. 9), performance asymptotically
degrades to 30% precision. The full-copycat adversary
can cause the precision to drop to approximately 20% by
sending over 300,000 tweets from fraudulent accounts.
The full-copycat adversary represents a practical upper
bound for the precision loss that a realistic attacker can
inflict on our system. Here, performance remains above
baseline levels even for our strongest Sybil attacker due
to our use of non-Twitter features to increase classifier
robustness. Nevertheless, in order to recover perfor-

Figure 9: Average linear SVM precision when training
and testing data are poisoned by the three types of adver-
saries from our threat model.

mance, implementing a Twitter-based vulnerability clas-
sifier in a realistic setting is likely to require curation of
whitelists and blacklists for informative and adversarial
users. As shown in figure 6a, restricting the classifier to
only consider the top 20% of users with the most relevant
tweets about real-world exploits causes no performance
degradation and fortifies the classifier against low tier ad-
versarial threats.

7 Related work

Previous work by Allodi et al. has highlighted multiple
deficiencies in CVSS version 2 as a metric for predict-
ing whether or not a vulnerability will be exploited in the
wild [24], specifically because predicting the small frac-
tion of vulnerabilities exploited in the wild is not one of
the design goals of CVSS. By analyzing vulnerabilities
in exploit kits, work by Allodi et al. has also established
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that Symantec threat signatures are an effective source
of information for determining which vulnerabilities are
exploited in the real world, even if the coverage is not
complete for all systems [23].

The closest work to our own is Bozorgi et al., who
applied linear support vector machines to vulnerability
and exploit metadata in order predict the development of
proof-of-concept exploits [36]. However, the existence
of a POC exploit does not necessarily mean that an ex-
ploit will be leveraged for attacks in the wild, and real
world attacks occur in only of a small fraction of the
cases for which a vulnerability has a proof of concept ex-
ploit. [25, 47]. In contrast, we aim to detect exploits that
are active in the real world. Hence, our analysis expands
on this prior work [36] by focusing classifier training on
real world exploit data rather than POC exploit data and
by targeting social media data as a key source of features
for distinguishing real world exploits from vulnerabili-
ties that are not exploited in the real world.

In prior analysis of Twitter data, success has been
found in a wide variety of applications including earth-
quake detection [53], epidemiology [26, 37], and the
stock market [34, 58]. In the security domain, much
attention has been focused on detecting Twitter spam
accounts [57] and detecting malicious uses of Twitter
aimed at gaining political influence [30, 52, 55]. The
goals of these works is distinct from our task of predict-
ing whether or not vulnerabilities are exploited in the
wild. Nevertheless, a practical implementation of our
vulnerability classification methodology would require
the detection of fraudulent tweets and spam accounts to
prevent poisoning attacks.

8 Discussion

Security in Twitter analytics. Twitter data is publicly
available, and new users are free to join and start send-
ing messages. In consequence, we cannot obfuscate or
hide the features we use in our machine learning system.
Even if we had not disclosed the features we found most
useful for our problem, an adversary can collect Twit-
ter data, as well as the data sets we use for ground truth
(which are also public), and determine the most informa-
tion rich features within the training data in the the same
way we do. Our exploit detector is an example of a se-
curity system without secrets, where the integrity of the
system does not depend on the secrecy of its design or
of the features it uses for learning. Instead, the security
properties of our system derive from the fact that the ad-
versary can inject new messages in the Twitter stream,
but cannot remove any messages sent by the other users.
Our threat model and our experimental results provide
practical bounds for the damage the adversary can inflict
on such a system. This damage can be reduced further

by incorporating techniques for identifying adversarial
Twitter accounts, for example by assigning a reputation
score to each account [44, 48, 51].

Applications of early exploit detection. Our results
suggest that, the information contained in security-
related tweets is an important source for timely security-
related information. Twitter-based classifiers can be em-
ployed to guide the prioritization of response actions af-
ter vulnerability disclosures, especially for organizations
with strict policies for testing patches prior to enterprise-
wide deployment, which makes patching a resource-
intensive effort. Another potential application is model-
ing the risk associated with vulnerabilities, for example
by combining the likelihood of real-world exploitation,
produced by our system, with additional metrics for vul-
nerability assessment, such as the CVSS severity scores
or the odds that the vulnerable software is exploitable
given its deployment context (e.g. whether it is attached
to a publicly-accessible network). Such models are key
for the emerging area of cyber-insurance [33], and they
would benefit from an evidence-based approach for esti-
mating the likelihood of real-world exploitation.

Implications for information sharing efforts. Our re-
sults highlight the current challenges for the early detec-
tion of exploits, in particular the fact that the existing
sources of information for exploits active in the wild do
not cover all the platforms that are targeted by attackers.
The discussions on security-related mailing lists, such as
Bugtraq [10], Full Disclosure [4] and oss-security [8],
focus on disclosing vulnerabilities and publishing ex-
ploits, rather than on reporting attacks in the wild. This
makes it difficult for security researchers to assemble
a high-quality ground truth for training supervised ma-
chine learning algorithms. At the same time, we illustrate
the potential of this approach. In particular,our whitelist
identifies 4,335 users who post information-rich mes-
sages about exploits. We also show that the classification
performance can be improved significantly by utilizing
a ground truth with better coverage. We therefore en-
courage the victims of attacks to share relevant technical
information, perhaps through recent information-sharing
platforms such as Facebook’s ThreatExchange [42] or
the Defense Industrial Base voluntary information shar-
ing program [1].

9 Conclusions
We conduct a quantitative and qualitative exploration
of information available on Twitter that provides early
warnings for the existence of real-world exploits. Among
the products for which we have reliable ground truth,
we identify more vulnerabilities that are exploited in
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the real-world than vulnerabilities for which proof-of-
concept exploits are available publicly. We also iden-
tify a group of 4,335 users who post information-rich
messages about real-world exploits. We review several
unique challenges for the exploit detection problem, in-
cluding the skewed nature of vulnerability datasets, the
frequent scarcity of data available at initial disclosure
times and the low coverage of real world exploits in the
ground truth data sets that are publicly available. We
characterize the threat of information leaks from the co-
ordinated disclosure process, and we identify features
that are useful for detecting exploits.

Based on these insights, we design and evaluate a
detector for real-world exploits utilizing features ex-
tracted from Twitter data (e.g., specific words, number of
retweets and replies, information about the users posting
these messages). Our system has fewer false positives
than a CVSS-based detector, boosting the detection pre-
cision by one order of magnitude, and can detect exploits
a median of 2 days ahead of existing data sets. We also
introduce a threat model with three types of adversaries
seeking to poison our exploit detector, and, through sim-
ulation, we present practical bounds for the damage they
can inflict on a Twitter-based exploit detector.
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Abstract
Malware sandboxes are automated dynamic analysis

systems that execute programs in a controlled environ-
ment. Within the large volumes of samples submitted
every day to these services, some submissions appear to
be different from others, and show interesting character-
istics. For example, we observed that malware samples
involved in famous targeted attacks – like the Regin APT
framework or the recently disclosed malwares from the
Equation Group – were submitted to our sandbox months
or even years before they were detected in the wild. In
other cases, the malware developers themselves interact
with public sandboxes to test their creations or to develop
a new evasion technique. We refer to similar cases as
malware developments.

In this paper, we propose a novel methodology to au-
tomatically identify malware development cases from the
samples submitted to a malware analysis sandbox. The
results of our experiments show that, by combining dy-
namic and static analysis with features based on the file
submission, it is possible to achieve a good accuracy in
automatically identifying cases of malware development.
Our goal is to raise awareness on this problem and on the
importance of looking at these samples from an intelli-
gence and threat prevention point of view.

1 Introduction

Malware sandboxes are automated dynamic analysis
tools that execute samples in an isolated and instru-
mented environment. Security researchers use them to
quickly collect information about the behavior of suspi-
cious samples, typically in terms of their execution traces
and API calls. While customized sandboxes are often
installed in the premises of security companies, some
sandboxes are available as public online services, as it is
the case for Malwr [13], Anubis [10], ThreatExpert [14],
VirusTotal [16], and many others [5, 18, 4, 6, 15, 1, 3]

The main advantage of these systems is the fact that
the analysis is completely automated and easily paral-
lelizable, thus providing a way to cope with the over-
whelming number of new samples that are collected ev-
ery day. However, due to this extreme parallelization,
an incredible amount of reports are generated every day.
This makes the task of distinguishing new and important
malware from the background noise of polymorphic and
uninteresting samples very challenging.

In particular, two important and distinct observations
motivate our work. First, it is relatively common that
malware samples used to carry out famous targeted at-
tacks were collected by antivirus companies or public
sandboxes long before the attacks were publicly dis-
covered [25]. For instance, the binaries responsible for
operation Aurora, Red October, Regin, and even some
of the new one part of the Equation Group were sub-
mitted to the sandbox we used in our experiments sev-
eral months before the respective attacks appeared in the
news [11, 40, 17, 50, 45, 35]. The reasons behind this
phenomenon are not always clear. It is possible that the
files were automatically collected as part of an automated
network or host-based protection system. Or maybe a
security analyst noticed something anomalous on a com-
puter and wanted to double-check if a suspicious file ex-
hibited a potentially malicious behavior. It is even pos-
sible that the malware developers themselves submitted
an early copy of their work to verify whether it triggered
any alert on the sandbox system. Whatever the reason,
the important point is that no one paid attention to those
files until it was too late.

The second observation motivating our study is the
constant arm race between the researchers that put con-
tinuous effort to randomize their analysis environments,
and the criminals that try to fingerprint those systems
to avoid being detected. As a consequence of this hid-
den battle, malware and packers often include evasion
techniques for popular sandboxes [19] and updated in-
formation about the internal sandbox details are regu-
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larly posted on public websites [2]. These examples
prove that there must be a constant interaction between
malware developers and popular public malware analysis
services. This interaction is driven by the need to collect
updated information as well as to make sure that new
malware creation would go undetected. Even though de-
tecting this interaction might be very difficult, we be-
lieve it would provide valuable information for malware
triage.

Up to the present, malware analysis services have col-
lected large volumes of data. This data has been used
both to enhance analysis techniques [23, 46] and to ex-
trapolate trends and statistics about the evolution of mal-
ware families [24]. Unfortunately, to the best of our
knowledge, these datasets have never been used to sys-
tematically study malware development and support mal-
ware intelligence on a large scale. The only public excep-
tion is a research recently conducted by looking at Virus-
Total to track the activity of specific high-profile hacking
groups involved in APT campaigns [52, 27].

In this paper, we approach this objective by applying
data-mining and machine learning techniques to study
the data collected by Anubis Sandbox [10], a popular
malware dynamic analysis service. At the time we per-
formed our analysis, the dataset contained the analysis
reports for over 30 millions unique samples. Our main
goal is to automatically detect if miscreants submit their
samples during the malware development phase and, if
this is the case, to acquire more insights about the dy-
namics of malware development. By analyzing the meta-
data associated to the sample submissions, it might be
possible to determine the software provenance and im-
plement an early-warning system to flag suspicious sub-
mission behaviors.

It is important to understand that our objective is not
to develop a full-fledged system, but instead to explore a
new direction and to show that by combining metadata
with static and dynamic features it is possible to suc-
cessfully detect many examples of malware development
submitted to public sandboxes. In fact, our simple pro-
totype was able to automatically identify thousands of
development cases, including botnets, keyloggers, back-
doors, and over a thousand unique trojan applications.

2 Overview and Terminology

There are several reasons why criminals may want to in-
teract with an online malware sandbox. It could be just
for curiosity, in order to better understand the analysis
environment and estimate its capabilities. Another rea-
son could be to try to escape from the sandbox isolation
to perform some malicious activity, such as scanning a
network or attacking another machine. Finally, criminals
may also want to submit samples for testing purposes,

to make sure that a certain evasion technique works as
expected in the sandbox environment, or that a certain
malware prototype does not raise any alarm.

In this paper, we focus on the detection of what we call
malware development. We use the term “development”
in a broad sense, to include anything that is submitted by
the author of the file itself. In many cases the author has
access to the source code of the program – either because
she wrote it herself or because she acquired it from some-
one else. However, this is not always the case, e.g., when
the author of a sample uses a builder tool to automatically
generate a binary according to a number of optional con-
figurations (see Section 6 for a practical example of this
scenario). Moreover, to keep things simple, we also use
the word “malware” as a generic term to model any sus-
picious program. This definition includes traditional ma-
licious samples, but also attack tools, packers, and small
probes written with the only goal of exfiltrating informa-
tion about the sandbox internals.

Our main goal is to automatically detect suspicious
submissions that are likely related to malware develop-
ment or to a misuse of the public sandbox. We also want
to use the collected information for malware intelligence.
In this context, intelligence means a process, supported
by data analysis, that helps an analyst to infer the moti-
vation, intent, and possibly the identity of the attacker.

Our analysis consists of five different phases. In the
first phase, we filter out the samples that are not inter-
esting for our analysis. Since the rest of the analysis is
quite time-consuming, any sample that cannot be related
to malware development or that we cannot process with
our current prototype is discarded at this phase. In the
second phase, we cluster the remaining samples based
on their binary similarity. Samples in each cluster are
then compared using a more fine-grained static analysis
technique. Afterwards, we collect six sets of features,
based respectively on static characteristics of the submit-
ted files, on the results of the dynamic execution of the
samples in the cluster, and on the metadata associated to
the samples submissions. This features are finally pro-
vided to a classifier that we previously trained to identify
the malware development clusters.

3 Data reduction

The first phase of our study has the objective of reducing
the amount of data by filtering out all the samples that
are not relevant for our analysis. We assume that a cer-
tain file could be a candidate for malware development
only if two conditions are met. First, the sample must
have been submitted to the public sandbox before it was
observed in the wild. Second, it has to be part of a man-
ual submission done by an individual user – and not, for
example, originating from a batch submission of a secu-
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rity company or from an automated malware collection
or protection system.

We started by filtering out the large number of batch
submissions Anubis Sandbox receives from several re-
searchers, security labs, companies, universities and reg-
istered users that regularly submit large bulks of binaries.
As summarized in Table 1, with this step we managed to
reduce the data from 32 million to around 6.6 million
binaries. These samples have been collected by Anubis
Sandbox from 2006 to 2013.

Then, to isolate the new files that were never observed
in the wild, we applied a two-step approach. First, we re-
moved those submissions that, while performed by single
users, were already part of a previous batch submission.
This reduced the size of the dataset to half a million sam-
ples. In the second step, we removed the files that were
uploaded to the sandbox after they were observed by two
very large external data sources: Symantec’s Worldwide
Intelligence Network (WINE), and VirusTotal.

After removing corrupted or not executable files (e.g,
Linux binaries submitted to the Microsoft Windows
sandbox), we remained with 184,548 files that match our
initial definition of candidates for malware development.
Before sending them to the following stages of our anal-
ysis, we applied one more filter to remove the packed ap-
plications. The rationale behind this choice is very sim-
ple. As explained in Section 4, the majority of our fea-
tures work also on packed binaries, and, therefore, some
potential malware development can be identified also in
this category. However, it would be very hard for us to
verify our results without having access to the decom-
piled code of the application. Therefore, in this paper
we decided to focus on unpacked binaries, for which it
is possible to double-check the findings of our system.
The packed executables were identified by leveraging the
SigBuster [37] signatures.

Table 1 summarizes the number of binaries that are fil-
tered out after each step. The filtering phase reduced the
data to be analyzed from over 32 millions to just above
121,000 candidate files, submitted by a total of 68,250
distinct IP addresses. In the rest of this section we de-
scribe in more details the nature and role of the Symantec
and VirusTotal external sources.

Symantec Filter

Symantec Worldwide Intelligence Network Environment
(WINE) is a platform that allows researchers to perform
data intensive analysis on a wide range of cyber security
relevant datasets, collected from over a hundred million
hosts [28]. The data provided by WINE is very valuable
for the research community, because these hosts are com-
puters that are actively used by real users which are po-

Dataset Submissions

Initial Dataset 32,294,094
Submitted by regular users 6,660,022
Not already part of large submissions 522,699
Previously unknown by Symantec 420,750
Previously unknown by VirusTotal 214,321
Proper executable files 184,548
Final (not packed binaries) 121,856

Table 1: Number of submissions present in our dataset at
each data reduction step.

tential victims of various cyber threats. WINE adopts a
1:16 sampling on this large-scale data such that all types
of complex experiments can be held at scale.

To filter out from our analysis the binaries that are
not good candidates to belong to malware development,
we used two WINE datasets: the binary reputation and
the AntiVirus telemetry datasets. The binary reputation
dataset contains information about all of the executables
(both malicious and benign) downloaded by Symantec
customers over a period of approximately 5 years. To
preserve the user privacy, this data is collected only from
the users that gave explicit consent for it. At the time
we performed our study, the binary reputation dataset
included reports for over 400 millions of distinct bina-
ries. On the other hand, the AntiVirus telemetry dataset
records only the detections of known files that triggered
the Norton Antivirus Engine on the users’ machines.

The use of binary reputation helps us locating the exact
point in time in which a binary was first disseminated in
the wild. The AntiVirus telemetry data provided instead
the first time the security company deployed a signature
to detect the malware. We combined these datasets to
remove those files that had already been observed by
Symantec either before the submission to Anubis Sand-
box, or within 24 hours from the time they were first sub-
mitted to the sandbox.

VirusTotal Filter

VirusTotal is a public service that provides virus scan re-
sults and additional information about hundreds of mil-
lions of analyzed files. In particular, it incorporates the
detection results of over 50 different AntiVirus engines
– thus providing a reliable estimation of whether a file
is benign or malicious. Please note that we fetched
the VirusTotal results for each file in our dataset several
months (and in some cases even years) after the file was
first submitted. This ensures that the AV signatures were
up to date, and files were not misclassified just because
they belonged to a new or emerging malware family.

Among all the information VirusTotal provides about
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binaries, the most important piece of information we in-
corporate in our study is the first submission time of a
certain file to the service. We believe that by combining
the timestamps obtained from the VirusTotal and Syman-
tec datasets, we achieved an acceptable approximation of
the first time a certain malicious file was observed in the
wild.

4 Sample Analysis

If a sample survived the data reduction phase, it means
that (with a certain approximation due to the coverage
of Symantec and Virustotal datasets) it had never been
observed in the wild before it was submitted to the on-
line malware analysis sandbox. Although this might be
a good indicator, it is still not sufficient to flag the sub-
mission as part of a potential malware development. In
fact, there could be other possible explanations for this
phenomenon, such as the fact that the binary was just
a new metamorphic variation of an already known mal-
ware family.

Therefore, to reduce the risk of mis-classification, in
this paper we consider a candidate for possible develop-
ment only when we can observe at least two samples that
clearly show the changes introduced by the author in the
software. In the rest of this section we describe how we
find these groups of samples by clustering similar sub-
missions together based on the sample similarity.

4.1 Sample Clustering
In the last decade, the problem of malware clustering
has been widely studied and various solutions have been
proposed [31, 33, 51, 32]. Existing approaches typi-
cally use behavioral features to group together samples
that likely belong to the same family, even when the
binaries are quite different. Our work does not aim at
proposing a new clustering method for malware. In fact,
our goal is quite different and requires to group files to-
gether only when they are very similar (we are looking
for small changes between two versions of the same sam-
ple) and not when they just belong to the same family.
Therefore, we leverage a clustering algorithm that simply
groups samples together based on their binary similarity
(as computed by ssdeep [38]) and on a set of features we
extract from the submission metadata.

Moreover, we decided to put together similar binaries
into the same cluster only if they were submitted to our
sandbox in a well defined time window. Again, the as-
sumption is that when a malware author is working on a
new program, the different samples would be submitted
to the online sandbox in a short timeframe. Therefore, to
cluster similar binaries we compute the binary similari-
ties among all the samples submitted in a sliding window

of seven days. We then shift the sliding window ahead
of one day and repeat this step. We employ this sliding
window approach in order (1) to limit the complexity of
the computation and the total number of binary compar-
isons, and (2) to ensure that only the binaries that are
similar and have been submitted within one week from
each other are clustered together. We also experimented
with other window sizes (between 2 and 15 days) but
while we noticed a significant reduction of clusters for
shorter thresholds, we did not observed any advantage in
increasing it over one week.

Similarities among binaries are computed using the ss-
deep [38] tool which is designed to detect similarities on
binary data. ssdeep provides a light-weight solution for
comparing a large-number of files by relying solely on
similarity digests that can be easily stored in a database.
As we already discarded packed binaries in the data re-
duction phase, we are confident that the similarity score
computed by ssdeep is a very reliable way to group to-
gether binaries that share similar code snippets. After
computing the similarity metrics, we executed a simple
agglomerative clustering algorithm to group the binaries
for which the similarity score is greater than 70%. Note
that this step is executed separately for each time win-
dow, but it preserves transitivity between binaries in dif-
ferent sliding windows. For example, if file A is similar
to B inside window1, and B is similar to file C inside the
next sliding window, at the end of the process A, B and C
will be grouped into the same cluster. As a result, a sin-
gle cluster can model a malware development spanning
also several months.

Starting from the initial number of binaries, we identi-
fied 5972 clusters containing an average of 4.5 elements
each.

Inter-Cluster Relationships

The ssdeep algorithm summarizes the similarity using an
index between 0 (completely different) and 100 (perfect
match). Our clustering algorithm groups together sam-
ples for which the difference between the fuzzy hashes
is greater than the 70% threshold. This threshold was
chosen according to previous experiments [38], which
concluded that 70% similarity is enough to guarantee a
probability of misclassification close to zero.

However, if the malware author makes very large
changes on a new version of his program, our approach
may not be able to find the association between the two
versions. Moreover, the final version of a malware devel-
opment could be compiled with different options, mak-
ing a byte-level similarity too imprecise. To mitigate
these side effects, after the initial clustering step, we per-
form a refinement on its output by adding inter-clusters
edges whenever two samples in the same time window
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share the same submission origin (i.e., either from the
same IP address or using the same email address for the
registration). These are “weak” connections that do not
model a real similarity between samples, and therefore
they are more prone to false positives. As a consequence,
our system does not use them when performing its auto-
mated analysis to report suspicious clusters. However,
as explained in Section 6, these extra connections can be
very useful during the analysis of a suspicious cluster to
gain a more complete picture of a malware development.

After executing this refinement step, we were able to
link to our clusters an additional 10,811 previously iso-
lated binaries. This procedure also connected several
clusters together, to form 225 macro groups of clusters.

4.2 Intra-cluster Analysis

Once our system had clustered the binaries that likely
belong to the same malware development, we investigate
each cluster to extract more information about its char-
acteristics. In particular, we perform a number of code-
based analysis routines to understand if the samples in
the same cluster share similar code-based features.

Code Normalization

Code normalization is a technique that is widely used to
transform binary code to a canonical form [26]. In our
study, we normalize the assembly code such that the dif-
ferences between two binaries can be determined more
accurately. Under the assumption that two consecutive
variations of the same program are likely compiled with
the same tool chain and the same options, code normal-
ization can be very useful to remove the noise introduced
by small variations between two binaries.

There are several approaches that have been proposed
to normalize assembly code [36, 49, 34]. Some of them
normalize just the operands, some the mnemonics, and
some normalize both. In this paper, we chose to nor-
malize only the operands so that we can preserve the
semantics of the instructions. In particular, we imple-
mented a set of IDA Pro plugins to identify all the func-
tions in the code and then replace, for each instruction,
each operand with a corresponding placeholder tag: reg
for registers, mem for memory locations , val for con-
stant values, near for near call offsets, and ref for ref-
erences to memory locations. These IDA scripts were
run in batch mode to pre-process all the samples in our
clusters.

Programming Languages

The second step in our intra-cluster analysis phase con-
sists in trying to identify the programming language used

to develop the samples. The programming language can
provide some hints about the type of development. For
example, scripting languages are often used to develop
tools or probes designed to exfiltrate information from
the sandbox. Moreover, it is likely that a malware author
would use the same programming language for all the in-
termediate versions of the same malware. Therefore, if a
cluster includes samples of a malware development, all
samples should typically share the same programming
language. Exceptions, as the one explained in Section 6,
may point to interesting cases.

To detect the programming language of a binary we
implemented a simple set of heuristics that incorpo-
rate the information extracted by three tools: PEiD, the
pefile python library, and the Linux strings com-
mand. First, we use pefile to parse the Import Ad-
dress Table (IAT) and obtain the list of libraries that
are linked to the binary. Then, we search for program-
ming language specific keywords on the extracted list.
For example, the “VB” keyword in the library name is
a good indicator of using Visual Basic, and including
mscoree.dll in the code can be linked to the usage of
Microsoft .NET. In the second step of our analysis, we
analyze the strings and the output of PEiD to detect com-
piler specific keywords (e.g., type info and RTTI pro-
duced by C++ compilers, or “Delphi” strings generated
by the homonymous language).

With these simple heuristics, we identified the pro-
gramming language of 14,022 samples. The most rep-
resented languages are Visual Basic (49%), C (21%),
Delphi (18%), Visual Basic .Net (7%), and C++ (3%).
The large number of Visual Basic binaries could be a
consequence of the fact that a large number of available
tools that automatically create generic malware programs
adopt this language.

Fine-grained Sample Similarity

In this last phase, we look in more detail at the similar-
ity among the samples in the same cluster. In particular,
we are interested to know why two binaries show a cer-
tain similarity: Did the author add a new function to the
code? Did she modify a branch condition, or remove a
basic block? Or maybe the code is exactly the same, and
the difference is limited to some data items (such as a
domain name, or a file path).

To answer these questions, we first extract the time-
line of each cluster, i.e., the sequence in which each sam-
ple was submitted to the sandbox in chronological order.
Moving along the timeline, we compare each couple of
samples using a number of static analysis plugins we de-
veloped for IDA Pro.

The analysis starts by computing and comparing the
call graph of the two samples. In this phase we compare
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the normalized code of each function, to check which
functions of the second binary were present unchanged
in the first binary. The output is a list of additional func-
tion that were not present in the original file, plus a list of
functions that were likely modified by the author – i.e.,
those function that share the same position in the call
graph but whose code does not perfectly match. How-
ever, at this level of granularity it is hard to say if some-
thing was modified in the function or if the author just
removed the function and added another with the same
callee.

Therefore, in these cases, we “zoom” into the function
and repeat our analysis, this time comparing their con-
trol flow graphs (CFGs). Using a similar graph-based
approach, this time we look for differences at the basic
block level. If the two CFGs are too different, we con-
clude that the two functions are not one the evolution of
the other. Otherwise, we automatically locate the differ-
ent basic blocks and we generate a similarity measure
that summarize the percentage of basic blocks that are
shared by the two functions.

4.3 Feature Extraction

Based on the analysis described in the previous sections,
our system automatically extracts a set of 48 attributes
that we believe are relevant to study the dynamics of mal-
ware development.

This was done in two phases. First, we enriched each
sample with 25 individual features, divided in six cate-
gories (see the Appendix for a complete list of individual
features). The first class includes self-explanatory file
features (such as its name and size). The Timestamps
features identify when the sample was likely created,
when it was submitted to Anubis Sandbox, and when it
was later observed in the wild. While the creation time of
the binary (extracted from the PE headers) could be man-
ually faked by the author, we observed that this is seldom
the case in practice, in particular when the author submits
a probe or an intermediate version of a program. In fact,
in these cases we often observed samples in which the
compilation time precedes the submission time by only
few minutes.

The third category of features contain the output of the
VirusTotal analysis on the sample, including the set of la-
bels associated by all AntiVirus software and the number
of AVs that flag the sample as malicious. We then collect
a number of features related to the user who submitted
the sample. Since the samples are submitted using a web
browser, we were able to extract information regarding
the browser name and version, the language accepted by
the system (sometime useful to identify the nationality of
the user) and the IP from which the client was connect-
ing from. Two features in this set require more explana-

tion. The email address is an optional field that can be
specified when submitting a sample to the sandbox web
interface. The proxy flag is instead an attempt to identify
if the submitter is using an anonymization service. We
created a list of IP addresses related to these services and
we flagged the submissions in which the IP address of the
submitter appears in the blacklist. In the Binary features
set we record the output of the fine-grained binary anal-
ysis scripts, including the number of sections and func-
tions, the function coverage, and the metadata extracted
by the PE files. Finally, in the last feature category we
summarize the results of the sandbox behavioral report,
such as the execution time, potential runtime errors, use
of evasion techniques, and a number of boolean flags that
represent which behavior was observed at runtime (e.g.,
HTTP traffic, TCP scans, etc.)

In the second phase of our analysis we extended the
previous features from a single sample to the cluster that
contains it. Table 2 shows the final list of aggregated at-
tributes, most of which are obvious extensions of the val-
ues of each sample in the cluster. Some deserve instead a
better explanation. For instance, the cluster shape (A3)
describes how the samples are connected in the cluster:
in a tightly connected group, in a chain in which each
node is only similar to the next one, or in a mixed shape
including a core group and a small tail. The Functions
diff (B13) summarized how many functions have been
modified in average between one sample and the next
one. Dev time (B25) tells us how far apart in time each
samples were submitted to the sandbox, and Connect

Back (B24) counts how many samples in the cluster open
a TCP connection toward the same /24 subnetwork from
which the sample was submitted. This is a very com-
mon behavior for probes, as well as for testing the data
exfiltration component of a malicious program.

Finally, some features such as the number of crashes
(C8) and the average VT detection (D4) are not very in-
teresting per se, but they become more relevant when
compared with the number of samples in the cluster. For
example, imagine a cluster containing three very simi-
lar files. Two of them run without errors, while the third
one crashes. Or two of them are not detected by AV sig-
natures, but one is flagged as malware by most of the
existing antivirus software.

While we are aware of the fact that each feature could
be easily evaded by a motivated attacker, as described in
Section 6 the combinations of all them is usually suffi-
cient to identify a large number of development clusters.
Again, our goal is to show the feasibility of this approach
and draw attention to a new problem, and not to propose
its definitive solution.
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A: Cluster Features
A.1 Cluster id The ID of the cluster
A.2 Num Elements The number of samples in the cluster
A.3 Shape An approximation of the cluster shape (GROUP—MIX—CHAIN)
B: Samples Features
B.1-4 Filesize stats Min, Max, Avg, and Variance of the samples filesize
B.5-8 Sections stats Min, Max, Avg, and Variance of the number of sections
B.9-12 Functions stats Min, Max, Avg, and Variance of the number of functions
B.13 Functions diff Average number of different functions
B.14 Sections diff Average number of different sections
B.15 Changes location One of: Data, Code, Both, None
B.16 Prog Languages List of programming languages used during the development
B.17 Filename Edit Distance The Average edit distance of the samples’s filenames
B.18 Avg Text Coverage Avg text coverage of the .text sections
B.19-22 CTS Time Min, Max, Avg, and Variance of the difference between compile and the submission time
B.23 Compile time Flags Booleans to flag NULL or constant compile times
B.24 Connect back True if any file in the cluster contacts back the submitter’s /24 network
B.25 Dev time Average time between each submission (in seconds)
C: Sandbox Features
C.1 Sandbox Only Numer of samples seen only by the sandbox (and not from external sources)
C.2 Short Exec Number of samples terminating the analysis in less than 60s
C.4-6 Exec Time Min, Max, and Avg execution time of the samples within the sandbox
C.7 Net Activity The number of samples with network activity
C.7 Time Window Time difference between first and last sample in the cluster (in days)
C.8 Num Crashes Number of samples crashing during their execution inside the sandbox
D: Antivirus Features
D.1-3 Malicious Events Min, Max, Avg numbers of behavioral flags exibited by the samples
D.4-5 VT detection Average and Variance of VirusTotal detection of the samples in the cluster
D.6 VT Confidence Confidence of the VirusTotal score
D.7 Min VT detection The score for the sample with the minimum VirusTotal Detection
D.8 Max VT detection The score for the sample with the maximum VirusTotal Detection
D.9 AV Labels All the AV labels for the identified pieces of malware in the cluster
E: Submitter Features
E.1 Num IPs Number of unique IP addresses used by the submitter
E.2 Num E-Mails Number of e-mail addresses used by the submitter
E.3 Accept Languages Accepted Languages from the submitter’s browser

Table 2: List of Features associated to each cluster

AUC Det. Rate False Pos.

Full data 0.999 98.7% 0%
10-folds Cross-Validation 0.988 97.4% 3.7%
70% Percentage Split 0.998 100% 11.1%

Table 3: Classification accuracy, including detection and
false positive rates, and the Area Under the ROC Curve
(AUC)

5 Machine Learning

Machine learning provides a very powerful set of tech-
niques to conduct automated data analysis. As the goal
of this paper is to automatically distinguishing malware
developments from other submissions, we tested with a

number of machine learning techniques applied to the set
of features we presented in detail in the previous section.

Among the large number of machine learning algo-
rithms we have tested our training data with, we have
obtained the best results by using the logistic model
tree (LMT). LMT combines the logistic regression and
decision tree classifiers by building a decision tree whose
leaves have linear regression models [41].

Training Set

The most essential phase of machine learning is the train-
ing phase where the algorithm learns how to distinguish
the characteristics of different classes. The success of
the training phase strictly depends on a carefully pre-
pared labeled data. If the labeled data is not prepared
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carefully, the outcome of machine learning can be mis-
leading. To avoid this problem, we manually labeled a
number of clusters that were randomly chosen between
the ones created at the end of our analysis phase. Manual
labeling was carried out by an expert that performed a
manual static analysis of the binaries to identify the type
and objective of each modification. With this manual ef-
fort, we flagged 91 clusters as non-development and 66
as development. To estimate the accuracy of the LMT
classifier, we conducted a 10-fold cross validation and a
70% percentage split evaluation on the training data.

Feature Selection

In the previous section, we have presented a comprehen-
sive set of features that we believe can be related to the
evolution of samples and to distinguish malware devel-
opments from ordinary malware samples. However, not
all the features contribute in the same way to the final
classification, and some works well only when used in
combination with other classes.

To find the subset of features that achieves the opti-
mal classification accuracy while helping us to obtain the
list of features that contribute the most to it, we lever-
aged a number of features selection algorithms that are
widely used in machine learning literature: Chi-Square,
Gain Ratio and Relief-F attribute evaluation. Chi-square
attribute evaluation computes the chi-square statistics of
each feature with respect to the class, which in our case
is the fact of being a malware development or not. The
Gain Ratio evaluation, on the other hand, evaluates the
effect of the feature by measuring its gain ratio. Fi-
nally, the Relief-F attribute evaluation methodology as-
signs particular weights to each feature according to how
much they are successful to distinguish the classes from
each other. This weight computation is based on the
comparison of the probabilities of two nearest neighbors
having the same class and the same feature value.

While the order slightly differs, the ten most effective
features for the accuracy of the classifier for all three fea-
ture selection algorithms are the same. As also the com-
mon sense suggests, the features we extract from the bi-
nary similarity and the analysis of the samples are the
most successful. For example, the connect back feature
that checks if the sample connects back to the same IP
address of the submitter, the average edit distance of the
filenames of the samples, the binary function similar-
ity, and the sample compile time features are constantly
ranked on the top of the list. The submitter features and
the sandbox features are following the sample features in
the list. All of the features except the number of sand-
box evasions, the VirusTotal results, and the features we
extracted from the differences on the file sizes in the clus-
ters had a contribution to the accuracy. After removing

those features, we performed a number of experiments
on the training set to visualize the contribution of the
different feature sub-sets to the classification accuracy.
Figure 1 shows (in log-scale) the impact of each class
and combination of classes. Among all the classes the
samples-based features produced the best combination
of detection and false positive rates (i.e. 88.2% detection
rate with 7.4% false positives). In particular, the ones
based on the static and dynamic analysis of the binaries
seem to be the core of the detection ability of the sys-
tem. Interestingly, the cluster-based features alone are
the worst between all sets, but they increase the accuracy
of the final results when combined with other features.

The results of the final classifier are reported in Ta-
ble 3: 97.4% detection with of 3.7% false positives, ac-
cording to 10-folds cross validation experiment. Note
that we decided to tune the classifier to favor detection
over false positives, since the goal of our system is only
to tag suspicious submissions that would still need to be
manually verified by a malware analyst.

6 Results

Our prototype implementation was able to collect sub-
stantial evidences related to a large number of malware
developments.

In total, our system flagged as potential development
3038 clusters over a six years period. While this number
was too large for us to perform a manual verification of
each case, if such a system would be deployed we es-
timate between two and three alerts generated per day.
Therefore, we believe our tool could be used as part of
an early warning mechanism to automatically collect in-
formation about suspicious submissions and report them
to human experts for further investigation.

In addition to the 157 clusters already manually la-
beled to prepare the training set for the machine learning
component, we also manually verified 20 random clus-
ters automatically flagged as suspicious by our system.
Although according to the 10-fold cross validation exper-
iments the false positive rate is 3.7%, we have not found
any false positives on the clusters we randomly selected
for our manual validation.

Our system automatically detected the development of
a diversified group of real-world malware, ranging from
generic trojans to advanced rootkits. To better under-
stand the distribution of the different malware families,
we verified the AV labels assigned to each reported clus-
ter. According to them, 1474 clusters were classified as
malicious, out of which our system detected the develop-
ment of 45 botnets, 1082 trojans, 83 backdoors, 4 key-
loggers, 65 worms, and 21 malware development tools
(note that each development contained several different
samples modeling intermediate steps). A large fraction
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Figure 1: Classification success of different feature combinations.

Campaign Early Submission Time Before Public Disclosure Submitted by

Operation Aurora � 4 months US
Red October � 8 months Romania
APT1 � 43 months US
Stuxnet � 1 months US
Beebus � 22 months Germany
LuckyCat � 3 months US
BrutePOS � 5 months France
NetTraveller � 14 months US
Pacific PlugX � 12 months US
Pitty Tiger � 42 months US
Regin � 44 months UK
Equation � 23 months US

Table 4: Popular campaigns of targeted attacks in the sandbox database

of the clusters that were not identified by the AV sig-
natures contained the development of probes, i.e., small
programs whose goal is only to collect and transmit in-
formation about the system where they run. Finally,
some clusters also contained the development or testing
of offensive tools, such as packers and binders.

6.1 Targeted Attacks Campaigns
Before looking at some of the malware development
cases detected by our system, we wanted to verify our
initial hypothesis that even very sophisticated malware

used in targeted attacks are often submitted to public
sandboxes months before the real attacks are discovered.
For this reason, we created a list of hashes of known and
famous APT campaigns, such as the ones used in op-
eration Aurora and Red October. In total, we collected
1271 MD5s belonging to twelve different campaigns. As
summarized in Table 4, in all cases we found at least one
sample in our database before the campaign was publicly
discovered (Early Submission column). For example, for
Red October the first sample was submitted in February
2012, while the campaign was later detected in October
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2012. The sample of Regin was collected a record 44
months before the public discovery.

Finally, we checked from whom those samples were
submitted to the system. Interestingly, several samples
were first submitted by large US universities. A possi-
ble explanation is that those samples were automatically
collected as part of a network-based monitoring infras-
tructure maintained by security researchers. Other were
instead first submitted by individual users (for whom
we do not have much information) from several differ-
ent countries, including US, France, Germany, UK, and
Romania. Even more interesting, some were first sub-
mitted from DSL home Internet connections. However,
we cannot claim that we observed the development phase
of these large and popular targeted attacks campaigns as
in all cases the samples were already observed in the
wild (even though undetected and no one was publicly
aware of their existence) before they were submitted to
our sandbox. It is important to note that for this exper-
iment we considered the entire dataset, without apply-
ing any filtering and clustering strategy. In fact, in this
case we did not want to spot the development of the APT
samples, but simply the fact that those samples were sub-
mitted and available to researchers long before they were
publicly discovered.

We believe the sad message to take away from this ex-
periment is that all those samples went unnoticed. As a
community, there is a need for some kind of early warn-
ing system to report suspicious samples to security re-
searches. This could prevent these threats from flying
under the radar and could save months (or even years) of
damage to the companies targeted by these attacks.

6.2 Case studies

In the rest of this section we describe in more details
three development scenarios. While our system identi-
fied many more interesting cases, due to space limitation
we believe the following brief overview provides a valu-
able insight on the different ways in which attackers use
(and misuse) public sandboxes. Moreover, it also shows
how a security analyst can use the information collected
by our system to investigate each case, and reconstruct
both the author behavior and his final goal.

In the first example, the malware author introduced an
anti-sandbox functionality to a Trojan application. In this
case the analyst gathers intelligence information about
the modus operandi of the attacker and about all the de-
velopment phases.

In the second scenario, we describe a step by step de-
velopment in which the attacker tries to collect informa-
tion from the sandbox. This information is later used
to detect the environment and prevent the execution of
a future malware in the sandbox. In the last example,
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Figure 2: Anti-sandbox check - Timeline

we show how an attacker uses the sandbox as a testbed
to verify the behavior of the malware. In this case, the
author generated the binary using one of the many ded-
icated builder applications that can be downloaded from
the Internet or bought on the black market.

Example I: Anti-sandbox Malware
The cluster related to this example contains three sam-

ples. The timeline (summarized in Figure 2) already sug-
gests a possible development. In fact, the difference be-
tween the submission time and the compile time is
very small.

A quick look at the static features of the cluster shows
that the three samples are very similar, and share the
same strings as well as the same imphash (the import
hash [20, 21] recently introduced also by VirusTotal).
However, the first sample is composed of 21 functions,
while the last two samples have 22 functions. Our report
also shows how the first and the second samples differ for
two functions: the author modified the function start,
and introduced a new function CloseHandle. This in-
formation (so far extracted completely automatically by
our system) is a good starting point for a closer analysis.

We opened the two executables in IDA Pro, and
quickly identified the two aforementioned functions
(snippet in Figure 3). It was immediately clear that the
start function was modified to add an additional ba-
sic block and a call to the new CloseHandle function.
The new basic block uses the rdtsc x86 instruction to
read the value of the Timestamp Counter Register (TSC),
which contains the number of CPU cycles since the last
reset. The same snippet of assembly is called two times
to check the time difference. After the first rdtsc in-
struction there is a call to CloseHandle, using the times-
tamp as handler (probably an invalid handler). These two
well known tricks are here combined to detect the Anubis
Sandbox environment – due to the delay introduced by
its checks during program execution. The Anubis Sand-
box’s core is slower in looking up the handlers table, and
this time discrepancy is the key to detect the analysis en-
vironment. In this case the difference has to be less than
0E0000h, or the program would immediately terminate
by calling the ExitProcess function.

The last sample in the cluster was submitted only to
tune the threshold and for this reason there were no im-
portant differences with the second sample. The control
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First Sample Second Sample

Figure 3: Anti-sandbox check - Start function comparison

flow graph analysis performed automatically by our sys-
tem report a very high similarity between the first two
samples, in line with the little modifications we found in
the disassembled code. Finally, the behavioral features
extracted by our system confirm our hypothesis: the first
sample was executed until the analysis timeout, but the
execution of the second one terminated after only five
seconds.

The behavior described so far suggest malicious in-
tents. This is also confirmed by other cluster metadata.
For instance, while the first sample in the cluster was
unknown to VirusTotal, the last one was clearly identi-
fied as a common Trojan application. This suggests that
the original sample, without the timing check, has never
been used in the wild. Once more, the fact that all three
samples have been submitted days before the trojan was
first observed in the wild strongly supports the fact that
the person who submitted them was indeed the malware
author.

Example II: Testing a Trojan Dropper
The second cluster we want to describe is composed

of five samples. Our report indicates that the first four
are written in Delphi and the last one is written in Visual
Basic. This is already a strange fact, since the two pro-
gramming languages are quite different and it is unlikely
that they could generate similar binaries.

In this case the cluster timeline does not provide use-
ful information as all the Delphi samples share exactly
the same compilation time: 20th of June, 1992. Only the
Visual Basic sample had a compilation time consistent
with the submission. On the contrary, the submission
times provide an interesting perspective. All the samples
have been submitted in few hours and this might indi-
cate a possible development. In addition, there are two
IP addresses involved: one for the four Delphi samples
and one for the final Visual Basic version. The static fea-

tures of the first four samples show very little differences,
suggesting that these are likely just small variations of
the same program. In average, they share 169 out of
172 functions and 7 out of 8 PE sections. By inspect-
ing the changes, we notice that the attacker was adding
some threads synchronization code to a function respon-
sible for injecting code into a different process. The con-
trol flow graph similarity reported by our tool was over
98%, confirming the small differences we observed be-
tween each versions. Once the author was happy with the
result, she submitted one more sample, this time com-
pletely different from the previous ones. Despite the ob-
vious differences in most of the static analysis features,
the fuzzyhash similarity with sample 4 was 100%. A
rapid analysis showed that this perfect match was due
to the fact that the Visual Basic application literally em-
bedded the entire binary of the fourth Delphi program.
In addition, the behavior report confirmed that, once ex-
ecuted, the Visual Basic Trojan dropped the embedded
executable that was later injected inside a target process.
None of the Antivirus software used by VirusTotal rec-
ognized the first four samples as malicious. However,
the last one was flagged by 37 out of 50 AVs as a trojan
dropper malware.

It is important to stress that a clear advantage of our
system is that it was able to automatically reconstruct the
entire picture despite the fact that not all samples were
submitted from the same IP address (even though all lo-
cated in the same geographical area). Moreover, we were
able to propagate certain metadata extracted by our sys-
tem (for example the username of the author extracted
from the binary compiled with Visual Studio) from one
sample to the others in which that information was miss-
ing. This ability to retrieve and propagate metadata be-
tween different samples can be very useful during an in-
vestigation.

Another very interesting aspect of this malware devel-
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opment is the fact that after the process injection, the pro-
gram used a well known dynamic DNS service (no-ip)
to resolve a domain name. The IP address returned by the
DNS query pointed exactly to the same machine that was
used by the author to submit the sample. This suggests
that the attacker was indeed testing his attack before re-
leasing it, and this information could be used to locate
the attacker machine.

We identified a similar connect-back behavior in other
1817 clusters. We also noticed how most of these clus-
ters contain samples generated by known trojan builders,
like Bifrost [8] or PoisonIvy [9]. While this may seem to
prove that these are mostly unsophisticated attacks, Fire-
Eye [22] recently observed how the Xtremerat builder [7]
(which appeared in 28 of our clusters) was used to pre-
pare samples used in several targeted attacks.

Example III: Probe Development
In this last example we show an attacker fingerprint-

ing the analysis environment and how, at the end, she
manages to create her own successful antisandbox check.
The cluster consists of two samples, both submitted from
France in a time span of 23 hours by the same IP ad-
dress. The two samples have the same size, the same
number of functions (164), and of sections (4). There
is only one function (_start) and two sections (.text
and .rdata) presenting some differences. The two pro-
grams perform the same actions, they create an empty
text file and then they retrieve the file attributes through
the API GetFileAttributes. The only differences are
on the API version they use (GetFileAttributesA or
GetFileAttributesW) and on the file name to open.

At a first look, this cluster did not seem very inter-
esting. However the inter-cluster connections pointed
to other six loosely correlated samples submitted by the
same author in the same week. As explained in Section 4,
these files have not been included in the core cluster be-
cause the binary similarity was below our threshold. In
this case, these samples were all designed either to col-
lect information or to test anti-virtualization/emulation
tricks. For instance, one binary implemented all the
known techniques based on idt, gdt and ldt to de-
tect a virtual machine monitor [48, 47, 42]. Another one
simply retrieved the computer name, and another one
was designed to detect the presence of inline hooking.
Putting all the pieces together, it is clear that the author
was preparing a number of probes to assess various as-
pects of the sandbox environment.

This example shows how valuable the inter-clusters
edges can be to better understand and link together differ-
ent submissions that, while different between each other
at a binary level, are likely part of the same organized
“campaign”.

6.3 Malware Samples in the Wild

As we already mentioned at the beginning of the sec-
tion, out of 3038 clusters reported as malware develop-
ment candidates by our machine learning classifier, 1474
(48%) contained binaries that were detected by the an-
tivirus signatures as malicious (according to VirusTotal).

A total of 228 of the files contained in these clusters
were later detected in the wild by the Symantec’s an-
tivirus engine. The average time between the submission
to our sandbox and the time the malware was observed
in the wild was 135 days – i.e., it took between four and
five months for the antivirus company to develop a signa-
ture and for the file to appear on the end-users machines.
Interestingly, some of these binaries were later detected
on more than 1000 different computers in 13 different
countries all around the world (obviously a lower bound,
based on the alerts triggered on a subset of the Syman-
tec’s customers). This proves that, while these may not
be very sophisticated malware, they certainly have a neg-
ative impact on thousands of normal users.

7 Limitations

We are aware of the fact that once this research is pub-
lished, malware authors can react and take countermea-
sures to sidestep this type of analysis systems. For in-
stance, they may decide to use “private” malware check-
ers, and avoid interacting with public sandboxes alto-
gether. First of all, this is a problem that applies to many
analysis techniques ranging from botnet detection, to in-
trusion prevention, to malware analysis. Despite that, we
believe that it is important to describe our findings so that
other researchers can work in this area and propose more
robust methodologies in the future.

Moreover, as we mentioned in the introduction, af-
ter we completed our study someone noticed that some
known malware development groups were testing their
creation on VirusTotal [52, 27]. This confirms that what
we have found is not an isolated case but a widespread
phenomenon that also affects other online analysis sys-
tems. Second, now that the interaction between malware
developers and public sandboxes is not a secret anymore,
there is no reason that prevents us from publishing our
findings as well.

We are aware of the fact that our methodology is not
perfect, that it can be evaded, and that cannot catch all de-
velopment cases. However, we believe the key message
of the paper is that malware authors are abusing public
sandboxes to test their code, and at the moment we do
not need a very sophisticated analysis to find them. Since
this is the first paper that tries to identify these cases, we
found that our approach was already sufficient to detect
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thousands of them. Certainly more research is needed in
this area to develop more precise monitoring and early
warning system to analyze the large amounts of data au-
tomatically collected by public services on a daily basis.

8 Related Work

While there has been an extensive amount of research on
malware analysis and detection, very few works in the
literature have studied the datasets collected by public
malware dynamic analysis sandboxes. The most compre-
hensive study in this direction was conducted by Bayer et
al. [24]. The authors looked at two years of Anubis [10]
reports and they provided several statistics about mal-
ware evolution and about the prevalent types of malicious
behaviors observed in their dataset.

Lindorfer et al. [43] conducted the first study in the
area of malware development by studying the evolution
over time of eleven known malware families. In partic-
ular, the authors documented the malware updating pro-
cess and the changes in the code for a number of dif-
ferent versions of each family. In our study we look at
the malware development process from a different angle.
Instead of studying different versions of the same well
known malware, we try to detect, on a large scale, the au-
thors of the malware at the moment in which they interact
with the sandbox itself. In a different paper, Lindorfer et
al. [44] proposed a technique to detect environment sen-
sitive malware. The idea is to execute each malware sam-
ple multiple times on several sandboxes equipped with
different monitoring implementations and then compare
the normalized reports to detect behavior discrepancies.

A similar research area studies the phylogeny [30] of
malware by using approaches taken from the biology
field. Even if partially related to our work, in our study
we were not interested in understanding the relationship
between different species of malware, but only to detect
suspicious submissions that may be part of a malware
development activity.

In a paper closer to our work, Jang et al. [34] studied
how to infer the software evolution looking at program
binaries. In particular, the authors used both static and
dynamic analysis features to recover the software lin-
eage. While Jang’s paper focused mostly on benign pro-
grams, some experiments were also conducted on 114
malicious software with known lineage extracted from
the Cyber Genome Project [12]. Compared to our work,
the authors used a smaller set of static and dynamic fea-
tures especially designed to infer the software lineage
(e.g., the fact that a linear development is characterized
by a monotonically increasing file size). Instead, we use
a richer set of features to be able to distinguish mal-
ware developments from variations of the same samples
collected on the wild and not submitted by the author.

While our approaches share some similarities, the goals
are clearly different.

Other approaches have been proposed in the litera-
ture to detect similarities among binaries. Flake [29]
proposed a technique to analyze binaries as graphs of
graphs, and we have been inspired by his work for the
control flow analysis described in Section 4. Kruegel et
al. [39] proposed a similar technique in which they ana-
lyzed the control flow graphs of a number of worms and
they used a graph coloring technique to cope with the
graph-isomorphism problem.

Finally, one step of our technique required to cluster
together similar malware samples. There are several pa-
pers in the area of malware clustering [31, 33, 51, 32].
However, their goal is to cluster together samples belong-
ing to the same malware family as fastest as possible and
with the highest accuracy. This is a crucial task for all
the Antivirus companies. However, our goal is differ-
ent as we are interested in clustering samples based only
on binary similarity and we do not have any interest in
clustering together members of the same family based
on their behavior.

9 Conclusion

Public dynamic analysis sandboxes collect thousands of
new malware samples every day. Most of these submis-
sions belong to well known malware families, or are be-
nign files that do not pose any relevant security threat.
However, hidden in this large amount of collected data,
few samples have something special that distinguishes
them from the rest. In this paper, we discussed the im-
portance of looking at these samples from an intelligence
and threat prevention point of view.

We show that several binaries used in the most fa-
mous targeted attack campaigns had been submitted
to our sandbox months before the attack was first re-
ported. Moreover, we propose a first attempt to mine the
database of a popular sandbox, looking for signs of mal-
ware development. Our experiments show promising re-
sults. We were able to automatically identify thousands
of developments, and to show how the authors modify
their programs to test their functionalities or to evade de-
tections from known sandboxes. Around 1,500 of them
were real malware developments – some of which have
been later observed on thousands of infected machines
around the world.
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A: File Features
A.1 Filename The original name of the file submitted by the user
A.2 File size The size of the file
A.3 MD5 Simple hash used for lookup in other data sources
A.4 Fuzzy Hashes Using SSDeep algorithm
B: Timestamps
B.1 Submission time Time in which the sample was submitted to Anubis Sandbox
B.2 Compile time Time in which the binary was compiled
B.3 Symantec first Time the sample was first observed in the wild by Symantec
B.4 VirusTotal first Time in which the binary was first submitted to VirusTotal
C: AV Features
C.1 AV-Detection Number of AV that flag the samples as malicious (according to VirusTotal)
C.2 AV-Labels List of AV labels associated to the sample (according to VirusTotal)
D: User-based Features
D.1 User Agent User agent of the browser used to submit the sample
D.2 Languages Languages accepted by the user browser

(according to the accept-language HTTP header)
D.3 IP IP address of the user who submitted the file
D.4 IP Geolocation Geolocation of the user IP address
D.5 Email address Optional email address specified when the sample was submitted
D.6 Proxy Boolean value used to identify submission through popular anonymization proxies
E: Binary Features
E.1 N.Sections Number of sections in the PE file
E.2 N.Fuctions Number of functions identified by the disassembly
E.3 Code Coverage Fraction of .text segment covered by the identified functions
E.4 Programming Language Programming language used to develop the binary
E.5 Metadata Filenames and username extracted from the PE file
F: Behavioral Features
F.1 Duration Duration in seconds of the analysis
F.2 Errors Error raised during the analysis
F.3 Evasion Known anti-sandbox techniques detected by the sandbox itself
F.4 Behavior Bitstring Sequence of 24 boolean flags that characterize the behavior of the sample.

(has popups, has udp traffic, has http, has tcp address scan,
modified registry keys, . . . )

Table 5: List of Individual Features associated to each sample
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Abstract

The Megamos Crypto transponder is used in one of the

most widely deployed electronic vehicle immobilizers.

It is used among others in most Audi, Fiat, Honda, Volk-

swagen and Volvo cars. Such an immobilizer is an anti-

theft device which prevents the engine of the vehicle

from starting when the corresponding transponder is not

present. This transponder is a passive RFID tag which is

embedded in the key of the vehicle.

In this paper we have reverse-engineered all propri-

etary security mechanisms of the transponder, including

the cipher and the authentication protocol which we pub-

lish here in full detail. This article reveals several weak-

nesses in the design of the cipher, the authentication pro-

tocol and also in their implementation. We exploit these

weaknesses in three practical attacks that recover the 96-

bit transponder secret key. These three attacks only re-

quire wireless communication with the system. Our first

attack exploits weaknesses in the cipher design and in

the authentication protocol. We show that having ac-

cess to only two eavesdropped authentication traces is

enough to recover the 96-bit secret key with a computa-

tional complexity of 256 cipher ticks (equivalent to 249

encryptions). Our second attack exploits a weakness in

the key-update mechanism of the transponder. This at-

tack recovers the secret key after 3× 216 authentication

attempts with the transponder and negligible computa-

tional complexity. We have executed this attack in prac-

tice on several vehicles. We were able to recover the key

and start the engine with a transponder emulating device.

Executing this attack from beginning to end takes only 30

minutes. Our third attack exploits the fact that some car

manufacturers set weak cryptographic keys in their vehi-

cles. We propose a time-memory trade-off which recov-

ers such a weak key after a few minutes of computation

on a standard laptop.

1 Introduction

Electronic vehicle immobilizers have been very effec-

tive at reducing car theft. Such an immobilizer is an

electronic device that prevents the engine of the vehi-

cle from starting when the corresponding transponder is

not present. This transponder is a low-frequency RFID

chip which is typically embedded in the vehicle’s key.

When the driver starts the vehicle, the car authenticates

the transponder before starting the engine, thus prevent-

ing hot-wiring. In newer vehicles the mechanical igni-

tion key has often been removed and replaced by a start

button, see Figure 1(a). In such vehicles the immobi-

lizer transponder is the only anti-theft mechanism that

prevents a hijacker from driving away.

A distinction needs to be made between the vehicle

immobilizer and the remotely operated central locking

system. The latter is battery powered, operates at an

ultra-high frequency (UHF), and only activates when the

user pushes a button on the remote to (un)lock the doors

of the vehicle. Figure 1(b) shows a disassembled car key

where it is possible to see the passive Megamos Crypto

transponder and also the battery powered remote of the

central locking system.

The Megamos Crypto transponder is the first crypto-

graphic immobilizer transponder manufactured by [19]

and is currently one of the most widely used. The manu-

facturer claims to have sold more than 100 million im-

mobilizer chips including Megamos Crypto transpon-

ders [22]. Figure 2 shows a list of vehicles that use

or have used Megamos Crypto at least for some ver-

sion/year. As it can be seen from this list, many Audi,

Fiat, Honda, Volkswagen and Volvo cars used Megamos

Crypto transponders at the time of this research (fall

2012).

The transponder uses a 96-bit secret key and a propri-

etary cipher in order to authenticate to the vehicle. Fur-

thermore, a 32-bit PIN code is needed in order to be able

to write on the memory of the transponder. The con-

1
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(a) Keyless ignition with start button (b) Megamos Crypto transponder in a car key

Figure 1: Megamos Crypto integration in vehicular systems

crete details regarding the cipher design and authentica-

tion protocol are kept secret by the manufacturer and lit-

tle is currently known about them.

From our collaboration with the local police it was

made clear to us that sometimes cars are being stolen

and nobody can explain how. They strongly suspect the

use of so-called ‘car diagnostic’ devices. Such a device

uses all kind of custom and proprietary techniques to by-

pass the immobilizer and start a car without a genuine

key. This motivated us to evaluate the security of vehi-

cle immobilizer transponders. There are known attacks

for three of the four widely used immobilizer transpon-

ders, namely DST40, Keeloq and Hitag2. Although, at

the time of this research, little was known about the se-

curity of the Megamos Crypto transponder.

1.1 Our contribution

In this paper we have fully reverse-engineered all crypto-

graphic mechanisms of Megamos Crypto which we pub-

lish here in full detail. For this we used IDA Pro1 to de-

compile the software package that comes with the Tango

Programmer2.

Furthermore, we have identified several weaknesses in

Megamos Crypto which we exploit in three attacks. Our

first attack consists of a cryptanalysis of the cipher and

the authentication protocol. Our second and third attack

not only look at the cipher but also at the way in which it

is implemented and poorly configured by the automotive

industry.

Our first attack, which comprises all vehicles using

Megamos Crypto, exploits the following weaknesses.

• The transponder lacks a pseudo-random number

generator, which makes the authentication protocol

vulnerable to replay attacks.

1https://www.hex-rays.com/products/ida/
2http://www.scorpio-lk.com

Make Models

Alfa Romeo 147, 156, GT

Audi
A1, A2, A3, A4 (2000), A6, A8, Allroad, Cabrio, Coupé,

Q7, S2, S3, S4, S6, S8, TT (2000)

Buick Regal

Cadillac CTS-V, SRX

Chevrolet Aveo, Kalos, Matiz, Nubira, Spark, Evanda, Tacuma

Citroën Jumper (2008), Relay

Daewoo Kalos, Lanos, Leganza, Matiz, Nubira, Tacuma

DAF CF, LF, XF

Ferrari California, 612 Schaglietti

Fiat
Albea, Doblò, Idea, Mille, Multipla, Palio, Punto (2002),

Seicento, Siena, Stilo, Ducato (2004)

Holden Barina, Frontera

Honda
Accord, Civic, CR-V, FR-V, HR-V, Insight, Jazz (2002),

Legend, Logo, S2000, Shuttle, Stream

Isuzu Rodeo

Iveco Eurocargo, Daily

Kia Carnival, Clarus, Pride, Shuma, Sportage

Lancia Lybra, Musa, Thesis, Y

Maserati Quattroporte

Opel Frontera

Pontiac G3

Porsche 911, 968, Boxster

Seat Altea, Córdoba, Ibiza, Leon, Toledo

Skoda Fabia (2011), Felicia, Octavia, Roomster, Super, Yeti

Ssangyong Korando, Musso, Rexton

Tagaz Road Partner

Volkswagen

Amarok, Beetle, Bora, Caddy, Crafter, Cross Golf,

Dasher, Eos, Fox, Gol, Golf (2006, 2008), Individual,

Jetta, Multivan, New Beetle, Parati, Polo, Quantum,

Rabbit, Saveiro, Santana, Scirocco (2011), Touran,

Tiguan, Voyage, Passat (1998, 2005), Transporter

Volvo
C30, S40 (2005), S60, S80, V50, V70, XC70, XC90,

XC94

Figure 2: Vehicles that used Megamos Crypto for some

version/year [39]. Boldface and year indicate specific

vehicles we experimented with.

• The internal state of the cipher consists of only 56

bits, which is much smaller than the 96-bit secret

key.

• The cipher state successor function can be inverted,

given an internal state and the corresponding bit of

cipher-text it is possible to compute the predecessor

state.

• The last steps of the authentication protocol

2
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provides and adversary with 15-bits of known-

plaintext.

We present two versions of this attack. First we introduce

a simple (but more computationally intensive) attack that

recovers the secret key of the transponder with a compu-

tational complexity of 256 encryptions. Then we opti-

mize this attack, reducing its computational complexity

to 249 by using a time-memory trade-off. For this trade-

off, a 12 terabyte lookup table needs to be pre-computed.

This optimized version of the attack takes advantage of

the fact that some of the cipher components can be run

quite autonomously.

Our second attack exploits the following weaknesses.

• Currently, the memory of many Megamos Crypto

transponders in the field is either unlocked or locked

with a publicly known default PIN code [17]. This

means that anybody has write access to the memory

of the transponder. This also holds for the secret

key bits.

• The 96-bit secret key is written to the transponder

in blocks of 16 bits instead of being an atomic op-

eration.

This attack recovers the 96-bit secret key of such a

transponder within 30 minutes. This time is necessary to

perform 3×216 authentication attempts to the transpon-

der and then recover the key with negligible computa-

tional complexity. We have executed this attack in prac-

tice and recovered the secret key of several cars from var-

ious makes and models. Having recovered the key we

were able to emulate the transponder and start the vehi-

cles.

Our third attack is based on the following observation.

Many of the keys that we recovered using the previous

attack had very low entropy and exhibit a well defined

pattern, i.e., the first 32 bits of the key are all zeros. This

attack consists of a time-memory trade-off that exploits

this weakness to recover the secret key, within a few min-

utes, from two authentication traces. This attack requires

storage of a 1.5 terabyte rainbow table.

We propose a simple but effective mitigating measure

against our second attack. This only involves setting a

few bits on the memory of the transponder and can be

done by anyone (even the car owners themselves) with a

compatible RFID reader.

Finally, we have developed an open source library for

custom and proprietary RFID communication schemes

that operate at an frequency of 125 kHz. We used this

library to provide eavesdropping, emulation and reader

support for Megamos Crypto transponders with the Prox-

mark III device3. The reader functionality allows the

3http://www.proxmark.org/

user to send simple commands like read and write to the

transponder. In particular, this library can be used to set

the memory lock bit and a random PIN code as a mitiga-

tion for our second attack, as described in Section 8.

1.2 Related work

In the last decades, semiconductor companies introduced

several proprietary algorithms specifically for immobi-

lizer security. Their security often depends on the se-

crecy of the algorithm. When their inner-workings are

uncovered, it is often only a matter of weeks before the

first attack is published. There are several examples in

the literature that address the insecurity of proprietary

algorithms. The most prominent ones are those break-

ing A5/1 [31], DECT [45, 47], GMR [18], WEP [24]

and also many RFID systems like the MIFARE Clas-

sic [16, 26, 29, 46], CryptoRF [30] and iClass [27, 28].

Besides Megamos Crypto, there are only three other

major immobilizer products being used. The DST

transponder which was reverse-engineered and attacked

by Bono et.al. in [9]; KeeLoq was first attacked by Bog-

danov in [6] and later this attack was improved in [12,

36, 38]; Hitag2 was anonymously published in [60] and

later attacked in [8, 13, 35, 52, 53, 57, 58].

With respect to vehicle security, Koscher et. al. at-

tracted a lot of attention from the scientific community

when they demonstrated how to compromise the board

computer of a modern car [11, 40]. They were able to

remotely exploit and control many car features such as

tracking the car via GPS and adjust the speeding of the

car. In 2011, Francillon et. al. [25] showed that with

fairly standard equipment it is possible to mount a relay-

attack on all keyless-entry systems that are currently de-

ployed in modern cars.

The scientific community proposed several alterna-

tives [43, 44, 59, 61, 62] to replace the weak proprietary

ciphers and protocols. There are several commercial ve-

hicle immobilizer transponders that makes use of stan-

dard cryptography, like AES [14]. Examples include

the Hitag Pro transponder from NXP Semiconductors

and ATA5795 transponder from Atmel. To the best of

our knowledge, only Atmel made an open protocol de-

sign [1] and published it for scientific scrutiny. The secu-

rity of their design was analyzed by Tillich et. al. in [54].

2 Technical background

This section briefly describes what a vehicle immobilizer

is and how it is used by the automotive industry. Then we

describe the hardware setup we use for our experiments.

Finally we introduce the notation used throughout the pa-

per.

2.1 Immobilizer

To prevent a hijacker from hot-wiring a vehicle, car man-

ufacturers incorporated an electronic car immobilizer as

3
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an extra security mechanism. In some countries, having

such an immobilizer is enforced by law. For example, ac-

cording to European Commission directive (95/56/EC)

it is mandatory that all cars sold in the EU from 1995

are fitted with an electronic immobilizer. Similar reg-

ulations apply to other countries like Australia, New

Zealand (AS/NZS 4601:1999) and Canada (CAN/ULC

S338-98). Although in the US it is not required by law,

according to the independent organization Insurance In-

stitute for Highway Safety (IIHS), 86 percent of all new

passenger cars sold in the US had an engine immobilizer

installed [55].

An electronic car immobilizer consists of three main

components: a small transponder chip which is embed-

ded in (the plastic part of) the car key, see Figure 1(b);

an antenna coil which is located in the dashboard of the

vehicle, typically around the ignition barrel; and the im-

mobilizer unit that prevents the vehicle from starting the

engine when the transponder is absent.

The immobilizer unit communicates through the an-

tenna coil and enumerates all transponders that are in

proximity of field. The transponder identifies itself and

waits for further instructions. The immobilizer chal-

lenges the transponder and authenticates itself first. On

a successful authentication of the immobilizer unit, the

transponder sends back its own cryptographic response.

Only when this response is correct, the immobilizer unit

enables the engine to start.

The immobilizer unit is directly connected to the in-

ternal board computer of the car, also referred to as Elec-

trical Control Unit (ECU). To prevent hot-wiring a car,

the ECU blocks fuel-injection, disables spark-plugs and

deactivates the ignition circuit if the transponder fails to

authenticate.

2.2 Hardware setup

We used the Proxmark III to eavesdrop and com-

municate with the car and transponder. This is a

generic RFID protocol analysis tool [56] that sup-

ports raw data sampling at a frequency of 125 kHz.

Figure 3: Proxmark 3

We implemented a custom

firmware and FPGA design

that supports the modulation

and encoding schemes of

Megamos Crypto transpon-

ders. The design samples

generic analog-digital con-

verter (ADC) values and

interpret them in real-time

in the micro-controller. We

have implemented com-

mands to eavesdrop, read and emulate a transponder.

Our library is able to decode field and transponder

modulation simultaneously and is very precise in timing.

2.3 Notation

Throughout this paper we use the following mathemat-

ical notation. Let F2 = {0,1} be the set of Booleans.

The symbol ⊕ denotes exclusive-or (XOR), 0n denotes

a bitstring of n zero-bits. ε denotes the empty bitstring.

Given two bitstrings x and y, xy denotes their concatena-

tion. Sometimes we write this concatenation explicitly

with x · y to improve readability. x denotes the bitwise

complement of x. Given a bitstring x ∈ F
k
2, we write xi to

denote the i-th bit of x. For example, given the bitstring

x = 0x03= 00000011 ∈ F
8
2, x0 = 0 and x6 = x7 = 1.

3 Megamos Crypto

This section describes Megamos Crypto in detail. We

first describe the Megamos Crypto functionality, mem-

ory structure, and communication protocols, this comes

from the product datasheet [21] and the application

note [23]. Then we briefly describe how we reverse-

engineered the cryptographic algorithms and protocols

used in Megamos Crypto. Finally, we describe these al-

gorithms and protocols in detail.

3.1 Memory

There are two types of Megamos Crypto transponders,

in automotive industry often referred to as Magic I

(V4070) [20] and Magic II (EM4170) [21]. The EM4170

transponder is the newer version and it has 16 memory

blocks of 16-bit words. The contents of these mem-

ory blocks are depicted in Figure 4. The older version

(V4070) supports exactly the same read and write oper-

ations and cryptographic algorithms, but it only has 10

memory blocks. The blocks 10 to 15, which store 64

bits of additional user memory and a 32-bit PIN code are

simply not readable. The EM4170 transponder uses the

same communication and is therefore backwards com-

patible with the V4070 transponder. Note that in some

cars the new revision is deployed as replacement for the

V4070 without making use of, or even initializing the

additional user memory blocks and PIN code. The whole

memory is divided in three sections with different access

rights, see Figure 4.

The transponder identifier id is always read-only. The

write access over the other memory blocks is determined

by the value of the lock-bit l0. Just as specified, the value

of lock-bit l1 does not have any influence the memory

access conditions. Similarly, a successful or failed au-

thentication has no effect on the access conditions.

• When l0 = 0, all memory blocks (except id) of a

Megamos Crypto transponder are still writable. The

key k, PIN code pin are write-only and the user

memory um blocks (which includes the lock-bits l)

are read-write. However, after a successful write in

block 1, the new value of l0 determines the access

condition for future write operations.

4
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• When l0 = 1, all writing is disabled. However, it

does not affect the read access conditions. This

means that the key k, PIN code pin can not be read

out and the user memory um becomes read-only.

Because the lock-bits l are stored in a user memory

block they can always be read out.

The EM4170 allows to set the lock-bit l0 back to zero

using a PIN code pin. A valid PIN code resets the access

conditions and enables again writing of k, pin, um and

l. The PIN code has to be known or overwritten to the

transponder before it is locked, otherwise an exhaustive

search of the PIN code is required.

Block Content Denoted by

0 user memory um0 . . .um15

1 user memory, lock bits um16 . . .um29l0l1
2 device identification id0 . . . id15

3 device identification id16 . . . id31

4 crypto key k0 . . .k15

5 crypto key k16 . . .k31

6 crypto key k32 . . .k47

7 crypto key k48 . . .k63

8 crypto key k64 . . .k79

9 crypto key k80 . . .k95

10 pin code pin0 . . . pin15

11 pin code pin16 . . . pin31

12 user memory um30 . . .um45

13 user memory um46 . . .um61

14 user memory um62 . . .um77

15 user memory um78 . . .um93

read-only

write-only

read-write

Figure 4: Megamos Crypto transponder memory layout

3.2 Functionality and communication

The Megamos Crypto transponder supports four dif-

ferent operations: read, write, reset and

authenticate.

• read operations are performed by three dif-

ferent commands, each returns multiple blocks.

The transponder returns the concatenation of

these blocks in one bitstring. The three avail-

able bitstrings are id31 . . . id0, l1l0um29 . . .um0 and

um93 . . .um30.

• write stores a 16-bit memory block in the mem-

ory of the transponder. The arguments for this com-

mand are the block number and the data. After

receiving the command, the transponder stores the

data in memory if the access conditions allow the

requested write operation.

• reset takes the id and 32-bit PIN code as an ar-

gument. If the PIN code matches the value that is

stored in pin, then the lock-bit l0 is reset, see Sec-

tion 3.1 for more details about l0.

• authenticate takes three arguments. The first

one is a 56-bit car nonce nC. The second argument

is a bitstring of 7 zero bits. The datasheet [21] refers

to them as “divergency bits”. It seems that these

bit-periods are used to initialize the cipher. In Sec-

tion 3.6 we show that the authentication protocol ex-

actly skips 7 cipher steps before it starts generating

output. The third argument is a 28-bit authentica-

tor from the car aC. If successful, the transponder

responds with its 20-bit authenticator aT .

When the driver turns on the ignition, several back-

and-forward messages between the car and transponder

are exchanged. It starts with the car reading out the

transponder memory blocks that contains the identity,

user memory and lock-bits. Next, the car tries to authen-

ticate using the shared secret key k. If the authentication

fails, the car retries around 20 times before it reports on

the dashboard that the immobilizer failed to authenticate

the transponder. Figure 5 shows an eavesdropped trace

of a German car that initializes and authenticates a Meg-

amos Crypto transponder.

To the best of our knowledge, there is no publicly

available document that describes the structure of Meg-

amos Crypto cipher. However, a simplified representa-

tion of the authentication protocol is presented in the

EM4170 application note [23] as shown in Figure 6.

It does not specify any details beyond the transmitted

messages and the checks which the car and transpon-

der must perform. The car authenticates by sending a

nonce nC = Random and the corresponding authentica-

tor aC = f (Rnd,K). When the car successfully authenti-

cated itself, the Megamos Crypto transponder sends the

transponder authenticator aT = g(Rnd, f ,K) back to car.

 













 































 













 































Figure 6: Authentication procedure excerpt from [23]

For communication the Megamos Crypto transponder

uses a low frequency wave of 125 kHz and applies am-

plitude shift keying (ASK) modulation by putting a small

resistance on the electro magnetic field. It utilizes a cus-

5
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Origin Message Description

Car 3 Read identifier

Transponder A9 08 4D EC Identfier id31 . . . id0

Car 5 Read user memory and lock-bits

Transponder 80 00 95 13 First user memory l1l0um29 . . .um0

Car F Read large user memory (EM4170)

Transponder AA AA AA AA AA AA AA AA Second user memory um93 . . .um30

Car 6 | 3F FE 1F B6 CC 51 3F | 07 | F3 55 F1 A Authentication, nC55
. . .nC0

, 07, aC

Transponder 60 9D 6 Car authenticated successful, send back aT

Figure 5: Eavesdropped Megamos Crypto authentication using the 96-bit key 000000000000010405050905.

The structure of the secret key of the car suggests that it has an entropy of only 24 bits.

tom encoding scheme for status bits and a Manchester

encoding scheme for transmitting data bits. The Meg-

amos Crypto immobilizer unit signals the transponder to

receive a command by dropping the field two consecutive

times in a small time interval. Then it drops the field a

few microseconds to modulate a zero and leaves the field

on to modulate a one.

This way of modulation introduces the side-effect that

the immobilizer unit and the transponder could get out-

of-sync. When the immobilizer unit sends a bitstring

of contiguous ones, there are no field drops for almost

15 milliseconds. The manufacturer realized this was a

problem, but instead of proposing an alternative com-

munication scheme they suggest to choose random num-

bers with more zeros’s than ones and especially avoid se-

quential ones [23]. From a security perspective it sounds

like a bad idea to suggest to system integrators that they

should effectively drop entropy from the used random

numbers.

To get a fair estimate of communication timings we

did some experiments. With our hardware setup we were

able to reach the highest communication speed with the

transponder that is possible according to the datasheet.

It allows us to read out the identifier id in less than 14

milliseconds and successfully authenticate within 34 mil-

liseconds. These timings confirm that an adversary can

wirelessly pickpocket the identifier and all its user mem-

ory in less than a second from a distance of one inch.

Standing close to a victim for only a fraction of a second

enables the adversary to gather the transponder identifier.

When this identifier is emulated to the corresponding

car, it is possible to gather partial authentication traces.

Because the transponder lacks a random generator, this

partial traces can later be used to retrieve the responses

from the transponder which extends them to successful

authentication traces. With a number of successful au-

thentication traces it is possible to recover the secret key

as described in Section 5.

3.3 Reverse-engineering the cipher

Recent articles point out the lack of security [11, 40, 41]

in modern cars. The software in existing cars is designed

with safety in mind, but is still immature in terms of se-

curity. Legacy protocols and technologies are often vul-

nerable to a number of remote and local exploits.

Most car keys need to be preprogrammed, which is

also referred to as pre-coded, before they can be asso-

ciated to a car. During this initialization phase the user

memory blocks are filled with manufacturer specific data

to prevent mixing of keys. This step adds no security, it

just restricts the usage of keys that were meant a specific

car make or model.

There are several car locksmith tools456 in the after

market that can initialize or change such transponder

data. Such tools fully support the modulation/encoding

schemes and communication protocol of the Meg-

amos Crypto transponder. They implement some pub-

licly available functionality like the read, write and

reset commands. However, they do not implement

the authentication protocol. To perform a successful au-

thentication, knowledge of the Megamos Crypto cipher

is necessary to compute the authentication messages aC

and aT .

More advanced car diagnostic tools like AVDI7 and

Tango Programmer8 offer functionality that goes beyond

“legitimate” usage. These devices are able to dump the

board-computer memory, recover the dealer code, and

add a new blank transponder to the car. For this the tools

do not require a genuine key to be present but they do

need physical access to the can bus.

These diagnostic tools use the Megamos Crypto au-

thentication functionality to speed up the process of

adding new transponders to the car. For this, the tool

needs the Megamos Crypto algorithm to compute valid

4http://www.istanbulanahtar.com
5http://www.advanced-diagnostics.co.uk
6http://www.jmausa.com
7http://www.abritus72.com
8http://www.scorpio-lk.com
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authentication attempts. We would like to emphasize

that non of these tools is able to recover the secret key

of a transponder or perform any kind of cryptanalysis. In

fact, within the legitimate automotive industry Megamos

Crypto is believed to be unclonable.

The software package that comes with the Tango Pro-

grammer implements all cryptographic operations of the

transponder including the Megamos Crypto cipher. We

have analyzed the software thoroughly and extracted the

algorithm from it.

Since the application implements several counter mea-

sures against reverse-engineering, this task was not triv-

ial at all. It is highly protected with an executable ob-

fuscator that runs a custom virtual machine, as described

in [51], and a number of advanced anti-debugging tricks

to avoid exposure of its inner workings. To perform our

security evaluation of the Megamos Crypto cipher we

bypassed all these measures and reverse engineered the

cipher in a semi-automatic way by observing the mem-

ory state changes and guessing the intermediate crypto-

graphic calculations.

Furthermore, we observed every Megamos Crypto re-

lated function call from the program instructions mem-

ory segment. When the program counter entered a suspi-

cious memory segment, we invoked our clean-up routine

that automatically grouped and dropped all unnecessary

instructions (unconditional re-routings, sequential oper-

ations on the same variables, random non-influential cal-

culations). After analysing this at run-time, the actual

working of the algorithm was quickly deduced from the

optimized and simplified persistent instruction set.

3.4 Cipher

This section describes the Megamos Crypto cipher in

detail. The cipher consists of five main components:

a Galois Linear Feedback Shift Register, a non-linear

Feedback Shift Register, and three 7-bit registers. A

schematic representation of the cipher is depicted in Fig-

ure 7.

Definition 3.1 (Cipher state). A Megamos Crypto cipher

state s = �g,h, l,m,r� is an element of F57
2 consisting of

the following five components:

1. the Galois LFSR g = (g0 . . .g22) ∈ F
23
2 ;

2. the non-linear FSR h = (h0 . . .h12) ∈ F
13
2 ;

3. the first output register l = (l0 . . . l6) ∈ F
7
2;

4. the second output register m = (m0 . . .m6) ∈ F
7
2;

5. the third output register r = (r0 . . . r6) ∈ F
7
2.

The following definitions describe the successor or

feedback functions for each of these components.

Definition 3.2. The successor function for the Galois lin-

ear feedback shift register G : F23
2 ×F2×F2 → F

23
2 is de-

fined as

G(g0 . . .g22, i, j) = ( j⊕g22)g0g1g2(g3⊕g22)(g4⊕i)

(g5⊕g22)(g6⊕g22)g7 . . .g12(g13⊕g22)g14g15

(g16⊕g22)g17 . . .g21

We also overload the function G to multiple-bit input

string G : F23
2 ×F2 ×F

n+1
2 → F

23
2 as

G(g, i, j0 . . . jn) = G(G(g, i, j1 . . . jn), i, j0)

Definition 3.3. The successor function for the non-linear

feedback shift register H : F13
2 → F

13
2 is defined as

H(h0 . . .h12) = ((h1 ∧h8)⊕ (h9 ∧h11)⊕ h12)h0 . . .h11

Definition 3.4. The feedback function for the first output

register fl : F6
2 → F2 is defined as

fl(x0 . . .x5) =(x0 ∧ x2 ∧ x3)∨ (x2 ∧ x4 ∧ x5)∨

(x5 ∧ x1 ∧ x3)∨ (x0 ∧ x1 ∧ x4).

Definition 3.5. The feedback function for the second out-

put register fm : F6
2 → F2 is defined as

fm(x0 . . .x5) =(x4 ∧ x1 ∧ x2)∨ (x5 ∧ x1 ∧ x3)∨

(x0 ∧ x2 ∧ x3)∨ (x4 ∧ x5 ∧ x0).

Definition 3.6. The feedback function for the third out-

put register fr : F6
2 → F2 is defined as

fr(x0 . . .x5) =(x5 ∧ x0 ∧ x2)∨ (x5 ∧ x3 ∧ x1)∨

(x2 ∧ x3 ∧ x4)∨ (x0 ∧ x4 ∧ x1).

With every clock tick the cipher steps to its successor

state and it (potentially) outputs one bit of keystream.

The following precisely defines the successor state and

the output of the cipher.

Definition 3.7 (Successor state). Let s = �g,h, l,m,r� be

a cipher state and i ∈ F2 be an input bit. Then, the suc-

cessor cipher state s′ = �g′,h′, l′,m′,r′� is defined as

g′ := G(g, i, l1⊕m6⊕h2⊕h8⊕h12)

h′ := H(h)

l′ := al0 . . . l5

m′ := bm0 . . .m5

r′ := cr0 . . . r5

where

a = fl(g0g4g6g13g18h3)⊕g22 ⊕ r2 ⊕ r6

b = fm(g1g5g10g15h0h7)⊕ l0 ⊕ l3 ⊕ l6

c = fr(g2(g3⊕i)g9g14g16h1)⊕m0 ⊕m3 ⊕m6

We define the successor function suc : F57
2 × F2 → F

57
2

which takes a state s and an input i ∈ F2 and outputs

the successor state s′. We overload the function suc on

multiple-bit input which takes a state s and an input i ∈
F

n+1
2 as

suc(s, i0 . . . in) = suc(s′, in)

where s′ = suc(s, i0 . . . in−1)

7
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0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6

⊕⊕ ⊕ ⊕ ⊕⊕ ⊕

fo

output

l m r

0 1 2 3 4 5 6 7 8 9 101112 131415 16171819202122

0 1 2 3 4 5 6 7 8 9 101112

⊕⊕⊕ ⊕ ⊕ ⊕⊕

input

j = l1 ⊕m6

fl fm fr input

g h

⊕ ⊕

⊕⊕

⊕g22

Figure 7: Schematic representation of the cipher

Definition 3.8. The non-linear output filter function

fo : F20
2 → F2 has been deliberately omitted in this pa-

per.

Definition 3.9 (Output). Define the function

output: F
57
2 × F2 → F2 which takes as input an in-

ternal state s = �g,h, l,m,r� and an input i ∈ F2 and

returns the bit

fo(abcl0l2l3l4l5l6m0m1m3m5r0r1r2r3r4r5r6)

where

a = fl(g0g4g6g13g18h3)⊕ g22 ⊕ r2 ⊕ r6

b = fm(g1g5g10g15h0h7)⊕ l0 ⊕ l3 ⊕ l6

c = fr(g2(g3⊕i)g9g14g16h1)⊕m0 ⊕m3 ⊕m6

We also overload the function output on multiple-bit in-

put which takes a state s and an input i ∈ F
n+1
2 as

output(s, i0 . . . in) = output(s, i0) ·output(s′, i1 . . . in)

where s′ = suc(s, i0).

3.5 Cipher initialization

The following sequence of definitions describe how the

cipher is initialized.

Definition 3.10. Let init : F23
2 × F

n+1
2 → F

n+24
2 be de-

fined as

init(g,ε) := g

init(g,x0 . . .xn) := init(G(g,0,xn),x0 . . .xn−1) ·g22

Definition 3.11. Let p ∈ F
56
2 ,q ∈ F

44
2 and t ∈ F

43
2 be de-

fined as

p := nC0
. . .nC55

+ k40 . . .k95 mod 256

q := (p2 . . . p45)⊕ (p8 . . . p51)⊕ (p12 . . . p55)

t := init(q20 . . .q42,q0 . . .q19)

Then, the initial cipher state s0 = �g,h, l,m,r� is defined

as

g := t0 . . . t22

h := 0p0 . . . p11

l := t23 . . . t29

m := t30 . . . t36

r := t37 . . . t42q43

3.6 Authentication protocol

This section describes the authentication protocol be-

tween a Megamos Crypto transponder and the vehicle

immobilizer. This protocol is depicted in Figure 8. An

annotated example trace is shown in Figure 5.

Definition 3.12. Given a key k = k0 . . .k95 ∈ F
96
2 and an

initial state s0 as defined in Definition 3.11, the internal

state of the cipher at step i is defined as

si := suc(si−1,k40−i) ∀i ∈ [1 . . .40]

si+41 := suc(si+40,0) ∀i ∈ N

During authentication, the immobilizer starts by send-

ing an authenticate command to the transponder. This

command includes a 56-bit nonce nC and the 28 bits aC

output by the cipher from state s7. Then, the transponder

responds with the next 20 output bits aT , i.e., produced

from state s35.

8
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nC ·output(s7,k32 . . .k5)
−−−−−−−−−−−−−−−−−−−−→

output(s35,k4 . . .k0 ·0
15)

←−−−−−−−−−−−−−−−−−−−−

Figure 8: Megamos Crypto authentication protocol

4 Cipher Properties

This section describes several properties of the Megamos

Crypto cipher which will be later used in the attacks.

4.1 Rollback

Given a cipher state it is possible to recover its previous

state when this exists. Rolling-back the cipher is non-

trivial due to the non-linear operations in the suc func-

tion. Next we describe precisely how to rollback the ci-

pher to recover a predecessor state.

We start by rolling-back registers g and h. This com-

putation is straightforward as described in the following

definitions.

Definition 4.1. The predecessor function for the non-

linear feedback shift register H−1 : F13
2 → F

13
2 is defined

as

H−1(h0 . . .h12) = h1 . . .h11((h2 ∧h9)⊕ (h10 ∧h12)⊕ h0)

Definition 4.2. The predecessor function for the Galois

linear feedback shift register G−1 : F23
2 ×F2 ×F2 → F

23
2

is defined as

G−1(g0 . . .g22, i, j) = g1g2(g3⊕b)(g4⊕i)(g5⊕b)(g6⊕b)

g7 . . .g12(g13⊕b)g14g15(g16⊕b)g17 . . .g22b

where b = g0 ⊕ j

Next we describe how to rollback registers l,m and

r. A difficulty in doing that arises from the fact that m6

in the predecessor state is not determined. To circumvent

this issue, we need to first guess the bit m6 and then check

whether this guess is consistent with the rest of the state.

For 18.75% of the states this condition is not met for nei-

ther m6 = 0 nor m6 = 1, which means that the state has

no predecessor. For 62.5% of the states there is only one

value of m6 satisfying this condition, which means that

they have only one predecessor state. Finally, 18.75%

of the states have two possible predecessor states, one

for m6 = 0 and one for m6 = 1. In this case both states

have to be considered as potentially being the predeces-

sor state. Given the fact that the average probability of

having two predecessors equals the probability of having

none the list of candidate predecessor states remains of a

constant size.

A precise description of how to compute a predecessor

state follows.

Definition 4.3 (Predecessor state). Let s′ =
�g′,h′, l′,m′,r′� be a cipher state and i ∈ F2 be an

input bit. Then, s = �g,h, l,m,r� is a predecessor cipher

state of s′ if it satisfies

h = H−1(h′)

g = G−1(g′, i,h12 ⊕h8 ⊕h2 ⊕ l′2 ⊕m6)

l = l′1 . . . l
′
6(m

′
0 ⊕ fm(g1g5g10g15h0h7h)⊕ l′4 ⊕ l′1)

m6 = r′0 ⊕ fr(g2(g3⊕i)g9g14g16h1)⊕m′
4 ⊕m′

1

m = m′
1 . . .m

′
6m6

r = r′1 . . . r
′
6(l

′
0 ⊕ fl(g0g4g6g13g18h3)⊕ r′3 ⊕g22).

4.2 Undoing cipher initialization

In this section we show that the cipher initialization pro-

cedure can be reverted. This means that given an initial

state it is possible to recover the part of the secret key that

was used for initialization. The following describes ex-

actly how this can be achieved. We first introduce some

auxiliary functions.

Definition 4.4. Let init−1 : F23
2 × F

n+1
2 → F

n+1
2 be de-

fined as

init−1(g,x0) := g

init−1(g,x0 . . .xn) := b · init−1(G−1(g,0,b),x1 . . .xn)

where b = g0 ⊕ x0

Definition 4.5. Let Q−1 : Fn+12
2 → F

n
2 be defined as

Q−1(p0 . . . p11) := ε

Q−1(p0 . . . pn) := (p2 ⊕ p8 ⊕ p12) ·Q
−1(p1 . . . pn)

Proposition 4.6. Given an initial state s0 = �g,h, l,m,r�
it is possible to compute secret key bits k40 . . .k95.

The computation of the key bits is as follows.

t := g · l ·m · r

q := init−1(t0 . . . t22, t23 . . . t42) · t43

p := h ·Q−1(h ·q)

k40 . . .k95 := p−nC mod 256.

4.3 Entropy of the non-linear feedback shift register

First and foremost, the initialization of the 13-bit non-

linear feedback shift register (NLFSR) h is far from ideal.

The NLFSR is initialized with only 12 bits by an almost

linear function of the random nonce and the secret key.

Adding upon the fact that, naturally, as the NLFSR h is

not affected by other registers and the input, it is trivial

to compute all successor states for a given h. Therefore,

the search space for the 13-bit h register drops down to

212. Moreover, careful observation of the nC value on the

communication channel can leak information on whether

the same value has been previously used for initializing

h. For instance if the first 13 bits of nC is the same for

two different authentication attempts, depending on the

9
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rest of the bits, the attacker can conclude with a certain

confidence that the same state is used for initializing h.

This weakness can be later exploited in a differential at-

tack.

5 Cryptanalysis of Megamos Crypto

This section describes a cryptanalysis of the Megamos

Crypto cipher. We first introduce a simple cryptanaly-

sis which is easier-to-grasp and recovers the 96-bit se-

cret key with a computational complexity of 256. Then,

in Section 5.1 we reduce its computational complexity

down to 248.

This analysis requires two suc-

cessful authentication traces T =
�nC,output(s7,k32 . . .k5),output(s35,k4 . . .k0 · 015)� and

T ′ = �n′C,output(s′7,k32 . . .k5),output(s′35,k4 . . .k0 ·0
15)�.

Discarding from all internal states s40 ∈ F
56
2 those

guesses which produce different 15 output bits than the

trace T which leaves 256−15 = 241 candidate states for

s40. Rolling the cipher backwards for each candidate

up to state s7, as shown in Section 4.1, leaves—on

average—the same number of candidate states for s7,

namely 241. Each step requires guessing one input bit

ki but at the same time the output provides one bit of

information. Note that this determines a guess for key

bits k0 . . .k32. Rolling further the cipher backwards up to

state s0 requires guessing of k33 . . .k39 while no output

bits are produced. This brings the number of candidate

states for s0 to 241+7 = 248. For each candidate s0,

the remaining key bits k40 . . .k95 can be recovered by

undoing the initialization of the cipher as described in

Section 4.2. This produces 248 candidate keys k0 . . .k95.

On average, there is only one candidate secret key

k0 . . .k95 that together with n′C produces the trace T ′.

This is because there are only 248 candidates keys and

48 bits of information on the trace.

Time complexity on average, the aforementioned al-

gorithm has a computational complexity of approxi-

mately 256 encryptions. We have simulated an FPGA

implementation of the algorithm on a Xilinx ISE 10.1

for synthesis and place & route. The results show that

our implementation of a Megamos Crypto core covers

approximately 1% of the Xilinx Spartan 3-1000 FPGA,

the exact same chip that is employed in the COPA-

COBANA [42]. The maximum frequency that the core can

run at is 160.33 MHz, which means we can test a single

bit output in 6.237ns. Given this performance and area

figures, a rough estimation suggests we can fit at least

50 Megamos Crypto cores in a Spartan 3-1000 FPGA.

Considering that there are 120 such FPGA in a COPA-

COBANA, and since we can run them at 160.33MHz, we

can run approximately 239.8 tests per second. After every

cycle, half of the candidate states are discarded, which

means that a search takes less than two days on a COPA-

COBANA.

5.1 Reducing the computational complexity

Most of the computational complexity of the cryptanal-

ysis described in Section 5 comes from iterating over all

256 internal states s40. In the following analysis we lower

this complexity to 248 by splitting the cipher state into

two and using a time-memory trade-off. The main idea

behind this optimization is to exploit the fact that com-

ponents g and h are quite independent from components

l, m and r. In fact, at each cipher step, there is only one

bit of information from l,m,r which affects g,h, namely

l1 ⊕m6. Conversely, there are only three bits of infor-

mation from g,h that have an influence on components

l,m,r.

In order reduce the complexity of the cryptanalysis an

adversary A proceeds as follows.

1. Pre-computation: only once, and for each 212 possi-

ble values of h, the adversary computes a table Th as

follows. For each g ∈ F
23
2 and j ∈ F

8
2 the adversary

runs cipher components g and h one step forward.

For this, A uses j0 as a guess for l1 ⊕m6. At this

stage A computes f0 := fl(·) fm(·) fr(·). From the

resulting g and h, A repeats this procedure another

7 times, using ji as a guess at step i and computing

a three bit value fi. At the end, she creates an entry

in the table Th of the form < f0 . . . f7, j0 . . . j7,g >.

When the table is completed A sorts the table (on

f , j).

2. As before A first eavesdrops one authentication

trace between a legitimate transponder and an im-

mobilizer. Thus A learns nC, output(s7,k32 . . .k5)
and output(s35,k4 . . .k0 ·0

15).

3. Choose h.

4. Next the adversary will try to recover state s40. For

each l,m,r ∈ F
7
2 the adversary runs these compo-

nents 8 steps forward. At each step i she needs

to guess 3 bits fi := fl(·) fm(·) fr(·) but she will be

able to immediately discard half of these guesses

as they will not produce the correct output bit

output(s40+i,0). At each step A will also compute

ji : l1⊕m6. At the end A has 221+16 = 237 bitstrings

of the form < f0 . . . f7, j0 . . . j7, l,m,r >.

5. For each of these bitstrings A performs a lookup on

f0 . . . f7, j0 . . . j7 in the table Th and recovers g. On

average, half of these lookups will not have a match

in Th. In that case the candidate state is discarded,

leaving only 236 full candidate states.

6. Each of these candidate states are then rolled for-

ward another 7 steps. Only 236−7 = 229 of these

states will produce the correct output(s48,0
7) bits

and the rest are discarded.

10
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7. For each of these 229 states the adversary proceeds

as in Section 5, undoing the initialization and check-

ing against a second trace.

Time and resource complexity

• Pre-computation: for building the tables Th the

adversary needs to run components g and h of

the cipher 8 steps. This has a computational

complexity of 223+12+3 = 238 cipher steps. The

generated tables can be conveniently stored in

memory using a structure for compression like

/n/ f0/ f1/. . ./ f7/ j/g.dat. Storing all these ta-

bles require 12 terabyte of memory.

• As before, this cryptanalysis requires two success-

ful authentication traces to recover the secret key.

The most time intensive operation of this analysis is

performing the 237 lookups in the table for each of

the 212 values of h, i.e., 249 table lookups.

The time-memory trade-off proposed in this section re-

quires many indirect memory lookups and is therefore

difficult to mount in practice with ordinary consumer

hardware.

6 Partial Key-Update Attack

As it was described in Section 3.2, when the transponder

is not locked, the Megamos Crypto transponder does not

require authentication in order to write to memory. This

makes it vulnerable to a trivial denial of service attack.

An adversary just needs to flip one bit of the secret key

of the transponder to disable it.

Besides this obvious weakness, there is another weak-

ness regarding the way in which the secret key is written

to the transponder. The secret key of Megamos Crypto is

96 bits long. As described in Section 3.1, these 96 bits

are stored in 6 memory blocks of 16 bits each (blocks 4

to 9), see Figure 4. It is only possible to write one block

at a time to the transponder. This constitutes a serious

weakness since a secure key-update must be an atomic

operation.

Next, we mount an attack which exploits this weak-

ness to recover the secret key. For this attack we assume

that an adversary A is able communicate with the car

and transponder. She proceeds as follows.

1. The adversary first eavesdrops a successful authen-

tication trace, obtaining nC and aC from the car.

2. Then, for k = 0 to 216 − 1 the adversary writes k

on memory block 4 of the transponder, where key

bits k0 . . .k15 are stored. After each write com-

mand A initiates an authentication attempt with the

transponder, replaying nC and aC (remember that

the transponder does not challenge the car). For one

value of k the transponder will accept aC and give

an answer. Then A knows that k0 . . .k15 = k.

3. The adversary proceeds similarly for blocks 5 . . .9
thus recovering the complete secret key.

Attack complexity this attack requires 6 × 216 key-

updates and the same amount of authentication attempts.

This takes approximately 25 minutes for each block

which adds up to a total of two and a half hours.

6.1 Optimizing the attack

The above attack is very powerful, in the worst case, the

attacker needs to update the key on the transponder and

make an authentication attempt 216 times. However, the

same attack can be applied with only one key-update and

216 authentication attempts, by choosing carefully the

value of nC. The optimized attack can be mounted as

follows:

1. As before, the adversary first eavesdrops a success-

ful authentication trace, obtaining nC, aC and aT .

2. then, she writes 0x0000 on memory block 9 which

contains key bits k80 . . .k95.

3. The adversary then increments the observed nC

value and attempts an authentication for each

nC + inc (mod 256), where 0 ≤ inc < 216.

4. Repeating step 3) at most 216 times, the transponder

will accept one aC value for a particular increment

value inc and give an answer. Then A knows that

k80 . . .k95 = inc.

5. The adversary proceeds similarly for blocks 8 and

7. At this point the adversary has recovered key bits

k48 . . .k95.

6. Next, the adversary guesses 15 key bits k33 . . .k47.

7. Having k33 . . .k95 the adversary is now able to ini-

tialize the cipher, obtain the initial state s0 and run

it forward up to state s7. At this point the adversary

has 215 candidates for state s7.

8. For each of these candidates, she runs the cipher for-

ward 33 steps up to state s40. While running the

cipher forward the adversary is able to determine

input bits k32 . . .k0 by comparing the output bits to

aC and aT from the trace.

9. Then, forward each candidate state at s40 to s55 and

produce another 15 output bits to test on, although

this time, with the known input of 15 zero bits. On

average only one candidate survives this test. The

adversary has now recovered the complete key.

Attack complexity This attack requires only one suc-

cessful authentication trace. In total, we need to write

three times on the memory of the transponder and per-

form 3× 216 authentications with the transponder. This

can be done within 30 minutes using a Proxmark III. The

computational complexity of the last three steps is 215

encryptions which takes less than a second on a laptop.

11
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7 Weak-Key Attack

During our experiments we executed the previous attack

on several cars of different make and model. Many of the

keys we recovered were of the form k0 = · · · = k31 = 0

and more or less random looking bits for k32 . . .k96 (al-

though we have found keys where only ten of the 96 bits

were ones). In the remainder of this paper we call such a

key weak. Figure 9 shows some examples of weak keys

we found during our experiments (on the vehicles indi-

cated in Figure 2). To avoid naming concrete car models

we use A,B,C . . . to represent car makes. We write num-

bers X .1,X .2,X .3 . . . to represent different car models of

make X .

Car Secret key

A.1 00000000d8 b3967c5a3c3b29

A.2 00000000d9 b79d7a5b3c3b28

B.1 0000000000 00010405050905

Figure 9: Recovered keys from our own cars. Besides

the evident 32 leading zero bits, every second nibble

seems to encode a manufacturer dependant value, which

further reduces the entropy of the key.

Apparently, the automotive industry has decided to use

only 64 bits of the secret key, probably due to compati-

bility issues with legacy immobilizer systems. If a Meg-

amos Crypto transponder uses such a weak key it is pos-

sible to recover this key quickly, even when the memory

of the transponder is locked with a PIN code. To be con-

crete, a weak secret key with the bits k0 . . .k31 fixed by

the car manufacturer allows an adversary know the input

bits of the cipher states s8 . . .s55.

With known input to the cipher at states s8 . . . s55, it

is possible to pre-compute and sort on a 47 contiguous

output bits for each internal state at s8. However, such a

table with 256 entries requires a huge amount of storage.

There are many time-memory tradeoff methods proposed

in the literature over the last decades [2–5,10,33,34,49].

For example, a rainbow table shrinks the storage signifi-

cantly, while requiring only a modest amount of compu-

tation for a lookup.

Concretely, in order to mount such an attack, an ad-

versary A proceeds as follows.

1. Pre-computation: only once, the adversary com-

putes the following rainbow table. First, she

chooses n random permutations R0 . . .Rn−1 of

F
56
2 → F

56
2 which she uses as reduction functions

(colors). To compute a chain, the intermediate states

are generated by

si+1 = R j(output(si,0
56)).

The chain begins with the first reduction function

R0. When a distinguished point (i.e., a state with a

specific pattern like a prefix of z zero bits) is reached

then the next reduction function R j+1 is used, in or-

der to prevent chain merges. The chain is completed

once a distinguished point is reached while using

the last reduction function Rn−1, see Figure 10. The

start and end values of each chain are stored in the

rainbow table which is sorted on end values.

sp0 �
R0(·)

d1 �
R1(·) · · · �

Rn−2(·)
dn−1 �

Rn−1(·)
dn = ep0

...
...

spm �
R0(·)

d′
1 �

R1(·) · · · �
Rn−2(·)

d′
n−1 �

Rn−1(·)
d′

n = epm

Figure 10: Construction of the rainbow table

2. As before A first eavesdrops one authentication

trace between a legitimate transponder and an im-

mobilizer. Thus A learns the car nonce nC

and 47 output bits o0 . . .o46 = output(s7,k32 . . .k5) ·
output(s35,k4 . . .k0 ·0

15).

3. For each value of u0 . . .u8 ∈ F
9
2 and each reduction

function R j the adversary looks up o0 . . .o46u0 . . .u8

in the Rainbow table. In order to look up such a

value she sets it as a state and runs the chain until

the last distinguished point is reached at the last re-

duction function. Then, it performs n lookups in the

rainbow table (one for each reduction function) to

find the corresponding end point ep.

4. When the end point is found then the correspond-

ing start point sp is used to find the previous inter-

nal state which generates o0 . . .o46u0 . . .u8 as out-

put. Since we guessed the last 9 bits u0 . . .u8, we

should consider this as a candidate state.

5. Then, the adversary rolls back each of those states

seven steps, guessing the input k32 . . .k39. This pro-

duces 28 candidate states for s0. As before, for each

candidate s0 she undoes the initialization of the ci-

pher and recovers the remaining key bits k40 . . .k95.

These need to be tested with another trace.

6. If the test is passed then we have recovered the se-

cret key. Otherwise the next u0 . . .u8 should be con-

sidered at step 3).

Attack complexity This attack requires two success-

ful authentication traces. This attack allows for a trade-

off between memory and computational complexity. The

longer the chains the smaller the table gets but more com-

putation is needed for each lookup. Just to give an im-

pression of the feasibility of the attack we consider the

following configuration. Take z to be 10 bits, therefore

our distinguished states have 10 zero bits followed by

12
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other 46 bits. We also take 64 = 26 random permutations

R0 . . .R63. Then, following the computations of Oech-

slin [49], we get that the size of the rainbow table is

(256)
2
3 ≈ 237 entries of 12 bytes which is 1.5 TB. Regard-

ing its computational complexity, we need to compute

at step 3) 29 candidates for which we compute, for all

26 reduction functions and for all offsets, the end point.

Since a chain has length at most 216, this takes at most

29 × 26 × 26 × 216 = 237 encryptions. This can be com-

puted within a few minutes on a laptop.

For building the rainbow table (needed only once),

computation of the chains is sped up considerably by us-

ing FPGAs. Recently Kalenderi et. al. showed in [37]

that a single FPGA (similar to the ones used in the CO-

PACOBANA) computes chains 2824 times faster than a

single 3GHz processor. They computed rainbow tables

for the A5/1 cipher, which is reasonably similar to the

Megamos Crypto cipher. Although the internal state of

A5/1 is with 64 bits considerably larger than the 56 bits

of Megamos Crypto, they are both designed for hardware

implementation and both embed a non-linear component

that causes some internal states to merge. Their experi-

mental setup generates 345 chains for A5/1 in 830 mil-

liseconds, which is roughly 345
0.830

≈ 415 chains per sec-

ond. If we compute an estimate with respect to the differ-

ence in complexity, the COPACOBANA with a 120 FPGA-

array can compute 415× (28)
1
3 × 120 ≈ 218.3 chains per

second. That means it takes only 237−18.3 ≈ 218.7 sec-

onds, which is less than 5 days, to build the complete

rainbow table.

8 Practical considerations and mitigation

Our attacks require close range wireless communication

with both the immobilizer unit and the transponder. It is

not hard to imagine real-life situations like valet parking

or car rental where an adversary has access to both for

a period of time. It is also possible to foresee a setup

with two perpetrators, one interacting with the car and

one wirelessly pickpocketing the car key from the vic-

tims pocket.

As mitigating measure, car manufacturers should set

uniformly generated secret keys and for the devices

which are not locked yet, set PIN codes and write-lock

their memory after initialization. This obvious measures

would prevent a denial of service attack, our partial key-

update attack from Section 6 and our weak-key attack

from Section 7.

Car owners can protect their own vehicles against a

denial of service and the partial key-update attack, de-

scribed in Section 6. These attacks only work if the ad-

versary has write access to the memory of the transpon-

der, which means that the lock-bit l0 is set to zero. It

is possible for a user to test for this property with any

compatible RFID reader, like the Proxmark III, using

our communication library. If l0 = 0, then you should set

the lock-bit l0 to one. It is possible to set this bit with-

out knowing the secret key or the PIN code. When deal-

ing with the more recent version of the Megamos Crypto

transponder (EM4170), users should also update the PIN

code to a random bit-string before locking the transpon-

der.

On the positive side, our first (cryptographic) attack

is more computationally intensive than the attacks from

Section 6 and 7 which makes it important to take the

aforementioned mitigating measures in order to prevent

the more inexpensive attacks. Unfortunately, our first at-

tack is also hard to mitigate when the adversary has ac-

cess to the car and the transponder (e.g., Valet and car

rental). It seems infeasible to prevent an adversary from

gathering two authentication traces. Furthermore, this

attack exploits weaknesses in the core of the cipher’s

design (e.g., the size of the internal state). It would

require a complete redesign of the cipher to fix these

weaknesses. To that purpose, lightweight ciphers like

Grain [32], Present [7] and KATAN [15] have been pro-

posed in the literature and could be considered as suit-

able replacements for Megamos Crypto. Also, immobi-

lizer products implementing AES are currently available

in the market.

9 Conclusions

The implications of the attacks presented in this paper

are especially serious for those vehicles with keyless ig-

nition. At some point the mechanical key was removed

from the vehicle but the cryptographic mechanisms were

not strengthened to compensate.

We want to emphasize that it is important for the au-

tomotive industry to migrate from weak proprietary ci-

phers like this to community-reviewed ciphers such as

AES [14] and use it according to the guidelines. For a

few years already, there are contactless smart cards on

the market [48, 50] which implement AES and have a

fairly good pseudo-random number generator. It is sur-

prising that the automotive industry is reluctant to mi-

grate to such transponders considering the cost differ-

ence of a better chip (≤ 1 USD) in relation to the prices

of high-end car models (≥ 50,000 USD). Since most car

keys are actually fairly big, the transponder design does

not really have to comply with the (legacy) constraints of

minimal size.

Following the principle of responsible disclosure, we

have notified the manufacturer of our findings back in

November 2012. Since then we have an open commu-

nication channel with them. We understand that mea-

sures have been taken to prevent the weak-key and partial

key-update attacks when the transponder was improperly

configured.
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