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Abstract

Privacy policies on websites are based on the notice-
and-choice principle. They notify Web users of their
privacy choices. However, many users do not read pri-
vacy policies or have difficulties understanding them.
In order to increase privacy transparency we propose
Privee—a software architecture for analyzing essential
policy terms based on crowdsourcing and automatic clas-
sification techniques. We implement Privee in a proof of
concept browser extension that retrieves policy analysis
results from an online privacy policy repository or, if
no such results are available, performs automatic clas-
sifications. While our classifiers achieve an overall F-1
score of 90%, our experimental results suggest that clas-
sifier performance is inherently limited as it correlates
to the same variable to which human interpretations
correlate—the ambiguity of natural language. This find-
ing might be interpreted to call the notice-and-choice
principle into question altogether. However, as our re-
sults further suggest that policy ambiguity decreases over
time, we believe that the principle is workable. Conse-
quently, we see Privee as a promising avenue for facilitat-
ing the notice-and-choice principle by accurately notify-
ing Web users of privacy practices and increasing privacy
transparency on the Web.

1 Introduction

Information privacy law in the U.S. and many other
countries is based on the free market notice-and-choice
principle [28]. Instead of statutory laws and regula-
tions, the privacy regime is of a contractual nature—the
provider of a Web service posts a privacy policy, which
a user accepts by using the site. In this sense, privacy
policies are fundamental building blocks of Web privacy.
The Federal Trade Commission (FTC) strictly enforces
companies’ violations of their promises in privacy poli-
cies. However, only few users read privacy policies and

those who do find them oftentimes hard to understand
[58]. The resulting information asymmetry leaves users
uninformed about their privacy choices [58], can lead to
market failure [57], and ultimately casts doubt on the
notice-and-choice principle.

Various solutions were proposed to address the prob-
lem. However, none of them gained widespread accept-
ance—neither in the industry, nor among users. Most
prominently, The Platform for Privacy Preferences (P3P)
project [29, 32] was not widely adopted, mainly, be-
cause of a lack of incentive on part of the industry to ex-
press their policies in P3P format. In addition, P3P was
also criticized for not having enough expressive power
to describe privacy practices accurately and completely
[28, 11]. Further, existing crowdsourcing solutions, such
as Terms of Service; Didn’t Read (ToS;DR) [5], may not
scale well and still need to gain more popularity. In-
formed by these experiences, which we address in more
detail in Section 2, we present Privee—a novel software
architecture for analyzing Web privacy policies. In par-
ticular, our contributions are:

• the Privee concept that combines rule and machine
learning (ML) classification with privacy policy
crowdsourcing for seamless integration into the ex-
isting privacy regime on the Web (Section 3);

• an implementation of Privee in a Google Chrome
browser extension that interacts with privacy pol-
icy websites and the ToS;DR repository of crowd-
sourced privacy policy results (Section 4);

• a statistical analysis of our experimental results
showing that the ambiguity of privacy policies
makes them inherently difficult to understand for
both humans and automatic classifiers (Section 5);

• pointers for further research on notice-and-choice
and adaptations that extend Privee as the landscape
of privacy policy analysis changes and develops
(Section 6).
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2 Related Work

While only few previous works are directly applicable,
our study is informed by four areas of previous research:
privacy policy languages (Section 2.1), legal information
extraction (Section 2.2), privacy policy crowdsourcing
(Section 2.3), and usable privacy (Section 2.4).

2.1 Privacy Policy Languages

Initial work on automatic privacy policy analysis focused
on making privacy policies machine-readable. That way
a browser or other user agent could read the policies
and alert the user of good and bad privacy practices.
Reidenberg [67] suggested early on that Web services
should represent their policies in the Platform for Inter-
net Content Selection (PICS) format [10]. This and sim-
ilar suggestions lead to the development of P3P [29, 32],
which provided a machine-readable language for spec-
ifying privacy policies and displaying their content to
users [33]. To that end, the designers of P3P imple-
mented various end users tools, such as Privacy Bird
[30], a browser extension for Microsoft’s Internet Ex-
plorer that notifies users of the privacy practices of a Web
service whose site they visit, and Privacy Bird Search
[24], a P3P-enabled search engine that returns privacy
policy information alongside search results.

The development of P3P was complemented by var-
ious other languages and tools. Of particular relevance
was A P3P Preference Privacy Exchange Language (AP-
PEL) [31], which enabled users to express their privacy
preferences vis-à-vis Web services. APPEL was further
extended in the XPath project [14] and inspired the User
Privacy Policy (UPP) language [15] for use in social net-
works. For industry use, the Platform for Enterprise Pri-
vacy Practices (E-P3P) [47] was developed allowing ser-
vice providers to formulate, supervise, and enforce pri-
vacy policies. Similar languages and frameworks are the
Enterprise Privacy Authorization Language (EPAL) [18],
the SPARCLE Policy Workbench [22, 23], Jeeves [78],
and XACML [12]. However, despite all efforts the adop-
tion rate of P3P policies among Web services remained
low [11], and the P3P working group was closed in 2006
due to lack of industry participation [28].

Instead of creating new machine-readable privacy pol-
icy formats we believe that it is more effective to use
what is already there—privacy policies in natural lan-
guage. The reasons are threefold: First, natural language
is the de-facto standard for privacy policies on the Web,
and the P3P experience shows that there is currently no
industry-incentive to move to a different standard. Sec-
ond, U.S. governmental agencies are in strong support of
the natural language format. In particular, the FTC, the
main privacy regulator, called for more industry-efforts

to increase policy standardization and comprehensibil-
ity [38]. Another agency, the National Science Founda-
tion, awarded $3.75 million to the Usable Privacy Policy
Project [9] to explore possibilities of automatic policy
analysis. Third, natural language has stronger expressive
power compared to a privacy policy language. It allows
for industry-specific formulation of privacy practices and
accounts for the changing legal landscape over time.

2.2 Legal Information Extraction

Given our decision to make use of natural language poli-
cies, the question becomes how salient information can
be extracted from unordered policy texts. While most
works in legal information extraction relate to domains
other than privacy, they still provide some guidance. For
example, Westerhout et al. [75, 76] had success in com-
bining a rule-based classifier with an ML classifier to
identify legal definitions. In another line of work de
Maat et al. [35, 36] aimed at distinguishing statutory
provisions according to types (such as procedural rules
or appendices) and patterns (such as definitions, rights,
or penal provisions). They concluded that it was unnec-
essary to employ something more complex than a simple
pattern recognizer [35, 36]. Other tasks focused on the
extraction of information from statutory and regulatory
laws [21, 20], the detection of legal arguments [59], or
the identification of case law sections [54, 71].

To our knowledge, the only works in the privacy pol-
icy domain are those by Ammar et al. [16], Costante
et al. [26, 27], and Stamey and Rossi [70]. As part of
the Usable Privacy Policy Project [9] Ammar et al. pre-
sented a pilot study [16] with a narrow focus on clas-
sifying provisions for the disclosure of information to
law enforcement officials and users’ rights to terminate
their accounts. They concluded the feasibility of natural
language analysis in the privacy policy domain in gen-
eral. In their first work [26] Costante et al. used gen-
eral natural language processing libraries to evaluate the
suitability of rule-based identification of different types
of user information that Web services collect. Their re-
sults are promising and indicate the feasibility of rule-
based classifiers. In a second work [27] Costante et al.
selected an ML approach for assessing whether privacy
policies cover certain subject matters. Finally, Stamey
and Rossi [70] provided a program for identifying am-
biguous words in privacy policies.

The discussed works [16, 26, 27, 70] confirm the suit-
ability of rule and ML classifiers in the privacy policy do-
main. However, neither provides a comprehensive con-
cept, nor addresses, for example, how to process the poli-
cies or how to make use of crowdsourcing results. The
latter point is especially important because, as shown in
Section 5, automatic policy classification on its own is in-
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Figure 1: Privee overview. When a user requests a privacy policy analysis, the program checks whether the analysis results are available at
a crowdsourcing repository (to which crowd contributors can submit analysis results of policies). If results are available, they are returned
and displayed to the user (I. Crowdsourcing Analysis). If no results are available, the policy text is fetched from the policy website, analyzed
by automatic classifiers on the client machine, and then the analysis results are displayed to the user (II. Classifier Analysis).

herently limited. In addition, as the previous works’ pur-
pose is to generally show the viability of natural language
privacy policy analysis, they are constrained to classify-
ing one or two individual policy terms or features. As
they process each classification task separately, there was
also no need to address questions of handling multiple
classifiers or discriminating which extracted features be-
long to which classification task. Because of their limited
scope none of the previous works relieves the user from
actually reading the analyzed policy. In contrast, it is our
goal to provide users with a privacy policy summary in
lieu of the full policy. We want to condense a policy into
essential terms, make it more comprehensible, provide
guidance on the analyzed practices, and give an overall
evaluation of its privacy level.

2.3 Privacy Policy Crowdsourcing

There are various crowdsourcing repositories where
crowd contributors evaluate the content of privacy poli-
cies and submit their results into a centralized collection
for publication on the Web. Sometimes policies are also
graded. Among those repositories are ToS;DR [5], priva-
cychoice [4], TOSBack [7], and TOSBack2 [8]. Crowd-
sourcing has the advantage that it combines the knowl-
edge of a large number of contributors, which, in prin-
ciple, can lead to much more nuanced interpretations of
ambiguous policy provisions than current automatic clas-
sifiers could provide. However, all crowdsourcing ap-
proaches suffer from a lack of participation and, conse-
quently, do not scale well. While the analysis results of
the most popular websites may be available, those for
many lesser known sites are not. In addition, some repos-
itories only provide the possibility to look up the results
on the Web without offering convenient user access, for
example, by means of a browser extension or other soft-
ware.

2.4 Usable Privacy

Whether the analysis of a privacy policy is based on
crowdsourcing or automatic classifications, in order to
notify users of the applicable privacy practices it is not
enough to analyze policy content, but rather the results
must also be presented in a comprehensible, preferably,
standardized format [60]. In this sense, usable privacy
is orthogonal to the other related areas: no matter how
the policies are analyzed, a concise, user-friendly no-
tification is always desirable. In particular, privacy la-
bels may help to succinctly display privacy practices
[48, 49, 51, 65, 66]. Also, privacy icons, such as those
proposed by PrimeLife [39, 45], KnowPrivacy [11], and
the Privacy Icons project [3], can provide visual clues to
users. However, care must be taken that the meaning of
the icons is clear to the users [45]. In any case, it should
be noted that while usability is an important element of
the Privee concept, we have not done a usability study
for our Privee extension as it is just a proof of concept.

3 The Privee Concept

Figure 1 shows a conceptual overview of Privee. Privee
makes use of automatic classifiers and complements
them with privacy policy crowdsourcing. It integrates all
components of the current Web privacy ecosystem. Pol-
icy authors write their policies in natural language and
do not need to adopt any special machine-readable pol-
icy format. While authors certainly can express the same
semantics as with P3P, which we demonstrate in Section
4.6.2, they can also go beyond and use their language
much more freely and naturally.

When a user wants to analyze a privacy policy, Privee
leverages the discriminative power of crowdsourcing. As
we will see in Section 5 that classifiers and human inter-
pretations are inherently limited by ambiguous language,
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it is especially important to resolve those ambiguities by
providing a forum for discussion and developing con-
sensus among many crowd contributors. Further, Privee
complements the crowdsourcing analysis with the ubiq-
uitous applicability of rule and ML classifiers for policies
that are not yet analyzed by the crowd. Because the com-
putational requirements are low, as shown in Section 5.3,
a real time analysis is possible.

As the P3P experience showed [28] that a large frac-
tion of Web services with P3P policies misrepresented
their privacy practices, presumably in order to prevent
user agents from blocking their cookies, any privacy pol-
icy analysis software must be guarded against manipu-
lation. However, natural language approaches, such as
Privee, have an advantage over P3P and other machine-
readable languages. Because it is not clear whether P3P
policies are legally binding [69] and the FTC never took
action to enforce them [55], the misrepresentation of pri-
vacy practices in those policies is a minor risk that many
Web services are willing to take. This is true for other
machine-readable policy solutions as well. In contrast,
natural language policies can be valid contracts [1] and
are subject to the FTC’s enforcement actions against un-
fair or deceptive acts or practices (15 U.S.C. §45(a)(1)).
Thus, we believe that Web services are more likely to
ensure that their natural language policies represent their
practices accurately.

Given that natural language policies attempt to truly
reflect privacy practices, it is important that the policy
text is captured completely and without additional text,
in particular, free from advertisements on the policy web-
site. Further, while it is true that an ill-intentioned pri-
vacy policy author might try to deliberately use ambigu-
ous language to trick the classifier analysis, this strat-
egy can only go so far as ambiguous contract terms are
interpreted against the author (Restatement (Second) of
Contracts, §206) and might also cause the FTC to chal-
lenge them as unfair or deceptive. Beyond safeguarding
the classifier analysis, it is also important to prevent the
manipulation of the crowdsourcing analysis. In this re-
gard, the literature on identifying fake reviews should be
brought to bear. For example, Wu et al. [77] showed
that fake reviews can be identified by a suspicious grade
distribution and their posting time following negative re-
views. In order to ensure that the crowdsourcing analy-
sis returns the latest results the crowdsourcing repository
should also keep track of privacy policy updates.

4 The Privee Browser Extension

We implemented Privee as a proof of concept browser
extension for Google Chrome (version 35.0.1916.153).
Figure 2 shows a simplified overview of the program
flow. We wrote our Privee extension in JavaScript using

Web ScraperUser

Crowd-
sourcing

Preprocessor

Rule Classifier
and
ML

Preprocessor

ToS;DR

Training
Done?

Results
Available?

Training Policies

Trainer

example.com

ML Classifier

Labeler Label

no

yes no

yes

Figure 2: Simplified program flow. After the user has started
the extension, the Web scraper obtains the text of the privacy
policy to be analyzed (example.com) as well as the current URL
(http://example.com/). The crowdsourcing preprocessor then ex-
tracts from the URL the ToS;DR identifier and checks the ToS;DR
repository for results. If results are available, they are retrieved
and forwarded to the labeler, which converts them to a label for
display to the user. However, if no results are available on ToS;DR
the policy text is analyzed. First, the rule classifier attempts a rule-
based classification. However, if that is not possible the ML prepro-
cessor prepares the ML classification. It checks if the ML classifier
is already trained. If that is the case, the policy is classified by the
ML classifier, assigned a label according to the classifications, and
the results are displayed to the user. Otherwise, a set of training
policies is analyzed by the trainer first and the program proceeds
to the ML classifier and labeler afterwards. The set of training
policies is included in the extension package and only needs to be
analyzed for the first run of the ML classifier. Thereafter, the train-
ing results are kept in persistent storage until deletion by the user.
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the jQuery library and Ajax functions for client-server
communication. While we designed our extension as an
end user tool, it can also be used for scientific or indus-
trial research, for example, in order to easily compare
different privacy policies to each other. In this Section
we describe the various stages of program execution.

4.1 Web Scraper
The user starts the Privee extension by clicking on its
icon in the Chrome toolbar. Then, the Web scraper ob-
tains the text of the privacy policy that the user wants
to analyze and retrieves the URL of the user’s current
website. While the rule and ML classifier analysis only
works from the site that contains the policy to be ana-
lyzed, the crowdsourcing analysis works on any website
whose URL contains the policy’s ToS;DR identifier.

4.2 Crowdsourcing Preprocessor
The crowdsourcing preprocessor is responsible for man-
aging the interaction with the ToS;DR repository. It re-
ceives the current URL from the Web scraper from which
it extracts the ToS;Dr identifier. It then connects to the
API of ToS;DR and checks for the availability of anal-
ysis results, that is, short descriptions of privacy prac-
tices and sometimes an overall letter grade. The results,
if any, are forwarded to the labeler and displayed to the
user. Then the extension terminates. Otherwise, the pol-
icy text, which the crowdsourcing preprocessor also re-
ceived from the Web scraper, is forwarded to the rule
classifier and ML preprocessor.

4.3 Rule Classifier and ML Preprocessor
Generally, classifiers can be based on rule or ML algo-
rithms. In our preliminary experiments we found that
for some classification categories a rule classifier worked
better, in others an ML classifier, and in others again a
combination of both [71, 76]. We will discuss our classi-
fier selection in Section 5.1 in more detail. In this Section
we will focus on the feature selection process for our rule
classifier and ML preprocessor. Both rule classification
and ML preprocessing are based on feature selection by
means of regular expressions.

Our preliminary experiments revealed that classifica-
tion performance depends strongly on feature selection.
Ammar et al. [16] discuss a similar finding. Compara-
ble to other domains [76], feature selection is particularly
useful in our case for avoiding misclassifications due to
the heavily imbalanced structure of privacy policies. For
example, in many multi-page privacy policies there is
often only one phrase that determines whether the Web
service is allowed to combine the collected information

with information from third parties to create personal
profiles of users. Especially, supervised ML classifiers
do not work well in such cases, even with undersam-
pling (removal of uninteresting examples) or oversam-
pling (duplication of interesting examples) [52]. Possi-
ble solutions to the problem are the separation of poli-
cies into different content zones and applying a classifier
only to relevant content zones [54] or—the approach we
adopted—running a classifier only on carefully selected
features.

Our extension’s feature selection process begins with
the removal of all characters from the policy text that are
not letters or whitespace and conversion of all remaining
characters to lower case. However, the positions of re-
moved punctuations are preserved because, as noted by
Biagoli et al. [19], a correct analysis of the meaning of
legal documents often depends on the position of punctu-
ation. In order to identify the features that are most char-
acteristic for a certain class we used the term frequency-
inverse document frequency (tf-idf) statistic as a proxy.
The tf-idf statistic measures how concentrated into rel-
atively few documents the occurrences of a given word
are in a document corpus [64]. Thus, words with high tf-
idf values correlate strongly with the documents in which
they appear and can be used to identify topics in that doc-
ument that are not discussed in other documents. How-
ever, instead of using individual words as features we
observed that the use of bigrams lead to better classifica-
tion performance, which was also discussed in previous
works [16, 59].

(ad|advertis.*) (compan.*|network.*|provider.*|

servin.*|serve.*|vendor.*)|(behav.*|context.*|

network.*|parti.*|serv.*) (ad|advertis.*)

Listing 1: Simplified pseudocode of the regular expression to
identify whether a policy allows advertising tracking. For example,
the regular expression would match “contextual advertising.”

The method by which our Privee extension selects
characteristic bigrams, which usually consist of two
words, but can also consist of a word and a punctua-
tion mark, is based on regular expressions. It applies a
three-step process that encompasses both rule classifica-
tion and ML preprocessing. To give an example, for the
question whether the policy allows advertising tracking
(e.g., by ad cookies) the first step consists of trying to
match the regular expression in Listing 1, which identi-
fies bigrams that nearly always indicate that advertising
tracking is allowed. If any bigram in the policy matches,
no further analysis happens, and the policy is classified
by the rule classifier as allowing advertising tracking. If
the regular expression does not match, the second step
attempts to extract further features that can be associated
with advertising tracking (which are, however, more gen-
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eral than the previous ones). Listing 2 shows the regular
expression used for the second step.

(ad|advertis|market) (.+)|(.+) (ad|advertis|

market)

Listing 2: Simplified pseudocode of the regular expression to
extract relevant phrases for advertising tracking. For example, the
regular expression would match “no advertising.”

The second step—the ML preprocessing—is of par-
ticular importance for our analysis because it prepares
classification of the most difficult cases. It extracts the
features on which the ML classifier will run later. To that
end, it first uses the Porter stemmer [63] to reduce words
to their morphological root [19]. Such stemming has the
effect that words with common semantics are clustered
together [41]. For example, “collection,” “collected,”
and “collect” are all stemmed into “collect.” As a side
note, while stemming had some impact, we did not find
a substantial performance increase for running the ML
classifier on stemmed features compared to unstemmed
features. In the third step, if no features were extracted
in the two previous steps, the policy is classified as not
allowing advertising tracking.

4.4 Trainer
In the training stage our Privee extension checks whether
the ML classifier is already trained. If that is not the
case, a corpus of training policies is preprocessed and
analyzed. The analysis of a training policy is similar
to the analysis of a user-selected policy, except that the
extension does not check for crowdsourcing results and
only applies the second and third step of the rule classi-
fier and ML preprocessor phase. The trainer’s purpose is
to gather statistical information about the features in the
training corpus in order to prepare the classification of
the user-selected policy. It stores the training results lo-
cally in the user’s browser memory using persistent Web
storage, which is, in principle, similar to cookie storage.

4.5 Training Data
The training policies are held in a database that is in-
cluded in the extension package. The database holds a
total of 100 training policies. In order to obtain a repre-
sentative cross section of training policies, we selected
the majority of our policies randomly from the Alexa
top 500 websites for the U.S. [6] across various domains
(banking, car rental, social networking, etc.). However,
we also included a few random policies from lesser fre-
quented U.S. sites and sites from other countries that
published privacy policies in English. The trainer ac-
cesses these training policies one after another and adds

the training results successively to the client’s Web stor-
age. After all results are added the ML classifier is ready
for classification.

4.6 ML Classifier
We now describe the ML classifier design (Section 4.6.1)
and the classification categories (Section 4.6.2).

4.6.1 ML Classifier Design

In order to test the suitability of different ML algorithms
for analyzing privacy policies we performed preliminary
experiments using the Weka library [43]. Performance
for the different algorithms varied. We tested all algo-
rithms available on Weka, among others the Sequential
Minimal Optimization (SMO) algorithm with different
kernels (linear, polynomial, radial basis function), ran-
dom forest, J48 (C4.5), IBk nearest neighbor, and various
Bayesian algorithms (Bernoulli naive Bayes, multino-
mial naive Bayes, Bayes Net). Surprisingly, the Bayesian
algorithms were among the best performers. Therefore,
we implemented naive Bayes in its Bernoulli and multi-
nomial version. Because the multinomial version ulti-
mately proved to have better performance, we settled on
this algorithm.

As Manning et al. [56] observed, naive Bayes clas-
sifiers have good accuracy for many tasks and are very
efficient, especially, for high-dimensional vectors, and
they have the advantage that training and classification
can be accomplished with one pass over the data. Our
naive Bayes implementation is based on their specifica-
tion [56]. In general, naive Bayes classifiers make use of
Bayes’ theorem. The probability, P, of a document, d,
being in a category, c, is

P(c|d) ∝ P(c) ∏
1≤k≤nd

P(tk|c), (1)

where P(c) is the prior probability of a document occur-
ring in category c, nd is the number of terms in d that
are used for the classification decision, and P(tk|c) is the
conditional probability of term tk occurring in a docu-
ment of category c [56]. In other words, P(tk|c) is inter-
preted as a measure of how much evidence tk contributes
for c being the correct category [56]. The best category
to select for a document in a naive Bayes classification is
the category for which it holds that

argmax
c∈C

P̂(c|d) = argmax
c∈C

P̂(c) ∏
1≤k≤nd

P̂(tk|c), (2)

where C is a set of categories, which, in our case, is al-
ways of size two (e.g., {ad tracking, no ad tracking}).
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The naive assumption is that the probabilities of indi-
vidual terms within a document are independent of each
other given the category [41]. However, our implemen-
tation differs from the standard implementation and tries
to alleviate the independence assumption. Instead of pro-
cessing individual words of the policies we try to capture
some context by processing bigrams.

Analyzing the content of a privacy policy requires
multiple classification decisions. For example, the clas-
sifier has to decide whether personal information can
be collected, disclosed to advertisers, retained indefi-
nitely, and so on. This type of classification is known
as multi-label classification because each analyzed doc-
ument can receive more than one label. One commonly
used approach for multi-label classification with L la-
bels consists of dividing the task into |L| binary clas-
sification tasks [74]. However, other solutions handle
multi-label data directly by extending specific learning
algorithms [74]. We found it simpler to implement the
first approach. Specifically, at execution time we create
multiple classifier instances—one for each classification
category—by running the classifier on category-specific
features extracted by the ML preprocessor.

4.6.2 Classification Categories

For which types of information should privacy policies
actually be analyzed? In answering this question, one
starting point are fair information practices [25]. An-
other one are the policies themselves. After all, while
it is true that privacy law in the U.S. generally does not
require policies to have a particular content, it can be ob-
served that all policies conventionally touch upon four
different themes: information collection, disclosure, use,
and management (management refers to the handling
of information, for example, whether information is en-
crypted). The four themes can be analyzed on different
levels of abstraction. For example, for disclosure of in-
formation, it could simply be analyzed whether informa-
tion is disclosed to outside parties in general, or it could
be investigated more specifically whether information is
disclosed to service providers, advertisers, governmental
agencies, credit bureaus, and so on.

At this point it should be noted that not all information
needs to be analyzed. In some instances privacy policies
simply repeat mandatory law without creating any new
rights or obligations. For example, a federal statute in the
U.S.—18 U.S.C. §2703(c)(1)(A) and (B)—provides that
the government can demand the disclosure of customer
information from a Web service provider after obtain-
ing a warrant or suitable court order. As this law applies
independently of a privacy policy containing an explicit
statement to that end, the provision that the provider will
disclose information to a governmental entity under the

requirements of the law can be inferred from the law it-
self. In fact, even if a privacy policy states to the contrary,
it should be assumed that such information disclosure
will occur. Furthermore, if privacy policies stay silent
on certain subject matters, default rules might apply and
fill the gaps.

Another good indicator of what information should be
classified is provided by user studies. According to one
study [30], knowing about sharing, use, and purpose of
information collection is very important to 79%, 75%,
and 74% of users, respectively. Similarly, in another
study [11] users showed concern for the types of personal
information collected, how personal information is col-
lected, behavioral profiling, and the purposes for which
the information may be used. While it was only an is-
sue of minor interest earlier [30], the question how long
a company keeps personal information about its users is
a topic of increasing importance [11]. Based on these
findings, we decided to perform six different binary clas-
sifications, that is, whether or not a policy

• allows collection of personal information from
users (Collection);

• provides encryption for information storage or
transmission (Encryption);

• allows ad tracking by means of ad cookies or other
trackers (Ad Tracking);

• restricts archiving of personal information to a lim-
ited time period (Limited Retention);

• allows the aggregation of information collected
from users with information from third parties (Pro-
filing);

• allows disclosure of personal information to adver-
tisers (Ad Disclosure).

For purposes of our analysis, where applicable, it is
assumed that the user has an account with the Web ser-
vice whose policy is analyzed and is participating in any
offered sweepstakes or the like. Thus, for example, if a
policy states that the service provider only collects per-
sonal information from registered users, the policy is an-
alyzed from the perspective of a registered user. Also,
if certain actions are dependent on the user’s consent,
opt-in, or opt-out, it is assumed that the user consented,
opted in, or did not opt out, respectively. As it was our
goal to make the analysis results intuitively comprehen-
sible to casual users, which needs to be confirmed by
user studies, we tried to avoid technical terms. In partic-
ular, the term “personal information” is identical to what
is known in the privacy community as personally identi-
fiable information (PII) (while “information” on its own
also encompasses non-PII, e.g., user agent information).
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Figure 3: Privee extension screenshot and detailed label view. The result of the privacy policy analysis is shown to the user in a pop-up.

It is noteworthy that some of the analyzed criteria cor-
respond to the semantics of the P3P Compact Specifica-
tion [2]. For example, the P3P token NOI indicates that
a Web service does not collect identified data while ALL
means that it has access to all identified data. Thus, NOI
and ALL correspond to our collection category. Also,
in P3P the token IND means that information is retained
for an indeterminate period of time, and, consequently,
is equivalently expressed when our classifier comes to
the conclusion that no limited retention exists. Further,
PSA, PSD, IVA, and IVD are tokens similar to our pro-
filing category. Generally, the correspondence between
the semantics of the P3P tokens and our categories sug-
gests that it is possible to automatically classify natural
language privacy policies to obtain the same information
that Web services would include in P3P policies without
actually requiring them to have such.

4.7 Labeler
Our extension’s labeler is responsible for creating an out-
put label. As it was shown that users casually familiar
with privacy questions were able to understand privacy
policies faster and more accurately when those policies
were presented in a standardized format [49] and that
most users had a preference for standardized labels over
full policy texts [49, 50], we created a short standard-
ized label format. Generally, a label can be structured in
one or multiple dimensions. The multidimensional ap-
proach has the advantage that it can succinctly display
different privacy practices for different types of informa-
tion. However, we chose a one-dimensional format as
such were shown to be substantially more comprehensi-
ble [51, 66].

In addition to the descriptions for the classifications,
the labeler also labels each policy with an overall let-
ter grade, which depends on the classifications. More
specifically, the grade is determined by the number of
points, p, a policy is assigned. For collection, profiling,

ad tracking, and ad disclosure a policy receives one mi-
nus point, respectively. However, for not allowing one
of these practices a policy receives one plus point. How-
ever, a policy receives a plus point for featuring limited
retention or encryption, respectively. As most policies in
the training set had zero points, we took zero points as a
mean and assigned grades as follows:

• A (above average overall privacy) if p > 1;

• B (average overall privacy) if 1 ≤ p ≥−1;

• C (below average overall privacy) if p <−1.

After the points are assigned to a policy, the corre-
sponding label is displayed to the user as shown in Figure
3. As we intended to avoid confusion about the meaning
of icons [45], we used short descriptions instead. The
text in the pop-up is animated. If the user moves the
mouse over it, further information is provided. The user
can also find more detailed explanations about the cat-
egories and the grading by clicking on the blue ”Learn
More” link at the bottom of the label. It should be noted
that analysis results retrieved from ToS;DR usually differ
in content from our classification results, and are, conse-
quently, displayed in a different label format.

5 Experimental Results

For our experiments we ran our Privee extension on a
test set of 50 policies. Before this test phase we trained
the ML classifier (with the 100 training policies that are
included in the extension package) and tuned it (with a
validation set of 50 policies). During the training, valida-
tion, and test phases we disabled the retrieval of crowd-
sourcing results. Consequently, our experimental results
only refer to rule and ML classification. The policies of
the test and validation sets were selected according to the
same criteria as described for the training set in Section
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Base. Acc. Prec. Rec. F-1
Overall 68% 84% 94% 89% 90%
Collection 100% 100% 100% 100% 100%
Encryption 52% 98% 96% 100% 98%
Ad Tracking 64% 96% 94% 100% 97%
L. Retention 74% 90% 83% 77% 80%
Profiling 52% 86% 100% 71% 83%
Ad Disclosure 66% 76% 69% 53% 60%

Table 1: Privee extension performance overall and per category.
For the 300 test classifications (six classifications for each of the 50
test policies) we observed 27 misclassifications. 154 classifications
were made by the rule classifier and 146 by the ML classifier. The
rule classifier had 11 misclassifications (2 false positives and 9 false
negatives) and the ML classifier had 16 misclassifications (7 false
positives and 9 false negatives). It may be possible to decrease the
number of false negatives by adding more rules and training ex-
amples. For the ad tracking category the rule classifier had an F-1
score of 98% and the ML classifier had an F-1 score of 94%. For
the profiling category the rule classifier had an F-1 score of 100%
and the ML classifier had an F-1 score of 53%. 28% of the policies
received a grade of A, 50% a B, and 22% a C.

4.5. In this Section we first discuss the classification per-
formance (Section 5.1), then the gold standard that we
used to measure the performance (Section 5.2), and fi-
nally the computational performance (Section 5.3).

5.1 Classification Performance
In the validation phase we experimented with different
classifier configurations for each of our six classification
tasks. For the ad tracking and profiling categories the
combination of the rule and ML classifier lead to the best
results. However, for collection, limited retention, and ad
disclosure the ML classifier on its own was preferable.
Conversely, for the encryption category the rule classifier
on its own was the best. It seems that the language used
for describing encryption practices is often very specific
making the rule classifier the first choice. Words such as
“ssl” are very distinctive identifiers for encryption pro-
visions. Other categories use more general language that
could be used in many contexts. For example, phrases re-
lated to time periods must not necessarily refer to limited
retention. For those instances the ML classifier seems to
perform better. However, if categories exhibit both spe-
cific and general language the combination of the rule
and ML classifier is preferable.

The results of our extension’s privacy policy analysis
are based on the processing of natural language. How-
ever, as natural language is often subject to different in-
terpretations, the question becomes how the results can
be verified in a meaningful way. Commonly applied met-
rics for verifying natural language classification tasks are
accuracy (Acc.), precision (Prec.), recall (Rec.), and F-1

100%Test
Collection

98%Training

48%Test
Encryption

44%Training

64%Test
Ad Tracking

67%Training

26%Test
L. Retention

29%Training

48%Test
Profiling

46%Training

34%Test
Ad Disclosure

23%Train.

0% 25% 50% 75% 100%

Figure 4: Annotation of positive cases in percent for the 50 test
policies (blue) and the 100 training policies (white).

score (F-1). Accuracy is the fraction of classifications
that are correct [56]. Precision is the fraction of retrieved
documents that are relevant, and recall is the fraction of
relevant documents that are retrieved [56]. Precision and
recall are often combined in their harmonic mean, known
as the F-1 score [46].

In order to analyze our extension’s performance we
calculated the accuracy, precision, recall, and F-1 score
for the test policy set classifications. Table 1 shows the
overall performance and the performance for each clas-
sification category. We also calculated the baseline accu-
racy (Base.) for comparison against the actual accuracy.
The baseline accuracy for each category was determined
by always selecting the classification corresponding to
the annotation that occurred the most in the training set
annotations, which we report in Figure 4. The baseline
accuracy for the overall performance is the mean of the
category baseline accuracies. Because the classification
of privacy policies is a multi-label classification task, as
described in Section 4.6.1, we calculated the overall re-
sults based on the method for measuring multi-label clas-
sifications given by Godbole and Sarawagi [42]. Accord-
ing to their method, for each document, d j in set D, let
t j be the true set of labels and s j be the predicted set of
labels. Then we obtain the means by

Acc(D) =
1
|D| ∑

|D|
i=1

|t j ∩ s j|
|t j ∪ s j|

, (3)

Prec(D) =
1
|D| ∑

|D|
i=1

|t j ∩ s j|
|s j|

, (4)

Rec(D) =
1
|D| ∑

|D|
i=1

|t j ∩ s j|
|t j|

, (5)
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F-1(D) =
1
|D| ∑

|D|
i=1

2 Prec(d j)Rec(d j)

(Prec(d j)+Rec(d j))
. (6)

From Table 1 it can be observed that the accuracies
are at least as good as the corresponding baseline accu-
racies. For example, in the case of limited retention the
baseline classifies all policies as not providing for limited
retention because, as show in Figure 4, only 29% of the
training policies were annotated as having a limited re-
tention period, which would lead to a less accurate clas-
sification of 74% in the test set compared to the actual
accuracy of 90%. For the collection category it should
be noted that there is a strong bias because nearly ev-
ery policy allows the collection of personal information.
However, in our validation set we had two policies that
did not allow this practice, but still were correctly clas-
sified by our extension. Generally, our F-1 performance
results fall squarely within the range reported in the ear-
lier works. For identifying law enforcement disclosures
Ammar et Al. [16] achieved an F-1 score of 76% and
Costante et al. reported a score of 83% for recognizing
types of collected information [26] and 92% for identi-
fying topics discussed in privacy policies [27].

In order to investigate the reasons behind our exten-
sion’s performance we used two binary logistic regres-
sion models. Binary logistic regression is a statistical
method for evaluating the dependence of a binary vari-
able (the dependent variable) on one or more other vari-
ables (the independent variable(s)). In our first model
each of the 50 test policies was represented by one data
point with the dependent variable identifying whether it
had any misclassification and the independent variables
identifying (1) the policy’s length in words, (2) its mean
Semantic Diversity (SemD) value [44], and (3) whether
there was any disagreement among the annotators in an-
notating the policy (Disag.). In our second model we
represented each of 185 individual test classifications by
one data point with the dependent variable identifying
whether it was a misclassification and the independent
variables identifying (1) the length (in words) of the text
that the rule classifier or ML preprocessor extracted for
the classification, (2) the text’s mean SemD value, and
(3) whether there was annotator disagreement on the an-
notation corresponding to the classification.

Hoffman et al.’s [44] SemD value is an ambiguity mea-
sure for words based on latent semantic analysis, that is,
the similarity of contexts in which words are used. It
can range from 0 (highly unambiguous) to 2.5 (highly
ambiguous). We represented the semantic diversity of a
document (i.e., a policy or extracted text) by the mean
SemD value of its words. However, as Hoffman et al.
only provide SemD values for words on which they had
sufficient analytical data (31,739 different words in to-
tal), some words could not be taken into account for cal-
culating a document’s mean SemD value. Thus, in order

to avoid skewing of mean SemD values in our models,
we only considered documents that had SemD values for
at least 80% of their words. In our first model all test
policies were above this threshold. However, in our sec-
ond model we excluded some of the 300 classifications.
Particularly, all encryption classifications were excluded
because words, such as “encryption” and “ssl” occurred
often and had no SemD value. Also, in the second model
the mean SemD value of an extracted text was calculated
after stemming its words with the Porter stemmer and
obtaining the SemD values for the resulting word stems
(while the SemD value of each word stem was calculated
from the mean SemD value of all words that have the re-
spective word stem).

Per Policy Length SemD Disag.
Mean 2873.4 2.08 0.6
Significance (P) 0.64 0.74 0.34
Odds Ratio (Z) 1.15 1.11 0.54
95% Confidence
Interval (Z)

0.64-
2.08

0.61-
2.01

0.16-
1.89

Table 2: Results of the first logistic regression model. The Nagelk-
erke pseudo R2 is 0.03 and the Hosmer and Lemeshow value 0.13.

Per Extr. Text Length SemD Disag.
Mean 37.38 1.87 0.17
Significance (P) 0.22 0.02 0.81
Odds Ratio (Z) 0.58 2.07 0.86
95% Confidence
Interval (Z)

0.24-
1.38

1.12-
3.81

0.25-
2.97

Table 3: Results of the second logistic regression model. The
Nagelkerke pseudo R2 is 0.11 and the Hosmer and Lemeshow value
0.051.
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Figure 5: Mean SemD value distribution for the 185 extracted
texts. The standard deviation is 0.17.

For our first model the results of our analysis are
shown in Table 2 and for our second model in Table 3.
Figure 5 shows the distribution of mean SemD values
for the extracted texts in our second model. Using the
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Wald test, we evaluated the relationship between an in-
dependent variable and the dependent variable through
the P value relating to the coefficient of that independent
variable. If the P value is less than 0.05, we reject the
null hypothesis, i.e., that that coefficient is zero. Look-
ing at our results, it is noteworthy that both models do
not reveal a statistically relevant correlation between the
annotator disagreements and misclassifications. Thus, a
document with a disagreement did not have a higher like-
lihood of being misclassified than one without. However,
it is striking that the second model has a P value of 0.02
for the SemD variable. Standardizing our data points into
Z scores and calculating the odds ratios it becomes clear
that an increase of the mean SemD value in an extracted
text by 0.17 (one standard deviation) increased the like-
lihood of a misclassification by 2.07 times (odds ratio).
Consequently, our second model shows that the ambigu-
ity of text in privacy policies, as measured by semantic
diversity, has statistical significance for whether a classi-
fication decision is more likely to succeed or fail.

Besides evaluating the statistical significance of indi-
vidual variables, we also assessed the overall model fit.
While the goodness of fit of linear regression models is
usually evaluated based on the R2 value, which measures
the square of the sample correlation coefficient between
the actual values of the dependent variable and the pre-
dicted values (in other words, the R2 value can be un-
derstood as the proportion of the variance in a depen-
dent variable attributable to the variance in the indepen-
dent variable), there is no consensus for measuring the fit
of binary logistic regression models. Various pseudo R2

metrics are discussed. We used the Nagelkerke pseudo
R2 because it can range from 0 to 1 allowing an easy
comparison to the regular R2 (which, however, has to ac-
count for the fact that the Nagelkerke pseudo R2 is of-
ten substantially lower than the regular R2). While the
Nagelkerke pseudo R2 of 0.03 for our first model indi-
cates a poor fit, the value of 0.11 for our second model
can be interpreted as moderate. Further, the Hosmer and
Lemeshow test, whose values were over 0.05 for both of
our models, demonstrates the model fit as well.

In addition to the experiments just discussed, we also
evaluated our models with further independent variables.
Specifically, we evaluated our first model with the pol-
icy publication year, the second model with the ex-
tracted texts’ mean tf-idf values, and both models with
Flesch-Kincaid readability scores as independent vari-
ables. Also, using only ML classifications we evaluated
our second model with the number of available training
examples as independent variable. Only for the latter we
found statistical significance at the 0.05 level. The num-
ber of training examples correlated to ML classification
performance, which confirms Ammar et al.’s respective
conjecture [16]. The more training examples the ML

classifier had, the less likely a misclassification became.

5.2 Inter-annotator Agreement

Having discussed the classification performance, we now
turn to the gold standard that we used to measure that
performance. For our performance results to be reliable
our gold standard must be reliable. One way of pro-
ducing a gold standard for privacy policies is to ask the
providers whose policies are analyzed to explain their
meaning [11]. However, this approach should not be
used, at least in the U.S., because the Restatement of
Contracts provides that a contract term is generally given
the meaning that all parties associate with it (Restate-
ment (Second) of Contracts, §201). Consequently, poli-
cies should be interpreted from the perspective of both
the provider and user. The interpretation would evaluate
whether their perspectives lead to identical meanings or,
if that is not the case, which one should prevail under
applicable principles of legal interpretation. In addition,
since technical terms are generally given technical mean-
ing (Restatement (Second) of Contracts, §202(3)(b)), it
would be advantageous if the interpretation is performed
by annotators familiar with the terminology commonly
used in privacy policies. The higher the number of anno-
tations on which the annotators agree, that is, the higher
the inter-annotator agreement, the more reliable the gold
standard will be.

Because the annotation of a large number of docu-
ments can be very laborious, it is sufficient under current
best practices for producing a gold standard to measure
inter-annotator agreement only on a data sample [62],
such that it can be inferred that the annotation of the re-
mainder documents is reliable as well. Following this
practice, we only measured the inter-annotator agree-
ment for our test set, which would then provide an indi-
cator for the reliability of our training and validation set
annotation as well. To that end, one author annotated all
policies and additional annotations were obtained for the
test policies from two other annotators. All annotators
worked independently from each other. As the author
who annotated the policies studied law and has exper-
tise in privacy law and the two other annotators were law
students with training in privacy law, all annotators were
considered equally qualified, and the annotations for the
gold standard were selected according to majority vote
(i.e., at least two annotators agreed). After the annota-
tions of the test policies were made, we ran our extension
on these policies and compared its classifications to the
annotations, which gave us the results in Table 1.

The reliability of our gold standard depends on the de-
gree to which the annotators agreed on the annotations.
There are various measures for inter-annotator agree-
ment. One basic measure is the count of disagreements.
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Disag. % Ag. K.’s α/F.’s κ
Overall 8.12 84% 0.77
Collection 0 100% 1
Encryption 6 88% 0.84
Ad Tracking 7 86% 0.8
L. Retention 9 82% 0.68
Profiling 11 78% 0.71
Ad Disclosure 16 68% 0.56

Table 4: Inter-annotator agreement for the 50 test policies. The
values for Krippendorff’s α and Fleiss’ κ are identical.

Per Policy Length SemD Flesch-K.
Mean 2873.4 2.08 14.53
Significance (P) 0.2 0.11 0.76
Odds Ratio (Z) 1.65 1.87 1.12
95% Confidence
Interval (Z)

0.78-
3.52

0.87-4 0.55-
2.29

Table 5: Results of the third logistic regression model. The Nagelk-
erke pseudo R2 is 0.19 and the Hosmer and Lemeshow value 0.52.

Another one is the percentage of agreement (% Ag.),
which is the fraction of documents on which the anno-
tators agree [17]. However, disagreement count and per-
centage of agreement have the disadvantage that they do
not account for chance agreement. In this regard, chance-
corrected measures, such as Krippendorff’s α (K.’s α)
[53] and Fleiss’ κ (F.’s κ) [40] are superior. For Krip-
pendorff’s α and Fleiss’ κ the possible values are con-
strained to the interval [−1;1], where 1 means perfect
agreement, −1 means perfect disagreement, and 0 means
that agreement is equal to chance [37]. Generally, values
above 0.8 are considered as good agreement, values be-
tween 0.67 and 0.8 as fair agreement, and values below
0.67 as dubious [56]. However, those ranges are only
guidelines [17]. Particularly, ML algorithms can tolerate
data with lower reliability as long as the disagreement
looks like random noise [68].

Based on the best practices and guidelines for inter-
preting inter-annotator agreement measurements, our re-
sults in Table 4 confirm the general reliability of our an-
notations and, consequently, of our gold standard. For
every individual category, except for the ad disclosure
category, we obtained Krippendorff’s α values indicat-
ing fair or good agreement. In addition, the overall mean
agreement across categories is 0.77, and, therefore, pro-
vides evidence for fair overall agreement as well. For the
overall agreement it should be noted that, corresponding
to the multi-label classification task, the annotation of
privacy policies is a multi-label annotation task as well.
However, there are only very few multi-label annotation

Per Section Length SemD Flesch-K.
Mean 306.76 2.08 15.59
Significance (P) 0.29 0.04 0.49
Odds Ratio (Z) 1.18 1.51 0.86
95% Confidence
Interval (Z)

0.87-
1.6

1.02-
2.22

0.56-
1.32

Table 6: Results of the fourth logistic regression model. The
Nagelkerke pseudo R2 is 0.05 and the Hosmer and Lemeshow value
0.83.
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Figure 6: Mean SemD value distribution for the 240 policy sections.
The standard deviation is 0.03.

metrics, such as Passonneau’s Measuring Agreement on
Set-valued Items (MASI) [61]. As none of the metrics
were suitable for our purposes, we selected as overall
metric the mean over the results of the individual clas-
sification categories.

We investigated our inter-annotator agreement results
by applying a third and fourth binary logistic regression
model. In our third model each of the 50 test policies
was represented by one data point with the dependent
variable identifying whether the annotators had any dis-
agreement in annotating the policy and the independent
variables identifying (1) the policy’s length in words, (2)
its mean SemD value, and (3) its Flesch-Kincaid score.
In our fourth model we represented each of 240 indi-
vidual annotations by one data point with the dependent
variable identifying whether the annotators disagreed for
that annotation and the independent variables identifying
(1) the length (in words) of the policy text section that the
annotation is referring to, (2) the section’s mean SemD
value, and (3) its Flesch-Kincaid score. For the fourth
model we excluded some of the 300 annotations because
not every policy had a section for each category. For
example, some policies did not discuss advertisement or
disclosure of information. The Flesch-Kincaid readabil-
ity score measures the number of school years an average
reader would need to understand a text.

For our third and fourth model the results of our anal-
ysis are shown in Table 5 and 6, respectively. Figure
6 shows the distribution of mean SemD values for the
policy sections in our fourth model. Both models were
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significant, as indicated by their Nagelkerke and Hosmer
and Lemeshow values. Our results confirm that the read-
ability of policies, as measured by the Flesch-Kincaid
score, does not impact their comprehensibility [58]. In
our third model we were unable to identify any statisti-
cally relevant variables (although, semantic diversity and
length may be statistically significant in a larger data set).
However, our fourth model proved to be more meaning-
ful. Remarkably, corresponding to our finding in Section
5.1, according to which classifier performance correlates
to semantic diversity, the statistically relevant P value of
0.04 for the mean SemD variable also indicates a corre-
lation of inter-annotator agreement to semantic diversity.
Standardizing our data points into Z scores and calculat-
ing the odds ratios it becomes clear that an increase of
the mean SemD value of a section by 0.03 (one standard
deviation) increased the likelihood of a disagreement by
1.51 times (odds ratio). It is astounding that even qual-
ified annotators trained in privacy law had difficulties to
avoid disagreements when semantic diversity increased
to slightly above-mean levels.

While neither our first nor our second model in Sec-
tion 5.1 showed a correlation between inter-annotator
agreement and classifier performance, the results for our
second and fourth model demonstrate that performance
and agreement both correlate to one common variable—
semantic diversity. More specifically, performance cor-
relates to the semantic diversity of extracted text phrases
and agreement correlates to the semantic diversity of
policy sections. This result suggests, for example, that
the relatively high number of misclassifications and dis-
agreements in the ad disclosure category is inherent in
the nature of the category. Indeed, in cases of fuzzy cat-
egories disagreements among annotators do not neces-
sarily reflect a quality problem of the gold standard, but
rather a structural property of the annotation task, which
can serve as an important source of empirical informa-
tion about the structural properties of the investigated
category [13]. Thus, it is no surprise that for all six cate-
gories the values of Krippendorff’s α correlate to the F-1
scores. The higher the value of Krippendorff’s α , the
higher the F-1 score. Figure 7 shows the correlation.

As both classifier performance and inter-annotator
agreement decrease with an increase in semantic diver-
sity, the practicability of the notice-and-choice principle
becomes questionable. After all, privacy policies can
only provide adequate notice (and choice) if they are not
too ambiguous. In order to further examine policy am-
biguity we calculated the mean SemD value for our test
policies over time. Our test set analysis exhibited a statis-
tically significant trend of decreasing semantic diversity
with a P value of 0.049. Figure 8 illustrates our approach.
We can think of two explanations for the decrease over
time. First, it could be a consequence of the FTC’s en-
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Figure 7: Linear regression plot with the F-1 score as dependent
variable and Krippendorff’s α as independent variable. The co-
ordinate labels identify the categories: AD = Ad Disclosure, LR =
Limited Retention, P = Profiling, AT = Ad Tracking, E = Encryp-
tion, and C = Collection. With an R2 value of 0.83 the model has an
excellent fit, which, however, should be interpreted in light of the
small number of data points.
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Figure 8: Linear regression plot for Symantec’s privacy policy
(which was part of our test set) with the mean SemD value of a
policy version as dependent variable and the policy version num-
ber as independent variable. The first version of Symantec’s policy
[73] dates back to August 5, 1999, and the eleventh version [72] was
adopted on August 12, 2013. The mean SemD value of Symantec’s
privacy policy decreased from 2.1 in the first version to 2.06 in the
eleventh version as shown. We observed a similar decrease for 29
out of 44 test policies (6 of the test policies were only available in
a single version and, therefore, could not be included in our analy-
sis. However, for the 44 included policies we obtained on average 8
different versions over time.).

forcement actions and its call for policies to “be clearer,
shorter, and more standardized” [38]. Second, we might
be in the midst of a consolidation process leading to more
standardized policy language. As de Maat et al [34] ob-
served, drafters of legal documents tend to use language
that adheres to writing conventions of earlier texts and
similar statements. Independent of the reason, our result
suggests that the notice-and-choice principle can over-
come the problem of ambiguity over time.

5.3 Computational Performance
We finish the discussion of our experimental results with
our extension’s computational performance. We report
the mean duration in seconds for obtaining analysis re-
sults for each of 50 randomly selected policies from
ToS;DR (Crowdsourcing), processing each of the 50 test
policies (Classifier), and processing each of the 50 test
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Per Policy Crowdsourcing Classifier Training
Mean 0.39 sec 0.78 sec 20.29 sec

Table 7: Computational performance of the Privee extension. The
performance was evaluated on a Windows laptop with Intel Core2
Duo CPU at 2.13 GHz with 4 GB RAM. The space requirements
for the installation on the hard disk are 2.11 MB (including 1.7 MB
of training data and 286 KB for the jQuery library) and additional
230 KB during the program execution for storing training results.

policies each with initial training (Training) in Table 7.
Notably, retrieving policy results from ToS;DR is twice
as fast as analyzing a policy with our classifiers.

6 Conclusion

We introduced Privee—a novel concept for analyzing
natural language privacy policies based on crowdsourc-
ing and automatic classification techniques. We im-
plemented Privee in a proof of concept browser exten-
sion for Google Chrome, and our automatic classifiers
achieved an overall F-1 score of 90%. Our experimental
results revealed that the automatic classification of pri-
vacy policies encounters the same constraint as human
interpretation—the ambiguity of natural language, as
measured by semantic diversity. Such ambiguity seems
to present an inherent limitation of what automatic pri-
vacy policy analysis can accomplish. Thus, on a more
fundamental level, the viability of the notice-and-choice
principle might be called into question altogether. How-
ever, based on the decrease of policy ambiguity over time
we would caution to draw such conclusion. We remain
optimistic that the current notice-and-choice ecosystem
is workable and can be successfully supplemented by
Privee.

The most important task for making the notice-and-
choice principle work is to decrease policy ambiguity.
However, other areas require work as well: What are the
types of information that policies should be analyzed for?
What is the most usable design? What are the best fea-
tures and algorithms? Are more intricate ML or natural
language processing algorithms better at resolving am-
biguities? What is the ideal size and composition of the
training set? How can the interaction between the classi-
fier and crowdsourcing analysis be improved? In partic-
ular, how can a program connect to many crowdsourcing
repositories, and, possibly, decide which analysis is the
best? Can crowdsourced policy results be used by the
classifiers as training data? How can it be assured that the
crowdsourcing results are always up to date? How can
the quality and consistency of crowdsourcing and ML
analyses be guaranteed? And, finally, what solutions are
viable for different legal systems and the mobile world?
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Abstract
We initiate the study of privacy in pharmacogenetics,

wherein machine learning models are used to guide med-
ical treatments based on a patient’s genotype and back-
ground. Performing an in-depth case study on privacy
in personalized warfarin dosing, we show that suggested
models carry privacy risks, in particular because attack-
ers can perform what we call model inversion: an at-
tacker, given the model and some demographic infor-
mation about a patient, can predict the patient’s genetic
markers.

As differential privacy (DP) is an oft-proposed solu-
tion for medical settings such as this, we evaluate its ef-
fectiveness for building private versions of pharmacoge-
netic models. We show that DP mechanisms prevent our
model inversion attacks when the privacy budget is care-
fully selected. We go on to analyze the impact on utility
by performing simulated clinical trials with DP dosing
models. We find that for privacy budgets effective at pre-
venting attacks, patients would be exposed to increased
risk of stroke, bleeding events, and mortality. We con-
clude that current DP mechanisms do not simultaneously
improve genomic privacy while retaining desirable clin-
ical efficacy, highlighting the need for new mechanisms
that should be evaluated in situ using the general method-
ology introduced by our work.

1 Introduction

In recent years, technical advances have enabled in-
expensive, high-fidelity molecular analyses that char-
acterize the genetic make-up of an individual. This
has led to widespread interest in personalized medicine,
which tailors treatments to each individual patient using
genotype and other information to improve outcomes.
Much of personalized medicine is based on pharma-
cogenetic (sometimes called pharmacogenomic) mod-
els [3, 14, 21, 40] that are constructed using supervised

machine learning over large patient databases contain-
ing clinical and genomic data. Prior works [36, 37] in
non-medical settings have shown that leaking datasets
can enable de-anonymization of users and other privacy
risks. In the pharmacogenetic setting, datasets them-
selves are often only disclosed to researchers, yet the
models learned from them are made public (e.g., pub-
lished in a paper). Our focus is therefore on determining
to what extent the models themselves leak private infor-
mation, even in the absence of the original dataset.

To do so, we perform a case study of warfarin dosing,
a popular target for pharmacogenetic modeling. Warfarin
is an anticoagulant widely used to help prevent strokes in
patients suffering from atrial fibrillation (a type of irregu-
lar heart beat). However, it is known to exhibit a complex
dose-response relationship affected by multiple genetic
markers [43], with improper dosing leading to increased
risk of stroke or uncontrolled bleeding [41]. As such,
a long line of work [3, 14, 16, 21, 40] has sought phar-
mocogenetic models that can accurately predict proper
dosage based on patient clinical history, demographics,
and genotype. A review of this literature is given in [23].

Our study uses a dataset collected by the Interna-
tional Warfarin Pharmocogenetics Consortium (IWPC),
to date the most expansive such database containing de-
mographic information, genetic markers, and clinical
histories for thousands of patients from around the world.
While this particular dataset is publicly-available in a de-
identified form, it is equivalent to data used in other stud-
ies that must be kept private (e.g., due to lack of consent
to release). We therefore use it as a proxy for a private
dataset. The paper authored by IWPC members [21] de-
tails methods to learn linear regression models from this
dataset, and shows that using the resulting models to pre-
dict initial dose outperforms the standard clinical regi-
men in terms of absolute distance from stable dose. Ran-
domized trials have been done to evaluate clinical effec-
tiveness, but have not yet validated the utility of genetic
information [27].
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Figure 1: Mortality risk (relative to current clinical practice)
for, and VKORC1 genotype disclosure risk of, ε-differentially
private linear regression (LR) used for warfarin dosing (over
five values of ε , curves are interpolated). Dashed lines corre-
spond to non-private linear regression.

Model inversion. We study the degree to which these
models leak sensitive information about patient geno-
type, which would pose a danger to genomic privacy. To
do so, we investigate model inversion attacks in which
an adversary, given a model trained to predict a specific
variable, uses it to make predictions of unintended (sensi-
tive) attributes used as input to the model (i.e., an attack
on the privacy of attributes). Such attacks seek to take
advantage of correlation between the target, unknown at-
tributes (in our case, demographic information) and the
model output (warfarin dosage). A priori it is unclear
whether a model contains enough exploitable informa-
tion about these correlations to mount an inversion at-
tack, and it is easy to come up with examples of models
for which attackers will not succeed.

We show, however, that warfarin models do pose a
privacy risk (Section 3). To do so, we provide a gen-
eral model inversion algorithm that is optimal in the
sense that it minimizes the attacker’s expected mispre-
diction rate given the available information. We find that
when one knows a target patient’s background and stable
dosage, their genetic markers are predicted with signifi-
cantly better accuracy (up to 22% better) than guessing
based on marginal distributions. In fact, it does almost as
well as regression models specifically trained to predict
these markers (only ˜5% worse), suggesting that model
inversion can be nearly as effective as learning in an
“ideal” setting. Lastly, the inverted model performs mea-
surably better for members of the training cohort than
others (yielding an increased 4% accuracy) indicating a
leak of information specifically about those patients.

Role of differential privacy. Differential privacy (DP)
is a popular framework for designing statistical release
mechanisms, and is often proposed as a solution to pri-
vacy concerns in medical settings [10, 12, 45, 47]. DP is
parameterized by a value ε (sometimes referred to as the

privacy budget), and a DP mechanism guarantees that the
likelihood of producing any particular output from an in-
put cannot vary by more than a factor of eε for “similar”
inputs differing in only one subject.

Following this definition in our setting, DP guaran-
tees protection against attempts to infer whether a subject
was included in the training set used to derive a machine
learning model. It does not explicitly aim to protect at-
tribute privacy, which is the target of our model inversion
attacks. However, others have motivated or designed DP
mechanisms with the goal of ensuring the privacy of pa-
tients’ diseases [15], features on users’ social network
profiles [33], and website visits in network traces [38]—
all of which relate to attribute privacy. Furthermore, re-
cent theoretical work [24] has shown that in some set-
tings, including certain applications of linear regression,
incorporating noise into query results preserves attribute
privacy. This led us to ask: can genomic privacy benefit
from the application of DP mechanisms in our setting?

To answer this question, we performed the first end-
to-end evaluation of DP in a medical application (Sec-
tion 5). We employ two recent algorithms on the IWPC
dataset: the functional mechanism of Zhang et al. [47]
for producing private linear regression models, and Vin-
terbo’s privacy-preserving projected histograms [44] for
producing differentially-private synthetic datasets, over
which regression models can be trained. These algo-
rithms represent the current state-of-the-art in DP mech-
anisms for their respective models, with performance re-
ported by the authors that exceeds previous DP mecha-
nisms designed for similar tasks.

On one end of our evaluation, we apply a model in-
verter to quantify the amount of information leaked about
patient genetic markers by ε-DP versions of the IWPC
model. On the other end, we quantify the impact of
ε on patient outcomes, performing simulated clinical
trials via techniques widely used in the medical litera-
ture [4, 14, 18, 19]. Our main results, a subset of which
are shown in Figure 1, show a clear trade-off between
patient outcomes and privacy:

• “Small ε”-DP protects genomic privacy: Even though
DP was not specifically designed to protect attribute
privacy, we found that for sufficiently small ε (≤ 1),
genetic markers cannot be accurately predicted (see the
line labeled “Disclosure, private LR” in Figure 1), and
there is no discernible difference between the model
inverter’s performance on the training and validation
sets. However, this effect quickly vanishes as ε in-
creases, where genotype is predicted with up to 58%
accuracy (0.76 AUCROC). This is significantly (22%)
better than the 36% accuracy one achieves without the
models, and not far below (5%) the “best possible” per-
formance of a non-private regression model trained to
predict the same genotype using IWPC data.
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• Current DP mechanisms harm clinical efficacy: Our
simulated clinical trials reveal that for ε ≤ 5 the risk
of fatalities or other negative outcomes increases sig-
nificantly (up to 1.26×) compared to the current clini-
cal practice, which uses non-personalized, fixed dosing
and so leaks no information at all. Note that the range
of ε (> 5) that provides clinical utility not only fails to
protect genomic privacy, but are commonly assumed
to provide insufficient DP guarantees as well. (See the
line labeled “Mortality, private LR” in Figure 1.)

Put simply: our analysis indicates that in this setting
where utility is paramount, the best known mechanisms
for our application do not give an ε for which state-of-
the-art DP mechanisms can be reasonably employed.

Implications of our results. Our results suggest that
there is still much to learn about pharmacogenetic pri-
vacy. Differential privacy is suited to settings in which
privacy and utility requirements are not fundamentally
at odds, and can be balanced with an appropriate privacy
budget. Although the mechanisms we studied do not
properly strike this balance, future mechanisms may be
able to do so—the in situ methodology given in this pa-
per may help to guide such efforts. In settings where pri-
vacy and utility are fundamentally at odds, release mech-
anisms of any kind will fail, and restrictive access control
policies may be the best answer. The model inversion
techniques outlined here can help to identify these situa-
tions, and quantify the risks.

2 Background

Warfarin and Pharmacogenetics Warfarin, also
known in the United States by the brand name
Coumadin, is a widely prescribed anticoagulant medica-
tion. It is used to treat patients suffering from cardio-
vasvular problems, including atrial fibrillation (a type of
irregular heart beat) and heart valve replacement. By
reducing the tendency of blood to clot, at appropriate
dosages it can reduce risk of clotting events, particularly
stroke. Unfortunately, warfarin is also very difficult to
dose: proper dosages can differ by an order of magnitude
between patients, and this has led to warfarin’s status as
one of the leading causes of drug-related adverse events
in the United States [26]. Underestimating the dose can
result in failure to prevent the condition the drug was pre-
scribed to treat. Overestimating the dose can, just as se-
riously, lead to uncontrolled bleeding events because the
drug interferes with clotting. Because of these risks, in
existing clinical practice patients starting on warfarin are
given a fixed initial dose but then must visit a clinic many
times over the first few weeks or months of treatment in
order to determine the correct dosage which gives the de-
sired therapeutic effect.

Stable dose is assessed clinically by measuring the
time it takes for blood to clot, called prothrombin time.
This measure is standardized between different manufac-
turers as an international normalized ratio (INR). Based
on the patient’s indication for (i.e., the reason to pre-
scribe) warfarin, a clinician determines a target INR
range. After the fixed initial dose, later doses are mod-
ified until the patient’s INR is within the desired range
and maintained at that level. INR in the absence of anti-
coagulation therapy is approximately 1, while the desired
INR for most patients in anticoagulation therapy is in the
range 2–3 [5]. INR is the response measured by the phys-
iological model used in our simulations in Section 5.

Genetic variability among patients is known to play
an important role in determining the proper dose of war-
farin [23]. Polymorphisms in two genes, VKORC1 and
CYP2C9, are associated with the mechanism with which
the body metabolizes the drug, which in turn affects
the dose required to reach a given concentration in the
blood. Warfarin works by interfering with the body’s
ability to recycle vitamin K, which is used to regulate
blood coagulation. VKORC1, part of the vitamin K
epoxide reductase complex, is a component of the vi-
tamin K cycle. CYP2C9 encodes for a variant of cy-
tochrome P450, a family of proteins which oxidize a va-
riety of medications. Since each person has two copies
of each gene, there are several combinations of variants
possible. Following the IWPC paper [21], we represent
VKORC1 polymorphisms by single nucleotide polymor-
phism (SNP) rs9923231, which is either G (common
variant) or A (uncommon variant), resulting in three
combinations G/G, A/G, or A/A. Similarly, CYP2C9
variants are *1 (most common), *2, or *3, resulting in
6 combinations.

Taken together with age and height, Sconce et al. [40]
demonstrated that CYP2C9 and VKORC1 account for
54% of the total warfarin dose requirement variability.
In turn, a large literature (over 50 papers as of early
2013) has sought pharmacogenetic algorithms that pre-
dict proper dose by taking advantage of patient genetic
markers for CYP2C9 and VKORC1, together with de-
mographic information and clinical history (e.g., current
medications). These typically involve learning a simple
predictive model of stable dose from previously obtained
outcomes. We focus on the IWPC algorithm [21], a study
resulting in production of a linear regression model that,
when used to predict the initial dosage, has been shown
to provide improved outcomes in simulated clinical trials
using the IWPC dataset discussed below. Interestingly,
linear regression performed as well or better than a wide
variety of other, more complex machine learning tech-
niques. Some pharmacogenetic algorithms for warfarin
are currently also undergoing (real) clinical trials [1].

3
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Dataset The IWPC [21] collected data on patients who
were prescribed warfarin from 21 sites in 9 countries on
4 continents. The data was curated by staff at the Phar-
macogenomics Knowledge Base [2], and each site ob-
tained informed consent to use de-identified data from
patients prior to the study. Because the dataset contains
no protected health information, and the Pharmacoge-
nomics Knowledge Base has since made the dataset pub-
licly available for research purposes, it is exempt from
institutional review board review. However, the type of
data contained in the IWPC dataset is equivalent to many
other medical datasets that have not been released pub-
licly [3, 7, 16, 40], and are considered private.

Each patient was genotyped for at least one SNP in
VKORC1, and for variants of CYP2C9. In addition,
other information such as age, height, weight, race, and
other medications was collected. The outcome variable
is the stable therapeutic dose of warfarin, defined as the
steady-state dose that led to stable anticoagulation lev-
els. The patients in our dataset were restricted to those
with target INR in the range 2–3 (the vast majority of pa-
tients), as is standard practice with most studies of war-
farin dosing efficacy [3, 14]. We divided the data into
two cohorts based on those used in IWPC [21]. The first
(training) cohort was used to build a set of pharmacoge-
netic dosing algorithms. The second (validation) cohort
was used to test privacy attacks as well as draw samples
for the clinical simulations. To make the data suitable for
regression we removed all patients missing CYP2C9 or
VKORC1 genotype, normalized the data to the range [-
1,1], converted all nominal attributes into binary-valued
numeric attributes, and scaled each row into the unit
sphere. Our eventual training cohort consisted of 2644
patients, and our validation cohort of 853 patients, and
corresponds to the same training-validation split used by
IWPC (but without the missing values used in the IWPC
split).

3 Privacy of Pharmacogenetic Models

In this section we investigate the risks involved in re-
leasing regression models trained over private data, using
models that predict warfarin dose as our case study. We
consider a setting where an adversary is given access to
such a model, the warfarin dosage of an individual, some
rudimentary information about the data set, and possibly
some additional attributes about that individual. The ad-
versary’s goal is to predict one of the genotype attributes
for that individual. In order for this setting to make
sense, the genotype attributes, warfarin dose, and other
attributes known to the adversary must all have been in
the private data set. We emphasize that the techniques
introduced can be applied more generally, and save as fu-
ture work investigating other pharmacogenetic settings.

3.1 Attack Model
We assume an adversary who employs an inference algo-
rithm A to discover the genotype (in our experiments, ei-
ther CYP2C9 or VKORC1) of a target individual α . The
adversary has access to a linear model f trained over a
dataset D drawn i.i.d. from an unknown prior distribu-
tion p. D has domain X×Y , where X = X1, . . . ,Xd is the
domain of possible attributes and Y is the domain of the
response. α is represented by a single row in D, (xα ,yα),
and the attribute learned by the adversary is referred to as
the target attribute xα

t .
In addition to f , the adversary has access to marginals1

p1,...,d,y of the joint prior p, the dataset domain X×Y , α’s
stable dosage yα of warfrain, some information π about
f ’s performance (details in the following section), and
either of the following subsets xα

K of α’s attributes:

• Basic demographics: a subset of α’s demographic
data, including age (binned into eight groups by
the IWPC), race, height, and weight (denoted
xα

age,x
α
race, . . .). Note that this corresponds to a subset

of the non-genetic attributes in D.

• All background: all of p’s attributes except
CYP2C9 or VKORC1 genotype.

The adversary has black-box access to f . Unless it is
clear from the context, we will specify whether f is the
output of a DP mechanism, and which type of back-
ground information is available.

3.2 Model Inversion
In this section, we discuss a technique for inferring
CYP2C9 and VKORC1 genotype from a model designed
to predict warfarin dosing. Given a model f that takes in-
puts x and outputs a predicted stable dose y, the attacker
seeks to build an algorithm A that takes as input some
subset xα

K of attributes (corresponding to demographic or
additional background attributes from X), a known stable
dose yα , and outputs a prediction of xt (corresponding ei-
ther to CYP2C9 or VKORC1). We begin by presenting
a general-purpose algorithm, and show how it can be ap-
plied to linear regression models.

A general algorithm. We present an algorithm for
model inversion that is independent of the underlying
model structure (Figure 2). The algorithm works by esti-
mating the probability of a potential target attribute given
the available information and the model. Its operation is
straightforward: candidate database rows that are simi-
lar to what is known about α are run forward through

1These are commonly published in studies, and when it is clear from
the context, we will drop the subscript.
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1. Input: zK = (x1, . . . ,xk,y), f , p1,...,d,y

2. Find the feasible set X̂ ⊆ X, i.e., such that ∀x ∈ X̂

(a) x matches zK on known attributes: for 1≤ i≤ k,xi = xi.

(b) f evaluates to y as given in zK : f (x) = y.

3. If |X̂|= 0, return ⊥.

4. Return xt that maximizes
∑

x∈X̂:xt=xt

∏
1≤i≤d pi(xi)

(a) A0: Model inversion without performance statistics.

1. Input: zK = (x1, . . . ,xk,y), f , π , p1,...,d,y

2. Find the feasible set X̂ ⊆ X, i.e., such that ∀x ∈ X̂

(a) x matches zK on known attributes: for 1 ≤ i ≤ k, xi = xi.

3. If |X̂|= 0, return ⊥.

4. Return xt that maximizes
∑

x∈X̂:xt=xt
πy, f (x)

∏
1≤i≤d pi(xi)

(b) Aπ : Model inversion with performance statistics π .

Figure 2: Model inversion algorithm.

the model. Based on the known priors, and how well the
model’s output on that row coincides with α’s known
response value, the candidate rows are weighted. The
target attribute with the greatest weight, computed by
marginalizing the other attributes, is returned.

Below, we describe this algorithm in more detail. We
derive each step by showing how to compute the least
biased estimate of the target attribute’s likelihood, which
the model inversion algorithm maximizes to form a pre-
diction. As we reason below, this approach is optimal in
the sense that it minimizes the expected misclassification
rate when the adversary has no other information (i.e.,
makes no further assumptions) beyond what is given in
Section 3.1.

Derivation. We begin the description with a simpler
restricted case in which the model always produces the
correct response. Assume for now that f is perfect, i.e.,
it never makes a misprediction, and we can assume that
f (x) = y almost surely for any sample (x,y); this case is
covered by A0 in Figure 2. In the following, we assume
the sample corresponds to the individual α , and drop the
superscript for clarity. Suppose the adversary wishes to
learn the probability that xt takes a certain value xt , i.e.,
Pr [xt = xt |xK ,y], given some known attributes xK , re-
sponse variable y, and the model f . Here, and in the fol-
lowing discussion, the probabilities in Pr [·] expressions
are always over draws from the unknown joint prior p un-
less stated otherwise. Let X̂ = {x′ : x′K = xK and f (x′) =
y} be the subset of X matching the given information xK
and y. Then by straightforward computation,

Pr [xt |xK ,y] =
Pr [xt ,xK ,y]

Pr [xK ,y]
=

∑
x′∈X̂:x′t=xt

p(x′,y)∑
x′∈X̂ p(x′,y)

(1)

Now, the adversary does not know the true underlying
joint prior p. He only knows the marginals p1,...,d,y,
so any distribution with these marginals is a possible
prior. To characterize the unbiased prior that satisfies
these constraints, we apply the prinicipal of maximum

entropy2 [22], which in our setting gives the prior:

p(x,y) = p(y) ·∏1≤i≤d p(xi) (2)

Continuing with the previous expression, we now have,

Pr [xt |xK ,y] =

∑
x′∈X̂:x′t=xt

p(y)
∏

i p(x′i)∑
x′∈X̂ p(y)

∏
i p(x′i)

(3)

∝
∑

x′∈X̂:x′t=xt

∏
i p(x′i) (4)

This last step follows because the denominator is inde-
pendent of the choice of xt . Notice that this is exactly
the quantity that is maximized by the value returned by
A0 (Figure 2 (a)). This is the maximum a posteriori
probability (MAP) estimate, which minimizes the adver-
sary’s expected misclassification rate. Under these as-
sumptions, A0 is an optimal algorithm for model inver-
sion.

Aπ in Figure 2 (b) generalizes this reasoning to the
case where f is not assumed to be perfect, and the ad-
versary has information about the performance of f over
samples drawn from p. We model this information with
a function π , defined in terms of a random sample z from
p,

π(y,y′) = Pr
[
zy = y| f (zx) = y′

]
(5)

In other words, π(y,y′) gives the probability that the
true response drawn with attributes zx is y given that the
model outputs y′. We write πy,y′ to simplify notation. In
practice, π can be estimated using statistics commonly
released with models, such as confusion matrices or stan-
dardized regression error.

Because f is not assumed to be perfect in the general
setting, X̂ is defined slightly differently than in A0; the
second restriction, that f (xα) = yα , is removed. After
constructing X̂, Aπ uses the marginals and π to weight
each candidate x ∈ X̂ by the probability that f behaves
as observed (i.e., outputs f (x)) when the response vari-
able matches what the adversary knows to be true (i.e.,

2cf. Jaynes [22], “[The maximum entropy prior] is least biased es-
timate possible on the given information; i.e., it is maximally noncom-
mittal with regard to missing information.”
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y). Again, using the maximum entropy prior from before
gives the MAP estimate in the more general setting,

Pr [xt |xK ,yα , f ] =

∑
x′∈X̂:x′t=xt

Pr [x′,y, f (x′)]∑
x′∈X̂ Pr [x′,y, f (x′)]

(6)

=

∑
x′∈X̂:x′t=xt

Pr [y|x′, f (x′)] p(x′)∑
x′∈X̂ Pr [x′,y, f (x′)]

(7)

∝
∑

x′∈X̂:x′t=xt
πy, f (x′) (

∏
i p(x′i)) (8)

The second step follows from the independence of the
maximum entropy prior in our setting, and the fact that x
determines f (x) so Pr [ f (x′),x′] = Pr [x′].

Application to linear regression. Recall that a linear
regression model assumes that the response is a linear
function of the attributes, i.e., there exists a coefficient
vector w ∈ Rd and random residual error δ such that
y = wT x+ b+ δ for some bias term b. A linear regres-
sion model fL is then an estimate (ŵ, b̂) of w and the
bias term, which operates as: fL(x) = b̂+ ŵT x. It is typ-
ical to assume that δ has a fixed Gaussian distribution
N (0,σ2) for some variance σ . Most regression software
estimates σ2 empirically from training data, so it is of-
ten published alongside a linear regression model. Using
this the adversary can derive an estimate of π ,

π̂(y,y′) = PrN (0,σ2)[y− y′]

Steps 2 and 4 of Aπ may be expensive to compute if
|X̂| is large. In this case, one can approximate using
Monte Carlo techniques to sample members of X̂. For-
tunately, in our setting, the nominal-valued variables all
come from sets with small cardinality. The continuous
variables have natural discretizations, as they correspond
to attributes such as age and weight. Thus, step 4 can be
computed directly by taking a discrete convolution over
the unknown attributes without resorting to approxima-
tion.

Discussion. We have argued that Aπ is optimal in one
particular sense, i.e., it minimizes the expected misclas-
sification rate on the maximum-entropy prior given the
available information (the model and marginals). How-
ever, it is not hard to specify joint priors p for which
the marginals p1,...,d,y convey little useful information,
so the expected misclassification rate minimized here di-
verges substantially from the true rate. In these cases, Aπ
may perform poorly, and more background information
is needed to accurately predict model inputs.

There is also the possibility that the model itself does
not contain enough useful information about the correla-
tion between certain input attributes and the output. For
illustrative purposes, consider a model taking one input
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Figure 3: Model inversion performance, as improvement
over baseline guessing from marginals, given a linear
model derived from the training data. Available back-
ground information specified by all and basic as dis-
cussed in Section 3.1.

attribute, that discards all information about that attribute
except a single bit, e.g., it performs a comparison with a
fixed constant. If the attribute is distributed uniformly
across a large domain, then Aπ will only perform negli-
gibly better than guessing from the marginal. Thus, de-
termining how well a model allows one to predict sen-
sitive inputs generally requires further analysis, which is
the purpose of the evaluation that we discuss next (see
also Section 4).

Results on non-private regression. To evaluate Aπ ,
we split the IWPC dataset into a training and validation
set (see Section 2), DT and DV respectively, use DT to de-
rive a least-squares linear model f , and then run Aπ on
every α in DT with either of the two background infor-
mation types (all or basic, see Section 3.1) to predict both
genotypes. In order to determine how how well one can
predict these genotypes in an ideal setting, we built and
evaluated a multinomial logistic regression model (us-
ing R’s nnet package) for each genotype from the IWPC
data. This allows us to compare the performance of Aπ
against “best-possible” results achieved using standard
machine learning techniques with linear models.

We measure performance both in terms of accuracy,
which is the percentage of samples for which the algo-
rithm correctly predicted genotype, and AUCROC, which
is the multi-class area under the ROC curve defined by
Hand and Till [17]. While accuracy is generally easier to
interpret, it can give a misleading characterization of pre-
dictive ability for skewed distributions—if the predicted
attribute takes a particular value in 75% of the samples,
then a trivial algorithm can easily obtain 75% accuracy
by always guessing this value. AUCROC does not suffer
this limitation, and so gives a more balanced character-
ization of how well an algorithm predicts both common
and rare values.
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The results are given in Figure 3, which shows the
performance of Aπ and “ideal” multinomial regression
predicting VKORC1 and CYP2C9 on the training set.
The numbers are given relative to the baseline perfor-
mance obtained by always guessing the most probable
genotype based on the given marginal prior–36% accu-
racy on VKORC1, 75% accuracy on CYP2C9, and 0.5
AUCROC for both genotypes. We see that Aπ comes
close to ideal accuracy on VKORC1 (5% less accurate
with all background information), and actually exceeds
the ideal predictor in terms of AUCROC. This means that
Aπ does a better job predicting rare genotypes than the
ideal model, but does slightly worse overall, and may be
a result of the ideal model avoiding overfitting to uncom-
mon data points.

The results for CYP2C9 are quite different. Neither
Aπ or the ideal model were able to predict this geno-
type more accurately than baseline. This indicates that
CYP2C9 is difficult to predict using linear models, and
because we use a linear model to run Aπ in this case, it is
no surprise that it inherits this limitation. Both the ideal
model and Aπ slightly outperform baseline prediction in
terms of AUCROC, and Aπ comes very close to ideal
performance (within 2%). In one case Aπ does slightly
worse (0.2%) than baseline accuracy; this may be due to
the fact that the marginals and π̂ used by Aπ are approx-
imations to the true marginals and error distribution π .

We also evaluated Aπ on the validation set (using
a model f derived from the training set). We found
that both genotypes are predicted more accurately on
the training set than validation. For VKORC1, Aπ
was 3% more accurate and yielded an additional 4%
AUCROC. The difference was less pronounced with
CYP2C9, which was 1.5% more accurate with an ad-
ditional 2% AUCROC. Although these differences are
not as large as the aboslute gain over baseline prediction,
they persist across other training/validation splits. We
ran 100 instances of cross-validation, and measured the
difference between training and validation performance.
We found that we were on average able to better predict
the training cohort (p < 0.01).

4 Differentially-Private Mechanisms and
Pharmacogenetics

In the last section, we saw that linear models trained on
private datasets leak information about patients in the
training cohort. In this section, we explore the issue on
models and datasets for which differential privacy has
been applied.

As in the previous section, we take the perspective
of the adversary, and attempt to infer patients’ genotype
given differentially-private models and different types of

background information on the targeted individual. As
such, we use the same attack model, but rather than as-
suming the adversary has access to f , we assume ac-
cess to a differentially private version of the original
dataset D or f . We use two published differentially-
private mechanisms with publicly-available implementa-
tions: private projected histograms [44] and the func-
tional mechanism [47] for learning private linear regres-
sion models. Although full histograms are typically not
published in pharmacogenetic studies, we analyze their
privacy properties here to better understand the behavior
of differential privacy across algorithms that implement
it differently.

Our key findings are summarized as follows:

• Some ε values effectively protect genomic privacy
for DP linear regression. For ε ≤ 1, Aπ could not
predict VKORC1 better on the training set than the
validation set either in terms of accuracy or AU-
CROC. The same result holds on CYP2C9, but only
when measured in terms of AUCROC. Aπ ’s abso-
lute performance for these ε is not much better than
the baseline either: VKORC1 is predicted only 5%
better at ε = 1, and CYP2C9 sees almost no im-
provement.

• “Large”-ε DP mechanisms offer little genomic pri-
vacy. When ε ≥ 5, both DP mechanisms see a
statistically-significant increase in training set per-
formance over validation (p < 0.02), and as ε ap-
proaches 20 there is little difference from non-
private mechanisms (between 3%-5%).

• Private histograms disclose significantly more in-
formation about genotype than private linear re-
gression, even at identical ε values. At all tested
ε , private histograms leaked more on the train-
ing than validation set. This result holds even
for non-private regression models, where the AU-
CROC gap reached 3.7% area under the curve, ver-
sus the 3.9% - 5.9% gap for private histograms. This
demonstrates that the relative nature of differen-
tial privacy’s guarantee can lead to meaningful con-
cerns.

Our results indicate that understanding the implications
of differential privacy for pharmacogenomic dosing is a
difficult matter—even small values of ε might lead to un-
wanted disclosure in many cases.

Differential Privacy Dwork introduced the notion of
differential privacy [11] as a constructive response to an
impossibility result concerning stronger notions of pri-
vate data release. For our purposes, a dataset D is a
number m of vector, value pairs (xα1 ,yα1), . . . ,(xαm ,yαm)

7
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where α1, . . . ,αm are (randomized) patient identifiers,
each xαi = [xαi

1 , . . . ,xαi
d ] is a patient’s demographic infor-

mation, age, genetic variants, etc., and yαi is the stable
dose for patient αi. A (differential) privacy mechanism
K is a randomized algorithm that takes as input a dataset
D and, in the cases we consider, either outputs a new
dataset Dpriv or a linear model Mpriv (i.e., a real- valued
linear function with n inputs. We denote the set of possi-
ble outputs of a mechanism as Range(K).

A mechanism K achieves ε-differential privacy if for
all databases D1,D2 differing in at most one row, and all
S ⊆ Range(K),

Pr[K(D1) ∈ S]≤ exp(ε)×Pr[K(D2) ∈ S]

Differential privacy is an information-theoretic guaran-
tee, and holds regardless of the auxiliary information an
adversary posesses about the database.

Differentially-private histograms. We first investi-
gate a mechanism for creating a differentially-private
version of a dataset via the private projected histogram
method [44]. DP datasets are appealing because an (un-
trusted) analyst can operate with more freedom when
building a model; he is free to select whichever algo-
rithm or representation best suits his task, and need not
worry about finding differentially-private versions of the
best algorithms.

Because the numeric attributes in our dataset are too
fine-grained for effective histogram computation, we first
discretize each numeric attribute into equal-width bins.
In order to select the number of bins, we use a heuristic
given by Lei [32] and suggested by Vinterbo [44], which
says that when numeric attributes are scaled to the in-
terval [0,1], the bin width is given by (log(n)/n)1/(d+1),
where n = |D| and d is the dimension of D. In our
case, this is implies two bins for each numeric attribute.
We validated this parameter against our dataset by con-
structing 100 differentially-private datasets at ε = 1 with
2,3,4, and 5 bins for each numeric attribute, and mea-
sured the accuracy of a dose-predicting linear regression
model over each dataset. The best accuracy was given
for k = 2, with the difference in means for k = 2 and
k = 3 not attributable to noise. When the discretized at-
tributes are translated into a private version of the orig-
inal dataset, the median value from each bin is used to
create numeric values.

To infer the private genomic attributes given a
differentially-private version Dε of a dataset, we can
compute an empirical approximation p̂ to the joint prob-
ability distribution p (see Section 3.1) by counting the
frequency of tuples in Dε . A minor complication arises
due to the fact that numeric values in Dε have been dis-
cretized and re-generated from the median of each bin.
Therefore, the likelihood of finding a row in Dε that

matches any row in DT or DV is low. To account for this,
we transform each numeric attribute in the background
information to the nearest median from the correspond-
ing attribute used in the discretization step when gener-
ating Dε . We then use p̂ to directly compute a prediction
of the genotype xt that maximizes Prp̂[xα

t = xt |xα
K ,y

α ].

Differentially-private linear regression. We also in-
vestigate use of the functional mechanism [47] for pro-
ducing differentially-private linear regression models.
The functional mechanism works by adding Laplacian
noise to the coefficients of the objective function used to
drive linear regression. This technique stands in contrast
to the more obvious approach of directly perturbing the
output coefficients of the regression training algorithm,
which would require an explicit sensitivity analysis of
the training algorithm itself. Instead, deriving a bound
on the amount of noise needed for the functional mecha-
nism involves a fairly simple calculation on the objective
function [47].

We produce private regression models on the IWPC
dataset by first projecting the columns of the dataset into
the interval [−1,1], and then scaling the non-response
columns (i.e., all those except the patient’s dose) of each
row into the unit sphere. This is described in the pa-
per [47] and performed in the publicly-available imple-
mentation of the technique, and is necessary to ensure
that sufficient noise is added to the objective function
(i.e., the amount of noise needed is not scale-invariant).
In order to inter-operate with the other components of
our evaluation apparatus, we re-implemented the algo-
rithm in R by direct translation from the authors’ Mat-
lab implementation. We evaluated the accuracy of our
implementation against theirs, and found no statistically-
significant difference.

Applying model inversion to the functional mech-
anism is straightforward, as our technique from Sec-
tion 3.2 makes no assumptions about the internal struc-
ture of the regression model or how it was derived. How-
ever, care must be taken with regards to data scaling, as
the functional mechanism classifier is trained on scaled
data. When calculating X̂ , all input variables must be
transformed by the same scaling function used on the
training data, and the predicted response must be trans-
formed by the inverse of this function.

Results on private models. We evaluated our infer-
ence algorithms on both mechanisms discussed above at
a range of ε values: 0.25, 1, 5, 20, and 100. For each
algorithm and ε , we generated 100 private models on
the training cohort, and attempted to infer VKORC1 and
CYP2C9 for each individual in both the training and val-
idation cohort. All computations were performed in R.
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Figure 4: Inference performance for genomic attributes over IWPC training and validation set for private histograms
(left) and private linear regression (right), assuming both configurations for background information. Dashed lines
represent accuracy, solid lines area under the ROC curve (AUCROC).

Figure 4 shows our results in detail. In the following, we
discuss the main takeaway points.

Private Histograms vs. Linear Regression. We
found that private histograms leaked significantly more
information about patient genotype than private lin-
ear regression models. The difference in AUCROC
for histograms versus regression models is statistically
significant for VKORC1 at all ε . As Figure 4 indi-
cates, the magnitude of the difference from baseline is
also higher for histograms when considering VKORC1,
nearly reaching 0.8 AUCROC and 63% accuracy, while
regression models achieved at most 0.75 AUCROC and
55–60% accuracy. The AUCROC performance for
VKORC1 was greater than the baseline for all ε . How-
ever, for CYP2C9 this result only held when assuming
all background information except genotype, and only
for ε ≤ 5; when we assumed only demographic informa-
tion, there was no significant difference between baseline
and private histogram performance.

Disclosure from Overfitting. In nearly all cases, we
were able to better infer genotype for patients in the
training set than those in the validation set. For pri-
vate linear regression, this result holds for VKORC1
at ε ≥ 5.0 for AUCROC. This is not an artifact of the
training/validation split chosen by the IWPC; we ran 10-
fold cross validation 100 times, measuring the AUCROC
difference between training and test set validation, and
found a similar difference between training and valida-
tion set performance (p < 0.01). The fact that the dif-
ference at certain ε values is not statistically significant
is evidence that private linear regression is effective at
preventing genotype disclosure at these ε . For private
histograms, this result held for VKORC1 at all ε , and

CYP2C9 at ε < 5 with all background information but
genotype.

Differences in Genotype. For both private regression
and histogram models, performance for CYP2C9 is strik-
ingly lower than for VKORC1. Private regression mod-
els performed no differently from the baseline, achiev-
ing essentialy no gain in terms of accuracy and at most
1% gain in AUCROC. We observe that this also held
in the non-private setting, and the ideal model achieved
the same accuracy as baseline, and only 7% greater AU-
CROC. This indicates that CYP2C9 is not well-predicted
using linear models, and Aπ performed nearly as well as
is possible.

5 The Cost of Privacy: Negative Outcomes

In addition to privacy, we are also concerned with the
utility of a warfarin dosing model. The typical ap-
proach to measuring this is a simple accuracy compar-
ison against known stable doses, but ultimately we’re
interested in how errors in the model will affect pa-
tient health. In this section, we evaluate the potential
medical consequences of using a differentially-private
regression algorithm to make dosing decisions in war-
farin therapy. Specifically, we estimate the increased risk
of stroke, bleeding, and fatality resulting from the use
of differentially-private warfarin dosing at several pri-
vacy budget settings. This approach differs from the
normal methodology used for evaluating the utility of
differentially-private data mining techniques. Whereas
evaluation typically ends with a comparison of simple
predictive accuracy against non-private methods, we ac-
tually simulate the application of a privacy-preserving
technique to its domain-specific task, and compare the
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Figure 5: Overview of the Clinical Trial Simulation.
PGx signifies the pharmacogenomic dosing algorithm,
and DP differential privacy. The trial consists of three
arms differing primarily on initial dosing strategy, and
proceeds for 90 days. Details of Kovacs and Intermoun-
tain protocol are given in Section 5.3.

outcomes of that task to those achieved without the use
of private mechanisms.

5.1 Overview
In order to evaluate the consequences of private genomic
dosing algorithms, we simulate a clinical trial designed
to measure the effectiveness of new medication regi-
mens. The practice of simulating clinical trials is well-
known in the medical research literature [4, 14, 18, 19],
where it is used to estimate the impact of various de-
cisions before initiating a costly real-world trial involv-
ing human subjects. Our clinical trial simulation follows
the design of the CoumaGen clinical trials for evaluat-
ing the efficacy of pharmacogenomic warfarin dosing al-
gorithms [3], which is the largest completed real-world
clinical trial to date for evaluating these algorithms. At
a high level, we train a pharmacogenomic warfarin dos-
ing algorithm and a set of private pharmacogenomic dos-
ing algorithms on the training set. The simulated trial
draws random patient samples from the validation set,
and for each patient, applies three dosing algorithms to
determine the simulated patient’s starting dose: the cur-
rent standard clinical algorithm, the non-private pharma-
cogenomic algorithm, and one of the private pharma-
cogenomic algorithms. We then simulate the patient’s

physiological respose to the doses given by each algo-
rithm using a dose titration (i.e., modification) protocol
defined by the original CoumaGen trial.

In more detail, our trial simulation defines three par-
allel arms (see Figure 5), each corresponding to a dis-
tinct method for assigning the patient’s initial dose of
warfarin:

1. Standard: the current standard practice of initially
prescribing a fixed 10mg/day dose.

2. Genomic: Use of a genomic algorithm to assign the
initial dose.

3. Private: Use of a differentially-private genomic al-
gorithm to assign initial dose.

Within each arm, the trial proceeds for 90 simulated days
in several stages, as depicted in Figure 5:

1. Enrollment: A patient is sampled from the pop-
ulation distribution, and their genotype and de-
mographic characteristics are used to construct an
instance of a Pharmacokinetic/Pharmacodynamic
(PK/PD) Model that characterizes relevant aspects
of their physiological response to warfarin (i.e.,
INR). The PK/PD model contains random vari-
ables that are parameterized by genotype and de-
mographic information, and are designed to capture
the variance observed in previous population-wide
studies of physiological response to warfarin [16].

2. Initial Dosing: Depending on which arm of the trial
the current patient is in, an initial dose of warfarin
is prescribed and administered for the first two days
of the trial.

3. Dose Titration: For the remaining 88 days of the
simulated trial, the patient administers a prescribed
dose every 24 hours. At regular intervals specified
by the titration protocol, the patient makes “clinic
visits” where INR response to previous doses is
measured, a new dose is prescribed based on the
measured response, and the next clinic visit is
scheduled based on the patient’s INR and current
dose. This is explained in more detail in Sections
5.3 and 5.4.

4. Measure Outcomes: The measured responses for
each patient at each clinic visit are tabulated, and
the risk of negative outcomes is computed.

5.2 Pharmacogenomic Warfarin Dosing
To build the non-private regression model, we use reg-
ularized least-squares regression in R, and obtained
15.9% average absolute error (see Figure 6). To build
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Figure 6: Pharmacogenomic warfarin dosing algo-
rithm performance measured against clinically-deduced
ground truth in IWPC dataset.

differentially-private models, we use two techniques: the
functional mechanism of Zhang et al. [47] and regres-
sion models trained on Vinterbo’s private projected his-
tograms [44].

To obtain a baseline estimate of these algorithms’ per-
formance, we constructed a set of regression models for
various privacy budget settings (ε = 0.25,1,5,20,100)
using each of the above methods. The average abso-
lute predictive error, over 100 distinct models at each
parameter level, is shown in Figure 6. Although the av-
erage error of the private algorithms at low privacy bud-
get settings is quite high, it is not clear how that will
affect our simulated patients. In addition to the mag-
nitude of the error, its direction (i.e., whether it under-
or over-prescribes) matters for different types of risk.
Futhermore, because the patient’s initial dose is subse-
quently titrated to more appropriate values according to
their INR response, it may be the case that a poor guess
for initial dose, as long as the error is not too significant,
will only pose a risk during the early portion of the pa-
tient’s therapy, and a negligible risk overall. Lastly, the
accuracy of the standard clinical and non-private phar-
macogenomic algorithms are moderate (~15% and 21%
error, respectively), and these are the best known meth-
ods for predicting initial dose. The difference in accu-
racy between these and the private algorithm is not ex-
treme (e.g., greater than an order of magnitude), so lack-
ing further information about the correlation between ini-
tial dose accuracy and patient outcomes, it is necessary
to study their use in greater detail. Removing this uncer-
tainty is the goal of our simulation-based evaluation.

5.3 Dose Assignment and Titration
To assign initial doses and control the titration process
in our simulation, we follow the protocol used by the
CoumaGen clinical trials on pharmacogenomic warfarin
dosing algorithms [3]. In the standard arm, patients are
given 10-mg doses on days 1 and 2, followed by dose ad-
justment according to the Kovacs protocol [29] for days 3

PK PD
Dose Concentration Response

Figure 7: Basic functionality of PK/PD modelling.

to 7, and final adjustment according to the Intermountain
Healthcare protocol [3] for days 8 to 90. Both the Ko-
vacs and Intermountain protocols assign a dose and next
appointment time based on the patient’s current INR, and
possibly their previous dose.

The genomic arm differs from the standard arm for
days 1-7. The initial dose for days 1-2 is predicted by
the pharmacogenomic regression model, and multiplied
by 2 [3]. On days 3-7, the Kovacs protocol is used,
but the prescribed dose is multiplied by a coefficient
Cpg that measures the ratio of the predicted pharmacoge-
nomic dose to the standard 10mg initial dose: Cpg =
(Initial Pharmacogenomic Dose)/(5 mg). On days 8-
90, the genomic arm proceeds identically to the standard
arm. The private arm is identical to the genomic arm, but
the pharmacogenomic regression model is replaced with
a differentially-private model.

To simulate realistic dosing increments, we assume
any combination of three pills from those available at
most pharmacies: 0.5, 1, 2, 2.5, 3, 4, 5, 6, 7, and 7.5
mg. The maximum dose was set to 15 mg/day, with pos-
sible dose combinations ranging from 0 to 15 mg in 0.5
mg increments.

5.4 PK/PD Model for INR response to
Warfarin

A PK/PD model integrates two distinct pharmacologic
models—pharmacokinetic (PK) and pharmacodynamic
(PD)—into a single set of mathematical expressions that
predict the intensity of a subject’s response to drug ad-
ministration over time. Pharmacokinetics is the course
of drug absorption, distribution, metabolism, and excre-
tion over time. Mechanistically, the pharmacokinetic
component of a PK/PD model predicts the concentration
of a drug in certain parts of the body over time. Phar-
macodynamics refers to the effect that a drug has on the
body, given its concentration at a particular site. This in-
cludes the intensity of its therapeutic and toxic effects,
which is the role of the pharmacodynamic component of
the PK/PD model. Conceptually, these pieces fit together
as shown in Figure 7: the PK model takes a sequences
of doses, produces a prediction of drug concentraation,
which is given to the PD model. The final output is the
predicted PD response to the given sequence of doses,
both measures being taken over time. The input/output
behavior of the model’s components can be described as
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the following related functions:

PKPDModel(genotype,demographics) �→ Finr

Finr(doses, time) �→ INR

The function PKPDModel transforms a set of patient
characteristics, including the relevant genotype and de-
mographic information, into an INR-response predictor
Finr. Finr(doses, t) transforms a sequence of doses, as-
sumed to have been administered at 24-hour intervals
starting at time = 0, as well as a time t, and produces
a prediction of the patient’s INR at time t. The func-
tion PKPDModel can be thought of as the routine that
initializes the parameters in the PK and PD models, and
Finr as the function that composes the initialized models
to translate dose schedules into INR measurements. For
further details of the PK/PD model, consult Appendix A.

5.5 Calculating Patient Risk

INR levels correspond to the coagulation tendency of
blood, and thus to the risk of adverse events. Sorensen
et al. performed a pooled analysis of the correlation be-
tween stroke and bleeding events for patients undergoing
warfarin treatment at varying INR levels [41]. We use the
probabilities for various events as reported in their analy-
sis. We calculate each simulated patient’s risk for stroke,
intra-cranial hemorrhage, extra-cranial hemorrhage, and
fatality based on the predicted INR levels produced by
the PK/PD model. At each 24-hour interval, we calcu-
lated INR and the corresponding risk for these events.
The sum total risk for each event across the entire trial
period is the endpoint we use to compare the arms. We
also calculated the mean time in therapeutic range (TTR)
of patients’ INR response for each arm. We define TTR
as any INR reading between 1.8–3.2, to maintain consis-
tency with previous studies [3, 14].

The results are presented in Figure 8 in terms of rela-
tive risk (defined as the quotient of the patient’s risk for
a certain outcome when using a particular algorithm ver-
sus the fixed dose algorithm). The results are striking: for
reasonable privacy budgets (ε ≤ 5), private pharmacoge-
nomic dosing results in greater risk for stroke, bleeding,
and fatality events as compared to the fixed dose pro-
tocol. The increased risk is statistically significant for
both private algorithms up to ε = 5 and all types of risk
(including reduced TTR), except for private histograms,
for which there was no significant increase in bleeding
events with ε > 1.

On the positive side, there is evidence that both algo-
rithms may reduce all types of risk at certain privacy lev-
els. Differentially-private histograms performed slightly
better, improvements in all types of risk at ε ≥ 20. Pri-
vate linear regression seems to yield lower risk of stroke

and fatality and increased TTR at ε ≥ 20. However, the
difference in bleeding risk for DPLR was not statistically
significant at any ε ≥ 20. These results lead us to con-
clude that there is evidence that differentially-private sta-
tistical models may provide effective algorithms for pre-
dicting initial warfarin dose, but only at low settings of
ε ≥ 20 that yield little privacy (see Section 4).

6 Related Work

The tension between privacy and data utility has been
explored by several authors. Brickell and Shmatikov [6]
found strong evidence for a tradeoff in attribute privacy
and predictive performance in common data mining tasks
when k-anonymity, �-diversity, and t-closeness are ap-
plied before releasing a full dataset. Differential privacy
arose partially as a response to Dalenius’ desideratum:
anything that can be learned from the database about
a specific individual should be learnable without access
to the database [9]. Dwork showed the impossibility of
achieving this result in the presence of utility require-
ments [11], and proposed an alternative goal that proved
feasible to achieve in many settings: the risk to one’s
privacy should not substantially increase as a result of
participating in a statistical database. Differential pri-
vacy formalizes this goal, and constructive research on
the topic has subsequently flourised.

Differential privacy is often misunderstood by those
who wish to apply it, as pointed out by Dwork and
others [13]. Kifer and Machanavajjhala [25] addressed
several common misconceptions about the topic, and
showed that under certain conditions, it fails to achieve
a privacy goal related to Dwork’s: nearly all evidence of
an individual’s participation should be removed. Using
hypothetical examples from social networking and cen-
sus data release, they demonstrate that when rows in a
database are correlated, or when previous exact statis-
tics for a dataset have been released, this notion of pri-
vacy may be violated even when differential privacy is
used. Part of our work extends theirs by giving a con-
crete examples from a realistic application where com-
mon misconceptions about differential privacy lead to
surprising privacy breaches, i.e., that it will protect ge-
nomic attributes from unwanted disclosure. We further
extend their analysis by providing a quantitative study of
the tradeoff between privacy and utility in the applica-
tion.

Others have studied the degree to which differential
privacy leaks various types of information. Cormode
showed that if one is allowed to pose certain queries re-
lating sensitive attributes to quasi-identifiers, it is pos-
sible to build a differentially-private Naive Bayes clas-
sifier that accurately predicts the sensitive attribute [8].
In contrast, we show that given a model for predicting a
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Figure 8: Trial outcomes for fixed dose, non-private linear regression (LR), differentially-private linear regression
(DPLR), and private histograms. Horizontal axes represent ε .

certain outcome from a set of inputs (and no control over
the queries used to construct the model), it is possible to
make accurate predictions in the reverse direction: pre-
dict one of the inputs given a subset of the other values.
Lee and Clifton [30] recognize the problem of setting ε
and its relationship to the relative nature of differential
privacy, and later [31] propose an alternative parameti-
zation of differential privacy in terms of the probabil-
ity that an individual contributes to the resulting model.
While this may make the privacy guarantee easier for
non-specialists to understand, its close relationship to the
standard definition suggests that it may not be effective
at mitigating the types of disclosures documented in this
paper; evaluating its efficacy remains future work, as we
are not aware of any existing implementations that sup-
port their definition.

The risk of sensitive information disclosure in medical
studies has been examined by many. Wang et al. [46],
Homer et al. [20] and Sankararaman et al. [39] show
that it is possible to recover parts of an individual’s geno-
type given partial genetic information and detailed statis-
tics from a GWAS. They do not evaluate the efficacy
of their techniques against private versions of the statis-
tics, and do not consider the problem of inference from
a model derived from the statistics. Sweeny showed that
a few pieces of identifying information are suitable to
identify patients in medical records [42]. Loukides et
al. [34] show that it is possible to identify a wide range
of sensitive patient information from de-identified clin-
ical data presented in a form standard among medical
researchers, and later proposed a domain-specific utility-
preserving scheme similar to k-anonymity for mitigating
these breaches [35]. Dankar and Emam [10] discuss the
use of differential privacy in medical applications, point-
ing out the various tradeoffs between interactive and non-
interactive mechanisms and the limitation of utility guar-
antees in differential privacy, but do not study its use in
any specific medical applications.

Komarova et al. [28] present an in-depth study of the
problem of partial disclosure. There is some similarity
between the model inversion attacks discussed here and
this notion of partial disclosure. One key difference is

that in the case of model inversion, an adversary is given
the actual function corresponding to a statistical estima-
tor (e.g., a linear model in our case study), whereas Ko-
marova et al. consider static estimates from combined
public and private sources. In the future we will inves-
tigate whether the techniques described by Komarova et
al. can be used to refine, or provide additional informa-
tion for, model inversion attacks.

7 Conclusion

We conducted the first end-to-end case study of the use
of differential privacy in a medical application, explor-
ing the tradeoff between privacy and utility that occurs
when existing differentially-private algorithms are used
to guide dosage levels in warfarin therapy. Using a new
technique called model inversion, we repurpose pharma-
cogenetic models to infer patient genotype. We showed
that models used in warfarin therapy introduce a threat
to patients’ genomic privacy. When models are pro-
duced using state-of-the-art differential privacy mecha-
nisms, genomic privacy is protected for small ε(≤ 1),
but as ε increases towards larger values this protection
vanishes.

We evaluated the utility of differential privacy mecha-
nisms by simulating clinical trials that use private mod-
els in warfarin therapy. This type of evaluation goes be-
yond what is typical in the literature on differential pri-
vacy, where raw statistical accuracy is the most common
metric for evaluating utility. We show that differential
privacy substantially interferes with the main purpose
of these models in personalized medicine: for ε values
that protect genomic privacy, which is the central privacy
concern in our application, the risk of negative patient
outcomes increases beyond acceptable levels.

Our work provides a framework for assessing the
tradeoff between privacy and utility for differential pri-
vacy mechanisms in a way that is directly meaningful for
specific applications. For settings in which certain levels
of utility performance must be achieved, and this tradeoff
cannot be balanced, then alternative means of protecting
individual privacy must be employed.
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A PK/PD Model Details

We adopted a previously-developed PK/PD INR model
to predict each patient’s INR response to previous dos-
ing choices [16]. The PK component of the model is a
two-compartment model with first-order absorption. A
two-compartment model assumes an abstract representa-
tion of the body as two discrete sections: the first being
a central compartment into which a drug is administered
and a peripheral compartment into which the drug even-
tually distributes. The central compartment (assumed
to have volume V1) represents tissues that equilibrate
rapidly with blood (e.g., liver, kidney, etc.), and the pe-
ripheral (volume V2) those that equilibrate slowly (e.g.,
muscle, fat, etc.). Three rate constants govern trans-
fer between the compartments and elimination: k12,k21,
for the central-peripheral and peripheral-central transfer,
and kel for elimination from the body, respectively. V1,
V2, k12, and k21 are related by the following equality:
V1k12 = V2k21. The absorption rate ka governs the rate
at which the drug enters the central compartment. In the
model used in our simulation, each of these parameters is
represented by a random variable whose distribution has
been fit to observed population measurements of War-
farin absorption, distribution, metabolism, and elimina-
tion [16]. The elimination-rate constant kel is parameter-
ized by the patient’s CYP2C9 genotype.

Given a set of PK parameters, the Warfarin concen-
tration in the central compartment over time is calcu-
lated using standard two-compartment PK equations for
oral dosing. Concentration in two-compartment pharma-
cokinetics diminishes in two distinct phases with differ-
ing rates: the α (“distribution”) phase, and β (“elimina-
tion”) phase. The expression for concentration C over
time assuming doses D1, . . . ,Dn administered at times
tD1 , . . . , tDn has another term corresponding to the effect
of oral absorption:

C(t) =
n∑

i=1

Di(Ae−αti +Be−β ti − (A+B)e−kati)

with ti = t−tDi and α , β satisfying αβ = k21kel, α+β =
kel + k12 + k21, and

A =
ka

V1

k21 −α
(ka −α)(β −α)

B =
ka

V1

k21 −β
(ka −β )(α −β )

Our model contains an error term with a zero-centered
log-normal distribution whose variance depends on
whether or not steady-state dosing has occurred; the term
is given in the appendix of Hamberg et al. [16].

PD Model The PD model used in our simulations is an
inhibitory sigmiod-Emax model. Recall that the purpose
of the PD model is to describe the physiological response
E, in this case INR, to Warfarin concentration at a partic-
ular time. Emax represents the maximal response, i.e., the

E = 1 EmaxCγ

Eγ
50+Cγ

A1 A2 A3 A4 A5 A6

A7 INR = BASE+ INRmax(1−A6A7)
λ

︷ ︸︸ ︷k−1
tr1 ≈ 11.6 h

︷︸︸︷k−1
tr2 ≈ 120 h

Figure 9: Overview of transit-compartment PD
model [16].

maximal inhibition of coagulation, and E50 the concen-
tration of Warfarin producing half-maximal inhibition.
Emax is fixed to 1, and E50 is a patient-specific random
variable that is a function of the patient’s VKORC1 geno-
type. A sigmoidocity factor γ is used to model the fact
that the concentration-effect response of Warfarin corre-
sponds to a sigmoid curve at lower concentrations. The
basic formula for calculating E at time t from concentra-
tion is: 1− (EmaxC(t)γ)/(Eγ

50 +C(t)γ). However, War-
farin exhibits a delay between exposure and anticoagu-
lation response. To characterize this feature, Hamberg
et al. showed that extending the basic Emax model with
a transit compartment model with two parallel chains is
adequate [16], as shown in Figure 9. The delay between
exposure and concentration is modeled by assuming that
the drug travels along two parallel compartment chains
of differing lengths and turnover rates. The transit rate
between compartments on the two chains is given by
two constants ktr1 and ktr2. The first chain consists of
six compartments, and the second a single compartment.
The first transit constant is a random zero-centered log-
normal variable, whereas empirical data did not reilably
support variance in the second [16]. The amount in a
given compartment i, Ai, at time t is described by a sys-
tem of coupled ordinary differential equations:

dA1

dt
= ktr1

(
1− EmaxC(t)γ

Eγ
50 +C(t)γ

)
− ktr1A1

dAn

dt
= ktr1(An−1 −An),n = 2,3,4,5,6

dA7

dt
= ktr2

(
1− EmaxC(t)γ

Eγ
50 +C(t)γ

)
− ktr2A7

The final expression for INR at time t is given by solv-
ing for A7 and A7 starting from initial conditions Ai = 1,
and calculating the expression: log(INR) = log(Base+
INRmax(1−A6A7)

λ )+ εINR. In this expression, Base is
the patient’s baseline INR, INRmax is the maximal INR
(assumed to be 20 [16]), λ is a scaling factor derived
from empirical data [16], and εINR is a zero-centerd,
symmetrically-distributed random variable with variance
determined from empirical data [16].
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Abstract
Users are increasingly storing, accessing, and ex-

changing data through public cloud services such as
those provided by Google, Facebook, Apple, and Mi-
crosoft. Although users may want to have faith in cloud
providers to provide good security protection, the confi-
dentiality of any data in public clouds can be violated,
and consequently, while providers may not be “doing
evil,” we can not and should not trust them with data con-
fidentiality.

To better protect the privacy of user data stored in the
cloud, in this paper we propose a privacy-preserving sys-
tem called Mimesis Aegis (M-Aegis) that is suitable for
mobile platforms. M-Aegis is a new approach to user
data privacy that not only provides isolation but also pre-
serves the user experience through the creation of a con-
ceptual layer called Layer 7.5 (L-7.5), which is inter-
posed between the application (OSI Layer 7) and the user
(Layer 8). This approach allows M-Aegis to implement
true end-to-end encryption of user data with three goals
in mind: 1) complete data and logic isolation from un-
trusted entities; 2) the preservation of original user ex-
perience with target apps; and 3) applicable to a large
number of apps and resilient to app updates.

In order to preserve the exact application workflow
and look-and-feel, M-Aegis uses L-7.5 to put a transpar-
ent window on top of existing application GUIs to both
intercept plaintext user input before transforming the in-
put and feeding it to the underlying app, and to reverse-
transform the output data from the app before displaying
the plaintext data to the user. This technique allows M-
Aegis to transparently integrate with most cloud services
without hindering usability and without the need for re-
verse engineering. We implemented a prototype of M-
Aegis on Android and show that it can support a number
of popular cloud services, e.g. Gmail, Facebook Messen-
ger, WhatsApp, etc.

Our performance evaluation and user study show that
users incur minimal overhead when adopting M-Aegis

on Android: imperceptible encryption/decryption la-
tency and a low and adjustable false positive rate when
searching over encrypted data.

1 Introduction

A continuously increasing number of users now utilize
mobile devices [2] to interact with public cloud services
(PCS) (e.g. Gmail, Outlook, and WhatsApp) as an es-
sential part of their daily lives. While the user’s con-
nectivity to the Internet is improved with mobile plat-
forms, the problem of preserving data privacy while in-
teracting with PCS remains unsolved. In fact, news about
the US government’s alleged surveillance programs re-
minds everybody about a very unsatisfactory status quo:
while PCS are essentially part of everyday life, the de-
fault method of utilizing them exposes users to privacy
breaches, because it implicitly requires the users to trust
the PCS providers with the confidentiality of their data;
but such trust is unjustified, if not misplaced. Incidents
that demonstrate breach of this trust are easy to come by:
1) PCS providers are bound by law to share their users’
data with surveillance agencies [14], 2) it is the business
model of the PCS providers to mine their users’ data and
share it with third parties [11, 22, 24, 40], 3) operator er-
rors [34] can result in unintended data access, and 4) data
servers can be compromised by attackers [47].

To alter this undesirable status quo, solutions should
be built based on an updated trust model of every-
day communication that better reflects the reality of the
threats mentioned above. In particular, new solutions
must first assume PCS providers to be untrusted. This
implies that all other entities that are controlled by the
PCS providers, including the apps that users installed to
engage with the PCS, must also be assumed untrusted.

Although there are a plethora of apps available today
that come in various combinations of look and feel and
features, we observed that many of these apps provide
text communication services (e.g. email or private/group
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messaging categories). Users can still enjoy the same
quality of service1 without needing to reveal their plain-
text data to PCS providers. PCS providers are essen-
tially message routers that can function normally with-
out needing to know the content of the messages being
delivered, analogous to postmen delivering letters with-
out needing to learn the actual content of the letters.

Therefore, applying end-to-end encryption (E2EE)
without assuming trust in the PCS providers seems to
solve the problem. However, in practice, the direct ap-
plication of E2EE solutions onto the mobile device envi-
ronment is more challenging than originally thought [65,
59]. A good solution must present clear advantages to the
entire mobile security ecosystem. In particular it must
account for these factors: 1) the users’ ease-of-use, hence
acceptability and adoptability; 2) the developers’ efforts
to maintain support; and 3) the feasibility and deploya-
bility of solution on a mobile system. From this analysis,
we formulate three design goals that must be addressed
coherently:

1. For a solution to be secure, it must be properly
isolated from untrusted entities. It is obvious that
E2EE cannot protect data confidentiality if plain-
text data or an encryption key can be compromised
by architectures that risk exposing these values.
Traditional solutions like PGP [15] and newer so-
lutions like Gibberbot [5], TextSecure [12], and
SafeSlinger [41] provide good isolation, but force
users to use custom apps, which can cause usabil-
ity problems (refer to (2)). Solutions that repack-
age/rewrite existing apps to introduce additional se-
curity checks [68, 26] do not have this property
(further discussed in Sect. 2.3). Solutions in the
form of browser plugins/extensions also do not have
this property (further discussed in Sect. 2.2), and
they generally do not fit into the mobile security
landscape because many mobile browsers do not
support extensions [7], and mobile device users
do not favor using mobile browsers [27] to access
PCS. Therefore, we rule out conventional browser-
plugin/extension-based solutions.

2. For a solution to be adoptable, it must preserve the
user experience. We argue that users will not accept
solutions that require them to switch between dif-
ferent apps to perform their daily tasks. Therefore,
simply porting solutions like PGP to a mobile plat-
form would not work, because it forces users to use
a separate and custom app, and it is impossible to
recreate the richness and unique user experience of
all existing text routing apps offered by various PCS
providers today. In the context of mobile devices,
PCS are competing for market share not only by of-

1the apps’ functionalities and user experience are preserved

fering more reliable infrastructure to facilitate user
communication, but also by offering a better user
experience [16, 58]. Ultimately, users will choose
apps that feel the most comfortable. To reduce in-
terference with a user’s interaction with the app of
their choice, security solutions must be retrofittable
to existing apps. Solutions that repackage/rewrite
existing apps have this criterion.

3. For a solution to be sustainable, it must be easy to
maintain and scalable: the solution must be suffi-
ciently general-purpose, require minimal effort to
support new apps, and withstand app updates. In the
past, email was one of the very few means of com-
munication. Protecting it is relatively straightfor-
ward because email protocols (e.g. POP and IMAP)
are well defined. Custom privacy-preserving apps
can therefore be built to serve this need. How-
ever, with the introduction of PCS that are becom-
ing indispensable in a user’s everyday life, a good
solution should also be able to integrate security
features into apps without requiring reverse engi-
neering of the apps’ logic and/or network protocols,
which are largely undocumented and possibly pro-
prietary (e.g. Skype, WhatsApp, etc.).

In this paper, we introduce Mimesis Aegis (M-Aegis),
a privacy-preserving system that mimics the look and
feel of existing apps to preserve their user experience
and workflow on mobile devices, without changing the
underlying OS or modifying/repackaging existing apps.
M-Aegis achieves the three design goals by operating at
a conceptual layer we call Layer 7.5 (L-7.5) that is po-
sitioned above the existing application layer (OSI Layer
7 [8]), and interacts directly with the user (popularly la-
beled as Layer 8 [19, 4]).

From a system’s perspective, L-7.5 is a transparent
window in an isolated process that interposes itself be-
tween Layer 7 and 8. The interconnectivity between
these layers is achieved using the accessibility frame-
work, which is available as an essential feature on mod-
ern operating systems. Note that utilizing accessibility
features for unorthodox purposes have been proposed by
prior work [56, 48] that achieves different goals. L-7.5
extracts the GUI information of an app below it through
the OS’s user interface automation/accessibility (UIA) li-
brary. Using this information, M-Aegis is then able to
proxy user input by rendering its own GUI (with a differ-
ent color as visual cue) and subsequently handle those in-
put (e.g. to process plaintext data or intercept user button
click). Using the same UIA library, L-7.5 can also pro-
grammatically interact with various UI components of
the app below on behalf of the user (refer to Sect. 3.3.2
for more details). Since major software vendors today
have pledged their commitment towards continuous sup-
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port and enhancement of accessibility interface for devel-
opers [9, 20, 6, 1], our UIA-based technique is applicable
and sustainable on all major platforms.

From a security design perspective, M-Aegis provides
two privacy guarantees during a user’s interaction with a
target app: 1) all input from the user first goes to L-7.5
(and is optionally processed) before being passed to an
app. This means that confidential data and user intent can
be fully captured; and 2) all output from the app must go
through L-7.5 (and is optionally processed) before being
displayed to the user.

From a developer’s perspective, accessing and inter-
acting with a target app’s UI components at L-7.5 is
similar to that of manipulating the DOM tree of a web
app using JavaScript. While DOM tree manipulation
only works for browsers, UIA works for all apps on
a platform. To track the GUI of an app, M-Aegis re-
lies on resource id names available through the UIA li-
brary. Therefore, M-Aegis is resilient to updates that
change the look and feel of the app (e.g. GUI position
or color). It only requires resource id names to remain
the same, which, through empirical evidence, often holds
true. Even if a resource id changes, minimal effort is re-
quired to rediscover resource id names and remap them
to the logic in M-Aegis. From our experience, M-Aegis
does not require developer attention across minor app up-
dates.

From a user’s perspective, M-Aegis is visible as an
always-on-top button. When it is turned on, users will
perceive that they are interacting with the original app in
plaintext mode. The only difference is the GUI of the
original app will appear in a different color to indicate
that protection is activated. This means that subtle fea-
tures that contribute towards the entire user experience
such as spell checking and in-app navigation are also
preserved. However, despite user perception, the origi-
nal app never receives plaintext data. Figure 1 gives a
high level idea of how M-Aegis creates an L-7.5 to pro-
tect user’s data privacy when interacting with Gmail.

For users who would like to protect their email com-
munications, they will also be concerned if encryption
will affect their ability to search, as it is an important
aspect of user productivity [64]. For this purpose, we
designed and incorporated a new searchable encryption
scheme named easily-deployable efficiently-searchable
symmetric encryption scheme (EDESE) into M-Aegis
that allows search over encrypted content without any
server-side modification. We briefly discuss the design
considerations and security concerns involved in sup-
porting this functionality in Sect 3.3.4.

As a proof of concept, we implemented a prototype M-
Aegis on Android that protects user data when interfac-
ing with text-based PCS. M-Aegis supports email apps
like Gmail and messenger apps like Google Hangout,

Figure 1: This diagram shows how M-Aegis uses L-7.5
to transparently reverse-transform the message “dead-
beef” into “Hi there”, and also allows a user to enter
their plaintext message “Hello world” into M-Aegis’s
text box. To the user, the GUI looks exactly the same as
the original app. When the user decides to send a mes-
sage, the “Hello world” message will be transformed and
relayed to the underlying app.

WhatsApp, and Facebook Chat. It protects data privacy
by implementing E2EE that passes no plaintext to an app
while also preserving the user experience and workflow.
We also implemented a version of M-Aegis on the desk-
top to demonstrate the generality of our approach. Our
initial performance evaluation and user study shows that
users incur minimal overhead in adopting M-Aegis on
Android. There is imperceptible encryption/decryption
latency and a low and adjustable false positive rate when
searching over encrypted data.

In summary, these are the major contributions of our
work:

• We introduced Layer 7.5 (L-7.5), a conceptual layer
that directly interacts with users on top of existing
apps. This is a novel system approach that provides
seemingly contrasting features: transparent interac-
tion with a target app and strong isolation from the
target app.

• We designed and built Mimesis Aegis based on the
concept of L-7.5, a system that preserves user pri-
vacy when interacting with PCS by ensuring data
confidentiality. Essential functionalities of existing
apps, especially search (even over encrypted data),
are also supported without any server-side modifi-
cation.

• We implemented two prototypes of Mimesis Aegis,
one on Android and the other on Windows, with

3



36 23rd USENIX Security Symposium USENIX Association

support for various popular public cloud services,
including Gmail, Facebook Messenger, Google
Hangout, WhatsApp, and Viber.

• We designed and conducted a user study that
demonstrated the acceptability of our solution.

The rest of the paper is structured as follows. Section 2
compares our work to related work. Section 3 discusses
the threat model and the design of M-Aegis. Section 4
presents the implementation of M-Aegis and the chal-
lenges we solved during the process. Section 5 presents
performance evaluations and user study of the accept-
ability of M-Aegis on Android. Section 6 discusses limi-
tations of our work and answers some common questions
that readers may have about our system. Section 7 dis-
cusses future work and concludes our work.

2 Related Work

Since M-Aegis is designed to achieve the three design
goals described in Sect. 1 while seamlessly integrating
end-to-end encryption into user’s communication, we
discuss how well existing works achieve some of these
goals and how they differ from our work. As far as we
know, there is no existing work that achieves all the three
design goals.

2.1 Standalone Solutions
There are many standalone solutions that aim to protect
user data confidentiality. Solutions like PGP [15] (in-
cluding S/MIME [37]), Gibberbot [5], TextSecure [12],
SafeSlinger [41], and FlyByNight [55] provides secure
messaging and/or file transfer through encryption of user
data. These solutions provide good isolation from un-
trusted entities. However, since they are designed as
standalone custom apps, they do not preserve the user
experience, requiring users to adopt a new workflow on
a custom app. More importantly, these solutions are not
retrofittable to existing apps on the mobile platform.

Like M-Aegis, Cryptons [36] introduced a similarly
strong notion of isolation through its custom abstrac-
tions. However, Cryptons assumes a completely differ-
ent threat model that trusts PCS, and requires both server
and client (app) modifications. Thus, Cryptons could not
protect a user’s communication using existing messag-
ing apps while assuming the provider to be untrusted.
We also argue that it is non-trivial to modify Cryptons to
achieve the three design goals we mentioned in Sect. 1.

2.2 Browser Plugin/Extension Solutions
Other solutions that focus on protecting user privacy
include Cryptocat [3], Scramble! [24], TrustSplit [40],

NOYB (None of Your Business) [46], and SafeBut-
ton [53]. Some of these assume different threat mod-
els, and achieve different goals. For example, NOYB
protects a user’s Facebook profile data while SafeBut-
ton tries to keep a user’s browsing history private. Most
of these solutions try to be transparently integrated into
user workflow. However, since these solutions are mostly
based on browser plugins/extensions, they are not appli-
cable to the mobile platform.

Additionally, Cryptocat and TrustSplit require new
and/or independent service providers to support their
functionalities. However, M-Aegis works with the exist-
ing service providers without assuming trust or requiring
modification to server-side communication.

2.3 Repackaging/Rewriting Solutions
There is a category of work that repackages/rewrites an
app’s binary to introduce security features, such as Aura-
sium [68], Dr. Android [49], and others [26]. Our solu-
tion is similar to these approaches in that we can retrofit
our solutions to existing apps and still preserve user ex-
perience, but is different in that M-Aegis’ coverage is
not limited to apps that do not contain native code. Also,
repackaging-based approaches suffer from the problem
that they will break app updates. In some cases, the se-
curity of such solutions can be circumvented because the
isolation model is unclear, i.e. the untrusted code resides
in the same address space as the reference monitor (e.g.
Aurasium).

2.4 Orthogonal Work
Although our work focuses on user interaction on mobile
platforms with cloud providers, we assume a very differ-
ent threat model than those that focus on more robust
permission model infrastructures and those that focus
on controlling/tracking information flow, such as Taint-
Droid [38] and Airbag [67]. These solutions require
changes to the underlying app, framework, or the OS,
but M-Aegis does not.

Access Control Gadgets (ACG) [57] uses user input as
permission granting intent to allow apps to access user
owned resources. Although we made the same assump-
tions as ACG to capture authentic user input, ACG is de-
signed for a different threat model and security goal than
ours. Furthermore, ACG requires a modified kernel but
M-Aegis does not.

Persona [23] presents a completely isolated and new
online social network that provides certain privacy and
security guarantees to the users. While related, it differs
from the goal of M-Aegis.

Frientegrity [43] and Gyrus [48] focus on different as-
pects of integrity protection of a user’s data.

4



USENIX Association  23rd USENIX Security Symposium 37

Tor [35] is well known for its capability to hide a user’s
IP address while browsing the Internet. However, it fo-
cuses on anonymity guarantees while M-Aegis focuses
on data confidentiality guarantees.

Off-the-record messaging (OTR) [30] is a secure com-
munication protocol that provides perfect forward se-
crecy and malleable encryption. While OTR can be im-
plemented on M-Aegis using the same design architec-
ture to provide these extra properties, it is currently not
the focus of our work.

3 System Design

3.1 Design Goals

In this section, we formally reiterate our design goals.
We posit that a good solution must:

1. Offer good security by applying strong isolation
from untrusted entities (defined in Sect. 3.2).

2. Preserve the user experience by providing users
transparent interaction with existing apps.

3. Be easy to maintain and scale by devising a suffi-
ciently general-purpose approach.

Above all, these goals must be satisfied within the
unique set of constraints found in the mobile platform,
including user experience, transparency, deployability,
and adoptability factors.

3.2 Threat Model

3.2.1 In-Scope Threats

We begin with the scope of threats that M-Aegis is de-
signed to protect against. In general, there are three par-
ties that pose threats to the confidentiality of users’ data
exposed to public cloud through mobile devices. There-
fore, we assume these parties to be untrusted in our threat
model:

• Public cloud service (PCS) providers. Sensitive
data stored in the public cloud can be compromised
in several ways: 1) PCS providers can be compelled
by law [21] to provide access to a user’s sensitive
data to law enforcement agencies [14]; 2) the busi-
ness model of PCS providers creates strong incen-
tive for them to share/sell user data with third par-
ties [11, 22, 24, 40]; 3) PCS administrators who
have access to the sensitive data may also compro-
mise the data, either intentionally [14] or not [34];
and 4) vulnerabilities of the PCS can be exploited
by attackers to exfiltrate sensitive data [47].

• Client-side apps. Since client-side apps are devel-
oped by PCS providers to allow a user to access
their services, it follows that these apps are consid-
ered untrusted too.

• Middle boxes between a PCS and a client-side app.
Sensitive data can also be compromised when it is
transferred between a PCS and a client-side app. In-
correct protocol design/implementation may allow
attackers to eavesdrop on plaintext data or perform
Man-in-the-Middle attacks [39, 18, 13].

M-Aegis addresses the above threats by creating L-
7.5, which it uses to provide end-to-end encryption
(E2EE) for user private data. We consider the following
components as our trusted computing base (TCB): the
hardware, the operating system (OS), and the framework
that controls and mediates access to hardware. In the
absence of physical input devices (e.g. mouse and key-
board) on mobile devices, we additionally trust the soft
keyboard to not leak the keystrokes of a user. We rely
on the TCB to correctly handle I/O for M-Aegis, and to
provide proper isolation between M-Aegis and untrusted
components.

Additionally, we also assume that all the components
of M-Aegis, including L-7.5 that it creates, are trusted.
The user is also considered trustworthy under our threat
model in his intent. This means that he is trusted to turn
on M-Aegis when he wants to protect the privacy of his
data during his interaction with the PCS.

3.2.2 Out of Scope Threats

Our threat model does not consider the following types of
attacks. First, M-Aegis only guarantees the confidential-
ity of a user’s data, but not its availability. Therefore, at-
tacks that deny access to data (denial-of-service) either at
the server or the client are beyond the scope of this work.
Second, any attacks against our TCB are orthogonal to
this work. Such attacks include malicious hardware [52],
attacks against the hardware [66], the OS [50], the plat-
form [63] and privilege escalation attacks (e.g. unautho-
rized rooting of device). However, note that M-Aegis
can be implemented on a design that anchors its trust
on trusted hardware and hypervisor (e.g. Gyrus [48],
Storage Capsules [29]) to minimize the attack surface
against the TCB. Third, M-Aegis is designed to prevent
any direct flow of information from an authorized user
to untrusted entities. Hence, leakages through all side-
channels [62] are beyond the scope of this work.

Since the user is assumed to be trustworthy under our
threat model to use M-Aegis correctly, M-Aegis does
not protect the user against social-engineering-based at-
tacks. For example, phishing attacks to trick users into
either turning off M-Aegis and/or entering sensitive in-
formation into unprotected UI components are beyond
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the scope of our paper. Instead, M-Aegis deploys best-
effort protection by coloring the UI components in L-7.5
differently from that of the default app UI.

The other limitations of M-Aegis, which are not secu-
rity threats, are discussed in Sect. 6.2.

3.3 M-Aegis Architecture

M-Aegis is architected to fulfill all of the three design
goals mentioned in Sect. 3.1. Providing strong isolation
guarantees is first. To achieve this, M-Aegis is designed
to execute in a separate process, though it resides in the
same OS as the target client app (TCA). Besides memory
isolation, the filesystem of M-Aegis is also shielded from
other apps by OS app sandbox protection.

Should a greater degree of isolation be desirable, an
underlying virtual-machine-based system can be adopted
to provide even stronger security guarantees. However,
we do not consider such design at this time as it is cur-
rently unsuitable for mobile platforms, and the adoption
of such technology is beyond the scope of our paper. The
main components that make up M-Aegis are as follows.

3.3.1 Layer 7.5 (L-7.5)

M-Aegis creates a novel and conceptual layer called
Layer 7.5 (L-7.5) to interpose itself between the user and
the TCA. This allows M-Aegis to implement true end-to-
end encryption (E2EE) without exposing plaintext data
to the TCA while maintaining the TCA’s original func-
tionalities and user experience, fulfilling the second de-
sign goal. L-7.5 is built by creating a transparent window
that is always-on-top. This technique is advantageous
in that it provides a natural way to handle user interac-
tion, thus preserving user experience without the need to
reverse engineer the logic of TCAs or the network pro-
tocols used by the TCAs to communicate with their re-
spective cloud service backends, fulfilling the third de-
sign goal.

There are three cases of user interactions to han-
dle. The first case considers interactions that do not
involve data confidentiality (e.g. deleting or relabel-
ing email). Such input do not require extra process-
ing/transformation and can be directly delivered to the
underlying TCA. Such click-through behavior is a natu-
ral property of transparent windows, and helps M-Aegis
maintain the look and feel of the TCA.

The second case considers interactions that involve
data confidentiality (e.g. entering messages or search-
ing encrypted email). Such input requires extra process-
ing (e.g. encryption and encoding operations). For such
cases, M-Aegis places opaque GUIs that “mimic” the
GUIs over the TCA, which are purposely painted in dif-
ferent colors for two reasons: 1) as a placeholder for user

input so that it does not leak to the TCA, and 2) for user
visual feedback. Mimic GUIs for the subject and content
as seen in Fig. 3 are examples of this case. Since L-7.5 is
always on top, this provides the guarantee that user input
always goes to a mimic GUI instead of the TCA.

The third case considers interactions with control
GUIs (e.g. send buttons). Such input requires user action
to be “buffered” while the input from the second case is
being processed before being relayed to the actual con-
trol GUI of the TCA. For such cases, M-Aegis creates
semi-transparent mimic GUIs that register themselves to
absorb/handle user clicks/taps. Again, these mimic GUIs
are painted with a different color to provide a visual cue
to a user. Examples of these include the purple search
button in the left figure in Fig. 2 and the purple send but-
ton in Fig. 3. Note that our concept of intercepting user
input is similar to that of ACG’s [57] in capturing user
intent, but our application of user intent differs.

3.3.2 UIA Manager (UIAM)

To be fully functional, there are certain capabilities that
M-Aegis requires but are not available to normal apps.
First, although M-Aegis is confined within the OS’ app
sandbox, it must be able to determine with which TCA
the user is currently interacting. This allows M-Aegis
to invoke specific logic to handle the TCA, and helps
M-Aegis clean up the screen when the TCA is termi-
nated. Second, M-Aegis requires information about the
GUI layout for the TCA it is currently handling. This
allows M-Aegis to properly render mimic GUIs on L-
7.5 to intercept user I/O. Third, although isolated from
the TCA, M-Aegis must be able to communicate with
the TCA to maintain functionality and ensure user expe-
rience is not disrupted. For example, M-Aegis must be
able to relay user clicks to the TCA, eventually send en-
crypted data to the TCA, and click on TCA’s button on
behalf of the user. For output on screen, it must be able to
capture ciphertext so that it can decrypt it and then render
it on L-7.5.

M-Aegis extracts certain features from the underly-
ing OS’s accessibility framework, which are exposed
to developers in the form of User Interface Accessibil-
ity/Automation (UIA) library. Using UIA, M-Aegis is
not only able to know which TCA is currently execut-
ing, but it can also query the GUI tree of the TCA to get
detailed information about how the page is laid out (e.g.
location, size, type, and resource-id of the GUI compo-
nents). More importantly, it is able to obtain information
about the content of these GUI items.

Exploiting UIA is advantageous to our design as com-
pared to other methods of information capture from the
GUI, e.g. OCR. Besides having perfect content accuracy,
our technique is not limited by screen size. For example,
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Figure 2: The figure on the left illustrates how a user perceives the Gmail preview page when M-Aegis is turned on.
The figure on the right illustrates the same scenario but with M-Aegis turned off. Note that the search button is painted
with a different color when M-Aegis is turned on.

even though the screen size may prevent full text to be
displayed, M-Aegis is still able to capture text in its en-
tirety through the UIA libraries, allowing us to comfort-
ably apply decryption to ciphertext.

We thus utilize all these capabilities and advantages
to build a crucial component of M-Aegis called the UIA
manager (UIAM).

3.3.3 Per-TCA Logic

M-Aegis can be extended to support many TCAs. For
each TCA of interest, we build per-TCA logic as an ex-
tension module. The per-TCA logic is responsible for
rendering the specific mimic GUIs according to informa-
tion it queries from the UIAM. Therefore, per-TCA logic
is responsible for handling direct user input. Specifically,
it decides whether the user input will be directly passed
to the TCA or be encrypted and encoded before doing
so. This ensures that the TCA never obtains plaintext
data while user interaction is in plaintext mode. Per-TCA
logic also intercepts button clicks so that it can then in-
struct UIAM to emulate the user’s action on the button in
the underlying TCA. Per-TCA logic also decides which
encryption and encoding scheme to use according to the
type of TCA it is handling. For example, encryption and
encoding schemes for handling email apps would differ
from that of messenger apps.

3.3.4 Cryptographic Module

M-Aegis’ cryptographic module is responsible for pro-
viding encryption/decryption and cryptographic hash ca-
pabilities to support our searchable encryption scheme

(described in detail later) to the per-TCA logic the so
that M-Aegis can transform/obfuscate messages through
E2EE operations. Besides standard cryptographic prim-
itives, this module also includes a searchable encryp-
tion scheme to support search over encrypted email that
works without server modification. Since the discussion
of any encryption scheme is not complete without en-
cryption keys, key manager is also a part of this module.

Key Manager. M-Aegis has a key manager per TCA
that manages key policies that can be specific to each
TCA according to user preference. The key manager
supports a range of schemes, including simple password-
based key derivation functions (of which we assume the
password to be shared out of band) to derive symmetric
keys, which we currently implement as default, to more
sophisticated PKI-based scheme for users who prefer
stronger security guarantees and do not mind the addi-
tional key set-up and exchange overheads. However, the
discussion about the best key management/distribution
policy is beyond the scope of this paper.

Searchable Encryption Scheme (EDESE). There
are numerous encryption schemes that support keyword
search [45, 61, 44, 31, 33, 28, 51]. These schemes ex-
hibit different tradeoffs between security, functionality
and efficiency, but all of them require modifications on
the server side. Schemes that make use of inverted in-
dex [33] are not suitable, as updates to inverted index
cannot be practically deployed in our scenario.

Since we cannot assume server cooperation (con-
sistent with our threat model in Sect. 3.2), we de-
signed a new searchable encryption scheme called easily-
deployable efficiently-searchable symmetric encryption
scheme (EDESE). EDESE is an adaptation of a scheme
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proposed by Bellare et al. [25], with modifications simi-
lar to that of Goh’s scheme [44] that is retrofittable to a
non-modifying server scenario.

We incorporated EDESE for email applications with
the following construct. The idea for the construction is
simple: we encrypt the document with a standard encryp-
tion scheme and append HMACs of unique keywords in
the document. We discuss the specific instantiations of
encryption and HMAC schemes that we use in Sect. 4.1.
To prevent leaking the number of unique keywords we
add as many “dummy” keywords as needed. We present
this construction in detail in the full version of our pa-
per [54].

In order to achieve higher storage and search effi-
ciency, we utilized a Bloom filter (BF) to represent the
EDESE-index. Basically, a BF is a data structure that
allows for efficient set-inclusion tests. However, such
set-inclusion tests based on BFs are currently not sup-
ported by existing email providers, which only support
string-based searches. Therefore, we devised a solution
that encodes the positions of on-bits in a BF as Unicode
strings (refer to Sect. 4.4 for details).

Since the underlying data structure that is used to sup-
port EDESE is a BF, search operations are susceptible to
false positives matches. However, this does not pose a
real problem to users, because the false positive rate is
extremely low and is completely adjustable. Our current
implementation follows these parameters: the length of
keyword (in bits) is estimated to be k = 128, the size of
the BF array is B = 224, the maximum number of unique
keywords used in any email thread is estimated to be
d = 106, the number of bits set to 1 for one keyword
is r = 10. Plugging in these values into the formula for
false positive calculation [44], i.e. (1− e−rd/B)r, we cap
the probability of a false positive δ to 0.0003.

We formally assess the security guarantees that our
construction provides. In the full version of our pa-
per [54], we propose a security definition for EDESE
schemes and discuss why the existing notions are not
suitable. Our definition considers an attacker who can
obtain examples of encrypted documents of its choice
and the results of queries of keywords of its choice.
Given such an adversary, an EDESE scheme secure un-
der our definition should hide all partial information
about the messages except for the message length and the
number of common keywords between any set of mes-
sages. Leaking the latter is unavoidable given that for
the search function to be transparent to encryption, the
output of a query has to be a part a ciphertext. But ev-
erything else, e.g., the number of unique keywords in a
message, positions of the keywords, is hidden.

Given the security definition in our full paper [54], we
prove that our construction satisfies it under the standard
notions of security for encryption and HMACs.

Figure 3: User still interacts with Gmail app to compose
email, with M-Aegis’ mimic GUIs painted with different
colors on L-7.5.

3.4 User Workflow

To better illustrate how the different components in M-
Aegis fit together, we describe an example workflow of
a user composing and sending an email using the stock
Gmail app on Android using M-Aegis:

1) When the user launches the Gmail app, the UIAM
notifies the correct per-TCA logic of the event. The per-
TCA logic will then initialize itself to handle the Gmail
workflow.

2) As soon as Gmail is launched, the per-TCA logic
will try to detect the state of Gmail app (e.g. preview,
reading, or composing email). This allows M-Aegis to
properly create mimic GUIs on L-7.5 to handle user in-
teraction. For example, when a user is on the compose
page, the per-TCA logic will mimic the GUIs of the
subject and content fields (as seen in Fig. 3). The user
then interacts directly with these mimic GUIs in plain-
text mode without extra effort. Thus, the workflow is
not affected. Note that essential but subtle features like
spell check and autocorrect are still preserved, as they are
innate features of the mobile device’s soft keyboard. Ad-
ditionally, the “send” button is also mimicked to capture
user intent.

3) As the user finishes composing his email, he clicks
on the mimicked “send” button on L-7.5. Since L-7.5 re-
ceives the user input and not the underlying Gmail app,
the per-TCA logic is able to capture this event and pro-
ceed to process the subject and the content.

4) The per-TCA logic selects the appropriate encryp-
tion key to be used based on the recipient list and the
predetermined key policy for Gmail. If a key cannot be
found for this conversation, M-Aegis prompts the user
(see Fig. 4) for a password to derive a new key. After ob-
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Figure 4: Password prompt when user sends encrypted
mail for a new conversation.

taining the associated key for this conversation, M-Aegis
will then encrypt these inputs and encode it back to text
such that Gmail can consume it.

5) The per-TCA logic then requests the UIAM to fill in
the corresponding GUIs on Gmail with the transformed
text. After they are filled, the UIAM is instructed to click
the actual “send” button on behalf of the user. This pro-
vides a transparent experience to the user.

From this workflow, it should therefore be evident that
from the user’s perspective, the workflow of using Gmail
remains the same, because of the mimicking properties
of M-Aegis.

4 Implementation and Deployment

In this section, we discuss important details of our pro-
totype implementations. We implemented a prototype
of M-Aegis using Java on Android, as an accessibility
service. This is done by creating a class that extends
the AccessibilityService class and requesting the
BIND ACCESSIBILITY SERVICE permission in the man-
ifest. This allows us to interface with the UIA library,
building our UIAM. We discuss this in further detail in
Sect. 4.2.

We then deployed our prototype on two Android
phones from separate manufacturers, i.e. Samsung
Galaxy Nexus, and LG Nexus 4, targeting several ver-
sions of Android, from Android 4.2.2 (API level 17) to
Android 4.4.2 (API level 19). The deployment was done
on stock devices and OS, i.e. without modifying the OS,
Android framework, or rooting. Only simple app instal-
lation was performed. This demonstrates the ease of de-
ployment and distribution of our solution. We have also
implemented an M-Aegis prototype on Windows 7 to
demonstrate interoperability and generality of approach,

but we do not discuss the details here, as it is not the
focus of this paper.

As an interface to the user, we create a button that is
always on top even if other apps are launched. This al-
lows us to create a non-bypassable direct channel of com-
munication with the user besides providing visual cue of
whether M-Aegis is turned on or off.

For app support, we use Gmail as an example of an
email app and WhatsApp as an example of a messenger
app. We argue that it is easy to extend the support to
other apps within these classes.

We first describe the cryptographic schemes that we
deployed in our prototype, then we explain how we build
our UIAM and create L-7.5 on Android, and finally dis-
cuss the per-TCA logic required to support both classes
of apps.

4.1 Cryptographic Schemes
For all the encryption/decryption operations, we use
AES-GCM-256. For a password-based key generation
algorithm, we utilized PBKDF2 with SHA-1 as the
keyed-hash message authentication code (HMAC). We
also utilized HMAC-SHA-256 as our HMAC to gener-
ate tags for email messages (Sect. 4.4.1). These func-
tionalities are available in Java’s javax.crypto and
java.security packages.

For the sake of usability, we implemented a password-
based scheme as the default, and we assume one pass-
word for each group of message recipients. We rely on
the users to communicate the password to the receiving
parties using out of band channel (e.g. in person or phone
calls). For messaging apps, we implemented an authenti-
cated Diffie-Hellman key exchange protocol to negotiate
session keys for WhatsApp conversations. A PGP key
is automatically generated for a user during installation
based on the hashed phone number, and is deposited to
publicly accessible repositories on the user’s behalf (e.g.
MIT PGP Key Server [10]). Further discussion about
verifying the authenticity of public keys retrieved from
such servers is omitted from this paper. Since all session
and private keys are stored locally for user convenience,
we make sure that they are never saved to disk in plain-
text. They are additionally encrypted with a key derived
from a master password that is provided by the user dur-
ing installation.

4.2 UIAM
As mentioned earlier, UIAM is implemented us-
ing UIA libraries. On Android, events that sig-
nify something new being displayed on the screen
can be detected by monitoring following the events:
WINDOW CONTENT CHANGED, WINDOW STATE CHANGED,
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and VIEW SCROLLED. Upon receiving these events, per-
TCA logic is informed. The UIA library presents a data
structure in the form of a tree with nodes representing UI
components with the root being the top window. This
allows the UIAM to locate all UI components on the
screen.

Additionally, Android’s UIA framework also pro-
vides the ability to query for UI nodes by provid-
ing a resource ID. For instance, the node that repre-
sents Gmail’s search button can be found by query-
ing for com.google.android.gm:id/search. More
importantly, there is no need to guess the names of
these resource IDs. Rather, a tool called UI Automator
Viewer [17] (see Sect. 4.4), which comes with the default
Android SDK. Once the node of interest is found, all the
other information about the GUI represented by the node
can be found. This includes the exact location and size
of text boxes and buttons on the screen.

M-Aegis is able to programmatically interact
with various GUIs of a TCA using the function
performAction(). This allows it t to click on a TCA’s
button on the user’s behalf after it has processed the user
input.

4.3 Layer 7.5
We implemented Layer 7.5 on Android as specific types
of system windows, which are always-on-top of all
other running apps. Android allows the creation of
various types of system windows. We focus on two,
TYPE SYSTEM OVERLAY and TYPE SYSTEM ERROR; the
first is for display only and allows all tap/keyboard events
to go to underlying apps. In contrast, the second type al-
lows for user interaction. Android allows the use of any
View objects for either type of window, and we use this
to create our mimic GUIs, and set their size and loca-
tion. We deliberately create our mimic GUIs in different
colors as a subtle visual cue to the users that they are
interacting with M-Aegis, without distracting them from
their original workflow.

4.4 Per-TCA Logic
From our experience developing per-TCA logic, the gen-
eral procedure for development is as follows:

1) Understand what the app does. This allows us to
identify which GUIs need to be mimicked for intercept-
ing user I/O. For text-based TCAs, this is a trivial step
because the core functionalities that M-Aegis needs to
handle are limited and thus easy to identify, e.g. buffer-
ing user’s typed texts and sending them to the intended
recipient.

2) Using UI Automator Viewer [17], examine the UIA
tree for the relevant GUIs of a TCA and identify sig-

Figure 5: The UI Automator Viewer presents an easy
to use interface to examine the UIA tree and determine
the resource ID (blue ellipse) associated with a GUI of
interest (red rectangle).

natures (GUI resource IDs) for each TCA state. UI
Automator Viewer allows inspection of the UIA tree
through a graphical interface (as seen in Fig. 5), which
reduces development time. We rely on UI components
that are unique to certain states (e.g. the “send” button
signifies that we are in the compose state).

3) For each relevant GUI, we need to devise algo-
rithms to extract either the location and content of cipher-
text (for decryption and display), or the type, size, and
location of GUIs we need to mimic (e.g. the subject and
content boxes in the Gmail compose UI). Again, this is
done through UI Automator Viewer. For example, for the
Gmail preview state, we query the UIA for nodes with ID
com.google.android.gm:/id/conversation list

to identify all the UIA nodes corresponding to the
preview item of each individual email, and from those
we can extract all ciphertext on the preview window
through the UIA).

4) Create event handlers for controls we mimic on L-
7.5. For the Gmail compose state, we need to listen for
click/touch events for the L-7.5 “send” button and carry
out the process described in Sect. 3.3.3 to encrypt the
email and send the ciphertext to the underlying TCA.

5) Identify ways that each relevant state can be up-
dated. Updates can be handled via the following method:
clear L-7.5, extract all necessary information from the
new state, and render again. This is equivalent to redraw-
ing all GUIs on L-7.5 based on the detected state.

There are two details worth considering when devel-
oping per-TCA logic. First, careful consideration must
be given about the type of input data fed to TCAs. Since
most TCAs only accept input data in specific formats,
e.g. text, they do not support the input of random byte
sequences as valid data. Therefore, encrypted data must
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be encoded into text format before feeding it as input
to a TCA. Conventionally, base64 encoding is used for
this purpose. However, base64 encoding consumes too
much on-screen real estate. To overcome this, we en-
coded the binary encrypted data into Chinese Japanese
Korean (CJK) Unicode characters, which have efficient
on-screen real estate consumption. To map the binary
data into the CJK plane, we process the encrypted data
at the byte granularity (28). For each byte, its value is
added to the base of the CJK Unicode representation, i.e.
0x4E00. For example, byte 0x00 will be encoded as ‘一’,
and byte 0x01 will be represented as ‘丁’.

Second, M-Aegis can only function correctly if it can
differentiate between ordinary messages and encrypted
messages. We introduce markers into the encrypted data
after encoding; in particular, we wrap the subject and
content of a message using a pair of curly braces (i.e.
{, }).

Next, we describe implementation details that are spe-
cific to these classes of apps. We begin by introducing
the format of message we created for each class. Then
we discuss other caveats (if any) that are involved in the
implementation.

4.4.1 Email Apps

We implemented support for Gmail on our prototype as
a representative app of this category. We create two cus-
tom formats to communicate the necessary metadata to
support M-Aegis’ functionalities.
Subject: {Encode(IDKey||IV ||Encrypt(Sub ject))}
Content: {Encode(Encrypt(Content)||Tags)}

A particular challenge we faced in supporting decryp-
tion during the Gmail preview state is that only the begin-
ning parts of both the title and the subject of each mes-
sage are available to us. Also, the exact email addresses
of the sender and recipients are not always available, as
some are displayed as aliases, and some are hidden due
to lack of space. The lack of such information makes it
impossible to automatically decrypt the message even if
the corresponding encryption key actually exists on the
system.

To solve these problems, when we encrypt a message,
we include a key-ID (IDKey) to the subject field (as seen
in the format description above). Note that since the key-
ID is not a secret, it need not be encrypted. This way, we
will have all the information we need to correctly decrypt
the subtext displayed on the Gmail preview.

The Tags field is a collection of HMAC digests that
are computed using the conversation key and keywords
that exist in a particular email. It is then encoded and
appended as part of the content that Gmail receives to fa-
cilitate encrypted search without requiring modification
to Gmail’s servers.

4.4.2 Messenger Apps

We implemented support for WhatsApp on our prototype
as a representative app of this category. The format we
created for this class of apps is simple, as seen below:
Message: {Encode(IV ||Encrypt(Message))}

We did not experience additional challenges when
supporting WhatsApp.

5 Evaluations

In this section, we report the results of experiments to de-
termine the correctness of our prototype implementation,
measure the overheads of M-Aegis, and user acceptabil-
ity of our approach.

5.1 Correctness of Implementation
We manually verified M-Aegis’s correctness by navi-
gating through different states of the app and checking
if M-Aegis creates L-7.5 correctly. We manually veri-
fied that the encryption and decryption operations of M-
Aegis work correctly. We ensured that plaintext is prop-
erly received at the recipient’s end when the correct pass-
word is supplied. We manually verified the correctness
of our searchable encryption scheme by introducing spe-
cific search keywords. We performed search using M-
Aegis and found no false negatives in the search result.

5.2 Performance on Android
The overhead that M-Aegis introduced to a user’s work-
flow can be broken down into two factors: the additional
computational costs incurred during encryption and de-
cryption of data, and the additional I/O operations when
redrawing L-7.5. We measure overhead by measuring the
overall latency presented to the user in various use cases.
We found that M-Aegis imposes negligible latency to the
user.

All test cases were performed on a stock Android
phone (LG Nexus 4), with the following specifications:
Quad-core 1.5 GHz Snapdragon S4 Pro CPU, equipped
with 2.0 GB RAM, running Android Kit Kat (4.4.2, API
level 19). Unless otherwise stated, each experiment is
repeated 10 times and the averaged result is reported.

For our evaluation, we only performed experiments for
the setup of the Gmail app because Gmail is represen-
tative of a more sophisticated TCA, and thus indicates
worst-case performance for M-Aegis. Messenger apps
incur fewer overheads given their simpler TCA logic.

5.2.1 Previewing Encrypted Email

There are additional costs involved in previewing en-
crypted emails on the main page of Gmail. The costs are
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broken down into times taken to 1) traverse the UIA tree
to identify preview nodes, 2) capture ciphertext from the
UIA node, 3) obtain the associated encryption key from
the key manager, 4) decrypting ciphertext, and 5) render-
ing plaintext on L-7.5. We measure these operations as a
single entity by running a macro benchmark.

For our experiment, we ensured that the preview page
consists of encrypted emails (a total of 6 can fit on-
screen) to demonstrate worst-case performance. We
measured the time taken to perform all operations. We
found, on average, it takes an additional 76 ms to render
plaintext on L-7.5. Note that this latency is well within
expected response time (50 - 150 ms), beyond which a
user would notice the slowdown effect [60].

5.2.2 Composing and Sending Encrypted Email

We measured the extra time taken for a typical email to
be encrypted and for our searchable encryption index to
be built. We used the Enron Email Dataset [32] as a
representation of typical emails. We randomly picked
10 emails. The average number of words in an email
is 331, of which 153 are unique. The shortest sampled
email contained 36 words, of which 35 are unique. The
longest sampled email contains 953 words, of which 362
are unique.

With the longest sampled email, M-Aegis took 205
ms in total to both encrypt and build the search index.
Note that this includes the network latency a user will
perceive while sending an email, regardless of their use
of M-Aegis.

5.2.3 Searching on Encrypted Emails

A user usually inputs one to three keywords per search
operation. The latency experienced when performing
search is negligible. This is because the transformation
of the actual keyword into indexes requires only the for-
ward computation of one HMAC, which is nearly instan-
taneous.

5.3 User Acceptability Study

This section describes the user study we performed to
validate our hypothesis of user acceptability of M-Aegis.
Users were sampled from a population of college stu-
dents. They must be able to proficiently operate smart
phones and have had previous experience using the
Gmail app. Each experiment was conducted with two
identical smart phones, i.e. Nexus 4, both running An-
droid 4.3, installed with the stock Gmail app (v. 4.6).
One of the devices had M-Aegis installed.

The set up of the experiment is as follows. We asked
the user to perform a list of tasks: previewing, reading,

composing, sending, and searching through email on a
device that is not equipped with M-Aegis. Participants
were asked to pay attention to the overall experience of
performing such tasks using the Gmail app. This served
as the control experiment.

Participants were then told to repeat the same set of
tasks on another device that was equipped with M-Aegis.
This was done with the intention that they were able to
mentally compare the difference in user experience when
interacting with the two devices.

We queried the participants if they found any differ-
ence in the preview page, reading, sending, and search-
ing email, and if they felt that their overall experience
using the Gmail app on the second device was signifi-
cantly different.

We debriefed the participants about the experiment
process and explained the goal of M-Aegis. We asked
them whether they would use M-Aegis to protect the pri-
vacy of their data. The results we collected and report
here are from 15 participants.

We found that no participants noticed major differ-
ences between the two experiences using the Gmail app.
One participant noticed a minor difference in the email
preview interface, i.e. L-7.5 did not catch up smoothly
when scrolled. A different participant noticed a minor
difference in the process of reading email, i.e. L-7.5 lag
before covering ciphertext with mimic GUIs. There were
only two participants that found the process of sending
email differed from the original. When asked for details,
they indicated that the cursor when composing email was
not working properly. After further investigation, we de-
termined this was a bug in Android’s GUI framework
rather than a fundamental flaw in M-Aegis’s design.

Despite the perceived minor differences when per-
forming particular tasks, all participants indicated that
they would use M-Aegis to protect the privacy of their
data after understanding what M-Aegis is. This implies
that they believe that the overall disturbance to the user
experience is not large enough to impede adoption.

Since we recruited 15 users for this study, the accu-
racy/quality of our conclusion from this study lies be-
tween 80% and 95% (between 10 and 20 users) accord-
ing to findings in [42]. We intend to continue our user
study to further validate our acceptability hypothesis and
to continuously improve our prototype based on received
feedback.

6 Discussions

6.1 Generality and Scalability
We believe that our M-Aegis architecture presents a gen-
eral solution that protects user data confidentiality, which
is scalable in the following aspects:
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Across Multiple Cloud Services. There are two main
classes of apps that provide communication services,
email and messenger apps. By providing functionality
for apps in these two categories, we argue that M-Aegis
can satisfy a large portion of user mobile security needs.
The different components of M-Aegis incur a one-time
development cost. We argue that it is easy to scale
across multiple cloud services, because per-TCA logic
that needs to be written is minimal per new TCA. This
should be evident through the five general steps high-
lighted in Sect. 4.4. In addition, the logic we developed
for the first TCA (Gmail) serves as a template/example
to implement support for other apps.

Across App Updates. Since the robustness of the
UIAM construct (Sect. 4.2) gives M-Aegis the ability to
track all TCA GUIs regardless of TCA state, M-Aegis is
able to easily survive app updates. Our Gmail app sup-
port has survived two updates without requiring major
efforts to adapt.

Resource ID names can change across updates. For
example, when upgrading to Gmail app version 4.7.2,
the resource ID name that identifies a sender’s account
name changed. Using UI Automator Viewer, we quickly
discovered and modified the mapping in our TCA logic.
Note that only the mapping was changed; the logic for
the TCA does not need to be modified. This is be-
cause the core functionality of the updated GUI did not
change (i.e., the GUI associated with a sender’s account
remained a text input box).

6.2 Limitations

As mentioned earlier, M-Aegis is not designed to protect
users against social-engineering-based attacks. Adver-
saries can trick users into entering sensitive information
to the TCA while M-Aegis is turned off. Our solution is
best effort by providing distinguishing visual cues to the
user when M-Aegis is turned on and its L-7.5 is active.
For example the mimic GUIs that M-Aegis creates a dif-
ferent color. Users can toggle M-Aegis’ button on or off
to see the difference (see Fig. 2). Note that M-Aegis’s
main button is always on top and cannot be drawn over
by other apps. However, we do not claim that this fully
mitigates the problem.

One of the constraints we faced while retrofitting a se-
curity solution to existing TCAs (not limited to mobile
environments) is that data must usually be of the right
format (e.g. strictly text, image, audio, or video). For
example, Gmail accepts only text (Unicode-compatible)
for an email subject, but Dropbox accepts any type of
files, including random blobs of bytes. Currently, other
than text format, we do not yet support other types of user
data (e.g. image, audio and video). However, this is not
a fundamental design limitation of our system. Rather,

it is because of the unavailability of transformation func-
tions (encryption and encoding schemes) that works for
the these media types.

Unlike text, the transformation/obfuscation functions
in M-Aegis for other type of data may also need to sur-
vive other process steps, such as compression. It is nor-
mal for TCAs to perform compression on multimedia to
conserve bandwidth and/or storage. For example, Face-
book is known to compress/downsample the image up-
loads.

The confidentiality guarantee that we provide excludes
risks at the end points themselves. For example, a
poor random number generator can potentially weaken
the cryptographic schemes M-Aegis applies. It is cur-
rently unclear how our text transformations will affect a
server’s effectiveness in performing spam filtering.

Our system currently does not tolerate typographical
error during search. However, we would like to point out
that this is an unlikely scenario, given that soft keyboards
on mobile devices utilize spell check and autocorrect fea-
tures. Again, this is not a flaw with our architecture;
rather, it is because of the unavailability of encryption
schemes that tolerate typographical error search without
requiring server modification.

7 Conclusions

In this paper we presented Mimesis Aegis (M-Aegis), a
new approach to protect private user data in public cloud
services. M-Aegis provides strong isolation and pre-
serves user experience through the creation of a novel
conceptual layer called Layer 7.5 (L-7.5), which acts as
a proxy between an app (Layer 7) and a user (Layer 8).
This approach allows M-Aegis to implement true end-to-
end encryption of user data while achieving three goals:
1) plaintext data is never visible to a client app, any in-
termediary entities, or the cloud provider; 2) the origi-
nal user experience with the client app is preserved com-
pletely, from workflow to GUI look-and-feel; and 3) the
architecture and technique are general to a large number
of apps and resilient to app updates. We implemented
a prototype of M-Aegis on Android that can support a
number of popular cloud services (e.g. Gmail, Google
Hangout, Facebook, WhatsApp, and Viber). Our user
study shows that our system preserves both the workflow
and the GUI look-and-feel of the protected applications,
and our performance evaluations show that users expe-
rienced minimal overhead in utilizing M-Aegis on An-
droid.
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BAUER, G. Falling asleep with angry birds, facebook and kindle:
a large scale study on mobile application usage. In Proceedings
of the 13th international conference on Human computer interac-
tion with mobile devices and services (2011), ACM, pp. 47–56.

[28] BONEH, D., CRESCENZO, G. D., OSTROVSKY, R., AND PER-
SIANO, G. Public key encryption with keyword search. In EU-
ROCRYPT (2004), C. Cachin and J. Camenisch, Eds., vol. 3027
of Lecture Notes in Computer Science, Springer, pp. 506–522.

[29] BORDERS, K., VANDER WEELE, E., LAU, B., AND PRAKASH,
A. Protecting confidential data on personal computers with stor-
age capsules. Ann Arbor 1001 (2009), 48109.

[30] BORISOV, N., GOLDBERG, I., AND BREWER, E. Off-the-record
communication, or, why not to use pgp. In Proceedings of the
2004 ACM workshop on Privacy in the electronic society (2004),
ACM, pp. 77–84.

[31] CHANG, Y.-C., AND MITZENMACHER, M. Privacy preserving
keyword searches on remote encrypted data. In Applied Cryp-
tography and Network Security, J. Ioannidis, A. Keromytis, and
M. Yung, Eds., vol. 3531 of Lecture Notes in Computer Science.
Springer, 2005, pp. 442–455.

[32] COHEN, W. W. Enron email dataset. http://www.cs.cmu.edu/ en-
ron, August 2009.

[33] CURTMOLA, R., GARAY, J. A., KAMARA, S., AND OSTRO-
VSKY, R. Searchable symmetric encryption: Improved defini-
tions and efficient constructions. In ACM Conference on Com-
puter and Communications Security (2006), A. Juels, R. N.
Wright, and S. D. C. di Vimercati, Eds., ACM, pp. 79–88.

14



USENIX Association  23rd USENIX Security Symposium 47

[34] DELTCHEVA, R. Apple, AT&T data leak
protection issues latest in cloud failures.
http://www.messagingarchitects.com/resources/security-
compliance-news/email-security/apple-att-data-leak-protection-
issues-latest-in-cloud-failures19836720.html, June 2010.

[35] DINGLEDINE, R., MATHEWSON, N., AND SYVERSON, P. Tor:
The second-generation onion router. Tech. rep., DTIC Document,
2004.

[36] DONG, X., CHEN, Z., SIADATI, H., TOPLE, S., SAXENA, P.,
AND LIANG, Z. Protecting sensitive web content from client-
side vulnerabilities with cryptons. In Proceedings of the 2013
ACM SIGSAC conference on Computer & communications secu-
rity (2013), ACM, pp. 1311–1324.

[37] ELKINS, M. Mime security with pretty good privacy (pgp).

[38] ENCK, W., GILBERT, P., CHUN, B.-G., COX, L. P., JUNG, J.,
MCDANIEL, P., AND SHETH, A. Taintdroid: An information-
flow tracking system for realtime privacy monitoring on smart-
phones. In OSDI (2010), vol. 10, pp. 1–6.

[39] FAHL, S., HARBACH, M., MUDERS, T., BAUMGÄRTNER, L.,
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Abstract
Today’s Web services – such as Google, Amazon, and
Facebook – leverage user data for varied purposes,
including personalizing recommendations, targeting
advertisements, and adjusting prices. At present, users
have little insight into how their data is being used.
Hence, they cannot make informed choices about the
services they choose.

To increase transparency, we developed XRay, the
first fine-grained, robust, and scalable personal data
tracking system for the Web. XRay predicts which
data in an arbitrary Web account (such as emails,
searches, or viewed products) is being used to target
which outputs (such as ads, recommended products, or
prices). XRay’s core functions are service agnostic and
easy to instantiate for new services, and they can track
data within and across services. To make predictions
independent of the audited service, XRay relies on the
following insight: by comparing outputs from different
accounts with similar, but not identical, subsets of data,
one can pinpoint targeting through correlation. We
show both theoretically, and through experiments on
Gmail, Amazon, and YouTube, that XRay achieves
high precision and recall by correlating data from a
surprisingly small number of extra accounts.

1 Introduction
We live in a “big data” world. Staggering amounts
of personal data – our as locations, search histories,
emails, posts, and photos – are constantly collected and
analyzed by Google, Amazon, Facebook, and a myriad
of other Web services. This presents rich opportunities
for marshaling big data to improve daily life and social
well-being. For example, personal data improves the
usability of applications by letting them predict and
seamlessly adapt to future user needs and preferences.
It improves business revenues by enabling effective
product placement and targeted advertisements. Twitter
data has been successfully applied to public health
problems [36], crime prevention [44], and emergency
response [22]. These beneficial uses have generated a
big data frenzy, with Web services aggressively pursuing
new ways to acquire and commercialize it.

Despite its innovative potential, the personal data
frenzy has transformed the Web into an opaque and
privacy-insensitive environment. Web services accumu-
late data, exploit it for varied and undisclosed purposes,
retain it for extended periods of time, and possibly share
it with others – all without the data owner’s knowledge
or consent. Who has what data, and for what purposes is
it used? Are the uses in the data owners’ best interests?
Does the service adhere to its own privacy policy? How
long is data used after its owner deletes it? Who shares
data with whom?

At present, users lack answers to these questions,
and investigators (such as FTC agents, journalists, or
researchers) lack robust tools to track data in the ever-
changing Web to provide the answers. Left unchecked,
the exciting potential of big data threatens to become a
breeding ground for data abuses, privacy vulnerabilities,
and unfair or deceptive business practices. Examples of
such practices have begun to surface. In a recent inci-
dent, Google was found to have used institutional emails
from ad-free Google Apps for Education to target ads in
users’ personal accounts [18, 37]. MySpace was found
to have violated its privacy policy by leaking personally
identifiable information to advertisers [25]. Several
consumer sites, such as Orbitz and Staples, were found
to have adjusted their product pricing based on user
location [29, 43]. And Facebook’s 2010 ad targeting was
shown to be vulnerable to micro-targeted ads specially
crafted to reveal a user’s private profile data [23].

To increase transparency and provide checks and
balances on data abuse, we argue that new, robust, and
versatile tools are needed to effectively track the use of
personal data on the Web. Tracking data in a controlled
environment, such as a modified operating system, lan-
guage, or runtime, is an old problem with a well-known
solution: taint tracking systems [12, 16, 7, 48]. However,
is it possible to track data in an uncontrolled environ-
ment, such as the Web? Can robust, generic mechanisms
assist in doing so? What kinds of data uses are trackable
and what are not? How would the mechanisms scale
with the amount of data being tracked?

As a first step toward answering these questions, we
built XRay, a personal data tracking system for the Web.
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XRay correlates designated data inputs (be they emails,
searches, or visited products) with data outputs results
(such as ads, recommended products, or prices). Its
correlation mechanism is service agnostic and easy to
instantiate, and it can track data use within and across
services. For example, it lets a data owners track how
their emails, Google+, and YouTube activities are used
to target ads in Gmail.

At its core, XRay relies on a differential correlation
mechanism that pinpoints targeting by comparing out-
puts in different accounts with similar, but not identical,
subsets of data inputs. To do so, it associates with every
personal account a number of shadow accounts, each of
which contains different data subsets. The correlation
mechanism uses a simple Bayesian model to compute
and rank scores for every data input that may have
triggered a specific output. Intuitively, if an ad were
seen in many accounts that share a certain email, and
never in accounts that lack that email, then the email is
likely to be responsible for a characteristic that triggers
the ad. The email’s score for that ad would therefore be
high. Conversely, if the ad were seen rarely in accounts
with or lacking that email, that email’s score for this ad
would be low.

Constructing a practical auditing system around dif-
ferential correlation raises significant challenges. Chief
among them is scalability with the number of data items.
Theoretically, XRay requires a shadow account for
each combination of data inputs to accurately pinpoint
correlation. That would suggest an exponential number
of accounts! Upon closer examination, however, we find
that a few realistic assumptions and novel mechanisms
let XRay reach high precision and recall with only
a logarithmic number of accounts in number of data
inputs. We deem this a major new result for the science
of tracking data-targeting on the Web.

We built an XRay prototype and used it to correlate
Gmail ads, Amazon product recommendations, and
YouTube video suggestions to user emails, wish lists,
and previously watched videos, respectively. While
Amazon and YouTube provide detailed explanations of
their targeting, Gmail does not, so we manually vali-
dated associations. For all cases, XRay achieved 80-90%
precision and recall. Moreover, we integrated our Gmail
and YouTube prototypes so we could track cross-service
ad targeting. Although several prior measurement
studies [10, 47, 21, 20, 31] used methodologies akin
to differential correlation, we believe we are the first to
build a generic, service agnostic, and scalable tool based
on it. Overall, we make the following contributions:
1. The first general, versatile, and open system to track

arbitrary personal Web data use by uncontrolled
services. The code is available from our Web page
https://xray.cs.columbia.edu/.

2. The first in-depth exploration into the scalability
challenges of tracking personal data on the Web.

3. The design and implementation of robust mechanisms
to address scaling, including data matching.

4. System instantiation to track data on three services
(Gmail, Amazon, YouTube) and across services
(YouTube to Gmail).

5. An evaluation of our system’s precision and recall on
Gmail, Amazon, and YouTube. We show that XRay
is accurate and scalable. Further, it reveals intriguing
practices now in use by Web services and advertisers.

2 Motivation
This paper lays the algorithmic foundations for a new
generation of scalable, robust, and versatile tools to
lift the curtain on how personal data is being targeted.
We underscore the need for such tools by describing
potential usage scenarios inspired by real-life examples
(§2.1). We do this not to point fingers at specific service
providers; rather, we aim to show the many situations
where transparency tools would be valuable for end-
users and auditors alike. We conclude this section by
briefly analyzing how current approaches fail to address
these usage scenarios (§2.2).

2.1 Usage Scenarios
Scenario 1: Why This Ad? Ann often uses her Gmail
ads to discover new retail offerings. Recently, she
discussed her ad-clicking practices with her friend Tom,
a computer security expert. Tom warned her about
potential privacy implications of clicking on ads without
knowing what data they target. For example, if she
clicks on an ad targeting the keyword “gay” and then
authenticates to purchase something from that vendor,
she is unwittingly volunteering potentially sensitive
information to the vendor. Tom tells Ann about two
options to protect her privacy. She can either disable
the ads altogether (using a system like AdBlock [1]),
or install the XRay Gmail plugin to uncover targeting
against her data. Unwilling to give up the convenience
of ads, Ann chooses the latter. XRay clearly annotates
the ads in the Gmail UI with their target email or
combination, if any. Ann now inspects this targeting
before clicking on an ad and avoids clicking if highly
sensitive emails are being targeted.
Scenario 2: They’re Targeting What? Bob, an FTC
investigator, uses the XRay Gmail plugin for a differ-
ent purpose: to study sensitive-data targeting practices
by advertisers. He suspects a potentially unfair practice
whereby companies use Google’s ad network to collect
sensitive information about their customers. Therefore,
Bob creates a number of emails containing keywords
such as “cancer,” “AIDS,” “bankruptcy,” and “unemploy-
ment.” He refreshes the Gmail page many times, each
time recording the targeted ads and XRay’s explanations
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for them. The experiment reveals an interesting result:
an online insurance company, TrustInUs.com, has tar-
geted multiple ads against his illness-related emails. Bob
hypothesizes that the company might use the data to set
higher premiums for users reaching their site through a
disease-targeted ad. He uses XRay results as initial evi-
dence to open an investigation of TrustInUs.com.
Scenario 3: What’s With The New Policy?1 Carla, an
investigative journalist, has set up a watcher on privacy
policies for major Web services. When a change occurs,
the watcher notifies her of the difference. Recently, an
important sentence in Google’s privacy policy has been
scrapped:

If you are using Google Apps (free edition),
email is scanned so we can display concep-
tually relevant advertising in some circum-
stances. Note that there is no ad-related
scanning or processing in Google Apps for
Education or Business with ads disabled.

To investigate scientifically whether this omission repre-
sents a shift in implemented policy, she obtains institu-
tional accounts, connects them to personal accounts, and
uses XRay to detect the correlation between emails in
institutional accounts and ads in corresponding personal
accounts. Finding a strong correlation, Carla writes an
article to expose the policy change and its implications.
Scenario 4: Does Delete Mean Delete? Dan, a
CS researcher, has seen the latest news that Snapchat,
an ephemeral-image sharing Website, does not destroy
users’ images after the requested timeout but instead just
unlinks them [41]. He wonders whether the reasons for
this are purely technical as the company has declared
(e.g., flash wearing levels, undelete support, spam filter-
ing) [39, 38] or whether these photos, or metadata drawn
from them, are mined to target ads or other products
on the Website. The answer will influence his decision
about whether to continue using the service. Dan instan-
tiates XRay to track the correlation between his expired
Snapchat photos and ads.

2.2 Alternative Approaches
The preceding scenarios illustrate the importance of
transparency in protecting privacy across a range of
use cases. We need robust, generic auditing tools to
track the use of personal data at fine granularity (e.g.,
individual emails, photos) within and across arbitrary
Web services. At present, no such tools exist, and the
science of tracking the use of personal Web data at a fine
grain is largely non-existent.

1In Feb. 2014, it was revealed based on court documents that
Google could have used institutional emails to target ads in personal
accounts [18]. In May 2014, Google committed to disable that fea-
ture [30]. Scenario 3 presents an XRay-based approach to investigate
the original allegation.

Existing approaches can be broadly classified in
two categories: protection tools, which prevent Web
services’ acquisition or use of personal data, and (2)
auditing tools, which uncover Web services’ acquisition
or use of personal data. We discuss these approaches
next; further related work is in §9.
Protection Tools. A variety of protection tools ex-
ist [11, 35, 1, 49]. For example, Ann could disable ads
using an ad blocker [1]. Alternatively, she could en-
crypt her emails, particularly the sensitive ones, to pre-
vent Google from using them to target ads. Dan could
use a self-destructing data system, such as Vanish [14],
to ensure the ephemerality of his Snapchat photos.

While we encourage the use of protection tools, they
impose difficult tradeoffs that make them inapplicable in
many cases. If Ann blocks all her ads, she cannot benefit
from those she might find useful; if she encrypts all of her
emails, she cannot search them; if she encrypts only her
sensitive emails, she cannot protect any sensitive emails
she neglected to encrypt in advance. Similarly, if Dan
encrypts his Snapchat photos, sharing them becomes
more difficult. While more sophisticated protection
systems address certain limitations (e.g., searchable [5],
homomorphic [15, 33], and attribute-based encryp-
tion [19], or privacy-preserving advertising [42, 13]),
they are generally heavyweight [15], difficult to use [45],
or require major service-side changes [15, 42, 13].
Auditing Tools. Given the limitations of protection
tools, transparency is gaining increased attention [47, 12,
21]. If protecting data proves too cumbersome, limiting,
or unsupportive of business needs, then users should at
least be able to know: (1) who is handling their data?,
and (2) what is it being used for?

Several tools developed in recent years partially ad-
dress the first question by revealing where personal data
flows from a local device [34, 12, 8]. TaintDroid [12]
uses taint tracking to detect leakage of personal data
from a mobile application to a service or third-party
backend. ShareMeNot [34] and Mozilla’s Lightbeam
Firefox add-on [27] identify third parties that are ob-
serving user activities across the Web. These systems
track personal data – such as location, sensor data, Web
searches, or visited sites – until it leaves the user’s
device. Once the data is uploaded to Web services, it
can be used or sold without a trace. In contrast, XRay’s
tracking just begins: we aim to tell users how services
use their data once they have it.

Several new tools and personalization measurement
studies partially address the second question: what
data is being used for [10, 47, 21, 20, 31]. In general,
all existing tools are highly specialized, focusing on
specific input types, outputs, or services. No general,
principled foundation for data use auditing exists, that
can be applied effectively to many services, a primary
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motivation for this our work. For example, Bobble [47]
reveals search result personalization based on user
location (e.g., IP) and search history. Moreover, existing
tools aim to discover only whether certain types of user
inputs – such as search history, browsing history, IP,
etc. – influence the output. None pinpoints at fine grain
which specific input – which search query, which visited
site, or which viewed product – or combination of inputs
explain which output. XRay, whose goals we describe
next, aims to do just that.

3 Goals and Models
Our overarching goal is to develop the core abstractions
and mechanisms for tracking data within and across
arbitrary Web sites. After describing specific goals
(§3.1), we narrow our scope with a set of simplifying as-
sumptions regarding the data uses that XRay is designed
to audit (§3.2) and the threats it addresses (§3.3).

3.1 Goals
Three specific goals have guided XRay’s design:

Goal 1: Fine-Grained and Accurate Data Tracking.
Detect which specific data inputs (e.g., emails) have
likely triggered a particular output (e.g., an ad). While
coarse-grained data use information (such as Gmail’s
typical statement, “This ad is based on emails from your
mailbox.”) may suffice at times, knowing the specifics
can be revelatory, particularly when the input is highly
sensitive and aggressively targeted.

Goal 2: Scalability. Make it practical to track signif-
icant amounts of data (e.g., past month’s emails). We
aim to support the tracking of hundreds of inputs with
reasonable costs in terms of shadow accounts. These ac-
counts are generally scarce resource since their creation
is being constrained by Web services. While we assume
that users and auditors can obtain some accounts on the
Web services they audit (e.g., a couple dozen), we strive
to minimize the number required for accurate and fine-
grained data tracking.

Goal 3: Extensibility, Generality, and Self-Tuning.
Make XRay generic and easy to instantiate for many ser-
vices and input/output types. Instantiating XRay to track
data on new sites should be simple, although it may re-
quire some service-specific implementation of input/out-
put monitoring. However, XRay’s correlation machinery
– the conceptually challenging part of a scalable auditing
tool – should be turn key and require no manual tuning.

3.2 Web Service Model
These goals may appear unsurmountable. An extremely
heterogeneous environment, the Web has perhaps as
many data uses as services. Moreover, data mining
algorithms can be complex and proprietary. How can
we abstract away this diversity and complexity to design
robust and generic building blocks for scalable data
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Figure 1: XRay Conceptual View. XRay views Web services
as black boxes, monitors user inputs and outputs to/from them,
and detects data use through correlation. It returns to the user
or auditor associations of specific inputs and outputs.

tracking? Fortunately, we find that certain popular
classes of Web data uses lend themselves to principled
abstractions that facilitate scalable tracking.

Figure 1 shows XRay’s simplified view of Web ser-
vices. Services, and networks of services that exchange
user data, are black boxes that receive personal data
inputs from users – such as emails, pictures, search
queries, locations, or purchases – and use them for varied
purposes. Some uses materialize into outputs visible to
users, such as ads, product or video recommendations,
or prices. Others invisible to the users. XRay correlates
some visible data inputs with some visible outputs by
monitoring them, correlating them, and reporting strong
associations to users. An example association is which
email(s) contributed to the selection of a particular ad.

XRay relates only strongly correlated inputs with
outputs. If an output is strongly correlated to an input
(i.e., the input’s presence or absence changes the output),
then XRay will likely be able to detect its use. If not (i.e.,
the monitored input plays but a small role in the output),
then it may go undetected. XRay also relates small
combinations of inputs with strongly correlated outputs.

Although simple, this model efficiently addresses
several types of personal data functions, including
product recommendations, price discriminations, and
various personalization functions (e.g., search, news).
We refer to such functions generically as targeting
functions and focus XRay’s design on them.

Three popular forms of targeting are:
1. Profile Targeting, which leverages static or slowly

evolving explicit information – such as age, gender,
race, or location – that the user often supplies by fill-
ing a form. This type of targeting has been studied
profusely [10, 47, 21, 20, 31]; we thus ignore it here.

2. Contextual Targeting, which leverages the content
currently being displayed. In Gmail, this is the cur-
rently open email next to which the ad is shown. In
Amazon or Youtube, the target is the product or video
next to which the recommendation is shown.

3. Behavioral Targeting, which leverages a user’s past
actions. An email sent or received today can trig-
ger an ad tomorrow; a video watched now can trig-
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ger a recommendation later. Use of histories makes it
harder for users to track which data is being used, a
key motivation for our development of XRay.

Theoretically, our differential correlation algorithms
could be applied to all three forms of targeting. From
a systems perspective, XRay’s design is geared towards
contextual targeting and a specific form of behavioral
targeting. The latter requires further attention. We
observe that this broad targeting class subsumes multiple
types of targeting that operate at different granularities.
For example, a service could use as inputs a user’s
most recent few emails to decide targeting. This would
be similar to an extended context. Alternatively, a
service could use historical input to learn a user’s coarse
interests or characteristics and base its targeting on that.

XRay currently aims to disclose any targeting applied
at the level of individual user data, or small combinations
thereof. Our differential correlation algorithms could
be applied to detect targeting that operates on a coarser
granularity. However, the XRay system itself would
require significant changes. Unless otherwise noted, we
use behavioral targeting to denote the restricted form of
behavioral targeting that XRay is designed to address.
We formalize these restrictions in §4.2.

3.3 Threat Model
To further narrow our problem’s scope, we introduce
threat assumptions. We assume that data owners (users
and auditors) are trusted and do not attempt to leverage
XRay to harm Web services or the Web ecosystem.
While they trust Web services with their data, they wish
to better understand how that data is being used. Data
owners are thus assumed to upload the data in clear text
to the Web services.

The threat models relevant for Web services depend
on the use case. For example, Scenarios 1 and 2 in
§2.1 assume Google is trusted, but its users wish to
understand more about how advertisers target them
through its ad platform. In contrast, in Scenarios 3 and
4, investigators may have reason to believe that Web
services might intentionally frustrate auditing.

This paper assumes an honest-but-curious model for
Web services: they try to use private data for financial
or functional gains, but they do not try to frustrate our
auditing mechanism, e.g., by identifying and disabling
shadow accounts. The service might attempt to defend
itself against more general types of attacks, such as
spammers or DDoS attacks. For example, many Web
services constrain the creation of accounts so as to limit
spamming and false clicks. Similarly, Web services may
rate limit or block the IPs of aggressive data collectors.
XRay must be robust to such inherent defenses. We
discuss challenges and potential approaches for stronger
adversarial models in §7.

4 The XRay Architecture
XRay’s design addresses the preceding goals and
assumptions. For concreteness, we draw examples
from our three XRay instantiations: tracking email-
to-ad targeting association within Gmail, attributing
recommended videos to those already seen on YouTube,
and identifying products in a wish list that generate a
recommendation on Amazon.

4.1 Architectural Overview
XRay’s high-level architecture (Figure 2) consists
of three components: (1) a Browser Plugin, which
intercepts tracked inputs and outputs to/from an audited
Web service and gives users visual feedback about
any input/output associations, (2) a Shadow Account
Manager, which populates shadow accounts with inputs
from the plugin and collects outputs (e.g., ads) for each
shadow account, and (3) the Correlation Engine, XRay’s
core, which infers associations and provides them to
the plugin for visualization. While the Browser Plugin
and Shadow Account Manager are service specific, the
Correlation Engine, which encapsulates the science
of Web-data tracking, is service agnostic. After we
describe each component, we focus on the design of the
Correlation Engine.
Browser Plugin. The Browser Plugin intercepts desig-
nated inputs and outputs (i.e., tracked inputs/outputs) by
recognizing specific DOM elements in an audited ser-
vice’s Web pages. Other inputs and outputs may not be
tracked by XRay (i.e., untracked inputs/outputs). The
decision of what to track belongs to an investigator or
developer who instantiates XRay to work on a specific
service. For example, we configure the XRay Gmail Plu-
gin to monitor a user’s emails as inputs and ads as out-
puts. When the Plugin gets a new tracked input (e.g., a
new email), it forwards it both to the service and to the
Shadow Account Manager. When the Plugin gets a new
tracked output (e.g., an ad), it queries the Correlation En-
gine for associations with the user’s tracked inputs (mes-
sage get assoc).
Shadow Account Manager. This component: (1) pop-
ulates the shadow accounts with subsets of a user ac-
count’s tracked inputs (denoted Di), and (2) periodically
retrieves outputs (denoted Ok) from the audited service
for each shadow account. Both functions are service spe-
cific. For Gmail, they send emails with SMTP and call
the ad API. For YouTube, they stream a video and scrape
recommendations, and for Amazon, they place products
in wish lists and scrape recommendations. The complex-
ity of these tasks depends on the availability of APIs or
the stability of a service’s page formats. Outputs col-
lected from the Web service are placed into a Correlation
Database (DB), which maps shadow accounts to their in-
put sets and output observations. Figure 2 shows a par-
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Figure 2: The XRay Architecture.

ticular assignment of tracked inputs across three shadow
accounts. For example, Shadow 1 has inputs D1 and
D2. The figure also shows the outputs collected for each
shadow account. Output O1 appears in Shadows 1 and 2
but not in 3; output O2 appears in Shadow 3 only.

Differential Correlation Engine. This engine, XRay’s
service-agnostic “brain,” leverages the data collected in
the Correlation DB to infer input/output associations.
When new outputs from shadow accounts are added into
the Correlation DB, the engine attempts to diagnose them
using a Correlation Algorithm. We developed several
such algorithms and describe them in §4.3. This process,
potentially time-consuming process, is done as a back-
ground job, asynchronously from any user request. In
Figure 2, differential correlation might conclude that D2
triggers O1 because O1 appears consistently in accounts
with that D2. It might also conclude that O2 is untargeted
given inconsistent observations. The engine saves these
associations in the Correlation DB.

When the plugin makes a get assoc request, the
Correlation Engine looks up the specified output in its
DB and returns any pre-computed association. If no out-
put is found, then the engine replies unknown (e.g., if an
ad never appeared in any shadow account or there is in-
sufficient information). Periodic data collection, coupled
with an online update of correlation model parameters,
minimizes the number of unknown associations. Our
experience shows that collecting shadow account outputs
in Gmail every ten hours or so yielded few unknown ads.

While the preceding example is simple, XRay can
handle complex challenges occurring in practice. First,
outputs are never consistently seen across all shadow
accounts containing the input they target. We call
this the limited-coverage problem; XRay handles it
by placing each data input in more shadow accounts.
Second, an output may have been triggered by one of
several targeted inputs (e.g., multiple emails on the same
topic may cause related ads to appear), a problem we

refer to as overlapping-inputs. This exacerbates the
number of accounts needed, since it diminishes the
differential signal we receive from them. XRay uses
robust, service-agnostic mechanisms and algorithms
to match overlapping inputs, place them in the same
accounts, and detects their use as a group.

Organization. The remainder of this section describes
the Differential Correlation Engine. After constructing it
for Gmail, we applied it as-is for Amazon and YouTube,
where it achieved equally high accuracy and scalability
despite observable differences in how targeting works on
these three services. After establishing notations and for-
malizing our assumptions (§4.2), we describe multiple
correlation algorithms, which build up to our self-tuning
correlation algorithm that made this adaptation conve-
nient (§4.3). §4.4 describes our input matching.

4.2 Notation and Assumptions
We use f to denote the black-box function that repre-
sents the service (e.g., Gmail) associating inputs Dis
(e.g., the emails received and sent) to targeted outputs
Oks (e.g., ads). Other inputs are either ignored by XRay,
known only to the targeting system, or under no known
control. We assume they are independent or fixed,
captured in the randomness of f .

We assume that f decides targeting using: (1) a
single input (e.g., show Ok if D4 is in the account),
(2) a conjunctive combination of inputs (e.g., show Ok
if D5 and D8 are in the account), or (3) a disjunctive
combination of the previous (e.g., show Ok if (D5 and
D8) are in the account or if D4 is in the account). We
refer to conjunctive and disjunctive combinations as
AND and OR combinations, respectively, and assume
that their is bounded by a maximum input size, r. This
corresponds to the preceding definition of behavioral
targeting from §3.2. Contextual targeting will always be
a single-input (size-one) combination.

Our goal is to decide whether f produced each output
Ok as a reaction to a bounded-size combination of the
Dis. We define as untargeted any ad that is not targeted
against any combination of Dis, though in reality the ad
could be targeted against untracked inputs. We denote
untargeting as D /0, meaning that the ad is targeted against
the “void” email. Our algorithms compute the most
likely combination from the N inputs that explains a
particular set of observations,�x, obtained by XRay.

We define three probabilities upon which our algo-
rithms and analyses depend. First, the coverage, pin, is
the probability that an account j containing the input Di
targeted by a particular ad, will see that ad at least once.
Second, an account j′ lacking input Di will see the ad
with a smaller probability, pout. Third, if the ad is not
behaviorally targeted, it will appear in each account with
the same probability, p /0. We assume that pin, p /0, pout are
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constant across all emails, ads, and time, and that pout is
strictly smaller than pin (bounded noise hypothesis).

Finally, we consider all outputs to be independent of
each other across time. §8 discusses the implications.

4.3 Correlation Algorithms
A core contribution of this paper is our service-agnostic,
self-tuning differential correlation algorithm, which
requires only a logarithmic number of shadow accounts
to achieve high accuracy. We wished not only to validate
this result experimentally, but also to prove it theoreti-
cally in the context of our assumptions. This section con-
structs the algorithm in steps, starting with a naı̈ve poly-
nomial algorithm that illustrates the scaling challenges.
We then define a base algorithm using set intersections
and prove that it has the desired logarithmic scaling prop-
erties; it has parameters which, if not carefully chosen,
can lead to poor results. We therefore extend this base
algorithm into a self-tuning Bayesian model that auto-
matically adjusts its parameters to maximize correctness.

4.3.1 Naı̈ve Non-Logarithmic Algorithm
An intuitive approach to differential correlation is to
create accounts for every combination of inputs, gather-
ing maximum information about their behaviors. With
a sufficient number of observations, one could expect
to detect which accounts, and hence which subsets of
inputs, target a particular ad. Unfortunately, this method
requires a number of accounts that grows exponentially
as the number of items N to track grows. When restrict-
ing the size of combinations to r, as we do in XRay, the
number of accounts needed is polynomial (in O(Nr)),
or linear if we study unique inputs only. Even a linear
number of accounts in the number N of inputs remains
impractical to scale to large input sizes (e.g., a mailbox).

4.3.2 Threshold Set Intersection
We now show that it is possible to infer behavioral
targeting using no more than a logarithmic number
of accounts as a function of the number of inputs.
Specifically, we prove the following theorem:

Theorem 1 Under §4.2 assumptions, for any ε > 0 there
exists an algorithm that requires C × ln(N) accounts
to correctly identify the inputs of a targeted ad with
probability (1− ε). The constant C depends on ε and
the maximum size of combinations r (O(r2r log( 1

ε ))).

To demonstrate the theorem, we define the Set Inter-
section Algorithm and prove that it has the correctness
and scaling properties specified in the theorem. Given
that outputs will appear more often in accounts con-
taining the targeting inputs, the core of the algorithm is
to determine the set of inputs appearing in the highest
number of accounts that also see a given ad. This paper
describes a basic version of the algorithm that makes

� �
// Set Intersection Algo:
// Runs with each collected ad.
In: Output Ok (e.g. an ad).
Params: MIN ACTIVE ACCTS, THRESHOLD.
Out: Targeted input combination.
// Step 1: Compute active accounts.
Ak = the accounts that see ad Ok.
if |Ak| < MIN ACTIVE ACCTS

return /0
end
// Step 2: Create input combination hypothesis.
targeted set = /0
foreach input Di do

if number o f Ak containing Di
|Ak | >THRESHOLD

targeted set += Di
end

end
// Step 3: Verify it is a real combination.
if number o f Ak containing entire targeted set

|Ak | <THRESHOLD
return /0

end
// targeted set triggered the output.
return targeted set� �

Figure 3: The Set Intersection Algorithm. Can be proven
to predict targeting correctly under certain assumptions with a
logarithmic number of accounts.

some simplifying assumptions and provides a brief proof
sketch. The detailed proof and complete algorithm are
described in our technical report [26].

Algorithm. The algorithm relies on a randomized place-
ment of inputs into shadow accounts, with some redun-
dancy to cope with imperfect coverage. We thus pick a
probability, 0 < α < 1, create C ln(N) shadow accounts,
and place each input Di randomly into each account with
probability α . Figure 3 shows the Set Intersection algo-
rithm for a set of observations, �x. Given an output Ok
collected from the user account, we compute the set of
active accounts, Ak, as those shadow accounts that have
seen the output (Step 1). We then compute the set of in-
puts that appear in at least a threshold fraction of active
accounts; this set is our candidate for the combination
being targeted by the ad (Step 2). Finally, we check that
the entire combination is in a threshold fraction of the ac-
tive accounts (Step 3). Theoretically, we prove that there
exists a threshold for which the algorithm is arbitrarily
correct with the available C ln(N) accounts. Practically,
this threshold must be tuned experimentally to achieve
good accuracy on every service – a key reason for our
Bayesian enhancement in §4.3.3.

Correctness Proof Sketch. The proof shows that if there
were targeting, every non-targeting input would have a
vanishingly small probability to be in a significant frac-
tion of the active accounts. Let us call S the set of inputs
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� �
// Bayesian Prediction Alg:
// Runs with each collected ad.
In: Output Ok (e.g. an ad).
Out: Targeted input.
// Compute probabilities.
foreach input Di do
P [Di|�x ] = bayes(P [�x| Di ])

end
// Compute untargeted prob.
P [D /0|�x ] = bayes(P [�x| D /0 ])
// Return event with max prob.
return Di with max P [Di|�x ]� �

� �
// Parameter Learning Alg:
// Runs periodically.
// Initialize params (arbitrary).
pin = .7,pout = .01,p /0 = .1
do

foreach output Ok do
Run Bayesian Prediction.

end
Update pin, pout , p /0

from predictions.
until pin, pout , p /0 converge
end� �

Figure 4: Bayesian Correlation. Left: Bayesian prediction
algorithm for behavioral targeting. Right: typical iterative
inference process to learn parameters.

contained in a significant fraction of the active accounts.
Without targeting, these inputs would be present in the
accounts by mere chance. Since inputs are independently
distributed into the accounts, we show that the probabil-
ity of S not being empty decreases exponentially with the
number of active accounts (through Chernoff bounds).
With targeting, we show that with high probability no
other input than the explaining combination is in S, be-
cause of the bounded noise hypothesis. Appendix A.2
provides further proof details.

The proofs and algorithm included in this paper work
only for conjunctive combinations (e.g., D1 and D2,
see §4.2). The theory, however, can be extended to
disjunctive combinations (e.g., (D1 and D2) or D5), but
the algorithm for detecting such combinations is more
complex and relies on a recursive argument: if we find
one combination from the disjunction, then the active
accounts that include this combination define a context
where the combination appears non-targeting because it
is everywhere. If we recursively apply our algorithm in
this context, we can detect the second combination in the
disjunction, then the third, etc (see technical report [26]).

4.3.3 Self-Tuning Bayesian Algorithm
The Set Intersection algorithm provides a good the-
oretical foundation; however, it requires parameters
be tuned and applies only to behavioral targeting, not
contextual targeting. Thus, we include in XRay a more
robust, self-tuning version that leverages a Bayesian
algorithm to adjust parameters automatically through
iterated inference. Our algorithm relies on three models:
one that predicts behavioral targeting, one that predicts
contextual targeting, and one that combines the two.
Behavioral Targeting. The Bayesian behavioral tar-
geting model uses the same random assignment as the
Set Intersection algorithm, and it leverages the same in-
formation from the shadow account observations, �x. It
counts the observations x j of ad Ok in an account j as
a binary signal: if the ad has appeared at least once in

account j, we count it once; otherwise we do not count
it. Briefly, the Bayesian model is a simple generative
model that simulates the audited service given some tar-
geting associations (e.g., Di triggers Ok). It computes the
probability for this model to generate the outputs we do
observe for every targeting association. The most likely
association will be the one XRay returns.

In more detail if the ad were targeted towards Di, then
an account j containing Di would see this ad at least
once with a coverage probability pin; otherwise, it would
miss it with probability (1− pin). An account j′ without
input Di would see the ad with a smaller probability,
pout, missing it with probability (1 − pout). If the ad
were not behaviorally targeted, it would appear in each
account with the same probability, p /0. If we define Ak as
the set of active accounts that have seen the ad, and Ai as
the set of accounts that contain email Di, then we have
the following definitions for the probabilities:

P [�x| Di ] = (pin)
|Ai∩Ak| (1− pin)

|Ai∩Āk|

×(pout)
|Āi∩Ak| (1− pout)

|Āi∩Āk| ,
P [�x| D /0 ] = (p /0)

|Ak| (1− p /0)
|Āk| ,

where D /0 designates the untargeted prediction.
The preceding formula has an interesting interpreta-

tion that is visible if placed in the equivalent form:

P [�x| Di ] = (pin)
|Ak| (1− pout)

|Āk|

×
(

1− pin

1− pout

)|Ai∩Āk|( pout

pin

)|Āi∩Ak|

From the point of view of the event Di, an account found
in Ai ∩ Āk is a false positive (an ad was expected but was
not shown). This should lower the probability, especially
when the coverage pin is close to 1. Inversely, an account
found in Āi ∩Ak acts as a false negative (we observed an
ad where we did not expect it), which should decrease
the probability, especially when pout is close to 0.

These formulas let us infer the likelihood of event
Di according to Bayes’ rule: P [A| B ] = P [B|A ]×P [A ]

P [B ] .
Figure 4 shows two algorithms. First, the prediction al-
gorithm (left) predicts the targeting of Ok by computing
the probabilities defined above, applying Bayes’ rule,
and returning the input with the maximum probability.
Second, the parameter learning algorithm (right) com-
putes the variables that those probabilities depend upon
(pin, pout, and p /0) using an iterative process. It repeat-
edly runs the prediction algorithm for all outputs and
re-computes pin, pout, and p /0 based on the predictions.
It stops when the variables converge (i.e., their variation
from one iteration to another is small).
Contextual Targeting. Contextual targeting is more
straightforward since it uses content shown next to the
ad. XRay also uses Bayesian inference and defines the
observations as how many times ad Ok is seen next to
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email Di. Our causal model assumes imperfect coverage:
if this ad were contextually targeted towards Di, it would
occur next to that email with probability pin < 1 and next
to any other email with probability pout. Alternatively,
if the ad were untargeted, our model predicts it would
be shown next to any email with probability p /0. Hence,
P [�x|Di ] = (pin)

xi (pout)
∑i′ �=i x′i ,P [�x|D /0 ] = (p /0)

∑i xi . For
this model, parameters are also automatically computed
by iterated inference.
Composite Model (XRay). The contextual and behav-
ioral mechanisms were designed to detect different types
of targeting. To detect both types, XRay must combine
the two scores. We experimented with multiple combi-
nation functions, including a decision tree and the arith-
metic average, and concluded that the arithmetic aver-
age yields sufficiently good results. XRay thus defines
the composite model that averages scores from individ-
ual models, and we demonstrate in §6.3 that doing so
yields higher recall for no loss in precision.

4.4 Input Matching and Placement
Our design of differential correlation, along with our
logarithmic results for random input placement, relies
on the fundamental assumption that the probability of
getting an ad O1 targeted at an input D1 in a shadow ac-
count that lacks D1 is vanishingly small. However, when
inputs attract the same ads (a.k.a., overlapping inputs),
a naive input placement can contradict this assumption.
Imagine a Gmail account with multiple emails related
to a Caribbean trip. If placement includes Caribbean
emails in every available shadow account, related ads
will appear in groups of accounts with no email object
in common. XRay will thus classify them as untargeted.
Our Amazon experiments showed XRay’s recall drop-
ping from 97% to 30% with overlapping inputs (§6.5).

To address this problem, XRay’s Input Matching
module identifies similar inputs and directs the Place-
ment Module to co-locate them in the same shadow
accounts. The key challenge is to identify similar inputs.
One method is to use content analysis (e.g., keywords
matching), but this has limitations. First, it is not service
agnostic; one needs to reverse engineer complex and
ever-changing matching schemes. Second, it is hard to
apply to non-textual media, such as YouTube videos.

In XRay, we opt for a more robust, systems technique
rooted in the key insight that we can deduce similar
inputs from contextual targeting. Intuitively, inputs
that trigger similar targeting from the Web service
should attract similar outputs in their context. The
Input Matching module builds and compare inputs’
contextual signatures. Contextual signature similarity is
the distance between inputs (e.g., email) in a Euclidean
space, where each output (e.g., ad) is a dimension. The
coordinate of an email in this dimension is the number of

times the ad was seen in the context of the email. XRay
then forwards close inputs to the same shadow accounts.
Once the placement is done, behavioral targeting against
that email’s group can be inferred effectively.

This input matching mechanism differs fundamentally
from any content analysis technique, such as keyword
matching, because it groups inputs the same way the
Web service does.2 It is robust and very general: we
used it on both Gmail and Amazon without changing a
single line of code to change.

5 XRay-based Tools
To evaluate XRay’s extensibility, we instantiated it on
Gmail, YouTube, and Amazon. The engine, about 3,000
lines of Ruby, was first developed for Gmail. We then ex-
tended it to YouTube and Amazon, without any changes
to its correlation algorithms. We did need to do minor
code re-structuring, but the experience felt turn key when
integrating a new service into the correlation machinery.

Building the full toolset required non-trivial coding
effort, however. Instantiating XRay for a specific Web
service is a three-step process. First, the developer
instantiates appropriate data models (less than 20 code
lines for our prototypes). Second, she implements a
service-specific shadow account manager and plugin;
care must be taken not be too aggressive to avoid ad-
versarial service reactions. While these implementations
are conceptually simple, they require some coding; our
Amazon and YouTube account managers were built
by two graduate students new to the project, and have
around 500 lines of code. Third, the developer creates
a few shadow accounts for the audited service and
runs a small exploratory experiment to determine the
service’s coverage. XRay uses the coverage to estimate
the number of shadow accounts needed for a given input
size. All other parameters are self-tuned at runtime.

6 Evaluation
We evaluated XRay with experiments on Gmail, Ama-
zon, and YouTube. While Amazon and YouTube provide
ground truth for their targeting, Gmail does not. We
therefore manually labeled ads on Gmail and measured
XRay’s accuracy, as described in §6.1 and validated in
§6.2. We sought answers to four questions:

Q1 How accurate are XRay’s inference models? (§6.3)
Q2 How does XRay scale with input size? (§6.4)
Q3 Can input matching manage overlap? (§6.5)
Q4 How useful is XRay in practice? (§6.6)

2We call this method “monkey see, monkey do” because we watch
how the service groups inputs and group them similarly.
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Ad Targeted Detected XRay # Accounts
Keyword Email by XRay? Scores & Displays
Chaldean Like Chaldean Yes 0.99, 13/13,
Poetry Poetry? 1.0 1588/1622
Steampunk Fan of Steampunk? Yes 0.99, 13/13,

1.0 888/912
Cosplay Discover Cosplay. Yes 0.99, 13/13,

1.0 440/442
Falconry Learn about Falconry. Yes 0.99, 13/13,

1.0 1569/1608

Figure 5: Self-Targeted Ads. Fourth column shows XRay’s
correlation scores X, Y, (Bayesian) Behavioral and Contextual
scores, respectively. Fifth column shows raw behavioral and
contextual data for interpretation: X/Y, Z/T means that the ad
was seen in X active accounts that contain the targeted email
out of a total of Y active accounts; the ad was shown Z times
in the context of the targeted email out of a total of T times.

6.1 Methodology
We evaluated XRay with experiments on Gmail, Ama-
zon, and YouTube. For inputs, we created a workload for
each service by selecting topics from well-defined cate-
gories relevant for that service. For Gmail and YouTube,
we crafted emails and selected videos based on AdSense
categories [17]; for Amazon, we selected products from
its own product categories [2]. We used these categories
for most of our experiments (§6.3–§6.5). We used these
categories to create two types of workloads: (1) a non-
overlapping workload, in which each data item belonged
to a distinct category, and (2) an overlapping workload,
with multiple data items per category (described in §6.5).

To assess XRay’s accuracy, we needed the ground
truth for associations. Amazon and YouTube provide
it for their recommendations. For instance, Amazon
provides a link “Why recommended?” which explicitly
explains the recommendation. For Gmail, we manually
labeled ads based on our personal assessment. The
ads for different experiments were labeled by different
people, generally project members. A non-computer
scientist labeled the largest experiment (51 emails).

We evaluate two metrics: (1) recall, the fraction of
positive associations labeled as such, and (2) precision,
the fraction of correct associations. We define high
accuracy as having both high recall and high precision.

6.2 Sanity-Check Experiment
To build intuition into XRay’s functioning, we ran
a simple sanity-check experiment on Gmail. Recall
that, unlike Amazon and YouTube, Gmail does not
provide any ground truth, requiring us to manually label
associations, a process that can be itself faulty. Before
measuring XRay’s accuracy against labeled associations,
we checked that XRay can detect associations for our
own ads, whose targeting we control. For this, we
strayed away from the aforementioned methodology to
create a highly controlled experiment. We posted four
Google AdWords campaigns targeted on very specific
keywords (Chaldean Poetry, Steampunk, Cosplay, and

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

R
ec

al
l

Number of Accounts

Contextual
Behavioral

Composite (XRay)

(a) Recall

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  20  40  60  80  100

Pr
ec

is
io

n

Number of Accounts

Contextual
Behavioral

Composite (XRay)

(b) Precision

Figure 6: Bayesian Model Accuracy. Recall and precision
for each of the three Bayesian models vs. shadow account
number, using the Bayesian algorithm. XRay needed 16
accounts to reach the “knee” with high recall and precision.
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Figure 7: Bayesian vs. Set Intersection Comparison. Recall
and precision for detecting behavioral targeting with each algo.

Falconry), crafted an inbox that included one email per
keyword, and used XRay to recover the associations
between our ads and those emails. In total, we saw our
ads 1622, 912, 442, and 1608 times, respectively, across
all accounts (shadows and master). Figure 5 shows our
results. After one round of ad collection (which involved
50 refreshes per email), XRay correctly associated all
four ads with the targeted email. It did so with very
high confidence: composite model scores were 0.99
in all cases, with very high scores for both contextual
and behavioral models. The figure also shows some
of the raw contextual/behavioral data, which provides
intuition into XRay’s perfect precision and recall in this
controlled experiment. We next turn to evaluating XRay
in less controlled environments, for which we use the
workloads and labeling methodology described in §6.1.

6.3 Accuracy of XRay’s Inference Models (Q1)
To assess the accuracy of XRay’s key correlation
mechanisms (Bayesian behavioral, contextual, and
composite), we measured their recall and precision
under non-overlapping workloads. Figures 6(a) and
6(b) show how these two metrics varied with the number
of shadow accounts for a 20-email experiment on Gmail.
The results indicate two effects. First, both contextual
and behavioral models were required for high recall.
Of the 193 distinct ads seen in the user account, 121
(62%) were targeted, and XRay found 109 (90%) of
them, a recall we deem high. Of the associations XRay
found, 37% were found by only one of the models: 15
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Figure 8: Scalability. (a) Number of accounts required to achieve the knee accuracy for varied numbers of inputs. (b), (c)
Recall/precision achievable with the number of accounts in (a). Behavioral uses the Bayesian algorithm.

by the contextual model only, and 24 by the behavioral
model only. Thus, both models were necessary, and
composing them yielded high recall. Our Amazon and
YouTube experiments (which provide ground truth)
yielded very similar results: on a 20-input experiment,
we reached over 90% recall and precision with only 8
and 12 accounts, respectively.

Second, the composite model’s recall exhibited
a knee-shaped curve for increasing shadow account
numbers, with a rapid improvement at the beginning
and slow growth thereafter. With 16 accounts, XRay
exceeded 85% recall; increasing the number of accounts
to 100 yielded a 1.9% improvement. Precision also
remained high (over 84%) past 16 accounts. We define
the knee as the minimum number of accounts needed to
reap most of the achievable recall and precision.

We also wished to compare the accuracy of the
Bayesian algorithm, which conveniently self-tunes
its parameters, to the parameterized Set Intersection
algorithm. We manually tuned the latter as best as
we could. Figures 7(a) and 7(b) show the recall and
precision for detecting behavioral targeting with the
two methods for a non-overlapping workload. The
two algorithms performed similarly, with the Bayesian
staying within 5% of the manually tuned algorithm.
We also tested the algorithms on an Amazon dataset,
and using a version of the Set Intersection algorithm
with empirical optimizations. The conclusion holds:
the Bayesian algorithm, with self-tuned parameters,
performs as well as the Set Intersection technique with
manually tuned parameters. We focus the remainder of
this evaluation on the Bayesian algorithm.

6.4 Scalability of XRay with Input Size (Q2)
A main contribution of this paper is the realization
that, under certain assumptions, the number of accounts
needed to achieve high accuracy for XRay scales
logarithmically with the number of tracked inputs.
We have proven that under certain assumptions, the
Set Intersection algorithm scales logarithmically. This

theoretical result is hard to extend to the Bayesian
algorithm, so we evaluated it experimentally by studying
three metrics with growing input size: the number of ac-
counts required to reach the recall knee and the value of
recall/precision at this knee. Figures 8(a), 8(b) and 8(c)
show the corresponding results for Gmail, YouTube and
Amazon. For Gmail, the number of accounts necessary
to reach the knee increased less than 3-fold (from 8
to 21) as input size increased more than 25-fold (from
2 to 51). For Amazon and YouTube, the increases in
accounts were 6- and 8-fold respectively, for a 32-fold
increase in input size. In general, the roughly linear
shapes of the log-x-scale graphs in Figure 8(a) confirm
the logarithmic increase in the number of accounts
required to handle different inputs. Figure 8(b) and 8(c)
confirm that the “knee number” of accounts achieved
high recall and precision (over 80%).

What accounts for the large gap between the number
of accounts needed for high accuracy in Gmail versus
Amazon? For example, tracking a mere two emails in
Gmail required 8 accounts, while tracking two viewed
products in Amazon needed 2 accounts. The distinction
corresponds to the difference in coverage exhibited by
the two services. In Gmail, a targeted ad was typically
seen in a smaller fraction of the relevant accounts
compared to a recommended product in Amazon. XRay
adapted its parameters to lower coverage automatically,
but it needed more accounts to do so.

Overall, these results confirm that our theoretical
scalability results hold for real-world systems given
carefully crafted, non-overlapping input workloads. We
next investigate how more realistic overlapping input
workloads challenge the accuracy of our theoretical
models and how input matching – a purely systems
technique – helps address this challenge.

6.5 Input Matching Effectiveness (Q3)
To evaluate XRay’s accuracy with overlapping inputs,
we infused our workloads with multiple items from
the same category. (e.g., multiple emails targeting the
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Figure 9: Input Matching effectiveness. Behavioral
(Bayesian) recall and precision in Gmail with overlapping
inputs, with and without Matching.

same topic on Gmail and multiple products in the same
category in Amazon). For the Gmail experiments, we (as
users) could not tell when Gmail targeted a specific email
from a group of similar emails. We therefore ran two
different types of experiments. First, a controlled, albeit
unrealistic, one for Gmail. We replicated various emails
identically in a user’s inbox: 1 email was replicated 4
times, 2 emails 3 times, 4 emails 2 times, and 12 were
single, for a total of 30 emails. This end-of-a-spectrum
workload demonstrates how matching works ideally.
XRay matched all redundant emails correctly. More
importantly, Figures 9(a) and 9(b) show XRay’s preci-
sion/recall with and without matching-aware placement
for XRay’s behavioral model, the only model improved
by matching. Without input matching, XRay struggled
to find differential signals: even with 35 shadow ac-
counts for a 30-email experiment, recall was only 48%.
With input matching, XRay’s correlation model drew a
stronger signal from each account and attained close to
70% recall for 16 accounts.

Second, for Amazon, we created a more realistic over-
lapping workload by selecting three distinct products in
each of six product categories (e.g., from the Outdoor
& Cycling category, we selected a helmet, pedals, and
shoes). With a total workload of 18 products, XRay’s
input matching matched all but one item (shoes) into its
correct group. With the new grouping, XRay’s recall im-
proved by a factor of 3 (from 30% to 93%) compared to
the no-matching case for 18 products with 10 accounts;
precision was 2.6 times higher (from 34% to 88%).

These results demonstrate that XRay’s matching
scheme is both portable across Web services and
essential for high accuracy with overlapping workloads.

6.6 Anecdotal Use Experience (Q4)
To gain intuition into XRay’s practical value, we ran a
small-scale, anecdotal experiment that fished for Gmail
ads targeted against a few specific topics. We created
emails focused on topics such as cancer, Alzheimer, de-
pression, HIV, race, homosexuality, pregnancy, divorce,
and debt. Each email consisted of keywords closely
related to one topic (e.g., the depression-related email

Topic Targeted XRay # Accounts
Ads Scores & Displays
Black Mold Allergy Symptoms? 0.99, 9/9,

Alzheimer Expert to remove Black Mold. 0.05 61/198
Adult Assisted Living. 0.99, 8/8,
Affordable Assisted Living. 0.99 12/14
Ford Warriors in Pink. 0.96, 9/9,

Cancer Join The Fight. 0.98 1022/1106
Rosen Method Bodywork for 0.98, 7/7,
physical or emotional pain. 0.05 24/598
Shamanic healing over 0.99, 16/16,

Depression the phone. 0.99 117/117
Text Coach - Get the girl 0.93, 7/7,
you want and Desire. 0.04 31/276
Racial Harassment? 0.99, 10/10,

African Learn your rights now. 0.2 851/5808
American Racial Harassment, 0.99, 10/10,

Hearing racial slurs? 0.2 627/7172
SF Gay Pride Hotel. 0.99, 9/9,

Homosexuality Luxury Waterfront. 0.1 50/99
Cedars Hotel Loughborough, 0.96, 8/8,
36 Bedrooms, Restaurant, Bar. 1.0 36/43
Find Baby Shower Invitations. 0.99, 9/9,
Get Up To (60% Off) Here! 1.0 22/22
Ralph Lauren Apparel. 0.99, 10/10,

Pregnancy Official Online Store. 0.6 85/181
Clothing Label-USA. 0.99, 9/9,
Best Custom Woven Labels. 1.0 14/14
Bonobos Official Site, 0.99 9/9
Your Closet Will Thank You. 0.99 64/71
Law Attorneys specializing 0.99, 9/9,

Divorce in special needs kids education. 0.99 635/666
Cerbone Law Firm, Helping 0.99, 10/10,
Good People Thru Bad Times 1.0 94/94
Take a New Toyota Test Drive, 0.99, 7/7,
Get a $50 Gift Card On The Spot. 0.9 58/65

Debt Great Credit Cards Search. 0.99, 9/9,
Apply for VISA, MasterCard... 0.0 151/2358
Stop Creditor Harassment, 0.99, 8/8,
End the Harassing Calls. 0.96 256/373

Figure 10: Example of Targeted Ads. Columns three and
four show the same data as columns four and five in Figure 5.

included depression, depressed, and sad; the homosex-
uality email included gay, homosexual, and lesbian).
We then launched XRay’s Gmail ad collection and
examined the targeting associations. We acknowledge
that a much larger-scale experiment is needed to reach
statistically-meaningful conclusions. Hence, we relate
our experience by example.

Figure 10 shows ads that XRay associated with each
topic, with its confidence scores. Conservatively, we
only consider ads with high scores. We make two
observations. First, our small-scale experiment confirms
that it is possible to target sensitive topics in users’
inboxes. All disease-related emails, except for the HIV
one, are strongly correlated with a number of ads. A
“Shamanic healing” ad appears exclusively in accounts
containing the depression-related email, and many times
in its context; ads for assisted living services target the
Alzheimer email; and a Ford campaign to fight breast
cancer targets the cancer email. Race, homosexuality,
pregnancy, divorce, and debt also attract plenty of ads.
For example, the pregnancy email is strongly targeted by
an ad for baby-shower invitations (shown in the figure),
maternity- and lactation-related ads (not shown), and, in-
terestingly, a number of ads for general-purpose clothing
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(shown). As another example, the debt email is strongly
targeted by a car dealership ad that entices the targeted
users to take a Toyota test drive using a $50 gift offering.
Discussing the morality of targeting such sensitive topics
is beyond our statute, however we believe that the lack
of transparency, coupled with sensitive-topic targeting,
opens users to subtle dangers, a topic we discuss next.

Second, for many ads, the association with the
targeted email is not obvious at all. Nothing in the
“Shamanic healing” ad suggests targeting against de-
pression; nothing in the general-purpose clothing ads
suggest targeting against pregnancy; and nothing in the
“Cedars hotel” ad suggests an orientation toward the
homosexuality email. If no keyword in the ad suggests
relation with sensitive topics, a user clicking on the ad
may not realize that they could be disclosing private in-
formation to advertisers. Imagine an insurance company
wanted to gain insight into pre-existing conditions of its
customers before signing them up. It could create two ad
campaigns – one that targets cancer and another youth
– and assign different URLs to each campaign. It could
then offer higher premium quotes to visitors who come
through the cancer-related ads to discourage them from
signing up while offering lower premium quotes to those
who come through youth-related ads. We believe that
the potential for this attack illustrates the urgent need for
increased transparency in ad targeting.

6.7 Summary
Our evaluation results show that XRay supports fine-
grained, accurate data tracking in popular Web services,
scales well with the size of data being tracked, is general
and flexible enough to work efficiently for three Web ser-
vices, and robustly uses systems techniques to discover
associations when ad contents provide no indication of
them. We next discuss how XRay meets its last goal:
robustness against honest-but-curious attackers.

7 Security Analysis
As stated in §3.3, two threat models are relevant for
XRay and applicable to different use cases. First, an
honest-but-curious Web service does not attempt to
frustrate XRay, but it could incorporate defenses against
typical Web attacks, such as DDoS or spam, that might
interfere with XRay’s functioning. Second, a malicious
service takes an adversarial stand toward XRay, seeking
to prevent or otherwise disrupt its correlations. Our
current XRay prototype is robust against the former
threat and can be extended to be so against the latter.
In either case, third-party advertisers can attempt to
frustrate XRay’s auditing. We discuss each threat in turn.
Non-Malicious Web Services. Many services incor-
porate protections against specific automated behaviors.
For example, Google makes it hard to create new ac-

counts, although doing so remains within reach. More-
over, many services actively try to identify spammers and
click fraud. Gmail includes sophisticated spam filtering
mechanisms, while YouTube rate limits video viewing to
prevent spam video promotion. Finally, many services
rate limit access from the same IP address.

XRay-based tools must be aware of these mechanisms
and scale back their activities to avoid raising red flags.
For example, our prototype for Gmail, YouTube, and
Amazon rate limit their output collection in the shadow
accounts. Moreover, XRay’s very design is sensitive to
these challenges: by requiring as few accounts as possi-
ble, we minimize: (1) the load on the service imposed by
auditing, and (2) the amount of input replication across
shadow accounts. Moreover, XRay’s workloads are of-
ten atypical of spam workloads. Our XRay Gmail plugin
sends emails from one to a few other accounts, while
spam is sent from one account to many other accounts.
Malicious Third-Party Advertisers. Third-party adver-
tisers have many ways to obfuscate their targeting from
XRay, particularly if it may arouse a public outcry. First,
an advertiser could purposefully weaken its targeting by,
for example, targeting the same ad 50% on one topic and
50% on another topic. This weakens input/output corre-
lation and may cause XRay to infer untargeting. How-
ever, it also makes the advertisers’ targeting less effec-
tive and potentially more ambiguous if their goal is to
learn specific sensitive information about users. Second,
an advertiser might target complex combinations of in-
puts that XRay’s basic design cannot discover. Our ac-
companying technical report shows an example of how
advertisers might achieve this [26]. It also extends our
theoretical models so they can detect targeting on linear
combinations with only a constant factor increase in the
number of accounts. We plan to incorporate and evaluate
these extensions in a future prototype.
Malicious Web Services. A malicious service could
identify and disable shadow accounts. Identification
could be based on abnormal traffic (successive reloads
of email pages), data distribution within accounts (sev-
eral accounts with subsets of one account), and perhaps
more. XRay could be extended to add randomness and
deception (e.g., fake emails, varying copies). More im-
portantly, a collaborative approach to auditing, in which
users contribute their ads and input topics in an privacy-
preserving way is a promising direction for strengthening
robustness against attacks. Web services cannot, after all,
disable legitimate user accounts to frustrate auditing. We
plan to pursue this direction in future work.

8 Discussion
XRay takes a significant step toward providing data
management transparency in Web services. As an initial
effort, it has a number of limitations. First, both the Set
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Intersection and Bayesian algorithms assume indepen-
dent targeting across accounts and over time. In reality,
ad targeting is not always independent across either. For
example, advertisers set daily ad budgets. When the bud-
get runs out, an ad can stop appearing in accounts mid-
experiment even though it has the targeted attributes. The
system might incorrectly assume that no targeting is tak-
ing place, when it could resume the next day. XRay takes
reduced coverage into account, but differences between
ads can let some targeting pass unnoticed. XRay does not
currently account for these dependencies, but estimating
their impact is an important goal for future work.

Second, we assume that targeting noise is bounded
and smaller than the targeting signal. While this con-
dition seems to hold on the evaluated services, other
services making more local decisions may be harder to
audit. For example, Facebook might target ads based on
friends’ information, potentially creating noise that is
as high as the targeting signal. A future solution might
imitate the social network in shadow accounts.

Third, XRay uses Web services atypically. To the best
of our knowledge, it does not violate any terms of ser-
vice. It does, however, collect ads paid for by advertisers
to detect correlation. Ad payment is per impression and
pay per click. The former is vastly less expensive than
the latter [32]. XRay creates false impressions only but
never clicks on ads. A back-of-the-envelope calculation
using impression pricing from [32] of $0.6/thousand
impressions reveals that XRay’s cost should be minimal:
at most 50 cents per ad for our largest experiments.

Despite these limitations, XRay has proven itself use-
ful for many needs, particularly in an auditing context.
An auditor can craft inputs that avoid many of these
limitations. For example, emails can be written to avoid
as much overlap as possible and keep the size of inputs
used for targeting within reasonable bounds. We hope
that XRay’s solid correlation components will streamline
much-needed investigations – by researchers, journalists,
or the FTC – into how personal data is being used.

9 Related Work
While §2.2 covered Web data protection and auditing
related works, we next cover other related topics. Our
work relates to recent efforts to measure various forms
of personalization, such as search [21, 47], pricing [31],
and ad discrimination [40]. They generally employ a
methodology similar in spirit to differential correlation,
but their goals differ from ours. They aim to quantify
how much output is personalized and what type of
information is used overall. In contrast, XRay seeks
to provide fine-grained diagnosis of which input data
generates which personalized results. Through its
scaling mechanisms – unique in the personalization and

data tracking literature – XRay scales well even when
the relevant inputs are many and unknown in advance.

Our work also relates to a growing body of research
measuring advertising networks. These networks,
notably complex and difficult to crawl [3], are rendered
opaque by the need to combat click fraud [9], and have
been shown to be susceptible to leakage [24] and profile
reconstruction attacks [6]. As for other personalization,
prior studies focused mostly on macroscopic trends
(e.g., What fraction of ads are targeted?) [3] or quali-
tative trends (e.g., Which ads are targeted toward gay
males?) [20]. Various studies showed traces – but not a
prevalence – of potential abuse through concealed target-
ing [20] and data exchange between services [46]. These
works primarily focus on display advertising, and each
distinguishes contextual advertising using a specific clas-
sifier with semantic categories obtained from Google’s
Ad Preferences Managers or another public API [28].

XRay departs significantly from these works. First,
since it entirely ignores the content and even the domain
of targeting, it is readily applied as-is to ads in Gmail,
product recommendations, and videos. Second, while
previous methods label ads as “behavioral” in bulk once
other explanations fail [28], XRay remains grounded
on positive evidence, and determines to which inputs an
output should be attributed. Third, XRay’s mechanisms
to avoid exponential input placement and deal with
overlapping inputs are unprecedented in the Web-
data-tracking context. While they resemble black box
software testing [4], the specific targeting assumption
we leverage have, to our knowledge, no prior equivalent.

10 Conclusions
The tracking of personal data usage poses unique
challenges. XRay shows for the first time that accurate,
fine-grained tracking need not compromise portability
and scalability. For users who care about which piece
of their data has been targeted, it offers a unique level
of precision and protection. Our work calls for and pro-
motes the best practice of voluntary transparency, while
at the same time empowering investigators and watch-
dogs with a significant new tool for increased vigilance.
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A Proof of Theorem 1
A.1 Targeting functions, Axioms and Core Family
A combination C of order r, also called r combination,
is a subset of r elements among the N inputs.

Each given ad is associated with a targeting function
defined as a mapping f from any subset C of the N in-
puts into {0,1}, where f (C ) = 1 denotes that an account
containing C as inputs should be targeted. By conven-
tion, untargeted ads are associated with the null function
f (.) = 0. Any targeting function f satisfies two axioms:
• monotonicity: C ⊆ C ′ =⇒ f (C )≤ f (C ′).
• input-sensitivity: ∃C ,C ′ s.t. f (C ) = 0, f (C ′) = 1.
Monotonicity simply reflects that an account with strictly
more interest or hobbies should in theory be relevant to
more ads, and never to less. Input sensitivity prevents the
degenerate case where a targeting function is constant.

A family S of size l is any collection of l distinct
combination. The order of this family is defined as the
largest order of a combination it contains. For any family
S, one can define a targeting function that takes value 1
whenever the subset contains at least one combination
in S. Indeed, as shown in [26], the converse is true:

Lemma 1 For each monotone, input-sensitive targeting
function there exists a unique family S satisfying:

(i) S has size l and order r and it explains f , which
means f (C ) = 1 holds if and only if ∃C ′ ∈ S,C ′ ⊆ C .

(ii) No family of size l′ < l explains f .
(iii) No family of order r′ < r explains f .

Hence, associated with each ad and therefore each tar-
geting function is a unique family of input combination
that are targeted, called the ad’s core family, and we now
sketch why it is correctly identified by our algorithm.

A.2 Algorithm and Correctness
For any family of subsets S and fraction 0 ≤ x ≤ 1, we
say a subset of inputs C is an x intersecting subset of
S if x subsets in S have at least one input in C . Our
proof exploits an original connection between small
intersecting subsets (that can be found efficiently) to
show how they can reveal a core family. One way to
understand why is the following: say, for instance, that
the targeting function f takes value 1 exactly when one
of the inputs within C is found in the account. Then C
is exactly the union of inputs found in the core family
and intersects all accounts within scope, i.e., forms a
large fraction of those receiving the ad.

The key property to explain our algorithm is ran-
dom subsets. We can show under the conditions of the
theorem that there exists 0< x< 1 that satisfies two prop-
erties related to the inputs of accounts receiving the ads:
(1) if targeting does not occur, then with a large probabil-
ity we cannot find a subset of l inputs that meets at least a
fraction x of the accounts seeing the ad, and (2) if target-
ing does occur, we have accounts receiving the ads for

various reasons, within and outside the targeting scope.
But we can show with high probability that at least a frac-
tion x of them are within scope and hence must include
one combination in the core family. Since with each core
family of size l one can associate an intersecting subset
that contains at most l elements, checking the existence
of such a subset reveals the presence of targeting.

This explains why an algorithm can qualitatively
conclude whether targeting occurs or not, but it does not
explain how the core family can be computed. However,
leveraging stronger results of random subsets allows
to apply the same rule recursively, offering multiple
ways to determine exactly the core family even with a
polynomial number of operations.

More formally, we define: A random Bernoulli
subset, denoted by B(n, p), is a subset such that any of n
elements is contained with probability p independently
of all others. A random Bernoulli family of size m is a
collection of m independent Bernouilli subsets. We first
show property (1) above more formally:

Lemma 2 Let x > 0, s ∈ N, p < 1 − (1 − x)
1
s , and

a Bernouilli family B1(n, p),B2(n, p), . . . ,Bm(n, p).
For any ε > 0 and polynomial P of degree ≤ r, there
exists A > 0 such that with probability

(
1− ε

P(n)

)
no

x intersection subset exists of size s whenever we have:
m ≥ A · ((s+ r) ln(n)+ ln(1/ε)) .

To prove property (2), we need to bound, among
accounts receiving an ad, the fraction that is outside
the scope of targeting but still receives the ads because
pout > 0. Formally, we have:

Lemma 3 Let x > 0, α > 0, and a core family of size l
and order r pin, pout where we have pout/pin <

1−x
x

αr

1−αr .
Let C be a combination of order r.

For any ε > 0 and polynomial P of degree ≤ r, there
exists A > 0 such that with probability (1− ε/P(n)) the
following holds: Among accounts containing C and
receiving the ad, at least x fraction of them is within the
targeting scope whenever we have:

m ≥ A · (r ln(n)+ ln(1/ε)) .
The two lemmas above (proved in [26]) can be

combined whenever α satisfies the inequality for
p in the first lemma, which shows that an algo-
rithm can detect the presence of targeting whenever

pout/pin <
1−x

x
(1−(1−x)

1
l )r

1−(1−(1−x)
1
l )r

.

A naive exponential algorithm could be used to
exhaustively search for a core family using this brick.
We also show that a polynomial algorithm can refine this
analysis to compute the core family at the expense of a
more complex recursion in [26].

16



USENIX Association  23rd USENIX Security Symposium 65

An Internet-Wide View of Internet-Wide Scanning

Zakir Durumeric
University of Michigan

zakir@umich.edu

Michael Bailey
University of Michigan

mibailey@umich.edu

J. Alex Halderman
University of Michigan

jhalderm@umich.edu

Abstract
While it is widely known that port scanning is widespread,
neither the scanning landscape nor the defensive reactions
of network operators have been measured at Internet scale.
In this work, we analyze data from a large network tele-
scope to study scanning activity from the past year, un-
covering large horizontal scan operations and identifying
broad patterns in scanning behavior. We present an analy-
sis of who is scanning, what services are being targeted,
and the impact of new scanners on the overall landscape.
We also analyze the scanning behavior triggered by recent
vulnerabilities in Linksys routers, OpenSSL, and NTP.
We empirically analyze the defensive behaviors that orga-
nizations employ against scanning, shedding light on who
detects scanning behavior, which networks blacklist scan-
ning, and how scan recipients respond to scans conducted
by researchers. We conclude with recommendations for
institutions performing scans and with implications of
recent changes in scanning behavior for researchers and
network operators.

1 Introduction

Internet-wide scanning is a powerful technique used by
researchers to study and measure the Internet and by at-
tackers to discover vulnerable hosts en masse. It is well
known that port scanning is pervasive—including both
large horizontal scans of a single port and distributed
scanning from infected botnet hosts [5, 14, 15, 28, 39, 45].
However, the past year saw the introduction of two high-
speed scanning tools, ZMap [19] and Masscan [23], which
have shifted the scanning landscape by reducing the time
to scan the IPv4 address space from months to minutes.

In this study, we examine the practice of Internet-wide
scanning and explore the impact of these radically faster
tools using measurement data from a large network tele-
scope [13, 37, 46]. We analyze scan traffic from the past
year, develop heuristics for recognizing large horizontal

scanning, and successfully fingerprint ZMap and Mass-
can. We present a broad view of the current scanning
landscape, including analyzing who is performing large
scans, what protocols they target, and what software and
providers they use. In some cases we can determine the
identity of the scanners and the intent of their scans.

We find that scanning practice has changed dramati-
cally since previous studies from 5–10 years ago [5,39,45].
Many large, likely malicious scans now originate from
bullet-proof hosting providers instead of from botnets.
Internet-scale horizontal scans have become common. Al-
most 80% of non-Conficker probe traffic originates from
scans targeting ≥1% of the IPv4 address space and 68%
from scans targeting ≥10%.

To understand how and why people are conducting
scans, we attempt to identify individual large-scale scan-
ning operations. We find that researchers are utilizing
new scanning tools such as ZMap to cull DDoS attacks
and measure distributed systems, but we also uncover
evidence that attackers are using these tools to quickly
find vulnerable hosts. In three case studies, we investi-
gate scanning behavior following the disclosure of the
OpenSSL Heartbleed vulnerability [36], vulnerabilities
in Linksys routers, and vulnerabilities in NTP servers. In
each instance, the vast majority of probe traffic originated
from large, single-origin scanners. For the Linksys and
OpenSSL vulnerabilities, we observed attackers applying
ZMap from international bullet-proof hosting providers
to complete full scans of the IPv4 address space within
24 hours of public vulnerability disclosure.

We also investigate the defensive mechanisms em-
ployed by network operators to detect and respond to
scanning. Even in the most favorable case for detection—
when repeated, aggressive scan traffic originates from a
single IP address and would be trivial to fingerprint—we
find that only a minuscule fraction of organizations re-
spond by blocking the probes. When probes are blocked,
it is often after operators inadvertently find evidence of
scanning during other maintenance, rather than through
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automated detection. This may indicate that the vast ma-
jority of network operators do not regard scanning as a
significant threat. It also validates many recently pub-
lished research studies based on Internet-wide scanning,
as dropped traffic and exclusion requests appear to have
minimal impact on study results.

Our findings illustrate that Internet-wide scanning
is a rapidly proliferating methodology among both re-
searchers and malicious actors. Maintaining its enormous
utility for defensive security research while simultane-
ously protecting networks from attack is a difficult chal-
lenge. Network operators need to be aware that large
vulnerability scans are taking place within hours of disclo-
sure, but they should remember that blindly blocking all
networks responsible for scanning may adversely impact
defensive research. Future work is needed to develop
mechanisms for differentiating between benign and ma-
licious scans. In the mean time, we recommend close
cooperation between researchers and network operators.

2 Previous Work

Most similar to our work is a study in 2004 by Pang
et al. [39], who performed one of the first comprehensive
analyses of Internet background radiation. Their study
covers many aspects of background traffic, including the
most frequently scanned protocols. However, the scan-
ning landscape has changed drastically in the last decade—
the Conficker worm [40], a major source of probe traffic,
appeared in 2008, and ZMap [19] and Masscan [23] were
released in 2013.

In 2007, Allman et al. [5] briefly described historical
trends in scan activity between 1994 and 2006. Wustrow
et al. [45] again studied Internet background radiation in
2010. They noted an increase in scan traffic destined for
SSH (TCP/22) and telnet (TCP/23) in 2007, as well as
increased scanning activity targeting port 445 (SMB over
IP) in 2009 due to Conficker. We note a different set of
targeted services and other changes in scanning dynamics
since that time. Czyz et al. [14] explored background
radiation in the IPv6 address space. Their work briefly
touches on the presence of ICMPv6 probe traffic, but
otherwise does not investigate scanning activity; we focus
on the IPv4 address space.

There exists a large body of work that focuses on de-
tecting distributed botnet scanning [22, 24, 29, 31, 43].
However, barring few exceptions, this phenomenon has
remained largely hypothetical. In one exception, Javid
and Paxson [28] unearthed slow but persistent SSH brute-
force attacks in 2013. Similarly, Dainotti et al. analyzed
distributed botnet scanning in 2011.

Real-world responses to horizontal scanning have not
been previously studied. We briefly discussed reactions
to our own scanning in prior work [19], but we perform a

more in-depth analysis now. Leonard et al. [32] similarly
describe the complaints they received when attempting
to build an Internet scanner; however, our analysis is
based on a much larger data set. In addition, we perform
experiments to detect instances where networks block
scan probes without notice.

The dynamics of performing studies on IPv4 darknet
traffic have been formally documented by both Moore
et al. [37] and Cooke et al. [13]. We utilize both studies
when performing calculations in this work.

3 State of Scanning

In order to understand current scanning behavior, we ana-
lyzed traffic received by a large darknet over a 16-month
period. We find that large-scale horizontal scanning—the
process of scanning a large number of hosts on a single
port—is pervasive and that, excluding Conficker, almost
80% of scan traffic originates from large scans targeting
>1% of the IPv4 address space. We find evidence that
many scans are being conducted by academic researchers.
However, a large portion of all scanning targets services
associated with vulnerabilities (e.g. Microsoft RDP, SQL
Server), and the majority of scanning is completed from
bullet-proof hosting providers or from China. In this sec-
tion, we describe the dynamics of these scans, including
identifying the services targeted, the sources of the scans,
and the largest scanning operations.

3.1 Dataset and Methodology

Our dataset consists of all traffic received by a dark-
net operated at Merit Network for the period from Jan-
uary 1, 2013 to May 1, 2014. The darknet is composed
of 5.5 million addresses, 0.145% of the public IPv4 ad-
dress space. During this period, the darknet received an
average of 1.4 billion packets, or 55 GB of traffic, per
day. For non-temporal analyses, we focus on January
2014.

In order to distinguish scanning from other background
traffic, we define a scan to be an instance where a source
address contacted at least 100 unique addresses in our
darknet (.0018% of the public IPv4 address space) on the
same port and protocol at a minimum estimated Internet-
wide scan rate of 10 packets per second (pps). In the case
of TCP, we consider only SYN packets.

While we cannot know for sure whether a particular
scan covers the entire IPv4 address space, the darknet
does not respond to any incoming packets, and the major-
ity of its parent /8 does not host any services. As such,
we expect that hosts that send repeated probes to the dark-
net are scanning naïvely and are likely targeting a large
portion of the address space.
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Detecting scans Assuming a random uniform distribu-
tion of targets, the probability that a single probe packet
will be detected can be modeled by a geometric distribu-
tion and the number of packets observed by our darknet
modeled by a binomial distribution [37]. A scanner prob-
ing random IPv4 addresses at the slowest rate we try to
detect (10 pps) will appear in our darknet with 99% con-
fidence within 311 seconds and with 99.9% confidence
within 467 seconds. We estimate the number of packets
sent to the entire IPv4 address space by approximating
the binomial distribution with a normal distribution.

We process the darknet traffic using libpcap [27] and
apply a single-pass algorithm to identify scans. We ex-
pire scans that do not send any packets in more than 480
seconds and record scans that reach at least 100 darknet
addresses before expiring. We combine scans originating
from sequential addresses in a routed block, as ZMap al-
lows users to scan from a block of addresses. We perform
geolocation using the MaxMind GeoIP dataset [35].

Fingerprinting scanners We investigate open-source
scanners and fingerprint the probes generated by
ZMap [19] and Masscan [23]. In ZMap, the IP identifi-
cation field is statically set to 54321. In Masscan, probes
can be fingerprinted using the following relationship:

ip_id = dst_addr⊕dst_port⊕ tcp_seqnum

Because the IP ID field is only 16 bits and has a non-
negligible chance of randomly being either of these val-
ues, we only consider scans in which all packets match
one of the fingerprints. We find no easily identifiable
characteristics for Nmap [33] probes.

3.2 Scan Dynamics

We detected 10.8 million scans from 1.76 million hosts
during January 2014. Of these, 4.5 million (41.7%) are
TCP SYN scans targeting less than 1% of the IPv4 ad-
dress space on port 445 and are likely attributable to the
Conficker worm [40]. Excluding Conficker traffic, the
scans are composed of 56.4% TCP SYN packets, 35.0%
UDP packets, and 8.6% ICMP echo request packets. Only
17,918 scans (0.28%) targeted more than 1% of the ad-
dress space, 2,699 (0.04%) targeted more than 10%, and
614 (0.01%) targeted more than 50% (see Figure 5). How-
ever, after excluding Conficker traffic, we note that 78%
of probe traffic is generated by scans targeting ≥1% of
the IPv4 address space, 62% by scans targeting ≥10%,
and 30% by scans targeting ≥50% (see Figure 4). In other
words, while there is a relatively small number of large
scans (0.28%), nearly 80% of scan traffic is generated by
these scans.
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Figure 1: Large scans (≥10%) by origin country — Many
countries have distinct scanning profiles. For example, the vast
majority of MSSQL scanning takes place in China.
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3.3 Targeted Services

Close to half of all scan traffic (48.9%) targets NetBIOS
(TCP/445)—5.4 trillion SYN probes in January 2014
alone. Of these packets, 95.1% originate from small
scans—scans targeting <10% of the IPv4 address space—
and are likely attributable to Conficker [40, 45]. We note
that small scans show different characteristics than large
scans. For example, while SSH is the most targeted ser-
vice in large scans, it is the seventh most targeted in small
scans, accounting for only 1.3% of scan traffic.

For the most part, the protocols being targeted are not
surprising, although they have shifted from previous stud-
ies in 2004 and 2010—we show the differences in Ta-
ble 3. In both large and small scans, there appear to be
a mix of protocols frequently associated with vulnerabil-
ity scanning (e.g. Microsoft RDP, telnet, Microsoft SQL
server, and VNC) as well protocols frequently studied
by academic researchers (e.g. HTTP, HTTPS, SSH). We
show the differences in Figure 2 and the breakdown of
frequently targeted services in Tables 1 and 2.

Despite the fact that most scans originate from large
international hosting providers, countries display differ-
ences in targeted protocols—particularly China, which
performs regular scans against SSH, SQL Server, and
Microsoft RDP. For example, while Microsoft Remote
Desktop Protocol (RDP) is the fourth most scanned pro-
tocol, 77% of scans and 76% of probe packets originate
from China. The second most active country (United
States) is responsible for only 5.4% of probe traffic. A
similar pattern emerges for ICMP echo request scans,
MySQL and SSH. We show the differences by country
for the top ports in Figure 1.

3.4 Scan Sources

While large scans originate from 68 countries, 76% of
scan traffic originates from only five countries: China, the
United States, Germany, the Netherlands, and Russia. We
list the top countries that performed horizontal scans in
Table 4 and the CDF in Figure 7.

While the United States and China have large alloca-
tions of address space, Germany and the Netherlands
do not. In order to understand why a disproportionate
amount of scan traffic is originating from smaller coun-
tries, we consider the ASes from which scans are being
completed. We find that scans targeting ≥10% of the
IPv4 address space occur from only 350 ASes (Figure 8).
We manually classify the top 100 ASes, finding that 49
are dedicated hosting services or collocation centers, 31
are Internet service providers, 4 are academic institutions,
3 are corporations, and 13 are unidentifiable networks in
China.

In the case of the Netherlands, 93% of probe traffic
originates from five hosting providers: Ecatel Network,

2004 [39] 2010 [45] 2014

HTTP (80) SMB-IP (445) SMB-IP (445)
NetBIOS (135) NetBIOS (139) ICMP Ping
NetBIOS (139) eMule (4662) SSH (20)
DameWare (6129) HTTP (80) HTTP (80)
MyDoom (3127) NetBIOS (135) RDP (3389)

Table 3: Temporal differences in targeted protocols —
Previous studies on background radiation show a distinct set of
most frequently targeted services.

Country Scans Country Scans

China 805 (31%) Poland 61 (2.3%)
United States 582 (22%) Korea 61 (2.3%)
Germany 247 (9.5%) Ukraine 43 (1.7%)
Netherlands 229 (8.8%) Brazil 34 (1.3%)
Russia 127 (4.8%) Other 337 (13%)
France 81 (3.1%)

Table 4: Large scans (≥10%) by country — A small number
of countries are responsible for the majority of large scans.

Ecatel Network (NL) Thor Data Center (IS)
Plus Server (DE) Psychz Networks (US)
Slask Data Center (PL) ServerStack, Inc. (US)
SingleHop (US) Amazon.com, Inc. (US)
CariNet, Inc. (US) LeaseWeb (NL)
SERVER4YOU (DE) Digital Ocean, Inc. (US)
OVH Systems (UK) GorillaServers, Inc. (US)

Table 5: Top providers originating scan traffic — The ma-
jority of scan probes came from large dedicated hosting and
colocation providers.

Contact Point Organizations

Email listed on website 108 (59.7%)
WHOIS abuse contact 31 (17.1%)
Security office 22 (12.2%)
Specific individuals (e.g. CSO, CIO) 9 (5.0%)
Departmental helpdesk 5 (2.8%)
Other email contacts (e.g. postmaster) 6 (3.3%)
IT help desk phone 2 (1.1%)

Table 6: Exclusion point of contact — We track how organi-
zations contacted our research team to request exclusion from
future scans.
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SMB over IP (TCP/445) 71.8% SIP (UDP/5060) 0.5% NetBIOS Helper (TCP/49153) 0.2%
ICMP Echo Request 4.8% NetBIOS Session (TCP/139) 0.5% Linksys Vuln. (TCP/32764) 0.2%
Microsoft RDP (TCP/3389) 3.1% DNS (UDP/53) 0.5% ASF-RMCP (UDP/623) 0.1%
HTTP (TCP/80) 3.0% VLC (UDP/1234) 0.4% SNMP (UDP/161) 0.1%
Telnet (TCP/23) 2.8% SMTP (TCP/25) 0.2% CHARGEN (UDP/19) 0.1%
Alt-HTTP (TCP/8080) 1.7% VNC (TCP/5900) 0.2% MongoDB (TCP/27017) 0.1%
SSH (TCP/22) 1.3% Microsoft SSDP (UDP/1900) 0.2% pcAnywhere (UDP/5632) 0.1%
HTTPS (TCP/443) 0.5% NetBIOS Name Svc (TCP/137) 0.2% Other 7.4%

Table 1: Commonly targeted services for small scans (targeting <10% of the IPv4 address space)

SSH (TCP/22) 12.5% CHARGEN (UDP/19) 3.9% Linksys Vuln. (TCP/32764) 1.3%
DNS (UDP/53) 9.0% VNC (TCP/5900) 3.2% SNMP (UDP/161) 1.0%
HTTP (TCP/80) 8.4% SIP (UDP/5060) 2.9% Micorosft PPTP (TCP/1723) 0.9%
Microsoft RDP (TCP/3389) 7.3% MySQL (TCP/3306) 2.2% Radmin (TCP/4899) 0.8%
SQL Server (TCP/1433) 6.9% pcAnywhere (TCP/5631) 2.1% DCOM SCM (TCP/UDP/135) 0.8%
ICMP Echo Request 6.5% NTP (UDP/123) 1.7% MS SQL Server (UDP/1434) 0.7%
Alt-HTTP (TCP/8080) 4.4% VLC (UDP/1234) 1.4% Aidra Botnet (TCP/4028) 0.7%
HTTPS (TCP/443) 4.0% SMTP (TCP/25) 1.4% Other 16.2%

Table 2: Commonly targeted services for large scans (targeting ≥10% of the IPv4 address space)

LeaseWeb, WorldStream, Datacenter, Nedzone, and Tran-
sIP. We note that Ecatel was one of the hosting providers
that Hurricane Electric stopped peering with in 2008 due
to spam traffic and malware hosting [12]. In Germany,
PlusServer was responsible for 45% of probe traffic. In
the United States, scanning was present from 440 ASes,
but a small handful of hosting providers were responsible
for 39% of scan traffic1. We list the hosting providers and
collocation centers responsible for the most scan traffic in
Table 5.

3.5 Regularly Scheduled Scans

We investigate the 25 most aggressive scanners and find
several examples of both academic research scans and
likely malicious groups performing repeated scans. In
many of the cases where scans were performed from an
academic network, researchers provided information on
the purpose of their scanning. However, most scans take
place from bullet-proof hosting providers or from China
and provide no identifying information.

The academic and non-profit scans primarily focus on
protocols used for DDoS amplification and studying cryp-
tographic ecosystems (e.g. HTTPS and SSH). All of the
groups we identified explained the purpose of their scan-
ning and allow operators to request exclusion. Similarly,
several security companies also completed scans. The
Shodan Search Engine [34] was the only security group
that we were able to detect that did not provide informa-
tion over the web on scan addresses.

1CariNet (13.0%), SingleHop (11.4%), Hosting Solutions Interna-
tional (4.37%), Versaweb, LLC (3.46%), Psychz Networks (2.2%),
Amazon.com (2.1%), and Leaseweb USA (2.0%)

The University of Michigan performs regular ZMap
scans for HTTPS hosts in order to track the certificate
authority ecosystem [18,19,25,47]; their data is available
online at https://scans.io [17]. Ruhr-Universität Bochum
completes weekly scans on ports 53, 80, 123, 137, 161,
and 1900 in order to measure amplification attacks [42].
The Shadow Server Open Resolver Scanning Project [4]
performs daily scans for DNS servers (UDP/53); their
scanning machines are hosted by AOL. One of their hosts
generated the most probes of any source in our sam-
ple—an estimated 97 billion packets in January 2014
alone. Similarly, the Open Resolver Project [3] completes
weekly scans for DNS (UDP/53) and NTP (UDP/123)
servers. All these institutions provide information on scan
intent and how to request exclusion on a simple website
at the scan source IPs.

Shodan completed 2,294 scans targeting 53 ports, send-
ing an estimated 209 billion probes from six servers2 in
January 2014. The scans most frequently targeted ports
443, 80, 53, 32764, 1900, 23, 623, 27017, 161, and 137.
Errata Security executed 89 scans of common ports us-
ing their Masscan tool. Rapid7 performed 13 scans of
common ports using ZMap; their datasets are publicly
available at https://scans.io [17].

There are two daily ICMP echo request scans from
Guangzhou, China that jointly target an average esti-
mated 77% of the IPv4 address space3. The hosts only
appear to be used for these ICMP scans. A second host in

2198.20.69.98, 198.20.69.74, 198.20.70.114, 66.240.192.138,
71.6.5.200, and 71.6.167.142

3113.108.2.117, 159.253.146.141, 220.177.198.034, and
59.46.161.130
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Figure 4: CDF of scan traffic — 40% of probes origi-
nated from scans targeting ≥1% of the IPv4 space and
30% from scans targeting ≥10%.
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Figure 5: CDF of scan coverage — 45.5% of scans
achieved 0.01% coverage, 8.37% achieved 0.1% coverage,
and 0.38% achieved ≥1% coverage.
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Guangzhou (113.108.21.16) performs regular daily SYN
scans of TCP/0, and a host in Changzhi (218.26.89.179)
performs similar scans targeting SSH (TCP/22). We note
that while TCP/0 is reserved, it is frequently used for fin-
gerprinting network stacks and because it is not possible
to block the port on some firewalls.

The remaining hosts in the top 25 most active scanners
repeatedly scanned well-known ports and were hosted
from large hosting providers in Germany, Iceland, Ro-
mania, Poland, Russia, and China. None of the hosts
provided any identifying information in WHOIS records,
reverse DNS records, or websites.

3.6 ZMap and Masscan Usage

The majority of scans targeting ≥10% of the IPv4 ad-
dress space used neither ZMap nor Masscan. However,
as scan coverage increases, the probability that a scan-
ner uses ZMap steeply increases. ZMap was utilized for
133 (21.7%) of the 614 scans of more than 50% of the
IPv4 address space in January 2014; Masscan was used
for 21 (3.4%). Of the 242 ZMap scans targeting ≥10%
of the address space, 70 (30%) targeted HTTP (TCP/80)
and HTTPS (TCP/443) and were conducted by academic
institutions and other clearly identifiable researchers. We
show a breakdown of what scans used various scanners
in Figure 3.

3.7 Estimated Scan Rate

In order to estimate the resources that scanners have avail-
able, we consider the estimated scan rate observed from
ZMap and Masscan scans. We choose to utilize these
as our metric for scan rate because the randomization
algorithms are approximately uniformly random. We find
that hosts are scanning between 13 pps and 1.02 million
pps using ZMap and between 5 pps and 2.2 million pps—
slightly more than 1.5 Gbps—using Masscan. While
both tools support scanning at over 1 Gbps, all but a hand-
ful of scans were operated at much lower speeds. As
shown in Figure 6, more than 90% of scans operate at
under 100 Mbps, and over 70% are operated at under
10 Mbps.

4 Case Studies

Recent advances in high-speed scanning have altered the
security landscape, making it possible for attackers to
complete large-scale scans for vulnerable hosts within
hours of a vulnerability’s disclosure. In this section,
we analyze scanning related to three recent vulnerabil-
ities that affected Linksys routers, OpenSSL, and NTP
servers. We find that likely attackers are taking advantage
of new tools: they have started to use ZMap and Masscan

from bullet-proof hosting providers instead of using dis-
tributed botnet scans. In the cases of the Linksys backdoor
and the Heartbleed vulnerability, attackers began scans
within 48 hours of public disclosure. We note that while
conducting single-origin scans from bullet-proof hosting
providers may lower the burden for attackers, it may also
allow defenders to more easily detect and block scanning
activity and identify the malicious actors.

4.1 Linksys Backdoor

In late December 2013, Eloi Vanderbeken disclosed a
backdoor in common Cisco, Linksys, and Netgear home
and small business routers [44]. The backdoor allowed
full, unauthenticated, remote access to routers over an
undocumented ephemeral port, TCP/32764. While there
was previously only negligible traffic to the port, traffic
spiked on January 2, 2014 when news sources began to
cover the story [1,11,21]. There remained an average, sus-
tained 1.98 billion estimated probe packets and 99.55 GB
of traffic per day through the end of January (Figure 9).

After the disclosure, 22 hosts completed 43 scans tar-
geting port 32764 on ≥1% of the IPv4 address space.
Shodan [34] started scanning on December 31, 2013,
within 48 hours of the disclosure, and continued to scan
throughout January, approximately daily. Within one
week, security consulting groups began scanning: Er-
rata Security on January 7, M5 Computer Security on
January 13, and Rapid7 on January 22. Two academic in-
stitutions, Katholieke Universiteit Leuven and Naukowa
i Akademicka Sieć Komputerowa completed scans on
January 3 and 6, respectively. Between January 14–16,
two Chinese hosts (AS4808/China169 Beijing Province
Network) completed scans. The remaining scans were
performed from dedicated hosting providers4. No identi-
fying information was found on any of the scanning hosts.

All non-Shodan scans utilized ZMap (71%) or Mass-
can (29%). Surprisingly, 98% of the probes targeting
port 32764 were part of large scans targeting ≥1% of
the IPv4 space, and 79% of probes were part of scans
targeting ≥10%. In other words, scan traffic was not from
a large number of distributed botnets hosts, but rather a
small number of high-speed scanners.

While we cannot definitively determine the intent of
the hosts in colocation centers, several of the providers
have reputations for hosting malware and spammers, and
for turning a blind eye to malicious behavior [12]. As-
suming that customers of these providers are malicious,
this implies that attackers completed comprehensive scans
within 48 hours of disclosure using ZMap and Masscan
from bullet-proof hosting providers.

4Hetzner Online AG (DE), UrDN/Ukranian Data Network (Ukraine),
Ecatel Network (NL), Kyiv Optic Networks (Ukraine), root (Luxem-
bourg), Digital Ocean, (US), Cyberdyne (Sweden), and Enzu (US)
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4.2 Heartbleed Vulnerability

The Heartbleed Bug is a vulnerability in the OpenSSL
cryptographic library [7] that was discovered in March
2014 and publicly disclosed on April 7, 2014 [36]. The
vulnerability allows attackers to remotely dump arbitrary
private data (e.g. cryptographic keys, usernames, and pass-
words) from the memory of many popular servers that
support TLS, including Apache HTTP Server and ng-
inx [36].

In the week following the disclosure, we detected
53 scans from 27 hosts targeting HTTPS. In comparison,
in the week prior to the disclosure, there were 29 scans
from 16 hosts. Unlike the Linksys vulnerability, there was
not a sustained increase in scanning behavior. However,
scan traffic was temporarily more than doubled for several
days following the public disclosure.

While we do not know whether the scanners intended
to exploit the vulnerability, we can detect which hosts
began scanning for the first time following the disclosure.
Of the 29 HTTPS scans seen prior to the disclosure, seven
were daily scans from the University of Michigan, one
was executed as part of Rapid7’s SSL Sonar Project, and
one belonged to the Shodan Project. A Chinese host
(218.77.79.34) also performed daily scans. The remaining
scans were operated out of bullet-proof hosting providers
in the US, Great Britain, Poland, France, Iceland, and
the Netherlands; none of them provided any identifying
information.

Only 5 of the 27 hosts found scanning after the disclo-
sure had previously been seen scanning on port 443, and
only 3 had performed any scanning in 2014. The only rec-
ognizable organizations scanning in the week following
the disclosure were the University of Michigan, Technis-
che Universitaet Muenchen, Rapid7, Errata Security, and
Nagravision. The remainder of the scans were completed
from China and bullet-proof hosting providers. Within
24 hours of the vulnerability release, scanning began from
China—20 of the 53 scans (38%) originated from China.
The remaining scans occurred from Rackspace, Cyber-
dyne, SingleHop, CariNet, Ecatel, myLoc, and Amazon
EC2. 74% of the scans used ZMap; 21% used Masscan.
Only three scans (6%) used other software.

4.3 NTP DDoS Attacks

Network Time Protocol (UDP/123) is a protocol that al-
lows servers to synchronize time. In December 2013,
attackers began to use NTP to perform denial-of-service
amplification, in a similar way to how DNS had been
abused in the past. Traffic from NTP servers began to
rise around December 8, 2013 [2] and in February 2014,
attackers attempted to DDoS a Cloudflare customer with
over 400 Gbps of NTP traffic—one of the largest ever
DDoS attacks [41].

The scanning behavior surrounding NTP is similar to
what we observed for the Linksys backdoor and the Heart-
bleed vulnerability. Specifically, 97.3% of probe traffic
destined for NTP was part of large scans (targeting >1%),
rather than from distributed botnet scanning. In January
2014, 29 scans from 19 hosts targeted NTP (UDP/123);
8 of the hosts used ZMap; 1 used Masscan. Three groups
completed regular scans: Ruhr-Universitaet Bochum com-
pleted weekly scans, Shodan performed daily scans, and
Errata Security completed one scan.

Three hosts in China completed full scans. The remain-
ing 14 scans occurred from otherwise anonymous hosts
in several hosting providers, including Ecatel, OVH Sys-
tems, FastReturn, Continuum Data Centers, and ONLINE
S.A.S. One of the IPs hosts a website for the “Openbomb
Drone Project” and also hosts the website http://ra.pe; the
scan from the host only achieved 3% coverage; another
one of the IPs hosts a site stating “#yolo”; one server had
a reverse PTR record of “lulz”.

As with the other vulnerabilities, there is no way to
ascertain the intent of the scanners with certainty. How-
ever, the names and sites hosted on the IPs do not instill
confidence that the hosts are maintained by responsible
researchers rather than attackers.

5 Defensive Measures

In the previous two sections, we showed that Internet-
wide scanning is widespread and that likely-attackers are
scanning for vulnerabilities within 48 hours of disclosure.
However, it is equally important to consider the reactions
and defenses of those being scanned. Not only does this
help us understand the defensive ecosystem, it also pro-
vides important data to calibrate the results from scanning
research. In this section, we analyze networks’ reactions
to scanning, including which networks detect scan activ-
ity, drop traffic from repeat scanners, and report perceived
network misuse.

Despite the fact that a large number of scans are occur-
ring from unique source IPs and could be easily detected
and blocked by network intrusion detection systems, we
find that only a minuscule number of organizations block
scan traffic or request exclusion. Our scan subnet at the
University of Michigan is responsible for the third most
aggressive scanning campaign on the Internet, yet we
find that only 0.05% of the IP space is inaccessible to it.
Similarly, only 208 organizations have requested that we
exclude their networks from our scans, reducing the IPv4
address space for study by only 0.15%.

We further uncover evidence that networks are not de-
tecting scans proactively, but are instead stumbling upon
scans after years of consistent scanning—most likely dur-
ing other troubleshooting or maintenance. While this lack
of attention paints a dismal picture of current defensive
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measures, the lack of blocking and exclusion also vali-
dates many of the recent research studies that utilize active
Internet-wide measurements [8–10, 16, 18–20, 25, 26, 30,
38,42,47], as blacklisting does not appear to significantly
bias scan results.

5.1 Detecting Blocked Traffic

In order to detect networks that are dropping scan traffic,
we completed simultaneous ZMap scans from our scan
subnet at the University of Michigan (141.212.121.0/24)
and from a subnet that had never previously been used for
scanning at the Georgia Institute of Technology. These
scans took place on Wednesday, February 5, 2014 be-
tween 1:00 PM EST and 23:20 EST.

While our subnet at Michigan is used for multiple on-
going scanning effort, it has primarily been used for scan-
ning the HTTPS ecosystem [18]. Between April 2012
and February 2014, we completed 390 scans on port 443
(HTTPS). The Michigan subnet was responsible for the
third most scan traffic in January 2014. The scanning
hosts all have corresponding DNS PTR records, WHOIS
entries, and a simple website that describes our scanning,
the data we collect, recent publications, and how to re-
quest exclusion from future research scans [19]. Despite
these steps, we expected that some fraction of networks
had detected our scanning and opted to silently drop traffic
from our subnet.

For the simultaneous scans, we chose to scan port 443
at 100,000 pps in order to compare against our histori-
cal data on HTTPS. Both hosts used Ubuntu 12.04 and
ZMap 1.2.0, and both had access to a full 1 Gbps of up-
stream bandwidth. We performed the two scans using
ZMap, selecting identical randomization seeds such that
the probes from both subnets arrive at approximately the
same time.

There exists the likely possibility that some hosts were
lost due to random packet drop and not intentional block-
ing—previous measurements on our network have shown
a packet loss rate of approximately 3% [19]. In order to
ensure that missing hosts are inaccessible due to blacklist-
ing and not dropped packets, we immediately completed
a secondary scan from the Michigan subnet, sending three
SYN probes to each missing host, and removing hosts
that were missed due to random packet drop. Previous
work shows that sending three packets achieves a 99.4%
success-rate [19].

We analyzed the set of hosts that appeared in scans
from the “clean” subnet at Georgia Tech but not in scans
from the “dirty” subnet at Michigan. We aggregate inac-
cessible hosts by routed block and find that there are two
categories of missing hosts: (1) entire routed blocks that
drop all traffic and (2) sporadic hosts and small networks
belonging to large ISPs that are generally unidentifiable.
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We consider any routed block with more than three hosts
in the clean subnet’s scan and zero responses from the
dirty subnet’s scan to have blocked traffic. We find that
99,484 hosts from 612 routed blocks, 198 ASes, and
194 organizations belong to first category; 67,687 hosts
belong to the second.

However, these numbers do not represent the total ad-
dress space that is inaccessible to the dirty subnet, but
rather the difference in hosts that respond on port 443.
In order to estimate the total inaccessible address space,
we consider the size of the routed blocks that appear to
drop all traffic and find that these routed blocks comprise
a total of 1.55 million addresses. In aggregate with the
individual addresses that dropped scan traffic, we find a
total of 1.62 million addresses (0.05% of the public IPv4
address space) are no longer accessible. We note that this
is a lower bound of inaccessible address space as many of
the individual IP addresses that we were unable to classify
may represent larger, inaccessible networks. However,
ultimately, only a minuscule number of organizations are
detecting and blocking scan traffic.

It is important to consider not just the raw number of
hosts that are inaccessible, but also the impact on the
research that was being conducted by Internet-scale scan-
ning—in our case, what percentage of the HTTPS ecosys-
tem we are unable to measure. We compare the number of
unavailable hosts to the most recent results in our HTTPS
dataset, which contained TLS handshakes with 27.9 mil-
lion hosts. The 167,171 inaccessible hosts would have
resulted in a 0.4%–0.6% change in the result set, depend-
ing on the number of unavailable hosts that successfully
completed a TLS handshake.

5.2 Organizations Blocking Scan Traffic

We identify and categorize the organizations that own
each of the inaccessible routed blocks (Table 7). We note
that this categorization is skewed towards organizations
that are large enough to control an entire AS. Unfortu-
nately, when attempting to classify individual IPs that
blacklisted addresses, we find that most do not expose
any identifying information.

As shown in Figures 10 and 11, the removal of a small
number organizations resulted in large changes in the
aggregate inaccessible address space—only ten organi-
zations5 are responsible for 60% of dropped traffic (Fig-
ure 12).

We note a bias in the countries that have blocked traffic,
which we show in Table 10. However, we note that when
considering the percentage of blacklisted addresses per

5Enzu, Corespace, Internode, Fidelity National Information Services,
AR Telecom, Western Australia Department of Finance, State of Ten-
nessee, Hershey Chocolate & Confectionery Corporation, DFN (German
National Research and Education Network), and Research Organization
of Information and Systems National Institute of Informatics (Japan)

Type Organizations Hosts

Internet service provider 73 389,120
Corporation 36 448,000
Hosting provider 34 344,832
Government 22 299,008
Academic institution 12 255,232
Small/medium business 12 63,232
Unknown 6 1,792

Total 195 1,801,216

Table 7: Organizations that filter scans — We categorize the
organizations that blacklist scan traffic.

Type Organizations Hosts

Small/medium business 45 391,358
Individual 39 102
Corporation 30 671,060
Academic institution 19 1,654,401
Government 13 926,210
Internet service provider 6 1,838,827
Unknown 5 32,772

Total 157 5,514,730

Table 8: Organizations that request exclusion — We classify
the organizations that have requested exclusion from future
scans.

Country Organizations

United States 129 (63.0%)
United Kingdom 15 (7.4%)
Germany 12 (5.9%)
Australia 9 (4.4%)
Canada 7 (3.4%)
Other 32 (15.0%)

Table 9: Excluded addresses by country — We geolocate the
organizations that have requested exclusion and find that the
majority are in the United States.

Country Orgs Hosts % Addr Space

United States 96 1,029,632 0.07%
Korea 8 43,008 0.03%
Canada 7 25,344 0.04%
Austria 7 225,024 0.40%
Great Britain 5 1,536 0.001%
Romania 5 3,072 0.03%
France 5 133,120 0.17%
Portugal 5 80,640 1.1%
India 4 1,280 0.002%
Russia 4 8,192 0.01%

Table 10: Inaccessible hosts by country — We geolocate the
routed blocks that are no longer accessible to scanning hosts.
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country, a different pattern emerges, because the removal
of a single AS can greatly impact the availability within
the region. For example, while only one organization in
Nigeria blacklisted our subnet, this single rule blocked
more than 1% of the country’s IP space. A similar situa-
tion appears in Portugal, Ireland, Luxembourg, Honduras,
Argentina, and Lithuania.

5.3 Organizations Requesting Exclusion

Another indicator of scan detection can be found in the
scan exclusion requests that we receive. Over the course
of our HTTPS scanning, we have received 208 exclu-
sion requests—resulting in the removal of 5.4 million
addresses from our study—0.15% of the public IPv4 ad-
dress space. Of the excluded hosts, 1.46 million (28%)
had previously been seen hosting HTTPS. In comparison,
only 1% of IPv4 hosts respond on port 443. We present
the types of organizations that have requested exclusion
in Table 8 and countries in Table 9. As with the organi-
zations that dropped scan traffic, the majority of requests
originated from the United States. We only received four
requests from Asia and Africa: one each from Taiwan,
India, South Africa, and Japan.

In our prior work [19], we suggest that researchers
post a website that explains the purpose of their scan-
ning and that they coordinate with their local network
administrators. In order to understand whether this in-
formation was useful to network operators and to revise
our recommendations, we tracked how network operators
contacted us. We find that almost 60% of emails were
sent directly to our research team via the site hosted on
the scan IPs, 17% were sent to the WHOIS abuse contact,
and 12% were sent to our institution’s security office (e.g.
security@umich.edu). We show a breakdown of contact
points in Table 6.

Our informational page has been viewed by
6,600 unique users with an average of 357 visitors per
month. More than 90% of visitors used common web
browsers (Chrome, Firefox, Internet Explorer, Safari, or
Opera). Viewers primarily geolocated to the United States,
Germany, United Kingdom, Canada, and Japan. The ra-
tio of page views to complaints (approximately 1:30)
suggests that many organizations are cognizant of our
scanning activity and do not object to it.

5.4 Blacklisting Scope

While we expected that a small number of organizations
would block our scan hosts, it is not immediately clear
what network segment organizations would block. We
scanned from an additional, unrelated /24 in our insti-
tutional AS and found that 38,648 (39%) of the hosts
that we could not reach on port 443 are also unavailable
from the unrelated /24 in our AS. In other words, 39% of

organizations that blocked our dirty subnet blocked the
entire /16 in which our scan subnet is located or blocked
our entire AS. In terms of estimated total inaccessible
address space, 338,944 addresses (18.7% of the addresses
inaccessible in our scan subnet) are possibly unavailable
from the entire AS.

5.5 Temporal Analysis of Scan Detection

We initially hypothesized that our scanning would cause
observant networks to immediately blacklist our network
or contact our research team. If this were the case,
we would expect that network exclusion requests would
plateau after several scans. Instead, we find that organi-
zations are slowly continuing to blacklist our scan subnet
or request exclusion more than two years after we began
regular scanning. In order to estimate when users detected
scanning and blacklisted the scan subnet, we analyzed our
historical data on the HTTPS ecosystem and recorded the
last time any IP address in each routed block responded.

As shown in Figure 10, there is no plateau in the num-
ber of blacklisted hosts or in the number of organizations
that have requested removal. Instead, we find that organi-
zations continue to freshly notice the scanning behavior
and to blacklist us or request exclusion. Further, more
than half of the organizations began starting dropping traf-
fic after more than a year of daily scans. We suspect that
the organizations that request exclusion or begin blocking
traffic years later are not proactively noticing scan traf-
fic, but rather happening upon log entries during other
maintenance and troubleshooting.

5.6 Scan Detection Mechanisms

In order to understand how organizations detect scans, we
categorized the emails requesting exclusion or alerting us
of potential abuse. In 64 cases (31%), network operators
included evidence that was copied directly from log files
or otherwise explained how they detected our scanning.

In 50% of cases, network operators noticed scans in
their firewall or IDS logs. However, in 22% of reports,
operators did not detect scanning in a firewall, but rather in
their web logs (primarily Apache or nginx), and in 16% of
cases, administrators noticed our scanning as our HTTPS
handshake appeared to be a malformed handshake in SSH
or OpenVPN logs. We show a breakdown of detection
mechanisms in Table 11.

5.7 Revised Recommendations

We further emphasize the importance of researchers serv-
ing an informational webpage given the high percentage
of users who used this to find contact information and
the high number of views by network operators. We
also recommend that researchers notify the owners of
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Detection Mechanism Organizations

Firewall logs 22 (34%)
Web server logs 14 (22%)
Intrusion detection system (IDS) logs 10 (16%)
Invalid SSH or OpenVPN handshake 10 (16%)
Public blacklists 2 (3%)
Other 6 (9%)

Table 11: Scan detection methods — We classify the type of
evidence included in email requests to be excluded in order to
understand how organizations detect scanning.

various other email accounts at the institution including
postmaster and administrator, in addition to institutional
help desks, departmental administrators, and IT officials.

We add the additional recommendation that researchers
publish the subnet being used for their research. This al-
lows organizations that decide to drop traffic a mechanism
to blacklist the correct subnet instead of dropping traffic
from the entire institution.

6 Future Work

While we shed light on the broad landscape of large hor-
izontal scans, there remain several open questions sur-
rounding scan detection and defensive mechanisms.

Correlating distributed scanners It remains an open
research problem to detect and correlate distributed scan-
ning events. While we are able to estimate broad patterns
in scanning behavior, we excluded scanners that operate
at under 10 pps or targeted fewer than 100 hosts in our
darknet. This likely excludes slow, massively distributed
scans [6, 15]. While there has been previous research
on detecting distributed scanning, little work has applied
these to darknet data, in order to understand the slow
scans that are taking place. Similarly, our darknet is pri-
marily composed of contiguous address space, which may
be avoided by some operations. It reamains an open issue
to analyze distributed network telescopes to determine
whether attackers are avoiding large blocks of consistently
unresponsive address space.

IPv6 scanning In this work, we focused on scanning
within the IPv4 address space. Scanning the IPv6 ad-
dress space efficiently remains an open problem, as does
analyzing existing IPv6 scanning behavior.

Vertical scanning Our study focused on horizontal
scanning—scanning a single port across a large number
of hosts. We note that during this investigation, we also
stumbled upon several cases of large vertical scanning
operations, which deserve further attention.

Exclusion standards Blacklisting by external organi-
zations indicates a lack of communication between re-

searchers and network operators. This misalignment has
lead to organizations dropping all traffic from institutional
ASes, which may have other adverse impacts. There cur-
rently exists no standard for system operators to request
exclusion. Further work is needed to develop a standard
similar to HTTP’s robots.txt to facilitate this communica-
tion.

Determining intent Given that the majority of scan-
ning takes place from large hosting providers, it is often-
times difficult to discern the intent of the scanner beyond
scanned protocol. Follow-up work is necessary to de-
termine the follow-up actions of these scanners. Given
that these large scans are happening from a small num-
ber of hosts, it may be possible to determine owners and
track from where these attacks are originating. Auto-
mated mechanisms for signaling benign intent (such as
centrally maintained whitelists) could help network opera-
tors distinguish between harmful and beneficial instances
of wide-scale scanning.

Understanding defensive reactions We find that a mi-
nuscule number of organizations are dropping scan traffic.
However, it is unclear whether other organizations are
aware of and deliberately permit this research-focused
traffic, or whether they are entirely unaware of it. More
investigation is needed to understand the attentiveness of
these organizations.

7 Conclusion

In this work, we analyzed the current practice of Internet-
wide scanning, finding that large horizontal scanning
is common and is responsible for almost 80% of non-
Conficker scan traffic. We analyzed who is scanning and
what services they are targeting noting differences from
previously reported results. Ultimately, we find that re-
searchers and attackers are both taking advantage of new
scanning tools and hosting options—adapting to new ad-
vances in technology in order to further reduce the burden
for finding vulnerabilities. While the landscape of scan-
ning is evolving, defenders have remained sluggish in
detecting and responding to even the most obvious scans.
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Abstract
While Apple iOS has gained increasing attention from
attackers due to its rising popularity, very few large scale
infections of iOS devices have been discovered because
of iOS’ advanced security architecture. In this paper,
we show that infecting a large number of iOS devices
through botnets is feasible. By exploiting design flaws
and weaknesses in the iTunes syncing process, the de-
vice provisioning process, and in file storage, we demon-
strate that a compromised computer can be instructed to
install Apple-signed malicious apps on a connected iOS
device, replace existing apps with attacker-signed ma-
licious apps, and steal private data (e.g., Facebook and
Gmail app cookies) from an iOS device. By analyzing
DNS queries generated from more than half a million
anonymized IP addresses in known botnets, we measure
that on average, 23% of bot IP addresses demonstrate
iOS device existence and Windows iTunes purchases,
implying that 23% of bots will eventually have connec-
tions with iOS devices, thus making a large scale infec-
tion feasible.

1 Introduction

As one of the most popular mobile platforms, Apple
iOS has been successful in preventing the distribution of
malicious apps [23, 32]. Although botnets on Android
and jailbroken iOS devices have been discovered in the
wild [40, 42, 43, 45, 54], large-scale infections of non-
jailbroken iOS devices are considered extremely difficult
for many reasons.

First, Apple has powerful revocation capabilities, in-
cluding removing any app from the App Store, remotely
disabling apps installed on iOS devices, and revoking any
developer certificate. This makes the removal of mali-
cious apps relatively straightforward once Apple notices
them.

Second, the mandatory code signing mechanism in
iOS ensures that only apps signed by Apple or certified

by Apple can be installed and run on iOS devices. This
significantly reduces the number of distribution channels
of iOS apps, forcing attackers to have their apps signed
by a trusted authority.

Third, the Digital Rights Management (DRM) tech-
nology in iOS prevents users from sharing apps among
arbitrary iOS devices, which has a side effect of limit-
ing the distribution of malicious apps published on the
App Store. Although recent studies show that malicious
apps can easily bypass Apple’s app vetting process and
appear in the Apple App Store [26, 36, 51], lacking the
ability to self-propagate, these malicious apps can only
affect a limited number of iOS users who accidentally
(e.g., by chance or when tricked by social-engineering
tactics) download and run them. Specifically, to run an
app signed by Apple, an iOS device has to be authenti-
cated by the Apple ID that purchased the app. For exam-
ple, suppose we use an Apple IDA to download a copy of
a malicious app from the App Store and later we install
this copy on an iOS device that is bound to Apple IDB.
This copy cannot run on the iOS device that is bound
to Apple IDB because of the failure of DRM validation.
On iOS 6.0 or later, when launching this app, iOS will
pop up a window (Figure 1) to ask the user to re-input
an Apple ID and a password. If the user cannot input the
correct Apple ID (i.e., Apple IDA) and the corresponding
password, iOS refuses to run the app.

In this paper, we show that despite these advanced se-
curity techniques employed by iOS, infecting a large
number of non-jailbroken iOS devices through bot-
nets is feasible. Even though iOS devices are designed
for mobile use, they often need to be connected to per-
sonal computers via USB or Wi-Fi for many reasons,
such as backup, restore, syncing, upgrade, and charging.
We find that the USB and Wi-Fi communication chan-
nels between iOS devices and computers are not well
protected. Consequently, a compromised computer (i.e.,
a bot) can be easily instructed to install malicious apps
onto its connected iOS devices and gain access to users’

1
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Figure 1: User attempting to run an app downloaded by a
different Apple ID on his iOS device needs to first enter
the correct Apple ID and password.

private data without their knowledge. In this paper, con-
nected iOS devices refer to those that are plugged into
a computer through USB cable or have Wi-Fi syncing
enabled. Note that if Wi-Fi syncing is enabled, the iOS
device will automatically sync with a paired computer
when they are on the same network.

The feasibility of a large scale infection is facili-
tated by two main problems that we have discovered
in our research. The first is a previously unknown de-
sign flaw in the iTunes syncing mechanism (including
both USB and Wi-Fi based syncing), which makes the
iTunes syncing process vulnerable to Man-in-the-Middle
(MitM) attacks. By exploiting this flaw, attackers can
first download an Apple-signed malicious app (e.g., a
Jekyll app [51]) using their Apple ID and then remotely
instruct a compromised computer to install the attacker’s
copy on a connected iOS device, completely bypassing
DRM checks. In other words, an attacker can have a ma-
licious app of his own choosing run on a user’s iOS de-
vice without the user ever seeing an authentication pop-
up window.

Coupled with botnet infrastructures, this exploit en-
ables large scale delivery of arbitrary Apple-signed apps.
This has two serious security implications. First, it chal-
lenges the common belief that the Apple App Store is the
sole distributor of iOS apps. Instead of relying on trick-
ing a user into downloading apps from the App Store,
attackers can now push copies of their app onto a vic-
tim’s device. Even if an app has been removed from the
App Store, attackers can still deliver it to iOS users. Sec-
ond, this expolit challenges the common belief that the
installation of iOS apps must be approved by the user.
Attackers can surreptitiously install any app they down-
loaded onto victim’s device.

The second security issue we discovered is that an
iOS device can be stealthily provisioned for development
through USB connections. This weakness allows a com-
promised computer to arbitrarily remove installed third-
party apps from connected iOS devices and install any

app signed by attackers in possession of enterprise or in-
dividual developer licenses issued by Apple. This weak-
ness leads to many serious security threats. For example,
attackers can first remove certain targeted apps (such as
banking apps) from iOS devices and replace them with
malicious apps that look and feel the same. As a result,
when a victim tries to run a targeted app, they actually
launch the malicious app, which can trick the user to re-
input usernames and passwords. We originally presented
this attack [31] in 2013 and Apple released a patch in iOS
7 that warns the user when connecting iOS devices to a
computer for the first time. However, this patch does not
protect iOS devices from being stealthily provisioned by
a compromised computer that the user already trusts.

In addition to injecting apps into iOS devices, attack-
ers can also leverage compromised computers to obtain
credentials of iOS users. Specifically, since many iOS
developers presume that the iOS sandbox can effectively
prevent other apps from accessing files in their apps’
home directories, they store credentials in plaintext un-
der their apps’ home directories. For example, the Star-
bucks app was reported to save usernames and passwords
in plaintext. Starbucks thought the possibility of a secu-
rity exploit to steal the plaintext passwords was “very far
fetched” [8]. However, once an iOS device is connected
to a computer, all these files are accessible by the host
computer. Consequently, malware on the computer can
easily steal the plaintext credentials through a USB con-
nection. In our work, we found that the Facebook and
Gmail apps store users’ cookies in plaintext. By stealing
and reusing the cookies from connected iOS devices, at-
tackers can gain access to the victims’ accounts remotely.

While it is known that a host computer can partially
access the file system of a connected iOS device, we
point out that it leads to security problems, especially
when attackers control a large number of personal com-
puters. Considering that there are many apps dedicated
to iOS, this problem may allow attackers to gain creden-
tials that are not always available on PCs.

To quantitatively show that botnets pose a realistic
threat to iOS devices, we also conduct a large scale
measurement study to estimate how many compromised
computers (i.e., bots) could connect with iOS devices.
Intuitively, given the immense popularity of iOS devices
and compromised Windows machines, we presume that
many people are using iOS devices connected to com-
promised computers. However, to the best of our knowl-
edge, there exists no previous work that can provide large
scale measurement results.

By analyzing DNS queries generated from 473,506

2
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Infection Type Root Cause Connection Type
Install malicious apps signed by Apple Man-in-the-Middle attacks against syncing USB or Wi-Fi
Install malicious apps signed by attackers Stealthy provisioning of devices USB
Steal private data (e.g., Facebook and Gmail apps’s cookies) Insecure storage of cookies USB

Table 1: Infection Summary.

anonymized IP addresses1 that were involved in known
botnets on 10/12/2013 in 13 cities of two large ISPs in
the US, we identified 112,233 IP addresses that had App
Store purchase traffic issued by iTunes on Windows, as
well as network traffic generated by iOS devices. This
implies that the iOS users in the 112,233 home networks
were purchasing items in the App Store from compro-
mised Windows PCs on the same day. We make the fol-
lowing assumption: if iTunes is installed on a user’s per-
sonal computer and is also used to purchase some item
from the App Store, the user will eventually connect his
or her iOS device(s) to it either via USB or Wi-Fi. Based
on this assumption, we estimate that iOS devices in the
112,233 IP addresses could be infected via a connected
computer. In other words, 23% of bots in our measured
botnet could be used to infect iOS devices.

A broader implication of our study is that it may
raise concerns about the security of mobile two-factor-
authentication schemes [13]. In such schemes, a mo-
bile phone is used as a second factor of authentication
for transactions initiated on a potentially compromised
PC. A fundamental assumption made by such schemes
is that the “two factors” (i.e., the PC and the phone)
are very hard to be reliably and simultaneously compro-
mised (and linked to the same user) by an adversary. This
assumption is reasonable if the PC and the phone are ex-
posed to independent attack vectors. However, as shown
in this paper, since a large number of users would con-
nect mobile phones to their PCs, the PC itself becomes an
attack vector to the phone. As such, the aforementioned
assumption becomes dubious. An attacker who already
controls the PC can now use it as a stepping stone to in-
ject malware into the phone, and thus can control both
factors. As a result, the attacker can easily launch at-
tacks described in [21, 39] to defeat mobile two-factor-
authentication schemes2.

In summary, the main contributions of our work are:

• We discover a design flaw in the iTunes syncing
process, and present a Man-in-the-Middle attack
that enables attackers to run any app downloaded

1The original IP addresses were hashed into anonymized client IDs
in our dataset. We performed our measurement over five days of DNS
query data, and we used statistics from one day as an example here. We
use IP address and client ID interchangeably.

2The ultimate defeat of mobile two-factor-authentication schemes
will depend on what capabilities the injected mobile malware has. We
further discuss it in Section 6.

by their Apple ID on iOS devices that are bound to
different Apple IDs, bypassing DRM protections.
Based on the MitM attack, we present a way to
deliver Apple-signed malicious apps such as Jekyll
apps to iOS users.

• We point out the security implications of the
stealthy provisioning process and insecure creden-
tial storage, and demonstrate realistic attacks, such
as replacing installed apps in the iOS device with
malicious apps and stealing authentication cookies
of the Facebook and Gmail apps.

• We show that a large scale infection of iOS devices
is a realistic threat and we are the first to show quan-
titative measurement results. By measuring iTunes
purchases and iOS network traffic generated from
IP addresses involved in known botnets, we esti-
mate that on average, 23% of all bot population have
connections with iOS devices.

Table 1 summaries the attacks. We have made a full
disclosure to Apple and notified Facebook and Google
about the insecure storage of cookies in their apps. Ap-
ple acknowledged that, based on our report, they have
identified several areas of iOS and iTunes that can bene-
fit from security hardening.

The rest of the paper is organized as follows. In Sec-
tion 2, we demonstrate installation of Apple-signed mali-
cious apps without violating DRM checks. In Section 3,
we demonstrate replacing targeted apps with attacker-
signed malicious apps. In Section 4, we demonstrate
theft of private data (e.g., Facebook and Gmail apps’
cookies) from iOS devices. In Section 5, we describe
our measurement techniques that indicate large scale in-
fection is feasible. Finally, we provide related work, dis-
cussion, and a conclusion.

2 Delivery of Apple-Signed Malicious Apps

This section discusses how a compromised computer can
be instructed to install Apple-signed malicious apps on
iOS devices. We explore the iOS DRM technology and
iTunes syncing process in Section 2.1, present a Man-
in-the-Middle attack in Section 2.2, and discuss how to
bypass iOS DRM validations in Section 2.3.

3



82 23rd USENIX Security Symposium USENIX Association

iTunes'with'Apple'ID'A iOS'device'with'Apple'ID'B

1.'Send'sync'request'(Keybag)

6.'Store'
/AirFair/sync/afsync.rs
/AirFair/sync/afsync.rs.sig

3.'Download'afsync.rq'and'afsync.rq.sig''

4.'Generate'
afsync.rs
afsync.rs.sig

5.'Upload'afsync.rs'and'afsync.rs.sig

2.'Generate'
/AirFair/sync/afsync.rq
/AirFair/sync/afsync.rq.sig

7.'Send'MetadataSyncFinish'request

Figure 2: iTunes can sync apps to an iOS device with a
different Apple ID.

iTunes'with'
Botmaster's'Apple'ID'A

iOS'device'with'
Apple'ID'B

1.'Send'sync'request'(Keybag)

6.'Store'
/AirFair/sync/afsync.rs
/AirFair/sync/afsync.rs.sig

3.'afsync.rq'and'afsync.rq.sig''

3b.'Generate'
afsync.rs

5.'Upload'afsync.rs'and'afsync.rs.sig

2.'Generate'
/AirFair/sync/afsync.rq
/AirFair/sync/afsync.rq.sig

7.'Send'MetadataSyncFinish'request

Bot'client'
(victim's'computer)

3a.'afsync.rq'''

3c.'afsync.rs'''

4.'Generate'
afsync.rs.sig

Figure 3: The Man-in-the-Middle against the syncing.

2.1 Fairplay DRM and iTunes Syncing
Apple utilizes a DRM (Digital Rights Management)
technology called Fairplay to prevent piracy of iOS apps.
All apps in the App Store are encrypted and signed by
Apple. To run an app downloaded from the App Store,
iOS will 1) verify an app’s code signature, 2) perform
DRM validation and decrypt the executable file, and 3)
run the decrypted code. As a result, a copy of an app
purchased by Apple IDA cannot run on other iOS devices
bound to other Apple IDs, because of the failure of DRM
validation in step 2.

Although Apple does not disclose any technical details
about the Fairplay DRM technology, we found a way to
bypass it based on the following key observations.

• Observation 1: Different Apple IDs will receive
the same encrypted executable files for different
copies of the same app. After purchasing an app,
an iOS user will receive a file with the .ipa exten-
sion from the App Store. The ipa file is in com-
pressed zip format. We can retrieve the contents of
an app package by decompressing the ipa file. The
following shows the typical structure of an app di-
rectory (taking the Twitter app as an example).
/iTunesArtwork

/iTunesMetadata.plist

/Payload/Twitter.app/Twitter

. . .
/Payload/Twitter.app/SC_Info/Twitter.sinf

/Payload/Twitter.app/SC_Info/Twitter.supp

. . .

Although the whole ipa package is unique for each
Apple ID, we noticed that the encrypted executable
files inside these ipa files are the same. Different
copies of the same app purchased by different Ap-
ple IDs sharing same encrypted executable files im-
plies that the final decryption of the executables

is irrelevant to Apple IDs3.

• Observation 2: Apps purchased by different Ap-
ple IDs can run on the same iOS device under
certain circumstances. We found that iTunes can
sync apps in its app library to iOS devices through
USB or Wi-Fi connections, even if the iOS de-
vices are bound to different Apple IDs. Specifically,
when an iOS device with Apple IDB is connected to
iTunes with Apple IDA, iTunes can still sync apps
purchased by Apple IDA to the iOS device, and au-
thorize the device to run the apps. As a result, apps
purchased by both Apple IDA and Apple IDB can
run on the iOS device.

In particular, we reverse engineered the iTunes autho-
rization process, i.e., how iTunes authorizes an iOS de-
vice with a different Apple ID to run its apps. We briefly
present the workflow here.

First, iTunes sends a Keybag sync request to the iOS
device (Step 1 in Figure 2). We refer the readers to [29]
for detailed use of “Keybags” in iOS. For example, a key-
bag named Escrow is used for iTunes syncing and allows
iTunes to back up and sync without requiring the user to
enter a passcode.

Next, the iOS device generates an authorization re-
quest file /AirFair/sync/afsync.rq and correspond-
ing signature file /AirFair/sync/afsync.rq.sig

(Step 2 in Figure 2). Upon retrieving these two files from
the iOS device (Step 3), iTunes generates an authoriza-
tion response file afsync.rs and corresponding signa-
ture file afsync.rs.sig (Step 4).

iTunes then uploads the authorization response and
signature files (afsync.rs and afsync.rs.sig) to the
iOS device (Step 5). The iOS device stores the two files

3We further explain this in Section A.1
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in the directory /AirFair/sync/ and updates its inter-
nal state (Step 6).

Finally, iTunes sends a request to the iOS device to
finish the syncing process (Step 7). After that, all apps in
the iTunes app library can directly run on the iOS device
without showing the pop-up window similar to Figure 1,
even though iTunes and the iOS device are bound to dif-
ferent Apple IDs.

2.2 Remote Authorization

By reverse engineering the iTunes executables, we iden-
tified the functions in iTunes that are used to gener-
ate the afsync.rs and afsync.rs.sig (i.e., Step 4
in Figure 2). Based on these findings, we realized that
by launching a Man-in-the-Middle-style attack, iTunes
can remotely authorize an iOS device, without requiring
physical connections between iTunes and the iOS device.

Figure 3 shows the remote authorization process in
which iTunes is running on a remote computer (iTunes
with Botmaster’s Apple ID) and an iOS device is con-
nected to a local computer (i.e., the bot client) through a
USB cable or Wi-Fi connection. The local computer acts
as a middleman.

First, the local computer, as instructed by the bot-
master, sends a Keybag syncing request to a connected
iOS device (Step 1 in Figure 3). After receiving the re-
quest, the iOS device generates the authorization request
and signature file (Step 2), and transfers them to the lo-
cal computer (Step 3). However, unlike the traditional
iTunes authorization process, the local computer does
not directly produce the authorization response file. In-
stead, it sends the authorization request file afsync.rq

to a remote computer where iTunes is running (Step 3a).
Upon receiving afsync.rq, the remote computer can
force its local iTunes to handle the authorization request
file as if it were from a connected iOS device, generate
the authorization response file afsync.rs (Step 3b), and
then send afsync.rs back (Step 3c).

Next, the local computer further produces the signa-
ture file afsync.rs.sig by using local iTunes code
(Step 4). Note that the signature file is a keyed hash
value of the response file using the connection session
ID as the key. The signature file could also be generated
by the remote iTunes if the local computer transfers the
connection session ID to the remote iTunes in Step 3a.
Furthermore, the local computer uploads afsync.rs re-
ceived from the remote iTunes and afsync.rs.sig to
the connected iOS device (Step 5). Step 6 and Step 7 in
Figure 3 are the same as those in Figure 2.

The end result is that the iOS device connected to a lo-
cal computer obtains authorization to run apps purchased
by the iTunes instance running on a remote computer.

2.3 Delivery of Jekyll Apps
Background. Our previous work [51] demonstrated that
malicious third-party developers can easily publish ma-
licious apps on the App Store. It also implemented a
proof-of-concept malicious app named Jekyll that can
carry out a number of malicious tasks on iOS devices,
such as posting tweets and dialing any number. Other
research also demonstrated malicious keylogger apps on
iOS 7.0.6 [55]. However, a key limitation of these apps
is that attackers have to passively wait for iOS users to
download the apps and thus affect only a limited number
of iOS users.

Jekyll&App

1.&Create&malicious&apps 3.&Download&malicious&apps&
using&attackers'&Apple&IDs&

2.&Publish&them&on&App&Store All&apps&are&signed&and&
encrypted&by&Apple

4.&Deliver&the&AppleDsigned&malicious&apps&
to&iOS&users&through&botnets

Jekyll&App

Figure 4: Deliver Jekyll apps to iOS devices.

Delivery Process. Figure 4 illustrates the high level
workflow of the attack. First, attackers create Jekyll-like
malicious apps using methods proposed in [51] and pub-
lish them on the App Store (Step 1 & 2 in Figure 4).
Next, attackers download Jekyll-like apps from the App
Store using Apple IDs under their control (Step 3). Fi-
nally, attackers deliver the downloaded apps to compro-
mised computers and instruct them to install the down-
loaded apps to connected iOS devices.

Since Jekyll [51] has been removed from the App
Store, we reused the copy of the app downloaded by our
testing accounts. By using the remote authorization tech-
nique we described in Section 2.2, we successfully made
our copy of Jekyll run on iOS devices bound to different
Apple IDs without triggering DRM violations. The at-
tack demonstrates that even if an app has been removed
from the App Store, attackers can still distribute their
own copies to iOS users. Although Apple has absolute
control of the App Store, attackers can leverage MitM to
build a covert distribution channel of iOS apps.

3 Delivery of Attacker-Signed Apps

In this section, we present how the USB interface can
be exploited to install arbitrary apps that are signed by
attackers. The iOS mandatory code signing mechanism
ensures that only apps signed by trusted authorities can
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run on iOS devices. Apple allows developers to install
apps into iOS devices through a process called device
provisioning, which delegates code signing to iOS de-
velopers. This was originally intended for developers to
either test their apps on devices or for enterprises to do
in-house app distribution. Unfortunately, we found that
this process can be abused to install malicious apps into
iOS devices.

3.1 Provisioning Process
Preparation. A provisioning profile is a digital certifi-
cate that establishes a chain of trust. It describes a list
of iOS devices that are tied to an Apple ID, using the
Unique Device Identifier (UDID) of each device. After
sending the UDID of an iOS device to Apple, a provi-
sioning profile is produced for installation on the device.
Once installed, apps created and signed by the Apple
ID that created the provisioning profile can be success-
fully executed in a provisioned iOS device. Although
a device’s UDID is considered sensitive information, it
is straightforward for compromised machines to obtain
the UDID of a connected iOS device because an iOS de-
vice exposes its UDID through the USB device descrip-
tor header field.

Installing Provisioning Profiles. Conventionally, the
provisioning process is transparently done when one is
using Xcode (Apple’s IDE). However, we found that
the installation of provisioning profiles can also be done
by directly sending requests to a service running on
iOS devices called com.apple.misagent, launched via
the lockdownd service [33]. Specifically, by craft-
ing requests of the following key value pairs encapsu-
lated in plist format [1]: <MessageType, Install>,
<Profile, the provisioning profile to be installed>, and
<ProfileType, Provisioning>, we can stealthily in-
stall a provisioning profile in a USB-connected iOS de-
vice [33].

Installing and Removing Apps. The removal
of an app is done by issuing an Uninstall com-
mand and app-id to a service on the device called
com.apple.mobile.installation proxy. The in-
stallation of an app is done by issuing an Install

command and app-id to the same service, with the
addition of the path to where the app package re-
sides on the computer [33]. Note that using the
com.apple.mobile.installation proxy service to
install or remove apps also works for non-provisioned
iOS devices.

3.2 Attack Examples
As we will present in Section 5.7, we discovered that
4,593 (4%) of 112,233 potential victims queried mobile
banking domains in a day (10/12/2013), implying that

these devices are likely to have mobile banking apps in-
stalled. We implemented a proof-of-concept program
that can check whether a plugged-in iOS device has
banking apps installed and replaces them with malicious
apps that look and feel the same, but trick the user to
re-input usernames and passwords.

4 Stealing Credentials

In this section, we demonstrate that in addition to inject-
ing apps into iOS devices, attackers can also leverage
bots to steal credentials of iOS users.

4.1 Background
Cookie as Credential. Due to the common architecture
of backend servers, the most frequently used credential
types in the iOS app model are HTTP cookies [17] and
OAuth Tokens [25, 27]. We focus on cookies, as they
generally provide a full set of privileges for a particular
app, whereas OAuth credentials are utilized to provide
limited permissions.

Many iOS apps (such as Facebook and Gmail) use
cookies as their authentication tokens. After first login to
these apps, a cookie is generated by the server, transmit-
ted to the device, and stored locally. Later, this cookie
is presented to the server for accessing its contents via
APIs (mostly RESTful HTTP).

The locations of the stored cookies are determined by
the library that processes HTTP requests. The most com-
monly used library is called NSURLConnection [15],
which is provided by the default iOS SDK. In ad-
dition, many third-party HTTP libraries [49, 50] are
built on top of NSURLConnection. As a result,
these libraries store the cookies in the same fixed lo-
cations as NSURLConnection. After analyzing the
NSURLConnection library, we found that all cookies are
stored inside an app’s home folder by default.

Due to sandbox-based isolation, accessing files inside
directories of other apps is prohibited in iOS. Since all
cookies are stored separately per app, unless attackers
can bypass the sandbox, a cookie can only be accessed
by the corresponding app itself. Thus, storing cookies in
each app directory is widely used by third-party develop-
ers and is considered to be hard to exploit [8].

4.2 Threat from the PC
This assumed difficulty of exploitation is incorrect
when USB-based attacks are considered in the threat
model. From a USB connection, a host computer can
connect to an iOS device not only through the iTunes
sync protocol, but also via the Apple File Connection
(AFC) protocol [46]. AFC is designed to access media
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files (e.g., images taken from the camera, recorded
audio, or music files) through the USB cable. Further-
more, there exists a service maintained by lockdownd

called com.apple.mobile.house_arrest, which
provides access to iOS app directories through
the AFC protocol. As a result, a computer
has full USB-based access to the contents of
/private/var/mobile/Applications/*.

Attacks. Credentials can be accessed via the
Cookie.binarycookies file within an app’s directory
using AFC. Both the httpOnly cookie that is protected
from JavaScript access and secure cookies that are only
transferred through HTTPS connections can be recov-
ered. Applying these cookies to the same apps in dif-
ferent devices allows attackers to log-in to the services
of their victims.

Real Examples. As a proof of concept, we imple-
mented a tool that can retrieve the cookies of Facebook
and Gmail apps from a USB-connected iOS device, and
transfer them to another computer.

By using these stolen cookies, we successfully logged
in as the victim via the web services for both Facebook
and Gmail. Although we only demonstrated the attacks
against Facebook and Gmail, we believe that our finding
affects a number of third-party apps that store cookies in
the way similar to the Facebook and Gmail apps.

5 Measurement

In this section, we describe the methodology and datasets
we use to determine a lower bound of the coexistence of
iOS devices, App Store purchases made from Windows
iTunes, and compromised Windows machines in home
networks, with a goal to quantitatively show that a large
number of users are likely to connect iOS devices to in-
fected personal computers.

5.1 Overview

SetiTunes SetiOS

SetMac

SetBot

Figure 5: (Setbot −SetMac)∩SetiOS ∩SetiTunes is the esti-
mation of iOS devices that can be connected with bots.

Due to NAT, there are usually multiple machines (such
as Windows machines, mobile phones, and Mac ma-
chines) behind a single client ID (i.e., an anonymized IP
address). In our measurement, we used different finger-
prints to determine the client IDs (CIDs) that produce

����������Identified as
Truth CID has Mac CID has no Mac

CID has a Mac True Positive False Positive
CID has no Mac False Negative True Negative

Table 2: Definition of false positive and false negative.

network traffic generated by iOS devices, App Store pur-
chases from Windows iTunes, and compromised Win-
dows machines.

First, we quantified the population of compromised
Windows machines (i.e., bots) using a labeled C&C do-
mains dataset (see Section 5.3). Since we only used C&C
domains from Windows malware families, we are con-
fident that all CIDs (Setbot in Figure 5) have Windows
machines. Next, within Setbot , we further measured how
many CIDs contain network traffic generated from iOS
devices. Since there is an overlap of DNS queries from
Mac OS X and queries from iOS, we excluded CIDs
with Mac OS X traffic (SetMac in Figure 5). We used
a set of iOS fingerprint domain names to identify a lower
bound of CIDs containing iOS devices (SetiOS in Fig-
ure 5). Then, we estimated how many iOS devices in
SetiOS are likely to be connected to a Windows machine.
Since there is no unique DNS query generated when an
iOS device is connected to a Windows machine either via
USB or Wi-Fi, we assumed that if users have purchased
an item from the App Store using Windows iTunes, they
will eventaully connect iOS devices to a Windows ma-
chine. We estimated a lower bound of CIDs with Win-
dows iTunes (SetiTunes in Figure 5). Finally, the inter-
section of SetiOS and SetiTunes is our measurement result
(shaded area in Figure 5).

We use false positives and false negatives to evaluate
our methodology. They are defined in Table 2, using
identification of SetMac as an example. If a CID has a
Mac but we identify it as without a Mac, it is a false neg-
ative. On the other hand, if a CID does not have a Mac
but we identify it as with a Mac, it is a false positive. The
definition of false positive and false negative are similar
to identifying SetiOS and SetiTunes. Since we want to be
conservative about the size of SetiTunes ∩ SetiOS, we ac-
cept false positives for SetMac, false negatives for SetiOS
and false negatives for SetiTunes. However, we want to
have small or zero false negatives for SetMac as well as
false positives for SetiOS and SetiTunes.

5.2 Datasets
All datasets are provided by Damballa, Inc [3].

DNS Query Dataset. We obtained DNS traffic from
two large ISPs in the US, collected in 13 cities for five
days4 in October 2013. A-type DNS queries from all
clients to the Recursive DNS Servers of the ISPs were

410/12/2013, 10/24/2013, 10/27/2013, 10/28/2013, 10/30/2013.
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captured by a sensor in each city, and then de-duplicated
every hour to be stored. Each record in the dataset is a
tuple of sensor ID, hourly timestamp, anonymized CID,
query count, queried domain, and resolved IP address
of the domain. The CID is a hash of original client IP
address. The hash is performed to preserve client IP
anonymity, and at the same time to retain a one-to-one
mapping property. The query count denotes the num-
ber of times that client queried the particular domain and
resolved IP pair in the hour. On average, we observed
54 million client IDs, 62 million queries, and 12 billion
records daily from 13 sensors in total.

ISP Clients. Most CIDs in the two ISPs are home
networks. Only few are small businesses. Since 99.5%
of CIDs queried fewer than 1,000 distinct valid domains
daily, we identified those as representative of home net-
work users5.

DHCP Churn. Because of long DHCP lease times
(one week) and specific DHCP renewal policies (e.g., a
modem’s IP address will only be changed if some other
modem has acquired the IP address after lease expira-
tion) from the two large ISPs, the DHCP churn rate is
very low in the networks we measured. Consequently,
we consider a single CID as the same home in a given
day. This is different than that of a botnet’s perspective,
where the bots could reside in any network [48].

Passive DNS Database. We collected and built a pas-
sive DNS database for the same days, from the same lo-
cations as the DNS query dataset to provide visibility of
other types of DNS records. The database contains tu-
ples of date, sensor ID, queried domain, query type, re-
solved data, and query count. Since there are only A-type
records in the DNS query dataset, if there is a CNAME
chain [38] for the domain name we want to measure,
we use the passive DNS database to reconstruct the
CNAME chain to determine the mapping of the domain
we are interested in to the eventual returned A record.
For example, the CNAME chain for Apple’s iMessage
server static.ess.apple.com is shown in Table 3.
The final A-type domain for static.ess.apple.com
is e2013.g.akamaiedge.net. If we want to know
how many CIDs queried static.ess.apple.com in
a day, we first examine the passive DNS database
for that day to reconstruct all possible CNAME
chains to e2013.g.akamaiedge.net. Next, we
make sure that only static.ess.apple.com resolved
into static.ess.apple.com.edgekey.net, and only
static.ess.apple.com.edgekey.net resolved into
e2013.g.akamaiedge.net. Finally, we measure
e2013.g.akamaiedge.net in DNS query dataset.

HTTP Dataset. We utilized technology provided by
Damballa to collect HTTP headers related to iOS and

5We explain why we use 1,000 as the threshold in Section A.2

Windows iTunes, as well as those related to domain
names of our selection. If User Agent strings related to
iOS or Windows iTunes appeared in an HTTP header, or
if any selected domain name was in the “Host” field of an
HTTP request, we collected the request and correspond-
ing response headers. The time frame for all HTTP head-
ers we obtained is from 10/18/2013 to 11/11/2013. Since
the HTTP data is not always available for all CIDs in our
DNS query dataset, we only used the HTTP dataset to
obtain ground truth for evaluating our approach.

Labeled C&C Domains We acquired all command
and control (C&C) domain names for botnets that
Damballa is tracking. The threat researchers in Damballa
labeled those C&C domains using various methods, in-
cluding static and dynamic analyses of malware, several
public blacklists, historical DNS information, etc. We
only picked malware families for Windows for the pur-
pose of this measurement, since we wanted to avoid Mac
OS X as much as possible.

static.ess.apple.com. 3600 IN CNAME

static.ess.apple.com.edgekey.net.

static.ess.apple.com.edgekey.net. 21600 IN CNAME

e2013.g.akamaiedge.net.

e2013.g.akamaiedge.net. 20 IN A 23.73.152.93

Table 3: CNAME chain for static.ess.apple.com.

5.3 Bot Population
First, we used labeled C&C domains to find CIDs con-
taining infected Windows machines in the DNS query
dataset. If a CID queried any C&C domain in a day, we
consider it as having a bot at home for that day. During
the five days in October, we observed 442,399 to 473,506
infected CIDs daily, with an average of 459,326. In par-
ticular, there were 473,506 infected CIDs on 10/12/2013.
We use statistics from 10/12/2013 as an example below
to explain how we determine the population of iOS de-
vices and Windows iTunes.

5.4 Excluding Client IDs with Mac OS X
We utilized unique software update traffic to fingerprint
Mac OS X. Apple lists five domain names related to OS
X software update services [16]:

swscan.apple.com, swquery.apple.com, swdist.apple.com
swdownload.apple.com, swcdn.apple.com

Mac OS X is set to automatically check for security
updates daily since version 10.6 [14] and to check for
general software updates daily since version 10.8 [19].
We assume that if there is any Mac OS X within a
CID, there must be a query to at least one of the five
domains every day. According to [11], the percentage
of OS X versions later than or including 10.6 is 95%.
This assumption gives us a low false negative rate. To
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evaluate the false positives of this approach, we veri-
fied using the HTTP dataset (See Table 5). We were
able to collect HTTP headers for three of the five do-
main names. 3,530 headers for swdist.apple.com,
9,643 headers for swscan.apple.com, and 18,649
headers for swcdn.apple.com were observed. Among
115 unique (Source IP, User Agent string) pairs for
swdist.apple.com, 114 User Agent strings were from
Mac OS X, and one was from Mozilla, which gives
us a 1

115 false positive rate. Similarly, nine out
of 3,884 pairs of (Source IP, User Agent string) for
swscan.apple.com were false positives. We identified

Weather App apple-mobile.query.yahooapis.com

Stocks App iphone-wu.apple.com

Location gs-loc.apple.com

Service iphone-wu.apple.com

Table 4: Domains for finding iOS devices.

6,966 (1.50%) of 473,506 infected CIDs with Mac OS
X on 10/12/2013. It is lower than the market share of
Mac OS X since we only looked for CIDs infected with
Windows malware. After excluding Mac OS X, we have
466,540 bot CIDs without Mac OS X, i.e., Setbot -SetMac.

5.5 iOS Device Population
We used unique domains from two default apps and one
service in iOS (the Weather app, Stocks app, and Loca-
tion Services) to get a lower bound of CIDs containing
iOS devices. We obtained these domains in Table 4 by
capturing and analyzing network traffic when Weather,
Stock, and Location Services were used in a controlled
network environment. We also used the HTTP dataset for
evaluation. As Table 5 shows, within all (Source IP, User
Agent string) pairs that requested the three domains, all
User Agent strings were from either iOS or Mac OS X.
There were no User Agent strings from other operating
systems. Since we have already excluded CIDs with Mac
OS X traffic in the previous step, domains in Table 4 can
be used to fingerprint iOS without introducing any false
positives. However, if a user did not use Weather, Stocks,
or Location Services in the day, it is a false negative.

Of 466,540 CIDs without Mac OS X traffic on
10/12/2013, 142,907 (SetiOS) queried any of the three
domains, indicating 30.63% of observed Windows bots
have iOS devices in the same home network.

5.6 Windows iTunes Population
After we identified infected CIDs containing iOS de-
vices, we further analyzed how many of these have
iTunes installed in infected Windows. The biggest chal-
lenge here is that there is no unique domain name
that can effectively fingerprint Windows iTunes, because

Windows iTunes traffic is similar to the traffic generated
by the App Store for iOS.

Fortunately, we found that because of the Apple Push
Notification Service [2], iOS devices need to constantly
query a certain domain name for push server configura-
tions. Based on this feature, we define iOS heartbeat
DNS queries as DNS queries that an iOS device always
makes as long as it is connected to the Internet.

To pinpoint Windows iTunes, our observation is that
if we observe App Store purchases but do not find iOS
heartbeat DNS queries, then the purchases must originate
from iTunes. Next, we describe how we identify the iOS
heartbeat DNS queries and App Store purchase queries.

5.6.1 App Store Purchase

To fingerprint App Store purchases, we experimented
with several App Store purchases in both Windows
iTunes and iOS. By analyzing PCAP traces of these pur-
chases, we discovered that domain names of the pattern
p*-buy.itunes.apple.com is related to a purchase,
where * denotes numbers. We used the HTTP dataset to
check this pattern (See Table 5). 487 HTTP headers were
collected from 10/26/2013 to 10/29/2013. From the 119
(Source IP, User Agent string) pairs, we confirmed that
this pattern comes from the purchase of apps in either
iOS or iTunes.

5.6.2 iOS Heartbeat DNS Queries

To discover iOS heartbeat DNS queries, we first col-
lected all domains in the “Host” field of HTTP re-
quests containing iOS-related and Windows iTunes-
related User Agent strings from the HTTP dataset.
Next, we examined domains that received a large num-
ber of requests, and concluded that the domain name
init-p01st.push.apple.com is constantly queried
for Apple push server configurations and certificates
from iOS, but queried much less often by Windows
iTunes.

Apple does not disclose how often iOS devices query
their push server. To confirm our observed queries were
iOS heartbeats, we utilized the following three methods.

1. HTTP Traffic Analyses: 8,990 HTTP head-
ers were gathered for init-p01st.push.apple.com,
from 10/18/2013 to 10/31/2013. By inspecting the
distribution of “max-age” values of the Cache-Control
field in the HTTP response headers, we were able to
know the intended cache policy for the push server cer-
tificate in the response. For iOS, the observed max-
age values were from 338s to 3,600s; for APSDae-
mon.exe (part of Windows iTunes), values ranged from
131,837s to 1,295,368s. Compared to Windows, iOS
caches the push server certificate for a shorter time, with
one hour maximum. Consequently, iOS devices must
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Domain Time Frame HTTP headers (Source IP, UA) iOS Mac Mozilla Other
swdist.apple.com 10/24-11/04/2013 3,530 115 0 114 1 0
swscan.apple.com 10/24-11/04/2013 9,643 3,884 0 3,875 9 0
swcdn.apple.com 10/19-11/11/2013 18,649 613 0 140 473 0

iphone-wu.apple.com 10/18-11/04/2013 17,606 1,772 1,174 598 0 0
apple-mobile.query.yahooapis.com 10/22-11/02/2013 16,808 3,018 2,999 19 0 0

gs-loc.apple.com 10/22-11/04/2013 2,380 561 367 182 0 0
p*-buy.itunes.apple.com 10/26-10/29/2013 487 119 - - - App Store

init-p01st.push.apple.com 10/18-10/31/2013 8,990 - - - - -

Table 5: Ground truth of fingerprint domain names.

query init-p01st.push.apple.com when the cache
expires.

2. Reverse Engineering: We also reverse engineered
the push service daemon process apsd in iOS located at
/System/Library/PrivateFrameworks/

ApplePushService.framework/. We found that the
URL http://init-p01st.push.apple.com/bag

is used to set up the push-server’s configuration
path in the class APSEnvironmentProduction

through the method setConfigurationURL. Fur-
thermore, in another private framework called
PersistentConnection, we found that the maximum
length of time this connection can last is set to 1,800s
by setMaximumKeepAliveInterval(1800.0).
This means iOS devices must re-send an HTTP re-
quest to get push server configurations at least every
1,800s. Moreover, the final A-type domain from
init-p01st.push.apple.com has a TTL of 20s. As a
result, every time the HTTP request is made, there must
be a DNS query for the A-type domain.

3. Idle iPod Touch Experiment: We set up
an iPod Touch to never auto-lock, connected it to a
WiFi hotspot, and left it idle for 35.5 hours. Dur-
ing this period, there were 150 DNS queries to
init-p01st.push.apple.com in total. Average query
interval was 859s, with a maximum value of 1,398s and a
minimum value of 293s. The maximum query interval is
consistent with our 1,800s result via reverse engineering.

Our findings show that as long as an iOS de-
vice is connected to the Internet, it constantly
queries init-p01st.push.apple.com for push ser-
vice configurations, with query intervals shorter than
an hour. Each query interval is determined by
both the HTTP Cache-Control value and an enforced
maximum interval value. The query interval for
init-p01st.push.apple.com from iTunes is much
longer. The reason for this query interval difference may
be that iOS devices are more mobile than PCs. As an
iOS device moves, it might need a push server closer to
its current location, to ensure small push service delay.

Given the unique fingerprint for App Store pur-
chases and a unique iOS heartbeat query pattern,
we inferred a lower bound of Windows iTunes

by estimating the number of CIDs that queried
p*-buy.itunes.apple.com but did not query
init-p01st.push.apple.com in the hour before
and after the purchase query. If the Windows iTunes
happened to query init-p01st.push.apple.com

within those two hours, or if the user did not pur-
chase anything in the iTunes App Store, it would
be a false negative, since we cannot recognize Win-
dows iTunes even though it exists. However, there
are no false positives. Note that we cannot use
init-p01st.push.apple.com to estimate the number
of iOS devices for two reasons: i) Windows iTunes
can query this domain; ii) the final A-type domain of
init-p01st.push.apple.com can come from mul-
tiple original domain names6. Therefore, by removing
CIDs that queried init-p01st.push.apple.com in
the small time window, we exclude a larger set of CIDs
that purchased from within iOS, resulting in a lower
bound for Windows iTunes estimation.

On 10/12/2013, from the 142,907 infected CIDs
with iOS devices, we further identified 112,233 CIDs
with Windows iTunes purchases on the same day, i.e.,
SetiTunes ∩ SetiOS. This indicates that 112,233 (23.70%)
of CIDs have both iOS devices and Windows iTunes, but
no Mac OS X within the home network.

5.7 Mobile Banking Traffic
The iOS devices behind bot CIDs with Windows iTunes
are potential victims of our attacks. To estimate the per-
centage of those devices that may have banking apps
installed, we chose mobile domains from eight banks
(Citibank, Wells Fargo, PNC, Bank of America, Sun-
trust, Bank of the West, and U.S. Bank), and examined
how many of those iOS devices queried them. We dis-
covered that 4,593 (4%) of 112,233 potential victims
queried mobile banking domains on 10/12/2013. This
indicates that these devices are likely installed with mo-
bile banking apps that could be replaced with fake mo-
bile banking apps once they are infected, as discussed in
Section 3.

6This is the only fingerprint domain name we used whose final A-
type domain could be resolved from multiple different domain names.
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5.8 Result Summary
We used the methodology described in this section to
measure the number of iOS devices that can be poten-
tially infected using the MitM attack described in Sec-
tion 2, with five days of DNS query data. The results
are summarized in Table 7. On average, we identified
459,326 bots daily. For 30% of bots, there exist iOS de-

Botnet Size Setbots ∩SetiOS ∩SetiTunes Percentage
α 287,055 75,714 26.38%
β 69,895 12,517 17.91%
γ 49,138 10,216 20.79%
δ 16,236 3,232 19.91%
ε 13,732 2,662 19.39%
ε 5,024 1,182 23.53%
ζ 4,554 944 20.73%
η 4,377 929 21.22%
θ 4,231 834 19.71%
ϑ 4,067 806 19.82%

Table 6: Statistical analysis of the top 10 botnets with
highest number of infected CIDs on 10/12/2013.

vices used from the same CID; and for 23% of all bots,
there are both Windows iTunes installed and an iOS de-
vice used. Statistics for individual botnets as tracked by
Damballa are presented in Table 6. For example, if the
botmaster of botnet α bundled our attacks into their pay-
load, there would be 75,714 potential victims in 13 cities,
within the networks we monitor.

Date Setbots Setbots ∩SetiOS Setbots ∩SetiOS ∩SetiTunes
10/12 473,506 142,907 (30.63%) 112,233 (23.70%)
10/24 452,003 134,838 (29.83%) 104,225 (23.06%)
10/27 442,399 134,271 (30.35%) 104,075 (23.53%)
10/28 461,144 138,793 (30.10%) 105,056 (22.78%)
10/30 467,579 141,242 (30.21%) 102,795 (21.98%)

Table 7: Measurement results summary, October 2013.

6 Related Work

USB Attack Vector. The USB interface has been
demonstrated to be an attack vector for mobile de-
vices for some years [18, 31, 35, 52]. Z. Wang and
A. Stavrou [52] studied attacks that take advantage of
USB interface connectivity and presented three attack
examples on Android platforms that spread infections
from phone to phone, from phone to computer, and from
computer to phone. The work in [31, 35] further demon-
strated that these USB based attacks can take place
through USB charging stations or chargers. It is worth
noting that infecting connected mobile devices from the
PC has happened in the real world. Symantec has found
malware samples on Windows that can inject malicious
apps to USB-connected Android devices [6].

Our work is the first to show measurement results that
indicate a large number of users are likely to connect iOS

devices to compromised computers, potentially leading
to a large scale infection of iOS devices. We hope that
our measurement results could drive Apple and other
mobile manufacturers to redesign the security model of
USB connections, and remind app developers to securely
store credentials. In addition, while most previous works
focus on Android, we present various attacks against
non-jailbroken iOS devices that can be launched via USB
or Wi-Fi connections.

Attacks Against iOS. In recent years, more attacks
against the iOS platform have been observed As one of
the most representative attacks, jailbreaking is the pro-
cess of obtaining root privilege and removing certain lim-
itations (such as code signing) on iOS devices by ex-
plooiting vulnerabilities in the kernel, the boot loader,
and even the hardware [37]. Since most jailbreaking
tools [22, 30] deliver the exploits through a USB con-
nection, attackers could also take advantage of these jail-
breaking tools to root USB-connected iOS devices. In
this case, attackers can easily inject malicious apps with
the ability to read and send SMS (e.g., [5]), which will
allow for more advanced attacks against SMS-based two
factor authentication schemes [21, 39].

Many researchers have shown that the App Store can-
not prevent publishing of malicious apps [26, 36, 51].
They also proposed defenses [20, 53] for jailbroken de-
vices. As previously mentioned, these malicious apps
could only affect a limited number of iOS users who
downloaded them. Our research describes the means to
deliver malicious apps to a significant number of iOS de-
vices and could significantly amplify the threat of iOS-
based malware.

Many works focus on reverse engineering iOS and
its protocols. Researchers analyzed the iMessage pro-
tocol and proposed Man-in-the-Middle attacks [44]. Re-
quiem [47] reverse engineered the Apple Fairplay DRM
protection algorithm for music, movies, and eBooks, and
can bypass Fairplay to decrypt protected media files.
However, Requiem does not support Apple Fairplay
DRM protection for apps in the App Store. The libimo-
biledevice project [33] enables a computer to commu-
nicate with USB-connected iOS devices without requir-
ing iTunes, such as syncing music and video to the de-
vice and managing SpringBoard icons and installed apps.
However, libimobiledevice does not contain the iTunes
authorization process (Section 2.1). In other words, li-
bimobiledevice can install an app purchased by Apple
IDA to an iOS device bound to Apple IDB, but the app
cannot successfully run due to the failure of DRM vali-
dations. In comparison, we analyzed the iTunes autho-
rization process, and found a way to bypass the DRM
validations. This can allow attackers to deliver malicious
apps downloaded by their Apple IDs to different iOS de-
vices.

11
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Mobile OS Fingerprint. To fingerprint mobile OSes
in a multi-device network environment, the User Agent
field of the HTTP header, DHCP request header fields,
Organization Unique Identifier (OUI, i.e., the first 3-
bytes of a MAC address), or a combination of these were
commonly used [12, 24, 28, 34, 41]. Unfortunately, it is
not scalable to collect these data in ISP-level networks.
Furthermore, it is common for each client IP in a cellular
network to represent only one device. In ISP networks,
many client IPs represent a NAT endpoint. To cope with
the complexity caused by multiple devices per client IP
in ISP networks, we used unique domains from two de-
fault apps and one service within iOS to measure the
number of iOS devices. We also found a domain name
related to the push service with a unique query frequency
that allowed us to determine the presence or absence of
an iOS device for a given client IP.

7 Discussion

7.1 Accuracy of the Measurement
We emphasize that the goal of our measurement study
is to show that there is a large number of users who are
likely to connect their iOS devices to compromised com-
puters, which we argue may lead to a large scale infection
of iOS devices through botnets. There are many reasons
that may lead to underestimations in our measurement,
which implies that even more iOS devices could be in-
fected by the botnets that we monitor. For example, in
our measurement, we did not consider cellular traffic and
the case that people often have multiple iOS devices in
their household.

Next, we discuss the potential reasons that may result
in overestimations and analyze why they are unlikely to
happen in our dataset.

Multiple Windows machines. The data we have only
allows us to determine what type of devices are behind an
IP address, but not how many of each. Thus, it is possi-
ble that there are multiple Windows machines behind an
IP. In the case that there are multiple Windows machines
and not all of them are infected, we may have an over-
estimated infection number since iOS devices could be
connected to only the uninfected computers. To reduce
this risk of overestimation, we excluded IPs that queried
more than 1,000 unique domains in a day because these
IPs are likely to be a gateway with many users. On the
other hand, we can expect that within a small environ-
ment, if one Windows machine in a NAT environment
is infected, it is likely that all Windows machines will
eventually be infected. This is because 1) most likely all
the Windows machines in the network are managed in a
similar manner, and have the same level of updates and

defenses, thus share the same vulnerabilities, and 2) it is
likely that there is some kind of communication or data
sharing (e.g., using the same Wi-Fi network or a USB
thumb drive) between the machines.

Mobility of iOS devices. Due to the mobility of
iOS devices, it is possible that the same iOS device ap-
pears in different “infected” IP addresses, which leads
to an overestimation of the number of potential iOS vic-
tims. However, we argue that this is extremely unlikely
in our dataset because the overestimation can only hap-
pen when the same iOS device is present behind differ-
ent NAT-networks in the same ISP, and the NATs have
infected computers that make purchases from Windows
iTunes in the same day.

7.2 Mitigation and Prevention
Since Apple has remote removal and revocation abilities,
they have complete mediation over what app can run on
an iOS device. However, due to a significant number of
apps on the App Store and the lack of runtime monitors
on iOS devices, malicious apps are only detected when
the users perceive adverse effects of the malicious apps.
As a result, many iOS users may have already been af-
fected by such attacks before the manually-triggered re-
vocations and removal are applied. We have observed
many Android botnets [42, 43] even though Google also
has remote app removal ability [4]. In addition, this abil-
ity cannot prevent an attack that steals a user’s cookies
(as discussed in Section 4).

Since we only tested a few devices in the attack pre-
sented in Section 2, we cannot confirm whether Apple is
able to impose a limit on the number of iOS devices that
can be authorized per Apple ID. However, since register-
ing an Apple ID only requires a valid email address, at-
tackers can easily prepare a number of Apple IDs and use
them to distribute malicious apps. Nonetheless, we still
suggest that Apple should monitor the anomalous Apple
IDs that deliver purchased apps to excessive number of
devices. In addition, we advocate that iOS should warn
the user when an app purchased by a different Apple ID
is to be installed.

The attack in Section 3 relies on iOS developer li-
censes. An individual iOS developer license can only
register up to 100 iOS devices, which prevents large scale
exploitation. However, Apple has the enterprise devel-
oper license program, which allows provisioning of an
arbitrary number of iOS devices. Although the appli-
cation for an Enterprise iOS Developer License is ar-
guably very difficult because one would require a Dun
& Bradstreet (D-U-N-S) number, we have observed a lot
of real world cases of abusing enterprise licenses, such
as distributing pirated iOS apps [10], running GBA emu-
lators [9], and delivering jailbreak exploits [7]. It is also

12
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possible for attackers to obtain such licenses through in-
fected machines under their control, rather than applying
for one. As result, we suggest that iOS should warn the
user when a provisioning profile is installed or prompts
the user the first time an app is run that is signed by an
unknown provisioning profile.

To prevent the malicious PC from stealing cook-
ies through the USB connection, third-party developers
should be aware that plaintext credentials could be easily
leaked through the USB interface and store the creden-
tials in a secure manner.

8 Conclusion

This paper discussed the feasibility of large scale infec-
tions of non-jailbroken iOS devices. We demonstrated
three kinds of attacks against iOS devices that can be
launched by a compromised computer: delivering Apple-
signed malicious apps, delivering third-party developer
signed malicious apps, and stealing private data from iOS
devices. Furthermore, by analyzing DNS queries gener-
ated from more than half a million IP addresses in known
botnets, we measured that on average, 23% of bots are
likely to have USB connections to iOS devices, poten-
tially leading to a large scale infection.
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A Appendices

A.1 Fairplay
The code segments of iOS apps on the App Store are
encrypted with AES-128. Specifically, rather than us-
ing a single pair of key and IV (Initialization Vector) per
app, each 4K bytes (i.e., memory page size) of the code
segment of an app are encrypted with a unique pair of
key and IV. These keys and IVs are also encrypted and
stored in an supp file that is inside the SC_Info folder
within the app archive. Upon loading an encrypted app
into memory, iOS will derive the decryption keys and
IVs from the supp file, the sinf file that is also in-
side the SC_Info folder, and the sidb file that resides
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under /private/var/mobile/Library/FairPlay/

iTunes_Control/iTunes/. A heavily obfuscated ker-
nel module FairPlayIOKit and a heavily obfuscated
user space daemon fairplayd are involved in this pro-
cess.

Furthermore, this user space daemon fairplayd

is also involved in the generation of afsync.rq and
afsync.rq.sig mentioned in Section 2.2. After receiv-
ing the syncing request from a PC, the air traffic con-
trol service atc running in iOS devices will communi-
cate with fairplayd through Mach messages to gener-
ate afsync.rq and afsync.rq.sig.

A.2 Measurement
Exclude small business networks. We plotted the cu-
mulative distribution for number of distinct valid do-
mains queried from all CIDs in a day in Figure 6. Some
CIDs queried a lot more than 2,000 distinct domains in a
day, e.g., 25,138,224. However, we only show in Fig-
ure 6 until 2,000 unique domains in the x-axis. The
CDF curve grows extremely slowly after 1,000 unique

domains, and 99.5% of CIDs queried fewer than 1,000
unique domains in a day. Therefore, we only use CIDs
that queried fewer than 1,000 distinct valid domains per
day in our experiment.
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Figure 6: Cumulative distribution for number of distinct
valid domains queried from all CIDs, on 10/12/2013.
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Abstract

As embedded systems are more than ever present in

our society, their security is becoming an increasingly

important issue. However, based on the results of many

recent analyses of individual firmware images, embed-

ded systems acquired a reputation of being insecure. De-

spite these facts, we still lack a global understanding of

embedded systems’ security as well as the tools and tech-

niques needed to support such general claims.

In this paper we present the first public, large-scale

analysis of firmware images. In particular, we unpacked

32 thousand firmware images into 1.7 million individ-

ual files, which we then statically analyzed. We leverage

this large-scale analysis to bring new insights on the se-

curity of embedded devices and to underline and detail

several important challenges that need to be addressed in

future research. We also show the main benefits of look-

ing at many different devices at the same time and of

linking our results with other large-scale datasets such as

the ZMap’s HTTPS survey.

In summary, without performing sophisticated static

analysis, we discovered a total of 38 previously unknown

vulnerabilities in over 693 firmware images. Moreover,

by correlating similar files inside apparently unrelated

firmware images, we were able to extend some of those

vulnerabilities to over 123 different products. We also

confirmed that some of these vulnerabilities altogether

are affecting at least 140K devices accessible over the

Internet. It would not have been possible to achieve these

results without an analysis at such wide scale.

We believe that this project, which we plan to provide

as a firmware unpacking and analysis web service1, will

help shed some light on the security of embedded de-

vices.

1http://firmware.re

1 Introduction

Embedded systems are omnipresent in our everyday life.

For example, they are the core of various Common-

Off-The-Shelf (COTS) devices such as printers, mobile

phones, home routers, and computer components and pe-

ripherals. They are also present in many devices that are

less consumer oriented such as video surveillance sys-

tems, medical implants, car elements, SCADA and PLC

devices, and basically anything we normally call elec-

tronics. The emerging phenomenon of the Internet-of-

Things (IoT) will make them even more widespread and

interconnected.

All these systems run special software, often called

firmware, which is usually distributed by vendors as firm-

ware images or firmware updates. Several definitions for

firmware exist in the literature. The term was originally

introduced to describe the CPU microcode that existed

“somewhere” between the hardware and the software

layers. However, the word quickly assumed a broader

meaning, and the IEEE Std 610.12-1990 [6] extended

the definition to cover the “combination of a hardware

device and computer instructions or computer data that

reside as read-only software on the hardware device”.

Nowadays, the term firmware is more generally used

to describe the software that is embedded in a hard-

ware device. Like traditional software, embedded de-

vices’ firmware may have bugs or misconfigurations that

can result in vulnerabilities for the devices which run

that particular code. Due to anecdotal evidence, embed-

ded systems acquired a bad security reputation, gener-

ally based on case by case experiences of failures. For

instance, a car model throttle control fails [47] or can be

maliciously taken over [21, 55]; a home wireless router

is found to have a backdoor [48, 7, 44], just to name

a few recent examples. On the one hand, apart from a

few works that targeted specific devices or software ver-

sions [39, 27, 63], to date there is still no large-scale se-

curity analysis of firmware images. On the other hand,
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manual security analysis of firmware images yields very

accurate results, but it is extremely slow and does not

scale well for a large and heterogeneous dataset of firm-

ware images. As useful as such individual reports are for

a particular device or firmware version, these alone do

not allow to establish a general judgment on the over-

all state of the security of firmware images. Even worse,

the same vulnerability may be present in different de-

vices, which are left vulnerable until those flaws are re-

discovered independently by other researchers [48]. This

is often the case when several integration vendors rely

on the same subcontractors, tools, or SDKs provided by

development vendors. Devices may also be branded un-

der different names but may actually run either the same

or similar firmware. Such devices will often be affected

by exactly the same vulnerabilities, however, without a

detailed knowledge of the internal relationships between

those vendors, it is often impossible to identify such sim-

ilarities. As a consequence, some devices will often be

left affected by known vulnerabilities even if an updated

firmware is available.

1.1 Methodology

Performing a large-scale study of the security of embed-

ded devices by actually running the physical devices (i.e.,

using a dynamic analysis approach) has several major

drawbacks. First of all, physically acquiring thousands of

devices to study would be prohibitively expensive. More-

over, some of them may be hard to operate outside the

system for which they are designed — e.g., a throttle

control outside a car. Another option is to analyze exist-

ing online devices as presented by Cui and Stolfo [29].

However, some vulnerabilities are hard to find by just

looking at the running device, and it is ethically ques-

tionable to perform any nontrivial analysis on an online

system without authorization.

Unsurprisingly, static analysis scales better than dy-

namic analysis as it does not require access to the physi-

cal devices. Hence, we decided to follow this approach in

our study. Our methodology consists of collecting firm-

ware images for as many devices and vendors as possi-

ble. This task is complicated by the fact that firmware

images are diverse and it is often difficult to tell firm-

ware images apart from other files. In particular, distri-

bution channels, packaging formats, installation proce-

dures, and availability of meta-data often depend on the

vendor and on the device type. We then designed and im-

plemented a distributed architecture to unpack and run

simple static analysis tasks on the collected firmware im-

ages. However, the contribution of this paper is not in

the static analysis techniques we use (for example, we

did not perform any static code analysis), but to show

the advantages of an horizontal, large-scale exploration.

For this reason, we implemented a correlation engine to

compare and find similarities between all the objects in

our dataset. This allowed us to quickly “propagate” vul-

nerabilities from known vulnerable devices to other sys-

tems that were previously not known to be affected by

the same vulnerability.

Most of the steps performed by our system are concep-

tually simple and could be easily performed manually on

a few devices. However, we identified five major chal-

lenges that researchers need to address in order to per-

form large scale experiments on thousands of different

firmware images. These include the problem of building

a representative dataset (Challenge A in Section 2), of

properly identifying individual firmware images (Chal-

lenge B in Section 2), of unpacking custom archive for-

mats (Challenge C in Section 2), of limiting the required

computation resources (Challenge D in Section 2), and

finally of finding an automated way to confirm the re-

sults of the analysis (Challenge E in Section 2). While

in this paper we do not propose a complete solution for

all these challenges, we discuss the way and the extent to

which we dealt with some of these challenges to perform

a systematic, automated, large-scale analysis of firmware

images.

1.2 Results Overview

For our experiments we collected an initial set of

759,273 files (totaling 1.8TB of storage space) from

publicly accessible firmware update sites. After filtering

out the obvious noise, we were left with 172,751 poten-

tial firmware images. We then sampled a set of 32,356

firmware candidates that we analyzed using a private

cloud deployment of 90 worker nodes. The analysis and

reports resulted in a 10GB database.

The analysis of sampled files led us to automatically

discover and report 38 new vulnerabilities (fixes for some

of these are still pending) and to confirm several that

were already known [44, 48]. Some of our findings in-

clude:

• We extracted private RSA keys and their self-signed

certificates used in about 35,000 online devices

(mainly associated with surveillance cameras).

• We extracted several dozens of hard-coded pass-

word hashes. Most of them were weak, and there-

fore we were able to easily recover the original pass-

words.

• We identified a number of possible backdoors such

as the authorized keys file (which lists the SSH

keys that are allowed to remotely connect to the

system), a number of hard-coded telnetd creden-

tials affecting at least 2K devices, hard-coded web-

login admin credentials affecting at least 101K de-
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vices, and a number of backdoored daemons and

web pages in the web-interface of the devices.

• Whenever a new vulnerability was discovered (by

other researchers or by us) our analysis infrastruc-

ture allowed us to quickly find related devices or

firmware versions that were likely affected by the

same vulnerability. For example, our correlation

techniques allowed us to correctly extend the list of

affected devices for variations of a telnetd hard-

coded credentials vulnerability. In other cases, this

led us to find a vulnerability’s root problem spread

across multiple vendors.

1.3 Contributions

In summary this paper makes the following contribu-

tions:

• We show the advantages of performing a large-scale

analysis of firmware images and describe the main

challenges associated with this activity.

• We propose a framework to perform firmware col-

lection, filtering, unpacking and analysis at large

scale.

• We implemented several efficient static techniques

that we ran on 32,356 firmware candidates.

• We present a correlation technique which allows to

propagate vulnerability information to similar firm-

ware images.

• We discovered 693 firmware images affected by at

least one vulnerability and reported 38 new CVEs.

2 Challenges

As mentioned in the previous section, there are clear ad-

vantages of performing a wide-scale analysis of embed-

ded firmware images. In fact, as is often the case in sys-

tem security, certain phenomena can only be observed by

looking at the global picture and not by studying a single

device (or a single family of devices) at a time.

However, large-scale experiments require automated

techniques to obtain firmware images, unpack them, and

analyze the extracted files. While these are easy tasks for

a human, they become challenging when they need to be

fully automated. In this section we summarize the five

main challenges that we faced during the design and im-

plementation of our experiments.

Challenge A: Building a Representative Dataset

The embedded systems environment is heterogeneous,

spanning a variety of devices, vendors, architectures, in-

struction sets, operating systems, and custom compo-

nents. This makes the task of compiling a representative

and balanced dataset of firmware images a difficult prob-

lem to solve.

The real market distribution of a certain hardware ar-

chitecture is often unknown, and it is hard to compare

different classes of devices (e.g., medical implants vs.

surveillance cameras). Which of them need to be taken

into account to build a representative firmware dataset?

How easy is it to generalize a technique that has only

been tested on a certain brand of routers to other ven-

dors? How easy is it to apply the same technique to other

classes of devices such as TVs, cameras, insulin pumps,

or power plant controllers?

From a practical point of view, the lack of centralized

points of collection (such as the ones provided by an-

tivirus vendors or public sandboxes in the malware ana-

lysis field) makes it difficult for researchers to gather a

large and well triaged dataset. Firmware often needs to

be downloaded from the vendor web pages, and it is not

always simple, even for a human, to tell whether or not

two firmware images are for the same physical device.

Challenge B: Firmware Identification

One challenge often encountered in firmware analysis

and reverse engineering is the difficulty of reliably ex-

tracting meta-data from a firmware image. For instance,

such meta-data includes the vendor, the device product

code and purpose, the firmware version, and the proces-

sor architecture, among many other details.

In practice, the diversity of firmware file formats

makes it harder to even recognize that a given file down-

loaded from a vendor website is a firmware at all. Often

firmware updates come in unexpected formats such as

HP Printer Job Language and PostScript documents for

printers [24, 23, 27], DOS executables for BIOS, and ISO

images for hard disk drives [72].

In many cases, the only source of reliable informa-

tion is the official vendor documentation. While this

is not a problem when looking manually at a few de-

vices, extending the analysis to hundreds of vendors and

thousands of firmware images automatically downloaded

from the Internet is challenging. In fact, the information

retrieval process is hard to automate and is error prone, in

particular for certain classes of meta-data. For instance,

we often found it hard to infer the correct version num-

ber. This makes it difficult for a large-scale collection and

analysis system to tell which is the latest version avail-

able for a certain device, and even if two firmware images

corresponded to different versions for the same device.

This further complicates the task of building an unbiased

dataset.
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Challenge C: Unpacking and Custom Formats

Assuming the analyst succeeded in collecting a repre-

sentative and well labeled dataset of firmware images,

the next challenge consists in locating and extracting im-

portant functional blocks (e.g., binary code, configura-

tion files, scripts, web interfaces) on which static analysis

routines can be performed.

While this task would be easy to address for tra-

ditional software components, where standardized for-

mats for the distribution of machine code (e.g., PE and

ELF), resources (e.g., JPEG and GZIP) and groups of

files (e.g., ZIP and TAR) exist, embedded software dis-

tribution lacks standards. Vendors have developed their

own file formats to describe flash and memory images.

In some cases those formats are compressed with non-

standard compression algorithms. In other cases those

formats are obfuscated or encrypted to prevent analysis.

Monolithic firmware, in which the bootloader, the oper-

ating system kernel, the applications, and other resources

are combined together in a single memory image are es-

pecially challenging to unpack.

Forensic strategies, like file carving, can help to ex-

tract known file formats from a binary blob. Unfortu-

nately those methods have drawbacks: On the one hand,

they are often too aggressive with the result of extract-

ing data that matches a file pattern only by chance. On

the other hand, they are computationally expensive, since

each unpacker has to be tried for each file offset of the bi-

nary firmware blob.

Finally, if a binary file has been extracted that does

not match any known file pattern, it is impossible to say

if this file is a data file, or just another container for-

mat that is not recognized by the unpacker. In general,

we tried to unpack at least until reaching uncompressed

files. In some cases, our extraction goes one step further

and tries to extract sections, resources and compressed

streams (e.g., for the ELF file format).

Challenge D: Scalability and Computational Limits

One of the main advantages of performing a wide-scale

analysis is the ability of correlating information across

multiple devices. For example, this allowed us to auto-

matically identify the re-use of vulnerable components

among different firmware images, even from different

vendors.

Capturing the global picture of the relationship be-

tween firmware images would require the one-to-one

comparison of each pair of unpacked files. Fuzzy hashes

(such as sdhash [62] and ssdeep [54]) are a common

and effective solution for this type of task and they have

been successfully used in similar domains, e.g., to cor-

relate samples that belong to the same malware fami-

lies [35, 15]. However, as described in more detail in

Section 3.4, computing the similarity between the ob-

jects extracted from 26,275 firmware images requires

1012 comparisons. Using the simpler fuzzy hash vari-

ant, we estimate that on a single dual-core computer this

task would take approximately 850 days2. This simple

estimation highlights one of the possible computational

challenges associated with a large-scale firmware ana-

lysis. Even if we had a perfect database design and a

highly optimized in-memory database, it would still be

hard to compute, store, and query the fuzzy hash scores

of all pairs of unpacked files. A distributed computational

infrastructure can help reduce the total time since the

task itself is parallelizable [57]. However, since the num-

ber of comparisons grows quadratically with the number

of elements to compare, this problem quickly becomes

impracticable for large image datasets. If, for example,

one would like to build a fuzzy hash database for our

whole dataset, which is just five times the size of the cur-

rent sampled dataset, this effort would already take more

than 150 CPU years instead of 850 CPU days. Our at-

tempt to use the GPU-assisted fuzzy hashing provided

by sdhash [62] only resulted in a limited speedup that

was not sufficient to perform a full-scale comparison of

all files in our dataset.

Challenge E: Results Confirmation

The first four challenges were mostly related to the col-

lection of the dataset and the pre-processing of the firm-

ware images. Once the code or the resources used by the

embedded device have been successfully extracted and

identified, researchers can focus their attention on the

static analysis. Even though the details and goals of this

step are beyond the scope of this paper, in Section 3.3 we

present some examples of simple static analysis and we

discuss the advantages of performing these techniques on

a large scale.

However, one important research challenge remains

regarding the way the results of static analysis can be

confirmed. For example, we can consider a scenario

where a researcher applies a new vulnerability detection

technique to several thousand firmware images. Those

images were designed to run on specific embedded de-

vices, most of which are not available to the researcher

and would be hard and costly to acquire. Lacking the

proper hardware platform, there is still no way to manu-

ally or automatically test the affected code to confirm or

deny the findings of the static analysis.

For example, in our experiments we identified a firm-

ware image that included the PHP 5.2.12 banner string.

This allowed us to easily identify several vulnerabilities

2 This is mainly because comparing fuzzy hashes is not a simple bit

string comparison but actually involves a rather complex algorithm and

high computational effort.
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Figure 1: Architecture of the entire system.

associated with that version of the PHP interpreter. How-

ever, this is insufficient to determine if the PHP inter-

preter is vulnerable, since the vendor may have applied

patches to correct known vulnerabilities without this be-

ing reflected in the version string. In addition, the vendor

might have used an architecture and/or a set of compi-

lation options which produced a non-vulnerable build of

the component. Unfortunately, even if a proof of concept

attack exists for that vulnerability, without the proper

hardware it is impossible to test the firmware and con-

firm or deny the presence of the problem.

Confirming the results of the static analysis on firm-

ware devices is a tedious task requiring manual interven-

tion from an expert. Scaling this effort to thousands of

firmware images is even harder. Therefore, we believe

the development of new techniques is required to accu-

rately deal with this problem at a large scale.

3 Setup

In this section we first present the design of our dis-

tributed static analysis and correlation system. Then we

detail the techniques we used, and how we addressed the

challenges described in Section 2.

3.1 Architecture

Figure 1 presents an overview of our architecture. The

first component of our analysis platform is the firmware

data store, which stores the unmodified firmware files

that have been retrieved either by the web crawler or that

have been submitted through the public web interface.

When a new file is received by the firmware data store,

it is automatically scheduled to be processed by the ana-

lysis cloud. The analysis cloud consists of a master node,

and a number of worker and hash cracking nodes. The

master node distributes unpacking jobs to the worker

nodes (Figure 2), which unpack and analyze firmware

images. Hash cracking nodes process password hashes

that have been found during the analysis, and try to find

the corresponding plaintext passwords. Apart from co-

ordinating the worker nodes, the master node also runs

the correlation engine and the data enrichment system

modules. These modules improve the reports with results

from the cross-firmware analysis.

The analysis cloud is where the actual analysis of the

firmware takes place. Each firmware image is first sub-

mitted to the master node. Subsequently, worker nodes

are responsible for unpacking and analyzing the firm-

ware and for returning the results of the analysis back

to the master node. At this point, the master node will

submit this information to the reports database. If there

were any uncracked password hashes in the analyzed

firmware, it will additionally submit those hashes to one

of the hash cracking nodes which will try to recover the

plaintext passwords.

It is important to note that only the results of the ana-

lysis and the meta-data of the unpacked files are stored

in the database. Even though we do not currently use the

extracted files after the analysis, we still archive them for

future work, or in case we want to review or enhance a

specific set of analyzed firmware images.

The architecture contains two other components: the

correlation engine and the data enrichment system. Both

of them fetch the results of the firmware analysis from

the reports database and perform additional tasks. The

correlation engine identifies a number of “interesting”

files and tries to correlate them with any other file present

in the database. The enrichment system is responsible for

enhancing the information about each firmware image

by performing online scans and lookup queries (e.g., de-

tecting vendor name, device name/code and device cate-

gory).

In the remainder of this section we describe each step

of the firmware analysis in more detail so that our exper-

iments can be reproduced.

3.2 Firmware Acquisition and Storage

The first step of our experiments consisted in gathering

a firmware collection for analysis. We achieved this goal

by using mainly two methods: a web crawler that auto-

matically downloads files from manufacturers’ websites

and specialized mirror sites, and a website with a submis-
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sion interface where users can submit firmware images

for analysis.

We initialized the crawler with tens of support pages

from well known manufacturers such as Xerox, Bosch,

Philips, D-Link, Samsung, LG, Belkin, etc. Second,

we used public FTP indexing engines 3 to search for

files with keywords related to firmware images (e.g.,

firmware). The result of such searches yields either di-

rectory URLs, which are added to the crawler list of

URLs to index and download, or file URLs, which are

directly downloaded by the crawler. At the same time,

the script strips filenames out of the URLs to create ad-

ditional directory URLs.

Finally, we used Google Custom Search Engines

(GCSE) [3] to create customized search engines. GCSE

provides a flexible API to perform advanced search

queries and returns results in a structured way. It also

allows to programmatically create a very customized

CSE on-the-fly using a combination of RESTful and

XML APIs. For example, a CSE is created using

support.nikonusa.com as the “Sites to Search” pa-

rameter. Then a firmware related query is used on the

CSE such as ‘‘firmware download’’. The CSE from

the above example returns 2,210 results at the time of

this publication. The result URLs along with associated

meta-data are retrieved via the JSON API. Each URL

was then used by the crawler or as part of other dynamic

CSE, as previously described. This allowed us to mine

additional firmware images and firmware repositories.

We chose not to filter data at collection time, but to

download files greedily, deciding at a later stage if the

collected files were firmware images or not. The reason

for this decision is two-fold. First, accompanying files

such as manuals and user guides can be useful for find-

ing additional download locations or for extracting con-

tained information (e.g., model, default passwords, up-

date URLs). Second, as we mentioned previously, it is

often difficult to distinguish firmware images from other

files. For this reason, filtering a large dataset is better than

taking a chance to miss firmware files during the down-

loading phase. In total, we crawled 284 sites and stopped

downloading once the collection of files reached 1.8TB

of storage. The actual storage required for this amount

of data is at least 3-4 times larger, since we used mir-

rored backup storage, as well as space for keeping the

unpacked files and files generated during the unpacking

(e.g., logs and analysis results).

The public web submission interface provides a means

for security researchers to submit firmware files for ana-

lysis. After the analysis is completed, the platform pro-

3FTP indexing engines such as: www.mmnt.ru,

www.filemare.com, www.filewatcher.com,

www.filesearching.com , www.ftpsearch.net,

www.search-ftps.com

duces a report with information about the firmware con-

tents as well as similarities to other firmware in our

database. We have already received tens of firmware im-

ages through the submission interface. While this is cur-

rently a marginal source of firmware files, we expect that

more firmware will be submitted as we advertise our ser-

vice. This will also be a unique chance to have access to

firmware images that are not generally available and, for

example, need to be manually extracted from a device.

Files fetched by the web crawler and received from

the web submission interface are added to the firmware

data store. Files are simply stored on a file system and a

database is used for meta-data (e.g., file checksum, size,

download location).

3.3 Unpacking and Analysis

The next step towards the analysis of a firmware image is

to unpack and extract the contained files or objects. The

output of this phase largely depends on the type of firm-

ware. In some examples, executable code and resources

(such as graphics files or HTML code) can be linked into

a binary blob that is designed to be directly copied into

memory by a bootloader and then executed. Some other

firmware images are distributed in a compressed and ob-

fuscated file which contains a block-by-block copy of a

flash image. Such an image may consist of several parti-

tions containing a bootloader, a kernel and a file system.

Unpacking Frameworks

There are three main tools to unpack arbitrary firmware

images: binwalk [41], FRAK [26] and Binary Analysis

Toolkit (BAT) [66].

Binwalk is a well known firmware unpacking tool de-

veloped by Craig Heffner [41]. It uses pattern matching

to locate and carve files from a binary blob. Additionally,

it also extracts meta-data such as license strings.

FRAK is an unpacking toolkit first presented by Cui

et al. [27]. Even though the authors mention that the tool

would be made publicly available, we were not able to

obtain a copy. We therefore had to evaluate its unpack-

ing performance based on the device vendors and mod-

els that FRAK supports, according to [27]. We estimated

that FRAK would have unpacked less than 1% of the

files we analyzed, while our platform was able to unpack

more than 81% of them. This said, both would be com-

plementary as some of the file formats FRAK unpacks

are unsupported by our tool at present.

The Binary Analysis Toolkit (BAT), formerly known

as GPLtool, was originally designed by Tjaldur soft-

ware to detect GPL violations [45, 66]. To this end,

it recursively extracts files from a firmware blob and

matches strings with a database of known strings from
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Table 1: Comparison of Binwalk, BAT, FRAK and our framework.

The last three columns show if the respective unpacker was able to ex-

tract the firmware. Note that this is a non statistically significant sample

which is given for illustrating unpacking performance (manual analysis

of each firmware is time consuming). As FRAK was not available for

testing, its unpacking performance was estimated based on information
from [26]. The additional performance of our framework stems from

the many customizations we have incrementally developed over BAT

(Figure 2).

Device Vendor OS Binwalk BAT FRAK
Our

framework

PC Intel BIOS � � � �

Camera STL Linux � � � �

Router Bintec - � � � �

ADSL

Gateway
Zyxel ZynOS � � � �

PLC Siemens - � � � �

DSLAM - - � � � �

PC Intel BIOS � � � �

ISDN

Server
Planet - � � � �

Voip Asotel Vxworks � � � �

Modem - - � � � �

Home

Automation
Belkin Linux � � � �

55% 64% 0% 82%

GPL projects. Additionally, BAT supports file carving

similar to binwalk.

Table 1 shows a simple comparison of the unpack-

ing performance of each framework on a few samples

of firmware images. We chose to use BAT because it is

the most complete tool available for our purposes. It also

has a significantly lower rate of false positive extractions

compared to binwalk. In addition, binwalk did not sup-

port recursive unpacking at the time when we decided on

an unpacking framework. Nevertheless, the interface be-

tween our framework and BAT has been designed to be

generic so that integrating other unpacking toolkits (such

as binwalk) is easy.

We developed a range of additional plugins for BAT.

These include plugins which extract interesting strings

(e.g., software versions or password hashes), add un-

packing methods, gather statistics and collect interesting

files such as private key files or authorized keys files.

In total we added 35 plugins to the existing framework.

Password Hash Cracking

Password hashes found during the analysis phase are

passed to a hash cracking node. These nodes are dedi-

cated physical hosts with a Nvidia Tesla GPU [56] that

run a CUDA-enabled [59] version of John The Rip-

per [60]. John The Ripper is capable of brute forcing

most encoded password hashes and detecting the type of

hash and salt used. In addition to this, a dictionary can be

provided to seed the password cracking. For each brute

force attempt, we provide a dictionary built from com-

Figure 2: Architecture of a single worker node.

mon password lists and strings extracted from firmwares,

manuals, readme files and other resources. This allows

to find both passwords that are directly present in those

files as well as passwords that are weak and based on

keywords related to the product.

Parallelizing the Unpacking and Analysis

To accelerate the unpacking process, we distributed this

task on several worker nodes. Our distributed environ-

ment is based on the distributed-python-for-scripting

framework [65]. Data is synchronized between the repos-

itory and the nodes using rsync (over ssh) [67].

Our loosely coupled architecture allows us to run

worker nodes virtually anywhere. For instance, we in-

stantiated worker virtual machines on a local VMware

server and several OpenStack servers, as well as on Ama-

zon EC2 instances. At the time of this publication we

were using 90 such virtual machines to analyze firmware

files.

3.4 Correlation Engine

The unpacked firmware images and analysis results are

stored into the analysis & reports database. This allows

us to perform queries, to generate reports and statistics,

and to easily integrate our results with other external

components. The correlation engine is designed to find

similarities between different firmware images. In partic-

ular, the comparison is made along four different dimen-

sions: shared credentials, shared self-signed certificates,

common keywords, and fuzzy hashes of the firmwares

and objects within the firmwares.

Shared Credentials and Self-Signed Certificates

Shared credentials (such as hard coded non-trivial pass-

words) and shared self-signed certificates are effective

in finding strong connections between different firmware

images of the same vendor, or even firmwares of differ-

ent vendors. For example, we were able to correlate two

brands of CCTV systems based on a common non-trivial

default password.
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Therefore, finding a password of one vendor’s product

can directly impact the security of others. We also found

a similar type of correlation for two other CCTV vendors

that we linked through the same self-signed certificate, as

explained in Section 5.2.

Keywords

Keywords correlation is based on specific strings ex-

tracted by our static analysis plugins. In some cases, for

example in Section 5.1, the keyword “backdoor” re-

vealed several other keywords. By using the extended

set of keywords we clustered several vendors prone

to the same backdoor functionality, possibly affecting

500,000 devices. In other cases, files inside firmware

images contain compilation and SDK paths. This turns

out to be sufficient to cluster firmware images of differ-

ent devices.

Fuzzy hashes

Fuzzy hash triage (comparison, correlation and cluster-

ing) is the most generic correlation technique used by

our framework. The engine computes both the ssdeep

and the sdhash of every single object extracted from the

firmware image during the unpacking phase. This is a

powerful technique that allows us to find files that are

“similar” but for which a traditional hash (such as MD5

or SHA1) would not match. Unfortunately, as we already

mentioned in Section 2, a complete one-to-one compar-

ison of fuzzy hashes is currently infeasible on a large

scale. Therefore, we compute the fuzzy hashes of each

file that was successfully extracted from a firmware im-

age and store this result. When a file is found to be inter-

esting we perform the fuzzy hash comparison between

this file’s hash and all stored hashes.

For example, a file (or all files unpacked from a firm-

ware) may be flagged as interesting because it is affected

by a known vulnerability, or because we found it to be

vulnerable by static analysis. If another firmware con-

tains a file that is similar to a file from a vulnerable firm-

ware, then there might be a chance that the first firmware

is also vulnerable. We present such an example in Sec-

tion 5.3, where this approach was successful and allowed

us to propagate known vulnerabilities of one device to

other similar devices of different vendors.

Future work

In the literature, there are several approaches proposed

to perform comparison, clustering, and triage on a large

scale. Jang et al. propose large-scale triage techniques

of PC malware in BitShred [52]. The authors concluded

that at the rate of 8,000 unique malware samples per day,

which required 31M comparisons, it is unfeasible on a

single CPU to perform one-to-one comparisons to find

malware families using hierarchical clustering. French

and Casey [13] propose, before fuzzy hash comparison,

to perform a “bins” partitioning approach based on the

block and file sizes. This approach, for their particular

dataset and bins partitioning strategy, allowed on aver-

age to reduce the search space for a given fuzzy hash

down to 16.9%. Chakradeo et al. [20] propose MAST,

an effective and well performing triage architecture for

mobile market applications. It solves the manual and

resource-intensive automated analysis at market-scale

using Multiple Correspondence Analysis (MCA) statis-

tical method.

As a future work, there are several possible improve-

ments to our approach. For instance, instead of perform-

ing all comparisons on a single machine, we could adopt

a distributed comparison and clustering infrastructure,

such as the Hadoop implementation of MapReduce [32]

used by BitShred. Second, on each comparison and clus-

tering node we could use the “bins” partitioning ap-

proach from French and Casey [13].

3.5 Data Enrichment

The data enrichment phase is responsible for extending

the knowledge base about firmware images, for exam-

ple by performing automated queries and passive scans

over the Internet. In the current prototype, the data en-

richment relies on two simple techniques. First, it uses

the <title> tag of web pages and authentication

realms of web servers when these are detected inside a

firmware. This information is then used to build targeted

search queries (such as “intitle:Router ABC-123 Admin

Page”) for both Shodan [5] and GCSE.

Second, we correlate SSL certificates extracted from

firmware images to those collected by the ZMap project.

ZMap was used in [37] to scan the whole IPv4 address

space on the 443 port, collecting SSL certificates in a

large database.

Correlating these two large-scale databases (i.e.,

ZMap’s HTTPS survey and our firmware database) pro-

vides new insights. For example, we are able to quickly

evaluate the severity of a particular vulnerability by iden-

tifying publicly reachable devices that are running a

given firmware image. This gives a good estimate for the

number of publicly accessible vulnerable devices.

For instance, our framework found 41 certificates hav-

ing unprotected private keys. Those keys were extracted

from firmware images in the unpacking and analysis

phase. The data enrichment engine subsequently found

the same self-signed certificate in over 35K devices

reachable on the Internet. We detail this case study in

Section 5.2.
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3.6 Setup Development Effort

Our framework relies on many existing tools. In addition

to this, we have put a considerable effort (over 20k lines

of code according to sloccount [68]) to extend BAT,

develop new unpackers, create the results analysis plat-

form and run results interpretation.

4 Dataset and Results

In this section we describe our dataset and we present the

results of the global analysis, including the discussion of

the new vulnerabilities and the common bad practices we

discovered in our experiments. In Section 5, we will then

present a few concrete case studies, illustrating how such

a large dataset can provide new insights into the security

of embedded systems.

4.1 General Dataset Statistics

While we currently collect firmware images from multi-

ple sources, most of the images in our dataset have been

downloaded by crawling the Internet. As a consequence,

our dataset is biased towards devices for which firmware

updates can be found online, and towards known vendors

that maintain well organized websites.

We also decided to exclude firmware images of smart-

phones from our study. In fact, popular smartphone firm-

ware images are complete operating system distributions,

most of them iOS, Android or Windows based – making

them closer to general purpose systems than to embed-

ded devices.

Our crawler collected 759,273 files, for a total of

1.8TB of data. After filtering out the files that were

clearly unrelated (e.g., manuals, user guides, web pages,

empty files) we obtained a dataset of 172,751 files. Our

architecture is constantly running to fetch more samples

and analyze them in a distributed fashion. At the time of

this publication the system was able to process (unpack

and analyze) 32,356 firmware images.

Firmware Identification The problem of properly

identifying a firmware image (Challenge 2) still requires

a considerable amount of manual effort. Doing so accu-

rately and automatically at a large scale is a daunting

task. Nevertheless, we are interested in having an esti-

mate of the number of actual firmware images in our

dataset.

For this purpose we manually analyzed a number of

random samples from our dataset of 172,751 poten-

tial firmware images and computed a confidence inter-

val [19] to estimate the global representativeness in the

dataset. In particular, after manually analyzing 130 ran-

dom files from the total of 172,751, we were able to
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Figure 3: OS distribution among firmware images.

mark only 44 as firmware images. This translates to a

proportion of 34% (± 8%) firmware images on our data-

set – with a 95% confidence. The manual analysis pro-

cess took approximately one person-week because the

inspection of the extracted files for firmware code is quite

tedious.

We can therefore expect our dataset to contain be-

tween 44,431 and 72,520 firmware images (by applying

34%−8%, and 34%+8% respectively, to the entire can-

didates set of 172,751). While the range is still relatively

large, this estimation gives a 95% reliable measure of the

useful data in our sample. We also developed a heuristic

to automatically detect if a file is successfully unpacked

or not. This heuristic takes multiple parameters, such as

the number, type and size of files carved out from a firm-

ware, into account. Such an empirical heuristic is not per-

fect, but it can guide our framework to mark a file as un-

packed or not, and then take actions accordingly.

Files Analysis As described in Section 3.3, unpack-

ing unknown files is an error-prone and time-consuming

task. In fact, when the file format is not recognized, un-

packing relies on a slow and imprecise carving approach.

File carving is essentially an attempt to unpack at every

offset of the file, iterating over several known signatures

(e.g., archive magic headers).

As a result, out of the 32,356 files we processed so

far, 26,275 were successfully unpacked. The process is

nevertheless continuous and more firmware images are

being unpacked over time.

4.2 Results Overview

In the rest of the section we present the results of the ana-

lysis performed by our plugins right after each firmware

image was unpacked.

Files Formats The majority of initial files being un-

packed were identified as compressed files or raw data.

Once unpacked, most of those firmware images were
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identified as targeting ARM (63%) devices, followed by

MIPS (7%). As reported in Figure 3, Linux is the most

frequently encountered embedded operating system in

our dataset – being present in more than three quarters

(86%) of all analyzed firmware images. The remaining

images contain proprietary operating systems like Vx-

Works, Nucleus RTOS and Windows CE, which alto-

gether represent around 7%. Among Linux based firm-

ware images, we identified 112 distinct Linux kernel

versions.

Password Hashes Statistics Files like /etc/passwd

and /etc/shadow store hashed versions of account cre-

dentials. These are usual targets for attackers since they

can be used to retrieve passwords which often allow to

login remotely to a device at a later time. Hence, an ana-

lysis of these files can help understanding how well an

embedded device is protected.

Our plugin responsible for collecting entries from

/etc/passwd and /etc/shadow files retrieved 100 dis-

tinct password hashes, covering 681 distinct firmware

images and belonging to 27 vendors. We were also able

to recover the plaintext passwords for 58 of those hashes,

which occur in 538 distinct firmware images. The most

popular passwords were <empty>, pass, logout, and

helpme. While these may look trivial, it is important to

stress that they are actually used in a large number of

embedded devices.

Certificates and Private RSA Keys Statistics Many

vendors include self-signed certificates inside their firm-

ware images [43, 42]. Due to bad practices in both re-

lease management and software design, some vendors

also include the private keys (e.g., PEM, GPG), as con-

firmed by recent advisories [49, 51].

We developed two simple plugins for our system

which collect SSL certificates and private keys. These

plugins also collect their fingerprints and check for

empty or trivial passphrases. So far, we have been able to

extract 109 private RSA keys from 428 firmware images

and 56 self-signed SSL certificates out of 344 firmware

images. In total, we obtained 41 self-signed SSL cer-

tificates together with their corresponding private RSA

keys. By looking up those certificates in the public ZMap

datasets [36], we were able to automatically locate about

35,000 active online devices.

For all these devices, if the certificate and private key

are not regenerated on the first boot after a firmware up-

date, HTTPS encryption can be easily decrypted by an

attacker by simply downloading a copy of the firmware

image. In addition, if both a regenerated and a firmware-

shipped self-signed certificate are used interchangeably,

the user of the device may still be vulnerable to man-in-

the-middle (MITM) attacks.

Packaging Outdated and Vulnerable Software An-

other interesting finding relates to bad release manage-

ment by embedded firmware vendors. Firmware images

often rely on many third-party software and libraries.

Those keep updating and have security fixes every now

and then. OWASP Top Ten [61] lists “Using Components

with Known Vulnerabilities” at position nine and under-

lines that “upgrading to these new versions is critical”.

In one particular case, we identified a relatively re-

cently released firmware image that contained a kernel

(version 2.4.20) that was built and packaged ten years af-

ter its initial release. In another case, we discovered that

some recently released firmware images contained nine

years old BusyBox versions.

Building Images as root While prototyping, putting

together a build environment as fast as possible is very

important. Unfortunately, sometimes the easiest solution

is just to setup and run the entire toolchains as superuser.

Our analysis plugins extracted several compilation

banners such as Linux version 2.6.31.8-mv78100

(root@ubuntu) (gcc version 4.2.0 20070413

(prerelease)) Mon Nov 7 16:51:58 JST 2011

or BusyBox v1.7.0 (2007-10-15 19:49:46 IST).

24% of the 450 unique banners we collected contain-

ing the user@host combinations were associated to the

root user. In addition to this, among the 267 unique

hostnames extracted from those banners, ten resolved to

public IP addresses and one of these even accepted in-

coming SSH connections.

All these findings reveal a number of unsafe practices

ranging from build management (e.g., build process done

as root) to infrastructure management (e.g., build hosts

reachable over public networks), to release management

(e.g., usernames and hostnames not removed from pro-

duction release builds).

Web Servers Configuration We developed plugins to

analyze the configuration files of web servers embed-

ded in the firmware images such as lighttpd.conf or

boa.conf. We then parsed the extracted files to retrieve

specific configuration settings such as the running user,

the documents root directory, and the file containing au-

thentication secrets. We collected in total 847 distinct

web server configuration files and the findings were dis-

couraging. We found that in more than 81% of the cases

the web servers were configured to run as a privileged

user (i.e., having a setting such as user=root). This re-

veals unsafe practices of insecure design and configu-

ration. Running the web server of an embedded device

with unnecessarily high privileges can be extremely risky

since the security of the entire device can be compro-

mised by finding a vulnerability in one of the web com-

ponents.
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5 Case Studies

5.1 Backdoors in Plain Sight

Many backdoors in embedded systems have been re-

ported recently, ranging from very simple cases [44] to

others that were more difficult to discover [50, 64]. In one

famous case [44], the backdoor was found to be activated

by the string “xmlset roodkcableoj28840ybtide”

(i.e., edit by 04882 joel backdoor in reverse).

This fully functional backdoor was affecting three ven-

dors. Interestingly enough, this backdoor may have been

detected earlier by a simple keyword matching on the

open source release from the vendor[2].

Inspired by this case, we performed a string search in

our dataset with various backdoor related keywords. Sur-

prisingly, we found 1198 matches, in 326 firmware can-

didates.

Among those search results, several matched the firm-

ware of a home automation device from a major vendor.

According to download statistics from Google Play and

Apple App Store, more than half a million users have

downloaded an app for this device [9, 8].

We manually analyzed the firmware of this Linux-

based embedded system and found that a daemon pro-

cess listens on a network multicast address. This service

allows execution of remote commands with root privi-

leges without any authentication to anybody in the local

network. An attacker can easily gain full control if he can

send multicast packets to the device.

We then used this example as a seed for our corre-

lation engine. With this approach we found exactly the

same backdoor in two other classes of devices from two

different vendors. One of them was affecting 109 firm-

ware images of 44 camera models of a major CCTV

solutions vendor, Vendor C. The other case is affecting

three firmware images for home routers of a major net-

working equipment vendor, Vendor D.

We investigated the issue and found that the affected

devices were relying on the same provider of a System on

a Chip (SoC) for networking devices. It seems that this

backdoor is intended for system debugging, and is part of

a development kit. Unfortunately we were not able to lo-

cate the source of this binary. We plan to acquire some of

those devices to verify the exploitability of the backdoor.

5.2 Private SSL Keys

In addition to the backdoors left in firmware images from

Vendor C, we also found many firmware images contain-

ing public and private RSA key pairs. Those unprotected

keys are used to provide SSL access to the CCTV cam-

era’s web interface. Surprisingly, this private key is the

same across many firmware images of the same brand.

Figure 4: Correlation engine and shared self-signed certificates clus-

tering.

Our platform automatically extracts the fingerprint

of the public keys, private keys and SSL certificates.

Those keys are then searched in ZMap’s HTTPS sur-

vey database [36, 37]. Vendor C’s SSL certificate was

found to be used by around 30K online IP addresses,

most likely each corresponding to a single online de-

vice. We then fetched the web pages available at those

addresses (without trying to authenticate). Surprisingly,

we found CCTV cameras branded by another vendor –

Vendor B – which appears to be an integrator. Upon in-

spection, cameras of Vendor B served exactly the same

SSL certificate as cameras from Vendor C (including the

SSL Common Name, and SSL Organizational Unit as

well as many other fields of the SSL certificate). The only

difference is that CCTV cameras of Vendor B returned

branded authentication realms, error messages and logos.

The correlation engine findings are summarized in Fig-

ure 4.

Unfortunately, the firmware images from Vendor B do

not seem to be publicly available. We are planning to

obtain a device to extract its firmware and to confirm

our findings. We have reported these issues to the ven-

dor. Nevertheless, it is very likely that devices from Ven-

dor B are also vulnerable to the multicast packet back-

door given the clear relationship with Vendor C that that

our platform discovered.
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5.3 XSS in WiFi Enabled SD Cards?

SD cards are often more complex than one would imag-

ine. Most SD cards actually contain a processor which

runs firmware. This processor often manages functions

such as the flash memory translation layer and wear lev-

eling. Security issues have been previously shown on

such SD cards [69].

Some SD cards have an embedded WiFi interface with

a full fledged web server. This interface allows direct ac-

cess to the files on the SD card without ejecting it from

the device in which it is inserted. It also allows admin-

istration of the SD card configuration (e.g., WiFi access

points).

We manually found a Cross Site Scripting (XSS) vul-

nerability in one of these web interfaces, which consists

of a perl based web application. As this web application

does not have platform specific binary bindings, we were

able to load the files inside a similar Boa web server on

a PC and confirm the vulnerability.

Once we found the exact perl files responsible for

the XSS, we used our correlation engine based on fuzzy

hashes. With this we automatically found another SD

card firmware that is vulnerable to the same XSS. Even

though the perl files were slightly different, they were

clearly identified as similar by the fuzzy hash. This corre-

lation would not have been detected by a normal check-

sum or by a regular hash function.

The process is visualized in Figure 5. The file (*) was

found vulnerable. Subsequently, we identified correlated

files based on fuzzy hashing. Some of them were related

to the same firmware or a previous version of the firm-

ware of the same vendor (in red). Also, fuzzy hash cor-

relation identified a similar file in a firmware from a dif-

ferent vendor (in orange) that is vulnerable to the same

weakness. It further identified some non-vulnerable or

non-related files from other vendors (in green).

Those findings are reported as CVE-2013-5637 and

CVE-2013-5638. We were also able to confirm this vul-

nerability and extend the list of affected versions for one

of these vendors.

Such manual vulnerability confirmation does not

scale. Hence, in the future we plan to integrate static ana-

lysis tools for web applications [30, 11, 53, 38, 1] in our

process.

6 Ethical Discussion

Large-scale scans to test for the presence of vulnerabil-

ities often raise serious ethical concerns. Even simple

Internet-wide network scans may trigger alerts from in-

trusion detection systems (IDS) and may be perceived as

an attack by the scanned networks.

Figure 5: Fuzzy hash clustering and vulnerability propagation. A vul-

nerability was propagated from a seed file (*) to other two files from

the same firmware and three files from the same vendor (in red) as well

as one file from another vendor (in orange). Also four non-vulnerable
files (in green) have a strong correlation with vulnerable files. Edge

thickness displays the strength of correlation between files.

In our study we were particularly careful to work

within legal and ethical boundaries. First, we obtain firm-

ware images either through user submission or through

legitimate distribution mechanisms. In this case, our web

crawler was designed to obey the robots.txt direc-

tives. Second, when we found new vulnerabilities we

worked together with vendors and CERTs to confirm the

devices vulnerabilities and to perform responsible dis-

closure. Finally, the license of some firmware images

may not allow redistribution. Therefore, the public web

submission interface limits the ability to access firm-

ware contents only to the users who uploaded the cor-

responding firmware image. Other users can only access

anonymized reports. We are currently investigating ways

to make the full dataset available for research purposes

to well identified research institutions.

7 Related Work

Several studies have been proposed to asses the secu-

rity of embedded devices by scanning the Internet. For

instance, Cui et al. [28, 29] present a wide-scale In-

ternet scan to first recognize devices that are known

to be shipped with default password, and then to con-

firm that these devices are indeed still vulnerable by at-

tempting to login into them. Heninger et al. [46] per-

formed the largest ever network survey of TLS and SSH

servers, showing that vulnerable keys are surprisingly

widespread and that the vast majority appear to belong to

headless or embedded devices. ZMap [37] is an efficient

and fast network scanner, that allows to scan the com-

plete Internet IPv4 address space in less than one hour.

While the scans are not especially targeted to embed-

ded devices, in our work we reuse the SSL certificates
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scans performed by ZMap [36]. Similar scans were tar-

geting specific vulnerabilities often present in embedded

devices [40, 4]. Such wide-scale scans are mainly tar-

geted at discovering online devices affected by already

known vulnerabilities, but in some cases they can help to

discover new flaws. However, many categories of flaws

cannot be discovered by such scans. Some online ser-

vices like Shodan [5] provide a global updated view on

publicly available devices and web services. This easy-

to-use research tool allows security researchers to iden-

tify systems worldwide that are potentially exposed or

exploitable.

Unpacking firmware images is a known problem, and

several tools for this purpose exist. Binwalk [41] is a

firmware analysis toolbox that provides various methods

and tools for extraction, inspection and reverse engineer-

ing of firmware images or other binary blobs. FRAK [26]

is a framework to unpack, analyze, and repack firmware

images of embedded devices. FRAK was never publicly

released and reportedly supports only a few firmware for-

mats (e.g., Cisco IP phones and IOS, HP laser printers).

The Binary Analysis Toolkit (BAT) [45, 66] was origi-

nally designed to detect GPL license violations, mainly

by comparing strings in a firmware image to strings

present in open source software distributions. For this

purpose BAT has to unpack firmware images. Unfortu-

nately, as we show in Section 3, none of these tools are

accurate and complete enough to be used as is in our

framework.

There are many examples of security analysis of em-

bedded systems [71]. Several network card firmware im-

ages have been analyzed and modified to insert a back-

door [33, 34] or to extend their functionality [16]. David-

son et al. [31] propose FIE, built on top of the KLEE sym-

bolic execution engine, to incorporate new symbolic exe-

cution techniques. It can be used to verify security prop-

erties of some simple firmware images often found in

practice. Zaddach et al. [70] describe Avatar, a dynamic

analysis platform for firmware security testing. In Avatar,

the instructions are executed in an emulator, while the IO

accesses to the embedded system’s peripherals are for-

warded to the real device. This allows a security engi-

neer to apply a wide range of advanced dynamic analysis

techniques like tracing, tainting and symbolic execution.

A large set of firmware images of Xerox devices were

reverse-engineered by Costin [24] leading to the discov-

ery of hidden PostScript commands. Such commands al-

low an attacker to e.g., dump a device’s memory, recover

passwords, passively scan the network and more generi-

cally interact with devices’ OS layers. Such attacks could

be delivered to printers via web pages, applets, MS Word

and other standard printed documents [23].

Bojinov et al. [18] conducted an assessment of the se-

curity of current embedded management interfaces. The

study, conducted on real physical devices, found vulner-

abilities in 21 devices from 16 different brands, includ-

ing network switches, cameras, photo frames, and lights-

out management modules. Along with these, a new class

of vulnerabilities was discovered, namely cross-channel

scripting (XCS) [17]. While XCS vulnerabilities are not

particular to embedded devices, embedded devices are

probably the most affected population. In a similar study,

the authors manually analyzed ten Small Office/Home

Office (SOHO) routers [48] and discovered at least two

vulnerabilities per device.

Looking at insecure (remote) firmware updates, re-

searchers reported the possibility to arbitrarily in-

ject malware into the firmware of a printer [24, 27].

Chen [22] and Miller [58] presented techniques and im-

plications of exploiting Apple firmware updates. In a

similar direction, Basnight et al. [12] examined the vul-

nerability of PLCs to intentional firmware modifications.

A general firmware analysis methodology is presented,

and an experiment demonstrates how legitimate firmware

can be updated on an Allen-Bradley ControlLogix L61

PLC. Zaddach et al. [72] explore the consequences of a

backdoor injection into the firmware of a hard disk drive

and uses it to exfiltrate data.

French and Casey [13] present fuzzy hashing tech-

niques in applied malware analysis. Authors used

ssdeep on CERT Artifact Catalog database containing

10.7M files. The study underlines the two fundamental

challenges to operational usage of fuzzy hashing at scale:

timeliness of results, and usefulness of results. To reduce

the quadratic complexity of the comparisons, they pro-

pose assigning files into “bins” based on the block and

file sizes. This approach, for their particular dataset and

bins partitioning strategy, allowed for a given fuzzy hash

to reduce the search space on average by 83.1%.

Finally, Bailey et al. [10] and Bayer et al. [14] propose

efficient clustering approaches to identify and group mal-

ware samples at large scale. Authors perform dynamic

analysis to obtain the execution traces of malware pro-

grams or obtain a description of malware behavior in

terms of system state changes. These are then general-

ized into behavioral profiles which serve as input to an

efficient clustering algorithm that allows authors to han-

dle sample sets that are an order of magnitude larger than

previous approaches. Unfortunately, this approach can-

not be applied in our framework since dynamic analysis

is unfeasible due to the heterogeneity of architectures

used in firmware images.

8 Conclusion

In this paper we conducted a large-scale static analysis

of embedded firmwares. We showed that a broader view

on firmware is not only beneficial, but actually necessary
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for discovering and analyzing vulnerabilities of embed-

ded devices. Our study helps researchers and security an-

alysts to put the security of particular devices in context,

and allows them to see how known vulnerabilities that

occur in one firmware reappear in the firmware of other

manufacturers.

We plan to continue collecting new data and extend

our analysis to all the firmware images we downloaded

so far. Moreover, we want to extend our system with

more sophisticated static analysis techniques that allow

a more in-depth study of each firmware image. This ap-

proach shows a lot of potential and besides the few pre-

viously mentioned case studies it can lead to new inter-

esting results such as the ones recently found by Costin

et al. [25].

The summarized datasets are available at

http://firmware.re/usenixsec14.
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Abstract
Amplification vulnerabilities in many UDP-based net-

work protocols have been abused by miscreants to launch
Distributed Denial-of-Service (DDoS) attacks that ex-
ceed hundreds of Gbps in traffic volume. However, up
to now little is known about the nature of the amplifica-
tion sources and about countermeasures one can take to
remediate these vulnerable systems. Is there any hope in
mitigating the amplification problem?

In this paper, we aim to answer this question and tackle
the problem from four different angles. In a first step, we
monitored and classified amplification sources, showing
that amplifiers have a high diversity in terms of operat-
ing systems and architectures. Based on these results,
we then collaborated with the security community in a
large-scale campaign to reduce the number of vulnera-
ble NTP servers by more than 92%. To assess possible
next steps of attackers, we evaluate amplification vulner-
abilities in the TCP handshake and show that attackers
can abuse millions of hosts to achieve 20x amplifica-
tion. Lastly, we analyze the root cause for amplification
attacks: networks that allow IP address spoofing. We
deploy a method to identify spoofing-enabled networks
from remote and reveal up to 2,692 Autonomous Systems
that lack egress filtering.

1 Introduction

Distributed Denial-of-Service (DDoS) attacks have been
known since many years [8,9,24,34] and they still consti-
tute an important problem today. For a long time, DDoS
attacks were hard to tackle due to their semantic nature:
it is difficult to distinguish an actual attack from a sud-
den rise in popularity for a given service due to a flash
crowd (“Slashdot effect”). A large body of literature is
available on this topic and many DDoS detection mecha-
nisms and countermeasures have been proposed over the
years (e.g., [14,15,43]). Furthermore, advances in Cloud
computing and load balancing techniques helped to miti-
gate this problem [17,18], and nowadays simple types of
DDoS attacks such as SYN and UDP flooding are well-
understood.

However, the adversaries evolved and modern DDoS
attacks typically employ so called amplification attacks,
in which attackers abuse UDP-based network protocols
to launch DDoS attacks that exceed hundreds of Gbps
in traffic volume [21, 22]. This is achieved via reflec-
tive DDoS attacks [31] where an attacker does not di-
rectly send traffic to the victim, but sends spoofed net-
work packets to a large number of systems that reflect the
traffic to the victim (so called reflectors). Often, attackers
choose reflectors that send back responses that are signif-
icantly larger than the requests, leading to an increased
(amplified) attack volume. We call such reflectors ampli-
fiers. Recently, many types of such amplification attacks
were discovered [33]. However, little is known about the
nature of the amplifiers and about countermeasures one
can take to remediate vulnerable systems.

In this paper, we address this problem and study the
root causes behind amplification DDoS attacks. We
tackle the problem from four different angles and pro-
vide empirical measurement results based on Internet-
scale scanning to quantify the problem.

In a first step, we want to understand the nature of am-
plifiers and determine which kinds of systems are vul-
nerable. Previous work on empirically understanding
DDoS attacks typically focused on ways to estimate the
size of the problem and understanding the infrastructure
behind such attacks [1, 5, 26]. To increase the under-
standing of amplification attacks, we utilized protocol-
specific fingerprinting to reveal as much information as
possible from systems that can be abused on the Internet.
More specifically, we enumerated the amplifier sources
for seven network protocols and performed large-scale
scans to collect information about vulnerable systems.
This enables us to categorize the types of devices that
can be abused in the wild. We found that there is a large
diversity of vulnerable devices and analyzed their prop-
erties. For example, we found 40.8% of the vulnerable
NTP hosts to run Cisco IOS, an OS that is deployed on
Cisco network devices.

Based on these insights on amplifiers, a viable next
step is to reduce the number of vulnerable systems on
the Internet. Previous work on that topic mainly focused
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on understanding botnet Command & Control servers
that are used to orchestrate classical DDoS attacks [5].
However, modern amplification attacks use a completely
different modus operandi. We contributed to a global
security notification procedure where our scanning re-
sults were used to notify NOCs and CERTs of hun-
dreds of large ISPs worldwide about NTP servers vul-
nerable to amplification attacks. Furthermore, we col-
laborated with security organizations in order to create
advisories that describe the technical background and ap-
proaches to solve the problem. We analyzed the remedi-
ation success of these measures and found that the num-
ber of NTP servers vulnerable to monlist amplification
dropped by 92% in a 13-week period between November
2013 and February 2014. We closely analyzed this effect
and found that especially vulnerable NTP servers within
ARIN have been mitigated, while other geographic re-
gions lag behind.

Since it seems feasible to significantly reduce the num-
ber of amplifiers, a third angle of the problem is an anal-
ysis of potential attack vectors that adversaries could
abuse in the future. We start with the basic insight that up
to now UDP-based protocols are leveraged by attackers,
since these protocols provide large amplification factors.
We study a completely different kind of amplification at-
tacks, namely TCP-based ones. Surprisingly, even TCP
can be abused for amplification attacks, despite the fact
that this protocol uses a 3-way handshake. This is due
to the fact that certain TCP stacks retransmit SYN/ACK
packets multiple times (some 20x or more) when they
presume that the initial SYN/ACK segment was lost. Thus
an amplification of 20x or more is possible. Empirical
scan results suggest that there are hundreds of thousands
of systems on the Internet that can be abused this way.
We performed protocol-specific fingerprinting to learn
more about the nature of such devices.

As a fourth angle of the problem, we analyzed the
root cause behind amplification attacks: if a given net-
work does not perform egress filtering (i.e., verifies
that the source IP address in all outbound packets is
within the range of allocated internal address blocks, see
BCP 38 [13] for details), an attacker can spoof packets
and thus initiate the first step of reflective DDoS attacks.
Identifying such networks is a challenging problem [12]
and existing solutions rely on a client deployed in the
network under test [3,36]. We utilize a novel remote test
based on DNS proxies that enables us to identify thou-
sands of Autonomous Systems that support IP spoofing.
To summarize, our contributions are as follows:
• We performed Internet-wide scans to identify and

monitor all relevant potential amplifiers for seven
network protocols vulnerable to amplification at-
tacks. We fingerprint and categorize these systems,
showing a high diversity in the amplifier landscape.

• We study the success of a global security notifica-
tion campaign to alert administrators of vulnerable
NTP servers and show the benefits and limitations
of such large-scale initiatives.

• Aiming to assess further amplification DDoS tech-
niques, we identify TCP as an alternative source
for amplification—despite its three-way-handshake
protocol. We reveal millions of systems that can be
abused to amplify TCP traffic by a factor up to 20x.

• Finally, we aim to tackle the root cause for amplifi-
cation DDoS attacks: networks that do not perform
egress filtering and thus allow IP address spoofing.
We deploy a remote scanning technique and find up
to 2,692 ASes that permit spoofed IP traffic.

Paper Outline. The paper is organized as follows. In
Section 2, we define the threat model and outline our
scanning setup to perform Internet-wide scans. We then
shed light onto the landscape of hosts that are vulnerable
to UDP-based amplification DDoS attacks. In Section 3,
we detail the effects of our NTP case study. Section 4
tackles the problem of TCP-based amplifiers, demon-
strating that the TCP three-way-handshake can be abused
for amplification attacks. In Section 5, we introduce a
novel mechanism to identify networks that allow IP ad-
dress spoofing. Section 6 reviews prior work and we con-
clude this paper in Section 7.

2 Amplification DDoS

We begin with an analysis of the threat landscape. To
this end, we first review the general threat model before
we analyze different aspects of amplification DDoS at-
tacks. More specifically, we study the amplifier magni-
tude, measure what kinds of devices can be abused on
the Internet, and determine the churn of amplifiers.

2.1 Threat Model
The scope of this work are amplification DDoS attacks.
In such an attack, a miscreant abuses public systems
(such as open recursive DNS resolvers) to reflect attack
traffic to a DDoS victim [31]. In particular, she abuses
hosts that not only reflect but also amplify the traffic.
Typically, the attacker chooses connection-less protocols
in which she can send relatively small requests that result
in significantly larger responses. By spoofing the source
of the traffic (i.e., impersonating the victim), she can en-
force that the public systems—unwillingly—amplify and
reflect traffic to the victim. Prior work has revealed that
at least 14 UDP-based protocols are vulnerable to such
abuse [33]. These protocols offer severe amplification
rates—in the worst case, as with the monlist feature in
NTP, they amplify traffic by a factor of up to 4,670.

2
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2.2 Amplifier Magnitude

In this paper, we try to shed light onto the landscape of
amplifiers, i.e., hosts that are vulnerable to amplification
abuse. As a first step, we enumerate and observe these
amplifiers in the IPv4 address space. That is, we per-
formed Internet-wide scans for a subset of the vulnerable
protocols: DNS, SNMP, SSDP, CharGen, QOTD, NTP,
and NetBIOS. We chose to monitor these protocols, as
prior work only approximated the amplifier landscape for
them. The amplification vulnerabilities of these seven
protocols can be abused by attackers to launch severe
amplification attacks. In addition, all these seven pro-
tocols run server-side, thus hosts running such protocols
are seemingly better connected and more stable in terms
of IP address churn than hosts of end users.

Scanning Setup. We developed an efficient scanner to
identify amplifiers for these protocols in Internet-wide
scans. In order to respect good scanning practices as sug-
gested by Durumeric et al. [11], we limit the number of
requests that a particular network receives. For this rea-
son, we compute the scan targets as a pseudo-random
permutation of the entire IPv4 address space (except the
IP address 0.0.0.0). That is, we use a linear feedback
shift register (LFSR) to compute the order of the 232 −1
IPv4 addresses to be scanned. In order to avoid to be-
come blacklisted, we refrained from aggressive scanning
and distributed the scans over 48 hours. In addition, we
set up a reverse DNS (rDNS) record for our scanner and
configured a web server that presents project information
and an explanation how to opt-out from our scans.

For each of the protocols, we send a request that can be
used to amplify traffic. That is, we send NTP version

requests, SSDP SEARCH requests, SNMP v2 GetBulk

requests, DNS A lookups, and NetBIOS’ default name
lookup. We ran the scans on a weekly basis from Nov
22, 2013 to Feb 21, 2014 to observe potential changes in
terms of amplifiers. We chose to use the weekends for
our scans so that the load of both our scanning network
and the scanned networks have less impact on business
activities. In the case of CharGen and QOTD, we re-
frained from repeating the scans, as the number of am-
plifiers was too low to justify repeated full scans.

During the course of our scans, we received 90 emails
from administrators asking about the scanning experi-
ments. Adhering to these requests, we excluded 91 IP
prefixes and 30 individual IP addresses (about 3.7 mil-
lion IP addresses in total) after administrators asked us
to do so. To allow comparisons between two scans, we
ignored these IP addresses in all of our scans, i.e., even
if they were not blacklisted at the beginning.

Figure 1: Trend of UDP-based amplifiers

Table 1: Intersection of potential amplifiers based on the
Internet-wide scan on Nov 22, 2013

Intersection (in %)

Protocol DNS CharGen NetBIOS NT P QOT D SNMP SSDP

DNS - 0.0 0.5 0.2 0.0 11.6 2.1
CharGen 1.7 - 2.4 20.0 4.0 9.4 1.3
NetBIOS 4.7 0.1 - 0.6 0.2 1.8 5.9
NT P 0.9 0.3 0.2 - 0.0 3.2 0.1
QOT D 14.0 11.8 18.5 8.4 - 4.2 8.5
SNMP 33.5 0.1 0.6 2.7 0.0 - 0.2
SSDP 9.9 0.0 3.1 0.2 0.1 0.4 -

Results. Figure 1 illustrates the number of identified
amplifiers per protocol. By far the highest number of
amplifiers was found for open recursive DNS resolvers,
slightly fluctuating between 23 and 25.5 million systems.
For most of the other protocols, the number of ampli-
fiers is quite constant. An exception are NTP amplifiers,
whose popularity constantly decreases, a phenomenon
that we describe in detail in Section 3. None of the proto-
cols (except for the two legacy protocols CharGen with
107,725 and QOTD with 36,609 vulnerable hosts) had
fewer than 2.5 million amplifiers, showing a large land-
scape of hosts that can be abused.

Quite interestingly, some systems run multiple vulner-
able services. Table 1 shows the intersection between
the individual protocols relative to the overall number of
amplifiers for the protocols specified in the first table col-
umn. The largest overlap is between DNS and SNMP:
a third of the public SNMP hosts also run open recur-
sive DNS resolvers. Note that the table is not symmet-
ric, which, for example, reveals that less than 11.6% of
the open DNS resolvers also run unprotected SNMP dae-
mons. For most of the other protocols the intersection is
negligible, though. This means that the number of ampli-
fiers basically sums up. We measured almost 46 million
amplifiers for all scanned UDP-based protocols.

3
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Table 2: Results of the device fingerprinting for the amplifiers identified on Nov 22, 2013
Hardware (in %) Architecture (in %) Operating System (in %)

Protocol R
ou

te
r

Em
be

dd
ed

O
th

er
s

U
nk

no
w

n

x8
6

M
IP

S

Po
w

er
PC

O
th

er
s

U
nk

no
w

n

U
ni

x

Li
nu

x

U
bu

nt
u

Fr
ee

B
SD

W
in

do
w

s

Zy
N

O
S

C
is

co
IO

S

Ju
no

s

N
et

O
S

O
th

er
s

U
nk

no
w

n

DNS 9.7 5.7 0.6 84.0 0.6 7.0 0.0 0.4 92.0 3.6 3.4 0.0 0.0 0.8 7.5 0.1 0.0 0.0 1.1 83.5
NetBIOS 0.7 1.3 2.0 96.0 87.6 0.1 0.0 0.0 12.3 0.4 0.1 0.0 0.0 87.3 0.3 0.0 0.0 0.0 0.7 11.2
NT P 44.8 0.5 2.4 52.3 9.6 18.4 6.9 1.1 64.0 18.2 26.8 0.0 4.7 0.2 0.0 40.8 2.9 0.0 1.7 4.7
SNMP 66.5 10.4 3.1 20.0 2.9 44.9 1.1 3.1 48.0 1.5 11.4 0.1 0.1 0.8 17.8 2.2 0.0 0.0 8.7 57.4
SSDP 94.3 2.9 2.2 0.6 1.5 2.7 0.0 0.1 95.7 1.8 36.0 5.5 0.0 1.3 0.7 0.0 0.0 19.3 1.8 33.6

2.3 Amplifier Classification
Observing the magnitude of the problem, we wondered
what kinds of systems allow for such amplification vec-
tors. In an attempt to answer this question, we use
protocol-specific fingerprinting to reveal as much infor-
mation as possible from these systems. That is, we gen-
erate device fingerprints by inspecting the replies from
the amplifiers during our UDP scans. We dissect the re-
sponses of each host and protocol individually to clas-
sify systems in three categories: the underlying hardware
(e.g., routers, desktop computers, or printers), the system
architecture (such as x86, MIPS, or PowerPC), and the
operating system.

Fingerprinting Setup. We manually compiled 1,873
regular expressions that allow a fine-granular genera-
tion of fingerprints. We further leverage Nmap service
probes [27] to fingerprint the NetBIOS protocol. For
NetBIOS, we also focus on the structure of the payload
to obtain information about the OS. NTP version re-
sponses reveal the processor type, OS, and the version
of the running NTP daemon. To generate fingerprints
for the SNMP protocol, we analyze the object identi-
fier values (OID) in the responses. For SSDP, the re-
sponses contain text fragments resembling HTTP head-
ers that provide system information in the Server header
field. Additionally, SSDP headers include Unique Ser-
vice Name (USN) and Search Target (ST) fields, provid-
ing more general information about a device.

We improve the coverage of our UDP fingerprints by
scanning the amplifiers for common TCP-based proto-
cols. We use FTP, HTTP, HTTPS, SSH, and Telnet to
leverage information in protocol banners and text frag-
ments. We synchronize the TCP and UDP scans, hence
once a full Internet-wide UDP scan is finished, we initi-
ate a follow-up TCP scan for hosts that are found to be
an amplifier for at least one UDP protocol.

Results. Table 2 depicts the fingerprint results obtained
for the amplifiers found on Nov 22, 2013. For reasons of
brevity, we summarize fingerprint details with less than
2% share to Others. Note that the category “router” also

includes gateways, switches, and modems as many of
these devices provide similar features.

The best results for the OS classification are achieved
for NTP. We find that 40.8% of the vulnerable NTP hosts
run Cisco IOS, an OS that is deployed on Cisco de-
vices such as business routers and switches. We fur-
ther identify 1,267,008 amplifiers (17.4%) running Linux
on MIPS and 357,076 devices (4.9%) running Linux on
PowerPC. These two combinations are common for con-
sumer devices such as routers and modems. The majority
of NTP amplifiers thus run on networking equipment.

Similarly, two thirds of the SNMP amplifiers are
routers. With a share of 17.8%, the ZyNOS system
stands out—apparently running unprotected SNMP ser-
vices per default. But we also observe a wide distribu-
tion of other SNMP devices. This includes 58,000 of-
fice printers (0.7%), 51,037 firewall appliances (0.6%),
and 40,061 network cameras (0.5%). Routers are even
more prominent among SSDP hosts with a share of about
94.3%. This shows that at least three of the analyzed pro-
tocols are overly prominent on routers.

On the contrary, the vast majority of NetBIOS ampli-
fiers run Windows on x86, a typical setup of desktop
computers. Since the Conficker outbreak in 2008, it is
known that millions of Windows systems on the Internet
are reachable via the NetBIOS [32] protocol.

Unfortunately, DNS provides only limited fingerprint
information and we thus had to solely rely on the TCP
fingerprints to classify DNS servers. However, most
DNS servers did not run TCP services, resulting in a
high number of uncategorized hosts. Even if TCP ser-
vices were accessible, the provided information was of-
ten too generic (e.g., banners as “Apache”, “SSH-2.0-
OpenSSH”, or “FTP Server”). However, we could iden-
tify 5.4% of the hosts (1,388,348) as MIPS-based routers
with ZyNOS, which is common for broadband routers
distributed by manufacturer ZyXEL.

A high diversity of amplifiers is attested when looking
at smaller clusters. For example, we find 695 vulnera-
ble devices to be running Miele Logic, a payment sys-
tem for Miele devices such as washing machines. Sim-
ilarly, we identify 9,224 amplifiers running server man-
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Table 3: Amplifier churn rate per protocol
Initial Scan Week 1 Week 13

Protocol ( # ) ( # ) ( % ) ( # ) ( % )

DNS 25,681,450 12,190,302 47.5 8,263,508 32.2
NetBios 2,853,213 1,455,351 51.0 979,266 34.3
NT P 7,269,015 6,859,043 94.4 4,222,060 58.1
SNMP 8,866,748 4,939,118 55.7 3,411,563 38.5
SSDP 5,336,107 3,088,148 57.9 2,067,830 38.8

agement systems (like iLO, iDRAC, or IPMI). We fur-
ther find 51,351 Digital Video Recorders, 7,739 Power
Distribution Units, and 20,927 Network Attached Stor-
age devices (NAS) to be vulnerable to amplification.

Ambiguous Fingerprints. We had to resolve a few
conflicts when combining the fingerprints from multi-
ple protocols. For NTP amplifiers, we find valid TCP
fingerprints for 1,919,932 hosts, while conflicts emerge
for 9,945 IP addresses (0.5%). For SNMP, we lever-
age TCP data for 2,042,541 amplifiers while obtaining
31,346 conflicts (1.5%). We presume that these conflicts
were caused by responses from “border” devices such as
routers that host some services themselves (e.g., SNMP
and SSH), while requests for FTP or HTTP were for-
warded to the devices connected to the router, resulting
in multiple fingerprints for a single IP address. To resolve
these conflicts, we assign a lower priority to TCP finger-
prints when classifying the amplifiers. In addition, we re-
frained from aggregating the individual UDP fingerprints
to one large set, as the overlap between the UDP proto-
cols is low anyway (cf. Table 1).

2.4 Amplifier Churn

An important aspect from the attacker’s point of view is
how fast the set of amplifiers changes. An up-to-date list
of reliable amplifiers is key to achieving a high impact
during an attack. For this reason, we measure the churn
rate of the amplifiers per protocol, which shows how fast
a list of amplifiers becomes outdated. That is, we enu-
merate the amplifiers based on their IP addresses on Nov
22, 2013 and check if these hosts are still vulnerable for
amplification attacks in the subsequent weeks.

Table 3 lists the numbers of amplifiers for the five UDP
protocols that we monitored on long term. Figure 2 illus-
trates the ratio of amplifiers that are still reachable at the
same IP address over time. For most protocols (DNS,
NetBIOS, SNMP, and SSDP) the churn of amplifiers is
quite high: only about 50% of the initial hosts are still
reachable after one week. After the second week, we
again observe a minor decrease, resulting in a total of
40 - 50% of available amplifiers for each protocol. For
the following weeks we find the number of amplifiers to
reach an almost steady level.

Figure 2: IP churn of potential amplifiers

To understand the nature of the significant drop after
the first week and obtain knowledge about the vulnera-
ble systems still reachable after 13 weeks, we leverage
our fingerprinting techniques. We find the amplifiers that
became outdated within the first week to be mostly con-
nected via consumer routers (e.g., 78.8% for SNMP). We
assume that these routers are connected via DSL with
low IP address lease times, causing the rapid breakdown
rate after one week [37]. To confirm this assumption,
we aggregated reverse DNS records for a random sample
of 100,000 unreachable amplifiers and checked for com-
mon indicators of dial-up connections (i.e., the appear-
ance of tokens such as “dialup”, “dyn”, or “pool”—we
further manually verified the Top 5 providers not provid-
ing indicators in the rDNS data). We indeed found at
least 82.8% of the IP addresses to be linked to connec-
tions with dynamic IP address assignment. This means
that an attacker needs to frequently re-scan for amplifiers
or otherwise risks to decrease the impact of her attacks.

The amplifiers that are still reachable after 13 weeks
presumably have longer lease times or static Internet
connectivity. For example, we can see a clear distinction
between countries in which SSDP hosts disappeared af-
ter a week (e.g., China, Argentina, Russia) and countries
in which most hosts are still reachable after 13 weeks
(e.g., Korea, United States, Canada). While only 3.4%
of the Chinese amplifiers were still reachable after 13
weeks, still more than 69% of the Canadian amplifiers
were available. This shows that the geolocation of In-
ternet links (and thus the risk to face IP address churn)
highly influences the availability of amplifiers.

Interestingly, the NTP protocol draws a completely
different picture. Given a fixed list of vulnerable hosts,
the ratio of available NTP amplifiers decreases at a neg-
ligible rate. After four weeks, an attacker can still abuse
approximately 90% of the initial NTP amplifiers. After
13 weeks, still 58.1% of the initially-scanned hosts are
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reachable. Of the 41.9% decrease after 13 weeks, many
systems presumable disappeared because of our NTP
amplifier notification campaign (cf. Section 3)—and not
because of IP churn. The actual churn is thus even lower
and significantly differs from churn in the other proto-
cols. In contrast to the vulnerable amplifiers of the other
protocols, more than 40% of the NTP amplifiers are run-
ning Cisco IOS that is commonly distributed on busi-
ness routers and switches with static IP addresses. We
further find 53.7% of the vulnerable hosts to be located
within the United States (31.3%), South Korea (13.0%),
and Japan (9.4%) for which the typical IP lease times for
broadband are above average.

3 Case Study: NTP Amplification

After inspecting the amplification attacks in general, this
section focuses on NTP, which we consider by far the
worst among all known vulnerable protocols. NTP is a
promising amplification vector for an attacker for three
reasons. First, NTP server implementations allow for
amplification factors of up to 4,670 [33]. Attackers can
abuse the monlist feature in popular ntpd versions,
which requests a list of up to 600 NTP server clients in
about 44kB UDP payload. Second, as we have seen in
Section 2.4, NTP servers have minimal IP address churn.
Lastly, NTP offers even further amplification vectors.
For example, the NTP version request reveals a ver-
bose system fingerprint (OS, architecture, server info) of
the NTP server, allowing about 24-fold amplification.

Attackers have already practically demonstrated the
impact of NTP attacks. For example, in February 2014,
CloudFlare observed a 400 Gbps attack against a French
hosting provider [22]—the largest DDoS attack observed
so far. If the attacker had even more resources (in partic-
ular bandwidth) to send spoofed monlist requests, the
impact of such an attack could have been even higher.

Luckily, NTP servers can be configured such that the
monlist requests are disabled for unauthorized users,
and more recent ntpd versions protect this feature with
a proper session handshake. These changes typically
do not bring disadvantages for the administrators, while
they eliminate the amplification vector. Even disabling
functionality like monlist does not break time synchro-
nization. But although secure configurations are well-
documented, most administrators are not aware of the
amplification vulnerabilities and operate NTP servers in
(sometimes bad) default configurations. From a security-
perspective this raises several urging questions: once we
found amplification vulnerabilities, how can we reduce
the number of amplifiers? Can we notify administrators?
How effective would such a notification procedure be?

3.1 NTP Amplifier Notifications
In a large-scale campaign, we have launched a global no-
tification procedure to alert NTP administrators about the
amplification problems. We thankfully cooperated with
many parties striving towards the same goal: reducing
the number of NTP amplifiers.

Datasets. We define two datasets of NTP amplifiers.
NT Pver contains all NTP servers that reply to version

requests, i.e., systems that are “less” vulnerable to am-
plification abuse. This is the same dataset that we finger-
printed in Section 2. As a subset of this, NT Pmon contains
the NTP servers that also support the monlist requests,
i.e., systems that allow for more “severe” amplification.

Campaign. We collaborated with security organiza-
tions in order to create technical advisories that de-
scribe how to solve the amplification problems in NTP.
This resulted in public advisories of CERT-CC [42] and
MITRE [25]. Due to the high number of vulnerable
Cisco devices for NTP amplification (cf. Table 2), we
also contacted Cisco which resulted in a public advisory
of Cisco’s PSIRT [7]. The advisories describe how to
disable the monlist feature in typical NTP server im-
plementations (such as ntpd). The same configuration
change also disables version responses. Thus, in prin-
ciple, the advisories help to reduce the number of servers
in both datasets, NT Pver and NT Pmon.

In addition, we distributed lists of IP addresses of the
systems in NT Pmon among trusted institutions. For ex-
ample, we shared our data with direct contacts in NOCs
and CERTs of hundreds of large ISPs worldwide. Fur-
thermore, we cooperated with data clearing houses (e.g.,
TrustedIntroducer [41] and ShadowServer [35]) that in-
formed their subscribers. Lastly, we informed the NTP
Pool Project [28] about misconfigured hosts in the public
pool of NTP servers and synchronized our notifications
with the OpenNTPProject [30] to start the announce-
ments simultaneously.

We did not actively notify systems that are only in
NT Pver for two reasons. First, we saw an urgent need to
close the amplifiers in NT Pmon, as the monlist amplifi-
cation is in the order of magnitudes higher than of other
NTP features. Second, we can then compare the effi-
ciency of advisories (which affect both datasets) with the
effects of active and personalized notifications (which af-
fect only NT Pmon).

3.2 Analyzing the Remediation Success
We ran weekly scans for NTP amplifiers to observe the
developments over time. Figure 3 shows the number of
NTP amplifiers per week and marks important events.
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Figure 3: Trend of NT Pmon amplifiers

At their peaks on Dec 15, 2013, we tracked 7,364,792
servers in NT Pver and 1,651,199 servers in NT Pmon, re-
spectively. The number of amplifiers in NT Pmon is steady
at first, also after Symantec has released a blog article
about the attacks late December 2013 [39]. However, the
number of amplifiers starts to drop (15.4%) right after
we released the CVE and shared a first (incomplete) list
of IP addresses. A second major drop (43.4%) happened
during the week we distributed twice an updated (and
complete) list of potential amplifiers and two other ad-
visories were released. After publishing further weekly
notifications (omitted from the graph for better readabil-
ity) we have observed a steady decrease of amplifiers.

At the end of our measurements on Feb 24, 2014,
the number of amplifiers reached a local minimum at
4,802,212 (NT Pver) and 126,080 (NT Pmon). Compared
to the peak numbers, this constitutes significant drops in
both datasets. The number of amplifiers in NT Pver de-
creased by 33.9%, a success likely stemming from the
advisories and recent publicity on NTP attacks in gen-
eral. However, looking at the development of severe am-
plifiers shows how successful global notification efforts
can be: the number of amplifiers (NT Pmon) dropped by
92.4% with an ongoing decrease.

To verify whether the number of amplifiers for
NT Pmon still decreases continuously, we performed an-
other Internet-wide scan on Jun 20, 2014 and find 87,463
hosts still vulnerable to monlist amplification, i.e., a de-
crease of almost 40,000 hosts since Feb 24, 2014.

Fingerprinting. We compared the fingerprints of the
NT Pmon datasets at the start and end of our measure-
ments. We clearly observe decreasing numbers for all
architectures, OSes, and hardware types. Interestingly,
the ratio of MIPS-based amplifiers dropped from 47.2%
to 19.1%, while the ratio of x86-based systems increased

Table 4: Decrease of NT Pmon amplifiers per country
Amplifiers (in #) Remaining

Country Nov 22, 2013 Feb 24, 2014 Decrease (in %)

US 1,073,666 28,415 1,045,251 2.6
KR 88,289 16,183 72,106 18.3
RU 58,519 11,476 47,043 19.6
DE 50,627 4,793 45,834 9.5
CA 36,070 1,881 34,189 5.2
CN 32,995 4,172 28,823 12.6
JP 29,915 2,777 27,138 9.3
GB 24,408 2,741 21,667 11.2
UA 19,270 2,716 16,554 14.1
BR 13,900 2,719 11,181 19.6
TW 13,362 6,397 6,965 47.9
NL 13,122 3,934 9,188 30.0
FR 12,992 4,557 8,435 35.1
CZ 11,825 1,226 10,599 10.4
PL 10,891 1,960 8,931 18.0

from 40.2% to 58.0%. Similarly, 23.0% of the devices
of a popular router manufacturer remain vulnerable—a
value standing out from the average decrease. On ab-
solute scale, though, the numbers drop across all finger-
prints, indicating that the clean-up was not driven only
by a single device type or manufacturer.

Geographic Distribution. We also investigated the
geographical distribution of the amplifiers. For this, we
used the MaxMind GeoIP database [23] to assign a coun-
try to the IP address of an amplifier. We then compared
how the numbers of amplifiers evolve in single countries.
Table 4 lists the remaining amplifiers of the 15 countries,
which had the most amplifiers in Nov 2013. The clean-
up was—on relative scale—most successful in the US,
where the number of amplifiers decreased to only 2.6%.
In other countries like Taiwan the number decreased only
to 47.9%. These differences may be caused by the num-
ber and quality of direct contacts we had in the US com-
pared to Taiwan: we admittedly had more contacts in the
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Table 5: Decrease of NT Pmon amplifiers per RIR
Amplifiers (in #) Remaining

RIR Nov 22, 2014 Feb 24, 2014 Decrease (in %)

ARIN 1,112,422 30,766 1,081,656 2.8
RIPE 283,991 53,324 230,667 18.8
APNIC 202,719 38,122 164,597 18.8
LACNIC 21,721 5,075 16,646 23.4
AFRINIC 7,495 920 6,575 12.3

US and Europe compared to the rest of the world. But
it also shows that the current network of CERTs is not
perfectly connected to share our information equally in
all countries. For example, also European countries like
France (35.1%) and Austria (47.1%) lag behind the av-
erage decrease. However, on an absolute scale, the situ-
ation is different. While the number of NTP amplifiers
was clearly reduced in the US, still 28,415 systems re-
main vulnerable to monlist amplification.

Table 5 shows the absolute numbers of NTP servers
per Regional Internet Registry (RIR), which (very
roughly) indicates the continent of the amplifiers. It
shows that we face a global problem, but also proves that
all regions in the world have acknowledged the problems.

Per-Provider Statistics. A closer look at the Au-
tonomous Systems (AS) distribution sheds light onto
how amplifiers have been closed. Of the 96 ASes that
had at least 1,000 amplifiers, about half have shut down
more than 95% of the amplifiers. This shows that many
providers either enforce most amplifiers in their networks
to be shut down or successfully filter NTP traffic at the
network level. More specifically, we identified 73 ASes
(0.44% of all ASes we observed during our monitor-
ing period) that had more than 100 NTP servers in one
week, and did not have a single vulnerable server left
open in the subsequent weeks. This strongly suggests
that these providers perform network-level filters, as it is
unlikely that so many individual servers were all cleaned
up within a few days. Nine ASes left open more than
half of the amplifiers, i.e., these providers do very little
to mitigate the threat. We are currently establishing in-
dividual contacts with the least-active ASes and hope to
understand the reasons for the remaining amplifier land-
scape in their networks.

Result Verification. We verified if the drop in NTP
amplifiers is not caused by networks blocking our scan-
ner [10]. This can already be seen in the amplifier trend
graph (Figure 1), in which the number of amplifiers for
other protocols remains almost constant. To be sure, we
scanned for NTP amplifiers from a secondary host in
a different /16 network. The primary scanner indeed
missed 8.6% of the amplifiers that the secondary scan-

ner found. We manually investigated this and found 904
networks (/20) that have at least five amplifiers that the
primary scanner missed—indicating that some networks
do blacklist our scanner. While our primary scanner has
thus missed amplifiers, these systems make up an almost-
negligible part of the 92.2% decrease of amplifiers.

3.3 Lessons Learned
Summarizing, the campaign to reduce the number of
NTP monlist amplifiers was quite effective and showed
remediation successes for almost 95% of the vulnerable
hosts just after 6 months. As such, it would be interesting
to see recipes to repeat this success in similar campaigns
for other security-critical issues, such as amplification
vulnerabilities in other protocols or even unrelated, but
security-critical problems like the heartbleed vulnera-
bility in OpenSSL. Figure 3 clearly shows that the coun-
teractions (advisories and IP address lists) correlate with
the decrease in numbers of amplifiers.

Unfortunately, it is impossible to proof causality, in
particular, to see which IP address distribution channels
or which advisories were most effective. However, in our
conversations with providers we had the impression that
it helps to repeatedly point out the problem. Further, it
may not be sufficiently effective to have public advisories
that nobody reads. Instead, we found that communica-
tion was key to motivate CERTs and providers to act ac-
cordingly. Once we reached out to CERTs and providers,
it typically was no problem to close the vulnerable hosts.

On the negative side, though, we experienced that
the Internet community is not well-prepared for such
campaigns. Although we were quite well-connected
with nationally and internationally operating CERTs
and providers, it is hard to reach out to all providers
individually. If providers and CERTs were bet-
ter connected to non-profit data clearing houses (like
shadowserver.org), vulnerability notifications could
be sent out more efficiently.

4 TCP-based Amplification Attacks

In the previous section, we have shown that we can have
an influence on the amplifier landscape. As such, we
introduce next steps attackers may take once we “fix” all
the protocols that have been documented to be vulnerable
for amplification attacks [33]. Given the connection-less
nature of UDP, it comes as no real surprise that UDP-
based protocols may allow for amplification attacks.

In this section, we analyze to what extent TCP allows
for amplification attacks similar to the UDP-based at-
tacks. TCP is a connection-oriented protocol, in which
early on (i.e., during the handshake) the IP addresses of
both communication parties are implicitly verified via
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Figure 4: Amplification abuse in the TCP handshake

initially-random TCP sequence numbers. We evaluate
how TCP can be abused for amplification regardless of
the TCP three-way-handshake.

From the viewpoint of the attackers, abusing TCP
brings multiple benefits. First, providers cannot easily
block or filter TCP traffic related to well-known proto-
cols (such as HTTP), as compared to protocols that are
less critical (such as CharGen, QOTD, or SSDP). In ad-
dition, it is hard to distinguish attacks from normal traffic
in a stream of TCP control segments, while providers can
deploy payload-based filters for attack traffic from many
UDP-based protocols. Lastly, there are millions of po-
tential TCP amplifiers out there and “fixing” them seems
like an infeasible operation.

4.1 TCP Amplification Background
TCP initiates a connection with a three-way-handshake,
which works as follows: a client willing to start a TCP
connection sends a SYN segment to a server and this
packet contains a random sequence number seqA. If the
server is willing to accept the client, it responds with a
SYN/ACK segment, in which the acknowledgment num-
ber is set to seqA + 1 and a random sequence number
seqB is added as well. In the third step, the client com-
pletes the connection setup by sending a final ACK to the
server where the sequence number is set to seqA +1 and
the acknowledgement number is set to seqB +1.

At first sight, TCP thus does not allow amplification:
all segments are of the same size and no data bytes are
exchanged before the handshake is finished. Assuming
that the server draws TCP sequence numbers at random,
there is no practical way to complete the handshake with
IP-spoofed traffic. If the client address is spoofed, the-
oretically only one single SYN/ACK is sent to a potential
victim. While this allows to reflect traffic, it does not
amplify the traffic and therefore does not attack a victim
with more bytes than sent by an attacker.

In practice, though, TCP connections encounter
packet loss. TCP stacks thus deploy segment retransmis-
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Figure 5: Attacker’s choice of targets

sions, i.e., they retransmit segments that have not been
acknowledged by the other party. We noticed that re-
transmissions also occur during the handshake. Many
popular TCP stacks resend SYN/ACK segments until: (i)
an ACK is received (and the connection is successfully
established), (ii) a threshold is met (and the connection
times out), or (iii) the connection is closed by the client
(e.g., via a RST segment). In face of amplification at-
tacks, this is problematic, as the client’s IP address is not
validated until the handshake is complete.

Figure 4 illustrates two typical behaviors of the TCP
handshake. The first behavior illustrates a server repeat-
edly sending SYN/ACK segments, resulting in a TCP am-
plification. The second behavior points out a way for am-
plification even though the client (i.e., the victim) sends
a RST segment to tear down the (not-yet-existing) TCP
connection. In principle, this instructs servers (i.e, am-
plifiers) to stop sending any further SYN/ACK segments.
We measured if hosts obey to this behavior.

4.2 Measuring TCP Amplification

As a first step to estimate the scope of this problem, we
measure how the TCP stacks implement retransmissions
during the TCP handshake. We perform an Internet-wide
SYN scan and record the replies for further analysis. Our
scanner does not complete the handshakes (i.e., we do
not send ACK segments). With this, we aim to mimic the
behavior of a system under an amplification attack that
did not initiate the TCP connection in question. If TCP
segments arrive that do not belong to any (half-)open
connection (such as the reflected SYN/ACK segments in
our scenario), TCP stacks either i) ignore these segments,
or ii) respond with a RST segment, asking the other side
to abort the TCP connection.

A victim, however, might not able to respond with RST
packets, e.g., when it is already suffering from overload.
Similarly, an attacker does not necessarily need to steer
her attack against assigned IP addresses as shown in Fig-
ure 5. That is, the attacker can target an unassigned IP
address so that there is no host that responds with RST

segments. As a result, the capacity of the victim’s net-
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Figure 6: HTTP, Telnet, and CUPS without RST

work is overloaded by SYN/ACK segments. Addressing
arbitrary IP addresses in the target network thus allows
an attacker to control that no RST responses will be sent,
leading to higher impact of an amplification attack.

TCP Scanning. We run two separated TCP scans to
mimic both behaviors. In the first scan, we only send SYN
segments and do not send anything back when receiving
SYN/ACK segments. In the second scan, we “acknowl-
edge” each incoming SYN/ACK segment with a RST seg-
ment. We performed the first scan for two popular pro-
tocols (i.e., HTTP and Telnet) and one printer-oriented
protocol (CUPS). We chose these protocols, as according
to Internet Census 2012, HTTP and Telnet yield a high
number of reachable hosts [40]. In addition, to evaluate
the TCP behavior of printers, we chose to scan CUPS.

In total, 66,785,451 HTTP hosts, 23,519,493 Telnet
hosts, and 1,845,346 CUPS hosts replied to our requests.
Figure 6 shows the results of the first scans as a CDF.
The graph outlines that 6% of all HTTP hosts reply with
a single SYN/ACK response and 24% of the hosts send at
most three packets. A rise can be observed in-between
3 and 4 packets, meaning that 42% of the hosts reply
to our SYN requests with 4 packets or less. We find the
highest rise for 5 to 6 packets as 53.1% of all hosts send
at most five SYN/ACK segments, but already 97.8% send
six segments (or less). That is, 46.9% of the reachable
HTTP hosts allow an amplification factor of 6 or higher.

Similar trends can be observed for the Telnet proto-
col. We find 55.6% of all Telnet hosts to enable an am-
plification attack with factor 6 or higher. In contrast
to HTTP, about 12.2% of the Telnet hosts (more than
2.8 million systems) amplify requests even by factor 20.
CUPS hosts, on the contrary, show less severe amplifica-
tion rates. About 41.8% of the CUPS hosts replied with
only a single packet and, in general, the number of seg-
ments sent by CUPS hosts is lower.

Figure 7: HTTP and Telnet with RST

Figure 7 shows the results of our second scan (with
RST). Indeed, sending RST tremendously changes the be-
havior of TCP stacks. In contrast to our first scan only
0.03% of Telnet hosts allow amplification by factor 20
which is a negligible number of 7,247 hosts. Almost
94% of all Telnet hosts send only one SYN/ACK packet in
response; the same number applies for HTTP. A minor
fraction of hosts keep resending SYN/ACK segments. We
count 506,476 devices for HTTP and 114,157 devices for
Telnet that send six SYN/ACK segments. Still, for the at-
tack victim, replying with RST segments significantly re-
duces the impact for TCP amplification attacks and thus
constitutes a potential proactive countermeasure.

4.3 Categorizing TCP Amplifiers

In this subsection, we aim to categorize the most preva-
lent behaviors that we have identified in the previous sec-
tions. Figures 6 and 7 have revealed significant groups
of hosts that reply with the same number of TCP seg-
ments. Table 6 summarizes how many hosts belong to
each of these groups. What kinds of systems are vul-
nerable to amplification attacks? To answer this ques-
tion, we fingerprint the selected groups by re-using our
TCP-based scans to obtain information via FTP, HTTP,
HTTPS, SSH, and Telnet.

First, we classify the HTTP hosts that sent exactly six
segments. Of the systems for which we obtained a finger-
print, about 88% (in total 3,228,000 hosts) run a Linux or
Unix OS. Manual inspection has revealed that many of
them are routers or embedded devices often running an
FTP server (e.g., for a NAS). Other devices were vendor-
specific, such as the ZynOS operating system. We also
found numerous MikroTik devices and a smaller group
of TP-LINK routers and D-Link devices. In contrast,
there are only 0.2% Windows amplifiers in this group
of hosts, hence this group of TCP amplifiers mainly con-
sists of routers and various kinds of embedded devices.
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Table 6: Hosts vulnerable to TCP amplification
Number of response segments

Scan 3 4 6 20

Without RST:
CUPS 12.7% 9.7% 22.9% 0.0005%

234,478 179,069 422,622 9
HTTP 17.3% 18.5% 44.7% 0.6%

11,558,250 12,322,327 29,834,824 395,361
Telnet 8.1% 16.1% 38.9% 12.2%

1,899,095 3,780,499 9,147,151 2,872,878

With RST:
HTTP 0.44% 0.36% 0.76% 0.0005%

294,535 243,028 506,476 349
Telnet 0.32% 0.37% 0.47% 0.03%

76,774 88,504 114,157 7,247

In auxiliary tests, we have measured that Windows hosts
(Windows 7, Vista, and XP) send four or five SYN/ACK

segments in response—depending on the WINSOCK im-
plementation. Although this amplification is not negligi-
ble, it is significantly lower than for other devices.

Second, we determine what kind of Telnet hosts sent
six packets. Again, Unix and Linux are predominant as
about 115 times more hosts in this group run Unix or
Linux compared to the number of devices running Win-
dows. Many of these hosts (49%) are routers, while other
occurring devices are media servers, network cameras,
digital video recorders, or VoIP phones.

Third, we analyze the Telnet hosts that sent 20
SYN/ACK segments. We found that 84.3% of all finger-
printable hosts in this group are routers or embedded de-
vices. These embedded hosts—often based on MIPS or
ARM architecture—include devices such as Raspberry
Pis and printers. We found 86.1% of the devices to utilize
the embedded web server Allegro RomPager and 37.5%
to be manufactured by TP-LINK. In the remaining hosts,
we also identified networking devices running ZynOS,
ClearOS, or Cisco IOS. Typical desktop computers are
negligible in this group: Windows is installed on 0.3%
and MacOS on 0.0005% of these systems.

Lastly, we investigate the Telnet hosts that sent more
than 20 SYN/ACK segments (21,981 hosts with an average
of 971 response segments). Most of these hosts (87.9%)
were found to be business and consumer routing devices
of which 34% were running the embedded web server
GoAhead-Webs. We find 50.4% of these devices to be
a specific ATM Integrated Access device manufactured
by RAD. Another 13.2% of the devices utilized the web
server Allegro RomPager that we find to be associated to
devices of manufacturers such as TP-LINK and ZyXEL.
More information can be found in a further paper [20].

We conclude that amplification factors of 20 and more
are largely caused by embedded devices and routers. We
have contacted the vendors and wait for their feedback
regarding these vulnerabilities.

5 Spoofer Identification

IP address spoofing is the root cause for amplification
attacks, as it enables attackers to specify arbitrary tar-
gets that are flooded with reflected traffic. The Internet
community addressed this issue as early as in May 2000
and suggested that—whenever possible—spoofed traffic
should be blocked at the network edge [13]. However, as
the attacks in practice have shown, spoofing still seems
to be possible—yet it is unclear to what extent.

Up to now, the most powerful resource for tracking
networks that allow spoofing is the Spoofer Project [36].
The project offers a client software that one can use to
test if the own network filters IP-spoofed packets. Yet,
such measurements require volunteers who download,
compile/install, and run a client software. Aggregating
user measurements in a study in July 2013, Beverly et
al. show that about 610 of the 2582 tested ASes allow
IP spoofing (at least partially, i.e., in some of their an-
nounced IP prefixes) [4]. On relative scale, however, less
than 5% of the total number of ASes were tested. In other
words, for more than 95% of the ASes it remains unclear
if they support IP spoofing.

5.1 Remote Spoofer Test

Ideally, one would have a methodology to track networks
that allow IP spoofing without the need for individuals
running manual or tool-based tests from within the net-
work. Such remote tests would boost the measurement
coverage, so that we can alert administrators about po-
tential misconfigurations that permit IP spoofing in their
networks. We deploy such a large-scale experiment that
enables us to identify thousands of ASes that support IP
spoofing—from remote. Our DNS-based technique was
first mentioned by Mauch on the NANOG mailing list in
August 2013 [16]. It relies on public DNS proxies (or
DNS stub resolvers—we will refer to “proxy” in the fol-
lowing) that have a broken networking implementation.

Figure 8 describes the core idea of the technique. The
party that wants to identify spoofers (i.e., us) controls
an Internet-scale scanner S and a name server that is au-
thoritative for a domain suffix dsu f . In our case the do-
main dsu f is scan.syssec.rub.de. Note that we do
not have control over devices on the right hand side,
i.e., the DNS resolver and the optional DNS proxy, re-
spectively. In step (1), the scanner S sends a DNS A

lookup for domain d to an open resolver P. The do-
main d uses dsu f as domain suffix, but is specifically
crafted for each scanning target. That is, S encodes
a hex-formatted IP address of the scanning target P in
the domain. This allows us to tell from the DNS re-
sponse to which IP address we have sent the corre-
sponding DNS request. In addition, to avoid caching

11
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Figure 8: Setup to scan for spoofing-enabled networks.
R is optional if P is an iterative resolver (step 2a) and is
only used if P is a DNS proxy (step 2b)

effects, we encode a random value in d that changes
per request. In our case, d for target IP address 1.2.3.4
looks like q9ZbKc.01020304.scan.syssec.rub.de,
whereas “q9ZbKc” is the random domain prefix and
“01020304” the hex-formatted IP address.

When sending the request to P, one has to keep in
mind that P may have different roles. If the scanned tar-
get P is a public recursive DNS resolver, P iteratively
resolves the domain name by contacting the authorita-
tive name servers down the domain tree as summarized
in step (2a). For the purposes of our experiments such
recursive resolvers are not important because they do not
forward requests or responses. As we will show later,
though, our technique to identify spoofing-enabled net-
works is based on the assumption that systems forward
requests or responses. Quite often, P is not a resolver
but a DNS proxy that forwards the DNS communication
from a client (i.e., our scanner) to an iterative resolver R,
as illustrated in step (2b).

We now leverage the fact that some DNS proxies do
not correctly change the IP addresses when forwarding
the request. In principle, to forward the DNS lookup to
the resolver, the proxy P needs to change both the source
and destination IP address of the request: it switches the
source from S to its own address and the destination from
its own address to R. Similarly, to forward the DNS re-
sponse to the client, P changes the source from R to P
and the destination from P to S. However, we encoun-
tered DNS proxies that do not change the addresses cor-
rectly. That is, we received DNS responses for which
the replying IP address did not match the IP address that
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Figure 9: Network overview illustrating the two possible
paths for DNS requests and responses when receiving re-
sponses for which the replying IP address did not match
the IP address that was encoded in the requested domain

was encoded in the requested domain d. Instead, when S
receives the response, the source IP address is set to R.

There are a few potential explanations for this observa-
tion. One is that P is a multi-homed system, i.e., has mul-
tiple interfaces with IP addresses in different networks.
In many cases, though, proxies were using well-known
resolvers (such as Google DNS) or resolvers in different
ASes, excluding this possibility. Another explanation is
that these devices have broken networking implementa-
tions, which cause the packets to have “wrong” IP header
information when being forwarded. This could, e.g., be
caused by broken Network Address Translation (NAT)
implementations or faulty DNS proxy software.

Figure 9 illustrates the corresponding network situ-
ation when we receive a DNS response for which the
source IP address of the UDP packet does not match
the IP address that we encoded in the domain name of
the DNS request. When sending a DNS request to the
proxy (step 1), either P does not change the source ad-
dress when forwarding the request to resolver R as out-
lined in step (2a) (i.e., the proxy effectively impersonates
the sender S) so that R directly responds to S (step 3a).
Alternatively, the proxy forwards the request to the re-
solver R (step 2b), obtains a DNS response (step 3b), and
does not change the source address when forwarding the
response to the sender S (step 4b), thus impersonates the
resolver R. Either way, if R and S are not within P’s
AS, then the proxy P is located in a network that permits
the transmission of spoofed IP addresses. Both behav-
iors cause typical DNS clients to fail the resolution, as
the DNS response comes from an unexpected IP address.
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Table 7: Number of misconfigured DNS resolvers P and
the corresponding Autonomous Systems
Filter #P #ASP Top 3 Countries

Top 4 Resolver 42,691 301 BR (52%), IT (11%), HU (10%)
Top 10 Resolver 45,072 352 BR (53%), IT (10%), HU (9%)

Distinct AS 170,451 2,692 CN (55%), BR (17%), RU (5%)
Distinct AS / # respR > 1 161,988 2,063 CN (55%), BR (18%), RU (5%)
Distinct AS / # respR ≥ 10 137,075 870 CN (53%), BR (20%), RU (6%)

Clients will not even receive the replies if their network
is protected by a stateful firewall, which drop UDP pack-
ets unrelated to any UDP stream known to the firewall.
Unfortunately, we could not examine in detail which part
of the forwarding was broken, as we did not control any
of the recursive resolvers that the spoofing proxies used.

5.2 Finding Spoofing-Enabled Networks

While performing our Internet-wide scans, we observed
a mismatch of source IP address and encoded target ad-
dress for more than 2.2% of all responsive DNS servers,
resulting in a total of 581,777 DNS proxies which redi-
rect incoming requests to 225,888 distinct recursive DNS
resolvers. To explore these misbehaving DNS proxies
and the corresponding ASes in more detail, we enumer-
ate the number of ASes permitting IP address spoofing
using the following filtering methods:

(i) Our most conservative estimation is based only
on responses from four commonly-used open
resolvers operated by Google (i.e., 8.8.8.8 and
8.8.4.4) and OpenDNS (208.67.222.222 and
208.67.220.220). These servers (“Top 4”) are a
subset of the servers in the second approach.

(ii) Less conservative, we take into account DNS re-
sponses of the most popular ten resolvers ranked
by the number of proxies using them (“Top 10”).

(iii) Lastly, we focus on proxies for which AS(S) �=
AS(P) �= AS(R) applies. In other words, the proxy
is not located in the same AS as both the sender S
and the resolver R, and thus is spoofing the identity
of one of these identities.

Table 7 illustrates the results obtained for each filter-
ing method. In total, 7.7% of the potentially-spoofing
DNS proxies forward the DNS requests to the Top 10
well-known resolvers (filter (ii)), resulting in 352 distinct
ASes the proxies are located in. When limiting our focus
to the Top 4 resolvers (filter (i)), we still identify 301 dif-
ferent ASes that permit spoofed traffic. Furthermore, we
find 29.3% of all proxies to be located in different ASes
than the sender S and the resolvers R (filter (iii)), result-
ing in 2,692 ASes permitting the proxies to either spoof
the IP address of S or R.

Of the 225,888 individual resolvers R we find 50.7%
utilized by multiple DNS proxies. To exclude potentially
multi-homed systems with multiple interfaces in distinct
ASes, we restrict the set of resolvers to those which re-
sponded to requests from multiple proxies and find 2,063
ASes that allow spoofed traffic. When further filtering
the set to resolvers that replied to at least ten different
proxies, we still identify 870 ASes permitting spoof-
ing. Using our remote test, we can thus identify more
spoofing-enabled ASes than the current state-of-the-art
manual analyses performed by the Spoofer Project [36].

5.3 Fingerprinting IP-Spoofing Devices

Lastly, we want to understand what type of devices fol-
low the weird practice of spoofing IP addresses while
forwarding DNS requests/responses. For this, we use
our TCP-based fingerprints to classify the 42,691 de-
vices that used Google DNS or OpenDNS as iterative
resolver. Of these devices, 6,120 devices replied to our
TCP requests and 5,674 resolvers provided information
suitable for fingerprinting. In total, we find 3,033 de-
vices running the Dropbear SSH daemon, particularly
employed on embedded devices. We also identify 1,437
MikroTik routers to be forwarding requests specifically
to the Google DNS servers. Further 540 devices of the
manufacturer Airlive perform similar behavior.

We achieve similar results when fingerprinting the
hosts of the other filtering methods (see previous sub-
section). We again find Dropbear, MikroTik, and Airlive
to appear frequently. We assume that these devices have
either bad NAT rules or erroneous DNS proxy implemen-
tations. However, requests for more specific information
from the vendors remained unanswered until now.

5.4 Remote Test Limitations

Our results show that DNS-based spoofing tests are
a powerful resource to identify spoofing-enabled net-
works. One inherent limitation of this approach is,
though, that such tests do only reveal the fact that (and
not if ) a network allows IP spoofing. We leave it up to
future work to test if the tests can be expanded accord-
ingly. For example, we could scan for DNS proxies that
can be fingerprinted as systems that typically spoof IP
addresses. In addition, collaborating with the recursive
resolvers (such as OpenDNS or Google DNS) may re-
veal further insights about the spoofing systems. Lastly,
given the large number of hosts running other protocols
than DNS, it may be possible to use further protocols for
similar remote spoofing tests.
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6 Related Work

Our work was inspired by the analysis of amplification
attacks by Rossow [33]. He identified 14 UDP-based
network protocols that are vulnerable to amplification at-
tacks and gave a thorough overview of countermeasures.
We continue this line of research and classify the ampli-
fiers. We show in an Internet-wide NTP amplifier no-
tification initiative that the threats can be mitigated by
cooperation within the security community. We further-
more investigate to what extent TCP-based amplification
attacks are possible. Lastly, we provide an overview of
spoofing-enabled networks. Our work is thus a thorough
and novel extension of Rossow’s initial analysis.

We group further related works by their topic:

TCP Amplification. To the best of our knowledge, we
are the first to evaluate the amplification potential of
the TCP three-way handshake. Prior work on TCP am-
plification has addressed guessable TCP sequence num-
bers, which in principle allow to establish TCP connec-
tions with spoofed packets [2, 31]. In addition, Pax-
son et al. looked at amplification in Transactional TCP
(T/TCP)—which has very low popularity though [31].
Lastly, well-known stateful TCP attacks like the FTP
bounce attack also allow for amplification [6]. Many of
these attacks have been largely fixed with secure TCP
stack implementations or by hardening certain protocols
(e.g., FTP). The amplification vulnerabilities that we dis-
covered in the TCP three-way handshake may again re-
quire improvements to TCP stacks.

Internet-Wide Scanning. Durumeric et al. presented
ZMap, a publicly-available tool optimized for Internet-
wide scans [11]. In fact, we leverage most of their pro-
posed techniques and implemented their guidelines also
for our custom scanner. Zhang et al. used Internet-wide
scans to correlate the mismanagement and the malicious-
ness of networks [44]. They find networks that host open
recursive DNS resolvers highly correlate to other mali-
cious activities (such as spamming) initiated from these
networks. Our work is orthogonal, as we follow a proac-
tive approach to cooperate with the providers in order to
get the vulnerabilities fixed. Two non-academic projects
deployed by Mauch, the OpenNTPProject [30] and Open
Resolver Project [29], also address the problems of am-
plification sources from a practical point of view. We
have collaborated with Mauch to inform administrators
of NTP servers vulnerable to the monlist amplification
and are grateful for his support.

DDoS Attack Types. An alternative way to launch
powerful DDoS attacks are networks of remotely-

controllable bots. Büscher and Holz analyze DirtJumper,
a botnet family with the specific task to perform DDoS
attacks by abusing the Internet connection of infected
desktop computers [5]. The DirtJumper botnet attacks
at the application-level layer and does not aim to exhaust
bandwidth, though. Kang et al. propose the Crossfire at-
tack, in which bots direct low-intensity flows to a large
number of publicly accessible servers [19]. These flows
are concentrated on carefully chosen links such that they
flood these links and disconnect target servers from the
Internet. Studer and Perrig describe the Coremelt attack,
in which bots send legitimate traffic to each other to flood
and disable a network link between them [38]. All these
attacks rely on bots, while our threat model only assumes
that an attacker has any spoofing-enabled Internet uplink.
Although the amplification DDoS attacks primarily try to
congest bandwidth of a single victim, they can possibly
be combined with the aforementioned techniques.

7 Conclusion

We have confirmed that amplification attacks remain a
major Internet security issue—not only for UDP-based
protocols. We identified TCP as an alternative source
for amplification—despite its three-way-handshake pro-
tocol. We find millions of systems with TCP stacks that
can be abused to amplify TCP traffic by a factor of 20x
or higher. Our work revealed a tremendous number of
potential amplification sources for both UDP and TCP-
based protocols and classified these systems. During a
first-ever large-scale notification campaign, we have ob-
served a significant decrease in the number of amplifiers
for NTP, giving hope for future attempts in fixing pro-
tocols that have similarly-severe amplification vulnera-
bilities. Finally, our remote spoofing test has identified
more than 2,000 networks that do not use proper egress
filtering—indicating that it is still a long way to go until
we will have a spoofing-free Internet.
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Abstract
Tor’s growing popularity and user diversity has re-

sulted in network performance problems that are not
well understood. A large body of work has attempted
to solve these problems without a complete understand-
ing of where congestion occurs in Tor. In this paper,
we first study congestion in Tor at individual relays as
well as along the entire end-to-end Tor path and find
that congestion occurs almost exclusively in egress ker-
nel socket buffers. We then analyze Tor’s socket interac-
tions and discover two major issues affecting congestion:
Tor writes sockets sequentially, and Tor writes as much
as possible to each socket. We thus design, implement,
and test KIST: a new socket management algorithm that
uses real-time kernel information to dynamically com-
pute the amount to write to each socket while consider-
ing all writable circuits when scheduling new cells. We
find that, in the medians, KIST reduces circuit conges-
tion by over 30 percent, reduces network latency by 18
percent, and increases network throughput by nearly 10
percent. We analyze the security of KIST and find an ac-
ceptable performance and security trade-off, as it does
not significantly affect the outcome of well-known la-
tency and throughput attacks. While our focus is Tor,
our techniques and observations should help analyze and
improve overlay and application performance, both for
security applications and in general.

1 Introduction

Tor [21] is the most popular overlay network for com-
municating anonymously online. Tor serves millions of
users daily by transferring their traffic through a source-
routed circuit of three volunteer relays, and encrypts the
traffic in such a way that no one relay learns both its
source and intended destination. Tor is also used to resist
online censorship, and its support for hidden services,
network bridges, and protocol obfuscation has helped at-
tract a large and diverse set of users.

While Tor’s growing popularity, variety of use cases,
and diversity of users have provided a larger anonymity
set, they have also led to performance issues [23]. For
example, it has been shown that roughly half of Tor’s
traffic can be attributed to BitTorrent [18, 43], while the
more recent use of Tor by a botnet [29] has further in-
creased concern about Tor’s ability to utilize volunteer
resources to handle a growing user base [20, 36, 37, 45].

Numerous proposals have been made to battle Tor’s
performance problems, some of which modify the
mechanisms used for path selection [13, 59, 60], client
throttling [14, 38, 45], circuit scheduling [57], and
flow/congestion control [15]. While some of this work
has or will be incorporated into the Tor software, none of
it has provided a comprehensive understanding of where
the most significant source of congestion occurs in a
complete Tor deployment. This lack of understanding
has led to the design of uninformed algorithms and spec-
ulative solutions. In this paper, we seek a more thor-
ough understanding of congestion in Tor and its effect on
Tor’s security. We explore an answer to the fundamental
question—“Where is Tor slow?”—and design informed
solutions that not only decrease congestion, but also im-
prove Tor’s ability to manage it as Tor continues to grow.
Congestion in Tor: We use a multifaceted approach to
exploring congestion. First, we develop a shared library
and Tor software patch for measuring congestion local to
relays running in the public Tor network, and use them
to measure congestion from three live relays under our
control. Second, we develop software patches for Tor
and the open-source Shadow simulator [7], and use them
to measure congestion along the full end-to-end path in
the largest known, at-scale, private Shadow-Tor deploy-
ment. Our Shadow patches ensure that our congestion
measurements are accurate and realistic; we show how
they significantly improve Shadow’s TCP implementa-
tion, network topology, and Tor models.1

1We have contributed our patches to the Shadow project [7] and
they have been integrated as of Shadow release 1.9.0.
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To the best of our knowledge, we are the first to con-
sider such a comprehensive range of congestion infor-
mation that spans from individual application instances
to full network sessions for the entire distributed system.
Our analysis indicates that congestion occurs almost
exclusively inside of the kernel egress socket buffers,
dwarfing the Tor and the kernel ingress buffer times. This
finding is consistent among all three public Tor relays we
measured, and among relays in every circuit position in
our private Shadow-Tor deployment. This result is sig-
nificant, as Tor does not currently prevent, detect, or oth-
erwise manage kernel congestion.
Mismanaged Socket Output: Using this new under-
standing of where congestion occurs, we analyze Tor’s
socket output mechanisms and find two significant and
fundamental design issues: Tor sequentially writes to
sockets while ignoring the state of all sockets other than
the one that is currently being written; and Tor writes as
much as possible to each socket.

By writing to sockets sequentially, Tor’s circuit sched-
uler considers only a small subset of the circuits with
writable data. We show how this leads to improper uti-
lization of circuit priority mechanisms, which causes Tor
to send lower priority data from one socket before higher
priority data from another. This finding confirms evi-
dence from previous work indicating the ineffectiveness
of circuit priority algorithms [35].

By writing as much as possible to each socket, Tor is
often delivering to the kernel more data than it is capable
of sending due to either physical bandwidth limitations
or throttling by the TCP congestion control protocol. Not
only does writing too much increase data queuing de-
lays in the kernel, it also further reduces the effectiveness
of Tor’s circuit priority mechanisms because Tor relin-
quishes control over the priority of data after it is deliv-
ered to the kernel.2 This kernel overload is exacerbated
by the fact that a Tor relay may have thousands of sock-
ets open at any time in order to facilitate data transfer
between other relays, a problem that may significantly
worsen if Tor adopts recent proposals [16, 26] that sug-
gest increasing the number of sockets between relays.
KIST: Kernel-Informed Socket Transport: To solve
the socket management problems outlined above, we de-
sign KIST: a Kernel-Informed Socket Transport algo-
rithm. KIST has two features that work together to sig-
nificantly improve Tor’s control over network conges-
tion. First, KIST changes Tor’s circuit level scheduler so
that it chooses from all circuits with writable data rather
than just those belonging to a single TCP socket. Second,
to complement this global scheduling approach, KIST
also dynamically manages the amount of data written to
each socket based on real-time kernel and TCP state in-

2To the best of our knowledge, the Linux kernel uses a variant of
the first-come first-serve queuing discipline among sockets.

formation. In this way, KIST attempts to minimize the
amount of data that exists in the kernel that cannot be
sent, and to maximize the amount of time that Tor has
control over data priority.

We perform in-depth experiments in our at-scale pri-
vate Shadow-Tor network, and we show how KIST can
be used to relocate congestion from the kernel into Tor,
where it can be properly managed. We also show how
KIST allows Tor to correctly utilize its circuit priority
scheduler, reducing download latency by over 660 mil-
liseconds, or 23.5 percent, for interactive traffic streams
typically generated by web browsing behaviors.

We analyze the security of KIST, showing how it af-
fects well-known latency and throughput attacks. In par-
ticular, we show the extent to which the latency improve-
ments reduce the number of round-trip time measure-
ments needed to conduct a successful latency attack [31].
We also show how KIST does not significantly affect an
adversary’s ability to collect accurate measurements re-
quired for the throughput correlation attack [44] when
compared to vanilla Tor.
Outline of Major Contributions: We outline our major
contributions as follows:
– in Section 3 we discuss improvements to the open-

source Shadow simulator that significantly enhance
its accuracy, including experiments with the largest
known private Tor network of 3,600 relays and
13,800 clients running real Tor software;

– in Section 4 we discuss a library we developed to
measure congestion in Tor, and results from the first
known end-to-end Tor circuit congestion analysis;

– in Section 5 we show how Tor’s current management
of sockets results in ineffective circuit priority, detail
the KIST design and prototype, and show how it im-
proves Tor’s ability to manage congestion through a
comprehensive and full-network evaluation; and

– in Section 6 we analyze Tor’s security with KIST by
showing how our performance improvements affect
well-known latency and throughput attacks.

2 Background and Related Work

Tor [21] is a volunteer-operated anonymity service
used by an estimated hundreds of thousands of daily
users [28]. Tor assumes an adversary who can monitor
a portion of the underlying Internet and/or operate Tor
relays. People primarily use Tor to prevent an adversary
from discovering the endpoints of their communications,
or disrupting access to information.
Tor Traffic Handling: Tor provides anonymity by form-
ing source-routed paths called circuits that consist of
(usually) three relays on an overlay network. Clients
transfer TCP-based application traffic within these cir-
cuits; encrypted application-layer headers and payloads
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Figure 1: Internals of cell processing within in a Tor relay.
Dashed lines denote TCP connections. Transitions between
buffers—both within the kernel (side boxes) and within Tor
(center box)—are shown with solid arrows.

make it more difficult for an adversary to discern an inter-
cepted communication’s endpoints or learn its plaintext.

A given circuit may carry several Tor streams, which
are logical connections between clients and destinations.
For example, a HTTP request to usenix.org may result
in several Tor streams (i.e., to fetch embedded objects);
these streams may all be transported over a single circuit.
Circuits are themselves multiplexed over TLS connec-
tions between relays whenever their paths share an edge;
that is, all concurrent circuits between relays u and v will
be transferred over the same TLS connection between the
two relays, irrespective of the circuits’ endpoints.

The unit of transfer in Tor is a 512-byte cell. Figure 1
depicts the internals of cell processing within a Tor re-
lay. In this example, the relay maintains two TLS con-
nections with other relays. Incoming packets from the
two TCP streams are first demultiplexed and placed into
kernel socket input buffers by the underlying OS (Fig-
ure 1a)3. The OS processes the packets, usually in FIFO
order, delivering them to Tor where they are reassem-
bled into TLS-encrypted cells using dedicated Tor in-
put buffers (Figure 1b). Upon receipt of an entire TLS
datagram, the TLS layer is removed, the cell is onion-
crypted,4 and then transferred and enqueued in the ap-
propriate Tor circuit queue (Figure 1c). Each relay main-
tains a queue for each circuit that it is currently serving.
Cells from the same Tor input buffer may be enqueued in
different circuit queues, since a single TCP connection
between two relays may carry multiple circuits.

Tor uses a priority-based circuit scheduling approach
that attempts to prioritize interactive web clients over
bulk downloaders [57]. The circuit scheduler selects a
cell from a circuit queue to process based on this prioriti-
zation, onion-crypts the cell, and stores it in a Tor output
buffer (Figure 1d). Once the Tor output buffer contains
sufficient data to form a TLS packet, the data is written
to the kernel for transport (Figure 1f).
Improving Tor Performance: There is a large body
of work that attempts to improve Tor’s network perfor-

3For simplicity, we consider only relays that run Linux since such
relays represent 75% of all Tor relays and contribute 91% of the band-
width of the live Tor network [58].

4Encrypted or decrypted, depending on circuit direction.

mance, e.g., by refining Tor’s relay selection strategy
[11,55,56] or providing incentives to users to operate Tor
relays [36, 37, 45]. These approaches are orthogonal and
can be applied in concert with our work, which focuses
on improving Tor’s congestion management.

Most closely related to this paper are approaches
that modify Tor’s circuit scheduling, flow control, or
transport mechanisms. Reardon and Goldberg suggest
replacing Tor’s TCP-based transport mechanism with
UDP-based DTLS [54], while Mathewson explores us-
ing SCTP [40]. Murdoch [47] explains that the UDP
approach is promising, but there are challenges that
have thus far prevented the approach from being de-
ployed: there is limited kernel support for SCTP; and
the lack of hop-by-hop reliability from UDP-based trans-
ports causes increased load at Tor’s exit relays. Our work
allows Tor to best utilize the existing TCP transport in the
short term while work toward a long term UDP deploy-
ment strategy continues.

Tang and Goldberg propose the use of the exponential
weighted moving average (EWMA) to characterize cir-
cuits’ recent levels of activity, with bursty circuits given
greater priority than busy circuits [57] (to favor interac-
tive web users over bulk downloaders). Unfortunately,
although Tor has adopted EWMA, the network has not
significantly benefitted from its use [35]. In our study of
where Tor is slow, we show that EWMA is made ineffec-
tive by Tor’s current management of sockets, and can be
made effective through our proposed modifications.

AlSabah et al. propose an ATM-like congestion and
flow control system for Tor called N23 [15]. Their ap-
proach causes pushback effects to previous nodes, reduc-
ing congestion in the entire circuit. Our KIST strategy is
complementary to N23, focusing instead on local tech-
niques to remove kernel-level congestion at Tor relays.

Torchestra [26] uses separate TCP connections to
carry interactive and bulk traffic, isolating the effects of
congestion between the two traffic classes. Conceptually,
Torchestra moves circuit-selection logic to the kernel,
where the OS schedules packets for the two connections.
Relatedly, AlSabah and Goldberg introduce PCTCP [16],
a transport mechanism for Tor in which each circuit is as-
signed its own IPsec tunnel. In this paper, we argue that
overloading the kernel with additional sockets reduces
the effectiveness of circuit priority mechanisms since the
kernel has no information regarding the priority of data.
In contrast, we aim to move congestion management to
Tor, where priority scheduling can be most effective.

Nowlan et al. [50] propose the use of uTCP and
uTLS [49] to tackle the “head-of-line” blocking problem
in Tor. Here, they bypass TCP’s in-order delivery mech-
anism to peek at traffic that has arrived but is not ready
to be delivered by the TCP stack (e.g., because an earlier
packet was dropped). Since Tor multiplexes multiple cir-
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cuits over a single TCP connection, their technique offers
significant latency improvements when connections are
lossy, since already-arrived traffic can be immediately
processed. Our technique can be viewed as a form of
application-layer head-of-line countermeasure since we
move scheduling decisions from the TCP stack to within
Tor. In contrast to Nowlan et al.’s approach, we do not re-
quire any kernel-level modifications or changes to Tor’s
transport mechanism.

3 Enhanced Network Experimentation

To increase confidence in our experiments, we introduce
three significant enhancements to the Shadow Tor simu-
lator [35] and its existing models [33]: a more realistic
simulated kernel and TCP network stack, an updated In-
ternet topology model, and the largest known deployed
private Tor network. The enhancements in this section
represent a large and determined engineering effort; we
will show how Tor experimental accuracy has signifi-
cantly benefited as a result of these improvements. We
remark that our improvements to Shadow will have an
immediate impact beyond this work to the various re-
search groups around the world that use the simulator.
Shadow TCP Enhancements: After reviewing
Shadow [7], we first discovered that it was missing
many important TCP features, causing it to be less
accurate than desired. We enhanced Shadow by adding
the following: retransmission timers [52], fast retrans-
mit/recovery [12], selective acknowledgments [42], and
forward acknowledgments [41]. Second, we discovered
that Shadow was using a very primitive version of the
basic additive-increase multiplicative-decrease (AIMD)
congestion control algorithm. We implemented a much
more complete version of the CUBIC algorithm [27], the
default congestion control algorithm used in the Linux
kernel since version 2.6.19. CUBIC is an important algo-
rithm for properly adjusting the congestion window. We
will show how our implementation of these algorithms
greatly enhance Shadow’s accuracy, which is paramount
to the remainder of this paper. See Appendix A.1 [34]
for more details about our modifications.

We verify the accuracy of Shadow’s new TCP imple-
mentation to ensure that it is adequately handling packet
loss and properly growing the congestion window by
comparing its behavior to ns [51], a popular network sim-
ulator, because of the ease at which ns is able to model
packet loss rates. In our first experiment, both Shadow
and ns have two nodes connected by a 10 MiB/s link
with a 10 ms round trip time. One node then down-
loads a 100 MiB file 10 times for each tested packet loss
rate. Figure 2a shows that the average download time in
Shadow matches well with ns over varying packet loss
rates. Although not presented here, we similarly vali-

dated Shadow with our changes against a real network
link using the bandwidth and packet loss rate that was
achieved over our switch; the results did not significantly
deviate from those presented in Figure 2a.

For our second experiment, we check that the growth
of the congestion window using CUBIC is accurate.
We first transfer a 100 MiB file over a 100 Mbit/s link
between two physical Ubuntu 12.04 machines running
the 3.2.0 Linux kernel. We record the cwnd (con-
gestion window) and ssthresh (slow start threshold)
values from the getsockopt function call using the
TCP_INFO option. We then run an identical experiment
in Shadow, setting the slow start threshold to what we
observed from Linux and ensuring that packet loss hap-
pens at roughly the same rate. Figure 2b shows the value
of cwnd in both Shadow and Linux over time, and we
see almost identical growth patterns. The slight varia-
tion in the saw-tooth pattern is due to unpredictable vari-
ation in the physical link that was not reproduced by
Shadow. As a result, Shadow’s cwnd grew slightly faster
than Linux’s because Shadow was able to send one ex-
tra packet. We believe this is an artifact of our particular
physical configuration and do not believe it significantly
affects simulation accuracy in general: more importantly,
the overall saw-tooth pattern matches well.

The two experiments discussed above give us high
confidence that our TCP implementation is accurate,
both in responding to packet loss and in operation of the
CUBIC congestion control algorithm.
Shadow Topology Enhancements: To ensure that we
are causing the most realistic performance and con-
gestion effects possible during simulation, we enhance
Shadow using techniques from recent research in mod-
eling Tor topologies [39, 59], traceroute data from
CAIDA [2], and client/server data from the Tor Metrics
Portal [8] and Alexa [1]. This data-driven Internet map
is more realistic than the one Shadow provides, and in-
cludes 699,029 vertices and 1,338,590 edges. For space
reasons, we provide more details in Appendix A.2 [34].
Tor Model: Using Shadow with the improvements dis-
cussed above, we build a Tor model that reflects the real
Tor network as it existed in July 2013, using the then-
latest stable Tor version 0.2.3.25. (We use this model
for all experiments in this paper.) Using data from the
Tor Metrics Portal [8], we configure a complete, private
Tor network following Tor modeling best practices [33],
and attach every node to the closest network location in
our topology map. The resulting Tor network config-
uration includes 10 directory authorities, 3,600 relays,
13,800 clients, and 4,000 file servers—the largest known
working private experimental Tor network, and the first
to run at scale to the best of our knowledge.

The 13,800 clients in our model provide background
traffic and load on the network. 10,800 of our clients
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Figure 2: Figure 2a compares Shadow to ns download times. Figure 2b compares congestion window over time when Shadow and
Linux have the same link properties. Figure 2c compares Shadow-Tor to live Tor measurements collected from Tor Metrics [8].

download 320 KiB files (the median size of a web page
according to the most recent web statistics published by
a Google engineer [53]) and then wait for a time cho-
sen uniformly at random from the range [1, 60 000] mil-
liseconds after each completed download. 1,200 of our
clients repeatedly download 5 MiB files with no pauses
between completing a download and starting the next.
The ratio of these client behaviors was chosen accord-
ing to the latest known measurements of client traffic
on Tor [18, 43]. Shadow also contains 1,800 TorPerf [9]
clients that download a file over a fresh circuit and pause
for 60 seconds after each successful download. (TorPerf
is a tool for measuring Tor performance.) 600 of the Tor-
Perf clients download 50 KiB files, 600 download 1 MiB
files, and 600 download 5 MiB files. Our simulations run
for one virtual hour during each experiment.

Figure 2c shows a comparison of publicly available
TorPerf measurements collected on the live Tor net-
work [8] to those collected in our private Shadow-Tor
network. As shown in Figure 2c, our full size Shadow-
Tor network is extremely accurate in terms of time to
complete downloads for all file sizes. These results give
us confidence that our at-scale Shadow-Tor network is
strongly representative of the deployed Tor network.

4 Congestion Analysis

In this section, we explore where congestion happens in
Tor through a large scale congestion analysis. We take a
multifaceted approach by measuring congestion as it oc-
curs in both the live, public Tor network, and in an exper-
imental, private Tor network running in Shadow. By an-
alyzing relays in the public Tor network, we get the most
realistic and accurate view of what is happening at our
measured relays. We supplement the data from a rela-
tively small public relay sample with measurements from
a much larger set of private relays, collecting a larger and
more complete view of Tor congestion.

To understand congestion, we are interested in mea-
suring the time that data spends inside of Tor as well as
inside of kernel sockets in both the incoming and outgo-
ing directions. We will discuss our findings in both envi-
ronments after describing the techniques that we used to
collect the time spent in these locations.

4.1 Congestion in the Live Tor Network

Relays running in the operational network provide the
most accurate source of congestion data, as these relays
are serving real clients and transferring real traffic. As
mentioned above, we are interested in measuring queu-
ing times inside of the Tor application as well as inside
of the kernel, and so we developed techniques for both in
the local context of a public Tor relay.
Tor Congestion: Measuring Tor queuing times requires
some straightforward modifications to the Tor software.
As soon as a relay reads the entire cell, it internally cre-
ates a cell structure that holds the cell’s circuit ID, com-
mand, and payload. We add a new unique cell ID value.
Whenever a cell enters Tor and the cell structure is cre-
ated, we log a message containing the current time and
the cell’s unique ID. The cell is then switched to the out-
going circuit. After it’s sent to the kernel we log another
message containing the time and ID. The difference be-
tween these times represents Tor application congestion.
Kernel Congestion: Measuring kernel queuing times
is much more complicated since Tor does not have di-
rect access to the kernel internals. In order to log the
times when a piece of data enters and leaves the ker-
nel in both the incoming and outgoing directions, we
developed a new, modular, application-agnostic, multi-
threaded library, called libkqtime.5 libkqtime
uses libpcap [6] to determine when data crosses the
host/network boundary, and function interposition on

5libkqtime was written in 770 LOC, and is available for down-
load as open source software [5].
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Figure 3: The distribution of congestion inside Tor and the kernel on our 3 relays running in the public Tor network, as measured
between 2014-01-20 and 2014-01-28. Most congestion occurred in the outbound kernel queues on all three relays.

the write(), send(), read(), and recv() func-
tions to determine when it crosses the application/kernel
boundary. The library copies a 16 byte tag as data enters
the kernel from either end, and then searches for the tag
as data leaves the kernel on the opposite end. This pro-
cess works in both directions, and the timestamps col-
lected by the library allow us to measure both inbound
and outbound kernel congestion. Appendix B [34] gives
a more detailed description of libkqtime.
Results: To collect congestion information in Tor, we
first ran three live relays (curiosity1, curiosity2, and
curiosity3) using an unmodified copy of Tor release
0.2.3.25 for several months to allow them to stabi-
lize. We configured them as non-exit nodes and used a
network appliance to rate limit curiosity1 at 1 Mbit/s, cu-
riosity2 at 10 Mbit/s, and curiosity3 at 50 Mbit/s. Only
curiosity2 had the guard flag (could be chosen as en-
try relay for a circuit) during our data collection. On
2014-01-20, we swapped the Tor binary with a version
linked to libkqtime and modified as discussed in Sec-
tion 4.1. We collected Tor and kernel congestion for 190
hours (just under 8 days) ending on 2014-01-28, and then
replaced the vanilla Tor binary.

The distributions of congestion as measured on each
relay during the collection period are shown in Figure 3
with logarithmic x-axes. Our measurements indicate that
most congestion, when present, occurs in the kernel out-
bound queues, while kernel inbound and Tor congestion
are both less than 1 millisecond for over 95 percent of our
measurements. This finding is consistent across all three
relays we measured. Kernel outbound congestion in-
creases from curiosity1 to curiosity2, and again slightly
from curiosity2 to curiosity3, indicating that congestion
is a function of relay capacity or load. We leave it to fu-
ture work to analyze the strength of this correlation, as
that is outside the scope of this paper.
Ethical Considerations: We took careful protections to
ensure that our live data collection did not breach users’
anonymity. In particular, we captured only buffered

data timing information; no network addresses were ever
recorded. We discussed our experimental methodology
with Tor Project maintainers, who raised no objections.
Finally, we contacted the IRB of our relay host institu-
tion. The IRB decided that no review was warranted
since our measurements did not, in their opinion, con-
stitute human subjects research.

4.2 Congestion in a Shadow-Tor Network

While congestion data from real live relays is the most
accurate, it only gives us a limited view of congestion
local to our relays. The congestion measured at our re-
lays may or may not be representative of congestion at
other relays in the network. Therefore, we use our pri-
vate Shadow-Tor network to supplement our congestion
data and enhance our analysis. Using Shadow provides
many advantages over live Tor: it’s technically simpler;
we are able to measure congestion at all relays in our pri-
vate network; we can track the congestion of every cell
across the entire circuit because we do not have privacy
concerns with Shadow; and we can analyze how conges-
tion changes with varying network configurations.
Tor and Kernel Congestion: The process for collect-
ing congestion in Shadow is simpler than in live Tor,
since we have direct access to Shadow’s virtual kernel.
In our modified Tor, each cell again contains a unique ID
as in Section 4.1. However, when running in Shadow,
we also add a 16 byte magic token and include both the
unique ID and the magic token when sending cells out to
the network. The unique ID is forwarded with the cell
as it travels through the circuit. Since Shadow prevents
Tor from encrypting cell contents for efficiency reasons,
the Shadow kernel can search outgoing packets for the
unencrypted magic token immediately before they leave
the virtual network interface. When found, it logs the
unique cell ID with a timestamp. It performs an anal-
ogous procedure for incoming packets immediately af-
ter they arrive on the virtual network interface. These
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Figure 4: Relay congestion by circuit position in our Shadow-Tor network, measured on on circuits using end-to-end cells from
1,200 clients selected uniformly at random. Most congestion occurred in the outbound kernel queues, independent of relay position.

Shadow timestamps are combined with the timestamps
logged when a cell enters and leaves Tor to compute both
Tor and kernel congestion.
Results: We use our model of Tor as described in Sec-
tion 3, with the addition of the cell tracking information
discussed above. Since tracking every cell would con-
sume an extremely large amount of disk space, we sam-
ple congestion as follows: we select 10 percent of the
non-TorPerf clients (1,200 total) in our network chosen
uniformly, and track 1 of every 100 cells traveling over
circuits they initiate. The tracking timestamps from these
cells are then used to attribute congestion to the relays
through which the cells are traveling.

It is important to understand that our method does not
sample relay congestion uniformly: the congestion mea-
surements will be biased towards relays that are cho-
sen more often by clients, according to Tor’s bandwidth-
weighted path selection algorithm. This means that our
results will represent the congestion that a typical client
will experience when using Tor. We believe that these
results are more meaningful than those we could obtain
by uniformly sampling congestion at each relay indepen-
dently (as we did in Section 4.1), because ultimately we
are interested in improving clients’ experience.

The distributions of congestion measured in Shadow
for each circuit position are shown in Figure 4. We again
find that congestion occurs most significantly in the ker-
nel outbound queues, regardless of a relay’s circuit po-
sition. Our Shadow experiments indicate higher conges-
tion than in live Tor, which we attribute to our client-
oriented sampling method described above.

5 Kernel-Informed Socket Transport

Our large scale congestion analysis from Section 4 re-
vealed that the most significant delay in Tor occurs in
outbound kernel queues. In this section, we first explore
how this problem adversely affects Tor’s traffic manage-
ment by disrupting existing scheduling mechanisms to

the extent that they become ineffective. We then describe
the KIST algorithm and experimental results.

5.1 Mismanaged Socket Output

As described in Section 2, each Tor relay creates and
maintains a single TCP connection to every relay to
which it is connected. All communication between two
relays occurs through this single TCP connection chan-
nel. In particular, this channel multiplexes all circuits
that are established between its relay endpoints. TCP
provides Tor a reliable and in-order data transport.
Sequential Socket Writes: Tor uses the asynchronous
event library libevent [4] to assist with sending and
receiving data to and from the kernel (i.e. network). Each
TCP connection is represented as a socket in the kernel,
and is identified by a unique socket descriptor. Tor reg-
isters each socket descriptor with libevent, which itself
manages kernel polling and triggers an asynchronous no-
tification to Tor via a callback function of the readability
and writability of that socket. When Tor receives this
notification, it chooses to read or write as appropriate.

An important aspect of these libevent notifications is
that they happen for one socket at a time, regardless of
the number of socket descriptors that Tor has registered.
Tor attempts to send or receive data from that one socket
without considering the state of any of the other sock-
ets. This is particularly troublesome when writing, as
Tor will only be able to choose from the non-empty cir-
cuits belonging to the currently triggered socket and no
other. Therefore, Tor’s circuit scheduler may schedule a
circuit with worse priority than it would have if it could
choose from all sockets that are able to be triggered at
that time. Since the kernel schedules with a first-come
first-serve (FCFS) discipline, Tor may actually be send-
ing data out of priority order simply due to the order in
which the socket notifications are delivered by libevent.
Bloated Socket Buffers: Linux uses TCP auto-
tuning to dynamically and monotonically increase each
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(a) Socket Sharing Scenarios
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(b) Throughput with Shared Socket
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(c) Throughput with Unshared Sockets

Figure 5: Socket sharing affects circuit priority scheduling.

socket buffer’s capacity using the socket connection’s
bandwidth-delay product calculation [61]. TCP auto-
tuning increases the amount of data the kernel will accept
from the application in order to ensure that the socket is
able to fully utilize the network link. TCP auto-tuning
is an extremely useful technique to maximize throughput
for applications with few sockets or without priority re-
quirements. However, it may cause problems for more
complex applications like Tor.

When libevent notifies Tor that a socket is writable,
Tor writes as much data as possible to that socket (i.e.,
until the kernel returns EWOULDBLOCK). Although this
improves utilization when only a few auto-tuned sockets
are in use, consider a Tor relay that writes to thousands of
auto-tuned sockets (a common situation since Tor main-
tains a socket for every relay with which it communi-
cates). These sockets will each attempt to accept enough
data to fully utilize the link. If Tor fills all of these sock-
ets to capacity, the kernel will clearly be unable to imme-
diately send it all to the network. Therefore, with many
active sockets in general and for asymmetric connections
in particular, the potential for kernel queuing delays are
dramatic. As we have shown in Section 4, writing as
much as possible to the kernel as Tor currently does re-
sults in large kernel queuing delays.

Tor can no longer adjust data priority once it is sent
to the kernel, even if that data is still queued in the ker-
nel when Tor receives data of higher importance later.
To demonstrate how this may result in poor scheduling
decisions, consider a relay with two circuits: one con-
tains sustained, high throughput traffic of worse prior-
ity (typical of many bulk data transfers), while the other
contains bursty, low throughput traffic of better priority
(typical of many interactive data transfer sessions). In
the absence of data on the low throughput circuit, the
high throughput circuit will fill the entire kernel socket
buffer whether or not the kernel is able to immediately
send that data. Then, when a better priority cell arrives,
Tor will immediately schedule and write it to the kernel.
However, since the kernel sends data to the network in

the same order in which it was received from the appli-
cation (FCFS), that better priority cell data must wait un-
til all of the previously received high throughput data is
flushed to the network. This problem theoretically wors-
ens as the number of sockets increase, suggesting that
recent research proposing that Tor use multiple sockets
between each pair of relays [16, 26] may be misguided.
Effects on Circuit Priority: To study the effects on cir-
cuit priority, we customized Tor as follows. First, we
added the ability for each client to send a special cell af-
ter building a circuit that communicates one of two prior-
ity classes to the circuit’s relays: a better priority class; or
a worse priority class. Second, we customized the built-
in EWMA circuit scheduler that prioritizes bursty traffic
over bulk traffic [57] to include a priority factor F : the
circuit scheduler counts F cells for every cell scheduled
on a worse priority circuit. Therefore, the EWMA of
the worse priority class will effectively increase F times
faster than normal, giving a scheduling advantage to bet-
ter priority traffic.

We experiment with two separate private Tor net-
works: one using Shadow [35], a discrete event network
simulator that runs Tor in virtual processes; and the other
using DETER [3], a custom experimentation testbed that
runs Tor on bare-metal hardware. We consider two
clients downloading from two file servers through Tor in
the scenarios shown in Figure 5a:
– shared socket: the clients share entry and middle re-

lays, but use different exit relays – the clients’ circuits
each belong to the same socket connecting the middle
to the entry; and

– unshared sockets: the clients share only the middle
relay – the clients’ circuits each belong to indepen-
dent sockets connecting the middle to each entry.

We assigned one client’s traffic to the better priority
class (denoted with “+”) and the other client’s traffic to
the worse priority class (denoted with “-”). We config-
ured all nodes with a 10 Mbit symmetric access link,
and approximated a middle relay bottleneck by setting its
socket buffer size to 32 KiB. Our configuration allows us
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to focus on the socket contention that will occur at the
middle relay, and the four cases that result when con-
sidering whether or not the two circuits share incoming
or outgoing TCP connections at the middle relay. Clients
downloaded data through the circuits continuously for 10
minutes in Shadow and 60 minutes on DETER.6

The results collected during each of the scenarios are
shown in Figure 5. Plotted is the cumulative distribu-
tion of the throughput achieved by the better (“pri+”) and
worse (“pri-”) priority clients using the priority sched-
uler, as well as the combined cumulative distribution for
both clients using Tor’s default round-robin scheduler
(“rr”). As shown in Figure 5b, performance differenti-
ation occurs correctly with the priority scheduler on a
shared socket. However, as shown in Figure 5c, the pri-
ority scheduler is unable to differentiate throughput when
the circuits do not share a socket.
Discussion: As outlined above, the reason for no differ-
entiation in the case of the unshared socket is that both
circuits are treated independently by the scheduler due to
the sequential libevent notifications and the fact that Tor
currently schedules circuits belonging to one socket at a
time while ignoring the others. We used TorPS [10], a
Tor path selection simulator, to determine how often we
would expect unshared sockets to occur in practice. We
used TorPS to build 10 million paths following Tor’s path
selection algorithm, and computed the probability of two
circuit paths belonging to each scenario. We found that
any two paths may be classified as unshared (they share
at least one relay but never share an outgoing socket) at
least 99.775 percent of the time, clearly indicating that
adjusting Tor’s socket management may have a dramatic
effect on data priority inside of Tor.

Note that the socket mismanagement problem is not
solved simply by parallelizing the libevent notification
system and priority scheduling processes (which would
require complex code), or by utilizing classful queuing
disciplines in the kernel (which would require root priv-
ileges); while these may improve control over traffic pri-
ority to some extent, they would still result in bloated
buffers containing data that cannot be sent due to closed
TCP congestion windows.

5.2 The KIST Algorithm
In order to overcome the inefficiencies resulting from
Tor’s socket management, KIST chooses between all cir-
cuits that have queued data irrespective of the socket to
which the circuit belongs, and dynamically adjusts the
amount written to each socket based on real-time kernel
information. We now detail each of these approaches.

6The small-scale experiments described here are meant to isolate
Tor’s internal queuing behavior for analysis purposes, and do not fully
represent the live Tor network, its background traffic, or its load.

Algorithm 1 The KIST NotifySocketWritable()
callback, invoked by libevent for each writable socket.
Require: sdesc,conn,T ← GlobalWriteTimeout

1: Lp ← getPendingConnectionList()
2: if Lp is Null then
3: Lp ← newList()
4: setPendingConnectionList(Lp)
5: createCallback(T ,NotifyGlobalWrite())
6: end if
7: if Lp.contains(conn) is False then
8: Lp.add(conn)
9: end if

10: disableNoti f y(sdesc)

Global Circuit Scheduling: Recall that libevent delivers
write notification events for a single socket at a time. Our
approach with KIST is relatively straightforward: rather
than handle the kernel write task immediately when
libevent notifies Tor that a socket is writable, we simply
collect a set of sockets that are writable over a time inter-
val specified by an adjustable GlobalWriteTimeout
parameter. This allows us to increase the number of can-
didate circuits we consider when scheduling and writ-
ing cells to the kernel: we may select among all circuits
which contain cells that are waiting to be written to one
of the sockets in our writable set.

The socket collection approach is outlined in Algo-
rithm 1. The socket descriptor sdesc and a connection
state object conn are supplied by libevent. Note that
we disable notification events for the socket (as shown in
line 10) in order to prevent duplicate notification events
during the socket collection interval.

After the GlobalWriteTimeout time interval,
KIST begins writing cells to the sockets according to the
circuit scheduling policy. There are two major phases
to this process, which is outlined in Algorithm 2. In
lines 4 and 8, we distinguish sockets that contain raw
bytes ready to be written directly to the kernel (previ-
ously scheduled cells with TLS headers attached) from
those with additional cells ready to be converted to raw
bytes. KIST first writes the already scheduled raw bytes
(lines 4-7), and then schedules and writes additional cells
after converting them to raw bytes and adding TLS head-
ers (lines 13-15). Note that the connections should be
enumerated (on line 3 of Algorithm 2) in an order that
respects the order in which cells were converted to raw
bytes by the circuit scheduler in the previous round.

The global scheduling approach does not by itself
solve the bloated socket buffer problem. KIST also dy-
namically computes socket write limits on line 2 of Al-
gorithm 2 using real-time TCP, socket, and bandwidth in-
formation, which it then uses when deciding how much
to write to the kernel.
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Algorithm 2 The KIST NotifyGlobalWrite() call-
back, invoked after the GlobalWriteTimeout period.

1: Leligible ← newList()
2: K ← collectKernelIn f o(getConnectionList())
3: for all conn in getPendingConnectionList() do
4: if hasBytesForKernel(conn) is True then
5: enableNoti f y(conn)
6: nBytes ← writeBytesToKernel(K,conn)
7: end if
8: if hasCells(conn) is True and

getLimit(K,conn)> 0 then
9: Leligible.add(conn)

10: end if
11: end for
12: while Leligible.isEmpty() is False do
13: conn ← scheduleCell(Leligible) {cell to bytes}
14: enableNoti f y(conn)
15: nBytes ← writeBytesToKernel(K,conn)
16: if nBytes is 0 or getLimit(K,conn) is 0 then
17: Leligible.remove(conn)
18: end if
19: end while

Managing Socket Output: KIST attempts to move the
queuing delays from the kernel outbound queue to Tor’s
circuit queue by keeping kernel output buffers as small
as possible, i.e., by only writing to the kernel as much
as the kernel will actually send. By delaying the circuit
scheduling decision until the last possible instant before
kernel starvation occurs, Tor will ultimately improve its
control over the priority of outgoing data. This approach
attempts to give Tor approximately the same control over
outbound data that it would have if it had direct access to
the network interface. When combined with global cir-
cuit scheduling, Tor’s influence over outgoing data prior-
ity should improve.

To compute write limits, KIST first makes three sys-
tem calls for each connection: getsockopt on level
SOL SOCKET for option SO SNDBUF to get sndbufcap,
the capacity of the send buffer; ioctl with command
SIOCOUTQ to get sndbuflen, the current length of the
send buffer; and getsockopt on level SOL TCP for
option TCP INFO to get tcpi, a variety of TCP state in-
formation. The TCP information used by KIST includes
the connection’s maximum segment size mss, the con-
gestion window cwnd, and the number of unacked pack-
ets for which the kernel is waiting for an acknowledg-
ment from the TCP peer. KIST then computes a write
limit for each connection c as follows:

socket spacec = sndbufcapc − sndbuflenc
tcp spacec = (cwndc −unackedc) ·mssc
limitc = min(socket spacec, tcp spacec)

(1)

The key insight in Equation 1 is that TCP will not al-
low the kernel to send more packets than dictated by the
congestion window, and that the unacknowledged pack-
ets prevent the congestion window from sliding open. By
respecting this write limit for each connection, KIST en-
sures that the data sent to the kernel is immediately send-
able and reduces kernel queuing delays.

If all connections are sending data in parallel, it is still
possible to overwhelm the kernel with more data than
it can physically send to the network. Therefore, KIST
also computes a global write limit at the beginning of
each GlobalWriteTimeout period:

sndbuflen prev = sndbuflen
sndbuflen = ∑ci

(
sndbuflenci

)
bytes sent = sndbuflen− sndbuflen prev
limit = max(limit,bytes sent)

(2)

Note that Equation 2 is an attempt to measure the actual
upstream bandwidth speed of the machine. In practice,
this could be done in a testing phase during which writes
are not limited, configured manually, or estimated using
other techniques such as packet trains [32].

The connection and global limits are computed at the
beginning of a scheduling round, i.e., on line 2 of Algo-
rithm 2; they are enforced whenever bytes are written to
the kernel, i.e., on lines 6 and 15 of Algorithm 2. Note
that they will be bounded above by Tor’s independently
configured connection and global application rate limits.

5.3 Experiments and Results

We use Shadow and its models as discussed in Section 3
to measure KIST’s effect on network performance, con-
gestion, and throughput. We also evaluate its CPU over-
head. See Appendix C [34] for an analysis under a more
heavily loaded Shadow-Tor network. Note that we found
that KIST performs as well or better under heavier load
than under normal load as presented in this section, indi-
cating that it can gracefully scale as Tor grows.
Prototype: We implemented a KIST protoype as a patch
to Tor version 0.2.3.25, and included the elements
discussed in Section 4 necessary for measuring conges-
tion during our experiments. We tested vanilla Tor us-
ing the default CircuitPriorityHalflife of 30,
the global scheduling part of KIST (without enforcing
the write limits), and the complete KIST algorithm. We
configured the global scheduler to use a 10 millisecond
GlobalWriteTimeout in both the global and KIST
experiments. Note that our KIST implementation ignores
the connection enumeration order on line 3 of Algo-
rithm 2, an optimization that may further improve Tor’s
control over priority in cases where the global limit is
reached before the algorithm reaches line 12.
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(a) Kernel Out Congestion
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(b) Tor Congestion
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(c) Circuit Congestion

Figure 6: Congestion for vanilla Tor, KIST, and the global scheduling part of KIST (without enforcing write limits). Figures 6a
and 6b show the distribution of cell congestion local to each relay (with logarithmic x-axes), while Figure 6c shows the distribution
of the end-to-end circuit congestion for all measured cells.
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(b) 320 KiB “web” clients
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(c) 5 MiB “bulk” clients

Figure 7: Client performance for vanilla Tor, KIST, and the global scheduling part of KIST (without enforcing write limits).
Figure 7a shows the distribution of the time until the client receives the first byte of the data payload, for all clients, while the inset
graph shows the same distribution with a logarithmic x-axis. Figures 7b and 7c show the distribution of time to complete a 320 KiB
and 5 MiB file by the “web” and “bulk” clients, respectively.

Congestion: Recall that the goal of KIST is to move con-
gestion from the kernel outbound queue to Tor where it
can better be managed. Figure 6 shows KIST’s effective-
ness in this regard. In particular, Figure 6a shows that
KIST reduces kernel outbound congestion over vanilla
Tor by one to two order of magnitude for over 40 percent
of the sampled cells. Further, it shows that the queue
time is less than 200 milliseconds for 99 percent of the
cells measured, compared to over 4000 milliseconds for
both vanilla Tor and global scheduling alone.

Figure 6b shows how global scheduling and KIST in-
crease the congestion inside of Tor. Both global schedul-
ing and KIST result in sharp Tor queue time increases
up to 10 milliseconds, after which the existing 10 mil-
lisecond GlobalWriteTimeout timer event will fire
and Tor will flush more data to the kernel. With global
scheduling, most of the data queued in Tor quickly gets
transferred to the kernel following this timeout, whereas
data is queued inside of Tor much longer when using
KIST. This result is an explicit feature of KIST, as it
means Tor will have more control over data priority when
scheduling circuits.

While we have shown above how KIST is able to move
congestion from the kernel into Tor, Figure 6c shows the
aggregate effect on cell congestion during its complete
existence through the entire end-to-end circuit. KIST re-
duces aggregate circuit congestion from 1010.1 millisec-
onds to 704.5 milliseconds in the median, a 30.3 percent
improvement, while global scheduling reduces conges-
tion by 13 percent to 878.8 milliseconds.

The results in Figure 6 show that KIST indeed
achieves its congestion management goals while high-
lighting the importance of limiting kernel write amounts
in addition to globally scheduling circuits.
Performance: We show in Figure 7 how KIST af-
fects client performance. Figure 7a shows how net-
work latency is generally affected by showing the time
until the first byte of every download by all clients.
Global scheduling alone is roughly indistinguishable
from vanilla Tor, while KIST reduces latency to the first
byte for over 80 percent of the downloads—in the me-
dian, KIST reduces network latency by 18.1 percent from
0.838 seconds to 0.686 seconds. The inset graph has a
logarithmic x-axis and shows that KIST is particularly
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Figure 8: Aggregate relay write throughput for vanilla Tor,
KIST, and the global scheduling part of KIST (without enforc-
ing write limits). Both of our enhancements increase network
throughput over vanilla Tor.

beneficial in the upper parts of the distribution: in the
99th percentile, latency is reduced from more than 7 sec-
onds to less than 2.7 seconds.

Figures 7b and 7c show the distribution of time to
complete each 320 KiB download for the “web” clients
and each 5 MiB file for the “bulk” clients, respectively.
In our experiments, the 320 KiB download times de-
creased by over 1 second for over 40 percent of the down-
loads, while the download times for 5 MiB files increased
by less than 8 seconds for all downloads. These changes
in download times are a result of Tor correctly utiliz-
ing its circuit priority scheduler, which prioritizes traffic
with the lowest exponentially-weighted moving average
throughput. As the “web” clients pause between down-
loads, their traffic is often prioritized ahead of “bulk”
traffic. Our results indicate that not only does KIST de-
crease Tor network latency, it also increases Tor’s ability
to appropriately manage its traffic.
Throughput: We show in Figure 8 KIST’s effect on
relay throughput. Shown is the distribution of aggre-
gate bytes written per second by all relays in the net-
work. We found that throughput improves when using
KIST due to a combination of the reduction in network
latency and our client model: web clients completed their
downloads faster in the lower latency network and there-
fore also downloaded more files. By lowering circuit
congestion, KIST improves utilization of existing band-
width resources over vanilla Tor by 71.6 MiB/s, or 9.8%,
in the median. While the best network utilization is
achieved with global scheduling without write limits (a
150.1 MiB/s, or 20.5%, improvement over vanilla Tor in
the median), we have shown above that it is less effective
than KIST at reducing kernel congestion and allowing
Tor to correctly prioritize traffic.
Overhead: The main overhead in KIST involves the
collection of socket and TCP information from the ker-
nel using three separate calls to getsockopt (socket
capacity, socket length, and TCP info). These three
system calls are made for every connection after ev-
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Figure 9: Network size correlates with performance.

ery GlobalWriteTimeout interval. To understand
the overhead involved with these calls, we instrumented
curiosity3 from Section 4 to collect timing information
while performing the syscalls required by KIST. Our test
ran on the live relay running an Intel Xeon x3450 CPU
at 2.67GHz for 3 days and 14 hours, and collected a tim-
ing sample every second for a total of 309,739 samples.
We found that the three system calls took 0.9140 mi-
croseconds per connection in the median, with a mean
of 0.9204 and a standard deviation of 3.1×10−5.

The number of connections a relay may have is
bounded above roughly by the number of relays in the
network, which is currently around 5,000. Therefore, we
expect the overhead to be less than 5 milliseconds and
reasonable for current relays. If this overhead becomes
problematic as Tor grows, the gathering of kernel infor-
mation can be outsourced to a helper thread and continu-
ously updated over time. Further, we have determined
through discussions with Linux kernel developers that
the netlink socket diag interface could be used to collect
information for several sockets at once—an optimization
that may provide significant reductions in overhead.

6 Security Analysis

Performance and Security: Performance and ease of
use affect adoption rates of any network technology.
They have played a central role in the size and diversity
of the Tor userbase. This can then affect the size of the
network itself as users are more willing to run parts of the
network or contribute financially to its upkeep, e.g., via
torservers.net. Growth from performance improvements
affect the security of Tor by increasing the uncertainty for
many types of adversaries concerning who is communi-
cating with whom [17, 20, 22, 37]. Performance factors
in anonymous communication systems like Tor are thus
pertinent to security in a much more direct way than they
typically would be for, say, a faster signature algorithm’s
impact on the security of an authentication system.

Though real and more significant, direct effects of per-
formance on Tor’s security from network and userbase
growth are also hard to show, given both the variety of
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Figure 10: Latency leaks are more pronounced (10a) and are faster (10b) with KIST.

causal factors and the difficulty of gathering useful data
while preserving privacy. Whatever the causal explana-
tion, a correlation (−.62) between Tor performance im-
provement over time (measured by the median download
time of a 1 MB file) and network size is shown in Fig-
ure 9. (Numbers are from the Tor Metrics Portal [8].)
Similar results hold when number of relays is replaced
with bandwidth metrics. Which is more relevant depends
on the adversary’s most significant constraints: adver-
sary size and distribution across the underlying network
are important considerations [39].

More measurable effects can occur if a performance
change creates a new opportunity for attack or makes an
existing attack more effective or easier to mount. Perfor-
mance change may also eliminate or diminish previous
possible or actual attacks. Growth effects are potentially
the greatest security effects of our performance changes,
but we now focus on these more directly observable as-
pects. They include attacks on Tor based on resource
contention or interference [19, 24, 25, 31, 44, 46, 48] or
simply available resource observation [44], or observ-
ing other performance properties, such as latency [31].
Many papers have also explored improvements to Tor
performance via scheduling, throttling, congestion man-
agement, etc. (see Section 2). Manipulating performance
enhancement mechanisms can turn them into potential
vectors of attack themselves [38]. Geddes et al. [25]
analyzed anonymity impact of several performance en-
hancement mechanisms for Tor.
Latency Leak: The basic idea of a latency leak attack
as first set out in [30] is to measure RTT (roundtrip time)
between a compromised exit and the client of some tar-
get connection repeatedly and then to pick the shortest
result as an indication of latency. Next compare this to
the known, measured latency through all the hops in the
circuit except client to entry relay. (Other attacks such as
throughput measurement, discussed below, are assumed
to have already identified the relays in the circuit.) Next,

use that to determine the latency between the client of
the target connection and its entry relay, which is in a
known network location. This can significantly reduce
the range of possible network locations for the client.
When measuring latency using our improved models and
simulator, we discovered that this attack is generally able
to determine latency well with vanilla Tor. While KIST
improves the overall accuracy, the improvement is small
when a good estimate was also found with vanilla Tor.

Figure 10a shows the results of an experiment run on
our model from Section 3 with random circuit and client
choices, indicating the difference between the correct la-
tency and the estimate after a few hundred pings once per
second. Roughly 20% of circuits for both vanilla Tor and
KIST are within 25ms of the correct latency. After this
they diverge, but both have a median latency estimate
of about 50ms or less. It is only for the worst 10-20%
of estimates, which are presumably not useful anyway,
that KIST is substantially better. While the eventual ac-
curacy of the attack is comparable for both, the attacker
under KIST is significantly faster on average. Figure 10b
shows the cumulative number of pings (seconds) until a
best estimate is achieved. After 200 pings, nearly 40%
of KIST circuits have achieved their best estimate while
less than 10% have for vanilla Tor. And the median num-
ber of pings needed for KIST is about 700 vs. 1200 for
vanilla Tor.

The accuracy of the latency attack indicated above is a
significant threat to network location, which from a tech-
nical perspective is what Tor is primarily designed to pro-
tect. It could be diminished by padding latency. Specif-
ically any connection at the edges of the Tor network,
at either source or destination end, could be dynamically
padded by the entry or exit relay respectively to ideally
make latency of all edge connections through that re-
lay uniform—more realistically to significantly decrease
the network location information leaked by latency. Re-
lays can do their own RTT measurements for any edge
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Figure 11: While the aggregate throughput correlations of the probe to the true guard over the set of all probes (11a) are not
significantly affected by KIST, it is slightly easier for the adversary to eliminate candidate guards of a target client (for all clients)
(11b) when using KIST.

connection and pad accordingly. There are many issues
around this suggestion, which we leave to future work.
Throughput Leak: The throughput attack introduced by
Mittal et al. [44] identifies the entry relay of a target con-
nection by setting up one-hop probe circuits from attack
clients through all prospective entry relays and back to
the client in order to measure throughput at those relays.
These throughputs are compared to the throughput ob-
served by the exit relay of the target circuit. The attack is
directed against circuits used for bulk downloading since
these will attempt a sustained maximum throughput, and
will result in congestion effects on bottleneck relays that
allow the adversary to reduce uncertainty about possible
entry relays. Mittal et al. also looked at attacks on lower
bandwidth interactive traffic and found some success, al-
though with much less accuracy than for bulk traffic.

We analyze the extent to which KIST affects the
throughput attack. While measuring throughput at en-
try relays, we also adopt the simplification of Geddes et
al. [25] of restricting observations to entry relays that are
not used as middle or exit relays for other bulk download-
ing circuits. This allows us the efficiency of making mea-
surements for several simulated attacks simultaneously
while minimizing interference between their probes.

Figure 11a shows the cumulative distribution of scores
for correlation of probe throughput at the correct entry
relay with throughput at the observed exit relay under
vanilla Tor and under KIST scheduling (on the network
and user model given in Section 3). Throughput was
measured every 100 ms. We found that the throughput
correlations are not significantly affected by KIST.

To explain the correlation scores, recall from Sec-
tion 5.2 how KIST reduces both circuit congestion and
network latency by allowing Tor to properly prioritize
circuits independent of the TCP connections to which
they belong. This leads to two competing potential ef-

fects on the throughput attack: (1) a less congested net-
work will increase the sensitivity of the probes to vari-
ations in throughput, thereby allowing stronger corre-
lations between the throughput achieved by the probe
client and that achieved by the target client; and (2) a cir-
cuit’s throughput is most correlated with that of its bottle-
neck relay, and KIST’s improved scheduling should also
reduce the bottleneck effects of congestion in the net-
work and allow weaker throughput correlations. Further,
the improved priority scheduling (moving from round-
robin over TCP connections to properly utilizing EWMA
over circuits) will cause the throughput of each client to
become slightly “burstier” over the short term as the pri-
ority causes the scheduler to oscillate between the cir-
cuits. We suspect that the similar correlation scores are
the result of combining these effects.

To further understand KIST’s affect on the throughput
attack, we measure how the correlation of every client’s
throughput to the true guard’s throughput compares to
the correlation of the client’s throughput to that of every
other candidate guard in the network. For every client,
we start with a candidate guard set of all guards, and re-
move those guards with a lower correlation score with
the client than the true guard’s score. Figure 11b shows
the distribution, over all clients, of the extent to which
we were able to reduce the size of the candidate guard
set using this heuristic. Although KIST reduced the un-
certainty about the true guard used by the target client,
we do not expect the small improvement to significantly
affect the ability to conduct a successful throughput at-
tack in practice.

7 Conclusion

In this paper, we outlined the results of an in-depth
congestion study using both public and private Tor net-
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works. We identified that most congestion occurs in
outbound kernel buffers, analyzed Tor socket manage-
ment, and designed a new socket transport mechanism
called KIST. Through evaluation in a full-scale private
Shadow-Tor network, we conclude that KIST is capa-
ble of moving congestion into Tor where it can be bet-
ter managed by application priority scheduling mecha-
nisms. More specifically, we found that by considering
all sockets and respecting TCP state information when
writing data to the kernel, KIST reduces both conges-
tion and latency while increasing utilization. Finally, we
performed a detailed evaluation of KIST against well-
known latency and throughput attacks. While KIST in-
creases the speed at which true network latency can be
calculated, it does not significantly affect the accuracy of
the probes required to correlate throughput.

Future work should extend our simulation-based eval-
uation and consider how KIST performs for relays in
the live Tor network. We note that our analysis is
based exclusively on Linux relays, as 91% of Tor’s band-
width is provided by relays running a Linux-based dis-
tribution [58]. Although we expect KIST to improve
performance similarly across platforms because it pri-
marily works by managing socket buffer levels, future
work should consider how KIST is affected by the inter-
operation of relays running on a diverse set of OSes. Fi-
nally, our KIST prototype would benefit from optimiza-
tions, particularly by running the process of gathering
kernel state information in a separate thread and/or us-
ing the netlink socket diag interface.
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Abstract
Website fingerprinting attacks allow a local, passive
eavesdropper to identify a user’s web activity by lever-
aging packet sequence information. These attacks break
the privacy expected by users of privacy technologies,
including low-latency anonymity networks such as Tor.
In this paper, we show a new attack that achieves sig-
nificantly higher accuracy than previous attacks in the
same field, further highlighting website fingerprinting as
a genuine threat to web privacy. We test our attack under
a large open-world experimental setting, where the client
can visit pages that the attacker is not aware of. We found
that our new attack is much more accurate than previous
attempts, especially for an attacker monitoring a set of
sites with low base incidence rate. We can correctly de-
termine which of 100 monitored web pages a client is
visiting (out of a significantly larger universe) at an 85%
true positive rate with a false positive rate of 0.6%, com-
pared to the best of 83% true positive rate with a false
positive rate of 6% in previous work.

To defend against such attacks, we need provably ef-
fective defenses. We show how simulatable, determinis-
tic defenses can be provably private, and we show that
bandwidth overhead optimality can be achieved for these
defenses by using a supersequence over anonymity sets
of packet sequences. We design a new defense by ap-
proximating this optimal strategy and demonstrate that
this new defense is able to defeat any attack at a lower
cost on bandwidth than the previous best.

1 Introduction

Privacy technologies are becoming more popular: Tor,
a low-latency anonymity network, currently has 500,000
daily users and the number has been growing [21]. How-
ever, users of Tor are vulnerable to website fingerprinting
attacks [4, 17, 23]. Users of other privacy technologies
such as SSH tunneling, VPNs and IPsec are also vulner-
able to website fingerprinting [10].

When a client browses the web, she reveals her desti-
nation and packet content to intermediate routers, which
are controlled by ISPs who may be susceptible to ma-
licious attackers, eavesdroppers, and legal pressure. To
protect her web-browsing privacy, the client would need
to encrypt her communication traffic and obscure her
destinations with a proxy such as Tor. Website finger-
printing refers to the set of techniques that seek to re-
identify these clients’ destination web pages by passively
observing their communication traffic. The traffic will
contain packet lengths, order, and timing information
that could uniquely identify the page, and website fin-
gerprinting attacks use machine classification to extract
and use this information (see Section 2).

A number of attacks have been proposed that would
compromise a client’s expected privacy, and defenses
have been proposed to counter these attacks (see Sec-
tion 3). Most previous defenses have been shown to fail
against more advanced attacks [4, 6, 15]; this is because
they were evaluated only against specific attacks, with no
notion of provable effectiveness (against all possible at-
tacks). In this paper, we will show an attack that further
highlights the fact that clients need a provably effective
defense, for which an upper bound on the accuracy of
any possible attack can be given. We will then show how
such a defense can be constructed. Only with a prov-
ably effective defense can we be certain that clients are
protected against website fingerprinting.

The contributions of our paper are as follows:

1. We propose a significantly improved attack that
achieves a higher accuracy with a training and test-
ing time that is orders of magnitude lower than the
previous best. Our attack is a k-Nearest Neigh-
bour classifier applied on a large feature set with
weight adjustment. Our attack is designed to find
flaws in defenses and achieve high success rates
even with those defenses, and we demonstrate that

1
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several known defenses have almost no impact on
our attack. We describe this attack in Section 4.

2. Using this attack, we tackle a large open-world
problem, in which the attacker must determine
which of 100 monitored pages the client is visiting,
but the client can visit a large number of pages that
the attacker cannot train on. We demonstrate that
the attack is still truly effective in this realistic sce-
nario in Section 5, and that it outperforms the previ-
ous best attack by Wang and Goldberg [23] (which
we call OSAD) on the same data set.

3. We show that simulatable, deterministic defenses
can be turned into provably private defenses in our
model. In our model, we consider a defense to be
successful only if it produces packet sequences that
are identical (in time, order, and packet lengths) to
packet sequences from different web pages. This
strong notion of indistinguishability of packet se-
quences yields our provably private defenses. We
found that the bandwidth-optimal simulatable, de-
terministic defense is to transmit packets using su-
persequences over anonymity sets. We construct a
principled defense using an approximation of the
smallest common supersequence problem and clus-
tering techniques in Section 6 and evaluate it in Sec-
tion 7.

We follow up with a discussion on realistic applica-
bility and reproducibility of our results in Section 8 and
conclude in Section 9.

2 Basics

2.1 Website Fingerprinting on Tor

Website fingerprinting (WF) refers to the process of at-
tempting to identify a web-browsing client’s behaviour—
specifically, which web pages she is visiting—by observ-
ing her traffic traces. We assume that the client is using a
proxy to hide her true destination, as well as encryption
to hide her packet contents, as without these basic de-
fenses she reveals her destination to a trivial eavesdrop-
per. Users of Tor have these defenses.

More recent attacks can successfully perform web-
site fingerprinting with an attacker that only has local
observation capacity; i.e. the attacker merely observes
the traffic traces of the client without any interference.
The attacker is located on the client’s network, such as
the client’s ISP, or he has gained control of some router
near the client. Attacks requiring more capabilities have
been proposed, such as attacks which leverage active
traffic-shaping strategies [8], remote ping detection [9]

and, sometimes, involve tampering with the client’s de-
vice [12]. Our attack achieves high accuracy with only a
local, passive attacker.

In general, the attacker’s strategy is as follows. The
attacker collects packet traces from several web pages
that he is interested in monitoring. Then, the attacker
observes packet traces generated by the client during her
web browsing, and compares these traces with the ones
he collected by performing supervised classification. We
note two assumptions that all previous works on WF have
made of the attacker:

1. Well-defined packet traces. It is assumed that the
attacker knows where the packet trace of a single
page load starts and ends. If the client takes much
longer to load the next page after the current one is
loaded, this assumption can be justified.

2. No other activity. We assume the client is not per-
forming any other activity that could be confused
for page-loading behaviour, such as downloading a
file.

These assumptions are used by all previous works on
WF as they simplify the problem, though it should be
noted that these assumptions are advantageous for the at-
tacker. We discuss how the attacker can carry out a suc-
cessful attack without these assumptions in Section 8.

Website fingerprinting is harder on Tor than simple
SSH or VPN tunneling [10]. This is because Tor uses cell
padding, such that data is sent in fixed-size (512-byte)
cells. In addition, Tor has background noise (circuit con-
struction, SENDME packets, etc.) which interferes with
website fingerprinting [23]. As Tor has a large user base
and an extensive architecture upon which defenses can
be applied, recent works and our work are interested in
attacking and defending Tor, especially as Tor develop-
ers remain unconvinced that website fingerprinting poses
a real threat [19].

2.2 Classification
Given a packet sequence, the attacker learns the client’s
destination web page with a classification algorithm
(classifier). The attacker first gathers packet sequences
of known pages that he is interested in monitoring (the
training set). This is known as supervised training as the
true labels of these packet sequences are known to the
attacker. We can test the effectiveness of such a classifier
by applying it to a data set of packet sequences that the
attacker did not train on (the testing set), and measuring
the accuracy of the classifier’s predictions.

Central to the classifier is a notion of distance between
packet sequences. A larger distance indicates that the
two packet sequences are less likely to be from the same

2
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page. Previous authors have used varying formulae for
distance, ranging from comparing the occurrence counts
of unique packet lengths to variations of Levenshtein dis-
tance. The distance used reflects how features are used to
distinguish web pages. These features are, explicitly or
implicitly, extracted from packet sequences to compare
them with each other.

Our attack is based on the important observation that
a class representing a web page is multi-modal. Several
factors cause a web page to vary: network conditions,
random advertisements and content, updating data over
time, and unpredictable order of resources. Client con-
figuration may also affect page loading.1 An attacker can
deal with multi-modal data sets by gathering enough data
to have representative elements from each mode. For ex-
ample, an attacker can gather two modes of a page, one
for low-bandwidth connections, and another for high-
bandwidth connections.2 We use a classifier designed
for multi-modal classes, for which different modes of
the class do not need to have any relationship with each
other.

3 Related Work

This section surveys the related work on website finger-
printing (WF). We classify attacks into those which de-
pend on revealed resource lengths (HTTP 1.0), revealed
packet lengths (HTTP 1.1, VPNs, SSH tunneling, etc.),
and hidden packet lengths (Tor). We also survey the pre-
vious work on defenses in this section.

3.1 Resource length attacks
In HTTP 1.0, web page resources (images, scripts, etc.)
are each requested with a separate TCP connection. This
implies that an attacker who is able to distinguish be-
tween different connections can identify the total length
of each resource. The earliest attacks were performed
in this scenario: Cheng et al. in 1998 [5], Sun et al.
in 2002 [20], and Hintz in 2003 [11]. These works
showed that observing resource lengths can help iden-
tify a page. HTTP 1.1 uses persistent connections, and
therefore more recent browsers and privacy technologies
are not susceptible to resource length attacks.

3.2 Unique packet length attacks
Liberatore and Levine in 2006 [14] showed how unique
packet lengths are a powerful WF feature with two at-
tacks: one using the Jaccard coefficient and another us-

1On the Tor Browser changing the browser configuration is discour-
aged as it makes browser fingerprinting easy.

2Data collection on Tor will naturally result in such a situation be-
cause of random circuit selection.

ing the Naı̈ve Bayes classifier. Under the first attack,
the classifier mapped each packet sequence to its set
of unique packet lengths (discarding ordering and fre-
quency). Then, it used the Jaccard coefficient as a mea-
surement of the distance between two packet sequences.
The Naı̈ve Bayes classifier used packet lengths and their
occurrence frequencies as well, but also discarded order-
ing and timing. The Naı̈ve Bayes assumption is that the
occurrence probabilities of different packet lengths are
independent of each other. Later, Herrmann et al. [10]
proposed a number of improvements to this attack by in-
corporating techniques from text mining.

Bissias et al. in 2006 [2] published an attack based
on cross-correlation with interpacket timings, but it is
less accurate than the Naı̈ve Bayes attacks. Lu et al.
in 2010 [15] published an attack that heavily focuses on
capturing packet burst patterns with packet ordering, dis-
carding packet frequencies and packet timing.

3.3 Hidden packet length attacks
Herrmann et al. were not able to successfully perform
WF on Tor [17], where unique packet lengths are hidden
by fixed-size Tor cells. In 2009, Panchenko et al. [17]
showed an attack that succeeded against web-browsing
clients that use Tor. As unique packet lengths are hidden
on Tor, Panchenko et al. used other features, which are
processed by a Support Vector Machine (SVM). These
features attempted to capture burst patterns, main docu-
ment size, ratios of incoming and outgoing packets, and
total packet counts, which helped identify a page. Dyer
et al. in 2012 [6] used a similar but smaller set of features
for a variable n-gram classifier, but their classifier did not
perform better in any of the scenarios they considered.

Cai et al. in 2011 improved the accuracy of WF on Tor.
Using the edit distance to compare packet sequences,
they modified the kernel of the SVM and showed an
attack with significantly increased accuracy on Tor [4].
Wang and Goldberg in 2013 further improved the accu-
racy of Cai et al.’s scheme on Tor by modifying the edit
distance algorithm [23], creating OSAD. These modifi-
cations were based on observations on how web pages
are loaded. As it is the current state of the art under
the same attack scenario, we will compare our attack to
OSAD.

3.4 Defenses
Defenses are applied on the client’s connection in or-
der to protect her against website fingerprinting attacks.
We present a new classification of defenses in this sec-
tion. First, defenses can be “simulatable” or “non-
simulatable”. A simulatable defense can be written as
a defense function D that takes in a packet sequence and
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outputs another packet sequence. The function does not
look at the true contents of the packets, but only their
length, direction and time. An advantage of simulatable
defenses is the implementation cost, as non-simulatable
defenses would need to be implemented on the browser
and would have access to client data, which may be dif-
ficult for some clients to accept. The implementation of
a simulatable defense requires no more access to infor-
mation than a website fingerprinting attacker would typ-
ically have.

Secondly, defenses can be “deterministic” or
“random”—for deterministic defenses the function
D always returns the same packet sequence for each
input packet sequence p.3 Our goal is to design a
provably private defense that has an upper bound on the
accuracy of any attack. Random defenses (noise) have
the disadvantage that choosing a good covering is not
guaranteed. An attacker that can link together different
page loads can partially remove the noise. Furthermore,
implementations of random defenses must be careful
so that noise cannot be easily distinguished from real
packets.

Non-simulatable, random: This includes Tor’s request
order randomization defense. Responding to
Panchenko’s attack, Tor developers decided to en-
able pipelining on Tor and randomize pipeline size
and request orders [18]. The randomization was fur-
ther increased after OSAD [19]. We test our attack
against the more randomized version that is built
into Tor Browser Bundle 3.5.

Non-simulatable, deterministic: This includes por-
tions of HTTPOS [16]. The HTTPOS defense is
built into the client’s browser, allowing the client
to hide unique packet lengths by sending an HTTP
range request strategically.

Simulatable, random: This includes traffic morph-
ing [24], which allows a client to load a web
page using a packet size distribution from a differ-
ent page, and Panchenko’s background noise [17],
where a decoy page is loaded simultaneously with
the real page to hide the real packet sequence.

Simulatable, deterministic: This includes packet
padding, which is done on Tor, and BuFLO,
presented and analyzed by Dyer et al. [6]. BuFLO
sends data at a constant rate in both directions
until data transfer ends. In this work, we will show
that defenses in this category can be made to be
provably private,4 and we will show such a defense
with a much lower overhead than BuFLO.

3Using a random procedure to learn D does not make D itself ran-
dom.

4BuFLO is not provably private on its own.

4 Attack

In this section, we describe our new attack, which is de-
signed to break website fingerprinting defenses. Our at-
tack is based on the well-known k-Nearest Neighbours
(k-NN) classifier, which we briefly overview in Sec-
tion 4.1. The attack finds flaws in defenses by relying
on a large feature set, which we describe in Section 4.2.
We then train the attack to focus on features which the
defense fails to cover and which therefore remain use-
ful for classification. We describe the weight adjustment
process in Section 4.3.

4.1 k-NN classifier
k-NN is a simple supervised machine learning algorithm.
Suppose the training set is Strain and the testing set is
Stest . The classifier is given a set of training points
(packet sequences) Strain = {P1,P2, . . .}. The training
points are labeled with classes (the page the packet se-
quence was loaded from); let the class of Pi be denoted
C(Pi). Given a testing point Ptest ∈ Stest , the classifier
guesses C(Ptest) by computing the distance D(Ptest ,Ptrain)
for each Ptrain ∈ Strain. The algorithm then classifies Ptest
based on the classes of the k closest training points.

Despite its simplicity, the k-NN classifier has a number
of advantages over other classifiers. Training involves
learning a distance between pairs of points; the classi-
fier could use a known (e.g. Euclidean) distance, though
selecting the distance function carefully can greatly im-
prove the classification accuracy. Testing time is very
short, with a single distance computation to each train-
ing point. Multi-modal sets can be classified accurately,
as the classifier would only need to refer to a single mode
of each training set.

The k-NN classifier needs a distance function d for
pairs of packet sequences. The distance is non-trivial for
packet sequences. We want the distance to be accurate
on simple encrypted data without extra padding, but also
accurate when defenses are applied that remove features
from our available feature set. We therefore start with a
large feature set F = { f1, f2, . . .}. Each feature is a func-
tion f which takes in a packet sequence P and computes
f (P), a non-negative number. Conceptually, each feature
is designed such that members of the same class are more
likely to have similar features than members of different
classes. We give our feature set in Section 4.2. The dis-
tance between P and P′ is computed as:

d(P,P′) = ∑
1≤i≤|F |

wi| fi(P)− fi(P′)|

The weights W = {w1,w2, . . . ,w|F |} are learned as in
Section 4.3, where we describe how the weights for un-
informative features (such as one that a defense success-
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fully covers) are reduced. As weight learning proceeds,
the k-NN distance comes to focus on features that are
useful for classification.

We tried a number of other distances, including the
edit distance used by Cai et al. [4] and OSAD, which
they used to compute the kernel of SVMs. The results for
using their distances on the k-NN classifier are similar to
those using the SVM. As we shall see in Section 5, using
our proposed distance allows a significant improvement
in accuracy over these distances, with or without extra
defenses.

4.2 Feature set

Our feature set is intended to be diverse. The construc-
tion of the feature set is based on prior knowledge of how
website fingerprinting attacks work and how defenses
fail.

Our feature set includes the following:

• General features. This includes total transmission
size, total transmission time, and numbers of incom-
ing and outgoing packets.

• Unique packet lengths. For each packet length be-
tween 1 and 1500, and each direction, we include
a feature which is defined as 1 if it occurs in the
data set and 0 if it does not. This is similar to the
algorithms used by Liberatore and Levine [14] and
Herrmann et al. [10], where the presence of unique
packet lengths is an important feature. These fea-
tures are not useful when packet padding is applied,
as on Tor.

• Packet ordering. For each outgoing packet, we add,
in order, a feature that indicates the total number of
packets before it in the sequence. We also add a
feature that indicates the total number of incoming
packets between this outgoing packet and the previ-
ous one. This captures the burst patterns that helped
Cai et al. achieve their high accuracy rates.

• Concentration of outgoing packets. We count the
number of outgoing packets in non-overlapping
spans of 30 packets, and add that as a feature. This
indicates where the outgoing packets are concen-
trated without the fineness (and volatility) of the
packet ordering features above.

• Bursts. We define a burst of outgoing packets as a
sequence of outgoing packets, in which there are no
two adjacent incoming packets. We find the maxi-
mum and mean burst length, as well as the number
of bursts, and add them as features.

• Initial packets. We also add the lengths of the first
20 packets (with direction) in the sequence as fea-
tures.

Some feature sets, such as packet ordering, have vari-
able numbers of features. We define a maximum number
of features for the set, and if the packet sequence does
not have this many features, we pad with a special char-
acter (X) until it reaches the maximum number. Recall
that our distance is the weighted sum of absolute differ-
ences between features; let us denote the difference as
d fi(P,P

′). For each feature fi, if at least one of the two
values is X, then we define d fi(P,P

′) to be 0, such that
the difference is ignored and does not contribute to the
total distance. Otherwise, we compute the difference as
usual.

We treat all features equally. However, we note that
as the general features are amongst the strongest indica-
tors of whether or not two packet sequences belong to the
same mode of a page, we could use them with a search al-
gorithm to significantly reduce training and testing time
(i.e. reject pages with significantly different values in the
general feature without computing the whole distance).

The total number of features is close to 4,000 (3,000
of which are just for the unique packet lengths). If a
defense covers some features and leaves others open (e.g.
traffic morphing retains total transmission size and burst
features), our algorithm should be successful in adjusting
weights to focus on useful features.

We design our attack by drawing from previous
successful attacks, while allowing automatic defense-
breaking. In particular, we note that there exists a choice
of weights for which our attack uses a similar distance
metric as the attacks proposed by Cai et al. [4] and Wang
and Goldberg [23], as well as the Jaccard coefficient
by Liberatore and Levine [14]. However, we will find
better choices of weights in the next subsection. We
drew the inspiration for some features from the work
by Panchenko et al. [17], in particular, those concern-
ing the start of the page (which may indicate the size of
the HTML document). We note that unlike Panchenko
et al. [17], we do not add the entire packet sequence as
features.

4.3 Weight initialization and adjustment

In this subsection, we describe how we learn
w1,w2, . . . ,w|F |, the weights that determine our distance
computation. The values of these weights determine the
quality of our classifier. We learn the weights using an
iterative, local weight-learning process as follows. The
weight-learning process is carried out for R rounds (we
will see how the choice of R affects the accuracy later).
For each round, we focus on a point Ptrain ∈ Strain (in or-
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der), performing two steps: the weight recommendation
step and the weight adjustment step.

Weight recommendation. The objective of the
weight recommendation step is to find the weights that
we want to reduce. During the weight recommendation
step, the distances between Ptrain and all other P′ ∈ Strain
are computed. We then take the closest kreco points
(for a parameter kreco) within the same class Sgood =
{P1,P2, . . .} and the closest kreco points within all other
classes Sbad = {P′

1,P
′
2, . . .}; we will focus only on those

points.
We denote d(P,S), where S is a set of packet se-

quences, as the sum of the distances between P and each
sequence in S.

Let us denote

dmaxgoodi = max({d fi(Ptrain,P)|P ∈ Sgood})

For each feature, we compute the number of relevant
bad distances, nbadi , as

nbadi = |{P′ ∈ Sbad |d fi(Ptrain,P′)≤ dmaxgoodi}|

This indicates how bad feature fi is in helping to dis-
tinguish Sbad from Sgood . A large value of nbadi means
that feature fi is not useful at distinguishing members of
Ptrain’s class from members of other classes, and so the
weight of fi should be decreased; for example, features
perfectly covered by a defence (such as unique packet
lengths in Tor) will always have nbadi = kreco, its maxi-
mum possible value. Conversely, small values of nbadi

indicate helpful features whose weights should be in-
creased.

Weight adjustment. We adjust the weights
to keep d(Ptrain,Sbad) the same while reduc-
ing d(Ptrain,Sgood). Then, for each i such that
nbadi �= min({nbad1 ,nbad2 , . . . ,nbad|F | }), we reduce
the weight by ∆wi = wi · 0.01. We then increase all
weights wi with nbadi = min({nbad1 ,nbad2 , . . . ,nbad|F | })
equally such that d(Ptrain,Sbad) remains the same.

We achieved our best results with two more changes
to the way weights are reduced, as follows:

• We further multiply ∆wi = wi · 0.01 by nbadi/kreco.
Therefore, a weight with greater nbadi (a less infor-
mative weight) will be reduced more.

• We also decrease ∆wi if Ptrain is already well classi-
fied. Nbad is defined as:

Nbad = |{P′ ∈ Sbad |d(Ptrain,P′)≤ dmaxgood}|

Specifically, we multiply ∆wi by 0.2+Nbad/kreco.
Nbad can be considered an overall measure of how
poorly the current point is classified, such that

points which are already well-classified in each iter-
ation have less of an impact on the weights. The ad-
dition of 0.2 indicates that even perfectly classified
points still have some small impact on the weights
(so that the weight adjustment will not nullify their
perfect classification).

Both of these above changes improved our classifica-
tion accuracy. We achieved our best results with kreco =
5.

We initialized the weight vector W randomly by
choosing a random value for each wi uniformly between
0.5 and 1.5. Adding randomness gave us a chance of
finding better solutions than a deterministic algorithm
as we could avoid local maxima that bind our classifier
away from the global maximum.

Note that we are not claiming these particular choices
of parameters and constants yield an optimal attack, and
further work may yet uncover improved attacks against
defenses without provable privacy guarantees.

5 Attack evaluation

Our attack is specifically designed to find gaps in de-
fenses, and in this section we will demonstrate its effi-
cacy with experimentation on real web traffic. We will
first begin by showing the effectiveness of our scheme
against Tor with its default packet padding and order ran-
domization defense in Section 5.1. This setting is a good
standard basis of comparison as WF is a threat to the
privacy guarantees provided by Tor, and several of the
latest state-of-the-art attacks are designed for and evalu-
ated on Tor. We will see that our attack performs better
than the best known attacks. The parameters of our at-
tack can be modified to decrease the false positive rate at
the cost of decreasing the true positive rate, and we ex-
amine the tradeoff in Section 5.2. Then, we show that our
attack is also more powerful than known attacks on vari-
ous known and published defenses in Section 5.3, with a
number of defenses shown to be nearly completely inef-
fective against our scheme.

5.1 Attack on Tor
We validate our attack in two experimental settings to
demonstrate the effectiveness of our attack on Tor.

First, we perform experiments in an open-world ex-
perimental setting. Even though the number of pages in
the world wide web is far too large for us to train on, we
can achieve realistic results by limiting the objective of
the attacker. Here, the attacker wants to decide whether
or not a packet sequence comes from a monitored page;
additionally, for monitored pages, the attacker aims to
identify the page. We denote the non-monitored page set
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that the attacker uses for training as C0, and the effects of
varying its size will be tested in evaluation. This open-
world experimental setting gives us realistic results for
plausible attackers.

We use a list of 90 instances each of 100 sensitive
pages as well as 1 instance each of 5,000 non-monitored
pages. We note that this problem is more difficult for
the attacker than any that has been evaluated in the field,
as other authors have evaluated their schemes on either
strictly closed-world settings or very small open-world
problems (a few monitored pages). It is a realistic goal
for the attacker to monitor a large set of pages in the
open-world setting.

Our list of 100 monitored pages was compiled from a
list of blocked web pages from China, the UK, and Saudi
Arabia. These include pages ranging from adult content,
torrent trackers, and social media to sensitive religious
and political topics. We selected our list of 5,000 non-
monitored pages from Alexa’s top 10,000 [1], in order,
excluding pages that are in the list of monitored pages
by domain name. The inherent differences between the
above data sets used for training and testing assist classi-
fication, just as they would for a realistic attacker. Page
loading was done with regular circuit resetting, no caches
and time gaps between multiple loads of the same page
(as suggested by Wang and Goldberg [23]), such that the
attacker will not use the same circuits as the target client,
or collect its data at the same time. We used iMacros
8.6.0 on Tor Browser 3.5.1 to collect our data.

Training the k-Nearest Neighbour classifier is required
to learn the correct weights. We learn the weights by
splitting part of the training set for weight adjustment and
evaluation as above. We perform weight adjustment for
R = 6000 rounds on 100 pages and 60 instances each,
which means that every instance is cycled over once.
Then, accuracy is computed over the remaining 30 in-
stances each, on which we perform all-but-one cross val-
idation. The use of cross validation implies that the at-
tacker will never train on the same non-monitored pages
that the client visits.

For our attack, we decided that a point should be clas-
sified as a monitored page only if all k neighbours agree
on which page it is, and otherwise it will be classified as
a non-monitored page. This helped reduce false positives
at a relatively small cost to the true positives. We vary the
number of neighbours k from 1 to 15 as well as the num-
ber of non-monitored training pages |C0| used from 10 to
5000,5 and we show our results in Figure 1. We measure
the True Positive Rate (TPR), which is the probability
that a monitored page is correctly classified as that partic-

5We note that the choice of |C0| does not represent a world with
fewer pages available to the client—it is the attacker’s decision on how
much he wishes the bias towards non-monitored sites to be. The visited
sites are always drawn from Alexa’s top 10,000.
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Figure 1: Performance of our attack while varying the
attack parameters k and |C0|. Only the y-axis is logarith-
mically scaled.
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Figure 2: True Positive Rate and False Positive Rate
changes in OSAD [23] as the open set size increases.
There is almost no change in either value after |C0| >
2500.

ular monitored page, and the False Positive Rate (FPR),
which is the probability that a non-monitored page is in-
correctly identified as being monitored.6 We can achieve
TPR 0.85±0.04 for FPR 0.006±0.004, or respectively
TPR 0.76±0.06 for FPR 0.001±0.001.

We compare these values to OSAD, which we apply
to our data set as well, and show the results in Figure 2.
Increasing the number of non-monitored pages |C0| in-
creases TPR and reduces FPR. After |C0| > 2500, we
could not see a significant benefit in adding more ele-
ments. At |C0| = 5000, the classifier achieves a TPR of
0.83±0.03 and a FPR of 0.06±0.02.

We see that OSAD cannot achieve FPR values nearly
as low as ours, and it may be considered impractical for
the attacker to monitor large sets in the open-world set-
ting with the old classifier, especially if the base inci-
dence rate is low. For example, if the base incidence rate
of the whole sensitive set is 0.01 (99% of the time the
client is visiting none of these pages), and our new clas-
sifier claims to have found a sensitive site, the decision
is correct at least 80% of the time, the rest being false
positives. For Wang and Goldberg’s classifier, the same
value would be about 12%. The difference is further ex-
acerbated with a lower base incidence rate, which may
be realistic for particularly sensitive web sites.

6If a monitored page is incorrectly classified as a different moni-
tored page or as a non-monitored page, it is a false negative.
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Figure 3: TPR when varying the number of rounds used
for training our attack, with k = 5 and |C0|= 500. FPR is
not shown because there is very little change over time.
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Figure 4: Results for FPR vs. TPR while varying bias
towards non-monitored data set C0. k = 2.

The training and testing time for our classifier (weight
adjustment) is very small compared to previous state-of-
the-art classifiers. The number of rounds, R, determines
the quality of our weights. We show in Figure 3 how
the true positive rate changes with R on |C0|= 500 non-
monitored sites and k = 5 neighbours. We see that the
accuracy levels off at around 800 rounds, and did not
drop up to 30,000 rounds.

The weight training time scales linearly with R and
also scales linearly with the number of instances used
for weight training. The training time is around 8 ·
10−6 · |Strain| ·R CPU seconds, measured using a com-
puting cluster with AMD Opteron 2.2 GHz cores. This
amounts to around 120 CPU seconds for 1000 rounds in
our set with |C0|= 5000. This can be compared to around
1600 CPU hours on the same data set using OSAD and
500 CPU hours using that of Cai et al. Training time
also scales quadratically with the number of training in-
stances with these previous classifiers.

The testing time amounts to around 0.1 CPU seconds
to classify one instance for our classifier and around 800
CPU seconds for OSAD, and 450 CPU seconds for Cai et
al. The testing time per instance scales linearly with the
number of training elements for all three classifiers. We
can reduce the training and testing time for our classifier
further by around 4 times if we remove the unique packet
length features, which are useless for Tor cells.

We also perform experiments on the closed-world ex-
perimental setting. Under the closed-world experimen-
tal setting, the client does not visit non-monitored pages.
We use the same data set of sensitive pages as above
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Figure 5: Best results for FPR vs. TPR while varying
number of neighbours k. |C0|= 500.

for these experiments. Although the closed-world set-
ting does not carry the same realistic implications as the
open-world setting, it focuses attention on the ability of
the classifier to distinguish between pages and it has been
a useful basis of comparison in the field. We also tested
our classifier on the data set used by Wang and Goldberg
to facilitate a more direct comparison, and the accuracy
was 0.95±0.02 compared to 0.91±0.06 for OSAD and
0.88±0.03 for Cai et al. We also compared them on our
new data set, and the accuracy was 0.91± 0.03 for ours
and 0.90± 0.02 for OSAD. There appears to be no sig-
nificant difference in the closed-world scenario, although
the superior accuracy of our classifier under the realistic
open-world scenario is clear.

5.2 Training confidence

The numbers for true and false positive rates as shown
above may not be desirable for some cases. The optimal
numbers depend on the expected base rate of the moni-
tored activity as well as the application intended by the
attacker. Parameters of our attack can be adjusted to in-
crease true positive rate at the cost of increasing false
positive rate, or vice versa.

We can vary the size of the non-monitored training
page set to affect accuracy as our implementation of the
k-Nearest Neighbour classifier is susceptible to bias to-
wards larger classes. We fix the number of neighbours at
k = 2, vary the number of non-monitored training pages
|C0| from 10 to 5000 and show the results in Figure 4.

We can also vary k, the number of neighbours. We
fix the number of non-monitored pages, |C0|, at 500, and
vary k from 1 to 15, showing the results in Figure 5. De-
creasing |C0| and decreasing k each increases both true
positives and false positives.

We can see that varying the number of neighbours
used is much more important for determining TPR than
varying the size of C0, the set of non-monitored pages.
In fact, almost all of the graph in Figure 1 can be drawn
only by varying k with |C0| = 5000, suggesting that it is
advantageous for the attacker to have a large number of
non-monitored training pages.
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Table 1: Accuracy of our attack on various defenses.
Closed-world simulation is used to enable comparison
with previous known results.

Defense Accuracy Bandwidth
overhead

Traffic morphing [24] 0.82±0.06 50%±10%
HTTPOS split [16] 0.86±0.03 5.0%±0.6%
Decoy pages [17] 0.30±0.06 130%±20%
BuFLO [6] 0.10±0.03 190%±20%

5.3 Attack on Other Defenses
Our attack is specifically designed to break WF defenses
that leave features open for classification. The analysis in
previous sections was performed on Tor packets, which
already uses padding, pipelining and order randomiza-
tion. We add further defenses on top of Tor’s defenses.
The list of defenses we evaluate in this section are as fol-
lows:

• Traffic morphing [24]. Traffic morphing maps
packet sizes from one site to a packet distribution
drawn from another site, in an attempt to mimic the
destination site. In our implementation, each site at-
tempted to mimic google.com as it is reasonable
to assume that the client wishes to mimic the most
popular page.

• HTTPOS split [16]. Although HTTPOS has a large
number of features, one of its core features is a ran-
dom split on unique packet lengths by cleverly uti-
lizing HTTP range requests. We analyze HTTPOS
by splitting incoming packets and also padding out-
going packets.7

• Panchenko’s decoy pages [17]. As a defense against
their own attack, Panchenko et al. suggested that
each real page should be loaded with a decoy page.
We chose non-monitored pages randomly as decoy
pages.

• BuFLO [6]. Maximum size packets are sent in
both directions at equal, constant rates until the
data has been sent, or until 10 seconds have passed,
whichever is longer.

We implement these defenses as simulations. For
Panchenko’s noise and BuFLO we implement them us-
ing Tor cells as a basic unit in order to reduce unneces-
sary overhead from these defenses when applied on Tor.
We assume that the attacker is aware of these defenses

7HTTPOS has been significantly modified by its authors since their
original publication, in part due to the fact that Cai et al. were able to
break it easily [4].

and collects training instances on which the defense is
applied; this is realistic as the above defenses are all dis-
tinctive and identifiable.

We apply our attack, and show the results in Table 1.
This can be compared to a minimum accuracy of 0.01 for
random guessing. We see that even with large overhead,
the defenses often fail to cover the page, and our attack
always performs significantly better than random guess-
ing. For BuFLO, our particular data set gave a larger
overhead than previous work [22] because most packet
sequences could be loaded within 10 seconds and there-
fore required end-of-sequence padding to 10 seconds. In
particular, traffic morphing and HTTPOS split have al-
most no effect on the accuracy of our attack.

6 Defense

In this section, we design a provably private defense—
a defense for which there exists an upper bound on the
accuracy of any attack (given the data set). As Tor is
bandwidth-starved [21], we attempt to give such a de-
fense with the minimum bandwidth cost. This is an ex-
tension of the idea proposed by Wang and Goldberg [22]
for their defense, Tamaraw.

In Section 6.1, we first show how such an upper bound
can be given for simulatable, deterministic defenses—
that is, this class of defenses can be made to be provably
private. We then show in Section 6.2 that the optimal de-
fense strategy (lowest bandwidth cost) in such a class is
to compute supersequences over sets of packet sequences
(anonymity sets). We try to approximate the optimal de-
fense strategy, by describing how these sets can be cho-
sen in Section 6.3, and how the supersequence can be
estimated in Section 6.4.

6.1 Attacker’s upper bound

We describe how we can obtain an upper bound on the
accuracy of any attack given a defended data set. The at-
tacker, given an observation (packet sequence) p, wishes
to find the class it belonged to, C(p).

To calculate the maximum success probability given
the testing set, we assume the greatest possible advantage
for the attacker. This is where the attacker is allowed
to train on the testing set.8 In this case the attacker’s
optimal classification strategy is to record the true class
of each observation, (p,C(p)). The attacker will only
ever make an error if the same observation is mapped to
several different classes, which are indistinguishable for
the observation. We denote the possibility set of p as the
multiset of classes with the same observation p, Q(p) =

8Our testing set is in fact a multiset as repeated observation-class
pairs are possible.
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{C1,C2, . . .} (C(p) ∈ Q(p)), where the occurrence count
of a class is the same as in the testing set with observation
p.

The attacker’s optimal strategy is to find the class Cmax
that occurs the most frequently for the same observation
p, and during classification the attacker will return Cmax
for the observation p. This will induce an accuracy value
upon p:

Acc(p) =
|{C ∈ Q(p)|C =Cmax}|

|Q(p)|

This method returns the best possible accuracy for a
given testing set as it makes the lowest possible error for
observations mapping to multiple classes.

Cai et al. [3] have proposed two different ways to de-
note the overall accuracy of a set of packet sequences:

• Non-uniform accuracy. This is the mean of accura-
cies Acc(p) for p ∈ Stest .

• Uniform accuracy. This is the maximum accuracy
Acc(p) for p ∈ Stest

Tamaraw can only achieve non-uniform accuracy. In
this work, we design a defense for uniform accuracy, but
the defense can be extended to other notions as well.
While we will use different sets to train our defense and
test it on client behaviour, we will say that the defense
has a maximum uniform accuracy as long as it does so
on the training set (as it is always possible to construct
a testing set on simulatable, deterministic defenses on
which at least one page has an accuracy of 1). A defense
that achieves a maximum uniform accuracy of Au auto-
matically does so for non-uniform accuracy, but not vice-
versa. In the following we work with a uniform prior on
a fixed-size testing set to facilitate comparison with pre-
vious work.

6.2 Optimal defense
In this section, we show the bandwidth-optimal simu-
latable, deterministic defense. As we work with Tor
cells, in the following a packet sequence can be con-
sidered a sequence of −1’s and 1’s (downstream and
upstream packets respectively), which is useful for hid-
ing unique packet lengths [22]. We say that sequence
q is a subsequence of sequence p (or that p is a su-
persequence of q) if there exists a set of deletions of
−1 and 1 in p to make them equal (maintaining or-
der). With abuse of notation, we say that if S is the in-
put packet sequence multiset, then D(S) = {D(p)|p ∈ S}
denotes the output packet sequence multiset after appli-
cation of the defense. The cost (bandwidth overhead)

of D(p) is B(D(p)) =
|D(p)|− |p|

|p| , and similarly for

a set of packet sequences the overhead is B(D(S)) =
∑p∈S |D(p)|−∑p∈S |p|

∑p∈S |p|
. Given S, we want to identify D

such that B(D(S)) is minimal.
For each packet sequence p1, let us consider the set of

packet sequences that map to the same observation after
the defense is applied, which we call the anonymity set
of p1. We write the set as A(p1) = {p1, p2, . . . , pE}; i.e.
D(p1) = D(pi) for each i. The shortest D(p1) that sat-
isfies the above condition is in fact the shortest common
supersequence, written as fscs(A(p1)) = D(pi) for each
1 ≤ i ≤ E.

In other words, the optimal solution is to apply the
shortest common supersequence function to anonymity
sets of input sequences. This defense can be applied with
the cooperation of a proxy on the other side of the adver-
sary; on Tor, for example, this could be the exit node of
the circuit. However, finding such an optimal solution
requires solving two hard problems.

Anonymity set selection. First, given the set of all pos-
sible packet sequences, we want to group them into
anonymity sets such that, for a given bound on at-
tacker accuracy, the overhead will be minimized.

The shortest common supersequence (SCS) problem.
Then, we must determine the SCS of all the packet
sequences in the anonymity set. This is in general
NP-hard. [13]

In the next two sections we describe our solutions to the
above problems.

6.3 Anonymity set selection
We note that the client is not always able to choose
anonymity sets freely. For example, the client cannot
easily know which anonymity set a page load should be-
long to before seeing the packet sequence. While the
client can gain information that assists in making this de-
cision (the URL, previous page load data, training data,
information about the client network, the first few pack-
ets of the sequence, etc.), the mere storage and usage of
this information carries additional privacy risks. In par-
ticular, the Tor Browser keeps no disk storage (including
no cache except from memory), so that storing extrane-
ous information puts the client at additional risk. In this
section, we describe how realistic conditions impose re-
strictions on the power of the client to choose anonymity
sets.

We formalize this observation by imposing additional
limits on anonymity set selection in the defense D trained
on testing set Stest . We define four levels of information
for a client applying a simulatable, deterministic website
fingerprinting defense:

10
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Table 2: Relationship between different levels of information and how we train and test our supersequences. Under
“Supersequence”, we describe what supersequences we would use at this level of information. Clustering is done if
we want multiple supersequences.

Information Supersequence Training and Testing
No information One supersequence Different sites, instances
Sequence end information One supersequence, stopping points Different sites, instances
Class information Multiple supersequences, stopping points Same sites, different instances
Full information Multiple supersequences Same sites, instances

1. No information. The client has no information at all
about the packet sequence to be loaded. This means
A(p) = Stest , that is to say all sequences map to a
single anonymity set.

2. Sequence end information. The client knows when
the sequence has ended, but this is the only infor-
mation the client gets about the packet sequence.
This means that D can only vary in length; for any
p, q, such that |D(p)| ≥ |D(q)|, then the first |D(q)|
packets of D(p) are exactly D(q), that is, we say
that D(q) is a prefix of D(p).

3. Class-specific information. Only the identity of the
page is known to the client, and the client has loaded
the page before with some information about the
page, possibly with realistic offline training. The
client cannot distinguish between different packet
sequences of the same page (even though the page
may be multi-modal). This is the same as the above
restriction but only applied if p and q are packet se-
quences from the same web page.

4. Full information. No restrictions are added to D.
The client has prescient information of the full
packet sequence. Beyond class-specific informa-
tion, the client can gain further information by look-
ing into the future at the contents of the packet se-
quence, learning about her network, and possibly
using other types of extraneous information. This
level is not generally of practical interest except for
serving as a bound for any realistic defense.

We use clustering, an unsupervised machine learning
technique, to find our anonymity sets. We show how the
above levels of information affect how supersequences
will be computed and how testing needs to be performed
in Table 2.

Optimality under the above levels of informa-
tion requires the computation of supersequences over
anonymity sets. If we have only sequence end informa-
tion, there is only one supersequence, and we do not need
to perform clustering. Instead, possible outputs of the de-
fense simply correspond to a prefix of the one superse-
quence, terminating at one of a specified set of stopping

points. We find the stopping points by selecting the earli-
est points where our maximum uniform accuracy would
be satisfied. All packet sequences sent under this defense
will be padded to the next stopping point. This is similar
to a strategy suggested by Cai et al. [3]

If we have class-level information, we need to per-
form two levels of anonymity set selection. On the
first level, we cluster the packet sequences within each
class to decide which supersequence the client should
use. For this level of clustering, we first decide on the
number of supersequences in the set. Then, we ran-
domly choose a number of “roots” equal to this num-
ber of supersequences. We cycle over every root, as-
signing the closest packet sequence that has not yet been
classified. For this we need to define a distance be-
tween each pair of packet sequences p and q. Suppose
p′ and q′ are the first min(|p|, |q|) packets of p and q
respectively. The distance between p and q is given as
2| fscs(p′,q′)| − |p′| − |q′|. We use this distance to mea-
sure how different two packet sequences are, without
considering their respective lengths, which would be ad-
dressed by the second level. On the second level, we find
stopping points, with the same strategy as that used un-
der sequence end information. The use of an additional
first level of clustering reduces the number of stopping
points available for use, given a fixed number of clusters,
so that using too many clusters may in fact have a higher
bandwidth overhead (see Section 7).

For full information, we perform clustering with the
distance between two packet sequences p and q as
2| fscs(p,q)|− |p|− |q|. Here we select roots with evenly
spread out lengths.

6.4 SCS approximation
For the SCS of two packet sequences there is an exact
solution that can be found using dynamic programming;
however, the SCS of multiple sequences is in general NP-
hard [13].

We present a simple algorithm that approximates a
solution to the shortest common supersequence prob-
lem. To approximate fscs({p1, p2, . . . , pn}), we define
a counter for each packet sequence c1,c2, . . . ,cn, which
starts at 1. We count the number of sequences for which

11
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Figure 6: Bandwidth overhead for three levels of in-
formation: sequence end information (Seq. end), class-
specific information (Class), and full information (Full).
Using no information results in a bandwidth overhead
that is much higher than that shown in the graph.
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Figure 7: Bandwidth overhead for class-specific infor-
mation if more than two supersequences are used, at 20
clusters. The number of stopping points available de-
creases, but the total number of supersequences times the
number of stopping points is always at least 20.

the ci-th element of pi is an outgoing packet. If the num-
ber exceeds n/4, we append an outgoing packet to the
common supersequence, and increment all ci for which
the ci-th element of pi is an outgoing packet by 1. Else,
we append an incoming packet, and increase the cor-
responding counts by 1. We do this iteratively until
each counter ci becomes |pi|+ 1, and the algorithm ter-
minates. The choice of n/4 is because for web page
loading, there are fewer outgoing packets than incom-
ing packets, and this choice reduces our overhead signif-
icantly.

We note that it is easy to construct cases where the
above algorithm performs very poorly. In fact, it is
known that any polynomial-time approximation algo-
rithm of shortest common supersequences cannot have
bounded error [13].

7 Defense evaluation

In this section we evaluate our defense for bandwidth
overhead, as well as its effectiveness in stopping our new
attack.

We implemented our defenses with different levels of
information as seen above. We used the same data set
used to test our attacks—100 sites, 30 instances each—
and attempted to protect them. The defender attempts to
achieve a given maximum uniform accuracy (by deter-
mining the number of clusters or stopping points). We
show the results in Figure 6. For class-level information,
we used two supersequences and N/2 stopping points
in each supersequence. We can see the full information
setting has a much lower bandwidth overhead than se-
quence end information or class-level information. With
our clustering strategy, using two supersequences un-
der class-level information is only sometimes beneficial
for the overhead. It is possible that a clever clustering
strategy for class-level information could achieve lower
bandwidth overheads.

For class-level information, we used two superse-
quences as above. It is interesting to know if increas-
ing the number of supersequences (and correspondingly
lowering the number of stopping points) will give better
bandwidth overhead. In other words, we want to know if
it is worth suffering greater overhead for padding to stop-
ping points to have more finely tuned supersequences.
We fix the target maximum uniform accuracy to 20%.
The results are shown in Figure 7. We can see that using
more than two supersequences only increases the band-
width overhead. It is possible that if the defender can tol-
erate a higher maximum uniform accuracy, then it would
be optimal to use more than two supersequences.

Finally, we apply our new attack to a class-level de-
fense with a maximum uniform accuracy of 0.1, where
the overhead is approximately 59%± 3%. We achieved
an accuracy of 0.068± 0.007. This can be compared to
Table 1, where we can see that the attack achieved an ac-
curacy of 0.30±0.06 for Panchenko’s decoy pages with
an overhead of 130%± 20% and an accuracy of 0.10±
0.03 for BuFLO with an overhead of 190%±20%. Fur-
thermore, we do not know if there exist better attacks for
these defenses, but we know that no attack can achieve a
better accuracy than 0.1 on our defense (using the same
data set). We also compared our work with Tamaraw,
which had a 96%±9% overhead on the same data set for
non-uniform accuracy. Our attack achieved an accuracy
of 0.09± 0.02, although highly non-uniformly. Indeed,
on 16 sites out of 100, the accuracy of the attacker was
more than 0.2, and the most accurately classified site had
accuracy 0.6.

8 Discussion

8.1 Realistically applying an attack
Like other website fingerprinting works in the field, we
make the assumption that the attacker has an oracle that

12
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can answer whether or not a particular sequence is gen-
erated from a single page load, and that the user does not
prematurely halt the page load or perform other types of
web activity. Here we discuss a few strategies to deal
with possible sources of noise when applying website
fingerprinting to the real world.

The attacker can use a number of signals to identify
the start of a packet sequence. We found that the start of
a packet sequence generally contains around three times
more outgoing packets than the rest of the sequence. If
the user is accessing a page for which she does not have
a current connection (i.e. most likely the user is visit-
ing a page from another domain), then the user will al-
ways send one or two outgoing connections (depending
on the browser setting) to the server, followed by accep-
tance from the server, followed by a GET request from
the main page, and then by data from the server. This
particular sequence could be identifiable.

Unfortunately for Tor users, website fingerprinting is
made easier due to a number of design decisions. On
Tor, users are discouraged from loading videos, using
torrents, and downloading large files over Tor, which are
types of noise that would interfere with website finger-
printing. It is hard to change user settings on the Tor
Browser; the configuration file is reset every time the
Tor Browser is restarted, which implies that different
Tor users have similar browser settings. As there is no
disk caching, Tor users have to log in every time the Tor
Browser is restarted before seeing personalized pages.
For example, Facebook users on Tor must go through the
front page, which has no variation and is easily identifi-
able. This is meant to preserve privacy from server-side
browser fingerprinting attacks, but they also make web-
site fingerprinting easier.

8.2 Realistic consequences of an attack

Here we discuss how our attack can be used realistically
to break the privacy of web users. Our attack is not all-
powerful; it is not likely to find a single sensitive page
access among millions without error. The quality of the
results depends on the base incidence rate of the client’s
access. With our classifier, if an attacker wishes to iden-
tify exactly which of a set of 100 pages a client is vis-
iting, and she almost never visits those pages (less than
0.1% of page visits), then false alarms will overwhelm
the number of true positives. We note that many sensi-
tive pages have high rates of incidence as they are within
Alexa’s top 100 (torrent sites, adult sites, social media),
especially if the client feels it necessary to use Tor.

We envision our attack as a strong source of informa-
tion that becomes more powerful with the use of other or-
thogonal sources of information. For instance, a govern-
ment agency observes that a whistleblower has released

information on a web page, or that she has just posted a
sensitive or incendiary article on a blog, and it is known
that this whistleblower is likely to use Tor. The agency
will only need to search amongst Tor streams in the last
few minutes within the nation (or a smaller local area).
As Tor streams are easily identifiable [7], the number of
Tor users at any given moment is small enough for our
accurate attack to lead to the capture of a Tor-using dis-
sident. This strongly suggests that some sort of defense
is necessary to protect the privacy of web clients.

8.3 Reproducibility of our results
To ensure reproducibility and scientific correctness, we
publish the following: 9

• The code for our new attack. This includes our fea-
ture set, parameters used for our weight learning
process, and a number of weight vectors we learned
which succeeded at classification against specific
defenses, including the Tor data set.

• The code for our new defense. This includes the
clustering strategy and the computation for stop
points, as well as the supersequences we eventually
used to achieve the results in this paper.

• Our implementations of known attacks and de-
fenses, which we compared and evaluated against
ours.

• The data sets we used for evaluation. This includes
the list of monitored and non-monitored sites we
visited over Tor, and the TCP packets we collected
while visiting those sites and which we processed
into Tor cells. We also include the feature vectors
we computed over this data set.

9 Conclusion

In this work, we have shown that using an attack which
exploits the multi-modal property of web pages with the
k-Nearest Neighbour classifier gives us a much higher
accuracy than previous work. We use a large feature
set and learn feature weights by adjusting them based on
shortening the distance towards points in the same class,
and we show that our procedure is robust. The k-NN
costs only seconds to train on a large database, com-
pared to hundreds of hours for previous state-of-the-art
attacks. The attack further performs well in the open-
world experiments if the attacker chooses k and the bias
towards non-monitored pages properly. Furthermore, as

9They can be found at https://crysp.uwaterloo.ca/
software/webfingerprint/
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the attack is designed to automatically converge on un-
protected features, we have shown that our attack is pow-
erful against all known defenses.

This indicates that we need a strong, provable defense
to protect ourselves against ever-improving attacks in the
field. We identify that the optimal simulatable, determin-
istic defense is one with supersequences computed over
the correct anonymity sets. We show how to construct a
class of such defenses based on how much information
the defender is expected to have, and we evaluate these
defenses based on approximations over supersequence
computation and anonymity set selection. We show a sig-
nificantly improved overhead over previous simulatable,
deterministic defenses such as BuFLO and Tamaraw at
the same security level.
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Abstract
In response to increasingly sophisticated state-sponsored
Internet censorship, recent work has proposed a new ap-
proach to censorship resistance: end-to-middle proxying.
This concept, developed in systems such as Telex, Decoy
Routing, and Cirripede, moves anticensorship technology
into the core of the network, at large ISPs outside the
censoring country. In this paper, we focus on two techni-
cal obstacles to the deployment of certain end-to-middle
schemes: the need to selectively block flows and the need
to observe both directions of a connection. We propose a
new construction, TapDance, that removes these require-
ments. TapDance employs a novel TCP-level technique
that allows the anticensorship station at an ISP to function
as a passive network tap, without an inline blocking com-
ponent. We also apply a novel steganographic encoding
to embed control messages in TLS ciphertext, allowing us
to operate on HTTPS connections even under asymmetric
routing. We implement and evaluate a TapDance proto-
type that demonstrates how the system could function
with minimal impact on an ISP’s network operations.

1 Introduction

Repressive governments have deployed increasingly so-
phisticated technology to block disfavored Internet con-
tent [5, 50]. To circumvent such censorship, many users
employ systems based on encrypted tunnels and proxies,
such as VPNs, open HTTPS proxies, and a variety of
purpose-built anticensorship tools [1, 2, 13, 25, 37]. How-
ever, censors are able to block many of these systems by
discovering and banning the IP addresses of the servers on
which they rely [46,47]. Some services attempt to remain
unblocked by frequently changing their IP addresses, but
they face a tension between the desire to make their net-
work locations known to would-be users and the need to
keep the same information secret from the censor.

To avoid this tension and escape the cat-and-mouse
game that results between censors and anticensorship

tools, researchers have recently introduced a new ap-
proach called end-to-middle (E2M) proxying [21, 26, 49].
In an E2M system, friendly network operators agree to
help users in other, censored countries access blocked
information. These censored users direct traffic toward
uncensored “decoy” sites, but include with such traffic a
special signal (undetectable by censors) through which
they request access to different, censored destinations.
Participating friendly networks, upon detecting this signal,
redirect the user’s traffic to the censored destination. From
the perspective of the censor—or anyone else positioned
between the censored user and the friendly network—the
user appears to be in contact only with the decoy site.
In order to block the system, the censor would have to
block all connections that pass through participating ISPs,
which would result in a prohibitive level of overblocking
if E2M systems were widely deployed at major carriers.

Deployment challenges While E2M approaches ap-
pear promising compared to traditional proxies, they face
technical hurdles that have thus far prevented any of them
from being deployed at an ISP. All existing schemes as-
sume that participating ISPs will be able to selectively
block connections between users and decoy sites. Unfor-
tunately, this requires introducing new hardware in-line
with backbone links, which adds latency and introduces a
possible point of failure. ISPs typically have service level
agreements (SLAs) with their customers and peers that
govern performance and reliability, and adding in-line
flow-blocking components may violate their contractual
obligations. Additionally, adding such hardware increases
the number of components to check when a failure does
occur, even in unrelated parts of the ISP’s network, po-
tentially complicating the investigation of outages and
increasing downtime. Given these risks, ISPs are reluc-
tant to add in-line elements to their networks. In private
discussions with ISPs, we found that despite being willing
to assist Internet freedom in a technical and even finan-
cial capacity, none were willing to deploy existing E2M
technologies due to these potential operational impacts.
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Furthermore, our original E2M proposal, Telex, as-
sumes that the ISP sees traffic in both directions, client-
decoy and decoy-client. While this might be true when
the ISP is immediately upstream from the decoy server,
it does not generally hold farther away. IP flows are of-
ten asymmetric, such that the route taken from source to
destination may be different from the reverse path. This
asymmetry limits an ISP to observing only one side of a
connection. The amount of asymmetry is ISP-dependent,
but tier-2 ISPs typically see lower amounts of asymmetry
(around 25% of packets) than tier-1s, where up to 90%
of packets can be part of asymmetric flows [48]. This
severely constrains where in the network E2M schemes
that require symmetric flows can be deployed.

Our approach In this paper, we propose TapDance,
a novel end-to-middle proxy approach that removes these
obstacles to deployment at the cost of a moderate in-
crease in its susceptibility to active attacks by the censor.
TapDance is the first E2M proxy that works without an
inline-blocking or redirecting element at an ISP. Instead,
our design requires only a passive tap that observes traffic
transiting the ISP and the ability to inject new packets.
TapDance also includes a novel connection tagging mech-
anism that embeds steganographic tags into the ciphertext
of a TLS connection. We make use of this to allow the
system to support asymmetric flows and to efficiently
include large steganographic payloads in a single packet.

Although TapDance appears to be more feasible to de-
ploy than previous E2M designs, this comes with certain
tradeoffs. As we discuss in Section 5, there are several
active attacks that a censor could perform on live flows in
order to distinguish TapDance connections from normal
traffic. We note that each of the previous E2M schemes is
also vulnerable to at least some active attacks. As a poten-
tial countermeasure, we introduce active defense mech-
anisms, which utilize E2M’s privileged vantage point in
the network to induce false positives for the attacker.

Even with these tradeoffs, TapDance provides a real-
istic path to deployment for E2M proxy systems. Given
the choice between previous schemes that appear not to
be practically fieldable and our proposal, which better
satisfies the constraints of real ISPs but requires a careful
defense strategy, we believe TapDance is the more viable
route to building anticensorship into the Internet’s core.

Organization Section 2 reviews the three existing
E2M proposals. Section 3 introduces our chosen cipher-
text steganography mechanism, and Section 4 explains
the rest of the TapDance construction. In Section 5, we
analyze the security of our scheme and propose active
defense strategies. In Section 6, we compare TapDance to
previous E2M designs. We describe our proof-of-concept
implementation in Section 7 and evaluate its performance
in Section 8. We discuss future work in Section 9 and re-
lated work in Section 10, and we conclude in Section 11.

2 Review of Existing E2M Protocols

There are three original publications on end-to-middle
proxying: Telex [49], Decoy Routing [26], and Cirri-
pede [21]. The designs for these three systems are largely
similar, although some notable differences exist. Figure 1
show the Telex scheme, as one example.

In each design, a client wishes to reach a censored
website. To do so, the client creates an encrypted connec-
tion to an unblocked decoy server, with the connection to
this server passing through a cooperating ISP (outside the
censored country) that has deployed an ISP station. The
decoy can be any server and is oblivious to the operation
of the anticensorship system. The ISP station determines
that a particular client wishes to be proxied by recogniz-
ing a tag. In Telex, this is a public-key steganographic tag
placed in the random nonce of the ClientHello message of
a Transport Layer Security (TLS) connection [12]. In Cir-
ripede, users register their IP address with a registration
server by making a series of TCP connections, encoding
a similar tag in the initial sequence numbers (ISNs). In
Decoy Routing, the tag is placed in the TLS client nonce
as in Telex, but the client and the ISP station are assumed
to have a shared secret established out of band.

In both Telex and Cirripede, the tag consists of an el-
liptic curve Diffie-Hellman (ECDH) public key point and
a hash of the ECDH secret shared with the ISP station. In
Decoy Routing, the tag consists of an HMAC of the previ-
ously established shared secret key, the current hour, and
a per-hour sequence number. In all cases, only the station
can observe this tag, using its private key or shared secret.

Once the station has determined that a particular flow
should be proxied, all three designs employ an inline
blocking component at the ISP to block further commu-
nication between the client and the decoy server. Telex
and Decoy Routing both block only the tagged flow us-
ing an inline-blocking component. Cirripede blocks all
connections from a registered client. Cirripede’s inline
blocking is based on the client’s IP address and has a long
duration, possibly making it easier to implement than the
flow-based blocking used in Telex and Decoy Routing.

After the TLS handshake has completed and the client-
server communication is blocked, all three designs have
the station impersonate the decoy server, receiving pack-
ets to and spoofing packets from its IP address. In Telex,
the station uses the tag in the TLS client nonce to com-
pute a shared secret with the client, which the client uses
to seed its secret keys during the key exchange with the
decoy server. Using this seed and the ability to observe
both sides of the TLS handshake, Telex derives the master
secret under which the TLS client-server communication
is encrypted, and continues to use this shared secret be-
tween station and client. In Cirripede and Decoy Routing,
the station changes the key stream to be encrypted under
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Encrypted 
Data 
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Figure 1: Telex End-to-Middle Scheme — To establish communication with an ISP-deployed Telex station, the client performs a
TLS connection with an unblocked decoy server. In the TLS ClientHello message, it replaces the random nonce with a public-key
steganographic tag that can be observed by the Telex station at the on-path ISP outside the censored country. When the station detects
this tag with its private key, it blocks the true connection using an inline-blocking component and forwards packets for the remainder
of the handshake. Once the handshake is complete, Telex stops forwarding and begins to spoof packets from the decoy server in
order to communicate with the client. While here we only show the details of Telex, all of the first generation ISP proxies (Telex,
Cirripede, and Decoy Routing) are similar in architecture; we note differences in Section 2.

the secret exchanged during registration (Cirripede) or
previously shared (Decoy Routing).

Changing the communication to a new shared secret
opens Cirripede and Decoy Routing to replay and preplay
attacks by the adversary. If an adversary suspects a user
is accessing these proxies, it can create a new connection
that replays parts from the suspected connection and re-
ceive confirmation that a particular flow uses the proxy.
For example, in Decoy Routing, the adversary can sim-
ply use the suspected connection’s TLS client nonce in a
new connection and send a request. If the first response
cannot be decrypted with the client-server shared secret,
it confirms that the particular nonce was tagged. For Cir-
ripede, a similar replay of the tagged TCP SYN packets
will register the adversary’s client, and a connection to the
decoy server over TLS will confirm this: if the adversary
can decrypt the TLS response with the established mas-
ter secret, the adversary is not registered with Cirripede,
indicating that the TCP SYN packets were not a secret
Cirripede tag. Otherwise, if the adversary cannot decrypt
the response, this indicates that the SYN packets were
indeed a Cirripede tag.

Telex is not vulnerable to either of these attacks, be-
cause the client uses the client-station shared secret to
seed its half of the key exchange. This allows the station
to also compute the client-server shared master secret and
verify that the client has knowledge of the client-server

shared secret by verifying the TLS finished messages. If
an adversary attempted to replay the client random in a
new connection, Telex would be able to determine that the
user (in this case, the adversary) did not have knowledge
of the client-station shared secret, because the user did not
originally generate the Diffie-Hellman tag. Thus, Telex is
unable to decrypt and verify the TLS finished messages
as expected, and will not spoof messages from the server.

Both Cirripede and Decoy Routing function in the pres-
ence of asymmetric flows. In Cirripede, the station only
needs to observe communication from the client to the
decoy server in order to establish its shared secret with
the client. In Decoy Routing, the client sends any missing
information (i.e., information contained in messages from
the server to the client) via another covert channel. In
contrast, Telex’s approach does not handle asymmetric
paths, as the station needs to see both sides of the commu-
nication in order to learn the client-server shared master
secret.

Unlike any of the existing schemes, TapDance func-
tions without an inline blocking component, potentially
making it much easier to deploy at ISPs. Unlike Telex, it
supports asymmetric flows, but in doing so it sacrifices
some of Telex’s resistance to active attacks. We defer
a complete comparison between TapDance and the first-
generation E2M schemes until Section 6, after we have
introduced the details of the system.
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3 Ciphertext Covert Channel

Previous E2M covert channels have been limited in
size, forcing implementations to use small payloads or
several flows in order to steganographically communicate
enough information to the ISP station. However, because
TapDance does not depend on inline flow-blocking and
must work with asymmetric flows, we need a way to
communicate the client’s request directly to the TapDance
station while maintaining a valid TLS session between
the client and the decoy server. We therefore introduce
a novel technique, chosen-ciphertext steganography,
which allows us to encode a much higher bandwidth
steganographic payload in the ciphertexts of legitimate
(i.e., censor-allowed) TLS traffic.

The classic problem in steganography is known as the
prisoners’ problem, formulated by Simmons [41]: two
prisoners, Alice and Bob, wish to send hidden messages in
the presence of a jailer. These messages are disguised in
legitimate, public communication between Alice and Bob
in such a way that the jailer cannot detect their presence.
Many traditional steganographic techniques focus on em-
bedding hidden messages in non-uniform cover channels
such as images or text [4]; in the network setting, each
layer of the OSI model may provide potential cover traf-
fic [19] of varying bandwidths. To avoid detection, these
channels must not alter the expected distribution of cover
traffic [32]. In addition, use of header fields in network
protocols for steganographic cover limits the carrying
capacity of the covert channel.

We observe it is possible for the sender to use stream
ciphers and CBC-mode ciphers as steganographic chan-
nels. This allows a sender Alice to embed an arbitrary
hidden message to a third party, Bob, inside a valid ci-
phertext for Cathy. That is, Bob will be able to extract
the hidden message and Cathy will be able to decrypt the
ciphertext, without alerting outside entities (or, indeed,
Cathy, subject to certain assumptions) to the presence of
the steganographic messages.

Moreover, through this technique, we can place lim-
ited constraints on the plaintext (such as requiring it be
valid base64 or numeric characters), while encoding ar-
bitrary data in the corresponding ciphertext. This allows
us to ensure not only that Cathy can decrypt the received
ciphertext, but also that the plaintext is consistent with
the protocol used. Note that this is a departure from the
original prisoners’ problem, as we assume Alice is al-
lowed to securely communicate with Cathy, so long as
this communication looks legitimate to outside entities.

As our technique works both with stream ciphers and
CBC-mode ciphers, which are the two most common
modes used in TLS [28], we will use this building block to
encode steganographic tags and payloads in the ciphertext
of TLS requests.

3.1 Chosen-Ciphertext Steganography

To describe our technique, we start with a stream cipher in
counter mode. The key observation is that counter mode
ciphers, even with authentication tags, have ciphertexts
that are malleable from the perspective of the sender, Al-
ice. That is, stream ciphers have the general property
of ciphertext malleability, in that flipping a single bit in
the ciphertext flips a single corresponding bit in the de-
crypted plaintext. Alice can likewise change bits in the
plaintext to effect specific bits in the corresponding ci-
phertext. Since Alice knows the keystream for the stream
cipher, she can choose an arbitrary string that she would
like to appear in the ciphertext, and compute (decrypt)
the corresponding plaintext. Note that this does not in-
validate the MAC or authentication tag used in addition
to this cipher, because Alice first computes a valid plain-
text, and then encrypts and MACs it using the standard
library, resulting in ciphertext that contains her chosen
steganographic data.

Furthermore, Alice can “fix” particular bits in the plain-
text and allow the remaining bits to be determined by
the data encoded in the ciphertext. For example, Alice
could require that each plaintext byte starts with 5 bits
set to 00110, and allow the remaining 3 bits to be chosen
by the ciphertext. In this way, the plaintext will always
be an ASCII character from the set “01234567” and the
ciphertext has a steganographic “carrying capacity” to
encode 3 bits per byte.

While it seems intuitive that Alice can limit plaintext
bits for stream ciphers, it may not be as intuitive to see
how this is also possible for CBC-mode ciphers. How-
ever, while the ciphertext malleability of stream ciphers
allows Alice partial control over the resulting plaintext,
we show that it is also possible to use this technique in
other cipher modes, with equal control over the plaintext
values.

In CBC mode, it is possible to choose the value of
an arbitrary ciphertext block (e.g., C2), and decrypt it
to compute an intermediary result. This intermediary
result must also be the result of the current plaintext
block (P2) xored with the previous ciphertext block (C1)
in order to encrypt to the chosen ciphertext value. This
means that, given a ciphertext block, we can choose ei-
ther the plaintext value (P2), or the previous ciphertext
block (C1), and compute the other. However, we can
also choose a mixture of the two; that is, for each bit
we pick in the plaintext, we are “forced” to choose that
corresponding bit in the previous plaintext block and vise-
versa. Choosing any bits in a ciphertext block (C1) will
force us to repeat this operation for the previous plain-
text block (P1) and twice previous ciphertext block (C0).
We can choose to pick the value of plaintext blocks (fix-
ing the corresponding ciphertext blocks), all the way
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Figure 2: CBC Chosen Ciphertext Example — In this exam-
ple, bits chosen by the encoding are in black, while bits “forced”
by computation are red. For example, we choose all 6-bits to
be 0 in the last ciphertext block. This forces the block’s inter-
mediary to be “forced” to a value beyond our control; in this
case 001101. To obtain this value, we can choose a mixture
of bits in the plaintext, which forces the corresponding bits in
the previous ciphertext block. In this example, we choose the
plaintext block to be of the form 1xx1xx, allowing us to choose
4-bits in the ciphertext, which we choose to be 0s. Thus, the
ciphertext has the form x00x00. We solve for the unknown bits
in the ciphertext and plaintext (1xx1xx⊕ x00x00 = 001101) to
fill in the missing “fixed” values. We can repeat this process
backward until the first block, where we simply compute the
IV in order to allow choosing all the bits in the first plaintext
block.

back to the first plaintext block, where we are left to
decide if we want to choose the value of the first plain-
text block or the Initialization Vector (IV) value. At this
point, fixing the IV is the natural choice, as this leaves
us greater control over the first plaintext block. Figure 2
shows an example of this backpropagation, encoding a
total of 4-bits per 6-bit ciphertext block (plus a full final
block).

This scheme allows us to restrict plaintexts encrypted
with CBC to the same ASCII range as before, while still
allowing us to encode arbitrary-length messages in the
ciphertext.

While the sender can encode any value in the ciphertext
in this manner, we do not wish to change the expected
ciphertext distribution. The counter and CBC modes of
encryption both satisfy indistinguishability from random
bits [38], so encoding anything that is distinguishable
from a uniform random string would allow third par-
ties (e.g., a network censor) to detect this covert chan-
nel. To prevent this, Alice encrypts her hidden message
if necessary, using an encryption scheme that produces
ciphertexts indistinguishable from random bits. The re-
sulting ciphertext for Bob is then encoded in the CBC
or stream-cipher ciphertext as outlined above. To an out-
side adversary, this resulting “ciphertext-in-ciphertext”
should still be a string indistinguishable from random, as
expected.

4 TapDance Architecture

4.1 Protocol Overview

The TapDance protocol requires only a passive network
tap and traffic injection capability, and is carefully de-
signed to work even if the station is unable to observe
communication between the decoy server and the client.
To accomplish this, we utilize several tricks gleaned from
a close reading of the TCP specification [35] to allow the
TapDance station to impersonate the decoy server without
blocking traffic between client and server.

Figure 3 gives an overview of the TapDance protocol.
In the first step, the client establishes a normal TLS con-
nection to the decoy web server. Once this handshake
is complete, the client and decoy server share a master
secret, which they use to generate encryption keys, MAC
keys, and initialization vector or sequence state.

The TapDance protocol requires the client to leak
knowledge of the client-server master secret, thereby al-
lowing the station to use this shared secret to encrypt all
communications. The client encodes the master secret as
part of a steganographic tag visible only to the TapDance
station. This tag is hidden in an incomplete HTTP request
sent to the decoy server through the encrypted channel.
Since this request is incomplete, the decoy server will not
respond with data to the client; this can be accomplished,
for example, by simply withholding the two consecutive
line breaks that mark the end of an HTTP request. The
decoy server will acknowledge this data only at the TCP
level by sending a TCP ACK packet and will then wait
for the rest of the client’s incomplete HTTP request until
it times out. As shown in Figure 5, our evaluation reveals
that most TLS hosts on the Internet will leave such in-
complete request connections open for at least 60 seconds
before sending additional data or closing the connection.

When the TapDance station observes this encrypted
HTTP request, it is able to extract the tag (and hence the
master secret), as discussed in detail in Section 4.2. The
station then spoofs an encrypted response from the decoy
server to the client. This message acts as confirmation
for the client that the TapDance station is present. In
particular, this message is consistent with a pipelined
HTTPS connection, so by itself does not indicate that
TapDance is in use.

At the TCP level, the client acknowledges this spoofed
data with a TCP ACK packet, and because there is no
inline-blocking between it and the server, the ACK will
reach the server. However, because the acknowledgment
number is above the server’s SND.NXT , the server will
not respond. Similarly, if the client responds with addi-
tional data, the acknowledgment field contained in those
TCP packets will also be beyond what the server has sent.
This allows the TapDance station to continue to imper-
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Figure 3: TapDance Overview — (1) The client performs a normal TLS handshake with an unblocked decoy server, establishing a
session key K. (2) The client sends an incomplete HTTP request through the connection and encodes a steganographic tag in the
ciphertext of the request, using a novel encoding scheme (Section 4.2). (3) The TapDance station observes and extracts the client’s
tag, and recovers the client-server session secret K. (4) The server sends a TCP ACK message in response to the incomplete HTTP
request and waits for the request to be completed or until it times out. (5) The station, meanwhile, spoofs a response to the client from
the decoy server. This message is encrypted under K and indicates the station’s presence to the client. (6) The client sends a TCP
ACK (for the spoofed data) and its real request (blocked.com). The server ignores both of these, because the TCP acknowledgment
field is higher than the server’s TCP SND.NXT. (7) The TapDance station sends back the requested page (blocked.com) as a spoofed
response from the server. (8) When finished, the client and TapDance station simulate a standard TCP/TLS authenticated shutdown,
which is again ignored by the true server. (9) After the connection is terminated by the client, the TapDance station sends a TCP RST
packet that is valid for the server’s SND.NXT, silently closing its end of the connection before its timeout expires.
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sonate the server, acknowledging data the client sends,
and sending its own data in response, without interference
from the server itself.

4.2 Tag Format

In TapDance, we rely on elliptic curve Diffie-Hellman to
agree on a per-connection shared secret between the client
and station, which is used to encrypt the steganographic
tag payload. The tag consists of the client’s connection-
specific elliptic curve public key point (Q = eG), encoded
as a string indistinguishable from uniform, followed by
a variable-length encrypted payload used to communi-
cate the client-server TLS master secret (and intent for
proxying) to the station.

In order to properly disguise the client’s elliptic curve
point, we use Elligator 2 [8] over Curve25519 [7]. Elliga-
tor 2 is an efficient encoding function that transforms, for
certain types of elliptic curves, exactly half of the points
on the curve to strings that are indistinguishable from
uniform random strings.

The client uses the TapDance station’s public key point
(P= dG) and its own private key (e) to compute an ECDH
shared secret with the station (S = eP = dQ), which is
used to derive the payload encryption key. The encrypted
payload contains an 8-byte magic value used by the sta-
tion to detect successful decryption, the client and server
random nonces, and the client-server master secret of the
TLS connection. With this payload, typically contained
in a single packet from the client, the station is able to
derive the TLS master secret between client and server.

We insert the tag, composed of the encoded point and
encrypted payload, into the ciphertext of the client’s in-
complete request to the server using the chosen cipher-
text steganographic channel described in Section 3. In
order to avoid the server generating unwanted error mes-
sages, we maintain some control over the plaintext that the
server receives using the plaintext-limiting technique as
described in Section 3. Specifically, we split the tag into
6-bit chunks and encode each chunk in the low order bits
of a ciphertext byte. This allows the two most significant
bits to be chosen freely in the plaintext (i.e. not decided
by the decryption of the tag-containing ciphertext). We
choose these two bits so that the plaintext always falls
within the ASCII range 0x40 to 0x7f. We verified that
Apache was capable of handling this range of characters
in a header line without triggering an error.

5 Security Analysis

Our threat model is similar to that of previous end-to-
middle designs. We assume an adversarial censor that
can observe, alter, block, or inject network traffic within
their domain or geographic region (i.e., country) and may

gain access to foreign resources, such as VPNs or private
servers, by leasing them from providers. Despite control
over its network infrastructure, however, we assume the
censor does not have control over end-users’ computers,
such as the ability to install arbitrary programs or Trojans.

The censor can block its citizens’ access to websites it
finds objectionable, proxies, or other communication end-
points it chooses, using IP blocking, DNS blacklists, and
deep-packet inspection. We assume the censor uses black-
listing to block resources and that the censor does not
wish to block legitimate websites or otherwise cut them-
selves off from the rest of the Internet, which may inhibit
desirable commerce or communication. In addition, we
assume that the censor allows end-to-end encrypted com-
munication, specifically TLS communication. As web-
sites increasingly support HTTPS, censors face increasing
pressures against preventing TLS connections [14].

While the threat model for TapDance is similar to those
assumed by prior end-to-middle schemes, our fundamen-
tally new design has a different attack surface than the
others. We perform a security analysis of TapDance and
compare it to the previous generation designs, focusing
on the adversarial goal of distinguishing normal TLS con-
nections from TapDance connections. In particular, we
do not attempt to hide the deployment locations of the
TapDance stations themselves.

5.1 Passive Attacks

TLS handshake TLS allows implementations to sup-
port many different extensions and cipher suites. As a
result, implementations can be easy to differentiate based
on the ciphers and extensions they claim to support in
their ClientHello or ServerHello messages. In order to
prevent this from being used to locate suspicious imple-
mentations, our proxy must blend in to or mimic another
popular client TLS implementation. For example, we
could support the same set of ciphers and extensions as
Chrome for the user’s platform. Currently, our client
mimics Chrome’s cipher suite list for Linux.

Cryptographic attacks A computationally powerful
adversary could attempt to derive the station’s private
key from the public key. However, our use of ECC
Curve25519 should resist even the most powerful compu-
tation attacks using known discrete logarithm algorithms.
The largest publicly known ECC key to be broken is
only 112 bits, broken over 6 months in 2009 on a 200-
PlayStation3 cluster [9]. In contrast to Telex, TapDance
also supports increasing the key size as needed, as we are
not limited to a fixed field size for our tag.

Forward secrecy An adversary who compromises an
ISP station or otherwise obtains a station’s private key
can use it to trivially detect both future and previously
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recorded flows in order to tell if they were proxy flows.
Additionally, they can use the key to decrypt the user’s
request (and proxy’s response), learning the censored
websites users have visited. To address the first problem,
we can use a technique suggested in Telex [49]. The
ISP station generates many private keys ahead of time and
stores them in either a hardware security module or offline
storage, and provides all of the public keys to the clients.
Clients can then cycle through the public keys they use
based on a course-grained time (e.g., hours or days). The
proxy could also cycle through keys, destroying expired
keys and limiting access to future ones.

To address the second problem, TapDance is compat-
ible with existing forward-secure protocols. For example,
for each new connection it receives, the TapDance station
can generate a new ECDH point randomly, and establish a
new shared secret between this new point and the original
point sent by the client in the connection tag. The sta-
tion sends its new ECDH public point to the client in its
Hello message, and the remainder of the connection is en-
crypted under the new shared secret. This scheme has the
advantage that it adds no new round trips to the scheme
and only 32-bytes to the original ISP station’s response.

Packet timing and length The censor could passively
measure the normal round-trip time between potential
servers and observe the set of packet lengths of encrypted
data that a website typically returns. During a proxy con-
nection, the round-trip time or the packet lengths of the
apparent server may change for an observant censor, as
the station may be closer or have more processing delay
than the true server. This attack is possible on all three
of the first generation E2M schemes, as detailed in [40].
However, such an attack at the application level may be
difficult to carry out in practice, as larger, legitimate web-
sites may have many member-only pages that contain dif-
ferent payload lengths and different processing overhead.
The censor must be able to distinguish between “blind
pages” it cannot confirm are part of the legitimate site and
decoy proxy connections. We note that this is difficult at
the application level, but TCP round-trip times may have
a more consistent and distinguishable difference.

Lack of server response If the TapDance station fails
to detect a client’s flow, it will not respond to the client.
This may appear suspicious to a censor, as the client sends
a request, but there is no response at the application level
from the server. This scenario could occur for three rea-
sons. First, the censor may disrupt the path between client
and TapDance station in order to cause such a timeout,
using one of the active attacks below (such as the routing-
around attack), in order to confirm a particular flow is
attempting to use TapDance. Second, such false pickups
may happen intermittently (due to ISP station malfunc-
tion). Finally, a client may attempt to find new TapDance

stations by probing many potential decoy servers with
tagged TLS connections. Paths that do not contain ISP
stations will have suspiciously long server response times.

To address the last issue, probing clients could send
complete requests and tag their requests with a secret
nonce. The station could record these secret nonces, and,
at a later time (out of band, or through a different Tap-
Dance station), the client can query the station for the
secret nonces it sent. In this way, the client learns new
servers for which the ISP station is willing to proxy with-
out revealing the probing pattern. To address the first two
problems, we could have clients commonly use servers
that support long-polling HTTP push notification. In these
services, normal requests can go unanswered at the ap-
plication layer as long as the server does not have data
to send to the client, such as in online-gaming or XMPP
servers. Another defense is to have the client send com-
plete requests that force the server to keep the connection
alive for additional requests, and to have the TapDance
station inject additional data after the server’s initial re-
sponse. This requires careful knowledge of the timing
and length of the server’s initial response, which could
either be provided by active probing from the station or
information given by the client.

TCP/IP protocol fingerprinting The adversary could
attempt to observe packets coming from potential decoy
servers and build profiles for each server, including the
set of TCP options supported by the server, IP TTL val-
ues, TCP window sizes, and TCP timestamp slope and
offset. If these values ever change, particularly in the
middle of a connection (and only for that connection), it
could be a strong indication of a particular flow using a
proxy at an on-path ISP. To prevent this attack, the station
also needs to build these profiles for servers, either by
actively collecting this profile from potential servers, or
passively observing the server’s responses to non-proxy
connections and extracting the parameters. Alternatively,
the client can signal to the station some of the parame-
ters. First generation schemes varied in defense for this
type of attack; for example, Telex’s implementation is
able to infer and mimic all of these parameters from ob-
serving the servers’ responses, although Telex requires
a symmetric path in order to accomplish this. In theory,
parameters that the adversary can measure for fingerprint-
ing can also be measured by the station and mimicked.
However, given that the adversary has only to find one
distinguisher in order to succeed, server mimicry remains
difficult to achieve in practice.

5.2 Active Attacks

TLS attacks The censor may issue fake TLS certifi-
cates from a certificate authority under its control and
then target TLS sessions with a man-in-the-middle attack.
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While TapDance and previous designs are vulnerable to
this attack, there may be external political pressure that
discourages a censor from this attack, as it may be disrup-
tive to foreign e-commerce in particular. We also argue
that as the number of sites using TLS continues to in-
crease, this attack becomes more expensive for the censor
to perform without impacting performance. Finally, decoy
servers that use certificate pinning or other CA-protection
mechanisms such as Perspectives [45], CAge [27], or CA
country pinning [42], can potentially avoid such attacks.

Packet injection Because TapDance does not block
packets from the client to the true server, it is possible for
the censor to inject spoofed probes from the client that
will reach the server. If the censor can craft a probe that
will result in the server generating a response that reveals
the server’s true TCP state, the censor will be able to use
this response to differentiate real connections from proxy
connections. While the previous designs also faced this
threat [40], the censor had to inject the spoofed packet
in a way that bypassed the station’s ISP inline blocking
element. In TapDance, there is no blocking element, and
so the censor is able to simply send it without any routing
tricks. An example of this attack is the censor sending
a TCP ACK packet with a stale sequence number, or
one for data outside the server’s receive window. The
server will respond to this packet with an ACK containing
the server’s TCP state (sequence and acknowledgment),
which will be smaller than the last sequence and/or ac-
knowledgments sent by the station.

There are a few ways to deal with this attack if the cen-
sor employs it. First, we can simply limit each proxy con-
nection to a single request from the client and a response
from the station, followed immediately by a connection
close. This will dramatically increase the overhead of the
system but will remove the potential for the adversary to
use injected packets and their responses to differentiate
between normal and proxy connections. This is because
the TCP state between the station and real server will not
diverge until the station has sent its response, leaving only
a very small window where the censor can probe the real
server for its state and get a different response.

Active defense Alternatively, in order to frustrate the
censor from performing packet injection attacks, we can
perform active defense, where the station observes active
probes such as the TCP ACK and responds to them in
a way that would “reveal” a proxy connection, even for
flows that are not proxy connections. To the censor, this
would make even legitimate non-proxy connections to the
server appear as if they were proxy connections.

As an example, consider a censor that injects a stale
ACK for suspected proxy connections. Connections that
are actually proxy connections will respond with a stale
ACK from the server, revealing the connection to the

censor. However, the station could detect the original
probe, and if it is not a proxied connection, respond with
a stale ACK so as to make it appear to the censor as if it
were. In this way, for every probe the censor makes, they
will detect, sometimes incorrectly, that the connection
was a proxy connection.

Replay attacks The censor could capture suspected
tags and attempt to replay them in a new connection, to
determine if the station responds to the tag. To specifically
attack TapDance, the adversary could replay the client’s
tag-containing request packet after the connection has
closed and observe if the station appears to send back a
response. We note that both Cirripede and Decoy Routing
are also vulnerable to tag replay attacks, although Telex
provides some limited protection from them. To protect
against duplicated tags, the station could record previous
tags and refuse to respond to a repeated tag. To avoid
saving all tags, the station could require clients to include
a recent timestamp in the encrypted payload1.

However, such a defense may enable a denial of ser-
vice attack: the censor could delay the true request of
a suspected client and send it in a different connection
first. In this preplay version of the attack, the censor is
also able to observe whether the station responds with the
ClientHello message. If it does, the censor will know the
suspected request contained a tag.

Denial of service The censor could attempt to exhaust
the station’s resources by creating many proxy connec-
tions, or by sending a large volume of traffic that the ISP
station will have to check for tags using an expensive ECC
function. We estimate that a single ISP station deploy-
ment of our implementation on a 16-core machine could
be overwhelmed if an attacker sends approximately 1.2
Gbps of pure TLS application data packets past it. This
type of attack is feasible for an attack with a small botnet,
or even a few well-connected servers. Because ISPs com-
monly perform load balancing by flow-based hashing, we
can scale our deployment linearly to multiple branches of
machines and use standard intrusion detection techniques
to ignore packets that do not belong to valid connections
or that come from spoofed or blacklisted sources [34].

Routing around the proxy A recent paper by
Schuchard et al. details a novel attack against our and
previous designs [40]. In this attack, the censor is able
to change local routing policy in a way that redirects
outbound flows around potential station-deploying ISPs
while still allowing them to reach their destinations. This
prevents the ISP station from being able to observe the
tagged flows and thus from being a proxy for the clients.
However, Houmansadr et al. investigate the cost to the

1The client random which is sent in the encrypted payload already
contains a timestamp for the first 4 bytes
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censor of performing such an attack and find it to be pro-
hibitively expensive [23]. Although both of these papers
ultimately contribute to deciding which ISPs should de-
ploy proxies in order to be most resilient, we consider
such a discussion outside our current scope.

Tunneling around the proxy A more conceptually
simple attack is for the censor to transparently tunnel spe-
cific suspected flows around the ISP station. For example,
the censor could rent a VPN or VPS outside the country
and send specific flows through them to avoid their paths
crossing the ISP station. This attack is expensive for the
adversary to perform, and so could not reasonably be
performed for an entire country. However, it could be per-
formed for particular targets and combined with previous
passive detection attacks to aid the censor in confirming
whether particular users are tagging their flows.

Complicit servers A censor may be able to compro-
mise, coerce, or host websites that can act as servers for
decoy connections. The vantage point from a server al-
lows them to observe incomplete requests from clients,
including the plaintext that the client mangled in order to
produce the tag in the ciphertext. This allows the censor
to both observe specific clients using the ISP station and
also disrupt use of the proxy with the particular server.
There is little TapDance or previous designs can do to
avoid cooperation between servers and the censor, as the
two can simply compare traffic received and detect proxy
flows as ones that have different data at the two vantage
points. However, using this vantage point to disrupt proxy
use could be detected by clients and the server avoided
(and potentially notified in the case of a compromise).

6 Comparison

On the protocol level, TapDance bears more similarity
to Telex than Cirripede, in that clients participate in Tap-
Dance on a per-connection basis, rather than participating
in a separate registration phase as in Cirripede, and in
that client-station communication, after the initial Diffie-
Hellman handshake, is secured using the client-server
master secret. In order to conserve bandwidth, our design,
like both Telex and Cirripede, leverages elliptic curve
cryptography to signal intent to use the system and to
establish a shared secret between client and station.

However, TapDance exhibits several important differ-
ences from previous protocols, which has implications
for both security and functionality. As discussed in Sec-
tion 1, one of the largest challenges to deploying E2M
proxies at ISPs is the inline flow-blocking component.
TapDance has the singular advantage in that it allows
client-server communication to continue unimpeded. In
fact, our design requires only that the TapDance station
be able to passively observe communication from client

to server and be able to inject messages into the network;
the station can be oblivious to communication passing
from server to client.

The advantages of the TapDance protocol stem from its
careful use of chosen-ciphertext steganography (described
in Section 3) to hide the client’s tag and the fact that a high
percentage of servers ignore stale TCP-level messages.
In contrast, previous proposals rely on inline blocking to
prevent server-client communication, and TCP sequence
numbers and TLS ClientHello random nonces to disguise
the client’s steganographic tag. In general, these fields are
useful in steganography because these strings should be
uniformly random for legitimate connections, providing a
good cover for the tag that replaces them, so long as this
tag is indistinguishable from random.

However, both of these fields are fixed size; each TLS
nonce can be replaced with a 224-bit uniform random
tag, and each TCP sequence number with only 24 bits
of a tag. Cirripede, which encodes the client’s tag into
TCP sequence numbers, uses multiple TCP connections
to convey the full tag to the station. Telex and Decoy
Routing both use a single TLS nonce to encode the client’s
tag. Given the limited bandwidth of these covert channels,
they are useful to convey only short secrets, while the rest
of the payload (such as the request for a blocked website)
must take place in a future packet.

TapDance, on the other hand, leverages chosen-
ciphertext steganography in order to encode stegano-
graphic tags in the ciphertext of a TLS connection, with-
out invalidating the TLS session itself. Encoding the tag
in the ciphertext has several advantages. First, the tag is no
longer constrained to a fixed field size of either 24 or 224
bits, allowing us to encode more information in each tag,
and use larger and more secure elliptic curves. Second,
because the ciphertext is sent after the TLS handshake has
completed, it is possible to encode the connection’s mas-
ter secret in this tag, allowing the station to decrypt the
TLS session from a single packet, and without requiring
the station to observe packets from the server.

In addition, TapDance takes advantage of recent work
by Bernstein et al. [8], in order to disguise elliptic curve
points as strings indistinguishable from uniform, namely
Elligator 2. Traditional encoding of elliptic curve points
is distinguishable from random for several reasons, which
are outlined in detail in [8]. Telex and Cirripede address
this concern by employing two closely related elliptic
curves, which is less efficient than TapDance’s use of
Elligator 2, as the latter method requires only a single
elliptic curve to achieve the same functionality.

From a security perspective, the only attacks unique
to TapDance are the lack of server response and packet
injection attacks. Besides these, we find our design has
no additional vulnerabilities from which all previous de-
signs were immune. While these two attacks do pose a
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Telex [49] Cirripede [21] Decoy Routing [26] TapDance

Steganographic channel TLS client random TCP ISNs TLS client random TLS ciphertext
Works without inline components � � � �
Handles asymmetric flows � � � �
Proxies per flow � � � �
Replay/preplay attack resistant � � � �
Traffic analysis defense � � � �

Table 1: Comparing E2M Schemes — Unlike previous work, TapDance operates without an inline flow-blocking component at
cooperating ISPs. However, it is vulnerable to active attacks that some previous designs resist. No E2M system yet defends against
traffic analysis or website fingerprinting, making this an important area for further study.

threat to TapDance, the benefits of a practical ISP sta-
tion deployment—at least as a bridge to stronger future
systems—may outweigh the potential risks.

In summary, our approach obviates the need for an in-
line blocking element at the ISP, which is a requirement
of Telex, Cirripede, and Decoy Routing, while preserv-
ing system functionality in the presence of asymmetric
flows, which is an advantage over Telex. In addition, the
covert channel used in TapDance is higher bandwidth
than that of previous proposals and holds potential for
future improvements (e.g., in terms of number of commu-
nication rounds required and flexible security levels) of
client-station protocols.

7 Implementation

We have implemented TapDance in two parts: a client
that acts as a local HTTP proxy for a user’s browser, and
a station that observes a packet tap at an ISP and injects
traffic when it detects tagged connections. Our station
code is written in approximately 1,300 lines of C, using
libevent, OpenSSL, PF_RING [33], and forge_socket2.

7.1 Client Implementation

Our client is written in approximately 1,000 lines of C us-
ing libevent [29] and OpenSSL [36]. The client currently
takes the domain name of the decoy server as a command
line argument, and for each new local connection from
the browser, creates a TLS connection to the decoy server.
Once the handshake completes, the client sends the in-
complete response to prevent the server from sending ad-
ditional data, and to encode the secret tag in the ciphertext
as specified in Section 4.2. The request is simply an HTTP
request with a valid HTTP request line, “Host” header,
and an “X-Ignore” header that precedes the “garbage”
plaintext that will be computed to result in the chosen tag
appearing in the ciphertext. We have implemented our
ciphertext encoding for AES_128_GCM [39], although

2https://github.com/ewust/forge_socket/

it also works without modification for AES_256_GCM
cipher suites. We have implemented Elligator 2 to work
with Curve25519, in order to encode the client’s public
point in the ciphertext as a string that is indistinguishable
from uniform random. After this 32-byte encoded point,
the client places a 144-byte encrypted payload. This pay-
load is encrypted using a SHA-256 hash of the 32-byte
shared secret (derived from the client’s secret and station’s
public point) using AES-128 in CBC mode. We use the
first 16-bytes of the shared secret hash as the key, and the
last 16 bytes as the initialization vector (IV). The payload
contains an 8-byte magic value, the 48-byte TLS master
secret, 32-byte client random, 32-byte server random, and
a 16-byte randomized connection ID that allows a client
to reconnect to a previous proxy connection in case the
underlying decoy connection is prematurely closed.

7.2 Station Implementation

Our TapDance station consists of a 16-core Supermicro
server connected over a gigabit Ethernet to a mirror port
on an HP 6600-24G-4XG switch in front of a well-used
Tor exit node generating about 160 Mbps of traffic. The
station uses PF_RING, a fast packet capture Linux kernel
module, to read packets from the mirror interface. In
addition to decreasing packet capture overhead, PF_RING
supports flow clustering, allowing our implementation
to spread TCP flow capture across multiple processes.
Using this library, our station can have several processes
on separate cores share the aggregate load.

For each unique flow (4-tuple), we keep a small amount
of state whether we have seen an Application Data packet
for the flow yet. If we have not, we verify the current
packet’s TCP checksum, and inspect the packet to deter-
mine if it is an Application Data packet. If it is, we mark
this flow as having been inspected, and pass the packet
ciphertext to the tag extractor function. This function
extracts the potential tag from the ciphertext, decoding
the client’s public point using Elligator 2, generating the
shared secret using Curve25519, and hashing it to get
the AES decryption key for the payload. The extractor
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decrypts the 144-byte payload included by the client, and
verifies that the first 8 bytes are the expected magic value.
If it is, the station knows this is a tagged flow, and uses
the master secret and nonces extracted from the encrypted
payload to compute the key block, which contains encryp-
tion and decryption keys, sequence numbers or IVs, and
MAC keys (if not using authenticated encryption) for the
TLS session between the client and server.

This “ciphertext-in-ciphertext” is indistinguishable
from random to everyone except the client and station.
The 144-byte payload is encrypted using a strong symmet-
ric block cipher (AES-128) in CBC mode, whose key is
derived from the client-station shared secret. The remain-
der of the tag is the client’s ECDH public point, encoded
using Elligator 2 [8] over Curve25519 [7]. The encoded
point is indistinguishable from uniform random due to
the properties of the Elligator 2 encoding function.

Once the station has determined the connection is a
tagged flow, it sets up a socket in the kernel to allow it
to spoof packets from and receive packets for the server
using the forge_socket kernel module. The station makes
this socket non-blocking, and attaches an SSL object ini-
tialized with the extracted key block to it. The station then
sends a response to the client over this channel, contain-
ing a confirmation that the station has picked up, and the
number of bytes that the client is allowed to send toward
this station before it must create a new connection.

7.3 Connection Limits

Because the server’s connection with the client remains
open, the server receives packets from the client, includ-
ing data and acknowledgments for the station’s data. The
server will initially ignore these messages, however there
are two instances where the server will send data. When
it does so, the censor would be able to see this anoma-
lous behavior, because the server will send data with stale
sequence numbers and different payloads from what the
station sent.

The first instance of the server sending data is when the
server times out the connection at the application level.
For example, web servers can be configured to timeout
incomplete requests after a certain time, by using the
mod_reqtimeout3 module in Apache. We found through
our development and testing the shortest timeout was 20
seconds, although most servers had much longer time-
outs. We measured TLS hosts to determine how long
they would take to time out or respond to an incomplete
request similar to one used in TapDance. We measured
a 1% sample of the IPv4 address space listening on port
443, and the Alexa top million domains using ZMap [15],
and found that many servers had timeouts longer than 5
minutes. Figure 5 shows the fraction of server timeouts.

3http://httpd.apache.org/docs/2.2/mod/mod_reqtimeout.html
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Figure 4: Download Times Through TapDance — We used
Apache Benchmark to download www.facebook.com 5000
times (with a concurrency of 100) over normal HTTPS, through
a single-hop proxy, and through our TapDance proof-of-concept.

The second reason a server will send observable pack-
ets back to the client is if the client sends it a sequence
number that is outside of the server’s current TCP receive
window. This happens when the client has sent more than
a window’s worth of data to the station, at which point the
server will respond with a TCP ACK packet containing
the server’s stale sequence and acknowledgment numbers,
alerting an observant censor to the anomaly.

To prevent both of these instances from occurring in
our implementation, we limit the connection duration to
less than the server’s timeout, and we limit the number
of bytes that a client can send to the station to up to
the server’s receive window size. Receive window sizes
after the TLS handshake completes are typically above
about 16 KB. We note that the station is not limited to the
number of bytes it can send to the client per connection,
making the 16 KB limit have minimal impact on most
download-heavy connections.

In the event that the client wants to maintain its connec-
tion for longer than the duration or send more than 16 KB,
the client can reuse the 16-byte connection ID in a new
E2M TLS connection to the server. The station will de-
code the connection ID and reconnect the new flow to the
old proxy connection seamlessly. This allows the browser
to communicate to the HTTP proxy indefinitely, without
having to deal with the limitations of the underlying decoy
connection.

8 Evaluation

Throughout our evaluation, we used a client running
Ubuntu 13.10 connected to a university network over
gigabit Ethernet. For our decoy server, we used a Tor exit
server at our institution, with a gigabit upstream through
an HP 6600-24G-4XG switch. For our ISP station, we
used a 16-core Supermicro server with 64 GB of RAM,
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Figure 5: Timeouts for Decoy Destinations — To measure
how long real TLS hosts will leave a connection open after re-
ceiving the incomplete request used in TapDance, we connected
to two sets of TLS hosts (the Alexa top 1 million and a 1% sam-
ple of the IPv4 address space). We sent TapDance’s incomplete
request and timed how long the host would leave the connection
open before either sending data or closing the connection. We
find that over half the hosts will allow connections 60 seconds
or longer.

connected via gigabit NICs to an upstream and to a mirror
port from the HP switch. Our ISP station is therefore able
to observe (but not block) packets to the Tor exit server,
which provides a reasonable amount of background traf-
fic on the order of 160 Mbps. In our tests, the Tor exit
node generates a modest amount of realistic user traffic.
Although not anywhere near the bandwidth of a Tier-1
ISP, Tor exit nodes generate a greater ratio of HTTPS
flows than a typical ISP (due to the Tor browser’s inclu-
sion of the HTTPS Everywhere plugin), and we can use
this microbenchmark to perform a back-of-the-envelope
calculation to the loads we would see at a 40 Gbps Transit
ISP tap.

We evaluate our proof-of-concept implementation with
the goal of demonstrating that our system operates as de-
scribed, and that our implementation is able to function
within the constraints of our mock-ISP. To demonstrate
that our system operates as described, we set Firefox to
use our client as a proxy, and browsed several websites
while capturing packets on the client and the decoy server.
We then manually inspected the recorded packets to con-
firm that there were no additional packets sent by the
server that would reveal our connections to be proxied
connections. Empirically, we note that we are able to
easily browse the Internet through this proxy, for example
watching high-definition YouTube videos.

To evaluate the performance of our system, we created
8 proxy processes on our ISP station, using the same
PF_RING cluster ID in order to share the load across 8
cores. The background traffic from the Tor exit server
does not appear to have a significant impact on the proxy’s
load: each process handles between 20 and 50 flows at a

given time, comprising up to 35 Mbps of TLS traffic. The
CPU load during this time was less than 1%.

We used Apache Benchmark4 in order to issue 5,000
requests through our station proxy, with a concurrency of
100, and compared the performance for fetching a simple
page over HTTP and over HTTPS. We also compare fetch-
ing the same pages directly from the server and through a
single-hop proxy. Figure 4 shows the cumulative distri-
bution function for the total time to download the page.
Although there is a modest overhead for end-to-middle
proxy connections compared to direct or simple proxies,
the overhead is not prohibitive to web browsing habits;
users are still able to interact with the page, and pages
can be expected to load in a reasonable time period. In
particular, our proxy adds a median latency of 270 mil-
liseconds to a page download in our tests when compared
with a direct download.

We find that the CPU performance is bottlenecked by
our single-threaded client. During our tests, the client
consumes 100% CPU on a single core, while each of the
8 processes on the ISP station consume between 4-7%
CPU. We also observe that a majority of the download
time is spent waiting for the connection handshake to
complete with the server. To improve this performance,
we could speculatively maintain a connection pool in or-
der to decrease the wait-time between requests. However,
care must be taken in order to mimic the same connection
pool behaviors that a browser might exhibit.

We also note that although the distribution of down-
load times appear different for ISP station vs. normal
connections, this does not necessarily indicate an observ-
able feature for a censor. This is because our download
involves a second round trip between client and server
before the data reaches the client. The censor would still
have to distinguish between this type of connection behav-
ior and innocuous HTTP pipelined connections. It still
may be possible for the censor to distinguish, however,
as we discussed in Section 5, traffic analysis is an open
problem for existing network proxies, and outside the
scope of this paper.

Tag creation and processing In order to evaluate the
overhead of creating and checking for tags, we timed the
creation and evaluation of 10,000 tags. We were able to
create over 2,400 tags/second on our client and verify over
12,000 tags/second on a single core of our ISP station. We
find that the majority of time (approximately 80%) during
tag creation is spent performing the expected three ECC
point multiplications (an expected two to generate the
client’s Elligator-encodable public point and one to gen-
erate the shared secret). Similarly, during tag checking,
nearly 90% of the computation time is spent on the single
ECC point multiplication. Faster ECC implementations

4http://httpd.apache.org/docs/2.2/programs/ab.html
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(such as tuned-assembly or ASICs) could have a signif-
icant impact toward improving the performance of tag
verification on the ISP station.

Server support In order to measure how many servers
can act as decoy destinations, we probed samples of the
IPv4 address space as well as the Alexa top million hosts
with tests to indicate support for TapDance. In our first
experiment, we tested how long servers would wait to
timeout an incomplete request, such as the one used by
the client in TapDance. We scanned TLS servers in a 1%
sample of the IPv4 address space, as well as the Alexa top
million hosts, and sent listening servers a TLS handshake,
followed by an incomplete HTTP request containing the
full range of characters used in the TapDance client. We
timed how long each server waited to either respond or
close the connection. Servers that responded immediately
do not support the TapDance incomplete request, either
because they do not support incomplete requests, or the
request contained characters outside the allowed range.
Figure 5 shows the results of this experiment. For the
20-second timeout used in our implementation, over 80%
of servers supported our incomplete request.

We also measured how servers handled the out-of-
sequence TCP packets sent by the TapDance client, in-
cluding packets acknowledging data not yet sent by the
server. Again, we used a 1% sample of the IPv4 ad-
dress space and the Alexa top million hosts. For each
host, we connected to port 80 and sent an incomplete
HTTP request, followed by a TCP ACK packet and a
data-containing packet, both with acknowledgements set
100 bytes ahead of the true value. We find that the ma-
jority of Alexa servers still allow such packets, however,
older or embedded systems often respond to our probes, in
violation of the TCP specification. We conclude that Tap-
Dance clients must carefully select which servers they use
as end points, but that there is no shortage of candidates
from which to select.

9 Future Work

The long-term goal of end-to-middle proxies is to be im-
plemented and deployed in a way that effectively combats
censorship. While we have suggested a design that we
believe is more feasible than previous work, more engi-
neering must be done to bring it to maturity.

For example, deploying an end-to-middle proxy such
as TapDance at an ISP requires not only scaling up to
meet the demands of proxy users, but also of the deploy-
ing ISP’s non-proxy traffic, which can be on the order of
gigabits per second. One potential solution to this prob-
lem is to make the ISP component as stateless as possible.
Extending TapDance, it may be possible to construct a
“single-packet” version of an end-to-middle proxy. In this

version the client uses the ciphertext steganographic chan-
nel to encode its entire request to the proxy. The proxy
needs only detect these packets, fetch the requesting page,
and inject a response. Such a design would not need to re-
construct TCP flows or keep state across multiple packets,
allowing it to handle higher bandwidths of traffic, at the
expense of making active attacks easier to perform by an
adversary. Further investigation may discover an optimal
balance between these tradeoffs.

Another open research question is where specifically in
the network such proxies should be deployed. Previously,
“Routing around Decoys” [40] outlined several novel at-
tacks that a censor could perform in order to circumvent
many anticensorship deployment strategies. There is on-
going discussion in the literature about the practical costs
of these attacks, and practical countermeasures deploy-
ments could take to protect against them [11, 23].

As mentioned in Section 5, traffic fingerprinting is a
concern for all proxies, and remains an open problem.
Previous work has discussed these attacks as they apply
to ISP-located proxies [40] and other covert channel prox-
ies [18, 20]. Future work in this direction could provide
insight into how to generate or mimic network traffic and
protocols.

Finally, there is room to explore more active defense
techniques, as outlined in Section 5. As end-to-middle
proxies become more prominent, this is likely to become
an important problem, as China has already started to
employ active attacks in order to detect and censor Tor
bridge relays [13, 46, 47]. Collaborating with ISPs will
allow us to explore the technical capabilities and poli-
cies that would permit active defense against these at-
tacks.

10 Related Work

Other anticensorship schemes Besides end-to-
middle proxies, previous anticensorship approaches, in-
cluding Collage [10] and Message in a Bottle [24], have
leveraged using user-generated content on websites to
bootstrap communication between censored users and a
centrally-operated proxy. However, these designs are not
intended to work with low-latency applications such as
web browsing. SkypeMorph [30], FreeWave [22], Cen-
sorSpoofer [43] and StegoTorus [44] are proxies or proxy-
transports that attempt to mimic other protocols, such as
Skype, VoIP, or HTTP in order to avoid censorship by
traffic fingerprinting. However, recent work appears to
suggest that such mimicry may be detectable under certain
circumstances by an adversary [18, 20]. Finally, browser-
based proxies work by running a small flash proxy inside
non-censored users browsers (for example, when they
visit a website), and serve as short-lived proxies for cen-
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sored users [17]. These rapidly changing proxies can be
difficult for a censor to block in practice, though it is
essentially a more fast-paced version of the traditional
censor cat-and-mouse game.

Related steganographic techniques Other tech-
niques [3, 6, 31] leverage pseudorandom public-key en-
cryption (i.e., encryption that produces ciphertext indistin-
guishable from random bits) in order to solve the classic
prisoners’ problem. These techniques allow protocol par-
ticipants to produce messages that mimic the distribution
of an “innocent-looking” communication channel. The
problem setting differs from ours, however, and the en-
coding of hidden messages inside an allowed encrypted
channel (as valid ciphertexts) is not considered.

Dyer et al. [16] introduce a related technique called
format transforming encryption (FTE), which disguises
encrypted application-layer traffic to look like an inno-
cent, allowed protocol from the perspective of deep packet
inspection (DPI) technologies. The basic notion is to
transform ciphertexts to match an expected format; as
DPI technologies typically use membership in a regular
language to classify application-layer traffic, FTE works
by using a (bijective) encoding function that maps a ci-
phertext to a member of a pre-specified language. This
steganographic technique differs significantly from ours,
in that we do not attempt to disguise the use of a partic-
ular internet protocol itself (i.e., TLS), but rather ensure
that our encoded ciphertext does not alter the expected
distribution of the selected protocol traffic (i.e., TLS ci-
phertexts, in our system design).

11 Conclusion

End-to-middle proxies are a promising concept that may
help tilt the balance of power from censors to citizens.
Although previous designs including Telex, Cirripede,
and Decoy Routing have laid the ground for this new
direction, there are several problems when it comes to
deploying any of these designs in practice. Previous de-
signs have required inline blocking elements and some-
times assumed symmetric network paths. To address
these concerns, we have developed TapDance, a novel
end-to-middle proxy that operates without the need for
inline flow blocking. We also described a novel way to
support asymmetric flows without inline-flow blocking,
by encoding arbitrary-length steganographic payloads in
ciphertext. This covert channel may be independently
useful for future E2M schemes and other censorship re-
sistance applications.

Ultimately, anticensorship proxies are only useful if
they are actually deployed. We hope that removing these
barriers to end-to-middle proxying is a step towards that
goal.
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Abstract
Mobile apps often require access to private data, such
as the device ID or location. At the same time, popular
platforms like Android and iOS have limited support for
user privacy. This frequently leads to unauthorized dis-
closure of private information by mobile apps, e.g. for
advertising and analytics purposes. This paper addresses
the problem of privacy enforcement in mobile systems,
which we formulate as a classification problem: When
arriving at a privacy sink (e.g., database update or outgo-
ing web message), the runtime system must classify the
sink’s behavior as either legitimate or illegitimate. The
traditional approach of information-flow (or taint) track-
ing applies “binary” classification, whereby information
release is legitimate iff there is no data flow from a pri-
vacy source to sink arguments. While this is a useful
heuristic, it also leads to false alarms.

We propose to address privacy enforcement as a learn-
ing problem, relaxing binary judgments into a quanti-
tative/probabilistic mode of reasoning. Specifically, we
propose a Bayesian notion of statistical classification,
which conditions the judgment whether a release point is
legitimate on the evidence arising at that point. In our
concrete approach, implemented as the BAYESDROID
system that is soon to be featured in a commercial prod-
uct, the evidence refers to the similarity between the data
values about to be released and the private data stored on
the device. Compared to TaintDroid, a state-of-the-art
taint-based tool for privacy enforcement, BAYESDROID
is substantially more accurate. Applied to 54 top-popular
Google Play apps, BAYESDROID is able to detect 27 pri-
vacy violations with only 1 false alarm.

1 Introduction

Mobile apps frequently demand access to private infor-
mation. This includes unique device and user identifiers,
such as the phone number or IMEI number (identify-
ing the physical device); social and contacts data; the

user’s location; audio (microphone) and video (camera)
data; etc. While private information often serves the core
functionality of an app, it may also serve other purposes,
such as advertising, analytics or cross-application profil-
ing [9]. From the outside, the user is typically unable
to distinguish legitimate usage of their private informa-
tion from illegitimate scenarios, such as sending of the
IMEI number to a remote advertising website to create a
persistent profile of the user.

Existing platforms provide limited protection against
privacy threats. Both the Android and the iOS plat-
forms mediate access to private information via a per-
mission model. Each permission is mapped to a desig-
nated resource, and holds per all application behaviors
and resource accesses. In Android, permissions are given
or denied at installation time. In iOS, permissions are
granted or revoked upon first access to the respective re-
source. Hence, both platforms cannot disambiguate le-
gitimate from illegitimate usage of a resource once an
app is granted the corresponding permission [8].

Threat Model In this paper, we address privacy threats
due to authentic (as opposed to malicious) mobile ap-
plications [4, 18]. Contrary to malware, such applica-
tions execute their declared functionality, though they
may still expose the user to unnecessary threats by in-
corporating extraneous behaviors — neither required by
their core business logic nor approved by the user [11]
— such as analytics, advertising, cross-application pro-
filing, social computing, etc. We consider unauthorized
release of private information that (almost) unambigu-
ously identifies the user as a privacy threat. Henceforth,
we dub such threats illegitimate.

While in general there is no bullet-proof solution
for privacy enforcement that can deal with any type of
covert channel, implicit flow or application-specific data
transformation, and even conservative enforcement ap-
proaches can easily be bypassed [19], there is strong evi-
dence that authentic apps rarely exhibit these challenges.

1
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According to a recent study [9], and also our empiri-
cal data (presented in Section 5), private information is
normally sent to independent third-party servers. Conse-
quently, data items are released in clear form, or at most
following well-known encoding/encryption transforma-
tions (like Base64 or MD5), to meet the requirement of a
standard and general client/server interface.

The challenge, in this setting, is to determine whether
the app has taken sufficient means to protect user pri-
vacy. Release of private information, even without user
authorization, is still legitimate if only a small amount of
information has been released. As an example, if an ap-
plication obtains the full location of the user, but then re-
leases to an analytics server only coarse information like
the country or continent, then in most cases this would
be perceived as legitimate.

Privacy Enforcement via Taint Analysis The short-
comings of mobile platforms in ensuring user privacy
have led to a surge of research on realtime privacy mon-
itoring. The foundational technique grounding this re-
search is information-flow tracking, often in the form of
taint analysis [23, 15]: Private data, obtained via privacy
sources (e.g. TelephonyManager.getSubscriberId(),
which reads the device’s IMSI), is labeled with a taint
tag denoting its source. The tag is then propagated
along data-flow paths within the code. Any such path
that ends up in a release point, or privacy sink (e.g.
WebView.loadUrl(...), which sends out an HTTP re-
quest), triggers a leakage alarm.

The tainting approach effectively reduces leakage
judgments to boolean reachability queries. This can po-
tentially lead to false reports, as the real-world example
shown in Figure 1 illustrates. This code fragment, ex-
tracted from a core library in the Android platform, reads
the device’s IMSI number, and then either (ii) persists
the full number to an error log if the number is invalid
(the loge(...) call), or (ii) writes a prefix of the IMSI
(of length 6) to the standard log while carefully masking
away the suffix (of length 9) as ’x’ characters. Impor-
tantly, data flow into the log(...) sink is not a privacy
problem, because the first 6 digits merely carry model
and origin information. Distinctions of this sort are be-
yond the discriminative power of taint analysis [26].

Quantitative extensions of the core tainting approach
have been proposed to address this limitation. A notable
example is McCamant and Ernst’s [13] information-flow
tracking system, which quantities flow of secret informa-
tion by dynamically tracking taint labels at the bit level.
Other approaches — based e.g. on distinguishability be-
tween secrets [1], the rate of data transmission [12] or the
influence inputs have on output values [14] — have also
been proposed. While these systems are useful as offline
analyses, it is highly unlikely that any of them can be en-

1 String mImsi = ...; // source
2 // 6 digits <= IMSI (MCC+MNC+MSIN) <= 15 (usually 15)
3 if (mImsi != null &&
4 (mImsi.length() < 6 || mImsi.length() > 15)) {
5 loge(” invalid IMSI ” + mImsi); // sink
6 mImsi = null; }
7 log(”IMSI: ” + mImsi.substring(0, 6) + ”xxxxxxxxx”); // sink

Figure 1: Fragment from an internal Android library,
com.android.internal.telephony.cdma.RuimRecords,
where a prefix of the mobile device’s IMSI number
flows into the standard log file

gineered to meet the performance requirements of a re-
altime monitoring solution due to the high complexity of
their underlying algorithms. As an example, McCamant
and Ernst report on a workload on which their analysis
spent over an hour.

Our Approach We formulate data leakage as a clas-
sification problem, which generalizes the source/sink
reachability judgment enforced by standard information-
flow analysis, permitting richer and more relaxed judg-
ments in the form of statistical classification. The mo-
tivating observation is that reasoning about information
release is fuzzy in nature. While there are clear exam-
ples of legitimate versus illegitimate information release,
there are also less obvious cases (e.g., a variant of the
example in Figure 1 with a 10- rather than 6-character
prefix). A statistical approach, accounting for multiple
factors and based on rich data sets, is better able to ad-
dress these subtleties.

Concretely, we propose Bayesian classification. To la-
bel a release point as either legitimate or illegitimate, the
Bayesian classifier refers to the “evidence” at that point,
and computes the likelihood of each label given the ev-
idence. The evidence consists of feature/value pairs.
There are many ways of defining the evidence. In this
study, we concentrate on the data arguments flowing into
release operations, though we intend to consider other
classes of features in the future. (See Section 7.)

Specifically, we induce features over the private values
stored on the device, and evaluate these features accord-
ing to the level of similarity between the private values
and those arising at release points. This distinguishes in-
stances where data that is dependent on private values
flows into a release point, but its structural and/or quan-
titative characteristics make it eligible for release, from
illegitimate behaviors. Failure to make such distinctions
is a common source of false alarms suffered by the taint-
ing approach [4].

To illustrate this notion of features, we return to the ex-
ample in Figure 1. Because the IMSI number is consid-

2
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mImsi = ...;

similarity: 0.4=6/15

��

"404685505601234"
similarity: 1.0=15/15��

loge(...); "invalid IMSI 404685505601234"

log(...); "IMSI: 404685xxxxxxxxx"

Figure 2: Similarity analysis applied to the code in Fig-
ure 1

ered private, we define a respective feature IMSI. Assume
that the concrete IMSI value is “404685505601234”.
Then the value arising at the log(...) release point is
“IMSI: 404685xxxxxxxxx”. The quantitative similarity
between these two values serves as evidence for the de-
cision whether or not log(...) is behaving legitimately.
This style of reasoning is depicted in Figure 2.

Evaluation To evaluate our approach, we have imple-
mented the BAYESDROID system for privacy enforce-
ment. We report on two sets of experiments over
BAYESDROID.

First, to measure the accuracy gain thanks to Bayesian
analysis, we compared BAYESDROID with the Taint-
Droid system [4], a highly popular and mature imple-
mentation of the tainting approach that is considered both
efficient (with average overhead of approximately 10%)
and accurate. We applied both BAYESDROID and Taint-
Droid to the DroidBench suite,1 which comprises the
most mature and comprehensive set of privacy bench-
marks currently available. The results suggest dramatic
improvement in accuracy thanks to Bayesian elimina-
tion of false reports, yielding accuracy scores of 0.96 for
BAYESDROID versus 0.66 for TaintDroid.

The second experiment examines the practical value
of BAYESDROID by applying it to 54 top-popular mo-
bile apps from Google Play. We evaluate two variants of
BAYESDROID, one of which is able to detect a total of
27 distinct instances of illegitimate information release
across 15 of the applications with only 1 false alarm.

Contributions This paper makes the following princi-
pal contributions:

1. Novel approach to leakage detection (Section 2):
We present a Bayesian classification alternative to
the classic tainting approach. Our approach is more
flexible than taint tracking by permitting statistical
weighting of different features as the basis for pri-
vacy judgments.

2. Similarity-based reasoning (Section 3): We instanti-
ate the Bayesian approach by applying quantitative

1http://sseblog.ec-spride.de/tools/droidbench/

similarity judgments over private values and values
about to be released. This enables consideration of
actual data, rather than only data flow, as evidence
for privacy judgments.

3. Implementation and evaluation (Sections 4–5): We
have instantiated our approach as the BAYESDROID
system, which is about to be featured in an IBM
cloud-based security service. We report on two sets
of experiments, whose results (i) demonstrate sub-
stantial accuracy gain thanks to Bayesian reason-
ing, and (ii) substantiate the overall effectiveness of
BAYESDROID when applied to real-world apps. All
the leakage reports by BAYESDROID are publicly
available for scrutiny.2

2 The Bayesian Setting

Our starting point is to treat privacy enforcement as a
classification problem, being the decision whether or not
a given release point is legitimate. The events, or in-
stances, to be classified are (runtime) release points. The
labels are legitimate and illegitimate. Misclassification
either yields a false alarm (mistaking benign information
release as a privacy threat) or a missed data leak (failing
to intercept illegitimate information release).

2.1 Bayes and Naive Bayes
Our general approach is to base the classification on the
evidence arising at the release point. Items of evidence
may refer to qualitative facts, such as source/sink data-
flow reachability, as well as quantitative measures, such
as the degree of similarity between private values and
values about to be released. These latter criteria are es-
sential in going beyond the question of whether private
information is released to also reason about the amount
and form of private information about to be released.

A popular classification method, representing this
mode of reasoning, is based on Bayes’ theorem (or rule).
Given events X and Y , Bayes’ theorem states the follow-
ing equality:

Pr(Y |X) =
Pr(X |Y ) ·Pr(Y )

Pr(X)
(1)

where Pr(Y |X) is the conditional probability of Y given
X (i.e., the probability for Y to occur given that X has
occurred). X is referred to as the evidence. Given ev-
idence X , Bayesian classifiers compute the conditional
likelihood of each label (in our case, legitimate and ille-
gitimate).

We begin with the formal background by stating Equa-
tion 1 more rigorously. Assume that Y is a discrete-
valued random variable, and let X = [X1, . . . ,Xn] be a

2 researcher.ibm.com/researcher/files/us-otripp/Artifacts.zip
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vector of n discrete or real-valued attributes Xi. Then

Pr(Y = yk|X1 . . .Xn)=
Pr(Y = yk) ·Pr(X1 . . .Xn|Y = yk)

Σ j Pr(Y = y j) ·Pr(X1 . . .Xn|Y = y j)
(2)

As Equation 2 hints, training a Bayesian classifier is, in
general, impractical. Even in the simple case where the
evidence X is a vector of n boolean attributes and Y is
boolean, we are still required to estimate a set

θi j = Pr(X = xi|Y = y j)

of parameters, where i assumes 2n values and j assumes
2 values for a total of 2 ·(2n−1) independent parameters.

Naive Bayes deals with the intractable sample com-
plexity by introducing the assumption of conditional in-
dependence, as stated in Definition 2.1 below, which re-
duces the number of independent parameters sharply to
2n. Intuitively, conditional independence prescribes that
events X and Y are independent given knowledge that
event Z has occurred.

Definition 2.1 (Conditional Independence). Given ran-
dom variables X, Y and Z, we say that X is conditionally
independent of Y given Z iff the probability distribution
governing X is independent of the value of Y given Z.
That is,

∀i, j,k. Pr(X = xi|Y = y j,Z = zk) = Pr(X = xi|Z = zk)

Under the assumption of conditional independence,
we obtain the following equality:

Pr(X1 . . .Xn|Y ) = Πn
i=1 Pr(Xi|Y ) (3)

Therefore,

Pr(Y = yk|X1 . . .Xn) =
Pr(Y = yk) ·Πi Pr(Xi|Y = yk)

Σ j Pr(Y = y j) ·Πi Pr(Xi|Y = y j)
(4)

2.2 Bayesian Reasoning about Leakage
For leakage detection, conditional independence trans-
lates into the requirement that at a release point st, the
“weight” of evidence e1 is not affected by the “weight”
of evidence e2 knowing that st is legitimate/illegitimate.
As an example, assuming the evidence is computed as
the similarity between private and released values, if st
is known to be a statement sending private data to the
network, then the similarity between the IMSI number
and respective values about to be released is assumed to
be independent of the similarity between location coor-
dinates and respective values about to be released.

The assumption of conditional independence induces
a “modular” mode of reasoning, whereby the privacy

features comprising the evidence are evaluated indepen-
dently. This simplifies the problem of classifying a re-
lease point according to the Bayesian method into two
quantities that we need to clarify and estimate: (i) the
likelihood of legitimate/illegitimate release (Pr(Y = yk))
and (ii) the conditional probabilities Pr(Xi|Y = yk).

3 Privacy Features

In this section we develop, based on the mathematical
background in Section 2, an algorithm to compute the
conditional likelihood of legitimate versus illegitimate
data release given privacy features Fi. With such an al-
gorithm in place, given values vi for the features Fi, we
obtain

vleg = Pr(legitimate| [F1 = v1, . . . ,Fn = vn])

villeg = Pr(illegitimate| [F1 = v1, . . . ,Fn = vn])

Bayesian classification then reduces to comparing be-
tween vleg and villeg, where the label corresponding to
the greater of these values is the classification result.

3.1 Feature Extraction

The first challenge that arises is how to define the fea-
tures (denoted with italicized font: F) corresponding to
the private values (denoted with regular font: F). This re-
quires simultaneous consideration of both the actual pri-
vate value and the “relevant” values arising at the sink
statement (or release point). We apply the following
computation:

1. Reference value: We refer to the actual private value
as the reference value, denoting the value of pri-
vate item F as [[F]]. For the example in Figures 1–
2, the reference value, [[IMSI]], of the IMSI fea-
ture would be the device’s IMSI number: [[IMSI]]
= “404685505601234”.

2. Relevant value: We refer to value v about to be re-
leased by the sink statement as relevant with respect
to feature F if there is data-flow connectivity be-
tween a source statement reading the value [[F]] of
F and v. Relevant values can thus be computed via
information-flow tracking by propagating a unique
tag (or label) per each private value, as tools like
TaintDroid already do. Note that for a given feature
F, multiple different relevant values may arise at a
given sink statement (if the private item F flows into
more than one sink argument).

3. Feature value: Finally, given the reference value [[F]]
and a set {v1, . . . ,vk} of relevant values for feature
F, the value we assign to F (roughly) reflects the
highest degree of pairwise similarity (i.e., minimal
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distance) between [[F]] and the values vi. Formally,
we assume a distance metric d. Given d, we define:

[[F]]≡ min
1≤i≤k

{d([[F]],vi)}

We leave the distance metric d(. . .) unspecified for
now, and return to its instantiation in Section 3.2.

According to our description above, feature values are
unbounded in principle, as they represent the distance be-
tween the reference value and any data-dependent sink
values. In practice, however, assuming (i) the distance
metric d(. . .) satisfies d(x,y) ≤ max{|x|, |y|}, (ii) ∃c ∈
N. |[[F]]| ≤ c (as with the IMEI, IMSI, location, etc.), and
(iii) [[F]] is not compared with values larger than it, we
can bound [[F]] by c. In general, any feature can be made
finite, with (at most) n+1 possible values, by introducing
a privileged “≥ n” value, which denotes that the distance
between the reference and relevant values is at least n.

3.2 Measuring Distance between Values
To compute a quantitative measure of similarity between
data values, we exploit the fact that private data often
manifests as strings of ASCII characters [4, 9, 27]. These
include e.g. device identifiers (like the IMEI and IMSI
numbers), GPS coordinates, inter-application communi-
cation (IPC) parameters, etc. This lets us quantify dis-
tance between values in terms of string metrics.

Many string metrics have been proposed to date [17].
Two simple and popular metrics, which we have exper-
imented with and satisfy the requirement that d(x,y) ≤
max{|x|, |y|}, are the following:

Hamming Distance This metric assumes that the
strings are of equal length. The Hamming distance be-
tween two strings is equal to the number of positions at
which the corresponding symbols are different (as indi-
cated by the indicator function δc1 �=c2(. . .)):

ham(a,b) = Σ0≤i<|a|δc1 �=c2(a(i),b(i))

In another view, Hamming distance measures the num-
ber of substitutions required to change one string into the
other.

Levenshtein Distance The Levenshtein string met-
ric computes the distance between strings a and b as
leva,b(|a|, |b|) (abbreviated as lev(|a|, |b|)), where

lev(i, j)=





max(i, j) if min(i, j) = 0

min




lev(i−1, j)+1
lev(i, j−1)+1
lev(i−1, j−1)+δai �=b j


 otherwise

Informally, lev(|a|, |b|) is the minimum number of
single-character edits — either insertion or deletion or

Data: Strings u and v
Data: Distance metric d

begin
x ←− |u|< |v| ? u : v // min

y ←− |u| ≥ |v| ? u : v // max

r ←− y
for i = 0 to |y|− |x| do

y′ ←− y[i, i+ |x|−1]
if d(x,y′)< r then

r ←− d(x,y′)
end

end
return r

end
Algorithm 1: The BAYESDROID distance measure-
ment algorithm

substitution — needed to transform one string into the
other. An efficient algorithm for computing the Leven-
shtein distance is bottom-up dynamic programming [24].
The asymptotic complexity is O(|a| · |b|).

Given string metric d(x,y) and pair (u,v) of reference
value u and relevant value v, BAYESDROID computes
their distance according to the following steps:

1. BAYESDROID ensures that both u and v are String

objects by either (i) invoking toString() on refer-
ence types or (ii) converting primitive types into
Strings (via String.valueOf(. . .)), if the argument
is not already of type String.

2. To meet the conservative requirement that |x| = |y|
(i.e., x and y are of equal length), BAYESDROID ap-
plies Algorithm 1. This algorithm induces a sliding
window over the longer of the two strings, whose
width is equal to the length of the shorter string. The
shorter string is then compared to contiguous seg-
ments of the longer string that have the same length.
The output is the minimum across all comparisons.

To ensure that comparisons are still meaningful un-
der length adjustment, we decompose private values into
indivisible information units. These are components of
the private value that cannot be broken further, and so
comparing them with a shorter value mandates that the
shorter value be padded. In our specification, the phone,
IMEI and IMSI numbers consist of only one unit of
information. The Location object is an example of a
data structure that consists of several distinct informa-
tion units. These include the integral and fractional parts
of the longitude and latitude values, etc. BAYESDROID
handles objects that decompose into multiple informa-
tion units by treating each unit as a separate object and
applying the steps above to each unit in turn. The no-
tion of information units guards BAYESDROID against
ill-founded judgments, such as treating release of a sin-
gle IMEI digit as strong evidence for leakage.
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3.3 Estimating Probabilities
The remaining challenge, having clarified what the fea-
tures are and how their values are computed, is to esti-
mate the probabilities appearing in Equation 4:

• We need to estimate the probability of the legiti-
mate event, Pr(legitimate), where illegitimate is the
complementary event and thus Pr(illegitimate) =
1−Pr(legitimate).

• We need to estimate the conditional probabilities
Pr(F = u|legitimate) and Pr(F = u|illegitimate) for
all features F and respective values u.

Pr(legitimate) can be approximated straightforwardly
based on available statistics on the frequency of data
leaks in the wild. For the conditional probabilities, as-
suming feature Xi is discrete valued with j distinct val-
ues (per the discussion in Section 3.1 above), we would
naively compute the estimated conditional probability
θi jk according to the following equation:

θi jk = P̂r(Xi = xi j|Y = yk) =
#D{Xi=xi j∧Y=yk}

#D{Y=yk} (5)

The danger, however, is that this equation would produce
estimates of zero if the data happens not to contain any
training examples satisfying the condition in the numer-
ator. To fix this, we modify Equation 5 as follows:

θi jk = P̂r(Xi = xi j|Y = yk) =
#D{Xi=xi j∧Y=yk}+l

#D{Y=yk}+l·J
(6)

where l is a factor that “smoothens” the estimate by
adding in a number of “hallucinated” examples that are
assumed to be spread evenly across the J possible values
of Xi. In Section 5.1, we provide concrete detail on the
data sets and parameter values we used for our estimates.

4 The BAYESDROID Algorithm

In this section, we describe the complete BAYESDROID
algorithm. We then discuss enhancements of the core
algorithm.

4.1 Pseudocode Description
Algorithm 2 summarizes the main steps of BAYES-
DROID. For simplicity, the description in Algorithm 2
assumes that source statements serve private data as
their return value, though the BAYESDROID implemen-
tation also supports other sources (e.g. callbacks like
onLocationChanged(. . .), where the private Location ob-
ject is passed as a parameter). We also assume that each
source maps to a unique privacy feature. Hence, when
a source is invoked (i.e., the OnSourceStatement event
fires), we obtain the unique tag corresponding to its re-
spective feature via the GetFeature(. . .) function. We

Input: S // privacy specification

begin
while true do

OnSourceStatement r := src p :
// map source to feature

f ←− GetFeature src

attach tag f to r
OnNormalStatement r := nrm p :

propagate feature tags according to data flow
OnSinkStatement r := snk p :

// map feat.s to param.s with resp. tag

{ f �→ p f }←− ExtractTags p
foreach f → p f ∈ { f → p f } do

u ←− ref f
δ ←− min{d(u, [[p]])}p∈p f

f ←− δ ≥ c f ? “ ≥c f ” : δ
end
if IsLeakageClassification { f} then

Alarm snk p
end

end
end

Algorithm 2: Outline of the core BAYESDROID algo-
rithm

then attach the tag to the return value r. Normal data
flow obeys the standard rules of tag propagation, which
are provided e.g. by Enck et al. [4]. (See Table 1 there.)

When an OnSinkStatement event is triggered, the ar-
guments flowing into the sink snk are searched for pri-
vacy tags, and a mapping from features f to parameters
p f carrying the respective tag is built. The value of f is
then computed as the minimal pairwise distance between
the parameters p ∈ p f and ref f . If this value is greater
than some constant c f defined for f , then the privileged
value “≥ c f ” is assigned to f . (See Section 3.1.) Finally,
the judgment IsLeakageClassification is applied over
the features whose tags have reached the sink snk. This
judgment is executed according to Equation 4.

We illustrate the BAYESDROID algorithm with ref-
erence to Figure 3, which demonstrates a real leak-
age instance in com.g6677.android.princesshs, a pop-
ular gaming application. In this example, two differ-
ent private items flow into the sink statement: both the
IMEI, read via getDeviceId(), and the Android ID, read
via getString(...).

At sink statement URL.openConnection(...), the re-
spective tags IMEI and AndroidID are extracted. Values
are assigned to these features according to the description
in Section 3, where we utilize training data, as discussed
later in Section 5.1, for Equation 6:

Pr(IMEI ≥ 5|leg) = 0.071 Pr(AndID ≥ 5|leg) = 0.047
Pr(IMEI ≥ 5|ilg) = 0.809 Pr(AndID ≥ 5|ilg) = 0.833

6



USENIX Association  23rd USENIX Security Symposium 181

1 source : private value

2 TelephonyManager.getDeviceId() : 000000000000000
3 Settings$Secure.getString (...) : cdf15124ea4c7ad5
4

5 sink : arguments

6 URL.openConnection(...) : app id=2aec0559c930 ... &
7 android id=cdf15124ea4c7ad5 \& udid= ... &
8 serial id = ... & ... &
9 publisher user id =000000000000000

Figure 3: True leakage detected by BAYESDROID in
com.g6677.android.princesshs

We then compute Equation 4, where the denominator
is the same for both leg and illeg, and so it suffices to
evaluate the nominator (denoted with P̃r(...) rather than
Pr(...)):

P̃r(leg|IMEI ≥ 5,AndID ≥ 5) =
Pr(leg)×Pr(IMEI ≥ 5|leg)×Pr(AndID ≥ 5|leg) =

0.66×0.071×0.047 = 0.002

P̃r(ilg|IMEI ≥ 5,AndID ≥ 5) =
Pr(ilg)×Pr(IMEI ≥ 5|ilg)×Pr(AndID ≥ 5|ilg) =

0.33×0.809×0.833 = 0.222

Our estimates of 0.66 for Pr(leg) and 0.33 for Pr(ilg) are
again based on training data as explained in Section 5.1.
The obtained conditional measure of 0.222 for ilg is (far)
greater than 0.002 for leg, and so BAYESDROID resolves
the release instance in Figure 3 as a privacy threat, which
is indeed the correct judgment.

4.2 Enhancements

We conclude our description of BAYESDROID by high-
lighting two extensions of the core algorithm.

Beyond Plain Text While many instances of illegiti-
mate information release involve plain text, and can be
handled by the machinery in Section 3.1, there are also
more challenging scenarios. Two notable challenges are
(i) data transformations, whereby data is released follow-
ing an encoding, encryption or hashing transformation;
and (ii) high-volume binary data, such as camera or mi-
crophone output. We have extended BAYESDROID to
address both of these cases.

We begin with data transformations. As noted ear-
lier, in Section 1, private information is sometimes re-
leased following standard hashing/encoding transforma-
tions, such as the Base64 scheme. This situation, il-
lustrated in Figure 4, can distort feature values, thereby

1 TelephonyManager tm =
2 getSystemService(TELEPHONY SERVICE);
3 String imei = tm.getDeviceId(); // source
4 String encodedIMEI = Base64Encoder.encode(imei);
5 Log. i (encodedIMEI); // sink

Figure 4: Adaptation of the DroidBench Loop1 bench-
mark, which releases the device ID following Base64 en-
coding

leading BAYESDROID to erroneous judgments. Fortu-
nately, the transformations that commonly manifest in
leakage scenarios are all standard, and there is a small
number of such transformations [9].

To account for these transformations, BAYESDROID
applies each of them to the value obtained at a source
statement, thereby exploding the private value into mul-
tiple representations. This is done lazily, once a sink is
reached, for performance. This enhancement is specified
in pseudocode form in Algorithm 3. The main change is
the introduction of a loop that traverses the transforma-
tions τ ∈ T , where the identity transformation, λx. x, is
included to preserve the (non-transformed) value read at
the source. The value assigned to feature f is then the
minimum with respect to all transformed values.

Binary data — originating from the microphone, cam-
era or bluetooth adapter — also requires special han-
dling because of the binary versus ASCII representation
and, more significantly, its high volume. Our solution is
guided by the assumption that such data is largely treated
as “uninterpreted” and immutable by application code
due to its form and format. This leads to a simple yet
effective strategy for similarity measurement, whereby a
fixed-length prefix is truncated out of the binary content.
Truncation is also applied to sink arguments consisting
of binary data.

Heuristic Detection of Relevant Values So far, our
description of the BAYESDROID algorithm has relied on
tag propagation to identify relevant values at the sink
statement. While this is a robust mechanism to drive fea-
ture computation, flowing tags throughout the code also
has its costs, incurring runtime overheads of ≥ 10% and
affecting the stability of the application due to intrusive
instrumentation [4].

These weaknesses of the tainting approach have led us
to investigate an alternative method of detecting relevant
values. A straightforward relaxation of data-flow track-
ing is bounded (“brute-force”) traversal of the reachable
values from the arguments to a sink statement up to some
depth bound k: All values pointed-to by a sink argument
or reachable from a sink argument via a sequence of ≤ k
field dereferences are deemed relevant. Though in theory
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Input: T ≡ {λx. x,τ1, . . . ,τn} // std. transformations

begin
. . .
OnSinkStatement r := snk p :

{ f �→ p f }←− ExtractTags p
foreach f → p f ∈ { f → p f } do

foreach τ ∈ T do
u ←− τ (ref f )
δ ←− min{d(u, [[p]])}p∈p f

f ←− min{[[ f ]],δ ≥ c f ? “ ≥c f ” : δ}
end

end
. . .

end
Algorithm 3: BAYESDROID support for standard data
transformations

this might introduce both false positives (due to irrele-
vant values that are incidentally similar to the reference
value) and false negatives (if k is too small, blocking rel-
evant values from view), in practice both are unlikely, as
we confirmed experimentally. (See Section 5.)

For false positives, private values are often unique, and
so incidental similarity to irrelevant values is improbable.
For false negatives, the arguments flowing into privacy
sinks are typically either String objects or simple data
structures. Also, because the number of privacy sinks is
relatively small, and the number of complex data struc-
tures accepted by such sinks is even smaller, it is pos-
sible to specify relevant values manually for such data
structures. We have encountered only a handful of data
structures (e.g. the android.content.Intent class) that
motivate a specification.

5 Experimental Evaluation

In this section, we describe the BAYESDROID implemen-
tation, and present two sets of experiments that we have
conducted to evaluate our approach.

5.1 The BAYESDROID System

Implementation Similarly to existing tools like Taint-
Droid, BAYESDROID is implemented as an instrumented
version of the Android SDK. Specifically, we have in-
strumented version 4.1.1 r6 of the SDK, which was cho-
sen intentionally to match the most recent version of
TaintDroid.3 The experimental data we present indeed
utilizes TaintDroid for tag propagation (as required for
accurate resolution for relevant values).

3 http://appanalysis.org/download.html

Beyond the TaintDroid instrumentation scheme, the
BAYESDROID scheme specifies additional behaviors for
sources and sinks within the SDK. At source points, a
hook is added to record the private value read by the
source statement (which acts as a reference value). At
sink points, a hook is installed to apply Bayesian reason-
ing regarding the legitimacy of the sink.

Analogously to TaintDroid, BAYESDROID performs
privacy monitoring over APIs for file-system access and
manipulation, inter-application and socket communica-
tion, reading the phone’s state and location, and sending
of text messages. BAYESDROID also monitors the HTTP
interface, camera, microphone, bluetooth and contacts.
As explained in Section 4.1, each of the privacy sources
monitored by BAYESDROID is mirrored by a tag/fea-
ture. The full list of features is as follows: IMEI, IMSI,
AndroidID, Location, Microphone, Bluetooth, Camera,
Contacts and FileSystem.

The BAYESDROID implementation is configurable,
enabling the user to switch between distance metrics as
well as enable/disable information-flow tracking for pre-
cise/heuristic determination of relevant values. (See Sec-
tion 4.2.) In our experiments, we tried both the Leven-
shtein and the Hamming metrics, but found no observ-
able differences, and so we report the results only once.
Our reasoning for why the metrics are indistinguishable
is because we apply both to equal-length strings (see Sec-
tion 3.2), and have made sure to apply the same metric
both offline and online, and so both metrics achieve a
very similar effect in the Bayesian setting.

Training To instantiate BAYESDROID with the re-
quired estimates, as explained in Section 3.3, we ap-
plied the following methodology: First, to estimate
Pr(legitimate), we relied on (i) an extensive study by
Hornyack et al. spanning 1,100 top-popular free Android
apps [9], as well as (ii) a similarly comprehensive study
by Enck et al. [5], which also spans a set of 1,100 free
apps. According to the data presented in these studies,
approximately one out of three release points is illegiti-
mate, and thus P̂r(legitimate) = 0.66 and complementar-
ily P̂r(illegitimate) = 1−0.66 ≈ 0.33.

For the conditional probabilities P̂r(Xi = xi j|Y = yk),
we queried Google Play for the 100 most popular apps
(across all domains) in the geography of one of the au-
thors. We then selected at random 35 of these apps, and
analyzed their information-release behavior using debug
breakpoints (which we inserted via the adb tool that is
distributed as part of the Android SDK).

Illegitimate leaks that we detected offline mainly in-
volved (i) location information and (ii) device and user
identifiers, which is consistent with the findings reported
by past studies [9, 5]. We confirmed that illegitimate
leaks are largely correlated with high similarity between

8



USENIX Association  23rd USENIX Security Symposium 183

private data and sink arguments, and so we fixed six dis-
tance levels for each private item: [0,4] and “≥ 5”. (See
Section 3.1.) Finally, to avoid zero estimates for con-
ditional probabilities while also minimizing data pertur-
bation, we set the “smoothing” factor l in Equation 6 at
1, where the illegitimate flows we detected were in the
order of several dozens per private item.

5.2 Experimental Hypotheses

In our experimental evaluation of BAYESDROID, we
tested two hypotheses:

1. H1: Accuracy. Bayesian reasoning, as implemented
in BAYESDROID, yields a significant improvement
in leakage-detection accuracy compared to the base-
line of information-flow tracking.

2. H2: Applicability. For real-life applications,
BAYESDROID remains effective under relaxation
of the tag-based method for detection of relevant
values and its stability improves.

5.3 H1: Accuracy

To assess the accuracy of BAYESDROID, we compared it
to that of TaintDroid, a state-of-the-art information-flow
tracking tool for privacy enforcement. Our experimental
settings and results are described below.

Subjects We applied both TaintDroid and BAYES-
DROID to DroidBench, an independent and publicly
available collection of benchmarks serving as testing
ground for both static and dynamic privacy enforcement
algorithms. DroidBench models a large set of realistic
challenges in leakage detection, including precise track-
ing of sensitive data through containers, handling of call-
backs, field and object sensitivity, lifecycle modeling,
inter-app communication, reflection and implicit flows.

The DroidBench suite consists of 50 cases. We ex-
cluded from our experiment (i) 8 benchmarks that crash
at startup, as well as (ii) 5 benchmarks that leak data
via callbacks that we did not manage to trigger (e.g.,
onLowMemory()), as both TaintDroid and BAYESDROID
were naturally unable to detect leakages in these two
cases. The complete list of benchmarks that we used can
be found in Table 4 of Appendix B.

Methodology For each benchmark, we measured the
number of true positive (TP), false positive (FP) and false
negative (FN) results. We then summarized the results
and calculated the overall precision and recall of each
tool using the formulas below:

Precision = T P
T P+FP Recall = T P

T P+FN

TPs FPs FNs Precision Recall F-measure

TaintDroid 31 17 0 0.64 1.00 0.78
BAYESDROID 29 1 2 0.96 0.93 0.94

Table 1: Accuracy of BAYESDROID and TaintDroid on
DroidBench

High precision implies that a technique returns few irrel-
evant results, whereas high recall implies that it misses
only few relevant ones.

Since ideal techniques have both high recall and high
precision, the F-measure is commonly used to combine
both precision and recall into a single measure. The F-
measure is defined as the harmonic mean of precision
and recall, and is calculated as follows:

F-Measure = 2× Precision×Recall
Precision+Recall

The value of F-measure is high only when both preci-
sion and recall are high. We thus use the F-measure for
accuracy evaluation.

Results The results obtained for both TaintDroid and
BAYESDROID on version 1.1 of DroidBench are sum-
marized in Table 1 and presented in detail in Table 4.
The findings reported by BAYESDROID are also publicly
available.4

Overall, TaintDroid detects 31 true leakages while also
reporting 17 false positives, whereas BAYESDROID suf-
fers from 2 false negatives, discovering 29 of the true
leakages while flagging only 1 false alarm. The recall of
both TaintDroid and BAYESDROID is high (1 and 0.93,
respectively) due to a low number of false-negative re-
sults. Yet the precision of TaintDroid is much lower than
that of BAYESDROID (0.64 vs. 0.96), due to a high num-
ber of false positives. The overall F-measure is thus
lower for TaintDroid than for BAYESDROID (0.78 vs.
0.94).

The results mark BAYESDROID as visibly more ac-
curate than TaintDroid. To further confirm this result,
we performed a two-tail McNemar test, considering 48
observations for each tool. These observations corre-
spond to findings reported in Table 4: 31 true positives
and 17 classified as false alarms. Each observation is
a boolean value that represents the accuracy of the tool
and is assumed to be from a Bernoulli distribution. We
then checked whether the difference in accuracy is statis-
tically significant by testing the null hypothesis that the
set of 48 observations from TaintDroid are sampled from
the same Bernoulli distribution as the set of 48 observa-
tions from BAYESDROID.

4 See archive file researcher.ibm.com/researcher/files/us-
otripp/droidbench.zip.
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1 TelephonyManager tm =
2 getSystemService(TELEPHONY SERVICE);
3 String imei = tm.getDeviceId(); //source
4 String obfuscatedIMEI = obfuscateIMEI(imei); ...;
5 Log. i (imei ); // sink
6

7 private String obfuscateIMEI(String imei) {
8 String result = ””;
9 for (char c : imei .toCharArray()) {

10 switch(c) {
11 case ’0’ : result += ’a’; break;
12 case ’1’ : result += ’b’; break;
13 case ’2’ : result += ’c’; break; ...; } }

Figure 5: Fragment from the DroidBench
ImplicitFlow1 benchmark, which applies a custom
transformation to private data

We found that TaintDroid was accurate in 31 out of
48 cases, and BAYESDROID was accurate in 45 out of
48 cases. We built the 2×2 contingency table showing
when each tool was correct and applied a two-tail Mc-
Nemar test. We found a p-value of 0.001, which rejects
the null hypothesis that the observations come from the
same underlying distribution and provides evidence that
BAYESDROID is more accurate than TaintDroid, thereby
confirming H1.

Discussion Analysis of the per-benchmark findings re-
veals the following: First, the 2 false negatives of
BAYESDROID on ImplicitFlow1 are both due to cus-
tom (i.e., non-standard) data transformations, which are
outside the current scope of BAYESDROID. An illustra-
tive fragment from the ImplicitFlow1 code is shown in
Figure 5. The obfuscateIMEI(. . .) transformation maps
IMEI digits to English letters, which is a non-standard
behavior that is unlikely to arise in an authentic app.

The false positive reported by BAYESDROID, in com-
mon with TaintDroid, is on release of sensitive data to
the file system, albeit using the MODE PRIVATE flag, which
does not constitute a leakage problem in itself. This can
be resolved by performing Bayesian reasoning not only
over argument values, but also over properties of the sink
API (in this case, the storage location mapped to a file
handle). We intend to implement this enhancement.

Beyond the false alarm in common with BAYES-
DROID, TaintDroid has multiple other sources of impre-
cision. The main reasons for its false positives are

• coarse modeling of containers, mapping their en-
tire contents to a single taint bit, which accounts
e.g. for the false alarms on ArrayAccess{1,2} and
HashMapAccess1;

• field and object insensitivity, resulting in
false alarms on FieldSensitivity{2,4} and
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Figure 6: Overhead breakdown into tag propagation and
Bayesian analysis at sink

ObjectSensitivity{1,2}; and more fundamentally,
• ignoring of data values, which causes TaintDroid

to issue false warnings on LocationLeak{1,2} even
when location reads fail, yielding a Location object
without any meaningful information.

The fundamental reason for these imprecisions is to con-
strain the overhead of TaintDroid, such that it can meet
the performance demands of online privacy enforcement.
BAYESDROID is able to accommodate such optimiza-
tions while still ensuring high accuracy.

5.4 H2: Applicability
The second aspect of the evaluation compared between
two versions of BAYESDROID, whose sole difference
lies in the method used for detecting relevant values: In
one configuration (T-BD), relevant values are detected
via tag propagation. The other configuration (H-BD)
uses the heuristic detailed in Section 4.2 of treating all
values reachable from sink arguments (either directly or
via the heap graph) up to a depth bound of k as relevant,
which places more responsibility on Bayesian reasoning.
We set k at 3 based on manual review of the data struc-
tures flowing into privacy sinks.

We designed a parametric benchmark application to
quantify the overhead reduction imposed by the H-BD
variant of BAYESDROID. The application consists of a
simple loop that flows the device IMEI into a log file.
Loop iterations perform intermediate data propagation
steps. We then performed a series of experiments —
over the range of 1 to 19 propagation steps — to quantify
the relative overhead of tag propagation versus Bayesian
analysis.

The results, presented in Figure 6, suggest that the
overhead of tag propagation is more dominant than that
of Bayesian analysis (with a ratio of roughly 2:1), even
when the set of relevant values is naively over approx-
imated. Discussion of the methodology underlying this
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experiment is provided in Appendix A.
In general, H-BD trades overhead reduction for accu-

racy. H2 then asserts that, in practice, the tradeoff posed
by H-BD is effective. Below, we discuss our empirical
evaluation of this hypothesis over real-life subjects.

Subjects To avoid evaluators’ bias, we applied the fol-
lowing selection process: We started from the 65 Google
Play apps not chosen for the training phase. We then ex-
cluded 8 apps that do not have permission to access sen-
sitive data and/or perform release operations (i.e., their
manifest does not declare sufficient permissions out of
INTERNET, READ PHONE STATE, SEND SMS, etc), as well as 3
apps that we did not manage to install properly, resulting
in 54 apps that installed successfully and exercise privacy
sources and sinks.

The complete list of the application we used is given
in Table 5 of Appendix B. A subset of the applications,
for which at least one leakage was detected, is also listed
in Table 3.

Methodology We deployed the apps under the two
BAYESDROID configurations. Each execution was done
from a clean starting state. The third column of both
Tables 3 and 5 denotes whether our exploration of the
app was exhaustive. By that we mean exercising all the
UI points exposed by the app in a sensible order. Ide-
ally we would do so for all apps. However, (i) some
of the apps, and in particular gaming apps, had stability
issues, and (ii) certain apps require SMS-validated sign
in, which we did not perform. We did, however, cre-
ate Facebook, Gmail and Dropbox accounts to log into
apps that demand such information yet do not ask for
SMS validation. We were also careful to execute the ex-
act same crawling scenario under both the T-BD and H-
BD configurations. We comment, from our experience,
that most data leaks happen when an app launches, and
initializes advertising/analytics functionality, and so for
apps for which deep crawling was not possible the results
are still largely meaningful.

For comparability between the H-BD and T-BD con-
figurations, we counted different dynamic reports involv-
ing the same pair of source/sink APIs as a single leakage
instance. We manually classified the findings into true
positives and false positives. For this classification, we
scrutinized the reports by the two configurations, and
also — in cases of uncertainty — decompiled and/or
reran the app to examine its behavior more closely. As in
the experiment described in Section 5.3, we then calcu-
lated the precision, recall and F-measure for each of the
tools.

TPs FPs FNs Precision Recall F-measure Crashes

H-BD 27 1 0 0.96 1.00 0.98 12
T-BD 14 0 10 1.00 0.58 0.73 22

Table 2: Accuracy of H-BD and T-BD BAYESDROID
configurations

Results The results obtained for H-BD and T-BD are
summarized in Table 2. Table 3 summarizes the find-
ings reported by both H-BD and T-BD at the granularity
of privacy items: the device number, identifier and loca-
tion, while Table 5 provides a detailed description of the
results across all benchmarks including those on which
no leakages were detected. The warnings reported by
the H-BD configuration are also publicly available for
review.5

As Table 2 indicates, the H-BD variant is more accu-
rate than the T-BD variant overall (F-measure of 0.98 vs.
0.73). As in the experiment described in Section 5.3, we
further performed a two-tail McNemar test, considering
67 observations for each tool: 27 that correspond to true
positives, 1 to the false positive due to H-BD and 39 to
cases where no leakages were found.

We found that H-BD was accurate in 66 out of 67
cases, and T-DB was accurate in 54 out of 67 cases.
Building the 2×2 contingency table and applying the
two-tail McNemar test showed that the difference be-
tween the tools in accuracy is significant (with a p-
value of 0.001 to reject the null hypothesis that the ac-
curacy observations for both tools come from the same
Bernoulli distribution). Moreover, H-BD has a lower
number of crashes and lower runtime overhead, which
confirms H2.

Discussion To give the reader a taste of the findings,
we present in Figures 7–8 two examples of potential
leakages that BAYESDROID (both the H-BD and the
T-BD configurations) deemed legitimate. The instance
in Figure 7 reflects the common scenario of obtain-
ing the current (or last known) location, converting it
into one or more addresses, and then releasing only the
country or zip code. In the second instance, in Fig-
ure 8, the 64-bit Android ID — generated when the
user first sets up the device — is read via a call to
Settings$Secure.getString(ANDROID ID). At the release
point, into the file system, only a prefix of the Android
ID consisting of the first 12 digits is published.

As Table 3 makes apparent, the findings by H-BD are
more complete: It detects 18 leakages (versus 8 reports
by T-BD), with no false negative results and only one
false positive. We attribute that to (i) the intrusive instru-

5 See archive file researcher.ibm.com/researcher/files/us-
otripp/realworldapps.zip.
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App Domain Deep crawl?
H-BD T-BD

number dev. ID location number dev. ID location
atsoft.games.smgame games/arcade � � � � �
com.antivirus communication � � �
com.appershopper.ios7lockscreen personalization � � � �
com.bestcoolfungames.antsmasher games/arcade � � �
com.bitfitlabs.fingerprint.lockscreen games/casual �
com.cleanmaster.mguard tools � � �
com.coolfish.cathairsalon games/casual � �
com.coolfish.snipershooting games/action � �
com.digisoft.TransparentScreen entertainment � � �
com.g6677.android.cbaby games/casual �
com.g6677.android.chospital games/casual �
com.g6677.android.design games/casual �
com.g6677.android.pnailspa games/casual �
com.g6677.android.princesshs games/casual �
com.goldtouch.mako news � � �

15 8 1 13 4 0 4 4

Table 3: Warnings by the H-BD and T-BD BAYESDROID configurations on 15/54 top-popular mobile apps

source : private value

GeoCoder.getFromLocation(...) : [ Lat: ..., Long: ...,
Alt : ..., Bearing: ..., ..., IL ]

sink : arguments

WebView.loadUrl(...) : http ://linux .appwiz.com/
profile /72/72 exitad.html?
p1=RnVsbCtBbmRyb2lkK29uK0VtdWxhdG9y&
p2=Y2RmMTUxMjRlYTRjN2FkNQ%3d%3d&
... LOCATION=IL& ...
MOBILE COUNTRY CODE=&
NETWORK=WIFI

Figure 7: Suppressed warning on ios7lockscreen

mentation required for tag propagation, which can cause
instabilities, and (ii) inability to track tags through native
code, as discussed below.

The T-BD variant introduces significantly more insta-
bility than the H-BD variant, causing illegal application
behaviors in 21 cases compared to only 12 under H-BD.
We have investigated this large gap between the H-BD
and T-BD configurations, including by decompiling the
subject apps. Our analysis links the vast majority of ille-
gal behaviors to limitations that TaintDroid casts on load-
ing of third-party libraries. For this reason, certain func-
tionality is not executed, also leading to exceptional app
states, which both inhibit certain data leaks.6

A secondary reason why H-BD is able to detect more
leakages, e.g. in the lockscreen app, is that this bench-

6 For a technical explanation, see forum com-
ment by William Enck, the TaintDroid moderator, at
https://groups.google.com/forum/#!topic/android-security-
discuss/U1fteEX26bk.

source : private value

Settings$Secure.getString (...) : cdf15124ea4c7ad5

sink : arguments

FileOutputStream.write (...) :
<?xml version=’1.0’ encoding=’utf−8’
standalone=’yes’
?><map><string
name=”openudid”>cdf15124ea4c

Figure 8: Suppressed warning on fruitninjafree

mark makes use of the mobileCore module,7 which is a
highly optimized and obfuscated library. We suspect that
data-flow tracking breaks within this library, though we
could not fully confirm this.

At the same time, the loss in accuracy due to heuris-
tic identification of relevant values is negligible, as
suggested by the discussion in Section 4.2. H-BD
triggers only one false alarm, on ios7lockscreen, which
is due to overlap between irrelevant values: extra
information on the Location object returned by a call
to LocationManager.getLastKnownLocation(...)

and unrelated metadata passed into a
ContextWrapper.startService(...) request. Finally, as
expected, H-BD does not incur false negatives.

6 Related Work

As most of the research on privacy monitoring builds on
the tainting approach, we survey related research mainly
in this space. We also mention several specific studies in
other areas.

7 https://www.mobilecore.com/sdk/
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Realtime Techniques The state-of-the-art system for
realtime privacy monitoring is TaintDroid [4]. Taint-
Droid features tolerable runtime overhead of about 10%,
and can track taint flow not only through variables and
methods but also through files and messages passed be-
tween apps. TaintDroid has been used, extended and cus-
tomized by several follow-up research projects. Jung et
al. [10] enhance TaintDroid to track additional sources
(including contacts, camera, microphone, etc). They
used the enhanced version in a field study, which re-
vealed 129 of the 223 apps they studied as vulnerable.
30 out of 257 alarms were judged as false positives.
The Kynoid system [20] extends TaintDroid with user-
defined security policies, which include e.g. temporal
constraints on data processing as well as restrictions on
destinations to which data is released.

The main difference between BAYESDROID and the
approaches above, which all apply information-flow
tracking, is that BAYESDROID exercises “fuzzy” reason-
ing, in the form of statistical classification, rather than
enforcing a clear-cut criterion. As part of this, BAYES-
DROID factors into the privacy judgment the data val-
ues flowing into the sink statement, which provides ad-
ditional evidence beyond data flow.

Quantitative Approaches Different approaches have
been proposed for quantitative information-flow analy-
sis, all unified by the observation that data leakage is a
quantitative rather than boolean judgment. McCamant
and Ernst [13] present an offline dynamic analysis that
measures the amount of secret information that can be
inferred from a program’s outputs, where the text of the
program is considered public. Their approach relies on
taint analysis at the bit level. Newsome et al. [14] de-
velop complementary techniques to bound a program’s
channel capacity using decision procedures (SAT and
#SAT solvers). They apply these techniques to the prob-
lem of false positives in dynamic taint analysis. Backes
et al. [1] measure leakage in terms of indistinguishabil-
ity, or equivalence, between outputs due to different se-
cret artifacts. Their characterization of equivalence re-
lations builds on the information-theoretic notion of en-
tropy. Budi et al. [2] propose kb-anonymity, a model in-
spired by k-anonymity that replaces certain information
in the original data for privacy preservation, but beyond
that also ensures that the replaced data does not lead to
divergent program behaviors.

While these proposals have all been shown useful,
none of these approaches has been shown to be efficient
enough to meet realtime constraints. The algorithmic
complexity of computing the information-theoretic mea-
sures introduced by these works seriously limits their ap-
plicability in a realtime setting. Our approach, instead,
enables a quantitative/probabilistic mode of reasoning

that is simultaneously lightweight, and therefore accept-
able for online monitoring, by focusing on relevant fea-
tures that are efficiently computable.

Techniques for Protecting Web Applications There
exist numerous static and dynamic approaches for pre-
venting attacks on web applications, e.g., [23, 22, 7].
Most relevant to our work are Sekar’s taint-inference
technique for deducing taint propagation by comparing
inputs and outputs of a protected server-side applica-
tion [21] and a similar browser-resident technique devel-
oped in a subsequent study [16]. While BAYESDROID
shares ideas with these approaches, it is explicitly de-
signed for mobile devices and applications. Curtsinger et
al. [3] apply a Bayesian classifier to identify JavaScript
syntax elements that are highly predictive of malware.
The proposed system, ZOZZLE, analyzes the applica-
tion’s code statically, while BAYESDROID operates dy-
namically and focuses on data values.

7 Conclusion and Future Work

In this paper, we articulated the problem of privacy en-
forcement in mobile systems as a classification problem.
We explored an alternative to the traditional approach of
information-flow tracking, based on statistical reasoning,
which addresses more effectively the inherent fuzziness
in leakage judgements. We have instantiated our ap-
proach as the BAYESDROID system. Our experimental
data establishes the high accuracy of BAYESDROID as
well as its applicability to real-world mobile apps.

Moving forward, we have two main objectives. The
first is to extend BAYESDROID with additional feature
types. Specifically, we would like to account for (i) sink
properties, such as file access modes (private vs pub-
lic), the target URL of HTTP communication (same do-
main or third party), etc; as well as (ii) the history of
privacy-relevant API invocations up to the release point
(checking e.g. if/which declassification operations were
invoked). Our second objective is to optimize our flow-
based method for detecting relevant values (see Sec-
tion 3.1) by applying (offline) static taint analysis to the
subject program, e.g. using the FlowDroid tool [6].
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Benchmark Algorithm TPs FPs FNs

ActivityCommunication1
BAYESDROID 1 0 0

TaintDroid 1 0 0

ActivityLifecycle1
BAYESDROID 1 0 0

TaintDroid 1 0 0

ActivityLifecycle2
BAYESDROID 1 0 0

TaintDroid 1 0 0

ActivityLifecycle4
BAYESDROID 1 0 0

TaintDroid 1 0 0

Library2
BAYESDROID 1 0 0

TaintDroid 1 0 0

Obfuscation1
BAYESDROID 1 0 0

TaintDroid 1 0 0

PrivateDataLeak3
BAYESDROID 1 1 0

TaintDroid 1 1 0

AnonymousClass1 BAYESDROID 0 0 0
TaintDroid 0 1 0

ArrayAccess1 BAYESDROID 0 0 0
TaintDroid 0 1 0

ArrayAccess2 BAYESDROID 0 0 0
TaintDroid 0 1 0

HashMapAccess1 BAYESDROID 0 0 0
TaintDroid 0 1 0

Button1
BAYESDROID 1 0 0

TaintDroid 1 0 0

Button3
BAYESDROID 2 0 0

TaintDroid 2 0 0

Ordering1 BAYESDROID 0 0 0
TaintDroid 0 2 0

RegisterGlobal1
BAYESDROID 1 0 0

TaintDroid 1 0 0

DirectLeak1
BAYESDROID 1 0 0

TaintDroid 1 0 0

FieldSensitivity2 BAYESDROID 0 0 0
TaintDroid 0 1 0

FieldSensitivity3 BAYESDROID 1 0 0
TaintDroid 1 0 0

FieldSensitivity4 BAYESDROID 0 0 0
TaintDroid 0 1 0

ImplicitFlow1 BAYESDROID 0 0 2
TaintDroid 2 0 0

InheritedObjects1
BAYESDROID 1 0 0

TaintDroid 1 0 0

ListAccess1 BAYESDROID 0 0 0
TaintDroid 0 1 0

LocationLeak1 BAYESDROID 0 0 0
TaintDroid 0 2 0

LocationLeak2 BAYESDROID 0 0 0
TaintDroid 0 2 0

Loop1
BAYESDROID 1 0 0

TaintDroid 1 0 0

Loop2
BAYESDROID 1 0 0

TaintDroid 1 0 0

ApplicationLifecycle1
BAYESDROID 1 0 0

TaintDroid 1 0 0

ApplicationLifecycle3
BAYESDROID 1 0 0

TaintDroid 1 0 0

MethodOverride1
BAYESDROID 1 0 0

TaintDroid 1 0 0

ObjectSensitivity1 BAYESDROID 0 0 0
TaintDroid 0 1 0

ObjectSensitivity2 BAYESDROID 0 0 0
TaintDroid 0 2 0

Reflection1
BAYESDROID 1 0 0

TaintDroid 1 0 0

Reflection2
BAYESDROID 1 0 0

TaintDroid 1 0 0

Reflection3
BAYESDROID 1 0 0

TaintDroid 1 0 0

Reflection4
BAYESDROID 1 0 0

TaintDroid 1 0 0

SourceCodeSpecific1
BAYESDROID 5 0 0

TaintDroid 5 0 0

StaticInitialization1
BAYESDROID 1 0 0

TaintDroid 1 0 0

Total
BAYESDROID 29 1 2

TaintDroid 31 17 0

Table 4: Detailed summary of the results of the H1 ex-
periment described in Section 5.3

A Overhead Measurement: Methodology

To complete the description in Section 5.4, we now detail
the methodology governing our overhead measurements.
The behavior of the benchmark app is governed by two
user-controlled values: (i) the length � of the source/sink
data-flow path (which is proportional to the number of
loop iterations) and (ii) the number m of values reachable
from sink arguments.

Based on our actual benchmarks, as well as data re-
ported in past studies [23], we defined the ranges 1 ≤ �≤
19 and 1≤m≤ 13= Σ2

n=03n. We then ran the parametric
app atop a “hybrid” configuration of BAYESDROID that
simultaneously propagates tags and treats all the values
flowing into a sink as relevant. For each value of �, we
executed the app 51 times, picking a value from the range
[0,2] for n uniformly at random in each of the 51 runs.
We then computed the average overhead over the runs,
excluding the first (cold) run to remove unrelated initial-
ization costs. The stacked columns in Figure 6 each cor-
respond to a unique value of �.

B Detailed Results

Table 4 summarizes the results of the H1 experiment de-
scribed in Section 5.3. For each of the benchmarks, it
specifies the number of true-positive, false-positive and
false-negative findings for the compared tools, BAYES-
DROID and TaintDroid. The benchmarks on which the
tools differ are highlighted for convenience.

Similarly, Table 5 summarizes the results of the H2 ex-
periment described in Section 5.4. The first two columns
of Table 5 list the applications and their respective do-
main, and the third column denotes whether crawling
was exhaustive. Then, the number of crashes, true-
positive, false-positive and false-negative findings are
reported for both the H-BD and the T-BD variants of
BAYESDROID.

In Section 5.4, we describe an experiment designed to
evaluate our Bayesian analysis in “pure” form, i.e. with-
out the support of information-flow tracking to detect
relevant values. To make our description of this experi-
ment complete, we include Table 5, which provides a de-
tailed summary of the results of this experiment across all
benchmarks (including ones on which no leakages were
detected). For comparability between the H-BD and T-
BD configurations, we count different dynamic reports
involving the same pair of source/sink APIs as a single
leakage instance.

15
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App Domain Deep crawl?
H-BD T-BD

Crashes TPs FPs FNs Crashes TPs FPs FNs

air.au.com.metro.DumbWaysToDie games/casual � 0 0 0 � 0 0 0
at.nerbrothers.SuperJump games/arcade 0 0 0 � 0 0 0
atsoft.games.smgame games/arcade � 4 0 0 4 0 0
com.antivirus communication � 1 0 0 1 0 0
com.appershopper.ios7lockscreen personalization 5 1 0 3 0 3
com.applicaster.il.hotvod entertainment � 0 0 0 0 0 0
com.appstar.callrecorder tools 0 0 0 0 0 0
com.awesomecargames.mountainclimbrace 1 games/racing � 0 0 0 � 0 0 0
com.bestcoolfungames.antsmasher games/arcade � 2 0 0 2 0 0
com.bigduckgames.flow games/puzzles 0 0 0 � 0 0 0
com.bitfitlabs.fingerprint.lockscreen games/casual 2 0 0 0 0 1
com.channel2.mobile.ui news � 0 0 0 0 0 0
com.chillingo.parkingmaniafree.android.rowgplay games/racing � 0 0 0 � 0 0 0
com.cleanmaster.mguard tools � 1 0 0 1 0 0
com.coolfish.cathairsalon games/casual � 2 0 0 � 0 0 1
com.coolfish.snipershooting games/action � 2 0 0 � 0 0 1
com.cube.gdpc.isr health & fitness � 0 0 0 � 0 0 0
com.cyworld.camera photography 0 0 0 0 0 0
com.devuni.flashlight tools � 0 0 0 0 0 0
com.digisoft.TransparentScreen entertainment � 2 0 0 2 0 0
com.domobile.applock tools � 0 0 0 0 0 0
com.dropbox.android productivity � 0 0 0 � 0 0 0
com.ea.game.fifa14 row games/sports 0 0 0 � 0 0 0
com.ebay.mobile shopping 0 0 0 0 0 0
com.facebook.katana social � 0 0 0 0 0 0
com.facebook.orca communication 0 0 0 0 0 0
com.g6677.android.cbaby games/casual 1 0 0 � 0 0 1
com.g6677.android.chospital games/casual � 1 0 0 � 0 0 1
com.g6677.android.design games/casual � 1 0 0 � 0 0 1
com.g6677.android.pnailspa games/casual � 1 0 0 � 0 0 1
com.g6677.android.princesshs games/casual 1 0 0 � 0 0 1
com.gameclassic.towerblock games/puzzles � 0 0 0 � 0 0 0
com.gameloft.android.ANMP.GloftDMHM games/casual 0 0 0 0 0 0
com.game.fruitlegendsaga games/puzzles 0 0 0 0 0 0
com.gau.go.launcherex personalization 0 0 0 0 0 0
com.glu.deerhunt2 games/arcade � 0 0 0 � 0 0 0
com.goldtouch.mako news � 1 0 0 1 0 0
com.goldtouch.ynet news � 0 0 0 0 0 0
com.google.android.apps.docs productivity 0 0 0 0 0 0
com.google.android.apps.translate tools 0 0 0 0 0 0
com.google.android.youtube media & video 0 0 0 0 0 0
com.google.earth travel & local � 0 0 0 � 0 0 0
com.halfbrick.fruitninjafree games/arcade 0 0 0 0 0 0
com.halfbrick.jetpackjoyride games/arcade � 0 0 0 0 0 0
com.icloudzone.AsphaltMoto2 games/racing 0 0 0 � 0 0 0
com.ideomobile.hapoalim finance 0 0 0 0 0 0
com.imangi.templerun2 games/arcade � 0 0 0 � 0 0 0
com.kiloo.subwaysurf games/arcade � 0 0 0 � 0 0 0
com.king.candycrushsaga games/arcade � 0 0 0 � 0 0 0
com.sgiggle.production social 0 0 0 0 0 0
com.skype.raider communication 0 0 0 0 0 0
com.UBI.A90.WW games/arcade 0 0 0 0 0 0
com.viber.voip communication 0 0 0 0 0 0
com.whatsapp communication 0 0 0 0 0 0

Total 17 12 27 1 0 22 14 0 10

Table 5: Detailed summary of the results of the H2 experiment described in Section 5.4
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Abstract

Typosquatting is a speculative behavior that leverages
Internet naming and governance practices to extract profit
from users’ misspellings and typing errors. Simple and
inexpensive domain registration motivates speculators
to register domain names in bulk to profit from display
advertisements, to redirect traffic to third party pages,
to deploy phishing sites, or to serve malware. While
previous research has focused on typosquatting domains
which target popular websites, speculators also appear
to be typosquatting on the “long tail” of the popularity
distribution: millions of registered domain names appear
to be potential typos of other site names, and only 6.8%
target the 10,000 most popular .com domains.

Investigating the entire distribution can give a more
complete understanding of the typosquatting phenomenon.
In this paper, we perform a comprehensive study of ty-
posquatting domain registrations within the .com TLD.
Our methodology helps us to significantly improve upon
existing solutions in identifying typosquatting domains
and their monetization strategies, especially for less pop-
ular targets. We find that about half of the possible typo
domains identified by lexical analysis are truly typo do-
mains. From our zone file analysis, we estimate that 20%
of the total number of .com domain registrations are true
typo domains and their number is increasing with the ex-
pansion of the .com domain space. This large number of
typo registrations motivates us to review intervention at-
tempts and implement efficient user-side mitigation tools
to diminish the financial benefit of typosquatting to mis-
creants.

1 Introduction

Thousands of new domain names are registered daily that
at first glance do not have completely legitimate uses:
some contain random characters (possibly used by mis-
creants [23]), are a composite of two completely unrelated

words (possibly used in spam [17]), contain keywords of
highly-visible recent events (ex. hillaryclingon.com
for political phishing in 2008 [28]) or are similar to other,
typically well-known, domain names (ex. twtter.com
[27, 32]). Domain purchasers use this final technique, of-
ten called “typosquatting,” to capitalize on other domain
names’ popularity and user mistakes to drive traffic to
their websites.

Many old and new domain names alike do not ever
show up in search engines, spam traps, or malicious URL
blacklists, yet still maintain a web server hosting some
form of content. However, maintaining the domain reg-
istration, DNS, and web server expends resources, even
if these domain registrations do not serve an obvious pur-
pose. Investigating the purpose of domain registrations
in the “long tail” of the popularity distribution can help
us better understand these enterprises and their relation-
ship to speculative and malicious online activities. In
this paper, we specifically consider the hypothesis that
typosquatting is a reason for many of these registrations,
and scrutinize different methods for committing malice
or monetizing this behavior.

In the Internet economy, monetizing on user intent
has been a very profitable business strategy: search dis-
play advertising is effective because relevant ads can be
shown based on user search queries. DNS is similar,
as domain registrations provide ample opportunities for
monetization through direct user navigation rather than
search. Domain name front running, domain tasting and
typosquatting domain names can all monetize this phe-
nomenon. 1 [12] According to [22], domain tasting was
nearly eliminated in the generic TLDs by the 2009 pol-
icy changes by ICANN. In addition, [12] reports that the

1Domain name front running is when registrars register domains that
users have been looking for in order to monetize on their registration
potential. Domain tasting is speculative behavior abusing the five-day
grace period after domain registrations in some TLDs. This liberal
registration policy gave refunds within a few days if the registrant
wanted, however this policy resulted in short domain registrations en
masse. ICANN has since changed policy, limiting the behavior [12, 22].
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anecdotes about domain name front running by major reg-
istrars do not seem to hold. But typosquatting, the most
prevalent speculative domain name registration behavior
to date, continues apace.

Typosquatting wastes users’ time and no doubt annoys
them as well. As we show in Section 4.5, less than two
percent of all domains we identify as “typo domains” redi-
rect the user to the targeted domain, and the lion’s share
instead serve advertisements which previous research has
shown to be profitable. [16, 26] These ad-filled pages give
no clear indication to the user that they have typed the
domain incorrectly; without a descriptive error, the user
may abandon their task rather than double check their
spelling. By monetizing these pages with advertisements,
the typosquatter does a disservice both to the user and the
victim web site. Protecting users from typosquatters can
lessen the damage as well as disincentivize typosquatting
by decreasing the squatters’ profits.

If a typosquatter hosts a site that impersonates the le-
gitimate brandholder it is certainly malicious and in some
jurisdictions illegal. Such overt violations have been mit-
igated via legislation in the US and policy by ICANN
[15, 21, 30]. For example, Facebook recently extracted
a $2.8 million judgement against typosquatters imper-
sonating their website; this successful litigation should
serve as a strong deterrent against this form of malicious
typosquatting against entities with the resources to liti-
gate [18]. Several reports by commercial security teams
have cited typosquatting domains’ use in malicious cam-
paigns for quiz scams [8], spam survey sites [37], in an
SMS micro-payment scam [14], offering deceptive down-
loads or serving adult content [25], or in a bait-and-switch
scam offering illegal music downloads [29]. However, un-
til this paper, evidence regarding the extent of malicious
typosquatting problems has not been available.

Typosquatting has been studied in depth in related work.
In his first paper, Edelman points to the typosquatting
phenomenon and discusses possible incentives for both
squatters and defenders [15]. Wang et al. include a typo-
patrol service in their Strider security framework that
focuses on generating typo domains for popular domains
and protect visitors from offending content [35]. Moore
and Edelman revisit the problem in [26] pursuing a more
thorough study of the original thesis of Edelman. They
explore various monetization methods and suggest inter-
vention options. They pessimistically conclude that the
best intervention options are hampered by misaligned in-
centives of the participants. Banerjee et al. [10] make
another attempt to design a typosquatting categorization
tool. Their method works well for a small set of sample
domain names. These analyses have focused on active
measurement of typosquatting sites which target the most
popular domains – considering no more than 3,264 unique
.com domain names. However, we find that no more than

4.9% of all lexicographically similar name registrations
target these popular domains. While typos for the most
popular domains likely account for a significant amount
of typo traffic, it is unclear whether the long tail also
supports a significant amount of typo traffic.

Here we present a systematic study of domain name reg-
istrations focusing on typosquatting perpetrated against
the long tail of the popularity distribution. We design a set
of algorithms that can effectively identify typosquatting
domains and categorize the monetization method of its
owner. We also design and implement tools to improve
user experience by allowing them to reach their intended
destination. Although various user tools exist in the wild,
most are inaccurate and focus only on a limited set of
targeted domains. Our typo identification algorithms com-
bined with the user protection tools provide improved
protection against being misled by typosquatting, even
when it is perpetrated against less popular sites.

Section 2 provides background on typosquatting and
the most common tricks used by typosquatters. Section 3
presents our data collection methodology and describes
our typo categorization framework. Section 4 presents a
characterization of the extent, purpose, trends, and malice
involved in the perpetration of typosquatting. We present
mitigation tools and intervention options in Section 5.
Section 6 concludes.

2 Background

Popularity attracts speculation, and typosquatting is a
showcase of this observation in the Internet ecosystem.
Typosquatting maintains its popularity even in the face
of the continuous effort to diminish its impact. In this
section, we present a general overview of typosquatting
and discuss efforts to protect legitimate domain owners
from speculation.

2.1 Typo techniques and monetization
Typosquatters register domain names that are similar to
those used by other websites in hope of attracting traffic
due to user mistakes. The most frequent occurrences of
mistyping are those that involve a one-character distance,
also called the Damerau-Levenshtein (DL) distance one,
from the correct spelling both in free text [13] and in
case of domain names [10]2. In this paper, we focus on
typosquatting domains of Damerau-Levenshtein distance
one (DL-1) that are generated using the most common op-
erations: addition, deletion, substitution of one character,
transposition of neighboring characters [13]. We extend
this to include deletion of the period before the ”www”

2Although some researchers have found that for longer original
domains a small number of typosquatting domain names with larger DL
distances exist [26].
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Figure 1: The typosquatting ecosystem with various monetization techniques.

commonly prepended to web server domain names [26].
We note that a special case of DL-1, called fat finger dis-
tance (FF distance), is considered when the mistyping
occurs with letters that are adjacent on a US English key-
board. The rationale of this metric is that users are more
likely to mistype letters in close proximity.

Typosquatters use various techniques to monetize their
domain name registrations. The typosquatting domain can
be parked and serve third-party advertisements to mon-
etize the incoming traffic (� on Figure 1). The domain
can also be set up to impersonate the intended domain for
instance to host a phishing page [33] (�), serve malware
(�), or perpetrate some other scam on the user [14, 37].
Many monetization techniques can also involve redirec-
tion to another domain (�), the landing domain, that
might employ the previously mentioned techniques. Spec-
ulators can also redirect visitors to competitor domains
(�) causing a direct loss to the owner of the original do-
main. Conversely, the typodomain owner can redirect
traffic to the intended site, and monetize this traffic via af-
filiate marketing (�). The original domain owner can also
perform defensive registrations of typos for their main
domain name and set up the redirections themselves (�).
Finally, in some cases, the typo domain owner can serve
content that is unrelated to the original domain (�).

2.2 Intervention attempts
Typosquatting exists within a legal and moral gray area;
consequently, intervention has traditionally been weak
to reduce the effect of typosquatting. ICANN provides
the Uniform Domain-Name Dispute-Resolution Policy
(UDRP) to mediate domain registration disputes for a rela-
tively small filing fee. Unfortunately, cheap domain regis-
tration allows for mass typo-domain registrations and this
gives a significant advantage to speculators. Against mass
registrations of typo-domains UDRP mitigation becomes

infeasible. Companies have initiated legal procedures
in cases where cybersquatting and trademark infringe-
ment was applicable (see for example [32] on a recent
court order against twtter.com and wikapedia.com,
and a more recent court order against typosquatters of
facebook.com [31]). The Anti-cybersquatting Con-
sumer Protection Act (ACPA) (15 USC §1125(d)) offers
legal protection to push such cases to court.

Policy intervention is more effective when targeting the
registration process either at a national scale for specific
TLDs or on a registrar level [24]. One can also mount an
effective defense by targeting the monetization infrastruc-
ture [23, 24]. Unfortunately, the agility of domain spec-
ulators in registering new domains and the difficulty of
determining their ill intent makes this a difficult prospect.

There have been some efforts to provide technical tools
to mitigate typosquatting, notably the Microsoft Strider
Typopatrol system which protects trademarks and chil-
drens’ sites [35]. At the user level, the OpenDNS has a
typo correction feature which corrects major TLD mis-
spellings [27] and the Mozilla URLFixer Firefox plugin
[6] can suggest corrections to typed URLs. A common
property of these solutions is that they only cover a rel-
atively small set of typos, typically those that target the
most popular domain names. As we show in Section 5.3,
our mitigation solution is based on an extensive set of in-
vestigated domain names and hence provides significantly
better coverage to detect typosquatting. Moreover, our
extended set of detection features allows for more accu-
rate detection of typosquatting than solutions in previous
work.

3 Methodology

This section presents our data collection and domain cate-
gorization framework in detail as illustrated it in Figure 2.
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Figure 2: The data collection and typo categorization
framework. The framework uses (�) large domain lists
(zone file, Alexa popular domains list), (�) derives can-
didate typos based on lexical features and registration
data in the zone file, (�) acquires additional information
using active crawlers (Whois, DNS, Web), and finally
(�) decides about typo domains and assigns them into
typosquatting categories.

Terminology. Throughout this paper, we will refer to
domains available for direct registration under a public
suffix as registered domains, for instance example.com or
example.co.uk. Generated typo domains, or gtypos, are
domain names which are lexically similar (e.g. at DL-1)
to some set of target domains. Candidate typo domains,
or ctypos, are the subset of registered domains within the
gtypo set which have been registered. Below we describe
both how we select the target set and how we generate the
gtypo set.

3.1 Data sources and scope

.com zone file. We leverage a variety of data sources to
infer the prevalence of typosquatting in domain registra-
tions. Our primary source is the .com zone file, which
contains records of every domain registered within that
TLD. As a popular generic domain name, the .com zone
file contains millions of registered domain names .com
and is available to researchers making it an ideal candi-
date for a representative investigation of typosquatting.
Our comprehensive study is based on the March 15, 2013
version of the zone file provided by Verisign Inc contain-
ing approximately 106 million domain names. For trend
analysis we collected the daily newly added and deleted
domains from the zone file from October 01, 2012 to
February 20, 2014.

Alexa list. The Alexa list of the top 1 million sites from
March 15, 2013 serves as a benchmark for popularity [1],
out of which 523,960 domains belong to the .com TLD,
with 488,113 unique registered domains five characters
long or more. For our study, we split the Alexa list into
three categories: Alexa top containing domains ranked
higher than 10,000, Alexa mid containing domains ranked
10,000-250,000, and Alexa tail containing the remain-
ing .com domains ranked below 250,000. While Alexa
cautions that rankings below 100,000 are not statistically
significant, we are not concerned with exact comparative
ranking or traffic counts for these domains but consider
the Alexa list rather as a rough indicator of popularity.
We also collected the Alexa top 1 million for the October
01, 2012 to February 20, 2014 period for trend analysis.

Domain blacklists. To shed light on the malicious
use of typo domains, we check the typo domains from
the .com zone file against twelve different domain name
blacklists. The black lists come from abuse.ch’s list
of Zeus and SpyEye servers, malwaredomainlist.com,
malwaredomains.com, malwarepatrol.com, Google Safe
Browsing, and a commonly used commercial list. We also
derive lists of malicious domains from recorded requests
to DNS-based black lists (DNSBL). This method does
not capture the complete list, but rather only includes
domains actively marked as malicious and looked up by
users during the collection time frame.

3.2 Generating candidate typos

We generated a list of all possible typo domains using the
most common typo operations: addition (add), deletion
(del), substitution of one character (sub), transposition of
neighboring characters (tra), and supplement this set with
a ”.” deletion operation specific to ”www.” domain names
(e.g. a user typed (wwwexample.com). We define this
list as the “generated typo” or gtypo list. The subset of
the gtypo list which was registered within the .com TLD
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includes approximately 4.7 million domains, which we
refer to as “candidate typos” or ctypos.

3.3 Typosquatting definitions
To define the scope of our work, we provide a concise
definition of typosquatting.

Definition 1 A candidate typo domain is called a ty-
posquatting domain if (i) it was registered to benefit from
traffic intended for a target domain (ii) that is the property
of a different entity.

It is important that both conditions have to be met
simultaneously. Typosquatting domain names are regis-
tered with the parasitic intent to reap the mistyped traffic
of popular domains belonging to someone else. This in-
cludes parked domains serving ads, phishing domains,
known malicious domains, typo domains redirecting to
unrelated content and affiliate marketing. Arguably, these
conditions cannot always be checked with confidence, for
example ownership information could be disguised3.

According to our definition, parked domains that do not
serve ads are excluded from our definition of typosquat-
ting, because they are not making any visible profit from
parking. We still consider them as typos until it becomes
clear if they are performing typosquatting on the target
or serving unrelated content. Candidate typo domains
that are defensively registered by the original domain
owner are also excluded from typosquatting, because the
owner of the typo domain and the original domain are the
same. Although defensive typo registrations cannot be
considered as typosquatting, they are born as an unwanted
consequence of typosquatting.

We define true typo domains as follows.

Definition 2 We call the union of typosquatting domains,
parked domains not serving ads and defensive registra-
tions the true typo domain set.

Finally, all candidate typos that are at DL-1 from an
original domain yet have unrelated content are consid-
ered as incidental registrations, although they can surely
benefit from the lexical proximity4.

3.4 Active crawling
We developed a set of active crawlers to collect additional
information about the ctypo domains.

3For example, the name servers *.aexp.com of
americanexpressl.com belong to American Express Inc., but
that is the only indicator of ownership. This can only be marked using
manual inspection.

4Here we face another uncertainty presented by scam pages that
generate legitimately looking random content. We observed several
such cases for suspiciously looking webshops. We make a conservative
assessment and categorize them as other (O) in spite of their questionable
content

Whois crawler. First, we collect registration data from
the WHOIS global database. We restrict our crawler to
the thin whois information as provided by Verisign Inc.
for the .com domains. From the thin whois record, we
use the registrar and registration date information.

DNS crawler. We collect DNS data to explore the
background infrastructure serving these domains. Our
crawler queries separately for A, AAAA, NS, MX, TXT,
CNAME, and SOA records for each domain. The crawler
then tests for random strings under the registered domain
to infer whether wildcarding is present. Wildcarding is
the practice when a name server resolves any subdomain
under the domain belonging to its authority in the DNS
hierarchy.

Web crawler. We use a web crawler to obtain the
rendered DOM of each page, along with any automatic
redirections that take place during the page load. This
crawler uses the PhantomJS WebKit automation frame-
work to provide high volume, full fidelity web crawling
with javascript execution, cookie storage, and page ren-
dering capabilities [20]. The crawler follows JavaScript
redirections even when they may be obfuscated or con-
tained in child iframes; it then reports the method of
redirection and the destination for intermediate and final
redirections. We also collect rendered screenshots of a
subset of pages for manual inspection.

3.5 Clustering and categorization

Clustering. We group domains together according to var-
ious attributes obtained from available datasets and active
analysis. Our goal with this clustering is twofold: to iden-
tify typo domains that might have been registered for the
same purpose and to point to infrastructure elements that
host a large number of typo domains. First, we identify
domain sets that are at DL-1 distance from each other,
forming a cluster of typo neighbors.

Understanding the infrastructure support and the con-
tent of the typo domains is required to make an informed
decision about their real purpose. To characterize the
infrastructure support for typosquatting, we cluster the
candidate typo domains based on their registration and
hosting information. In particular, we identify the major
registrars and name servers (NSs) that host candidate typo
domains.

Domain features. We derive a feature set including
lexical, infrastructure and content features of the can-
didate typos as shown in Table 5 in Appendix A. We
selected the features after carefully considering related
work, collecting 40+ features in various attribute cate-
gories, and focusing only on relevant ones. To assess the
efficiency of the selected feature set, we perform a system-
atic evaluation based on manual sampling in Section 4.1
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and we use the results of this evaluation as a benchmark.5

Among the chosen features, domain length is a key
indicator for typosquatting behavior as longer ctypo do-
mains are more likely to indeed typosquat on the original
domain they are close to [26]. Intuitively, the Alexa rank
of the original domain indicates that more popular do-
mains are more likely a target of typosquatting. Based
on the zone file, we are able to observe the ratio of ctypo
domains versus all domain names on a given NS and we
deem hosting a large of proportion of potential typo do-
mains suspicious for an NS. Similarly, if the registered
domain of the NS contains keywords indicating parking
behavior, then ctypo domains hosted on this NS are more
likely to belong to typosquatting domains. NXDOMAIN
wildcarding is used by major parking service providers
to serve ads for web requests regardless of the subdo-
main. It has been shown that NXDOMAIN wildcarding
is a precursor of suspicious behavior and quite often in-
dicates parked typosquatting domains [7, 36]. Thus, we
also consider it an indicator for typosquatting when the
page content matches some collected parking keywords6.
Finally, several redirections usually imply suspicious be-
havior, and we deem them important if the redirection
targets a registered domain different from the typo domain
and the target domain. The features we selected resulted
in a significant improvement over existing methods in
identifying typosquatting domains across the whole range
of .com domains. We leave a more complex feature set se-
lection and parameter calibration using machine learning
techniques as future work.

Categorization. Using these features, we attribute ty-
posquatting to candidate typo (ctypo) domains by assign-
ing the tag typosquatting (T), not typosquatting (NT) or
unknown (U). Unknown is typically used when the do-
main returns an HTTP or DNS error which prevents suc-
cessfully downloading the page. We also tag the usage
type of the typosquatting domains according to the mone-
tization categories presented in Figure 1. We also present
the novel approach of categorizing domains based on
their monetization strategy. Hence, we tag ctypo domains
which do not redirect the user to the target site as parked
(P) without ads (not on Figure 1), parked serving ads
(PA) (� on Figure 1), employing a phishing (PH) scam
(�), or serving malware (M) (�). When redirection is
used, then the ctypo domain can be tagged as defensive
(D) registration (�), defensive registration using affiliate
(A) marketing (�) in addition to the previously mentioned
categories. When a ctypo domain redirects to another
domain, then we tag it as other (O) (�, �) no matter if it

5 Manually generated datasets are widely used as indicators for
malicious behavior; for example, the PhishTank phishing list is a major
component of SURBL, the leading domain blacklist. [2].

6Here, we improve on the techniques used by [7] and [19] to find
parking services and parked domains

is a competitor or a completely unrelated site7. Finally,
we mark all uncategorized domains as unknown (U), a set
that typically contains unreachable domains.

3.6 Checking Maliciousness
To analyze how the typo domains are used, 12 black
lists are checked for an indication that the domains are
malicious. To check a black list, we look for anything
that was on that list during the first quarter of 2013. A
“match” is a second-level domain match, since this is the
relevant typo label.

To perform a check, a superset of all the domains for Q1
2013 per list was made, and the typo and Alexa domains
were compared against that superset. For Google Safe
Browsing, due to Google’s technical constraints, the each
set of domains was checked using the provided python
client against data for May 1, 2011 to July 31, 2013. The
results are presented in subsection 4.6.

4 Analysis

In this section, our goal is to characterize the current state
of typosquatting. For this purpose, we use the .com zone
file as the most popular and versatile TLD for domain
registrations.

4.1 Typosquatting distribution
Experts believe that most newly registered domains are
speculative or malicious. Paul Vixie posits that “most
new domain names are malicious” [34]. The subset of
registered typo domains from the generated typo domains
is widely accepted as true typo domains ([26, 35]), and
[26] has shown that this assertion mostly holds for the top
3,264 .com domains in the Alexa ranking.

We believe, however, that this assertion does not neces-
sarily hold if we extend our scope to less popular domains.
In order to investigate this possibility, we first perform a
manual sampling from various sets of the .com zone file
to systematically control the accuracy of typosquatting
identification and also to provide a credible ground truth
for investigation. We conduct a manual inspection of
four thousand domain names because the typosquatting
definitions in the academic literature [26, 35] are very
crude. Moreover, we present our mitigation tool analysis
in Section 5, and in so doing also discuss the limitations
of existing defense tools that typically only focus on cor-
recting typos for a limited set of popular domain names.

7Determining domain competitors is beyond the scope of this work;
we summarized redirections to third-party domains independently of the
typosquatter’s intent. While these redirections might simply be to other
parked sites, any redirection away from the original site is a traffic loss
for the original domain owner.
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We first take a sample of 1000 ctypo domains randomly
with uniform distribution from the Alexa top domain list
to match the sampling methodology of [26]. We then
complete this with three additional samples of 1000 ctypo
domains each derived from the .com zone and the Alexa
domain list. Our four sample sets are thus the following:
ctypos of the the Alexa top/mid/tail domains (recall their
description from Section 3.1) and ctypos of a random
sample taken over the whole .com zone file. With these
multiple sets, our goal is to check whether the conclusions
from prior work regarding the frequency of typosquatting
hold for less popular domains.

Typosquatting domains are notoriously difficult to iden-
tify. In several cases, only a careful investigation shows
the potentially speculative behavior. We performed man-
ual verification to establish a ground truth for identifying
typosquatting domains. Clearly, manual classification is
not perfect, but it allowed us to go in depth at domains that
were ambiguous. In manual classification, we go beyond
simple rules, like identifying simple one-hop defensive
redirections and consider the environment, like the owner
of name servers (ns*.aexp.com indeed belongs to Amer-
ican Express Inc) or potential relation between brands
(Oldnavy is a subsidiary of GAP and thus oldnavy.com
redirects to oldnavy.gap.com). We could further estab-
lish a ground truth based on crowdsourcing typosquatting
identification. This would remove the bias introduced
by the mindset of the authors, yet it could introduce sig-
nificant inaccuracies due to the lack of experience and
understanding of typosquatting by the crowd.

Figure 3: The prevalence of true typo domains in the four
sample sets drawn popular and less popular .com domain
names. The domain sets are ctypo samples of the Alexa
top/mid/tail domains and the domains in the .com zone
file. The number of true typo domains decreases with
the Alexa rank of original domains, yet their ratio in the
whole population remains high.

According to our manual inspection, a majority of the
ctypo domains registered against the Alexa top domains
are true typo domains (as shown in Figure 3). This result
confirms the finding of [26]. We note here that there
is a significant number of ctypo domains for which we
cannot reliably decide if they are typo domains or not (U).
This is mostly due to the fact that domains return ”not
accessible” responses for DNS or HTTP queries. The
number of true typo domains steadily decreases when
we perform the same experiment for the Alexa mid and
tail domains, yet it remains high (around 50% within
the set of all ctypo domains). While this indicates that
thousands of domains are indeed typosquatting on less
popular domains, to present defenses we need to develop
a more reliable strategy to predict whether a domain is
involved in typosquatting.

4.2 Accuracy of identification

We developed an automatic categorization tool based on
the domain features presented in Section 3.5 called Yet An-
other Typosquatting Tool (YATT). YATT has three modes.
In the passive mode, YATT-P uses the information readily
available from static files, such as lexical features, zone
information and Alexa information. In the DNS mode,
YATT-PD includes Whois and DNS features collected
from the active crawler infrastructure, and finally in the
content mode, YATT-PDC content features obtained via
crawling are added to the categorization. The complexity
of the algorithms increases from YATT-P to YATT-PDC.
We expect that YATT-PDC will show the best perfor-
mance in categorizing typo domains, but the other vari-
ants can still provide useful information if one wants to
avoid the tedious work of collecting content features.

As presented before, we fine-tuned the parameters of
YATT, but further improvement might be possible with
additional features and a more complex feature selection
process. At the moment, this optimization is left as future
work.

In addition to YATT, we tested notable typosquatting
identification methods from related work. First, we con-
sider the method in [26], which showed that most ctypo
domains of DL-1 are indeed true typos. Their primary
feature is the domain length so we repeat their experiment
for DL-1 and we name their method AllTypo. Then, we
implemented the most important features of the SUT-net
algorithm in [10] and compared it to various modes of
YATT.

In Figure 4, we compare the accuracy of the typo iden-
tification methods in related work and the three modes
of YATT to the established benchmark of manual evalu-
ation. We perform this accuracy evaluation on the four
ctypo domain samples described in Section 4.1. In Fig-
ure 4, we see that all five algorithms mark ctypo domains
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Figure 4: Accuracy of four typosquatting prediction tools. We tested (a) AllTypos, (b) SUT-net-based content features,
(c) YATT-P, (d) YATT-PD, and (e) YATT-PDC for the four ctypo domain sample sets of (1/2/3) the Alexa top/mid/tail
domains and (4) the domains in the .com zone file.

as positives in the Alexa top dataset. This assertive cat-
egorization results in a good true positive (TP) rate, a
reasonably small number of false positives (FP) and with
almost no false negatives (FN). Only the full YATT-PDC
can identify a small set of true negatives (TN) in the popu-
lation. In the Alexa mid, the agressive typo identification
of AllTypo and SUT results in a high FP number whereas
YATT keeps the FPs low while correctly identifying TNs
(with YATT-PDC being the most accurate as expected).
For the Alexa tail and zone datasets, the number of true
typos further decreases and both AllTypo and SUT over-
whelmingly categorize these domains as typos resulting in
a very large false positive rate. All versions of YATT keep
the FPs low and correctly categorize TNs at the expense
of a small number of FNs. It is clear that perfect cate-
gorization is difficult to do, but YATT does not sacrifice
much precision as the number of non-typo domains get
introduced.

Next, we study the accuracy of the YATT-PDC to iden-
tify parked domains and other typosquatting indicators
based on our manual sampling in Table 1. Note that
related work on typosquatting identification usually fo-
cuses on typo identification and leaves the categorization
aside. Only the active mode of the algorithm can perform
this categorization, because it requires content features.

YATT-PDC uses regular expression-based matching for
the identification of parking domains. It matches these
domains with about 85% precision, the error stemming
from the incompleteness of the set of regular expressions
we use. YATT-PDC still finds the majority of the parking
sites and lists a significantly larger number of parking sites
than methods in related work [7, 19]. For the defenisve
domain registrations, YATT-PDC fares worse. It only
finds 60-85% of the defensive registrations. This is due to
the complexity of defensive registration patterns that can
mostly be caught by a human eye. Finally, for affiliate
registrations, YATT-PDC performs quite well, correctly
categorizing almost all domains. We also checked the
existence of malicious and phishing domains in our sam-
ple dataset, but we could not find any in such a small
sample. Our results from more rigorously checking for
maliciousness in typo domains is described in subsection
4.6, however maliciousness was not used to classify typo
domains as typos.

YATT results in an accurate prediction of true typo
domains and domain categories for the whole range of the
domain population and hence its results can be used as
a basis for intervention attempts and tools. Using YATT,
we compile a typosquatting blacklist and use it in a set of
mitigation tools (see Section 5).
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PARKED DEFENSIVE AFFILIATE
False
Posi-
tive

True
Posi-
tive

False
Nega-
tive

False
Posi-
tive

True
Posi-
tive

False
Nega-
tive

False
Posi-
tive

True
Posi-
tive

False
Nega-
tive

Alexa top 3 402 76 0 39 15 0 27 1
Alexa mid 3 358 50 0 18 3 0 15 0
Alexa tail 1 295 59 0 9 3 0 0 0

Zone 0 265 43 1 7 4 0 0 0

Table 1: The accuracy of YATT to identify parked, defensive and affiliate registrations across the sample datasets.

4.3 Presence of typosquatting registrations

Having designed an accurate typosquatting identification
tool, we now study the existence of typosquatting in cur-
rent domains registrations. We first obtained 4.7 million
ctypos targeting the .com domains in the Alexa top 1m
domain list and existing in the .com zone file using the
methodology described in Section 3. Recall, that we split
the original domains according to their Alexa rank into
the Alexa top/mid/tail categories.

Figure 5: The cumulative distribution of true typo do-
mains in ctypos and unique ctypos as a function of the
Alexa rank of the original domains.

The first and foremost question is the extent of ty-
posquatting targeting the Alexa domain set. We use YATT
to determine typosquatting behavior and partition ctypo
domains into the categories described in Section 3.5. In
Figure 5, we plot the cumulative distribution of ctypo do-
mains as a function of the originals’ Alexa rank, and we
also plot the cumulative distribution of true typo domains.
We see that the number of true typos steadily increases

as the Alexa rank decreases, although at a slower pace
than the number of ctypos. In addition, we also plot the
cumulative distribution of unique ctypos and true typo
domains.

We then show the fraction of true typos in the popu-
lation of ctypos in Figure 6(a). We calibrated YATT to
make a decision about each ctypo and thus it conserva-
tively categorizes the majority of unknown domains as
not typos. For Alexa top sites, the fraction of true typos
is higher, but for lower Alexa ranks the number of not-
typo and unknown domains increases. This is consistent
with our benchmarking results in Figure 3. Finally, in
Figure 6(b), we present the typosquatting categories as
a function of the original domains’ Alexa rank. We ob-
serve that the bulk of the true typo registrations profits
from parked domains with advertisements. The number
of defensive and affiliate registrations is higher for the
Alexa top sites, but then then the affiliate registrations
disappear as we head to the Alexa tail while the defensive
registrations persist. Finally, there is a significant number
of non-typo domains incidentally close to the domains in
the Alexa domain list.

Projecting our results to the total number of .com do-
mains in the zone file, we estimate that about 53% of
them are candidate typo domains and hence 20% of the
total domain set are true typo domains. Based on our
results, we estimate that about 21.2m domains are true
typo domains in the .com zone file.

4.4 Trend analysis

We analyzed trends in typo domain registrations for a
period of approximately one year (from 2012-10-01 to
2013-10-15). We considered domains from four datasets:
domains from the .com zone file, ctypos from the .com
zone file, ctypos targeting the whole Alexa list and ctypos
targeting the Alexa top list.

For the purposes of our analysis, we use visibility into
the .com zone file as a proxy for domain registration. Be-
cause the actual registration and registration lapse events
are not visible to us, we use presence in the zone file as
a proxy for registration events. We define a registration
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(a) (b)

Figure 6: The existence of typosquatting domains targeting the Alexa domain set. The fraction of (a) true typo domains
and (b) various typo categories in the true typo population.

event as one where a domain was not in a daily zone
dump, and was present in the subsequent day’s zone file,
and vice-versa for a registration lapse, or deregistration.
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Figure 7: Cumulative change in the total number of do-
mains registered over time.

We looked at the change in domain registrations over
time. Figure 7 plots the cumulative changes in the number
of domains registered in the above mentioned domain sets.
While the overall registration rate is steady, the difference
between the rate of Alexa-10k targeted and Alexa-1m
targeted typos suggests that, through enforcement or ty-
posquatter preference, the overall increase in registrations
targeting popular domain typos is far smaller even though

Stable Mean uptime Reregs

Alexa-1m ctypo 72.3% 458 days 49.5%
Alexa-10k ctypo 71.0% 454 days 49.5%
Alexa-1m 93.3% 501 days 67.1%
Alexa-10k 99.0% 506 days 86.8%
Random sample 70.4% 440 days 28.5%

Table 2: Speculation trend analysis between 2012-10-01
and 2014-02-20. Alexa list and zone file used was from
2012-10-01. The “stable” column indicates what propor-
tion were registered throughout the dataset. “Reregs” indi-
cates how many domains experienced at least one lapse in
visibility at the zone file, indicating that the domain was
decommissioned and then reactivated. “Random sample”
is a selection of 2 million random domain names from the
.com zone file of 2012-10-01.

many DL-1 typos of popular domains are still available.
It is also interesting to note that the spike centered on
January 1 2013 is due to four organizations (sedoparking,
1and1.com, dsredirection, and graceperioddomain.com)
registering a large number of domains: these four account
for 87% of all domains registered at that time.

Our next analysis focuses on the amount of specula-
tion present within the market for typosquatting domains
between 2012-10-01 and 2014-02-20. Table 2 shows the
percentage of stable domains, the average uptime, and
the percent of domains experiencing at least one rereg-
istration event during our measurement time period. As
might be expected, random domains are purchased and
left to lapse very often, with less than one third being
reregistered after being abandoned. Domains which are
a typo of a popular domain, however, experience almost
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twice as much interest, although they are not active for
significantly more time. This trend suggests that the in-
formation asymmetry of the typosquatting marketplace
is such that new speculators register old typos at a much
higher rate than random domains.

4.5 Typosquatting redirections
Now, we scrutinize the affiliate redirections via third-
parties. This third-parties can be legitimate brand protec-
tion companies, but more frequently they are typosquat-
ting affiliates collecting type-in traffic from a large num-
ber of typo domains.

Domain redirections that lead back to the targeted origi-
nal domains without intermediate domains are considered
defensive registrations, as explained in Section 2.1. If the
redirection leads back to the target domain via a third-
party, then we call it an affiliate defensive registration. In
Figure 8 the first graph shows that in the cumulative distri-
bution of third party landing pages, eleven domains (less
then 0.1 percent of all of these landing pages) get redirec-
tions from more than 50 percent of ctypos redirecting to a
third party domain. The second graph in Figure 8 shows
defensive affiliate domains, where the landing pages is
the original domain, but the traffic goes through an inter-
mediate affiliate domain. 18 such intermediate domains
(1.3 percent of all domains) are responsible for more than
80 percent of defensive affiliate marketing. Even though
this set has a very small overlap with the non-defensive
affiliate domains, a small fraction of affiliate domains are
controlling 80 percent of the affiliate market.

Finally, if the redirection leads to a third-party domain,
that is away from the original target, then this is consid-
ered truly speculative. The third graph in Figure 8 shows
redirections to third-party pages with only one redirection.
Here the domains are more widely distributed: there is
only one big landing domain hugedomains.com which
receives traffic from more than 21 percent of this type of
redirection. The last graph shows the cumulative distri-
bution of all affiliate domains participating in third-party
redirections with a non-defensive purpose. That means
that these affiliate domains lead away the users from the
targeted original sites. 41 of these non-defensive affiliate
domains (0.4 percent of all such domains) control the
traffic originating from more than 80 percent of candi-
date typo domains. This means that, here too, a relatively
small set of domains control the majority of such traffic
going to a few landing pages.

4.6 Maliciousness of Typo Domains
In order to test the assertion that typo domains are more
malicious than other domains, the candidate typo (ctypo)
and true typo (ttypo) domains extracted from the .com

# Mal-
ware
Hits

% of List
Marked
Malware

# Phish
Hits

% of List
Marked
Phish

Alexa 9990 1.907% 27 0.005153%
ctypos 17485 0.3716% 272 0.005781%
ttypos 3720 0.1585% 125 0.005329%

Table 3: Google Safe Browsing results for domains in
Alexa, ttypos, and ctypos.

were checked against a variety of available black lists.
These results are compared against the same test on the
Alexa domains. By using 12 available black lists from
various sources fluctuations due to the idiosyncrasies of
any individual list can be controlled.

The Alexa top 488,133 .com domains (all the .com

domains in the top 1m) are more likely to appear on black
lists than the typos of them, either ctypos or ttypos. This
result is consistent across all 12 black lists investigated.
In each case, the Alexa domains are more likely to host
malicious activity. The percentage of .com domains from
the Alexa list on each black list is always higher than the
percentage of ttypo domains on the same list.

Google’s Safe Browsing list requires a different check-
ing method, due to their storage method. The list also
distinguishes between a match due to malicious content or
attempts at phishing. However, the results show a similar
trend. The Alexa domains are more likely to be purvey-
ors of malicious software. Table 3 shows the results for
Google Safe Browsing checking for any listing from May
1, 2011 – July 31 2013.

There are several possible causes for this pattern, and
several of them would be uninteresting. A possibility is
that there is a pocket of malicious activity using typos, but
that most of it is benign. The first place to look for this
would be the name servers hosting predominantly typo
domains. There are 10 name servers for which most of
the domains they host are typos of other domains—for
these name servers, between 20-80% of their domains are
typos.

The typo domains hosted on these 10 name servers
seem to be even less likely to appear on a black list. The
average percentage of these name servers’ domains on any
of the black lists is 0.051%, and the maximum percentage
of typo domains hosted by one of these name servers on
any one list is 0.27%. Both of these numbers are below
those both for typos generally as well as the results for
the Alexa domains.

5 Intervention options

Just as defining typosquatting remains one of the grey
areas of domain name security, developing effective in-
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Figure 8: The leftmost figure shows the cumulative distribution of landing pages targeted from ctypo domains. The
second figure shows the cumulative distribution of intermediate domains in case of defensive redirections. The third
figure is when the length of the domain redirection chain is one. Finally, the rightmost figure shows the cumulative
distribution of intermediate domains in case of redirections targeting a third party.

tervention techniques is similarly difficult. So far, most
intervention attempts remain ineffective. In the following,
we present viable typosquatting mitigation options and
present a set of practical tools to prevent typosquatting
from negatively effecting users.

5.1 Policy intervention

Much of the effort to crack down on typosquatting fo-
cuses on policy options. Two major tools exist for policy
intervention. The first is the UDRP arbitration frame-
work provided by ICANN [21]. Unfortunately, only a
small fraction of typosquatting domains enters the UDRP
procedure [26], although domains are claimed by their
trademark holders very often.

The Anti-cybersquatting Consumer Protection Act
(ACPA) (15 USC §1125(d)) offers an alternative to the
UDRP through legal action. The act “was designed to
thwart cybersquatters who register Internet domain names
containing trademarks with no intention of creating a le-
gitimate web site, but instead plan to sell the domain name
to the trademark owner or a third party.” While originally
aimed at preventing cybersquatting, in May 2013 Face-
book successfully litigated a case including typosquatting
domains, earning a US $2.8 million judgement [18]. As
with any legal action, the enforcement of this act is costly
and only major trademark holders have exercised their
legal rights [25, 31, 32]. Additionally, the bad faith of
typosquatting registrations is difficult to prove and hence
the legal action might not always be efficient [30]. Un-
fortunately, even vigilant companies seem overwhelmed
by the number of typosquatting domains targeting their
brands, motivating them to litigate; even so, many of their
domains are still controlled by typosquatters.

5.2 Infrastructure support
Another option for intervention is to motivate registrars
and hosting providers to scrutinize domain name registra-
tions when they happen (with a mandatory light-weight
UDRP procedure for example). Let us now look at the
potential of registration intervention at the infrastructure
side. Figure 9 shows the distribution of typosquatting
domains (a) as a function of the registrars and (b) as a
function of the supporting NSs (setting the x axis to a log
scale to improve visibility). We observe that most true
typo domains cluster at major registrars and are hosted at
a few NSs. In particular, 12 NSs and 5 major registrars
are responsible for hosting 50% of the true typo domains.
Forcing these major registrars to enforce prudent regis-
tration practices with respect to typosquatting may be a
viable policy option.

NS True ty-
pos

All
domains

Typo
ratio

a0f.net 5221 6332 82%
citizenhawk.net 8819 12004 73%
easily.net 18281 36890 50%
domainingdepot.com 51854 132864 39%
next.org 9426 30252 31%
domainmanager.com 23493 90929 26%

Table 4: Worst offender NSs in true typo hosting with at
least 5000 true typo domains. All NSs in the top list have
higher than 25% of true typo / all domain ratio.

Based on the .com zone file, we are also able to col-
lect the ratio of true typo domains to the total number
of domains. Table 4 presents the top offenders with at
least 5000 true typo domains hosted. Interestingly, there
are only 65 NSs with such a high number of true typo
domains. We see that the worst offenders almost exclu-
sively host true typo domains, and none of them belong
to the major hosting companies8. Further investigating

8An interesting case might be citizenhawk.net, a brand protec-



USENIX Association  23rd USENIX Security Symposium 203

(a) (b)

Figure 9: Intervention potential at domain registrars and hosting companies. We present the distribution of typosquatting
domains (a) as a funtion of the registrars and (b) as a function of the supporting NSs (while setting the x axis to a log
scale for better visibility)

these typo domains we found two interesting results. First,
out of the 6 name servers with the highest true typo ra-
tio, 5 have domains that are privately registered and only
citizenhawk.net is not, showing that the others are
aware that their monetization strategy is questionable.
Second, we found that on the average 24.5 percent of the
domains hosted by these NSs is in the top Alexa, which
is 2.5 time higher number than for the rest of the name
servers. This indicates that these name servers are more
effectively targeting popular typo domains than major
hosting services who are not focusing on typosquatting.
These hosting companies with an unusually high number
of true typo domains could be regulated to effectively
decrease the effect of speculative typosquatting.

Infrastructure intervention is promising if it can be en-
forced globally by ICANN on the supporting providers.
Unfortunately, it is unlikely that such a global action
will emerge as this is counterproductive for the domain
registrars, and thus miscreants can always shift their busi-
nesses to negligent or accomplice providers who are fi-
nancially motivated to assist their businesses. Registrar-
and hosting-level intervention remains ineffective against
spammers [23, 24] and it is unlikely that it will be effec-
tive against typosquatting. Registrars and hosting compa-
nies do not suffer from typosquatting, thus there is little
economic incentive for them expend resources to defend

tion company who probably registered a large number of domain names
for protecting their customers.

against it.

5.3 Mitigation tools

The last option to counter typosquatting is the application
of technical tools to reduce the impact of typosquatting.
There exist mitigation tools to this end, but most tools
suffer from either trivial errors or from small coverage of
typosquatting domains.

Related work. Wang et al. developed Strider Typopa-
trol, a tool to automatically discover typo domains of
popular domains [35]. They focus on a small subset of
the Alexa top domain list [1], phishing targets, and chil-
drens’ websites. OpenDNS [27] provides typosquatting
correction in their DNS services, but only for major TLDs.
A similar tool called URLFixer [6] was introduced in the
Adblock Plus advertisement blocking tool. The URLFixer
tool includes misspellings of top Alexa domains, but fails
to correct less popular domain names and includes some
short domain names leading to false corrections. Chen et
al. [11] develop a browser plugin to check typo domains
based on a user-customized local repository. Banerjee et
al. [9, 10] propose SUT, a method to identify typosquat-
ting domains mostly based on HTML properties. Finally,
the autocomplete feature of most major browsers can also
decrease the instance of typos, albeit only for previously
visited sites.

Initial tests show that most existing solutions are lim-
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ited in scope (the most popular domains or most frequent
typos), in features (only TLD correction or HTML fea-
tures) or in the information used (search typing or local
browser history) and consequently these tools are missing
a large set of typosquatting domains.

The YATT framework. We developed a typosquatting
categorization tool, YATT, that uses an extended domain
feature set to provide accurate typosquatting identification.
Based on the output provided by YATT, we implemented
three typosquatting detection and protection services. The
first service is a typosquatting blacklist (YATT-BL) com-
piled from the output of one of the versions of the YATT
tool. As a DNS based blacklist, this access method is
quick and lightweight. The tool works similarly to major
domain blacklists such as URIBL [5], SURBL [4] or the
Spamhaus DBL [3] and it can be used to filter out typo
domains from live traffic. The DNS server uses RPZ [34]
to efficiently distribute the typo list.

Second, we implemented a Firefox browser plugin and
a corresponding typo protection server to protect users
from typosquatting domains. Our plugin contacts the typo
protection server each time a user types in a domain and
raises a warning if the domain typed by the user is found
on the typosquatting domain list. The user is provided
with the option of accepting the automatic correction or
rewriting it to her needs. The typo protection server uses
YATT-BL DNS blacklist described above.

Third, we are in the process of implementing a YATT
DNS server for organizations that want to avoid typosquat-
ting yet do not want to expose their DNS traffic to a third
party server. Using this tool, a company could periodi-
cally download an updated typosquatting blacklist and
query it locally.

6 Conclusion

Typosquatting has caused annoyances for Internet users
for a long time. Since users lack effective countermea-
sures, speculators keep registering domain names to target
domains and exploit the traffic arriving from mistyping
those domain names. Existing studies of typosquatting fo-
cused on popular domain names and thus have only shown
the tip of the iceberg. Similar to traditional cybercrimes
like spamming or financial credential fraud, typosquat-
ting has minimal transparency, allowing what may be an
unprofitable activity to continue because new entrants see
its effects and attempt to become profitable typosquatters
themselves. Investigating such speculative, “gray area”
behavior longitudinally can give us insights which might
generalize to traditional cybercrime and cybercriminals.

In this paper, we performed a thorough study for an ex-
tensive set of potential target domains. We found that 95%
of typo domains are targeting less popular domains. We
designed an accurate typo categorization framework and

find that typosquatting using parked ads and similar mon-
etization techniques not only exists for popular domains,
but a whole range of domain names in the Alexa domain
list. We showed that a large number of incidental domain
registrations exist with close lexical distance to the tar-
get domains. Our conservative estimates indicate that as
much as 21.2 million .com domain registrations are con-
firmed true typo domains, which accounts for about 20%
of all .com domain registrations. Additionally, we found
that the typosquatting phenomenon is only continuing to
thrive and expand.

The difficulty of categorizing typosquatting domains
partially explains the inefficiency of existing mitigation
techniques. Much like typosquatting itself, mitigation is a
gray area: one cannot easily classify a new registration as
an example of typosquatting based on the name alone. As
such, typo domains rarely appear on blacklists. To counter
this problem, we designed several defense tools that rely
on a broad range of features. We provide a typosquatting
blacklist and a corresponding browser plugin to prevent
mistyping at the user side. While typosquatting will likely
continue to exist, these analyses and tools may improve
user experience and further decrease the profit available
to typosquatters.
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Appendices
A Features used for domain categorization

Feature description Priority Comment
Lexical attributes

domain length M [26]
highest-ranked neighbor’s opera-
tion

M diff. from the most pop-
ular original domain

is any neighbor at fat finger distance
one?

M FF typos are more likely
to be true typos [26]

nr. of neighbors L
nr. of neighbors with op L where

op={add,del,sub,tra,www}
Popularity (Alexa) attribute

Alexa rank of original domain H
Zone file attributes

total nr of ctypo-s on NS M
ctypo/alldomain ratio on NS H
total nr. of domains on the NS in the
zone

L

parked keywords in NS domain H
Whois attributes

total nr of ctypo-s at registrar M
registration date L

DNS attributes
NXDOMAIN wildcarding H
TXT google auth L Google ads affiliate auth
total nr of ctypo-s on IP address M [10]

Content attributes
Parked H by RE keywords
Serving ads M by RE keywords
Total redirection length M # of redirections [10]
Domain redirection length H # of redirections

between registered
domains

DERPContent size M [10]
Affiliate marketing M [26]

Table 5: Domain and infrastructures features to categorize
candidate typo domains. The column Priority indicates
the relative importance in idenfitying typosquatting be-
havior.
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Abstract
Domain parking is a booming business with millions of
dollars in revenues. However, it is also among the least
regulated: parked domains have been routinely found to
connect to illicit online activities even though the roles
they play there have never been clarified. In this paper,
we report the first systematic study on this “dark side” of
domain parking based upon a novel infiltration analysis
on domains hosted by major parking services. The idea
here is to control the traffic sources (crawlers) of the do-
main parking ecosystem, some of its start nodes (parked
domains) and its end nodes (advertisers and traffic buy-
ers) and then “connect the dots”, delivering our own traf-
fic to our end nodes across our own start nodes with other
monetization entities (parking services, ad networks, etc)
in-between. This provided us a unique observation of the
whole monetization process and over one thousand seed
redirection chains where some ends were under our con-
trol. From those chains, we were able to confirm the
presence of click fraud, traffic spam and traffic stealing.
To further understand the scope and magnitude of this
threat, we extracted a set of salient features from those
seed chains and utilized them to detect illicit activities on
24 million monetization chains we collected from lead-
ing parking services over 5.5 months. This study reveals
the pervasiveness of those illicit monetization activities,
parties responsible for them and the revenues they gener-
ate which approaches 40% of the total revenue for some
parking services. Our findings point to an urgent need
for a better regulation of domain parking.

1 Introduction
Consider that you are a domain owner, holding a few do-
main names that you do not have a better use of. Then
one thing you could do is to “park” them with a do-
main parking service to earn some extra cash: whenever
web users type in those domain names (probably acci-
dentally) in the browser’s address bar, the parking ser-
vice resolves the domains to advertisement laden pages,

the revenue generated in this way is then split between
the parking service and the domain owner. Such domain
parking monetization is a million-dollar business [29],
offering a unique marketing channel through newly ac-
quired, underdeveloped domains, or those reserved for
future use. However, with a large number of parked do-
mains being monetized through those services ( Sedo
reported to have 4.4M parked domains in 2013 [29] ),
what becomes less clear is the security implications of
such activities, particularly whether they involve any il-
licit operations, a question we attempt to answer.

Dark side of domain parking. Prior research shows
that once malicious domains (e.g., those hosting a Traffic
Distribution System, TDS) have been discovered, they
often end up being parked [17], i.e. temporarily hosted
by some domain parking services. Those domains come
with a large number of backlinks through which they can
still be visited by the victims of the malicious activities
they were once involved in, such as compromised web-
sites. Web traffic from those backlinks is clearly of low
quality but apparently still used by the parking services to
make money [17]. More problematically, a recent study
reveals suspicious redirections performed by some park-
ing services could be related to click spam [10], though
this could not be confirmed. This finding echoes what we
observed from the redirection chains collected by crawl-
ing parked domains, some of the URLs on the chains
carried URL patterns related to ad click delivery even
though our crawler did not click on any link at all (Sec-
tion 2.3). Also malicious web content has long been
known to propagate through parked domains [14, 20].

With all such suspicions raised, it is still challenging
to determine whether some parking services are indeed
involved in illicit activities, and if so the types of roles
they play there. The problem is that parking services’
monetization decisions and strategies cannot be directly
observed from the outside. Therefore, in the absence of
information about the nature of input traffic to those ser-
vices and the actual ways it has been monetized, all we
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have is guesswork. For example, even though we did
observe redirection chains seemingly related to click de-
livery, without knowing a parking service’s interactions
with its ad network, we were still left with little evidence
that what we saw was indeed click fraud. Note that park-
ing services do not need to play conventional tricks, such
as running click bots [21] or using hidden iframes em-
bedded in a compromised page, to generate fraudulent
clicks, and therefore will not be caught by standard ways
in click fraud detection. In the presence of such technical
challenges, little has been done so far to understand the
illicit activities that can happen during the monetization
of parked domains.

Our study. In this paper, we report the first attempt
to explore the dark side of domain parking and uncover
its security implications. This expedition is made pos-
sible by an innovative methodology to infiltrate parking
services. More specifically, we purchased a set of do-
mains and parked them with those services. Those do-
mains, together with our crawler that continuously ex-
plored parked domains, enable us to control some in-
puts to the parking services. On the receiving end, we
launched ad campaigns and made purchases of web traf-
fic through the ad network or the traffic sellers associ-
ated with those parking services. By carefully tuning pa-
rameters to target web audience we controlled, we were
able to connect the dots, receiving the traffic generated
by our crawler going through our parked domains and
onto our campaign websites. This placed us at a unique
vantage point, where we could observe complete mone-
tization chains between the start and the end nodes we
controlled.

By analyzing such monetization chains, we were sur-
prised to find that domain parking services, even highly
popular ones such as PS51, shown in Table 1, are indeed
involved in less-than-legitimate activities that should
never happen: our ad campaigns were charged for the
“click” traffic produced by our own crawler that never
clicked and the traffic we purchased turned out to have
nothing to do with the keywords we specified; also in-
terestingly, we found that for all the visits through our
parked domains and hitting our ads, only some of them
were reported to our domain-owner’s account (i.e. their
revenues shared with us), though all of them were billed
to our ad account.

To further analyze the scope and magnitude of those
problems, which we call click fraud, traffic spam and
traffic stealing respectively, we fingerprinted those con-
firmed illicit monetization chains with a set of salient fea-
tures called stamps, and utilized them to identify mone-
tization activities on 24M visits to parked domains not

1Throughout this paper, we anonymize the identities of domain
parking services found to be participating in illicit activities due to legal
restrictions imposed by Indiana University and RSA.

going through our end nodes (i.e. ad/traffic campaign
websites). New findings reveal that even leading domain
parking services are involved in illegitimate operations.
On the other hand, such operations were present in only
about 5% of the traffic we observed, which indicates that
those services are largely legitimate. Possible motiva-
tions behind their opportunistic attacks could be mon-
etizing less reputable (secondary) domains (e.g., taken-
down malicious domains) that are difficult to profit from
legitimately, or making up for revenue losses. Further-
more, we conducted an economic study to estimate the
revenues of such dark-side activities, which we found to
be significant.

Contributions. The contributions of the paper are out-
lined as follows:
• New methodologies. We performed the first system-
atic study of illicit activities in parked domain moneti-
zation. This study was made possible by a suite of new
methodologies that allowed us to infiltrate domain park-
ing services and collect a set of complete monetization
chains. We further expanded such “seed” chains over a
large number of redirection chains collected from parked
domains over a 5.5-month period, which laid the foun-
dation for understanding the unique features and the im-
pacts of those activities.
• New findings. Our study brought to light a set of inter-
esting and important findings never reported before. Not
only did we confirm the presence of illegitimate opera-
tions including click fraud, traffic spam and traffic steal-
ing during the monetization of parked domains, but we
also reveal the pervasiveness of those activities which af-
fect most leading parking service providers and attribute
it to account for up to 40% of their total revenue. Also
interesting is the discovery of unique features of those
illicit activities and their relations with different moneti-
zation strategies and parking service syndicates.

2 Parked Domain Monetization
2.1 Background
Domain parking. As described before, a parked do-
main is a registered domain name whose owner does not
have a better use of it than temporarily running it as an
ad portal to profit from the traffic the domain receives.
To this end, the owner typically chooses to park the do-
main with a domain parking service, an intermediary be-
tween the owner and various monetization options (ex-
plained later). This is done by setting up an account
with the service, and the owner forwards her domain
traffic to the parking service as specified by its regula-
tions. The most common way for doing this is through
the Domain Name System (DNS), in which the parked
domain’s Name Server (NS) or Canonical Name record
(CNAME) is set to point to that of the parking service.
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In this way, the service gains complete control on the
parked domain and any traffic it receives. Alternatively,
the domain owner can choose to log her domain traffic
before redirecting it to the parking service through HTTP
redirections.

Parking services provide a domain owner with a plat-
form to manage her parked domains. For example, some
parking services let the owner set the keywords to be
used for the parked domain monetization. Also, a do-
main owner can monitor their domain earnings through
revenue reports.

Monetization options. A parked domain owner can
profit from her domain traffic through a number of mone-
tization options. The most popular ones are search adver-
tising and direct-navigation traffic monetization, as elab-
orated below:

• Search advertising. In search advertising (aka., spon-
sored search), the advertiser runs a textual ad campaign
with a search ad network and selects a set of target key-
words for displaying her ads. To serve these ads, the
publisher may operate search-related services such as
search engines and toolbars, or use in-text advertising
techniques (i.e. when the mouse hovers on a target word,
the ad is displayed) to identify the right context for ad-
vertising: for example, it shows ads associated with the
target words that are included in the search terms entered
into search engines or the toolbars. Parking services are
one of such publishers who provide textual ads relevant
to the names of parked domains.

Search advertising is made possible through pay-per-
click (PPC) XML feeds as illustrated in Figure 1. A pub-
lisher submits a search query for certain keywords (rele-
vant to the domain names, in the case of parked domains)
and receives relevant ads in the XML format, which also
include the bidding price per ad from the advertisers. The
publisher in turn picks up a set of ads to display. Once
a user opts to click on an ad, the click traffic is bounced
through a number of hosts such as click servers before
reaching the advertiser’s web page. This click is paid for
by the advertiser and the revenue generated in this way
is shared between the publisher and the ad networks.

Popular search ad networks such as Google
AdWords and BingAds are considered to be top-tier
(premium), while other less reputable ones are 2nd-tier
or lower. Compared with other ad networks, top-tier net-
works offer a higher rate per click (CPC) to the publisher
and a better click fraud detection to the advertiser.

• Direct navigation traffic (PPR). Direct navigation traf-
fic (aka., type-in traffic) is generated when the web user
enters a domain name as a query and expects to be
redirected to a related domain. For example, one may
type in “findcheaphotels.com” in the address bar and
land at mytravelguide.com. This is caused by

Parking Sever PPC XML Server

Click Servers
(i.e. search sites)

Advertiser

1- User visits 
parked domain

2- Request PPC Ads 
relative to 

domain name 
keywords

3- XML Ad lising
4- Parking Page

With contextual ads

5- User clicks 
on a 

textual ad 6- Redirect
 to
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Figure 1: Legitimate PPC XML feed operation.

a direct-navigation-traffic purchase in which the owner
of mytravelguide.com purchases through a direct
navigation system the traffic related to keywords “travel”
and/or “hotels”, for example. Parked domains can serve
such a direct navigation system by redirecting type-in
traffic to them who ultimately redirect it to traffic buyers
like mytravelguide.com. This monetization option
is called Pay-Per-Redirect (PPR) or zeroclick.

2.2 Ecosystem and Illicit Monetization
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Figure 2: Domain Parking Ecosystem

Domain parking services have a significant hold in the
domain industry. Table 1 shows some of the most pop-
ular parking services investigated in our study. By look-
ing at the ranks of the domain names associated with
the companies running these parking services, we find
that many of them are ranked among the top 100k by
Alexa [2]. Also shown in the table is the total num-
ber of parked domains observed on Feb. 25th accord-
ing to DailyChanges [34]. Note that the list maintained
by DailyChanges is not comprehensive. Nevertheless,
it is quite clear from Table 1 that parking services in-
deed cover a large number of domains. Here we describe
our understanding of its ecosystem, based on our analy-
sis of a large amount of data collected from the domains
under leading parking services. Such an understanding
also leads to the suspicion of illicit activities within this
ecosystem which motivates this research.
Infrastructure. Figure 2 illustrates the infrastructure of
the domain parking ecosystem, as revealed by the redi-
rection chains observed during our crawling of parked
domains. Those domains are the start nodes for the
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# Parking Service
Alexa [2] DailyChanges [34] Our data set

Global # Parked # Parked # Monetization
Rank Domains Domains Chains

1 Above 39,901 512,206 17,160 348,534
2 PS1 19,973 1,101,050 11,850 94,794
3 PS2 21,446 1,615,644 9,972 82,258
4 PS3 78,275 261,357 6,447 141,174
5 PS4 59,248 1,275 3,606 174,410
6 PS5 11,357 136,243 2,782 108,956
7 PS6 62,369 330,032 1,020 135,946
8 Rook Media 2,827,350 132,455 562 7,505
9 Fabulous 32,850 406,872 315 53,851
10 InternetTraffic 4,072,159 1,290,732 151 7,764

Table 1: Top 10 Parking services in our data set. The number
of monetization chains is not the same as the number of parked
domains since each parked domain was crawled multiple times
during our collection period. Note that parking services found
in this paper to carryout illicit activities are anonymized as
“PS#”.

whole ecosystem. They include expired domains with
back links, blacklisted domains (e.g., exploit servers or
TDSes [17]) seized or taken down then repurchased by
domain owners or newly acquired domains. As illus-
trated in the figure, parked domains forward their traf-
fic to parking services, which in turn select the most
profitable monetization option in real time, based upon
a set of characteristics of the traffic such as its geoloca-
tion, browser type and domain keywords. Occasionally,
a parking service chooses to forward the traffic to another
parking service when the latter offers a higher return on
a specific traffic instance. In addition, a parking service
may collaborate with traffic monetization platforms (e.g.
Skenzo.com), which monetize different types of traffic
such as parking traffic, error traffic (i.e. 404 not found
pages) and non-existent domains. Here, we refer to this
type of partnership as parking syndication.

The end targets of any traffic monetization option can
be either an advertiser, a traffic buyer or a brand name,
which are the end nodes of the infrastructure.

Potential illicit monetization activities. In our
study, we discovered, during our crawling of parked
domains, some suspicious activities that call into
question the legitimacy of some monetization op-
erations. Specifically, we found that some URLs
on the redirection chains initiated by our crawler
contain patterns related to the delivery of clicks,
for example, “http://fastonlinefinder.com/
ads-clicktrack/click/newjump1.do?”. The
problem is that our crawler never clicked on any URLs.
It just visited a parked domain and followed its (au-
tomatic) redirection chain (see Section 2.3). Also,
we observed a lot of “shady” search websites (e.g.,
fastonlinefinder.com), which look like search
engines but return low-quality ad results. Those search
sites are also observed in prior research [18, 4] and have
been presumed to be related to malicious activities like
click fraud and malware delivery.

However, confirming the presence of illicit activities in

domain monetization is challenging. Take click fraud as
an example. We need to determine whether the crawler
traffic has indeed been monetized as clicks, which can
only be confirmed at the advertiser end. Further com-
plicating this attempt is the observation that some park-
ing services try to make the click delivery look like
zeroclick monetization (PPR) by bouncing the traffic
through entities with indications of “zeroclick” in the
URL: for example, a visit to a parked domain is ini-
tially redirected to http://bodisparking.com/
tracking?method=zeroclickrequest before
moving to the click URL. Also, malware scanning can-
not find any malicious payloads from the traffic collected
from parked domains. Most importantly, given that the
traffic for domain monetization goes down a complicated
redirection chain, including ad networks and parking-
service syndication, it becomes highly nontrivial to iden-
tify the party responsible for a malicious activity, even
when its presence has been confirmed.

2.3 Overview of Our Study
Here we describe at a high level what we did in our re-
search to understand the suspicious activities that happen
within this domain parking ecosystem.

Data collection. As discussed above, the data used in
our study was collected from crawling parked domains.
For this purpose, we implemented a dynamic crawler as a
Firefox extension and deployed it to 29 Virtual Machines
(VMs). The crawler is designed to simulate a user’s visit
to a URL through a browser by rendering its content and
running scripts. All such content and HTTP traffic (such
as redirections) generated are collected and dumped into
a database. In this way, the crawler is able to gather the
information produced by execution of dynamic content.

Those crawlers worked on a list of parked domains,
which was updated every 3 days during the past 5.5
months (August 1st, 2013 to January 20th, 2014). Those
domains were discovered by reverse-lookup for the NS
records of known parking services (a list built manually)
using the PassiveDNS set (DNS record collection) pro-
vided by the Security Information Exchange [30]. In
order to investigate the monetization activities through
those domains, we constructed a monetization chain for
each URL visit. A monetization chain is a sequence of
URL redirections (e.g. HTTP 302, iFrame tags, etc.) ob-
served during a visit to a parked domain, including ad
networks and traffic systems related to monetizing the
visit.

During each visit, each crawler randomly picked one
of 48 user agent strings covering popular browsers, op-
erating systems and mobile devices. Overall, we made
about 24M visits to over 100K parked domains. From
all those visits, we identified 1.2M (5%) monetization
chains including redirections (not direct display of ads).
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The leading parking services involved in those chains are
presented in Table 1.

Infiltration and expansion. To identify illicit activities
involved in the monetization of parked domains and un-
derstand the scope and magnitude of the problem, we
performed an infiltration study on the domain parking
ecosystem to gain an “insider” view about how those
parking systems operate. This is critical for overcom-
ing the barriers mentioned in Section 2.2. More specif-
ically, we ran our crawlers to collect data from parked
domains and also parked domains under our control with
major parking services. Additionally, we launched a few
ad campaigns and also purchased traffic associated with
some keywords. By carefully selecting the parameters at
our discretion, we were able to “connect the dots”, link-
ing the start nodes (domains) or traffic sources (crawlers)
under our control to our end nodes (ad or traffic pur-
chase campaigns) on monetization chains. Those chains
(called seeds), together with the accounting information
we received from related parking services and ad net-
works, reveal the whole monetization process with re-
gard to our inputs. This enables us to identify the pres-
ence of click fraud, traffic stealing (failing to report mon-
etized traffic) and traffic spam (low-quality traffic). We
elaborate this research in Section 3.

To understand the impacts of those fraudulent activ-
ities, we extracted from the seed monetization chains a
set of fingerprints, or stamps, to identify the monetiza-
tion method used. Once a monetization chain is identi-
fied as either PPC or PPR, we infer the presence of illicit
activities. Our research shows that our approach accu-
rately identifies illicit monetizations through known ad
networks and traffic systems. Most importantly here, this
approach helps us expand those seeds to a large number
of monetization chains collected by our crawlers. Over
those chains, we performed a measurement study, which
shows the pervasiveness of the problems, their unique
features and the profits the parking services get from the
illicit activities. The study and its outcomes is reported
in Section 4 and Section 5.

Adversary model. In our research, we consider that the
parking service is untrustworthy, capable of manipulat-
ing the input traffic it receives and its accounting data to
maximize its profits at other parties’ cost. It also cloaks
frequently to avoid being detected by third parties. On
the other hand, the service cannot change its interfaces
with legitimate ad networks: it needs to make the right
calls to deliver its traffic to the networks. In the mean-
time, some less reputable ad networks (2nd-tier or lower)
may not be trustworthy either, which adds complexity to
assigning blame to different parties involved in a known
fraudulent activity.

In practice, parking services are actually legitimate

companies. What we found is that they apparently be-
have legitimately most of time but are indeed involved in
illicit operations occasionally. This adversary is actually
very unique, since they blur the lines between fraudulent
and legitimate transactions and conduct operations with
highly questionable practices.

3 Dark Side of Domain Parking
In this section, we report on our infiltration of the domain
parking ecosystem. As discussed before, what we did
is to control traffic sources (crawlers), some start nodes
(parked domains) and some end nodes (ad campaigns
& traffic purchases) of the ecosystem, to get end-to-end
monetization chains going through them, as depicted in
Figure 3. The figure shows that the chains are as follows:
from our parked domains to our end nodes, that is, adver-
tisers or traffic buyers (in black); from other parked do-
mains to our end nodes (in red); from our parked domains
to other end nodes (in green) and from our crawlers but
not through our domains or end nodes (in blue). Among
those chains, the black and red chains connect our traf-
fic source, crawler, to our end nodes through parked do-
mains, which are used as the ground truth for validating
our findings (Section 3.3) and the seeds for detecting il-
licit activities on other chains (Section 4).

Below we describe how we infiltrated the ad networks
and direct traffic navigation systems on the end-node side
and the parking services on the start-node side.

3.1 Infiltrating End Nodes
Here we walk through our infiltration of the end nodes of
the ecosystem, which includes a few steps: we need to
identify the right targets (ad networks or traffic systems),
register with them, launch ad campaigns and set the right
parameters to maximize the chances of receiving our own
crawling traffic.

Target identification and registration. To identify the
most popular targets, we inspected a sample dataset, in-
cluding monetization chains collected during the first
two weeks of August 2013, to collect a set of the most
prevalent top and 2nd-tier ad networks and direct nav-
igation systems. This turned out to be rather straight-
forward for some targets (e.g., the Looksmart ad net-
work with a domain name looksmart.com), but not
so for others. For example, for some ad networks (e.g.
Advertise), only the domains of the “shady” search
websites they utilized showed up on their click URLs;
the “masters” of those search domains were not revealed
from their whois records, which indicated either an
anonymous registration or missing organization names.
To uncover those ad networks, what we did include us-
ing a domain’s Autonomous System Names (ASN) or
other domains sharing its IP addresses to determine its
affiliation, as well as comparing an ad network’s contact
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Figure 3: Types of monetization chains captured in our data set where the dashed boxes represent entities under our control.

information with that on the domain’s whois record.
Once a set of targets (ad networks and traffic systems)

were identified, we attempted to register with them as
an advertiser or a traffic buyer. This happened with fake
identities whenever possible, for the purpose of conceal-
ing our true identity to avoid cloaking activities, but we
had to use our real information for some of them, which
asked for IDs such as driver’s license and a credit card.
All together, we successfully affiliated ourselves with 15
out of 25 top ad networks and traffic systems identified.
For those we failed to do so, the main cause was that they
only accepted large-budget customers.

Campaign creation and parameter tuning. We set up
a search-like website (Figure 7 in Appendix) and hosted
it on three domains, one for traffic purchasing and the
other two for advertising. Using those domains, we cre-
ated both advertising and traffic purchasing campaigns.
Specifically, for each of them; we selected 10 keywords
related to our own parked domains, and also constructed
our target URLs, given to the ad networks or traffic sys-
tems, to communicate a set of data (e.g., ad network
names, publisher IDs, keyword used, etc.) to be used
to identify monetization chains that end at our websites
through our crawlers. Table 2 summarizes our infiltration
meta-data.

For each campaign, we carefully adjusted its parame-
ters to maximize the chances of getting traffic from our
own crawlers, which provided us with the end-to-end
monetization chains we were looking for. The strate-
gies for such parameter tuning varied across different
ad networks and traffic systems. Specifically, some of
them offered geo-targeting, which we leveraged to aim
at the city our crawlers were located. When this was
not available, we tried to take advantage of other features
such as browser type and timing when offered. Particu-
larly, for the browser feature, our campaign opted to tar-
get the least common browser type, which our crawlers

also used for their user agents. Additionally, the timings
of some campaigns were tuned in a way that they only
ran when traffic from sources other than our crawlers
was minimal, for example, from 12AM-6AM and 10PM-
12AM. As an example, the direct navigation traffic sys-
tem DNTX provided only country-level geo-location and
the platforms (iOS, Android, BlackBerry and others) un-
der its mobile/tablet category. In this case, we targeted
our campaigns at the country our crawlers were running
from and the Blackberry platforms.

Overall, we ran advertising and traffic campaigns
through all 15 ad and traffic networks starting from Nov.
22nd last year, which cost us $2,260 in total. The lo-
gistics of our end node infiltration campaigns are sum-
marized in Table 3. Among those campaigns, the two
with Admanage lasted for only two days before we were
locked out from our account for almost a month with-
out giving any explanations. Also, our campaign with
Approved Search did not receive any traffic that fit
our targeting criteria.

3.2 Infiltrating Start Nodes
To infiltrate start nodes, we went through top 10 most
popular parking services identified from our sample
dataset (Section 3.1), opened accounts with them and
carefully chose our monetization options so as to max-
imize the chance of observing illicit activities.

Parking service registration. Among all the services
we tried, Domain Power asked for real identity infor-
mation, which we skipped, and trafficZ turned down
our application, citing the small volume of traffic our do-
mains received. Other parking services performed some
type of authentication, such as sending a PIN number to
a valid phone number, and verifying the consistency be-
tween the owner information on our domains’ whois
records and that on our application. We passed those
checks and used fake identities to register with 7 parking



USENIX Association  23rd USENIX Security Symposium 213

FREE-JOBS.INFO, JOBS-BOARD.INFO, REAL-JOBS.INFO, NEWS-CHANNEL.BIZ, NEWS-FEED.BIZ, FAMILY-VACATION.ORG
DREAM-VACATION.ORG, COUPONS-FREE.INFO, LOCAL-COUPONS.INFO, SUPERCOUPONS.INFO, CLOTHES-SHOP.INFO

Parked domains DESIGNER-CLOTHES.INFO, TEAMXYZ.INFO, XYZAGENT.INFO, LOWCOST-FLOWERS.COM, EDITING-SOFTWARE.ORG
EDUCATION-RESOURCES.ORG, EDUCATION-GUIDE.ORG, MARKETING-EDUCATION.ORG, CITY-CARS.NET, MUSIC-LIVE.ORG
SOFWTARE.COM, NEWS-NETWORK.BIZ

Target Keywords Jobs, Cars, News, Vacation, Coupons, Clothes, Software, Education, Music, Flowers
Target URL example http://anwers.net/search.php?s=advertise&c=camp7&type=kw&kw=jobs&aff=63567&geo=us_in_bloomington

Table 2: Infiltration meta-data. The URL example indicates the ad network is “Advertise”, click keyword is “Jobs” and the publisher
ID is “63567”.

Network Campaign Total AVG Budget # Targeting
Type Hits CPC/CPR ($) Days

adMarketplace PPC 143 0.2 100.13 18 City & Time
Advertise PPC 18 0.067 125.17 17 City, Device & Time
Google AdWords PPC 1 1.86 222.71 32 City & Device
Affinity+ PPC 371 0.3 250.36 17 City & Time
Approved Search PPC 0 0.05 10.5 2 Country & Time
Bidvertiser PPC 0 0.1 160.13 28 Country
Bing Ads+ PPC 6 0.97 33.06 30 City, Device, Time
Ezanga PPC 35 0.21 47.92 33 City & Time
Looksmart PPC 131 0.19 91.1 30 City & Time
Avenue5 PPC 0 0.05 44.25 37 Country & Time
Admanage PPC 0 0.4 43.6 2 Country

7search+ PPC 3 0.1 297 26 Country, Device
PPR 146 0.1 203 29 & Time

DNTX PPC 1 0.058 155.89 13 Country
PPR 29 0.056 203.5 27 & Device

Adspark PPR 106 0.2 31.8 5 City, Device & Time
Trellian PPR 25 0.201 250 43 Country
Table 3: End node Infiltration Logistics. + Networks that re-
quired registration with a real identity. “Total hits” represent
click/traffic hits received at our web server and initiated by our
crawler. Note that 7Search offered both PPC and PPR cam-
paign types and as such, we created two campaigns with it, one
for each type.

services as illustrated in Table 4. Most of these services
are indeed popular as shown earlier in Table 1.

# Parking Service # Parked Domains
1 PS5 9
2 PS2 2
3 PS6 6
4 PS1 4
5 PS4 3
6 Rook Media 2
7 PS7 2

Table 4: Parking Infiltration Logistics. Note that the total num-
ber of domains does not add up to 23 which is due to moving
some domains between parking services. Note that PS7 is not
shown in Table 1 as it is not in the top 10 parking services.

Domain monetization. We purchased 23 domains un-
der a number of top level domains and parked them with
the 7 services. The names of those domains were care-
fully chosen to match the keywords we targeted in our
campaigns (see Table 2). We also set their NS records
to point to those of their corresponding parking services,
with some exceptions discussed later.

Our preliminary analysis on data crawled from park-
ing services showed that suspicious activities were only
observed on redirection chains. Therefore, we tried to
avoid situations like PPC listings, where a set of PPC
ads are displayed on a parking landing page. Instead,
we chose not to have such a page (displaying signs like
“for sale”), so the parking services can monetize the traf-

fic our domains received through redirections. Actu-
ally, one parking service, Bodis, allowed us to explic-
itly set this monetization option by redirecting the traffic
instead of setting the NS record to Bodis. For exam-
ple, we parked the domain news-network.biz with
Bodis by using the GoDaddy forwarding service to
send our domain traffic to http://bodisparking.
com/news-network.biz.

3.3 Findings
Through infiltrating the start and end nodes of the
ecosystem and crawling domains hosted by popular
parking services, we were able to collect 1,015 mone-
tization chains that link our crawlers to our end nodes
(our advertising or traffic purchase websites), sometimes
through our start nodes (parked domains). Using those
chains as the ground truth, we confirmed the presence of
illicit activities during parked domain monetization, in-
cluding click fraud, traffic spam and traffic stealing, as
elaborated below.

Click fraud. Out of all the ad clicks delivered to our
advertising websites through parking services, 709 were
found to come from our own crawlers. They are clearly
fraudulent since our crawlers were designed not to click
on any ad (Section 2.3). Table 3 details the number of
clicks received from our crawler through each ad net-
work.

Traffic spam. The 4 traffic purchasing campaigns
we launched received 306 traffic hits from our crawler
through domains parked with parking services. Upon
examining the parked domains that served as the start
nodes on those monetization chains, we found that 83
of them were totally unrelated to the keywords we pur-
chased from the direct traffic systems. Table 5 provides
examples of spam and good-quality traffic.

Keyword Spam Not Spam
Music 19jj.com, ib2c.com.cn thepiatebay.org, itunesstore.de
Software almacenyhostpublico.com linuxfab.cx,iphoneos3.com
Coupon seattleseoforum.com coupons-free.info

“Others” brf.no, betovilla.com,gddfg.com education-guide.org
70263.com, facebooki.pl dolla.com

Table 5: “Spam” and “Not Spam” examples of parked domains
appearing in traffic purchase monetization chains leading to our
traffic buyer website. “Others” represents instances where the
purchased keyword was not propagated through to our traffic
buyer URL but it is still evident from the spam examples that
they are not related to any of the 10 keywords we purchased.



214 23rd USENIX Security Symposium USENIX Association

Traffic stealing. Occasionally, parking services were
found to be dishonest with domain owners, failing to
inform them for part of the revenue they were sup-
posed to share with the owners. Specifically, we cross-
examined the revenues of the domains under our control
and the billing reports for the ad/traffic campaigns we
launched. This revealed that some monetization chains
going through our parked domains were not reported to
us (domain owners) but charged to our campaign ac-
counts.

For example, we confirmed the existence of traf-
fic stealing from monetization chains captured by our
crawler connecting three of our domains (parked with
PS5) and our PPR campaign with 7Search. This was
achieved through comparing the billing reports provided
by 7Search, the parked domains’ revenue reports pro-
vided by the parking service and the related monetization
chains with the right combination of time stamp, source
IP address, referral domain and keyword. It turns out
that we, as a campaign owner, were billed for 23 traf-
fic hits by 7Search (see Figure 6(b) in Appendix) but
nothing was reported by the parking service (see Fig-
ure 6(a) in Appendix) in December 2013. We show the
breakdown of the crawlers’ traffic in Table 6. Clearly,
the parking services kept the rightful share away from us
as the owners of the parked domains. Note that not all
requests from our crawler were billed by 7Search be-
cause they limit the traffic hits by one IP address and
a valid visiting period (our campaign was set to run
between 12AM-6AM and 10PM-11:59PM ). Addition-
ally, we found other monetization chains, captured by
our crawler and monetized by the same parking service
through other ad networks such as Advertise that
have not been reported on our parked domains’ revenue
reports.

Traffic Reported by
Parked Domain Crawler Parking Service Billed by 7search
Coupons-free.info 24 0 16
Real-jobs.info 23 0 5
News-feed.info 21 0 2

Table 6: Traffic stealing through 3 of our parked domains in the
month of December, 2013.

4 Fingerprinting Monetization Chains
Through the infiltration study, we confirmed the pres-
ence of illicit activities in the monetization of parked do-
mains. What is less clear, however, is the pervasiveness
and impact of those activities. Understanding of this is-
sue cannot rely on the 1,015 seed chains (reported in Ta-
ble 3) whose traffic sources and end nodes were under
our control. We need to identify the illicit operations oc-
curring on other monetization chains, particularly those
blue and green ones in Figure 3, which do not connect
to our ad/traffic campaigns. To this end, we developed a
technique that fingerprints the monetization options ob-

served on our seed chains. These fingerprints, which we
call stamps, were used to “expand” the seed set, captur-
ing the illicit activities on other monetization chains col-
lected by our crawlers over months.

4.1 Methodology
The idea. As discussed above, the problem of detecting
illegitimate operations, which we did not have a direct
observation of, comes down to identifying the monetiza-
tion options they involve. More specifically, as soon as
we know exactly how a parking service monetizes a visit
from our crawler, we can immediately find out whether
a fraudulent activity occurred: clearly, the PPC option
is a fraudulent click, as our crawler never clicked; when
it comes to PPR, we check the consistency between the
keywords expected by the end nodes and the names of the
parked domains the traffic went through (see Section 5
for details). Therefore, the question here becomes how
to determine which options have been used in a given
monetization chain.

Actually, even though those options might not be ev-
ident on a monetization chain, we know that it must
go through a corresponding monetization party (ad net-
works, traffic systems, etc.) before the traffic gets to the
end node. This needs to happen for accounting purposes:
for example, if a click has not been sent to a PPC ad
network, the ad network never knows about it and there-
fore will not be able to pay its publisher or bill its ad-
vertiser. Also, the last few URLs leading to the end node
are clearly related to the monetization party. As an exam-
ple, let us look at a monetization chain captured by our
crawler in Table 7, which was initiated by a visit to a do-
main parked with PS1 and ended at our advertiser site.
Looking backward from our URL along the chain, we
can see two URLs from fastonlinefinder.com,
a search website. The site turns out to be affiliated
with the Advertise ad network. Interestingly, once
we compare this path with other chains also through the
same ad network, it becomes quite clear that they carry
a unique pattern: first, right before the end node, the
last two URLs are always similar; second, for these two
URLs, even though they vary across different chains in
terms of search websites, the remaining part mostly stays
constant. This observation was further verified by the
click URLs for sponsored ads from the same ad network,
which we obtained by registering with Advertise as
a publisher (see Appendix for details on search sites and
sponsored click URLs).

The above example shows that we can leverage the or-
dered sequence of URL patterns to determine the pres-
ence of a monetization option. Such a sequence is a
“stamp” we utilize to expand our seed set to find other il-
licit monetization chains within the dataset collected by
our crawlers. Following we describe the methodology
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# URL Description
1,2 http://bastak-taraneh.com/ Parked domain
3 http://otnnetwork.net/?epl=... Parking service anchor

4,5 http://67.201.62.155/index2.html?q=...&des= AdLux
6 http://21735.1b2a3r4w5dgp6v.filter.nf.adlux.com/ncp/checkbrowser?key... ad network (syndicate)
7 http://fastonlinefinder.com/ads-clicktrack/click/newjump1.do?...&terms=ticketsoftware... Search site for
8 http://fastonlinefinder.com/ads-clicktrack/click/newjump2.do?terms=ticketsoftware&... Advertise ad network
9 http://anwers.net/search.php?s=advertise...&kw=software... Our Advertiser

Table 7: End-to-End monetization chain example of a visit to a parked domain leading to our advertiser page. For clarity sake, we
omit parts of the URLs.

for clustering and generalizing URLs from a monetiza-
tion party, and extracting the stamps from the URL pat-
terns.

URL-IP Cluster (UIC) generation. A specific URL of
a monetization party (ad network, traffic systems, etc.)
can be too specific for fingerprinting its monetization
activity. An ad network can have many affiliated web-
sites and each site may have multiple domains and IP
addresses. To utilize such a URL for generating a stamp,
we first need to generalize it across those domains, ad-
dresses and potential variations in its file path and other
parameters. To this end, we clustered related URLs into
URL-IP clusters (UIC). A UIC includes a set of IP ad-
dresses for related hosts and the invariant part of the URL
(without the host name) across all members in the clus-
ter. The former describes the ownership of this set of
URLs and the latter represents their common function-
ality, which together fingerprints a monetization option
with regard to an ad network or a traffic system.

To cluster a group of URLs into UICs, we first ex-
tracted the host part of a URL, replacing it with all IPs
of the domain, and then broke the remaining part of the
URL into tokens. A token is either the full path of the
URL including file name (which is typically very short
for a monetization URL) or an argument. The value of
the argument was removed, as it can be too specific (e.g.
keyword and publisher ID). Over those IP-token sets, we
ran a clustering algorithm based upon Jaccard indices for
both IPs and tokens, as follows:

1. Each URL (including an IP set and a token set) is
first assigned to a unique UIC.

2. Two UICs are merged together when both their
IP sets and token sets are close enough (Jaccard indices
above their corresponding thresholds).

3. Repeat step 2 until no more UICs can be merged.
A pair of thresholds are used here to determine the

similarity of two IP sets (Tip) and two token sets (Ttok)
respectively. In our research, we set Tip to 0.1 and
Ttok to 0.5, and ran the algorithm to cluster all the
URLs on the 1.2M monetization chains collected by our
crawlers. By replacing individual URLs with their cor-
responding UICs, we obtained 429K unique generalized
chains, which were further used to detect illicit activities.

Stamp extraction. The stamps for different moneti-
zation options were extracted from seed monetization
chains, after generalizing them using the aforementioned
UICs. Specifically, we utilized 715 UIC chains (general-
ized from the 1,015 chains reported in Table 3) to fin-
gerprint 11 ad networks and traffic systems, with one
stamp created for all the campaigns associated with a
given ad network or traffic system. For this purpose,
we applied a 2-fold cross-validation approach to gener-
ate stamps and assess their effectiveness. Specifically,
we randomly split the UIC chains for each campaign
into two equal sized sets, one for stamp extraction (train-
ing) and the other for stamp evaluation (test). Over the
training set, we determined a stamp by traversing each
UIC chain backwards and selecting the sequence of UICs
shared by all the chains involving a certain ad network or
traffic system. Typically the longest sequence identified
in this way became the stamp for all the chains going
through its related monetization organization. However,
for a campaign with a small number of UIC chains (e.g.
BingAds), we only utilized the last common UIC (right
before our advertiser’s URL) across all the chains as the
stamp.

All together, our approach generated stamps for 11 ad
networks and traffic systems. Ad network stamps con-
tained on average two UICs while traffic system stamps
were mostly one UIC in length.

4.2 Evaluation
False negative. Using all the 11 stamps generated from
the training set, we analyzed all the monetization chains
within the test set. For each campaign, its stamp was
found to match all of its monetization chains in the test
set and thus no false negative was observed.

False positives. We further evaluated the false positive
rate that could be introduced by the stamps on a dataset
containing 768M redirection chains collected by crawl-
ing the top 1M Alexa websites [2] Jan 21-31, 2014. The
purpose here is to understand whether a redirection chain
not involving clicks or traffic selling can be misidentified
as a related monetization chain and whether the mone-
tization chains of one ad network or traffic system can
be classified as those of another party. By applying our
stamps on the dataset, we flagged 12 chains as matches
to click stamps and another 19 chains as matches to traf-
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fic stamps. Upon manually analyzing the 12 click chains,
we found that all of them were actually fraudulent clicks
generated by parking services (10 chains) and a traffic/ad
network named CPX24 (2 chains). CPX24 in our case
generated clicks on its own hosted ads when traffic from
publishers flowed in. For the 19 traffic chains, they were
indeed PPR monetization chains. Further, by manually
searching for a set of ad network specific domain names
such as affinity.com within the Alexa dataset, we
discovered a number of redirection chains going through
the same ad networks fingerprinted by our stamps but
not involving any clicks (e.g. ad display and conversion
tracking URLs). None of them were misidentified by our
stamps as click-based monetization chains.

Discussion. Our evaluation shows that the stamps gen-
erated over UICs accurately capture all monetization
chains associated with a specific ad network or traffic
system. However, those stamps are designed for ana-
lyzing the traffic through individual organizations, which
is enough for our purpose of understanding the scope
and magnitude of fraudulent activities, not for detecting
those operations on any monetization chains, particularly
those belonging to other monetization parties. Also note
that we cannot use existing ad-blocking lists such as Ea-
syList [26] to serve our goal, due to its limitations: first,
EasyList does not distinguish between a click and an im-
pression (ad display); second, search websites used by ad
networks to deliver clicks are not covered by the block
list; finally, the list fails to include the hosts and URLs of
traffic monetization systems.

5 Measurements
In this section, we report our measurement study on il-
licit parked domain monetization. This study is based
upon a dataset of 1.2M monetization chains collected in
a 5.5-month span. Such data were first labeled using the
“stamps” generated (Section 4.1) from the seed data to
identify the monetization options associated with indi-
vidual chains, and then analyzed to understand the perva-
siveness of illicit monetization practices and its financial
impact. Here we elaborate on the outcomes of this study.

5.1 Dataset Labeling
Expansion. To perform the measurement study, we
labeled the 1.2M monetization chains collected from
crawling parked domains by “expanding” the 1,015 seed
chains (the ground truth) to this much larger dataset.
Specifically, we generated UICs over those 1.2M chains,
generalized the seed chains using those UICs, and then
extracted click and traffic stamps from the seeds as de-
scribed in Section 4.1. Matching those stamps to the
generalized UIC chains in the larger dataset (429K UIC
chains), we were able to label 120,290 (28.03%) UIC
chains corresponding to 212,359 (17.1%) URL moneti-

zation chains. The labeled set includes two monetiza-
tion options, PPC (45.7%) and PPR (56.3%) where 2%
of them include both PPR and PPC monetizations on the
same chain as explained later.

Unknown set. Although many chains were success-
fully labeled, there are almost 308K UIC chains in the
dataset not carrying any stamps, which were marked
as “unknown”. Looking into this unknown set through
random sampling, we found that it exhibited consis-
tent patterns related to click delivery and traffic selling
which can be added to the labeled set if we had veri-
fied seed chains. For example, we found many other
ad-nets such as Adknowledge and Bidvertiser
(2.9%), and other traffic monetization systems such as
Adrenalads and ZeroRedirect (19.5%). Partic-
ularly, Sendori, a traffic platform, is widely present,
covering 5.4% of the chains in the dataset. 2.6% of those
chains actually led to domain name marketplaces such as
SnapNames, and a large portion (over 19.7%) of them
stop at some parking services and traffic monetization
platforms (e.g. Skenzo) with error messages indicating
cloaking behavior.

5.2 Monetization Decisions
Over the labeled dataset, we analyzed the parties respon-
sible for such decisions and the way those decisions were
made, based on a categorization of the parked domains
involved.

Monetization decision maker. Finding the party that
chooses a monetization option is important, as it tells us
who is the ultimate culprit for an illicit activity. How-
ever, this is challenging, due to the syndication of mul-
tiple monetization parties, among parking services, ad-
nets and traffic systems. Within our dataset, we found
that these types of syndications are pervasive (49.5%).
As an example, AdLux in Table 7 is actually a syndi-
cate of Advertise, displaying its ads and sharing its
click revenue. In the presence of a syndication, a start-
ing node’s parking service may not be responsible for
the follow-up illicit monetization, which could actually
be performed by one of its syndicates. To this end, we
identify the parking service of the starting node to be
the responsible party of a monetization chain only when
the click or traffic stamp appears right after the starting
node (i.e. parked domain). When there are other enti-
ties between the parked domain and the stamp, we use a
parking-service anchor as described below.

Typically, a parking service funnels the traffic from
its parked domains to a “controller” domain, which we
call a parking service (PS) anchor, for choosing a mon-
etization option. Our idea here is to locate the PS an-
chor right before a click or traffic stamp. When this hap-
pens, the owner of the anchor is clearly responsible for
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the monetization decision. To this end, we picked out
the most prevalent second UICs down individual mone-
tization chains (which is expected to cover over 50% of
all the chains associated with a specific parking service),
and identified its ownership using its whois records and
Name Server. Such a UIC is considered to be an anchor
for the parking service.

In our research, we identified anchors for 4 of the
most prevalent parking services in our set. Some park-
ing services such as PS6 and PS4 launder all the traf-
fic through direct navigation traffic systems (DNTX and
ZeroRedirect respectively) which are owned by the
parent companies of the two parking services. Since
those traffic systems are used by other clients, we did
not consider them to be the anchors of the parking ser-
vice. Using the heuristic described earlier (i.e. direct
link from a parked domain to a stamp) and the list of an-
chors, we assigned each monetization chain to the park-
ing service responsible for the selection of its moneti-
zation option, as illustrated in Table 8. Here the “un-
known” category includes the chains we could not de-
termine the parties responsible for their monetizations,
due to the disconnection between the parked domain
or PS anchor and the click or traffic stamp, with un-
known UICs standing in-between. For example, the
chain in Table 7 was marked as “unknown”, as the known
anchor http://otnnetwork.net/?epl= is sepa-
rated from the ad stamp there.

Impacts of domain categorization. As discussed be-
fore, our research focuses on the redirection chains gen-
erated by 1.2M out of 24M visits to parked domains.
The rest of those visits only resulted in a simple dis-
play of PPC ads, which were less likely to be used for
illicit monetization. The fact that those redirection chains
were so rare to see here can be attributed to IP cloaking.
In the meantime, we believe that this is also caused by
the way that traffic from different domains is monetized.
Specifically, a parking service like Bodis often clas-
sifies domains into “primary” or “secondary”. Primary
domains are those accepted by top-tier search networks
(e.g. Google AdWords) to display their ads while
secondary ones are less trusted, including those serving
malicious content before taken down and the ones related
to typos of trade or brand names. The secondary domains
here are much more likely to lead to redirection chains,
as discovered in our research (illustrated by Figure 4).
Among all domains visited by our crawlers, we found
(using [6]) that only 2.9% of them were considered to
be secondary, which naturally limits the number of the
redirection chains we could observe.

5.3 Illicit Monetization
In this section, we report our findings about the preva-
lence of illicit monetization practices, particularly click
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PS5 PS6 PS1 PS2 Others Unknown

PP
C

A
d-

ne
ts

adMarketplace 1 9,526 1670 4 35,704
Advertise 10,277 2,329 730 3,576
Affinity 9,904
Google AdWords 18
Bing Ads 18,186
Looksmart 385 143
Ezanga 3 422

PP
R

Tr
af

fic
Sy

st
em

s 7Search -Spam 7,766 666 1,484
7Search - Malware 43
DNTX - Spam 758 21,959 189 2 25,776 2,305
DNTX - Malware 45 3,217 9 1 2,924 113
Trellian - Spam 1 9 1 11,781
Trellian - Malware 1
AdsPark -Spam 1,755 2,183
AdsPark - Malware 1

Totals 18,803 22,425 13,808 1,673 39,872 73,949
(11.02%) (13.15%) (8.1%) (1%) (23.4%) (43.4%)

Table 8: Illicit activities observed by parking services in the
labeled set. “Others” refers to some of the parking services
shown in Table 1 not necessarily anonymized.

fraud, traffic spam and the malware distribution discov-
ered during our analysis of the labeled dataset. Note that
we did not measure traffic stealing, as this activity could
only be observed on the monetization chains whose start
and end nodes were under our control.

Traffic spam. Using the traffic stamps, we discovered
119K (56.3%) traffic monetization chains. To identify
the presence of traffic spam on each of those chains, we
compared the keywords associated with its start node do-
main with those of its end node (assuming that end nodes
purchased keywords related to the contents of their do-
mains). This works as follows:
• Keyword generation. To generate keywords for both
the start and end nodes, we used a keyword suggestion
tool by BingAds [1], a tool widely used by advertisers
to select keywords for ad targeting. This tool automati-
cally created a list of keywords (including typos) for each
domain (start and end nodes).
• Keyword filtering. At this step, we cleaned the list
of keywords, discarding common ones (“www”, “com”,
etc.). Specifically, we calculated the normalized entropy
of each word as the prior work did [31] and then removed
the 50 words with the lowest entropy (i.e. highly pop-
ular). Also dropped from the keyword list were deter-
miners, pronouns, interjection and “wh”-words (“what”,
“where”, etc.), which are unlikely to be related to specific
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domain content. For this purpose, we filtered out the key-
words using Stanford CoreNLP [35], a natural language
processing tool for part-of-speech tagging and stemming.
• Keyword matching. Comparing the keywords of the
start node (i.e., parked domain) with those of the end
node (traffic purchase website) on a monetization chain,
we considered the chain to be traffic spam if individual
keywords of its parked domain did not match any words
associated with its end node. In the case that one of these
two domains do not have any keywords, we attempted to
match the other domain’s keywords to its domain name.
If this attempt succeeds, the chain would not be consid-
ered as spam, otherwise; it would.

As a result, we found that 70.7% of all PPR monetiza-
tion chains are traffic spam as illustrated in Table 8 and
attributed to each parking service and traffic system. Ta-
ble 9 provides some traffic spam examples received by
popular brand names.

End node Parked domain examples
Amazon.com craigslits.com, 14.de, audii.de
Apple.com acgeo.com, backlinkscenter.info
Coupons.com 4google.com,agendo.com
Sears.com uasairways.com, cursoblogger.com
Expedia.com pizzahutjobs.com, financetasksforce.com

Table 9: Examples of end nodes receiving spam traffic.

Click fraud. All labeled 97K (45.7%) PPC monetiza-
tion chains are clearly fraudulent clicks, as our crawlers
never clicked on any ads. Table 8 provides a break-
down of fraudulent clicks observed from each parking
service through ad-nets for which we have a click stamp.
By taking a close look at the ad-nets involved, we found
that none of the fraudulent clicks on the top-tier networks
(Google AdWords & BingAds) could be attributed
to a parking service, due to ad-net syndications. Park-
ing services avoid clicking on top-tier ad-nets’ ads be-
cause they have a better click fraud detection system than
2nd-tier networks and as such they only happen through
ad-net syndication. Additionally, 2% of the fraudulent
clicks could not be attributed to a parking service due
to the presence of a traffic stamp between the start node
(i.e parked domain) and the click stamp. For example,
domains parked with PS6 resulted in fraudulent clicks
through a traffic system (DNTX) which is owned by the
same parent company of PS6, namely TeamInternet
AG.

Also interesting is the observation that not only were
the clicks delivered through those chains completely
fraudulent but they often came from parked domains
that had nothing to do with the ad campaigns at the end
nodes. Specifically, we applied the keyword generation
and matching approach described above to analyze the
relations between the parked domains on those chains
and their corresponding end nodes. This study reveals
that 61.3% of the fraudulent clicks were from parked
domains completely unrelated to the end nodes on their

(a) Revenue Estimates

PFPPC PPPR PT S PPPC PPPA
RevFraud

Rev
PS5 0.01 0.01 0.78 0.97 0.0057 40.3%
PS1 0.0015 0.0003 0.77 0.998 0.00003 7.4%
PS3 0.0004 0.004 0.71 0.995 0.0001 9.3%
PS2 0.0001 0.0000004 0.7 0.9997 0.00016 0.8%
PS6 0 0.015 0.66 0.983 0.0015 18.5%
PS4 0 0.0073 0.64 0.976 0.017 10%

(b) Description of variables used.

L
eg

iti
m

at
e PPPC Probaility of monetization through the display of

Pay-Per-Click (PPC) ads.
PPPR Probability of monetization through Pay-Per-Redirect (PPR).
PPPA Probaility of monetization through affiliate marketing,

Pay-Per-Action (PPA).

Fr
au

du
le

nt PFPPC Probability of monetization through a fraudulent click
on a Pay-Per-Click (PPC) ad.

PT S Probaility of monetization through traffic spam
in Pay-Per-Redirect (PPR).

Table 10: Estimates of illicit monetization revenues for selected
parking services.

chains. Also given the fact that the average cost-per-click
(CPC), which is $0.28, is twice as much as the average
cost-per-redirect (CPR) that we paid, there is no legiti-
macy whatsoever in such click-faking activities.

Malware distribution. Also discovered in our research
is parking services’ involvement (probably unwittingly)
in malware distribution. We found that many PPR mone-
tization chains were leading to malicious content, either
through drive-by downloads or through social engineer-
ing scams such as FakeAV or flash player updates (see
Figure 8 in Appendix). This occurred because the traffic
systems involved did not do their due diligence in de-
tecting the traffic buyers who actually disseminate mal-
ware. Using content structure clustering, a technique ap-
plied by prior research [13], we concluded that at least
3.7% of the PPR traffic buyers spread malware. This il-
licit activity not only hurts the victims visiting a parked
domain but also affects the parked domain when it gets
blacklisted by URL scanners such as SafeBrowsing [12],
which reduces the monetary value of the parked domain
when its owner decides to sell it.

5.4 Revenue Analysis
Model. As discussed before, parking services are unique
in that their monetization operations involve both legiti-
mate and illegitimate activities. To understand the eco-
nomic motives behind this monetization strategy, we ana-
lyzed their revenues with a model derived from that used
in prior research [23]:

Rev =Visits · (RevFraud +RevLegit)
where the total revenue Rev is calculated from the total
number of visits and the average revenue for each visit.
This average revenue is further broken down into two
components, the part from illicit monetization (RevFraud)
and that from legitimate monetization (RevLegit ). These
components were further estimated as follows:
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RevFraud = PFPPC ·CPC+PPPR ·CPR ·PT S
RevLegit = PPPC · ppclk ·CPC+PPPR ·CPR ·PT̃ S

+PPPA · ppact ·CPA
Intuitively, the above two equations describe five pos-

sible situations when a visit to a parked domain is mon-
etized: illicit activities (click fraud or traffic spam) or le-
gitimate ones (legitimate click, direct traffic or affiliate
marking monetization). The revenue component from
the illicit activities is estimated using the probability of
click fraud PFPPC and that of traffic spam PPPR · PT S,
where PPPR is the probability of direct traffic monetiza-
tion (PPR) and PT S is the chance of traffic spam when
PPR is chosen, together with the revenues for a click
CPC and a redirect CPR. Similarly, the legitimate rev-
enue component comes from a PPC display (with a prob-
ability PPPC) given that a user clicks on one of the ads
(with a click-through rate ppclk), type-in traffic (PPPR)
when it is not subject to traffic spam (with a probabil-
ity PT̃ S), or affiliate marketing (PPPA) when the user per-
forms the operation expected (with a probability ppact ).
The revenues for those legitimate activities are CPC,
CPR and CPA respectively.

Results. In our analysis, we estimated all the probabili-
ties above (PFPPC, PPPR, PT S, PPPC and PPPA) using the
larger set of all 24M visits to 100K parked domains in
a 5.5-month span (Section 2.3). Also, the click-through
rate ppclk and a user’s probability of taking an action un-
der PPA were both set to 0.02, and CPA to $0.265, all
according to the prior work [23], while CPC and CPR
were determined as $0.28 and $0.14 respectively, based
on the average cost for our ad/traffic campaigns.

In the absence of data about the total number of vis-
its per parking service, all we could do is estimate the
portion of its income from the illicit activities to its total
revenue, based upon our data. The results are shown in
Table 10.

Discussion. From the table, we can see that even rep-
utable parking services like PS2 have at least 0.8% of its
revenue come from illicit monetizations. For others, this
revenue source is even more significant (e.g., 40.3% for
PS5 whom we found to be aggressive in its illicit mon-
etizations). Revenue from fraudulent clicks is found to
be zero for PS6 and PS4 because, as described earlier
in Section 5.3, they are bouncing their traffic through
their own traffic systems and as such we can not attribute
fraudulent clicks to them. Note that our estimates here
are very conservative, due to the cloaking those services
played to our crawlers (which used a small set of IP ad-
dresses) and the limited scope of our study (which only
covered 11 ad-nets and traffic systems). We expect that
the ratios of illicit revenues are much higher in practice.

6 Discussion

Domain Parking Regulation. Our study uncovers the
illicit monetizations by parking services but the underly-
ing problem is even graver. Currently, there is no regula-
tion on the behaviors of parking services, which allows
them to set up arbitrary terms of services accommodat-
ing their own benefits. It is worth noting that parking ser-
vices may have started to exhibit illicit monetization ac-
tivities due to the decline in their revenues [3, 29]. Also,
our research shows they have a tendency to profit from
secondary domains illicitly (Figure 4), due to the diffi-
culty in monetizing those domains through a legitimate
channel. Protecting the advertisers’ and traffic buyers’
benefits in the existence of dishonest parking services
is challenging because incoming traffic can be manipu-
lated. What complicates the situation more is that ad-nets
could be owned by the company who also runs parking
services and the advertisers have no fair party to talk to.
Further, direct navigation traffic (i.e. zeroclick) is being
advocated by parking services and there is no guaran-
tee on the quality of the incoming traffic. Our research
discloses the dark side of parked domain monetization
which calls for serious policy efforts to regulate parking
services.

Here, we suggest several practices that could mitigate
many types of illicit monetization activities when en-
forced. First, the advertisers should be provided with
a clearer picture of the monetization activities. For ex-
ample, the types of publishers should be marked out as
well to advertisers besides their publishers’ IDs, which
helps advertisers in auditing and monitoring traffic com-
ing from parking services. In fact, some ad-nets are al-
ready moving to such direction: for example, Affinity,
a popular ad-net, distinguishes publishers by assigning
them types such as “in-text” and “domain zero click”.
We also suggest providing traffic buyers with a way to
check the integrity of incoming traffic such as passing
the domain name of each start node in the referral. En-
forcement and compliance of such mechanisms requires
the presence of a 3rd party service (i.e. policy enforcer)
in the ecosystem.

Legal and ethical concerns. There are several ethi-
cal concerns raised during our study, and we carefully
designed our experiments to address them. First, we
crawled our own parked domains which is problematic
if we earn profit from it. To address this issue, we avoid
cashing in the revenues we earned from the 7 parking
services hosting our parked domains ($81.06 in total).
Second, we ignore robots.txt served by parking services
when crawling since we focused on their illicit behav-
iors. Other studies on malicious activities also ignore
the robots.txt file [17, 33, 19, 7]. Third, one may ques-
tion that the artificial traffic generated by our crawler
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could affect the advertisers or traffic buyers. In fact, we
crawled parked domains in a moderate speed and park-
ing services have deployed mechanisms to discern artifi-
cial traffic and stop charging the advertisers when iden-
tified [28]. Lastly, we ran campaigns with ad-nets and
traffic systems but there was no actual business running.
The websites and advertisements we set up were coher-
ent to the policies of ad-nets and traffic systems. There
was no damage to visitors and we did not collect any Per-
sonally Identifiable Information (PII) from them.

7 Related Work
Parking services. Although domain parking services
have been here for years, little has been done to under-
stand their security implications. What comes close are
the works on typo-squatting [37, 22, 9], which reveals
that domain owners utilize this technique for profit. Also,
prior research shows that malicious domains tend to be
parked once detected [27, 17]. Most related to our re-
search is the study on click spam [10], which focuses
on click-spam detection and also mentions the possible
involvement of one parking service (Sedo) in such ac-
tivities based on its JavaScript. Such code was not found
in our research. Compared with the prior work, what we
did is a systematic study on the illicit activities of parking
services, which has never been done before. This is made
possible by the new infiltration analysis we performed.
Our study not only confirms the presence of illicit opera-
tions within parking services but also brings to light their
scope and magnitude.

Illicit activities in online advertising. Ad-related il-
licit activities have been extensively studied. Exam-
ples include click-fraud [21, 4, 5, 11, 25], drive-by-
download [18], trending-term exploitation [23] and im-
pression fraud [32]. Such prior work all looks at a con-
ventional adversary who performs malicious activities
whenever possible. The parking services, however, are
very different: they run legitimate business with adver-
tisers and ad networks. However, our study reveals that a
significant portion of their revenues actually come from
illicit activities, which raises the awareness about this
completely unregulated business.

Infiltration into malicious infrastructure. To under-
stand how underground businesses work, a lot of stud-
ies attempt to infiltrate their business infrastructure. Ex-
amples include the work on Spam [16, 15], CAPTCHA
solving [24], blackhat SEO [36] and Pay-per-install net-
works [8]. Different from such prior research, we need
to infiltrate the parking monetization process without dis-
rupting its operations. This was achieved using a new ap-
proach through which we controlled some nodes on both
ends of the monetization ecosystem and managed to link
them together.

8 Conclusion
This paper reports the first systematic study on illicit ac-
tivities in parked domain monetization. To demystify this
“dark side” of parking services, we devised an infiltra-
tion analysis to gain control of some start nodes and end
nodes of the parking ecosystem, and then connect the
dots, sending our crawling traffic across the nodes under
our control on the both ends, with the monetization enti-
ties (domain parking services, ad networks) in-between.
This analysis provided us a unique observation of the
whole monetization process, which enabled us to con-
firm the presence of click fraud, traffic spam and traffic
stealing. We further expanded those seed chains to mil-
lions of monetization chains collected over 5.5 months,
using the stamps of their monetization options. Over
such data, our study revealed the pervasiveness of the
illicit monetization practices and their revenues, which
calls for policy efforts to control those illicit operations.
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Appendix

The true operation of the shady search sites.
fastonlinefinder.com is one of a large number
of search sites we refer to as “shady”. They are shady
in that they rarely display organic results and emphasize
on sponsored ads. Moreover, they have been reported in
previous works on click fraud [18, 4] and have been pre-
sumed malicious to some extent. Additionally, many vic-
tims have often complained about a “redirect” malware
hijacking their traffic and redirecting to these search sites
as shown in Figure 5.

Through our empirical investigations, we discovered
the actual role they play. We found their true operation
was to act as click servers for search ads (similar to tradi-
tional click servers of other none search advertisements)
and as such they are owned and operated by ad-nets. An-
other use of those search sites was to set the click referral
and as such, the advertiser will assume their ad was dis-
played on the referring search site.

It is important to note here, that the use of such search
sites is not illegal. It is only misunderstood due to their
abuse by ad-net publishers. A fraudulent publisher will
use a malware or Trojan to generate clicks on their ads
and since the clicks lead to an ad-net’s search sites, the
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(a) Screen shots of two ad-net search sites:
livesearchnow.com with Advertise &
thespecialsearch.com with Affinity.

(b) Google search results showing malware complaints for the two
search sites.

Figure 5: Ad-net search site examples showing screen shots of
the search sites and malware related complaints by users.

search site become wrongly accused as the malicious
party.

Evidence Survey. Along our infiltration we collect a set
of evidence to support our findings. We start with Figure
6 which confirms traffic stealing by one parking service
that is not reporting traffic, as shown in 6(a), which have
been monetized through 7search and verified by our
payment for the traffic as shown in 6(b).

(a) Screen shot of our parked domain revenue report with the park-
ing service in question.

CLICK DATE  
(GMT-06:00) REFERRING DOMAIN IP KEYWORD CPC 

12/9/2013 21:46 http://***********/REAL-JOBS.INFO? Crawler IP cf job $0.10 
12/11/2013 21:00 http://***********/REAL-JOBS.INFO? Crawler IP cf job $0.10 
12/12/2013 1:05 http://***********/REAL-JOBS.INFO? Crawler IP cf job $0.10 
12/12/2013 23:26 http://***********/REAL-JOBS.INFO? Crawler IP cf job $0.10 
12/13/2013 21:52 http://***********/REAL-JOBS.INFO? Crawler IP cf job $0.10 

(b) Billing report by 7Search shows 5 billed traffic hits from our
parked domain. Part of the referral is removed to anonymize the
parking service.

Figure 6: Traffic stealing observed on our parked domain

Additionally, We verify the association of search sites
to ad-nets by registering with two ad-nets (Advertise
& Bidvertiser) as a publisher interested in display-
ing their sponsored ads. We set up our website with

a search service that pulls organic search results from
Google and sponsored ads from the two ad-nets we
registered with. By pulling sponsored ads from the ad-
nets, we verified the use of search sites as the click
URLs as shown in Figure 7 which shows one click
URL by Advertise that has the same URL tokens
as the URLs in Table 7. Actually, the same website,
toppagefinder.com, appeared also in our data set
and as such was in the same UIC which was a correct
association. Note that the same website used here for our
publisher was also used for our advertising and traffic
buying campaigns.

http://toppagefinder.com/ads-clicktrack/ 
click/newjump1.do?affiliate=61816&subid
=59& terms=jobs&ai=bCMmsMK_Q… 

Figure 7: Our Advertiser, publisher and traffic buyer website.

Finally, in Figure 8 we show examples of visits to
domains parked with PS5 leading to malware down-
loads through two traffic systems, namely DNTX and
ZeroRedirect.
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download through the DNTX traffic system

Figure 8: Visits to parked domains leading to malware distri-
bution.
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Abstract

Users increasingly rely on crowdsourced information,

such as reviews on Yelp and Amazon, and liked posts

and ads on Facebook. This has led to a market for black-

hat promotion techniques via fake (e.g., Sybil) and com-

promised accounts, and collusion networks. Existing ap-

proaches to detect such behavior relies mostly on super-

vised (or semi-supervised) learning over known (or hy-

pothesized) attacks. They are unable to detect attacks

missed by the operator while labeling, or when the at-

tacker changes strategy.

We propose using unsupervised anomaly detection

techniques over user behavior to distinguish potentially

bad behavior from normal behavior. We present a tech-

nique based on Principal Component Analysis (PCA)

that models the behavior of normal users accurately and

identifies significant deviations from it as anomalous. We

experimentally validate that normal user behavior (e.g.,

categories of Facebook pages liked by a user, rate of like
activity, etc.) is contained within a low-dimensional sub-

space amenable to the PCA technique. We demonstrate

the practicality and effectiveness of our approach using

extensive ground-truth data from Facebook: we success-

fully detect diverse attacker strategies—fake, compro-

mised, and colluding Facebook identities—with no a pri-

ori labeling while maintaining low false-positive rates.

Finally, we apply our approach to detect click-spam in

Facebook ads and find that a surprisingly large fraction

of clicks are from anomalous users.

1 Introduction

The black-market economy for purchasing Facebook

likes,1 Twitter followers, and Yelp and Amazon reviews

has been widely acknowledged in both industry and

1When printed in this font, likes refer to Facebook “Like”s (i.e., the

action of clicking on a Like button in Facebook).

academia [6, 27, 37, 58, 59]. Customers of these black-

market services seek to influence the otherwise “organic”

user interactions on the service. They do so through a

variety of constantly-evolving strategies including fake

(e.g., Sybil) accounts, compromised accounts where

malware on an unsuspecting user’s computer clicks likes
or posts reviews without the user’s knowledge [35], and

incentivized collusion networks where users are paid to

post content through their account [7, 8].

When (if) an attack is detected, the affected service

usually takes corrective action which may include sus-

pending the identities involved in the attack or nullify-

ing the impact of their attack by removing their activity

in the service. One approach for defense used today by

sites like Facebook is to raise the barrier for creating fake

accounts (by using CAPTCHAs or requiring phone veri-

fication). However, attackers try to evade these schemes

by using malicious crowdsourcing services that exploit

the differences in the value of human time in different

countries. Another approach used widely today is to de-

tect misbehaving users after they join the service by an-

alyzing their behavior. Techniques used to address this

problem to date have focused primarily on detecting spe-

cific attack strategies, for example, detecting Sybil ac-

counts [10, 65, 67], or detecting coordinated posting of

content [36]. These methods operate by assuming a par-

ticular attacker model (e.g., the attacker is unable to form

many social links with normal users) or else they train on

known examples of attack traffic, and find other instances

of the same attack. Unfortunately, these approaches are

not effective against an adaptive attacker. It is known

that attackers evolve by changing their strategy, e.g., us-

ing compromised accounts with legitimate social links

instead of fake accounts [14, 15, 35], to avoid detection.

In this paper we investigate a different approach: de-

tecting anomalous user behavior that deviates signif-

icantly from that of normal users. Our key insight,

which we validate empirically, is that normal user be-

havior in online social networks can be modeled using
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only a small number of suitably chosen latent features.

Principal Component Analysis (PCA), a technique with

well-known applications in uncovering network traffic

anomalies [44], can be used to uncover anomalous be-

havior. Such anomalous behavior may then be subjected

to stricter requirements or manual investigations.

We make the following three contributions: First, we

introduce the idea of using PCA-based anomaly detec-

tion of user behavior in online social networks. PCA-

based anomaly detection requires that user behavior be

captured in a small number of dimensions. As discussed

in more detail in Section 4, using over two years of

complete user behavior data from nearly 14K Facebook

users, 92K Yelp users, and 100K Twitter users (all sam-

pled uniformly at random), we find that the behavior of

normal users on these social networks can be captured

in the top three to five principal components. Anoma-

lous behavior, then, is user behavior that cannot be ad-

equately captured by these components. Note that un-

like prior proposals, we do not require labeled data in

training the detector. We train our anomaly detector on

a (uniformly) random sampling of Facebook users which

contains some (initially unknown) fraction of users with

anomalous behavior. Using PCA we are able to distill a

detector from this unlabeled data as long as a predomi-

nant fraction of users exhibit normal behavior, a property

which is known to hold for Facebook.

Second, we evaluate the accuracy of our PCA-based

anomaly detection technique on ground-truth data for a

diverse set of normal and anomalous user behavior on

Facebook. To do so, we acquired traffic from multi-

ple black-market services, identified compromised users,

and obtained users who are part of incentivized collusion

networks. Our approach detects over 66% of these mis-

behaving users at less than 0.3% false positive rate. In

fact, the detected misbehaving users account for a large

fraction, 94% of total misbehavior (number of likes).
Section 6 reports on the detailed evaluation.

Lastly, in Section 7 we apply our technique to de-

tect anomalous ad clicks on the Facebook ad platform.

Where only 3% of randomly sampled Facebook users

had behavior flagged by us as anomalous (consistent with

Facebook’s claims [32]), a significantly higher fraction

of users liking our Facebook ads had behavior flagged

as anomalous. Upon further investigation we find that

the like activity behavior of these users is indistinguish-

able from the behavior of black-market users and com-

promised users we acquired in the earlier experiment.

Our data thus suggests that while the fraction of fake,

compromised or otherwise suspicious users on Facebook

may be low, they may account for a disproportionately

high fraction of ad clicks.

2 Overview

Our goal is to detect anomalous user behavior without

a priori knowledge of the attacker strategy. Our central

premise is that attacker behavior should appear anoma-

lous relative to normal user behavior along some (un-

known) latent features. Principal Component Analy-

sis (PCA) is a statistical technique to find these latent

features. Section 3 describes PCA and our anomaly-

detection technique in detail. In this section we first build

intuition on why attacker behavior may appear anoma-

lous relative to normal user behavior (regardless of the

specific attacker strategy), and overview our approach.

2.1 Illustrative Example and Intuition

Consider a black-market service that has sold a large

number of Facebook likes in some time frame to a

customer (e.g., the customer’s page will receive 10K

likes within a week). Since a Facebook user can con-

tribute at most one like to a given page, the black-market

service needs to orchestrate likes from a large num-

ber of accounts. Given the overhead in acquiring an

account—maintaining a fake account or compromising

a real account—the service can amortize this overhead

by selling to a large number of customers and leverag-

ing each account multiple times, once for each customer.

Such behavior may manifest along one of two axes: tem-

poral or spatial (or both). By temporal we mean that

the timing of the like may be anomalous (e.g., the inter-

like delay may be shorter than that of normal users, or

the weekday-weekend distribution may differ from nor-

mal). By spatial anomaly we mean other (non-temporal)

characteristics of the like may be anomalous (e.g., the

distribution of page categories liked may be different, or

combinations of page categories rarely liked together by

normal users may be disproportionately more frequent).

A smart attacker would attempt to appear normal

along as many features as possible. However, each fea-

ture along which he must constrain his behavior reduces

the amortization effect, thus limiting the scale at which

he can operate. We show in Section 6 that black-market

users we purchased have nearly an order of magnitude

larger number of likes than normal users, and four times

larger number of categories liked. If the attacker con-

strained himself to match normal users, he would require

significantly more accounts to maintain the same level of

service, adversely affecting profitability.

In the above illustrative example, it is not clear that the

number of likes and categories liked are the best features

to use (in fact, in section 6.4 we show that such sim-

ple approaches are not very effective in practice). Some

other feature (or combination of features) that is even

more discriminating between normal and anomalous be-

havior and more constraining for the attacker may be bet-

2
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ter. Assuming we find such a feature, hard-coding that

feature into the anomaly detection algorithm is undesir-

able in case “normal” user behavior changes. Thus, our

approach must automatically find the most discriminat-

ing features to use from unlabeled data.

2.2 Approach

At a high level, we build a model for normal user be-

havior; any users that do not fit the model are flagged as

anomalous. We do not make any assumptions about at-

tacker strategy. We use PCA to identify features (dimen-

sions) that best explain the predominant normal user be-

havior. PCA does so by projecting high-dimensional data

into a low-dimensional subspace (called the normal sub-

space) of the top-N principal components that accounts

for as much variability in the data as possible. The pro-

jection onto the remaining components (called the resid-

ual subspace) captures anomalies and noise in the data.

To distinguish between anomalies and noise, we com-

pute bounds on the L2 norm [43] in the residual sub-

space such that an operator-specified fraction of the un-

labeled training data (containing predominantly normal

user behavior) is within the bound. Note that the nor-

mal users do not need to be explicitly identified in the

input dataset. When testing for anomalies, any data

point whose L2 norm in the residual subspace exceeds

the bound is flagged as anomalous.

2.3 Features

We now discuss the input features to PCA that we use

to capture user behavior in online social networks. We

focus on modeling Facebook like activity behavior and

describe suitable features that capture this behavior.

Temporal Features: We define a temporal feature as a

time-series of observed values. The granularity of the

time-series, and the nature of the observed value, de-

pends on the application. In this paper, we use the num-

ber of likes at a per-day granularity. In general, however,

the observed value may be the time-series of number of

posts, comments, chat messages, or other user behavior

that misbehaving users are suspected of engaging in.

Each time-bucket is a separate dimension. Thus, for

a month-long trace, the user’s like behavior is described

by a ∼30-dimensional vector. The principal components

chosen by PCA from this input set can model inter-like
delay (i.e., periods with no likes), weekday-weekend pat-

terns, the rate of change of like activity, and other latent

features that are linear combinations of the input fea-

tures, without us having to explicitly identify them.

Spatial Features: We define a spatial feature as a his-

togram of observed values. The histogram buckets de-

pend on the application. In this paper, we use the cat-

egory of Facebook pages (e.g., sports, politics, educa-

tion) as buckets, and number of likes in each category

as the observed value. In general, one might define his-

togram buckets for any attribute (e.g., the number of

words in comments, the number of friends tagged in pho-

tos posted, page-rank of websites shared in posts, etc).

As with temporal features, each spatial histogram

bucket is a separate dimension. We use the page cate-

gories specified by Facebook2 to build the spatial feature

vector describing the user’s like behavior, which PCA

then reduces into a low-dimensional representation.

Spatio-Temporal Features: Spatio-temporal features

combine the above two features into a single feature,

which captures the evolution of the spatial distribution of

observed values over time. In essence, it is a time-series

of values, where the value in each time bucket summa-

rizes the spatial distribution of observed values at that

time. In this paper, we use entropy to summarize the

distribution of like categories. Entropy is a measure of

information content, computed as −∑i pi log2 pi, where

bucket i has probability pi. In general, one might use

other metrics depending on the application.

Multiple Features: Finally, we note that temporal, spa-

tial, and spatio-temporal features over multiple kinds of

user behavior can be combined by simply adding them

as extra dimensions. For instance, like activity described

using lT temporal dimensions, lS spatial dimensions, and

lST spatio-temporal dimensions, and wall posting activity

described similarly (pT , pS, pST ), can be aggregated into

a vector with ∑x lx +∑x px dimensions passed as input

into PCA.

3 Principal Component Analysis (PCA)

Principal component analysis is a tool for finding pat-

terns in high-dimensional data. For a set of m users and

n dimensions, we arrange our data in an m×n matrix X,

whose rows correspond to users and whose columns cor-

respond to user behavior features discussed above. PCA

then extracts common patterns from the rows of X in an

optimal manner. These common patterns are called prin-

cipal components, and their optimality property is as fol-

lows: over the set of all unit vectors having n elements,

the first principal component is the one that captures the

maximum variation contained in the rows of X. More

formally, the first principal component v1 is given by:

v1 = arg max
||v||=1

||Xv||.

The expression Xv yields the inner product (here, equiv-

alent to the correlation) of v with each row of X; so v1

2Facebook associates a topic category to each Facebook page which

serves as the category of the like.

3
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maximizes the sum of the squared correlations. Loosely,

v1 can be interpreted as the n-dimensional pattern that

is most prevalent in the data. In analogous fashion, for

each k, the kth principal component captures the maxi-

mum amount of correlation beyond what is captured by

the previous k− 1 principal components.

The principal components v1, . . . ,vn are constructed to

form a basis for the rows of X. That is, each row of X

can be expressed as a linear combination of the set of

principal components. For any principal component vk,

the amount of variation in the data it captures is given by

the corresponding singular value σk.

A key property often present in matrices that represent

measurement data is that only a small subset of princi-

pal components suffice to capture most of the variation

in the rows of X. If a small subset of singular values are

much larger than the rest, we say that the matrix has low

effective dimension. Consider the case where r singu-

lar values σ1, . . . ,σr are significantly larger than the rest.

Then we know that each row of X can be approximated

as a linear combination of the first r principal compo-

nents v1, . . . ,vr; that is, X has effective dimension r.

Low effective dimension frequently occurs in mea-

surement data. It corresponds to the observation that the

number of factors that determine or describe measured

data is not extremely large. For example, in the case of

human-generated data, although data items (users) may

be described as points in high-dimensional space (corre-

sponding to the number of time bins or categories), in

reality, the set of factors that determine typical human

behavior is not nearly so large. A typical example is the

user-movie ranking data used in the Netflix prize; while

the data matrix of rankings is of size about 550K users ×
18K movies, reasonable results were obtained by treat-

ing the matrix as having an effective rank of 20 [41]. In

the next section, we demonstrate that this property also

holds for user behavior in online social networks.

4 Dimensioning OSN User Behavior

To understand dimensionality of user behavior in online

social networks, we analyze a large random sampling of

users from three sources: Facebook, Yelp, and Twitter.

The Facebook data is new in this study, while the Yelp

and Twitter datasets were repurposed for this study from

[50] and [4] respectively. We find low-effective dimen-

sion in each dataset as discussed below.

4.1 User Behavior Datasets

We use Facebook’s people directory [25] to sample Face-

book users uniformly at random.3 The directory sum-

3Users may opt-out of this directory listing. However, our analysis

found 1.14 billion users listed in the directory as of April 2013, while

marizes the number of people whose names start with a

given character x, and allows direct access to the yth user

with name starting with x at https://www.facebook.

com/directory/people/x-y. We sample uniformly

at random from all possible (1.14B) x-y pairs, and fol-

low a series of links to the corresponding user’s profile.

We collected the publicly visible like and Time-

line [34] activity of 13,991 users over the 26 month pe-

riod ending in August 2013. For each user, we record

three types of features: (i) temporal, a time-series of the

number of likes at day granularity resulting in 181 di-

mensions for a 6-month window, (ii) spatial, a histogram

of the number of likes in the 224 categories defined by

Facebook, and (iii) spatio-temporal, a time-series of en-

tropy of like categories at day granularity (181 dimen-

sions for 6 months). We compute the entropy Ht on day

t as follows: for a user who performs ni
t likes in cate-

gory i on day t, and nt likes in total on day t, we compute

Ht =−∑i
ni

t
nt

log2
ni

t
nt

.

The Yelp dataset consists of all 92,725 Yelp reviewers

in the San Francisco area [50] who joined before January

2010 and were active (wrote at least one review) between

January 2010 and January 2012. The spatial features are

constructed by a histogram of number of reviews posted

by the user across 445 random groupings of 22,250 busi-

nesses4 and 8 additional features (related to user reputa-

tion provided by Yelp5). The dataset also contains tem-

poral features, the time-series of the number of reviews

posted by a user at day granularity resulting in 731 di-

mensions covering the two year period.

The Twitter dataset consists of a random sample of

100K out of the 19M Twitter users who joined before

August 2009 [4]. Previous work [4] identified topical ex-

perts in Twitter and the topics of interests of users were

inferred (e.g., technology, fashion, health, etc) by ana-

lyzing the profile of topical experts followed by users.

In this dataset, each expert’s profile is associated with

a set of topics of expertise. We construct a spatial his-

togram by randomly grouping multiple topics (34,334 of

them) into 687 topic-groups and counting the number of

experts a user is following in a given topic-group. The

Twitter dataset does not have temporal features.

4.2 Low-Dimensionality of User Behavior

A key observation in our results from all three online so-

cial networks (Facebook, Yelp, Twitter) across the three

user behaviors (temporal, spatial, and spatio-temporal)

Facebook reported a user count of 1.23 billion in December 2013 [31].

We therefore believe the directory to be substantially complete and rep-

resentative.
4Randomly grouping the feature space helps compress the matrix

without affecting the dimensionality of the data [13].
5Examples of reputation features include features such as number

of review endorsements and number of fans.

4
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Figure 1: Scree plots showing low-dimensionality of normal user behavior. A significant part of variations can

be captured using the top three to five principal components (the “knee” of the curves).

is that they all have low effective dimension. Figure 1

presents scree plots that show how much each princi-

pal component contributes when used to approximate the

user behavior matrix X, and so gives an indication of the

effective dimension of X. The effective dimension is the

x-value at the “knee” of the curve (more clearly visible in

the inset plot that zooms into the lower dimensions), and

the fraction of the area under the curve left of the knee

is the total variance of the data accounted for. In other

words, the important components are the ones where the

slope of the line is very steep, and the components are

less important when the slope becomes flat. This method

of visually inspecting the scree plot to infer the effective

dimension is known as Cattell’s Scree test in the statistics

literature [5].

For Facebook like behavior (Figure 1(a)–(c)), the knee

is around five principal components. In fact, for spatial

features in Facebook like activity (Figure 1(b)), these top

five components account for more than 85% of the vari-

ance in the data. We perform a parameter sweep in Sec-

tion 6 and find that our anomaly detector is not overly

sensitive (detection rate and false positives do not change

drastically) to minor variations in the choice of number

of principal components [54]. Yelp and Twitter (Fig-

ure 1(d)–(f)) show a knee between three and five dimen-

sions as well. Overall, across all these datasets where

the input dimensionality for user behavior were between

181 and 687, we find that the effective dimensionality is

around three to five dimensions.

5 Detecting Anomalous User Behavior

In this section, we elaborate on the normal subspace and

residual subspace discussed in Section 2, and describe

how an operator can use them to detect anomalous be-

havior.

The operation of separating a user’s behavior into prin-

cipal components can be expressed as a projection . Re-

call that the space spanned by the top k principal compo-

nents v1, . . . ,vk is called the normal subspace. The span

of the remaining dimensions is referred to as the resid-

ual subspace. To separate a user’s behavior, we project

it onto each of these subspaces. Formulating the pro-

jection operation computationally is particularly simple

since the principal components are unit-norm vectors.

We construct the n× k matrix P consisting of the (col-

umn) vectors v1, . . . ,vk. For a particular user’s behavior

vector x, the normal portion is given by xn = PPT x and

the residual portion is given by xr = x− xn.

The intuition behind the residual subspace detection

method for detecting anomalies is that if a user’s behav-

ior has a large component that cannot be described in

terms of most user’s behavior, it is anomalous. Specifi-

cally, if �xr�2 is unusually large where � · �2 represents

the L2 norm, then x is likely anomalous. This requires

setting thresholds for �xr�
2
2 known as the squared pre-

diction error or SPE [44]. We discuss how we choose a

threshold in Section 6.

5.1 Deployment

In practice, we envision our scheme being deployed by

the social network operator (e.g., Facebook), who has

5
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access to all historical user behavior information. The

provider first selects a time window in the past (e.g., T =

6 months) and a large random sample of users active dur-

ing that time (e.g., 1M) whose behavior will be used to

train the detector. As described earlier, training involves

extracting the top k principal components that define the

normal and residual subspace for these users. This train-

ing is repeated periodically (e.g., every six months) to

account for changes in normal user behavior.

The service provider detects anomalous users period-

ically (e.g., daily or weekly) by constructing the vector

of user behavior over the previous T months, projecting

it onto the residual subspace from the (latest) training

phase, and analyzing the L2 norm as discussed earlier.

Since each user is classified independently, classification

can be trivially parallelized.

6 Evaluation

We now evaluate the effectiveness of our anomaly detec-

tion technique using real-world ground-truth data about

normal and anomalous user behavior on Facebook. Our

goal with anomaly detection in this section is to detect

Facebook like spammers.

6.1 Anomalous User Ground Truth

We collected data for three types of anomalous behav-

iors: fake (Sybil) accounts that do not have any normal

user activity, compromised accounts where the attacker’s

anomalous activity interleaves with the user’s normal ac-

tivity, and collusion networks where users collectively

engage in undesirable behavior. We used the methods

described below to collect data for over 6.8K users. We

then used Selenium to crawl the publicly visible data for

these users, covering 2.16M publicly-visible likes and an

additional 1.19M publicly-visible Timeline posts includ-

ing messages, URLs, and photos. We acquired all activ-

ity data for these users from their join date until end of

August 2013.

Black-Market Services: We searched on Google for

websites offering paid Facebook likes (query: “buy face-

book likes”). We signed up with six services among the

top search results and purchased the (standard) package

for 1,000 likes; we paid on average $27 to each service.

We created a separate Facebook page for each service

to like so we could track their performance. Four of the

services [18–21] delivered on their promise (3,437 total

users), while the other two [22, 23] did not result in any

likes despite successful payment.

As mentioned, we crawled the publicly-visible user

behavior of the black-market users who liked our pages.

We discovered 1,555,534 likes (with timestamps at day

granularity) by these users. We further crawled the users’

publicly visible Timeline for public posts yielding an ad-

ditional 89,452 Timeline posts.

Collusion Networks: We discovered collaborative ser-

vices [7, 8] where users can collaborate (or collude) to

boost each other’s likes. Users on these services earn

virtual credits for liking Facebook pages posted by other

users. Users can then “encash” these credits for likes on

their own Facebook page. Users can also buy credits (us-

ing real money) which they can then encash for likes on

their page. We obtained 2,259 likes on three Facebook

pages we created, obtaining a set of 2,210 users, at an

average cost of around $25 for 1,000 likes. The price for

each like (in virtual credits) is set by the user requesting

likes; the higher the price, the more likely it is that other

users will accept the offer. We started getting likes within

one minute of posting (as compared to more than a day

for black-market services).

As with black-market users, we crawled the user ac-

tivity of the users we found through collusion networks.

We collected 359,848 likes and 186,474 Timeline posts.

Compromised Accounts: We leveraged the browser

malware Febipos.A [35] that infects the user’s browser

and (silently) performs actions on Facebook and Twitter

using the credentials/cookies stored in the browser. The

malware consists of a browser plugin, written in (obfus-

cated) Javascript, for all three major browsers: Chrome,

Firefox and Internet Explorer [28, 29].

We installed the malware in a sandbox and de-

obfuscated and analyzed the code. The malware peri-

odically contacts a CnC (command-and-control) server

for commands, and executes them. We identified 9 com-

mands supported by the version of the malware we an-

alyzed: (1) like a Facebook page, (2) add comments to

a Facebook post, (3) share a wall post or photo album,

(4) join a Facebook event or Facebook group, (5) post

to the user’s wall, (6) add comments to photos, (7) send

Facebook chat messages, (8) follow a Twitter user, and

(9) inject third-party ads into the user’s Facebook page.

We reverse-engineered the application-level protocol

between the browser component and the CnC server,

which uses HTTP as a transport. We then used curl

to periodically contact the CnC to fetch the commands

the CnC would have sent, logging the commands every

5 minutes. In so doing, we believe we were able to mon-

itor the entire activity of the malware for the time we

measured it (August 21–30, 2013).

Identifying which other Facebook users are compro-

mised by Febipos.A requires additional data. Unlike

in the black-market services and collusion networks—

where we were able to create Facebook pages and give

to the service to like— we can only passively monitor the

malware and cannot inject our page for the other infected

users to like (since we do not control the CnC server).

To identify other Facebook users compromised by

6
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Febipos.A, we identified two commands issued during

the week we monitored the malware: one which in-

structed the malware to like a specific Facebook page,

and second, to join a specific Facebook event. We use

Facebook’s graph search [26] to find other users that

liked the specific page and accepted the specific event

directed by the CnC. From this list we sampled a total of

4,596 users. Note, however, that simply because a user

matched the two filters does not necessarily mean they

are compromised by Febipos.A.

To improve our confidence in compromised users, we

clustered the posts (based on content similarity) made

to these users’ walls and manually inspected the top 20

most common posts. Among these 20 posts, two posts

looked suspicious. Upon further investigation, we found

out that one of the post was also found on pages the mal-

ware was directed to like. The other post was present in

the CnC logs we collected. The first was posted by 1,173

users while the second was posted by 135 users. We con-

sidered users from both these clusters and obtained a set

of 1,193 unique users.6 We collected 247,589 likes and

916,613 Timeline posts from their profile.

6.2 Ethics

We note that all money we paid to acquire anomalous

likeswere exclusively for pages both controlled by us and

setup for the sole purpose of conducting the experiments

in this paper. For the malware analysis, we ensured that

our sandbox prevented the malware from executing the

CnC’s instructions. We did not seek or receive any ac-

count credentials of any Facebook user. Overall, we en-

sured that no other Facebook page or user was harmed or

benefited as a result of this research experiment.

6.3 Normal User Ground Truth

We collected three datasets to capture normal user behav-

ior. The first dataset is the 719 users that are part of the

SIGCOMM [33] and COSN [24] Facebook groups. We

picked these technically savvy users, despite the obvious

bias, because we presume that these users are less likely

to be infected by browser or other malware which we

have found to be stealthy enough to avoid detection by

non-technically-savvy users. An anomaly detector that

has low false-positives on both this dataset as well as a

more representative Facebook dataset is more likely to

have a range that spans the spectrum of user behavior on

Facebook.

6The friendship network formed by these users has a very low edge

density of 0.00023. Thus, even though they had similar posts on their

Timeline, very few of them were friends with each other (further sug-

gesting suspicious behavior).
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Figure 2: Characterizing social activity of normal

and anomalous users considered in our study based

on activity on their Timeline.

For our second dataset, we use the random sampling of

Facebook users described in Section 4.1. Note that this

dataset may be biased in the opposite direction: while it

is representative of Facebook users, an unknown fraction

of them are fake, compromised, or colluding. Public esti-

mates lower-bound the number of fake users at 3% [32],

thus we expect some anomalies in this dataset.

A compromise between the two extremes is our third

dataset: a 1-hop crawl of the social-neighborhood of the

authors (a total of 1,889 users). This dataset is somewhat

more representative of Facebook than the first dataset,

and somewhat less likely to be fake, compromised, or

colluding than the second dataset. Users in these three

datasets in total had 932,704 likes and 2,456,864 Time-

line posts putting their level of activity somewhere be-

tween the black-market service on the low end, and com-

promised users on the high end. This fact demonstrates

the challenges facing anomaly detectors based on sim-

plistic activity thresholds.

For the rest of the analysis in this paper, we use the

random sampling dataset for training our anomaly detec-

tor, and the other two datasets for testing normal users.

Figure 2 plots the cumulative distribution (CDF) of

likes and comments received on wall posts and the num-

ber of social7 posts for all of our six datasets. The top

figure plots the CDF of likes and comments on a logarith-

mic x-axis ranging from 1 to 1M, and the bottom figure

plots the CDF of social posts (messages, URLs, photos).

As is evident from the figure, black-market users are the

least active, compromised users are the most active, and

all three normal user datasets—as well as the collusion

network users—fall in the middle and are hard to distin-

7Posts that involve interaction with other users, e.g., photo tagging.
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Random Normal Black-market Compromised Colluding

#Users (#likes) 11,851 (561,559) 1,274 (73,388) 3,254 (1,544,107) 1,040 (209,591) 902 (277,600)

Table 1: Statistics of different types of users whose like activity (from June 2011 to August 2013) we analyze.
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Figure 3: ROC curve showing the performance of our

anomaly detector in distinguishing between normal

and misbehaving users.

guish visually (especially for social post activity).

6.4 Detection Accuracy

Methodology: We analyze Facebook like activity from

June 2011 to August 2013. We need to pay special at-

tention to users that joined Facebook in the middle of

our analysis period (or stopped being active) to avoid

the degenerate case where the anomaly detection flags

their lack of activity. We avoid this by considering a six-

month sliding window that advances by one month. In

each window, we consider users that joined before that

window and had at least one like during the window. Un-

less otherwise mentioned, for the rest of the analysis in

the paper, we consider only these users and their likes
that fall within our period of analysis—data statistics are

shown in Table 1. A user’s behavior is flagged as anoma-

lous if they are flagged in any one of the sliding time

windows. They are flagged as anomalous in a window if

the squared prediction error (SPE) exceeds the threshold

parameter.

We set the detection threshold (conservatively) based

on Facebook’s estimate (from their SEC filings [32]) of

users that violate terms of service. Facebook estimates

around 3.3% users in 2013 to be undesirable (spam or

duplicates). Recall that we train our anomaly detector on

the like behavior of random Facebook users during much

of the same period. We conservatively pick a training

threshold that flags 3% of random accounts, and adjust

our false-positive rate downwards by the same amount

and further normalize it to lie in the range 0 to 1. We

select the top-five components from our PCA output to

build the normal subspace.

Results: Figure 3 plots the receiver operating charac-

teristic (ROC) curve of our detector when evaluated on

all datasets for normal and anomalous user behavior (ex-

cept random, which was used to train the detector) as

we perform a parameter-sweep on the detection thresh-

old. The y-axis plots the true-positive rate ( T P
TP+FN

) and

the x-axis plots the false-positive rate ( FP
FP+TN

) where

T P,TN,FP,FN are true-positive, true-negative, false-

positive, and false-negative, respectively. The area under

the ROC curve for an ideal classifier is 1, and that for a

random classifier is 0.5. For the mix of misbehaviors rep-

resented in our ground-truth dataset, the spatio-temporal

features performs best, with an area under the curve of

0.887, followed closely by temporal and spatial features

at 0.885 and 0.870, respectively.

By combining the set of users flagged by all three fea-

tures, our detector is able to flag 66% of all misbehaving

users at a false-positive rate of 0.3%. If we compare this

with a naı̈ve approach of flagging users based on a sim-

ple like volume/day (or like categories/day) cut-off (i.e.,

by flagging users who exceed a certain number of likes
per day or topic categories per day) we can only detect

26% (or 49%) of all misbehaving users at the same false-

positive rate. This further suggests that our PCA-based

approach is more effective than such naı̈ve approaches at

capturing complex normal user behavior patterns to cor-

rectly flag misbehaving users.

Figure 4 and Table 2 explore how the set of features

performed on the three classes of anomalous behavior.

Spatio-temporal features alone flagged 98% of all activ-

ity for users acquired through the four black-market ser-

vices. 61% (939K) of black-market activity was flagged

as anomalous by all three sets of features. Due to the

dominant nature of the spatio-temporal features on the

black-market dataset, there is insufficient data outside

the spatio-temporal circle to draw inferences about the

other features. The three features performed more evenly

on the dataset of compromised and colluding users, with

43.9% and 78.7% of the anomalous user behavior respec-

tively being flagged by all three sets of features, and 64%

and 91% respectively being flagged by at least one. Ex-

cept in the black-market case, no class of features dom-

inates, and combined they flag 94.3% of all anomalous

user behavior in our dataset.

6.5 Error Analysis

To better understand our false-negative rate, Figure 5

plots the likelihood of detection as a function of the level

of activity (number of likes) for each class of anomalous

traffic. Unlike black-market users that are easily detected

at any level of activity, the anomaly detector does not flag

compromised and colluding users with low activity. This

8
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8.3K

4.4K

6.3K 4.7K

2.5K

Figure 4: Venn diagram illustrating performance of different features in detecting different classes of anomalous

user behavior. The numbers indicate number of likes flagged.

Identity

type

Identities

flagged

Likes flagged

Total Temporal Spatio-temporal Spatial

Black-market 2,987/3,254 (91%) 1,526,334/1,544,107 (98%) 994,608 (64%) 1,524,576 (98%) 1,215,396 (78%)

Compromised 171/1,040 (16%) 134,320/209,591 (64%) 104,596 (49%) 123,329 (58%) 116,311 (55%)

Colluding 269/902 (29%) 254,949/277,600 (91%) 246,016 (88%) 232,515 (83%) 237,245 (85%)

Table 2: Performance of different features in detecting different classes of anomalous user behavior.

is consistent with compromised and colluding user be-

havior being a blend of normal user behavior intermixed

with attacker behavior. At low levels of activity, the de-

tector lacks data to separate anomalous behavior from

noise. However, as the attacker leverages the account

for more attacks, the probability of detection increases.

It increases faster for colluding users, where the user

is choosing to engage in anomalous activity, and more

slowly for compromised accounts where the user con-

tributes normal behavior to the blend.

Figure 6 compares anomalous user behavior that was

not flagged by our detector to the behavior of normal

users. As is evident from the figure, the false-negatives

for compromised and colluding users appear indistin-

guishable from normal user behavior, especially when

compared to the behavior of colluding and compromised
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Figure 5: Higher like activity generally correlates with

higher detection rates, however limits for normal user

behavior being flagged are 50–100 likes higher than

for anomalous user behavior.

users that were flagged. Our hypothesis (consistent with

the previous paragraph) is that these false-negative users

are newly compromised users or users newly recruited

to the collusion network, and their overall behavior has

not yet diverged significantly enough to be considered an

anomaly.

Regarding false-positives, we expect some fraction of

users to be flagged, since an unknown fraction of the

normal users may be infected by malware. Our false-
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Figure 6: Characterizing activity of users that are

not flagged in the compromised and colluding set and

comparing them with normal users who were not

flagged.
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Figure 7: False-positive rate (unadjusted) and true-

positive rate as we vary the number of principal com-

ponents chosen for the normal subspace. Our de-

tector is stable for small variations in the number of

principal components chosen.

positive rate is under 3.3%, which when adjusted for the

fraction of users Facebook expects to be anomalous [32],

suggests a false-positive rate of 0.3%. We specifically

note in Figure 5 that the threshold before normal user be-

havior is flagged is consistently 50–100 likes higher than

that for compromised users for the same y-axis value.

Thus, our anomaly detection technique accommodates

normal users that are naturally prone to clicking on many

likes.

6.6 Robustness

Next we evaluate the sensitivity of our detector to small

variations in the number of principal components chosen

for the normal subspace. Figure 7 plots the true-positive

rate and the false-positive rate (unadjusted) as we vary

k, the number of principal components used to construct

the normal subspace. As is evident from the figure, our

detection accuracy does not change appreciably for dif-

ferent choices of k. Thus our detector is quite robust to

the number of principal components chosen.

6.7 Adversarial Analysis

In this section, we consider two classes of attackers: first,

where the attacker scales back the attack to avoid detec-

tion, and second, where the attacker attempts to compro-

mise the training phase.

Scaling Back: Figure 8 explores the scenario where

attackers scale back their attacks to avoid detection.

Specifically, we simulate the scenario where we sub-

sample likes uniformly at random from our ground-truth

attack traffic (black-market, compromised and colluding)

until the point a misbehaving user is no longer flagged by

the anomaly detector. As users’ behavior spans multiple

six month time windows, for each user we consider the

 0

 0.2

 0.4

 0.6

 0.8

 1

 10  100  1000  10000

F
ra

c
ti

o
n

 o
f 

a
tt

a
c

k
e

rs
 (

C
D

F
)

Number of likes

Attacker limited
Attacker unlimited

Figure 8: Distribution of number of anomalous likes

before anomalous users are flagged by our approach.

For comparison, we show the actual number of

anomalous likes we received.

window in which the user displayed maximum misbe-

havior (maximum number of likes in this case). In this

way, we analyze the extent to which we can constrain at-

tackers during their peak activity period. We find that our

current model parameters constrains attackers by a factor

of 3 in the median case, and by an order of magnitude at

the 95th percentile.

Compromising Training: An attacker that controls a

sufficiently large number of users may attempt to com-

promise the training phase by injecting additional likes,
thereby distorting the principal components learned for

normal users [39, 55, 56]. The compromised detec-

tor would have a higher false-negative rate, since more

anomalous behavior would fall within the normal sub-

space. At a high level, this attack may be mitigated by

defense-in-depth, where multiple techniques can be used

to filter users selected for the training set.

The first defense-in-depth technique is the attacker’s

need to control a sufficiently large number of anoma-

lous users. We first note that our training data already

contains an estimated 3% anomalous users, and that

the trained detector has good performance on the ROC

curve. Since users in the training set are sampled uni-

formly at random from all users, an attacker with equiva-

lent power would need to be in control of over 30M users

(given Facebook’s user base of over 1B users). In com-

parison, one of the largest botnets today is estimated to

have fewer than 1 million bots [47]. A related issue is

that the quantity of like volume that must be injected to

affect the detector depends on the overall volume of likes

in the system, which is information that is not likely to

be readily available to the attacker.

Assuming the attacker is able to amass this large a

number of users, the next defense-in-depth technique is

to sanitize training data, where anomalous users discov-

ered in one time window are excluded from being used

for training in all subsequent time windows [39]. Thus

if an attacker ends up altering like traffic significantly in

one time window, it could lead to detection and further
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removal of those anomalous users from the training set.

Finally, variants of PCA that are more robust to out-

liers can be used to further harden the training phase from

compromise. Croux et al. [9, 39] proposed the robust

PCA-GRID algorithm that reduces the effect of outliers

in the training data. Using this approach one can com-

pute principal components that maximize a more robust

measure of data dispersion – the median absolute devia-

tion without under-estimating the underlying variance in

the data. Such an algorithm could yield robust estimates

for the normal subspace.

6.8 Scalability

As discussed earlier, classifying users can be trivially

parallelized once the training phase is complete. Thus

our primary focus in this section is on evaluating the scal-

ability of the training phase.

Space: The total space requirement of the training phase

is O(n×m) where n is the number of input dimensions

(typically a few hundred), and m is the number of users in

the training set (typically a few million). Thus the space

needed to store the matrix is at most a few gigabytes,

which can easily fit in a typical server’s memory.

Computation: The primary computation cost in PCA

arises from the eigenvalue decomposition of the covari-

ance matrix of the feature vectors, which is a low-order

polynomial time algorithm with complexity O(n3
+

n2m). Eigenvalue decomposition is at the heart of the

PageRank algorithm (used in early search engines) for

which efficient systems exist to handle input data several

orders of magnitude larger than our need [1]. Further-

more, efficient algorithms for PCA based on approxima-

tion and matrix sketching have been designed which have

close to O(mn) complexity [46, 57].

7 Detecting Click-Spam on Facebook Ads

So far, we have discussed the performance of our

anomaly detector in detecting diverse attack strategies.

Next, we demonstrate another real world application

of our technique: detecting click-spam on Facebook

ads. Click-spam in online ads—where the advertiser is

charged for a click that the user did not intend to make

(e.g., accidental clicks, clicks by bots or malware)—is

a well-known problem in web search [11, 12], and an

emerging problem for Facebook ads [2, 16, 17].

7.1 Click-Spam in Facebook

To gain a preliminary understanding of Facebook click-

spam, we signed up as an advertiser on Facebook. We set

up an ad campaign targeting users in the USA aged be-

tween 15 and 30. The campaign advertised a simple user
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Clicks�Not�Charged
6�(1.9%)

Page�Loaded
217�(72%)

Page�Load�Aborted
90�(29.9%)

Closed�within�5s
154�(51%)

User�Activity
45�(15%)

No�Activity
12�(4%)

Javascript�Disabled
6�(2%)

Survey�Attempted
0�(0%)

(b) Bluff ad

Figure 9: Summary of click statistics for real and

bluff ad campaigns on Facebook.

survey page about Facebook’s privacy settings. When

clicked, the ad leads to our heavily instrumented landing

page to capture any user activity such as mouse clicks,

mouse movement, or keyboard strokes. Of the 334 orig-

inal ad clicks Facebook charged us for, only 61 (18.3%)

performed any activity on the landing page (e.g., mouse

move). Figure 9(a) shows how users proceeded after

clicking the ad. Percentages are relative to the number

of ad clicks Facebook charged us for. Shaded boxes are

undesirable terminal states that suggest click-spam. For

instance, 106 users (31.7%) did not even complete the

first HTTP transaction to load the page (e.g., closed the

tab, or pressed the back button immediately after clicking

the ad).

To distinguish between unintentional clicks and inten-

tional clicks followed by lack of interest in our page, we

ran Bluff Ads [11,38] that are ads with identical targeting

parameters as the original ad, but nonsensical content.

Our bluff ad content was empty. Figure 9(b) shows that

our bluff ad performed identically to the original ad, both

qualitatively and quantitatively; of 301 clicks in roughly

the same time-frame as the original ad, almost 30% did

not complete first HTTP, etc. From our data it appears

11
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that the content of the ad has no effect on clicks on Face-

book ads that we were charged for, a strong indicator of

click-spam.

7.2 Anomalous Clicks in Facebook Ads

In order to analyze anomalous user behavior, our ap-

proach requires information from the user’s profile. Due

to a change in how Facebook redirects users on ad

clicks [42], we were unable to identify the users that

clicked on our ad in the experiment above. Fortunately,

Facebook offers a different type of ad campaign opti-

mization scheme—maximizing likes—where the desti-

nation must be a Facebook page as opposed to an arbi-

trary website. With such ads, it is possible to identify the

users that clicked on such an ad, but not possible to in-

strument the landing page to get rich telemetry as above.

We chose this campaign optimization option for maxi-

mizing likes to the advertised page.

We set up 10 ad campaigns, listed in Table 3, tar-

geting the 18+ demographic in 7 countries: USA, UK,

Australia, Egypt, Philippines, Malaysia and India. Our

10 campaigns were about generic topics such as humor,

dogs, trees, and privacy awareness. Our ad contained a

like button, a link to the Facebook page, some text, and

an image describing the topic of the ad. We ran these

ads at different points in time: Campaigns 1 to 4 were

run in February 2014, while campaigns 5 to 10 were run

in January 2013. In total, we received 3,766 likes for

all our pages. For most of the campaigns targeting India

(especially #7), we received 80% of the likes within 10

minutes, which is very anomalous.

We first checked whether we obtained most of these

likes via social cascades (i.e., a user liking a page because

their friend liked it), or from the Facebook ads directly.

To do so, we analyzed the edge density of all friend-

ship networks (graph formed by friendship links between

users) formed by users of each ad campaign. We find the

edge density of friendship networks for all campaigns to

be very low (e.g., the friendship network edge density for

users in campaign #8 was only 0.000032). This strongly

suggests that the Facebook ads, rather than any social

cascades, were responsible for the likes.

Out of 3,766 likes, we were able to crawl the iden-

tity of the users clicking like for 3,517 likes.8 Next, we

apply our anomaly detection technique from Section 5

with the same training data and model parameters that

we used in Section 6 to 2,767 users (out of 3,517) who

fall within our 26-month training window. The penulti-

mate column in Table 3 lists the number of users tested

in each campaign, and the last column lists the number

of users flagged as click-spam.

8The Facebook user interface does not always show the identity of

all users who like a page.

Of the 2,767 users that clicked our ads in this experi-

ment, 1,867 were flagged as anomalous. Figure 10 plots

the like activity of the users we flagged as anomalous rel-

ative to our normal user behavior dataset, and the black-

market user dataset that serves as our ground-truth for

anomalous user activity. The flagged users from our ad

dataset have an order of magnitude more like activity than

the black-market users, and nearly two orders of magni-

tude more like activity than normal users; they also like
twice as many categories as black-market users and al-

most an order of magnitude more categories than normal

users.

7.3 Anomaly Classification

To better understand the click-spam we observed, we at-

tempt to classify the ad users as one of our three ground-

truth anomalous behaviors: black-market, compromised,

and collusion. Note that anomaly classification in this

section is unrelated to the anomaly detection approach

from Section 5.

We use the k-Nearest Neighbor (kNN) algorithm for

classification. We train the classifier using ground-truth

labels for black-market, compromised, and colluding

users. The input feature vectors can be formed in differ-

ent ways: First, we can capture user behavior by project-

ing it on to the normal and residual subspace. The normal

projection reflects normal behavior and the residual pro-

jection captures noisy or deviant behavior of a user. Sec-

ond, we know that user behavior can also be expressed

using temporal, spatio-temporal and spatial features. By

leveraging all these different combinations, we built 6

classifiers using 6 different feature vectors (2 projections
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Figure 10: Characterizing activity of users flagged

in the ad set. Note that most flagged ad users like a

much larger number of categories/likes per day than

normal and black-market users.
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Users

Campaign Ad target Cost per like (e) Total spent (e) Total Tested Flagged

1 US 1.62 192.43 119 76 43

2 UK 1.95 230.05 118 69 27

3 AU 0.87 158.89 182 88 38

4 Egypt, Philippines, Malaysia 0.08 47.69 571 261 135

5 India 0.13 30.00 230 199 137

6 India 0.11 22.71 209 169 99

7 India 0.09 22.61 250 199 114

8 India, US, UK 0.22 242.72 1,099 899 791

9 India 0.12 30.00 247 215 143

10 India 0.07 50.00 741 632 372

Table 3: Anomalies flagged for different ad campaigns. We observe a significant fraction of anomalous clicks

for all campaigns.

× 3 features). Each classifier, given an unlabeled user

from the ad set, predicts a label for the user.

We use a simple ensemble learning technique of ma-

jority voting to combine the results of all the classifiers;

this also means that there could be test instances that may

not be labeled due to lack of consensus. We choose the

most recent six-month time window (March to August

2013) in our dataset and use all known misbehaving users

(black-market, compromised and colluding) in that win-

dow for training the classifier and apply this technique to

the 1,408 flagged ad users who fall in that window. To

balance classes for training, we randomly under-sample

larger classes (black-market and colluding) and use 780

users in each of black-market, colluding and compro-

mised set for training. For each classifier, we pick

a value of k that gives the lowest misclassification rate

for 10-fold cross validation on the training data. We

next apply our trained classifier to predict the unlabeled

ad users. Results are averaged over 50 different ran-

dom trials and we observe an average misclassification

rate of 31% (standard deviation of 0.5) based on cross-

validation in the training phase. Table 4 shows the statis-

tics for the labels predicted for the flagged ad users. We

find that the majority of ad users (where we had major-

ity agreement) are classified as black-market or compro-

mised.

Classified As Number of users

Black-market 470

Compromised 109

Colluding 345

Unclassified (no consensus) 484

Table 4: Anomaly class predicted for the ad users that

are flagged.

While the level of anomalous click traffic is very sur-

prising, it is still unclear what the incentives are for the

attacker. One possibility is that black-market accounts

and compromised accounts are clicking (liking) ads to

generate cover traffic for their misbehavior. Another pos-

sibility is that the attacker is trying to drain the budget of

some advertiser by clicking on ads of that advertiser. We

plan to explore this further as part of future work.

8 Corroboration by Facebook

We disclosed our findings to Facebook in March 2014,

and included a preprint of this paper. Our primary intent

in doing so was to follow responsible disclosure proce-

dures, and to allow Facebook to identify any ethical or

technical flaws in our measurement methodology. We

were informed that Facebook’s automated systems detect

and remove fake users and fraudulent likes.
Table 5 tabulates the users (flagged by our detector)

and likes that were removed between the time we con-

ducted our experiments and June 2014. While very few

users were removed by Facebook, a sizable fraction of

their likes across all pages were indeed removed confirm-

ing the accuracy of our detector. To establish a baseline

for the fraction of users and likes removed by Facebook’s

automated systems we find that from our random user

dataset (Section 4) only 2.2% users, and 32% of all their

likes were removed over a ten month period. For black-

market, compromised, and colluding users (ground-truth

anomalous user dataset from Section 6), over 50% of all

their likes had been removed over 6–10 months. Over

85% of the all likes of users that clicked our ad were re-

moved within four months. Recall that our ad was tar-

geted to normal Facebook users and we did not use any

external services to acquire ad likes; nevertheless, 1,730

of the 3,517 likes we were charged for in February 2014

had been removed by Facebook’s fraudulent like detec-

tion system by June 2014, corroborating our earlier re-

sult that a large fraction of users that clicked on our ad

are anomalous both by our definition as well as Face-

book’s.9 As of this writing we have not received any

9While Facebook allows users to un-like pages, according to Face-

book insights [30] we had only 56 un-likes across all our pages, which

we exclude from our analysis.
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Removed by Facebook’s automated systems

Users likes on all pages likes on our page Timespan

Normal User Dataset (Section 4)

Random users 262/12K 179K/561K n/a 10 months

Ground-Truth Anomaly Dataset (Section 6)

Black-market 228/2987 715K/1.5M 2829/3475 10 months

Compromised 3/171 80K/134K n/a 7 months

Colluding 9/269 181K/254K 1879/2259 6 months

Facebook Ads Dataset (Section 7)

Ad clicks 51/1867 2.9M/3.4M 1730/35179 4 months

Table 5: Fraction of users and likes flagged by us removed by Facebook’s automated system, as of June 2014.

credit adjustments for the likes charged to our advertiser

account that Facebook’s fraudulent like detection system

since identified and removed.

9 Related Work

We survey approaches to detecting misbehaving identi-

ties along three axes.

Leveraging Hard-to-earn Attributes: Manual verifica-

tion of users would be ideal to avoiding Sybils in crowd-

sourcing systems but does not scale for large-scale sys-

tems. Additionally, normal users may not join the sys-

tem for privacy reasons due to the effort required to be

verified. Current systems typically employ CAPTCHA

or phone verification to raise the barrier by forcing the

attacker to expend greater effort. Although pervasive, at-

tackers try to evade these schemes by employing Sybil

identities that use sites like Freelancer or Amazon’s Me-

chanical Turk to exploit the differences in value of hu-

man time in different countries [51]. However, steps

taken by service providers to raise the barrier for fake

account creation complements our proposed defense be-

cause each account flagged as anomalous raises the cost

for the attacker.

In OSNs, where identities are associated with each

other through hard-to-earn endorsement and friend

edges, several graph-based Sybil detection schemes have

been developed over the years [10, 52, 61, 66, 67]. Such

schemes make assumptions about the OSN graph growth

and structure, for example that creating and maintaining

edges to honest identities requires significant effort [48],

or that honest OSN regions are fast-mixing [66, 67].

However, recent studies cast doubts on these assump-

tions and subsequently on the graph-based Sybil defense

techniques. Specifically, Yang et al. [65] observe that

Sybils blend well into the rest of OSN graphs, while

Mohaisen et al. [49] find that most OSN graphs are not

fast-mixing, and that detection schemes may end up ac-

cepting Sybil identities and/or wrongly expelling honest

identities [62].

Supervised Learning: Most existing work on detecting

misbehaving identities in social networks leverage super-

vised learning techniques [14,40,53]. Lee et al. [40] pro-

pose a scheme that deploys honeypots in OSNs to attract

spam, trains a machine learning (ML) classifier over the

captured spam, and then detects new spam using the clas-

sifier. Rahman et al. [53] propose a spam and malware

detection scheme for Facebook using a Support Vector

Machines-based classifier trained using the detected ma-

licious URLs. The COMPA scheme [14] creates statisti-

cal behavioral profiles for Twitter users, trains a statisti-

cal model with a small manually labeled dataset of both

benign and misbehaving users, and then uses it to detect

compromised identities in Twitter.

While working with large crowdsourcing systems, su-

pervised learning approaches have inherent limitations.

Specifically they are attack-specific and vulnerable to

adaptive attacker strategies. Given the adaptability of

the attacker strategies, to maintain efficacy, supervised

learning approaches require labeling, training, and clas-

sification to be done periodically. In this cat-and-mouse

game, they will always lag behind attackers who keep

adapting to make a classification imprecise.

Unsupervised Learning: Unsupervised learning-based

anomaly detection has been found to be an effective

alternative to non-adaptive supervised learning strate-

gies [12, 45, 60, 63, 64]. For example, Li et al. [45] pro-

pose a system to detect volume anomalies in network

traffic using unsupervised PCA-based methods. Au-

toRE [64] automatically extracts spam URL patterns in

email spam based on detecting the bursty and decentral-

ized nature of botnet traffic as anomalous.

In crowdsourcing scenarios, Wang et al. [63] pro-

posed a Sybil detection technique using server-side click-

stream models (based on user behavior defined by click-

through events generated by users during their social net-

work browsing sessions). While the bulk of the paper

presents supervised learning schemes to differentiate be-

tween Sybil and non-Sybils based on their clickstream

behavior, they also propose an unsupervised approach

14
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that builds clickstream behavioral clusters that capture

normal behavior and users that are not part of normal

clusters are flagged as Sybil. However, their approach

still requires some constant amount of ground-truth in-

formation to figure out clusters that represent normal

click-stream behavior. Tan et al. [60] use a user-link

graph along with the OSN graph to detect some hon-

est users with supervised ML classifier and then perform

an unsupervised analysis to detect OSN spam. Copy-

Catch [3] detects fraudulent likes by looking for a spe-

cific attack signature — groups of users liking the same

page at around the same time (lockstep behavior). Copy-

Catch is actively used in Facebook to detect fraudulent

likes, however as evidenced in Table 5, it is not a silver-

bullet.

While we welcome the push towards focusing more

on unsupervised learning strategies for misbehavior de-

tection, most of the current techniques are quite ad hoc

and complex. Our approach using Principal Component

Analysis provides a more systematic and general frame-

work for modeling user behavior in social networks, and

in fact, our PCA-based approach could leverage the user

behavior features (e.g., user click-stream models [63])

used in existing work for misbehavior detection.

10 Conclusion

We propose using Principal Component Analysis (PCA)

to detect anomalous user behavior in online social

networks. We use real data from three social net-

works to demonstrate that normal user behavior is low-

dimensional along a set of latent features chosen by PCA.

We also evaluate our anomaly detection technique using

extensive ground-truth data of anomalous behavior ex-

hibited by fake, compromised, and colluding users. Our

approach achieves a detection rate of over 66% (covering

more than 94% of misbehavior) with less than 0.3% false

positives. Notably we need no a priori labeling or tuning

knobs other than a configured acceptable false positive

rate. Finally, we apply our anomaly detection technique

to effectively identify anomalous likes on Facebook ads.
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Abstract
Recent work in security and systems has embraced the
use of machine learning (ML) techniques for identify-
ing misbehavior, e.g. email spam and fake (Sybil) users
in social networks. However, ML models are typically
derived from fixed datasets, and must be periodically
retrained. In adversarial environments, attackers can
adapt by modifying their behavior or even sabotaging
ML models by polluting training data.

In this paper1, we perform an empirical study of ad-
versarial attacks against machine learning models in the
context of detecting malicious crowdsourcing systems,
where sites connect paying users with workers willing to
carry out malicious campaigns. By using human work-
ers, these systems can easily circumvent deployed se-
curity mechanisms, e.g. CAPTCHAs. We collect a
dataset of malicious workers actively performing tasks
on Weibo, China’s Twitter, and use it to develop ML-
based detectors. We show that traditional ML techniques
are accurate (95%–99%) in detection but can be highly
vulnerable to adversarial attacks, including simple eva-
sion attacks (workers modify their behavior) and power-
ful poisoning attacks (where administrators tamper with
the training set). We quantify the robustness of ML clas-
sifiers by evaluating them in a range of practical adver-
sarial models using ground truth data. Our analysis pro-
vides a detailed look at practical adversarial attacks on
ML models, and helps defenders make informed deci-
sions in the design and configuration of ML detectors.

1 Introduction

Today’s computing networks and services are extremely
complex systems with unpredictable interactions be-
tween numerous moving parts. In the absence of ac-
curate deterministic models, applying Machine Learning

1Our work received approval from our local IRB review board.

(ML) techniques such as decision trees and support vec-
tor machines (SVMs) produces practical solutions to a
variety of problems. In the security context, ML tech-
niques can extract statistical models from large noisy
datasets, which have proven accurate in detecting mis-
behavior and attacks, e.g. email spam [35, 36], network
intrusion attacks [22, 54], and Internet worms [29]. More
recently, researchers have used them to model and detect
malicious users in online services, e.g. Sybils in social
networks [42, 52], scammers in e-commerce sites [53]
and fraudulent reviewers on online review sites [31].

Despite a wide range of successful applications, ma-
chine learning systems have a weakness: they are vulner-
able to adversarial countermeasures by attackers aware
of their use. First, through either reading publications
or self-experimentation, attackers may become aware of
details of the ML detector, e.g. choice of classifier and
parameters used, and modify their behavior to evade de-
tection. Second, more powerful attackers can actively
tamper with the ML models by polluting the training set,
reducing or eliminating its efficacy. Adversarial machine
learning has been studied by prior work from a theoreti-
cal perspective [6, 12, 27], using simplistic all-or-nothing
assumptions about adversaries’ knowledge about the ML
system in use. In reality, however, attackers are likely to
gain incomplete information or have partial control over
the system. An accurate assessment of the robustness of
ML techniques requires evaluation under realistic threat
models.

In this work, we study the robustness of machine
learning models against practical adversarial attacks, in
the context of detecting malicious crowdsourcing activ-
ity. Malicious crowdsourcing, also called crowdturfing,
occurs when an attacker pays a group of Internet users
to carry out malicious campaigns. Recent crowdturf-
ing attacks ranged from “artificial grassroots” political
campaigns [32, 38], product promotions that spread false
rumors [10], to spam dissemination [13, 39]. Today,
these campaigns are growing in popularity in dedicated
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crowdturfing sites, e.g. ZhuBaJie (ZBJ)2 and SanDaHa
(SDH)3, and generic crowdsourcing sites [26, 48].
The detection of crowdturfing activity is an ideal con-

text to study the impact of adversarial attacks on ma-
chine learning tools. First, crowdturfing is a growing
threat to today’s online services. Because tasks are per-
formed by intelligent individuals, these attacks are unde-
tectable by normal measures such as CAPTCHAs or rate
limits. The results of these tasks, fake blogs, slander-
ous reviews, fake social network accounts, are often in-
distinguishable from the real thing. Second, centralized
crowdturfing sites like ZBJ and SDH profit directly from
malicious crowdsourcing campaigns, and therefore have
strong monetary incentive and the capability to launch
adversarial attacks. These sites have the capability to
modify aggregate behavior of their users through inter-
face changes or explicit policies, thereby either helping
attackers evade detection or polluting data used as train-
ing input to ML models.
Datasets. For our analysis, we focus on Sina Weibo,
China’s microblogging network with more than 500 mil-
lion users, and a frequent target of crowdturfing cam-
paigns. Most campaigns involve paying users to retweet
spam messages or to follow a specific Weibo account.
We extract records of 20,416 crowdturfing campaigns
(1,012,923 tasks) published on confirmed crowdturfing
sites over the last 3 years. We then extract a 28,947
Weibo accounts belonging to crowdturfing workers. We
analyze distinguishing features of these accounts, and
build detectors using multiple ML models, including
SVMs, Bayesian, Decision Trees and Random Forests.

We seek answers to several key questions. First, can
machine learning models detect crowdturfing activity?
Second, once detectors are active, what are possible
countermeasures available to attackers? Third, can ad-
versaries successfully manipulate ML models by tamper-
ing with training data, and if so, can such efforts succeed
in practice, and which models are most vulnerable?
Adversarial Attack Models. We consider two types of
practical adversarial models against ML systems: those
launched by individual crowd-workers, and those in-
volving coordinated behavior driven by administrators of
centralized crowdturfing sites. First, individual workers
can perform evasion attacks, by adapting behavior based
on their knowledge of the target classifier (e.g. ML al-
gorithms, feature space, trained models). We identify a
range of threat models that vary the amount of knowl-
edge by the adversary. The results should provide a com-
prehensive view of how vulnerable ML systems to eva-
sion, ranging from the worst case (total knowledge by at-
tacker) to more practically scenarios. Second, more pow-

2http://www.zhubajie.com/c-tuiguang/
3http://www.sandaha.com/

erful attacks are possible with the help of crowdturfing
site administrators, who can manipulate ML detectors by
poisoning or polluting training data. We study the im-
pact on different ML algorithms from two pollution at-
tacks: injecting false data samples, and altering existing
data samples.

Our study makes four key contributions:

• We demonstrate the efficacy of ML models for de-
tecting crowdturfing activity. We find that Random
Forests perform best out of multiple classifiers, with
95% detection accuracy overall and 99% for “pro-
fessional” workers.

• We develop adversarial models for evasion at-
tacks ranging from optimal evasion to more prac-
tical/limited strategies. We find while such attacks
can be very powerful in the optimal scenario (at-
tacker has total knowledge), practical attacks are
significantly less effective.

• We evaluate a powerful class of poison attacks on
ML training data and find that injecting carefully
crafted data into training data can significantly re-
duce detection efficacy.

• We observe a consistent tradeoff between fitting ac-
curacy and robustness to adversarial attacks. More
accurate fits (especially to smaller, homogeneous
populations) make models more vulnerable to de-
viations introduced by adversaries. The exception
is Random Forests, which naturally supports fitting
to multiple populations, thus allowing it to maintain
both accuracy and robustness in our tests.

To the best of our knowledge, this is the first study to
examine automated detection of large-scale crowdturf-
ing activity, and the first to evaluate adversarial attacks
against machine learning models in this context. Our
results show that accurate models are often vulnerable
to adversarial attacks, and that robustness against attacks
should be a primary concern when selecting ML models.

2 Datasets and Methodology

In this section, we provide background on crowdturfing,
and introduce our datasets and methodology.

2.1 Background: Crowdturfing Systems
Malicious crowdsourcing (crowdturfing) sites are web
services where attackers pay groups of human workers to
perform questionable (and often malicious) tasks. While
these services are growing rapidly world-wide, two of the
largest are Chinese sites ZhuBaJie (ZBJ) and SanDaHa
(SDH) [48]. Both sites leave records of campaigns pub-
licly visible to recruit new workers, making it possible
for us to crawl their data for analysis.
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Figure 1: Crowdturfing process.

Figure 1 illustrates how crowdturfing campaigns work.
Initially, a customer posts a campaign onto the crowd-
turfing site, and pays the site to carry it out. Each cam-
paign is a collection of small tasks, e.g. tasks to send
or retweet messages advertising a malware site. Workers
accept the task, and use their fake accounts in the target
social network(s) (e.g. Twitter) to carry out the tasks.
Today, crowdturfing campaigns often spam web services
such as social networks, online review sites, and instant-
messaging networks [48]. While workers can be any In-
ternet user willing to spam for profit, customers often re-
quire workers to use “high quality” accounts (i.e. estab-
lished accounts with real friends) to perform tasks [48].
In the rest of the paper, we refer workers’ social network
accounts as crowdturf accounts.
Crowdturfing on Weibo. Sina Weibo is China’s most
popular microblogging social network with over 500 mil-
lion users [30]. Like Twitter, Weibo users post 140-
character tweets, which can be retweeted by other users.
Users can also follow each other to form asymmetric so-
cial relationships. Unlike Twitter, Weibo allows users to
have conversations via comments on a tweet.

Given its large user population, Weibo is a popular tar-
get for crowdturfing systems. There are two major types
of crowdturfing campaigns. One type asks workers to
follow a customer’s Weibo account to boost their per-
ceived popularity and visibility in Weibo’s ranked social
search. A second type pays crowd-workers to retweet
spam messages or URLs to reach a large audience. Both
types of campaigns directly violate Weibo’s ToS [2]. A
recent statement (April 2014) from a Weibo administra-
tor shows that Weibo has already begun to take action
against crowdturfing spam [1].

2.2 Ground Truth and Baseline Datasets

Our study utilizes a large ground-truth dataset of crowd-
turfing worker accounts. We extract these accounts by
filtering through records of all campaigns and tasks tar-
geting Weibo from ZBJ and SDH, and extracting all

Category # Weibo IDs # (Re) Tweets # Comments
Turfing 28,947 18,473,903 15,970,215
Authent. 71,890 7,600,715 13,985,118
Active 371,588 34,164,885 75,335,276

Table 1: Dataset summary.

Weibo accounts that accepted these tasks. This is possi-
ble because ZBJ and SDH keep complete records of cam-
paigns and transaction details (i.e. workers who com-
pleted tasks, and their Weibo identities) visible.

As of March 2013, we collected a total of 20,416
Weibo campaigns (over 3 years for ZBJ and SDH), with a
total of 1,012,923 individual tasks. We extracted 34,505
unique Weibo account IDs from these records. 5,558 of
which have already been blocked by Weibo. We col-
lected user profiles for the remaining 28,947 active ac-
counts, including social relationships and the latest 2000
tweets from each account. These accounts have per-
formed at least one crowdturfing task. We refer to this
as the Turfing dataset.
Baseline Datasets for Comparison. We need a base-
line dataset of “normal” users for comparison. We start
by snowball sampling a large collection of Weibo ac-
counts4. We ran breadth-first search (BFS) in November
2012 using 100 Seeds randomly chosen from Weibo’s
public tweet stream, giving us 723K accounts. Because
these crawled accounts can include malicious accounts,
we need to do further filtering to obtain a real set of “nor-
mal” users.

We extract two different baseline datasets. First, we
construct a conservative Authenticated dataset, by in-
cluding only Weibo users who have undergone an op-
tional identity verification by phone number or Chinese
national ID (equivalent to US drivers license). A user
who has bound her Weibo account to her real-world iden-
tity can be held legally liable for her actions, making
these authenticated accounts highly unlikely to be used
as crowdturfing activity. Our Authenticated dataset in-
cludes 71,890 accounts from our snowball sample. Sec-
ond, we construct a larger, more inclusive baseline set of
Active users. We define this set as users with at least 50
followers and 10 tweets (filtering out dormant accounts5

and Sybil accounts with no followers). We also cross ref-
erence these users against all known crowdturfing sites
to remove any worker accounts. The resulting dataset
includes 371,588 accounts. While it is not guaranteed to
be 100% legitimate users, it provides a broader user sam-
ple that is more representative of average user behavior.

4Snowball crawls start from an initial set of seed nodes, and runs
breadth-first search to find all reachable nodes in the social graph [3].

5Dormant accounts are unlikely to be workers. To qualify for jobs,
ZBJ/SDH workers must meet minimum number of followers/tweets.
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Figure 2: Followee-to-Follower ratio.
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Figure 3: Reciprocity.
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Figure 4: Ratio of commented tweets.

This is likely to provide a lower bound for detector accu-
racy, since more carefully curated baselines would pro-
duce higher detection accuracy. Our datasets are listed in
Table 1.

2.3 Our Methodology
We have two goals: evaluating the efficacy of ML clas-
sifiers to detect crowdturfing workers, and evaluating the
practical impact of adversarial attacks on ML classifiers.

• We analyze ground-truth data to identify key behav-
ioral features that distinguish crowdturfing worker
accounts from normal users (§3).

• We use these features to build a number of pop-
ular ML models, including Bayesian probabilistic
models via Bayes’ theorem (i.e. conditional prob-
ability), Support Vector Machines (SVMs), and al-
gorithms based on single or multiple decision trees
(e.g. Decision Trees, Random Forests) (§4).

• We evaluate ML models against adversarial attacks
ranging from weak to strong based on level of
knowledge by attackers (typically evasion attacks),
and coordinated attacks potentially guided by cen-
tralized administrators (possible poison or pollution
of training data).

3 Profiling Crowdturf Workers

We begin our study by searching for behavioral fea-
tures that distinguish worker accounts from normal users.
These features will be used to build ML detectors in §4.
User Profile Fields. We start with user profile fea-
tures commonly used as indicators of abnormal behav-
ior. These features include followee-to-follower ratio
(FFRatio), reciprocity (i.e. portion of user’s followees
who follow back), user tweets per day, account age, and
ratio of tweets with URLs and mentions.

Unfortunately, our data shows that most of these fea-
tures alone cannot effectively distinguish worker ac-
counts from normal users. First, FFRatio and reci-
procity are commonly used to identify malicious spam-

mers [4, 43, 50]. Intuitively, spammers follow a large
number of random users and hope for them to follow
back, thus they have high FFRatio and low reciprocity.
However, our analysis shows worker accounts have bal-
anced FFRatios, the majority of them even have more
followers than followees (Figure 2), and their reciprocity
is very close to those of normal users (Figure 3). Other
profile features are also ineffective, including account
age, tweets per day, ratio of tweets with URLs and men-
tions. For example, existing detectors usually assume
attackers create many “fresh” accounts to spam [4, 43],
thus account age has potential. But we find that more
than 75% of worker accounts in our dataset have been
active for at least one year.

These results show that crowd-worker accounts in
many respects resemble normal users, and are not eas-
ily detected by profile features alone [47].

User Interactions. Next, we move on to features re-
lated to user interactions. The intuition is that crowdturf
workers are task-driven, and log on to work on tasks, but
spend minimal time interacting with others. User interac-
tions in Weibo are dominated by comments and retweets.
We perform analysis on both of them and find consistent
results which show they are good metrics to distinguish
workers from non-workers. For brevity, we limit our dis-
cussion to results on comment interactions.

Figure 4 shows crowdturf accounts are less likely to
receive comments on their tweets. For 80% of crowdturf
accounts, less than 20% of their tweets are commented;
while for 70% of normal users, their ratio of commented
tweets exceeds 20%. This makes sense, as the fake con-
tent posted by crowdturf workers may not be interesting
enough for others to comment on. We also examine the
number of people that each user has bidirectional com-
ments with (bi-commentors). Crowdturf workers rarely
interact with other users, with 66% of accounts having at
most one bi-commentor.

Tweeting Clients. Next we look at the use of tweeting
clients (devices). We can use the “device” field associ-
ated with each tweet to infer how tweets are sent. Tweet
clients fall into four categories: web-based browsers,
apps on mobile devices, third-party account management
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Figure 7: Normalized entropy of
tweeting inter-arrival time.

Categ. Top Tweet Clients
Web Weibo Web, Weibo PC, 360Browser, Weibo Pro.
Mobile iPhone, Android, iPad, XiaoMi
Auto PiPi, Good Nanny, AiTuiBao, Treasure Box
Share Taobao, Youku, Sina Blog, Baidu

Table 2: High-level categories for tweeting clients.

tools, and third-party websites via “share” buttons (Ta-
ble 2). Figure 5 shows key differences in how differ-
ent users use tweet clients. First, crowdturf workers
use mobile (10%) much less than normal users (36%−
46%). One reason is that crowdturf workers rely on web
browsers to interact with crowdturfing sites to get (sub-
mit) tasks and process payment, actions not supported by
most mobile platforms.

We also observe that crowdturf workers are more
likely to use automated tools. A close inspection shows
that workers use these tools to automatically post non-
spam tweets retrieved from a central content repository
(e.g. a collection of hot topics). Essentially, crowdturf
accounts use these generic tweets as cover traffic for their
crowdturfing content. Third, crowdturf accounts “share”
from third-party websites more often, since that is a com-
mon request in crowdturfing tasks [48].
Temporal Behavior. Finally, we look at temporal char-
acteristics of tweeting behavior: tweet burstiness and pe-
riodicity. First, we expect task-driven workers to send
many tweets in a short time period. We look for poten-
tial bursts, where each burst is defined as m consecutive
tweets with inter-arrival times < d. We examine each
user’s maximum burst size (m) with different time thresh-
olds d, e.g. Figure 6 depicts the result for d is set to 1
minute. We find that crowdturf accounts are more likely
to post consecutive tweets within one-minute, something
rarely seen from normal users. In addition, crowdturf
workers are more likely to produce big bursts (e.g. 10
consecutive tweets with less than one-minute interval).

Second, workers accept tasks periodically, which can
leave regular patterns in the timing of their tweets. We
use entropy to characterize this regularity [16], where

low entropy indicates a regular process while high en-
tropy indicates randomness of tweeting. We treat each
user’s tweeting inter-arrival time as a random variable,
and compute the first-order entropy [16]. Figure 7 plots
user’s entropy, normalized by the largest entropy in our
dataset. Compared to normal users, crowdturf accounts
in general have lower entropy, indicating their tweeting
behaviors have stronger periodic patterns.

4 Detecting Crowdturfing Workers

We now use the features we identified to build a number
of crowdturfing detectors using machine learning mod-
els. Here, we summarize the set of features we use
for detection, and then build and evaluate a number of
machine-learning detectors using our ground-truth data.

4.1 Key Features
We chose for our ML detectors a set of 35 features across
five categories shown below.

• Profile Fields (9). We use 9 user profile fields6 as
features: follower count, followee count, followee-
to-follower ratio, reciprocity, total tweet count,
tweets per day, mentions per tweet, percent of
tweets with mentions, and percent of tweets with
embedded URLs.

• User Interactions (8). We use 8 features based on
user interactions, i.e. comments and retweets. 4
features are based on user comments: percent of
tweets with comments, percent of all comments that
are outgoing, number of bi-commentors, and com-
ment h-index (a user with h-index of h has at least h
tweets each with at least h comments). We include
4 analogous retweet features.

• Tweet Clients (5). We compute and use the % of
tweets sent from each tweet client type (web, mo-
bile, automated tools, third-party shares and others)
as a feature.

6Although profile fields alone cannot effectively detect crowdturf
accounts (§3), they are still useful when combined with other features.
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Alg. Settings
NB Default
BN Default, K2 function
SVMr Kernel γ =1, Cost parameter C =100
SVMp Kernel degree d =3, Cost parameter C =50
J48 Confidence factorC =0.25, Instance/leaf M =2
RF 20 trees, 30 features/tree

Table 3: Classifier configurations.

• Tweet Burstiness (12). These 12 features capture
the size and number of tweet bursts. A burst is m
consecutive tweets where gaps between consecutive
tweets are at most d minutes. For each user, we first
compute the maximum burst size (m) while varying
threshold d from 0.5 to 1, 30, 60, 120, 1440. Then
we set d to 1 minute, and compute the number of
bursts while varying size m over 2, 5, 10, 50, 100,
and 500.

• Tweeting Regularity (1). This is the entropy value
computed from each user’s tweeting time-intervals.

4.2 Classification Algorithms
With these features, we now build classifiers to detect
crowdturf accounts. We utilize a number of popular
algorithms widely used in security contexts, including
two Bayesian methods: Naive Bayesian (NB) [20] and
BayesNet (BN) [18]; two Support Vector Machine meth-
ods [33]: SVM with radial basis function kernel (SVMr)
and SVM with polynomial kernel (SVMp); and two
Tree-based methods: C4.5 Decision Tree (J487) [34] and
Random Forests (RF) [7]. We leverage existing imple-
mentations of these algorithms in WEKA [17] toolkits.
Classifier and Experimental Setup. We start by
constructing two experimental datasets, each contain-
ing all 28K turfing accounts, plus 28K randomly sam-
pled baseline users from the “authenticated” and “active”
sets. We refer to them as Authenticated+Turfing and Ac-
tive+Turfing.

We use a small sample of ground-truth data to tune the
parameters of different classifiers. At a high-level, we
use grid search to locate the optimized parameters based
on cross-validation accuracy. For brevity, we omit the
details of the parameter tuning process and give the final
configurations in Table 3. Note that features are normal-
ized for SVM algorithms (we tested unnormalized ap-
proach which produced higher errors). We use this con-
figuration for the rest of our experiments.
Basic Classification Performance. We run each clas-
sification algorithm on both experimental datasets with

7J48 is WEKA’s C4.5 implementation.
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Figure 8: Classification error rates. Tree-based algo-
rithms and SVMs outperform Bayesian methods.

10-fold cross-validation.8 Figure 8 presents their classi-
fication error rates, including false positives (classifying
normal users as crowdturf workers) and false negatives
(classifying crowdturf accounts as normal users).

We make four key observations. First, the two sim-
ple Bayesian methods generally perform worse than
other algorithms. Second, Decision Tree (J48) and Ran-
dom Forests (RF) are more accurate than SVMs. This
is consistent with prior results that show SVMs excel
in addressing high-dimension problems, while Tree al-
gorithms usually perform better when feature dimen-
sionality is low (35 in our case) [8]. Third, Random
Forests outperform Decision Tree. Intuitively, Random
Forests construct multiple decision trees from training
data, which can more accurately model the behaviors of
multiple types of crowdturf workers [7]. In contrast, de-
cision tree would have trouble fitting distinct types of
worker behaviors into a single tree. Finally, we observe
that the two experiment datasets show consistent results
in terms of relative accuracy across classifiers.

Comparing the two datasets, it is harder to differen-
tiate crowdturf workers from active users than from au-
thenticated users. This is unsurprising, since authenti-
cated accounts often represent accounts of public figures,
while active users are more likely to be representative
of the normal user population. In the rest of the experi-
ments, wherever the two datasets show consistent results,
we only present the results on Active+Turfing for brevity,
which captures the worse case accuracy for detectors.

4.3 Detecting Professional Workers
Our machine learning detectors are generally effective in
identifying worker accounts. However, the contribution
of tasks per worker is quite skewed, i.e. 90% of all tasks
are completed by the top 10% most active “professional”
workers (Figure 9). Intuitively, these “professional work-
ers” are easier to detect than one-time workers. By focus-

8Cross-validation is used to compare the performance of different
algorithms. We will split the data for training and testing the detectors
later.
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Figure 11: ROC curves of classi-
fying professional workers (workers
who finished more than 100 tasks).

ing on them, we can potentially improve detection accu-
racy while still effectively eliminate the largest majority
of crowdturf output.
We evaluate classifier accuracy in detecting profes-

sional workers, by setting up a series of datasets each
consisting of workers who performed more than n tasks
(with n set to 1, 10, and 100). Each dataset also contains
an equal number of randomly sampled normal users. We
focus on the most accurate algorithms: Random Forests
(RF), Decision Tree (J48) and SVM (SVMr and SVMp),
and run 10-fold cross-validation on each of the datasets.
Figure 10 shows the classification results on Ac-

tive+Turfing. As expected, our classifiers are more ac-
curate in identifying “professional” workers. Different
algorithms converge in accuracy as we raise the mini-
mum productivity of professional workers. Accuracy is
high for crowdturf workers who performed >100 tasks:
Random Forests only produce 1.2% false positive rate
and 1.1% false negative rate (99% accuracy). Note that
while these top workers are only 8.9% of the worker pop-
ulation, they are responsible for completing 90% of all
tasks. In the rest of the paper, we use “professional work-
ers” to refer to workers who have completed>100 tasks.
False Positives vs. False Negatives. In practice, differ-
ent application scenarios will seek different tradeoffs be-
tween false positives (FP) and false negatives (FN). For
example, a system used as a pre-filter before more so-
phisticated tools (e.g. manual examination) will want to
minimize FN, while an independent system without ad-
ditional checks will want to minimize false positives to
avoid hurting good users.

Figure 11 shows the ROC9 curves of the four algo-
rithms on the dataset of professional workers. Again,
Random Forests perform best: they achieve extremely
low false positive rate of <0.1% with only 8% false neg-
ative rate, or <0.1% false negative rate with only 7%
false positive rate. We note that SVMs provide better
false positive and false negative tradeoffs than J48, even

9ROC (receiver operating characteristic) is a plot that illustrates
classifier’s false positives and true positives versus detection threshold.

though they have similar accuracy rates.
Imbalanced Data. We check our results on imbalanced
data, since in practice there are more normal users than
crowdturf workers. More specifically, we run our clas-
sifier (RF, professional) on imbalanced testing data with
turfing-to-normal ratio ranging from 0.1 to 1. Note that
we can still train our classifiers on balanced training data
since we use supervised learning (we make sure training
and testing data have no overlap). We find all the classi-
fiers have accuracy above 98% (maximum FP 1.5%, FN
1.3%) against imbalanced testing data. We omit the plot
for brevity.
Summary. Our results show that current ML sys-
tems can be used to effectively detect crowdturf workers.
While this is a positive result, it assumes no adversarial
response from the crowdturfing system. The following
sections will examine detection efficacy under different
levels of adversarial attacks.

5 Adversarial Attack: Evasion

We show that ML detectors can effectively identify “pas-
sive” crowdturf accounts in Weibo. In practice, however,
crowdturfing adversaries can be highly adaptive: they
will change their behaviors over time or can even in-
tentionally attack the ML detectors to escape detection.
We now re-evaluate the robustness of ML detectors un-
der different adversarial environments, focusing on two
types of adversaries:

1. Evasion Attack: individual crowd-workers adjust
their behavior patterns to evade detection by trained
ML detectors.

2. Poisoning Attack: administrators of crowdturfing
sites participate, manipulating the ML detector
training process by poisoning the training data.

We focus on evasion attacks in this section, and de-
lay the study of poisoning attacks to §6. First, we define
the evasion attack model. We then implement evasion
attacks of different strengths, and study the performance
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of ML detectors accordingly. Specifically, we consider
“optimal evasion” attacks, where adversaries have full
knowledge about the ML detectors and the Weibo sys-
tem, and more “practical” evasion attacks, where adver-
saries have limited knowledge about the detectors and
the Weibo system.

5.1 Basic Evasion Attack Model
Evasion attacks refer to individual crowdturfing workers
seeking to escape detection by altering their own behav-
ior to mimic normal users. For example, given knowl-
edge of a deployed machine learning classifier, a worker
may attempt to evade detection by selecting a subset of
user features, and replacing their values with the median
of the observed normal user values. Since mimicking
normal users reduces crowdturfing efficiency, workers
are motivated to minimize the number of features they
modify. This means they need to identify a minimal core
set of features enabling their detection.10

This attack makes two assumptions. First, it assumes
that adversaries, i.e. workers, know the list of features
used by the classifiers. Technical publications, e.g. on
spam detection [4, 43, 50], make it possible for adver-
saries to make reasonable guesses on the feature space.
Second, it assumes that adversaries understand the char-
acteristics of normal users in terms of these features. In
practice, this knowledge can be obtained by crawling a
significant portion of Weibo accounts.

Depending on their knowledge of the ML features and
of normal user behavior, adversaries can launch evasion
attacks of different strengths. We implement and evalu-
ate ML models on a range of threat models with vary-
ing levels of adversary knowledge and computational ca-
pabilities. We start from the optimal evasion scenario,
where adversaries have complete knowledge of the fea-
ture set. The corresponding ML detector results repre-
sent worst-case performance (or lower bound) under eva-
sion attacks. We also study a set of practical evasion
models where adversaries have limited (and often noisy)
knowledge, and constrained resources.

5.2 Optimal Evasion Attack
In this ideal case, adversaries have perfect knowledge
about the set of features they need to modify. To un-
derstand the impact of the feature choices, we look at
multiple variants of the optimal evasion models. These
include the per-worker optimal evasion model, where
each worker finds her own optimal set of features to alter,
the global optimal evasion where all workers follow the
same optimal set of features to alter, and feature-aware
evasion where workers alter the most important features.

10For simplicity, we consider features to be independent.

We implement these evasion models on our ground-truth
dataset, and evaluate ML detector accuracy. Note that
these attacks we identify are not necessarily practical,
but are designed to explore worse-case scenarios for ML
models.
Per-worker Optimal Evasion. Intuitively, each
worker should have her own optimal strategy to alter
features, e.g. some workers need to add followers first,
while others need to reduce tweeting burstiness. Doing
so is hard in practice: each worker has to apply exhaus-
tive search to identify its optimal strategy that minimizes
the set of features to modify.

We implement this scenario on our Active+Turfing
dataset. We first split the data into equal-sized training
and testing datasets, and use the top-4 most accurate al-
gorithms to build classifiers with authentic training data.
We then run detection on worker accounts in the testing
dataset. Here for each worker, we exhaustively test all
combinatorial combinations of possible features to mod-
ify until the classifier classifies this worker as normal. In
this way, we find the minimal set of features each user
must modify to avoid detection.

Figure 12(a) plots the evasion rate for the four ML
algorithms. Clearly, this optimal evasion model is
highly effective. By simply altering one feature, 20-50%
of workers can evade detection (different workers can
choose to alter different features). And by altering five
features, 99% of workers can evade all four classifiers.
We also observe that the Random Forests (RF) algorithm
achieves the best robustness, since it requires the most
number of features to be altered.
Global Optimal Evasion. The per-worker model
makes a strong assumption that each worker can iden-
tify her own optimal feature set. Next, we loosen this
assumption and only assume that all workers exercise a
uniform strategy. This is possible if a third-party (e.g.
site admin) guides workers in altering their features.

To identify the global optimal strategy, we search ex-
haustively through all possible feature combinations, and
locate the feature set (for a given size) that allows the ma-
jority of workers to achieve evasion. The corresponding
evasion rate result is in Figure 12(b). 99% of workers
can successfully evade all four detectors by altering 15
features, which is much larger than the per-worker case
(5 features). This is because any one-size-fits-all strat-
egy is unlikely to be ideal for individual workers, thus
the feature set must be large enough to cover all workers.
Feature-aware Evasion. Achieving optimal evasion is
difficult, since it requires adversaries to have knowledge
of the trained classifiers. Instead, this model assumes that
adversaries can accurately identify the relatively “impor-
tance” of the features. Thus workers alter the most im-
portant features to try to avoid detection.
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(a) Per-worker Optimal Evasion
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(b) Global Optimal Evasion
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(c) Feature Importance Aware Evasion

Figure 12: Evasion rate of optimal evasion strategies (all workers).

We implement this attack by building the classifiers
and then computing the feature importance. For this we
use the χ2 (Chi Squared) statistic [51], a classic metric
to measure feature’s discriminative power in separating
data instances of different classes11. During detection,
workers alter features based on their rank.

Figure 12(c) plots evasion results for the four classi-
fiers. We make two key observations. First, this feature-
aware strategy is still far away from the per-worker op-
timal case (Figure 12(a)), mostly because it is trying
to approximate global optimal evasion. Second, perfor-
mance depends heavily on the underlying classifier. For
RF and J48, performance is already very close to that
of the global optimal case, while the two SVM algo-
rithms are more resilient. A possible explanation is that
the χ2 statistic failed to catch the true feature importance
for SVM, since SVM normalizes feature values before
training the classifier. These results suggest that without
knowing the specific ML algorithm used by the defend-
ers, it is hard to avoid detection even knowing the impor-
tance of features.

5.3 Evasion under Practical Constraints
Our results show workers can evade detection given com-
plete knowledge of the feature set and ML classifiers.
However, obtaining complete knowledge is very difficult
in practice. Thus we examine practical evasion threat
models to understand their efficacy compared to optimal
evasion models. We identify practical constraints facing
adversaries, present several practical threat models and
evaluate their impact on our detectors.
Practical Constraints. In practice, adversaries face
two key resource constraints. First, they cannot reverse-
engineer the trained classifier (i.e. the ML algorithm
used or its model parameters) by querying the classifier
and analyzing the output – it is too costly to establish
millions of profiles with controlled features and wait for
some of them to get banned. Thus workers cannot per-

11We also tested information gain to rank features, which produced
similar ranking results (i.e. the same top-10 as using χ2).

form exhaustive search to launch optimal evasion attacks,
but have to reply on their partial knowledge for evasion.
Second, it is difficult for adversaries to obtain complete
statistics of normal users. They can estimate normal user
statistics via a (small) sampling of user profiles, but esti-
mation errors are likely to reduce their ability to precisely
mimic normal users.
Next, we will examine each constraint separately, and

evaluate the likely effectiveness of attacks under the
more realistic conditions.
Distance-aware Evasion. We consider the first con-
straint which forces workers to rely on partial knowl-
edge to guide their evasion efforts. In this case, individ-
ual workers are only aware of their own accounts and
normal user statistics. When choosing features to alter,
they can prioritize features with the largest differential
between them and normal users. They must quantify the
“distance” between each crowdturf account and normal
users on a given feature. Here, we pick two very intu-
itive distance metrics and examine the effectiveness of
the corresponding evasion attacks. For now, we ignore
the second constraint by assuming workers have perfect
knowledge of average user behaviors.

• Value Distance (VD): Given a feature k, this cap-
tures the distance between a crowd-worker i and
normal user statistics by V D(i,k)= |Fk(i)−Median(Nk)|

Max(Nk)−Min(Nk)

where Fk(i) is the value of feature k in worker i, and
Nk is normal user statistical distribution on feature
k. When altering feature k, worker i replaces Fk(i)
with Median(Nk).

• Distribution Distance (DD): Here the distance
depends on where Fk(i) is positioned within
Nk. For example, if Fk(i) is around 50%-
tile of Nk, then worker i is similar to a nor-
mal user. Therefore, we define the distance by
DD(i,k) = |Percentile(Nk,Fk(i))− 50|/100 where
Percentile(Nk,Fk(i)) is the percentile of Fk(i) in the
normal user CDF Nk. Note that when Fk(i) exceeds
the range of Nk, this distance metric becomes in-
valid. However, our data suggests that this rarely
happens (<1%).



248 23rd USENIX Security Symposium USENIX Association

 0

 20

 40

 60

 80

 100

 0  5  10  15  20  25  30  35

W
or

ke
r E

va
si

on
 R

at
io

 (%
)

# of Features Changed

RF
J48

SVMr
SVMp

(a) Random Evasion Strategy (Random)

 0

 20

 40

 60

 80

 100

 0  5  10  15  20  25  30  35

W
or

ke
r E

va
si

on
 R

at
io

 (%
)

# of Features Changed

SVMp
SVMr

J48
RF

(b) Value Distance Aware Strategy (VD)
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(c) Distribution Distance Aware Strategy (DD)

Figure 13: Evasion rate of practical evasion strategies (all workers).
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Figure 14: Evasion rate using distri-
bution distance aware strategy (DD)
for professional workers.
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Figure 15: The percentile of esti-
mated median value in the true nor-
mal user CDF.
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Figure 16: Impact of median value es-
timation error on evasion rate, using
DD evasion on SVMp.

To evaluate the impact of practical evasion attacks,
we split the Active+Turfing data into equal-sized train-
ing and testing sets. After classifier training, we sim-
ulate the distance-aware evasion attacks on the testing
data. Figure 13(b) and 13(c) show evasion rates based on
VD and DD respectively. As a baseline, we also show
Figure 13(a) where adversaries randomly select features
to alter. Compared to random evasion, distance-based
approaches require much less feature altering. For ex-
ample, when altering 15 features, random approach only
saves <40% of workers, while distance strategies pro-
vide as high as 91% (VD-SVMp) and 98% (DD-SVMp).

The four classifiers perform very differently. RF and
J48 classifiers are much more vulnerable to DD based
evasion than to VD based evasion. While SVMs perform
similarly in both strategies. In general, Tree-based al-
gorithms are more robust than SVM classifiers against
distance-aware evasions. This is very different to what
we observed in the optimal evasion cases (Figure 12(a)–
12(b)), where SVMs are generally more robust. This
suggests that theoretical bounds on ML algorithms may
not truly reflect their performance in practice.

Consistently, the impact of practical evasion attacks
is much weaker than that of optimal evasion (i.e. per-
worker optimal). Adversaries are severely constrained by
lack of knowledge of detection boundaries of the classi-
fiers, and have to guess based on “distance” information.
The implication is that the less adversaries know about
classifiers, the harder it is for them to evade detection.

We also evaluate the attack impact on classifiers to de-
tect professional workers. We find the general trends are
similar and only show the results of DD-based attack in
Figure 14. We note that it is easier to evade classifiers
dedicated to detect professionals (compared with Fig-
ure 13(c)). This is because when trained to a smaller,
more homogeneous worker population, classifiers expect
strong malicious behaviors from crowd-workers. Thus
even a small deviation away from the model towards nor-
mal users will help achieve evasion.

Impact of Normal User Estimation Errors. We ex-
tend the above model by accounting for possible errors in
estimating normal user behaviors (the second constraint).
These errors exist because adversaries can only sample
a limited number of users, leading to noisy estimations.
Here, we investigate the impact of sampling strategies on
the attack efficacy.

For all 35 features, we vary the sampling rate, i.e. the
ratio of normal users sampled by adversaries, by taking
random samples of 0.001%, 0.01% to 0.1% of the Active
dataset. We repeat each instance 100 times, and com-
pute the mean and standard deviation of the estimated
median feature values (Figure 15). We show each fea-
ture’s percentile in the true CDF of the Active dataset. In
this case, the optimal value is 50%. Clearly sampling rate
does impact feature estimation. With the 0.001% sam-
pling rate, the estimated value varies significantly across
instances. Raising the sample rate to 0.1% means attack-
ers can accurately estimate the median value using only
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a few instances. Furthermore, we see that burstiness fea-
tures (e.g. features 30-34) are easy to sample, since nor-
mal user values are highly skewed to zero.

Finally, we evaluate the impact of estimation errors
on practical evasion attacks. This time we run distance-
aware evasions based on the estimated median feature
values. For each worker’s feature k, we estimate the me-
dian value M′

(k) with a given bound of error ∆. That
is, M′

(k) is randomly picked from the percentiles within
[50%−∆,50%+∆] on the true CDF of normal user be-
haviors. By iterating through different ∆ (from 5% to
25%), our results show that ∆ only has a minor impact.
The most noticeable impact is on SVMp using DD dis-
tance (Figure 16). Overall, we conclude that as long as
adversaries can get a decent guess on normal user be-
haviors, the residual noise in the estimation ∆ should not
affect the efficacy of evasion attacks.
Summary. Our work produces two key observations.

• Given complete knowledge, evasion attacks are
very effective. However, adversaries under more re-
alistic constraints are significantly less effective.

• While no classifier is robust against all attack sce-
narios, there is a consistent inverse relationship be-
tween single model fitting accuracy and robustness
to adversarial evasion. Highly accurate fit to a
smaller, more homogeneous population (e.g. pro-
fessionals) makes models more vulnerable to eva-
sion attacks.

6 Adversarial Attack: Poisoning

After examining evasion attacks, we now look at how
centralized crowdturfing sites can launch more powerful
attacks to manipulate machine learning models. Specifi-
cally, we consider the poisoning attack where administra-
tors of crowdturfing sites intentionally pollute the train-
ing dataset used to build ML classifiers, forcing defend-
ers to produce inaccurate classifiers. Since the training
data (i.e. crowdturfing accounts) actually comes from
these crowdturfing sites, administrators are indeed capa-
ble of launching these attacks.

In the following, we examine the impact of poison-
ing attacks on ML detection accuracy. We consider two
mechanisms for polluting training data. The first method
directly adds misleading/synthetic samples to the train-
ing set. Adversaries in the second method simply alter
data records, or modify operational policies to alter the
composition of the training data used by ML models.

6.1 Injecting Misleading Samples
Perhaps the simplest way to pollute any training data is
to add misleading or false samples. In our case, since

the training data has two classes (groups) of accounts,
this can be done by mixing normal user samples into the
“turfing” class, i.e. poisoning the turfing class, or mix-
ing crowdturf samples into the “normal” user class, i.e.
poisoning the normal class. Both introduce incorrectly
labeled training data to mislead the classifier.
Poisoning Turfing Class. To poison the turfing class,
adversaries (e.g. ZBJ and SDH administrators) add nor-
mal Weibo accounts to the public submission records in
their own systems. Since ML classifiers take ground-
truth crowdturf accounts from those public records, these
benign accounts will then be mixed into the training data
and labeled as “turfing.” The result is a model that marks
some characteristics of normal users as crowdturfing be-
havior, likely increasing false positive rate in detection.

We simulate the attack with our ground-truth dataset.
At a high level, we train the classifiers on “polluted”
training data, and then examine changes in classifiers’
detection accuracy. Here we experiment with two strate-
gies to pollute the turfing class. First, as a baseline strat-
egy, adversaries randomly select normal users as poison
samples to inject into the turfing class. Second, adver-
saries can inject specific types of normal users, causing
the classifiers to produce targeted mistakes.
Random Poisoning: We simulate this poisoning at-
tack with Active+Turfing dataset, where adversaries in-
ject random normal accounts to the turfing class. Specif-
ically, for training, the turfing class (14K accounts) is a
mixture of crowdturf accounts and poison samples ran-
domly selected from Active, with a mixing ratio of p.
The normal class is another 14K normal accounts from
Active. Then we use 28K of the rest accounts (14K turf-
ing and 14K normal users) for testing. For any given p,
we repeat the experiment 10 times with different random
poison samples and training-testing partitions to compute
average detection rates.

Results are shown in Figure 17(b). As a baseline com-
parison, we also present the results of the classifiers for
professional workers in Figure 17(a). We have three ob-
servations. First, as poison-to-turfing ratio p increases,
false positive rates go up for all four algorithms. False
negative rates are not much affected by this attack, thus
are omitted from the plot.12 Second, we find that the
SVM classifiers are more resilient: SVMp’s false posi-
tive rate increases <5% as p approaching 1.0, while the
analogous increases exceed 10% for Random Forests and
J48. Particularly, J48 experiences more drastic fluctua-
tions around average, indicating it is very sensitive to the
choice of poison samples. This is consistent with our
prior observation that more accurate single model fitting
(i.e. J48 is more accurate than SVM) is more vulnerable
to adversarial attacks. Similarly, highly accurate detec-

12False negative rates increase < 2% when p approaches 1.0.
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(a) Professional Workers
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(b) All Workers

Figure 17: Poisoning training dataset by injecting random
normal user samples to the turfing class.
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(a) Injecting Accounts with > 50%
tweets commented
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(b) Injecting Accounts with < 150
followers

Figure 18: Targeted poisoning. Adversaries inject specific
type of normal users to the turfing class (all workers).

tion of the more homogeneous population of professional
workers (§4) means the models experience larger rela-
tive impacts from attacks compared to classifiers over all
workers.
Note that we limited the poison-to-turfing ratio <1,

since in practice adversaries cannot inject unlimited poi-
son samples to defender’s training data. First, injecting
noise causes inconvenience to their own customers in lo-
cating qualified workers. Second, defenders may collect
ground-truth records from multiple crowdturfing sites.
Targeted Poisoning: Next, we explore targeted poi-
soning to the turfing class. Here the adversaries want
to carefully inject selected poison samples so classifiers
make targeted mistakes. For example, our classifier uses
“ratio of commented tweets” as a feature with the intu-
ition that worker’s tweets rarely receive comments (§3).
Once adversaries gain this knowledge, they can inten-
tionally select accounts whose tweets often receive com-
ments as the poison samples. As a result, the trained
classifier will mistakenly learn that users with high com-
ment ratio can be malicious, thus are likely to misclassify
this kind of normal users as crowd-workers.

To evaluate the impact of targeted poisoning, we per-
form similar experiments, except that we select poison
samples based on specific feature. Figure 18 shows the
attacking results on two example features: ratio of tweets
with comments and follower count. Compared with Fig-
ure 17, targeted poisoning can trigger higher false posi-
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Figure 19: Poisoning training dataset by adding turfing
samples to normal class.

tives than randomly selecting poison samples. Also, the
previous observations still hold with SVM being more
robust and J48 experiencing unstable performance (large
deviation from average).
Poisoning Normal User Class. Next, we analyze the
other direction where adversaries inject turfing samples
into the “normal” class to boost the false negative rate
of classifiers. This may be challenging in practice since
the normal user pool – Weibo’s whole user population –
is extremely large. Hence it requires injecting a signifi-
cant amount of misleading samples in order to make an
impact. Here from defender’s perspective, we aim to un-
derstand how well different classifiers cope with “noisy”
normal user data.
We repeat the previous “Random Poisoning” attack on

the normal class. Figure 19(a) and Figure 19(b) show
the attack results on classifiers for professional workers
and all workers respectively. As we increase the ratio of
poison samples, the false negatives of all four classifiers
increase. This is expected as the classifiers will mistak-
enly learn crowdturf characteristics when modeling nor-
mal users, thus are likely to misclassify turfing accounts
as benign later. In addition, we find the robustness of dif-
ferent classifiers varies, with Random Forests algorithm
producing the lowest overall false negatives. Finally, we
again observe that the more accurate classifier for profes-
sional workers suffers larger relative impacts from adver-
saries than classifiers for all-workers.

6.2 Altering Training Data
The above poisoning attacks focus on misleading classi-
fiers to catch the wrong target. However, it does not fun-
damentally prevent crowd-workers from detection, since
workers’ behavior patterns are still very differently from
normal users. To this end, we explore a second poison-
ing attack, where adversaries directly alter the training
data by tuning crowd-workers’ behavior to mimic normal
users. The goal is to make it difficult (or even impossi-
ble) to train an accurate classifier that isolates crowdturf
accounts with normal accounts.
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(a) Random Forests
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Figure 20: Performance of different classifiers when adversaries alter crowd-workers’ features to mimic normal users.
The horizontal lines represent the baseline false positive (false negative) rates when no feature is altered.

To carry out this attack, adversaries (e.g. administra-
tors of ZBJ and SDH) need to modify the behaviors of
numerous crowdturf workers. This can be done by cen-
trally enforcing operational policies to their own system.
For example, enforcing minimal time interval between
taking tasks to reduce the tweeting burstiness or enforc-
ing screening mechanisms to reject worker accounts with
“malicious” profile features. In the following, we evalu-
ate the attack impact using simulations, followed by the
discussion of practical costs.

Feature Altering Attack. To simulate this attack, we
let adversaries select a set of features F of crowdturf ac-
counts and alter F to mimic the corresponding features
of normal users. Unlike evasion attacks that can sim-
ply mimic normal users’ median values, here we need
to mimic the whole distribution in order to make the two
classes indistinguishable on these features. Since the fea-
ture altering is for all workers in the crowdturfing sys-
tem, thus it actually applies to crowdturf accounts in both
training and testing datasets. Finally, note that features
are not completely independent, i.e. changing one fea-
ture may cause changes in others. To mitigate this, we
tune features under the same category simultaneously.

Figure 20 shows the attack results on Turfing+Active
dataset. We attack each feature category and repeat the
experiment for 10 times. Here we simulate attacking one
category at a time, and will discuss attacking category
combinations later. In general, the attack makes all clas-
sifiers produce higher error rates compared with baseline
where no feature is altered (the horizontal lines). How-
ever the impact is mild compared to injection-based poi-
soning attacks. For example, the most effective attack is
on J48 when altering interaction features, which causes
error rate increased by 4%, while injection-based attack
can boost error rate by more than 20% (Figure 18). One
possible reason is that unlike injection-based poisoning,
altering-based poisoning does not cause inconsistencies
in training and testing data, but only make the two classes
harder to separate.

Costs of Altering. In practice, feature altering comes
with costs, and some features may be impossible to ma-

Features Error Rate (FP %, FN %)
Attacked RF J48 SVMr SVMp
None (6.2, 3.4) (6.7, 6.8) (7.7, 10.1) (7.9, 12.1)
C+B (5.7, 4.4) (7.9, 8.7) (8.7, 12.2) (8.0, 14.0)
B+E (6.5, 3.9) (7.1, 7.8) (8.7, 12.5) (7.3, 13.1)
C+E (6.4, 4.5) (7.9, 8.2) (7.5, 11.8) (6.3, 13.8)
C+B+E (5.8, 4.2) (8.3, 8.5) (8.6, 13.2) (7.7, 15.2)

Table 4: Error rates when features are altered in combi-
nations. We focus on attacking low-cost features: Tweet
Client (C), Burstiness (B) and Entropy (E).

nipulate even by crowdturfing administrators. For in-
stance, Tweeting Regularity (Entropy) and Burstiness
features are easier to alter. Recall that crowdturfing sys-
tems can enforce minimal (random) time delay between
workers taking on new tasks, or use delays to increase
entropy. Changing the Tweet Client feature is also pos-
sible, since crowdturfing systems can develop mobile
client software for their workers, or simply release tools
for workers to fake their tweeting clients.
Profile and Interaction features are more difficult to al-

ter. Some features are mandatory for common tasks. For
example, workers need to maintain a certain number of
followers in order to spread spam to reach large enough
audiences. In addition, some features are rooted in the
fact that crowd-workers don’t use their accounts organ-
ically, which, making it hard to generate normal user
interactions. Although, crowdturfing systems could po-
tentially use screening mechanisms to reject obviously-
malicious crowdturf accounts from their system. How-
ever, this high bar will greatly shrink the potential worker
population, and likely harm the system’s spam capacity.

Considering practical costs, we consider whether it is
more impactful to alter the combinations of features from
different categories. Here we focus on altering the low
cost features in Tweet Client (C), Burstiness (B) and En-
tropy (E). As shown in Table 4, attacking feature combi-
nations produces slightly higher error rates than attack-
ing a single feature category, but the overall effect is still
small (less than 4% error rate increase).
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Summary and Discussion. Through our analysis, we
find that injecting misleading samples into training data
causes more significant errors than uniformly altering
worker behavior. In addition, we again observe the in-
verse relationship between single model fitting accuracy
and robustness.
To protect their workers, crowdturfing sites may also

try to apply stronger access control to their public records
in order to make training data unavailable for ML detec-
tors13. However, this creates obvious inconvenience for
crowdturfing sites, since they rely on these records to at-
tract new workers. Moreover, even if records were pri-
vate, defenders can still obtain training data by joining as
“customers,” offering tasks, and identifying accounts of
participating workers.

7 Related Work

Crowdturfing. Prior works used measurements on
crowdturfing sites to understand their operation and eco-
nomic structure [23, 24, 26, 48]. Some systems have
been developed to detect paid human spammers in on-
line review sites [31] and Q&A systems [9, 45]. To the
best of our knowledge, our work is the first to explore de-
tection of crowdturfing behaviors in adversarial settings.
OSN Spammer Detection. Researchers have de-
veloped mechanisms to detect fake accounts (Sybil)
and spam campaigns in online social networks, includ-
ing Facebook [15, 49], Twitter [43], Renren [52] and
LinkedIn [46]. Most prior works develop ML models
using features of spammer profiles (e.g. FFRatio, black-
listed URLs) or bot-like behaviors [4, 11, 42, 47, 50].
However, a recent study shows dedicated spam bots
can still infiltrate social networks without being de-
tected [14]. In our case, crowdturf accounts are care-
fully maintained by human users, and their questionable
activities are camouflaged with synthetic cover traffic.
This makes their detection challenging, until we add ad-
ditional behavioral features (e.g. user-interaction, task-
driven behavior).
Adversarial Machine Learning. In an early
study [19], researchers classify ML adversarial attacks
into two high-level categories: causative attacks where
adversaries alter the training process to damage the clas-
sifier performance, and exploratory attacks where ad-
versaries try to circumvent an already-trained classi-
fier. Much of existing work focuses on exploratory at-
tacks [5, 12, 25, 28] with less focusing on causative at-
tacks [6, 37], since it’s usually more difficult for adver-
saries to access training data in practice. In this paper, we

13As of late 2013, some crowdturfing sites (e.g. ZBJ) have already
started to follow this direction, by limiting access to public transaction
records to verified active participants.

studied both angles as both attacks are practically feasi-
ble from crowdturfing adversaries.
Several studies have examined attacks on specific ML-

based applications, from email spam detection [12] to
network intuition detection [37, 40, 44] to malicious
(PDF) file classification [5, 25, 41] and malware detec-
tion [21]. Our work focuses on crowdturfing and ex-
plores a wider range of adversarial attacks, including ac-
tive evasion and more powerful poison attacks against the
model training process.

8 Conclusion and Discussion

We use a large-scale ground truth dataset to develop ma-
chine learning models to detect malicious crowdsourcing
workers. We show that while crowdturfing workers re-
semble normal users in their profiles, ML models can ef-
fectively detect regular workers (95% accuracy) or “pro-
fessionals” (99% accuracy) using distinguishing features
such as user interactions and tweet dynamics.
More importantly, we use crowdturfing defense as

context to explore the robustness of ML algorithms
against adversarial attacks. We evaluate multiple adver-
sarial attack models targeting both training and testing
phases of ML detectors. We find that these attacks are
effective against all machine learning algorithms, and co-
ordinated attacks (such as those possible in crowdturfing
sites) are particularly effective. We also note a consistent
tradeoff where more accurate fits (especially to a smaller,
more homogeneous population) result in higher vulner-
ability to adversarial attacks. The exception appears to
be Random Forests, which often achieves both high ac-
curacy and robustness to adversaries, possibly due to its
natural support for multiple populations.
Limitations and Future Work. We note that our
study has several limitations. First, our analysis focuses
on Weibo, and our adversary scenarios may not gener-
alize fully to other platforms (e.g. review sites, instant
message networks). However, more work is necessary
to validate our findings on other platforms. Second, our
adversarial models use simplifying assumptions, i.e. fea-
tures are independent and costs for feature modification
are uniform. In addition, attackers may behave differ-
ently to disrupt the operation of ML detectors.

Moving forward, one goal is to validate our adversar-
ial models in practice, perhaps by carrying out a user-
study on crowdturfing sites where we ask workers to ac-
tively evade and disrupt ML detectors. In addition, our
results show we must explore approaches to improve the
robustness of ML-based systems. Our analysis showed
that ML algorithms react differently to different adver-
sarial attacks. Thus one possible direction is to develop
hybrid systems that integrate input from multiple classi-
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fiers, ideally without affecting overall accuracy. We also
observe that limiting adversaries’ knowledge of the tar-
get system can greatly reduce their attack abilities. How
to effectively prevent adversaries from gaining knowl-
edge or reverse-engineering models is also a topic for
future work.
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Abstract
State-of-the-art memory forensics involves signature-
based scanning of memory images to uncover data struc-
ture instances of interest to investigators. A largely unad-
dressed challenge is that investigators may not be able to
interpret the content of data structure fields, even with a
deep understanding of the data structure’s syntax and se-
mantics. This is very common for data structures with
application-specific encoding, such as those represent-
ing images, figures, passwords, and formatted file con-
tents. For example, an investigator may know that a
buffer field is holding a photo image, but still can-
not display (and hence understand) the image. We call
this the data structure content reverse engineering chal-
lenge. In this paper, we present DSCRETE, a system
that enables automatic interpretation and rendering of in-
memory data structure contents. DSCRETE is based on
the observation that the application in which a data struc-
ture is defined usually contains interpretation and render-
ing logic to generate human-understandable output for
that data structure. Hence DSCRETE aims to identify
and reuse such logic in the program’s binary and create
a “scanner+renderer” tool for scanning and rendering in-
stances of the data structure in a memory image. Differ-
ent from signature-based approaches, DSCRETE avoids
reverse engineering data structure signatures. Our evalu-
ation with a wide range of real-world application binaries
shows that DSCRETE is able to recover a variety of ap-
plication data — e.g., images, figures, screenshots, user
accounts, and formatted files and messages — with high
accuracy. The raw contents of such data would otherwise
be unfathomable to human investigators.

1 Introduction

Traditionally, digital investigations have aimed to re-
cover evidence of a cyber-crime or perform incident re-
sponse via analysis of non-volatile storage. This routine

involves powering down a workstation, preserving im-
ages of any storage devices (e.g., hard disks, thumb drive,
etc.), and later analyzing those images to recover eviden-
tiary files. However, this procedure results in a signifi-
cant loss of live evidence stored in the system’s RAM —
executing processes, open network connections, volatile
IPC data, and OS and application data structures.

Increasingly, forensic investigators are looking to ac-
cess the wealth of actionable evidence stored in a sys-
tem’s memory. Typically, this requires that an investiga-
tor have access to a suspected machine, prior to it being
powered down, to capture an image of its volatile mem-
ory. Further, memory acquisition (both hardware [6] and
software [25] based) must be as minimally invasive as
possible since they operate directly on the machine under
investigation. The resulting memory image is then ana-
lyzed offline using memory analysis tools. Therefore, the
goal of memory analysis tools (like the work presented in
this paper) is to recreate, in the forensics lab, the system’s
previously observable state based on the memory image.

Uncovering evidence from memory images is now
an essential capability in modern computer forensics.
Most state-of-the-art solutions locate data structure in-
stances in a memory image via signature-based scan-
ning. Currently these signatures are either value-
invariant based [2, 3, 9, 21, 23, 26], where data struc-
ture fields are expected to have known value patterns,
or structural-invariant based [5, 16, 17, 24], which rely
on points-to invariants between data structures. In both
cases, data structure signatures will first be derived by
analyzing the corresponding programs. Then the signa-
tures will be used to scan memory images and identify
instances of the data structures. Contents of the identi-
fied instances will be presented to forensic investigators
as potential evidence.

A significant challenge, not addressed in existing
memory forensics techniques, is that investigators may
not be able to interpret the content of data structure
fields, even with the data structure’s syntax and seman-
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ObjectEntry @ 0xfcb840 {
  Object* object = 0xfccfb0
}

ObjectStorage @ 0xfcf710 {
  const ::Ref K {
   int num = 5
   int gen = 0
  }     
  ObjectEntry* V = 0xfcb840
}

ObjectStorage @ 0xfd51c0 {
  const ::Ref K {
   int num = 8
   int gen = 0
  }     
  ObjectEntry* V = 0xfbf4b0
}

XRefWriter @ 0xf5e7c0 {
 ...
 std::string pdfVersion {
  int length = 3
  char* s = 0xcfc660 "1.4"
 }
 uint* streamEnds = 0x0 
 int streamEndsLen = 0 
 ObjectStream* objStr = 0x0
 bool useEncrypt = 0
 bool encrypted = 0
 ...
 ChangedStorage {
  std::map<K, V> Mapping 
 }
 ...
}

ObjectEntry @ 0xfbf4b0 {
  Object* object = 0xd403a0
}

Object @ 0xfccfb0 {
  ObjType = objDict
  union {
   ...
   Dict* dict = 0xfcdd40 
   ...
  }
}

Object @ 0xd403a0 {
  ObjType = objStream
  union {
   ...
   Stream* stream = 0xfce3a8 
   ...
  }
}

Dict @ 0xfcdd40 = {
 XRef* xref = 0xf56e50
 DictEntry* entries =0xfceff0
 int size = 8
 int length = 7  
 int ref = 1
}

Stream @ 0xfce3a8 {
  void* _vptr = 0x7f3140
  int ref = 1
}

(a) Signature-based scanner output. (b) DSCRETE-based scanner output.

Figure 1: Illustration of content reverse engineering challenge. (a) Raw content of an in-memory data structure
instance representing a PDF file. (b) The same data structure after applying DSCRETE’s scanner based on content
reverse engineering.

tics. This is very common for data structures with
application-specific encoding, such as those represent-
ing images, passwords, messages, or formatted file con-
tents (e.g., PDF), all of which are potential evidence in
a forensic investigation. For example, an investigator
may know that a buffer field is holding a photo image
(through existing data structure reverse engineering and
scanning techniques [9, 15–17, 24, 26]), but still cannot
display (and hence understand) the image. Similarly, a
message_body field may hold an instant message, but
the message is encoded, and hence it cannot be readily
interpreted. We call this the data structure content re-
verse engineering challenge.

To enable automatic data structure content reverse en-
gineering, we present DSCRETE1, a system that auto-
matically interprets and renders contents of in-memory
data structures. DSCRETE is based on the following
observation: The application, in which a data structure
is defined, usually contains interpretation and rendering
logic to generate human-understandable output for that
data structure. Hence the key idea behind DSCRETE
is to identify and reuse such interpretation and render-
ing logic in a binary program — without source code —
to create a “scanner+renderer” tool. This tool can then
identify instances of the data structure in a memory im-
age and, most importantly, render them in the applica-
tion’s original output format to facilitate human percep-
tion and avoid the overhead of reverse engineering data
structure signatures required by signature-based memory
image scanners.

To illustrate the challenge of data structure content re-

1DSCRETE stands for “Data Structure Content Reverse Engineer-
ing via execuTable rEuse,” pronounced as “discrete.”

verse engineering, we present a concrete example (from
Section 4). Figure 1a shows the raw content of an in-
memory data structure graph representing a PDF file.
This is the output produced by existing signature-based
scanners. For comparison, Figure 1b shows the same
data structure content after applying DSCRETE’s scan-
ner with content reverse engineering capability. It is
quite obvious that the reverse-engineered content would
be far more helpful to investigators than the raw data
structure content.

We have performed extensive experimentation with
DSCRETE using a wide range of real-world commodity
application binaries. Our results show that DSCRETE is
able to recover a variety of application data — e.g., im-
ages, figures, screenshots, user accounts, and formatted
files and messages — with very high accuracy. The raw
contents of such data would otherwise be unfathomable
to human investigators.

The remainder of this paper is organized as follows:
Section 2 presents an overview of DSCRETE. Section 3
details the design of DSCRETE. Section 4 presents our
evaluation results. Section 5 discusses some observations
from our evaluation, current limitations, and future direc-
tions for this research. Section 6 discusses related works
and Section 7 concludes the paper.

2 System Overview

2.1 Key Idea: Executable Code Reuse
DSCRETE is based on reusing the existing data struc-
ture interpretation and rendering logic in the original
application binary. As a simple example, consider the
Linux gnome-paint application. At the high-level,
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gnome-paint works as follows: An input image file
is processed into various internal application data struc-
tures. The user then performs edits to and saves the im-
age. To save the image, gnome-paint will reconstruct
a formatted image from its internal data structures and
write this image to the output file.

Later, if a forensic investigator wanted to recover the
edited image left by gnome-paint in a memory snap-
shot, DSCRETE would be used to identify and auto-
matically reuse gnome-paint’s own data structure ren-
dering logic. First, DSCRETE will identify and iso-
late the corresponding data structure printing function-
ality within the application binary. For brevity, let us re-
fer to this printing/rendering component as the function
P. P should take as input a data structure instance and
produce the human readable application output which
is expected for the given data structure. In the case of
gnome-paint, this component is the file_save func-
tion. It takes as input a GdkPixbuf structure and out-
puts a formatted image to a file. Note that P may not
be a function in the programming language sense, but
instead a subsection of the application’s code responsi-
ble for converting instances of a certain data structure
into some human-understandable form (e.g., output to
the screen, file, socket, etc.).

Once P is identified, DSCRETE will reuse this func-
tion to create a memory scanner+renderer (or “scanner”
for short) to identify all instances of the subject data
structure in a memory image. If P is well defined for the
input data structure, then one can expect P to behave er-
roneously when given input which is not a valid instance
of that data structure. Under this assumption, we can
present each possible location in the memory image to
P and see if P renders valid output for the data structure
of interest. We note that should an investigator alterna-
tively choose to use a signature-based memory scanner to
locate data structure instances, the DSCRETE-generated
scanner is still able to render any located instances.

2.2 Overview of DSCRETE Workflow

Figure 2 presents the key phases and operations of
DSCRETE. The first input is a binary application for
which an investigator wishes to recover application data
of interest from a memory image. To avoid compatibility
issues (such as different data structure field layouts), this
binary should be the same as the one that has contributed
to the memory image.

The subject binary is then executed under instrumen-
tation to identify the code region responsible for convert-
ing a specific data structure into application output (the
function P defined earlier). We refer to this phase of
DSCRETE as “tracing,” and the details of this step are
presented in Section 3.1. In the next phase, “identifica-

tion” (Section 3.2), a graph closure algorithm is used to
formulate a list of possible candidates for P. Each can-
didate is tested, by the “tester” component (Section 3.3),
with a ground truth data structure instance to determine
if it can serve as a viable memory scanner.

Once the specific application logic (P) is identified,
DSCRETE packages this logic as a context-free memory
scanner (Section 3.4), which will be presented to foren-
sic investigators to scan and interpret memory images in
this and future investigations involving the same appli-
cation. We point out that the first three phases (tracing,
identification, and tester) are a one-time procedure inter-
nal to DSCRETE and do not involve field investigators
who will be using the DSCRETE scanners in their prac-
tice.

It is important to note that, unlike signature-based
memory scanning techniques, we do not attempt to find
and return the raw contents (bytes) of identified data
structure instances in a memory image. Instead, we aim
to present the investigator a set of application-defined
outputs that would naturally be generated by the subject
application, had it executed P with the data identified in
the memory image. We emphasize that DSCRETE does
not infer data structure definitions (unlike [17, 24]), nor
does it derive data structure signatures (unlike [16]).

2.3 Assumptions and Setup

Firstly, we assume that when producing DSCRETE-
based memory scanners (which is typically the task of
a central lab of a law enforcement agency), the subject
binary can be executed. This includes recreating any ex-
ecution environment (i.e., operating system and applica-
tion version, required libraries, directory configurations,
etc.) which the application requires. We believe that this
assumption is not overly difficult to realize. In a real
forensic investigation, such runtime configuration infor-
mation can be collected via preliminary examination of
suspect or victim machines. Additionally, our dynamic
instrumentation requires that address space layout ran-
domization (ASLR) be turned off during the production
of the DSCRETE memory scanners (i.e., only the inves-
tigator’s personal workstation, not the suspect machine
under study). The reason for this will become clear in
Section 3.3.

Secondly, we assume that the OS kernel’s paging data
structures in the subject memory image are intact. This
is a similar assumption made by many previous mem-
ory forensics projects [16, 21, 26]. We require this be-
cause DSCRETE takes as input only the subject appli-
cation’s memory session from the suspect machine. For
our evaluation, we extracted the memory pages directly
from running applications — which is preferred when
an investigator has physical access to a suspect’s ma-
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Figure 2: Overview of DSCRETE workflow.

chine. However in many forensic investigations only
the memory snapshot and hard disk image are available.
In this case the Volatility [26] linux_proc_maps and
linux_dump_map plug-ins (or memmap and memdump for
Windows) can be used to identify and extract process
pages and mapping information from a whole system
memory image.

3 System Design

In this section, we explain each phase of DSCRETE.

3.1 Dynamic Data Dependence Tracing
The first phase of DSCRETE, “tracing,” collects a dy-
namic data dependence trace from the subject application
binary. This trace must contain some portion of the fu-
ture scanner’s code (i.e., the code responsible for render-
ing a data structure of interest as human-understandable
output). To collect this trace, we (as the central lab staff
producing the scanners for field investigators) interact
with the application to perform the following actions:

1) Create and populate an instance of the data struc-
ture used to store the data of interest. However, we make
no assumptions on the knowledge about this data struc-
ture. We only assume that some data structure exists in
the application which holds forensically interesting in-
formation in its fields.

2) The data structure of interest must be emitted as ob-
servable outputs (e.g., to files, network packets, or dis-
played on screen). This is to allow the scanner produc-
tion staff to express their forensic interest by marking
(part of) the output.

Again let us use gnome-paint to illustrate this pro-
cedure. To accomplish Step 1, we only need to execute
gnome-paint with some input image. This will cause
gnome-paint to create and populate numerous internal
data structures to store the image’s content. To accom-
plish Step 2, we only need to save the image to an output
file. gnome-paint will process the image for output and
call the GDK library’s gdk_pixbuf_save function with
the image’s content as a parameter. While this may seem
like a highly simplified example, the case studies in Sec-

tion 4 show that in general we do not need to perform
lengthy or in-depth interaction with an application to ac-
complish these two requirements.

Meanwhile, DSCRETE will be collecting each in-
struction’s data dependence and recording any library
functions or system calls invoked by the application as
well as their input parameters. This is used to later
identify which known external functions, specifically
those which emit data to external devices, were invoked
with the forensically interesting content as a parameter
(gdk_pixbuf_save from our gnome-paint example).
Note that since our analysis is at the binary level without
symbolic information, we consider a parameter to be any
memory read inside a function that depends on a value
defined prior to the function’s invocation. The memory
may be accessed inside the function, subsequent func-
tions, or as an argument to a system call2, and the content
read is logged as parameters. We exclude any memory
not previously written to by the application or a previ-
ous library function, allowing us to ignore any memory
which is private to the library function and not related to
the parameter (i.e., the transformed data structure). This
logging results in an output file containing the list of in-
voked external functions and parameters to each (similar
to the Linux strace utility).

It is important to note here that DSCRETE saves a
snapshot of the process’s stack and heap memory at
the invocation of any external library function which
leads to an output-specific system call (i.e., sys_write,
sys_writev, etc.). We (as the forensics lab staff) may,
optionally, further specify individual library functions
for which a snapshot should be taken. For example,
if we know that the forensic evidence will be rendered
on the application’s GUI, then we may choose to only
log visual-output related library calls in the GTK library.
These snapshots will later be used to test possible closure
points (defined in Section 3.2).

Once Steps 1 and 2 are accomplished, we may ter-
minate the subject binary and search the log of exter-
nal function calls for one in which the forensically in-

2We assume that system call interfaces are known and thus we can
mark which parameters and memory ranges are read and which are
written to.
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teresting data is seen as parameters. Once suitable func-
tions are chosen, DSCRETE only needs to identify which
bytes of the parameters for those function invocations are
of forensic value.

The chosen function invocations and set of parameter
bytes will be important for two reasons: First, the pa-
rameter bytes will serve as the source nodes in our data
dependence graph. Second, the function(s) will be used
as the termination point for our scanner and the corre-
sponding bytes will be the output of the scanner. For
brevity, these functions will be referred to as F and the
selected forensically interesting bytes of F’s parameters
as the set B. For our running gnome-paint example,
consider gdk_pixbuf_save as F and the image buffer
it prints to the output file as B.

Finally, a data dependence graph is generated using
the trace gathered during dynamic instrumentation. The
graph begins with the instructions responsible for com-
puting the bytes of B as source nodes. Then in an iter-
ative backwards fashion, any instruction which a graph
node depends on is also added to the graph. Eventually,
the graph will contain any instruction instance which led
to the final value of B’s bytes. This process is identical
to that of typical dynamic slicing [13], we just chose to
ignore control dependence as it is not required for iden-
tifying the functional closure (to be described next).

3.2 Identifying Functional Closure

Given F , B, and the data dependence graph, DSCRETE
must find a closure point for the rendering function P.
We define a closure point as an instruction in the data
dependence graph which satisfies: 1) It directly han-
dles a pointer to the forensically interesting data struc-
ture and 2) Any future instruction which reads a field
of the data structure must be dependent on the closure
point. This leads to the nice property that by changing
the pointer handled by the closure point, we can change
the data output by P. Returning to the gnome-paint ex-
ample, the closure point is the instruction which moves
a GdkPixbuf pointer into an argument register during
file_save.

However, without source code or the effort of reverse
engineering the subject binary, we cannot know the clo-
sure point for certain a priori. In fact, there may be mul-
tiple closure points in a program, any of which will sat-
isfy our criteria above. To find a valid, usable closure
point we use a combination of a graph closure algorithm
and heuristics to output a list of closure point candidates.
Each candidate is a tuple of the following: the address of
an instruction which may satisfy the above criteria, the
register or memory operand which it stores a pointer to,
and the value of that pointer from the data dependence
trace taken during tracing (Section 3.1).

Algorithm 1 Identifying Closure Point Candidates
Input: DataDepGraph(V , E), p
Output: Candidates[]

SubGraphs[] ←∅
Previous Candidate ←∅
for node n ∈V in Reverse Temporal Order do

G(V n, En) ←∅ � Build subgraph rooted at n
V n ←{n}
for (n, t) ∈ E do � Each t that depends on n (may be ∅)

Gt(Vt, Et) ← SubGraphs[t] � SubGraph rooted at t
V n ←V n∪Vt
En ← En∪Et ∪ (n, t)

SubGraphs[n] ← G
if Is Store Instruction(n) then � Apply heuristics to n

val ← Stored Value(n)
loc ← Store Location(n)
if Is Possible Pointer(val) then

if |SubGraph[n]|>|SubGraph[Previous Candidate]| then
Candidates ← Candidates ∪ (n, loc,val)
Previous Candidate ← n

if |SubGraphs|> p%×|DataDepGraph| then
break � Only consider p% of DataDepGraph

We call this phase “candidate identification.” The al-
gorithm to identify closure point candidates is given in
Algorithm 1. Starting from each byte in B, the algorithm
steps through the data dependence graph in reverse tem-
poral order (i.e., from the last instructions executed to
the first). For each node visited (n) the algorithm builds
a graph containing all previously visited nodes which de-
pend on n (G in Algorithm 1). Essentially, graph G will
resemble a subgraph rooted at n with its leaves accessing
some bytes of B.

For each node n added to these subgraphs, the algo-
rithm performs the following heuristic checks; any node
which passes these checks is considered a closure point
candidate. First, n must store a value (either to a regis-
ter or memory location) which could be a possible data
structure pointer (any integer value that falls within a
memory segment marked readable and writable). Sec-
ond, the size of the dependence subgraph rooted at n
must be larger than the previous candidate’s subgraph.
The intuition here is that a correct closure point will
take as input a pointer to a data structure instance, and
store this pointer to be reused by the rendering func-
tion P. Thus for the part of the data dependence graph
responsible for rendering a data structure instance, the
largest subgraph must have the closure point at its root.
Consider a data dependence graph for the file_save

function from gnome-paint: The largest subgraph of
this data dependence graph should be rooted at the input
GdkPixbuf pointer.

Another heuristic is to stop the algorithm after only a
small percent of the data dependence graph is analyzed.
Note that the data dependence graph contains instruc-
tions from F back to the application’s main function.
Further, P will be close to F in the graph and signif-
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icantly smaller than the rest of the application’s code.
This percentage is taken as a configurable input (p in Al-
gorithm 1) and is set via a forward iterative approach. In
our evaluations in Section 4, we started with a p value
of 1 and incremented p until a valid closure point was
found. Even in the extreme case (top), p was never more
than 10 and was often less than 5.

In all of our evaluations, the number of candidates
never exceeded 102 and was often below 30. Addition-
ally, as will be explained in the next section, we never
need to verify (or even see) any of the candidates. The
testing of candidates is done mostly automatically.

3.3 Finding the Scanner’s Entry Point

To test each closure point candidate, DSCRETE will run
a modified version of the memory scanner described in
the next section. This modified scanner, named the can-
didate “tester,” takes as input: 1) the known end point of
the scanner (i.e., F), 2) the memory image taken when F
was executed, 3) the list of candidates, and 4) the subject
binary. The modified scanner will treat F’s memory im-
age as the “suspect” memory image to scan. We assume
that this memory image contains a valid instance of the
data structure which held the data seen in B because the
application was in the process of rendering/emitting this
data structure instance’s fields when the memory image
was captured.

The candidate tester will re-execute the subject binary
from the beginning, but before the process is started the
scanner maps the “suspect” memory image’s segments
into the address space. Each segment (a set of pages)
is mapped back to the address from which it was origi-
nally taken3. This ensures that pointers in these memory
segments will still be valid in the new process’s address
space. Note that ASLR is disabled during DSCRETE
operations. At this point, the new process is unaware of
the added memory segments and executes normally us-
ing only its new allocations. Later, we will intentionally
force the new process to use a small portion of the old
process’s data session to test closure point candidates,
a technique we call cross-state execution (discussed in
Section 3.5).

In the new execution, the forensically interesting data
seen in this run of the application should be altered (e.g.,
executing gnome-paint with a different image). This
will later allow the user to easily determine which can-
didate’s output is correct (from the data structure in the
memory image).

3We have not seen any cases where critical segments overlapped.
This is because the segments are being mapped into ranges usually re-
served for heap and stack space. Since these segments are almost uni-
versally relocatable the new process is simply allocated pages around
our memory image.

The application runs until a closure point candidate in-
struction is executed. Here, the tester forks an identi-
cal copy-on-write child of the subject application to per-
form the actual scan; the parent process will be paused
until the child has completed. The scanner looks up
which register or memory operand this candidate stores
its pointer value into and overwrites this location with
the pointer’s value stored in the candidate. Note that if
this candidate is a correct closure point, then the stored
pointer value is a valid pointer to a data structure instance
in the mapped memory image. This assumes that the data
structure instance is not corrupted from the beginning of
the rendering function P (for which this candidate may
be an entry point) to the invocation of F . Since all candi-
dates are reasonably close to the invocation of F (within
p% of the total trace size), we find that this is never a
problem in practice.

Further, if this candidate is a correct closure point,
the child process will now execute P, access the old
process’s memory segments (via the changed pointer
value), generate the same bytes for B, and invoke F
with these bytes. Imagine that, for our gnome-paint

example, this candidate is the instruction which moves
a GdkPixbuf pointer into a register during file_save

(P). Now file_save will execute in the child process
with the GdkPixbuf structure inside the memory image
and should call gdk_pixbuf_save (F) with an identical
image as was previously rendered (B). Also, recall that
the forensically interesting information seen in the new
run is altered. This is to easily partition between output
generated from the memory image and output from the
new execution of the application.

During testing, if the child process crashes after the
pointer replacement, then the candidate is assumed in-
correct and thrown out. When the F function(s) execute
to completion (recall that in our gnome-paint example
F is gdk_pixbuf_save) then the content given as input
to F is recorded as a result for this closure point candi-
date test. An example of this recorded output is given
later in Figure 6 (Section 4.3.1). The end of a scan is
determined as follows: When F is a single function in-
vocation, the child process is killed after F returns. If F
consists of multiple invocations, the scan continues until
the execution call stack returns to a point before the clo-
sure point. The parent process is then resumed, and this
is repeated until all candidates are tested. A candidate is
considered a valid closure point if it has accurately recre-
ated the bytes chosen for B.

3.4 Memory Image Scanning
Once the data structure rendering function P has
been identified, DSCRETE can build a memory scan-
ning+rendering tool out of the subject binary. In fact, the
production memory scanner is quite similar to the mod-
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ified scanner used for testing candidates in the previous
section. The difference is that we do not know where in
a suspect memory image the data structures may be. The
input to the memory image scanner tool are: 1) the cho-
sen entry point and exit point of the printing function P,
2) the subject binary, and 3) the suspect memory image
(as described in Section 2.3).

Again the scanner will re-execute the subject binary
with the suspect memory segments mapped back into
their original placements. Like before, the suspect mem-
ory segments will not be used until scanning begins, and
until then the process executes using only its new allo-
cations. With the same application input from candidate
testing, the execution will reach P’s entry point, where
the scanner pauses the application. For each address in
the memory image, the scanner will fork an identical
copy-on-write child and assign P’s pointer to the next
address in the memory image. In essence, the scanner
is executing P with a pointer to each byte of the suspect
memory image. The scanning child process executes un-
til P’s end point (as defined in the previous section) and
then P’s output is recorded to a log or the child process
crashes.

The intuition behind re-executing the application from
the beginning is to automatically rebuild any dependen-
cies required by P. DSCRETE requires that P’s only in-
put be a pointer to a possible data structure. In reality,
P may depend on multiple parameters set up by the ap-
plication prior to the closure point. By re-executing the
application from the beginning, we ensure that any other
dependencies P has are taken care of before the scanner
injects a data structure pointer.

The execution of P is done in a child process to isolate
side effects. Not surprisingly, the vast majority of ad-
dresses will cause invalid memory accesses or other ex-
ceptions, and by scanning each byte in a separate process
the scanner ensures that side effects do not contaminate
future scans or global values. To speed up scanning, mul-
tiple child processes can be spawned to run in parallel.

In some rare cases, P is too simple (performs too lit-
tle input processing) to crash on invalid input. For such
cases, we allow for a user-defined post-processing phase.
We still assume no use of source code or reverse engi-
neering effort, but the user may perform sanity checks
based on the known format or value ranges for an ap-
plication’s output. For instance, in our top case-study
we had to remove any output which had a negative pro-
cess ID or blank user or process name field. In our
experiments, only three cases — CenterIM, top, and
Firefox VdbeOp — required any post-processing. Fur-
ther, this only occurs for very simple textual P functions
— complex cases such as those requiring content reverse
engineering naturally involve more strict parsing and in-
put sanitization.

3.5 Cross-State Execution

DSCRETE maps one process’s address space into the ad-
dress space of another. Further, when DSCRETE exe-
cutes the function P, this code will evaluate data in both
the old and new address spaces. Once DSCRETE re-
places a data structure pointer at the closure point, the
scanning process will then access fields from the data
structure in the old address space while still using stack
and other heap objects in the new address space.

Ideally, any sub-execution that depends on the closure
point would exclusively access the state from the old ad-
dress space. In other words, we expect the continua-
tion after the pointer replacement would consist of two
disjoint sub-executions, one corresponding to running P
on the old address space and the other corresponding to
the rest of the execution exclusively on the new address
space. However, due to the complex semantics of real
world programs, such separation may not be achievable.
There are two possible problems: 1) An instruction ex-
ecution may depend on state from both address spaces,
resulting in some state that is infeasible in either the orig-
inal or the new execution. We call such instructions con-
founded instructions. 2) Since the old memory snapshot
may not be complete, an instruction may access a loca-
tion in the old space that is not mapped in the new space.
Note that this location may now correspond to a valid ad-
dress in the new space such that the access becomes one
to the new space. We call this a trespassing instruction.
Both could cause crashes and hence false negatives.

Consider the example in Figure 3. Figure 3a shows
two functions4. The first function (lines 2 - 6) creates
a Color object and adds it to the color cache. The
other (lines 7 - 14) renders a window, including drawing
the Color to a frame and emitting the window title as
a string. Note that different executions may add differ-
ent Color objects to the cache. Specifically, the num-
ber of Color objects and their order vary across execu-
tions. Later, the window rendering function will look up
a Color object from the cache using its id.

Assume we (as forensics lab staff) mark the
EmitString() function at line 13 as F and s (the win-
dow title) as B. Following the candidate identification al-
gorithm, we compute the backward data-dependence of
B as those boxed statements. We further identify line 8
as the closure point candidate.

However, when we test this candidate, cross-state ex-
ecution leads to undesirable results if not properly han-
dled. Let us assume that two Color objects were cached
during the original execution, whereas only one Color is
added in the candidate test execution. Figure 3b shows
the trace of the candidate test execution on the left, and,

4Our discussion is at the source code level for readability, whereas
our design and implementation assume only the application binary.
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int k=0; 
int AddColor (int R, int G, int B ) {
  Color * c = new Color (R,G,B);
  color_cache [k] = c;
  return k++;     

}
void Display (Window * w) { 
  String s = w→name;
  int i = w→colorId;
  Color * c = color_cache[i];
  DrawFrame (c,…);
  s = w→Type + s + user→name;  
  EmitString(s);

} B

C

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14. F

Program Code

(a) Program code and dependence.
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13.

    ...

 color_cache [k] = c;

 return k++;       

   …

 String s = w→name;

 int i = w→colorId;

    Color * c = color_cache[i];

    DrawFrame (c,…);

    s = w→Type + s + user→name;   

    EmitString(s);

0x80...c0

0

color_cache:

c:   0

0x80...c0

0x80...f4

0

color_cache:

c:   0

i:   1

w→colorId:   1

k=0

k=1

i=1

c=0

error

Virtual space before line 11

old memory map

StateTrace

(b) Cross-state execution.

Figure 3: Example for cross-state execution.

on the right, it shows the state of the new address space
right before the execution of line 11. Note that the pages
of the old address space are mapped inside the new ad-
dress space. Each executed statement in the trace is col-
ored based on the address space it operates on. Partic-
ularly, lines 4 and 5 execute before the pointer w is re-
placed at line 8, and hence belong to the new space. In
contrast, lines 8 and 9 belong to the old space, as their
values are loaded from locations derived from the re-
placed w. Line 10 is a confounded instruction, as the
array color cache belongs to the new space while i

belongs to the old space. As a result, an invalid color is
loaded, leading to a crash. However, observe that lines
10 and 11 are not in the data dependence of B, as such
we could potentially skip them.

Therefore, given a closure point candidate C and its
termination point F , DSCRETE scans the original exe-
cution trace from C to F during the candidate identifi-
cation phase. For each address dereference it encoun-
ters, it tests if the address is exclusively dependent on
the pointer parameter at C. If not, it is a confounded
dereference. DSCRETE further tests if the dereference
is in the data-dependence graph of B, and if not, marks
the instruction as an irrelevant dereference to be skipped
during test execution and later scanning executions. In
practice, we observed confounded memory dereferences
in only one of the cases we studied.

Handling trespassing instructions is relatively easier.
Given a closure point candidate C and its termination
point F , DSCRETE scans the original execution trace
from C to F and marks each address dereference that it
encounters and is dependent on the pointer parameter at
C. At runtime, if a marked dereference accesses a loca-
tion in the new space, it is a trespassing access and can
be skipped.

4 Evaluation

DSCRETE leverages the PIN binary analysis platform
[19] to perform instrumentation. Since PIN executes be-
fore the subject binary is loaded, this allows us to map
the memory image into the new process’s address space
before the operating system’s loader can claim stack and
heap regions. DSCRETE relies on minimal OS-specific
knowledge (i.e., system call and application binary inter-
face definitions), thus DSCRETE can easily be ported to
any operating system that PIN supports. In the remain-
der of this section, we present results from evaluating
DSCRETE with a number of real-world applications and
focus on a subset which highlight the use of DSCRETE
and a few critical observations.

4.1 Experimental Setup

Our evaluation used a Ubuntu 12.10 Desktop system as
the “suspect” machine. Each application was installed
on the machine and interacted with by the authors to
generate sufficient allocations and deallocations of data
structures. We used gdb to capture memory images from
the application periodically during the system’s use. To
attain ground truth, we manually instrumented the ap-
plications to log allocations and deallocations for data
structures corresponding to the output of forensic inter-
est (i.e., B in Section 3.1). This log was later processed
to measure false positives (FP) and false negatives (FN).
For analysis, we employed a Ubuntu 12.10 virtual ma-
chine. To recreate the suspect machine’s running envi-
ronment, we copied the applications and needed config-
uration files from the suspect machine’s hard disk. We
then performed all forensic investigation within the vir-
tual machine.
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Application F
Forensically Interesting
Data

Size B
(bytes) p% #C #O #P

CenterIM SSL_write Username & Password 336 5% 46 1 1
convert fwrite Output Image Content 81902 9% 18 7 2
gnome-paint gdk_pixbuf_save Image Content 670900 1% 18 2 2
gnome-screenshot gdk_pixbuf_save_to_stream Screenshot Content 1139791 1% 5 4 3

gThumb
gtk_window_set_title File Info Window Title 85 1% 102 4 2
gdk_pixbuf_save_to_bufferv Image File Content 20360 1% 10 3 3

Nginx write HTTP Access Log 181 5% 25 1 1
PDFedit fwrite, fputc Edited PDF Content 30416 1% 46 6 3

SQLite3 Shell
fputs Database Query Results 19 2% 4 1 1
fprintf Database Op. Log 38 2% 17 5 1

top putp Process Data 132 10% 1 1 1
Xfig fprintf Figure Content 1001 1% 9 3 3

Table 1: Results from identifying applications’ P functions (#C shows the number of identified candidates, #O shows
how many of those produced output, and #P shows the final subset which are valid closure points).

4.2 Function Identification Effectiveness

This section presents results of isolating the data ren-
dering function P in each tested application. From
the CenterIM instant messenger, we target the compo-
nent which emits the user’s login and password (still in
plain text) to an SSL socket. Also, given the impor-
tance of image content to investigations, we isolate im-
age rendering functions from three common image ed-
itors: convert, gnome-paint, gThumb, as well as the
gThumb GUI function which displays the current im-
age’s name to the window title. The output function
of gnome-screenshot can allow an investigator to see
what screen-shot a suspect was capturing. Addition-
ally, we reuse Xfig’s figure saving P function to re-
construct a vector figure that was being worked on. As
we introduced in Section 1, the PDF saving functional-
ity of PDFedit allows investigators to recover the edited
PDF file. For internal application data, we identified P
functions for SQLite’s query results and operations log
(more on how these scanner+render tools are used later
in this section). It is very common for attackers to tam-
per with server log files, so we isolated the Nginx web-
server’s connection logging function, thus an investigator
can compare with the uncovered in-memory connections.
Finally, for details on all running processes in a suspect
system, we identified the process data printing logic in
the top utility.

Table 1 shows a summary of the results from each of
these applications. The application name and F function
are shown in Columns 1 and 2 respectively. Column 3
details the forensically interesting data that were to be
emitted by F(B) and Column 4 shows the size of B in
bytes. The percentage of the data dependence graphs
used to generate candidates is shown in Column 5. Fi-

nally Columns 6 to 8 show the number of candidates
identified by our algorithm (#C), how many of those pro-
duced any output (#O), and the final subset which ac-
curately recreated B and could be used for valid closure
points (#P), respectively.

From Table 1 we make the following observations:
First, our algorithm/heuristics used to identify closure
point candidates are accurate enough to limit the num-
ber of candidates to a reasonable search space. Although
candidates are tested automatically during the candidate
tester’s execution, we aim to minimize the number of
candidates to test. From Table 1, we see that 11 out of the
12 applications have less than 50 candidates. The only
application with more than 50, gThumb, has 102, and as
we see in Row 5 of the table, they are drastically nar-
rowed down by the candidate tester. Manual investiga-
tion revealed that gThumb’s larger number of candidates
was due to extra data dependencies caused by another
parameter to its F function (gtk_window_set_title).

The second observation we make is that, of the total
number of candidates identified, very few will be true
closure points. This is intuitive since there is only one
true entry to the P function in the application. Third,
since the number of candidates which produced valid
output is so small, it is relatively simple for a DSCRETE
user to identify which candidate accurately reproduced
B.

On average, each candidate testing component ren-
dered application output for only three closure point can-
didates. The maximum, convert, rendered only seven
outputs during candidate testing. Further, more than
half of the applications produced ideal candidates — all
candidates that rendered output were valid candidates.
For the other five applications, about 45% of candidates
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which produced output accurately recreated the expected
forensically interesting data (i.e., the new output matched
that seen before). This shows that: 1) Visually inspecting
candidate output is a reasonably quick and practical task
and 2) DSCRETE can identify and validate closure point
candidates with high accuracy.

Table 1 shows that it is not uncommon for multiple
correct closure points to exist for a P function. Manual
investigation revealed that this is caused by two program
features: nested data structure pointers and register-to-
stack spilling. In the nested data structure situation, if a
data structure A has a pointer to structure B and P uses
the B pointer within A, then either the A pointer or its
internal B pointer may be valid closure points for P. For
the register-to-stack spilling situation, a pointer to an in-
put data structure is initially stored in a register, but when
contention forces that register to be spilled onto the stack,
either the initial register or its later stack-saved location
may be used for closure points.

Figure 4: Normalized size of P vs. entire binary code.

Table 1 also shows that a valid closure point is typi-
cally located in the bottom 5% of the data dependence
graph. Thus, the actual rendering function being reused
is often only a small percentage of the binary’s text. Fig-
ure 4 shows the normalized percentage of the host bi-
nary which we reuse for each scanning function. The
size of the reused code is measured as the total in-
memory size of all unique instructions observed during
all re-executions of P. Top, gnome-screenshot, and
gnome-paint are outliers due to the relatively small size
of the applications and the resulting dependence graphs.

SQLite P Functions. An interesting application
of DSCRETE can be seen in the experiments with
SQLite. For these experiments DSCRETE was used
with the SQLite3 command shell and a homemade
database file to find P functions for a database query’s
result (struct sqlite3_stmt) and operations log
(struct VdbeOp). These data structures are defined by
the SQLite3 library and exported to client applications.
The P functions DSCRETE identifies would be used to

build memory scanner+renderer tools which could dis-
cover those data structures and render their content in
the same format as the SQLite3 command shell.

These scanners could then be used on memory images
from any application which uses SQLite. Since these
data structures are defined by the SQLite library, any ap-
plication using SQLite should transitively allocate and
use these data structures. Further, we are reusing the
SQLite3 command shell’s P functions, so even if an ap-
plication never outputs the data held in these structures,
we can still discover and interpret them using the more
general SQLite memory scanners. In the next section, we
show results from applying these scanner+renderer tools
to memory images from Mozilla Firefox and darktable
image editor.

4.3 Memory Scanner Effectiveness
Table 2 reports the effectiveness of the DSCRETE-
generated scanner+renderer tools when scanning a
context-free memory image from each application. The
application name is shown in Column 1. The subject data
structure (input to P) and the structure’s size are shown
in Columns 2 and 35. The number of true instances in the
suspect memory image is shown in Column 46. Column
5 shows the total number of output generated by each
scanner+render tool. Columns 6 to 10 show the num-
ber of generated output which are: true positives (TP)
- backed by true data structure instances, false positives
(FP) and the percentage of FPs in the total output (FP%),
and false negatives (FN) and the corresponding FN per-
centage.

This table shows that the P function identified by
DSCRETE is almost always well defined. This allows
DSCRETE to uncover and render valid data structure in-
stances with 100% accuracy for most cases. Specifically,
Table 2 shows that DSCRETE’s scanner+renderer tools
are perfectly accurate (i.e., no FP and no FN) in 11 out
of the 13 cases. We analyze the two FP/FN cases in de-
tail later in this section. More importantly, DSCRETE
overcomes the data structure content reverse engineering
challenge by displaying the results in each application’s
original output format. The test cases covered in Table
2 span a wide range of application data: usernames and
passwords, images, PDF files, vector-based graphics, as
well as formatted and unformatted textual output. This
portrays the generality of DSCRETE and represents sev-
eral key types of evidence that would be very difficult

5Such information was obtained via manual instrumentation, in-
spection, and reverse engineering only for the purpose of evaluation.
DSCRETE does not need or have access to this information during op-
eration.

6This includes all the data structure instances which were allocated
and not yet released and overwritten when the memory image was cap-
tured.
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Application Subject Data Structure Size
(bytes)

True
Instances

Total
Output TP FP FP% FN FN%

CenterIM yahoo_data 160 1 1 1 0 0.0% 0 0.0%
convert _Image 13208 1 1 1 0 0.0% 0 0.0%
darktable sqlite3_stmt 272 1 1 1 0 0.0% 0 0.0%

Firefox
sqlite3_stmt 272 1 1 1 0 0.0% 0 0.0%
VdbeOp 24 788 1384 753 502 40% 35 4%

gnome-paint GdkPixbuf 80 51 51 51 0 0.0% 0 0.0%
gnome-screenshot ScreenshotApplication 88 1 1 1 0 0.0% 0 0.0%

gThumb GFileInfo 48 382 381 381 0 0.0% 1 0.4%
GdkPixbuf 80 63 63 63 0 0.0% 0 0.0%

Nginx ngx_http_request_t 1312 6 6 6 0 0.0% 0 0.0%
PDFedit XRefWriter 344 1 1 1 0 0.0% 0 0.0%
top proc_t 720 382 382 382 0 0.0% 0 0.0%
Xfig f_compound 112 1 1 1 0 0.0% 0 0.0%

Table 2: Results from DSCRETE-generated scanner+renderer tools.

(if at all possible) to reconstruct from raw data structure
contents.

Table 2 shows that many of the subject data structures
are smaller than the resulting application output (B from
Table 1). Our manual analysis of these structures reveals
that 10 of the 12 data structures contain several point-
ers to other data structures used by P. This confirms our
intuition that, in order to recover usable evidence from a
memory image, numerous data structures must be uncov-
ered and interpreted. Note that an investigator never ac-
tually sees any of these structures, but rather is presented
only the application output rendered from the structures’
contents. Figure 1a in Section 1 is one such example.

Another metric to report is the time taken to scan,
which varies depending on: 1) the complexity of the ren-
dering function P and 2) the size of the memory image
being scanned. Figure 5 shows the scanning speed in
bytes-per-second for each scanner function in our eval-
uation. During our experiments, the size of the appli-
cations’ heaps ranged from 400KB to about 5MB, and
total heap scanning time ranged between 15 minutes to
just over 2 hours, with most taking about 30 to 45 min-
utes. Admittedly the scanning and rendering of evidence
is slower than typical signature-based memory scanners,
but still well within the typical time taken to process dig-
ital evidence, with the added benefit that evidence is pre-
sented in a human-understandable form. Ayers [1] points
out that it may take “several hours or even days when
processing average volumes of evidential data,” which is
confirmed by our collaborators in digital forensics prac-
tice.

False Positive and False Negative Analysis. We no-
tice that only the gThumb and Firefox VdbeOp experi-
ments experienced any negative results. Manual inves-

Figure 5: Observed throughput of each scanner.

tigation into these two experiments’ false negative re-
sults (i.e., true data structure instances not discovered
by DSCRETE) revealed that those structures were allo-
cated, but did not contain enough data to be rendered by
P. They were either in the process of initialization or
deletion or being used as empty templates by the appli-
cation.

Interestingly, the Firefox VdbeOp case study (SQLite’s
operations log structure) represents a counter-example to
our hope that P be well defined. In this case, P performs
little parsing and no sanity checks on its input. A VdbeOp

structure is essentially a set of seven integer values, and
SQLite3 uses these integers as indices in a global string
table, without any sanity checks. Since this P function
performs such trivial parsing, a large number of false in-
puts produce typical SQLite3 Shell output. We consider
this a worst-case scenario for DSCRETE, and believe it is
also the case for many other memory forensic techniques
when facing such a trivial data structure.

In Section 1 we introduced one example of forensic
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data which would be uninterpretable without data struc-
ture content reverse engineering. The complex multi-
level data structure representing a PDF file requires non-
trivial processing to locate the fields which contain any
usable PDF content. Further, many fields are encoded,
compressed, or computed only when outputting the PDF
file. In the remainder of this section, we present several
other application case studies with DSCRETE.

4.3.1 Case Study: convert

This case study highlights DSCRETE’s content reverse
engineering capability for image data structures. The
convert utility is used to apply various transformations
to an image file. The source image file is processed and
converted into internal data structures, (i.e., an _Image

and array of _PixelPacket structures). Various trans-
formations (such as scaling, blurring, etc.) are applied,
and the pixels are re-composed into an image and written
to a file. It would be considerably difficult to reconstruct
the image from its in-memory representation, even with
a deep understanding of these structures’ syntax and se-
mantics. However, DSCRETE is able to overcome this
challenge by identifying and reusing the image output
component (function WriteImage) which constructs an
output image file from an input _Image structure.

As shown in Row 2 of Table 1, B (the image’s con-
tent) was seen as an argument to the fwrite function.
Using this, DSCRETE identified 18 closure point candi-
dates in the bottom 9% of the data dependence graph.
Of these candidates, 16 clustered around the handling
of _PixelPacket structures in the image reconstruction
routine, and the remaining 2 candidates handled the input
_Image structure at the entry to the WriteImage func-
tion.

The DSCRETE candidate tester component elim-
inated 16 candidates which handled _PixelPacket

structures. For the remaining two candidates, DSCRETE
produced the log and application output shown in Fig-
ure 6. From Figure 6 we see that Candidates 1 and 2
successfully executed P (ending with fwrite). More
importantly, DSCRETE accurately rendered the _Image
data structure’s content – presenting proof that both can-
didates form valid P functions which can reconstruct the
image seen previously. As Table 2 shows, this P func-
tion was well-defined and the resulting scanner located
and rendered the “image of interest” in the memory im-
age with no false positives or false negatives.

4.3.2 Case Study: Xfig

The second case study is with Xfig, in which data con-
tent reverse engineering is essential to uncovering usable
evidence from data structure instances. Xfig is a Linux-

Candidate 1 ===== Scanning from 0x6a16c0:
  fwrite@libc ( 0x6ba360 ["<89>PNG<0d0a>"...], 1, 81902, 0x6b7320 [data] )
    Arg 1 written to file "c1_0x6ba360.out"
  
Candidate 2 ===== Scanning from 0x6a5c90:
  fwrite@libc ( 0x6ba360 ["<89>PNG<0d0a>"...], 1, 81902, 0x6b7320 [data] )
    Arg 1 written to file "c2_0x6ba360.out"

(a) Candidate test result log.

(b) Output image file for Candidate 1.

Figure 6: Candidate testing output. (a) Each P function
is shown, similar to the Linux strace utility, with parame-
ters seen during invocation. If the tester component is set
for file output, the file name is also printed. (b) Shows
the output file for Candidate 1.

based vector graphics editor which defines several types
of data structures for different drawable shapes (i.e., el-
lipse, spline, etc.). From Xfig, we intended to build
a scanner+renderer tool to reveal the figure a suspect
was drawing. Referring back to Table 1, DSCRETE lo-
cated 9 closure point candidates in the bottom 1% of the
data dependence graph. DSCRETE tested these 9 can-
didates and decided that 3 of them which rendered out-
put were valid closure points. One of those was chosen
(DSCRETE prefers the closure point highest in the de-
pendence graph) to build a scanner+renderer for Xfig’s
f_compound data structure.

An f_compound structure is a container for several
shape structures. Each shape structure stores its di-
mensions, coordinates, color, etc. In order to recon-
struct a figure, each of these shape structures must be
recovered from a memory image, interpreted, and shape-
specific rendering functions must be invoked. Existing
signature-based memory scanners could present an in-
vestigator with a list of shape data structures instances
from a memory image, but without the interpretation
logic and shape-specific rendering, the investigator can-
not see what the figure looks like. By comparison, the
DSCRETE-generated scanner+renderer can locate the
figure’s f_compound structure, traverse all the contained
shape structures (in the P function), and output Xfig’s
original figure content. Table 2 shows that this P function
is well-defined and recovered the figure’s content with
100% accuracy from the target memory image.
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4.3.3 What You Get Is More Than What You See

We observe that some applications will construct more
data structures than they intend to display. Without
content reverse engineering, these extra data structures
would all need to be manually interpreted for investiga-
tion. DSCRETE intuitively renders such additional evi-
dence, allowing an investigator to quickly determine if it
is forensically valuable.

In our experiment with top, the true number of
proc_t instances is 382, whereas while executing top

only 31 processes were displayed at a time. Since all
382 proc_t structures were in top’s memory image,
DSCRETE was able to uncover and present each as they
would have been displayed by the original top process.

Another example is gThumb, which displays an im-
age being edited and other images in the same direc-
tory. gThumb’s memory contained valid data structures
for 63 images: 56 GUI icons and 7 suspect images,
and DSCRETE recovered them all, including the 7 sus-
pect images. More importantly, 3 of the 7 suspect im-
ages were not being displayed by the GUI. Without
DSCRETE, determining which raw data structures were
icons and which were evidence would require extensive
manual effort. With DSCRETE, an investigator can im-
mediately see the distinction. Note also, that those GUI
icons are not false positives. Instead, they are valid and
relevant image data structures, because the investigator
may use such GUI artifacts to infer which application
screen the suspect was focusing on.

5 Discussion and Future Work

Still at its early stage, DSCRETE represents a new ap-
proach for digital evidence collection. The prototype
presented here has several limitations that will be ad-
dressed in our future work.

As mentioned in Section 3.5, cross-state execution
may cause conflicting memory access patterns (i.e., con-
founded or trespassing instructions). DSCRETE selec-
tively skips unnecessary instructions which may cause
cross-state conflicts. However, this method is limited to
the instructions recorded during tracing, and cannot rea-
son about instructions that were not executed. Although
we did not encounter such complications in our exper-
iments, we do believe that they exist and will explore
using static dependence analysis in the future.

DSCRETE relies on each application’s own render-
ing logic to differentiate between valid and invalid in-
put (data structures to be rendered). As we see in Section
3.4, this can be problematic if the rendering function per-
forms very little input processing and validation. Our
experiment suggests that this problem exists for highly
simplified data structures, which may still be of foren-

sic value. Handling such data structures is our ongo-
ing work. Additionally, since DSCRETE reuses appli-
cation binary logic, an interesting problem is to handle
data which contains exploits against the rendering logic.

Another current limitation which we leave for future
work is replacing multiple input data dependencies for a
rendering function. Currently, DSCRETE identifies and
replaces only a single data structure pointer seen as in-
put to P. However, it is assumable that a single appli-
cation output be generated from multiple unrelated data
structures. Although we have not encountered such need,
the problem is realistic and requires enhancements to the
closure point identification and the scanning algorithms.

Like many binary analysis-based tools, DSCRETE is
not yet ready to handle self-modifying code or bina-
ries with highly obfuscated control flows, which may
cause problems in dependence detection or state cross-
ing. However, these problems are common in malware
programs and hence worth solving. One future direction
is to develop DSCRETE on an obfuscation-resistant bi-
nary analysis platform (e.g., [29]).

The methodology used in DSCRETE is designed to
operate directly on a target machine binary. As such, it
is not applicable to programs written in interpreted lan-
guages (e.g., Java). Such programming languages add
layers of indirection between the machine instructions
observed by DSCRETE and the application’s true syntax
and semantics (i.e., data structures and rendering func-
tions). Developing new techniques to handle programs
written in interpreted languages is an intriguing direction
for our future research.

6 Related Work

Memory Image Forensics. Previous research in mem-
ory forensics has mainly centered around uncovering
data structure instances using signature-based brute force
scanning. Such techniques can be roughly classified into
value-invariant based [2,3,9,21,23,26,27] and structural-
invariant based [5, 15, 16].

Value-invariant signatures seek to classify data struc-
tures by the expected value(s) of their fields. More re-
cently, DEC0DE [27] enhances value-based signatures
with probabilistic finite state machines to recover ev-
idence from smartphones. Structural-invariant based
signatures are derived by mapping interconnected data
structures. SigGraph [16] uses such signatures for brute-
force memory image scanning. Later, DIMSUM [15] at-
tempts to probabilistically locate data structure instances
in un-mappable memory. Further, numerous forensic
tools and reverse engineering systems [7, 14, 17, 20, 29]
make use of data structure traversal.

Compared with these techniques, DSCRETE does not
require data structure definitions or data structure field
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value profiles as input. Moreover, DSCRETE can intu-
itively interpret data structure contents (e.g., rendering
an image in memory). To the best of our knowledge, no
existing memory forensic tool has similar capability.

Binary reverse engineering techniques [14,17,24] can
reverse engineer data structure definitions (e.g., field
types) from binaries. They can also reverse engineer se-
mantic information to a certain extent. As such, they can
be used in forensic analysis. However, these techniques
can only reverse engineer semantics of generic data such
as timestamps and IP addresses. Such approaches are
hardly applicable to interpreting contents of application-
specific and encoded data structure fields.

Binary Component Identification and Reuse. At the
heart of the DSCRETE technique is application logic
reuse. DSCRETE uses dynamic binary program trac-
ing to identify which functional component of a binary
application is responsible for generating forensically in-
teresting output. It hence shares some common under-
lying techniques with existing binary identification and
reuse techniques [4, 12, 18] and program feature identifi-
cation [11, 28].

Similar to how DSCRETE employs a data dependence
graph, Wong et. al. [28] use program slicing to identify
the code region for a program feature. To further under-
stand which application components contribute to an ob-
served runtime behavior, Greevy et al. [11] use feature-
driven dynamic analysis to isolate computational units
of an application. In contrast, DSCRETE uses only an
application’s data dependence to identify candidates for
later construction of a memory scanner+renderer.

Binary Code Reutilization (BCR) [4] involves using
a combination of dynamic and static binary analysis to
identify and extract malware encryption and decryption
functions. The goal of BCR was to reuse such extracted
logic as a functional component in a different program
developed by the user. Inspector Gadget [12] uses dy-
namic slicing to identify specific malware behavior for
extraction and later reuse/analysis. Lin et al. [18] sug-
gested using dynamic slicing to identify applications’
functional components to compose reuse-based trojan at-
tacks. DSCRETE does not aim to extract application
logic from a target binary, but rather re-execute it in-
place to scan a memory image and render subject data
structure contents.

Virtuoso [8] involves using dynamic slicing to identify
logic from in-guest applications which could be reused
for virtual machine introspection. However, Virtuoso
is not able to handle input that is not encountered dur-
ing off-line training. A DSCRETE-generated scanner
can handle any input that the original P function could
handle. Later, VMST [10] and Hybrid-Bridge [22] use
system-wide instruction monitoring to allow introspec-
tion of one VM’s kernel data from another. VMST redi-

rects memory accesses for every instruction of the reused
logic, whereas DSCRETE only needs to replace the data
structure pointer at the closure point. Further, VMST re-
lies on system call definitions to start logic reuse, while
DSCRETE must automatically identify such a starting
point (i.e., the closure point) in the subject binary.

7 Conclusion

We have presented DSCRETE, a data structure con-
tent reverse engineering technique which reuses appli-
cation logic from a subject binary program to uncover
and render forensically interesting data in a memory im-
age. DSCRETE is able to recreate intuitive, human-
observable application output from the memory image,
without the burden of reverse engineering data structure
definitions. Our experiments with DSCRETE show that
this technique is able to effectively identify interpreta-
tion/rendering functions in a variety of real-world ap-
plications, and DSCRETE-generated scanner+renderer
tools can uncover and render various types of data struc-
ture contents (e.g., images, figures, and formatted files
and messages) from memory images with high accuracy.
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Abstract

Malware analysis relies heavily on the use of virtual
machines for functionality and safety. There are subtle
differences in operation between virtual machines and
physical machines. Contemporary malware checks for
these differences to detect that it is being run in a vir-
tual machine, and modifies its behavior to thwart being
analyzed by the defenders. Existing approaches to un-
cover these differences use randomized testing, or mal-
ware analysis, and cannot guarantee completeness.

In this paper we propose Cardinal Pill Testing—a
modification of Red Pill Testing [21] that aims to enu-
merate the differences between a given VM and a phys-
ical machine, through carefully designed tests. Cardinal
Pill Testing finds five times more pills by running fif-
teen times fewer tests than Red Pill Testing. We further
examine the causes of pills and find that, while the ma-
jority of them stem from the failure of virtual machines
to follow CPU design specifications, a significant num-
ber stem from under-specification of the effects of certain
instructions by the Intel manual. This leads to divergent
implementations in different CPU and virtual machine
architectures. Cardinal Pill Testing successfully enumer-
ates differences that stem from the first cause, but only
exhaustive testing or an understanding of implementa-
tion semantics can enumerate those that stem from the
second cause. Finally, we sketch a method to hide pills
from malware by systematically correcting their outputs
in the virtual machine.

1 Introduction

In today’s practice of analyzing malware [3, 14, 16, 26,
23], system virtual machines are widely used to facilitate
fine-grained dissection of malware functionalities (e.g.,
Anubis [4], TEMU [6, 24], and Bochs [17]). For exam-
ple, virtual machines can be used for dynamic taint anal-
ysis, OS-level information retrieval, and in-depth behav-

ioral analysis. Use of virtual machines also protects the
host, by isolating it from potentially malicious actions.

Malware authors have devised a variety of methods to
hinder automated and manual analysis of their code, such
as anti-dumping, anti-debugging, anti-virtualization, and
anti-intercepting [10, 11]. Recent studies [7, 18] show
that anti-virtualization and anti-debugging techniques
have become the most popular methods of evading
malware analysis. Chen et al. [8], find in 2008 that
2.7% and 39.9% of 6,222 malware samples exhibit anti-
virtualization and anti-debugging behaviors respectively.
In 2011, Lindorfer et al. [18] detect evasion behavior in
25.6% of 1,686 malicious binaries. In 2012, Branco et
al. [7] analyze 4 million samples and observe that 81.4%
of them exhibit anti-virtualization behavior and 43.21%
exhibit anti-debugging behavior.

Upon detection of a virtual environment or the pres-
ence of debuggers, malicious code can alternate execu-
tion paths to appear benign, exit programs, crash sys-
tems, or even escape virtual machines. It is critically im-
portant to devise methods that handle anti-virtualization
and anti-debugging, to support future malware analysis.
In this paper we focus only on anti-virtualization han-
dling, and specifically on CPU semantic attacks.

We observe that malware can differentiate between a
physical and a virtual machine due to numerous subtle
differences that arise from their implementations. Let us
call the physical machine an Oracle. Malware samples
execute sets of instructions with carefully chosen inputs
(aka pills), and compare their outputs with the outputs
that would be observed in an Oracle. Any difference
leads to detection of VM presence.

These attacks are successful because there are many
differences between VMs and physical machines, and
existing research in VM detection [21, 20, 15] uses ad-
hoc tests that cannot fully enumerate these differences.
Since malware is run within a VM, all its actions are
visible to the VM and all the responses are within a
VM’s control. If differences between a physical machine
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and a VM could be enumerated, the VM could use this
database to provide expected replies to malware queries,
thus hiding its presence. This is akin to kernel root kit
functionality, where the root kit hides its presence by in-
tercepting instructions that seek to examine processes,
files and network activity, and provides replies that an
uncompromised system would produce.

In this paper we attempt to enumerate all the differ-
ences between a physical machine and a virtual machine
that stem from their differences in instruction execution.
These differences can be used for CPU semantic attacks
(see Section 2). Our contributions are:

1. We improve on the previously proposed Red Pill
Testing [21, 20] by devising tests that carefully tra-
verse operand space, and explore execution paths in
instructions with the minimal set of test cases. We
use 15 times fewer tests and discover 5 times more
pills than Red Pill Testing. Our testing is also more
efficient, 47.6% of our test cases yield a pill, com-
pared to only 0.6% of Red Pill tests. In total, we dis-
cover between 7,487 and 9,255 pills, depending on
the virtualization technology and the physical ma-
chine being tested.

2. We find two root causes of pills: (1) failure of vir-
tual machines to strictly adhere to CPU design spec-
ification and (2) vagueness of the CPU design spec-
ification that leads to different implementations in
physical machines. Only 2% of our pills stem from
the second phenomenon.

3. We propose how to modify virtual machines to auto-
matically hide presence of detected pills from mal-
ware, through introduction of additional interrupt
vectors and by utilizing QEMU’s interrupt handling
mechanism for guest systems (Tiny Code Genera-
tion mode).

We emphasize that our testing methodology produces
test cases selected at random from chosen input parame-
ter ranges for each instruction – these ranges are chosen
to exercise all execution paths in the given instruction’s
handling. If a test case’s execution produces different
outputs in a physical versus a virtual machine we say that
this test case is a pill. While we only test one value from
each parameter’s range, if this test case is a pill, all val-
ues from the same parameter ranges would also lead to
pills because they are all handled by the same path in that
instruction’s execution. Let us call a pill resulting from
a test case a test pill and all related test cases that draw
parameter values from the same input ranges as the test
pill the individual pills. In this paper, all counts of pills
we report are for test pills. Similar practice is adopted by
related work [21, 20, 19]. The counts of individual pills
are many times higher.

In Section 2 we give an overview of various anti-
virtualization techniques. We survey related work in Sec-
tion 3 and propose Cardinal Pill Testing in Section 4.
We provide the details for the pills we find in Section 5
and analyze their root causes and completeness. In Sec-
tion 6 we propose how to hide most of these pills from
malware and we conclude in Section 7. All the scripts
and test cases used in our study are publicly released at
http://steel.isi.edu/Projects/cardinal/.

2 Anti-Virtualization Techniques

Anti-virtualization techniques can be classified into the
following broad categories [8, 15]:

CPU Semantic Attacks. Malware targets certain CPU
instructions that have different effects when executed un-
der virtual and real hardware. For instance, the cpuid
instruction in Intel IA-32 architecture returns the tsc bit
with value 0 under the Ether [9] hypervisor, but outputs 1
in a physical machine [22]. As another example found in
our experiment, when moving hex value 7fffffffh to
floating point register mm1, the resulting st1 register is
correctly populated as SNaN (signaling non-number) in a
physical machine, but has a random number in a QEMU-
virtualized machine. Malware executes these pills and
checks their output to identify presence of a VM.

Timing Attacks. Malware measures the time needed
to run an instruction sequence, assuming that an opera-
tion takes a different amount of time in a virtual machine
compared to a physical machine [11]. Contemporary vir-
tualization technologies (dynamic translation [5], byte-
code interpretation [17], and hardware assistance [9]) all
add significant delays to instruction execution that are
measurable by malware 1.

String Attacks. VMs leave a variety of traces inside
guest systems that can be used to detect their presence.
For instance, QEMU assigns the “QEMU Virtual CPU”
string to the emulated CPU and similar aliases to other
virtualized devices such as hard drive and CD-ROM. A
simple query to Windows registry would reveal the VM’s
presence immediately [8].

In this work we focus on handling the CPU semantic
attacks as they are the most complex category to explore
and enumerate. We note that string attacks can easily be
handled through enumeration and hiding of VM traces,
which can be done by comprehensive listing and com-
parison of files, processes and Windows registry with
and without virtualization. Also, timing attacks can be
handled through systematic lying about the VM clock,
as proposed in [15]. While neither of these approaches

1This method can also be used to detect debuggers, because step-
ping code adds large delays.
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is implemented today, both could be implemented as ex-
tensions of our work on lying to applications about CPU
semantics (Section 6).

3 Related Work

Martignoni et al. present the initial Red Pill work in
EmuFuzzer [21]. They propose Red Pill Testing—a
method that performs a random exploration of a CPU
instruction set and parameter spaces looking for pills.
Testing is performed by iterating through the following
steps: (1) initialize input parameters in the guest VM, (2)
duplicate the content in user-mode registers and process
memory in the host, (3) execute a test case, (4) compare
resulting states of register contents, memory and excep-
tions raised—if there are any differences, the test case is
a pill. In KEmuFuzzer [20], Martignoni et al. extend the
state definition to include the kernel space memory, and
test cases are embedded in the kernel to facilitate test-
ing of privileged instructions. In their recent work [19],
they use symbolic execution to translate code of a high-
fidelity emulator (Bochs) and then generate test cases
that can investigate all discovered code paths. Those test
cases are used to test a lower-fidelity emulator.

While these works are seminal in pill detection they
have several deficiencies that we seek to handle in this
paper: (1) EmuFuzzer [21] tests boundary and random
values for explicit input parameters, but does not cover
implicit parameters. Their approach cannot guarantee
that all types of pills will be detected. The symbolic
execution approach [19] will discover differences be-
tween low-fidelity and high-fidelity emulators but not
between an emulator and a physical machine. In addi-
tion, use of symbolic execution precludes test genera-
tion for floating-point instructions. We improve on these
works by using instruction semantics to carefully craft
test cases that explore all code paths. (2) Martignoni et
al. use QEMU with Intel VT-x (in [21]) or Bochs emu-
lator (in [19]) as an Oracle, while we use physical ma-
chines with no virtualization. This improves fidelity of
testing and ensures detection of more pills.

Dinaburg et al. [9] aim to build a transparent mal-
ware analyzer, Ether, by implementing analysis function-
alities out of the guest, using Intel VT-x extensions for
hardware-assisted virtualization. nEther [22] work finds
that Ether still has significant differences in instruction
handling when compared to physical machines, and thus
anti-virtualization attacks are still possible, i.e., Ether
does not achieve complete transparency.

Kang et al. [15] propose a method to identify anti-
emulation checks and modify virtual system states to
“lie” to the malware, using semi-manual execution trace
analysis. They record the malware trace in Ether, us-
ing it as an Oracle, and utilizing its debugging functions.

They then automatically taint the variables in this trace,
and manually identify those variables whose values are
used in an anti-emulation check under QEMU. Their
method requires manual intervention while we seek to
overcome differences in execution environments auto-
matically. Furthermore, since Ether is not identical to a
physical machine, this approach will fail to detect some
differences between a VM and a physical machine that
we do detect.

Other works [25, 18, 2] focus on detecting anti-
virtualization functions of malicious binaries based on
profiling and comparing their behavior in virtual and
physical machines. These works do not uncover the
details of anti-virtualization methods that each indi-
vidual binary employs, and they can only detect anti-
virtualization checks deployed by their malware sam-
ples, while we detect many more differences that could
be used in future anti-virtualization checks.

4 Cardinal Pill Testing

We now describe the architecture, test case generation
and testing methodology for our Cardinal Pill Testing.

4.1 Architecture Overview
Our testing architecture is shown in Figure 1. It consists
of three physical workstations: a master, a slave hosting
a virtual machine (VM), and a slave running Windows 7
Pro x86 on a bare-metal as reference (Oracle). The slaves
are connected to the master through two separate serial
wires. The master is responsible for generating test cases
(Section 4.3) and scheduling their execution in slaves. In
both slaves, we configure an additional daemon in the
testing system that helps the master set up a specific test
case in each testing round.

Master Slaves

VM Oracle

Figure 1: Architecture Overview

4.2 Logic Execution
The execution logic of our Cardinal Pill Testing is il-
lustrated in Figure 2. The master maintains a debugger
that issues commands to and transfers data back from the
slaves. The Oracle and the VM have the same test case
set and the daemon; we only show one pair of test case

3
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and daemon in Figure 2 for clarity. We set the slaves in
kernel debugging mode so that they can be completely
frozen when necessary. At the beginning, the master re-
boots the slave (either VM or Oracle) for fresh system
states. After the slave is online, the daemon signals its
readiness to the master, which then evaluates test cases
one by one in terms of rounds.

system
startup

ready
testcase name

start
system 
loading

infinite
loop

copy

release

ready

state init.

copy

break loop

release testing
instructionready

copy

next testcase name

debugger testcase daemon

ready

Raw State

Initial State

Final State

one round

idle
reboot slave

Figure 2: Logic Execution

We define the state of a physical or virtual machine as
a set of all user and kernel registers, and the data stored
in the part of code, data, and stack segments that our test
case accesses for reading or writing.

In each round, the master interacts with the slave in
three main phases. In the first phase, it issues a test case
name to the daemon, which resides in a slave, and the
daemon will ask the slave system to load this test case
stored in its local disk. Then the system starts allocat-
ing memory, handles, and other resources needed by the
test case program. After this system loading completes,
the test case executes an interrupt instruction (int 3),
which notifies the master and halts the slave. At this mo-
ment, the master saves the raw state of the slave locally.

We use this raw state to identify axiom pills (see Sec-
tion 4.3), instead of discarding it, as is done by Emu-
Fuzzer [21] and KEmuFuzzer [20].

In the second phase, the master releases the slave
which then executes the test case’s initialization code and
raises the second interrupt. Instead of using the same ini-
tial system state for all test cases, we carefully tailor reg-
ister and memory bits for each test case, such that all pos-
sible exceptions and semantic branches can be evaluated
(see Section 4.3). The master copies back the resulting
initial state and releases the slave again.

In the third phase, the slave executes the actual instruc-
tion being tested and raises the last interrupt. The master
will store this final state and use it to determine whether
the tested instruction along with the initial state is a car-
dinal pill (see Section 5.1). It may happen that a test case
drives the slave into an infinite loop or crashes itself or its
OS. To detect this, we set up an execution time limit for
each test case, so that the master can detect incapacitated
slaves and restore them.

4.3 Test Case Generation

The quality of test cases is the key component of effi-
cient pill discovery. The Red Pill work [21] generates
test cases via two approaches: random generation and
CPU-assisted generation. The former method random-
izes data and code without conforming to any semantic
rules, which may encode invalid instruction sequences.
The latter combines each known opcode with some pre-
defined operand values. Both approaches have the fol-
lowing deficiencies: (1) They only consider operands en-
coded in the instruction and fail to consider implicit ar-
guments whose value may lead instruction execution to
a different path in the code. For example, rep stosb
takes no arguments but it depends on multiple register
values. It stores contents of al register at the address
specified by es:(e)di, and does this ecx times. Dif-
ferent values placed into those registers will result in dif-
ferent scenarios for rep stosb command use, such
as writing into a valid versus invalid memory location,
overwriting the instruction itself, using a zero, negative
or very large positive value for the number of repeti-
tions, etc. (2) They generate operands for instructions
at random, which also does not explore all possible code
paths. Our test case generation algorithm addresses both
of these challenges.

4.3.1 Testing Goals

We aim to generate a minimal set of test cases for each
instruction that explore all possible code paths in this in-
struction’s handling. We start from the definitions of in-
struction handling recorded in a CPU manual. In this

4
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work we focus on Intel’s x86 CPU processor [13]. The
manual details inputs and outcomes for each instruction,
for normal execution and for exception handling. We call
register modifications and exceptions whose semantics
are fully defined in the manual defined behaviors. An
instruction may also affect registers and raise exceptions
that are specified in the manual as affected but the man-
ner of their modification by the instruction is not speci-
fied. We call these modifications undefined behaviors.

For example, the aaa instruction adjusts the sum of
two unpacked binary coded decimal (BCD) values to
create an unpacked BCD result. The al register is the
implied source and destination operand for this instruc-
tion. It also reads the AF flag in the EFLAGS register and
writes to the ah register. Its normal execution will set AF
and CF flags to 1 if the adjustment results in a decimal
carry; otherwise it will set them to 0. This is the defined
behavior for the aaa instruction. In our testing we find
that physical machines also set or reset the SF, ZF, and
PF flags. While these flags are listed as affected by the
instruction in the manual, there are no details of how they
are calculated or what semantics they carry for the aaa
instruction. This is the undefined behavior for the aaa
instruction. In our work we explore both defined and un-
defined behaviors for each instruction, because both of
these can be the source of pills.

Based on these observations, we set up the following
goals of our test case generation algorithm:

• For defined behaviors for a given instruction, all
branches should be evaluated. All flag bit states that
are read implicitly or updated using results must be
considered.

• All potential exceptions must be raised, such as
memory access and invalid input arguments.

• Undefined behaviors should be investigated to re-
veal undocumented implementation specifics.

In the following sections, we first illustrate our test case
template and then discuss how we group instructions and
populate the template.

4.3.2 Test Case Template

We program a template to automatically generate test
cases for most instructions, as shown in Figure 3. This
program notifies the master and then halts the slave as
soon as it enters the main function (line 2), so the master
can save the states. The same interaction happens at lines
27, 29, and 38, after the test case completes a certain step.
Then the program installs a structured exception handler
for the Windows system (line 4 – 7). If an exception oc-
curs, the program will ignore Windows’ built-in excep-

1 main proc
2 int 3 ; Raw State
3
4 push offset handler ; install SEH
5 assume fs:nothing
6 push fs:[0]
7 mov fs:[0], esp
8
9 ;; populate reg and memory

10 mov eax, 0000001bh
11 mov ebx, 00001000h
12 ...
13 ;; double precision floating-point
14 mov eax, 00403080h
15 mov dword ptr [eax], 0h
16 mov dword ptr [eax+4], 7ff00000h ; +Infi
17 ...
18 ;; single precision floating-point
19 mov eax, 0040318ch
20 mov dword ptr [eax], 0ff801234h ; SNaN
21 ...
22 ;; double-extended precision FP
23 ...
24 ;; unsupported double-extended precision
25 ...
26 [state_init] ; specific init
27 int 3 ; Initial State
28 [testing_insn] ; instruction in test
29 int 3 ; Final State
30 call ExitProcess
31 handler:
32 ;; push exception information onto stack
33 mov edx, [esp + 4] ; excep_record
34 mov ebx, [esp + 0ch] ; context
35 push dword ptr [edx] ; excep_code
36 ...
37 push dword ptr [edx + 0c0h] ; eflags
38 int 3 ; Final State (exception)
39 mov eax, 1h
40 call ExitProcess
41 main endp
42 end main

Figure 3: Test Case Template (in MASM assembly)

tion handling routine and jump to line 31 directly, so we
can save the system state before exception handling.

From line 9 to 25, we perform general-purpose ini-
tialization. Registers and memory are populated using
pre-defined values, including all floating point and in-
teger formats. This step occurs in all test cases and the
carefully chosen, frequently used values, are stored in the
registers to minimize the need for specific initialization.
After this, the specific initialization (line 26) makes tai-
lored modifications to the numbers, if needed for a given
test case. For example, the eax is set to 1bh at line
10 for all test cases. One particular test case may need
0ffh value in this register and will update it at line 26.
The actual instruction is being tested at line 29, where all
defined and undefined behaviors use will be evaluated in
various test cases. When compiling test cases, we disable
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linker optimization and use a fixed base address, which
does not affect testing but eases the interaction between
the master and slaves.

4.3.3 Instruction Grouping

To test each instruction’s behaviors in different execution
stages, we need to vary the content in all registers and
memory that the instruction reads. As discussed earlier
and demonstrated in our evaluation in Section 5, random
test generation cannot guarantee coverage of all code
paths and execution branches. In our method, we manu-
ally analyze instruction execution flows defined in Intel
manuals [13] and classify all possible input parameter
values into ranges that lead to distinct execution flows.

IA-32 CPU architecture contains 906 instruction
codes, and a human must reason about each to identify
its inputs and outputs and how to populate them to test all
execution behaviors. To reduce the scale of this human-
centric operation, we first group the instructions into five
categories: arithmetic, data movement, logic, flow con-
trol and miscellaneous. Arithmetic and logic category
are further subdivided into general-purpose and FPU cat-
egories based on the type of their operands, We then
define parameter ranges to test per category, and adjust
them to fit finer instruction semantics as described be-
low. This grouping greatly reduces human time invest-
ment and reduces chance of human errors. It took one
person on our team a month and a half to devise all test
cases. Table 1 shows the number of different mnemon-
ics, examples, and parameter ranges we evaluate for each
category.

Arithmetic Group. Instructions in this group first fetch
arguments and then perform arithmetic operations. The
arguments include actual data bits they operate on and
certain flag bits that decide execution branches. We clas-
sify instructions in this group into two subgroups, de-
pending on whether they work only on integer registers
(general-purpose group), or also on floating point regis-
ters (FPU group). The instructions in the FPU group in-
clude instructions with x87 FPU, MMX, SSE, and other
extensions.

Based on the argument types and sizes, branch con-
ditions, and the number of arguments, we divide both
subgroups into finer partitions. For example, aaa, aas,
daa, and das in the general-purpose subgroup all com-
pare the al register (holding one packed BCD argument
8-bits long) with 0fh and check the adjustment flag AF
in the EFLAGS register. This decides the output of the
instruction. To test instructions in this set we initial-
ize the al register to minimal (00h), maximal (0ffh),
boundary (0fh), and random values in different ranges
([01h, 0eh], [10h, 0feh]). We also flip AF be-
tween clear and set for different al values.

If a mnemonic takes two parameters, we select at least
three value pairs to ensure that a greater-than, equal-to,
and less-than relationship between them is satisfied in
our test set. For the FPU subgroup, the parameter ranges
are separated based on the sign, biased exponent, and
significand, which splits all possible values into 10 do-
mains: ±infi, ±normal, ±denormal, 0, SNaN, QNaN,
and QNaN floating-point indefinite. We sample values
from all these ranges to test behaviors in the arithmetic
FPU group. For example, fadd, fsub, fmul, and
fdiv each use one operand that can be specified using
four different addressing modes; one of them is m64fp,
which stands for a double precision float stored in mem-
ory. These instructions add/sub/mul/div the st(0) reg-
ister with the operand’s value and store the result in
st(0). In addition, they also read control bits in the
mxcsr register and fdiv checks the divide-by-zero ex-
ception. In our test cases we generate values for the two
floating point operands from the 10 identified ranges and
permute the relevant bits in the mxcsr register. Because
instructions in this subgroup can also access memory to
read operands, we devise additional test cases to evalu-
ate the memory management unit. We place the m64fp
argument in and out of the valid address space of a data
segment, into a segment with and without required priv-
ileges, and into a segment that is paged in and paged out
of memory. By combining these test cases together, all
potential memory access exceptions can be raised along
with all potential arithmetic exceptions.

Data Movement. Data movement instructions copy
data between registers, main memory, and peripheral de-
vices and usually do not modify flag bits. There are sev-
eral execution branches that we explore in tests. The
source and the destination operands may be located out-
side segment limits. If the effective address is valid but
paged out, a page-fault exception will be thrown. If
alignment checking is enabled and an unaligned mem-
ory reference is made while the current privilege level is
3, the system will raise an alignment exception. Some in-
structions also check direction and conditional flags, and
a few others validate the format of floating point values.
All these input parameters and the states that influence
an instruction’s execution outcome must be tested.

For example, we group 30 conditional movement in-
structions cmovcc r32, r/m32 of distinct cc to-
gether because they move 32 bit signed or unsigned inte-
gers from the second operand (32 bit register or memory)
to the first operand (32 bit register). The cc conditions
are determined by the CF, ZF, SF, OF and PF flags. To
access arguments outside the segment limit, we compile
our test cases with the fixed base (Section 4.3.2). The
starting addresses for code, data, and stack segment are
401000h, 403000h, and 12e000h respectively, and
each has a size of 4KB. It is difficult to test page faults
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Category Instruction Count Example Instructions Parameter Coverage

arithmetic

48 aaa, add, imul, shl, sub
min, max, boundary values, randoms in
different ranges

336 addpd, vminss, fmul, fsqrt, roundpd

±infi, ±normal, ±denormal, ±0,
SNaN, QNaN,
QNaN floating-point indefinite,
randoms

data mov 232 cmova, fild, in, pushad, vmaskmovps
valid/invalid address, condition flags,
different input ranges

logic

64 and, bound, cmp, test, xor
min, max, boundary values, >, =, <,
flag bits

128 andpd, vcomiss, pmaxsb, por, xorps
±infi, ±normal, ±denormal, ±0,
SNaN, QNaN,
QNaN FP indefinite, >, =, <, flag bits

flow ctrl 64 call, enter, jbe, loopne, rep stos
valid/invalid destination, condition
flags, privileges

misc 34 clflush, cpuid, mwait, pause, ud2
analyze manually and devise dedicated
input

Table 1: Instruction Grouping

directly because the Windows system does not provide
APIs for page swapout. To work around this, we run
other memory-consuming programs between test cases
that use memory operands to force the values to be paged
out of memory. In our evaluation, we find that this strat-
egy works well and we successfully raise page faults
when we need to test them. To raise the alignment check-
ing exception, we store instruction operands at unaligned
memory addresses. We permute the condition bits in the
same way as we do for testing of arithmetic instructions.

Logic Group. Logic instructions test relationship and
properties of operands and set flag registers correspond-
ingly. We divide these instructions into general-purpose
and FPU depending on whether they use EFLAGS reg-
ister only (general-purpose) or they use both EFLAGS
and mxcsr registers (FPU). We further partition logic
instructions based on the flag bits they read and argument
types and sizes. When designing test cases, in addition to
testing minimal, maximal, and boundary values for each
parameter, for instructions that compare two parameters
we also generate test cases where these parameters sat-
isfy larger-than, equal, and less-than conditions.

For example, one of the subgroups has bt, btc, btr,
and bts instructions because all of them select a bit from
the first operand at the bit-position designated by the sec-
ond operand, and store the value of the bit in the carry
flag. The only difference is how they change the selected
bit: btc complements; btr clears it to 0; and bts sets
it to 1. The first argument in this subgroup of instructions
may be a register or a memory address of size 16, 32, or
64, and the second must be a register or an immediate
number of the same size. If the operand size is 16, for
example, we generate four input combinations (choosing

the first and the second argument from 0h, 0ffffh
values), and we repeat this for CF = 0 and CF = 1.
Furthermore, we produce three random number combi-
nations that satisfy less-than, equal and greater-than re-
lationships. While the operand relationship does not in-
fluence instruction execution in this case, it does for other
subgroups, e.g. the one containing the cmp instruction.

In the FPU subgroup, we apply similar rules to gen-
erate floating point operands. We further generate test
cases to populate the mxcsr register, which has control,
mask, and status flags. The control bits specify how to
control underflow conditions and how to round the re-
sults of SIMD floating-point instructions. The mask bits
control the generation of exceptions such as the denor-
mal operation and invalid operation. We use ldmxcsr
to load different values into mxcsr and test instruction
behaviors under these scenarios.

Flow Control. Similar to logic instructions, flow con-
trol instructions also test condition codes. Upon satisfy-
ing jump conditions, test cases start execution from an-
other place. For short or near jumps, test cases do not
need to switch the program context; but for far jumps,
they must switch stacks, segments, and check privilege
requirements.

The largest subgroup in this category is the conditional
jump jcc, which accounts for 53% of flow control in-
structions. Instructions in this group check the state of
one or more of the status flags in the EFLAGS register
(CF, OF, PF, SF, and ZF) and, if the required condition
is satisfied they perform a jump to the target instruction
specified by the destination operand. A condition code
(cc) is associated with each instruction to indicate the
condition being tested for. In our test cases we vary the
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status flags and set the relative destination addresses to
the minimal and maximal offset sizes of byte, word, or
double word as designated by mnemonic formats. For
example, ja rel8 jumps to a short relative destination
specified by rel8 if CF = 0 and ZF = 0. We per-
mute CF and ZF values in our tests, and generate the
destination address by choosing boundary and random
values from the ranges [0, 7fh] and [8fh, 0ffh].

For far jumps like jmp ptr16:16, the destination
may be a conforming or non-conforming code segment
or a call gate. There are several exceptions that can occur.
If the code segment being accessed is not present, a #NP
(not present) exception will be thrown. If the segment
selector index is outside descriptor table limits, an ex-
ception #GP (general protection) will signal the invalid
operand. We devise both valid and invalid destination
addresses to raise all these exceptions in our test cases.

Miscellaneous. Instructions in this group provide
unique functionalities and we manually devise test cases
for each of them that evaluate all defined and undefined
behaviors, and raise all exceptions.

5 Detected Pills

We detect pills using our implementation of the archi-
tecture shown in Figure 1. We use two physical ma-
chines in our tests as Oracles: (O1) an Intel Xeon E3-
1245 V2 3.40GHz CPU, 2 GB memory, with Windows 7
Pro x86, and (O2) Xeon W3520 2.6GHz, 512MB mem-
ory, with Windows XP x86 SP3. The VM host has the
same hardware and guest system as the first Oracle, but
it has 16 GB memory, and runs Ubuntu 12.04 x64. We
test QEMU (VT-x), QEMU (TCG), and Bochs, which
are the most popular virtual machines deploying different
virtualization technologies: hardware-assisted, dynamic
translation, and interpretation respectively. We allocate
to them the same size memory as in the Oracle. We test
QEMU versions 0.14.0-rc2 (Q1, used by EmuFuzzer),
1.3.1 (Q2), 1.6.2 (Q3), and 1.7.0 (Q4), and Bochs ver-
sion 2.6.2. The master has an Intel Core i7 CPU and
installs WinDbg 6.12 to interact with the slaves. For test
case compilation, we use Microsoft Assembler 10 and
turn off all optimizations. Our test cases take around 10
seconds to run on a physical machine and 15–30 seconds
to run on a virtual machine.

Counting the different addressing modes, there are
1,653 instructions defined in the IA-32 Intel manual [13].
Out of these, there are 906 unique mnemonics. We gen-
erate a total of 19,412 test cases for these instructions.

5.1 Evaluation Process
We classify system states into user registers, exception
registers, kernel registers, and user memory. The user

registers contain general registers such as eax and esi.
The exception registers are eip, esp, and ebp. The
differences in the exception registers imply differences
in the exceptions being raised. The kernel registers are
used by the system and include gdtr, idtr, and oth-
ers. In our evaluation, we do not populate kernel regis-
ters in the initialization step because this may crash the
system or lead it to an unstable status. Further, initial-
ization of kernel registers would require a system reboot
and would make testing prohibitively expensive in a vir-
tual machine. But, kernel register contents are saved as
part of our states and compared to detect differences be-
tween physical and virtual machines.

For each test case, we first examine whether the user
registers, exception registers, and user memory are the
same in the Oracle and the virtual machine in the initial
state. If they are different, it means that the VM fails to
virtualize the initialization instructions (line 26 in Fig-
ure 3) to match their implementation in the Oracle. We
mark this test case as “fatal” and discard it. If the initial
values in these locations agree with each other, we then
compare the final states. A test case will be tagged as a
pill in two scenarios: (2) when the user registers, excep-
tion registers, and memory in the final states are different
and (2) when the values in a certain kernel register are the
same in the initial states but different in the final states.

5.2 Results

Table 2 shows the results of comparing various virtual
machines to Oracle1 (O1).

The second column shows the number of pills for dif-
ferent virtual machines. Both QEMU (TCG) and Bochs
exhibit moderate transparency—almost half of the test
cases report different states between O1 and VMs. For
Q2 (VT-x) 38.5% of our test cases result in pills, but
there were no fatal cases. The pills we find for Q2 (VT-
x) occur because QEMU does not preserve the fidelity
provided by hardware assistance. Therefore, we should
be careful when using hardware-assisted VMs for fidelity
purposes. Their transparency depends on how they uti-
lize the hardware extension.

The third column counts test cases that crash the sys-
tem. For QEMU (TCG), one test case crashes the Oracle
1 and another one crashes the virtual machine. Another
five crash both of them. For QEMU (VT-x) and Bochs,
two test cases crash the physical and the virtual machine.

The number of fatal test cases are shown in the last
column. All of them are related to FPU movement in-
structions. In some test cases that use denormals, SNaN,
or QNaN values, the virtual machines could not populate
the operand register as required. We note that we find no
fatal test cases for VT-x technology.

Table 3 shows the breakdown of pills per instruction
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VMs pills crash fatal
Q1 (TCG) 9,255/47.7% 7/<0.1% 1,378/7%
Q2 (TCG) 9,201/47.4% 7/<0.1% 1,376/7.1%
Q1 (VT-x) 7,523/38.7% 2/<0.1% 3/<0.1%
Q2 (VT-x) 7,478/38.5% 2/<0.1% 0/0%

Bochs 8,958/46.1% 2/<0.1% 950/4.9%

Table 2: Results Overview

Category Q1 (TCG) Q2 (TCG) Q1 (VT-x) Q2 (VT-x) Bochs Total tests

arith
gen 877 872 633 626 920 2,702
FPU 4,525 4,486 3,619 3,603 4,245 6,743

data mov 1,788 1,780 1,539 1,524 1,804 4,394

logic
gen 371 365 345 346 363 2,185
FPU 1,446 1,447 1,132 1,127 1,362 2,192

flow ctrl 164 166 172 169 171 1,017
misc 84 85 83 83 93 179
total 9,255 9,201 7,523 7,478 8,958 19,412

Table 3: Pills per Instruction Category

category from Figure 1. The FPU arithmetic, FPU logic
and data movement categories contain the most pills—
around 83%. Table 4 shows the breakdown of the pills
with regard to the resource that is different between a
physical and a virtual machine in the final state. Most
pills occur due to differences in the kernel registers.

5.2.1 Comparison with EmuFuzzer Pills

EmuFuzzer [21] generates 3 million test cases and the
authors select 10% randomly to test in different vir-
tual machines. The authors publish 20,113 red pills for
QEMU 0.14.0-rc2 which is about 7% of the tested cases.
Because they do not publish the entire test case set, we
cannot directly compare our test cases with theirs, but
instead we only compare the pills found by them and by
us.

A unique pill is a pill whose mnemonic and parameter
values do not appear in any other pill. We use the same
QEMU version as EmuFuzzer (Q1 (TCG)) and run all
the 20,113 red pills they found. We successfully extract
operand values for 20,102 pills. After removing dupli-
cate pills, there are 1,850 unique red pills (9%) and 136
different instruction mnemonics found by EmuFuzzer.
Our 9,255 pills for Q1 (TCG) are all unique and there
are 630 different instruction mnemonics. Furthermore,
out of our 19,412 test cases we find 9,255 pills, which is
47.6% yield, while EmuFuzzer’s yield is 1,850/300,000
= 0.6%. While direct comparison between our pills and
EmuFuzzer’s is difficult because both approaches select
values of operands to test at random from specific ranges,
we compare the ranges of the pills. This comparison
shows that we detect all types of pills found by Emu-
Fuzzer.

We conclude that our approach is more comprehen-
sive than EmuFuzzer’s and far more efficient. We cover
all instruction mnemonics in our tests and find pills for
494 more instructions than EmuFuzzer. Overall we find
five times more pills running 300,000/19,412 = 15 times
fewer tests than EmuFuzzer. This illustrates the signif-
icant advantage of careful generation of operand values
in tests over random fuzzing.

We further wanted to compare our pills with pills
found by [19]. The Hi-Fi tests for Lo-Fi emulators [19]
generate 610,516 test cases, out of which 60,770 (9.95%)
show different behaviors in QEMU, and 15,219 (2.49%)
show different behaviors in Bochs. Since the tests used
for [19] are not publicly released we could not compare
against them.

5.2.2 Root Causes of Pills

The differences detected by a pill can be due to regis-
ters, memory or exceptions that an instruction was sup-
posed to modify, according to the Intel manual [13]. We
call these instruction targets defined resources. However
there are a number of instructions defined in the Intel
manual that may write to some registers (or to select
flags) but the semantics of these writes are not defined by
the manual. We say that these instructions affect unde-
fined resources. For instance, the aas instruction should
set the AF and CF flags to 1 if there is a decimal bor-
row; otherwise, they should be cleared to 0. The OF, SF,
ZF, and PF flags are listed as affected by the instruction
but their values are undefined in the manual. Thus the
AF and CF flags are defined resources for the instruction
aas and OF, SF, ZF, and PF flags are undefined.

Table 5 shows the number of pills that result from dif-
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Category Q2 (TCG) Q2 (VT-x) Bochs
user reg 2,416 34 1,671
excp reg 1,578 21 1,566
kerl reg 8,398 7,457 8,572

mem cont 46 9 20

Table 4: Details of Pills with Regard to the Resource Being Different in the Final State—in Some Cases Multiple
Resources Will Differ so the Same Pill May Appear in Different Rows

ferences in undefined and defined resources for each in-
struction category compared to Oracle 1.

We note that a small number of pills that relate to
general-purpose arithmetic and logic instructions occur
because of different handling of undefined resources by
physical and virtual machines. These comprise roughly
2% of all the pills we found.

For pills originating from defined resources, we ana-
lyze their root causes and compare them against those
found by the symbolic execution method [19]. We find
all root causes listed in [19] that are related to general-
purpose instructions and QEMU’s memory management
unit.

In this work we do not extensively analyze pills that
originate from differences in kernel-space handling of
instructions, and thus cannot compare their root causes
with those specified in [19]. Due to the extensive time re-
quired for testing (reboot is required after each test case)
we leave this for future work.

Because the symbolic execution engine in [19] does
not support FPU instructions, we discover additional
root causes that are not captured by their method. First,
we find that QEMU does not correctly update 6 flags
and 8 masks in the mxcsr register when no exception
happens, including invalid operation flag, denormal
flag, precision mask, overflow mask. It also fails to
update 7 flags in fpsw status register such as stack fault,
error summary status, and FPU busy. Second, QEMU
fails to throw five types of exceptions when it should,
which are: float multiple traps, float multiple faults,
access violation, invalid lock sequence, and privi-
leged instruction. Third, QEMU tags FPU registers
differently from Oracles. For example, it sets fptw tag
word to “zero” when it should be “empty”, and sets it to
“special” when “zero” is observed in Oracles. Finally,
the floating-point instruction pointer (fpip, fpipsel)
and the data pointer (fpdp, fpdpsel) are not set
correctly in certain scenarios. The details of all these
root causes are given on our Web page.

5.2.3 Identifying Persistent Pills

Differences found in our tests between an Oracle and a
virtual machine may not be present if we use a differ-
ent Oracle or a different virtual machine, i.e. a differ-

ence may stem more from an implementation bug spe-
cific to that CPU or VM version than from an imple-
mentation difference that persists across versions. Fur-
thermore, outdated CPUs may not support all instruction
set extensions that are available in recent ones. Finally,
recent releases of VM software usually fix certain bugs
and add new features, which may both create new differ-
ences and remove the old differences between this VM
and physical machines. We hypothesize that transient
pills are not useful to malware authors because they can-
not predict under which hardware or under which virtual
machine their program will run, and we assume that they
would like to avoid false positives and false negatives.

To find pills that persist across hardware and VM
changes, we perform our testing on multiple hardware
and VM platforms. We select 13 general instructions that
can be executed in all x86 platforms (aaa, aad, aas,
bsf, bsr, bt, btc, btr, bts, imul, mul, shld,
shrd) and generate 2,915 test cases for them to capture
more pills that are caused by modification of undefined
resources. We evaluate this set on the two physical ma-
chines (Oracle 1 and Oracle 2), three different QEMU
versions (Q2, Q3, and Q4), and Bochs. We find 260 test
cases that result in different values in EFLAGS register
in Oracle 1 and Oracle 2 and will thus lead to transient
pills. Bochs’ behavior for these test cases is identical to
the behavior of Oracle 2. Out of the remaining 2,655 test
cases, we find 989 persistent pills that generate different
results in the three QEMU virtual machines when com-
pared to the physical machines. They are all related to
undefined resources. Bochs performs surprisingly well
and does not have a single pill for these particular test
cases. Thus we could not find persistent pills that would
differentiate between any physical and any virtual ma-
chine in our tests but we found pills that can differentiate
between any of the QEMU VM versions and configura-
tions that we tested and any of the physical machines we
tested.

We further investigate the persistence of pills that are
caused by modifications to undefined resources, across
different physical platforms. We select five physical ma-
chines with different CPU models in DeterLab [1]. Out
of 195+23 = 218 pills that were found for Oracle 1 and
Q2 (TCG) we were able to map 212 pills to all five phys-
ical machines (others involved instructions that did not
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Category Q2 (TCG) Q2 (VT-x) Bochs

arith
gen 195/677 0/626 194/726
FPU 0/4,486 0/3,603 0/4,245

data mov 0/1,780 0/1,524 0/1804

logic
gen 23/342 0/346 20/343
FPU 0/1,447 0/1,127 0/1,362

flow ctrl 0/166 0/169 0/171
misc 0/85 0/83 0/93

Table 5: Pills using Undefined/Defined Resources

Instruction OF SF ZF AF PF CF

aaa
0 0 ZF (ax) PF (al + 6) or PF (al) 0
0 0 ZF (al) PF (al) 0

aad
F F F
0 0 0

aam 0 0 0

aas
0 0 ZF (ax) PF (al + 6 or al) 0
0 0 ZF (al) PF (al) 0

and, or, xor, text 0

bsf, bsr
I I I I I
0 0 F 0 0

bt, bts, btr, btc I I I I
daa, das 0
div, idiv I I I I I I

mul, imul
I I I I
F F 0 F
F 0 0 F

rcl, rcr, rol, ror
I
F

OF(1-bit rotation)

sal, sar, shl, shr shld, shrd
I I
R 0
0 F

Table 6: Undefined EFLAGS Behaviors

exist in some of our CPU architectures). Fifty of those
were persistent pills—the undefined resources were set
to the same values in physical machines. We conclude
that modifications to undefined resources can lead to pills
that are not only numerous but also persistent in both
physical and virtual machines. This further illustrates the
need to understand the semantics of these modifications
as this would help enumerate the pills and devise hiding
rules for them without exhaustive tests.

5.2.4 Completeness of Pills

Our test cases were designed to explore effects of input
parameters on defined resources. We thus claim that our
test cases cover all specified execution branches for user-
space instructions and part for kernel instructions defined
in Intel manuals. Our test pills should thus include all
possible individual pills that can be detected for defined
resources in user space. We cannot claim the same com-

pleteness for test pills that relate to defined or undefined
resources in kernel space since we do not extensively test
instructions that manipulate these resources, due to the
reboot requirement.

We now further explore the pills stemming from mod-
ifications to undefined resources, to evaluate their impact
on the completeness of our pill sets and to attempt to
devise semantics of these modifications. The only un-
defined resources from the Intel manual are flags in the
EFLAGS register.

We analyze the user-space instructions that affect one
or more flags in the EFLAGS register in an undefined
manner. We generate additional test cases for each in-
struction to explore the semantics of modifications to un-
defined resources in each CPU. Although the exact se-
mantics differ across CPU models, we consider four se-
mantics of flag modifications that are the superset of be-
haviors we observed across tested hardware and software
machines: a flag might be (1) cleared, (2) remain intact,
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(3) set according to the ALU output at the end of an in-
struction’s execution, or (4) set according to an ALU out-
put of an intermediate operation.

We run our test cases on a physical or virtual machine
in the following manner. For each instruction, we set an
undefined flag and execute an operation that yields a re-
sult inconsistent with the flag being set; for example, ZF
is set while the result is 0. If the flag remains set we
conclude that the instruction does not modify it. Simi-
larly, we can test if the flag is set according to the final
result. If none of these tests yield a positive result, we go
through the sub-operations in a given instruction’s imple-
mentation, as defined in the CPU manual, and discover
which one modifies the flag. For example: aaa adds 6
to al and 1 to ah if the last four bits are greater than 9
or if AF is set. The instruction affects OF, SF, ZF and PF
in an undefined manner. We find that in some machines
ZF and PF are set according to the final result, while in
others PF is set according to an intermediate operation,
which is al = al + 6.

Table 6 shows different semantics for each instruc-
tion, which are consistent across 5 different CPU mod-
els. Empty cells represent defined resources for a given
instruction. Character “I” means the flag value is intact
while “F” means that the flag is set according to the final
result. Otherwise, the flag is set to the value in the cell.

To detect pills between a given virtual machine and
one or many physical machines we repeat the same tests
on the virtual machine, and look for differences in in-
struction execution semantics. If many physical ma-
chines are compared to a virtual machine we look for
such differences where physical machines consistently
handle a given instruction in a way that is different from
how it is handled in a virtual machine. For example in Ta-
ble 6, instruction aad either clears OF, AF and CF flags
or sets them according to the final result. If a virtual ma-
chine were to leave these flags intact we could use this
behavior as a pill.

Our test methodology will discover all test pills (and
thus all possible individual pills) related to modifications
of undefined resources by user-space instructions for a
given physical/virtual machine pair. Since the seman-
tics of undefined resource modifications vary greatly be-
tween physical CPU architectures, as well as between
various virtual machines and their versions, all possible
test pills cannot be discovered in a general case.

To summarize, our testing reveals pills that stem from
instruction modifications to user-space or kernel-space
registers. These modifications can further occur on de-
fined or on undefined resources for a given instruction.
We claim we detect all test pills (and thus all the indi-
vidual pills) that relate to modifications of defined, user-
space resources. We can claim that because we fully un-
derstand semantics of these modifications, and all phys-

ical machines we tested strictly adhere to this seman-
tics as specified in the manual. We cannot claim com-
pleteness for pills that relate to modifications of unde-
fined resources because physical machine behaviors dif-
fer widely for those. We further cannot claim complete-
ness for pills that relate to modifications of kernel-space
resources because we do not properly test initialization
of these resources – such testing would require frequent
reboots and would significantly prolong testing time.

5.2.5 Axiom Pills

In addition to comparing final states across different plat-
forms we also compare raw states upon system loading.
We define an axiom pill as a register or memory value
whose raw state is consistently different between a phys-
ical machine and a given virtual machine. This pill can
be used to accurately diagnose the presence of the given
virtual machine. We select 15% of our test cases and
evaluate them on Oracle 2, Q2, Q3 and Bochs. The ax-
iom pills are shown in Table 7. For example, the value of
0ffffffffh in the edx register can be used to diag-
nose the presence of Q2 (VT-x).

6 Improving Virtualization Transparency

EmuFuzzer [21] defines the virtualization transparency
as how closely a virtual machine resembles the physi-
cal one. A perfect transparency means that programs
in guests must not be able to tell if they are being ex-
ecuted in a virtual machine or not. The pills we find
reflect the flaws of current virtual machine implemen-
tations, and specifically persistent pills reflect persistent
flaws that can be used effectively by malware to detect
virtualization. It would thus be desirable to develop tech-
niques that hide the presence of reliable pills from mal-
ware. This could be achieved via multiple ways: (1)
through patching of the current virtual machine imple-
mentations, (2) through overwriting of values in registers
and memory with values consistent with physical ma-
chine deployment using kernel debuggers, (3) through
modification of the guest OS so that malware reads of
registers and memory after execution of pill instructions
are intercepted and values consistent with physical ma-
chine deployment are returned (similar to kernel rootkit
functionality), (4) through modifications of the host OS.

Out of all these approaches, patching VMs or guest OS
are both time-consuming, may introduce other pills or
bugs and do not apply to closed source implementations.
Modifications to host OSes cannot hide all pills; for ex-
ample in the TCG mode of QEMU, guest code transla-
tion happens in QEMU’s user space, and the host cannot
directly inspect guest instructions to detect pill execu-
tion. We thus choose to overwrite registers and memory

12



USENIX Association  23rd USENIX Security Symposium 283

Reg O1 Q1 (TCG) Q2 (TCG) Q1 (VT-x) Q2 (VT-x) Bochs
edx vary vary vary 0ffffffffh 0ffffffffh vary
dr6 0ffff0ff0h 0 0 0ffff0ff0h 0ffff0ff0h 0ffff0ff0h
dr7 400h 0 0 400h 400h 400h
cr0 8001003bh 8001003bh 8001003bh 8001003bh 8001003bh 0e001003bh
cr4 406f9h 6f8h 6f8h 6f8h 6f8h 6f9h
gdtr vary 80b95000h 80b95000h 80b95000h 80b95000h 80b95000h
idtr vary 80b95400h 80b95400h 80b95400h 80b95400h 80b95400h

Table 7: Axiom Pills

after pill instructions.
This overwriting can either happen in the virtual ma-

chine, through modification of VM code, or it could be
performed by the same environment that is used for mal-
ware analysis, e.g. Anubis or Ether. We explore the
first strategy here. We select QEMU TCG mode as our
experiment platform since it has gained great popular-
ity [6, 24, 4, 12]. We first explain how QEMU handles
guest code translation and then describe how we inte-
grate our pill hiding strategy into its translation code.

6.1 The Underhood of QEMU with TCG

Figure 4 describes two pivotal functionalities of QEMU:
how TCG uses translation blocks to organize translated
host code (x86 guest to x86 64 host in the example) and
how QEMU executes translation blocks. A translation
block is a consecutive memory of a few kilobytes located
in a data segment, which consists of translated host code,
prologue, and epilogue. It provides a full function layout
as if generated from a compiler. As the name implies, the
translated host code section stores host opcode generated
by TCG, which acts as a function body. The prologue
prepares the stack and registers for use within the func-
tion, while the epilogue restores the stack and registers
to the state they were in before the function was called.

TCG translates guest instructions in two different
ways. Simple guest instructions are mapped to host
opcode directly; for example in Figure 4, the guest
instruction mov al, 8 is transformed to three host
instructions. The actual translation operates at the
opcode level without disassembling and compilation.
For complex guest instructions, TCG uses helper func-
tions to implement their semantics. For example, the
guest int instruction will be replaced by a call to
helper raise int(). Inside this function, QEMU
checks the current CPU mode and then dispatches the
interrupt. In dispatching, QEMU calculates the destina-
tion vector in the interrupt description table that should
be selected. After the desired interrupt service routine
is found, QEMU sets the guest code segment selec-
tor, offset, and instruction pointer, such that the guest
will enter interrupt handling immediately after QEMU

mov rbx, r14
mov ecx, 8h
mov bl, cl
...
mov r10, 555555871618h
call r10 ; helper_raise_int()

1 for (;;)
2   if (setjmp(env->jmp_env) == 0)
3     if (env->exception_index >= 0)
4       do_interrupt()
5     for (;;)
6       if (likely(!env->exit_request))
7         tcg_qemu_tb_exec(env, tc_ptr)
8   else
9     env = cpu_single_env

jmp to epilogue

push registers
save env
jmp to tc_ptr

shrink space in stack
pop registers
return
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Translated host code:

mov al, 8

…
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Translation Block

(guest code)

Figure 4: QEMU with TCG Translation and Execution.

yields control to the guest. Typically, QEMU stops trans-
lation if it encounters an int in the guest code, and
helper raise int() will be the last instruction in
a translation block in this case.

We summarize QEMU’s main execution loop in lines
1–9 in Figure 4. It attempts to deliver all pending inter-
rupts and exceptions and then finds the next translation
block to execute. It takes advantage of the setjmp()
and longjmp() facility provided by the C standard
library to implement non-local jumps. At line 2, the
QEMU context is saved to jmp env by setjmp().
If this statement is actively called in place, line 3 will
be examined and any pending interrupts and exceptions
will be handled here. Otherwise, if the program flow
returns here from a longjmp(), line 9 will be exe-
cuted to reload CPU environment; then line 1 starts the
next iteration. Lines 5–7 denote an infinite loop inside
which QEMU repeatedly finds and executes translation
blocks if no exception occurs. The function at line 7
is defined as a function pointer that is assigned to the
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memory address of the prologue. At run-time, the pro-
logue is cast as a function and executed (�) with pa-
rameters env and tc ptr. The code bytes in the pro-
logue save the current context and arguments to the stack.
Then the program control will be transferred to the gen-
erated host code pointed to by tc ptr (�). If the guest
code contains an interrupt, the execution flow will fol-
low the helper raise int() function generated by
TCG (�); otherwise, this translation block will finish ex-
ecution and step � is selected. In the first case, the helper
function raises an interrupt with the vector number in
the guest code, through setting of the corresponding data
structures in QEMU. Then it calls longjmp() to jump
to the latest context saved by setjmp(), so this func-
tion never returns. When executing line 2 following �,
the condition is not satisfied because setjmp() returns
the argument 1 of longjmp(). Therefore, lines 3 – 4
will not be executed and the interrupt will not be repeat-
edly handled, which achieves the exact interrupt seman-
tics. When the execution runs into the next round of the
outside for loop, this pending interrupt will be handled
in do interrupt().

6.2 Pill Hiding

Our proposed pill hiding strategy goes through three
main stages: 1) detect pill instructions in the guest; 2)
freeze the guest after the corresponding host code for
the guest instruction has been executed; and 3) overwrite
register and memory values using correct information
learned from physical machines.

To detect pills, we need to compare the guest code with
known pill instructions in run time. This can be achieved
using either mnemonics or opcode. We choose the first
approach since QEMU has a built-in disassembler.

To freeze the guest at the right point, we need to build
a communication mechanism between QEMU and the
guest. Debuggers achieve a similar functionality by re-
placing user-defined breakpoints with interrupt instruc-
tions. We cannot apply the same approach by inserting
interrupts into translated code, since it will cause a trap
between QEMU and the host instead. Actually, this is
the reason why TCG needs to replace the guest interrupts
with a call to the helper function as discussed in the pre-
vious subsection. To address this problem, we modify
the QEMU’s translation mechanism and utilize its inter-
rupt handling mechanism as shown in Figure 5.

We monitor each guest instruction at line 1 by disas-
sembling the current instruction in pc ptr. If this in-
struction is not a pill, we directly translate it at line 11.
If it is a pill, we check if the state before this instruction
is saved. If not, this is the first time we encounter this
instruction and we generate a 0x20 interrupt, otherwise
we generate a 0x21 interrupt. Neither of these inter-

1 curr_insn = disas(pc_ptr)
2 if (curr_insn is pill)
3 if (saved == false)
4 gen_int(0x20) // save states
5 saved = true
6 else
7 pc_ptr = trans(pc_ptr)
8 gen_int(0x21) // apply hiding rules
9 saved = false

10 else
11 pc_ptr = trans(pc_ptr)

Figure 5: Hooking on QEMU Translation

rupt values are used by Windows. Generation of an in-
terrupt calls helper raise int() in Figure 4 which
brings the control to do interrupt() as it does for
other interrupt vectors. In this function we add new inter-
rupt handlers for 0x20 and 0x21 interrupts. The han-
dler for 0x20 saves the system state. The handler for
0x21 applies the hiding rules by overwriting the regis-
ters and memory with the values that a physical machine
would set. The hiding rules can be devised by grouping
pill instructions based on the resource that is the symp-
tom of the pill (it is different in the physical and the vir-
tual machine) and input parameter ranges. For example,
we find 61 FPU instructions that always raise exceptions
different from Oracles if their operands are in specific
value ranges. When we detect these instructions and their
operands fall in these specific ranges, we can raise the
exceptions that occur in the Oracles. This would handle
around 1,500 pills. Thus we can hide the presence of the
pills without reimplementing instruction semantics. We
emphasize here that only pills whose symptoms are not
kernel registers can be hidden by our approach.

7 Conclusion

Virtualization is crucial for malware analysis, both for
functionality and for safety. Contemporary malware tests
if it is being run in VMs and applies evasive behaviors
that hinder its analysis. Existing works on detection and
hiding of differences between virtual and physical ma-
chines apply ad-hoc or semi-manual testing to identify
these differences and hide them from malware.

In this paper we propose Cardinal Pill Testing that re-
quires moderate manual action to identify ranges for in-
put parameters for each instruction in a CPU manual,
but then automatically that devises tests to enumerate the
differences between a physical and a virtual machine.
This testing is much more efficient and comprehensive
than state-of-the-art Red Pill Testing. It finds five times
more pills running fifteen times fewer tests. We further
claim that for user-space instructions that affect defined
resources, Cardinal Pill testing identifies all test pills that
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could be used to generate all possible individual pills.
Other categories contain instructions whose behavior is
not fully specified by the Intel manual, which has led to
different implementations of these instructions in physi-
cal and virtual machines. Such instructions need under-
standing of the implementation semantics to enumerate
all the pills and devise the hiding rules. Our future work
will focus on this direction. Yet other pills we have dis-
covered stem from instructions that modify kernel-level
resources. We do not properly test the initialization of
these instructions because that would require reboot of
machines and would be too time-consuming. Thus, we
cannot claim completeness for pills that relate to kernel-
level resources. We plan to test these extensively in our
future work.
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Abstract

The volume and the sophistication of malware are con-
tinuously increasing and evolving. Automated dynamic
malware analysis is a widely-adopted approach for de-
tecting malicious software. However, many recent mal-
ware samples try to evade detection by identifying the
presence of the analysis environment itself, and refrain-
ing from performing malicious actions. Because of the
sophistication of the techniques used by the malware au-
thors, so far the analysis and detection of evasive mal-
ware has been largely a manual process. One approach to
automatic detection of these evasive malware samples is
to execute the same sample in multiple analysis environ-
ments, and then compare its behaviors, in the assumption
that a deviation in the behavior is evidence of an attempt
to evade one or more analysis systems. For this reason, it
is important to provide a reference system (often called
bare-metal) in which the malware is analyzed without the
use of any detectable component.

In this paper, we present BareCloud, an automated
evasive malware detection system based on bare-metal
dynamic malware analysis. Our bare-metal analysis sys-
tem does not introduce any in-guest monitoring compo-
nent into the malware execution platform. This makes
our approach more transparent and robust against sophis-
ticated evasion techniques. We compare the malware be-
havior observed in the bare-metal system with other pop-
ular malware analysis systems. We introduce a novel ap-
proach of hierarchical similarity-based malware behavior
comparison to analyze the behavior of a sample in the
various analysis systems. Our experiments show that our
approach produces better evasion detection results com-
pared to previous methods. BareCloud was able to au-
tomatically detect 5,835 evasive malware out of 110,005
recent samples.

1 Introduction

The malware threat landscape is continuously evolving.
Early detection of these threats is a top priority for en-
terprises, governments, and end users. The widely-
deployed signature-based and static-analysis-based de-
tection approaches can be easily evaded by techniques
commonly seen in the wild, such as obfuscation, poly-
morphism, and encryption. Therefore, dynamic mal-
ware analysis tools have recently become more pop-
ular to automate the analysis and detection of these
threats [1, 14, 35]. These systems execute the suspi-
cious sample in a controlled environment and observe
its behavior to detect malicious intent. While this dy-
namic analysis approach is more effective against com-
mon static analysis evasion techniques, it faces a differ-
ent set of challenges. More specifically, a malware sam-
ple, when executed, can detect the analysis environment
and refuse to perform any malicious activity, for example
by simply terminating or stalling the execution.

Malware authors have developed several ways to de-
tect the presence of malware analysis systems. The
most common approach is based on the fingerprinting of
the runtime environment of the analysis system. This
includes checking for specific artifacts, such as some
specific registry keys, background processes, function
hooks, or IP addresses that are specific to a known anal-
ysis tool. These artifacts must be known to the mal-
ware authors in advance to develop the corresponding
fingerprinting techniques. Another approach leverages
the fact that most of the analysis systems use emulated
or virtualized environments as their malware execution
platform. Such execution platforms can be detected by
checking the platform-specific characteristics that are
different with respect to a baseline environment (i.e., an
unmodified operating system installed on real hardware,
often referred to as a “bare-metal” installation). Such
characteristics can be the timing properties of the execu-
tion, or a small variation in the CPU execution seman-
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tics [31, 32].
Public-facing malware analysis systems are particu-

larly vulnerable to the first approach to fingerprinting.
This is because an attacker can submit malware samples
specifically designed to extract the malware analysis en-
vironment artifacts to be then used in fingerprinting the
analysis system. Private malware analysis systems are
less prone to this type of fingerprinting. However, be-
cause of the internal sharing of malware samples among
these private and public analysis systems, private sys-
tems may also be vulnerable to such fingerprinting [37].

One way to prevent the fingerprinting of the analy-
sis environment is to construct a malware analysis sys-
tem indistinguishable from a real host. Such systems
are also known as transparent analysis systems. One of
the first transparent analysis systems, called Cobra [34],
tries to achieve this by developing a stealthy analysis
environment using binary translation. However, this
approach can only prevent known fingerprinting tech-
niques. Ether [14] is a more robust transparent analysis
system that leverages hardware virtualization to maintain
the CPU execution semantics of a hardware CPU. How-
ever, the system introduces significant performance over-
head when performing fine-grained monitoring, which is
required to produce a comprehensive malware behavioral
profile. With such performance overhead, it is funda-
mentally infeasible to make it transparent, especially if
the malware execution has access to an external timing
source [20].

Instead of preventing the fingerprinting of the analysis
system, some of the recent works have focused on detect-
ing a deviation of the malware behavior in different anal-
ysis environments [9, 13, 23, 24, 28]. The approach is to
execute a malware sample in different analysis environ-
ments and compare their behavioral profiles to find a de-
viation. A behavioral profile is a higher-level abstraction
of the activities performed by a malware sample when
executed. The assumption is that the presence of such
deviations is evidence of an attempt to fingerprint and
evade one or more analysis systems. This is a generic and
robust approach because it can detect evasion regardless
of the knowledge of the techniques used by the malware
sample in order to fingerprint and evade the analysis sys-
tem. This approach assumes that the malware shows its
malicious behavior in one of the analysis systems, also
known as the reference system. However, all previous
approaches have used emulated or virtualized environ-
ments for observing the deviation in the malware behav-
ior, and such environments are known to be detectable. If
all of the analysis systems are evaded by a malware sam-
ple, no significant deviation may be present in the execu-
tion traces. Moreover, some of the analysis systems use
in-guest modules for behavior extraction, which further
compromises the transparency of the analysis system.

A malware analysis system that is indistinguishable
from a real host is a system that uses an unmodified op-
erating system installation that runs on actual hardware
(i.e., a bare-metal system). However, this approach faces
several fundamental challenges. One of the important
challenges is to efficiently restore the analysis system af-
ter every analysis run. Recently, a bare-metal-based mal-
ware analysis system, called BareBox [25], proposed an
efficient system-restore technique. In this technique, the
physical memory of the host is partitioned and only one
partition is used for the analysis environment, while an-
other partition is used for a snapshot of the system to be
restored. Whenever needed, an external operating sys-
tem located outside the physical memory of the analy-
sis environment performs the restoration of the physical-
memory snapshot, without the need for a reboot. How-
ever, a sophisticated malware can forcefully probe the
physical memory and detect the presence of the Bare-
Box system. Another bare-metal based malware analy-
sis framework is Nvmtrace [5]. This system leverages
IPMI (Intelligent Platform Management Interface) tech-
nology to automate the power cycle of the bare-metal
analysis system. However, a complete reboot of the sys-
tem is required after every analysis run. Another chal-
lenge to the bare-metal based malware analysis system
is the extraction of the behavioral profile. To this end,
no process-level behavior, such as process creation, ter-
mination, and hooking activities, can be extracted from
a bare-metal analysis system without introducing some
form of an in-guest analysis component. However, the
presence of such components inside the system violates
the transparency requirement and makes the system de-
tectable. Because of this limitation, the observable mal-
ware behavior on a pure bare-metal system is limited to
the disk-level and network-level activities. When only
the disk-level and network-level behaviors are available,
it may not be possible to perform an in-depth behavioral
analysis, but these types of activity can be effectively
used for detecting evasive behavior.

In this paper, we present BareCloud, a system for au-
tomatically detecting evasive malware. BareCloud de-
tects evasive malware by executing them on a bare-metal
system and comparing their behavior when executed on
other emulation and virtualization-based analysis sys-
tems. Our bare-metal system has no in-guest monitor-
ing component. This approach provides a robust trans-
parent environment for our reference system where both
user-mode and kernel-mode malware can be analyzed.
BareCloud transparently extracts the behavioral profile
of the malware from its disk-level and network-level ac-
tivity. The disk-level activity is extracted by comparing
the system’s state after each malware execution with the
initial clean state. Using the understanding of the operat-
ing system of the analysis host, BareCloud also extracts
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operating-system-level changes, such as changes to spe-
cific registry keys and system files. Network-level activi-
ties are captured on the wire as a stream of network pack-
ets. This approach extracts malware behavior only from
the persistent changes to the system. In principle, a mal-
ware sample could perform its activities without causing
any persistent change, or could revert any changes after
the activities are carried out. However, to perform any
substantially malicious activity, a malware has to depend
on some persistent change to the system, or it has to in-
teract with external services, such as a C&C server. Both
types of activities are transparently observable in our sys-
tem.

When comparing the behavior of a malware sample
on multiple platforms, previous works have considered
the behavioral profiles purely as sets or bags of ele-
ments drawn from a flat domain, and computed their
similarity using traditional set-intersection-based meth-
ods [8, 13, 28]. Set-intersection-based measures may not
accurately capture similarity when data is sparse or when
there are known relationships between elements within
the sets [19]. For example, if two behavioral profiles un-
der comparison contain a large number of similar file ac-
tivities, but only one profile exhibits some network activ-
ities, set-intersection-based similarity measures, such as
Jaccard similarity, produce a high similarity score, and
fail to properly capture the lack of similarity among net-
work activities. One may compute the similarity of the
file activities and the network activities separately. How-
ever, similar problems exist; for example, two profiles
may contain large number of similar DNS activities, but
only one profile contains an HTTP request. It is im-
portant to identify such small-yet-important differences
while comparing behavioral profiles for detecting eva-
sions.

When manually comparing behavioral profiles, we
start from generic questions such as “Do both profiles
contain network and file activities?” If they do, we move
on to other questions such as “Do these activities corre-
spond to the same network or file objects?” This way
of reasoning indicates that the behavioral profiles have
an inherent similarity hierarchy based on the level of ab-
straction of the activities. Therefore, our similarity mea-
sure is based on the notion of the similarity hierarchy.
Such hierarchy-base similarity can compute similarity at
different levels of abstraction and identify activities that
share similar characteristics even if they are not exactly
the same. We show that this approach performs better
than the set-intersection-based measure while comparing
behavioral profiles for detecting evasive malware.

We compare the malware behavioral profile extracted
from the bare-metal system with three major malware
analysis platforms that are based on emulation and differ-
ent types of virtualization, and we detect evasive behav-

ior by detecting the deviation in the behavioral profile.
Note that, beside evasion, there can be other factors that
may cause a deviation in the behavioral profile. Section 4
describes how we mitigate those factors.

Our work makes the following contributions:

• We present BareCloud, a system for automatically
detecting evasive malware. Our system performs
malware analysis on a transparent bare-metal sys-
tem with no in-guest monitoring component and on
emulation-based and virtualization-based analysis
systems.

• We introduce a novel evasion detection approach
that leverages hierarchical similarity-based behav-
ioral profile comparison. We show that this ap-
proach produces better results compared to the pre-
vious set-intersection-based approaches.

• We evaluate our system on a large dataset of re-
cent real-world malware samples. BareCloud was
able to detect 5,835 evasive malware instances out
of 110,005 samples.

2 System Overview
The goal of our system is to automatically detect eva-
sive malware by performing automated analysis of a
large number of samples on a bare-metal reference sys-
tem and other dynamic analysis systems. The goal is
to identify deviations in the dynamic behavior of a sam-
ple when executed on different analysis environments.
BareCloud achieve this by a multi-step process as de-
picted in Figure 1. The large volume of input samples
is first pre-screened using the Anubis malware analy-
sis framework [1]. The purpose of the pre-screening
process is to select more interesting samples that are
likely to have environment-sensitive behavior. These
pre-screened samples are then executed on the cluster
of bare-metal analysis hosts and on three other malware
analysis systems, namely, Ether [14], Anubis [1], and
Cuckoo Sandbox [2]. Each analysis system consists of
multiple analysis hosts. The execution of the same sam-
ple in different systems is synchronized by the Scheduler
component. Analysis hosts (workers) can independently
join, perform analysis, and leave the BareCloud sys-
tem. BareCloud extracts behavioral profiles from each
of these analysis run, and, in the next step, it processes
these profiles to detect evasive behavior.

3 Monitoring Environments
In this section, we describe the four malware analysis
environments we use for monitoring the behavior of mal-
ware samples.
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Figure 1: Overview of the system

3.1 Virtualization
We use Cuckoo Sandbox, which is based on Virtual-
Box [7], to provide a virtualization-based malware anal-
ysis platform. This is also known as a Type 2 hypervi-
sor, that is, the virtualization host is a software applica-
tion that runs on top of an operating system. Cuckoo
Sandbox [2] supports the automation of the analysis pro-
cess, and also includes function-hooking-based in-guest
monitoring components. These components monitor
execution-related events inside the analysis host. Several
analysis and reporting plugins are available for specific
needs. In this work, we use the analysis reporting plugin
that includes Windows API call traces and network traf-
fic. We use this trace to build the behavioral profile of a
malware sample in the virtualized environment.

3.2 Emulation
We use the Anubis platform [1] to analyze malware in
an emulated environment. Anubis is a whole-system
emulation-based malware analysis platform. The emu-
lator is based on Qemu [12]. No monitoring compo-
nent is present inside the analysis environment other than
some commonly used GUI automation tools. The emula-
tor performs execution monitoring by observing the exe-
cution of pre-computed memory addresses. These mem-
ory addresses corresponds to important system API func-
tions. Anubis is able to extract additional information
about the API execution by inserting its own instructions
to the emulator’s instruction execution chain. Anubis im-
plements a host of techniques, such as Product ID ran-
domization, to prevent straightforward detection of the
analysis system.

3.3 Hypervisor
We use Ether [14] to analyze malware in a hypervisor-
based analysis environment. Ether is a Xen-based trans-
parent malware analysis framework that utilizes Intel’s

VT hardware virtualization extensions [3]. The use of
the hypervisor makes it possible to execute most of the
malware instructions as native CPU instructions on the
real hardware without any modifications. Thus, it does
not suffer from inaccurate or incomplete system emu-
lation issues that might affect emulation-based analysis
systems. Ether can monitor a wide range of dynamic
malware behaviors, such as system calls, memory writes,
and fine-grained instructions execution. However, moni-
toring of memory writes and instruction-level trace intro-
duces a substantial overhead and is only suitable for man-
ual analysis. In this work, we only use Ether’s coarse-
grained system call trace collection capability. In ad-
dition, we also record all network communications dur-
ing the malware execution. We combine the information
from the system call trace and the network traffic to gen-
erate the behavioral profile.

3.4 Bare-metal

Our bare-metal malware analysis system is a cluster of
hardware-based modular worker units. The workers’
disks are based on a remote storage disk. This allows
BareCloud to leverage copy-on-write techniques to per-
form disk restoration more efficiently when compared to
a complete local disk overwrite. The bare-metal system
also has a software-based remote control mechanism to
automate the malware execution process on the workers.
This mechanism is based on the IPMI remote adminis-
tration features (e.g., IPMI allows to control the power
cycle of the analysis worker units). We use the iSCSI
protocol (Internet Small Computer System Interface) to
attach remote disks to worker units. We used Logical
Volume Manager (LVM)-based copy-on-write snapshots
to host the remote disk used by the analysis system run-
ning on the worker units. After the completion of each
malware analysis, the corresponding volume snapshot is
recreated from a clean volume.

One of the critical components of a malware analy-
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sis system is the malware initiator, which is the compo-
nent that starts the execution of the malware. Usually,
this component is implemented as some form of in-guest
agent that waits for a malware sample through a network
service. If the analysis system reboots after each analy-
sis run, another approach can be to install a start-up en-
try in the system configuration that executes an applica-
tion from a specific path. A malware sample can then
be updated at this specific path for each analysis run by
directly modifying the disk-image when the analysis sys-
tem is offline. However, precise control over the malware
execution duration is difficult when using this approach,
as the overall execution time includes the system reboot
time, which can vary among multiple reboots..

For a bare-metal analysis system, making its malware
initiator component transparent is very important. This
is because the malware can simply check for the presence
of this component to fingerprint the environment. To this
end, our system uses the network-based approach. The
malware initiator removes itself and all of its artifacts af-
ter initiating the malware. This network-based approach
also makes the malware execution duration more accu-
rate, as it does not account for the reboot time.

3.5 User Environment

Apart from stock operating system, the environment
installed inside the malware analysis systems includes
some data and components that are usually present on
a real host, such as saved credentials for common social
networks, browser history, user document files, and other
customizations. With this setup, we can observe addi-
tional malware behavior that we could not have observed
using a bare user environment.

4 Behavior Comparison

In this section, we discuss malware behavioral deviation,
behavioral profile extraction, and formalize behavioral
profile comparison.

4.1 Behavior deviation

There are many factors that may cause a malware sam-
ple to show deviations in the dynamic behavior associ-
ated with different analysis environments. Hereinafter,
we discuss each of these factors in detail.

• Evasive behavior of the malware sample:

Deviation in the behavior may be the result of a suc-
cessful fingerprinting of the analysis environment.
This deviation is observable due to the change in the

activities performed by the malware after the detec-
tion. This is the type of deviation we are interested
in.

• Intrinsic non-determinism:

A malware may have intrinsic non-determinism em-
bedded in the code. That is, malware behavior
might depend on some random value that it reads at
the time of execution. For example, a malware sam-
ple may create a file with a random name. Random-
ization in the behavior can also result from the use
of certain system services and APIs. For example,
a successful call to URLDownloadToFile creates a
random temporary folder to download the web con-
tent.

• Internal environment:

Difference in the software environment of the dif-
ferent analysis systems may trigger different dy-
namic behaviors of the malware sample. For exam-
ple, some malware may depend on a .NET frame-
work installed in the analysis system, or may de-
pend on the availability of a specific version of a
system DLL. If one of the malware analysis envi-
ronments does not contain such software compo-
nents, the resulting malware behavior may be dif-
ferent.

• External environment:

Another critical factor that may cause a deviation
in the malware behavior is the external environment
with which a malware sample can interact. In the
context of malware execution, this external envi-
ronment largely comprises of different network ser-
vices, such as DNS and C&C servers. The non-
deterministic nature of such network services may
introduce deviations in the dynamic behavior of a
malware sample. One simple way to minimize this
factor is to completely disable access to external
network environments. However, the network activ-
ity of a malware sample is one of the most important
aspects to characterize the behavior of the sample.
Hence, a successful behavior comparison of a mal-
ware sample requires the inclusion of its network
activities.

Since our goal is to identify behavior deviations
caused by the evasive technique employed by the mal-
ware sample, we need to minimize the effect of the three
other factors that may cause a behavior deviation.

One approach to identifying intrinsic non-determinism
is to execute the same sample in the same environment
multiple times. By comparing the execution traces from
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these different execution runs, non-deterministic behav-
ior can be identified. Previous work [28] used this ap-
proach to filter out randomized behavior. However, this
approach is resource- and time-expensive. Moreover, not
all malware exhibit such randomized behavior.

In this work, we propose a more efficient hierarchical
similarity-based approach to behavior comparison, de-
scribed in Section 4.4. This approach is able to min-
imize the effect of intrinsic randomization without re-
quiring multiple execution runs of the same sample in
the same analysis environment. In order to address devi-
ation caused by different internal environments, we must
provide identical software environments to all analysis
systems. Therefore, we prepared identical base software
environments for all of our analysis systems.

Precisely controlling the behavior deviation intro-
duced by the external environment is difficult. This is
because these factors are not under our direct control.
However, failure to minimize the impact of these factors
may result erroneous behavior deviations. This consider-
ation is important because most malware communicates
with the external environment to carry out its malicious
activities. To minimize the effect of the external environ-
ment, we implemented the following strategies.

• Synchronized execution: We execute the same mal-
ware sample in all analysis environments at the
same time. The scheduler component facilitates the
synchronization among different analysis hosts. By
doing this, we minimize the behavior deviation that
may be introduced by the variation of the external
factors over time. For example, a malware may try
to connect to a fast-flux network. The availability
and the returned response of the C&C server and
the DNS server may vary over time. If the mal-
ware is executed in different environments at differ-
ent times, such variations in external environment
may result in a spurious behavior deviation. Syn-
chronized execution mitigates such differences.

• Identical local network: Malware can interact with
the local network by different network-related ac-
tivities, such as probing available local network ser-
vices and accessing file shares. We expose all analy-
sis systems to identical simulated local network en-
vironments.

• Network service filters: One approach to minimize
the non-determinism introduced by different net-
work services is to actively intercept network com-
munications and maintain identical responses to
identical queries among all instances of a malware
running in different analysis environments. This re-
quires an application-level understanding of the net-
work services. To this end, we intercept all DNS

and SMTP communications and respond with con-
sistent replies in all analysis system. For example,
the system responds with identical IP information to
identical DNS queries coming from different analy-
sis environments. With this setup, we are also able
to sinkhole non-existent domain and SMTP com-
munications to the local simulated network. This
helps us observe more network behavior of a mal-
ware sample, which otherwise may not be observ-
able.

4.2 Behavioral profile

After the execution of a malware sample in different
analysis environments, we need to extract its behavioral
profile for comparison. Usually, the behavioral profile is
extracted from some form of dynamic execution trace,
such as a system-call trace. Bayer et al. have intro-
duced a comprehensive method of extracting behavioral
profile from an augmented system-call trace. The ad-
ditional information provides taint tracking of input and
output parameters of system calls that provides depen-
dency information between different system calls [10].
This approach has been used to cluster a large number
of malware, and to compare malware behaviors [10, 28].
Similar approaches can be used in three of our analy-
sis environments, where system-call traces are available.
However, this system-call based approach is not directly
applicable to our bare-metal malware analysis system, as
we do not have access to the system-call trace.

Transient and resultant behavioral profile

A transient behavioral profile is a profile that represents
all of the operations performed by a malware sample dur-
ing its execution. The system-call-based behavioral pro-
file discussed previously is a type of transient behavioral
profile. This represents a more comprehensive view of
how a malware performs its malicious activities. The
resultant behavioral profile consists of the cumulative
changes made by the malware from the beginning to the
end of its execution. This includes those operations that
make persistent changes to the system. Multiple simi-
lar operations to the same object are combined and rep-
resented as one operation to reflect the resulting effect
of the operations. This represents a more summarized
view of what a malware does to the system. A mal-
ware can obfuscate its transient behavior to evade tran-
sient behavior-base similarity detection. However, simi-
lar malicious activities produce similar resulting behav-
ioral profiles, even if the transient behavior is obfuscated
or randomized. This makes the comparison of malware
behavior based on the resultant behavioral profile more
robust.
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The transparency requirement of our bare-metal analy-
sis system limits us to the extraction of only the resulting
behavioral profile. That is, the transient behaviors of pro-
cess activities and filesystem activities are not available.
However, we can extract the resulting filesystem behav-
ior by comparing the disk contents from before and after
the malware execution. Extraction of network behavior
is straightforward using an external traffic capture com-
ponent.

With these constraints in hand, we model our behav-
ioral profile based on the model introduced by Bayer et
al. [10], such that only the objects and the operations are
used. That is, we take into consideration the object upon
which a malware performs an operation that causes a per-
sistent change to the object. Formally, a behavioral pro-
file Π is defined as a 3-tuple.

Π = (O,R,P)
Where, O is the set of all objects, R is the set of all op-

erations that causes persistent changes, and P ⊆ (O×R)
is a relation assigning one or more operations to each ob-
ject. Unlike in the model proposed in [10], where the
objects and the operations are conceptualized as OS Ob-
jects and OS operations, we generalize the objects and
operations to any environment entity with which a mal-
ware can interact. More details on objects and operations
are provided hereinafter.

Objects

An object represents an entity, such as a file or a network
endpoint, upon which a malware can perform some op-
eration.

It is a tuple of type and name formally defined as fol-
lows.
O = (ob j type,ob j name)
ob j type ::= f ile|registry|syscon f |mbr|network

The file type represents filesystem-specific file objects
of the disk, the registry type represents registry keys,
the sysconf type represents OS-specific system config-
urations, such as the boot configuration, mbr represents
OS-independent Master Boot Record, and the network
type represents network entities, such as a DNS server.

Operations

An operation generalizes the actions performed by a mal-
ware sample upon the above-described objects. An oper-
ation is formally defined as:
R ::= (op name,op attribute)

That is, an operation has a name and a correspond-
ing attribute to provide additional information. As men-
tioned previously, only those operations that cause a per-
sistent change to the system are included. For example,

in case of a file type object, only the creation, deletion,
and modification operations are included in the profile.

4.3 Behavior extraction

Our bare-metal system can only access the raw disk con-
tents. We extract the filesystem behavior by comparing
the filesystem state before and after the execution of a
malware sample. A detailed understanding of the filesys-
tem internal structures is required to extract such infor-
mation. We leverage the functionalities provided by the
SleuthKit framework [6] for extracting the file meta-data
information from the raw disk image. By doing this, we
are able to extract all file names in the disk, including
some recently deleted files, along with their correspond-
ing meta-data, such as size and modification date. We
first build two sets representing the file object meta-data:
the clean set and the dirty set, corresponding to the disk
content before and after a malware execution. Extract-
ing the deletion and creation operations of a file object
are simple set operations. That is, any file not present in
the dirty set is considered as deleted, and any file only
present in the dirty set is considered as created. If a file
is present in both sets with different meta-data, it is con-
sidered as modified. However, if a malware writes to
a disk-sector (other than MBR) that is invisible to the
filesystem, or modifies an existing file without chang-
ing the size and file-date meta-data, the current approach
will not detect such changes. The straightforward way
of comparing all file contents between two disk states
can be very inefficient. This limitation can be mitigated
by first detecting such changes in the disk sectors from
copy-on-write data or iSCSI communication, and map-
ping the dirty sectors to files. Similar approach has been
previously proposed [29]. To this end, we leave this im-
provement as a future work.

Registry behavior is extracted using a similar ap-
proach. We extract the meta-data of all the registry keys
from the raw registry hive (registry database file) us-
ing the registryfs filesystem extension of the SleuthKit
framework. Again, we build two sets representing the
registry meta-data corresponding to the registry hive con-
tent before and after the malware execution. We perform
set operations similar to the case of the filesystem to ex-
tract malware operations on the registry objects.

To extract the behavior of type sysconf, we process the
filesystem and registry behavior to identify critical mod-
ifications to the system configuration. Some examples of
the system configuration locations are listed in Table 1.

For the three other analysis systems, we process
system-call traces to extract behavior information.
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Table 1: Examples of the configuration locations

obj type obj name System path
sysconf startup HKLM/Software/Microsoft/Windows/CurrentVersion/Run
sysconf startup HKCU/Software/Microsoft/Windows/CurrentVersion/Run
sysconf startup HKLM/System/CurrentControlSet/Services
sysconf boot %SYSTEMROOT%/BOOT.INI
sysconf autoexec %SYSTEMROOT%/AUTOEXEC.BAT
sysconf sysini %SYSTEMROOT%/WINDOWS/SYSTEM.INI
sysconf winini %SYSTEMROOT%/WINDOWS/WIN.INI

Behavior normalization

Behavioral profile extracted from the difference of the
initial and final disk states contains both malware behav-
ior as well as the background operating system behav-
ior. We need to filter out the features of the behavioral
profile that do not correspond to the malware execution.
One way to filter such features is to use the file modifi-
cation timestamp of the file objects. That is, by selecting
only those files that are created and modified during the
time when the malware is executed, one can filter out un-
related file modifications that occur before and after the
malware execution. However, some unrelated filesystem
changes caused by the base operating system might still
be present in the filtered profile. Moreover, many mal-
ware samples actively modify the system time, or tamper
with the file meta-data to revert the file’s modification
time. Although the simple file time-stamp-based filter is
efficient, this approach will fail in such situations.

Another approach to filter the background behavior is
to first learn the behavioral profile of the base operating
system and then filter this behavior from the profile gen-
erated by a malware execution. By doing this, we can
overcome many of the shortcomings of the timestamp-
based approach. This approach may exclude some mal-
ware operations that match the operation performed by
the base operations. However, it is difficult to perform
malicious actions using only operations that are also per-
formed by the base operating system. Also, such oper-
ations are less important in defining the malicious be-
havior of the malware. We use this approach to filter our
profiles. To extract the background behavior of the analy-
sis system, we wrote a “void” program that does nothing
other than stall infinitely. For each analysis environment,
we extract the behavioral profile of the “void” program
from all of its analysis hosts and combine them to build
a generalized background profile. We use this profile to
filter the behavioral profile of a malware execution.

Some objects used to describe the profile may
be referenced using multiple names. For ex-
ample, \\?\C:\Documents and Settings and
C:/DOCUME∼1/ correspond to the same file object.
We convert such identifiable object names to the same
format. Different usernames may also result in different
physical names for semantically similar file locations.
For example, the locations C:/DOCUME∼1/USERA and
C:/DOCUME∼1/USERB are semantically similar loca-

tions, which is the user’s home directory. Some system
APIs that create temporary files also generate different
file paths, which are semantically similar. Many such
temporary path names have known root locations and
can be identified by their naming structure. We replace
such occurrences in the object names with corresponding
generic tokens.

4.4 Behavior comparison
Previous works have compared the persistent change-
based behavioral profile using set-intersection-based
methods over the feature set [13, 28]. However, when
comparing behavioral profiles that only considers persis-
tent changes, one can expect a sparse feature set. Fur-
thermore, features within the profile are highly related
and can be categorized in groups and subgroups. How-
ever, when the features are sparse or when there are
known relationships between features within the set, set-
intersection-based measures may not accurately capture
the similarity [19].

Unlike previous works, we use a hierarchical similar-
ity measure to overcome this problem. The hierarchy is
associated with the different abstraction levels present in
the behavioral profile. This approach makes our simi-
larity measure less sensitive to randomization introduced
by non-determinism in malware code. This is because
the randomization is usually introduced only in one level
of the hierarchy while keeping other levels of the hierar-
chy identical. For example, a malware may randomize
the filename (ob j name) it creates, but perform the same
create operation (op name) on a file object (ob j type)
with the same operation attribute (op attribute).

4.5 Hierarchical similarity
The notion of the hierarchical similarity is often used in
text similarity, in mining association rules, and in vari-
ous computer vision tasks for finding similar shapes [16,
17, 21]. We use a similar notion of hierarchical simi-
larity to compare behavioral profiles. The similarity hi-
erarchy of the behavioral profile is represented in Fig-
ure 2. As one can see, knowledge of the semantics
and of the relationship between the objects is encoded
in the representation. The leaves of the tree are the ac-
tual feature elements of the behavioral profile. The first
level of similarity hierarchy is ob j type. An ob j type
may have one or multiple ob j name, and each such
ob j name can be associated with one or more op name
corresponding to various operations. Each such opera-
tion has one leaf node corresponding to the associated
attribute of the operation. The leaf nodes are the fea-
ture elements whose attributes are represented by its
parent nodes. For example, in the Figure 2, the ele-
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  Feature Elements

  Operation Attribute

  Operation Name

  Object Name

  Object Type

root

obj_type1 obj_type2

obj_name1 obj_name2 obj_name3

op_name1

op_attrb1

p1

op_name2 op_name1 op_name3

op_attrb2 op_attrb1 op_attrb1

p4p3p2

Figure 2: Behavior similarity hierarchy

ment p1 is a feature element having the feature attributes
(ob j type1,ob j name1,op name1,op attrb1).

We compute the similarity in a two-step process. First
we identify the matching nodes in the hierarchies of two
behavioral profiles. We do this iteratively, starting from
the first level (ob j type). For each of these matching
nodes, we identify the matching nodes among their child
nodes, i.e., the next level of hierarchy. We compute the
similarity measure at each hierarchy level. Finally, we
aggregate level similarity measures to compute the over-
all similarity.

The model

Let H be a rooted tree representing the similarity hierar-
chy, where all nodes have associated labels. For exam-
ple, Figure 2 is an instance of H. Let LH be all labels
in H, and L(H,d) be the set of labels of the nodes of
H at depth d. Let δ be the height of the tree such that
L(H,δ ) is the set of all labels of the leaves of H. The set
of labels L(H,δ ) represents the feature elements p such
that p ∈ P, where P represents the behavioral profile. In
the example Figure 2, the leaf nodes p1, p2, p3, and p4
represents the feature elements of the behavioral profile.
L(H,δ ) and P are equivalent, one represented as leaves
of the tree structure, another represented as a tuple of the
feature attributes. With this, any P can be mapped into
H. There is a hierarchy in L(H,δ ), and hence in P, su-
perimposed by H.

Let P1 and P2 be two behavioral profiles of a malware
sample m from analysis systems a1 and a2. Let these
behavioral profiles be mapped into hierarchies H1 and
H2, instances of the hierarchical model H. Let PL(H, l)
be the label of the parent node of a node with label l,
where l ∈ LH , the set of all labels in H. Here, we want
to find nodes with matching labels at each depth d whose

parent nodes also have matching labels. We recursively
define match and candidate for each level d as:

matchH1,H2(d) = L(H1,d)∩L(H2,d) |
∀l ∈ matchH1,H2(d),PL(H1, l) = PL(H2, l) and

PL(H1, l) ∈ matchH1,H2(d −1) (1)

candidateH1,H2(d) = L(H1,d)∪L(H2,d) |
∀l ∈ candidateH1,H2(d),

PL(H1, l)∪PL(H2, l) ∈ matchH1,H2(d −1) (2)

where,
matchH1,H2(0) = root. (3)

We define levelsimH1,H2(d), the similarity of H1 and
H2 at level d, as the Jaccard similarity coefficient. That
is,

levelsimH1,H2(d) =
|matchH1,H2(d)|

|candidateH1,H2(d)|
. (4)

We define the overall hierarchical similarity between
behavioral profiles P1 and P2 as the arithmetic average of
similarity at each level:

Sim(P1,P2) =
1
δ

δ−1

∑
d=1

levelsimH1,H2(d). (5)

This definition is consistent, since the right side of this
equation always lies between 0 and 1. Hence, the be-
havior distance between P1 and P2 can simply be defined
as:
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Dist(P1,P2) = 1−Sim(P1,P2). (6)

This is possible because Sim(P1,P2) is derived from
the Jaccard similarity coefficients.

Finally, we define the behavior deviation score of
a malware sample D among different analysis system
a1...an with respect to the behavioral profile Pr extracted
from the reference system ar as the quadratic mean of the
behavior distances as follows.

Deviation(D) =

√
1
n

n

∑
i=1

Dist(Pr,Pi)2, (7)

where n is the number of analysis systems, and Pi is
the behavioral profile extracted from the analysis system
ai. This deviation score D is in interval [0,1], where the
value of 0 means no deviation and the value of 1 means
maximum deviation. We define a deviation threshold t.
If the deviation score D exceeds this value, we consider
the sample as evasive.

5 Evaluation

We evaluated our approach using Windows XP SP2 as
the operating system for all analysis systems, as the
weaker security measures of this operating system allow
us to observe more malware behavior.

We conducted two experiments, which are detailed in
the following sections.

5.1 Experiment I
In this experiment, we evaluated our hierarchical
similarity-based behavior comparison approach.

Dataset

We first built the ground truth dataset of evasive mal-
ware and non-evasive malware samples. We received
234 recent and possibly evasive malware samples from
a security company. We manually analyzed them and
confirmed 111 samples from 29 families to be evasive
(i.e., they fingerprint and evade at least one of the con-
sidered analysis environments ). To build the dataset of
non-evasive samples, we manually analyzed recent sam-
ples submitted to Anubis. By doing this, we selected 119
samples from 49 families that did not exhibit evasive be-
havior in any of the analysis environments.

We extracted the behavioral profiles of these samples
from all analysis environments and computed the hierar-
chical similarity-based deviation score D with respect to
the bare-metal analysis environment. We also computed
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Figure 3: Precision-Recall analysis of the hierarchical
similarity-based and the Jaccard similarity-based behav-
ior comparison.

the Jaccard distance-based deviation score as proposed
in [28]. That is, the behavioral profile distance is com-
puted as the Jaccard distance:

J(P1,P2) = 1− P1 ∩P2

P1 ∪P2
.

The Jaccard distance-based deviation score JD is com-
puted as the maximum of the distances among different
analysis systems as:

JD = max
1<i<n

{ max
1< j<n,i�= j

{J(Pi,Pj)}}.

Since we do not extract multiple behavioral profiles
of same malware sample from the same analysis envi-
ronment, we did not compute the intra-sandbox distance
as proposed in [28]. Instead, we wanted to compare the
two different similarity approaches when the available
behavioral profiles are limited to one profile per analysis
environment.

We performed a precision-recall analysis by varying
the threshold t for these deviation scores. If the devia-
tion score is greater than t, the sample is considered eva-
sive. The result is presented in Figure 3. We can clearly
see that the hierarchical similarity-based deviation score
gives better results. It is able to produce higher preci-
sion results while maintaining a high recall rate. While
the highest precision the regular Jaccard distance-based
similarity could produce is limited to 88.54%. This is be-
cause some non evasive samples have the same Jaccard
distance-based deviation score as other evasive samples
having highest deviation score. Hence, no matter how
we vary the threshold t, precision does not increase.

Figure 4 shows the precision-recall characteristics of
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Figure 4: Precision-recall analysis of the behavior devi-
ation threshold value t. Threshold value t = 0.84 gives
the highest recall rate with 100% detection precision.

the hierarchical similarity-based deviation score with re-
spect to different values for deviation threshold t. We
can see that with the threshold value t = 0.70, more than
half of the evasive samples can be detected with above
98% precision. While with threshold t = 0.84, we get
100% precision with the recall rate of 40.20%. In the
next large-scale experiment, we used this threshold value
t = 0.84 to have a high confidence on the detection re-
sults.

5.2 Experiment II
In this experiment, we applied our behavior comparison
approach to the incoming malware feed received by Anu-
bis. We first filtered the incoming samples based on the
size and the type of the behavioral profile extracted in the
Anubis analysis environment. This is required to select
interesting samples from the large volume of the incom-
ing malware without introducing any strong bias. This
pre-selection process randomly selects samples from the
following four groups.

• Samples with minimal activity: These are the sam-
ples that show minimal to no activity in the Anubis
analysis environment (less than 1000 events). This
group may contain evasive malware that success-
fully evade Anubis analysis environment.

• Samples with high system and network activity:
These are the samples that show a substantial
amount of system-related activity (more than 1000

events) and network activity in the Anubis analysis
environment. We include this group to see if sim-
ilar behavior can be observed in all other analysis
environments.

• Samples with high network activity: These are the
samples that show minimal system activity but high
network activity (more than 10 packets) in the Anu-
bis analysis environment.

• Samples with high system activity: These are the
samples that show no network activity but high sys-
tem activity in the Anubis analysis environment.

We selected 110,005 samples from the above groups
observed during a four months period, starting from July
2013. We extracted behavioral profiles of these samples
from all four analysis environments and computed the
deviation scores. We used the behavior deviation thresh-
old of t = 0.84 that was selected in the previous experi-
ment. With this threshold, we were able to detected 5,835
samples as evasive. That is, these evasive samples evade
one or more analysis environments. Since we do not have
the ground truth for this dataset, we cannot provide the
true precision of this detection.

We also categorized these evasive samples into
environment-specific evasions by using the number of
events observed within the various analysis environ-
ments. That is, if no activity that results in persistent
change is observed in an analysis environment ax while
the same sample shows persistent change activities in at
least one of the other analysis environments [a1, ...,an],
we considered that as an evasion of the analysis envi-
ronment ax. The results are presented in Table 2. We
found that 2,530 samples showed no activity that resulted
in persistent change in all three common malware anal-
ysis environments, while such persistent change activ-
ities were observed in the bare-metal analysis environ-
ment. We see that many samples were able to evade the
Ether environment, which is considered as a transpar-
ent environment. Manual analysis of those samples re-
vealed that many samples were able to fingerprint Ether
by leveraging the dependency of the Xen-hypervisor on
Qemu-based device models to emulate required virtual
devices, such as hard disks. Since Ether is based on
Xen-hypervisor, it also requires the Qemu-based device
models to run the unmodified guest, which acts as the
transparent analysis host. Therefore, if a malware sam-
ple inside Ether tries to fingerprint its devices, it might
identify Ether as a Qemu-based analysis system. In ad-
dition, system call tracing in Ether introduces additional
overhead to the system, and, in some of the cases, regu-
lar timing-based attacks were successful in detecting the
presence of the analysis system.
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Table 2: Evasion detection on different environments

Environment Detection count Percentage
Anubis 4,947 84.78
Ether 4,562 78.18
VirtualBox 3,576 61.28
All 2,530 43.35
Total 5,835

6 Limitations

In this section, we discuss the limitations of our ap-
proach.

One of the limitations inherent to all dynamic analysis
systems is the inability of handling stalling code in a gen-
eral way. A malware sample can wait for some time (e.g.,
tens of minutes) before performing any malicious activ-
ity. Kolbitsch et al. have proposed a technique to detect
and mitigate malware stalling code [26]. However, the
mitigation technique is only possible where fine-grained
analysis is possible. The technique is not applicable in
our bare-metal system. A more sophisticated stalling at-
tack may encrypt the malicious payload with some weak
encryption key, which the malware will brute-force dur-
ing the execution. It is difficult to expedite such process
to reveal the malicious activities within a limited execu-
tion time. To this end, BareCloud will not be able to
observe activity in malware with stalling code.

Malware may employ heuristic checks for anomalies
in the internal or external environments that are specific
to malware analysis systems. For example, it can wait for
real user activities, or try to resolve known non-existent
domain using a public DNS server. If there is no user
activity in the system or if every non-existent domain is
resolved, it is likely that the system is an analysis en-
vironment. One of the mitigation techniques can be to
remove external anomalies by not actively intercepting
and modifying the network communication. User activi-
ties can be injected into the system by using automation
techniques. However, transparently performing such au-
tomation in a bare-metal system is challenging. To this
end, such heuristic checks will be able to detect our bare-
metal analysis system.

Although, our similarity measure is less sensitive to
randomization introduced by the non-deterministic code
of a malware sample, high levels of randomization in the
persistent changes will result in an erroneous detection of
evasion. Other mitigation techniques, such as the multi-
ple execution of the malware on the same analysis sys-
tem, can be performed to mitigate this problem at the
expense of more computational resources.

Both known and unknown fingerprinting techniques
focused on detecting virtualized or emulated platforms

will fail to detect BareCloud, because we are executing
malware on a bare-metal hardware. However, there is
the possibility that our system can be fingerprinted by
examining unique software/hardware environment fea-
tures, such as the MAC address of the network device
or the presence of the iSCSI driver. In the case of emu-
lated/virtualized environments, it is trivial to randomize
such information for each malware analysis run. Since
our system uses real hardware, introducing this random-
ization while preserving the transparency is difficult. The
iSCSI driver detection can be mitigated by using more
expensive hardware iSCSI initiator instead of a software
iSCSI initiator. A hardware iSCSI initiator is a host bus
adapter (HBA) that appears to the OS as a hardware stor-
age device. To this end, our system runs as a private mal-
ware analysis framework and all outside network com-
munications are blocked. A limited access to the Internet
is provided through proxy. As long as the unique envi-
ronment variables are not leaked to the malware authors,
the system can be kept undetectable. However, a dedi-
cated attacker may detect any dynamic analysis system
that allows external network communications like ours
by using active reconnaissance-based attacks [37]. Mal-
ware writers can upload decoy samples to public mal-
ware analysis systems so that it is eventually picked up
by private analysis systems, such as ours. Such sam-
ples can leak unique environment artifacts of these anal-
ysis systems using “phoning home” technique and can be
used for active reconnaissance.

7 Related works

7.1 Dynamic analysis
Researchers have developed many dynamic analysis
tools to analyze malware. These tools mostly focus
on extracting system call or Windows API call traces.
Many of these analysis systems are based on sandbox-
ing techniques [1, 4, 14, 35]. A sandbox is an instru-
mented execution environment that executes the malware
sample in a contained way. Some of these sandboxes
leverage in-guest techniques to trace Windows API calls,
such as CWSandbox [35] and Norman Sandbox [4].
Other sandbox systems are implemented using emula-
tion or virtualization technologies. VMScope [22], TT-
Analyze [11], and Panorama [36] are some of the exam-
ples of emulation-based malware analysis systems. All
of them are based on Qemu [12] and implement whole-
system emulation. Other tools, such as Ether [14] and
HyperDBG [15] are based on hardware-supported vir-
tualization technology. While most system deal with
user-land malware samples, some of the analysis sys-
tems are specifically targeted to analyze kernel-mode
malware [27, 30].

12
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7.2 Transparent analysis

Many transparent malware analysis systems have been
proposed to defeat evasive malware. Cobra [34] was
the first analysis system specifically focused on defeat-
ing anti-debugging techniques. However, Cobra runs its
tool at the same privilege level as the malware. In prin-
ciple, this approach makes it impossible to provide abso-
lute transparency.

Many of the malware analysis tools based on the out-
of-VM approach are designed to provide better trans-
parency [1, 14, 22], as the analysis system is completely
external to the execution environment. However, de-
tection techniques have been developed to detect these
analysis systems as well. There are several techniques
to detect VMWare [9, 18, 33], as well as Bochs and
Qemu [9, 18, 31]. Pek et al. [32] have shown that hard-
ware virtualization-based Ether [14] can be detected us-
ing local timing attacks.

The most effective way to provide transparency is to
run on real hardware, with an environment that has not
been extended with analysis artifacts. BareBox [25] and
Nvmtracer [5] both provide bare-metal environments for
malware analysis.

7.3 Evasion detection

Chen et al. proposed a detailed taxonomy of evasion
techniques used by malware against dynamic analysis
system [13]. Lau et al. have employed a dynamic-static
tracing technique to detect VM detection techniques.
Kang et al. [24] proposed a scalable trace-matching al-
gorithm to locate the point of execution diversion be-
tween two executions. The system is able to dynamically
modify the execution of the whole-system emulator to
defeat anti-emulation checks. Balzarotti et al. [9] pro-
posed a system for detecting dynamic behavior deviation
of malware by comparing behaviors between an instru-
mented environment and a reference host. The compar-
ison method is based on the deterministic program exe-
cution replay. That is, the malware under analysis is first
executed in a reference host while recording the interac-
tion of the malware with the operating system. Later,
the execution is replayed deterministically in a differ-
ent analysis environment by providing system call return
value recorded in the first run, in the assumption that any
deviation in the execution is evidence of some kind of en-
vironment fingerprinting. Disarm [28] compares behav-
ioral profiles of four emulation-based analysis environ-
ments. The behavior comparison requires each sample
to be analyzed multiple times in each analysis environ-
ment. The main difference between Disarm and our work
is that our analysis systems are based on four fundamen-
tally different analysis platforms, including the transpar-

ent bare-metal environment with no monitoring compo-
nent present in the hardware. Moreover, we propose an
improved behavior comparison technique that captures
the inherent similarity hierarchy of the behavior features,
and do not require the resource-expensive execution of
same sample multiple times in the same analysis envi-
ronment.

7.4 Hierarchical Similarity

Hierarchies are used to encode domain knowledge about
different levels of abstraction in the type of events ob-
served. They have been used in different field of similar-
ity detection, such as finding text similarity [16], detect-
ing association rules using hierarchies of concepts [21],
and finding similarity among deformable shapes [17].
Ganesan et al. [19] proposed a similarity measure that in-
corporates hierarchical domain structure. However, the
similarity computation is focused on the element-level
similarity rather than the profile-level similarity. It uses
a modified version of cosine-similarity measure.

8 Conclusions

Dynamic analysis is an effective approach for analyzing
and detecting malware that uses advanced packing and
obfuscation techniques. However, evasive malware can
fingerprint such analysis systems, and, as a result, stop
the execution of any malicious activities. Most of the
fingerprinting techniques exploit the fact that dynamic
analysis systems are based on virtualized or emulated
environments, which can be detected by several known
methods. The ultimate way to thwart such detection is to
analyze malware in a bare-metal environment.

In this work, we presented BareCloud, a system for
automatically detecting evasive malware by using hier-
archical similarity-based behavioral profile comparison.
The profiles are collected by running a malware sam-
ple in bare-metal, virtualized, emulated, and hypervisor-
based analysis environments.

Future work will focus on improving the transparency
of the bare-metal analysis component and on developing
an iSCSI module that can extract high-level, intermediate
file system operation, providing a richer filesystem-level
event trace.
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Abstract
Matching function binaries—the process of identifying
similar functions among binary executables—is a chal-
lenge that underlies many security applications such as
malware analysis and patch-based exploit generation. Re-
cent work tries to establish semantic similarity based on
static analysis methods. Unfortunately, these methods do
not perform well if the compared binaries are produced
by different compiler toolchains or optimization levels. In
this work, we propose blanket execution, a novel dynamic
equivalence testing primitive that achieves complete cov-
erage by overriding the intended program logic. Blanket
execution collects the side effects of functions during
execution under a controlled randomized environment.
Two functions are deemed similar, if their corresponding
side effects, as observed under the same environment, are
similar too.

We implement our blanket execution technique in a sys-
tem called BLEX. We evaluate BLEX rigorously against
the state of the art binary comparison tool BinDiff. When
comparing optimized and un-optimized executables from
the popular GNU coreutils package, BLEX outperforms
BinDiff by up to 3.5 times in correctly identifying similar
functions. BLEX also outperforms BinDiff if the binaries
have been compiled by different compilers. Using the
functionality in BLEX, we have also built a binary search
engine that identifies similar functions across optimiza-
tion boundaries. Averaged over all indexed functions, our
search engine ranks the correct matches among the top
ten results 77% of the time.

1 Introduction
Determining the semantic similarity between two pieces
of binary code is a central problem in a number of se-
curity settings. For example, in automatic patch-based
exploit generation, the attacker is given a pre-patch bi-
nary and a post-patch binary with the goal of finding the
patched vulnerability [4]. In malware analysis, an analyst
is given a number of binary malware samples and wants

to find similar malicious functionality. For instance, pre-
vious work by Bayer et al. achieves this by clustering the
recorded execution behavior of each sample [2]. Indeed,
the semantic similarity problem is important enough that
the DARPA CyberGenome program has spent over $43M
to develop new solutions to it and its related problems [7].

An inherent challenge shared by the above applications
is the problem of semantic binary differencing (“diffing”)
between two binaries. A number of binary diffing tools
exist, with current state-of-the-art diffing algorithms such
as zynamics BinDiff1 [8, 9] taking a graph-theoretic ap-
proach to finding similarities and differences. BinDiff
takes as input two binaries, finds functions, and then per-
forms graph isomorphism (GI) detection on pairs of func-
tions between the binaries. BinDiff highlights pairs of
function code blocks between the binaries that are similar
and different. Although the graph isomorphism problem
has no known polynomial time algorithm, BinDiff has
been carefully designed with clever heuristics to make
it usably fast in practice. This graph-theoretic approach
pioneered by BinDiff has inspired follow-up work such
as BinHunt [10] and BinSlayer [3].

While GI-based approaches work well when two se-
mantically equivalent binaries have similar control flow
graphs (CFG), it is easy to create semantically equivalent
binaries that have radically different CFGs. For example,
compiling the same source program with -O0 and -O3
radically changes both the number of nodes and structure
of edges in both the control flow graph and the call graph.
Our experiments show that even this common change to
the compiler’s optimization level invalidates this assump-
tion and reduces the accuracy of the GI-based BinDiff to
25%.

In this paper, we present a new binary diffing algorithm
that does not use GI-based methods and as a result finds
similarities where current techniques fail. Our insight is
that regardless of the optimization and obfuscation differ-

1
http://www.zynamics.com/bindiff.html
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ences, similar code must still have semantically similar
execution behavior, whereas different code must behave
differently. At a high level, we execute functions of the
two input binaries in tandem with the same inputs and
compare observed behaviors for similarity. If observed
behaviors are similar across many randomly generated in-
puts, we gain confidence that they are semantically similar.
The main idea of executing programs on many random
inputs to test for semantic equivalence is inspired by the
problem of polynomial identity testing (PIT). At a high
level, the PIT problem seeks efficient algorithms to test
if an arithmetic circuit C that computes a polynomial
p(x1, · · · ,xn) over a given base field F outputs zero for ev-
ery one of the |F|n possible inputs. The earliest algorithm
for PIT was a very intuitive randomized algorithm that
simply runs C on random inputs. This algorithm depends
on the fact that if p is not identically zero, then the prob-
ability that C returns zero on a randomly-chosen input
is “small.”2 By repeating this test, either we will hit an
input (x1, · · · ,xn) such that p(x1, · · · ,xn) �= 0, or we gain
confidence that p is identically zero.

There are many challenges to applying the general PIT
idea to actual programs, however. Arithmetic circuits
have well-defined inputs and outputs, but it is currently an
area of active research to identify the inputs and outputs
of functions in binary code (see, e.g., [5]). Instead, we
propose seven assembly-level features to record during
the execution of each function as an approximation of
its semantics. Additionally, while it is straightforward to
evaluate an arithmetic circuit entirely, finding a collection
of inputs that can execute and thus extract the semantics of
every part of a program is another open research problem.
To achieve full coverage, we repeatedly start execution
from the first un-executed instruction of a function until
every instruction has been executed at least once.

We have implemented a dynamic equivalence testing
system called BLEX to evaluate our blanket execution
technique. Our system observes seven semantic features
from an execution, namely the four groups of values read
from and written to the program heap and stack, the calls
made to imported library functions, the system calls made
during execution, and the values stored in the %rax regis-
ter upon completion of the analyzed function. We com-
pute the semantic similarity of two functions by taking a
weighted sum of the Jaccards of the seven features. Our
evaluation is based on a comprehensive dataset. Specifi-
cally, we compiled GNU coreutils 8.13 with three current
compiler toolchains—gcc 4.7.2, icc 14.0.0, and clang
3.0-6.2. Then, for each compiler toolchain, we compiled
coreutils at optimization levels 0 to 3, producing 12 ver-
sions of coreutils in total.

2The precise upperbound on this probability is commonly known as
the Schwartz-Zippel Lemma [23, 28].

Overall, our contributions are as follows:
• We propose blanket execution, a novel full-coverage

dynamic analysis primitive designed to support se-
mantic feature extraction (§3). Unlike previous ap-
proaches such as [25], blanket execution ensures the
execution of every instruction without forced viola-
tion of branch instruction semantics.

• We propose seven binary code semantics extractors
for use in blanket execution. This allows us to ap-
proximate the semantics of a function without rely-
ing on variable identification or source code access.

• We implement the proposed algorithm in a system
called BLEX and evaluate it on a comprehensive
dataset based on GNU Coreutils compiled on 4 op-
timization levels by 3 compilers. Our experiments
show that BinDiff performs well (8% better than
BLEX) on binaries that are syntactically similar. For
binaries that show significant syntactic differences,
BLEX outperforms BinDiff by a factor of up to 3.5
and a factor of 2 on average.

2 Problem Setting and Challenges
The problem of matching function binaries is a significant
challenge in computer security. In this problem setting,
we are only given access to binary code without debug
symbols or source. We assume the code is not packed and
is compiled from a high-level language that has the no-
tion of a function, i.e., not hand-written assembly. While
handling packed code is important, it poses unique chal-
lenges which are out of scope for this paper. There are
many real-life examples of such problem settings in secu-
rity. These include, for example, automatic patch-based
exploit generation [4], reverse engineering of proprietary
code [24], and finding bugs in off-the-shelf software [6].

Clearly, all compiled versions of the same source code
should be considered similar by a system addressing the
problem of matching function binaries. In this paper,
we explicitly consider the case where different compilers
and optimization settings produce different binary pro-
grams from identical source code. Changing or updating
compilers and optimizers happens periodically in indus-
try. For example, with the release of the Xcode 4.1 IDE,
Apple switched the default compiler suite from gcc to
llvm [1]. Furthermore, changing compilers and optimiza-
tion settings is similar to an obfuscation technique. It is
common for optimizers to substitute instruction sequences
with semantically equivalent but syntactically different
sequences. This is exactly a form of metamorphism.

As a motivating example, consider the problem of de-
termining similarities in ls compiled with gcc -O0 and
gcc -O3, as shown in Figure 1. Although the two assem-
bly listings are the result of the exact same source code,
almost all syntactic similarities have been eliminated by
the applied compiler optimizations. If we cannot handle
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1 static int strcmp_name(

2 V a, V b

3 )

4 {

5 return cmp_name(a, b, strcmp);

6 }

7
8 static inline int

9 cmp_name (

10 struct fileinfo const *a,

11 struct fileinfo const *b,

12 int (*cmp) (

13 char const *,

14 char const *)

15 )

16 {

17 return

18 cmp (a->name, b->name);

19 }

1 407ab9 <strcmp_name>:
2 ab9: push %rbp

3 ...

4 ad1: mov $0x402710,%edx

5 ... PLT entry of strcmp

6 ad6: mov %rcx,%rsi

7 ad9: mov %rax,%rdi

8 adc: callq 406fa1 <cmp_name>
9 ae1: leaveq

10 ae2: retq

11
12 406fa1 <cmp_name>:
13 fa1: push %rbp

14 ...

15 fcd: callq *%rax

16 ... call function pointer (e.g., strcmp)

17 fcf: leaveq

18 fd0: retq

1 4053e0 <strcmp_name>:
2 e0: mov (%rsi),%rsi

3 e3: mov (%rdi),%rdi

4 e6: jmpq 402590 <strcmp@plt>

Figure 1: strcmp_name from ls. Source (left), compiled with gcc -O0 (center), and gcc -O3 (right).

(a) md5_finish_ctx
(unoptimized)

(b) md5_finish_ctx
(optimized)

(c) xstrxfrm
(optimized)

Figure 2: Only the CFG (b), but not (c), is the correct
match for (a).

a short function in coreutils “obfuscated” only by dif-
ferent optimization levels, what hope do we have on real
threats?

The difference between optimized and non-optimized
code illustrates several key challenges for correctly iden-
tifying the two code sequences as similar:

• Semantically similar functions may not yield syn-
tactically similar binaries. The length of code and
operations performed between the two optimization
levels is radically different although they both carry
out the same simple operation.

• The analysis needs to reason about how memory is
read and written. For example, the -O0 and -O3

access their arguments identically despite -O3 not
setting up a typical stack frame. In addition, the
cmp_name function in the -O0 code up to the call on
line 15 indexes struct fields in a semantically equiva-
lent manner to lines 1 and 2 of the -O3 version.

• Inter-procedural and context sensitive analysis is
a must. In -O0, strcmp_name will always call
cmp_name with a function pointer pointing to
strcmp, but in -O3, strcmp is called directly.

Unfortunately, existing systems both in the security
and the general systems community do not address all
the above challenges. Syntax-only approaches such as
BitShred [12] and others will fail to find any similarities
in the code presented in Figure 1. GI-based algorithms
will fail because the call and control flow graphs are radi-
cally different. GI based methods, such as BinDiff, also
face challenges when the control flow graphs to compare
are small and collisions render them indistinguishable.
Consider, for example the three control flow graphs in
Figure 2. The CFG in (a) is the unoptimized version of
the md5_finish_ctx function in the sort utility. While
Figure (b) is the optimized version of that function, Fig-
ure (c) is the implementation of xstrxfrm in the same
binary. However, an approach that solely relies on graph
similarities, will likely not be able to make a meaningful
distinction in this scenario. Alternative approaches, such
as the one proposed by Jiang and Su [14] perform only
intra-procedural analysis and thus are not able to identify
the similarity of the two implementations. To address
the above-mentioned challenges in the scope of matching
function binaries, we propose a novel dynamic analysis.

3 Approach
We propose blanket execution as a novel dynamic anal-
ysis primitive for semantic similarity analysis of binary
code. Blanket execution of a function f dynamically
executes the function repeatedly and ensures that each
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Figure 3: System overview. The upper diagram shows how blanket execution is used to compute the semantic similarity
between two given functions f and g inside a given environment envk. The lower diagram shows how the above
computation is used in our BLEX system to, given two program binaries F and G, compute for each function fi ∈ F a list
of (function, similarity) pairs where each function is a function in G and the list is sorted in non-increasing similarity.

instruction in f is executed at least once. To achieve full
coverage, blanket execution starts successive runnings at
so-far uncovered instructions. During these repeated run-
nings, blanket execution monitors and records a variety of
dynamic runtime information (i.e., features). Similarity
of two functions analyzed by blanket execution is then
assessed by the similarity of the corresponding observed
features.

More precisely, blanket execution takes a function f
and an environment env and outputs a vector of dynamic
features�v( f ,env) whose coordinates are the feature val-
ues captured during the blanket execution. We define
the concept of “dynamic feature” broadly to include any
information that can be derived from observations made
during execution. As an example, we define a feature that
corresponds to the set of values read from the heap during
a blanket execution.

The novelty of our blanket execution approach lies
in (i) how the function f is executed for the purpose of
feature collection and (ii) what features are collected so
that they are useful for semantic similarity comparisons.
We will first look at (i) while assuming an abstract set of
N features in (ii). The latter will be fully specified and
explained in §4. For convenience, we will denote each
coordinate of a vector�v as vi.

3.1 Environment
A key concept in blanket execution is the notion of the
environment in which a blanket execution occurs. Blanket
execution is a dynamic program analysis primitive. This

means that in order to analyze a target, blanket execution
runs the target and monitors its execution.

To concretely run binary code, we need to provide con-
crete values of the set of registers and memory locations
being read. In blanket execution, we provide concrete
initial values to all registers and all memory locations
regardless of whether they are read or not. For unmapped
memory regions, an environment also specifies a random-
ized but fixed dummy memory-page. Together, this set of
values is known as “an environment.” The most important
property of an environment is that it must be efficiently
reproducible since we need to be able to efficiently use
a specific environment for multiple runs. This is particu-
larly crucial due to our need to compare feature vectors
collected from different functions.

3.2 Blanket Execution
Definition. Given a function f and an environment env,
the blanket execution of f in env is the repeated runnings
of f starting from the first un-executed instruction of f
until every instruction in f has been executed at least once.
Each one of these repeated runnings is called a blanket
execution run of f , or “be-run” for short. Since we will be
using a fixed environment to perform be-runs on a large
number of functions, we also define a blanket execution
campaign (“be-campaign”) to be a set of be-runs using
the same environment.

Notice that the description of blanket execution encom-
passes a notion of regaining control. There are several
possible outcomes after we start to run f . For example,
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f may terminate, f may trigger a system exception, or f
may go into an infinite loop. We explain how to handle
these possibilities in §4.2.

input :Function binary f , Environment env
output :Feature vector�v( f ,env) of f in env
I← getInstructions( f )
f vec ← emptyVector()
while I �= /0 do

addr ← minAddr(I)
(covered,v)← be-run( f ,addr,env)
I← I\ covered
f vec ← pointwiseUnion( f vec,v)

end
return f vec

Algorithm 1: Blanket Execution.

Algorithm. Algorithm 1 outlines the process of blanket
execution for a given function f and an execution envi-
ronment env. First, the function f is dissected into the set
of its constituent instructions (I). The system executes
the function in the environment env at the instruction with
the lowest address in I, recording the targeted observa-
tions. Executed instructions are removed from I and the
process repeats until all instructions of the function have
been executed (i.e., |I|= 0). All recorded feature values,
such as memory accesses and system call invocations, are
aggregated into a feature vector (fvec) associated with the
function. Each element in the resulting feature vector is
the union of all observed effects for the respective feature.

Rationale. A common weakness of dynamic analysis
solutions is potentially low coverage of the program under
test. Intuitively, this is because a dynamic analysis must
provide an input to drive the execution of the program but
by definition a fixed input can exercise only a fixed portion
of the program. Although multiple inputs can be used in
an attempt to boost coverage, it remains an open research
problem to generate inputs to boost coverage effectively.
Blanket execution side-steps this challenge and attains full
coverage by sacrificing the natural meaning of “executing
a function,” namely executing from the start of it.

3.3 Assessing Semantic Similarity
The output of a blanket execution on a function f in an
environment env is a length-N feature vector �v( f ,env).
In this section we define how to compute simk( f ,g), the
semantic similarity of two functions f and g given two
feature vectors�v( f ,env) and�v(g,env) that were extracted
using blanket execution under the same environment envk.

Definition. All our features are sets of values and we
use the Jaccard index to measure the similarity between
sets. We define simk( f ,g) to be a normalized weighted

sum of the Jaccard indices on each of the N features in
envk. Mathematically, given N weights w1, . . . ,wN , we
define

simk( f ,g)=
N

∑
i=1

(
wi ×

|vi( f ,envk)∩ vi(g,envk)|
|vi( f ,envk)∪ vi(g,envk)|

)
/

N

∑
�=1

w�.

The numerator computes the weighted sum of the Jac-
card indices and the denominator computes the normaliza-
tion constant. The normalization ensures that simk( f ,g)
ranges from 0 to 1, capturing the intuition that it is a
similarity measure.

Similarity, Not Equivalence! As explained in §1, our
work draws inspiration from the randomized testing algo-
rithm for the polynomial identity testing problem. Strictly
speaking, if two functions behave differently in just one
environment, we can declare that they are inequivalent.
However, in order to make such a judgment, we must have
a precise and accurate method to capture the execution
behavior of a function. While this is straightforward for
arithmetic circuits, it is unsolved for binary code in gen-
eral. Furthermore, in many applications such as malware
analysis, analysts may intend to identify both identical
and similar functions. This is why we assess the notion
of semantic similarity for binary code instead of semantic
equivalence.

Weights. Different features may carry different degrees
of importance. To allow for this flexibility, we use a
weighted sum of the Jaccard indexes. We explain our
method to compute the weights (w�) in §5.1.2.

3.4 Binary Diffing with Blanket Execution
Given the ability to compute the semantic similarity of
two functions in a fixed environment, we can perform
binary diffing using blanket execution. Figure 3 illustrates
the workflow of our system, BLEX.

Preprocessing. Given two binaries F and G, we first
preprocess them into their respective sets of constituent
functions. We denote these sets as { fi} and {g j} respec-
tively.

Similarity Computation with Multiple Environments.
Just as in polynomial identity testing, we will compute the
similarity of every pair of ( fi,g j) in multiple randomized
environments {envk}. Recall from §3.3 that simk( fi,g j)
is the computed semantic similarity of fi and g j in envk.

Ranking by Averaged Similarity. For each ( fi,g j),
we compute their similarity by averaging over the en-
vironments. Let K be the number of environments used.
Mathematically, we define

sim( fi,g j) =
1
K ∑

k
simk( fi,g j).
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Finally, for each function fi in the given binary F , we
output a list of (function, similarity) pairs where each
function is an identified function in G and the list is sorted
in non-increasing similarity. This completes the process
illustrated in Figure 3.

4 Implementation
We implemented the approach proposed in §3 in a sys-
tem called BLEX. BLEX was implemented and evalu-
ated on Debian GNU/Linux 7.4 (Wheezy) in its amd64
flavor. Because BLEX uses the Pin dynamic instrumen-
tation framework [17] (see §4.2), it is easily portable to
other platforms supported by Pin (e.g., Windows or 32-bit
Linux).

4.1 Inputs to Blanket Execution
BLEX operates on two inputs. The first input is a program
binary F, and the second input is an execution environ-
ment under which blanket execution is performed. In a
first pre-processing step, BLEX dissects F into individual
functions fi. Subsequently, BLEX applies blanket execu-
tion to the fi as explained in §3. Furthermore, Algorithm 1
uses a static analysis primitive getInstructions, which
dissects a given function into its constituent instructions.

Reliably identifying function boundaries in binary code
is an open research challenge and a comprehensive so-
lution to the function boundary identification problem is
outside the scope of this work. However, heuristic ap-
proaches, such as Rosenblum et al. [22] or the techniques
implemented in IDA Pro [11] deliver reasonable accuracy
when identifying function boundaries. IDA Pro supports
both primitives used by blanket execution (i.e., function
boundary identification and instruction extraction). BLEX
thus defers these tasks to the IDA Pro disassembler.

4.2 Performing a BE-Run
A blanket execution run starts execution of a function at a
given address i under an environment env. However, given
a program binary, one cannot just instruct the operating
system to start execution at said address. Upon program
startup, the operating system and loader are responsible
for mapping the executable image into memory and trans-
ferring control to the program entry point defined in the
file header. We leverage this insight to correctly load
the application into memory. Once the loader transfers
control to the program entry point, we divert control to
the address from which to perform the blanket execution
run (address i). Letting the loader perform its intended
operation means that the executable will be loaded with
its valid expected memory layout. Note that valid here
only means that all sections of the binary are correctly
mapped to memory.

Applications frequently make use of functions im-
ported from shared libraries. On Linux the runtime linker

implements lazy evaluation of entries in the procedure
linkage table (plt). That is, function addresses are only
resolved the first time the function is called. However,
the side effects produced by the dynamic linker are not
characteristic of function behavior. Instead, these side
effects create unnecessary noise during blanket execution.
To prevent such noise, BLEX sets the LD_BIND_NOW en-
vironment variable to instruct ld.so (on Linux) to resolve
all plt entries at program startup.

Once the be-run starts, BLEX records the side effects
produced by the code under analysis. To this end, BLEX
leverages the Pin dynamic instrumentation framework to
monitor memory accesses and other dynamic execution
characteristics, such as system calls and return values
(see §4.3). Program code that executes in a random en-
vironment is expected to reference unmapped memory.
Such invalid memory accesses commonly cause a seg-
mentation fault. To prevent this common failure scenario,
BLEX intercepts accesses to unmapped memory. Instead
of terminating the analysis, BLEX replaces the referenced
(unmapped) memory page with the contents of a dummy
memory page specified in the environment. This allows
execution to continue without terminating the analysis.

When Does a Run Terminate? A be-run is an inter-
procedural dynamic analysis of binary code. However,
such a dynamic analysis is not guaranteed to always ter-
minate within a reasonable amount of time. In particular,
executing under a randomized environment can easily
cause a situation where the program gets stuck in an infi-
nite loop. To avoid such situations and guarantee forward
progress, BLEX continuously evaluates the following cri-
teria to determine if a be-run is completed.

1. Execution reaches the end of the function in which
the be-run started.

2. An exception is raised or a terminal signal is re-
ceived.

3. A configurable number of instructions have been
executed.

4. A configurable timeout has expired.

BLEX detects that a function finished execution by keep-
ing a counter that corresponds to the depth of the call
stack. Upon program startup the counter is initialized to
zero. Each call instruction increments the counter and
each ret instruction decrements the counter by one. As
soon as the counter drops below zero, the be-run is said
to be completed.

To catch exceptions and signals, BLEX registers a sig-
nal handler and recognizes the end of a be-run if a signal
is received. If the code under analysis registered a signal
handler for the received signal itself, BLEX does not termi-
nate the be-run but passes the signal on to the appropriate
signal handler.
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4.3 Instrumentation
Blanket execution monitors the side effects of program
execution. A wealth of systems such as debuggers, em-
ulators, and virtual machines have been used in the past
to implement dynamic analyses. We chose to implement
BLEX on Intel’s Pin dynamic instrumentation framework
because the tool is mature, well documented, and proven
in practice.

At its core, Pin employs a just-in-time (JIT) compiler
to recompile basic blocks of binary application code at
runtime. Instead of running the original application code,
Pin recompiles a block of code, inserting the instrumen-
tation functionality specified by the developer. Then the
recompiled code is executed. Upon completion of the
code block, Pin regains control and repeats the same pro-
cess for the next block of application code. The analysis
functionality is specified by the developer in a so-called
pintool. A pintool is a collection of instrumentation and
analysis routines written in C++.

BLEX uses a pintool to instrument individual instruc-
tions and record their effects during a be-run. In our
implementation we chose features that capture a variety
of system level information (e.g., memory accesses), as
well as higher level attributes, such as function and sys-
tem calls. While the current list of features can easily be
extended, the following features proved useful for estab-
lishing function binary similarity:

1. Values read from the program heap (v1)
2. Values written to the program heap (v2)
3. Values read from the program stack (v3)
4. Values written to the program stack (v4)
5. Calls to imported library functions via the plt (v5)
6. System calls made during execution (v6)
7. Return values stored in the %rax register upon com-

pletion of the analyzed function (v7)
Each be-run results in seven sets of observations – one

set for each feature. Once all instructions for a function
f have been covered, BLEX combines all information
pertaining to f in seven sets. That is, given a function f, all
observations of v1 are combined into a single set of values
for that function (i.e., fv1 ). The same process is repeated
for the remaining categories to produce fv2 . . . fv7 . The
result after blanket execution of a program is the list of
functions fi and the seven sets of observed side effects for
each fi.

Categories v1 . . .v4 and v7 record the numeric values
used in the respective operations (e.g., values read from
memory). Category v5 records the names of the invoked
functions, and v6 records the system calls invoked. Note
that the technique of blanket execution neither defines nor
restricts extracted features. BLEX can easily be extended
with additional features that help characterize functions.
§5 shows that the seven categories of features currently

extracted by BLEX are well suited to capture the semantic
information of functions.

BLEX relies on the observation that many execution
side effects are characteristic of function semantics and
thus persist between different compilers and optimiza-
tions. While compilers certainly cannot optimize system
calls without sacrificing correctness, memory accesses
are commonly subject to optimizations. For example, an
optimized register allocation scheme can prevent the need
for aggressively spilling registers onto the stack. This
means that some features are more robust and thus more
indicative of function semantics than others. To address
these varying degrees of influence, BLEX attributes each
feature category with a weight factor (w1 . . .w7). BLEX
leverages support vector machines to establish optimal
values for these weights (§5.1.2). We will now discuss
how BLEX monitors program execution for side effects.

Memory Accesses. The first four categories of side ef-
fects (v1 . . . v4) are derived from memory accesses. BLEX
conforms to a standard memory model where reading a
previously written memory cell returns the most recent
value written to that cell. While this model is intuitive
it only applies to valid (i.e., mapped) memory. In the
case that a program tries to access unmapped memory, the
operating system will raise an invalid memory reference
exception. If a function makes use of global variables,
or expects a pointer to mapped memory as one of its
formal arguments, normal program execution will initial-
ize such memory properly before the function is called.
However, because blanket execution is oblivious to such
semantic dependencies, it is common that functions ac-
cess unmapped memory during blanket execution.

To prevent program termination due to unmapped mem-
ory accesses, BLEX simulates that all memory references
are valid. To this end, whenever the program tries to
access unmapped memory, BLEX interrupts program ex-
ecution and maps a dummy page in that location. This
page is then populated with the data from the dummy
page specified in the execution environment.

Pin makes it easy for the developer to emulate data
transfers from memory to a register. Thus, a naïve but in-
effective approach to simulate that all memory is mapped
would be to instrument all instructions that transfer data
from memory to a register. For example, the instruction

mov (%rsi),%rdx

will copy the value pointed to by%rsi into register %rdx.
Unfortunately, Pin’s capabilities of intercepting memory
accesses are restricted to explicit data transfers such as
the above. Instructions with input and output operands
that are memory cells cannot be instrumented in the same
way. For example, the instruction

addl $0x1, $0x20(%rax)
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will add the constant value one to the value that is stored
at offset 0x20 from the memory address in %rax. Because
Pin’s instrumentation capabilities are not fine-grained
enough to modify the values retrieved during operand res-
olution, the straight-forward approach to emulate memory
accesses is not generally applicable.

Of course, BLEX needs to collect observations from
all instructions that access memory and not just those
that explicitly transfer values from memory to the register
file or vice versa. Thus, BLEX implements the following
mechanisms depending on whether an instruction reads,
writes, or reads and writes memory.

Read Accesses. The Pin API allows us to selectively
instrument instructions that read from memory. Further-
more, Pin calculates the effective address that is used for
each memory accessing instruction. Thus, before an in-
struction reads from memory, BLEX will verify that the
effective address that will be accessed by the instruction
belongs to a mapped memory page. If no page is mapped
at that address, BLEX will map a valid dummy mem-
ory page at the corresponding address3 and the memory
access will succeed.

Recall that a blanket execution environment consists
of register values and a memory page worth of data that
is kept consistent across all blanket execution runs for a
given campaign. By seeding dummy pages with the con-
tents specified in the environment, functions that access
unmapped memory will read a consistent value. The ratio-
nale is that binary code calculates memory addresses ei-
ther from arguments or global symbols. Similar functions
are expected to perform the same arithmetic operations on
these values to derive the memory address to access. Con-
sider, for example, the binary implementations illustrated
in Figure 1. Both implementations of strcmp_name ex-
pect and dereference two pointers to fileinfo structures
(passed in %rsi and %rdi). During blanket execution
these arguments contain random but consistent values as
determined by the execution environment. Dereferencing
these random values will likely result in a memory access
to unmapped memory. By mapping the dummy page at
the unmapped memory region, BLEX ensures that both
implementations retrieve the same random value from the
dummy page.

With this mechanism in place, BLEX can monitor all
read accesses to memory by first making sure that the
target memory page is mapped, and then read the original
value stored at the effective address in memory.

Write Accesses. Similar to read accesses Pin provides
mechanisms to instrument instructions that write to mem-
ory. However, the Pin API is not expressive enough to
record the values that are written to memory. Thus, to

3More precisely, the dummy page is mapped at the target address
rounded down to a page-aligned starting address.

record values that are written to memory, BLEX reads the
value from memory after the instruction executed. Simi-
lar to the read access technique mentioned above, BLEX
will make sure that memory writes succeed by mapping a
dummy page at the target address if that address resides
in unmapped memory.

Memory Exceptions. BLEX only creates dummy
pages for memory accesses to otherwise unmapped mem-
ory ranges. If the program tries to access mapped memory
in a way that is incompatible with the memory’s page pro-
tection settings BLEX does not intervene and the operating
system raises a segmentation fault. This would occur, for
example, if an instruction tries to write to the read-only
.text section of the program image.

System Calls. Besides memory accesses BLEX also
considers the invocation of system calls as side effects of
program execution. Pin provides the necessary function-
ality to intercept and record system calls before they are
invoked.

Library Calls. System calls are a well defined interface
between kernel space and user space. Thus, they present
a natural vantage point to monitor execution for side ef-
fects. However, many functions (39% in our experiments)
do not result in system calls and thus, relying solely on
system calls to identify similar functions is insufficient.
Therefore, BLEX also monitors what library functions an
application invokes. To support dynamic linking, ELF
files contain a .plt (procedure linkage table) section.
The .plt section contains information (i.e., one entry per
function) about shared functions that might be called by
the application at runtime. While stripped binaries are
devoid of symbol names, they still contain the names of
library function names in the plt entries. BLEX records
the names of all functions that are invoked via the plt.

While there is no alternative for a program to mak-
ing system calls, it is not mandatory that shared library
functions are invoked through the plt. For example, a
developer can chose to statically link a library into her ap-
plication or interface with the dynamic linker and loader
directly by means of the dlopen and dlsym APIs. Thus,
functions from a statically linked version of a program
and those from a dynamically linked version thereof will
differ in the side effects observed for category library
function calls (i.e., v5).

4.4 Calculating Function Similarity
BLEX combines all of the above methods into a single
pintool of 1,036 lines of C++ code. During execution,
the pintool collects all necessary information pertaining
to the seven observed features. Each be-run results in a
feature vector consisting of seven sets that capture the ob-
served side effects. Once all be-runs for a single function
finish, BLEX combines the recorded feature vectors and
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associates this information with the function. Because the
individual dimensions in the vectors are sets, BLEX uses
the set-union operation to combine the individual feature
vectors, one dimension at a time. As discussed in §3.3,
BLEX assesses the similarity of two functions f and g by
calculating the weighted sum of the Jaccard indices of the
seven dimensions in the respective feature vectors. We
use the Jaccard index as a measure of similarity, because
even semantically equivalent functions can result in slight
differences in the observed feature values. For example,
the unoptimized version in Figure 1 will write and read
the passed arguments to the stack, whereas the optimized
version does not contain such code. This different behav-
ior results in slightly different values of the corresponding
coordinates in the feature vectors.

5 Evaluation
BLEX is an implementation of the blanket execution ap-
proach to perform function similarity testing on binary
programs. We evaluate BLEX to answer the following
questions:

• Can BLEX recognize the similarity between seman-
tically similar, yet syntactically different implemen-
tations of the same function? (§5.3)

• Can BLEX match functions compiled from the same
source code but with different compiler toolchains
and/or configurations? (§5.4)

• Is BLEX an improvement over the industry standard
tool, BinDiff? (§5.4)

• Can BLEX be used as the basis for high-level appli-
cations? (§5.5)

We begin our evaluation with an experiment on syn-
tactically different implementations of the libc function
ffs, followed by an evaluation of the effectiveness of
BLEX over BinDiff across a large set of programs with
different compilers and compiler configurations, finish-
ing with a prototype search engine for binary programs
built on BLEX. Before presenting our results, we discuss
the dataset, ground truth, and feature weights used in the
evaluation.

5.1 Dataset
For this evaluation we compiled a dataset based on the
popular coreutils-8.13 suite of programs. This version of
the coreutils suite consists of 103 utilities. However, to
prevent damage to our analysis environment, we excluded
potentially destructive utilities such as rm or dd from the
dataset, reducing the number of utilities from 103 to 95.
We used three different compilers (gcc 4.7.2, icc 14.0.0,
and clang 3.0-6.2) with four different optimization set-
tings (-O0, -O1, -O2, and -O3) each to create 12 versions
of the coreutils suite for the x86-64 architecture. In total
our dataset consists of 1,140 unique binary applications,
comprising 195,560 functions.

Feature Accuracy
Read from heap (v1) 40%
Write to heap (v2) 57%
Read from stack (v3) 58%
Write to heap (v4) 53%
Library function invocation (v5) 17%
System calls (v6) 39%
Function return value (v7) 13%

Table 1: Accuracy of individual features.

5.1.1 Ground Truth

Although BLEX does not rely on or use debug symbols,
we compiled all binaries with the -g debug flag to estab-
lish ground truth based on the symbol names. For our
problem setting, we strip all binaries before processing
them with BLEX or BinDiff.

Function inlining has the effect that the inlined function
disappears from the target binary. Interestingly, the linker
can have the opposite effect when it sometimes introduces
duplicate function implementations. For example, when
compiling the du utility, the linker will include five iden-
tical versions of the mbuiter_multi_next function in
the application binary. While such behavior could be
explained if the compiler performed code locality opti-
mization, this also happens if all optimization is turned
off (-O0). This observation suggests that optimization is
not the reason for this code duplication. Because these
duplicates are exactly identical, we have to account for
this ambiguity when establishing ground truth. That is,
matching any of the duplicate instances of the same func-
tion should be treated equal and correct. In our dataset
37 different programs contained duplicates (between two
and six copies) of 16 different functions. Based on these
observations, we establish ground truth by considering
functions equivalent if they share the same function name.

5.1.2 Determining Optimal Weights

Each feature in BLEX has a weight factor associated with
it, i.e., w�|� = 1 . . .7. To assess the sensitivity of BLEX
to these weights, we performed seven small-scale experi-
ments as a sensitivity analysis of the individual features.
In each experiment, we set all but one weight to zero
and evaluated the accuracy of the system when matching
functions between all coreutils compiled with gcc and
the -O2 and -O3 optimization settings. Table 1 illustrates
how well the individual features BLEX collects can be
used to assess similarity between functions.

To establish the optimal values for these weights, we
leveraged the Weka4 (version 3.6.9) machine learning
toolkit. Weka provides an implementation of the sequen-

4
http://www.cs.waikato.ac.nz/ml/weka/
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tial minimal optimization algorithm [20] to train a support
vector machine based on a labeled training dataset. To
train a support vector machine, the training dataset must
consist of feature values for positive and negative exam-
ples. We created the dataset based on our ground truth by
first selecting 9,000 functions at random from our pool of
functions. For each function f in a binary F we calculated
the Jaccard index with its correct match g in binary G, con-
stituting a positively labeled sample. For each positively
labeled sample, we created a negatively labeled sample
by calculating the Jaccard index with the feature vector of
a random function g′ ∈ G such that g′ �= g. The support
vector machine determined the weights as w2 = 2.4979,
w6 = 0.8775, w4 = 0.4052, w1 = 0.3846, w3 = 0.3786,
w7 = 0.3222, and w5 = 0.1082. Using these weights in
BLEX to evaluate the dataset from the above-mentioned
sensitivity analysis improved accuracy to 75%.

5.2 Experimental Setup
We evaluated BLEX on a commodity desktop system
equipped with an Intel Core i7-3770 CPU (4 physical
cores @ 3.4GHz) running Debian Wheezy. For this eval-
uation we set the maximum number of instructions ti to
10,000 instructions and the timeout for a single be-run to
three seconds. We performed blanket execution for all
195,560 functions in our dataset under eleven different
environments. On average, 1,590,773 be-runs were re-
quired to cover all instructions in the dataset for a total
of 17,498,507 be-runs. A single be-run took on average
0.28 seconds, an order of magnitude below the timeout
threshold we selected. Only 9,756 be-runs were termi-
nated because of this timeout. 604,491 be-runs (3.5%)
were terminated because the number of instructions ex-
ceeded the chosen threshold of 10,000 instructions. While
performing blanket execution on all 1,140 unique bina-
ries in our dataset required approximately 57 CPU days,
performing blanket execution on two versions of the ls
utility can be achieved in 30 CPU minutes. Because the
repeated runnings in blanket execution are independent
of each other, blanket execution resembles an embarrass-
ingly parallel workload and scales almost linear with the
number of available CPU cores.

5.3 Comparing Semantically Equivalent
Implementations

BLEX tracks the observable behavior of function exe-
cutions to identify semantic similarity independent of
the source code implementation. To test our design, we
acquired two different implementations of the ffs func-
tion from the Newlib and uclibc libraries as used in
the evaluation of the system built by Ramos et al. [21]
to measure function equivalence in C source code. We
compiled both sources with gcc -O2. The resulting bina-
ries differed significantly: the control flow graph in the

uclibc implementation consisted of eleven basic blocks
and the Newlib implementation consisted of just four
basic blocks. We ran BLEX on both function binaries in
13 different random environments. After comparing the
resulting feature vectors, BLEX reported perfect similarity
between the compiled functions. This result illustrates
how BLEX and blanket execution can identify function
similarity despite completely different source implemen-
tations.

5.4 Function Similarity across Compiler
Configurations

The ideal function similarity testing system can identify
semantically similar functions regardless of the compiler,
optimizations, and even obfuscation techniques employed.
The task is nontrivial as different compiler options can
result in drastically different executables (see Figure 1).
A rough measure of these differences is the number of
enabled compiler optimizations. Consider, for example,
the number of optimizations enabled by the four common
optimization levels in gcc. The switch -O0 turns off all
optimization, and -O1 enables a total of 31 different op-
timization strategies. Additionally, -O2 enables another
26 settings, and -O3 finally adds another nine optimiza-
tions. We would expect that binaries compiled from the
same source with -O2 and -O3 optimizations are closest
in similarity. Thus, similarity testing should yield better
results for such similar implementations then for binaries
compiled with -O0 and -O3 optimizations.

We leverage our dataset to compare the accuracy of
BLEX and BinDiff in identifying similar functions of the
same program, built with different compilers and different
compilation options.

Comparison with BinDiff. BinDiff is a proprietary
software product that maps similar functions in two ex-
ecutables to each other. To this end, BinDiff assigns a
signature to each function. Function signatures initially
consist of the number of basic blocks, the number of con-
trol flow edges between basic blocks, and the number of
calls to other functions. BinDiff immediately matches
function signatures that are identical and unique. For
the remaining functions, BinDiff applies secondary algo-
rithms, including more expensive graph analyses. One
such secondary algorithm matches function names from
debug symbols. However, our experiments do not lever-
age debugging symbols as our efforts are focused on the
performance on stripped binaries. The data presented in
this evaluation was obtained with BinDiff version 4.0.1
and the default configuration.

As Figure 4 illustrates, BinDiff is very proficient in
matching functions among the same utility compiled
with the very similar -O2 and -O3 settings. Although
BLEX also performs reasonably well, BinDiff outper-
forms BLEX on almost all utilities in this comparison.
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Figure 4: Correctly matched functions for binaries in coreutils compiled with gcc -O2 and gcc -O3. BinDiff
(grey), BLEX (black), total number of functions in utility (solid line).

The solid line in the figure marks the total number of
functions in each utility.

Once the differences between two binaries become
more pronounced, BLEX shows considerably improved
performance over BinDiff. Figure 5 compares BLEX and
BinDiff in identifying similar functions in binaries com-
piled with the -O0 and -O3 optimization settings. This
combination of compiler options is expected to produce
the least similar binaries and thus should establish a lower
bound of the performance one can expect from BLEX and
BinDiff respectively. This evaluation shows that BLEX
consistently outperforms BinDiff, on average by a factor
of two. Furthermore, BLEX matches over three times as
many functions correctly for the du, dir, vdir, ls, and
chcon utilities.

Finally, we assess the performance of BLEX and Bin-
Diff on programs built with different compilers. Figure 6
shows the accuracy for binaries compiled with gcc -O0
and Intel’s icc -O3. Again, due to the substantial differ-
ences in the produced binaries, BLEX consistently outper-
forms BinDiff in the cross-compiler setting.

Discriminatory power of the similarity score. We
also evaluated how well the similarity score tells cor-
rect from incorrect matches apart. Similarity scores are
normalized to the interval [0,1] with 1 indicating perfect
similarity and 0 absolute dissimilarity. In Figure 8, we
illustrate the expected similarity value over 10,000 pairs
of random functions. On average this expected similarity
is 0.12. However, when analyzing the similarity scores
of correct matches from the experiment used for Figure 4
(i.e., gcc -O2 vs. gcc -O3), the average similarity score
is 0.85. This indicates that the seven features BLEX uses
to assess function similarity are indeed suitable to perform
this task.

Effects of Multiple Environments. As discussed in
§3.4, we proposed to perform blanket execution with mul-
tiple environments ({envk}). To assess the effects of per-
forming blanket execution under multiple environments,
we evaluated how the percentage of correct matches varies
as k (the number of environment) increases. Our result is
shown in Figure 7. The figure shows that a mild increase

(from 50% to 55%) in accuracy up until three environ-
ments are used. Interestingly, using more than three envi-
ronments does not significantly improve the accuracy of
BLEX. This is in stark contrast to the PIT theory. How-
ever, as discussed previously, real-world function binaries
are not polynomials and BLEX cannot precisely identify
all input and output dependencies of a function. Thus,
it may not be surprising that a larger number of random
environments does not significantly improve the accuracy
of the system. We plan to evaluate alternate strategies for
crafting execution environments in a “smart” way in the
future.

5.5 BLEX as a Search Engine

Matching function binaries is an important primitive for
many higher-level applications. To explore the potential
of BLEX as a system building-block, we built a prototype
search engine for function binaries. Given a search query
(a function f) and a corpus of program binaries, we can
use BLEX to find the program most likely to contain
an implementation of f. Phrased differently, an analyst
presented with an unknown function can search for similar
functions encountered in the past. The analyst can then
easily apply the knowledge gathered during the previous
analysis of similar functions, reducing the time and effort
spent on redundant analysis. Similarly, if a match is
found in a program for which the analyst has access to
debug symbols, the analyst can leverage this valuable
information to speed up the analysis of the target function.

To evaluate this application, we chose 1,000 functions
at random from the applications compiled with gcc -O0.
These functions serve as the search queries. We com-
piled the corpus from programs in coreutils built with
gcc -O1,-O2, and -O3 respectively (29,015 functions in
total). Our prototype search engine ranked the correct
match as the first result in 64% of all queries. 77% of the
queries were ranked under the first 10 results (e.g., the
first page of search results) and 87% were ranked under
the first 10 pages of results (i.e., top 100 ranks). Figure 9
depicts this information as the left-hand side of the CDF.
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Figure 5: Correctly matched functions for binaries in coreutils compiled with gcc -O0 and gcc -O3. BinDiff
(grey), BLEX (black), total number of functions in utility (solid line).
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Figure 6: Correctly matched functions for binaries in coreutils compiled with gcc -O0 and icc -O3. BinDiff
(grey), BLEX (black), total number of functions in utility (solid line).
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Figure 7: Matching accuracy depending on the number
of used environments.

The remaining 13% form a long tail distribution with the
worst match at rank 23,261.

The usability of a search engine also depends on its
query performance. Our unoptimized implementation an-
swers search queries to the indexed corpus of size 29,015
in under one second on average.

6 Related Work
The problem of testing whether two pieces of
syntactically-different code are semantically identical has
received much attention by previous researchers. Notably,
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Figure 8: Distribution of similarity scores among 10,000
random pairs of functions. All compiled with gcc -O2.

Jiang and Su [14] recognized the close resemblance of this
problem to polynomial identity testing and applied the
idea of random testing to automatically mine semantically-
equivalent code fragments from a large source codebase.
Whereas their definition of semantic equivalence includes
only the input-output values of a code fragment and does
not consider the intermediate values, we include interme-
diate values in our features as a pragmatic way to cope
with the difficult problem of identifying input-output vari-
ables in binary code. Interested readers can see [5, 16]
for some of the recent works on that problem.
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Figure 9: Left-most section of the CDF of ranks for cor-
rect matches in 1,000 random search queries.

Intermediate values can also be extremely valuable for
other applications. For example, Zhang et al. [26] have
investigated how to detect software plagiarism using the
dynamic technique of value sequences. This uses the con-
cept of core values proposed by Jhi et al. [13]. The idea
is that certain specific intermediate values are unavoid-
able during the execution of any implementation of an
algorithm and are thus good candidates for fingerprinting.

Intermediate values are also used by Zhang and
Gupta [27] as a first step in matching the instructions
in the dynamic histories of program executions of two
program versions. After identifying potential matches as
such, Zhang and Gupta refined the match by matching
the data dependence structure of the matched instructions.
They reported high accuracy in their evaluation using his-
tories from unoptimized and optimized binaries compiled
from the same source. This work was used by Nagarajan
et al. [18] as the second step of their dynamic control flow
matching system. The system by Nagarajan et al. also
match functions between unoptimized and optimized bi-
naries. Their technique is based on matching the structure
of two dynamic call graphs.

We choose to evaluate BLEX against BinDiff [8, 9] due
to its wide availability and also its reputation of being the
industry standard for binary diffing. At a high-level, Bin-
Diff starts by recovering the control flow graphs (CFGs)
of the two binaries and then attempts to use a heuristic
to normalize and match the vertices from the two graphs.
Although in essence BinDiff is solving a variant of the
graph isomorphism problem of which no efficient polyno-
mial time algorithm is known, the authors of BinDiff have
devised a clever neighborhood-growing algorithm that
performs extremely well in both correctness and speed
if the two binaries are similar. However, as we have ex-
plained in the paper, changing the compiler optimization

level alone is sufficient to introduce changes that are large
enough to confound the BinDiff algorithm.

A noteworthy successor to BinDiff is the BinHunt sys-
tem introduced in [10]. This paper makes two important
contributions. First, it formalized the underlying problem
of binary diffing as the Maximum Common Induced Sub-
graph Isomorphism problem. This allowed the authors to
formally and accurately state their backtracking algorithm.
Second, instead of relying on heuristics to match vertices
and tolerating potential false matches, BinHunt deployed
rigorous symbolic execution and theorem proving tech-
niques to prove that two basic blocks are in fact equivalent.
Unfortunately, BinHunt has only been evaluated in three
case studies, all of which support only differences due
to patching vulnerabilities. In particular, it has not been
evaluated whether BinHunt will perform well on binaries
that are compiled with different compiler toolchains or
different optimization levels.

A recent addition to this line of work is the BinSlayer
system [3]. The authors of BinSlayer correctly observed
that graph-isomorphism based algorithms may not per-
form well when the change between two binaries are large.
To alleviate this problem, the authors modeled the binary
diffing problem as a bipartite graph matching problem. At
a high level, this means assigning a distance between two
basic blocks and then pick an assignment (a matching)
that maps each basic block from one function to a basic
block in another function that minimizes the total distance.
Among other experiments, the authors evaluated their al-
gorithms by diffing GNU coreutils 6.10 vs. 8.19 (large
gap) and also 8.15 vs. 8.19 (small gap). Just as the authors
suspected, they observed that graph-isomorphism based
algorithms are less accurate in the large-gap experiment
than in the small-gap experiment.

Besides binary diffing, our work can also be seen in
the light of a binary search engine. Two recent work in
the area are Exposé [19] and Rendezvous [15]. Both of
these systems are based on static analysis techniques; in
contrast, our system is based on dynamic analysis. None
of these systems has been evaluated with a dataset that
varies both compiler toolchain and optimization level
simultaneously.

Finally, semantic similarity can also be used for clus-
tering. For example, Bayer et al. [2] have used ANUBIS
for clustering malware based on their recorded behavior.
However, this relies on attaining high coverage so that
malicious functionality is exposed [25]. We believe that
BLEX may also be used for malware clustering.

7 Conclusion
Existing binary diffing systems such as BinDiff approach
the challenge of function binary matching from a purely
static perspective. It has not been thoroughly evaluated
on binaries produced with different compiler toolchains
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or optimization levels. Our experiments indicate that
its performance drops significantly if different compiler
toolchains or aggressive optimization levels are involved.

In this work, we approach the problem of matching
function binaries with a dynamic similarity testing system
based on the novel technique of blanket execution. BLEX,
our implementation of this technique proved to be more
resilient against changes in the compiler toolchain and
optimization levels than BinDiff.
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Abstract
This paper analyzes the actual cost of attacking TLS im-
plementations that use NIST’s Dual EC pseudorandom
number generator, assuming that the attacker generated
the constants used in Dual EC. It has been known for
several years that an attacker generating these constants
and seeing a long enough stretch of Dual EC output bits
can predict all future outputs; but TLS does not natu-
rally provide a long enough stretch of output bits, and the
cost of an attack turns out to depend heavily on choices
made in implementing the RNG and on choices made in
implementing other parts of TLS.

Specifically, this paper investigates OpenSSL-FIPS,
Windows’ SChannel, and the C/C++ and Java versions of
the RSA BSAFE library. This paper shows that Dual EC
exploitability is fragile, and in particular is stopped by an
outright bug in the certified Dual EC implementation in
OpenSSL. On the other hand, this paper also shows that
Dual EC exploitability benefits from a modification made
to the Dual EC standard in 2007; from several attack op-
timizations introduced here; and from various proposed
TLS extensions, one of which is implemented in BSAFE,
though disabled in the version we obtained and stud-
ied. The paper’s attacks are implemented; benchmarked;
tested against libraries modified to use new Dual EC con-
stants; and verified to successfully recover TLS plaintext.

1 Introduction
On September 5, 2013, the New York Times [23], the
Guardian [3] and ProPublica [16] reported the existence
of a secret National Security Agency SIGINT Enabling
Project with the mission to “actively [engage] the US and
foreign IT industries to covertly influence and/or overtly
leverage their commercial products’ designs.” The re-
vealed source documents describe a US $250 million/year
program designed to “make [systems] exploitable through
SIGINT collection” by inserting vulnerabilities, collect-
ing target network data, and influencing policies, stan-
dards and specifications for commercial public key tech-
nologies. Named targets include protocols for “TLS/SSL,
https (e.g. webmail), SSH, encrypted chat, VPNs and
encrypted VOIP.”

*Date of this document: 2014.06.06.

The documents also make specific reference to a
set of pseudorandom number generator (PRNG) algo-
rithms adopted as part of the National Institute of Stan-
dards and Technology (NIST) Special Publication 800-
90 [21] in 2006, and also standardized as part of ISO
18031 [15]. These standards include an algorithm called
the Dual Elliptic Curve Deterministic Random Bit Gen-
erator (Dual EC). As a result of these revelations, NIST
reopened the public comment period for SP 800-90.

Known weaknesses in Dual EC. Long before 2013,
Dual EC had been identified by the security community
as biased [8, 27], extremely slow, and backdoorable.

SP 800-90 had already noted that “elliptic curve arith-
metic” makes Dual EC generate “pseudorandom bits more
slowly than the other DRBG mechanisms in this Recom-
mendation” [21, p. 177] but had claimed that the Dual EC
design “allows for certain performance-enhancing possi-
bilities.” In fact, Dual EC with all known optimizations
is two orders of magnitude slower than the other PRNGs,
because it uses scalar multiplications on an elliptic curve
where the other PRNGs use a hash function or cipher
call.

The back door is a less obvious issue, first brought to
public attention by Shumow and Ferguson [28] in 2007.
What Shumow and Ferguson showed was that an attacker
specifying Dual EC, and inspecting some Dual EC output
bits from an unknown seed, had the power to predict all
subsequent output bits.

Specifically, the description of Dual EC standardizes
three parameter sets, each specifying an elliptic curve E
over a finite field Fp, together with points P and Q on E.
The back door is knowledge of d = logQ P, the discrete
logarithm of P to the base Q; an attacker creating P and
Q can be assumed to know d. Shumow and Ferguson
showed that knowledge of d, together with about log2 p
consecutive output bits,1 makes it feasible to predict all
subsequent Dual EC output.

Shumow and Ferguson suggested as countermeasures
to vary P and Q and to reduce the number of output bits
per iteration of the PRNG. However, SP 800-90 requires
a particular number of bits per iteration, and states that
the standard P and Q “shall be used in applications re-

1256 bits were sufficient in all their P-256 experiments.

1
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Table 1: Summary of our results for Dual EC using NIST P-256.

Default Cache Ext. Bytes per Adin Attack Time
Library PRNG Output Random Session Entropy Complexity (minutes)

BSAFE-C v1.1 � � �† 31–60 — 30 ·215(Cv +Cf ) 0.04
BSAFE-Java v1.1 � �† 28 — 231(Cv +5Cf ) 63.96
SChannel I‡ 28 — 231(Cv +4Cf ) 62.97
SChannel II‡ 30 — 233(Cv +Cf )+217(5Cf ) 182.64
OpenSSL-fixed I* 32 20 215(Cv +3Cf )+220(2Cf ) 0.02
OpenSSL-fixed III** 32 35+ k 215(Cv +3Cf )+235+k(2Cf ) 2k ·83.32

* Assuming process ID and counter known. ** Assuming 15 bits of entropy in process ID, maximum counter of 2k . See Section 4.3.
† With a library–compile-time flag. ‡ Versions tested: Windows 7 64-bit Service Pack 1 and Windows Server 2010 R2.

The entries in the table are for normal TLS connections. In particular, we exclude all forms of session resumption. A � in the Default
PRNG column indicates whether Dual EC is the default PRNG used by the library. A � in the Cache Output column indicates that the
unused Dual EC output is cached for use in a subsequent call. A � in the Ext. Random column indicates that the proposed TLS extension
Extended Random [25] is supported in some configuration. Reported attack times do not rely on use of Extended Random. Bytes per
Session indicates how many contiguous, useful output bytes from Dual EC a TLS server’s handshake message reveals. For SChannel II this
is an average value of useful bits, see Section 4.2. Adin Entropy indicates how many bits of unknown input are added to each Dual EC
generate call. The Attack Complexity is the computational cost in terms of the cost of a scalar multiplication with a variable base point, Cv,
and a fixed base point, Cf , in the worst case. With our optimizations (see Section 5), Cf is roughly 20 times faster than Cv; the exact speedup
depends on context. The Time column gives our measured worst-case time for the attack on a four-node, quad-socket AMD Opteron 6276
cluster; the time for OpenSSL-fixed III is measured using k = 0.

quiring certification under FIPS 140-2”; this stops use of
alternative points in certified implementations.

Risk assessment for this back door depends on the prob-
ability that the creator of P and Q is an attacker. Shumow
and Ferguson wrote “WHAT WE ARE NOT SAYING:
NIST intentionally put a back door in this PRNG”; but
the September 2013 news indicates that NSA may have
deliberately engineered Dual EC with a back door. Our
concern in this paper is not with this probability assess-
ment, but rather with impact assessment, especially for
the use of Dual EC in TLS.

Use of Dual EC in products. Despite the known weak-
nesses in Dual EC, several vendors have implemented
Dual EC in their products [22]. For example, OpenSSL-
FIPS v2 and Microsoft’s SChannel include Dual EC, and
RSA’s crypto libraries use Dual EC by default. RSA Ex-
ecutive Chairman Art Coviello, responding to news that
NSA had paid RSA to use Dual EC [18], stated during
the opening speech of RSA Conference 2014: “Given
that RSA’s market for encryption tools was increasingly
limited to the US Federal government and organizations
selling applications to the federal government, use of this
algorithm as a default in many of our toolkits allowed us
to meet government certification requirements” [5].

Practical attacks on TLS using Dual EC. This paper
studies to which extent deployed cryptographic systems
that use Dual EC are vulnerable to the back door, assum-
ing that an attacker knows d = logQ P. Specifically, we
perform a case study of Dual EC use in TLS, arguably
the most important potential target for attacks. The basic
attack described by Shumow and Ferguson [28] (and in-

dependently, quietly, by Brown and Vanstone in a patent
application [4]) turns out to be highly oversimplified: it
does not consider critical limitations and variations in
the amount of PRNG output actually exposed in TLS,
additional inputs to the PRNG, PRNG reseeding, align-
ment of PRNG outputs, and outright bugs in Dual EC
implementations.

We present not just a theoretical evaluation of TLS
vulnerability but an in-depth analysis of Dual EC in four
recent implementations of TLS: RSA BSAFE Share for
C/C++ (henceforth BSAFE-C), RSA BSAFE Share for
Java (henceforth BSAFE-Java), Windows SChannel, and
OpenSSL. The Network Security Services (NSS) libraries,
e.g., used by Mozilla Firefox, and the TLS implementa-
tion of BlackBerry do not offer a Dual EC implementation
and thus are not discussed here.

To experimentally verify the actual performance of our
attacks, we replace the NIST-specified constants with ones
we generate; for BSAFE and Windows this required exten-
sive reverse-engineering of binaries to find not just P and
Q but many implementation-specific constants and run-
time test vectors derived from P and Q (see Section 4.4).
Our major findings are as follows:

• The BSAFE implementations of TLS make the
Dual EC back door particularly easy to exploit in two
ways. The Java version of BSAFE includes finger-
prints in connections, making them easy to identify.
The C version of BSAFE allows a drastic speedup in
the attack by broadcasting longer contiguous strings
of random bits than one would at first imagine to be
possible given the TLS standards.
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• Windows SChannel does not implement the current
Dual EC standard: it omits an important computation.
We show that this does not prevent attacks; in fact, it
allows slightly faster attacks.

• We discovered in OpenSSL a previously unknown
bug that prevented the library from running when
Dual EC is enabled. It is still conceivable that
someone is using Dual EC in OpenSSL, since the
bug has an obvious and very easy fix, so we ap-
plied this fix and evaluated the resulting version of
OpenSSL, which we call OpenSSL-fixed. OpenSSL-
fixed turns out to use additional inputs in a way
that under some circumstances makes attacks sig-
nificantly more expensive than for the other li-
braries.

When a TLS server uses DSA or ECDSA to sign its
DH/ECDH public key, a single known nonce reveals the
long-lived signing key which enables future active attacks.
Our attacks reveal the inner state of Dual EC which gen-
erates the nonces and we have successfully recovered the
long-term signing keys.

We also perform a brief measurement study of the IPv4
address space to assess the prevalence of these libraries
on the Internet.

We summarize our results in Table 1. The BSAFE-C
attack is practically instantaneous, even on an old laptop.
The BSAFE-Java and SChannel attacks require more pro-
cessing power to recover missing bits of Dual EC output.
The OpenSSL-fixed attack cost depends fundamentally on
how much information on the additional input is available.
All of these attacks are practical for a motivated attacker,
even when the attacks are repeated against a large number
of targets.

2 Dual EC attack theory
Review of Dual EC. We focus on Dual EC using the
NIST P-256 elliptic curve. For the curve equation and the
standardized base points P and Q see [21, Appendix A.1].
The state of Dual EC is a 32-byte string s, which the user
initializes as a secret random seed. The user then calls
Dual EC any number of times; each call implicitly reads
and writes the state, optionally reads additional input
from the user, and produces any number of random bytes
requested by the user.

Internally, each call works as follows. Additional in-
put, if provided, is hashed and xored into the state. The
state is then updated as follows: compute sP and then
overwrite s with the x-coordinate x(sP). A 30-byte block
of output is then generated as follows: compute sQ, take
the x-coordinate x(sQ), and discard the most significant
2 bytes. The resulting 30 bytes are used as output. If
more random bytes were requested, the state is updated
again and another 30-byte block of output is generated;
this repeats until enough blocks have been generated.

Any excess bytes in the final block are discarded. The
state is updated one final time in preparation for the next
call, and the generator returns the requested number of
bytes.

Review of the basic attack. The attack from Shumow
and Ferguson works as follows. The attacker is assumed
to control the initial standardization of P. The attacker
takes advantage of this by generating a random secret
integer d and generating P as dQ. Alternatively, if the
attacker controls the initial standardization of Q rather
than P, the attacker generates Q as (1/d)P. Either way
P = dQ, with d secretly known to the attacker.

The idea of the attack is to reconstruct sQ from an
output block (see the next paragraph) and then multiply
by d, obtaining dsQ, i.e., sP. The x-coordinate x(sP) is
the user’s next PRNG state. The attacker then computes
all subsequent outputs the same way that the user does.

Recall that an output block reveals 30 out of the 32
bytes of the x-coordinate of sQ. The attacker tries all pos-
sibilities for the 2 missing bytes, obtaining 216 possibili-
ties for the x-coordinate, and then for each x-coordinate
uses the curve equation to reconstruct at most 2 possi-
bilities for the y-coordinate, for a total of at most 217

possibilities for sQ. About half of the x-coordinates will
not have any corresponding y-coordinate, and the other
half will produce two points (x,y) and (x,−y) that behave
identically for the attack, because x(s(x,y)) = x(s(x,−y)),
so the attacker keeps only one of those points and ends
up with about 215 possibilities for sQ. For each of these
possibilities, the attacker computes the corresponding
possibility for dsQ = sP and for the next Dual EC output.
The attacker pinpoints the correct guess by checking the
next actual Dual EC output.

Attacks with additional input. Shumow and Ferguson
did not analyze the case where a user provides additional
input to a Dual EC call. We point out that the analysis
of this case depends heavily on whether one considers
Dual EC in the June 2006 version of SP 800-90, which
we call Dual EC 2006, or Dual EC in the March 2007
version of SP 800-90, which we call Dual EC 2007.

Additional input is only used once at the beginning of
a call and therefore does not stop the attacker from using
the first 30 bytes of output from a call to predict subse-
quent output bytes from the same call. The remaining
question is whether the attacker can predict the first 30
bytes from a call given the last 30 bytes from the previous
call. This issue would be relatively minor if applications
were generating many kilobytes of Dual EC output from
each call; but the applications we have studied normally
generate only one or two blocks from each call, so the
predictability of the first 30-byte block is an important
question.

3



322 23rd USENIX Security Symposium USENIX Association

If the additional input has enough entropy unknown
to the attacker then the answer is no: the first 30 bytes
are unpredictable. However, in the applications that we
have studied, additional input is either nonexistent or
potentially guessable. This is where Dual EC 2006 and
Dual EC 2007 produce different answers.

What we have described so far is Dual EC 2007. The
previous call returned up to 30 bytes of sQ and produced
s′ = x(sP) as the new state. Assume that the attacker
has reconstructed sQ. This call updates s′ to s′′ = x((s′ ⊕
H(adin))P), where H is a hash function, and then returns
up to 30 bytes of x(s′′Q). Given sQ the attacker computes
dsQ = sP, computes s′, and then for each possible adin
computes s′′ and s′′Q.

The 2006 version of Dual EC differs slightly from
the 2007 version: Dual EC 2006 is missing the final
step which updates the seed s at the end of each call.
The previous call returned most of sQ but left s un-
touched. If there were no additional input, then this
call would update s to s′ = x(sP) and return most of
x(s′Q). Given sQ, the attacker computes sP = dsQ, s′,
and s′Q. However, with additional input, the state s
is updated to s′ = x((s⊕H(adin))P) and then most of
x(s′Q) is returned. Given sQ, the attacker can compute
sP = dsQ and x(sP) as before but there is no obvious
way to obtain (s⊕H(adin))P from sP, even when adin is
known.

The addition of the final update step in Dual EC 2007
has the effect of making the basic attack possible when
(1) the attacker has enough bytes from two consecutive
calls; (2) the first call produces at most 30 bytes; and
(3) additional input is used and guessable. In this case,
the Dual EC 2007 state can be recovered while this is not
possible for Dual EC 2006 due to the lack of an additional
state update between the first and second call. In other
cases, the extra state update means that attacking Dual EC
2007 is slightly slower than attacking Dual EC 2006.

Open questions. This theoretical analysis of Dual EC
exploitability leaves open several obvious questions re-
garding the practical exploitability of Dual EC by network
attackers who know the secret d. Do implementations
of cryptographic protocols such as TLS actually expose
enough Dual EC output to carry out the basic attack? How
expensive are the computations required to compensate
for missing output, and can these computations be made
less expensive? Is additional input actually used, and if
so is it hard to guess? Are certified implementations of
Dual EC in fact implementing Dual EC 2006, Dual EC
2007, or something different?

The answers turn out to include several surprises, and
in particular to rely on several implementation details
and protocol details that have not been previously ob-
served to be related to Dual EC. For example, the certified
OpenSSL-FIPS implementation of Dual EC is actually

Client Server
Generate
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Generate
session ID,
server random
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Generate PMS
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(a) TLS with RSA key transport.
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(b) TLS with ECDHE exchange and ECDSA signature (P-256).

Figure 1: Simplified view of TLS handshakes.

non-functional, as mentioned earlier. As another example,
although none of the attacks we implemented are in the
case described above where exploitability relies on the
difference between Dual EC 2006 and Dual EC 2007,
the OpenSSL-fixed attacks are very close to this case:
they avoid it solely because at one point OpenSSL-fixed
calls Dual EC for 32 bytes made public through the TLS
session ID, and 32 is larger than 30.

Our analysis strongly suggests that, from an attacker’s
perspective, backdooring a PRNG should be combined
not merely with influencing implementations to use the
PRNG but also with influencing other details that secretly
improve the exploitability of the PRNG. This paper does
not attempt to determine whether this is what happened
with Dual EC, and does not explore the difficult topic
of defending against such attacks, beyond the obvious
advice of not using Dual EC.

3 Attack target: TLS
TLS is the most widely used protocol for securing In-
ternet communications [6]. TLS consists of several sub-
protocols, including a record protocol and handshake
protocol. The handshake protocol is most relevant to
the attacks discussed in this paper, so for simplicity we
will describe only the relevant aspects of the handshake
sub-protocol used in TLS version 1.2; further details are
available in the RFC [6].

The handshake sub-protocol produces a fresh set of ses-
sion keys with which application-layer data is encrypted
and authenticated using the record protocol. Figure 1 de-
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picts (simplified versions of) the two main handshakes for
TLS: RSA key transport and ephemeral Diffie-Hellman
key exchange (DHE). Ephemeral DHE uses either ellip-
tic curve groups (ECDHE) or another suitable group. In
either handshake, the client initiates a connection by send-
ing a ClientHello message that includes a client nonce and
a list of supported cipher suites. The server replies with
a server nonce, a session ID, a certificate, an ephemeral
DHE public key (for DHE), and a signature over the ran-
dom nonces and public key. Signatures are either RSA
or DSA. The specification mandates 32-byte client and
server nonces, each consisting of 28 random bytes and
a 4-byte timestamp. The construction of a session ID is
arbitrary (i.e., up to the server implementation), though as
we will see many implementations use the same PRNG
that generates the ServerHello nonce and other crypto-
graphic secrets. The client’s next flow includes a client
ephemeral DH public key (for DHE) or an RSA PKCS
#1.5 encryption of a premaster secret (for RSA key trans-
port). The premaster secret consists of either a 2-byte
version number followed by a 46 byte random value (for
RSA key transport), or the DHE secret defined by the
DH public keys. Session keys are derived from the pre-
master secret and other values sent in the clear during
the handshake, so learning the premaster secret is suf-
ficient to break all subsequent encryption for a given
session.

TLS extensions. There are many extensions to TLS,
but we draw attention to four particular proposed — but
not standardized — extensions. Each of these extensions
has the side effect of removing the most obvious difficulty
in exploiting Dual EC in TLS, namely the limited amount
of randomness broadcast to the attacker. One might guess
that these extensions make P-256 less expensive to exploit
in TLS by a factor of 65,536 (and make P-384 and P-521
feasible to exploit), if they are actually implemented; our
analysis in Section 4.1 shows that one of these extensions
is in fact implemented in BSAFE, although the actual ef-
fect on exploitability is more complicated. None of these
extensions have been previously described in connection
with Dual EC.

One proposed extension, authored by Rescorla and
Salter [25] in 2008, supports “Extended Random” client
and server nonces. This extension is negotiable using the
normal ClientHello extension mechanism, and includes
up to 216 − 1 bytes of data from a suitable PRNG. The
server replies with its own Extended Random data that
must be of the same length as the client’s Extended Ran-
dom data. The document states that this extension was
requested by the United States Department of Defense
with the claim that nonces “should be at least twice as
long as the security level” (e.g., 256-bit nonces for 128-bit
security).

Another proposed extension, “Opaque PRF” proposed
by the same authors [24] in 2006, is nearly identical to
Extended Random but does not require the data to be
random. A third proposed extension, “Additional Ran-
dom” by Hoffman [12] in 2010, is essentially the same
as “Extended Random.” After the initial announcement
of our paper, Bodo Möller pointed out yet another simi-
lar extension, “Additional PRF Inputs” by Hoffman and
Solinas [14] in 2009.

The “Internet-Drafts” describing these four extensions
all expired without producing RFCs, although a generic
framework [13] for such extensions was published as an
Experimental RFC by Hoffman in 2012. IETF has not
standardized any of these extensions.

Attack goals. We assume that the adversary’s goal is to
decrypt TLS packets to learn confidential material, or to
steal long-lived secret keys. In the second case the secret
keys need not be generated with Dual EC. We consider
both small-scale targeted attacks and larger-scale dragnet
surveillance attacks across broad swaths of the Internet.

Attack resources. Most of the attacks that we analyze
are purely passive, relying solely on interception of TLS
traffic sent through the network by the client and by the
server. Usually seeing only one direction of TLS traffic
is enough, and the attack can be mounted long after the
fact using recorded connections. Occasionally an active
attack is more powerful: for example, the range of µsecs
in Section 4.3 becomes narrower if the attacker uses care-
fully timed connections (as in [29]) to more precisely pin
down the server’s clock.

The attacker is assumed to know the Dual EC back
door d with P = dQ. All of the attacks rely on the
client or server using Dual EC, but this is not an as-
sumption; rather, it is something that we evaluate, by
reverse-engineering several TLS implementations and
also experimentally assessing the deployment of those
implementations.

Our measurements of attack cost assume that the at-
tacker knows the TLS software in use; otherwise the
attacker has to try several of the attacks, increasing cost
somewhat. See Section 6 for fingerprinting mechanisms.

The computer power required for attacking one
Dual EC instance is very small by cryptanalytic standards:
our optimized attacks (see Section 5) typically consume
between $0.00001 and $1 of electricity, depending on the
TLS implementation being attacked. (The exception to
“typical” is OpenSSL; see Sections 4.3 and 5.2.) However,
presumably the attacker’s actual goal is to repeat the at-
tack many times, especially in the dragnet-surveillance
scenario. Our measurements allow straightforward extrap-
olations of the computer resources required for large-scale
attacks.

5



324 23rd USENIX Security Symposium USENIX Association

4 Exploiting Dual EC in implementations
To attack each of the implementations discussed below,
the attacker follows three basic steps: (1) recover Dual EC
state from the session ID and/or server random fields in
the TLS handshake; (2) compute the DHE or ECDHE
shared secret which enables computing the 48-byte “mas-
ter secret” from which all session keys are derived; and
optionally (3) recover the long-lived DSA or ECDSA
signing key used to sign the server’s DHE or ECDHE
public key.

Step (1) is an application of the basic attack which com-
bines information exchanged in the handshake protocol
messages to determine the correct Dual EC state from
candidate states. Step (2) requires generating the DHE
or ECDHE secret key by following the exact generation
process used by the TLS implementation. Like Step (2),
Step (3) duplicates the implementation’s process for gen-
erating the nonce used in the signature of the public key.
From the nonce, the signature, and the public key, it is
straightforward to recover the signing key.

It is important to note that when a server uses DSA
or ECDSA signatures, a single broken connection by a
passive adversary is sufficient to recover the long-lived
signing key which is used to authenticate the server’s
(EC)DHE public key. In contrast to RSA long-lived keys,
recovering a server’s (EC)DSA signing key does not en-
able future passive eavesdropping; it does allow imper-
sonation of the server under active attack.

4.1 RSA BSAFE
Description. RSA’s BSAFE family includes four li-
braries: Share for Java, Share for C and C++, Micro
Edition Suite, and Crypto-J/SSL-J. We examined Share
for Java and Share for C and C++. Although the two ver-
sions share a somewhat similar API, the implementation
details differ, leading to different attacks.

The BSAFE family of libraries contains a number of
options which can be configured at runtime. In order to
avoid a combinatorial explosion in the number of config-
urations to test and attack, we focus our attention on the
default configurations and the most secure cipher suites
that lead to the use of the P-256 curve in Dual EC and,
where applicable, ECDHE and ECDSA.2

Both BSAFE libraries we examined support both pre-
diction resistance whereby the generator is reseeded on
each call and output caching so that unused bytes from
one call to generate can be used in subsequent calls rather
than discarded. By default, neither option is enabled.

BSAFE-C. We examined the RSA BSAFE Share for C
and C++ library (BSAFE-C) version 1.1 for Microsoft
Windows. The library actually consists of two libraries:

2Share for Java additionally supports P-384 and P-521 for Dual EC,
ECDHE, and ECDSA.

sharecrypto.lib implements the core cryptographic primi-
tives, including Dual EC, and sharesslpki.lib implements
TLS. Unlike the Micro Edition Suite, BSAFE-C is dis-
tributed only as static libraries with associated header
files. This necessitated a minor reverse engineering ef-
fort to discover how BSAFE-C uses Dual EC in its TLS
implementation.

Unlike the other TLS implementations we examined,
BSAFE-C v. 1.1 does not support TLS 1.2. As a result, it
does not support elliptic curve cryptography for either key
exchange or digital signatures. By default, the preferred
cipher suites are TLS_DHE_DSS_WITH_AES_128_CBC_

SHA and TLS_DHE_RSA_WITH_AES_128_CBC_SHA so
we focused our efforts on these two.

A TLS server implemented using BSAFE-C generates
several pseudorandom values used during the TLS hand-
shake to establish session keys. In order, it generates
(1) a 32-byte session identifier, (2) 28 bytes for the server
random, (3) a 20-byte ephemeral Diffie–Hellman (DH)
secret key, and, when using DSA, (4) a 20-byte nonce.
The DH parameters and the server’s public key are signed
with the server’s RSA or DSA certificate and the session
ID, server random, public key, and signature are sent in
the server’s first flight of messages to the client during the
handshake.

Although BSAFE-C’s Dual EC interface does not cache
unused output bytes by default, a separate, internal inter-
face to produce pseudorandom values wraps Dual EC
and provides its own layer of caching by only requesting
multiples of 30 bytes from the Dual EC interface. This
internal interface is used by all of the higher-level func-
tionality, such as generating a DH secret key and a DSA
nonce. Due to a quirk of the implementation, if a request
to generate n bytes of output cannot be satisfied com-
pletely from the cached bytes, �(n+ 29)/30� · 30 bytes
are generated in a single call to Dual EC, even if most of
the n bytes will be taken from the cached bytes.

Caching output bytes means that when a new TLS ses-
sion is started, an attacker who has not seen all prior
connections has no way of knowing if the first value gen-
erated by the server — the session id — begins with a full
output block or if it contains bytes cached from a previous
call to Dual EC. However, due to the use of the requested
number of bytes rather than the number of remaining
bytes after pulling from the cache, the concatenation of
the 32-byte session ID and the 28 pseudorandom bytes in
the server random always contains a full 30-byte output
block and between one and 30 bytes of a subsequent block
where both blocks are generated in the call to Dual EC
for 60 bytes made while generating the session ID.

A passive network attacker can easily recover the ses-
sion keys and the server’s long-lived DSA secret key used
to sign the ephemeral DH parameters and public key.
The attacker uses the publicly exchanged values in the
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connection through the ClientKeyExchange handshake
message. At this point, the attacker knows the session
ID, the client and server randoms, the DH parameters
and client and server public keys, and the signature. This
contains everything needed for the attack. The session
keys are computed from the public values and the DH
shared secret.

To recover the inner state of Dual EC a long string of
consecutive output bytes is required. First, the session ID
and the pseudorandom 28 bytes of the server random are
concatenated into a 60-byte value B. Since up to 29 bytes
of B can come from a previous call to Dual EC, one
of B[0..29],B[1..30], . . . ,B[29..58] must be a full output
block. The basic attack is run on each in turn until the
Dual EC state for the next output block is recovered. The
attacker knows that the correct state has been found by
(1) generating the next output block and comparing the
corresponding bytes with the remaining bytes in B and
then (2) generating more bytes as needed to produce a DH
secret key and comparing the corresponding public key
to the server’s public key. If the public keys agree, then
the DH shared secret can be computed hence the session
keys can be computed.

Once the session keys for a single session have been
recovered, more bytes can be generated to produce the
DSA nonce. The DSA secret key a can be computed from
the nonce k, public key (p,q,g,y), and the signature (R,S)
of the message m as a = R−1 ·

(
S · k−H(m)

)
mod q.

Recovering the Dual EC internal state requires perform-
ing approximately 30 · 215 scalar multiplications with a
variable base point and an equal number with the fixed
point Q, in the worst case. The total attack has a cost
of 30 · 215(Cv +Cf ) where Cv (resp. Cf ) is the cost of
performing a single scalar multiplication with a variable
(resp. fixed) base point. To generate the DH key, between
3Cf and 5Cf are needed to produce enough Dual EC out-
put bytes; 1Cf is needed to compute server’s DH public
key; and, finally 1Cv is needed to compute the shared DH
secret (using the client’s DH input). Finally, to generate
the nonce, at most one more Dual EC output is needed,
using 3Cf .

BSAFE-Java. We examined the RSA BSAFE Share for
Java library version 1.1 (BSAFE-Java) and focused on
connections using the TLS_ECDHE_ECDSA_WITH_AES_
128_GCM_SHA256 cipher suite.

Unlike BSAFE-C, the output from Dual EC is not
cached so each generated output value is aligned with
a block of generator output. Unfortunately (for the at-
tacker), the session ID value produced by the server is not
a 32-byte pseudorandom value. Instead, the attacker is
forced to rely on the server random.

The values generated by Dual EC are, in order, (1) 28
bytes for server random; (2) 32 bytes for an ECDHE
secret key; and (3) 32 bytes for an ECDSA nonce.

As before, a passive network attacker waits until she
sees the ClientKeyExchange handshake message. At this
point she has all of the information she needs to mount
the following, simple attack. The 28 bytes from the server
random are treated as bytes 2 through 29 of the 32-byte x-
coordinate. She then mounts the basic attack by guessing
the remaining most significant 16-bits and least signifi-
cant 16-bits of the x-coordinate. A guess is checked by
generating a 32-byte ECDH secret key, computing the
corresponding public key, and comparing to the server’s
public key.

Once a match is found, the inner state of Dual EC
is known. The session keys can be derived from the
ECDH shared secret and the other values sent in the clear.
Similarly, the ECDSA nonce can be found by generating
another 32-byte value. As with the non-elliptic-curve
DSA, the server’s private key can be recovered from the
nonce and the signature.

In the worst case, recovering the generator state re-
quires approximately 231 scalar multiplications with a
variable base point and five times that number with a
fixed base point to generate candidate ECDH secret keys
and corresponding public keys. In total, the attack takes
231(Cv +5Cf ) work.

BSAFE connection watermarks and Extended Ran-
dom. The documentation for BSAFE-C and BSAFE-
Java indicate that they support connection watermarking
and the TLS Extended Random extension described in
Section 3.

In our experiments, BSAFE-Java has watermarks
enabled by default. The watermark works by setting
the first 20 bytes of the session ID to be the first
20 bytes of the server random and the last 12 bytes
are set to the string “RSA SSLJ .” This wa-
termark can only be disabled by setting the property
com.rsa.ssl.server.watermark=disabled
in the Java security properties file [26].

We performed an Internet-wide scan of port 443 and
found very few servers on this default port that exhibited
this 32-byte watermark: only 386 of 8 million servers
contacted. Details on this scan are included in section 6.

From reverse engineering the BSAFE-Java share-
Crypto.jar library, we determined that it contained code to
support or require the proposed TLS Extended Random
extension; however, this code was disabled by means of a
single static final boolean variable. We surmise that this
code is not “dead” in the traditional sense, but rather the
value of the variable can be changed to produce versions
of the library with different features.

By changing the value of this variable, we were able to
verify that the Extended Random extension is supported
by the server.3 When enabled and an Extended Random

3An analogous variable enables support for the client.
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extension is received from the client, the server generates
an equal length Extended Random response consisting
of bytes generated by Dual EC concatenated with the
same 12-byte watermark. The client Extended Random
is 32-bytes by default. Interestingly, the 28 bytes for the
server random and the Dual EC generated bytes for the
Extended Random are generated together in a single call
to Dual EC. As a consequence, any BSAFE-Java server
which supports Extended Random exposes a sufficient
quantity of contiguous output bytes to enable quick re-
covery of the session keys. There does not appear to be a
mechanism for disabling the watermark in the Extended
Random extension.

The BSAFE-C library documentation indicates that
both watermarking and Extended Random are supported
in some versions of the library; however, the version we
have appears to have been compiled without this support.4

For both the Java and C versions of BSAFE, we have
no evidence that versions of the libraries supporting Ex-
tended Random ever shipped. On the other hand, an
earlier survey [1] found that Extended Random was occa-
sionally requested by clients (about once in every 77000
connections). Our implemented attacks do not rely on
Extended Random in any way.

4.2 Windows SChannel

SChannel (“Secure Channel”) is a security component
in the Windows operating system (introduced in Win-
dows 2000) that provides authentication and confiden-
tiality for socket-based communications. Although it
supports several protocols, it is most commonly used for
SSL/TLS, including by Microsoft’s Internet Information
Services (IIS) server and Internet Explorer (IE). We focus
on ECDHE/ECDSA handshakes that use P-256 (which
in turn cause Dual EC to also use this curve), as used
by the version of IIS distributed with Windows 7 64-bit
Service Pack 1 and Windows Server 2010 R2. All infor-
mation about the internal workings of SChannel and its
implementation of Dual EC discussed in the following
was obtained via reverse-engineering.

Description. SChannel uses Microsoft’s FIPS 140-2
validated Cryptography Next Generation (CNG) API,
which includes an implementation of Dual EC. CNG
is implemented in two modules, one for user-mode
callers (bcryptprimitives.dll) and one for kernel mode
(cng.sys). Dual EC is used to generate pseudorandom
bytes when the BCryptGenRandom function is explicitly
directed to use it via a function argument or when it is
selected as the system-wide default. When using Dual EC,
BCryptGenRandom generates enough fresh blocks to sat-

4The header files for the version of BSAFE-C we have show
that the library was compiled with the command line flags
-DNO_TLS_EXT_RAND -DNO_RSA_WATERMARK.

isfy the request, and discards any remaining bytes (i.e.,
there is no caching between requests).

Whenever SChannel requests random bytes, it calls
BCryptGenRandom using the system-wide default. Our
reverse-engineering efforts and experiments indicate that
additional input is not provided by SChannel for TLS
connections. TLS handshakes are performed by a separate
process (lsass.exe) on behalf of IIS, which dispatches
one of several worker threads to handle each request.
Dual EC in CNG maintains separate state for each thread,
so a successful attack on the state of one thread will not
carry over to the others. Importantly, SChannel caches
ephemeral keys for two hours (this timeout is hard-coded
in the configurations we examined), and the cached keys
are shared among all worker threads until the timeout
expires.

When performing an ECDHE handshake, SChannel
requests random bytes in a different order than OpenSSL
and BSAFE (the number of bytes given in the following
are specific to P-256 and some of them differ for other
curves): (1) 32 bytes for session ID, (2) 40 bytes for
ephemeral private key, (3) 32 bytes (not relevant to the at-
tack), (4) 28 bytes for ServerHello nonce, and (5) 32 bytes
for the signature (if using ECDSA). Notice the 40-byte
request for the private key, even though a P-256 private
key is only 32 bytes; this is because SChannel uses FIPS
186-3 B.4.1 (Key Pair Generation Using Extra Random
Bits) to generate ECDHE key pairs, which specifies 8
additional bytes to reduce bias from a modulo operation.
More importantly, SChannel requests bytes for the private
key before the ServerHello random field. This means that
any attempt to infer the private key must use the session
ID, or random fields from previous handshakes.

Deviation from SP-800-90A. The implementation of
Dual EC in CNG differs from the current SP-800-90A
specification in one noteworthy way. The code in bcrypt-
primitives.dll that implements Dual EC (a function called
MSCryptDualEcGen) seems to include the final update
step at the end of each call — performing a point multipli-
cation and projection on the x-coordinate after generating
the necessary blocks. However, our reverse engineering
efforts, as well as our experiments, indicate that the result
is not copied into the seed state, and thus not used in
subsequent calls to Dual EC. In short, although the CNG
Dual EC implementation appears to contain code that
implements the full current specification, it effectively
implements Dual EC 2006 by ignoring the result of the
final update step in future calls to generate. This appears
to be a bug.

Fingerprint in the session ID. When an SChannel
server generates a new session ID, it requests 32 bytes,
S[0, . . . ,31] from BCryptGenRandom, and interprets the
first four bytes S[0, . . . ,3] as an unsigned integer v. It then
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computes v′ = v mod CACHE_LEN, and constructs the fi-
nal session ID by concatenating these values, session_id =
v′[0, . . . ,3]‖S[4, . . . ,31]. CACHE_LEN is the maximum
number of entries allowed in SChannel’s session cache,
which was hard-coded to 20,000 on the systems we tested.
Thus, the presence of zeros in the third and fourth bytes of
the session ID is a likely (although imperfect) fingerprint
for SChannel implementations.

Attack 1: Using the server’s random nonce. With
Dual EC enabled, it is possible to use the 28-byte Server-
Hello nonce to learn the server’s ECDHE private key,
which will allow decryption of all ECDHE sessions within
the two-hour window before the private key is refreshed.
As previously discussed, these bytes are requested after
the private key is generated, so in order to use them for
the attack, we must look at previous handshake messages
sent from the server. The fact that SChannel uses multi-
ple threads to perform handshakes complicates the attack,
as we cannot know which thread was used for a partic-
ular handshake unless we have learned the state of all
threads and updated them as new handshakes were per-
formed. On observing a handshake with the new server
public ephemeral key, denoted h, the attacker works back-
wards through previous handshakes, using the random
field in each ServerHello message to generate candidate
Dual EC states using the basic attack. Each candidate
state is checked first against the ECDSA public key to de-
termine the state used in that handshake, and then against
the session ID in h to determine if the same state was
used to generate the new ephemeral key. The 32 bytes
for the ECDSA nonce are generated in two calls, first 24
bytes then 8 bytes. These values are concatenated and
then byte-wise reversed to obtain the nonce.

When the matching state is found, it is straightforward
to generate the ephemeral private key and subsequent
session keys. SChannel uses FIPS 186-3 B.4.1 to gen-
erate the private key, which corresponds to drawing 40
bytes of random input c, and computing the key as (c
(mod n−1))+1, where n is the curve order. The worst-
case complexity of this attack requires approximately 231

scalar multiplications with a variable base point and four
times as many with a fixed base point to check the ECDSA
public key, totaling 231(Cv +4Cf ).

Attack 2: Using the session ID. The second approach
uses the session ID in a handshake containing a new
ECDHE public key. Denote the 32-byte session ID in
the relevant handshake by S, and v′ the unsigned integer
corresponding to S[0, . . . ,4]. Recall that SChannel mod-
ifies the first four bytes of the session ID by replacing
it with its value modulo CACHE_LEN. All that one must
do to recover the private ephemeral key is run the ba-
sic attack on a set of inputs generated by enumerating
(1) all 4-byte sequences whose unsigned integer repre-

sentation v satisfies v′ = v mod CACHE_LEN (for the first
four bytes of the block that generated the session ID),
and (2) all 2-byte sequences for the last two bytes of
the first block that generated the session ID. Candidates
are checked by generating the next 40 bytes, using FIPS
186-3 B.4.1 to construct a private key, and comparing
the corresponding public key against that provided in the
ServerKeyExchange.

This attack sidesteps the issues created by threading in
SChannel, but because of the way the the session ID is
generated it is actually more complex than the previous.
Recall that CACHE_LEN= 20,000 in both configurations
tested, so this attack requires approximately 218 guesses
to deduce the first four bytes of the original session ID
block, and 216 for the last two bytes, giving approximately
233 candidate curve points. Of these, approximately 217

will agree with the last two bytes of the session ID, and we
determine which is correct by generating two additional
Dual EC blocks for a P-256 ECDHE private key, then per-
forming a point multiplication to compare with the public
key sent in the same handshake. The total complexity is
233(Cv +Cf )+217(5Cf ).

4.3 OpenSSL
Description. OpenSSL is one of the most widely used
TLS libraries, due to its inclusion in many Linux/Apache
distributions. While the standard edition of OpenSSL
does not contain Dual EC, OpenSSL also ships a separate
package called the OpenSSL FIPS Object Module. When
this module is combined with OpenSSL, it provides a
TLS library containing all four DRBG algorithms defined
in NIST SP800-90A, including Dual EC. The Dual EC
algorithm is not the default PRNG in OpenSSL, but it
can be manually enabled by changing the PRNG settings
through an API call at runtime.

Bug. While investigating the OpenSSL-FIPS implemen-
tation of Dual EC, we discovered a previously unknown
bug that, in fact, prevented it from being run.5 The pres-
ence of this bug may suggest that nobody has successfully
run OpenSSL-FIPS configured to use Dual EC. How-
ever, the CMVP validation lists [22] show many “private”
validations of the OpenSSL-FIPS module so it is possi-
ble that some commercial manufacturer has repaired this
bug without propagating the fix back to the open source
OpenSSL tree. For this reason, we felt it worthwhile to
repair the bug in the FIPS module in order to investigate
the feasibility of the attack.

Analysis of OpenSSL-fixed. We examined a repaired
version of the OpenSSL FIPS Object Module ver-

5The bug involves a flaw in the runtime self-test mechanism that
causes OpenSSL-FIPS to shut down the generator immediately upon ini-
tializing it. This bug is not triggered while the module is in TEST mode,
which explains why unit and Known Answer Tests did not discover the
issue. See [17] for details.
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Figure 2: Dual EC usage in OpenSSL-FIPS using ECDHE with P-256.

sion 2.0.5 in combination with OpenSSL 1.0.1e (hence-
forth “OpenSSL-fixed”). The library consists of two com-
ponents, libcrypto.a which implements the core crypto-
graphic routines, including Dual EC, and libssl.a which
implements TLS. OpenSSL documentation provides guid-
ance on building the library, as well as usage in common
scenarios.

OpenSSL-fixed supports TLS 1.2 with the full comple-
ment of elliptic curve cryptography for key exchange and
digital signatures. By default, the preferred cipher suites
use ECDHE key exchange and either RSA or ECDSA
signatures. We investigated connections made using the
ECDHE handshake.

OpenSSL includes a textbook implementation of
Dual EC based on the NIST SP 800-90 March 2007
revision. On the server side of the standard ECDHE
handshake, the generate function is called repeatedly to
generate the following values: (1) a 32-byte session iden-
tifier, (2) a 28-byte server random,6 (3) a 32-byte ECDHE
ephemeral private key,7 and, when ECDSA is being used,
a 32-byte nonce. OpenSSL’s implementation of Dual EC
does not cache unused random bytes at the conclusion of
a generator call, hence each sequence of random bytes be-
gins with up to 30 bytes drawn from a single elliptic curve
point. Figure 2 illustrates the generation of these values.

OpenSSL’s use of additional input. While analyzing
OpenSSL’s implementation of SP 800-90, we discovered
an important difference between OpenSSL and the other
libraries analyzed in this work. Specifically, OpenSSL
provides additional input with each call to the gener-
ate function. The additional input string is constructed
uniquely by the function FIPS_get_timevec() prior to

6Although we do not discuss attacks against the client, a recent
fix to the OpenSSL client implementation increases the amount of
PRNG output in the client random to 32 bytes (see http://bit.ly/
1ftSQrM) which may decrease the attack complexity significantly.

7OpenSSL generates this key by drawing 32 random bytes and
checking whether the result (expressed as an integer) is less than the
group order n. If not, the process is repeated.

each query for random bytes. It comprises 16 bytes with
the following structure.

adin = (time in secs || time in µsecs || counter || pid)

Each of the component fields in the additional input string
is 4 bytes in length. On Unix-based systems the time
fields are computed using gettimeofday(). The counter
is a monotonically increasing global counter that is set
to 0 at library initialization, and increments with each
call to FIPS_get_timevec(). On operating systems where
the process IDs are available, pid contains the process ID
returned from getpid().

A passive attacker can capture 32 consecutive bytes of
Dual EC output by observing the session ID sent to the
client by an OpenSSL server. Assuming the generator is
instantiated with P-256, the attacker can now execute the
initial steps of the basic attack using the first 30 bytes,
in order to recover multiple candidate states, and (using
the additional two bytes) reduce the number of candidate
states to one, or a small number. From this point, the
OpenSSL attack differs from the basic attack. Given each
candidate state s, the attacker now calculates the final
update step s = x(sP) and exhaustively guesses the ad-
ditional input string used in the next call to the generate
function as s′ = s⊕H(adin). This requires the attacker
to iterate through a set of candidate adin input strings,
executing the steps of the generate algorithm to recover a
candidate ECDHE private key, and comparing this value
to the intercepted ECDHE public key from a real hand-
shake trace.

The complexity of this attack depends on two factors:
the number of candidate states remaining at the conclu-
sion of the first portion of the attack, and the number of
candidate adin strings. Since we are guessing 16-bits,
only about half of all strings give a valid x-coordinate,
and are comparing the resultant output against 16 bits,
we expect to see 1 or 2 candidate states that generate the
correct first two values. We did not see more than 3 can-
didate states in any of our test runs, although we would
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expect to occasionally see more if we repeated the attack
enough times.

Since the time in seconds is already transmitted as part
of the server random, the first portion of adin is known.
Thus it remains to predict the time in µseconds, process
ID and counter. Under reasonable assumptions about the
operating system and the number of connections so far
handled by the server, this can range from approximately
220 (primarily guessing the µsecs field) to 235 with a typ-
ical Unix range of pid values and known counter value,
and possibly 245 or more depending on how recently the
library was initialized. Notice that once an attacker re-
covers the adin string for a first TLS connection, it may
be relatively easy to predict these values for later connec-
tions.

The inclusion of additional input complicates the attack
since recovering the Dual EC state when it is most con-
venient, namely during the generation of the session ID,
does not immediately translate into recovering the session
keys. There are two cases to consider.

In the first case, the attacker knows nothing about
the state of the generator except that the counter value
is no bigger than k ≤ 32 bits. The first step is to re-
cover the generator state (for ease of analysis, assume
only one candidate state is possible). As with BSAFE-
C, this requires approximately 215 variable-base-point
multiplications and an equal number of fixed-base-point
multiplications. Next, the additional input string needs
to be guessed. For each guess, this takes two fixed-
base-point multiplications. There are at most 235+k ad-
ditional input strings to try. A guess can be validated
by comparing to the server random field. Finally, the
ECDHE secret and public keys need to be computed for
each guess of the second additional input string. Each
guess takes five fixed-base-point multiplications; how-
ever, since the attacker has already determined the pid
and the counter value, the attacker has a good estimate
of the time and increments the microsecond value from
there; this takes about 213 guesses. This gives a total cost
of 215(Cv +Cf )+235+k(2Cf )+213(5Cf ). The 213 is an
upper bound for our observations. Usually fewer than 212

tests were sufficient and on a fast Internet server even less
time passes between two calls of Dual EC.

In the second case, the attacker has already broken a
previous connection and so the pid and counter values are
known. The cost of performing the whole attack a sec-
ond time becomes 215(Cv +Cf )+ 220(2Cf )+ 213(5Cf ).
However, the cost of computing a scalar multiplication
with a variable base point is significantly higher than for
a fixed base point. It may be in the attacker’s best interest
to keep track of the generator’s state throughout each ses-
sion. This involves keeping track of counter updates and
recovering the state after each encrypted TLS record sent
and randomness used for ECDSA and IVs. The search

space for the time in adin for these values is usually small,
similar to that in the ECDHE key.

Then the cost of recovering the state at the beginning
of a new connection is at most 220(2Cf ) for testing the
time (and less if better estimates of the time are known)
in place of the 215(Cv +Cf ), for a total cost of 220(2Cf )+
213(7Cf ). This is faster if the time update for the server
random call requires a smaller search space for the time
after the time has been determined for the session ID.

4.4 Attack validation
We implemented each of the attacks against TLS libraries
described above to validate that they work as described.
Since we do not know the relationship between the NIST-
specified points P and Q, we generated our own point Q′

by first generating a random value e R← {0,1, . . . ,n−1}
where n is the order of P, and set Q′ = eP. This gives our
trapdoor value d ≡ e−1 (mod n) such that dQ′ = P. We
then modified each of the libraries to use our point Q′ and
captured network traces using the libraries. We ran our
attacks against these traces to simulate a passive network
attacker.

We would like to stress that anybody who knows the
back door for the NIST-specified points can run the same
attack on the fielded BSAFE and SChannel implementa-
tions without reverse engineering.

We describe the concrete performance results of our
attacks in the next section and give details on the libraries
here.

RSA BSAFE. The Dual EC implementation in BSAFE-
C contains the points P and Q as well as three tables of
scalar multiples of each of the points for fast multiplica-
tion. The tables contain 65, 517, and 573 multiples. After
working out the corresponding scalar factor for each entry
in the tables, we computed our own tables and modified
the relevant object files in the library. There were no
health checks or known-answer tests (KATs) to bypass.

BSAFE-Java is distributed as a signed, obfuscated jar
file. We reverse engineered the code sufficiently to find
and bypass the checks that prevent modification and re-
placed the jar’s signature with our own. BSAFE-Java has
a single table of 431 scalar multiples of each of P and Q.

Windows SChannel. Dual EC in SChannel is imple-
mented both in the kernel and a user-mode library. We
modified the user-mode library, which performs a KAT
when the operating system first loads the module at boot,
as well as continuously during operation when FIPS mode
is enabled. To sidestep these checks, we disabled FIPS
mode, and wrote a system service that (1) replaces Q with
Q′ in the the address space of the Local Security Authority
Subsystem Service (IIS and IE delegate TLS handshakes
to this process), and (2) makes Dual EC the system-wide
default PRNG.
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OpenSSL-fixed. Dual EC in OpenSSL is implemented
in the separate OpenSSL-FIPS library. This library con-
tains both runtime KATs and a check of the SHA-1 hash
of the object code. Since the hash is computed each time
the library is compiled, we simply fixed the bug which
prevents Dual EC from being used (described above),
bypassed the KATs, and substituted Q′ for Q.

5 Implementation
We implemented all attacks for parallel architectures,
specifically clusters of multicore CPUs. The attacks are
parallelized using OpenMP and MPI, with the search
space distributed over all cores of the cluster nodes, using
one process per CPU and one thread per (virtual) core.
The attacks are “embarrassingly parallel”: there are no
data dependencies between the parallel computations and
thus no communication overhead and no limit on the scal-
ability of the parallelization, other than the total number
of independent computations.

5.1 Algorithmic optimizations
For finite-field arithmetic, we use the Gueron/Krasnov
OpenSSL patch for NIST P-256, described in [10] and
available at [11]. Square-root computations, to recover the
y-coordinates, use that p ≡ 3 mod 4 and compute

√
a as

a(p+1)/4. We refer to the cost of recovering a y-coordinate
as Cy.

The definition of the update function in Dual EC re-
quires all scalar multiplications to result in affine points
(to derive a unique x-coordinate). To improve the per-
formance of our implementation we compute all point
operations in affine coordinates and batch the inversions
using Montgomery’s trick [20] across several parallel
computations. We use a batch size of 256 for all experi-
ments; increasing the batch size any further does not have
a measurable effect on the runtime.

The most performance-critical operations on EC points
in the attack logic are:

1. Scalar multiplications using fixed base points P and
Q in order to compute the next internal state and to
compute the output string respectively; P is also used
as base point for ECDHE and ECDSA computations.

2. Scalar multiplications using variable base points and
a fixed scalar, the back door d, in order to compute a
candidate internal state given an output string.

In Table 1 we refer to the costs of a fixed-base-point
scalar multiplication as Cf and those of a variable-base-
point one as Cv.

For the fixed-base-point computations we use large pre-
computed tables of multiples of the base point. For a given
width w we compute a lookup table consisting of TP,i, j =

i2 jwP for 0 < i < 2w, 0 ≤ j < �256/w�. A scalar multi-
plication sP can then be performed as �256/w�−1 addi-
tions of precomputed points from the lookup table using
sP = ∑�256/w�−1

j=0 TP,s( j), j, where s = ∑�256/w�−1
j=0 s( j)2 jw.

We do the same for Q in place of P. These tables are
shared among all threads of each process in the imple-
mentation. We choose w = 16 for all our experiments for
a reasonable balance between performance and lookup-
table size. This brings Cf down to 15 point additions.

We implemented the scalar multiplications with the
fixed scalar d using signed sliding windows with window
width 5 and fully unrolled the code. This way Cv takes
253 doublings and 50 additions. Our d was a randomly
chosen 256-bit integer. An attacker can choose d to mini-
mize the cost of the fixed-scalar variable-base-point scalar
multiplication by choosing d with low Hamming weight
or more generally with a short addition chain, although
a sufficiently low weight runs the risk that someone will
discover d by a discrete-logarithm computation. To put
an upper bound on the Dual EC attack time we avoid this
optimization.

An independent blog post by Adamantiadis [2] has a
proof of concept of the general Dual EC attack using
OpenSSL’s libcrypto for curve and large integer arith-
metic. Adamantiadis does not implement a complete at-
tack but recovers the state from a 30 byte random output.
His proof of concept iterates through all 216 candidates to
recover the missing bits of the x-coordinate and computes
the corresponding y coordinate. In case he discovers a
point on the curve, he applies the back-door computa-
tion and computes the next random output. This proof of
concept has an expected cost of 216Cy +215(Cv +Cf ).

On a single core of an Intel Xeon CPU E3-1275 v3,
Adamantiadis’s code requires about 18.5 s compiled with
gcc version 4.8.1. Adamantiadis is using an older version
of OpenSSL’s libcrypto. For comparison, we modified
Adamantiadis’s code to run with libcrypto from OpenSSL
version 1.0.1e; this version requires about 12.1 s. Fur-
thermore, we reimplemented Adamantiadis’s proof of
concept using our optimized primitives. The optimized
version requires about 3.7 s on a single core. Thus, our
optimizations give an improvement by a factor of 3.3 over
libcrypto.

In Adamantiadis’s code (using libcrypto version
1.0.1e), the computation of a y coordinate (corresponding
to cost Cy) takes about 15 µs on average. In our optimized
version, this computation requires only 6 µs, which is an
improvement by a factor of 2.5. The application of the
back-door computation in Adamantiadis’s code (scalar
multiplication of a variable point by a fixed factor, cost
Cv) requires about 168 µs on average; our code requires
about 98 µs, which is an improvement by a factor of
1.7. Scalar multiplication with fixed base points P and
Q (cost Cf ) benefits the most from our optimizations. In
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Table 2: Performance measurements and estimates.

Attack Intel Xeon Reference System 16-CPU AMD Cluster
222 Candidates (s) Expected Runtime (min) Expected Cost Total Runtime (min)

BSAFE-C v1.1 – 0.26 16 0.04∗

BSAFE-Java v1.1 75.08∗ 641 38,500 63.96∗

SChannel I 72.58∗ 619 37,100 62.97∗

SChannel II 62.79∗ 1,760 106,000 182.64∗

OpenSSL-fixed I – 0.04 3 0.02∗

OpenSSL-fixed II – 707 44,200 83.32∗

OpenSSL-fixed III – 2k ·707 2k ·44,200 2k ·83.32
∗measured

Adamantiadis’s code, one scalar multiplication requires
about 171 µs on average. In our optimized code, the com-
putation for fixed base points requires only about 6µs on
average, which is an improvement by a factor of 28. For
an actual attack, the proportion of Cf to Cv is usually
significantly larger than in the proof of concept. This
increases the impact of our improvements on the attacks.

5.2 Performance measurements and estimates
All our attacks are based on the fact that some fields in the
handshake messages (e.g., session ID and server random)
contain a bit sequence derived from the x-coordinate of
a point R. In order to recover R, we iterate through all
possible combinations of the missing bits, check whether
each candidate ri actually is a valid x-coordinate and gives
a point candidate Ri, apply the back door by computing
dRi, and follow all the steps (including adin for the attacks
on OpenSSL-fixed) to check whether the candidate ri
eventually allows us to recover the (EC)DH secret. As the
steps differ for each implementation, a different amount
of computation is required for each attack (see Table 1,
column “Attack Complexity”).

We measure the cost of the attacks on a reference CPU,
an Intel Xeon CPU E3-1275 v3, which has 4 cores and 2
hardware threads per core when enabling Hyper Thread-
ing. Table 2 lists measured and estimated performance
numbers of the attacks. Turbo Boost and Hyper Thread-
ing are enabled; thus, we were using 8 OpenMP threads
for the measurements on the reference system.

We measure the runtime of testing 222 candidates
(about 221 candidate points). From these measurements,
we extrapolate the expected runtime of the attack. From
the expected runtime, we compute the cost of the attack as
the number of Intel Xeon reference processors that would
be required to perform the attack in an expected time of
less than one second.

Finally, to verify the efficiency of the attack on multi-
ple nodes, we measure the total worst-case runtime of the

attack on a four-node, quad-socket AMD Opteron 6276
(Bulldozer) computing cluster. The cluster has an In-
finiband interconnect and 256 GB memory per node —
however, neither of these is relevant for the attacks: the
attacks require less than 1 GB of RAM per process and
do not need much communication.

For the timing measurements we ran each case sev-
eral times to verify that there is no significant variance
and finally picked the time from a representative test run.
We are using gcc version 4.8.1 (Ubuntu/Linaro) with op-
timization level O3. In the following, all estimates for
expected runtime and expected cost are rounded to three
significant digits.

BSAFE-C v1.1. For the BSAFE-C attack, we simply
concatenate session ID and server random and guess
16 bits of the target x-coordinate for the 30 possible
cases. The complexity of the attack on BSAFE-C is
30 ·

(
216Cy +215(Cv +Cf )

)
. In the worst case this only

requires testing 30 ·216 candidates which is less than 222,
so we do not have a measurement for the first column in
Table 2. Instead, we measured the worst-case time for the
whole attack (31.12 seconds) and list half of the worst-
case time, i.e., 31.12 s/2 ≈ 0.26 min as expected runtime.
This gives an expected cost of 16 reference CPUs. This
attack required 0.04 min on our cluster; most of this time
is probably due to initialization overhead.

BSAFE-Java v1.1. In this case, the session ID of the
handshake is not derived from Dual EC — so we have to
use the 28 bytes of the server random, missing 32 bits
of the target x-coordinate. The complexity of the attack
on BSAFE-Java is 232Cy +231(Cv +5Cf ). We measured
a time of 75.08 s to check 222 candidates. In total, this
attack requires checking at most 232 candidates, so the
expected runtime is 232−22 ·75.08 s/2 ≈ 641 min on the
reference CPU. Therefore, the expected cost to finish this
attack within one second is about 38,500 reference CPUs.
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We measured a worst-case total runtime of 63.96 min on
our cluster.

SChannel I. The SChannel I attack uses the server ran-
dom from the preceding handshake to hook into the ran-
dom number stream and to discover the server’s ECDHE
private key in the handshake when the private key is re-
freshed. The complexity of this attack is 232Cy+231(Cv+
4Cf ). Checking 222 candidates takes 72.58 s. This is
slightly less than the time for BSAFE-Java, because this
attack requires only four instead of five multiplications
by a fixed base point for each point candidate. The whole
attack requires checking at most 232 candidates, so the
expected runtime is 232−22 ·72.58 s/2 ≈ 619 min. There-
fore, the expected cost of the attack is 37,100 reference
CPUs. The measured worst-case total time on our cluster
is 62.97 min.

SChannel II. The SChannel II attack uses just one
single handshake to recover the secret keys and there-
fore relies on the session ID (where the 4 least signif-
icant bytes have been replaced by their value modulo
20,000) to recover the state of the PRNG. The complexity
of the attack is 234Cy + 233(Cv +Cf )+ 217(5Cf ), more
precisely 232/20,000 ·216

(
Cy +(Cv +Cf +5Cf /216)/2

)
.

The dominant part for each candidate check is Cy +
(Cv +Cf )/2 which requires a smaller number of mul-
tiplications with a fixed base point than SChannel I.
We measured 62.79 s to check 222 candidates. This
attack requires checking up to 232/20,000 · 216 candi-
dates; therefore, this attack has an expected runtime of
232−22/20,000 · 216 · 62.79 s/2 ≈ 1,760 min. This gives
an expected cost of 106,000 reference CPUs.

OpenSSL-fixed. Due to the use of adin before each
random draw, OpenSSL is a special case among the im-
plementations of Dual EC. The attack on OpenSSL takes
three steps: First, we find the current state by finding the
16 missing bits for the session ID. This requires checking
at most 216 candidates; thus, we do not give a measure-
ment for 222 candidates in the first column of Table 2.
Since this step might result in more than one state can-
didate, we always compute all 216 candidates. If more
than one candidate is recovered, the attacker either has to
check all candidates (in parallel) or retry with a different
handshake if applicable. In the following we investigate
the expected case that only one candidate is found. In
the second step, we need to find the adin used to gen-
erate server random. Here, adin consists of the current
system time (including µs), the process ID (pid), and a
counter value. In the last step, we need to find the next
adin before the call to generate the DH key. The pid and
the counter are known from the previous adin; we only
need to find the µs over a very short time span by iter-
atively incrementing the time counter until the correct
value is reached. The complexity of the OpenSSL at-

tack is 216Cy + 215(Cv +Cf )+ 220+k+l(2Cf )+ 213(5Cf )
where k is the number of unknown bits of the adin counter
and l is the number of unknown bits of the adin pid.

The first step requires to check at most 216 x-coordinate
candidates; for the last step, we expect a maximum of 213

increments to find the correct µs for the adin, as discussed
earlier. Therefore, the scalability of the parallelization
of step one and three is limited due to the small work-
load. We are using a batch size of 256. Therefore, the
workload of checking 216 candidates in the first step can
be split across at most 216/256 = 256 threads without
loss of efficiency. The last step requires at most 213 iter-
ations, so the maximum number of threads for this step
is 213/256 = 32. Step one and three contribute to only an
insignificant fraction of the total complexity when pid or
counter are not known.

We examine three cases:

OpenSSL-fixed I: pid and counter are known, µs of time
are unknown,

OpenSSL-fixed II: counter is known, µs of time and pid
(15 bits) are unknown,

OpenSSL-fixed III: µs of time, pid (15 bits), and
counter (k bits) are unknown.

The system time in seconds is known from the times-
tamp in the server-random field of the handshake mes-
sage. Therefore, only the µs must be found by exhaus-
tive search. The seconds might have clocked since the
timestamp was obtained; thus, we need to test up to
1,000,000+∆ candidates for the µs. An upper limit on ∆
is the time between the server receiving the ClientHello
message and sending the ServerHello message. We use
1,000,000 µs+48,576 µs = 220 µs as upper limit.

The standard maximum pid on Linux systems is 215. If
the attacker starts listening to the server right after bootup,
he can assume the initial counter to be zero; otherwise,
he may make an educated guess about the current counter
state based on uptime and the average connection number.

To compute the expected runtime of this attack we
measured the worst-case runtime of the case OpenSSL-
fixed I. The first step to compute state candidates took
about 0.96 s; the second step checking all possible 220 µs
for one single state candidate took 2.59 s. The final
step checking the next 213 µs took only 0.05 s. There-
fore, the expected runtime of OpenSSL-fixed I is 0.96 s+
2.59 s/2+0.05 s/2≈ 0.04 min; the expected cost is three
reference CPUs. The expected runtime of OpenSSL-fixed
II is 0.96 s+215 ·2.59 s/2+0.05 s/2 ≈ 707 min. We are
using 8 threads in the reference system; the maximum
number of threads is 256 threads for the first step and
32 threads for the last step. Therefore, the first step can-
not be faster than 0.96 s/(256/8) ≈ 0.03 s and the last
step requires at least 0.05 s/(32/8)≈ 0.01 s in the worst
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case. To finish the whole attack in one second on average,
the second step must take 1 s−0.03 s−0.01 s = 0.96 s
on average which requires 215 ·2.59 s/2/0.96 s ≈ 44,200
reference CPUs. For OpenSSL-fixed III these values are
multiplied by 2k, assuming k unknown bits for the counter
of the adin.

We ran OpenSSL-fixed II on the cluster, testing all
235 combinations of µs and pid to obtain the worst-case
total runtime. The time of 83.32 min is noticeably less
than 215 times the time of 0.02 s taken in the OpenSSL-
fixed I scenario. This is because in OpenSSL-fixed I the
computations of 215Cv for the first step have a strong
impact on the runtime; testing 235 candidates gives more
precise timing estimates of Cf . We can extrapolate the
costs for OpenSSL-fixed III as 2k times those of OpenSSL-
fixed II because the contribution of the first and of the
third step become negligible.

Summary. These runtime and cost estimates show that
a powerful attacker (in case of BSAFE-C, an arbitrary
attacker) is able to break TLS connections that use the
Dual EC pseudorandom number generator when he pos-
sesses the back-door information. The usability of the at-
tack on OpenSSL-fixed depends on additional knowledge
about the adin; however, computing clusters of around
100,000 CPUs are realistic as of today (for example the
Tianhe-2 supercomputer in China has 16,000 computing
nodes with 5 CPUs each [19]) and sufficient to break
BSAFE and SChannel in less than one second.

6 Passive TLS server fingerprinting
In many contexts, including exploitation of the Dual EC
backdoor, it is useful to identify, or fingerprint, the imple-
mentation used by a TLS server. Existing tools for TLS
fingerprinting use active techniques (requesting a page to
get an error message and analyzing the result), but our
investigations of TLS implementations suggest that the
session ID field, in particular, admits a passive fingerprint-
ing mechanism useful to an attacker observing network
traffic or even one attacking recorded connections from
years ago.

Data collection. We collected a large dataset of TLS
session information from servers listening on port 443 in
the IPv4 address space. We executed a ZMap scan [7] of
port 443 over the entire IPv4 address space (excluding
ZMap’s default blacklist). The ZMap scan netted 38.9
million services responding on port 443. For 37.1 million
of these services, we used a modified version of OpenSSL
v1.0.1e s_client to connect to the service, and attempt
to perform a TLS handshake up through receiving the
ServerHello message (containing the session ID, server
random value, and TLS server extensions), and then sent a
TCP RST to the server. Of these attempts, 21.8M servers
responded with a ServerHello message.

We investigated a number of candidate fingerprints
based on observable behavior to a passive adversary. For
each server that exhibited the RSA BSAFE fingerprint,
we made an HTTP GET request on port 443 in an attempt
to determine what software the server uses via the self-
reported Server field of the HTTP header. We repeated
this for 1,000 randomly selected IP addresses exhibiting
the SChannel fingerprint. We consider an observable
behavior to be a selective fingerprint if ≥ 95% of the
servers from which we received HTTP headers identify
themselves as the same implementation.

6.1 Fingerprints detected
We detected many different types of fingerprints by exam-
ining server random values, session IDs, and TLS server
extensions (all unencrypted values to a passive observer).
In addition to the fingerprints on BSAFE and SChan-
nel discussed in Sections 4.1 and 4.2, we identified five
selective fingerprints from unique combinations of sup-
ported extensions, 2 selective fingerprints corresponding
to session ID values with fewer than 32 bytes, and seven
selective fingerprints corresponding to fixed subsequences
in the session ID.

In sum, 4 million of the servers we contacted exhibited
selective fingerprints. We discuss our findings for BSAFE
and SChannel in more detail below.

RSA BSAFE. As described in Section 4.1, by default,
BSAFE-Java has a very prominent fingerprint that is en-
abled by default, and BSAFE-C has a similar fingerprint
that is not enabled by default. We found 720 servers with
the BSAFE-Java fingerprint, and none with the BSAFE-C
fingerprint. Of these servers, 33% self-reported running
Apache Coyote 1.1,8 with the remaining two self-reported
implementations (“ADP API” and lighthttpd) appearing
on fewer than ten instances. The remaining servers did
not return a Server field.

Microsoft SChannel. As described in Section 4.2,
SChannel exhibits a fingerprint in the first 4 bytes of
the session ID. 2.7 million of the servers we contacted
exhibited this fingerprint. We requested HTTP headers
from 1,000 of these IPs (randomly selected), and 96%
of the responses included the string “Microsoft” in the
server field, suggesting that this is a selective fingerprint.

7 Conclusions
We provided the first theoretical and practical analysis of
the exploitability of Dual EC as used in deployed TLS
implementations. We evaluated the viability and perfor-
mance of recovering TLS session keys for fielded imple-
mentations that use Dual EC. Our results demonstrate that

8Apache Coyote is a front end that forwards requests to Apache
Tomcat, which supports Java Servlets and JavaServer pages; running
Tomcat with BSAFE-Java may indicate an effort to provide a FIPS-
compliant web application.
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otherwise innocuous implementation decisions greatly
affect exploitability. For example, RSA BSAFE-C is by
far the easiest to exploit due to caching of unused bytes
of Dual EC output. On the other end of the spectrum,
OpenSSL-fixed uses additional input, which can render
attacks significantly more challenging if no or only little
information is available about the server.

We developed and successfully tested state-of-the-art
parallelized implementations of all attacks against ver-
sions of the libraries patched to use Dual EC constants
that we generated. Depending on the design choices in
the implementations, an attacker can recover TLS session
keys within seconds on a single CPU or may require a
cluster of more than 100,000 CPUs for the same task if a
different library is used. For OpenSSL some parameters
might require such a serious cluster for an even longer
time.

While there are a number of available mitigations to
the vulnerabilities we discuss in this work, the simplest
and best is to remove the Dual EC implementation from
deployed products. OpenSSL has already initiated the
(expensive, due to FIPS certification) process of remov-
ing Dual EC from its FIPS version and, in the mean-
time, is not fixing the bug we discovered that prevents its
use [17]. RSA has advised developers to stop using the
BSAFE Dual EC implementation [9]. Our work further
emphasizes the need to deprecate the algorithm as soon
as possible.
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Abstract
The ubiquitous webcam indicator LED is an important
privacy feature which provides a visual cue that the cam-
era is turned on. We describe how to disable the LED on
a class of Apple internal iSight webcams used in some
versions of MacBook laptops and iMac desktops. This
enables video to be captured without any visual indication
to the user and can be accomplished entirely in user space
by an unprivileged (non-root) application.

The same technique that allows us to disable the LED,
namely reprogramming the firmware that runs on the
iSight, enables a virtual machine escape whereby malware
running inside a virtual machine reprograms the camera
to act as a USB Human Interface Device (HID) keyboard
which executes code in the host operating system.

We build two proofs-of-concept: (1) an OS X applica-
tion, iSeeYou, which demonstrates capturing video with
the LED disabled; and (2) a virtual machine escape that
launches Terminal.app and runs shell commands. To de-
fend against these and related threats, we build an OS X
kernel extension, iSightDefender, which prohibits the
modification of the iSight’s firmware from user space.

1 Introduction
Video is ineffably compelling. The (consensual) shar-
ing of video is an act of intimacy as it allows the viewer
a glimpse into the life of the sharer. It is no surprise
then that the Internet’s first “lifecast,” Jennifer Ringley’s
“JenniCam” in 1996 [24], was video and not audio. Simi-
larly, YouTube, the most popular website for sharing user-
created videos, predates SoundCloud, a website with sim-
ilar functionality for audio, by several years even though
technological constraints would suggest the opposite or-
der. It is precisely because of the intimacy of video that
turning on someone’s camera without his or her knowl-
edge or consent is a violation more fundamental than
recording audio.

Beyond intentional sharing, video makes for more
compelling evidence that an event occurred as claimed
than either an after-the-fact eye witness account or audio
recording. This is true whether it is a video of a suc-
cessfully performed feat of skill — e.g., in sports [44] or
even video games [49] — video of police brutality [55],
video of violent crime [63], or webcam video used for
blackmail [15].

(a) Image sensor (front)

(b) Image sensor (back)

(c) Main board (front)

(d) Main board (back)

Figure 1: The iSight from a 2008 MacBook we studied.

The value of video evidence is so high that The Wash-
ington Post recently reported that the US Federal Bureau
of Investigation (FBI), has developed surveillance mal-
ware, similar to the proof-of-concept described in this
paper, which can covertly turn on a victim’s webcam [59].
Of course, the threat to privacy from webcams vulnerable
to hacking comes not only from law enforcement.

At the beginning of the 2008 school year, the Lower
Merion School District provided a MacBook laptop to
each enrolled student. These laptops came pre-loaded
with the LANrev remote administration tool (RAT) which
allowed school district officials to, among other things,
capture images from the MacBooks’ built-in iSight web-
cam. During the following 18 months, officials captured
more than 30 thousand images from these webcams [5, 6].
The first indication that images were being captured was
every time the software took a picture, the green indicator
LED would briefly illuminate [5, 6, 42]. Some teachers
were so concerned by this they they covered the lens of
the webcams on their own laptops [6]. Here, the indicator
LED worked exactly as it was supposed to and alerted the
users that they were being photographed.

The possibility that a webcam could be capturing pic-
tures without the LED illuminating has led to suggestions
that owners should tape over the webcam [43] as well as
products designed to cover the camera stickers [10, 58].
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This incident illustrates the dangers of passive sensors
attached to computers like cameras, microphones, and
GPS receivers. Unlike active input devices like keyboards
and mice that require user actions to provide input, a pas-
sive sensor requires no action on the part of the user to
capture input. Indeed, a user is typically unaware that
input is being captured at all unless specific mechanisms
are built into the technology to indicate that the sensor is
currently in use. Such mechanisms include camera-use in-
dicator LEDs, shutter sounds on cell phone cameras, and
GPS-use indicator icons on mobile devices and laptops.

In the past few years, the ever-expanding set of sen-
sors present in commodity laptops and smart phones has
prompted the security and privacy community to begin
researching ways to detect and limit the undesired use of
sensors [20, 22, 26, 27, 31]. At the same time, researchers
have demonstrated attacks exploiting the presence of sen-
sors such as a clickjacking attacks against Adobe Flash
to gain access to the camera and microphone [23] from
a malicious web page and exfiltrating audio from micro-
phones in modern automobiles [11]. (See Section 2 for
more examples.)

Our results in this paper demonstrate that, at least in
some cases, people have been correct to worry about mal-
ware covertly capturing images and video. We show a
vulnerability in the iSight webcam that affects a particu-
lar range of Apple computers — including the MacBooks
given to the students in the Lower Merion School Dis-
trict — that can be exploited to turn on the camera and
capture images and video without the indicator illuminat-
ing.

At a high level, our investigation of the iSight revealed
that it is designed around a microprocessor and a sepa-
rate image sensor with an indicator LED sitting between
them such that whenever the image sensor is transmit-
ting images to the microcontroller, a hardware interlock
illuminates the LED. We show how to reprogram the mi-
crocontroller with arbitrary, new firmware. This in turn
enables us to reconfigure the image sensor, allowing us to
bypass the hardware interlock and disable the LED. We
also show a new method of performing a virtual machine
escape based on our ability to reprogram the microcon-
troller.

Specifically, our technical contributions in this paper
are five-fold:

1. We describe the architecture of the Apple internal
iSight webcam found in previous generation Apple
products including the iMac G5 and early Intel-based
iMacs, MacBooks, and MacBook Pros until roughly
2008 (Section 3).

2. We demonstrate how to bypass the hardware inter-
lock that the iSight uses to turn on the indicator
LED whenever the camera is capturing images or
video (Section 4) and provide a proof-of-concept

user space application, iSeeYou, to do so (Section 6).
3. We demonstrate how to use the capability developed

to bypass the hardware interlock to achieve a virtual
machine escape (Appendix A1).

4. We develop an OS X kernel extension, iSightDe-
fender, to defend against these attacks (Section 7).

5. We sketch the design space for building a secure
camera module (Section 8).

The ability to bypass the interlock raises serious pri-
vacy concerns and the technical means by which we ac-
complish it raises additional security concerns which we
discuss in Section 9.

Threat model. To mount our main attack where we cap-
ture video without any external indication to the victim,
we assume that an attacker is able to run native code on
the victim’s computer as an unprivileged user. Further,
we assume the code is unencumbered by defenses such
as Apple’s App Sandbox [4] which is used for applica-
tions downloaded from the Mac App Store but by little
else. This assumption is quite mild and would typically
be satisfied by malware such as RATs.

For the virtual machine escape, we assume the attacker
has code running locally in the virtual machine and with
whatever privileges the guest OS requires to communi-
cate with USB devices. We also assume that the virtual
machine monitor has exposed the iSight device to the
virtual machine. This second assumption is quite strong
as virtual machine monitors typically do not expose USB
devices to the guest OS unless the user specifically con-
figures it to do so, for example to use video conferencing
software.

Generality of results. We stress that our main result —
disabling the iSight LED — only applies to the first gen-
eration internal iSight webcams, found in some Apple
laptops and desktops, and we make no claims of security
or insecurity of later models, including the most recent
(renamed) FaceTime cameras. The virtual machine es-
cape described in Appendix A likely holds for other USB
devices that use the Cypress EZ-USB chip used in the
iSight, but we have not yet tested other devices.

2 Related work
General purpose computers contain a variety of proces-
sors designed for performing specialized tasks other than
general-purpose computation. Examples include graph-
ics processing units (GPUs) which produce video output;
processors in network interface controllers (NICs) which
perform network packet processing; microcontrollers in
perhipherals such as keyboards, mice, and webcams; mi-
crocontrollers in laptop batteries; and, in some systems,
baseboard management controllers (BMCs) which en-

1Although we regard this as a major contribution, we have moved
the details to an appendix to improve the paper’s flow
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ables out-of-band system management independent of the
host computer’s CPU.

Security researchers have only recently begun examin-
ing these additional processors and the firmware that runs
on them. In many cases, the designers of these systems
appear not to have appreciated the security implications
of their interfaces and implementations.

Perhaps the most well-studied processor apart from the
CPU is the GPU. Vasiliadis et al. [60] demonstrate using
the GPU to harden malware against detection by using
the GPU to implement unpacking and runtime polymor-
phism. Ladakis et al. [33] use the GPU’s direct memory
access (DMA) capability to monitor the system’s key-
board buffer to build a keylogger. Beyond GPU mal-
ware itself, researchers have used the GPU to acceler-
ate malware detection [32] and intrusion detection sys-
tems [50].

Duflot and Perez [17] demonstrate exploiting a NIC to
achieve arbitrary code execution. In follow up work, Du-
flot et al. [18] build a NIC malware detection framework.

Miller [39] demonstrates how to communicate with
Apple laptop batteries using the System Management
Bus, authenticate to the battery to “unseal” it, and change
both configuration values and firmware. This enables
overcharging the battery resulting in overheating and, po-
tentially, leading to a fire.

Tereshkin and Wojtczuk [57] introduce the concept of
a “Ring −3” rootkit which runs on Intel’s Active Manage-
ment Technology (AMT) hardware which has a processor
independent of the host CPU with a separate interface to
the NIC and DMA access to main memory.

In a very similar vein, Farmer [21] discusses weak-
nesses and vulnerabilities in the Intelligent Platform Man-
agement Interface (IPMI) — the standard interface to the
baseboard management controller (BMC). Like AMT, a
BMC has direct access to the host system but its oper-
ation is completely independent making exploits both
extremely powerful and difficult to detect. Moore [41]
builds on this work to produce a penetration tester’s guide
for examining IPMI and BMCs.

A webcam is just a particular type of sensor attached to
a computing device. Others include microphones, ac-
celerometers, and GPS receivers. Our work joins an
emerging line of research on the security and privacy
implications of such sensors. For example, Schlegel et al.
[54] show how to use a smartphone’s microphone to ex-
tract credit card numbers and PINs from spoken and tone-
based interfaces. Marquardt et al. [36], Owusu et al. [46]
and Miluzzo et al. [40] use smartphone accelerometers to
extract information about key presses. Checkoway et al.
[11] extract audio and GPS coordinates from automobiles.
Templeman et al. [56] use smartphone cameras to covertly
take pictures which are then used to create 3D models of
physical spaces.

Our virtual machine escape (Appendix A) is not the first
to emulate a USB Human Interface Device (HID) such
as a mouse or keyboard. Wang and Stavrou [62] use a
compromised smart phone to act as a USB HID keyboard
and send key presses to the host system. Kennedy and
Kelley [30] use a small microcontroller to interact with the
Windows Powershell. Pisani et al. [48] similarly describe
having USB devices pose as HID keyboards to control
the computer. Elkins [19] adds a RF receiver for remote
controlling a fake HID keyboard.

3 Internal iSight architecture
This section describes the architecture of the internal
iSight webcam in sufficient detail to understand how the
multi-step attack described in Section 4 works. Readers
who are already familiar with the iSight or the Cypress
EZ-USB or who are not interested in the low-level details
of the device are encouraged to skip directly to Section 4
and use this section and Figure 2, in particular, as a refer-
ence as needed.

The internal iSight consists of a Cypress CY7C68013A
EZ-USB FX2LP, a Micron MT9V112 CMOS digital im-
age sensor, a 16 byte configuration EEPROM, and an
indicator LED (see Figure 1). A block diagram is given
in Figure 2.

3.1 Cypress EZ-USB
The host computer interacts with the iSight entirely
through a USB connection to the Cypress EZ-USB. The
EZ-USB is responsible for handling all USB requests and
sending replies including video data.

The EZ-USB has an internal Intel 8051-compatible mi-
crocontroller core and 16 kB of on-chip RAM accessible
as both code and data “main” memory2 but lacks persis-
tent storage [13]. In general, the firmware for the 8051
core can be located in one of three locations: (1) external
memory such as flash or EPROM attached to the EZ-USB
address/data bus; (2) an I2C EEPROM; or (3) loaded from
USB. The iSight loads its firmware at boot from the host
computer over USB (see Section 4.2).

3.2 Micron digital image sensor
The Micron digital image sensor is a low-power system-
on-a-chip (SOC) capable of producing an image in several
formats. The sensor is configured by the I2C interface
which can read from and write to several hundred con-
figuration registers [37]. In addition to the I2C interface,
several hardware signals influence the operation of sensor.

The most important signals from our perspective are
the active-low #RESET and active-high STANDBY sig-

2The standard 8051 is a Harvard architecture which has separate code
and data memory differentiated by hardware signals. In the configuration
used by the iSight, the signals are combined effectively giving a single
main memory address space.
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Figure 2: Internal iSight architecture block diagram con-
sisting of a Cypress EZ-USB, a Micron digital image sen-
sor, a 16 byte configuration EEPROM, and an indicator
LED. The SCL and SCA lines comprise the I2C bus.

nals. The corresponding hardware pins are connected
directly to the EZ-USB’s general purpose I/O (GPIO)
pins. As shown in Figure 2, #RESET is connected to
pin 0 of GPIO port A and STANDBY is connected to
pin 3 of GPIO port D. The other connection between
the image sensor and the EZ-USB shown in Figure 2
DOUT[7:0]→FD[7:0] is an 8 bit unidirectional bus
which transfers pixel data to the EZ-USB’s FIFO inter-
face. Other, less important, control signals are omitted
from the diagram.

The #RESET signal performs a hardware reset, reset-
ting all configuration registers to their default value. The
STANDBY signal controls output enable and power down
functions. That is, when STANDBY is asserted, the im-
age sensor stops producing data on DOUT[7:0] which
enters the high impedance state as well as allowing the
image sensor to transition to a low-power state.

3.3 Configuration EEPROM
The first byte of the 16 byte EEPROM controls whether
the EZ-USB loads its firmware from USB or from the
EEPROM itself. When set to load firmware from USB, as
the iSight does, the EEPROM contains the USB vendor

Table 1: Relation between the PD3 GPIO, the STANDBY
signal, and the LED.

PD3 STANDBY LED

High Asserted Off
Low Deasserted On

ID (VID), product ID (PID), device release number, and
a configuration byte for the initial device enumeration.
Once the EZ-USB has enumerated using the VID, PID,
and release values, software on the host computer can load
the firmware. The iSight initially enumerates with vendor
ID 0x05ac (Apple, Inc.) and product ID 0x8300 (Built-
in iSight (no firmware loaded)).

3.4 Indicator LED
Since the purpose of the indicator LED is to illuminate
whenever the camera is capturing video, a LED driver
circuit is connected directly to the STANDBY input of the
image sensor (see Figure 2). In this way, whenever PD3
is high — that is, STANDBY is asserted — the LED is off
and whenever PD3 is low — so STANDBY is deasserted
and the image sensor is producing output — the LED
is on. Since the LED is controlled by the same output
that controls STANDBY, there is no danger that firmware
on the EZ-USB could deassert STANDBY and turn the
LED off (see Table 1). However, as we demonstrate
in Section 4, we can bypass the STANDBY signal such
that changing PD3 allows us to control the LED without
affecting the operation of the image sensor.

4 Disabling the indicator LED
Disabling the indicator LED on the iSight entails two re-
quirements. First, as described in Section 3, the indicator
LED is directly connected to the STANDBY pin on the
image sensor. In order to disable the LED, we need to
keep STANDBY asserted. Since asserting STANDBY will
disable the image sensor output, we need to configure the
image sensor to ignore STANDBY before we assert this
signal. Second, we need a way to modify the firmware on
the EZ-USB to in order to configure the image sensor ap-
propriately as well as keep STANDBY asserted whenever
we want the LED to stay off.

4.1 Bypassing the STANDBY signal
The Micron image sensor has a 16 bit configuration regis-
ter, RESET (which is distinct from the #RESET power-
on-reset signal). RESET is addressable from the I2C
interface at address 0x0D in register page 0 [37]. The
most significant 8 bits control hardware clocks and how
bad frames should be handled which are of no interest to
us and can be left as 0. The least significant 8 bits have the
following functionality as described in the image sensor
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data sheet [37, Table 13]:
Bit 7. Prevent STANDBY from affecting entry to or

exit from the low-power state if set.
Bit 6. Prevent STANDBY from contributing to output

enable control if set.
Bit 5. Reset the SOC (but not the sensor) if set.
Bit 4. Disable pixel data output if set.
Bit 3. Chip enable. Normal operation if set, no sensor

readout otherwise.
Bit 2. Software standby if set, otherwise normal oper-

ation.
Bit 1. Restart reading an image frame.
Bit 0. Reset the sensor to its default state if set, normal

operation otherwise.
Bits 0, 1, and 5 are of no interest and can be set to 0 but

the remaining 5 bits enable us to bypass the STANDBY
signal while still maintaining normal operation. This
includes entering a (software) standby state and disabling
output when appropriate.

When the iSight is first powered up (or, more pre-
cisely, when #RESET becomes deasserted), the RESET
register has value 0x0008; that is, normal operation and
STANDBY affects the low-power state and output enable.
If RESET is set to 0x00c8, then the camera has normal
operation but STANDBY is effectively bypassed. When
it becomes desirable for the camera to enter the standby
state, RESET can be set to 0x00d4 which disables out-
put and enters the software standby state.

With RESET set to either 0x00c8 or 0x00d4, the
hardware STANDBY signal is ignored. This enables the
use of the EZ-USB PD3 output to control the LED inde-
pendent of the standby state of the image sensor.

4.2 Programming the EZ-USB
When the iSight is first powered, it checks the con-
figuration EEPROM and then waits for programming
over USB (see Section 3.3). The AppleUSBVideo-
Support I/O Kit driver matches the vendor ID (VID)
and product ID (PID). The driver loads and the
AppleUSBCamera::start() function downloads
the camera’s firmware (stored in the gTheFirmware
array) to the EZ-USB using a series of vendor-specific
USB “Firmware Load” device requests [13, Section 3.8].
The camera will then reenumerate and function as a web-
cam.

One approach to change the firmware on the camera is
to modify the AppleUSBVideoSupport driver to contain
different firmware. A second approach would be to pro-
vide a new driver that matches the VID/PID and provides
a higher probe score [2]. The new driver would run at
system start up instead of Apple’s driver and download
the new firmware to the camera. These approaches have
two major drawbacks. The first drawback is that they
rely on programming the iSight when it is in its unpro-

grammed state which only happens when the camera is
first powered by the USB bus. The second drawback is
that root access is required in order to modify the existing
driver or load a new driver.

A third approach overcomes both drawbacks by letting
the iSight be programmed with the legitimate firmware
when it is first powered. Once the firmware has been
loaded onto the camera, it can be reprogrammed at any
time using “Firmware Load” requests. Furthermore, it
can be reprogrammed from any user space process.

5 Finding the vulnerability
The information described in Sections 3 and 4 was dis-
covered by a combination of reverse engineering, experi-
mentation, and reading data sheets once individual com-
ponents were identified. We started by ordering camera
modules from a variety of Apple computers on eBay. Co-
incidentally, the modules were all from the original iSight
camera, although the camera boards for the MacBook and
iMac had different forms. Figure 1 shows the MacBook
board.

A cursory examination of the board reveals that the
camera microprocessor is a Cypress EZ-USB. The EZ-
USB Technical Reference Manual [13] describes the pro-
cedure to download code to EZ-USB. We reverse engi-
neered the AppleUSBVideoSupport driver using IDA [25]
to determine the format of the firmware stored in the
driver. (Section 6.1 describes the firmware in more de-
tail.) We then extracted the firmware as it would appear
in memory and analyzed it using IDA.

Our initial hypothesis was that the LED would be con-
trolled by one of the EZ-USB GPIO pins via the firmware.
To test this, we mapped out the connections on the board
using a digital multimeter with a specific focus on con-
nections from the microcontroller to the indicator LED. A
connection was found between the microcontroller, image
sensor, and the LED driver circuit. Since the microcon-
troller pin connected to the LED was set as an output,
we constructed new firmware to toggle this output and
examined the results. When the LED was turned on, the
camera functioned correctly. When the LED was turned
off, the camera ceased operating (see Table 1).

Since the output controlling the LED was also con-
nected to the image sensor, we examined it next. When
the legitimate camera firmware is downloaded to the cam-
era, it identifies itself as “Apple, Inc. Built-in iSight [Mi-
cron]” suggesting that the image sensor was manufactured
by Micron Technology. There is no visible part number
that can be used to identify the model (see Figure 1).
Rather than decapping the chip, we used the Wayback
Machine3 to view the Micron website for 2005, the year
the camera board was copyrighted. Data sheets for the

3https://archive.org/web/
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image sensors that matched the publicly known specs for
the iSight camera on Micron’s website indicate that the
image sensor communicates over an I2C bus. One of the
I2C-addressable registers identifies the chip version. We
identified the I2C bus and read the register which revealed
the particular image sensor.

We examined the relevant data sheet for the image sen-
sor and noticed the STANDBY pin with functionality con-
sistent with our experiments toggling the LED-controlling
output pin. After reading the data sheet in more detail, we
discovered the I2C-addressable register which enables a
software override for the STANDBY pin. Further exper-
iments with modified firmware were performed to ver-
ify that the LED driver circuit was indeed connected to
STANDBY and that it could be bypassed.

6 Proof of concept
The discussion in Section 4 shows that, in principle, it is
possible to modify the legitimate firmware to disable the
LED. In this section, we describe the proof-of-concept
application, iSeeYou we created which reprograms the
iSight to add the capability to enable or disable the LED
using a new vendor-specific USB device request.

6.1 Modifying the firmware
Although one could reimplement the camera functionality,
we opted to create new firmware by appending new binary
code to the legitimate firmware and patching it to call
our new code. The first step is to extract the legitimate
firmware from the AppleUSBVideoSupport device driver.4

The firmware consists of an 8 byte header followed by
a sequence of triples: a 2 byte size, a 2 byte address, and
size-bytes of data. This format corresponds exactly to the
“C2 Load” format of the EEPROM for loading firmware
directly from the EEPROM [13, Table 3-6]. Each triple
specifies the data that should be written to the EZ-USB’s
main memory at a given address. By stripping off the
header and the final triple,5 we can construct the “raw”
firmware image. The raw firmware can then be analyzed
using IDA.

The raw firmware is structured similarly to sample code
provided in the Cypress EZ-USB FX2LP Development
Kit [14] including a hardware initialization function and
USB events that are serviced by a main loop based on
state bits set by interrupt handlers.

To the legitimate firmware, we add two bits of state,
“is the sensor in software standby or running” and “is
the LED enabled or disabled,” as well as four new func-

4There are several open source tools to perform this task, e.g., iSight
Firmware Tools [7], several of which include binary patching to fix bugs
in the USB interface descriptors.

5The final triple stores a single 0x00 byte to address 0xE600
which takes the Intel 8051 core out of reset so that it can begin executing
instructions.

tions, reset_sensor, enter_standby, exit_
standby, and handle_led_control.

When the LED is enabled, the behavior of the camera
is indistinguishable from the normal behavior. That is,
when the camera is in its standby state the LED is off and
when the camera is in its running state, the LED is on.

The legitimate firmware contains a function to reset
and configure the image sensor. This is called both from
the hardware initialization function and the handler for
the USB set interface request. It begins by deasserting
the STANDBY signal and asserting the #RESET. After
a short spin loop, it deasserts #RESET and, depending
on the function argument, deasserts STANDBY. It then
proceeds to configure the image sensor. We patch the
firmware to call reset_sensor instead of this config-
uration function in both locations. The reset_sensor
function reimplements the reset functionality but adds a
call to the function which writes to the I2C bus to program
the RESET register to bypass the STANDBY signal (see
Section 4.1). At this point, if the LED has been disabled
or the argument indicates that it should enter the standby
state, the STANDBY signal is asserted to turn off the LED
which will have momentarily illuminated during the reset
sequence. Otherwise, the sensor is left running and the
LED is enabled so STANDBY remains deasserted and the
LED stays on. Finally, the reset_sensor function
jumps into the middle of the configuration function, just
past the #RESET and STANDBY manipulating code, in
order to perform the rest of the configuration.

The enter_standby and exit_standby func-
tions update the bit of state which records if the image
sensor is running or in standby. Then, based on whether
the LED is enabled or not, they deassert (resp. assert)
STANDBY as needed to turn the LED on (resp. off). Fi-
nally, these functions use I2C to program the RESET reg-
ister to enter or exit software standby. Each location in the
legitimate firmware which sets the state of the STANDBY
signal is patched to call its new, corresponding standby
function instead.

The final function, handle_led_control is re-
sponsible for handling a new vendor-specific USB de-
vice request. The main loop in the legitimate firmware
which handles USB device request “setup” packets is
patched to instead call handle_led_control. If the
bRequest field of the request does not match the new
vendor-specific value, then it jumps to the legitimate han-
dler. Otherwise, based on the wValue field of the request,
the LED is enabled or disabled. As with the other func-
tions, the LED is then turned on if it has been enabled and
the image sensor is running. Otherwise, it is turned off.

6.2 Demonstration application: iSeeYou
iSeeYou is a simple, native OS X application; see Fig-
ure 3. When iSeeYou starts, it checks for the presence of
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Figure 3: iSeeYou running on a white MacBook “Core 2 Duo” capturing video from the internal iSight with the LED (the
black dot to the right of the square camera at the top, center of the display bezel) unilluminated.

a built-in iSight using the appropriate vendor and product
IDs. If the iSight is found, iSeeYou initiates the repro-
gramming process using the modified firmware described
above. Once the camera has been reprogrammed and
has reenumerated, the start/stop button begins/ends cap-
turing and displaying video. The LED Enable/LED
Disable control sends USB device requests with the
new vendor-specific value to enable/disable the indicator
LED while video is being captured. Finally, when the
user quits iSeeYou, the camera is reprogrammed with the
legitimate firmware.

7 Defenses
There are several approaches one can envision to defend
the iSight against the attacks described in the previous sec-
tions. One can change (1) the hardware, (2) the firmware
on the EZ-USB (unfortunately this is not effective, see be-
low), or (3) the software on the host system. See Table 2
for an overview of possible defenses and their efficacy.

The most comprehensive defense would be to change
the hardware used in the iSight. See Section 8 for sev-
eral secure hardware designs. Of course, changing the
hardware is not a deployable solution for existing de-
vices.

Table 2: Overview of possible defenses.

Defense Deployable User Root

Change hardware No Yes Yes
Change firmware Yes No No
App Sandbox Yes Some No
iSightDefender Yes Yes No

A “Yes” in the Deployable column indicates that
the defense could be deployed to existing computers.
A “Yes” in the User (resp. Root) column indicates
that the defense would prevent an unprivileged (resp.
root) process from reprogramming the iSight. A
“Some” indicates that some reprogramming attempts
would be prevented but others allowed.

If the hardware must remain the same, then if the
firmware on the camera could be changed to disallow
future reprogramming, then the camera would be secure
against our attacks. Unfortunately, the “Firmware Load”
USB device request used to reprogram the 8051 core is
handled entirely by the EZ-USB device itself and cannot
be blocked or handled by the 8051 itself [13, Section 3.8].
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Thus no matter how one programs the device’s firmware,
it can be reprogrammed by an attacker who can send basic
USB messages to the camera.

Apple deploys sandboxing technology called the App
Sandbox6 [4] which can prevent applications inside
the sandbox from accessing the iSight. Specifically,
the com.apple.security.device.camera enti-
tlement enables an application to capture still images
and video from cameras, including the internal iSight.
The com.apple.security.device.usb entitle-
ment enables applications to access USB devices.

Any App Sandbox–protected application lacking the
usb entitlement would be prohibited from reprogram-
ming the iSight and thus prohibited from disabling the
indicator LED. Although an application with the usb en-
titlement but lacking the camera entitlement would be
prohibited from using the high-level APIs for accessing
the camera, such as the QTKit API [3], it could easily
reprogram the camera to not appear as a USB video class
(UVC) device and instead transfer the frames of video
using a custom protocol.

The major drawback to using the App Sandbox to pro-
tect the camera is that applications need to opt into the
protection, something malware is unlikely to do. Worse,
the App Sandbox has, at times, been broken allowing
applications to escape from the restrictions [12, 38].

Perhaps the best way to defend against reprogramming
the iSight without changing the hardware is to modify
the operating system to prevent particular USB device
requests from being sent to the camera. We have built
such a defense structured as an OS X kernel extension
called iSightDefender.

When iSight is powered for the first time, it enumer-
ates with vendor ID 0x05ac and product ID 0x8300
and is programmed with the legitimate firmware via the
AppleUSBVideoSupport kernel extension as described in
Sections 3.3 and 4.2. When it reenumerates with prod-
uct ID 0x8501 the kernel matches and loads the normal
drivers as well as iSightDefender.

I/O Kit kernel drivers are written in a subset of C++

and each USB device is represented by an object of class
IOUSBDevice which is responsible for communicat-
ing with the hardware by sending messages to objects in
lower layers of the USB stack. When iSightDefender is
started, it overwrites the C++ virtual method table of its
“provider” IOUSBDevice to point to the virtual method
table of a subclass of IOUSBDevice.7 The subclass
overrides the four DeviceRequest member functions.
The overridden implementations check if the device re-
quest is for the “Firmware Load” vendor-specific request

6Formerly codenamed Seatbelt.
7There seems to be no supported mechanism for interposing on USB

device requests. The authors appreciate the irony of using virtual table
hijacking — a common hacker technique — for defending against attack.

and, if so, log the attempt in the system log and block the
request.

iSightDefender is able to block all user space re-
programming attempts,8 including those mounted from
within a virtual machine. The latter requires some care as
the normal drivers that match against the IOUSBDevice
are unloaded and the virtual machine monitor’s own driver
is loaded in their place.

Using iSightDefender raises the bar for attackers by
requiring the attacker to have root privileges in order to
reprogram the iSight. In some sense, this is the strongest
possible software-based defense. Since malware running
as root would have the ability to replace or modify kernel
code, any defense implemented in the kernel can, theoret-
ically, be bypassed. Despite this limitation, we believe it
is a step in the right direction and encourage its use.

iSightDefender, and its source code, is freely avail-
able.9

8 Secure camera designs
When designing a secure camera, there are two main
considerations. First, for sensors such as cameras and
microphones, an indicator that the sensor is recording is
essential to prevent surreptitious recording. (Although
laptop microphones do not, in general, have indicators, it
is common for stand alone USB microphones; see [29]
for an example.) For the highest level of assurance that
the indicator cannot be bypassed, the indicator should be
controlled completely by hardware.

Second, as with any peripheral connected to the com-
puter, a vulnerability in the firmware running on the pe-
ripheral or the ability to reprogram the firmware enables
an attacker to leverage all of the capabilities of the periph-
eral. Section 2 contains numerous examples of this. The
virtual machine escape in Appendix A is another example
where an attacker leverages the USB connection and the
ability of the EZ-USB to mimic any USB device to the
host computer. Apple’s most recent FaceTime cameras
in its 2013 MacBook Air model eschews USB 2.0. In-
stead, the camera is connected to the host computer over
PCIe [35]. Vulnerabilities in the camera would potentially
enable an attacker to have DMA access to the host sys-
tem. This is a significantly stronger capability than USB
access.

8.1 Secure indicators
Laptop cameras are typically constructed by pair-
ing a CMOS image-sensor-on-a-chip (e.g., the Mi-

8In fact, iSightDefender worked so well that one author spent more
than an hour attempting to diagnose (nonexistent) problems with iSeeYou
before noticing the tell-tale lines in the system log indicating that iSight-
Defender had been loaded by a computer restart and it was blocking
reprogramming requests.

9https://github.com/stevecheckoway/
iSightDefender
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cron MT9V112 found in the iSight or the Toshiba
TCM8230MB(A)) with a separate microcontroller that
handles communication with the host computer (e.g., the
EZ-USB FX2LP found in the older MacBooks or the
Vimicro VC0358 [61] found in more recent MacBook
Pros [28]. There are, of course, many possible combi-
nations of image sensors and microcontrollers one could
use.

Image-sensors-on-a-chip tend to have a number of com-
mon features that can be used to build a secure indicator.

1. Separate power connection for CMOS sensor itself.
For example, VAAPIX on the MT9V112 powers
its pixel array and PVDD on the TCM8230MB(A)
powers its photo diode. A GPIO pin on the micro-
controller can be connected to both the LED driver
circuit and the CMOS sensor power supply circuit.
Whenever images are to be captured, the microcon-
troller sets its GPIO pin appropriately, power is sup-
plied to the sensor and the LED turns on.

2. #RESET pins. The LED driver circuit can be con-
nected to the #RESET pin and a GPIO pin on the
microcontroller. The microcontroller would hold the
image sensor in reset whenever it was not captur-
ing images. Compared to the power connection for
CMOS sensor, holding the entire sensor-on-a-chip
in reset means that before images could be captured,
the sensor would need to be reconfigured. Recon-
figuring typically means sending a few dozen bytes
over an I2C or SPI bus. This introduces a slight
delay.

3. Output clocks and synchronization signals. Image
sensors typically latch outputs on one edge of an
output clock signal and image consumers are ex-
pected to read the data on the other edge of the
clock. In addition, there are signals used to indicate
which part of the image the latched data represents.
For example, the MT9V112 has FRAME_VALID
and LINE_VALID signals indicating when it’s out-
putting a frame or a line within the frame, respec-
tively, whereas the TCM8230MB(A) has VD and HD
for vertical and horizontal synchronization. These
pins can also be used to control the LED by adding
some simple hardware that drives the LED if it has
seen one of these signals change in the past few
milliseconds.

Depending on the specifics of the image sensor
output signal, a retriggerable, monostable multivi-
brator can be used to drive the LED as long as its
input changes sufficiently often. The multivibrator’s
output pulse width needs to be set appropriately such
that it is triggered frequently enough to continuously
drive the LED while images are being recorded.

Some care must be taken when using these output
signals. The exact meanings of the signals can fre-

quently be changed by configuring the sensor. This
is analogous to the situation with the iSight where
we changed the meaning of the STANDBY signal.

An all-in-one design where the image sensor is inte-
grated with the microcontroller which communicates to
the host computer is likely to have fewer options for a
secure design. A dedicated output pin which could drive
an indicator LED would suffice. However, hardware de-
signers are typically loathe to dedicate pins to specific
functions, instead a variety of functions tend to be multi-
plexed over a single pin.

It is likely that, even in this case, there would be a
separate power connection for the CMOS sensor. As with
the two-chip design above, the LED driver circuit and a
power supply circuit could be driven by a GPIO.

8.2 Secure firmware
Although using one of the secure indicator designs de-
scribed above will ensure the LED will turn on when
the camera turns on, it does nothing to protect against
reprogramming attacks.

For this, we make four concrete recommendations
which, taken together, can secure the firmware on the
camera. These apply more generally to any peripheral or
embedded system connected to a host computer.

1. Store the firmware in nonvolatile storage on the cam-
era module. Most commercial off-the-self (COTS)
microcontrollers contain some amount of nonvolatile
storage, such as flash memory, to hold firmware.10

By programming the firmware at the factory, one
avoids the possibility that the legitimate firmware
will be replaced by an attacker on the host system
before being downloaded to the microcontroller.

Depending on the specific requirements of the
system, the factory programming could be the com-
plete firmware or a secure loader designed to load
cryptographically signed firmware from the host (see
below).

2. Use a microcontroller which can block unwanted
firmware reprogramming attempts. It is essential that
trusted code running on the microcontroller is able
to block reprogramming attempts for illegitimate
firmware.

3. Firmware updates, if necessary, should be crypto-
graphically signed and the signature verified before
applying the update. This requires both nonvolatile
storage for the code to verify the signature and a
microcontroller which can block reprogramming at-
tempts. Since microcontrollers are typically resource
constrained devices, choosing an appropriate signa-
ture scheme which can be implemented within the

10Microcontrollers without nonvolatile storage can be paired with
external nonvolatile storage, such as flash or an EEPROM, to the same
effect.
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constraints is important. Scheme selection is outside
the scope of this paper but we note that recent micro-
controllers have started to contain specialized crypto
instructions which can reduce code size and increase
efficiency. For example, Rohde et al. [53] use spe-
cialized AES instructions in some Atmel ATxmega
microcontrollers to implement the Merkle signature
scheme.

4. Require root/administrator privileges to send repro-
gramming requests. Strictly as a matter of defense
in depth, software running on the host system should
restrict reprogramming attempts. Thus, even if the
hardware and firmware defenses prove inadequate,
this added layer of protection can still defend against
some attacks.

Adding this sort of restriction typically involves a
device-specific kernel module (our iSightDefender
is an example). This may be more difficult for plug
and play devices expected to conform to standard
protocols and interact with generic drivers such as
USB video class (UVC) or USB human interface
device (HID) class devices.

The inability of the EZ-USB to block reprogramming
attempts indicates that this widely-used microcontroller
is inappropriate for use in any system where security is a
consideration.

Secure physical user interface Orthogonal to secure
indicators and secure software is a secure physical user
interface. Most webcams in laptops are controlled by
software: Software tells the camera when to power up,
when to capture video, and when to power down. A
simple solution to the problem is to provide a physical
switch similar to the switches found on laptop network
adapters which controls power to the camera. A second
simple solution is to provide a lens cover which the user
must physically move aside to use the camera. This would
be similar in spirit to the original external iSight and
similar in form to the amusingly named iPatch [58].

9 Discussion
Although some webcams, such as the Logitech QuickCam
Pro 9000, come with an explicit “LED control” that can
disable the LED [64], such controls are not the norm and,
in fact, are a very bad idea from both a security and a
privacy stand point. Giving the user the ability to disable
a privacy feature is tantamount to giving malware the
same capability.

This work concerns the technical challenge of hard-
ware exploitation; however, we would be remiss if we
did not discuss the (frequently unpleasant) real-world
consequences of vulnerabilities in privacy technology.

A particularly unsavory element of the hacker culture,
“ratters,” install malware bundled with remote adminis-

tration tools (RATs) on victims’ computers. There are
several popular RATs, including Blackshades and Dark-
Comet, which come with a variety of features such as
keyloggers, the ability to install additional malware, and
the ability to record video and sound using the webcam.
Rats are often installed with the goal of spying on women.

RATs and the ratters who use them have recently come
under public scrutiny after a recent Miss Teen USA’s
webcam was used by ratter Jared Abrahams to capture
her naked images without her knowledge [15]. Abrahams
arrest and guilty plea came on the heels of an ars technica
exposé on ratters [1].

A commonly asked question on forums devoted to rat-
ting, such as the Hack Forums “Remote Administrator
Tools” forum, is how can one disable the webcam’s LED.
In one representative thread, forum user “Phisher Cat”
asks

So as all of you know, newer laptops have
a light when a laptop webcam turns on, and so
this scares the slave.

Is it theoretically possible for a RAT to dis-
able this light? [47]

disturbingly referring to his victim as “the slave,” as is
common in this subcommunity. The first response by
“Jabaar” notes that “[p]eople have been trying to figure
this out for a very long time. The light won’t be able to
be disabled as it is built into the hardware.” Others agree:
“Capital Steez” writes that there is “no way to disable it,”
and “FBITM” concurs “there [i]s no way to do” it. Still
others suggest using social engineering in an attempt to
convince the victim that the LED is normal, for example,
“Orochimaru” writes, “You can’t physically turn it off but
you can use social engineering to fool them. Maybe send
an error or warning msgbox that says ‘Camera is now
updating, please do not disturb’ or something.” There are
many such threads on Hack Forums alone, all expressing
similar sentiments: disabling LEDs is a capability the
ratters really want to have but do not think is possible.

Unfortunately, the implications of surreptitiously cap-
turing video do not end with privacy violations like law
enforcement, school officials, and ratters spying on peo-
ple. As part of the general trend of growing frustration
with passwords as an authentication mechanism, some
companies are moving to biometric identification; in
particular, using facial recognition on video taken with
webcams. For example, BioID is software-as-a-service
which provides biometric identification to online service
providers using a webcam [8]. Luxand’s FaceSDK is
a cross-platform software development kit that uses the
webcam to identify the user [34].

In principle, this sort of facial recognition is trivially
defeated by providing the expected picture or video to
the software performing the authentication. Malware that
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can capture video of the victim can replay that video to
authenticate to the given service. This is not a new attack.
The Android Face Unlock system was defeated shortly
after being released by holding a picture of the face in
front of the camera [9]. Duc and Minh [16] describes
weaknesses of several facial recognition authentication
systems in the presence of pictures. By disabling the
indicator LED before capturing video, the victims have no
way of knowing that their accounts may be compromised.

Although the ability to disable the LED can lead to
serious privacy and security problems, there are at least
two legitimate use cases. The first is that some people
really do not want the LED on while they are recording.
We do not find this to be a compelling use as the benefit
does not seem to outweigh the potential cost; however,
others may value this more than we do.

The second use case is significantly more compelling:
laptop recovery. For example, the OS X version of
Adeona software captures pictures using the laptop’s in-
ternal iSight to aid in recovery of a laptop that has been
stolen by taking a picture of the thief [51, 52]. The LAN-
rev software used in the Lower Merion School District
incident discussed in the introduction had a similar “Theft
Track” feature which is how the school officials were able
to obtain pictures of students. For this use, one does not
want the thief to know he is being observed.

10 Responsible disclosure
The authors followed responsible disclosure practices by
disclosing the LED disabling vulnerability to Apple prod-
uct security team on July 16, 2013 and the virtual machine
escape on August 1, 2013. The disclosures included the
source code for iSeeYou and the virtual machine escape
as well as directions for mounting both attacks. Apple
employees followed up several times but did not inform
us of any possible mitigation plans. The iSightDefender
code was also provided to Apple and is now publicly
available.11

11 Conclusions and future work
Engineering details of privacy technologies can have real-
world consequences. As discussed in Sections 1 and 9,
a computer user today potentially faces a variety of ad-
versaries — from law enforcement and school officials to
criminals — who want to capture images or video clandes-
tinely. Currently, the only technological barrier standing
in their way is the camera-on indicator LED. We have
shown that, at least in some cases, the barrier can be
overcome.

In particular, we have shown that being able to repro-
gram the iSight from user space is a powerful capability.
Coupled with the hardware design flaw that allows the

11See supra note 9.

indicator LED hardware interlocks to be bypassed, mal-
ware is able to covertly capture video, either for spying
purposes or as part of a broader scheme to break facial
recognition authentication. Although the iSightDefender
defense described in Section 7 raises the barrier for mal-
ware, including RATs, to take control of the camera with-
out being detected by requiring root privileges, the correct
way to prevent disabling the LED is a hardware solution.

In this paper, we have examined only a single genera-
tion of webcams produced by a single manufacturer. In
future work, we plan to expand the scope of our inves-
tigation to include newer Apple webcams (such as their
most recent high-definition FaceTime cameras) as well as
webcams installed in other popular laptop brands.

The virtual machine escape described in Appendix A
demonstrates the danger that reprogrammable peripheral
devices such as keyboards and mice pose. We plan to
undertake a much broader examination of these devices
in an attempt to understand the security implications of
connecting one device to a computer which can, under at-
tacker control, pretend to be a wide range of devices. One
particularly promising direction is to study how drivers
react to malformed or malicious responses from devices.
In the worst case, a user space program could reprogram
a peripheral device which in turn exploits a poorly written
driver to inject code into the kernel.
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A Virtual machine escape
The reprogramability of the iSight firmware can be ex-
ploited to effect a virtual machine escape whereby mal-
ware running in a guest operating system is able to escape
the confines of the virtual machine and influence the host
operating system.

One method is to reprogram the iSight from inside the
virtual machine to act as a USB Human Interface Device
(HID) such as a mouse or keyboard. Once the iSight
reenumerates, it would send mouse movements and clicks
or key presses which the host operating system would
then interpret as actions from the user.

To demonstrate the feasibility of a virtual machine es-
cape from a VirtualBox virtual machine, we implemented
a USB HID keyboard which, once loaded, performs the
following actions in order:

1. send a “host key” press;
2. send command-space to open Spotlight;
3. send the key presses for “Terminal.app” one at a

time;
4. wait a few seconds, send a return key press, and wait

a few more seconds for the Terminal to open;
5. send the key presses for a shell command followed

by a return key press;
6. disconnect from the USB bus and modify its USB

device descriptor to use the product ID 0x8300—
the PID for the iSight in its unprogrammed state; and

7. reenumerate.
The VirtualBox host key, which defaults to the left com-

mand key on a Mac host, releases keyboard ownership,
causing the rest of the key presses to go to the host operat-
ing system rather than to the guest operating system [45,
Chapter 1].

Figure 4 shows an iSight that has been reprogrammed
from inside a VirtualBox virtual machine sending key
presses to Spotlight, instructing it to open Terminal.app.

When a new keyboard is first plugged into the com-
puter, the Keyboard Setup Assistant asks the user to press
several keys in order to determine the keyboard layout.
This behavior appears to be controlled by the vendor ID,
product ID, and device release number. By using the ap-
propriate values for an Apple USB keyboard, the assistant

15
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Figure 4: Virtual machine escape. The iSight has been reprogrammed to act as a USB keyboard from inside a VirtualBox
virtual machine and it is sending key presses to the host operating system. It is in the middle of entering “Terminal.app” into
Spotlight.

does not appear and there is no visual indication that the
operating system believes a new keyboard has connected.

The shell command entered into the Terminal is uncon-
strained and could, for example, use curl to download
arbitrary, new code and run it.

After the iSight has finished typing commands, it reenu-
merates as an unprogrammed iSight which causes the
AppleUSBVideoSupport driver to reprogram it with the
legitimate iSight firmware, removing evidence that the
iSight was the infection vector.

Although we use the iSight to escape from the virtual
machine, in theory, any EZ-USB device which is accessi-
ble from inside the virtual machine can be reprogrammed
to behave as a HID keyboard.

The one major limitation is that the USB device must be
connected to virtual machine before the attack is possible.
By default, virtual machine monitors do not provide this
connection for most devices and thus malware would need
to coerce the user into establishing the connection.

Even with the device connected to the virtual machine,
there is no feedback to the firmware that the attack is
proceeding as planned. All it can do is send key presses

in response the USB polling. If the user is sitting in front
of the computer, the key presses sent by the iSight may
be apparent and the user can interfere by performing an
action such as typing or clicking the mouse. One way
to partially compensate is to decrease the USB polling
interval by changing the USB endpoint descriptors in the
firmware allowing the iSight to send key presses more
quickly.

Each operating system has its own policy which gov-
erns a process’s ability to send USB device requests. On
Linux, this is controlled by udev. In Figure 4, we used
sudo inside the virtual machine to bypass the access con-
trols of the guest operating system. Alternatively, the
appropriate permissions could be granted to the user. One
of these steps is required even though the host operating
system, OS X, imposes no restrictions on the use of USB
device requests. Since each guest operating system con-
trols access to the USB device once it has been connected
to the virtual machine, to perform an escape, malware
must first acquire sufficient privileges in the guest op-
erating system to reprogram the camera — a potentially
nontrivial feat.
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Abstract

In the attempt to bring modern broadband Internet fea-
tures to traditional broadcast television, the Digital Video
Broadcasting (DVB) consortium introduced a specifi-
cation called Hybrid Broadcast-Broadband Television
(HbbTV), which allows broadcast streams to include em-
bedded HTML content which is rendered by the televi-
sion. This system is already in very wide deployment
in Europe, and has recently been adopted as part of the
American digital television standard.

Our analyses of the specifications, and of real systems
implementing them, show that the broadband and broad-
cast systems are combined insecurely. This enables a
large-scale exploitation technique with a localized geo-
graphical footprint based on radio frequency (RF) injec-
tion, which requires a minimal budget and infrastructure
and is remarkably difficult to detect. Despite our respon-
sible disclosure to the standards body, our attack was
viewed as too expensive and with limited pay-off to the
attackers.

In this paper, we present the attack methodology and
a number of follow-on exploitation techniques that pro-
vide significant flexibility to attackers. Furthermore, we
demonstrate that the technical complexity and required
budget are low, making this attack practical and realis-
tic, especially in areas with high population density – in a
dense urban area, an attacker with a budget of about $450
can target more than 20,000 devices in a single attack. A
unique aspect of this attack is that, in contrast to most In-
ternet of Things/Cyber-Physical System threat scenarios
where the attack comes from the data network side and

affects the physical world, our attack uses the physical
broadcast network to attack the data network.

1 Introduction
The battle for the living room is in full swing. After being
used for decades as purely passive terminals, our televi-
sion sets have become the subject of intense, competitive
attention. Technology companies wish to use the Internet
to create a viewing experience which is more engaging,
interactive, and personalized, and in turn maximize their
ad revenue by offering advertising content which is better
targeted at the user. As the result of this trend, most US
and European households with broadband Internet access
now have at least one television set which is also con-
nected to the Internet [37, 27], either directly or through a
set-top box or console. In technical terms, a device which
has both a broadcast TV connection and a broadband In-
ternet connection is called a hybrid terminal. The spec-
ification that defines how to create and interact with “hy-
brid content” (which combines both broadcast and broad-
band elements) is called Hybrid Broadcast-Broadband
Television, or HbbTV.

At its core, HbbTV combines broadcast streams with
web technologies. The broadcast channel, augmented
with the notion of separate digital streams, allows the
transmission of distinct yet intertwined types of content
that enable rich-interaction experience to the user. How-
ever, this enhanced interaction introduces new vulnerabil-
ities to what was until now a conceptually simple network
(TV broadcasting) and media-presentation device.

This paper examines the security impact of emergent
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properties at the intersection of digital video broadcast-
ing and web technologies. The work presented here is
based both on analysis of the HbbTV standard and on
experimentation with actual DVB hardware. The attacks
were crafted using low-cost hardware devices using open-
source software, and they are extremely easy to replicate.

While the impact of many of these attacks is exacer-
bated by poor implementation choices, for most attacks
the core of the problem lies with the overall architecture,
as defined in the specification itself. Thus, our findings
are significantly broader than the specific devices that we
used in our analysis; indeed, any future device that fol-
lows these specifications will contain these same vulner-
abilities. Exploiting these vulnerabilities, an attacker can
cause many thousands of devices to interact with any web-
site, even using any credentials stored in the TV sets for
accessing services such as social networks, webmail, or
even e-commerce sites. This capability can be leveraged
to perform “traditional” attack activities: perform click-
fraud, insert comment or voting spam, conduct reconnais-
sance (within each home network or against a remote tar-
get), launch local or remote denial of service attacks, and
compromise other devices within the home network or
even elsewhere. Beyond these, the attacker can also con-
trol the content displayed on the TV, to craft phishing and
other social engineering attacks that would be extremely
convincing, especially for TV viewers who are educated
to (and have no reason not to) trust their screens. Finally,
the attacker can use the broadcast medium to effectively
distribute exploits that completely take over the TV set’s
hardware. Most of these attacks require no user knowl-
edge or consent – the victims are only required to keep
watching their televisions. The unique physical charac-
teristics of the broadcast TV medium allow these attacks
to be easily amplified to target tens of thousands of users,
while remaining completely undetectable. Remarkably,
the attacker does not even require a source IP address.

Today’s smart TVs are already very complex devices
which include multiple sensors such as cameras and mi-
crophones and store considerable amounts of personal
data. Equipment manufacturers are busy adding more
hardware and software capabilities to these devices, with
the aim of turning them into the center of the user’s dig-
ital life. Obviously, as smart TVs become more capable,
and as users use them for more sensitive applications, the
impact of the attacks described here will only grow.

One interesting, perhaps unique aspect of the prob-
lem space we are examining here is the reversal of at-
tack source and destination domains: in typical attacks
against Internet-connected physical systems, large-scale
device compromise through the data network can lead to
physical exploitation with a large (perhaps global) geo-
graphical footprint. With HbbTV, a physical attack with
a relatively large geographical footprint can lead to large-
scale data network compromise, at least in areas with high
population density. The essence of the problem we ad-
dress lies in that the hybrid TV now connects the broad-
cast domain, which has no authentication or protection
infrastructure, to the broadband Internet domain. This al-
lows the attacker to craft a set of attacks which uniquely
do not attack the TV itself, but instead attack through
the TV.

1.1 Disclosure and response
Our work addresses a security risk in a specification
which is already in very wide use in Europe, and is on
the verge of expanding to the US and to the rest of the
world. We thus made an effort to responsibly disclose
our work to the relevant standards bodies. In December
2013, we provided a description of our RF-based attack,
together with a video recording of an attack in progress,
to the HbbTV Technical Group. In January 2014 we were
informed that the HbbTV Technical Group discussed our
disclosure, but did not consider the impact or severity of
these attacks sufficient to merit changes to the standard.
There were two main criticisms raised by the HbbTV
Technical Group. The first criticism was that it would be
very difficult for the attacker to reach a large number of
systems; the second was that, even when an attack is car-
ried out, a Smart TV has a very limited attack surface, so
attacks would not be cost-effective. We explicitly struc-
tured this paper to address both of these criticisms – we
quantitively demonstrate how a low cost attack can reach
thousands of systems, and we show how attacks can cause
a considerable amount of damage and provide a real finan-
cial gain for the attacker.

Document Structure: The rest of the document is ar-
ranged in the following manner: Section 2 provides a
high-level overview of digital video broadcasting. In Sec-
tion 3, we describe the fundamental weaknesses of the
protocol which enable our attack and propose an attack
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setup designed to exploit them. Next, in Section 4 we
describe a series of possible attacks based on these weak-
nesses. We continue in Section 5, where we quantitatively
analyze the impact potential of our attack, based on the
power and propagation characteristics of the attack setup
and on actual demographic information. In Section 6 we
experimentally verify several of our proposed attacks. In
Section 7 we analyze the financial impact our attacks and
evaluate several possible countermeasures. Finally, we
conclude in Section 8.

2 Fundamentals
The vision of an Internet-powered living room brings to
mind products such as on-demand video streaming or
cloud-delivered gaming. However, the masters of the liv-
ing room are still the incumbent operators of existing tele-
vision broadcast networks, who broadcast their content to
billions of viewers worldwide. In order to compete with
the new generation of entertainment content, the operators
of these broadcast networks are also looking for ways to
add Internet-based functionality to their traditional con-
tent. For example, a broadcast television channel might
use Internet functionality to ask its viewers to participate
in an online poll, or to vote for a candidate in a game
show. The broadcast channel might also invite the viewer
to learn more about an advertised product using interac-
tive web content, or even replace regular broadcast ad-
vertisements with custom-delivered Internet ads person-
alized to the particular user. In this form of content deliv-
ery enhances traditional broadcast content with an interac-
tive HTML overlay, rendered by the TV together with the
normal broadcasted channel. This content is commonly
called “Red Button Content”, since pressing the red but-
ton on the TV remote is (by convention) the standard way
of interacting with it.

The specification defining this behavior is called Hy-
brid Broadcast-Broadband Television, or HbbTV, and it
is maintained by the European standards body ETSI [10].
The current generation of the specification, version 1.2.1,
is enjoying very rapid adoption and is in active deploy-
ment or in advanced stages of testing in most of Eu-
rope. In December 2013, the Advanced Television Sys-
tems Committee (ATSC), which defines the digital video
standards in the US, Canada, South Korea and several

other countries, published a candidate standard for hybrid
TV in America [6]. This candidate standard shares much
of its structure with the European HbbTV standard, and
is specifically equivalent to the European standard with
respect to the attacks described in this paper.

HbbTV is designed to work on top of a standard Digi-
tal Video Broadcasting (DVB) system. While DVB can
be delivered over cable, satellite or standard terrestrial
signal, each with its unique radio frequency (RF) mod-
ulation and transmission scheme, the underlying digital
stream is essentially the same for all delivery methods.
This stream takes the form of an MPEG-2 Transport
Stream [23], which multiplexes together multiple data
streams named MPEG-2 Elementary Streams. Each el-
ementary stream carries an individual element of a tele-
vision channel, such as video, audio or subtitles. Special
metadata streams, which the specification refers to as in-
formation tables, are then used to group together multi-
ple elementary streams into an individual TV channel and
provide additional information about the channel such as
its name, its language and the list of current and upcom-
ing programs. A single radio physical frequency may thus
carry multiple channels.

2.1 Mixing broadcast and broadband
The HbbTV specification extends standard DVB by in-
troducing additional metadata formats which mix broad-
band Internet content into the digital television channel.
While the specification proposes multiple ways in which
web content can be used in a TV, this article will focus on
the most common form of content, autostart broadcast-
dependent applications. This form of content starts run-
ning automatically when the user tunes into a particular
TV channel, and terminates when the user moves to an-
other channel. To create an autostart broadcast-dependent
application, the broadcaster includes in the MPEG trans-
port stream an additional application information ta-
ble (AIT) describing the broadband-based application,
then references this table in the program mapping ta-
ble (PMT) describing a certain TV channel. The HbbTV
specification defines two possible ways of providing the
application’s actual web content (i.e., HTML pages, im-
ages, and scripts). One way is to have the AIT include
a URL that points to a web server hosting the applica-
tion. Another possible way is to create an additional data
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stream which includes the HbbTV application’s HTML
files, deliver this additional elementary stream over the
broadcast transport, and finally have the AIT point to
this data stream. The way in which the latter embedding
method was realized leads to a serious security problem,
as we discuss later.

Regardless of the delivery method, Internet content is
rendered by the TV using a specially-enhanced web run-
time, described in the HbbTV standard as a Data Execu-
tion Environment (DAE) [14]. In addition to the docu-
ment object model (DOM) elements available to normal
HTML environments such as XmlHttpRequest, the DAE
exposes additional DOM elements which are specific to
the television world (for example, information about the
running program and the current channel). The DAE also
allows programatic access to the live TV broadcast win-
dow. Thus, it is possible for an HbbTV application to ren-
der content on top of the TV broadcast, resize the broad-
cast window or even completely replace the broadcasted
content with its own content. On the other extreme, it
is also possible for an HbbTV application to run without
displaying any indication to the user. Practically speak-
ing, most “benign” applications typically display a small
overlay inviting the user to press the Red Button, then dis-
appear to run transparently in the background.

2.2 Security in HbbTV
Smart TVs are built with some consideration of security,
since they are often used to display content protected by
digital rights management (DRM) schemes. Indeed, the
HbbTV specification dedicates an entire chapter to se-
curity, but the discussion is mainly focused on protect-
ing DRM content and not on other aspects of security.
To that effect, the HbbTV specification describes trusted
and untrusted applications, and restricts “sensitive func-
tions of the terminal” only to trusted applications. Ex-
amples of such “sensitive functions” include download-
ing and playing back DRM-protected downloaded con-
tent (actions which may incur a cost on the viewer), as
well as configuring and activating the terminal’s sched-
uled recording (time-shifting) capabilities.

The attacks described in this work make use of capabil-
ities which are available both to trusted and untrusted ap-
plications. None of the attacks described in this work are
restricted in any way by HbbTV’s security mechanisms.

Furthermore, since the specification does not strictly de-
fine how an application can become trusted, it might be
possible to inject an attack into a trusted application with-
out changing its trusted status.

3 Attack Characterization
Several unique properties of HbbTV make it potentially
prone to attack. These security weaknesses can all be con-
sidered emergent properties, which exist on the boundary
between the broadband and broadcast systems, and stem
from the different expectations and guarantees which ex-
ist in each system.

First and foremost, HbbTV applies a very problematic
security model to web content embedded into the broad-
cast data stream. This is, in our opinion, the most serious
security flaw in HbbTV, and one which has not been dis-
cussed in any previous work. One of the cornerstones of
modern web security is the Same-Origin Policy [1], which
essentially serves to isolate content retrieved from differ-
ent origins and prevent content from one web site from
interfering with the operation of another web site. Under
the same origin policy, each piece of web content is pro-
vided with an origin consisting of a tuple of scheme, host
and port, and two resources are limited in their communi-
cations unless they share the same origin.

When an HbbTV application is downloaded from the
Internet via URL, the origin of the web content is clearly
defined by the URL, appropriately isolating HbbTV ap-
plications to their own domain and preventing them from
interfering with Internet at large. However, when the
content is embedded in the broadcast data stream it is
not linked to any web server and, as such, has no im-
plicitly defined origin. The HbbTV specification sug-
gests [10, S 6.3] that in this case the broadcast stream
should explicitly define its own web origin by setting the
simple_application_boundary_descriptor prop-
erty in the AIT to any desired domain name.

The security implications of this design decision are
staggering. Allowing the broadcast provider control over
the purported origin of the embedded web content effec-
tively lets a malicious broadcaster inject any script of his
choice into any website of his choice.

An illustrative example of such an attack is pre-
sented in Figure 1. In this attack, which we dis-
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Figure 1: A practical attack based on a malicious HbbTV
application. In this attack the malicious player forces mul-
tiple infected TVs to interact with a rating site and leave a
favourable review for his restaurant.

cuss more extensively in Subsection 4.2, the ad-
versary delivers a malicious Javascript payload
over HbbTV, and furthermore indicates by the
simple_application_boundary_descriptor prop-
erty in the AIT that this payload’s web origin is a rating
site. Next, the attacker has the TV render a simple HTML
page which embeds the real rating site’s home page
(downloaded from the broadband Internet), as well as this
script, in a zero-sized frame. The malicious script now
has full programmatic access to the content delivered by
the rating site, since it is running within the same web
origin. To make matters worse, if the user has previously
logged on to the site, this attack allows the attacker
to fully interact with the website on the user’s behalf.
While the innocent viewers enjoy their normal television
content, the malicious application causes their infected
TVs to interact with the rating site over the Internet to
leave favourable reviews for the attacker’s restaurant or
to harrass his competitors.

3.1 General Principle of Operation
We now describe how an attacker can use the vulnera-
bility described above to launch a series of large-scale
attacks. Our setup targets digital terrestrial television
(DTT), which is the most common way in which televi-
sion is received in many parts of the world [11]. In Sub-
section 7.2 we discuss how this attack can also be applied
to other delivery methods such as cable or satellite.

Our attack works by creating a television broadcast
which includes, together with the normal audio and video
streams, a malicious HbbTV application. To maximize

PID 666: Evil AIT

Attack Injector

PID 200: Sports Video

PID 201: Sports English Audio

PID 203: News Video

PID 204: News Audio

PID 100: Sports Program PMT

PID 202: Sports Spanish Audio

PID 101: News Program PMT

PID 204: News Subtitles

PID 0: Program Association Table

PID 200: Sports Video

PID 201: Sports English Audio

PID 203: News Video

PID 204: News Audio

PID 100: Sports Program PMT

PID 202: Sports Spanish Audio

PID 101: Infected News Program PMT

PID 204: News Subtitles

PID 0: Program Association Table

PID 667: Evil HTML Payload

Figure 2: Injecting a malicious appication into a DVB
stream. Note that only the program mapping table is mod-
ified, while the audio and video content is left untouched.

the effectiveness of our attack, we would like this as many
users as possible to tune into this broadcast. The best way
to do so is to carry out a form of man-in-the-middle at-
tack, in which the attacker transparently modifies a pop-
ular TV channel to include a malicious payload.

Our attack module follows the general design illus-
trated in Figure 2. Following the notation of Subsec-
tion 2.1, the attacker adds into the intercepted stream a
new Application Information Table, as well as a data
stream containing a malicious HbbTV application,
which the new AIT points to. The attacker then modifies
one or more existing Program Mapping Tables to ref-
erence the new malicious application, while leaving the
audio and video contents of the channel unmodified. It is
important to note that the attacker does not have any form
of control or cooperation with the radio tower itself.

The physical attack setup required by the attacker is
illustrated in Figure 3. The attacker’s uses a receive an-
tenna connected to a DVB tuner to intercept a legitimate
television signal, modifies the content of the DVB stream
to add its malicious payload, and finally uses a DVB mod-
ulator connected through a power amplifier to a trans-
mit antenna to re-transmit the modified signal to the TV
under attack using the same frequency as the original
broadcast. The TV under attack is, in turn, connected to
the Internet.

Our attack works because in a certain geographic area
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Figure 3: Attack Setup

around the attacker the malicious modified signal will be
stronger than the original signal transmitted by the tower.
This will cause any televisions in the area to immediately
fall victim to the attacks described below. We note that
since in digital broadcasting multiple TV channels are
sent from the radio tower using the same radio frequency,
a single attack setup is capable of injecting attack code
into several channels simultaneously.

The characteristics and estimated cost of each of the
components in Figure 3 are presented below:

Receive antenna and DVB tuner – a USB-powered
DVB tuner and a short passive antenna can be purchased
online for about $15. The open-source VLC media player
[33] is capable of interfacing with many of these tuners
and sending the demodulated stream extracted from an
entire RF channel to a file or a network socket.

Content modification – the demodulated stream is
modified to contain a malicious application (either as a
URL, or as a full application delivered via data stream),
and the PMTs of all TV channels in the demodulated
stream are modified to auto-start this application as soon
as the user tunes into the channel. Since the video and
audio streams in the channel are forwarded without any
modification, this operation is not particularly computa-
tion intensive, and any low-cost computer with USB 2.0
support can be used for this purpose. A software suite
named Avalpa OpenCaster [8] provides a set of open-
source command-line tools which can be used to modify
a multiplexed DVB stream in real time.

DVB modulator – this hardware component takes a
multiplexed MPEG stream and converts it into an RF sig-
nal suitable for transmission. While these devices were
once massive and expensive, modern DVB modulators are
remarkably small and easy to use – a full-featured USB-

powered modulator which can interface with OpenCaster
can be purchased online for less than $200.

Power amplifier and transmit antenna – the attacker
needs to create a signal that is stronger than the original
TV tower’s signal and transmit it toward the target televi-
sions. An attacker with a higher transmit power can affect
more television sets, but a high-power setup is generally
less portable, giving the attacker a higher probability of
being detected and arrested. In Section 5 we formally
analyze the power requirements of the attacker and show
that, under the right conditions, a remarkably high amount
of television sets can be affected with a moderate-to-low
powered amplifier.

3.2 Additional Security Weaknesses

3.2.1 Attacks are untraceable

In traditional Internet-borne attacks, it is always assumed
that the attacker is himself present on the Internet before
he can deliver a malicious payload to his victims. The at-
tacker’s IP and DNS entries can then be used by intrusion
protection services and law enforcement agencies to pro-
tect against the attack as it occurs, and to trace and pros-
ecute its perpetrators after it has concluded. In contrast,
our attacker needs no such infrastructure to deliver its ma-
licious payload. It is surprisingly simple and inexpensive
to build a digital terrestrial television (DTT) transmitter
and use it to reach thousands of potential hosts. After the
attack concludes, the attacker leaves no trace of his activ-
ities in the form of IP or DNS transactions.

Operating an unlicensed TV transmitter is illegal in
many countries. Law enforcement agencies capture these
illegal transmitters by triangulation methods, which in-
volve sending multiple car-mounted receivers to the vicin-
ity of the attack, then using the differences in received sig-
nal strengths between receivers to locate the rogue trans-
mitter. A sensitive receiver can also “fingerprint” the
rogue transmitter’s RF envelope and help recognize it in
the future. While this defense mechanism can potentially
trace our radio attacker, mobile triangulation is a reactive
defense step, which requires a considerable expense of
time and resources from the defender’s side. Considering
that the attack we describe has a very limited geographi-
cal signature, operates for a very limited time (potentially
only a few minutes), and causes no visible adverse effects
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to the user, it is highly unlikely that the attacker will be
caught by these methods.

3.2.2 Attacks are invisible and unstoppable

HbbTV content is not required by standard or convention
to offer any visual indication that it is running. Depending
on the choice of the application creator, HbbTV content
can run invisibly in the background, side by side with the
broadcast content, or even take over part or all the user’s
entire screen. At one extreme, this makes it possible for
HbbTV applications to run completely in the background
without the knowledge or consent of the user. In [21] Her-
furt discovered that many German broadcasters are using
this functionality of HbbTV to invisibly track the view-
ing habits of users by periodically “phoning home” while
the TV is tuned to a particular channel. At the other ex-
treme, it is possible for an HbbTV application to take over
part or all of the user’s screen without his knowledge.
Herfurt used this functionality to demonstrate a proof-of-
concept application that replaces the news ticker of a Ger-
man news channel with headlines from a satire website.

Another related weakness is the weak control the user
has over the life-cycle of HbbTV applications. As de-
scribed in Subsection 2.1, an application can start running
automatically as soon as the user starts viewing a certain
channel. More troubling is the fact that, once an HbbTV
application has started running, there is no standard way
of stopping it, short of switching a channel, turning off
the television, or completely disabling HbbTV support.

4 Attacks
The attacks proposed in this Section are based upon our
analysis of the HbbTV standards, as well as upon personal
communications with the HbbTV technical group, who
have confirmed that our attacks are possible given the cur-
rent specification. Some of these attacks described below
can be applied even to perfectly secure Smart TV imple-
mentations with no known exploits; Other attacks allow
the attacker to transform local vulnerabilities on the Smart
TV into automatic, large-scale distributed exploits. With
the exception of the attack described in Subsection 4.5, all
of these attacks take place without the user’s knowledge or
consent, requiring the user to do nothing more than keep

his TV turned on and tuned to his favourite channel.

4.1 Distributed Denial of Service

To carry out this attack, the attacker creates a simple
Red Button application which repeatedly accesses a tar-
get website with high frequency, using a simple mech-
anism such as a zero-sized iframe element or through
repetitive calls to XmlHttpRequest. All TVs tuned to the
infected channel will immediately start running the appli-
cation, potentially overwhelming the target website. Due
to the design of the HbbTV specification, the owners of
TVs who are carrying out this attack have no knowledge
that they are participating in this attack, nor do they have
any way of stopping it.

This attack is the simplest abuse of the HbbTV proto-
col, and was also considered by [21], albeit in a different
attacker model. As scary as this attack sounds, we note in
Subsection 7.1 that there are far less expensive and risky
ways of DDoSing a website.

4.2 Unauthenticated Request Forgery

This attack is similar to the previous attack, but this time
the infected users do not blindly access the site under at-
tack, but instead attempt to interact with it in a mean-
ingful manner. For example, such an attack could skew
the results of an online poll or competition, “spam” a fo-
rum with comments to the point of unreadability, falsely
promote another website by “liking” or “upvoting” it, or
falsely obtain ad revenue by programmatically clicking
on an ad (a.k.a. “click fraud”). This attack venue is espe-
cially painful for the designers of HbbTV, since the entire
point of the specification is to allow this type of interac-
tion between TV viewers and websites.

This attack is a variant of traditional cross-site request
forgery (CSRF) attacks, which are well-known to the se-
curity community [2]. However, one unique advantage of
the HbbTV attack vector is that the attack is not “blind”
– due to the unique way same-origin is implemented for
HbbTV, the attack script can fully interact with the static
and dynamic content of the page with the full permis-
sions of a human user accessing the webpage. This de-
feats many of the state-of-the-art defenses against CSRF,
which operate by embedding session and authentication
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tokens in locations which are only accessible within the
same origin as the protected web page.

4.3 Authenticated Request Forgery
An interesting twist on the previous attack, this attack
assumes that the user has previously authenticated to a
certain website using another application on his Smart
TV, and that the TV now holds a cookie, an HTML5
local storage element, or any other authentication token
for this website1. When the infected application accesses
the website, it will now automatically do so with the full
credentials of the logged-in user, a fact which dramati-
cally increases the damage potential of the previous at-
tack. An infected application using this attack vector
can, for example, post links to malware to the legitimate
user’s friends over Twitter or Facebook, purchase DRM-
protected content whose royalties are pocketed by the at-
tacker, or call a premium number using a VoIP applica-
tion. As the usage scenarios of Smart TVs grow and
users begin using them for more applications such as e-
commerce and health, the damage potential of this attack
will grow rapidly.

4.4 Intranet Request Forgery
This attack makes use of the fact that the Smart TV is most
likely connected to a home wireless network shared with
other devices such as wireless routers, personal comput-
ers and printers. Instead of attacking the whole Internet,
the attacker instead mounts his attacks on those local in-
tranet devices. The most basic attack would be a port scan
to discover which devices are present on the home net-
work (this can assist in planning a burglary). If vulnerable
devices are discovered on the network, the attacker can
also try and exploit them using the Smart TV. For exam-
ple, the attacker can identify a vulnerable wireless router
and a Windows PC, then proceed to modify the DNS set-
tings of the router so that the PC is directed to a phishing
website when it attempts to connect to a banking website.
This attack, which again has been investigated in other

1While the smart TV platform we evaluated had two separate “web
runtimes” – one for the TV and one for the HbbTV stack – and thus kept
credentials isolated, this behavior was probably caused by engineering
concerns (two independent teams may have written the two runtimes,
with no time for integration) and is in no way required by the standard.

works such as [26], is particularly effective due to the way
same-origin is implemented on HbbTV. Remarkably, the
attacker’s code can freely interact with the device under
attack and observe the results of its interaction, without
requiring additional steps such as DNS rebinding.

4.5 Phishing/Social Engineering
As described in Subsection 3.2.2, HbbTV content is dis-
played on the user’s television without any warning or no-
tification, and the user cannot turn it off without turning
off the TV itself. HbbTV content can completely overlay
the user’s TV broadcast and can programmatically inter-
act with many of the buttons on the user’s remote control.
This direction, also investigated by Herfurt in [21], makes
HbbTV content a natural vector for attacks which mislead
the user into divulging sensitive information or otherwise
acting in a harmful manner.

For example, a malicious HbbTV payload can notify
the user that he must enter his credit card information to
view some restricted content, compel the user to change
the configuration of their network in a form that compro-
mises their security (for example, instruct the user to press
the WPS button on their wireless router, thus allowing a
malicious device to join the network), or even encourage
“real world” risky behavior, such as notifying the user that
a “cable technician” is due to visit their house at a certain
time and date, or that the TV needs to be “recalled” and
physically delivered to the attacker. This attack is differ-
ent than the other attacks described in this paper since it
requires user interaction and, as such, is more likely to be
detected or simply ignored. Obviously, the damage poten-
tial of this attack will increase in the future as more users
are trained to interact with their TVs for applications other
than passive content consumption.

4.6 Exploit Distribution
A modern smart TV is essentially a personal computer
with a very limited user interface, running a highly modi-
fied version of Linux or Android. Just like normal PCs,
security exploits are occasionally discovered in Smart
TVs – either in the vendor’s proprietary software, or in
the device’s various open-source underlying components.
Just like normal PCs, Smart TVs also have automatic soft-
ware update mechanisms which are generally successful
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in keeping the TVs running smoothly and securely. How-
ever, the vulnerability-to-patch cycle for these devices is
typically much longer than that of a desktop operating
system, due to the additional steps required by the equip-
ment vendor to implement, test and deploy security up-
dates for this nonstandard platform. Whenever an exploit
is discovered for a Smart TV platform, the combination
of HbbTV’s invisibility and undetectability make it a re-
markably efficient method of distributing this exploit and
compromising the TVs.

Assume, for example, that a Smart TV uses an open-
source image processing library as part of its code. As-
sume now that a patch is released to fix a vulnerability in
the upstream version of this component. While the equip-
ment vendor is busy porting, testing and deploying a patch
specifically tailored for the smart TV, an attacker can im-
mediately craft an exploit corresponding to this vulner-
ability, embed it in a malicious Red Button application,
then immediately deploy it to thousands of Smart TVs.

5 Scale Considerations
As stated in Subsection 1.1, one of the main criticisms
directed at our work was the claim that it is very dif-
ficult for the attacker to infect large numbers of televi-
sion sets. This Section quantitatively demonstrates how
a low-budget attacker can modify and then overwhelm a
TV tower’s transmissions in a limited geographical area.

We first determine the approximate area an attacker can
cover for a fixed transmit power. We assume that the at-
tack frequency is approximately 500MHz, correspond-
ing to the DVB-T UHF band. We assume that the un-
amplified signal exiting the attacker’s modulator has a sig-
nal level of 0 dBm, and that the attacker uses an omnidi-
rectional antenna which is in free space and on a level
plane with the targeted devices. Thus, the attacker’s out-
put power is equal to the gain of his power amplifier G.

We further assume that the radio tower’s original trans-
mission is received by all targeted devices with a signal
level T of -50 dBm, corresponding to a moderate to high
signal level (digital television receivers can function at
signal levels as low as -112 dBm, while the FCC defines
the “City Grade” signal level for digital television at -61
dBm [5]).

Our final assumption is that, when receiving two com-

peting DVB-T signals with the same frequency (a con-
dition technically referred to as co-channel interference),
the receiver will demodulate and display the stronger sig-
nal while ignoring the weaker signal. This assumption,
which does not hold for analog transmission systems, is
valid for DVB signals as long as the stronger signal over-
whelms the weaker signal by some minimal amount (the
International Telecommunications Union recommends in
[24, Table 15] a power difference of 6 to 8 dB between the
stronger station and the interfering weaker station, but a
practical attacker who is not neccessarily standards com-
pliant can get away with a much smaller margin).

The decay in decibels of a radio signal with frequency
f (in Hz) over a distance d (in meters) is described by the
Free Space Path Loss equation [30]:

FSPL = 20log10 (d)+20log10 ( f )−147.55

We require that the attacker’s signal will be more pow-
erful than the radio tower’s original signal:

G−FSPL > T

Assigning values to f and T we obtain that for a success-
ful attack

G−20log10 (d)−20log10
(
5 ·108)+147.55 >−50

Solving for d we obtain that

d < 10
G
20+1.18

Using this formula shows that with a 1 W (30 dBm) am-
plifier, whose cost is approximately $250, the attacker will
be able to cover a region with radius of 477 m, or an
area of 1.4 km2. With a more powerful 25 W (44 dBm)
amplifier, whose cost is approximately $1500, the attack
can cover a region with radius 2385 m, or an area of 35
km2. The attacker might have an incentive to use a lower-
powered amplifier to reduce his risk of being detected by
mobile triangulation methods (see Subsection 3.2.1).

Our next step was to demonstrate quantitatively that
there exist densely-populated urban areas in which popu-
lar digital TV stations are received with a sufficiently low
power level as to allow such an attack to be carried out.

Our analysis was based on the NASA SEDAC
Metropolitan Statistical Areas dataset [35], which records
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Figure 4: Attack potential – New York City. White stars
identify digital TV towers. Bulls-eyes identify locations
where an attack would be particularly effective.

demographic and socioeconomic data for 50 US cities,
with a spatial resolution of approximately 250 square
meters. We cross-correlated this dataset with the FCC
database of digital TV towers in the United States and
with station coverage maps supplied by TV Fool [13].
The TV Fool maps use 3D propagation modeling algo-
rithms, and consider transmitter power, terrain obstruc-
tions and Earth curvature. Our objective was to find
densely-populated areas in which a popular channel is re-
ceived with a power of between -50 and -61 dBm. As
a case study, we present our results for New York City
in Figure 4 (more maps will be available in the extended
version of this paper). The map shows the high-resolution
population density of New York City, with the location of
radio towers marked with white stars, and potential attack
spots marked with bulls-eyes. Flushing, Queens, with a
population density of 71,000 persons per km2, is one ex-
ample. There are 7 DTV stations with the desired charac-
teristics in this location, most notably the Home Shopping
Network. HSN can also be attacked in the Upper West
Side, with a population density of over 80,000 persons per
km2. In certain locations in the Inwood area, where the
population density is 50,000 persons per km2, the attacker
can infect 10 different stations, including CBS, NBC, Fox
and the Spanish language Telemundo.

There are several limitations to this attack. The attacker

obviously has to be physically present at the attacked lo-
cation, and to have a line of sight both to the transmit-
ter tower and to the antennas of the televisions under at-
tack. In an urban setting this condition can be realised
if the attack is carried out from the roof of an appropri-
ately located tall building. To reduce the attacker’s risk of
capture and thus increase the effectiveness of the attack,
the attacker can install the relay equipment on a remote
controlled-drone and fly it to an appropriate location, sim-
ilar to the work of [34].

The attacker would also need to prevent his receive
antenna from picking up his own signal. This can be
achieved by using a directional receive antenna directed
toward the radio tower, together with a directional trans-
mit antenna directed toward the TVs under attack, and fi-
nally locating the receiver setup in one of the transmit-
ter’s “dead zones”. Using a directional antenna setup will
change the shape, but not the general area, of the location
under attack.

6 Experimental Validation
To show the validity of our claims, we created a test setup
and experimentally reproduced a few of the attacks pro-
posed in this paper. Our attacks were carried out on a
modern Smart TV, manufactured in 2012 and running the
latest software version supplied by the vendor. Our DVB
demodulator was an OEM DVB-T stick based around the
highly popular Afatech AF9015 chipset. The broadcast
DVB stream was captured using VLC Player [33] run-
ning on Linux. Our DVB modulator was a DekTec DTU-
215 unit, which was connected via USB to a low-cost
laptop computer running Linux. For safety reasons our
test setup did not include a power amplifier and transmit-
ter antenna – instead, the DVB modulator was directly
connected to the TV’s antenna input through a 10 dB RF
attenuator. The signal sent to the TV included different
malicious HbbTV payloads created using the open-source
OpenCaster package [8], version 3.2.1, and were played
back to the TV using the DekTec StreamXpress software
utility.

Using our test setup, we were able to create HbbTV
applications which ran invisibly in the background, as
well as applications which completely took over the TV
screen. Using HbbTV, we were able to deploy the
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Browser Exploitation Framework (BeEF) Toolkit [7] on
the TV and use it to port scan the TV’s intranet, examine
the TV’s runtime environment and display fraudulent lo-
gin messages on the TV. We were able to crash the TV by
having it render a malformed image file – a precursor for
exploit distribution. Finally, we were able to craft a denial
of service attack on an external web server, which ran as
long as the user was tuned in to a particular channel. We
verified that we were able to access servers both on the
Internet at large and on the local intranet.

7 Discussion

7.1 Risk Assessment Analysis

Table 1 summarizes the attacks described in this paper and
assigns each one with a qualitative complexity and dam-
age potential. The justification for each qualitative com-
plexity and damage assessment grade is provided below.
In our analysis we assume the attack setup costs $450 in
fixed costs, and that each attack costs an additional $50
per hour in variable costs (including equipment running
costs and compensation for the risk taken by the attacker,
who has to be physically close to the attacked location).
We conservatively assume that the attack impacts 10,000
hosts – as we showed in Subsection 3.1, the attack can be
easily scaled by one or more orders of magnitude by using
a higher-powered amplifier.

The denial of service attack is the attack with the low-
est complexity, since it requires no research on the side
of the attacker, neither of the TV nor of the site under at-
tack. However, its damage potential is also low, especially
since it is not cost effective. As anecdotally shown in [3],
a DDoS attack involving more than 20,000 hosts costs ap-
proximately $5 per hour. However, it must be noted that
since the TV-based DDoS attack described here is local-
ized to a single area, it can overwhelm a single edge node
on a Content Distribution Network and thus deny service
to other users in the same physical area.

The unauthenticated request forgery attack (in which
an attacker uses HbbTV to vote in a poll, promote an ar-
ticle, or click an advertisement) also has low complexity,
since it only requires minimal reverse engineering of the
target web page. However, it has a higher damage po-
tential than the DDoS attack, since it is much easier to

monetise due to the possibility of click fraud [19]. Ac-
cording to Google’s official figures, the average cost per
click to advertisers in 2013 was $0.94, out of which 25%
goes to the fraudulent advertiser [22]. This means the at-
tacker can expect an income of around $2500 per attack
even if every compromised host clicks only a single ad.
In addition, since the interactive abilities abused by this
attack are the main selling points of HbbTV, this attack
has a wider area chilling effect of scaring advertisers and
limiting the adoption of HbbTV.

The authenticated request forgery attack has a higher
complexity than the previous two attacks, since it requires
the attacker to discover and exploit a situation in which
credentials are shared between the HbbTV runtime and
other applications running on the Smart TV. However, this
attack has a higher damage potential, since webmail and
social network accounts are easier to monetise – accord-
ing to [38] a verified Facebook account can retail for as
much as $1.50, giving the attacker a potential income of
$15,000 per attack. Once users begin using their Smart
TVs for additional activities such as shopping the impact
of this attack will only grow.

The intranet request forgery attack has medium com-
plexity, since it involves compromising and exploiting not
only the TV but also an intranet-connected device such as
a router or a printer. However, there are existing intranet
attacks which can be reused for this purpose. The damage
potential of this attack is understandably high, since it lets
the attacker compromise the user’s personal computer.

The phishing/social engineering attack may be tech-
nically easy to launch, but it has external factors which
make it more complex to carry out. First, the user’s co-
operation is required for this attack to succeed, raising the
chance that the attack is ignored or, in the worst case, re-
ported to law enforcement. In addition, the attack requires
the attacker to set up additional attack infrastructure (e.g.
a web server for collecting credentials), raising the risk of
capture. The damage potential of this attack, however, is
the highest of all attacks described here, since it risks the
user’s personal safety.

The exploit distribution attack may appear to be tech-
nically the most complex attack described here. How-
ever, since Smart TVs are commonly built using open-
source components, an aspiring attacker can use an ex-
ploit patched in the most recent version of the component
and not yet updated in the Smart TV. This attack has a
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Attack Type Complexity Damage Potential Overall Risk
Denial of Service Low Low Medium
Unauthenticated Request Forgery Low Medium High
Authenticated Request Forgery Medium High High
Intranet Request Forgery Medium High High
Phishing/Social Engineering High High Medium
Exploit Distribution Medium High High

Table 1: Risk assessment matrix of suggested attacks

high damage potential, since it results in total compro-
mise of the TV.

7.2 Attacking cable and satellite
The physical attack setup described in the previous sec-
tions assumed a digital terrestrial television (DTT) broad-
cast system. According to [11], this is the most com-
mon delivery method for digital television across Europe.
However, there are several areas of the world, most no-
tably the USA, where this form of delivery is less com-
mon than cable or satellite communications. While splic-
ing into cable connections or hijacking satellite signals is
more expensive and risky than transmitting a low-power
UHF signal, it might still be possible to attack such sys-
tems if they use microwave RF links for part of their
(non-broadcast) transmission networks. Setting up a re-
lay system which adds malicious applications to such a
relay link is possible using fundamentally the same tech-
nique as the one described in this paper, with the limita-
tion that the relay device must be physically located along
the line of sight of the microwave link. High-budget ad-
versaries such as crime syndicates or state players might
also like to directly attack cable or satellite distribution
centers to launch truly massive large scale attacks using
HbbTV, gaining control over hundreds of millions of con-
nected devices.

7.3 Countermeasures
As stated in Section 3.2, there are three main security
weaknesses in HbbTV: the fact that attacks are invisible
and unstoppable, the fact that the attacker cannot be de-
tected, and most significantly the problematic implemen-
tation of the same origin policy. This subsection proposes

several approaches which can be used to address these
weaknesses. Some of these defenses “break the standard”
and make existing use cases for HbbTV applications (such
as tracking cookies) impractical. Other defenses are less
disruptive and can be independently deployed by security-
minded equipment vendors and even marketed as differ-
entiating features of their TV sets.

7.3.1 Crowdsource detection of RF attacks

Acting alone, an individual television set can do little to
detect that its broadcast TV signal is suddenly coming
from a malicious source. However, multiple television
sets in the same area can aggregate their statuses, mak-
ing it possible to use this information for detecting radio-
based attacks. For example, if the Receive Signal Strength
Indication (RSSI) in a certain geographic area has rapidly
and suddenly changed, it might mean these TV sets are
now receiving a signal from the attacker and not from the
original radio tower. The RSSI information can even be
used as a form of triangulation, to help pinpoint the exact
location of the attacker and aid in his capture. Similarly,
if multiple television sets are tuned to the same broad-
cast frequency, but a certain subset is receiving a different
HbbTV application associated with this channel than the
other TVs, this can indicate that an attack is in progress. It
would be interesting to find a way of achieving this with-
out compromising the privacy of the viewers.

7.3.2 Tighten control over app life cycle

The attacks described here are especially effective since
they turn on automatically and without the knowledge of
the user, and have no standard way of being disabled.
The obvious way of addressing this limitation would be
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to guarantee the user’s informed consent before active
HTML content is rendered by the television. A good
analogue to this behavior be found in the WHATWG’s
recommended implementation of the HTML5 full-screen
API [39], which specifies that “User agents should ensure,
e.g. by means of an overlay, that the end user is aware
something is displayed fullscreen. User agents should
provide a means of exiting fullscreen that always works
and advertise this to the user.” In this spirit, the TV should
prompt the user to press the red button before rendering
any form of HbbTV content for the first time for a given
channel, then periodically remind the user that content
is running (for example by displaying a brief notification
overlay whenever the user switches back to the channel).
Users should also have a way of stopping HbbTV render-
ing for a particular channel.

This countermeasure is perhaps the most intuitive and
can be immediatly implemented by individual hardware
makers. Sadly, it was shown that users do not react pro-
ductively to warning messages which interfere with their
browsing (or TV watching) [36]. In addition, there are
already several established market players who will resist
any change to this behaviour, as they already use invisible
HbbTV applications for user tracking and analytics.

7.3.3 Prevent broadcast-delivered HTML content
from accessing the Internet

It is risky to allow unauthenticated broadcast content to
define its own web origin. It seems tempting, then, to
create a special restricted origin for broadcasted content,
which is distinct from all other Internet domains. Another
possible countermeasure is content signing. With this
proposed defense, all HTML content delivered inside the
DVB stream will be accompanied by a signed certificate
attesting to its web origin. A malicious adversary cannot
sign web pages on behalf of the website under attack, and
thus cannot claim these sites as its origin. Unfortunately,
even if all broadcast content was properly assigned to a
restricted web origin, many attacks would still be possi-
ble via “blind” CSRF or PuppetNet attacks [29]. These
attacks can cause considerable damage, even if the same-
origin principle is upheld, by the sheer virtue of being able
to access the Internet using somebody else’s computer.

The HbbTV specification conceived the embedding of
web content into the DVB data stream as a redundancy

method, designed to allow the delivery of interactive con-
tent to the 30% of smart TV owners who do not, in fact,
plug them into the Internet. This reasoning can be turned
into an brutal, but effective, way to secure HbbTV. We
recommend to completely cut off Internet access to all
broadcast-delivered HTML content. Under this model,
broadcast-delivered applications will be able to interact
only with broadcast-delivered resources, while the only
way of getting the television to access the Internet would
be through an application delivered in URL form and
fetched from the Internet itself. We note that the Google
Chrome browser applies a very similar security policy to
its browser extensions [17].

7.3.4 Ineffective countermeasures

There are several defensive steps which appear at first
to protect against the attack, but whose practical effec-
tiveness is very limited. The first is content encryption.
Rights-managed DVB content is commonly encrypted, or
scrambled, and this encryption appears to be a way of pre-
venting an attack which modifies the television channel.
DVB encryption is, however, only applied to individual
transport streams such as audio or video. The DVB spec-
ification [9] dictates that and not to the program manage-
ment table (PMT), which points to the HbbTV applica-
tion, is always sent in the clear. This makes it possible
for an adversary to inject a malicious application into any
channel, even one with encrypted video and audio.

It will also be inffective to protect against this attack us-
ing Internet proxies. As suggested by Tews in [16], these
“green button” proxies can deliver “sanitised” versions of
HbbTV applications to users, after applying modifications
which protect the security and privacy of the users. Un-
fortunately, these proxies are only effective as long as the
HbbTV application itself lives on the Internet. Our attack
deals with a different form of delivery, where the applica-
tion resides inside the broadcast television stream.

7.4 Related Work
Works investigating other security issues with Smart TVs
were published by Grattafiori and Yavor in [18] and by
Lee and Kim in [31]. The first academic work to deal
with security weaknesses in HbbTV was published by
Tews et al. in [16, 15]. This work focused on potential
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privacy leaks resulting from the use of HbbTV. The au-
thors showed how an adversary sniffing encrypted traffic
generated by HbbTV on a user’s wireless network can in-
fer which program the user is currently watching, even
without decrypting the packets. This work also suggests
a proxy-based method for blocking autostart applications
from running on the television without user permissions.

Another series of works on HbbTV was published by
Martin Herfurt [21, 20]. Herfurt surveyed the HTML ap-
plications used by German HbbTV providers, discover-
ing that many of them use HbbTV to periodically “phone
home” and notify that the user is tuned to the station.
Since this was done without the user’s consent, these be-
haviours were considered a breach of German privacy
laws. Herfurt additionally suggested a series of attacks
which might be possible using HbbTV, including con-
tent spoofing, intranet attacks and even bitcoin mining.
Finally, Herfurt also implemented a DNS-based privacy
protection method called HbbTV Access Limiter (HAL).

Our work significantly contributes to that of of Herfurt
and Tews et al. in two aspects. First, our work is the
first to present and evaluate a cost-effective method of in-
jecting malicious content into HbbTV systems, by using
an RF-based man-in-the-middle attack. Second, our work
is the first to call attention to the flawed specification of
the same-origin policy for embedded HTML content, and
to the devastating cross-domain attacks made possible by
this flaw. It is the combination of a feasible attack model
and a faulty security model which makes the attacks de-
scribed in this paper so practical and so dangerous.

The most troubling attacks we discuss result from a
flawed implementation of the Same-Origin Policy. As
described by Johns et al. in [25], there have been sev-
eral historical compromises of this policy, starting from
1996 [12], with each compromise resulting in serious con-
sequences for web security. This work can be viewed
as a particular instance of this case, made even more
powerful due to the broadcast nature of the attack. Our
work can also be viewed as a form of cross-mechanism
vulnerability, in which the combination of perfectly be-
nign broadcast and broadband systems create a system-
of-systems with an emergent property which allows it
to be compromised. Similar properties have previously
been demonstrated in voice over IP systems which which
combine Internet and PSTN networks [28].

There have been several previous works which exploit

a broadcast radio frequency channel to attack a multitude
of computers. Notable are the work of Nighswander et
al. which attacks GPS software stacks [32], and the work
of Checkoway et al. which attacks car computers via the
broadcast FM RDS channel [4].

8 Conclusion
We have described a series of novel attacks on Smart TVs
– a widely deployed device whose significance in our life
is only likely to grow. The key enabling factor of this at-
tack was the fact that the device can render Internet con-
tent whose source is outside the Internet. This makes
it possible for a physical attacker to cause a large-scale
compromise of the Internet. We qualitatively and quan-
titively demonstrated that the attacks we described can
be cost-effectively distributed to many thousands of users,
and that they have a large damage potential. The attacks
described in this paper are of high significance, not only
because of the very large amount of devices which are
vulnerable to them, but because they exemplify the com-
plexity of securing systems-of-systems which combine
both Internet and non-Internet interfaces. Similar cyber-
physical systems will become increasingly more prevalent
in the future Internet of Things, making it especially im-
portant to analyze the weaknesses in this system, as well
as the limitations of its proposed countermeasures.
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Abstract
Advanced imaging technologies are a new class of peo-
ple screening systems used at airports and other sensitive
environments to detect metallic as well as nonmetallic
contraband. We present the first independent security
evaluation of such a system, the Rapiscan Secure 1000
full-body scanner, which was widely deployed at airport
checkpoints in the U.S. from 2009 until 2013. We find
that the system provides weak protection against adaptive
adversaries: It is possible to conceal knives, guns, and
explosives from detection by exploiting properties of the
device’s backscatter X-ray technology. We also investi-
gate cyberphysical threats and propose novel attacks that
use malicious software and hardware to compromise the
the effectiveness, safety, and privacy of the device. Over-
all, our findings paint a mixed picture of the Secure 1000
that carries lessons for the design, evaluation, and opera-
tion of advanced imaging technologies, for the ongoing
public debate concerning their use, and for cyberphysical
security more broadly.

1 Introduction
In response to evolving terrorist threats, including non-
metallic explosive devices and weapons, the U.S. Trans-
portation Security Administration (TSA) has adopted ad-
vanced imaging technology (AIT), also known as whole-
body imaging, as the primary passenger screening method
at nearly 160 airports nationwide [50]. Introduced in 2009
and gradually deployed at a cost exceeding $1 billion, AIT
provides, according to the TSA, “the best opportunity to
detect metallic and non-metallic anomalies concealed un-
der clothing without the need to touch the passenger” [48].

AIT plays a critical role in transportation security, and
decisions about its use are a matter of public interest.
The technology has generated considerable controversy,
including claims that the devices are unsafe [40], vio-
late privacy and civil liberties [27, 41], and are ineffec-
tive [8, 21]. Furthermore, AIT devices are complex cyber-
physical systems — much like cars [23] and implantable
medical devices [13] — that raise novel computer security
issues. Despite such concerns, neither the manufacturers
nor the government agencies that deploy these machines
have disclosed sufficient technical details to facilitate rig-
orous independent evaluation [40], on the grounds that
such information could benefit attackers [48]. This lack

Figure 1: The Rapiscan Secure 1000 full-body scanner uses
backscattered X-rays to construct an image through clothing.
Naïvely hidden contraband, such as the handgun tucked into
this subject’s waistband, is readily visible to the device operator.

of transparency has limited the ability of policymakers,
experts, and the public to assess contradicting claims.

To help advance the public debate, we present the first
experimental analysis of an AIT conducted independently
of the manufacturer and its customers. We obtained a
Rapiscan Secure 1000 full-body scanner — one of two
AITs widely deployed by the TSA [32] — and performed
a detailed security evaluation of its hardware and software.
Our analysis provides both retrospective insights into the
adequacy of the testing and evaluation procedures that
led up to TSA use of the system, and prospective lessons
about broader security concerns, including cyberphysical
threats, that apply to both current and future AITs.

The Secure 1000 provides a unique opportunity to in-
vestigate the security implications of AITs in a manner
that allows robust yet responsible public disclosure. Al-
though it was used by the TSA from 2009 until 2013,
it has recently been removed from U.S. airports due to
changing functional requirements [34]. Moreover, while
the Secure 1000 uses backscatter X-ray imaging, current
TSA systems are based on a different technology, mil-
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limeter waves [11], so many of the attacks we present
are not directly applicable to current TSA checkpoints,
thus reducing the risk that our technical disclosures will
inadvertently facilitate mass terrorism. However, while
Secure 1000 units are no longer used in airports, they still
are in use at other government facilities, such as court-
houses and prisons (see, e.g., [15, 29]). In addition, other
backscatter X-ray devices manufactured by American Sci-
ence and Engineering are currently under consideration
for use at airports [34]. To mitigate any residual risk, we
have redacted a small number of sensitive details from
our attacks in order to avoid providing recipes that would
allow an attacker to reliably defeat the screening process
without having access to a machine for testing.

In the first part of our study (Section 3), we test the
Secure 1000’s effectiveness as a physical security system
by experimenting with different methods of concealing
contraband. While the device performs well against naïve
adversaries, fundamental limitations of backscatter imag-
ing allow more clever attackers to defeat it. We show
that an adaptive adversary, with the ability to refine his
techniques based on experiment, can confidently smuggle
contraband past the scanner by carefully arranging it on
his body, obscuring it with other materials, or properly
shaping it. Using these techniques, we are able to hide
firearms, knives, plastic explosive simulants, and detona-
tors in our tests. These attacks are surprisingly robust, and
they suggest a failure on the part of the Secure 1000’s de-
signers and the TSA to adequately anticipate adaptive at-
tackers. Fortunately, there are simple procedural changes
that can reduce (though not eliminate) these threats, such
as performing supplemental scans from the sides or addi-
tional screening with a magnetometer.

Next, we evaluate the security of the Secure 1000 as
a cyberphysical system (Section 4) and experiment with
three novel kinds of attacks against AITs that target their
effectiveness, safety features, and privacy protections. We
demonstrate how malware infecting the operator’s con-
sole could selectively render contraband invisible upon
receiving a “secret knock” from the attacker. We also at-
tempt (with limited success) to use software-based attacks
to bypass the scanner’s safety interlocks and deliver an
elevated radiation dose. Lastly, we show how an external
device carried by the attacker with no access to the con-
sole can exploit a physical side-channel to capture naked
images of the subject being scanned. These attacks are, in
general, less practical than the techniques we demonstrate
for hiding contraband, and their limitations highlight a
series of conservative engineering choices by the system
designers that should serve as positive examples for future
AITs.

Finally, we attempt to draw broader lessons from these
findings (Section 5). Our results suggest that while the
Secure 1000 is effective against naïve attackers, it is not

able to guarantee either efficacy or privacy when subject
to attack by an attacker who is knowledgeable about its
inner workings. While some of the detailed issues we
describe are specific to the scanner model we tested, the
root cause seems to be the failure of the system design-
ers and deployers to think adversarially. This pattern is
familiar to security researchers: past studies of voting
machines [4], cars [23] and medical devices [13] have
all revealed cyberphysical systems that functioned well
under normal circumstances but were not secure in the
face of attack. Thus, we believe this study reinforces
the message that security systems must be subject to ad-
versarial testing before they can be deemed adequate for
widespread deployment.

Research safety and ethics. Since the Secure 1000
emits ionizing radiation, it poses a potential danger to
the health of scan subjects, researchers, and passers by.
Our institutional review board determined that our study
did not require IRB approval; however, we worked closely
with research affairs and radiation safety staff at the uni-
versity that hosted our device to minimize any dangers
and assure regulatory compliance. To protect passers by,
our device was sited in a locked lab, far from the hallway,
and facing a thick concrete wall. To protect researchers,
we marked a 2 m region around the machine with tape;
no one except the scan subject was allowed inside this
region while high voltage was applied to the X-ray tube.
We obtained a RANDO torso phantom [33], made from a
material radiologically equivalent to soft tissue cast over
a human skeleton, and used it in place of a human subject
for all but the final confirmatory scans. For these final
scans we decided, through consultation with our IRB,
that only a PI would be used as a scan subject. Experi-
ments involving weapons were conducted with university
approval and in coordination with the campus police de-
partment and all firearms were unloaded and disabled.
We disclosed our security-relevant findings and suggested
procedural mitigations to Rapiscan and the Department
of Homeland Security ahead of publication.

Online material. Additional resources and the most
recent version of this report are available online at
https://radsec.org/.

2 The Rapiscan Secure 1000
The Secure 1000 was initially developed in the early
1990s by inventor Steven W. Smith [42, 44]. In 1997,
Rapiscan Systems acquired the technology [43] and be-
gan to produce the Rapiscan Secure 1000. In 2007, the
TSA signed a contract with Rapiscan to procure a cus-
tomized version of the Secure 1000 for deployment in
airport passenger screening [47].

We purchased a Rapiscan Secure 1000 from an eBay
seller who had acquired it in 2012 at a surplus auction
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from a U.S. Government facility located in Europe [17].
The system was in unused condition. It came with operat-
ing and maintenance manuals as well as detailed schemat-
ics, which were a significant aid to reverse engineering.
The system consists of two separate components: the
scanner unit, a large enclosure that handles X-ray genera-
tion and detection under the control of a special purpose
embedded system, and the user console, a freestanding
cabinet that contains a PC with a keyboard and screen.
The two components are connected by a 12 m cable.

The system we tested is a dual pose model, which
means that the subject must turn around in order to be
scanned from the front and back in two passes. TSA
screening checkpoints used the Secure 1000 single pose
model [32], which avoids this inconvenience by scanning
from the front and back using a pair of scanner units.
Our system was manufactured in about September 2006
and includes EPROM software version 2.1. Documents
obtained under the Freedom of Information Act suggest
that more recent versions of the hardware and software
were used for airport screening [45, 52], and we highlight
some of the known differences below. Consequently,
we focus our analysis on fundamental weaknesses in the
Secure 1000 design that we suspect also affect newer
versions. A detailed analysis of TSA models might reveal
additional vulnerabilities.

2.1 Backscatter Imaging
X-ray backscatter imaging exploits the unique properties
of ionizing radiation to penetrate visual concealment and
detect hidden contraband. The physical process which
generates backscatter is Compton scattering, in which a
photon interacts with a loosely bound or free electron and
scatters in an unpredictable direction [7]. Other interac-
tions, such as the photoelectric effect, are possible, and
the fraction of photons that interact and which particular
effect occurs depends on each photon’s energy and the
atomic composition of the mass. For a single-element
material, the determining factor is its atomic number Z,
while a compound material can be modeled by producing
an “effective Z,” or Zeff [46].

Under constant-spectrum X-ray illumination, the
backscattered intensity of a given point is largely de-
termined by the atomic composition of matter at that
location, and to a lesser extent its density. Thus, organic
materials, like flesh, can be easily differentiated from
materials such as steel or aluminum that are made from
heavier elements.

The Secure 1000 harnesses these effects for contraband
screening by operating as a “reverse camera,” as illus-
trated in Figure 2. X-ray output from a centrally-located
tube (operating at 50 kVp and 5 mA) passes through slits
in shielding material: a fixed horizontal slit directly in
front of a “chopper wheel,” a rapidly spinning disk with

Figure 2: Backscatter Imaging — An X-ray tube (A ) mounted
on a platform travels vertically within the scanner. The X-rays
pass through a spinning disk (B ) that shapes them into a horizon-
tally scanning beam. Some photons that strike the target (C ) are
backscattered toward detectors (D ) that measure the reflected
energy over time. Adapted from U.S. Patent 8,199,996 [16].

four radial slits. This results in a narrow, collimated X-
ray beam, repeatedly sweeping across the imaging field.
During a scan, which takes about 5.7 s, the entire X-ray
assembly moves vertically within the cabinet, such that
the beam passes over every point of the scene in a series
of scan lines.

As the beam sweeps across the scene, a set of 8 large X-
ray detectors measures the intensity of the backscattered
radiation at each point, by means of internal photomulti-
plier tubes (PMTs). The Secure 1000 combines the output
of all 8 detectors, and sends the resulting image signal
to the user console, which converts the time-varying sig-
nal into a 160×480 pixel monochrome image, with the
intensity of each pixel determined by the Zeff value of
the surface of the scan subject represented by that pixel
location.

2.2 Subsystems
Operator interface. The operator interacts with the Se-
cure 1000 through the user console, a commodity x86 PC
housed within a lockable metal cabinet. With our system,
the user console is connected to the scanner unit via a
serial link and an analog data cable. Documents released
by the TSA indicate that airport checkpoint models were
configured differently, with an embedded PC inside the
scanner unit linked to a remote operator workstation via a
dedicated Ethernet network [45, 52].

On our unit, the operator software is an MS-DOS ap-
plication called SECURE65.EXE that launches automat-
ically when the console boots. (TSA models are ap-
parently Windows-based and use different operator soft-
ware [45, 47].) This software is written in a BASIC vari-
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Figure 3: Operator View — The user console displays front
and back images and offers basic enhancements and 2 × zoom.
It also allows the operator to print images or save them to disk.

ant, and the main user interface is a 640×480 pixel, 4-bit
grayscale screen, as shown in Figure 3. The operator
invokes a scan by pressing a hand switch. After image ac-
quisition, the operator can inspect the scan by means of a
2× zoom and interactive brightness and contrast controls.
The image can also be saved to disk or printed. Further,
the software contains several calibration functions that
can only be accessed by entering a 4 digit numeric pass-
word. The password is hard-coded and is printed in the
maintenance manual.

Scanner unit. The scanner unit contains an assortment
of electrical and mechanical systems under the control of
an embedded computer called the System Control Board
(SCB). The SCB houses an Intel N80C196KB12 micro-
controller, executing software contained on a 32 KiB sock-
eted ROM. It interacts with the user console PC over a
bidirectional RS-232 serial link using simple ASCII com-
mands such as SU for “scan up” and SD for “scan down.”
In turn, the SCB uses digital and analog interfaces to
direct and monitor other components, including the X-
ray tube, PMTs, and chopper wheel. It also implements
hardware-based safety interlocks on the production of
X-rays, which we discuss further in Section 4.2.

To control vertical movement of the X-ray tube, the
scanner unit uses an off-the-shelf reprogrammable servo
motor controller, the Parker Gemini GV6. In normal op-
eration, the servo controller allows the SCB to trigger a
movement of the X-ray tube, initially to a “home” posi-
tion and subsequently to scan up and down at predefined
rates. There is no command to move the tube to a specific
intermediate position.

3 Contraband Detection
As the Secure 1000 is intended to detect prohibited or
dangerous items concealed on the body of an attacker, the

first and most obvious question to ask is how effectively
the Secure 1000 detects contraband.

To make the discussion concrete, we consider the ma-
chine as it was typically used by the TSA for airport
passenger screening. Under TSA procedures, subjects
were imaged from the front and back, but not from the
sides. A trained operator inspected the images and, if an
anomaly was detected, the passenger was given a manual
pat down to determine whether it was a threat [45]. The
Secure 1000 was used in place of a walk-through metal
detector, rather than both screening methods being em-
ployed sequentially [48]. We focus our analysis on threats
relevant to an airport security context, such as weapons
and explosives, as opposed to other contraband such as
illicit drugs or bulk currency.

To replicate a realistic screening environment, we situ-
ated our Secure 1000 in an open area, oriented 2.5 m from
a concrete wall sufficient to backstop X-ray radiation.
This distance accords with the manufacturer’s recommen-
dation of at least 2 m of open area “for producing the
best possible images” [35]. For typical tests, we arranged
the subject at a distance of about 38 cm in front of the
scanner using the foot position template provided with
the machine.

Naïve adversary. First, we consider the scanner’s ef-
fectiveness against a naïve adversary, an attacker whose
tactics do not change in response to the introduction of
the device. Although this is a weak attacker, it seems
to correspond to the threat model under which the scan-
ner was first tested by the government, in a 1991 study
of a prototype of the Secure 1000 conducted by Sandia
National Laboratories [22]. Our results under this threat
model generally comport with theirs. Guns, knives, and
blocks of explosives naïvely carried on the front or back
of the subject’s body are visible to the scanner operator.

Three effects contribute to the detectability of contra-
band. The first is contrast: human skin appears white
as it backscatters most incident X-ray radiation, while
metals, ceramics, and bone absorb X-rays and so appear
dark gray or black. The second is shadows cast by three-
dimensional objects as they block the X-ray beam, which
accentuate their edges. The third is distortion of the sub-
ject’s flesh as a result of the weight of the contraband or
the mechanics of its attachment. The naïve adversary is
unlikely to avoid all three effects by chance.

A successful detection of hidden contraband can be
seen in Figure 1. The subject has concealed a .380 ACP
pistol within his waistband. The X-ray beam interacts
with the gun metal significantly differently than the sur-
rounding flesh, and the sharp contrast in backscatter in-
tensity is immediately noticeable.

Adaptive adversary. Of course, real attackers are not
entirely ignorant of the scanner. The TSA announced
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(a) Subject with .380 ACP pistol taped above knee. (b) Subject with .380 ACP pistol sewn to pant leg.

Figure 4: Concealing a Pistol by Positioning — The Secure 1000 cannot distinguish between high Zeff materials, such as a metal
handgun, and the absence of a backscatter response. Carefully placed metallic objects can be invisible against the dark background.

that it would be used at screening checkpoints [12, 48],
the backscatter imaging mechanism is documented in
patents and manufacturer reports [16, 24, 36], images cap-
tured with the device have appeared in the media [12, 25],
and the physics of backscatter X-rays are well under-
stood [2, 7, 22]. We must assume that attackers have such
information and adapt their tactics in response.

To simulate an adaptive adversary, we performed ex-
periments in the style of white-box penetration testing
commonly employed in the computer security field. We
allowed ourselves complete knowledge of how the scan-
ner operates as well as the ability to perform test scans,
observed the resulting images, and used them to adjust
our concealment methods.

Such interactive testing is not strictly necessary to de-
velop clever attacks. Indeed, researchers with no access to
the Secure 1000 have proposed a number of concealment
strategies based only on published information [21], and
we experimentally confirm that several of these attacks are
viable. However, the ability to perform tests substantially

increases the probability that an attack will succeed on
the first attempt against a real deployment. A determined
adversary might acquire this level of access in several
ways: by buying a machine, as we did; by colluding with
a dishonest operator; or by probing the security of real
installations over time.

In the remainder of this section, we describe experi-
ments with three adaptive concealment techniques and
show that they can be used to defeat the Secure 1000. We
successfully use them to smuggle firearms, knives, and
explosive simulants past the scanner.

3.1 Concealment by Positioning
The first concealment technique makes use of a crucial
observation about X-ray physics: backscatter screening
machines emitting X-rays in the 50 keV range, such as the
Secure 1000, cannot differentiate between the absence of
matter and the existence of materials with high Zeff (e.g.,
iron and lead). That is, when the scanner emits probing
X-rays in a direction and receives no backscatter, it can
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either be because the beam interacted with nothing, i.e.,
traveled unimpeded past the screening subject, or because
the beam shone directly upon a material which absorbed
it entirely and thus did not backscatter. In either case, the
resulting pixels will be dark.

These facts lead directly to a straightforward conceal-
ment attack for high Zeff contraband: position the ob-
ject such that it avoids occluding the carrier’s body with
respect to the X-ray beam. This technique was first
suggested on theoretical grounds by Kaufman and Carl-
son [21]. In limited trials, a TSA critic used it to smuggle
small metal objects through airport checkpoints equipped
with the Secure 1000 and other AITs [8]. Note that this at-
tack is not enabled by a poor choice of image background
color; as discussed above, the scanner cannot differentiate
between the metal objects and the absence of material.

To more fully investigate this attack, we obtained a set
of weapons: both knives and firearms, ranging from a
.380 ACP pistol to an AR-15 semi-automatic rifle. When
we scanned the weapons against a dark backdrop, most
of the firearms were readily visible due to the presence
of nonmetallic parts. After testing a number of firearms,
we settled on our .380 ACP pistol as the most suitable
candidate for concealment.

We performed several trials to test different placement
and attachment strategies. In the end, we achieved excel-
lent results with two approaches: carefully affixing the
pistol to the outside of the leg just above the knee using
tape, and sewing it inside the pant leg near the same loca-
tion. Front and back scans for both methods are shown in
Figure 4. In each case, the pistol is invisible against the
dark background, and the attachment method leaves no
other indication of the weapon’s presence.

In a similar test, we concealed an 11 cm metal folding
knife, in its closed position, along our test subject’s side.
In this case, too, front and back scans were completely
unable to detect the weapon.

Fortunately, simple procedural changes can thwart
these attacks. Instead of performing only front and back
scans, every subject could also be made to undergo scans
from the left and right sides. Under these scans, a high
Zeff weapon positioned on the side of the body would
be as obvious as the one in Figure 1. Unfortunately,
these additional scans would nearly halve the maximum
throughput of the checkpoint, as well as double each per-
son’s radiation dose. Another possible mitigation would
be to screen each subject with a magnetometer, which
would unequivocally find metallic contraband but would
fail to uncover more exotic weapons, such as ceramic
knives [50, 54]. We note that the attacker’s gait or ap-
pearance might be compromised by the mass and bulk
of the firearm or knife, and this might be noticeable to
security personnel outside of the backscatter X-ray screen-
ing.

3.2 Concealment by Masking
The second object concealment techniques we attempted
are similarly based on X-ray physics: the brightness of a
material in the image is directly correlated to its backscat-
ter intensity, which in turn is determined by the Zeff and
density of the matter in the path of the beam. Therefore,
any combination of substances which scatter incoming
X-rays at the same approximate intensity as human flesh
will be indistinguishable from the rest of the human.

One consequence of this fact is that high-Zeff contra-
band can be concealed by masking it with an appropriate
thickness of low-Zeff material. We experimented with
several masking materials to find one with a Zeff value
close to that of flesh. We obtained good results with the
common plastic PTFE (Teflon), although due to its low
density a significant thickness is required to completely
mask a metallic object.

To work around this issue, we took advantage of the Se-
cure 1000’s ability to see bones close to the skin. Figure 5
demonstrates this approach: an 18 cm knife is affixed to
the spine and covered with 1.5 cm of PTFE. As the X-rays
penetrate through the material, they backscatter so that the
knife outline approximates our subject’s spine. While this
mask arrangement creates hard edges and shadows which
render it noticeable to screening personnel these effects
could be reduced by tapering the edges of the mask.

A more difficult challenge for the attacker is taking
into account the anatomy of the specific person being
imaged. Shallow bones and other dense tissue are visible
to the scanner under normal conditions, and a poorly
configured mask will stand out against these darker areas
of the scan. We conclude that masking can be an effective
concealment technique, but achieving high confidence of
success would require access to a scanner for testing.

3.3 Concealment by Shaping
Our third and final concealment technique applies a strat-
egy first theorized in [21] to hide malleable, low-Zeff con-
traband, such as plastic explosives. These materials pro-
duce low contrast against human flesh, and, unlike rigid
weapons, the attacker can reshape them so that they match
the contours of the body.

To experiment with this technique, we acquired radi-
ological simulants for both Composition C-4 [56] and
Semtex [57], two common plastic high explosives. These
simulants are designed to emulate the plastic explosives
with respect to X-ray interactions, and both are composed
of moldable putty, similar to the actual explosive materi-
als. We imaged both C-4 and Semtex simulants with the
Secure 1000, and found that they appear very similar. We
selected the C-4 simulant for subsequent tests.

Our initial plan was to modify the simulants’ Zeff to
better match that of flesh, by thoroughly mixing in fine
metallic powder. To our surprise, however, a thin pancake
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(a) No contraband (b) 18 cm knife taped to spine (c) Knife behind 1.5 cm plastic block

Figure 5: Concealing a Knife by Masking — We find that high-Zeff materials can be hidden by covering them with lower Zeff
materials, such as the common plastic PTFE (Teflon). For example, a metal knife is clearly visible when naïvely concealed, but when
covered with a thin plastic block it approximates the color of the spine. Tapering the block’s edges would reduce the visible outline.

(about 1 cm) of unmodified C-4 simulant almost perfectly
approximated the backscatter intensity of our subject’s
abdomen.

We affixed the pancake with tape (which is invisible to
the Secure 1000), and faced two further problems. First,
the pancake covered our subject’s navel, which is nor-
mally clearly visible as a small black area in the scans.
Second, by design, plastic explosives are almost com-
pletely inert without a matching detonator. These prob-
lems neatly solve each other: we attached a detonator,
consisting of a small explosive charge in a metal shell,
directly over our subject’s navel. Since the detonator is
coated in metal, it absorbs X-rays quite well and mimics
the look of the navel in the final image.

Figure 6 shows a side-by-side comparison of our test
subject both carrying no contraband and carrying 200 g of
C-4 explosive and attached detonator. To put this amount
in perspective, “Shoe Bomber” Richard Reid reportedly
carried about 280 g of explosive material [6], and the
bomb that destroyed Pan Am Flight 103 is thought to
have contained 350 g of Semtex [55].

These scans indicate that plastic explosives can be
smuggled through a Secure 1000 screening, since thin
pancakes of these materials do not contrast strongly with
flesh. While a metal detector would have been sufficient
to detect the detonator we used, not all detonators have
significant metal components.

In summary, an adaptive adversary can use several attack
techniques to carry knives, guns, and plastic explosives
past the Secure 1000. However, we also find that multiple
iterations of experimentation and adjustment are likely

necessary to achieve consistent success. The security of
the Secure 1000, then, rests strongly on the adversary’s
inability to acquire access to the device for testing. How-
ever, since we were able to purchase a Secure 1000, it
is reasonable to assume that determined attackers and
well-financed terrorist groups can do so as well. We
emphasize that procedural changes — specifically, per-
forming side scans and supplementing the scanner with
a magnetometer — would defeat some, though not all, of
the demonstrated attacks.

4 Cyberphysical Attacks
The Secure 1000, like other AITs, is a complex cyber-
physical system. It ties together X-ray emitters, detectors,
and analog circuitry under the control of embedded com-
puter systems, and feeds the resulting image data to a
traditional desktop system in the user console. In this
section, we investigate computer security threats against
AITs. We demonstrate a series of novel software- and
hardware-based attacks that undermine the Secure 1000’s
efficacy, safety features, and privacy protections.

4.1 User Console Malware
The first threat we consider is malware infecting the user
console. On our version of the Secure 1000, the user con-
sole is an MS-DOS–based PC attached to the scanner unit
via a proprietary cable; TSA models apparently used Win-
dows and a dedicated Ethernet switch [47, 49]. Although
neither configuration is connected to an external network,
there are several possible infection vectors. If the opera-
tors or maintenance personnel are malicious, they could
abuse their access in order to manually install malware.
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Figure 6: Concealing Explosives by Shaping — Left: Subject
with no contraband. Right: Subject with more than 200 g of C-4
plastic explosive simulant plus detonator, molded to stomach.

The software on our machine lacks any sort of electronic
access controls (e.g., passwords) or software verification.
While the PC is mounted in a lockable cabinet, we were
able to pick the lock in under 10 seconds with a commer-
cially available tool. Therefore, even an outsider with
temporary physical access could easily introduce mali-
cious code. TSA systems may be better locked down, but
sophisticated adversaries have a track record of infecting
even highly secured, airgapped systems [26, 31].

We implemented a form of user console malware by re-
verse engineering SECURE65.EXE, the front-end software
package used by the Secure 1000, and creating a mali-
cious clone. Our version, INSECURE.EXE, is a functional,
pixel-accurate reimplementation of the original program
and required approximately one man-month to create.

In addition to enabling basic scanning operations, IN-
SECURE.EXE has two malicious features. First, every
scan image is saved to a hidden location on disk for
later exfiltration. This is a straightforward attack, and
it demonstrates one of many ways that software-based
privacy protections can be bypassed. Of course, the user
could also take a picture of the screen using a camera or

smartphone — although operators are forbidden to have
such devices in the screening room [39].

Second, INSECURE.EXE selectively subverts the scan-
ner’s ability to detect contraband. Before displaying each
scan, it applies a pattern recognition algorithm to look for
a “secret knock” from the attacker: the concentric squares
of a QR code position block. If this pattern occurs, INSE-
CURE.EXE replaces the real scan with a preprogrammed
innocuous image. The actual scan, containing the trigger
pattern and any other concealed contraband, is entirely
hidden.

To trigger this malicious substitution, the subject sim-
ply wears the appropriate pattern, made out of any mate-
rial with a sufficiently different Zeff than human tissue. In
our experiments, we arranged lead tape in the target shape,
attached to an undershirt, as shown in Figure 7. When
worn under other clothing, the target is easily detected by
the malware but hidden from visual inspection.

Recently, in response to privacy concerns, the TSA has
replaced manual review of images with algorithmic image
analysis software known as automated target recognition
(ATR) [51]. Instead of displaying an image of the subject,
this software displays a stylized figure, with graphical
indicators showing any regions which the software con-
siders suspect and needing manual resolution. (Delays
in implementing this algorithm led the TSA to remove
Secure 1000 machines from airports entirely [1].) If mal-
ware can compromise the ATR software or its output
path, it can simply suppress these indicators — no image
replacement needed.

4.2 Embedded Controller Attacks
The System Control Board (SCB) managing the physi-
cal scanner is a second possible point of attack. While
the SCB lacks direct control over scan images, it does
control the scanner’s mechanical systems and X-ray tube.
We investigated whether an attacker who subverts the
SCB firmware could cause the Secure 1000 to deliver an
elevated radiation dose to the scan subject.

This attack is complicated by the fact that the Se-
cure 1000 includes a variety of safety interlocks that
prevent operation under unexpected conditions. Circuits
sense removal of the front panel, continuous motion of the
chopper wheel and the vertical displacement servo, X-ray
tube temperature and supply voltage, X-ray production
level, key position (“Standby” vs. “On”), and the duration
of the scan, among other parameters. If any anomalous
state is detected, power to the X-ray tube is immediately
disabled, ceasing X-ray emission.

While some of these sensors merely provide inputs to
the SCB software, others are tied to hard-wired watchdog
circuits that cut off X-ray power without software media-
tion. However, the firmware can bypass these hardware
interlocks. At the beginning of each scan, operational
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(a) Lead tape pattern (b) Pattern concealed (c) Scan as captured

Figure 7: A Secret Knock — We demonstrate how malware infecting the Secure 1000 user console could be used to defeat the
scanner. The malware is triggered when it detects a specific pattern in a scan, as shown here. It then replaces the real image (c) of the
attacker, which might reveal hidden contraband, with an innocuous image stored on disk. Pattern recognition occurs in real time.

characteristics such as tube voltage and servo motion
fluctuate outside their nominal ranges. To prevent imme-
diate termination of every scan, SCB software temporarily
asserts a bypass signal, which disables the hardware inter-
locks. This signal feeds a “bypass watchdog” circuit of
its own, meant to prevent continual interlock bypass, but
the SCB can pet this watchdog by continuously toggling
the bypass signal, and cause all hardware interlocks to
be ignored. Thus, every safety interlock is either directly
under software control or can be bypassed by software.

We developed replacement SCB firmware capable of
disabling all of the software and hardware safety inter-
locks in the Secure 1000. With the interlocks disabled,
corrupt firmware can, for instance, move the X-ray tube
to a specific height, stop the chopper wheel, and activate
X-ray power, causing the machine to deliver the radia-
tion dose from an entire dose to a single point. Only the
horizontal displacement of this point is not directly un-
der firmware control — it depends on where the chopper
wheel happens to come to rest.

Delivering malicious SCB firmware presents an addi-
tional challenge. The firmware is stored on a replaceable
socketed EPROM inside the scanner unit, which is se-
cured by an easily picked wafer tumbler lock. Although
attackers with physical access could swap out the chip,
they could cause greater harm by, say, hiding a bomb
inside the scanner. For SCB attacks to pose a realistic
safety threat, they would need to be remotely deployable.

Due to the scanner’s modular design, the only feasible
vector for remote code execution is the serial link between
the user console and the SCB. We reverse engineered the
SCB firmware and extensively searched for vulnerabili-

ties. The firmware is simple (<32 KiB) and appears to
withstand attacks quite well. Input parsing uses a fixed
length buffer, to which bytes are written from only one
function. This function implements bounds checking cor-
rectly. Data in the buffer is always processed in place,
rather than being copied to other locations that might re-
sult in memory corruption. We were unable to cause any
of this code to malfunction in a vulnerable manner.

While we are unable to remotely exploit the SCB to
deliver an elevated radiation dose, the margin of safety
by which this attack fails is not reassuring. Hardware
interlocks that can be bypassed from software represent a
safety mechanism but not a security defense. Ultimately,
the Secure 1000 is protected only by its modular, isolated
design and by the simplicity of its firmware.

4.3 Privacy Side-Channel Attack
AIT screening raises significant privacy concerns because
it creates a naked image of the subject. Scans can re-
veal sensitive information, including anatomical size and
shape of body parts, location and quantity of fat, existence
of medical conditions, and presence of medical devices
such as ostomy pouches, implants, or prosthetics. As
figures throughout the paper show, the resulting images
are quite revealing.

Recognizing this issue, the TSA and scanner manu-
facturers have taken steps to limit access to raw scanned
images. Rapiscan and DHS claim that the TSA machines
had no capacity to save or store the images [27, 45]. The
TSA also stated that the backscatter machines they used
had a “privacy algorithm applied to blur the image” [50].
We are unable to verify these claims due to software dif-
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(a) From scanner (b) From external detector

Figure 8: Attacking Privacy — An attacker could use a detec-
tor hidden in a suitcase to capture images of the subject during
scanning. As a proof of concept, we used a small external
PMT to capture images that are consistent with the scanner’s
output. A larger detector would produce more detailed images.

ferences between our machine and TSA models. Our
Secure 1000 has documented save, recall (view saved
images), and print features and does not appear to have a
mechanism to disable them. In fact, using forensic anal-
ysis software on the user console’s drive, we were able
to recover a number of stored images from test scans that
were incompletely deleted during manufacturing.

These software-based defenses aim to safeguard pri-
vacy in images that are constructed by the machine, but
they do not address a second class of privacy attacks
against AITs: an outsider observer could try to recon-
struct scanned images by using their own external detector
hardware. The most mechanically complex, dangerous,
and energy intensive aspects of backscatter imaging are
related to X-ray illumination; sensing the backscattered
radiation is comparatively simple. Since X-rays scatter
off the subject in a broad arc, they create a kind of physi-
cal side channel that potentially leaks a naked image of
the subject to any nearby attacker. To the best of our
knowledge, we are the first to propose such an attack;

the privacy threat model for AITs appears to have been
focused almost entirely on concerns about the behavior
of screening personnel, rather than the general public.

In the scenario we envision, an attacker follows a target
subject (for instance, a celebrity or politician) to a screen-
ing checkpoint while carrying an X-ray detector hidden in
a suitcase. As the victim is scanned, the hardware records
the backscattered X-rays for later reconstruction.

We experimented with the Secure 1000 to develop a
proof-of-concept of such an attack. The major technical
challenge is gathering enough radiation to have an accept-
able signal/noise ratio. The Secure 1000 uses eight large
photomultiplier tubes (PMTs) — four on either side of
the X-ray generator — in order to capture as much signal
as possible. For best results, an attacker should likewise
maximize observing PMT surface area, and minimize
distance from the subject, as radiation intensity falls off
quadratically with distance. To avoid arousing suspicion,
an attacker may be limited to only one PMT, and may
also be restricted in placement.

To determine whether external image reconstruction is
feasible, we used a small PMT, a 75 mm Canberra model
BIF2996-2 operated at 900 V, with a 10 cm×10 cm NaI
crystal scintillator. We placed this detector adjacent to
the scanner and fed the signal to a Canberra Model 1510
amplifier connected to a Tektronix DPO 3014 oscillo-
scope. After capturing the resulting signal, we converted
the time varying intensity to an image and applied manual
enhancements to adjust levels and remove noise.

Figure 8 shows the results from the scanner and from
our corresponding reconstruction. While our proof-of-
concept results are significantly less detailed than the
scanner’s output, they suggest that a determined attacker,
equipped with a suitcase-sized PMT, might achieve sat-
isfactory quality. A further concern is that changes in
future backscatter imaging devices might make this attack
even more practical. Since the PMTs in the Secure 1000
are close to the maximum size that can fit in the avail-
able space, further improvements to the scanner’s per-
formance — i.e., better resolution or reduced time per
scan — would likely require increased X-ray output. This
would also increase the amount of information leaked to
an external detector.

5 Discussion and Lessons
The Secure 1000 appears to perform largely as advertised
in the non-adversarial setting. It readily detected a variety
of naïvely concealed contraband materials. Our prelim-
inary measurements of the radiation exposure delivered
during normal scanning (Appendix A) seem consistent
with public statements by the manufacturer, TSA, and
the FDA [5, 18, 38, 54]. Moreover, it seems clear that
the manufacturer took significant care to ensure that pre-
dictable equipment malfunctions would not result in un-
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safe radiation doses; in order for this to happen a number
of independent failures would be required, including fail-
ures of safety interlocks specifically designed to prevent
unsafe conditions.

However, the Secure 1000 performs less well against
clever and adaptive adversaries, who can use a number
of techniques to bypass its detection capabilities and to
attempt to subvert it by cyberphysical means. In this
section, we use the device’s strengths and weaknesses
to draw lessons that may help improve the security of
other AITs and cyberphysical security systems more gen-
erally.

The effectiveness of the device is constrained by facts
of X-ray physics . . . As discussed in Section 2.1,
Compton scattering is the physical phenomenon which
enables backscatter imaging. As the tight beam of X-rays
shines upon the scene, it interacts with the scene material.
The intensity and energy spectrum of the backscattered
radiation is a function of both the X-ray spectrum emitted
by the imaging device and the atomic composition of the
material in the scene.

The Secure 1000 emits a single constant X-ray spec-
trum, with a maximum energy of 50 keV, and detects the
intensity of backscatter to produce its image. Any two
materials, no matter their actual atomic composition, that
backscatter the same approximate intensity of X-rays will
appear the same under this technology. This physical pro-
cess enables our results in Section 3.3. This issue extends
beyond the Secure 1000: any backscatter imaging device
based upon single-spectrum X-ray emission and detection
will be vulnerable to such attacks.

By contrast, baggage screening devices (such as the re-
cently studied Rapiscan 522B; see [37]) usually use trans-
missive, rather than backscatter, X-ray imaging. These de-
vices also often apply dual-energy X-ray techniques that
combine information from low-energy and high-energy
scans into a single image. To avoid detection by such sys-
tems, contraband will need to resemble benign material
under two spectra, a much harder proposition.

. . . but physics is irrelevant in the presence of soft-
ware compromise. In the Secure 1000, as in other
cyberphysical screening systems, the image of the ob-
ject scanned is processed by software. If that software
has been tampered with, it can modify the actual scan
in arbitrary ways, faking or concealing threats. Indeed,
the ability of device software to detect threats and bring
them to the attention of the operator is presumed in the
“Automated Target Recognition” software used in current
TSA millimeter-wave scanners [51]. Automatic suppres-
sion of threats by malicious software is simply the (easier
to implement) dual of automatic threat detection. As we
show in Section 4.1, malware can be stealthy, activating
only when it observes a “secret knock.”

Software security, including firmware updates, net-
worked access, and chain-of-custody for any physical
media, must be considered in any cyberphysical scanning
system. Even so, no publicly known study commissioned
by TSA considers software security.

Procedures are critical, but procedural best practices
are more easily lost than those embedded in software.
As early as 1991, Sandia National Labs recommended the
use of side scans to find some contraband:

A metallic object on the side of a person would
blend in with the background and be unob-
served. However, a side scan would provide
an image of the object. There are other means
of addressing this which IRT is considering
presently [22, page 14].

Yet TSA procedures appear to call for only front and back
scans, and the device manual characterizes side scans as
an unusual practice:

The Secure 1000 can conduct scans in four sub-
ject positions, front, rear, left side and right side.
Most users only conduct front and rear scans
in routine operations and reserve the side scans
for special circumstances [35, page 3-7].

Omitting side scans makes it possible to conceal firearms,
as we discuss in Section 3.1.

Since side scans are necessary for good security, the
device’s design should encourage their use by default. Yet,
if anything, the scanner user interface nudges operators
away from performing side scans. It allows the display
of only two images at a time, making it poorly suited
to taking four scans of a subject. A better design would
either scan from all sides automatically (the Secure 1000
is already sold in a configuration that scans from two sides
without the subject’s turning around) or encourage/require
a four-angle scan.

Adversarial thinking, as usual, is crucial for security.
The Sandia report concludes that both C-4 and Detasheet
plastic explosives are detected by the Secure 1000. At-
tached to their report is an image from one C-4 test
(Figure 9), wherein a 0.95 cm thick C-4 block is no-
ticeable only by edge effects — it is outlined by its own
shadow, while the intensity within the block almost ex-
actly matches the surrounding flesh. This suggests a fail-
ure to think adversarially: since plastic explosives are, by
design, moldable putty, the attacker can simply gradually
thin and taper the edges of the mass, drastically reducing
edge effects and rendering it much less noticeable under
X-ray backscatter imaging. We describe precisely such
an attack in Section 3.3.

The basic problem appears to be that the system, while
well engineered, appears not to have been designed, doc-
umented, or deployed with adaptive attack in mind. For
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Figure 9: Naïve Evaluation — In an evaluation by Sandia Na-
tional Labs, a Secure 1000 prototype successfully detects blocks
of C-4 plastic explosive and Lucite attached to the subject’s
chest. Observe that the detection is based almost entirely on the
X-ray shadow surrounding each rectangular block, which can be
reduced or eliminated by an adaptive adversary through clever
shaping and positioning of contraband. Reproduced from [22].

instance, attaching contraband to the side of the body as
described in Section 3.1 is a straightforward attack that
is enabled by scanning only straight-on rather than from
all angles. However, the operator’s manual shows only
example images where the contraband is clearly at the
front or the back.

The other attacks we describe in Sections 3 and 4,
which allow us to circumvent or weaken the advertised
efficacy, privacy, and security claims, again show that the
system’s designers failed to think adversarially.

Simplicity and modular design are also crucial for se-
curity. The system control board implements simple,
well-defined functionality and communicates with the op-
erator console by means of a simple protocol. We were
unable to compromise the control board by abusing the
communication protocol. This is in contrast to the scanner
console, whose software runs on a general-purpose COTS
operating system.

Simplicity and modular design prevented worse attacks,
but do other AITs reflect these design principles? Modern
embedded systems tend towards greater integration, in-
creased software control, and remote network capabilities,
which are anathema to security.

Components should be designed with separation of con-
cerns in mind: each component should be responsible for
controlling one aspect of the machine’s operation. Com-
munication between components should be constrained

to narrow data interfaces. The Secure 1000 gets these
principles right in many respects. For example, the PC
software does not have the ability to command the X-ray
tube to a particular height. Instead, it can only command
the tube to return to its start position or to take a scan.

Our main suggestion for improving the Secure 1000’s
cyberphysical security is to remove the ability for the
control board firmware to override the safety interlocks
(something currently needed only briefly, at scan initial-
ization). As long as this bypass functionality is in place,
the interlocks can serve as safety mechanisms but not as
a defense against software- or firmware-based attacks.

Keeping details of the machine’s behavior secret
didn’t help . . . Published reports about the Se-
cure 1000 have been heavily redacted, omitting even
basic details about the machine’s operation. This did
not stop members of the public from speculating about
ways to circumvent the machine, using only open-source
information. In an incident widely reported in the press,
Jonathan Corbett suggested that firearms hanging off the
body might be invisible against the dark background [8],
an attack we confirm and refine in Section 3.1. Two
physicists, Leon Kaufman and Joseph Carlson, reverse en-
gineered the Secure 1000’s characteristics from published
scans and concluded that “[i]t is very likely that a large
(15–20 cm in diameter), irregularly-shaped, [one] cm-
thick pancake [of plastic explosive] with beveled edges,
taped to the abdomen, would be invisible to this technol-
ogy” [21], an attack we confirm and refine in Section 3.3.
Keeping basic information about the device secret made
an informed public debate about its use at airports more
difficult, but did not prevent dangerous attacks from being
devised.

. . . but keeping attackers from testing attacks on the
machine might. To a degree that surprised us, our at-
tacks benefited from testing on the device itself. Our first
attempts at implementing a new attack strategy were of-
ten visible to the scanner, and reliable concealment was
made possible only by iteration and refinement. It goes
without saying that software-replacement attacks on the
console are practical only if one has a machine to reverse
engineer. As a result, we conclude that, in the case of
the Secure 1000, keeping the machine out of the hands of
would-be attackers may well be an effective strategy for
preventing reliable exploitation, even if the details of the
machine’s operation were disclosed.

The effectiveness of such a strategy depends critically
on the difficulty of obtaining access to the machine. In
addition to the device we purchased, at least one other
Secure 1000 was available for sale on eBay for months
after we obtained ours. We do not know whether it sold, or
to whom. Also, front-line security personnel will always
have some level of access to the device at each deployment
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installation (including at non-TSA facilities) as they are
responsible for its continued operation. Given these facts,
imposing stricter purchase controls on backscatter X-ray
machines than those currently enacted may not be enough
to keep determined adversaries from accessing, studying,
and experimenting with them.

6 Related work
Cyberphysical devices must be evaluated not only for
their safety but also for their security in the presence of an
adversary [19]. This consideration is especially important
for AITs, which are deployed to security checkpoints. Un-
fortunately, AIT manufacturers and TSA have not, to date,
allowed an unfettered independent assessment of AITs.
Security evaluators retained by a manufacturer or its cus-
tomers may not have an incentive to find problems [30].
In the case of a backscatter X-ray AIT specifically, an
evaluation team may be skilled in physics but lack the ex-
pertise to identify software vulnerabilities, or vice versa.

Ours is the first study to consider computer security
aspects of an AIT’s design and operation, and the first
truly independent assessment of an AIT’s security, privacy,
and efficacy implications informed by experimentation
with an AIT device.

Efficacy and procedures. In 1991, soon after its initial
development, the Secure 1000 was evaluated by Sandia
National Laboratories on behalf of IRT Corp., the com-
pany then working to commercialize the device. The
Sandia report [22] assessed the device’s effectiveness in
screening for firearms, explosives, nuclear materials, and
drugs. The Sandia evaluators do not appear to have con-
sidered adaptive strategies for positioning and shaping
contraband, nor did they consider attacks on the device’s
software. Nevertheless, they observed that side scans
were sometimes necessary to detect firearms.

More recently, the Department of Homeland Security’s
Office of Inspector General released a report reviewing
TSA’s use of the Secure 1000 [10]. This report proposed
improvements in TSA procedures surrounding the ma-
chines but again did not consider adversarial conditions
or software vulnerabilities.

Working only from published descriptions of the de-
vice, researchers have hypothesized that firearms can be
concealed hanging off the body [8] and that plastic explo-
sives can be caked on the body [21]. We confirm these
attacks are possible in Section 3 and refine them through
access to the device for testing.

Health concerns. The ionizing radiation used by the
Secure 1000 poses at least potential health risks. Stud-
ies performed on behalf of TSA by the Food and Drug
Administration’s Center for Devices and Radiological
Health [5] and by the Johns Hopkins University Applied
Physics Laboratory [18] attempted to quantify the overall

radiation dose delivered by the device. Both studies saw
public release only in heavily redacted form, going so far
as to redact even the effective current of the X-ray tube.

In 2010, Professors at the University of California, San
Francisco wrote an open letter to John P. Holdren, the
Assistant to the President for Science and Technology,
expressing their concern about potential health effects
from the use of backscatter X-ray scanners at airports [40].
The letter writers drew on their radiological expertise, but
did not have access to a Secure 1000 to study. The FDA
published a response disputing the technical claims in the
UCSF letter [28], as did the inventor of the Secure 1000,
Steven W. Smith [43]. Under dispute was not just the
total radiation dose but its distribution through the skin
and body. In independent work concurrent with ours, a
task group of the American Association of Physicists in
Medicine [2] explicitly considered skin dose. The task
group’s measurements are within an order of magnitude
of our own, presented in Appendix A.

7 Conclusion
We obtained a Rapiscan Secure 1000 and evaluated its
effectiveness for people screening. Ours was the first
analysis of an AIT that is independent of the device’s
manufacturer and its customers; the first to assume an
adaptive adversary; and the first to consider software as
well as hardware. By exploiting properties of the Se-
cure 1000’s backscatter X-ray technology, we were able
to conceal knives, firearms, plastic explosive simulants,
and detonators. We further demonstrated that malicious
software running on the scanner console can manipulate
rendered images to conceal contraband.

Our findings suggest that the Secure 1000 is ineffective
as a contraband screening solution against an adaptive
adversary who has access to a device to study and to use
for testing and refining attacks. The flaws we identified
could be partly remediated through changes to procedures:
performing side scans in addition to front and back scans,
and screening subjects with magnetometers as well as
backscatter scanners; but these procedural changes will
lengthen screening times.

Our findings concerning the Secure 1000 considered as
a cyberphysical device are more mixed. Given physical
access, we were able to replace the software running on
the scanner console, again allowing attackers to smuggle
contraband past the device. On the other hand, we were
unable to compromise the firmware on the system control
board, a fact we attribute to the separation of concerns
embodied in, and to the simplicity of, the scanner design.

The root cause of many of the issues we describe
seems to be failure of the system designers to think ad-
versarially. That failure extends also to publicly available
evaluations of the Secure 1000’s effectiveness. Addi-
tionally, the secrecy surrounding AITs has sharply lim-
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ited the ability of policymakers, experts, and the gen-
eral public to assess the government’s safety and security
claims.

Despite the flaws we identified, we are not able to cate-
gorically reject TSA’s claim that AITs represent the best
available tradeoff for airport passenger screening. Hard-
ened cockpit doors may mitigate the hijacking threat from
firearms and knives; what is clearly needed, with or with-
out AITs, is a robust means for detecting explosives. The
millimeter-wave scanners currently deployed to airports
will likely behave differently from the backscatter scanner
we studied. We recommend that those scanners, as well
as any future AITs — whether of the millimeter-wave or
backscatter [34] variety — be subjected to independent,
adversarial testing, and that this testing specifically con-
sider software security.
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A Radiation Dose Assessment
The Secure 1000 generates low-energy X-rays (50 kVp at
5 mA tube accelerating potential) to construct its images.
Although this output is low, the machine still produces
ionizing radiation, and careful assessment is necessary to
ensure public safety.

The imparted dose has been scrutinized recently by
various agencies applying a number of experimental de-
signs [2, 14, 53]. These findings have been consistent with
manufacturer claims [38] that per-scan radiation exposure
to subjects is nonzero, but is near natural background
levels. Additionally, there have been claims and counter-
claims surrounding the distribution of dose within the
body, with some groups raising concerns that the scanner
might impart a minimal deep dose but an overly large skin
dose to the subject [5, 40, 43].

To shed light on this question, we executed a brief as-
sessment of the radiological output of the scanner using
Landauer Inc.’s InLight whole body dosimeters. These
dosimeters give a shallow dose equivalent (SDE), a deep
dose equivalent (DDE), and an eye lens dose equivalent.
They are analyzed using optically stimulated lumines-
cence (OSL), an established dosimeter technology [9, 20].
We read the results using Landauer’s proprietary Mi-
croStar dosimeter reader.

We used a simple experimental design to quantify the
dose output: we arranged 21 dosimeters on a RANDO
chest phantom positioned upright on a wooden table with
a neck-to-floor distance of 144 cm and a source-to-detec-
tor distance of 66 cm, approximating the conditions of a
normal scan. The dosimeters give a more accurate dose
representation if the incident beam is perpendicular to
the detector material. In this case, the dosimeters were

attached to the chest phantom without regard for beam
angle, and so no correction factors were implemented;
geometry issues were expected in the results.

The InLight dosimeters require a total dose of at least
50 µSv to be accurate. To irradiate them sufficiently, we
performed 4033 consecutive single scans in the machine’s
normal operating mode. (Each screening consists of at
least two such scans: one front and one rear.) A scan was
automatically triggered every 12 s and lasted 5.7 s, for a
total beam-on time of 6 h 23 min.

We read the dosimeters the following day. A small loss
of dose due to fade is expected, but for the purpose of this
study we regard this decrease as negligible. We applied
the standard low-dose Cs-137 calibration suggested by
Landauer. Initially, we were concerned that the low en-
ergy output of the scanner (50 kVp tube potential emits
an X-ray spectrum centered roughly in 16 keV–25 keV)
would lead to inaccurate readings on the InLights, but
since the dosimeters are equipped with filters, the dose
equation algorithm in the MicroStar reader can deduce
beam energy without a correction factor applied to the
662 keV energy from the original calibration.

The average DDE per scan for all the dosimeters was
calculated to be 73.8 nSv. The average SDE per scan
was 70.6 nSv, and the average eye-lens dose per scan was
77.9 nSv. The standard deviation (σ ) and the coefficient
of variation (CV) value of all the dosimeters for the DDE
were 0.75 and 0.10 (generally low variance) respectively.
For the SDE and lens dose, σ and the CV were 1.26 and
0.16, and 2.08 and 0.29, respectively.

An unexpected aspect of our results is that the measured
DDE is higher than the SDE, and this occurrence is worth
further examination. The irradiation geometry of the
dosimeters could possibly explain this irregularity. It
might be productive to conduct further experiments that
account for this effect.

The doses we measured are several times higher than
those found in the recent AAPM Task Group 217 re-
port [2], but they still equate to only nominal exposure:
approximately equal to 24 minutes of natural background
radiation and below the recommendation of 250 nSv per
screening established by the applicable ANSI/HPS stan-
dard [3]. A person would have to undergo approximately
3200 scans per year to exceed the standard’s annual expo-
sure limit of 250 µSv/year, a circumstance unlikely even
for transportation workers and very frequent fliers.
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ROP is Still Dangerous: Breaking Modern Defenses

Nicholas Carlini David Wagner
University of California, Berkeley

Abstract
Return Oriented Programming (ROP) has become the ex-
ploitation technique of choice for modern memory-safety
vulnerability attacks. Recently, there have been multi-
ple attempts at defenses to prevent ROP attacks. In this
paper, we introduce three new attack methods that break
many existing ROP defenses. Then we show how to break
kBouncer and ROPecker, two recent low-overhead de-
fenses that can be applied to legacy software on existing
hardware. We examine several recent ROP attacks seen in
the wild and demonstrate that our techniques successfully
cloak them so they are not detected by these defenses. Our
attacks apply to many CFI-based defenses which we argue
are weaker than previously thought. Future defenses will
need to take our attacks into account.

1 Introduction

The widespread adoption of DEP, which ensures that all
writable pages in memory are non-executable, has largely
killed classic code injection attacks. In its place, Return
Oriented Programming (ROP) has become the attack tech-
nique of choice for nearly all modern exploits of memory-
safety vulnerabilities. In a ROP attack, the attacker does
not inject new code; instead, the malicious computation
is performed by chaining together existing sequences of
instructions (called gadgets) [27].

In response to this, there has been a large effort to find
defenses that protect against ROP attacks. Defenses fall in
to two broad categories. The first category of defenses re-
lies on recompilation to remove potential gadgets from the
program binary or to enforce the Control-Flow Integrity
(CFI) [4] of the binary. The other category of defenses at-
tempts to transparently protect legacy binaries using run-
time protections.

In this paper, we present three attack methods that can
be combined to break many existing ROP defenses from
both of these categories. Our first method breaks the con-
ventional wisdom that it is difficult to mount attacks in
a fully call-preceded manner, that is, where the instruc-
tion before each gadget is a call. Many CFI-based de-
fenses rely upon policies similar to this. Next, we show

that while most existing ROP attacks consist entirely of
short gadgets, it is possible to mount attacks which con-
sist of long gadgets as well. Therefore, defenses that dis-
tinguish a ROP attack from normal execution by looking
for a sequence of short gadgets are not secure. Finally,
we examine defenses that record a limited history of the
execution state of a process. We show it is possible to
effectively clear out any history kept by these defenses,
rendering them ineffective.

We use these attacks to break two recent state-of-the-
art runtime defenses, kBouncer [23] and ROPecker [11].
These defenses are particularly interesting because they
can be deployed on existing hardware, have nearly zero
performance overhead, and do not require binary rewrit-
ing. kBouncer [23] takes advantage of hardware support
for recording indirect branches and examines this history
at each system call in order to prevent ROP attacks from
issuing any malicious syscalls. ROPecker [11] extends
kBouncer in novel ways. In addition to checking for any
signs of a ROP attack at each system call, ROPecker ad-
ditionally checks for attacks at various points throughout
program execution.

We show that both of these schemes are broken. While
they may detect existing ROP attacks, we give ways of
modifying a ROP attack so it will not be detected by ei-
ther of these defenses. The attacks we develop in break-
ing these defenses are also applicable to many recent CFI-
based approaches, and discuss how our work can be ap-
plied to four in particular.

This paper makes three contributions:

1. We introduce three novel ROP attacks methods that
demonstrate weaknesses in multiple defenses.

2. We demonstrate these attacks on kBouncer and
ROPecker, two state-of-the-art ROP defenses. We
modify real-world exploits, which these defenses
were shown to prevent, to bypass them.

3. Our attacks provide a baseline set of attacks that can
be used to evaluate future ROP defenses.
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2 Introduction to ROP Attacks

Return Oriented Programming (ROP) [27] is a general-
ization of return-into-libc [24] attacks where an attacker
causes the program to return to arbitrary points in the
program’s code. This allows one to perform malicious
computation without injecting any new malicious code by
only controlling the program’s execution flow. It has been
shown that ROP can perform Turing-complete computa-
tion [30]. We provide a very brief overview of return ori-
ented programming in this section. For a more complete
introduction, we refer the reader to [7, 25, 27].

A ROP exploit consists of multiple gadgets that are
chained together. Each gadget performs some small com-
putation, such as loading a value from memory into a reg-
ister or adding two registers. In a ROP attack, the attacker
finds gadgets within the original program text and causes
them to be executed in sequence to perform a task other
than what was intended.

Gadget chaining is achieved by influencing indirect
jumps executed by the program. Each gadget begins with
some useful instructions (e.g., mov rax, rbx) and ends
with an indirect jump (e.g., ret or jmp *rcx). The at-
tacker chains gadgets together by controlling the target of
a gadget’s indirect jump to point to the beginning of the
next gadget in the sequence. In a classic ROP attack, gad-
gets end with the ret instruction and the attacker chains
gadgets by writing appropriate values over the stack.

Many ROP attacks use unintended instruction se-
quences. Because x86 instructions are variable-width, it
is possible that a potentially useful gadget sequence exists
when starting at an offset that was not intended to be the
beginning of an instruction. Our attacks do not rely on
unintended instructions.

In Figure 1, we give an example ROP exploit that adds
0x32400 to the value stored at address 0x4a304120. This
exploit begins by initializing two registers. It then reads
the value stored at address eax, stores it into eax, adds
ebx to eax, and stores this value back into memory.

Address Space Layout Randomization (ASLR). One
common defense for ROP attacks is ASLR which works
by randomly moving the segments of a program (includ-
ing the text segment) around in memory, preventing the at-
tacker from predicting the address of useful gadgets. De-
spite ASLR, ROP attacks are still common in the wild for
two reasons. First, if even a single module has ASLR
disabled, a ROP attack may be formed around only the
code in that module. Second, an attacker may use an in-
formation disclosure vulnerability to de-randomize some
module [29].

Figure 1: An example ROP exploit which adds the con-
stant 0x32400 to the word at address 0x4a304120. At the
left is the stack of the process with the addresses of the
gadgets and the values to initialize the registers. At right
are the instructions at those addresses.

3 Our Three Attack Primitives

We have identified three building blocks that are useful in
attacking ROP defenses:

• Call-Preceded ROP. Normally, in a well-structured
program, every ret instruction returns back to an in-
struction that immediately follows a corresponding
call. ROP attacks deviate from this pattern. There-
fore, many ROP defenses ensure that every ret in-
struction always targets an instruction that immedi-
ately follows some call. Our attack demonstrates
that this policy is not sufficient: ROP attacks are still
possible even when returns are restricted in this way.

• Evasion Attacks. It is common for defenses that
monitor program execution at runtime to have a
method of classifying execution as either “normal
execution” or “gadget”. Evasion attacks involve us-
ing gadgets that the defense classifies as “normal.”

• History Flushing. Some defenses maintain only a
limited amount of history about execution and in-
spect this history periodically. We can bypass de-
fenses with this property by flushing the true history
(cleansing the history of all signs of the ROP attack)
and then presenting a new, fake view of history that
the defense will not classify as an attack.
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Each of these three attack primitives bypasses a common
defense mechanism. This section gives more detail about
each of these three primitives. We then combine them in
different ways to mount our full attacks on kBouncer [23]
and ROPecker [11] in the following sections.

3.1 Call-Preceded ROP

The call-preceded policy. We say that an instruction is
call-preceded if the instruction immediately preceding it
is a call instruction. Many ROP defenses [6, 23, 32, 34]
apply the following policy: any time a ret instruction is
executed, its target must be a call-preceded instruction.

This policy seems helpful for defending against ROP
attacks. In well-structured programs, calls and returns
usually come in pairs. Any address that is returned to
was almost always pushed by a call instruction previ-
ously. In a ROP attack, gadgets use the ret instruction
to chain gadgets together, so this policy dramatically lim-
its the space of candidate addresses where gadgets can be
chosen from. For instance, one evaluation found that only
6% of gadgets are call-preceded [23]. Thus, one might
intuitively expect the call-preceded policy to significantly
increase the difficulty of mounting a ROP attack.

Using only call-preceded gadgets. Despite this intu-
ition, we find that it is possible to mount ROP attacks in
a fully call-preceded manner, where all gadgets start at a
call-preceded address. The key idea is we allow gadgets to
be more complex. This increases the space of candidate
gadgets enough to find many call-preceded gadgets. By
allowing our gadgets to be long and contain direct jumps
or even conditional jumps, we find many more useful gad-
gets. In our experiments (see § 8.2), 70KB of binary code
was sufficient to mount fully call-preceded ROP attacks.

3.2 Evasion Attacks

Classification-based defenses. Other ROP defenses
work by monitoring the runtime behavior of a process and
try to detect ROP attacks by classifying segments of ex-
ecution as either “gadget” or “non-gadget”, using some
signature that is intended to characterize attributes of ROP
gadgets. One of the most common approaches used to
classify execution, as used in [11, 23], uses a length-based
classifier. Existing ROP attacks tend to consist of long se-
quences of short gadgets, and so these defenses use this as
their heuristic to classify gadgets.

These defenses separate the execution trace into seg-
ments of ordinary instructions, separated by indirect in-
structions (e.g., returns, indirect jumps). A length-based
defense classifies each segment as gadget or non-gadget
by examining its length: a short segment is classified as a
gadget and a long segment as a non-gadget. If the defense

observes too many short segments within some window,
it reports a ROP attack.

Using gadgets that look like benign execution. A
powerful attack on such defenses is to look for instruc-
tion sequences that would be classified by the defense as
a non-gadget, but that perform some useful computation.
These can then be used as stealthy gadgets in a ROP at-
tack.

Length-based classifiers are particularly easy to evade.
A simple attack is to use long gadgets, since these will be
incorrectly classified by the defense as non-gadget. We
demonstrate that it is possible to mount a ROP attack that
contains a mixture of both short and long gadgets, thus
evading many published detectors.

More generally, one could imagine future ROP de-
fenses that rely on other heuristics for distinguishing ROP
attacks from normal program execution. An evasion at-
tack is one that will be classified by the defense as normal,
but in reality allows the attacker to mount a ROP attack.

3.3 History Flushing
History inspection defenses. There are many runtime
defenses that inspect program execution at different points
throughout its execution. Typically, these defenses keep
only a limited amount of history about the program’s exe-
cution, and so must decide whether an attack is occurring
or not based upon information saved in the recent past.
Usually, performance considerations rule out constantly
monitoring all execution, so this inspection process is only
invoked at certain points (e.g., when the application issues
a system call).

Using gadgets to hide history. Such defenses can be
fooled by preventing them from seeing any evidence of a
ROP attack. We perform the ROP attack when they are
not watching, periodically performing enough innocuous
actions to wipe the history clean of any evidence of the
past ROP attack before the defender’s inspection process
is invoked. While the defender is running, we do not at-
tempt to make progress towards our attack goal. Instead,
we insert effective no-op instructions so that the defender
does not see any evidence of attack.

Though similar, this attack is different from an evasion
attack. An evasion attack attempts to make progress in
the attack while being continuously monitored by the de-
fender. In a history flushing attack, there is a period of
time when the defender is not running, when we make
forward progress. Before the defender runs, we clear out
this history so it is not visible to the defender, but do not
attempt to make forward progress while the defender is
watching. After the defender has made its observation,
we continue with our attack.

For instance, kBouncer uses the Last Branch Record, a



388 23rd USENIX Security Symposium USENIX Association

hardware feature that records the 16 most recent indirect
jumps. Our history-flushing attack on kBouncer performs
the bulk of the ROP attack, then performs 16 innocuous
indirect jumps to remove the evidence of the ROP attack
from the Last Branch Record. As we show (§ 8.3), this
prevents kBouncer from detecting the ROP attack.

4 Attack Goal & Threat Model

Attack Goal. The goal of each of our attacks, with-
out loss of generality, is to issue a single syscall. It
is usually enough to issue a mprotect (on Linux) or
VirtualProtect (on Windows) system call to make a
page in memory both writable and executable; after that,
exploitation is trivial.1

This is not the only possible goal an attacker may have.
There are other methods of attack that do not involve is-
suing system calls [10]. We do not consider them in
this work, although our results suggest these attacks are
equally possible, and in some cases even trivial.

Threat Model. At a minimum, we assume that an at-
tacker has a known exploit that allows control of the in-
struction pointer in the future. A stack overflow is suf-
ficient; a heap overflow that allows an arbitrary memory
write to a function pointer is also sufficient; as is directly
overwriting other function pointers. We assume the at-
tacker knows that the defense is present and knows how
it works. We assume that DEP is enabled, so no page is
both writable and executable. We focus on the case where
the program contains at least one library whose executable
region has not been randomized with ASLR, or where all
modules have ASLR enabled but there exists a memory
disclosure vulnerability, as this is the situation that mod-
ern ROP attacks typically exploit.

We also assume that there exists some way of running
arbitrary code if the new defenses were not present. We
do not claim to create attacks that allow running arbitrary
code in all situations; we only hope to show that if it is
possible to mount a ROP attack when the defense is not
present, then it is possible when it is present.

5 Defeating kBouncer

5.1 Overview of kBouncer

Pappas et al. introduced kBouncer [23], a scheme that uses
indirect branch tracing to detect ROP attacks. At a high
level, kBouncer periodically pauses execution of the pro-
gram, inspects recent execution history, and then either
allows the process to proceed or kills it.

1Alternatively, if we can execute the execve syscall, we can spawn
a second process running an arbitrary program.

Figure 2: Overview of our history hiding attack on
kBouncer. We mount a traditional ROP attack, insert a
number of innocuous gadgets to hide this from kBouncer,
and finally restore registers and issue the desired syscall.

kBouncer uses the Last Branch Record (LBR), a fea-
ture of modern Intel CPUs, to inspect the last 16 indirect
branches taken each time the program invokes a system
call. kBouncer checks two properties of the history stored
in the LBR. First, it verifies that all ret instructions in
the LBR returned to a call-preceded address. Second, if
the eight most recent indirect branches are all gadget-like,
the process is killed. kBouncer defines a sequence of in-
structions as gadget-like if there exists a flow of execution
from the first instruction executed to any indirect branch
in under 20 instructions.2 kBouncer is very efficient: it
only needs to check the LBR during system calls and only
checks 16 different entries in the LBR.

5.2 History Hiding Attack

5.2.1 Attack Overview

We dub our first attack on kBouncer the history hiding at-
tack (see Fig. 2). At the core of kBouncer is the assump-
tion that an attack can be detected by inspecting the state
of the process at the syscall interface, after the attacker
has already gained control of the system for a potentially
unbounded period of time. After mounting a traditional
ROP attack to prepare the state of memory (and possibly
defeat ASLR, if required), we use a history flushing attack
to clear evidence of the attack from the LBR. Finally, we
use an evasion attack and a few carefully-chosen gadgets
to issue the syscall.

We call a process state valid if kBouncer’s inspection
method will not detect an attack when run from that state.
A state is valid if all of the entries in the LBR whose
source is a ret instruction have a call-preceded destina-
tion, and if at least one of the last eight entries has more

2kBouncer cannot observe the actual path of execution taken dur-
ing a sequence of instructions between two indirect jumps, so it cannot
count the number of instructions actually executed between two indirect
jumps. It can only observe the beginning and end of that sequence. For
this reason, kBouncer conservatively treats a sequence as gadget-like if
it starts with an instruction that can reach an indirect jump in less than
20 instructions.
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than 20 instructions between source and the nearest indi-
rect branch. We show that it is easy to return to a valid
state while simultaneously maintaining control of the pro-
cess. The steps of the history hiding attack are as follows:

Initial exploitation. Initially, we mount a traditional
ROP attack in whichever way is easiest. We ignore the
fact that kBouncer is running and use any gadgets we
would like, call-preceded or not. We then prepare mem-
ory so we are ready to make the syscall, but we do not
invoke it yet.

Hide the history. At this point in our exploit, we are
ready to make the syscall, but if we were to actually is-
sue it, kBouncer would detect an attack. To fix this, we
must bring the process into a valid state without losing
our progress from the prior step. To do this we use the
history-flushing primitive discussed previously. As a side
effect of using the flushing primitive, the registers may be
clobbered, but important memory locations will remain
unchanged.

Restore registers and issue the system call. After
bringing the process into a valid state, we restore the regis-
ters to their desired values while maintaining a valid state.
Then, we issue the system call. This is via an evasion
attack: because the task is relatively simple, it can be ac-
complished with fewer than 8 call-preceded gadgets.

5.2.2 Initial Exploitation

This step prepares memory to make it as easy as possi-
ble to issue the syscall in as few gadgets as possible af-
ter the history has been flushed. In particular, we pre-
pare all of the arguments for the system call and save
them in some easily recoverable location. We make no
restrictions on the methods the attacker may use during
this step of our attack. Because we are going to hide our
history, kBouncer will not observe anything performed in
this step. Since ROP gadgets are Turing-complete, we are
able to perform arbitrary computation during this phase,
so this step is straightforward to implement.

5.2.3 Hiding the History

Hiding history through LBR flushing. We use a
history-flushing primitive, built from two gadgets (Fig. 3),
to remove all traces of our attack from the LBR:

1. A short flushing gadget: a simple call-preceded gad-
get that performs a ret, and ideally does not modify
many registers.

2. A long termination gadget: a call-preceded gadget
that is long enough for kBouncer to not classify it
as a gadget: there must be at least 20 instructions

(1)

pop ebp

ret

(2)

jmp A

...

A: mov eax,3

ret

(3)

cmp eax,6

jbe B

...

B: ret

(4)

xor eax,eax

ret

(5)

mov [eax],0

ret

(a) Flushing Gadgets

add [esp+17Ch],ebx

mov ebx,[esp+17Ch]

sub ebx,ebp

jmp A

...

A: add [esp+64h],ebx

jmp B

...

B: mov esi,[esp+1C0h]

lea eax,[esi*8-4]

sub eax,[esp+64]

and eax,7h

mov edi,[esp+64]

lea eax,[edi+eax+4]

shr eax,3

cmp eax,esi

jbe C

...

C: mov eax,[esp+1C0h]

add esp,19Ch

pop ebx

pop esi

pop edi

pop ebp

ret

(b) Termination Gadget

Figure 3: Examples of the two types of gadgets used by
our history-hiding attack on kBouncer. A flushing gad-
get flushes the contents of the LBR. A termination gadget
brings the system into a valid state.

along every possible control path from the start of
this gadget to any indirect branch.

We use these two gadgets as follows. First, we repeat-
edly use the flushing gadget to completely clear the con-
tents of the LBR until it only contains the flushing gadget
repeated 16 times. Though the LBR has been flushed and
contains no history of the previous ROP attack, the state
is still not valid. If kBouncer were to be invoked at this
point, every entry in the LBR would be classified as a gad-
get by kBouncer and an attack would be detected.

We now use the termination gadget. The purpose of this
gadget is to bring the LBR into a valid state by making at
least one of the last eight entries in the LBR have length
greater than 20. That is, the termination gadget is used
to terminate kBouncer’s backwards search for gadget-like
sequences. We make no assumptions about the register
state after the termination gadget is executed: the only
requirement is that after we use it, we still have control of
instruction flow.
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4a833dd4 dec ecx

4a833dd5 fmul [4A88BBC8h]

4a833ddb jne 4A833DD4

Figure 4: An example of a context switch gadget found in
icucnv36.dll.

Note that during the first step where the attacker pre-
pares memory, the attacker may perform arbitrarily com-
plex calculations. This may make it possible to initialize
registers and memory so that executing the flushing gad-
gets and then the termination gadget results in exactly the
desired state to issue the syscall. However, this is not al-
ways possible. For example, the termination gadget may
set eax to 0, but issuing the syscall may require eax to
be 7. Our attack handles this situation by later restoring
register state (described below).

Because the termination gadget is over twenty instruc-
tions long and might contain conditional branches, it is
sometimes necessary to initialize registers and memory to
meet the preconditions for successful execution of the ter-
mination gadget. First, we need to ensure that any condi-
tional branches in the termination gadget will be followed
in a specific manner. Second, memory reads and writes
must not fault and crash the process. This is often as easy
as initializing registers to specific values before using the
termination gadget. We have found that termination gad-
gets are very common, and that it is often easy to find
termination gadgets that perform only a few conditional
branches and memory reads and writes (see § 8.3.1).

History hiding by itself does not defeat kBouncer, but
it simplifies the attacker’s job from expressing the entire
attack using call-preceded gadgets to expressing only the
final step of the attack using call-preceded gadgets.

Hiding history through context switching. We also
found an alternative way to flush history. The LBR is
shared across all user-space processes. This lets us flush
the LBR using a single gadget, the context switch gad-
get. A context switch gadget is one that will run for many
seconds and will not contain any indirect branches. The
simplest way to find such a gadget is to look for loops that
perform a very limited computation using only registers,
see Fig. 4 for one such example.

To flush the LBR, we call the context switch gadget
once. Due to the number of cycles this gadget takes to ex-
ecute, it is almost certain that there will be several context
switches to other user threads during its execution. When
this happens, the other thread will write its own entries to
the LBR, flushing all history of our prior attack. Even-
tually, when our context switch gadget finishes, the LBR
will be in a valid state as long as the other process was not
under attack, as the LBR is now full of innocuous entries

from the other process.
Future hardware could save and restore the LBR on

context switches, which would prevent this method of his-
tory flushing. Therefore, we did not use this approach in
our case studies (§ 8); instead, we used flushing and termi-
nation gadgets, which would suffice to hide history even
if the LBR was saved and restored on each context switch.

5.2.4 Restoring Registers with Returns

We must now restore the registers to their desired values
in order for the syscall to proceed. This is by far the sim-
plest step and can be usually be accomplished with a few
gadgets that pop register values off the stack. kBouncer
will be able to observe each gadget we use, so each one
must be call-preceded and we must use fewer than eight.

This step is often very easy because of the x86 calling
convention: the procedure being called must restore al-
most all of the registers, so procedures tend to begin by
pushing all of the registers onto the stack and end by pop-
ping those values off to restore them. This allows us to
find a gadget that pops all the registers off the stack and
then returns. Usually, we can find all the (call-preceded)
gadgets we need in this way.

5.2.5 Restoring Registers without Returns

There are other ways to restore register state. We now
discuss four alternative methods. The first two are existing
techniques that can be applied here, but in our experience
are difficult to apply in practice due to the fact that we
must use fewer than eight gadgets. We have found the
later two techniques more applicable in practice.

ROP without return instructions. Checkoway et al.
found it is possible to mount a ROP attack by look-
ing for a pop followed by an indirect jump (e.g.,
pop edx; jmp *edx) [8]. This instruction sequence is
functionally identical to a ret, and so can simply be used
in its place. However, these sequences are less common.

Jump Oriented Programming (JOP). JOP attacks use
register-indirect jumps to chain gadgets together. Unfor-
tunately, each useful gadget must be followed by a dis-
patcher gadget, which is used for chaining. Since we must
restore register state with at most eight gadgets, if we want
to use JOP, we are limited to four useful JOP gadgets.

Using Non-Call-Preceded Gadgets. Occasionally, it
may be easier to use non-call-preceded gadgets. We can
invoke a non-call-preceded gadget using a reflector gad-
get. A reflector gadget is a call-preceded gadget that ends
in a register-indirect jump; it can be used to jump to any
gadget we like, call-preceded or not. This is because
kBouncer imposes no constraints on indirect jumps. Our
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experience is that this trick is rarely needed in practice,
but sometimes it makes constructing the attack easier.

Call Oriented Programming (COP). We have found
an alternate method of mounting a ROP-like attacks with-
out using ret instructions. We call our approach Call-
Oriented Programming (COP). Instead of using gadgets
that end in returns, we use gadgets that end with indirect
calls. This may at first seem trivially similar to jump-
oriented programming, but there is one important distinc-
tion: indirect calls are usually memory-indirect (the lo-
cation to which control is transferred is determined by
a value in memory, not directly by the value of a regis-
ter). As a result, COP attacks do not require a dispatcher
gadget. In a COP attack, gadgets are chained together by
pointing the memory-indirect locations to the next gadget
in sequence. The initialization of these memory locations
can be done in advance.

This allows our attack to set up these memory locations
before the history hiding, then restore register state using
COP gadgets. As long as fewer than eight COP gadgets
are used, kBouncer will detect no attack. When mount-
ing a COP attack, it is trivial to directly issue the desired
system call as well: the final gadget in the sequence will
point to the system call to be issued.

We have found that memory-indirect calls, and in par-
ticular COP gadgets, are common. They are even more
common than call-preceded gadgets that end in a ret.
There are two reasons why this is the case. First, with dy-
namically linked libraries, all calls to functions outside of
the current module are indirect calls, because the function
location is not known in advance. Second, most object-
oriented code relies on memory-indirect calls (e.g., the
vtable in C++).

COP attacks do not eliminate the need for ret-based
gadgets. Initializing a COP attack is much more difficult:
the attacker must have control of program flow, must over-
write specific indirect-call locations, and must control the
stack. This usually is not possible with a single exploit.
Therefore, it is natural to combine a ROP attack (for ini-
tial setup) with a COP attack (for restoring registers).

5.2.6 Issuing the System Call

The final step of our attack is to issue the desired syscall.
We usually accomplish this by calling the appropriate
libc or kernel32 wrapper function.

There is one complication. We cannot simply return
directly to the beginning of the desired function (e.g.,
mprotect, VirtualProtect) as a normal ROP attack
would. When kBouncer is in place, this is not possible:
the attack would fail because the start of this function is
not call-preceded. We have found three different ways to
call a function without directly returning to it.

call [7C37A094]

A: mov eax,[_osplatform]

jmp B

...

B: dec eax

neg eax

sbb eax,eax

and eax,103

lea ecx,[ebp-0Ch]

push ecx

inc eax

push eax

push [EBP-8]

push [EBP-4]

call [VirtualProtect]

Figure 5: A call-preceded call to VirtualProtect in
msvcr71.dll. The attacker can return directly to A.

1. We can use a reflector gadget: a call-preceded gadget
that ends with a register-indirect jump. This allows
us to simply set a register to point to the function we
wish to call and then return to the reflector gadget.
This is the simplest approach if a reflector gadget can
be found.

2. It is still possible to exploit the desired function even
if no reflector gadgets are available. This is achieved
by finding an call to the desired function somewhere
in the program’s code and looking backwards in the
instruction sequence for a preceding call. Fig. 5
shows an example where the msvcr71.dll binary
directly calls VirtualProtect.

3. It is sometimes possible to return into the middle of
a desired function, right after a call instruction. For
example, execv() launches a shell with a string and
an array of arguments (Fig. 6). If we initially initial-
ize rax to contain a valid environment pointer, we
can call execv by returning directly to <execv+18>,
which is call-preceded.

Any of these can be used to complete our attack.

5.3 Evasion Attack
Our history hiding attack breaks kBouncer by taking ad-
vantage of its limited history. If kBouncer were extended
to have a complete view of history, would it become more
effective? We show that, even if the LBR were of infinite
size, kBouncer could still be broken by an evasion attack.

Our attack is similar to the history hiding attack (§ 5.2),
except that the initial preparation phase is mounted us-
ing only call-preceded gadgets. This eliminates the need
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<excve>:

push rbp

mov rbp,rsp

push r14

push rbx

mov r14,rsi

mov rbx,rdi

call _NSGetEnviron

mov rdx,[rax]

mov rdi,rbx

mov rsi,r14

call execve

mov eax,-1

pop rbx

pop r14

pop rbp

ret

Figure 6: Disassembly of the execv function in libc on
our system. The call to NSGetEnviron allows a call-
preceded return directly into this function.

for a flushing gadget, the only piece that an infinite-LBR
kBouncer would preclude. Therefore, our attack consists
of a (call-preceded) setup, a (call-preceded) termination
gadget, followed by (call-preceded) register restoration
and syscall.

This yields a successful evasion attack on kBouncer.
By using only call-preceded gadgets and by breaking up
the chain of short gadgets with a long termination gad-
get, kBouncer can see the entire attack but still will not
recognize it as an attack. Our experiments show that if
over 70KB of program text is available, then there are
enough call-preceded gadgets that this attack is possible
(see § 8.2).

6 Defeating ROPecker

6.1 Overview of ROPecker

ROPecker [11] is a ROP defense that builds on ideas
found in kBouncer. ROPecker differs from kBouncer by
running its inspection method more frequently and in-
specting the program state more thoroughly at the time
of inspection. The actual policy it enforces is very similar
to the kBouncer policy.

In ROPecker, only a few pages are ever marked exe-
cutable at one time. We call these pages the executable
set. Whenever a page not in the executable set is exe-
cuted, a page fault is generated and ROPecker pauses pro-
cess execution to check for an attack. If ROPecker does
not detect an attack, it marks the new page as executable,
marks the least recently executed page as non-executable,

and resumes the process. ROPecker also runs its detector
whenever the process invokes a syscall as kBouncer does.

ROPecker’s detector is more sophisticated than
kBouncer’s in that it looks at both the recent past and
projects forward into the near future. Similar to kBouncer,
ROPecker classifies the current state as an attack if there
is a long chain of gadget-like sequences in the LBR (the
recent past). In addition, ROPecker attempts to emulate
what will happen in the near future once the process is re-
sumed. It counts the number of gadget-like sequences that
are about to execute. If the sum of the number of gadgets
found in the LBR and the number of gadgets looking for-
ward exceeds some threshold, ROPecker classifies this as
an attack.

ROPecker’s emulation works by disassembling the in-
struction stream from the instruction that is about to ex-
ecute when the page fault occurs. If there is a short
sequence of instructions that leads to an indirect jump,
ROPecker classifies this as a potential gadget. ROPecker
will then emulate the effects of each of the instructions
leading to the indirect jump in order to compute where this
jump will go. ROPecker follows this indirect jump and
starts disassembling again. When it reaches an instruction
where there is not a short sequence of instructions leading
to an indirect jump, it stops the search. ROPecker then
counts the number of indirect jumps followed, and classi-
fies each of those as gadgets.

ROPecker verifies that from the current execution point
there are not 11 gadget-like sequences of instructions.3

ROPecker classifies an instruction sequence as a gadget if
it contains six or fewer instructions ending in an indirect
branch, with no direct or conditional branches along the
way.

6.2 The Repeated History Hiding Attack

6.2.1 Attack Overview

We show how to break ROPecker using a repeated his-
tory hiding attack. This attack repeatedly invokes the
history-hiding primitive, introduced in § 3.3, just before
ROPecker’s detector is about to execute. We again define
a state to be valid if the inspection method will not detect
an attack. The state must be valid at two points in time:
whenever a new page is loaded in to the executable set and
whenever a syscall is executed.

Our attack alternates between three phases, as depicted
in Fig. 7. The loading phase loads useful pages into the
executable set. The attack phase invokes gadgets on these
pages. The flushing phase mounts the history hiding at-
tack from § 5.2 using only gadgets from the pages that are

3The ROPecker paper does not pick a specific parameter for the max-
imum number of gadgets that may execute consecutively. It suggests this
number is chosen between 11 and 16, so we conservatively pick 11. Our
attacks are made easier if a larger number is chosen.
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Figure 7: An overview of the repeated history hiding attack on ROPecker. Ln gadgets load page n. Lt loads the
termination gadget. Gn invokes a gadget on page n. F is a short flushing gadget, and T is a long termination gadget.

in the executable set. We may need to execute each of
these three phases multiple times to achieve our goal. We
conclude with one final step which actually issues the de-
sired syscall after restoring the required state. Because we
use only gadgets in the executable set during each attack
phase, ROPecker’s detector will execute only when new
pages are loaded, which allows us to reason about what
will be visible to ROPecker.

6.2.2 Attack Phases

Initialization. Prior to our attack, we insert a termina-
tion gadget, which will stop ROPecker from looking fur-
ther back in the LBR. This long termination gadget is
identical to the one used in the kBouncer attacks. This
ensures that when ROPecker next runs, it will not count
any functions on the call stack prior to initialization as
gadgets.

Loading Phase. We load useful pages into the exe-
cutable set by invoking a page load gadget on each page
we want added to the executable set. A page load gad-
get is any call-preceded gadget on that page, which has
two properties: first, it must leave the attacker with con-
trol of the instruction flow; and second, it must not crash
the process. These two requirements are not difficult to
meet: any useful gadget is also a page load gadget. The
ROPecker detector will run immediately before each page
load gadget is invoked. After invoking each set of page
load gadgets we call the termination gadget to prevent the
detector from looking forward any farther into the future.

ROPecker will not detect an attack because each se-
quence of page load gadgets is immediately preceded and
followed by a termination gadget. When a page fault oc-
curs, ROPecker will count the number of visible gadgets
looking backwards in the LBR and forwards as far as it
can see. Looking backwards will stop at preceding termi-
nation gadget, and looking forward will stop at the sub-
sequent termination gadget. Thus, ROPecker will count

the number of page load gadgets. By limiting the number
of consecutive page load gadgets, the attacker can evade
detection during this phase.

Attack Phase. Now that the useful pages have been
loaded, we can use any gadgets on these pages to mount
an attack, ignoring any defense which may be running. As
long as we use only gadgets on these pages, the defense
will never trigger.

Recall that these three phases are repeatedly executed,
so no one attack phase needs to perform the entire attack.
Instead, the attack can be distributed among multiple at-
tack phases, making each one simpler.

History Hiding. After invoking gadgets on these pages,
we now use the history flushing primitive before the de-
tection method next runs. We use the same method we
applied against kBouncer to clear the LBR. In particular,
we invoke a short flushing gadget enough times to fill the
LBR with innocuous entries, then invoke the long termi-
nation gadget (which was loaded previously). When the
ROPecker detector next runs, it will see no attack prior to
this point in time.

6.2.3 Segmenting the Attack Payload

When mounting this attack, we must carefully pick which
tasks to perform during each attack step. Because the
flushing and termination gadgets clobber some register
state between each attack step, it is important to pick small
independent operations for each step of the attack.

For any given attack, it may not be possible to modify
it to work as an attack which bypasses ROPecker. Instead,
attacks must be formed with ROPecker in mind. Each step
in the attack must be constructed to use only a limited
number of gadgets, so that its work can be saved before
loading in a new set of gadgets.

Often, we start by computing the address of the desired
libc function we wish to call (e.g., mprotect) either by
adding a constant to the address of some other function
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in libc, or by loading it directly. We store the result in
memory. In the next attack step, we compute the address
of the page we wish to mark as executable (typically on
the stack). We continue in this way, computing any other
needed constants in separate attack steps. We then restore
register values and call mprotect on the desired page.
Finally we can execute a traditional payload with data we
have written to this page.

6.2.4 Selecting Pages to Load

Since the executable set can contain only a few pages at
one time, we must choose these pages with care. The
naive approach is to select each page to load for one use-
ful gadget on that page, and call each gadget exactly once.
We have found that this simple method works well in
practice in most cases. Because the flushing and termi-
nation gadgets may clobber a few registers, we may need
reserve one or two of those gadgets to load and save reg-
isters to memory, so that a task can be partially completed
in one attack step.

A more advanced method is to pick pages that contain
multiple gadgets. In our evaluation, we found that in prac-
tice there tend to be many “useful” gadgets on the average
page. Thus, by selecting the pages carefully, we can find
pages with enough useful gadgets. This is enough that we
can attack ROPecker even when the size of its executable
set is limited to just one or two pages.

6.2.5 Issuing the Syscall

Once we have executed sufficient load/attack phases to set
up the state of the process, we append one final step to
actually issue the desired syscall. This step is not executed
multiple times: it is done only once at the very end.

During this step, we flush history, invoke the termina-
tion gadget, and then issue the syscall using one of the
three methods from § 5.2.6. We perform this step using
at most 10 gadget invocations so that ROPecker will not
detect an attack when it examines the LBR at the syscall.

Conveniently, it is possible to use any gadget in the
entire binary during this step, even if it is not contained
within the executable set. No page loading gadgets are
needed. This works because there will be at most 10
gadgets between the termination gadget and the syscall.
Thus, even though ROPecker’s detector may run during
this step (if we use a gadget that’s not in the executable
set), its count of the number of gadgets will be below 11,
the threshold for detecting an attack.

Note that, in particular, an attack which requires fewer
than ten gadgets to execute can skip the load/attack phases
and directly issue the syscall in this way.

6.3 The Evasion Attack

We now present the ROPecker evasion attack, an alter-
nate attack that would break ROPecker even if the size of
the executable set were reduced to just one page. As a
side benefit, in our experience the evasion attack makes
it easier to automate attacks in practice than the repeated
history hiding attack of § 6.2.

At a high level, the idea is that we will let ROPecker
inspect the execution of our attack at arbitrary points
in time. We ensure that no matter when its detector
runs, it will never detect an attack. We achieve this
through an evasion attack similar to the one presented on
kBouncer (§ 5.3).

The ROPecker evasion attack works by inserting a ter-
mination gadget in between every ten useful gadgets.
When the detector runs, it will check forward and back-
ward to count the number of gadgets in use; there will
be fewer than 11 gadgets, the threshold for detection, so
ROPecker will not detect the attack.

The authors of ROPecker note that this attack may be
possible in § VII(b) of their paper [11]. They propose a
mitigation for such an attack. We show that even their
mitigation is broken.

The ROPecker mitigation. ROPecker detects an attack
if there are more than ten consecutive gadgets. The ex-
tended version of ROPecker records how many gadgets
existed in previous runs of the detector. It detects an at-
tack if the number of gadgets which executed in the last T
runs is larger than some threshold. While it is possible for
there to be 10 sequential gadget-like returns in benign pro-
gram execution, it is unlikely for there to be 10 sequential
gadget-like returns T times in a row.

Conceptually, this is analogous to running the detec-
tion mechanism both forwards and backwards, allowing
up to T − 1 long gadgets before stopping the search. An
attack is detected if the number of gadgets found by this
extended search is greater than some threshold.

This defense does not help against our repeated history
hiding attack. In that attack, ROPecker only ever sees
as many gadgets as pages that are being loaded. This
constant is usually very small (e.g., two or four). The
ROPecker authors observed that benign execution does
occasionally execute four sequential gadget-like chains
(with frequency 0.58%). This frequency is large enough
that signaling an attack if there are four gadgets repeated
three times would cause too many false positives.

Breaking the mitigation. The extended version of
ROPecker can be broken by a simple modification of our
evasion attack: instead of invoking the termination gad-
get once, invoke it T times in a row. We alternate making
one step of useful progress (with ten useful gadgets) with
invoking the termination gadget T times. This prevents
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ROPecker from detecting consecutive long chains of gad-
gets. Instead, it sees a long chain followed by several short
chains, which will not trigger the defense.

Practicality. One might wonder whether evasion at-
tacks are practical. If, between every ten useful opera-
tions, we must potentially destroy our progress, can we
achieve any useful computation?

We found it is still possible to perform useful tasks even
when inserting a termination gadget (or, potentially multi-
ple termination gadgets) in between every ten useful gad-
get (see § 8.3). We save register state to memory before
each termination gadget and restore it afterwards. It is
only necessary to save and restore registers that are both
clobbered by the termination gadget and used by the rest
of our attack. In our experience, it is often possible to find
termination gadgets that only clobber one or two registers.
This allows for many gadgets that make forward progress,
with a few dedicated to saving and restoring state.

6.4 Attack Comparison
These two attacks are useful in different circumstances.
The most important difference is when the detection
mechanism runs. In repeated history hiding, the detection
only ever runs after a history flush, and so the defender
can never even see what the attacker is doing. In the eva-
sion attack, the defender is continuously monitoring the
attack progress. This leads to the key distinction between
the two attacks. In repeated history hiding, we have a very
limited set of gadgets, but may use them an unbounded
number of times before flushing. In the evasion attack,
we have all of the gadgets in the program available to us,
but must flush every ten gadgets.

7 Fixable Attacks on ROPecker

We now discuss several ways in which ROPecker is bro-
ken that our attack does not rely on. That is, the attacks
discussed in the previous sections work even if we improve
ROPecker’s detection mechanisms to prevent each of the
following specific attacks. We believe these modifications
are possible, and it is only the engineering difficulties of
obtaining a low overhead that explains why they are not
currently implemented. Because of this, we do not base
our previous attack on these fixable implementation is-
sues.

Gadget definition does not allow any branches.
ROPecker’s definition of a gadget is overly specific and
does not allow gadgets to contain either direct or con-
ditional branches. In comparison, we have found that
kBouncer’s definition of a gadget is strong: it is difficult to
find gadgets of length twenty or more that perform useful
computation.

ROPecker’s choice to not follow any direct or condi-
tional branches is a flaw that, while allowing for a more
efficient implementation, makes exploitation nearly triv-
ial. This decision allows an attacker to flush the LBR,
and to stop the forward-inspection algorithm, with a no-
op-like gadget that jumps directly to a return instruction.
This form of gadget is pervasive in program binaries and
allows for a much simpler termination gadget that does
not clobber any register state.

In fact, when evaluating the practicality of our attacks
on kBouncer before becoming aware of ROPecker, nearly
all of our exploits contained at least one useful gadget that
would not be classified as a gadget by ROPecker’s defini-
tion.

Gadget chain threshold is too short. ROPecker’s
choice to define gadgets as being a sequence of six or
fewer instructions makes it nearly trivial to find gadgets
that have a predictable behavior while still being classi-
fied as a non-gadget by ROPecker. For example, on 64-
bit systems, the gadget consisting of popping off registers
r10 through r15 followed by a ret is seven instructions
long: not only is this a useful gadget, it is very common.
ROPecker’s failure to recognize it as a gadget is a serious
limitation of ROPecker.

The set of risky system calls is not complete.
ROPecker’s set of risky system calls is too limited and
needs to be updated to more closely match those used
in kBouncer. Because ROPecker is designed for Linux
and kBouncer for Windows, we cannot simply replace one
with the other. However, other than performance reasons,
there is no reason to not defend all system calls.

8 Evaluation

The attacks discussed in the previous sections are prac-
tical. We evaluate these attacks by modify real-world ex-
ploits, as well as by demonstrating that only 70KB of code
is needed to mount purely call-preceded attacks.

8.1 Our Tool
We built a tool to assist our efforts in finding attacks on
real-world exploits. It does not automatically break ei-
ther of these two defenses, but assists in finding useful
gadgets. We wrote our tool as a 1K line Python pro-
gram. It takes as input a disassembled object file (from
objdump), and therefore only inspects intended instruc-
tion sequences: even though there may be unintended in-
struction sequences which are call-preceded, we ignore
these.4

4Even though ROPecker does not enforce gadgets are call-preceded,
we still use this tool to evaluate ROPecker, as we find it is sufficient to
identify useful sequences.
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Binary Setup Flush Syscall

diff 8 3 2
grops 4 3 4
lsof 12 2 3*
ltrace 4 2 2
grub-mkimage 4 4 3
strace 17 4 2*
pic 11 2 3
apt-get 14 3 2*
info 13 3 3*
apt-ftparchive 4 3 2

Table 1: The number of gadgets for the three steps in
our kBouncer attack for binaries from /usr/bin/. En-
tries marked with an asterisk have success probability of
≥ 99.99%, the rest with 100%.

Our tool first enumerates all potential call-preceded
gadgets. We implemented a simple symbolic execution
framework to determine the effects of each of these po-
tential gadgets. This system is not complete, but it mod-
els some of the effects of many common instructions.5 It
computes and outputs the path constraints that must hold
to follow the conditional branches in a gadget. It also
outputs the list of modified memory locations, accessed
memory locations, and the new values of updated regis-
ters at the end of execution.

The tool returns a list of gadgets sorted by ease of use:
gadgets with fewer conditional branches and fewer mem-
ory locations which must be valid rise to the top. Each
gadget is marked with a hint on how it might be useful
(e.g., that the gadget is a memory-load gadget, or that it
computes the sum of two registers). It also provides us
with a list of termination gadgets, sorted by ease of use
and the number of other registers they clobber.

8.2 Fully Call-Preceded Attacks
How practical are fully call-preceded ROP attacks? Our
measurements indicate that they are quite practical. The
Q ROP compiler [26] is able to mount a ROP attack in
80% of binaries over 20KB in size. Given that only 6% of
gadgets Q finds are call-preceded, we would expect that
with 333KB of binary, we could achieve similar results.
We actually found that it is possible to exploit 10 out of
10 programs we analyzed of size 70KB or larger.

We analyzed 10 binaries from /usr/bin on Ubuntu

5The most important deficiencies in our tool are as follows: we im-
plement only the thirty most-used instructions (covering 99% of instruc-
tions used in our binaries), we ignore segment registers, we do not track
several of the flags set by instructions, and we do not properly handle
referencing variable register widths. Despite this, we have found our
tool to be accurate in the vast majority of cases.

12.04. In particular, we selected the first 10 binaries that
have ASLR disabled and have more than 20k instructions
(70KB binary size). In all 10 cases, we were able to find
enough gadgets to mount a fully call-preceded history hid-
ing ROP attack on kBouncer. Table 1 shows, for each of
these ten binaries, the number of gadgets used for in each
of the three phases of our ROP attack. Attacks marked
with an asterisk have a success probability of ≥ 99.99%
due to the possibility of a module crossing a 32-bit bound-
ary. All other attacks have a 100% success probability.

In each of these binaries, we use only the code present
in the actual binary, not any other linked libraries. We are
not arguing that these binaries are vulnerable to attack; we
are only attempting to determine how much program text
is required to mount fully call-preceded attacks.

We believe there to be two main reasons why we were
so successful. First, we manually analyzed these binaries
in order to construct a ROP attack, whereas Q is an au-
tomated tool. However, given Q’s sophisticated analysis,
we do not believe this accounts for all of the difference.
We suspect that even though only 6% of gadgets are call-
preceded, they have more diversity and thus are dispro-
portionately likely to cover the space of different kinds of
gadgets that are needed.

8.3 Modifying Real-World Exploits
We now evaluate the difficulty of modifying real-world
exploits to bypass both kBouncer and ROPecker. To
choose our exploits, we pick the ROP attacks that were
shown to be prevented by kBouncer and ROPecker.

For kBouncer, we show how all four of these attacks
can be modified so kBouncer will not detect them.

We finally modify the one real-world exploit which
ROPecker is shown to prevent to bypass ROPecker.

8.3.1 kBouncer Exploits

We modified four real-world exploits to bypass kBouncer.
None of the modifications to these exploits took us sig-
nificant effort. Once we were able to reproduce the ex-
ploit on our machine, each exploit took under half of a
day’s worth of work to make it bypass kBouncer. Given
the long and difficult exploitation development process,
we do not think this is meaningfully harder, especially for
well-trained exploit developers.

MPlayer Lite r33063. This program [19] had a stack-
based buffer overflow vulnerability, which was ex-
ploited by overwriting the SEH pointer [20]. The
avcodec-52.dll does not have ASLR enabled. This
dll is 10MB, and contains plenty of gadgets: there were
748 potential termination gadgets with two or fewer con-
ditional branches. The first of these that we tried worked,
and was given previously in Fig. 3(b).
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Adobe Reader 9.3.4. This Adobe Reader exploit uses
a sophisticated JavaScript vulnerability and was built on
the Metasploit framework [1]. This exploit relied on
icucnv36.dll having ASLR disabled. This dll is
10MB and has 130 available termination gadgets with two
or fewer conditional branches. We created a ROP chain to
call VirtualProtect on a page and verified that code on
this page in memory could be executed.

Adobe Flash 11.3.300. An integer overflow caused this
vulnerability in Adobe Flash. This exploit was also built
with the Metasploit framework [2]. The exploit relied on
msvcr71.dll having ASLR disabled. This dll is 300KB
and has 64 available termination gadgets. In this exploit,
we were able to successfully change a page to be exe-
cutable and spawn another process.

Internet Explorer 8. The final exploit we modified was
in IE8 and also used Metasploit [3]. This exploit was
the most difficult for us to modify, and required a man-
ual stack-pivot to a controlled location so that we could
invoke VirtualProtect in a call-preceded manner. We
relied again on msvcr71.dll to spawn another process.

8.3.2 ROPecker Exploits

ROPecker was built as a Linux kernel module and was
shown to stop two exploits. One of these two exploits
by the authors is to exploit a 20-line example C program
with a trivial stack overflow from ROPEME [17]. The
other exploit is a real-world exploit in hteditor, which has
a published vulnerability [33] they verified they defend
against. Because they only evaluate their defense on one
binary, we have only this one binary to demonstrate our at-
tack on. We evaluate our two methods of attack (repeated
history hiding and evasion attacks) on this binary.

The public vulnerability disclosure included an ex-
ploitable version of the hteditor source. We downloaded
this and compiled it for our system with stack protection
disabled, as we want to test how well ROPecker defends
against attack, not how well stack canaries work.

Evasion attack. We successfully mounted an evasion
attack on hteditor. Our exploit required 12 gadgets. We
split the attack into two 10-gadget segments, with the sec-
ond segment calling execv by overwriting the GOT entry
for strlen and finding a call-preceded intended call to it.

Repeated history hiding attack. We successfully
mounted a repeated history hiding attack on hteditor as-
suming four pages in the executable set. Our attack con-
sisted of three phases. In the first two phases we computed
the address of execv, and in the third we called it. In the
first phase, we were able to use a gadget twice that we
loaded once.

9 Related Work

Randomization-based approaches. Address Space
Layout Randomization (ASLR) and Address Obfuscation
[5] were first introduced to make it more difficult to inject
shellcode, and were later applied to the text segment to
prevent ROP attacks. Shacham et al. demonstrated a
de-randomization attack [28] on PaX ASLR.

Address Space Layout Permutation (ASLP) [16] is
similar in many ways to ASLR but provides higher en-
tropy by permuting the locations of functions. Other de-
fenses extends this further by randomizing the addresses
of individual instructions [15, 31]. Another technique
replaces short sequences of instructions with alternate,
functionally-identical, equal-length sequence, hindering
an attacker’s ability to use unintended gadgets [22]. A
recent just-in-time code reuse attack [29] compiles ROP
on the fly to bypass ASLR.

Control-Flow Integrity (CFI). Abadi et al. introduced
control-flow integrity (CFI) [4] as a method of preventing
attacks by restricting jump, call, and return instructions
to follow the statically-determined control-flow graph of
the program. Due to the difficulty of obtaining a precise
control-flow graph of the program, many defenses choose
instead to enforce a less precise policy. Often, this policy
simply requires that returns be call-preceded, and indirect
calls point to the beginning of functions [34, 6, 32].

The attacks presented in this paper show these CFI
based defenses are weaker than previously thought. Since
call-preceded ROP is possible, most of these defenses can
be broken with that technique alone. Concurrent to this
work, a detailed examination of attacks on many CFI-
based schemes came to this same conclusion [14].

Runtime defenses. There are many other types of de-
fenses that can best be described as runtime defenses.
DROP [9] monitors the runtime behavior of the process
and, nearly identically to ROPecker, if there is a long con-
secutive sequence of returns, each of which contain fewer
than a fixed length, the program is killed. Our work in this
paper constitutes a total break of DROP. ROPGuard [13]
contains several heuristics to detect ROP attacks. One
of these is the call-preceded defense introduced earlier.
ROPdefender [12] implements a shadow-stack and veri-
fies that all returns exist somewhere on the shadow-stack.
Our work does not apply to shadow-stack defenses.

Recompilation-based defenses. Other defenses rely on
recompilation to remove gadget from the compiled binary.
G-Free [21] does this by removing unintended return in-
structions and encrypting return addresses, so that ret-
gadgets become nearly impossible to use. The return-less
kernel [18] entirely removes the c3 byte (the opcode of
ret) from all instructions, and replaces valid returns with
a lookup into a table containing the valid return sites.
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10 Conclusion

In this paper, we have presented three building blocks
for ROP attacks that allow us to break two state-of-the-
art ROP defenses. We demonstrate the practicality of our
attacks by modifying real-world exploits to bypass these
defenses.

More broadly, our work disproves two pieces of con-
ventional wisdom: that ROP attacks only consist of
short gadgets, and that ROP attacks cannot be effectively
mounted in call-preceded manner.

Future defenses must take care to guard against attacks
similar to ours. Specifically, we suggest two particular
requirements for future defenses. First, defenses should
argue either that they can inspect all relevant past history
or, if they have a limited history, that their limited view
of history cannot be effectively cleared out by an attacker.
Second, defenses that defend against one specific aspect
of ROP must argue that is a necessary component of one.

We believe an important open research question is to
determine what properties are truly fundamental about
ROP attacks that are different than typical program exe-
cution. We hope future work will explore how these fun-
damental differences can be exploited to create general-
purpose defenses.
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Abstract

Return-oriented programming (ROP) offers a robust at-
tack technique that has, not surprisingly, been exten-
sively used to exploit bugs in modern software programs
(e.g., web browsers and PDF readers). ROP attacks re-
quire no code injection, and have already been shown
to be powerful enough to bypass fine-grained memory
randomization (ASLR) defenses. To counter this in-
genious attack strategy, several proposals for enforce-
ment of (coarse-grained) control-flow integrity (CFI)
have emerged. The key argument put forth by these
works is that coarse-grained CFI policies are sufficient to
prevent ROP attacks. As this reasoning has gained trac-
tion, ideas put forth in these proposals have even been
incorporated into coarse-grained CFI defenses in widely
adopted tools (e.g., Microsoft’s EMET framework).

In this paper, we provide the first comprehensive
security analysis of various CFI solutions (covering
kBouncer, ROPecker, CFI for COTS binaries, ROP-
Guard, and Microsoft EMET 4.1). A key contribution
is in demonstrating that these techniques can be effec-
tively undermined, even under weak adversarial assump-
tions. More specifically, we show that with bare mini-
mum assumptions, turing-complete and real-world ROP
attacks can still be launched even when the strictest of
enforcement policies is in use. To do so, we intro-
duce several new ROP attack primitives, and demonstrate
the practicality of our approach by transforming existing
real-world exploits into more stealthy attacks that bypass
coarse-grained CFI defenses.

1 Introduction
Today, runtime attacks remain one of the most prevalent
attack vectors against software programs. The continued
success of these attacks can be attributed to the fact that
large portions of software programs are implemented in
type-unsafe languages (C, C++, or Objective-C) that do
not enforce bounds checking on data inputs. Moreover,
even type-safe languages (e.g., Java) rely on interpreters

(e.g., the Java virtual machine) that are in turn imple-
mented in type-unsafe languages.

Sadly, as modern compilers and applications become
more and more complex, memory errors and vulnera-
bilities will likely continue to persist, with little end in
sight [41]. The most prominent example of a memory
error is the stack overflow vulnerability, where the adver-
sary overflows a local buffer on the stack and overwrites
a function’s return address [4]. While today’s defenses
protect against this attack strategy (e.g., by using stack
canaries [15]), other avenues for exploitation exists, in-
cluding those that leverage heap [33], format string [21],
or integer overflow [6] vulnerabilities.

Regardless of the attacker’s method of choice, exploit-
ing a vulnerability and gaining control over an applica-
tion’s control-flow is only the first step of a runtime at-
tack. The second step is to launch malicious program
actions. Traditionally, this has been realized by inject-
ing malicious code into the application’s address space,
and later executing the injected code. However, with the
wide-spread enforcement of the non-executable memory
principle (called data execution prevention in Windows)
such attacks are more difficult to do today [28]. Unfortu-
nately, the long-held assumption that only new injected
code bared risks was shattered with the introduction of
code reuse attacks, such as return-into-libc [30, 37] and
return-oriented programming (ROP) [35]. As the name
implies, code reuse attacks do not require any code injec-
tion and instead use code already resident in memory.

One of the most promising defense mechanisms
against such runtime attacks is the enforcement of
control-flow integrity (CFI) [1, 3]. The main idea of CFI
is to derive an application’s control-flow graph (CFG)
prior to execution, and then monitor its runtime behavior
to ensure that the control-flow follows a legitimate path
of the CFG. Any deviation from the CFG leads to a CFI
exception and subsequent termination of the application.

Although CFI requires no source code of an appli-
cation, it suffers from practical limitations that impede
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its deployment in practice, including significant perfor-
mance overhead of 21%, on average [3, Section 5.4],
when function returns are validated based on a return ad-
dress (shadow) stack. To date, several CFI frameworks
have been proposed that tackle the practical shortcom-
ings of the original CFI approach. ROPecker [13] and
kBouncer [31], for example, leverage the branch history
table of modern x86 processors to perform a CFI check
on a short history of executed branches. More recently,
Zhang and Sekar [46] demonstrate a new CFI binary in-
strumentation approach that can be applied to commer-
cial off-the-shelf binaries.

However, the benefits of these state-of-the-art solu-
tions comes at the price of relaxing the original CFI pol-
icy. Abstractly speaking, coarse-grained CFI allows for
CFG relaxations that contains dozens of more legal exe-
cution paths than would be allowed under the approach
first suggested by Abadi et al. [3]. The most notable dif-
ference is that the coarse-grained CFI policy for return
instructions only validates if the return address points to
an instruction that follows after a call instruction. In con-
trast, Abadi et al. [3]’s policy for fine-grained CFI en-
sures that the return address points to the original caller
of a function (based on a shadow stack). That is, a func-
tion return is only allowed to return to its original caller.

Surprisingly, even given these relaxed assumptions,
all recent coarse-grained CFI solutions we are aware of
claim that their relaxed policies are sufficient to thwart
ROP attacks1. In particular, they claim that the property
of Turing-completeness is lost due to the fact that the
code base which an adversary can exploit is significantly
reduced. Yet, to date, no evidence substantiating these
assertions has been given, raising questions with regards
to the true effectiveness of these solutions.

Contribution. We revisit the assumption that coarse-
grained CFI offers an effective defense against ROP.
For this, we conduct a security analysis of the re-
cently proposed CFI solutions including kBouncer [31],
ROPecker [13], CFI for COTS binaries [46], ROP-
Guard [20], and Microsofts’ EMET tool [29]. In particu-
lar, we derived a combined CFI policy that takes for each
indirect branch class (i.e., return, indirect jump, indirect
call) and behavioral-based heuristics (e.g., the number
of instruction executed between two indirect branches),
the most restrictive setting among these policies. After-
wards, we use our combined CFI policy and a weak ad-
versary having access to only a single — and common
used system library — to realize a Turing-complete gad-
get set. The reduced code base mandated that we develop
several new return-oriented programming attack gadgets
to facilitate our attacks. To demonstrate the power of our
attacks, we show how to harden existing real-world ex-
ploits against the Windows version of Adobe Reader [26]
and mPlayer [10] so that they bypass coarse-grain CFI

protections. We also demonstrate a proof-of-concept at-
tack against a Linux-based system.

2 Background
2.1 Return-Oriented Programming

Return-oriented programming (ROP) belongs to the class
of runtime attacks that require no code injection. The ba-
sic idea is to combine short code sequences already re-
siding in the address space of an application (e.g., shared
libraries and the executable itself) to perform malicious
actions. Like any other runtime attack, it first exploits a
vulnerability in the software running on the targeted sys-
tem. Relevant vulnerabilities are memory errors (e.g.,
stack, heap, or integer overflows [33]) which can be
discovered by reverse-engineering the target program.
Once a vulnerability has been discovered, the adversary
needs to exploit it by providing a malicious input to the
program, the so-called ROP payload. The applicability
of ROP has been shown on many platforms including
x86 [35], SPARC [7], and ARM [27].

RET ADDR 1
RET ADDR 2

DATA WORD 1
DATA WORD 2

RET ADDR 3

asm_ins
asm_ins
RET

ROP Sequence 1

POP REG1
POP REG2
RET

ROP Sequence 2

asm_ins
asm_ins
RET

ROP Sequence 3

Memory Layout
for ROP Attack

Stack
Pointer
(SP) 

Figure 1: Memory snapshot of a ROP Attack

An example ROP payload and a typical memory lay-
out for a ROP attack is shown in Figure 1. Basically, the
ROP payload consists of a number of return addresses
each pointing to a short code sequence. These sequences
consist of a small number of assembler instructions (de-
noted in Figure 1 as asm ins), and traditionally termi-
nate in a return [35] instruction2. The indirect branches
are responsible for chaining and executing one ROP se-
quence after the other.

In addition to return addresses, the adversary writes
several data-words in memory that are used by the in-
voked code sequences (usually via stack POP instruc-
tions as shown in ROP Sequence 2). At the beginning of
the attack, the stack pointer (SP) points to the first return
address of the payload. Once the first sequence has been
executed, its final return instruction (RET) advances the
stack pointer by one memory word, loads the next return
address from the stack, and transfers the control-flow to
the next code sequence.

The combination of the invoked ROP sequences in-
duce the malicious operations. Typically, these se-
quences are identified within an (offline) static analy-
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sis phase on the target program binary and its linked
shared libraries. Furthermore, one or multiple ROP se-
quences can form a gadget, where a gadget accomplishes
a specific task such as adding two values or storing a
data word into memory. These gadgets typically form
a Turing-complete language meaning that an adversary
can perform arbitrary (malicious) computation.

A well-known defense against ROP is address space
layout randomization (ASLR) which randomizes the
base address of libraries and executables, thereby ran-
domizing the start addresses of code sequences needed
by the adversary in her ROP attack. However, ASLR is
vulnerable to memory disclosure attacks, which reveal
runtime addresses to the adversary. Memory disclosure
can even be exploited to circumvent fine-grained ASLR
schemes, where the location of each code block is ran-
domized in memory by identifying ROP gadgets on-the-
fly and generating a ROP payload at runtime [36].

2.2 Control-Flow Integrity

Although W⊕X, ASLR and other protection mecha-
nisms have been widely adopted, their security bene-
fits remain open to debate [1]. The main critique is
the lack of a clear attack model and formal reasoning.
To address this, Abadi et al. [3] proposed a new secu-
rity property called control-flow integrity (CFI). A pro-
gram maintains CFI if its path of execution adheres to a
certain pre-defined control-flow graph (CFG). This CFG
consists of basic blocks (BBLs) as nodes, where a BBL
is a sequence of assembler instructions. Edges connect
two nodes, whenever the program may legally transfer
control-flow from one to the next BBL. A control-flow
transfer may be either a direct or indirect branch instruc-
tion (e.g., call, jump, or return). To ensure that a program
follows a valid path in the CFG, CFI inserts labels at the
beginning of basic blocks. Whenever there is a control-
flow transfer at runtime, CFI validates whether the indi-
rect branch targets a BBL with a valid label.

main(): function1():printf():

function2():

…
RET

…
CALL printf

label fn1
…
RET

…
asm_instr
asm_instr
RET

Intended control flow

Non-Intended (malicious) control flow

label ra1
…
CALL [REG]

label ra2
…
RET

B
BL

 1
B
BL

 2
B
BL

 3

target = ra1?

target = fn1?

target = ra2?

Figure 2: The CFG shepherds control-flow transfers

An example for CFI enforcement is shown in Figure 2.
It shows a program consisting of a main function that
invokes directly the library function printf(), and indi-
rectly the local subroutine function1(). The indirect call
to function1() in BBL 2 is critical, since an adversary
may load an arbitrary address into the register by means
of a buffer overflow attack. However, the CFG states
that this indirect call is only allowed to target function1().
Hence, at runtime, CFI validates whether the indirect call
in BBL 2 is targeting label fn1. If an adversary aims
to redirect the call to a code sequence residing in func-
tion2(), CFI will prevent this malicious control-flow, be-
cause label fn1 is not defined for function2(). Similarly,
CFI protects the return instructions of printf() and func-
tion1(), which an adversary could both exploit by over-
writing a return address on the stack. The specific CFI
checks in Figure 2 validate if the returns address label
ra1 or ra2, respectively.

It is also prudent to note that CFI has been studied in
many domains. For instance, it has been used as an en-
abling technology for software fault isolation by Abadi
et al. [2] and Yee et al. [43]. CFI enforcement has also
been shown for hypervisors [42], commodity operating
system kernels [16] and mobile devices [18]. In other
communities, Zeng et al. [44] and Pewny and Holz [32],
for example, have shown how to instrument a compiler to
generate CFI-protected applications. Lastly, Budiu et al.
[8] have explored architectural support to tackle the per-
formance overheads of software-only based solutions.

2.3 Control-Flow Integrity Challenges

There are several factors that impede the deployment of
control-flow integrity (CFI) in practice, including those
related to control-flow graph (CFG) coverage, perfor-
mance, robustness, and ease of deployment.

Before proceeding further, we note that besides pre-
senting the design of CFI, Abadi et al. [3] also included
a formal security proof for the soundness of their solu-
tion. A key observation noted in that work is that “de-
spite attack steps, the program counter always follows
the CFG.” [3, p. 4:34]. In other words, in Abadi et al.
[3], every control-flow is permitted as long as the CFG
allows it. Consequently, the quality of protection from
control-flow attacks rests squarely on the level of CFG
coverage. And that is exactly where recent CFI solutions
have deviated (substantially) from the original work, pri-
marily as a means to address performance issues.

Recall that in the original proposal, the CFG was
obtained a priori using binary analysis techniques sup-
ported by a proprietary framework called Vulcan. Since
the CFG is created ahead of time, it is not capable of cap-
turing the dynamic nature of the call stack. That is, with
only the CFG at hand, one can not enforce that functions
return to their most recent call site, but only that they re-
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turn to any of the possible call sites. This limitation is
tackled by adding a shadow stack to the statically cre-
ated CFG. Intuitively, upon each call, the return address
is placed in a safe location in memory, so that an instru-
mented return is able to compare the return address on
the stack with one on a shadow stack, and the program is
terminated if a deviation is detected [3, 14, 18]. In this
way, many control-flow transfers are prohibited, largely
reducing the gadget space available for a return-oriented
programming attack.

Given the power of CFI, it is surprising that it has
not yet received widespread adoption. The reason lies
in the fact that extracting the CFG is not as simple as
it may appear. To see why, notice that (1) source code
is not readily available (thereby limiting compiler-based
approaches), (2) binaries typically lack the necessary de-
bug or relocation information, as was needed for exam-
ple, in the Vulcan framework, and (3) the approach in-
duces high performance overhead due to dynamic rewrit-
ing and runtime checks. Much of the academic research
on CFI in the last few years has focused on techniques
for tackling these drawbacks.

3 Categorizing Coarse-Grained Control-
Flow Integrity Approaches

As noted above, a number of new control-flow integrity
(CFI) solutions have been recently proposed to address
the challenges of good runtime performance, high ro-
bustness and ease of deployment. The most prominent
examples include kBouncer [31], ROPecker [13], CFI for
COTS binaries [46], and ROPGuard [20]. To aide in bet-
ter understanding the strenghts and limitations of these
proposals, we first provide a taxonomy of the various CFI
policies embodied in these works. Later, to strengthen
our own analyses, we also derive a combined CFI policy
that takes into account the most restrictive CFI policy.

3.1 CFI Policies

Table 1 summarizes the five CFI policies we use through-
out this paper to analyze the effectiveness of coarse-
grained CFI solutions. Specifically, we distinguish be-
tween three types of policies, namely � policies used
for indirect branch instructions, � general CFI heuristics
that do not provide well-founded control-flow checks but
instead try to capture general machine state patterns of
ROP attacks and � a policy class that covers the time
CFI checks are enforced.

We believe this categorization covers the most impor-
tant aspects of CFI-based defenses suggested to date. In
particular, they cover polices for each indirect branch
the processor supports since all control-flow attacks (in-
cluding ROP) require exploiting indirect branches. Sec-
ond, heuristics are used by several coarse-grained CFI
approaches (e.g., [20, 31]) to allow more relaxed CFI

Category Policy x86 Example Description
CFIRET ret returns

� CFIJMP jmp reg|mem indirect jumps
CFICALL call reg|mem indirect calls

� CFIHEU heuristics
� CFITOC time of CFI check

Table 1: Our CFI policies

policies for indirect branches. Finally, the time-of-check
policy is an important aspect, because it states at which
execution state ROP attacks can be detected. We elabo-
rate further on each of these categories below.

1 – Indirect Branches. Recall that the goal of CFI is to
validate the control-flow path taken at indirect branches,
i.e., at those control-flow instructions that take the target
address from either a processor register or from a data
memory area3. The indirect branch instructions present
on an Intel x86 platform are indirect calls, indirect jumps,
and returns. Since CFI solutions apply different poli-
cies for each type of indirect branch, it is only natural
that there are three CFI policies in this category, denoted
as CFICALL (indirect function calls), CFIJMP (indirect
jumps), CFIRET (function returns).

2 – Behavior-Based Heuristics (HEU). Apart from
enforcing specific policies on indirect branch instruc-
tions, CFI solutions can also validate other program be-
havior to detect ROP attacks. One prominent example
is the number of instructions executed between two con-
secutive indirect branches. The expectation is that the
number of such instructions will be low (compared to
ordinary execution) because ROP attacks invoke a chain
of short code sequences each terminating in an indirect
branch instruction.

3 – Time of CFI Check (TOC). Abadi et al. argued
that a CFI validation routine should be invoked whenever
the program issues an indirect branch instruction [3]. In
practice, however, doing so induces significant perfor-
mance overhead. For that reason, some of the more
recent CFI approaches reduce the number of runtime
checks, and only enforce CFI validation at critical pro-
gram states, e.g., before a system or API call.

3.2 Instantiation in Recent Proposals

Next, we turn our attention to the specifics of how these
policies are implemented in recent CFI mechanisms.

3.2.1 kBouncer

The approach of Pappas et al. [31], called kBouncer, de-
ploys techniques that fall in each of the aforementioned
categories. Under category �, Pappas et al. [31] lever-
age the x86-model register set called last branch record
(LBR). The LBR provides a register set that holds the
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last 16 branches the processor has executed. Each branch
is stored as a pair consisting of its source and target ad-
dress. kBouncer performs CFI validation on the LBR
entries whenever a Windows API call is invoked. Its
promise resides in the fact that these checks induce al-
most no performance overhead, and can be directly ap-
plied to existing software programs.

With respect to its policy for returns, kBouncer iden-
tifies those LBR entries whose source address belong to
a return instruction. For these entries, kBouncer checks
whether the target address (i.e., the return address) points
to a call-preceded instruction. A call-preceded instruc-
tion is any instruction in the address space of the applica-
tion that follows a call instruction. Internally, kBouncer
disassembles a few bytes before the target address and
terminates the process if it fails to find a call instruction.

While kBouncer does not enforce any CFI check
on indirect calls and jumps, Pappas et al. [31] pro-
pose behavioral-based heuristics (category �) to mitigate
ROP attacks. In particular, the number of instructions ex-
ecuted between consecutive indirect branches (i.e., “the
sequence length”) is checked, and a limit is placed on the
number of sequences that can be executed in a row.4

A key observation by Pappas et al. [31] is that even
though pure ROP payloads can perform Turing-complete
computation, in actual exploits they will ultimately need
to interact with the operating system to perform a mean-
ingful task. Hence, as a time-of-CFI check policy (cate-
gory �) kBouncer instruments and places hooks at the
entry of a WinAPI function. Additionally, it writes a
checkpoint after CFI validation to prohibit an adversary
from simply jumping over the hook in userspace.

3.2.2 ROPGuard and Microsoft EMET

Similar to Pappas et al. [31], the approach suggested by
Fratric [20] (called ROPGuard) performs CFI validation
when a critical Windows function is called. However, its
policies differ from that of Pappas et al. [31].

First, with respect to policies under category �, upon
entering a critical function, ROPGuard validates whether
the return address of that critical function points to a
call-preceded instruction. Hence, it prevents an adver-
sary from using a ROP sequence terminating in a return
instruction to invoke the critical Windows function. In
addition, ROPGuard checks if the memory word before
the return address is the start address of the critical func-
tion. This would indicate that the function has been en-
tered via a return instruction. ROPGuard also inspects
the stack and predicts future execution to identify ROP
gadgets. Specifically, it walks the stack to find return ad-
dresses. If any of these return addresses points to a non
call-preceded instruction, the program is terminated.

Interestingly, there is no CFI policy for indirect calls or
indirect jumps. Furthermore, ROPGuard’s only heuristic

under category � is for validating that the stack pointer
does not point to a memory location beyond the stack
boundaries. While doing so prevents ROP payload exe-
cution on the heap, it does not prevent traditional stack-
based ROP attacks; thus the adversary could easily reset
the stack pointer before a critical function is called.

Remarks: ROPGuard and its implementation in
Microsoft EMET [5] use similar CFI policies as in
kBouncer. One difference is that kBouncer checks the
indirect branches executed in the past, while ROPGuard
only checks the current return address of the critical
function, and for future execution of ROP gadgets. ROP-
Guard is vulnerable to ROP attacks that are capable of
jumping over the CFI policy hooks, and cannot prevent
ROP attacks that do not attempt to call any critical Win-
dows function. To tackle the former problem (i.e., by-
passing the policy hook), EMET adds some randomness
in the length and structure of the policy hook instruc-
tions. Hence, the adversary has to guess the right offset
to successfully deploy her attack. However, recent mem-
ory disclosure attacks show that such randomization ap-
proaches can be easily circumvented [36].

3.2.3 ROPecker

ROPecker is a linux-based approach suggested by Cheng
et al. [13] that also leverages the last branch record reg-
ister set to detect past execution of ROP gadgets. More-
over, it speculatively emulates the future program exe-
cution to detect ROP gadgets that will be invoked in the
near future. To accomplish this, a static offline phase is
required to generate a database of all possible ROP code
sequences. To limit false positives, Cheng et al. [13] sug-
gest that only code sequences that terminate after at most
n instructions in an indirect branch should be recorded.

For its policies in category �, ROPecker inspects each
LBR entry to identify indirect branches that have redi-
rected the control-flow to a ROP gadget. This decision
is based on the gadget database that ROPecker derived in
the static analysis phase. ROPecker also inspects the pro-
gram stack to predict future execution of ROP gadgets.
There is no direct policy check for indirect branches,
but instead, possible gadgets are detected via a heuristic.
More specifically, the robustness of its behavioral-based
heuristic (category �) completely hinges on the assump-
tion that ROP code sequences will be short and that there
will always be a chain of at least some threshold number
of consecutive ROP sequences.

Lastly, its time of CFI check policy (category �) is
triggered whenever the program execution leaves a slid-
ing window of two memory pages.

Remarks: Clearly, ROPecker performs more fre-
quently CFI checks than both kBouncer and ROPGuard.
Hence, it can detect ROP attacks that do not necessar-
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ily invoke critical functions. However, as we shall show
later, the fact that there is no policy for the target of indi-
rect branches is a significant limitation.

3.2.4 CFI for COTS Binaries

Most closely related to the original CFI work by Abadi
et al. [3] is the proposal of Zhang and Sekar [46]
which suggest an approach for commercial-off-the-shelf
(COTS) binaries based on a static binary rewriting ap-
proach, but without requiring debug symbols or reloca-
tion information of the target application. In contrast to
all the other approaches we are aware of, the CFI checks
are directly incorporated into the application binary. To
do so, the binary is disassembled using the Linux dis-
assembler objdump. However, since that disassembler
uses a simple linear sweep disassembly algorithm, Zhang
and Sekar [46] suggest several error correction meth-
ods to ensure correct disassembly. Moreover, potential
candidates of indirect control-flow target addresses are
collected and recorded. These addresses comprise pos-
sible return addresses (i.e., call-preceded instructions),
constant code pointers (including memory locations of
pointers to external library calls), and computed code
pointers (used for instance in switch-case statements).
Afterwards, all indirect branch instructions are instru-
mented by means of a jump to a CFI validation routine.

Like the aforementioned works, the approach of
Zhang and Sekar [46] checks whether a return or an in-
direct jump targets a call-preceded instruction. Further-
more, it also allows returns and indirect jumps to target
any of the constant and computed code pointers, as well
as exception handling addresses. Hence, the CFI policy
for returns is not as strict as in kBouncer, where only call-
preceded instructions are allowed. On the other hand,
their approach deploys a CFI policy for indirect jumps,
which is largely unmonitored in the other approaches.
However, it does not deploy any behavioral-based heuris-
tics (category �).

Lastly, CFI validation (category �) is performed
whenever an indirect branch instruction is executed.
Hence, it has the highest frequency of CFI validation in-
vocation among all discussed CFI approaches.

Similar CFI policies are also enforced by CCFIR
(compact CFI and randomization) [45]. In contrast to
CFI for COTS binaries, all control-flow targets for in-
direct branches are collected and randomly allocated on
a so-called springboard section. Indirect branches are
only allowed to use control-flow targets contained in that
springboard section. Specifically, CCFIR enforces that
returns target a call-preceded instruction, and indirect
calls and jumps target a previously collected function
pointer. Although the randomization of control-flow tar-
gets in the springboard section adds an additional layer
of security, it is not directly relevant for our analysis,

since memory disclosure attacks can reveal the content
of the entire springboard section [36]. The CFI policies
enforced by CCFIR are in principle covered by CFI for
COTS binaries. However, there is one noteworthy policy
addition: CCFIR denies indirect calls and jumps to target
pre-defined sensitive functions (e.g., VirtualProtect). We
do not consider this policy for two reasons: first, this pol-
icy violates the default external library call dispatching
mechanism in Linux systems. Any application linking
to such a sensitive (external) function will use an indi-
rect jump to invoke it.5 Second, as shown in detail by
Göktas et al. [22] there are sufficient direct calls to sen-
sitive functions in Windows libraries which an adversary
can exploit to legitimately transfer control to a sensitive
function.

Remarks: The approach of Zhang and Sekar [46] is
most similar to Abadi et al. [3]’s original proposal in that
it enforces CFI policies each time an indirect branch is
invoked. However, to achieve better performance and
to support COTS binaries, it deploys less fine-grained
CFI policies. Alas, its coarse-grain policies allow one
to bypass the restrictions for indirect call instructions
(CFICALL). The main problem is caused by the fact
that the integrity of indirect call pointers is not vali-
dated. Instead, it is only enforced that an indirect call
takes a pointer from a memory location that is expected
to hold indirect call targets. A typical example is the
Linux global offset table (GOT) which holds the target
addresses for library calls. This leaves the solution vul-
nerable to so-called GOT-overwrite attacks [9] that over-
write pointers (in the GOT) to external library calls. We
return to this vulnerability in §5. Moreover, even if one
would ensure the integrity of these pointers, we are still
allowed to use a valid code pointer defined in the exter-
nal symbols. Hence, the adversary can invoke dangerous
functions such as VirtualAlloc() and memcpy() that are
frequently used in applications and libraries.

3.3 Deriving a Combined CFI Policy

In our analysis that follows, we endeavor to have the best
possible protections offered by the aforementioned CFI
mechanisms in place at the time of our evaluation. There-
fore, our combined CFI policy (see Table 2) selects the
most restrictive setting for each policy. Nevertheless, de-
spite this combined CFI policy, we then show that one
can still circumvent these coarse-grained CFI solutions,
construct Turing-complete ROP attacks (under realistic
assumptions) and launch real-world exploits.

At this point, we believe it is prudent to comment on
the parameter choices in these prior works — and that
adopted in Table 2. In particular, one might argue that the
prerequisite thresholds could be adjusted to make ROP
attacks more difficult. To that end, we note that Pappas
et al. [31] performed an extensive analysis to arrive at the
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Control-Flow Integrity (CFI) Policies CFI for
COTS [46
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CFIRET : destination has to be call-preceded � � © � � �

CFIRET : destination can be taken from a code pointer � � © � � �

CFIJMP : destination has to be call-preceded � © © © © �

CFIJMP : destination can be taken from a code pointer � © © © © �

CFICALL : destination can be taken from an exported symbol � © © © © �

CFICALL : destination can be taken from a code pointer � © © © © �

CFIHEU : allow only s consecutive short sequences, © s <= 7 s <= 10 © © s <= 7
CFIHEU : where short is defined as n instructions © n <= 20 n <= 6 © © n <= 20

CFITOC : check at every indirect branch � © © © ©
Always
observed

CFITOC : check at critical API functions or system calls © � � � �

CFITOC : check when leaving sliding code window © © � © ©

Table 2: Policy comparison of coarse-grained CFI solutions: � indicates that the CFI policy is applied and enforced. � means that
the CFI policy is prohibited (corresponding execution flows would lead to an attack alarm) . © indicates that the CFI policy is not
applied/enforced. The combined policy takes the most restrictive setting for each CFI policy.

best range of thresholds for the recommended number of
consecutive short sequences (s) with a given sequence
length of n <= 20. Their analysis reveals that adjusting
the thresholds for s beyond their recommended values
is hardly realistic: when every function call was instru-
mented, 975 false positives were recorded for s <= 8.

An alternative is to increase the sequence length n
(e.g., setting it to n <= 40). Doing so would require an
adversary to find a long sequence of 40 instructions after
each seventh short sequence (for s <= 7). However, in-
creasing the threshold for the sequence length will only
exacerbate the false positive issue. For this reason, Pap-
pas et al. [31] did not consider sequences consisting of
more than 20 instructions as a gadget in their analyses.
We provide our own assessment in §5.3.

The approach of Cheng et al. [13], on the other hand,
uses different thresholds for s and n than in kBouncer.
Making the thresholds in ROPecker more conservative
(e.g., reducing s and increasing n) will lead to the same
false positives problems as in kBouncer. Moreover, the
problem would be worse, since ROPecker performs CFI
validation more frequently than kBouncer. Nevertheless,
we show that regardless of the specific choice of parame-
ter chosen in the recommended ranges, our attacks render
these defenses ineffective in practice (see Section 5).

4 Turing-Complete ROP Gadget Set
We now explore whether or not it is possible to derive a
Turing-complete gadget set even when all state-of-the-art

coarse-grained CFI protections are enforced. In particu-
lar, we desire a gadget set that still allows an adversary
to undermine the combined CFI policy (see Table 2).

Assumptions. To be as pragmatic as possible, we as-
sume that the adversary can only leverage the presence
of a single shared library to derive the gadget set. This
is a very stringent requirement placed on ourselves since
modern programs typically link to dozens of libraries.

Note also that we are not concerned with circumvent-
ing other runtime protection mechanisms such as ASLR
or stack canaries. The reasons are twofold: first, coarse-
grained CFI protection approaches do not rely on the
presence of other defenses to mitigate against code reuse
attacks. Second, in contrast to CFI, ASLR and protection
mechanisms that defend against code pointer overwrites
(e.g., stack canaries, bounds checkers, pointer encryp-
tion) do not offer a general defense, and moreover, are
typically bypassed in practice. In particular, ASLR is
vulnerable to memory disclosure attacks [36, 38]. That
said, the attacks and return-oriented programming gad-
gets we present in the following can be also leveraged to
mount memory disclosure attacks in the first stage.

Methodology and Outline. Our analysis is performed
primarily on Windows as it is the most widely deployed
desktop operating system today. Specifically, we inspect
kernel32.dll (on x86 Windows 7 SP1), a 848kb sys-
tem library that exposes Windows API functions and is
by default linked to nearly every major Windows pro-
cess (e.g., Adober Reader, IE, Firefox, MS Office). It
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is also noteworthy to mention that our results do not
only apply to Windows; Although we did not perform
a Turing-complete gadget analysis for Linux’s default li-
brary (libc.so), to demonstrate the generality of our
approach, we provide a shellcode exploit that uses gad-
gets from libc (see §5.2). To facilitate the gadget find-
ing process, we developed a static analysis python mod-
ule in IDA Pro that outputs all call-preceded sequences
ending in an indirect branch. We also developed a se-
quence filter in the general purpose D programming lan-
guage that allows us to check for sequences containing a
specific register, instruction, or memory operand. Note
that in the subsequent discussions, we use the Intel as-
sembler syntax, e.g., mov destination, source, and
use a semicolon to separate two consecutive instructions.

We first review in §4.1 the basic gadgets that form a
Turing-complete language [12, 35]. To achieve Turing-
completeness, we require gadgets to realize memory
load and store operations, as well as a gadget to real-
ize a conditional branch. Afterwards, we present two
new gadget types called the Call-Ret-Pair gadget (§4.2.1)
and the Long-NOP gadget (§4.2.2). Constructing the
latter was a non-trivial engineering task and the out-
come played an important role in “stitching” gadgets to-
gether, thereby bypassing coarse-grained CFI defenses.
It should also be noted that we only present a subset of
the available sequences. Eliminating the specific few se-
quences presented here will not prevent our attack, since
kernel32.dll (and many other libraries) provides a
multitude of other sequences we could have leveraged.

4.1 Basic Gadget Arsenal

Loading Registers. Load gadgets are leveraged in
nearly every ROP exploit to load a value from the stack
into a CPU register. Recall that x86 provides six general
registers (eax, ebx, ecx, edx, esi, edi), a base/frame
pointer register (ebp), the stack pointer (esp), and the
instruction pointer (eip). All registers can be directly ac-
cessed (read and write) by assembler instructions except
the eip which is only indirectly influenced by dedicated
branch instructions such as ret, call, and jmp.

Typically, stack loading is achieved on x86 via the POP
instruction. The call-preceded load gadgets we identi-
fied in kernel32.dll are summarized in Table 3. Ex-
cept for the ebp register, we are not able to load any
other register without inducing a side-effect, i.e., with-
out affecting other registers. That said, notice that the
sequence for esi, edi, and ecx only modifies the base
pointer (ebp). Because traditionally ebp holds the base
pointer and no data, and ordinary programs can be com-
piled without using a base pointer, we consider ebp as an
intermediate register in our gadget set. The astute reader
would have noticed that the sequences for edi and ecx

modify the stack pointer as well through the leave in-

struction, where leave behaves as mov esp,ebp; pop

ebp. However, we can handle this side-effect, since the
stack pointer receives the value from our intermediate
register ebp. Hence, we first invoke the load gadget for
ebp and load the desired stack pointer value, and after-
wards call the sequence for edi/ecx.

More challenges arise when loading the general-
purpose registers eax, ebx, and edx. While ebx can be
loaded with side-effects, we were not able to find any
useful stack pop sequence for eax and edx. This is not
surprising given the fact that we must use call-preceded
sequences. Typically, these sequences are found in func-
tion epilogues, where a function epilogue is responsible
for resetting the caller-saved registers (esi, edi, epb).
We alleviate the side-effects for ebx by loading all the
caller-saved registers from the stack.

Register Call-Preceded Sequence (ending in ret)
EBP pop ebp

ESI pop esi; pop ebp

EDI pop edi; leave

ECX pop ecx; leave

EBX pop edi; pop esi; pop ebx; pop ebp

EAX mov eax,edi; pop edi; leave

EDX mov eax,[ebp-8]; mov edx,[ebp-4];
pop edi; leave

Table 3: Register Load Gadgets

For eax and edx, data movement gadgets can be used.
As can be seen in Table 3, eax can be loaded using the
edi load gadget in advance. The situation is more com-
plicated for edx, especially given our choice to only use
kernel32.dll. In particular, while there is a sequence
that allows one to load edx by using the ebp load gadget
beforehand, it is challenging to do so since the adversary
would need to save the state of some registers. That said,
other default Windows libraries (such as shell32.dll)
offer several more convenient gadgets to load edx (e.g.,
a common sequence we observed was pop edx; pop

ecx; jmp eax), and so this limitation should not be a
major obstacle in practice.

Loading and Storing from Memory. In general, soft-
ware programs can only accomplish their tasks if the
underlying processor architecture provides instructions
for loading from memory and storing values to memory.
Similarly, ROP attacks require memory load and store
gadgets. Although we have found several load and store
gadgets, we focus on the gadgets listed in Table 4.

In particular, we discovered load gadgets that use eax
as the destination register. The specific load gadget
shown in Table 4 loads a value from memory pointed to
by ebp+8. Hence, the adversary is required to correctly
set the target address of the memory load operation in
ebp via the register load gadget shown in Table 3.
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Type Call-Preceded Sequence (ending in ret)
LOAD (eax) mov eax, [ebp+8]; pop ebp

STORE (eax) mov [esi],eax; xor eax,eax;

pop esi; pop ebp

STORE (esi) mov [ebp-20h],esi

STORE (edi) mov [ebp-20h],edi

Table 4: Selected Memory Load and Store Gadgets

We also identified a corresponding memory store gad-
get on eax. The shown gadget stores eax at the address
provided by register esi, which needs to be initialized
by a load register gadget beforehand. The gadget has no
side-effects, since it resets eax (which was stored earlier)
and loads new values from the stack into esi (which held
the target address) and ebp (our intermediate register).

Given a memory store gadget for eax and the fact that
we have already identified register load gadgets for each
register, it is sufficient to use the same memory load on
eax to load any other register. This is possible because
we use the eax load gadget to load the desired value from
memory, store it afterwards on the stack, and finally use
one of the register load gadgets to load the value into the
desired register. Finally, we also identified some conve-
nient memory store gadgets for esi and edi only requir-
ing ebp to hold the target address of the store operation.

Arithmetic and Logical Gadgets. For arithmetic op-
erations we utilize the sequence containing the x86 sub

instruction shown in Table 5. This instruction takes the
operands from eax and esi and stores the result of the
subtraction into eax. Both operands can be loaded by us-
ing the register load gadgets (see Table 3). The same gad-
get can be used to perform an addition: one only needs
to load the two’s complement into esi. Based on addi-
tion and subtraction, we can realize multiplication and
division as well. Unfortunately, logical gadgets are not
as commonplace. There is, however, a XOR gadget that
takes its operands from eax and edi (see Table 3).

Type Call-Preceded Sequence (ending in ret)
ADD/SUB sub eax,esi; pop esi; pop ebp

XOR xor eax,edi; pop edi; pop esi;

pop ebp

Table 5: Arithmetic and Logical Gadgets

Branching Gadgets. We remind the reader that
branching in ROP attacks is realized by modifying the
stack pointer rather than the instruction pointer [35].
In general, we can distinguish two different types
of branches: unconditional and conditional branches.
kernel32.dll, for example, offers two variants for a
unconditional branch gadget (see Table 6). The first uses
the leave instruction to load the stack pointer (esp) with

Type Call-Preceded Sequence
(ending in ret)

unconditional branch 1 leave

unconditional branch 2 add esp,0Ch; pop ebp

conditional LOAD(eax) neg eax; sbb eax,eax;

and eax,[ebp-4];leave

Table 6: Branching Gadgets

a new address that has been loaded before into our in-
termediate register ebp. The second variant realizes the
unconditional branch by adding a constant offset to esp.
Either one suffices for our purposes.

Conditional branch gadgets change the stack pointer
iff a particular condition holds. Because load, store, and
arithmetic/logic computation can be conveniently done
for eax, we could place the conditional in this regis-
ter. Unfortunately, because a direct load of esp (that de-
pended on the value of eax) was not readily available, we
realized the conditional branch in three steps requiring
the invocation of only four ROP sequences. That said,
our gadget is still within the constraints for the number of
allowable consecutive sequences in the Combined CFI-
enforcement Policy (see n = 8 for CFIHEU in Table 2).

First, we use the conditional branch gadget (see Ta-
ble 6) to either load 0 or a prepared value into eax. In
this sequence neg eax computes the two’s complement
and, more importantly, sets the carry flag to zero if and
only if eax was zero beforehand. This is nicely used by
the subsequent sbb instruction, which subtracts the reg-
ister from itself, always yielding zero, but additionally
subtracting an extra one if the carry flag is set. Because
subtracting one from zero gives 0xFFFFFFFF, the next
and masks either none or all the bits. Hence, the re-
sult in eax will be exactly the contents of [ebp-4] if
eax was zero, or zero otherwise. One might think that
it is very unlikely to find sequences that follow the pat-
tern neg-sbb-and. However, we found 16 sequences in
kernel32.dll that follow the same pattern and could
have been leveraged for a conditional branch gadget.

We then use the ADD/SUB gadget (see Table 5) to
subtract esi from eax so that the latter holds the branch
offset for esp. Finally, we move eax into esp using
the stack as temporary storage. The STORE(eax) gad-
get (see Table 4) will store the branch offset on the stack,
where pop ebp followed by the unconditional branch 1
gadget loads it into esp.

4.2 Extended Gadget Set

For those readers who have either written or analyzed
real-world ROP exploits before, it would be clear to them
that several other gadgets are useful in practice. For ex-
ample, modern exploits usually invoke several WinAPI
functions to perform malicious actions, e.g., launching
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Type Call-Preceded Sequence
Call 1 lea eax,[ebp-34h]; push eax;

call esi; ret

Call 2 call eax

Call 3 push eax; call [ebp+0Ch]

Table 7: Function Call Gadgets

a malicious executable by invoking WinExec(). Calling
such functions within a ROP attack requires a function
call gadget (§4.2.1). It is also useful to have gadgets that
allow one to conveniently write a NULL word to mem-
ory (the Null-Byte gadget) or the Stack-pivot gadget [17]
which is used by attacks exploiting heap overflows. Our
instantiations of the Null-Byte and Stack-pivot gadgets
are given in the Appendix as they are not vital to under-
standing the discussion that follows.

Additionally, to provide a generic method for circum-
venting the behavioral heuristics of the Combined CFI
Policy, we present a new gadget type, coined Long-NOP,
containing long sequences of instructions which do not
break the semantics of an arbitrary ROP chain (§4.2.2).

4.2.1 Call-Ret-Pair Gadget

CFI policies raise several challenges with respect to
calling WinAPI functions within a ROP attack. First,
one cannot simply exploit a ret instruction because the
CFIRET policy states that only a call-preceded sequence
is allowed — clearly, the beginning of a function is not
call-preceded. Second, the adversary must regain control
when the function returns. Hence, the return address of
the function to be called must point to a call-preceded
sequence that allows the ROP attack to continue.

To overcome these restrictions, we utilize what we
coined a Call-Ret-Pair gadget. The basic idea is to use a
sequence that terminates in an indirect call but provides a
short instruction sequence afterwards that terminates in a
ret instruction. Among our possible choices, the Call 1
sequence shown in Table 7 was selected.

POP esi
POP ebp
RET

ROP Sequence 1

LEA eax,[ebp-34h] 
PUSH eax
CALL esi
RET

ROP Sequence 2 (Call-Ret-Pair)

Memory Layout for 
Call-Ret-Pair Gadget

ROP Gadget 3 (RET 3)
ROP Gadget 2 (RET 2)

&VirtualAlloc
ADDR + 34h

ROP Gadget 1 (RET 1)

ADDR

Alloc Mem.
...
RET

VirtualAlloc()

Figure 3: Example for Call-Ret-Pair Gadget

To better understand the intracies of this gadget, we
provide an example in Figure 3. This example depicts
how we can leverage our gadget to call VirtualAlloc().
We start with a load register gadget which first loads the

start address of VirtualAlloc() into esi. Further, it loads
into ebp an address denoted as ADDR. At this address is
stored RET 3, the pointer to the ROP sequence we desire
to call after VirtualAlloc() has returned. The next ROP
sequence is our Call-Ret-Pair gadget, where the first in-
struction effectively loads RET 3 pointed to by ebp-34h

into eax. Next, RET 3 is stored at ADDR onto the stack
using a push instruction before the function call occurs.
The push instruction also decrements the stack pointer
so that it points to RET 2. The subsequent indirect call
invokes VirtualAlloc() and automatically pushes the re-
turn address onto the stack, i.e, it will overwrite RET 2
with the return address. This ensures that the control-
flow will be redirected to the ret instruction in our Call-
Ret-Pair gadget when VirtualAlloc() returns. Lastly, the
return will use RET 3 to invoke the next ROP sequence.

Note that this Call-Ret-Pair gadget works for subrou-
tines following the stdcall calling convention. Such func-
tion remove their arguments from the stack upon function
return. For functions using cdecl, we use a Call-Ret-Pair
gadget that pops after the function call, the arguments of
the subroutine from the stack. The details of the gadget
we use for cdecl function can be found in the Appendix
of our technical report [19].

For ROP attacks that terminate in a function call, we
leverage the Call 2 and Call 3 gadgets in Table 7. The
difference resides in the fact that Call 2 requires the target
address to be loaded into eax, whereas Call 3 loads the
branch address from memory.

Recall that the CFI policy for indirect calls (CFICALL
in Table 2) only permits the use of branch addresses taken
from an exported symbol or a valid code pointer place.
However, as we already described in §3.2.4, the integrity
of code pointers is not guaranteed. Hence, we can lever-
age GOT overwrite-like attacks to change the address at a
given code pointer location. Alternatively, since modern
applications typically make use of many WinAPI func-
tions by default, we can indirectly call one of these func-
tions using the external symbols.

4.2.2 Long-NOP Gadget

Our final gadget is needed to thwart the restriction that
after s = 7 short sequences in a row is used, another se-
quence of at least n = 20 instructions must follow (see
CFIHEU in Table 2). For this task, we developed a new
gadget type that we refer to as the long no-operation
(long-NOP) gadget. Constructing long-NOP in a way
that does not break the semantics of an arbitrary ROP
chain was a non-trivial task that required painstaking
analyses and a stroke of luck.

To identify possible sequences for this gadget type,
we let our sequence finder filter those call-preceded se-
quences that contain more than n = 20 instructions. To
ensure that the long sequence does not break the seman-
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tics of the ROP chain, we further reduced the set of se-
quences to those that (i) contain many memory-write in-
structions, and (ii) make use of only a small set of regis-
ters. While the latter requirement is obvious, the former
seems counter-intuitive as it can potentially change the
memory state of the process. However, if we are able to
control the destination address of these memory writes,
we can write arbitrary values into the data area of the
process outside the memory used by our ROP attack.

New Value (ebp)

POP esi
POP edi
POP ebp
RET 8

ROP Sequence 7 (Pre-LNOP)

PUSH 3
POP eax
13 Memory Writes 
(esi,edi)
XOR eax,eax
MOV eax,ebx
POP edi
POP esi
POP ebx
POP ebp
RET

ROP Sequence 8 (LNOP)

Memory Layout
for ROP Attack

Pre-LNOP (RET 7)

DATA_ADDR (esi)

DATA_ADDR (edi)

Pattern (ebp)

LNOP (RET 8)

Pattern

Pattern

Saved edi (edi)

Saved esi (esi)

Saved eax (ebx) 36 Bytes 
Memory

STORE EAX (RET 6)

STORE EDI (RET 5)

POP ESI,EBP (RET 4)

EAX_ADDR (esi)

STORE ESI (RET 3)

POP EBP (RET 2)

ESI_ADDR (ebp)

EDI_ADDR (ebp)

ROP Gadget 1 (RET 1)
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ROP Gadget 2 (RET 1) DATA AREA
DATA_ADDR

Figure 4: Flow of Long-NOP gadget

Among the sequences that fulfill these requirements,
we chose a sequence that is (abstractly)6 shown in Fig-
ure 4. It contains 13 memory write instructions using
only the registers esi and edi. We stress that the en-
tire gadget chain for long-NOP does not induce any side-
effects, i.e., the content of all registers and memory area
used by the ROP attack is preserved.

We distinguish between mandatory and optional se-
quences used for long-NOP. The latter sequences are
only required if the content of all registers needs to be
preserved. We classify them as optional, since it is very
unlikely that ROP attacks need to operate on all registers
during the entire ROP execution phase. If all registers
need to be preserved (worst-case scenario), we require 6
ROP sequences before the long-NOP gadget sequence is
invoked. Since all registers are preserved, we can issue in
each round another ROP sequence until all desired ROP
sequences have been executed.

Mandatory Sequences. The mandatory sequences are
those labeled Sequence 7 and 8 (in Figure 4). Sequence 7
is used to set three registers: esi, edi, and ebp. We load

in esi and edi the same address, namely DATA ADDR,
which points to an arbitrary data memory area in the ad-
dress space of the application, e.g., stack, heap, or any
other data segment of an executable module. Due to the
ret 8 instruction, the stack pointer will be incremented
by 8 more bytes leaving space for pattern values. Af-
terwards, our long-NOP sequence uses esi and edi to
issue 13 memory writes in a small window of 36 bytes.
In each round, we use the same address for DATA ADDR,
and hence, we always write the same arbitrary values in
a 36 byte memory space not affecting memory used by
our ROP attack. The long-NOP sequence also destroys
the value of eax and loads new values via pop instruc-
tions in other registers. However, these register changes
are resolved by our optional sequences discussed next.

Optional Sequences. ROP Sequence 2 to 6 are the op-
tional sequences, and are responsible for preserving the
state of all registers. The optional sequences shown in
Figure 4 represent those already presented in our basic
gadget arsenal in §4.1. Depending on the specific goals
and gadgets of a ROP attack, the adversary can choose
among the optional sequences as required.

ROP Sequence 2 and 3 store the value of esi on the
stack in such a way that the pop esi instruction in long-
NOP resets the value accordingly. ROP Sequence 4 to 6
store the content of eax and edi on the stack. Similar
to the store for esi, the content is again re-loaded into
these registers via pop instructions at the end of the long-
NOP sequence. However, the content of register eax and
ebx is exchanged after the long-NOP sequence since mov
eax,ebx stores ebx to eax, and the former value of eax
is loaded via pop into ebx. However, we can compensate
this switch by invoking the Long-NOP gadget twice so
that eax and ebx are exchanged again.

5 Hardening Real-World Exploits
We now elaborate on the hardening of two real-world ex-
ploits against 32-bit Windows 7 SP1 and a Linux proof-
of-concept exploit. Specifically, we transform publicly
available ROP attacks against Adobe PDF reader [26]
and the GNU mediaplayer mPlayer [10]. We used the
gadget set derived in §4 to perform the transformation.
Furthermore, our attacks are executed with the Caller,
SimExecFlow, StackPivot, LoadLib, and MemProt op-
tion for ROP detection in Microsoft EMET 4.1 enabled.
The source code for both attacks is given in our technical
report [19].

5.1 Windows Exploits

The Adobe PDF attack used in this paper exploits the
integer vulnerability CVE-2010-0188 in the TIFF image
processing library libtiff. The vulnerability originally
targeted Adobe PDF versions 9.1-9.3 running on Win-
dows XP SP2/SP3. Likewise, the mPlayer attack ex-
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ploited a buffer overflow vulnerability that allows the ad-
versary to overwrite an exception handler pointer. Since
we perform our analyses on Windows 7, we ported both
exploits from Windows XP to Windows 7.

Exploit Requirements: For both exploits, we need
to (1) allocate a new read-write-execute (RWX) memory
page with VirtualAlloc(), (2) copy malicious shellcode
into the newly allocated page by using memcpy(), and
(3) redirect the control-flow to the shellcode. Originally,
the exploits made use of non-call-preceded gadgets, and
used a long chain of short instruction sequences. For
mPlayer 18 consecutive short sequences are executed,
while for Adobe PDF 11 sequences are executed until the
first system call is issued. Hence, both exploits clearly
violate CFIRET and CFIHEU of the combined CFI pol-
icy. These exploits are prevented by Microsoft EMET
because of CFIRET , and are detected by both kBouncer
and ROPecker due to violation of the CFIHEU policy.

Replacing ROP Sequences: A simplified view of the
gadget chain we use for our hardened exploits in the PDF
exploit is shown in Figure 5. We first replaced all non-
call-preceded sequences with one of our call-preceded
sequences in our ROP gadget set identified in Section 4.
Both exploits mainly use load register and memory gad-
gets to set the arguments for VirtualAlloc() and mem-
cpy(), and function call gadgets to invoke both functions.
By leveraging only call-preceded sequences, our attacks
comply to the CFI policy for returns (CFIRET ).

LOAD esi 

LNOP Sequence
LOAD esi,ebp

Memory Layout
for ROP Exploit

(Adobe PDF)

M_Args
DATA_ADDR

ROP Gadget 4 (RET 4)

DATA_ADDR
ROP Gadget 5 (RET 5)

36 Bytes 
Memory

ROP Gadget 3 (RET 3)
Arg4 = RWX

Arg1 = NULL
Arg2 = size

ROP Gadget 2 (RET 2)

&VirtualAlloc

Arg3 = MEM_COMMIT

ROP Gadget 1 (RET 1)

&memcpy

DATA AREA
DATA_ADDR

Call-Ret-Pair
VirtualAlloc()

LOAD esi,edi

STORE eax at [esi]
LOAD esi

ROP Gadget 6 (RET 1) Call-Ret-Pair 2
memcpy()

RWX Memory

SHELLCODE

ROP Gadget 7 (RET 2)

Arg1 = NEW_PAGE
Arg2 = &SHELLCODE

Arg3 = size
NEW_PAGE

Execute SHELLCODE

Figure 5: Simplified view of our hardened PDF exploit.
See [19] for the full source code.

Since both exploits make use of WinAPI calls, we uti-
lized our Call-Ret-Pair gadget to invoke VirtualAlloc()
and memcpy(). As both functions are default routines
used in a benign execution of Adobe PDF and mPlayer,

we are allowed to leverage indirect calls to invoke these
functions (addressing CFICALL). Note that even if this
were not the case, we could still call these functions by
overwriting valid code pointer locations. A demonstra-
tion of this weakness — particularly for the approach
of Zhang and Sekar [46] — is provided in Section 5.2.
Lastly, we need to tackle the CFI policies for behav-
ioral heuristics (addressing CFIHEU ) by ensuring that we
never execute more than 7 short sequences in a row be-
fore calling our long-NOP gadget.

Putting-It-All-Together: Gadget � in Figure 5 loads
the target address of VirtualAlloc() into esi. The argu-
ments to this function (Arg1-Arg4) are set on the stack.
They are chosen in such a way that VirtualAlloc() allo-
cates a new RWX memory page. Gadget � leverages
our Call-Ret-Pair gadget to call VirtualAlloc(). The start
address of the page is placed by VirtualAlloc() into eax.

ROP Gadgets � and � facilitate two goals: first they
store the start address of the new RWX page on the stack.
Second, they prepare the execution of the long-NOP gad-
get. In particular, they set esi and edi to DATA ADDR.
This address points to an arbitrary data section of one
of the linked libraries. Our long-NOP sequence (ROP
Gadget �) will later perform 13 memory writes on this
data region, thereafter setting esi to the start address of
memcpy(). ROP Gadget � invokes memcpy() to copy the
malicious shellcode onto the newly allocated RWX page.
Lastly, our ROP chain transfers the control-flow to the
copied shellcode via Gadget �, which in both exploits
opens the Windows calculator.

For the Adobe PDF attack, we used 7 ROP sequences
with 52 instructions executed. In the hardened version
of the mPlayer exploit, we used 49 ROP sequences with
380 instructions executed. Note that the 49 sequences
include the interspersed long-NOP sequences to adhere
to the CFI policy CFIHEU . We used a writable memory
area of 36 Bytes for the long-NOP gadget. The require-
ment of more sequences for the mPlayer attack can be
attributed to the fact that this exploit did not allow for
the use of any NULL bytes in the payload and so we
needed to leverage a NULL-Byte gadget (Appendix A)
in this exploit. The mPlayer exploit also required a
stack pivot gadget (Appendix B). This attack also re-
quired a specific stack pivot gadget adding a large con-
stant to esp. Unfortunately, our stack pivot sequences in
kernel32.dll did not use large enough constants, and
the original sequence exploited a non call-preceded one
in avformat-52.dll. However, we identified another
useful call-preceded stack pivot sequence in the same li-
brary which allowed us to instantiate the exploit.

The above strategies can be used to easily transform
other ROP attacks to bypass current coarse-grained CFI
defenses. Furthermore, given our routines for finding and
filtering useful call-preceded ROP sequences, the process
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of transforming exploits could be fully automated. We
leave that as an exercise for future work.

A final remark concerns the control transfer to the
injected shellcode. In both exploits, we invoke a call-
preceded sequence terminating in an indirect jump.
While this approach works for kBouncer, ROPecker, and
ROPGuard, it might raise an alarm for CFI for COTS
binaries if the shellcode is placed at an address that is
not within the set of valid function pointers (i.e., indirect
jump targets). However, there are several ways to tackle
this issue. A very effective approach has been shown by
Göktas et al. [22], where the code section is simply set to
be writable, the shellcode copied to an address which re-
sembles a valid function pointer, and after which the code
section is reset back to be executable. Alternatively, one
can overwrite the location of a valid function pointer with
the start address of the shellcode. We provide a detailed
example how this can be realized in the next subsection.

5.2 Linux Shellcode Exploit

Since the approach of Zhang and Sekar [46] targets
Linux specifically, we also developed a proof-of-concept
exploit that shows how our attack bypasses the CFI poli-
cies for indirect calls. To do so, we use a sample program
that suffers from a buffer overflow vulnerability allowing
an adversary to overwrite a return address on the stack.
The goal of our attack is to call execve(), which is a stan-
dard system function defined in libc.so to execute a
new program. The challenge, however, is that the ex-
ample program does not include execve() in its external
symbols, and consequently, we are not allowed to redi-
rect the control-flow to execve() using an indirect call.

LOAD edx,eax Stack layout for
GOT overwrite

Arg1 = /bin/sh

ROP Gadget 3 (RET 3)

ROP Gadget 2 (RET 2)

&printf@plt

&execve
&printf@got.plt

ROP Gadget 1 (RET 1)

STORE eax at [edx]

Call-Ret-Pair
printf@plt

LOAD esi

&execve

JMP
[&printf@got.plt]
...

printf@plt

printf@got.plt

...

Code Layout of
module

ROP Gadget 4 (RET 4)

Figure 6: GOT overwrite attack

To overcome this restriction, we make use of an old
(but seemingly forgotten) attack technique called global
offset table (GOT) overwrite [9]. The basic idea is to
write the address of execve() at a valid code pointer loca-
tion. A well-known location for doing so is the GOT
table, which contains pointers to library calls such as
printf(). We reiterate that the weakness here is that CFI
for COTS binaries does not validate the integrity of these
pointers — a very difficult, if not unsurmountable task, in
the current design of Linux since the GOT is initialized at
runtime of an application. Hence, we can invoke gadgets

to overwrite the pointers placed in the GOT. Specifically,
we first find useful sequences from the Linux standard
library libc.so and use gadgets that perform the GOT
overwrite while using only call-preceded sequences.

Putting-It-All-Together: An example on how we by-
pass the CFI policy for indirect calls is shown in Figure 6.
The approach is as follows: first, Gadget � loads the ad-
dress of the GOT entry we want to modify into edx, and
loads eax with the address of execve(). Next, Gadget �

overwrites the address of printf() with the address of ex-
ecve() in the GOT. Finally, Gadget � loads the address of
the printf() stub into esi, and Gadget � uses a Call-Ret-
Pair gadget to invoke execve(). At this point, the attack
succeeds without violating any of the CFI policies.

5.3 On Parameter Adjustment

As alluded to in §3.3, adjusting the parameters for the
CFIHEU policy beyond the recommended settings will
negatively impact the false positive rate. To assess that,
we extended the analysis beyond what Pappas et al. [31]
originally performed in order to analyze the impact of
increasing n to 30 or 40 instructions — thereby render-
ing our Long-NOP gadget (which is only 23 instruc-
tions long) stitching ineffective. Specifically, we per-
formed an experiment using three benchmarks of the
SPEC CPU 2006 benchmark suite: bzip2, perlbench,
and xalancbmk. The first two are programmed in C,
while the latter in C++. We developed an Intel Pintool
that counts the number of instructions issued between
two indirect branches, and the number of consecutive
short instruction sequences. Whenever a function call oc-
curs, we check how many short sequences (s) have been
executed since the last function call.
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Figure 7: Potential false positives when the parameters for the
consecutive sequences (s) and sequence length (n) are adjusted.

As Figure 7 shows, increasing the thresholds for n
induces many potential false positives (y-axis). In par-
ticular, for each benchmark (x-axis), observe that for
s > 10 there are about 20,000 potential false positives,
i.e., 20,000 times we detected a function call that was
preceded by more than 10 short sequences7.
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6 Related Work
Concurrent and independent to our work, several re-
search groups have investigated the security of coarse-
grained CFI solutions [11, 22–24, 34]. However, our
analysis differs from these works as we examine the
security of a combination of coarse-grained CFI poli-
cies irrespective of when the CFI check occurs. For in-
stance, the attacks shown in [11, 22, 34] are prevented by
our combined CFI policy which monitors the sequence
length at any time in program execution. Furthermore,
unlike these works, we systematically show the construc-
tion of a Turing-complete gadget set based on a weak ad-
versary that has only access to one standard shared Win-
dows library. On the other hand, concurrent work also in-
vestigates some other interesting attack aspects: Göktas
et al. [22] demonstrate attacks against CCFIR [45] using
call-preceded gadgets to invoke sensitive functions via
direct calls; Carlini and Wagner [11] and Schuster et al.
[34] show flushing attacks that eliminate return-oriented
programming traces before a critical function is invoked.

Lastly, new CFI-based solutions have also been pro-
posed. For instance, the approaches of Tice et al. [40]
and Jang et al. [25] focus on protecting indirect calls
to virtual methods in C++. Both approaches have been
implemented as a compiler extension and ensure that
an adversary cannot manipulate a virtual table (vtable)
pointer so that it points to an adversary-controlled (mali-
cious) vtable. Unfortunately, these schemes do not pro-
tect against classical ROP attacks which exploit return
instructions, and map malicious code to a memory area
reserved for a valid virtual method.

7 Summary
Without question, control-flow integrity offers a strong
defense against runtime attacks. Its promise lies in the
fact that it provides a general defense mechanism to
thwart such attacks. Rather than focusing on patching
program vulnerabilities one by one, CFI’s power stems
from focusing on the integrity of the program’s control
flow regardless of how many bugs and errors it may suf-
fer from. Unfortunately, several pragmatic issues (most
notably, its relatively high performance overhead), have
limited its widespread adoption.

To better tackle the performance trade-off between se-
curity and performance, several coarse-grained CFI so-
lutions have been proposed to date [13, 20, 31, 45, 46].
Additionally, it has been recently shown that such coarse-
grained CFI policies can be applied to operating system
kernels [16]. These proposals all use relaxed policies,
e.g., allowing returns to target any instruction following
a call instruction.

While many advancements have been made along the
way, all to often the relaxed enforcement policies signifi-
cantly diminish the security afforded by Abadi et al. [3]’s

seminal work. This realization is a bit troubling, and
calls for a broader acceptance that we should not sacrifice
security for small performance gains. Doing so simply
does not raise the bar high enough to deter skillful adver-
saries. Indeed, our own work shows that even if coarse-
grained CFI solutions are combined, there is still enough
leeway to mount reasonable and Turing-complete ROP
attacks. Our hope is that our findings will raise better
awareness of some of the critical issues when designing
robust CFI mechanisms, all-the-while re-energizing the
community to explore more efficient solutions for em-
powering CFI.
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A NULL-Byte Write Gadget

In real-world exploits it is useful to have gadgets that al-
low one to conveniently write a NULL word to memory.
This is important as real-world vulnerabilities typically
do not allow an adversary to write a NULL byte in the
payload, but such functionality is indeed needed to write
a 32-bit NULL word on the stack when required as a pa-
rameter to function calls.

A prominent example is the traditional strcpy(dest,src)
vulnerability, which can be exploited to write data be-
yond the boundaries of the src variable. However,
strcpy() stops copying input data after encountering a
NULL byte.

POP ebp
RET

ROP Sequence 1

AND [ebp-20h],0
RET

ROP Sequence 2 (NULL)

Memory Layout for 
NULL Gadget

NULL

ROP Gadget 2 (RET 2)
ADDR + 20h

ROP Gadget 1 (RET 1)

ADDR

Figure 8: Details of NULL Gadget

Our choice for such a gadget is shown in Figure 8.
This gadget first loads the target address into ebp with
the first ROP sequence. The next sequence exploits the
and instruction to generate a NULL word at the memory
location pointed to by ebp-20h.

B Stack Pivot Gadgets

We take advantage of two distinct stack pivot gadgets
shown in Table 8. The first one is our unconditional
branch gadget, which moves ebp via the leave instruc-
tion to esp. The other sequence takes the value of esi
and loads it into esp. In both sequences, the adversary
must control the source register ebp and esi, respec-
tively. This is achieved by invoking a load register gadget
beforehand. Note also that several vulnerabilities allow
an adversary to load these registers with the correct val-
ues at the time the buffer overflow occurs, which would
make the ROP attack easier.

Type Call-Preceded Sequence (ending in ret)
Pivot 1 leave

Pivot 2 mov esp, esi; pop ebx; pop edi;

pop esi; pop ebp

Table 8: Stack Pivot Gadgets

C Details of Long-NOP Gadget
pop esi ; ptr to writable mem for NOP
pop edi ; ptr to writable mem for NOP
pop ebp ; unused in NOP
retn 8 ; -> insert 8 bytes junk after

next gadget

Listing 1: Pre-Seuence for LNOP

movzx eax , ax
mov [esi+4], eax ; 5 writes to
mov [esi+8], 1F4Bh ; a 20 byte
mov [esi +14h], 5 ; memory region
mov [esi +10h], 1Fh
mov [esi+0Ch], 0Ch
push 3Bh
pop eax
mov [esi+1Ch], eax ; 2 writes to
mov [esi +20h], eax ; 8 byte region
xor eax , eax
mov [esi +18h], 17h ; another 8 bytes
mov [esi +24h], 98967Fh
mov [edi +18h], eax ; if edi == esi
mov [edi+1Ch], eax ; these writes
mov [edi +20h], eax ; goto the same
mov [edi +24h], eax ; region as before
pop edi ; (optional :) restore edi
pop esi ; (optional :) restore esi
mov eax , ebx
pop ebx ; (optional :) load former eax
pop ebp
retn 0Ch

Listing 2: Long sequence used for LNOP gadget

Notes
1Some of the mechanisms used in kBouncer and ROPGuard (both

awarded by Microsoft’s BlueHat Prize [39]) have already been inte-
grated in Microsoft’s defense tool called EMET [29].

2Sequences that end in indirect jumps or calls can also be used [12].
3Typically, CFI does not validate direct branches because these ad-

dresses are hard-coded in the code of an executable and cannot be
changed by an adversary when W⊕X is enforced.

4Specifically, kBouncer reports a ROP attack when a chain of 8
short sequences has been executed, where a sequence is referred to as
“short” whenever the sequence length is less than 20 instructions.

5The target address of an external function is dynamically allocated
in the global offset table (GOT) which is loaded by an indirect memory
jump in the procedure linkage table (PLT).

6For the interested reader, we have placed the specific assembler
implementation of the long-NOP sequence in Appendix C.

7We also simulated the analysis performed in [31] by setting n= 20.
However, we arrive at a significantly higher false positive rate than
in [31]. This is likely due to the fact that we perform our analysis on
industry benchmark programs, while their analysis is based on open-
ing web-browsers or document readers. Furthermore, their focus is on
WinAPI calls, whereas in Figure 7 we instrument every call.
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Abstract

Code-reuse attacks based on return oriented program-
ming are among the most popular exploitation tech-
niques used by attackers today. Few practical defenses
are able to stop such attacks on arbitrary binaries with-
out access to source code. A notable exception are the
techniques that employ new hardware, such as Intel’s
Last Branch Record (LBR) registers, to track all indirect
branches and raise an alert when a sensitive system call is
reached by means of too many indirect branches to short
gadgets—under the assumption that such gadget chains
would be indicative of a ROP attack. In this paper, we
evaluate the implications. What is “too many” and how
short is “short”? Getting the thresholds wrong has seri-
ous consequences. In this paper, we show by means of
an attack on Internet Explorer that while current defenses
based on these techniques raise the bar for exploitation,
they can be bypassed. Conversely, tuning the thresholds
to make the defenses more aggressive, may flag legit-
imate program behavior as an attack. We analyze the
problem in detail and show that determining the right val-
ues is difficult.

1 Introduction

Modern protection mechanisms like data execution pro-
tection (DEP) [2], address space layout randomization
(ASLR) [26] and stack smashing protection (SSP) [9] are
now available on most general-purpose operating sys-
tems. As a result, exploitation by injecting and executing
shellcode directly in the victim process has become rare.
Unfortunately, these defenses are not sufficient to stop
more sophisticated attacks.

Nowadays, attackers typically use memory disclo-
sures to find exactly the addresses ASLR is trying to
hide [30, 34, 36]. Likewise, there is no shortage of tu-
torials on how to evade state-of-the-art defenses [14,28].
Attackers are able to hijack control flow and bypass DEP

by reusing code that is already available in the binary it-
self, or in the libraries linked to it. There are several vari-
ations of this exploitation method: return-to-libc [37],
return-oriented programming (ROP) [31], jump-oriented
programming [3,6], and sigreturn oriented programming
(SROP) [4]. Code reuse attacks, and especially ROP,
may be the most popular exploitation method used by
attackers today, bypassing all popular defense mecha-
nisms. Even additional and explicit protection against
ROP attacks over and beyond DEP, ASLR and SSP, such
as provided by Microsoft’s Enhanced Mitigation Expe-
rience Toolkit (EMET), do not stop the attacks in prac-
tice [14].

ROP attacks start when an attacker gains control of the
stack and diverts the control to a gadget: a short sequence
of instructions that performs a small subset of the desired
functionality and ends with a ret instruction. Since the
attackers control the return addresses on the stack, they
can make the ret of one gadget jump to the start of an-
other gadget, daisy chaining the desired functionality out
of a large set of small gadgets.

It is no wonder, then, that the security community has
scrambled to find alternative methods to defend software
assets. For instance, over the past decade or so, there has
been a tremendous amount of research interest in control
flow integrity (CFI) [1]—a technique to prevent any flow
of control not intended by the original program. Unfor-
tunately, CFI is fairly expensive. Moreover, research has
shown that attempts to make it faster and more practical
by employing looser notions of integrity, make it vulner-
able to exploitation again [16].

KBouncer and friends Perhaps the main and most
practical defense mechanism proposed against ROP at-
tacks nowadays is the one pioneered by kBouncer [25]—
grand winner of the Microsoft Blue Hat Prize in 2012.
The technique has become quite successful and despite
its recent pedigree, it is already used in commercial prod-
ucts like HitmanPro’s new Alert 3 service [18].

1
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KBouncer and related approaches like ROPecker [8]
use a new set of registers, known as the Last Branch
Record (LBR), available in modern Intel CPUs. The
registers can be used to log the last n indirect branches
taken by the program. Using the LBR, kBouncer checks
whether the path that lead to a sensitive system call
(like VirtualProtect) contains “too many” indirect
branches to “short” gadgets—which would be indicative
of a ROP chain.

The two obvious questions that we need to ask are:
what is “too many,” and how short is “short”?

Specifically, suppose the defensive mechanism has
thresholds TC and TG, such that it raises an alarm when
it sees a chain of TC or more gadgets of at most TG in-
structions each. If the attackers can find just a single
gadget greater than TG that they can simply squeeze in
between the others to break the sequence, the defensive
mechanism would not detect it. Conversely (and more
worryingly), if a program itself exhibits TC gadgets of
at most TG instructions during normal execution, the de-
fense mechanism would erroneously flag it as an attack.

Implemented carefully, the protection offered by this
method is quite powerful, but picking the right values
for TG and TC is a delicate matter. After all, the former
scenario suggests that TG is too small. However, incre-
menting TG may lead to more false positives (FPs) be-
cause benign execution paths are more likely to contain
TC such gadgets.

Contributions In this paper, we investigate the prob-
lem of picking the right values for these two thresh-
olds. We also evaluate whether the solutions proposed
today are sufficient to stop exploitation in real soft-
ware. Specifically, we show that while they raise the
bar for exploitation significantly, they can be bypassed.
As a demonstration, we discuss a proof of concept
exploit against Internet Explorer that bypasses current
kBouncer-based defenses. We then analyze the prob-
lem by considering the availability of gadgets of differ-
ent lengths and determining the sequences of gadgets en
route to sensitive system calls.

While this work does not fully explore the possibil-
ity of FPs with the thresholds used in literature, it shows
that defining restrictive thresholds, which do not allow
the composition of ROP payloads, is extremely compli-
cated and may not be possible for many applications due
to FPs. Finally, we discuss various avenues for amelio-
rating these techniques and provide evidence that setting
the thresholds based on the application at-hand can sig-
nificantly encumber attackers.

Outline The remainder of this paper is organized as
follows. Section 2 provides some background informa-
tion regarding code-reuse attacks and defenses that use

pop eax
ret

pop ecx

ret
add eax, ecx

pop ecx

ret
pop ebx

ret
sub eax, ecx

0x0010bb80

0x41414141

0x0800ab00

0x08501154

0x02215f80

0x0000000e

0x00000024

0x0000002d

ESP

0xffffffff

0x00000000

Figure 1: A very simple ROP chain that calculates 0xe+
0x24−0x2d. Result is in the eax register.

gadget-chain length for detection. Section 3 discusses
the weaknesses of such approaches, and in Sec. 4 we
present the process of creating an exploit that can cir-
cumvent them. We propose countermeasures and discuss
possible obstacles for their adoption in Sec. 5. In Sec. 6,
we present the results of our experiments that indicate
that one of the proposed countermeasure can improve
detection. Related work is in Sec. 7 and we conclude
in Sec. 8.

2 Background

2.1 ROP and Code-reuse Attacks

ROP attacks are the most common vector for launch-
ing code-reuse attacks and require that the attacker gains
control of the program’s stack. By corrupting the return
address of the executing function, upon its return, control
is diverted to a gadget of the attacker’s choosing. Gad-
gets are small sequences of code that end with a ret.
By carefully positioning data on the stack, the attacker
can make the program jump from one gadget to another,
chaining together pieces of already existing code that im-
plement the desirable payload, as shown in Fig. 1. While
the gadgets that the attacker chains together are usually
short in length (i.e., in number of instructions) and lim-
ited in functionality, previous work has shown that the
attack is Turing complete [31]. That is, applications con-
tain enough gadgets to perform arbitrary computations.

Creating a working ROP exploit is often a complex,
multi-step process. It typically starts with a memory dis-
closure that allows the attacker to obtain code pointers.
Next, the attack may require a variety of further prepa-
rations, such as advanced heap feng shui [35] to pave
the way for a dangling pointer exploit, stack pivoting,
and/or buffer overflows. In addition, the attacker needs
to identify useful gadgets and construct a ROP program
out of them by setting up the appropriate addresses and

2
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...
pop | mov | add | or | ...
ret | jmp *(ptr) | call *(ptr)

...

...
pop | mov | add | or | ...
ret | jmp *(ptr) | call *(ptr)

...
pop | mov | add | or | ...
ret | jmp *(ptr) | call *(ptr)

...

...

...
pop | mov | add | or | ...
ret | jmp *(ptr) | call *(ptr)

...
pop | mov | add | or | ...
ret | jmp *(ptr) | call *(ptr)

G
ad

ge
t-c

ha
in

 le
ng

th

Sequences of
  TG or less instructions 

ending with an
indirect branch are 

considered gadgets

A gadget chain of 
TC or more gadgets 

constitutes an attack CHECK

Figure 2: Example of a gadget chaining pattern used to
identify code-reuse attacks.

arguments on the (possibly new) stack. Finally, a control
flow diversion should start off the ROP chain.

ROP is popular despite its complexity because it pro-
vides a way for attackers to bypass defenses like DEP [2].
As a result, many recent works have focused on pre-
venting ROP and other forms of code-reuse attacks [7,
8, 13, 23–25, 31, 33]. Other works have shown that a
similar attack can also be performed with gadgets that
end with indirect jump or call instructions instead of re-
turns [3, 6, 21].

2.2 Monitoring Gadget Chains to Detect
Attacks

kBouncer [25] and ROPecker [8] are two of the most
easy to deploy solutions to stop ROP-like attacks. They
employ a recent feature of Intel CPUs, known as the Last
Branch Record (LBR), that logs the last branches taken
by a program in a new set of registers [20, Sec. 17.4].
Intel introduced LBR for both the x86 and x86-64 ar-
chitectures, so that, with the right configuration, the op-
erating system (OS) is able to log the targets of indi-
rect branches (including calls, jumps, and returns) in
16 machine-specific registers (MSR) registers with lit-
tle overhead. These registers are accessible only from
the OS kernel and are continuously overwritten as new
branches occur.

A key observation for detecting ROP attacks, in both
kBouncer and ROPecker, is that the attacks need to chain
together a significant number of small gadgets to per-
form any useful functionality, like in the example shown
in Fig. 2. From a high-level perspective, they include
two parameters: the first controls what is the longest se-
quence of instructions ending with an indirect branch that

will be considered a gadget, and the second specifies the
number of successively chained gadgets that indicates an
attack. We will refer to these two thresholds as TG and
TC. These two parameters control the level of difficulty
for performing an attack under these solutions. Increas-
ing TG or reducing TC makes the construction of ROP
payloads harder. However, overdoing it can lead to false
positives (FP), due to legitimate execution paths being
misclassified as attacks at run time. In the remainder
of this section, we will briefly highlight kBouncer and
ROPecker.

2.2.1 kBouncer

kBouncer kicks in every time a sensitive API call, like
VirtualProtect(), CreateProcess(), etc., is
executed by inserting hooks through the Detours [19]
framework for Windows. It then scans the LBR regis-
ters to detect if the API call was made by a malicious
ROP gadget chain, and terminates the running process if
it was.

Two mechanisms are used to determine if there is an
attack. The first mechanism aims to identify abnormal
function returns. It is based on the observation that ROP
chains manipulate control-flow to redirect control to ar-
bitrary points in the program, where the attacker-selected
gadgets reside. This constitutes a deviation from legiti-
mate behavior, where returns transfer control to instruc-
tions immediately following a call. kBouncer checks the
targets of all return instructions in the LBR to ensure that
they are preceded by a call instruction. In x86 architec-
tures where unaligned instructions are permissible, this
call instruction does not necessarily need to be one ac-
tually intended by the program and emitted by the com-
piler. Any executable byte with the value of 0xE8, one
of the opcodes for the call instruction, can be actually
considered as an unintended call instruction and attack-
ers can use the gadget following it.

Recently, even just using gadgets following intended
calls was shown to be sufficient to compose ROP pay-
loads [16]. In anticipation of the possibility of such at-
tacks, kBouncer introduced a second mechanism, based
on gadget-chain length, to detect and prevent attacks.
First, all potential gadgets are identified through offline
analysis of an application. Every uninterrupted sequence
of at most 20 instructions ending in an indirect branch
is treated as a potential gadget. At run time, kBouncer
checks that there is no uninterrupted chain of eight or
more such gadgets as targets in the LBR. In this case,
the maximum gadget length of TG = 20 was selected ar-
bitrarily [25, Sec. 3.2], while through experimentation
with a set of Windows applications, it was determined
that a safe choice for the gadget-chain length threshold is
TC = 8 [25, Sec. 3.2, Fig. 7].
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2.2.2 ROPecker

Similarly to kBouncer, ROPecker [8] utilizes LBR to de-
tect ROP attacks. However, instead of only checking
LBR registers upon entry to sensitive API calls, it in-
troduces a new mechanism for triggering checks more
often. It maintains a sliding window of code that is exe-
cutable, while all other code pages are marked as non-
executable. Checks are made each time a permission
fault is triggered because control flow is transferred out-
side the sliding window. The intuition behind this ap-
proach is that due to code locality page faults are not
triggered very often and ROP attacks are unlikely to use
only gadgets contained within the sliding window (be-
tween 8 and 16 KB), so a check will be triggered before
the attack completes.

Attack detection occurs primarily by checking gadget-
chain length, like in kBouncer. However, ROPecker also
checks for attacks in future returns by inspecting the re-
turn addresses stored in the stack. Potential gadgets are
collected offline by statically analyzing applications, but
they are defined differently from kBouncer. In particular,
a gadget is a sequence of no more than six instructions
that ends with an indirect branch, but does not contain
any direct branches. Experiments were conducted with
various Linux applications and benchmarks to determine
a safe choice for the gadget-chain length threshold that
will indicate an attack. The results varied, but a chain of
at least 11 gadgets was determined to be a safe choice.
However, using a per-application threshold, if possible,
is recommended. To summarize, the maximum length of
a gadget is set to TG = 6 and is selected arbitrarily [8,
Sec. VII.B], while the safe choice for the gadget-chain
length threshold is TC = 11 [8, Sec. VII.A].

In the presence of multiple smaller gadget chains, in-
tentionally created by mixing long and short gadgets to
evade the mechanism, ROPecker also proposes accumu-
lating the lengths of the smaller chains across multiple
windows and using that instead, to gain a certain degree
of tolerance to such attacks. Accumulation is done every
three windows, and experimental results showed that an
acceptable threshold for cumulative gadget-chain length
is TCC = 14.

3 The Problem

Both systems we study in this paper heavily depend on
two parameters, namely TC (the chain length) and TG (the
gadget length). In this section, we discuss the problem
of picking the right values for TC and TG, and the way
attackers can bypass the defenses proposed by kBouncer,
ROPecker, and similar approaches.

What Is the Right Size? Mechanisms like kBouncer
and ROPecker rely on defining gadgets based on the size
of instruction sequences ending in indirect branches, and
detect attacks based on the size of gadget chains. The
problem with such measures is that while they do raise
the bar, they are also their own Achilles’ heel. By in-
terspersing their ROP code with an occasional longer se-
quence of instructions (ending with an indirect branch)
that will not be registered as a gadget, an attacker can
reduce the length of gadget chains, as observed by these
systems, and avoid detection.

Figure 3 shows a high-level overview of such an at-
tack. After receiving control through an exploit, an at-
tacker first uses up to TC − 1 detectable gadgets (DG).
Then, he employs at least one longer undetectable gad-
get (UG), that is, a sequence of more than TG instruc-
tions. To be precise, an attacker may need to use an UG
earlier for the first time because a chain of TC legitimate
application gadgets may already exist before he receives
control, leading to a longer chain of DGs. If a check is
triggered while this chain is still visible in the LBR, the
attack will be detected. kBouncer only conducts checks
on certain API calls, so an attacker needs to only worry
about the number of DGs in the LBR when performing
such calls. On the other hand, ROPecker triggers checks
more frequently, but, exactly due to this fact, uses less
restrictive TC and TG parameters. In the worst case, an
attacker needs to use an UG first in his ROP chain.

Weak Control-Flow Enforcement kBouncer per-
forms an additional check to ensure that the targets of
all return instructions in the LBR point to instructions
preceded by calls. However, recent work [16] has shown
that it is possible to build a ROP payload using such call-
preceded (CP) gadgets and evade even stricter control-
flow restrictions. As a result, the effectiveness of de-
fenses like kBouncer depends entirely on the TC and TG
parameters. In the example shown in Fig. 2, the attacker
would not be able to link gadgets that are not preceded
by calls using function returns.

Accumulating Gadget-Chain Lengths ROPecker
proposes an extension to tackle exactly the problem of
mixing long and short gadgets. They define another
parameter, TCC, which is the threshold for the cumulative
length of gadget chains in three successive windows
and, hence, checks. This extension aims to prevent
attacks following the pattern shown in Fig. 3. However,
ROPecker does not consider instruction sequences
including direct branches as gadgets, so an attacker can
employ those as alternative shorter UGs. Furthermore,
attackers can carefully construct attacks that consist of a
small number of gadgets and then inject code, as it was
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Chain length less than TC
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Chain length less than TC

Undetectable gadgets longer than TG
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hijacks
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Figure 3: Mixing shorter and longer gadgets to avoid detection. Gadgets larger than TG instructions are not considered
as gadgets by both kBouncer and ROPecker. The latter also ignores gadgets that contain direct branch instructions.

done in previous work [16]. Details follow in the next
section.

4 Proof-of-Concept Attack

In this section, we describe the construction of a proof-
of-concept (PoC) exploit, which can compromise a vul-
nerable binary running under kBouncer. We have se-
lected kBouncer, since we consider it the hardest to evade
of the two systems examined in this paper. Recall that
kBouncer is based on restricting ret instructions, so that
they can only redirect control flow to gadgets preceded
by an intended or unintended call instruction, and on a
heuristic that scans for long chains of consecutive gad-
gets, as they are defined by kBouncer. The constructed
exploit is generic, because it uses gadgets solely from
the shell32.dll library which is shared among many
widely used applications in Windows, and it is also effec-
tive against similar approaches, like ROPecker [8].

Previous work [16] has already shown that it is possi-
ble to compose attacks using an even more limited set of
gadgets, that is, only gadgets following intended call in-
structions and starting at function entry points. We build
on this prior knowledge to collect the gadgets that are
available under kBouncer and show that we can build
an exploit that remains undetectable. More importantly,
we show that we can construct a very short payload that
could not be easily detected unless TC and TG are set to
considerably more restrictive values.

4.1 Preparation

The vulnerability we use to build our exploit is based on a
real heap overflow in Internet Explorer [27] and has been
also used in multiple other works [16,34] in the past. The
first part of the exploit deals with disclosing information
to bypass ASLR and then controlling the target address
of an indirect jump instruction. Details of the preparation
phase can also be found in previous work [16]. Here, we
summarize the initial steps that are common with previ-
ous work and introduce new actions that are necessary
for completing this exploit.

The vulnerability is triggered by accessing the span
and width attributes of an HTML table’s column

through JavaScript. A great feature of the vulnerability
is that it can be triggered repeatedly to achieve different
tasks. First, it can be triggered to overwrite the size at-
tribute of a string object, which consequently allows the
substring() method of the string class to read data
beyond the boundary of the string object, as long as we
know the relative offset of that data from the string ob-
ject. The substring() method serves as a memory
disclosure interface for us. Second, it can be triggered to
overwrite the virtual function table (VFT) pointer within
a button object. Later, when we access the button object
from within carefully prepared JavaScript code, the pro-
gram will operate on the overwritten data and will even-
tually grant us control over an indirect jump instruction.

Due to ASLR being in use, we need to exploit the
string object to “learn” where shell32.dll is loaded
at run time, i.e., its base address. Before anything else,
we use heap Feng Shui [35] to position the vulnerable
buffer, and the string and button objects in the right or-
der, so that we can overflow in the string object without
concurrently receiving control of the indirect jump. The
following steps are taken to locate shell32.dll, the
first two steps have been also part of prior work, while
the latter was added to achieve our end goal:

1. This vulnerability allows us to easily locate
mshtml.dll. The button object’s VFT contains a
pointer to a fixed offset within the DLL. After heap
Feng Shui, the button object follows the string ob-
ject in memory at a fixed distance, so we use the
controlled string object to read that pointer and re-
veal the location of the DLL. mshtml.dll con-
tains pointers directly to shell32.dll, however,
they are located in its Delayed Import Address Ta-
ble (IAT), so they are not available at the time of
exploitation.

2. In contrast to mshtml.dll, ieframe.dll do
contain pointers to shell32.dll in its normal
IAT, which gets loaded during the initiation of li-
braries. So ieframe.dll has the pointers to
shell32.dll we are looking for available at
the time of exploitation. As a result, by learn-
ing the base address of ieframe.dll, we can
achieve our end goal. mshtml.dll has pointers
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to ieframe.dll available in its Delayed IAT, but
to read that, we first need to calculate its relative off-
set from the string. Since we already know the base
address of mshtml.dll, we just need to find out
the address of the string object, so we can calculate
offsets within the DLL. Fortunately, the button ob-
ject contains an address that has a constant distance
from the beginning of the string object, so by first
exfiltrating that, we can calculate the base address
of ieframe.dll.

3. Since we now know the base address of
ieframe.dll, we exploit the string object
once more to read a pointer to shell32.dll,
thus revealing its base address. shell32.dll
also allows us to locate VirtualProtect()
through its own IAT.

Finally, we need to also determine the location of a
buffer we control, which we use to store the ROP pay-
load, shellcode, etc. We use heap spraying [11] to create
many copies of such a buffer in the process’ memory,
which has the effect of placing one of the copies at an
address that can be reliably determined. Heap spraying
is not foolproof, however, it works consistently in this
particular case.

4.2 Collecting Gadgets
When kBouncer and friends are active the ret instruc-
tion can only target gadgets that are preceded by a call
instruction. Previous work has referred to such gadgets
as call-site (CS) gadgets [16], we will use this term to
refer to them. CS gadgets are a subset of all the gadgets
available in traditional ROP and JOP attacks, and include
gadgets defined by intended and unintended call instruc-
tions. So any bytes in the program that could be inter-
preted as a call instruction, subsequently introduce a CS
gadget. Note that the entire set of gadgets is still present
in the application, but it can now only be targeted by in-
direct jump and call instructions. Generally, we will use
the CS prefix with gadgets that are call preceded and the
type of indirect branch ending the gadget as suffix (e.g.,
RET or CALL *).

To find usable gadgets, we disassemble the target bi-
nary multiple times. We start disassembling from each
individual byte in the code segment of each image, un-
til we encounter a stop condition, which can be an in-
direct control flow transfer, or an invalid or privileged
instruction. This is similar to the static analysis phase of
kBouncer that determines the locations of gadgets. Like
kBouncer, we follow direct branches and calculate the
length of a gadget using the shortest number of instruc-
tions that can execute from the beginning of the gadget
till an indirect branch. This means that in the presence of
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Figure 4: PoC exploit that bypasses both kBouncer
and ROPecker. This figure focuses more on the de-
tails related with kBouncer, since it uses stricter detec-
tion thresholds. Gadgets receiving control through a re-
turn are all call-preceded, depicted using the CS prefix
in the figure. The exploit uses one heuristic breaking
gadget to keep the chain of detectable gadgets small and
calls VirtualProtect() which triggers a kBouncer
check. Note that kBouncer and ROPecker fail to detect
gadgets longer than 20 and 6 instructions, respectively.

conditional branches, we follow both paths and use the
shortest one as the length of the gadget.

4.3 Heuristic Breakers

Since our exploit should fly under kBouncer’s defen-
sive radar, we have to ensure that we do not use se-
quences of more than seven short gadgets at any time
(i.e., kBouncer-gadgets with 20 instructions or less). We
avoid doing so by using a long gadget that performs min-
imal work (i.e., only sets a single register) as part of the
exploit. Generally, to avoid the detection an attacker
needs to intersperse the ROP chain with long gadgets.
We call such gadgets heuristic breakers (HBs). The best
properties for heuristic breaker gadgets are:

• Use a small number of registers. Such gadgets
that preserve the values of registers allow us to chain
multiple gadgets to carefully set the CPU and mem-
ory state to perform an operation like a call.

• Used registers are loaded from memory or as-
signed constant values. Long gadgets can have
various side effects like loading and writing to
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memory, etc.. When the registers used in such op-
erations are set within the gadget, it is easier to pre-
pare the gadgets so that the gadget does not cause a
fatal fault.

• Registers are loaded from memory. Gadgets in-
cluding the epilogue of functions frequently restore
the values of various registers from the stack, allow-
ing us to set multiple registers from the controlled
stack.

• Intended gadgets. Long sequences of unintended
gadgets tend to translate to unusual sequences of
instructions. As a result, they are not as useful as
intended gadgets. Our exploit, uses only a single
small unintended gadget of two instructions, while
another one only uses an unintended call instruction
so it is call preceded.

Finally, we have to be flexible when a HBs cannot be
included at a desired position in the gadget-chain. Con-
sider for example a chain of seven gadgets. Ideally, we
would insert a HB after the first five gadgets to break the
sequence in two smaller ones, of five and two gadgets re-
spectively. Since this is not always possible, due to the
exploit’s semantics, we may need to insert a HB sooner,
for example after the first three gadgets.

4.4 Putting It All Together
Figure 4 provides a high-level graphical representation of
our PoC exploit. We obtain control by exploiting the but-
ton object’s VFT pointer, which grants us control of an
indirect jump instruction. This instruction is actually part
of a gadget (Appendix A, listing 1), as far as kBouncer
is concerned, however it is not a gadget for ROPecker
because it contains a conditional branch. The end goal
is to invoke VirtualProtect() to mark the buffer
we control and contains shellcode as executable. We can
then transfer control to it, effectively bypassing DEP and
performing a code-injection attack.

Our first task is to point the stack pointer (i.e., ESP)
to the buffer we control, so we can perform ROP, a pro-
cess commonly referred to as stack pivoting. After re-
ceiving control, eax points to our buffer, so we use an
unintended gadget that exchanges the values of eax and
esp, and terminates with a ret, to achieve this (Ap-
pendix A, listing 2).

Next, we want to prepare for calling
VirtualProtect(). Before doing so, we need
to interpose a HB gadget, so that the kBouncer check,
triggered by entering the API function, will not detect
our exploit. At this point, we know that the LBR
contains two gadget addresses, the one for the stack
pivoting gadget and the one before that, which is part

of the program’s legitimate control flow. We know that
these two gadgets are not enough to cause detection, but
there may be other entries in the LBR preceding these
that could trigger kBouncer. Using a HB at this point
ensures that the gadget-chain length in the LBR is reset.
Moreover, using a HB at this point makes the payload
generic, allowing us to use it with other vulnerabilities,
as it will always break the gadget chain in the LBR,
as long as TG is less than its length. We use a HB
gadget of 33 instructions that sets the ESI and EDI
registers, which we use later on, and most importantly
does not depend on any register being set up on entry
(Appendix A, listing 3).

We perform the call to VirtualProtect() using
a gadget that includes an indirect call (Appendix A, list-
ing 4). This gadget only requires the ESI register to be
prepared, which we set with the previous gadget. Also,
it does not push any arguments to the stack, so the ar-
guments to the call can be prepared in our buffer in ad-
vance. This is also the point where kBouncer kicks in
and checks the LBR for an attack. By consulting Fig. 4,
we notice that kBouncer cannot detect the attack at this
point. When VirtualProtect() returns, control is
transferred where it is expected to, that is, the instruction
following the call. The next gadget executing is essen-
tially the code following the indirect call (Appendix A,
listing 5). The ret at the end of it transfers control to
our shellcode, which is now executable. To ensure that
we do not trigger any alarms in the future, we make sure
that the first instruction in our shellcode is preceded by a
fake, unused, call instruction.

Having managed to inject code into the process, we
can now execute code without the risk of triggering
kBouncer. Notice that this exploit will keep working
even if TG is raised to 31 and TC reduced to 6.

5 Countermeasures

In this section, we discuss countermeasures, as well as
fundamental boundaries in the use of gadget-chain length
for preventing code-reuse attacks. While we mainly fo-
cus on kBouncer and ROPecker, we are confident that
our analysis of their weaknesses and the proposed coun-
termeasures will be of use to future works that plan to
explore comparable methodologies.

5.1 Tweaking the TG and TC Parameters

An obvious improvement to both these techniques in-
volves increasing TG, i.e., the parameter that determines
whether a sequence of instructions ending with an indi-
rect branch is a gadget or not. Looking back at Fig. 4, it
is clear that, in the case of kBouncer, increasing TG to 33
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instructions would neutralize our exploit. However, in-
creasing the length of gadgets is not straightforward, as
it has various side effects.

Increasing TG will unavoidably lead to longer gad-
get chains that belong to legitimate, innocuous code.
As we consider longer code sequence as potential gad-
gets, inevitably more application execution paths will be
identified as gadgets, leading to observing longer gadget
chains at run time. Consequently, to avoid false positives,
TC also needs to be increased to avoid misclassifying le-
gitimate control flows as attacks. Unfortunately, raising
TC presents opportunities to attackers for using more gad-
gets. Both kBouncer and ROPecker assume that attack-
ers cannot use longer gadgets due to the side effects that
such gadgets have, something that both this paper and
previous work [16] disproves. Defenders also face an
asymmetry, as usual, because attackers need only find a
handful of long gadgets to masquerade their payload. To
maximize the effect of the parameters, what needs to be
optimized is the fraction TG

TC
. While this is probably an

oversimplification, it provides a useful rule of thumb.

5.1.1 Per-Application Parameters

Acceptable settings for TG and TC vary depending on the
application being examined [8]. The nature of the ap-
plication itself, the compiler it was built with, and the
shared libraries it uses, influence the generated binary
code and what parameter values can be used to avoid FPs
and concurrently detect attacks consistently.

We can exploit this observation to use different val-
ues based on the application. This would ensure that the
strictest rules are applied every time. However, doing
so is also not without difficulty because both the defense
and the attack depend greatly on the application in ques-
tion. For example, after analyzing an application, we can
determine that a very strict set of TC and TG can be used
without FPs. However, the application may contain gad-
gets much larger than TG that can be directly chained
together, so no gadget chains are identified. This sce-
nario is obviously ideal for the attacker. Further research
is required to establish a metric that quantifies the ef-
fect of selecting a particular set of parameters. Using
per-application parameters can be also challenging in the
presence of dynamically loaded (DL) libraries (i.e., li-
braries loaded at times other than program start up), as
new, potentially unknown code is introduced in the ap-
plication.

5.1.2 Per-Call Parameters

A novel idea to further customize the parameters is to
use different gadget-chain thresholds (TC) based on the
part of the code executing. kBouncer that triggers check

on certain API calls, would greatly benefit from this ap-
proach. Certain APIs may be normally called through
limited executions paths that exhibit very particular char-
acteristics. For instance, a Windows native API call
(win32) is frequently called by higher-level frameworks.
This approach has the benefit of both avoiding FPs,
hence providing better stability, and improving security
guarantees.

5.1.3 Cumulative Chain-Length Calculation

ROPecker also accumulates the lengths of smaller
gadget-chain segments and uses a different parameter
TCC to detect attacks. While this heuristic is not effec-
tive with our exploit, it would be interesting to explore
whether incorporating it in kBouncer, which checks for
attacks less frequently and in a more controlled manner,
would further raise the bar for attackers.

5.1.4 Obstacles

Recursive functions can cause significant problems with
techniques based on counting gadget chains. Due to their
nature, they can generate a large number of consecutive
returns when they reach their end condition (e.g., when
their computation has finished). If the returns within the
recursive function lead to gadgets, then it is extremely
hard to find any value of TC that would not cause FPs,
unless the recursion is very shallow (relative to the value
of TC). kBouncer seems to avoid such conditions because
it only checks the LBR when an API call is made. In a
sense, it performs checks at the boundary between ap-
plication and kernel, and the intuition is that the checks
are made “far” away from the algorithms in the core of
applications. However, it is not an uncommon scenario
that a recursive algorithm requires to allocate memory or
write into a file. In such cases, lowering the maximum
gadget length (TG) is the only option for avoiding FPs.
On the other hand, ROPecker performs checks far more
frequently and whenever execution is transferred to new
pages, so we expect that it is even more fragile in the
presence of recursive algorithms.

5.2 Combining with CFI
CFI [1] enforces control-flow integrity and can pre-
vent the exploit we describe in Sec. 4. In par-
ticular, recent CFI approaches like CCFIR [39] and
binCFI [40] prevent the use of unintended gadgets, such
as the two-instruction gadget we use for stack pivot-
ing (Appendix A, listing 2). CCFIR, in particular,
also disallows indirect calls to certain API calls like
VirtualProtect(), so it prevents two gadgets used
by our exploit. These CFI approaches also incur low per-
formance overhead, making them a good candidate for
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Figure 5: PoC exploit that bypasses kBouncer,
ROPecker, and CCFIR. All the gadgets used are intended
call-site (CS) or entry-point (EP) gadgets.

coupling with kBouncer. Unfortunately, recent work [16]
has shown that they are still vulnerable to attack. So is a
combination of CFI and kBouncer still vulnerable?

To answer the above question, we begin from the ex-
ploit used to bypass CFI in previous work [16, Sec. IV]
and replace the smaller gadgets with longer HB gadgets
that are also allowable by CFI. Similarly to prior work,
we assume that CCFIR is in place, as it is stricter than
binCFI. Because CFI does not allow transfers to new
code, the goal of this payload is to mark existing code
as writable and overwrite it with our shellcode. Before
proceeding to describe the exploit, we summarize the ad-
ditional restrictions imposed by CCFIR below.

Under CCFIR, return instructions can no longer trans-
fer control to unintended gadgets, so only CS gadgets
that were originally emitted by the compiler can be used
when constructing a payload. Indirect call and jump in-
structions are also restricted and can only transfer control
to function entry points, defining a new type of entry-
point (EP) gadget. Indirect calls to sensitive API calls are
prohibited, so any such calls need to be made using di-
rect call instructions, contained within otherwise allow-
able gadgets. Finally, CCFIR introduces a new level of
randomization through the use of springboard sections

that proxy indirect control transfers. The location of
these sections is randomized at load time and all indirect
branches can only proceed through them.

To prepare the new payload, we need to replicate the
steps described in Sec. 4, as well as a couple of additional
steps required for bypassing CCFIR. Because of the ran-
domized springboard sections, we need to reveal the sec-
tions that hold call and return stubs to the gadgets we plan
to use. Fortunately, this can be achieved by exploiting the
string object to leak code and meta-data from the DLLs
of interest [16, Sec. IV.C]. VirtualProtect() and
memcpy() are now called through gadgets that contain
a direct call to these functions, so we do not need to ex-
plicitly locate them in the target process.

Figure 5 depicts a high-level overview of our sec-
ond PoC exploit that overcomes the restrictions imposed
by both kBouncer and CCFIR. We notice that because
of CCFIR, we cannot use the same gadget to perform
stack pivoting and, furthermore, we can only jump to an
EP gadget. We resort to using a series of five gadgets
to achieve the same goal (Appendix B, listings 6-10).
Specifically, we first use three EP gadgets to corrupt the
stack, so we can control a return instruction. This is simi-
lar to [16], however we use different, longer gadgets that
are not detected by kBouncer. The fourth gadget loads
EBP with our data and completes the switch to chaining
through returns. We then use the fifth gadget, consisting
of 28 instructions, to perform stack pivoting by copying
EBP to ESP through the leave instruction.

For calling VirtualProtect() and memcpy(),
we reuse the same gadgets used against CFI (Ap-
pendix B, listings 12-13 and 15-16 respectively). The
last gadget’s ret transfers control to our shellcode that
has been copied to the code section of the binary and
has been preceded by a call to also foil future kBouncer
checks. However, we replace the gadgets used to pre-
pare the function-calling gadgets with the ones shown in
listings 11 and 14 respectively, in Appendix B.

The exploit depicted in Fig. 5 demonstrates that even
if we combine kBouncer and a loose CFI defense, it is
still possible to devise attacks that can go undetected.
Moreover, it shows that even if TC and TG are signifi-
cantly tweaked, gadgets much larger than 21 instructions
are available to partition an exploit to smaller, possibly
undetectable, chains. In the particular exploit, setting TG
to 33 and TC to 5 would still not have any effect.

6 Evaluation

6.1 Gadget Availability
The existence of long gadgets determines the potential to
find HB gadgets that can be used to break long gadget
chains. It is also an indicator on whether, we can poten-
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(b) Call-preceded gadgets available to link using a ret.

Figure 6: Distribution of gadgets available to attackers under kBouncer based on their length, as recorded for multiple
popular applications. We notice that there are numerous gadgets, even for gadgets of 60 instructions.

Application Workload
Windows
Media Player

Music playback for approximately
30 secs

Internet Explorer 9 Surf to google.com
Adobe Flash Player Watch a YouTube video
Microsoft Word Browse a Word document
Microsoft PowerPoint Browse a PowerPoint presentation
Adobe Reader XI Browse a PDF file

Table 1: Applications used in the evaluation.

tially use many different HB gadgets with varying func-
tionality. We analyze the applications listed in Tab. 1,
along with all their DLLs, to determine how many gad-
gets of different sizes they contain. In addition, we an-
alyze Internet Explorer 8, which we used in our PoC.
We follow the same methodology we used for collecting
gadgets for the PoC exploit (Sec. 4.2). Specifically, we
developed a gadget extraction tool in Python, using the
popular distorm disassembler [15].

The process begins by disassembling from each byte
in the code segment of each target binary, recursively fol-
lowing conditional branches, direct calls and jumps to
locate instruction paths that end with a return or an indi-
rect call or jump. That is, potential gadgets. As we dis-
assemble, we count the number of instructions on each
of the traversed paths, while we also keep track of the
nodes we visit to avoid counting the same instructions
more than once, due to loops. If we find more than one
path starting from a particular byte and ending in an in-
direct branch, we keep the shortest path, and consider its
length to be the length of the gadget at that byte. This is
in accordance to how kBouncer identifies gadgets.

Figure 6 draws our results. We notice that even for

relatively large gadget sizes, there are tens of thousands
of gadgets. While we cannot make any assumptions on
how usable they are, these results are an indication that
there is a significant pool of gadgets to choose from. We
attribute their large number to the fact that unintended
gadgets are basically allowed by kBouncer.

6.2 Per-Application Parameters

In this section, we evaluate the feasibility of our per-
application parameter scheme described in Sec. 5.1.1. To
determine if, indeed, different applications can benefit
from using tighter parameters, we run the six applica-
tions listed in Tab. 1 performing simple tasks, such as
browsing. These applications were also used to perform
a similar evaluation in kBouncer. We follow the same
methodology to measure gadget-chain length.

We use a run-time monitoring tool based on Intel’s
Pin [22] to emulate the operation of LBR. We moni-
tor every indirect branch instruction, including returns,
jumps, and calls, and log the running thread ID, the ad-
dress of the branch, and its target. To locate kBouncer
gadgets, we borrowed the scripts used by kBouncer to
disassemble the application images and their DLLs and,
at the same time, locate the sensitive API calls where
checks are injected by kBouncer [25, Appendix]. We
combine the statically and dynamically collected infor-
mation to match gadgets with control transfers observed
at run time and calculate the length of gadget chains that
would be checked by kBouncer.

Figure 7 shows the size of gadget chains (for TG = 20),
as they would be stored in LBR when entering a sensi-
tive API call and for different applications. We observe
that among the tested applications, only Adobe Reader
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Figure 7: Length of chains for TG = 20 for different ap-
plications, when entering a protected API function call.
We run seven workloads using six applications, replicat-
ing the experiment in kBouncer [25, Sec. 3.2].

exhibits relatively long chains of five gadgets. This is
in accordance with previously reported results [25]. All
other tested applications include chains of up to two gad-
gets. In principle, this implies that we could use very
strict values of TC for all these applications. For ex-
ample, using TC = 3 with Internet Explorer would de-
tect our long five-gadget sequence preceding the call to
VirtualProtect() (Fig. 4).

This experiment shows that application-specific pa-
rameters can make it very hard for attackers to evade de-
tection, at least with the methodology followed by our
PoC exploit. However, we remain cautious, as run-time
analysis can have limited coverage, even when divergent
workloads are used, so using such strict values for TC
could cause FPs. In fact, recent works [12,29] report FPs
with applications other than the ones originally tested
in kBouncer [25], and when more restrictive parameters
are employed. Nonetheless, establishing viable values
for these parameters through dynamic and static analysis
calls for additional research. The above serve as an indi-
cator that per-application parameter fitting is necessary.

7 Related Work

Code reuse is the dominant form of exploitation since
the wide adoption of stack canaries [9] and data exe-
cution prevention [2], which provide protection against
stack smashing and code injections respectively. Return-
to-libc attacks [37] is one of the simplest types of
code reuse, involving the redirection of control to a
libc function after setting up its arguments in the
stack. Usually, this involves invoking functions like
system() or exec() to launch another program (e.g.,
to spawn a shell). Short gadgets were also used in reg-

ister springs [10] to load a register with the address of
the attacker-controlled buffer located in the randomized
stack or heap.

Return-Oriented Programming [31] generalizes the
task of leveraging existing code to compromise a pro-
gram. Short snippets of code, called gadgets, are chained
together to introduce a new, not initially intended, con-
trol flow. ROP is particularly effective on instruction sets
like CISC, where there are no instruction alignment re-
quirements and the instruction number is high, because
any sequence of executable bytes in memory can poten-
tially become a gadget. Nevertheless, RISC architectures
are also vulnerable to ROP [5].

Diversification approaches like Address-Space Lay-
out Randomization (ASLR) [26] can be effective against
ROP attacks and are already present in most OSs. ASLR
randomizes the layout of a program when it is executed
by loading the binary and its dynamic libraries on dif-
ferent base addresses each time. ASLR can be brute-
forced [32], but the difficulty of doing so increases as
more entropy becomes available, like in 64-bit systems.
Recent attacks bypassing ASLR [30] rely on memory
disclosure bugs that leak enough data from the targeted
process to infer where the binary and/or its libraries are
loaded at run time.

Finer-grained randomization approaches [17, 24, 38]
have been proposed to further diversify programs and
limit the effectiveness memory leaks. In-place ran-
domization [24] relies on randomizing the sequence of
instructions and replacing instructions with others of
equivalent effect to further diversify the image of a run-
ning process. ILR [17] attempts to break the linearity
of the address space, and binary stirring [38] random-
izes a binary in the basic block level. However, recent
research [34] has demonstrated that bugs that allow an
attacker to read almost arbitrary memory locations can
be used to bypass the above solutions as well.

CFI [1] enforces control-flow integrity preventing the
malicious control flows that are part of ROP attacks,
and it is not affected by memory leaks. CFI requires
an accurate control-flow graph of the target program,
which usually implies access to source code, but recent
works [39, 40] have made steps towards addressing this
limitation by applying a loose version of CFI on bina-
ries. However, it has been recently shown [16] that these
loose-CFI approaches are still vulnerable to attack in the
presence of memory leaks. This work builds on the latter,
borrowing the notion of call-site and entry-point gadgets,
which are also the only kind of accessible gadgets under
kBouncer and friends, and uses the same IE vulnerability
as a starting point. However, the attack described in [16]
is not effective against kBouncer. In this work we build
an attack that is again effective. We also show that us-
ing the LBR and a set of heuristics is not sufficient to
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prevent ROP attacks and reveal the inherent limitations
of solutions based on gadget and chain length for detec-
tion. Finally, we propose various extensions that could
alleviate the situation.

Compile-time solutions have been also proposed to al-
ter the produced binary, so it is impervious to code reuse
attacks. For example, producing a kernel that does not
include any return instructions [21] cannot be exploited
using ROP. However, variations of ROP that use indirect
jumps instead of returns [3, 6] can be used to circum-
vent the above. G-Free [23] attempts to restrict control
flow by using function cookies saved in a shadow stack
at run time and inserts NOPs to destroy unintended gad-
gets. Because it is only loosely enforcing control flow, it
is potentially vulnerable to the same attacks as CFI [16].
Additionally, compile-time approaches require that a bi-
nary and all of its libraries are recompiled.

Concurrently with our work, other efforts have also
dealt with evaluating kBouncer and related approaches.
Schuster et al. [29] take a slightly different approach and
focus on finding gadgets that could be used to flush the
LBR before performing any API call. The presence of
such gadgets in the application nullifies any LBR-based
defense, however, it leads to the same value being re-
peated in the LBR, which could potentially be used to
detect such attacks. Moreover, the addition of CFI could
restore the effectiveness of kBouncer.

On the other hand, Davi et al. [12] take an approach
closer to ours. First, they show that there are enough
small gadgets under loose CFI to perform any computa-
tion. Then, they introduce a long gadget of 23 instruc-
tions that does not perform any useful functionality and
has limited side effects. They use this as a NOP gad-
get for breaking long gadget chains. Registers are not
preserved, so additional gadgets need to be introduced
to save any registers that need to be preserved. Larger
NOP gadgets are not investigated, so unlike our approach
their approach is more prone to detection when choos-
ing stricter thresholds. Interestingly enough, both ap-
proaches test kBouncer, albeit with a different set of ap-
plications, and report false positives with the current, as
well as with stricter thresholds.

8 Conclusion

In this paper we explored the feasibility of bypassing
state-of-the-art ROP defenses based on monitoring pro-
cesses (by means of Intel’s new Last Branch Record) to
detect control flows that resemble the execution of ROP
chains [8, 25]. Essentially, these defenses check whether
a sensitive API call was reached via a sequence of indi-
rect branches to short, gadget-like, instruction sequences.
Evading such detection is perceived as a hard task. First,
all exploitation should be carried out using call-preceded

gadgets, since otherwise the ROP chain will be easily
detectable. Second, exploitation should find and then
carefully insert long gadgets, in the middle of a series of
shorter gadgets, in order to fly under the defense’s ROP
radar. The long gadgets should be long enough to make
the ROP chain look like a legitimate control flow of the
running process. Finding such long gadgets and gluing
them in the actual ROP chain is not trivial, since it is pos-
sible that these long series of instructions interfere with
the state of the exploit (e.g., modify a valuable register).
Nevertheless, in this paper, we successfully constructed
two real exploits, which utilizes the long gadgets to evade
detection. With this work we stress that the selection
of critical parameters, such as the length of a series of
instructions that should be considered a gadget, as well
as the gadget-chain length is not trivial. Until we solve
these problems, the defenses are prone to false negatives
and false positives. Finally, we discuss various counter-
measures and provide evidence, through an experimental
evaluation, that defining parameters on a per-application
basis, can alleviate these concerns.
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A PoC Exploit Gadgets

; library: mshtml.dll
; offset: 0x001BC907
; type: intended, *-JMP *
1 mov eax, [ecx+1Ch]
2 test al, al
3 js loc1
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loc1:
4 mov ecx, dword ptr [ecx+24h]
5 mov eax, dword ptr [ecx]
6 mov edx, dword ptr [eax+24h]
7 jmp edx ; edx points to 1st gadget

Listing 1: The exploitation of the vulnerability in
Internet Explorer 8 gives us control of an indirect
jump. The target address of the indirect jump is loaded
from the sprayed buffer, by dereferencing values in the
overwritten button object. After this code sequence,
ecx contains a pointer to the overwritten button object,
eax contains a pointer to our sprayed buffer, and edx
contains the address of the first gadget.

; library: shell32.dll
; offset: 0x00146FB2
; type: unintended, *-RET
1 xchg esp, eax
2 retn

Listing 2: This is the first executed gadget after the
control of the indirect jmp instruction. The gadget
performs the stack pivoting operation. Essentially, the
values in the eax and the esp registers are swapped.
On entry, eax points to the sprayed buffer, which
contains the rest of the ROP chain.

; library: shell32.dll
; offset: 0x0007AACD
; sort: intended instructions, unintended CS-RET
1 mov esi, 738AD720h
2 mov edi, 73BCC3C0h
3 movsd

...
7 mov esi, 738AD710h
8 mov edi, 73BCC3D4h
9 movsd

...
13 mov esi, 738AD730h
14 mov edi, 73BCC3E8h
15 movsd

...
19 mov esi, 738AD700h
20 mov edi, 73BCC3FCh
21 movsd

...
25 mov esi, 7387A2CCh
26 mov edi, 73BCC410h
27 movsd

...
31 pop edi
32 pop esi
33 retn

Listing 3: This is a heuristic-breaker gadget, i.e., an
undetectable long gadget. First, it is used to reset the
chain of detectable gadgets in the ROP chain. Second,
it will prepare the esi register, which is required by
the next gadget that will call VirtualProtect().
Upon entry, it does not require any registers to be
already set up, but it alters two registers: esi and edi,
loading them with values from our buffer.

; library: shell32.dll
; offset: 0x0039C0E5
; type: intended, CS-CALL *
1 lea ecx, [esi+28h]
2 mov edi, eax

3 mov eax, [ecx]
4 call dword ptr [eax+44h]

Listing 4: An indirect function call that we use to
call VirtualProtect() and change the memory
permissions of the region occupied by the injected
shellcode, which also resides in the sprayed buffer. The
gadget does not push values, so the arguments for the
called function can be prepared in advance in the ROP
chain, and it also saves EAX in EDI before calling.

; library: shell32.dll
; offset: 0x0039C0EF
; type: intended, CS-RET
1 mov eax, edi
2 pop edi
3 pop esi
4 pop ebp
5 retn 0Ch

Listing 5: The instructions following the indirect call in
listing 4 also constitute a gadget. This gadget restores
EAX from EDI, thus restoring to the value it had before
entering the previous gadget, and returns using the
next value in our ROP chain transferring control to our
shellcode.

B CFI-resistant PoC Exploit Gadgets

; library: ieframe.dll
; offset: 0x00216C0E
; type: EP
1 mov edi, edi
2 push ebp
3 mov ebp, esp
4 sub esp, 2C8h
5 mov eax, ___security_cookie
6 xor eax, ebp
7 mov [ebp-4], eax
8 mov eax, [ebp+0Ch]
9 push ebx
10 push esi
11 push edi
12 mov edi, [ebp+8]
13 mov [ebp-290h], eax
14 xor eax, eax
15 push 3
16 mov [ebp-280h], eax
17 mov [ebp-284h], eax
18 mov [ebp-288h], eax
19 mov [ebp-2A0h], eax
20 mov [ebp-2A4h], eax
21 pop eax
22 mov esi, ecx
23 mov [ebp-2B8h], ax
24 mov eax, [esi+24h]
25 lea edx, [ebp-2C8h]
26 push edx
27 mov [ebp-2B0h], eax
28 mov eax, [esi+1Ch]
29 mov ecx, [eax]
30 lea edx, [ebp-2B8h]
31 push edx
32 push eax
33 mov [ebp-294h], edi
34 call dword ptr [ecx+1Ch]

Listing 6: By pushing a pointer to the sprayed buffer
as an argument (see Line 32), this gadget prepares the
gadget (see Listing 7) that will call the stack smasher
(see Listing 8).
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; library: mshtml.dll
; offset: 0x004A959F
; type: EP
1 mov edi, edi
2 push ebp
3 mov ebp, esp
4 push dword ptr [ebp+30h]
5 mov eax, [ebp+8]
6 push dword ptr [ebp+2Ch]
7 mov ecx, [eax+4]
8 push dword ptr [ebp+28h]
9 mov ecx, [ecx]
10 push dword ptr [ebp+24h]
11 push dword ptr [ebp+20h]
12 push dword ptr [ebp+1Ch]
13 push dword ptr [ebp+18h]
14 push dword ptr [ebp+14h]
15 push dword ptr [eax+0Ch]
16 push dword ptr [eax+8]
17 push dword ptr [ebp+10h]
18 push dword ptr [ebp+0Ch]
19 push eax
20 push dword ptr [ecx]
21 call dword ptr [ecx+10h]

Listing 7: This gadget will push the address of the call
site gadget (see Line 15) we want to be executed later in
the chain (see Listing 10). Once we get to this desired
call site gadget, the switch from Entry Point to Call Site
gadgets is complete.

; library: ieframe.dll
; offset: 0x000A98B5
; type: EP
1 mov edi, edi
2 push ebp
3 mov ebp, esp
4 mov eax, [ebp+8]
5 mov ecx, [eax+140h]
6 push ebx
7 mov ebx, [ebp+14h]
8 push esi
9 mov esi, [ebp+0Ch]
10 mov [esi], ecx
11 lea ecx, [eax+144h]
12 mov edx, [ecx]
13 push edi
14 mov edi, [ebp+10h]
15 mov [edi], edx
16 lea edx, [eax+148h]
17 mov edi, [edx]
18 mov [ebx], edi
19 xor edi, edi
20 mov [eax+140h], edi
21 mov [ecx], edi
22 mov [edx], edi
23 mov eax, [esi]
24 neg eax
25 sbb eax, eax
26 pop edi
27 and eax, 7FFFBFFBh
28 pop esi
29 add eax, 80004005h
30 pop ebx
31 pop ebp
32 retn 10h

Listing 8: This is a long gadget that moves data and
does not harm the status of our ROP chain. Also, it will
break the calling assumptions of the caller gadget (see
Listing 7).

; library: mshtml.dll
; offset: 0x004A95D6
; type: EP
1 pop ebp

2 retn 2Ch

Listing 9: The instructions following the indirect call in
listing 7 also constitute a gadget. The return instruction
in this gadget will use the address of the call site
gadget that was pushed before (see Listing 7). Also,
in this gadget ebp is prepared with a pointer to our
sprayed buffer. The value in this register will be moved
to the esp register in the stack pivoting gadget (see
Listing 10).

; library: mshtml.dll
; offset: 0x00305202
; type: CS
1 mov ecx, [ebp+30h]
2 mov edx, [ebp+40h]
3 mov [ecx], eax
4 mov eax, [ebp+34h]
5 mov ecx, [ebp+3Ch]
6 shr esi, 6
7 and esi, 1
8 and dword ptr [ebp+8], 0
9 mov [eax], esi
10 mov eax, [ebp-0Ch]
11 mov [ecx], eax
12 mov eax, [ebp-4]
13 mov ecx, [eax]
14 mov ecx, [ecx+88h]
15 mov [edx], ecx
16 mov ecx, [eax]
17 mov ecx, [ecx+30h]
18 mov edx, [ebp+44h]
19 mov [edx], ecx
20 mov ecx, [ebp+38h]
21 mov [ecx], eax
22 jmp next_ins
23 mov eax, [ebp+8]
24 pop edi
25 pop esi
26 pop ebx
27 leave
28 retn 40h

Listing 10: This is a stack pivoting gadget. This gadget
will load esp with a pointer to our sprayed buffer at
Line 27.

; library: mshtml.dll
; offset: 0x0021FDF4
; type: CS
1 mov eax, [ebp+0Ch]
2 mov [ebx], eax
3 push 7
4 pop ecx
5 lea esi, [eax+228h]
6 rep movsd
7 mov ecx, [eax+244h]
8 mov [ebx+20h], ecx
9 mov ecx, [eax+260h]
10 mov [ebx+24h], ecx
11 mov ecx, [eax+264h]
12 mov [ebx+28h], ecx
13 mov ecx, [eax+268h]
14 mov [ebx+2Ch], ecx
15 mov ecx, [eax+26Ch]
16 mov [ebx+30h], ecx
17 mov ecx, [eax+270h]
18 mov [ebx+34h], ecx
19 mov ecx, [eax+274h]
20 mov [ebx+38h], ecx
21 mov ecx, [eax+278h]
22 mov [ebx+3Ch], ecx
23 mov ecx, [eax+27Ch]
24 mov [ebx+40h], ecx
25 mov ecx, [eax+280h]
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26 mov [ebx+44h], ecx
27 mov ecx, [eax+284h]
28 mov [ebx+48h], ecx
29 mov ecx, [eax+288h]
30 mov [ebx+4Ch], ecx
31 mov ecx, [eax+28Ch]
32 mov [ebx+50h], ecx
33 mov ecx, [eax+290h]
34 mov [ebx+54h], ecx
35 mov ecx, [eax+2CCh]
36 mov [ebx+58h], ecx
37 mov ecx, [eax+2D0h]
38 mov [ebx+5Ch], ecx
39 mov ecx, [eax+2D4h]
40 mov [ebx+60h], ecx
41 mov ecx, [eax+2D8h]
42 mov [ebx+64h], ecx
43 mov eax, [eax+2DCh]
44 pop edi
45 mov [ebx+68h], eax
46 pop esi
47 mov eax, ebx
48 pop ebx
49 pop ebp
50 retn 8

Listing 11: This is a long Heuristic Breaker gadget.
It will also prepare the ebp and ebx registers which
are required by the VirtualProtect calling function (see
Listing 12).

; library: ieframe.dll
; offset: 0x0006FBAE
; type: CS
1 and dword ptr [ebp-0Ch], 0
2 lea eax, [ebp-0Ch]
3 push eax ; old protection
4 push 40h ; new protection
5 push ebx ; size
6 mov ebx, [ebp-8]
7 push ebx ; address
8 call ds:VirtualProtect

Listing 12: Gadget that makes program code writeable,
whereto inject a shellcode later. The part after the
call instruction is considered as a separate gadget
as it is the target of an indirect branch (i.e., return
instruction of the VirtualProtect function).

; library: ieframe.dll
; offset: 0x0006FBC3
; type: CS
1 test eax, eax
2 jz loc_766E9531 ; if eax==0: handle error
3 mov eax, [ebp+8]
4 and dword ptr [edi+4], 0
5 mov [edi+8], eax
6 mov [edi+10h], esi
7 mov [edi+0Ch], ebx
8 mov eax, [ebp-0Ch]
9 mov [edi+14h], eax
10 mov eax, dword_768E2CCC
11 mov [edi], eax
12 mov dword_768E2CCC, edi
13 xor eax, eax
14 pop edi
15 pop ebx
16 pop esi
17 leave ; == mov esp, ebp and pop ebp

18 retn 14h

Listing 13: Gadget that makes program code writeable,
whereto inject a shellcode later. The part after the
call instruction is considered as a separate gadget
as it is the target of an indirect branch (i.e., return
instruction of the VirtualProtect function)

; library: mshtml.dll
; offset: 0x000DA72B
; type: CS
1 mov eax, [ebp+10h]
2 mov [ebx+108h], esi
3 mov esi, [ebp+8]
4 lea edi, [ebx+110h]
5 movsd
...

9 mov esi, [ebp+0Ch]
10 push 0Dh
11 pop ecx
12 lea edi, [ebx+120h]
13 rep movsd
14 mov [ebx+154h], eax
15 mov eax, [ebp+1Ch] !!
16 mov ecx, [eax]
17 push 0Dh
18 mov [ebx+0C0h], ecx
19 pop ecx
20 lea esi, [eax+18h]
21 lea edi, [ebx+0C4h]
22 rep movsd
23 mov eax, [eax+4Ch]
24 pop edi
25 pop esi
26 mov [ebx+0F8h], eax
27 pop ebx
28 pop ebp
29 retn 18h

Listing 14: Another Heuristic Breaker gadget and at the
same time it will prepare eax for the memcpy calling
gadget.

; library: ieframe.dll
; offset: 0x001ADCC2
; type: CS
1 push eax ; destination
2 call memcpy

Listing 15: Gadget for calling of memcpy for copying
the shellcode to existing program code.

; library: ieframe.dll
; offset: 0x001ADCC8
; type: CS
1 add esp, 0Ch
2 xor eax, eax
3 jmp short loc_7672DCE7
4 pop ebx
5 pop edi
6 pop esi
7 pop ebp
8 retn 8

Listing 16: The call site part of the memcpy calling
gadget.
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Abstract

The latest effective defense against code reuse attacks is
fine-grained, per-process memory randomization. How-
ever, such process randomization prevents code shar-
ing since there is no longer any identical code to share
between processes. Without shared libraries, however,
tremendous memory savings are forfeit. This drawback
may hinder the adoption of fine-grained memory ran-
domization.

We present Oxymoron, a secure fine-grained memory
randomization technique on a per-process level that does
not interfere with code sharing. Executables and libraries
built with Oxymoron feature ‘memory-layout-agnostic
code’, which runs on a commodity Linux. Our theoreti-
cal and practical evaluations show that Oxymoron is the
first solution to be secure against just-in-time code reuse
attacks and demonstrate that fine-grained memory ran-
domization is feasible without forfeiting the enormous
memory savings of shared libraries.

1 Introduction

Code reuse attacks manage to re-direct control flow
through a program with the intent of imposing malicious
behavior on an otherwise benign program. Despite be-
ing introduced more than 20 years ago, code reuse is still
one of the three most prevalent attack vectors [1, 28],
e.g., through vulnerable PDF viewers, browsers, or op-
erating system services. Several code reuse mitigations
have been proposed. They either detect the redirection
of control flow [7, 12], or randomize a process’s address
space. Randomizations jumble the whole address space,
with the intent of preventing code reuse attacks by mak-
ing it impossible to predict where specific code resides.

Especially Address Space Layout Randomization
(ASLR [23, 22]) has become widespread, but meanwhile
has been shown to be ineffective [24, 25]. A promising

avenue is the use of even finer randomization techniques
that randomize at the granularity of functions, basic
blocks or even instructions [18, 10, 16, 19, 17].

To be effective, fine-grained memory randomization
must prevent an attacker from using information about
the memory layout of one process to infer the layout
of another process. This is a particular threat in the
light of shared code originating from shared libraries.
Hence, most recent fine-grained memory randomization
solutions also randomize shared libraries for every sin-
gle process [13, 21, 29]. As a result, there is no identical
code in any two processes, which makes sharing impos-
sible. A dysfunctional code sharing, however, increases
the memory footprint of the entire system, likely on the
order of Gigabytes, as we elaborate in Section 2.

To summarize: fine-grained randomization solutions pre-
sented so far come at the expense of tremendous memory
overhead, which renders them impractical.

Oxymoron /,6k.sI’mO:.r6n/ (noun)
Greek. A figure of speech that combines contradic-
tory terms.

We present Oxymoron, which combines two seemingly
contradictory methods: a secure fine-grained memory
randomization with the ability to share the entire code
among other processes. At the heart of Oxymoron is a
new x86 calling convention we propose: Position-and-
Layout-Agnostic CodE (PALACE). This code uses no in-
structions that reference other code or data directly, but
instead the instructions use a layer of indirection referred
to by an index. This index uniquely identifies a target and
hence remains identical when targets are randomized in
memory. Consequently, the memory in which those in-
structions are stored does not change, thereby making it
available to be shared with other processes.

1
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Oxymoron cuts program code into the smallest sharable
piece: a memory page. We randomize those pages and
share them individually among processes. Each shared
page appears at a different, random address in each pro-
cess. We use the x86 processor’s segmentation feature to
disable access to the unique indices, which we organized
in a translation table. This unique property of Oxymoron
makes our solution more secure than fine-grained mem-
ory randomization solutions published so far.

To demonstrate the effectiveness and efficiency of Oxy-
moron, we implemented and evaluated a static binary
rewriter for the Intel x86 architecture that emits PALACE
executables and libraries with a very low run-time over-
head of only 2.7%. By re-enabling code sharing, Oxy-
moron is the first memory randomization technique that
reduces the total system memory overhead back to lev-
els it was before fine-grained memory randomization,
while simultaneously being the first solution that is se-
cure against the just-in-time code reuse attacks recently
proposed by Snow et al [26].

2 Problem Description

Before we describe our idea, we want to explain in more
detail why any traditional fine-grained memory random-
ization necessarily makes sharing libraries impossible.
The goal of fine-grained randomization is for every pro-
cess to feature a memory layout that is as varied as pos-
sible from any other process. If we treat program code,
which usually is en bloc, as a puzzle and shuffle the puz-
zle pieces throughout the entire address space, their com-
binatorial possibilities provide a high entropy. It is only
possible to share those puzzle pieces individually as a
memory page with other processes if the content of each
piece is identical in each process. With traditional code,
the content of those piece necessarily changes when their
order in memory is rearranged, as we explain in the fol-
lowing:

Code references other code or other data using either ab-
solute memory addresses, e.g., call 0x804bd32, or rela-
tive addresses, e.g., call +42. For absolute addresses it
is obvious that different randomizations necessarily lead
to different code and data addresses. As a result, the en-
coding of instructions that hold such addresses changes
as well, thereby forfeiting the sharing with other pro-
cesses. Relative addresses, in turn, make code indepen-
dent of its load address in memory. However, in case of
using code pieces that are randomized, the relative dis-
tances change as well. Here, for the same reason, those
pieces cannot be shared across processes as they feature
different relative addresses. Consequently, fine-grained
memory randomization impedes common code sharing,
which is a fundamental concept of all modern OSes.

Severity. Modern operating systems use code sharing
automatically, and it is in effect because the running pro-
grams use the same libraries (C library, threading library
etc.), i.e. their address spaces have identical code loaded.

To verify this claim, we conducted a simple experiment
that shows the impact of code sharing and lack thereof.
We used an unmodified Ubuntu 13.10 x86 operating sys-
tem on a machine with 4 GB of RAM and evaluated how
much RAM is saved due to code sharing. After booting
to an idle desktop, the 234 running processes consumed
a total 679 MB. Our analysis of memory page map-
pings in each process obtained from /proc/<PID>/maps

revealed that most of the processes used the same set of
shared libraries. As expected, most frequently the stan-
dard C-library libc.2.17.so was shared between all of
the 234 processes. All mapped portions of libc sum up
to 207,028 KB while only 885 KB of real memory are
consumed. This is a savings of 206 MB for libc alone.

Figure 1 illustrates the top ten savings by library. In total,
sharing instead of duplicating saved 1,388 MB of RAM
on the idle Ubuntu desktop. When additionally starting
the Firefox browser, the memory consumption was in-
creased from 679 MB to 817 MB. The total amount of
savings by sharing summed up to 1,435 MB of RAM,
which is an additional savings of 47 MB.
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Figure 1: Savings due to sharing of libraries. Idle desktop
saves 1388 MB, with Firefox 47 MB more is saved.

2.1 Threat Model

We assume a Linux operating system that runs a user
mode process, which contains a memory corruption vul-
nerability. The attacker’s goal is to exploit this vulner-
ability in order to divert the control flow and execute
arbitrary code on her behalf. To this end, the attacker
knows the process’ binary executable and can precom-
pute potential gadget chains in advance. The attacker can
control the input of all communication channels to the
process, especially including file content, network traf-
fic, and user input. However, we assume that the attacker
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has not gained prior access to the operating system’s ker-
nel and that the program’s binary is not modified. Apart
from that, the computational power of the attacker is not
limited.

Moreover, for JIT-ROP attacks [26] to work, we assume
that the process has at least one memory disclosure vul-
nerability, which makes the process read from an arbi-
trary memory location chosen by the attacker and report
the value at that location. This vulnerability can be ex-
ploited any number of times during the runtime of the
process. Note that the process itself performs the read
attempt: both address space and permissions are implied
to belong to the process.

3 High-Level Design of Oxymoron

To benefit from the best of both worlds – fine-grained
memory randomization and code sharing – the challenge
is to create a form of code that does not incorporate abso-
lute or relative addresses, as we have already shown that
both addressing schemes by definition suffer from being
dependent on their randomization. An additional layer
of indirection that translates unique labels to current ran-
domized addresses allows the byte representation of code
to remain the same, which enables code page sharing.
However, this approach is difficult to realize as it is ac-
companied by four key challenges:

1. keeping the size of the translation table small in or-
der not to increase the memory that we saved,

2. developing an efficient layer of indirection so that it
is practical,

3. making the translation inaccessible by adversaries,

4. making the solution run on a commodity, unmodi-
fied Linux OS.

Overall Procedure. Oxymoron prevents code reuse at-
tacks by shuffling every instruction of a program to a
completely different position in memory so that no in-
struction stays at a known address, thereby making it
infeasible for an adversary to guess or brute-force ad-
dresses. We use a three-step procedure (cf. Figure 2):

A) Code Transformation: The executable E is
transformed to Position-and-Layout-Agnostic CodE
(PALACE). The result is a PALACE-code executable
PE . The same applies to shared libraries, which can
be treated like executables.

B) Splitting: The PE code is then split into the smallest
possible piece that can be shared among processes: a
memory page. The code of PE now consists of code
pieces PE = p1|p2| . . . |pn.

C) Randomization: At program load time, the pieces
p1|p2| . . . |pn are shuffled by the ASLR part of the
operating system loader. In memory, their order is
completely random and the pieces may have empty
gaps of arbitrary size between them.

The first two steps only have to be done once, while the
third step is performed at load-time of the executable PE .

PALACE	  Program	  

C	  H	  F	  G	  E	  A	  D	  B	   1	  2	  3	  4	  5	  6	  
CODE	   DATA	  

Split	  Program	  Pieces	  

C	  H	   1	  2	  3	  4	  5	  6	  
CODE	   DATA	  

Process	  2	  

F	  G	   1	  2	  3	  4	  5	  6	  C	  H	  D	  B	   e	  a	  

F	  G	   E	  A	   D	  B	  

Executable	  E 

A	  B	  C	  D	  E	  F	  G	  H	   1	  2	  3	  4	  5	  6	  
CODE	   DATA	  

Process	  1	  

F	  G	   1	  2	  3	  4	  5	  6	  C	  H	   D	  B	   E	  A	  

A 

B 

C 

Figure 2: The program is transformed and split once (A and
B), then randomized at every process start-up (C).

3.1 Code Transformation

To enable layout-agnostic code, all references to code
and data are replaced with a unique label. Such a unique
label is an assigned index into a translation table. This
Randomization-agnostic Translation Table (RaTTle) in
turn refers to the actual target (see Figure 3). This is the
key to code sharing among processes, since the byte rep-
resentation of the PALACE code does not change in the
next step, when it is split and individual pieces are shuf-
fled in memory.

Code	  

A instrA1 
instrA2 
 
ret 

B  
instrB2 
ret 

Call α() 

0x1000: 

0x1200: instrB1	  

RaTTle	  
α: 0x1200 
β: 0x15F9 
γ: 0x3FFA 

Figure 3: Control-flow is redirected through the RaTTle rather
than jumping to addresses directly.
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3.2 Splitting

Splitting ensures that the resulting pieces can be mapped
into different processes at different addresses. As
PALACE code references every target through a unique
label in the RaTTle, it can be split without the need
for traditional relocation, which rewrites addresses that
hence have changed.

The PALACE code is split into page-sized pieces. If
those pieces are later shuffled, it must be assured that the
original semantics of the program are kept intact. This is
essential when control flows from the end of one piece to
the piece that was adjacent to it in the original program
code. Thus, we need to insert explicit control flows be-
tween consecutive code pieces that might be moved away
in a later stage of randomization. These explicit links
only need to be inserted as the last instruction of a piece
to ensure that control indeed flows to the intended suc-
cessor (see Figure 4). After the links have been inserted,
the code pieces can be randomized in memory without
violating the original program semantics.

Memory	  Page	   Memory	  Page	   Memory	  Page	  

mov add push jump add mov mov mov pop jne jump 

RaTTle	  

8: 0x148D 

0: 0x12C9 
4: 0x1200 

0x1200 0x12C9 0x11F7 

Figure 4: Filling a page with instructions and linking them
with explicit control flow transfers.

3.3 Randomization

Modern OS loaders for shared libraries already support
Address Space Layout Randomization (ASLR), i.e. they
load the code, data, and stack segments at random base
addresses. We leverage this fact by putting every mem-
ory page in its own loadable segment of the executable
file or of the shared library. As the page-sized code
pieces are already transformed to PALACE code, no re-
location of addresses is needed. An ASLR-enabled com-
modity loader can blindly load all pieces at random ad-
dresses. Consequently, each process can have its own
permutation of the randomization. Only the RaTTle
needs to be kept up to date with a per-process random-
ization (see “Populating the RaTTle”).

3.4 Addressing the RaTTle

At first glance, it might seem we have only shifted the
problem of addressing functions in code to securely ad-
dressing the RaTTle. However, our approach enables se-
cure access to the RaTTle without access for adversaries.
We first explain why we chose the more involved realiza-
tion of the RaTTle and not existing approaches, such as a
fixed address, a fixed register or the Global Offset Table
(GOT). As already alluded to by Shacham et al. [25], the
following techniques have drawbacks:

Fixed. Storing the RaTTle at a fixed address in memory
allows for its address to be hard-coded in the in-
structions themselves. Unfortunately, a hard-coded
address restricts the table to a fixed position. This
fact can be exploited by an attacker.

GOT. Accessing the GOT is realized by using relative
addresses, which forfeits sharing as discussed ear-
lier. Moreover, several attacks are known that deref-
erence the GOT [5].

Register. A dynamic address that is randomly chosen
for every process could be stored in a dedicated ma-
chine register. However, this register would need
to be sacrificed and every original use of that reg-
ister must then be simulated with other registers or
the stack. Moreover, a leakage vulnerability could
reveal the address of the RaTTle.

Our Approach. Our RaTTle does not suffer from the
aforementioned drawbacks. We use the x86 feature of
memory segmentation to address and at the same time
hide the RaTTle from adversaries. X86’s segmentation
is disused today because it has been superseded by mem-
ory paging. Memory paging, also called virtual mem-
ory, allows a fine-grained mapping of memory on a per-
process basis and is much more versatile than segmen-
tation. However, segmentation is still available in mod-
ern processors and in combination with paging allows
for the security we need for the RaTTle. Additionally,
as segmentation is a hardware feature and we can use
it to implement the translation table, it is very efficient.
Segmentation allows the memory to be divided in user-
defined segments that may overlap. Segmentation is re-
alized in the processor by adding a user-defined offset to
all addresses the code handles (see Figure 5).

Segmentation allows different so-called segment descrip-
tors to be created, each with their own base address and
limit, i.e. the start and length of that segment. The list of
these segment descriptors is kept in the Global Descrip-
tor Table (GDT, see Figure 5). Segment selectors must
then point to exactly one segment entry in that GDT. Seg-
ment selection is done using dedicated segment selector
registers such as CS (Code Segment), DS (Data Segment),
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CS 

Code	  

A instrA1 
instrA2 
 
ret 

B instrB2 
ret 

Call 0xABC() 0x1A06: 

0x1ABC: 

instrB1	  

GDT	  
Offset:	  0x1000 

+

Figure 5: Code using segments as offsets for addresses.

SS (Stack Segment) and three general purpose segment
selectors ES, FS and GS.

Position-and-Layout-Agnostic CodE (PALACE). The
trick we use is the fact that segments can be selectively
overridden on a per-instruction basis. In this way, a sin-
gle instruction may use an addressing that is relative to
the RaTTle, thereby indexing the RaTTle to change con-
trol flow or to access data. For example, call *%fs:0x4

dereferences the double-word stored at %fs:4 and calls
the function stored at that double-word. If we let the seg-
ment selector FS point to the randomly chosen address of
the RaTTle, we effectively index the RaTTle by an offset
of 4 (see Figure 6).

FS 

Code	  

A instrA1 
instrA2 
 
ret 

B  
instrB2 
ret 

Call %fs:*0x4 

0x245A: 

0x87CD: instrB1	  

GDT	  

Offset:	  0x6F9B 

+	  
RaTTle	  
0: 0x2AB9 
4: 0x87CD 
8: 0x1A34 *

0x6F9B:	  

Figure 6: The RaTTle in Action: Indexed through the GDT and
dereferenced using an indirect call; all in one instruction.

In PALACE code, we substitute each branch and jump
instruction with an %fs segment override and a unique in-
dex. When not using the FS segment override, code does
not have access to the RaTTle because it uses a differ-
ent segment. The address of a segment, and hence of the
RaTTle, cannot be read from user space because the local
and global descriptor tables point to kernel space mem-
ory which is inaccessible from user space. This makes
the address of the RaTTle inaccessible.

As a segment selector for the RaTTle, we chose the gen-
eral purpose segment selector register FS, as already used
in the example above. To the best of our knowledge, this
register is unused. The only use we found is in the Win-
dows emulator Wine that uses segmentation for its 16-bit
Windows emulation.

Efficient Data Access. Data can be accessed in a sim-
ilar way, but through the Global Offset Table (GOT).
The GOT is used in position-independent code such as
libraries anyway. We just need to substitute the way
the address of the GOT is calculated with an indirection
through the RaTTle. Further access is done through the
GOT as in traditional position-independent code. This is
explained in more detail in Section 4.5.

Populating the RaTTle. The RaTTle is the only part of
the code that needs rewriting at load time. The RaTTle is
empty in the ELF executable file on disk and its memory
gets initialized by the loader with the help of relocation
information. This relocation information points to the ac-
tual symbols that each RaTTle index refers to. The Linux
loader automatically takes the relocation information to
rewrite the RaTTle at program load [6].

4 Design Details

With the ingredients described earlier, we can put to-
gether our mitigation against code reuse attacks that is
efficient, lightweight and shares code and data between
processes.

4.1 Design Decisions

There are several ways to implement PALACE. A
PALACE executable can be produced by a compiler, or
it can be transformed from a traditional executable using
static or load-time translation.

Compiler Support. The same way contemporary com-
pilers support PIC, they can be augmented to emit
PALACE code. Based on the principles of PALACE
code introduced in the previous Idea section, the com-
piler needs to generate PALACE code and put it in subse-
quent memory-page-sized chunks. It is then ready to be
loaded by a traditional loader that permutes the chunks
prior to execution of the code.

Static Translation. If the source is not available, an
existing executable can be transformed to PALACE by
means of static translation [14, 15]. Static translation
reads an executable or shared library file from disk,
disassembles it, transforms the instructions, and writes
a modified executable file back to disk. In our sce-
nario, static translation keeps most of the instructions
untouched while only replacing code and data references
with the appropriate indirection through the RaTTle.

Load-time Translation. Load-time Translation can be
regarded as a static translation that happens automati-
cally at very load-time, after the executable or library has
been read from disk into memory but before it starts exe-
cution. This method is often referred to as binary rewrit-
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ing. Its advantage is that a process can be randomized at
every startup. In our scenario, however, we do not need
load-time translation as we can achieve a randomization
at load-time with the specially crafted PALACE chunks
in the executable file.

Our Choice. We want to stress that Oxymoron can be
implemented by a compiler that simply emits PALACE
code in the first place instead of traditional code. We
could have implemented Oxymoron as a compiler solu-
tion. However, this would have required us to modify ex-
isting compilers. Instead, we built a legacy-compatible
solution that uses static translation and can be built on
an existing fine-grained memory randomization frame-
work, which already uses static translation. We built
Oxymoron on the existing framework Xifer provided by
Davi et al. [13].

In theory, a static translation approach may seem frag-
ile because it needs a perfect disassembly. However,
static translation can be tuned to reliably disassemble
code generated by a particular compiler with known and
carefully chosen parameters. Besides, in this paper we
use the translation from traditional x86 code to PALACE
code as a comprehensible running example that demon-
strates how PALACE code looks in contrast to traditional
x86 code.

In both cases, compiler and static translation, the gener-
ated PALACE code of the executables and libraries can
be read by a commodity Linux. The Linux OS loader
will detect the executable as being ASLR-enabled and
will randomize its base address. Unfortunately the com-
modity loader does not randomize the program segments
individually but keeps their relative distances. For tradi-
tional position-independent code that was necessary so
that code in the .text section can still reference objects
in the .data section by their relative distance to the cur-
rent instruction pointer. However, for PALACE this lim-
itation is not required. We want to achieve a more fine-
grained randomization by allowing an individual ran-
domization of each program segment, which could be as
small as a memory page. This can be achieved by re-
questing a special linker in the program header, which
randomizes the segments individually.

4.2 Setting up the RaTTle

The RaTTle needs to be populated with all references
in the executable and the table needs to be loaded at a
random address. Moreover, one table does not suffice
for the interaction of several shared libraries. Before we
can use PALACE code, we need to set up the RaTTle as
follows:

1. Assign every reference in code a unique number that
will act as an index into the RaTTle,

2. Fill the RaTTle with the actual, current, random ad-
dresses of the original targets, and

3. Set up segmentation so that a free segment selector
points to the RaTTle and we can index the RaTTle.

In step 1, the absolute addresses of the original pro-
gram are saved in a hash set. Then, every address is
assigned an ascending index. This ensures that the ta-
ble does not grow unnecessarily large. Because the fi-
nal, random addresses are unknown before the process is
started, the RaTTle cannot be filled until start-up of the
process. As we want to avoid modification of the operat-
ing system loader, we chose a method that is able to fill
the RaTTle using only traditional features of the loader.
Such a feature is relocation. Relocation information tells
the loader which objects in the executable file or in the li-
brary must be overwritten with current addresses at load
time. Therefore, we add relocation information for each
RaTTle index to the final executable/library file. This en-
sures that the loader rewrites each index so that it points
to the corresponding position of code or data that this in-
dex represents. As a result, the randomized addresses of
the code pieces are automatically written into the RaTTle
by the operating system loader.

4.3 Setting up Segmentation

In order to find the RaTTle in memory, we need to set
up segmentation so that a pre-defined segment points to
the beginning of the table. Unfortunately, we cannot use
relocation information for this purpose, because neither
setting up segmentation nor setting segment selectors is
supported by relocation information. Setting up segmen-
tation via the Global Descriptor Table (GDT) would re-
quire kernel modifications. Since the goal is to avoid
operating system modifications in order to stay legacy
compatible, this is not an option. Luckily, the x86 archi-
tecture additionally supports a so-called Local Descrip-
tor Table (LDT). The LDT can be switched for every ad-
dress space, so that Linux emulates a per-process LDT.
This is a perfect feature for enabling Oxymoron on a per-
process basis.

The set-up of the LDT and the segment selector that
points into the LDT is done in initialization code. To
this end, we leverage the ELF executable format’s ini-
tialization code that resides in the .init section. Code
in this section is ensures to be executed before any other
code. This init code figures out the address at which the
RaTTle has been randomly loaded by the loader and sets
up the LDT accordingly. After the initialization code has
run, the segment selector FS points to the random address
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of the RaTTle. The PALACE code can now work as in-
tended.

4.4 Control Flow and Data

Code. Control flow branches or function calls that target
another memory page need to be replaced with an indi-
rection through the RaTTle. The simplest case is a direct
call or an unconditional jmp to a different place in code:

Address Before After

8050512: call 0x8050c08 call %fs:4

RaTTle: [0] ..........
[4] 0x8050c08 

Only branches that reference code outside of the current
memory page must go through the RaTTle. Code and
data access within one memory page may be encoded
position-relative (e.g., call +90).

If the to-be-replaced instruction is an indirect jump,
the translation is slightly larger due to the fact that
x86 does not support two levels of indirection. It
is either possible to use the RaTTle to get the ad-
dress of the second indirection and then dereference
that using an indirect jump or to use a trampoline.
We use a trampoline because it is slightly faster:
Address Before After

8050512: jmp *0x80a00012 jmp %fs:4

80a00012: 8050c08 8050c08 

RaTTle: [0] ..........
[4] jmp *80a00012 

A slightly more involved case is a conditional
jump because there is no equivalent conditional in-
direct jump. Our solution is a bit more involved:
Address Before After

8050512: cmp %eax, %ebx cmp %eax, %ebx

8050514: jne 0x8050590 jne 0x8050518 

8050516: jmp 0x805051a 

8050518: jmp *%fs:4 

RaTTle: [0] ..........
[4] 0x8050590 

An indirect jump, such as jmp *%eax does not need to be
replaced at all. However, the used register (in this exam-
ple %eax) must point to the correct randomized position
in memory. This is either ensured by the compiler that
generated PALACE code or by the translation from tra-
ditional code. In either case, a register is loaded with
a code address. Optionally, this address is modified to
mimic jump tables or C++ vTables, and then the indi-

rect jump transfers control flow to the address stored in
the register. To load a code address to the register before
it is modified, a fixed address is copied to the register.
This is similar to mov $0x8402dbc, %eax. In the case
of PALACE, this step needs an indirection to conceal
the actual address and to make the address exchangeable
by the RaTTle. In PALACE code this register loading
looks like this: mov %fs:$0x4, %eax. This copies an
address stored as an entry in the RaTTle to the register
%eax. Then, some mathematical operations can be per-
formed, such as adding the offset into C++ vTables and
finally the indirect jump is performed as in traditional
x86: jmp *%eax.

Data Access. Accessing data through the RaTTle is done
in exactly the same way. An indirect memory operation
is used to read or write data from or to an address stored
in the RaTTle. mov %fs:$0x4, %ebx is used to read the
first entry (4 bytes) of the RaTTle into register %ebx and
vice versa the operation mov %ebx, %fs:$0x8 copies the
register %ebx to the second entry (8 bytes) of the RaTTle.

4.5 Inter-Library Calls and Data

Control flow and access to data is not restricted to one
library or executable. Naturally, these code elements fre-
quently use each other’s functions and data. Some oper-
ating systems, like Windows, use relocation information
to directly patch the control flow so that it points into
a library after it has been loaded. Linux, on the other
hand, uses the procedure linkage table (PLT) to link calls
to libraries with the advantage of lazy loading.1 In con-
trast, we use an indirection through the RaTTle for ev-
ery library call or access to global library data because
this approach conceals the actual address of the loaded
library and has only minor performance impact.

Inter-Library Data. Libraries can export data to be used
by the executable main process or other shared libraries.
Since it is known a priori which data is accessed in an-
other library, each reference gets a place-holder in the
GOT which can be accessed as described above. When
the appropriate library is loaded by the loader, it auto-
matically updates the GOT thanks to the relocation info
pointing to this entry in the GOT.

The following is an example of typical position-
independent code that uses a GOT to access data: The
code is first calling the next instruction, thereby pushing
its own address as a return address to the stack. Follow-
ing, this very address is popped off the stack to get the

1First, the PLT entries do not point to the actual procedure inside a
library because it has not been loaded yet. Instead, they point to code
that loads the library and then rewrites the PLT to link the call to the
actual target procedure.
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absolute address of the currently running code. The ad-
dress of the GOT is calculated by adding a known offset.
Address Before

8050512: call 0x8050517 

8050517: pop %ebx 

8050518: add $1234, %ebx 

805051e: mov 4(%ebx), $1 

Call next instruction

ebx ß 8050517

ebx ß GOT

GOT[4] ß 1

When transforming this piece of code to PALACE,
only the calculation of the GOT needs to be substi-
tuted. In this case, the three former instructions get
compressed to a single instruction with segment over-
ride. Interestingly, this is a faster method of accessing
the GOT than the currently used PC-relative addressing.

Address After

8050512: mov %fs:4, %ebx 

805051e: mov 4(%ebx), $1 

RaTTle: 0x805174B 

ebx ß GOT

GOT[4] ß 1

Points to GOT

Inter-Library Calls. Inter-library calls are calls from
one loaded library to another or from the main executable
to a library. In theory, these calls are no different from
a call within the same library or executable because the
RaTTle can simply point to code in another library. How-
ever, in practice, this would require the RaTTle to re-
flect all possible combinations of loaded libraries. There-
fore, we resort to a solution in which every loaded library
brings its own RaTTle and an inter-library call acts as a
trampoline that changes the segment selector FS to point
to the corresponding RaTTle of another library prior to
jumping into that library (see in Figure 7).

Code1	  
instr 
instr 
 
ret 

RaTTle1	  0: 0x1200 
4: 0x12C9 
8: mov LIB2, %fs 
   call *%fs:0 
   mov LIB1, %fs 
   ret 

call %fs:8 

0x1200: 

LDT	  
Offset:	  0x8F9B 

Offset:	  0x97A2 

LIB1:	  

LIB2:	  

Code2	  
instr 
instr 
 
ret 

RaTTle2	  

0x6721: 

Figure 7: Inter-Library Calls: Because the indices overlap, a
new RaTTle needs to be set up before those calls.

Please note the missing “*” in the call %fs:8 of Fig-
ure 7, which means the RaTTle is not de-referenced
rather than used as a trampoline. This trampoline then
lets FS point to the index of the other library’s RaTTle
without the need to know the exact address. Suppose
the function that we want to call is stored at index 0 in
RaTTle2, but RaTTle1 is currently active. The code in

Figure 7 first sets FS to point to RaTTle2. RaTTle2 is
the second selector in the LDT. Hence, the trampoline
code in RaTTle1 assigns 10111bin = 23 to FS, which cor-
responds to a segment selector of “2” (see Appendix A).
The trampoline code then jumps to index 0, which now
corresponds to currently active RaTTle2. Because the
trampoline uses a call instruction to finally call into the
other library, control flow returns to the trampoline where
FS is restored to its former value.

4.6 Debugging

Debugging information augments the executable or li-
brary file with annotations describing which memory ad-
dresses correspond to which variables or lines of code.
These stored addresses must be compatible with Oxy-
moron randomized addresses. Since Oxymoron is imple-
mented as a static translation tool, the original debugging
information needs to be translated as well. Currently
Oxymoron supports the common DWARF [3] file format
which can be read by the gdb or other debuggers. This
way, it is possible to teach gdb the randomized addresses
so that gdb can still step through the code, inspect vari-
ables etc. like for the non-randomized executable.

5 Evaluation

In this section, we evaluate the effectiveness of Oxy-
moron empirically as well as theoretically. In order to
demonstrate the efficiency, we used the de-facto standard
performance benchmark SPEC CPU2006 as well as mi-
cro benchmarks to measure cache hit/miss effects.

First, we inspect the security of the RaTTle itself to ver-
ify that it did not open the flood gates for other attack
vectors. Then, we compare the slightly different random-
ization of memory pages that this solution entails to the
more classical memory randomization solutions in order
to get an understanding of the implied security.

5.1 Practical Security Evaluation

We tested our randomization solution against real-life
vulnerabilities and exploits. The documented vulnerabil-
ities CVE-2013-0249 and CVE-2008-2950 both allow ar-
bitrary code execution by means of return-oriented pro-
gramming [2]. CVE-2013-0249 targets the libcurl li-
brary which handles web requests and is used in dozens
of popular programs, including ClamAntiVirus, Libre-
Office, and the Git versioning system. The exploit for
this vulnerability is crafted in such a way that it trig-
gers a buffer overflow in libcurl with the ability to over-
write a return address and ultimately execute a chain of
ROP gadgets. The severity of this bug lies in the fact
that it can be triggered remotely when libcurl accesses
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a prepared resource that is under the control of the ad-
versary. In order to test the exploit, we used the ‘curl’
downloader executable in version 7.28.1, which inter-
nally uses libcurl. We could successfully run arbitrary
code by assembling ROP gadgets at our discretion. Af-
ter curl had been rewritten to use Oxymoron, the exploit
was no longer possible as the addresses that are needed
to successfully mount the attack are unknown due to the
randomization at every program start.

Similarly, the vulnerability CVE-2008-2950 allows for ar-
bitrary code reuse in the PDF library poppler, which
is used by many popular programs such as LibreOffice,
Evince and Inkscape. A specially prepared PDF file can
trigger an arbitrary memory reference in the poppler li-
brary, ultimately leading to a code reuse attack. After our
attacks against pdftotext using libpoppler 0.8.4 were
successful, we applied Oxymoron. Since the memory ad-
dress of the PALACE-protected process were no longer
known, the exploit was rendered unsuccessful after ap-
plying Oxymoron to the pdftotext executable.

5.2 Security of the RaTTle

Because processes are protected by W ⊕X (stack execu-
tion prevention), no code can be injected by an attacker.
Hence, the only possibility is to reuse existing code. This
existing (PALACE) code is littered with %fs-prefixed in-
structions that implicitly point to the RaTTle due to the
sheer fact they incorporate a reference to %fs. However,
the situation is identical to finding ROP gadgets in a clas-
sical program, as an attacker needs to know their ran-
domized position in memory in order to chain them to-
gether. The fact that this address is not known to an at-
tacker prevents the reuse of code. In fact, the probability
of guessing a correct address is negligible (see subsection
“Theoretical Security Evaluation”).

The RaTTle holds lots of random addresses and, at first
glance, seems like a valuable target for an attacker. The
security of the RaTTle originates from the fact that its
address is unknown and that its content cannot be ac-
cessed. All %fs-instructions are mere replacements for
control flow branches and as such only use the RaTTle
as a layer of indirection without ever knowing the actual
address of the landing position. If an %fs-instruction is
a replacement for data access, the same holds true: The
RaTTle is only used for indirect access of the actual data.
In general, the x86 architecture does not support reveal-
ing addresses that segments point to. The only way to
read the address is to parse the GDT or LDT which both
reside in kernel space. To access the LDT, a user mode
program needs to issue a special syscall. Even if a pro-
gram would consist of ROP gadgets to issue this syscall,
he would still need to know the addresses of the required

ROP gadgets. So this can be reduced to finding special
instructions that can be used as ROP gadgets. This has a
negligible probability as explained in “Theoretical Secu-
rity Evaluation”.

5.3 Enhanced Security of the RaTTle

It is possible to further enhance the security of the
RaTTle by making it completely inaccessible. The seg-
mentation principle of the x86 architecture allows to dis-
tinguish code access from data access. This way, it is
possible to set up two different RaTTles, one for code
going through %fs and one for data going through %gs.
First of all, in a program without self-modifying code,
there should be no instructions that read data using the
%fs code segment selector. Even if there were, the pro-
cessor would prohibit such access. Further, it is possible
to move the RaTTle completely outside of the normal,
otherwise flat2 data segment (%ds). This results in the
inability for code to ever access the RaTTle without us-
ing proper segment selectors, because it no longer resides
in the accessible segment. This is an effective protec-
tion against leakage and disclosure attacks (see subsec-
tion “Disclosure Attacks”). Also, the call stack could
be protected using this method. If return addresses are
not saved on the regular stack, but rather on a side stack
in a reserved area inside the RaTTle, there is no way
for memory disclosure vulnerabilities to ever read return
addresses and thus they cannot gain information about
function addresses.

5.4 Theoretical Security Evaluation

In this subsection we elaborate on why the entropy of
memory page granularity randomization is still sufficient
for fine-grained randomization and why it is much higher
than traditional ASLR.

First, we show that the entropy induced by a page-
granular randomization is high enough in the sense that
the adversary has only negligible probability of success-
fully guessing an address. We model the adversary’s goal
as mounting a code reuse attack against a running pro-
gram consisting of the executable and its loaded libraries.
Hence, his goal is to know the address of either a par-
ticular function f of interest (return-into-libc attack) or
of several particular instructions i1 . . . ik to build gadgets
from (ROP attack). Since the contents of a memory page
can be extracted from the executable file, the attacker can
determine in which memory page the instruction in ques-
tion resides. Therefore, the success of the adversary re-

2A flat segment is a segment that covers the entire address space,
i.e. 0x00000000 to 0xFFFFFFFF on a 32-bit system. This is the
default for Windows, Linux and MacOS.
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lies on the probability of knowing the address of a par-
ticular memory page.

Every memory page is assigned a random address at
load-time. Thus, the first page can choose 1 out of n
possible page-aligned address slots. The second 1 out
of n− 1 and so forth. For p total process pages to lay
out in memory, this yields a total of n!

(n−p)! combina-
tions. The adversary’s probability of correctly guessing
one address is hence the reciprocal (n−p)!

n! . In a 32 bit ad-
dress space, we have n = 219 = 524,288 possible page
addresses. The probability of guessing one page cor-
rectly therefore is 2−19. That scenario is intuitively iden-
tical to ASLR which only randomizes the base address
of the code. However, when finding ROP gadget chains,
the page granularity drastically lowers the chance of suc-
cess compared to ASLR because several pages have to
be guessed correctly. For a 128 kB (p = 32 pages) exe-
cutable to lay out in memory, the adversary’s probability
of guessing the correct memory layout therefore is:

Pr
[
Advlayout

]
=

(n− p)!
n!

=
(219 −25)!

219!
= 2−608

Leakage Attacks in ASLR. A leakage vulnerability in-
advertently reveals a valid, current address inside the
running program. If the adversary additionally knows
which object or function has been leaked, he knows the
address of that object/function. In the case of ASLR, he
can then infer the current addresses of all other objects
or functions because ASLR has shifted the entire code
segment in memory by changing its base address. Con-
sequently, the relative distances between functions stay
exactly the same.

To model the leakage attack, we assume the adversary
exploits an existing leakage vulnerability thereby learn-
ing a valid address. We assume that this address depicts
the beginning of a particular function that the adversary
knows. That such a leaked address actually constitutes
a function pointer is not very likely but here it models
the best-case scenario for the adversary. Hence, the fol-
lowing calculations give a upper bound of success for an
adversary.

More formally, the adversary has access to an oracle that
can tell which function f has leaked and the adversary
can use the leakage vulnerability to learn the current ad-
dress of A f of the function f . The adversary can then
calculate their difference in memory by calculating their
difference in the executable file. As their relative posi-
tions did not change in ASLR, the adversary can infer the
current address of f ′ by calculating the difference to the
leaked function f . In the case of traditional ASLR, the
address of any function f ′ can be calculated with proba-
bility 1. Ultimately, the success probability of the adver-

sary entirely depends on the likelihood of finding such a
leakage vulnerability.

Leakage Attacks in Oxymoron. In our case of memory
page granularity shuffling, the relative distance between
functions varies in general since the code segment is not
just shifted en bloc. For any leaked pointer f , there is a
chance that it resides in the same memory pages as the
desired function f ′. For an equal distribution of f ′ in p
pages, the likelihood of f ′ being in the same page as f is
1
p . For a program of a total size of only one memory page
(4kB), both functions f and f ′ must reside in the same
memory page. Under the assumption that both functions
are uniformly distributed, the probability for both to ap-
pear in the same memory page is 1

p for a program size of
p pages. Hence

Pr[AdvPALACE
ret2libc ]≤ 1

p
and Pr[AdvPALACE

ROP ]≤ 1
pk

Disclosure Attack. We distinguish between a leakage
and a disclosure vulnerability. A disclosure vulnerabil-
ity allows an attacker to read arbitrary memory content
given its address. Snow et al. proposed just-in-time code
reuse, which showed that a disclosure vulnerability can
significantly reduce the security of fine-grained memory
randomization [26]. Just-in-time code reuse repeatedly
exploits a memory disclosure vulnerability to map por-
tions of a process’ address space with the objective of
reusing the so-discovered code in a malicious way. In a
fine-grained randomization, the memory pages are scat-
tered across the address space and scanning with arbi-
trary memory addresses is very likely to end up in un-
mapped memory. In order not to trap into unmapped
memory, they rely on a leakage attack to learn a valid
address and then start from this address by disassem-
bling the code in order to follow control flow instruc-
tions. Even fine-grained randomization can be reversed
using their technique by transitively following the con-
trol flow.

However, in our setting of PALACE code, no control
flow branch can be followed by reading memory as such
a branch only constitutes an offsets into the RaTTle. In
order to resolve branches such as call *%fs:4, the at-
tacker would need to know the address of the RaTTle or
%fs, which is not possible, as alluded to earlier. The only
chance an attacker has is to rely on a leakage vulnerabil-
ity to get a valid address. If that address points to data it
is useless to the attacker. If it points to code, the attacker
can only use a disclosure vulnerability to get the contents
of up to a whole memory page (4KB). Otherwise, he is
likely to overrun the page and end up in unmapped mem-
ory which triggers a page fault that kills the program.
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5.5 Effectiveness of Memory Page Sharing

To have a set basic programs one would typically find
on a Linux machine, we used the busybox project, which
incorporates 298 standard Linux commands. Those com-
mand line programs were started and their memory foot-
print was measured using /proc/<PID>/maps. On av-
erage, they mapped 14.9% more code pages than their
unmodified original. Their data pages were unmodi-
fied. Only the RaTTle consumes memory (see Subsec-
tion 6.1). Compared to fine-grained memory randomiza-
tion solutions that impede code page sharing, Oxymoron
on average saves about 85% of program memory.

6 Performance Evaluation

To evaluate the efficiency of Oxymoron, we did not
only use standard command line tools from busybox but
conducted CPU benchmarks with PALACE-enabled pro-
grams using the de facto standard SPEC CPU2006 inte-
ger benchmark suite. All benchmarks were performed
on an Intel Core i7-2600 CPU running at 3.4 GHz with 8
GB of RAM.

Static Translation Overhead. Before the executable
and libraries can be shuffled in memory, they either need
to be compiled with an PALACE-enabled compiler or
they must be converted using static translation (cf. sec-
tion 3). Even though the translation only needs to be
performed once, it must be efficient. We measured the
rewriting time for all benchmark programs of the Spec
CPU suite. The rewriting process is not exactly linear,
but on average achieves between 35,000 and 700,000 in-
structions per second. An overview of the timings of sev-
eral programs is given in Table 1.

Benchmark Total #
of Instructions

Rewriting
Time (s)

483.xalancbmk 1,111,779 4.321
403.gcc 942,244 3.667
471.omnetpp 238,978 0.316
400.perlbench 322,084 1.084
445.gobmk 226,661 6.744
464.h264ref 170,942 0.396
456.hmmer 54,582 0.116
458.sjeng 40,438 0.101
473.astar 32,502 0.032
401.bzip2 28,087 0.056
462.libquantum 15,788 0.024
429.mcf 12,268 0.024

Table 1: Timings for static rewriting that needs to be done at
least once. The total # of instructions include the executable
and all its shared libraries.

The number of instructions per benchmark reflect the to-
tal number of instructions from the executable file itself
plus its dependent libraries. Note, that this measurement
rewrites the entire C-library and other dependent libraries
again for each benchmark and is hence slower than just
translating the main executable.

Run-Time Overhead. The run-time overhead intro-
duced by the translation through the RaTTle as well
as the introduction of jmp instructions to connect pages
(cf. section 3) is measured in Figure 8. The average
run-time overhead of all benchmarks is only 2.7% for
the PALACE code and 0.1% for the additionally needed
chunking in memory page-sized pieces (4096 bytes).

0.00% 

2.00% 

4.00% 

6.00% 

8.00% 

10.00% 

12.00% 

Performance Run-Time Overhead 

Page	  Jump	  (avg.	  0.5%)	  
RaTTle	  (avg.	  2.7%)	  

Figure 8: SPEC CPU2006 integer benchmark results.

Cache Miss Penalty. We also evaluated the cache ef-
fects of our randomization. This is important, since mod-
ern processors assume locality of code, which might be
thwarted by wild jumping in the code due to the random-
ization. Keeping cache effects in mind, our implemen-
tation optimizes jumping behavior in order to optimize
performance under real-life conditions. Our cache ex-
periments showed that PALACE and the randomization
have no measurable cache effect.

For this impact to be measured, we handcrafted code
consisting of interdependent add instructions with a to-
tal length of one L1 cache line. These instructions are
aligned in memory in such a way that they start at the
beginning of a cache line and re-occur such that every
cache set and every cache line is filled after execution.
We inserted equidistant jmp instructions and measured
the overhead of 100,000 runs on an Intel Core i7-2600
(32 KB L1 cache, 64 bytes per line). Our results show
that the performance impact is not measurable up to ev-
ery seventh instruction being a jmp. If every sixth in-
struction is a jmp, a negligible overhead of 0.4% is in-
troduced. Our analysis of the busybox code showed that
after translating it to PALACE, on average indeed every
6th instruction was a branch or jump.

11
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6.1 Memory and Instruction Overhead

Compared to a traditional program, the introduction of
PALACE code replaced control flow branches with other,
%fs-relative, instructions. For all SPEC2006 benchmark
executables, on average 9% +-1.7% of all instructions are
calls that needed to be replaced by indirections through
the RaTTle. GOT indirect calls through the RaTTle are
only 0.03% of all instructions.

Additionally, a PALACE binary executable file is slightly
larger than a traditional executable file because each code
page (4 KB) is a separate ASLR-enabled section in the
executable file.

During run-time, the memory footprint also slightly in-
creases because the RaTTle has to be kept in memory. Of
course, this run-time memory usage is accompanied with
the achieved goal of memory savings due to the sharing
of code pages with other processes.

Encapsulating each memory page in a separate segment
in the ELF file requires the allocation of one section
header and one program header per page. A section
header is 40 bytes and the ELF program header is 32
bytes which leads to an overhead of 72 bytes per 4096
byte memory page, or ≈ 1.76%. Figure 9 depicts both
the increase of instructions due the static translation as
well as the increase of the ELF section and program
headers.
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Figure 9: Memory overhead after static translation.

Run-Time. The size of the RaTTle depends on how
many references the code has. If a target is referenced
more then once, e.g., the GOT, only one index is saved
in the RaTTle. For all files that belong to the SPECint
CPU2006 benchmark, on average 19% of the code seg-
ment had to be added in the form of a RaTTle.

7 Related Work

Over the course of the last several years, code reuse at-
tacks and their mitigation has been an ongoing cat and
mouse game. Some of the code reuse mitigation tech-
niques address the problem at its roots by preventing
buffer overruns or by confining the control flow to the
destined control-flow graph. Other mitigation techniques
make it hard for the adversary to guess or brute-force
addresses that are necessary for successful execution of
malicious code.

In this section, we focus on approaches that use fine-
grained memory randomization as a means to mitigate
code reuse attacks and work that nullifies memory ran-
domization or even fine-grained memory randomization.

One way to categorize fine-grained memory random-
ization solutions is by their implementation: There ex-
ist compiler-based solutions, static or load-time transla-
tions, and dynamic translations. Another category di-
mension is whether they randomize only once, every
time the program starts, or even continuously during pro-
gram execution.

Compiler-Based Solutions. If a program is not random-
ized, an adversary can learn the layout, i.e. addresses, of
all functions and gadgets and hence use them in a ret2libc
or ROP attack. The idea of compiler-based approaches is
to randomize the layout of a program and to install differ-
ently randomized copies on different computers so that
the program layout is not predictable for an adversary.

Cohen et al. [10] suggested compiling different versions
of the same program. In a modern setting this technique
can be applied within an AppStore to distribute individu-
ally randomized software. Similarly, Franz et al. [16, 19]
have suggested automating this compiler process and
generate a different version of a program for every cus-
tomer. The authors suggest that app store providers in-
tegrate a multicompiler in the code production process.
However, those approaches have several shortcomings:
First, app store providers have no access to the app
source code. This requires the multicompiler to be de-
ployed on the developer side, who has to deliver possibly
millions3 of app copies to the app store. Second, the pro-
posed scheme requires software update processes to cor-
rectly patch app instances that in turn differ from each
other. Finally, the most severe drawback of compiler-
based solutions is the fact that the diversified program
remains unchanged until an update is provided, which
increases the chance of an adversary compromising this
particular instance over time.

3According to Gartner [4], the number of app downloads is about
102 billion in 2013.

12
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Similar to Oxymoron is the idea of using a compiler-
based solution to divide a shared library into even more
fragments. Code Islands [30] follows this path and com-
piles groups of functions to several shared libraries in-
stead of one shared library containing all the functions.
These (potentially thousands of shared library files) are
then put in a container whose format is understood by a
modified loader which maps the libraries in the particular
process. However, their solution needs a modified loader
to support the proprietary format. Executables then need
to load literally thousands of shared libraries, while each
library constitutes a single function.

In contrast, Bhatkar et al. [8] presented a source code
transformer and its implementation for x86/Linux. The
main idea is to augment any source code with the capa-
bility of self-diversification for each run. In particular,
features are added to the source code that allow the pro-
gram to re-order its functions in memory in order to mit-
igate code reuse attacks. Their tool can also be applied
to shared libraries if their source code is available. How-
ever, their solution induces a run-time overhead of 11%
and apparently needs access to the source code.

Static Translation. Static translation reads an exe-
cutable or shared library file from disk, disassembles
it and transforms the instructions according to a pre-
defined pattern within the executable file itself. Kil
et al. [20] use static translation for their Address Space
Layout Permutation (ASLP). ASLP performs function
permutation without requiring access to source code.
The proposed scheme statically rewrites ELF executables
to permute all functions and data objects of an applica-
tion. The presented scheme is efficient and also supports
re-diversification for each run. However, only the func-
tions themselves are permuted, not their content.

Pappas et al. proposed randomizing instructions and reg-
isters within a basic block to mitigate return-oriented
programming attacks [21]. However, the proposed solu-
tion cannot prevent return-into-libc attacks (which have
been shown to be Turing-complete [27]), since all func-
tions remain at their original position.

Load-Time Translation. Load-time translation solu-
tions are similar to static translation but apply the transla-
tion at load time in order for the processes to benefit from
a re-randomization at each run. This can be achieved
by several means, such as rewriting the binary file after
it has been loaded but before execution [29, 13]. Such
solutions usually suffer from the fact that each execu-
tion either needs a translation/rewriting phase each time
a process is started or they need a prior static analysis
phase [29].

Dynamic Translation. Dynamic translation leaves the
original file untouched and does not apply binary rewrit-
ing but the program undergoes a dynamic translation,
i.e. the instructions are transformed as they are executed.
Dynamic translation is very similar to Just-in-Time (JIT)
compilation but usually translates from and to the same
instruction set architecture. For example, Bruening pro-
posed the DynamoRIO framework in his PhD thesis [9].
DynamoRIO is able to perform run-time code manipula-
tion. ILR (instruction location randomization) [18] ran-
domizes the location of each single instruction in the vir-
tual address space. For this, a program needs to be an-
alyzed and re-assembled during a static analysis phase.
This is why ILR induces a significant performance over-
head (on average 13%), and suffers from a high space
overhead, i.e., the rewriting rules reserve on average 104
MB for only one benchmark of the SPEC CPU bench-
mark suite. For direct calls, ILR can only randomize
the return address in 58% of the calls, meaning that for
a large number of return instructions, ILR needs to do
a live translation for un-randomized return addresses to
runtime addresses.

Constant Re-Randomization. To the best of our
knowledge, there are only two papers that actu-
ally implemented and benchmarked re-randomization.
Curtsinger et al. [11] have implemented an LLVM com-
piler modification that injects code, which adds the func-
tionality to re-randomize the address of functions every
500 ms. According to [11], their overhead of code, heap
and stack (re-)randomization is 7%.

Giuffrida et al. [17] changed the Minix microkernel to
re-randomize itself every x seconds. This is achieved
by maintaining the intermediate language of the LLVM
compiler for the compiled kernel modules. However, this
procedure has a significant run-time overhead of 10% for
a randomization every x = 5 seconds or even 50% over-
head when applied every second.

Common Shortcomings and Nullification. All the re-
lated work on fine-grained memory randomization has
in common that they either do not randomize shared li-
braries, or if they do, the difference introduced in the
shared libraries prohibits code sharing.

Furthermore, it is unclear whether fine-grained memory
randomization alone is enough to protect against code
reuse attacks. Recently, Snow et al. [26] showed that
given a memory disclosure vulnerability it is possible to
assemble ROP gadgets on-demand without knowing the
layout or randomization of a process. They explore the
address space of the vulnerable process step by step by
following the control flow from an arbitrary start posi-
tion. After they have discovered enough ROP gadgets

13
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they compile the payload so that it incorporates the ac-
tual current addresses that were discovered on-site.

Snow et al. also proposed potential mitigations of their
own attack. However, the proposed solutions are either
very specific to their heap spraying exploitation or are as
general and slow as frequent re-randomization of a whole
process. The latter is not even secure if the attack takes
place between two randomization phases.

To the best of our knowledge, in this paper we present
the first solution that addresses both problems: (1) It is
secure against the new just-in-time ROP by Snow et al.
(2) It profits from code sharing despite secure random-
ization.

8 Discussion

In this section we would like to discuss the general ap-
plicability of Oxymoron but also its limitations.

The PALACE code presented in this paper only relies on
segmentation as an additional hardware feature. Hence,
Oxymoron also works in virtualized environments. We
successfully tested Oxymoron in software and hardware
virtual machines as well as on a para-virtualized Linux
using the Xen hypervisor.

The solution presented herein was implemented for the
32 bit x86 architecture. While its 64 bit successor has
limited supported for segmentation, the necessary offset
functionality of %fs segment registers is still available.
However, in 64 bit mode, segments do no longer support
to set a limit, which makes the RaTTle accessible as data
if its address is known.

Another interesting avenue that we did not investigate is
just-in-time (JIT) compiled code, such as the Java run-
time environment. Those JIT-compilers would need to
be adapted in order to emit PALACE-enabled code, oth-
erwise the traditional code they emit is not protected.

9 Conclusion

We presented a novel technique for fine-grained memory
randomization that still allows sharing of code among
processes. This makes fine-grained memory randomiza-
tion practical as the memory overhead is significantly re-
duced in contrast to other randomization solutions. Oxy-
moron is effective, i.e., code reuse attacks can be mit-
igated, memory leakage vulnerabilities can no longer
be used to revert the randomization, and we presented
the first solution to be secure against just-in-time code
reuse attacks. The randomized addresses are protected
by hardware means, which is an unprecedented security
level with a run-time overhead of only 2.7%.

An interesting side effect of our PALACE code is that
accessing the Global Offset Table (GOT) uses fewer in-
structions than the state-of-the-art technique of using
PC-relative addressing. Maybe our method could be a
slightly faster alternative for accessing the GOT.
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T., HUND, R., NÜRNBERGER, S., AND SADEGHI, A.-R.
MoCFI: A Framework to Mitigate Control-Flow Attacks on
Smartphones. In Symposium on Network and Distributed System
Security (NDSS) (2012).

[13] DAVI, L. V., DMITRIENKO, A., NÜRNBERGER, S., AND
SADEGHI, A.-R. Gadge me if you can: Secure and efficient ad-
hoc instruction-level randomization for x86 and arm. In 8th ACM
SIGSAC symposium on Information, computer and communica-
tions security (ACM ASIACCS 2013) (2013), ACM, pp. 299–310.

[14] DE SUTTER, B., DE BUS, B., AND DE BOSSCHERE, K.
Link-time binary rewriting techniques for program compaction.
ACM Transactions on Programming Languages and Systems
(TOPLAS) 27, 5 (2005), 882–945.

[15] EUSTACE, A., AND SRIVASTAVA, A. Atom: A flexible interface
for building high performance program analysis tools. In Pro-
ceedings of the USENIX 1995 Technical Conference Proceedings
(1995), USENIX Association, pp. 25–25.

[16] FRANZ, M. E unibus pluram: massive-scale software diversity
as a defense mechanism. In Proceedings of the 2010 workshop
on New security paradigms (2010), ACM, pp. 7–16.

[17] GIUFFRIDA, C., KUIJSTEN, A., AND TANENBAUM, A. S.
Enhanced operating system security through efficient and fine-
grained address space randomization. In Proceedings of the 21st
USENIX conference on Security symposium (2012), USENIX As-
sociation, pp. 40–40.

14



USENIX Association  23rd USENIX Security Symposium 447

[18] HISER, J. D., NGUYEN-TUONG, A., CO, M., HALL, M., AND
DAVIDSON, J. W. ILR: Where’d My Gadgets Go? In IEEE
Symposium on Security and Privacy (2012).

[19] JACKSON, T., SALAMAT, B., HOMESCU, A., MANIVANNAN,
K., WAGNER, G., GAL, A., BRUNTHALER, S., WIMMER, C.,
AND FRANZ, M. Compiler-generated software diversity. In Mov-
ing Target Defense, vol. 54 of Advances in Information Security.
Springer New York, 2011, pp. 77–98.

[20] KIL, C., JUN, J., BOOKHOLT, C., XU, J., AND NING, P. Ad-
dress space layout permutation (ASLP): Towards fine-grained
randomization of commodity software. In ACSAC (2006).

[21] PAPPAS, V., POLYCHRONAKIS, M., AND KEROMYTIS, A. D.
Smashing the gadgets: Hindering return-oriented programming
using in-place code randomization. In IEEE Symposium on Secu-
rity and Privacy (2012).

[22] PAX TEAM. http://pax.grsecurity.net/.

[23] PAX TEAM. PaX Address Space Layout Randomization (ASLR).
http://pax.grsecurity.net/docs/aslr.txt.

[24] SHACHAM, H. The Geometry of Innocent Flesh on the Bone:
Return-into-libc Without Function Calls (on the x86). In ACM
Conference on Computer and Communications Security (CCS)
(2007).

[25] SHACHAM, H., JIN GOH, E., MODADUGU, N., PFAFF, B., AND
BONEH, D. On the Effectiveness of Address-space Randomiza-
tion. In ACM Conference on Computer and Communications Se-
curity (CCS) (2004).

[26] SNOW, K. Z., MONROSE, F., DAVI, L., DMITRIENKO, A.,
LIEBCHEN, C., AND SADEGHI, A.-R. Just-in-time code reuse:
On the effectiveness of fine-grained address space layout random-
ization. In IEEE Symposium on Security and Privacy (2013).

[27] TRAN, M., ETHERIDGE, M., BLETSCH, T., JIANG, X., FREEH,
V., AND NING, P. On the expressiveness of return-into-libc at-
tacks. In Proceedings of the 14th international conference on
Recent Advances in Intrusion Detection (2011), Springer-Verlag.

[28] VAN DER VEEN, V., CAVALLARO, L., BOS, H., ET AL. Mem-
ory errors: the past, the present, and the future. In Research in
Attacks, Intrusions, and Defenses. Springer, 2012, pp. 86–106.

[29] WARTELL, R., MOHAN, V., HAMLEN, K. W., AND LIN, Z. Bi-
nary Stirring: Self-randomizing Instruction Addresses of Legacy
x86 Binary Code. In ACM Conference on Computer and Com-
munications Security (CCS) (2012).

[30] XU, H., AND CHAPIN, S. Address-space layout randomization
using code islands. In Journal of Computer Security (2009), IOS
Press, pp. 331–362.

A LDT Selector Bits

The actual value that a segment selector must hold is not
merely an index to the GDT/LDT, but is defined by the
architecture set as follows:

Bits 15 - 3 Bit 2 Bit 1 - 0
Number of the entry 0=GDT, 1=LDT Privilege Level

As user mode is in Ring 3, bits 0 and 1 must be set to
11bin. The use of the LDT forces us to set bit 2 to 1bin.
The index “0” of the LDT yields a valid value for the
segment selector of 111bin or 7 in decimal.
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Abstract
We study the security of popular password managers and
their policies on automatically filling in Web passwords.
We examine browser built-in password managers, mo-
bile password managers, and 3rd party managers. We
observe significant differences in autofill policies among
password managers. Several autofill policies can lead
to disastrous consequences where a remote network at-
tacker can extract multiple passwords from the user’s
password manager without any interaction with the user.
We experiment with these attacks and with techniques to
enhance the security of password managers. We show
that our enhancements can be adopted by existing man-
agers.

1 Introduction
With the proliferation of Web services, ordinary users

are setting up authentication credentials with a large
number of sites. As a result, users who want to setup
different passwords at different sites are driven to use a
password manager. Many password managers are avail-
able: some are provided by browser vendors as part of
the browser, some are provided by third parties, and
many are network based where passwords are backed up
to the cloud and synced across the user’s devices (such
as Apple’s iCloud Keychain). Given the sensitivity of
the data they manage, it is natural to study their security.

All the password managers (PMs) we examined do not
expect users to manually enter managed passwords on lo-
gin pages. Instead they automatically fill-in the username
and password fields when the user visits a login page.
Third party password managers use browser extensions
to support autofill.

In this paper we study the autofill policies of ten pop-
ular password managers across four platforms and show
that all are too loose in their autofill policies: they autofill
the user’s password in situations where they should not
thereby exposing the user’s password to potential attack-
ers. The results can be disastrous: an attacker can extract
many passwords from the user’s password manager with-
out the user’s knowledge or consent as soon as the user
connects to a rogue WiFi network such as a rogue router
at a coffee shop. Cloud-based password syncing further
exacerbates the problem because the attacker can poten-
tially extract user passwords that were never used on the

device being attacked.

Our results. We study the security of password man-
agers and propose ways to improve their security.

• We begin with a survey of how ten popular pass-
word managers decide when to autofill passwords.
Different password managers employ very differ-
ent autofill policies, exposing their users to different
risks.

• Next, we show that many corner cases in aut-
ofill policies can lead to significant attacks that en-
able remote password extraction without the user’s
knowledge, simply by having the user connect to a
rogue router at a coffee shop.

• We believe that password managers can help
strengthen credential security rather than harm it.
In Section 5 we propose ways to strengthen pass-
word managers so that users who use them are more
secure than users who type in passwords manually.
We implemented the modifications in the Chrome
browser and report on their effectiveness.

We conclude with a discussion of related work on pass-
word managers.

An example. We give many examples of password ex-
traction in the paper, but as a warm-up we present one
example here. Consider web sites that serve a login page
over HTTP, but submit the user’s password over HTTPS
(a setup intended to prevent an eavesdropper from read-
ing the password but actually leaves the site vulnerable).
As we show in Section 4, about 17% of the Alexa Top
500 websites use this setup. Suppose a user, Alice, uses
a password manager to save her passwords for these sites

At some point later, Alice connects to a rogue WiFi
router at a coffee shop. Her browser is directed to a land-
ing page that asks her to agree to the terms of service,
as is common in free WiFi hotspots. Unbeknownst to
Alice, the landing page (as shown in Figure 1) contains
multiple invisible iFrames pointing to the login pages of
the websites for which Alice has saved passwords. When
the browser loads these iFrames, the rogue router injects
JavaScript into each page and extracts the passwords aut-
ofilled by the password manager.
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This simple attack, without any interaction with the
user, can automatically extract passwords from the pass-
word manager at a rate of about ten passwords per sec-
ond. Six of the ten password managers we examined
were vulnerable to this attack. From the user’s point of
view, she simply visited the landing page of a free WiFi
hotspot. There is no visual indication that password ex-
traction is taking place.

Figure 1: A sample landing page of a rogue WiFi hotspot
containing invisible iFrames to the target sites. Note that
the iFrames are actually invisible to the user and shown
here only for clarity.

2 Password managers: a survey
We begin with a detailed survey of the autofill policies

implemented in widely deployed password managers.
The password managers we survey include:

• Desktop Browser PMs: Google Chrome 34, Mi-
crosoft Internet Explorer 11, Mozilla Firefox 29,
and Apple Safari 7.

• 3rd Party PMs: 1Password [1], LastPass [5],
Keeper [7], Norton IdentitySafe [6], and KeeP-
ass [4]. All of these besides KeePass provide
browser extensions that support password field aut-
ofill.

• iOS PMs: Mobile Safari’s password manager syncs
with the desktop version of Safari through Apple’s
iCloud Keychain synchronization service. Since
mobile Safari does not support extensions, 3rd Party
PMs are separate applications with their own built-
in web browser. In addition to Mobile Safari,

we survey password managers in Google Chrome,
1Password, and LastPass Tab.

• Android PMs: the default Android browser and
Chrome.

All these password managers offer an “autofill” func-
tionality, wherein the password manager automatically
populates the username and password fields within the
user’s web browser. We divide autofill strategies into two
broad categories:

• Automatic autofill: populate username and pass-
word fields as soon as the login page is loaded
without requiring any user interaction. Password
managers that support automatic autofill include
Chrome (all platforms), Firefox, Safari, LastPass,
Norton IdentitySafe, and LastPass Tab.

• Manual autofill: require some user interaction be-
fore autofilling. Types of interaction include click-
ing on or typing into the username field, pressing
a keyboard shortcut, or pressing a button in the
browser. Password managers that always require
manual interaction include 1Password, Keeper, and
KeePass.

Internet Explorer 11 uses a hybrid approach: it automat-
ically autofills passwords on pages loaded over HTTPS,
but requires user interaction on pages loaded over HTTP.
We show in Section 4 that even this conservative behav-
ior still enables some attacks.

Some password managers require manual interaction
for autofill in specific situations:

• Chrome requires manual interaction if the password
field is in an iFrame.

• Chrome can read passwords stored in Mac OS X’s
system-wide keychain, but will not automatically
autofill them until they have been manually selected
by the user at least once.

• The first time Safari or Chrome on Mac OS X ac-
cess a password in the system keychain, a system
dialog requests permission from the user. If the
user chooses “Always Allow”, this dialog will not
be shown again and the password will automatically
autofill in the future. This dialog does not appear if
the password was synchronized from another device
using iCloud Keychain.

• LastPass and Norton IdentitySafe provide non-
default configuration options to disable automatic
autofill. In this paper we only discuss the default
configurations for these password managers.
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Same Different Different auto-
protocol Different form action form action complete Broken

Platform Password manager and action protocol on load on submit = “off” HTTPS
Mac OS X Chrome 34.0.1847.137 Auto No Fill Manual Auto Auto No Fill

10.9.3 Firefox 29.0.1 Auto No Fill None Auto No Fill Auto
Safari 7.0.3 Auto No Fill Auto Auto Auto Auto

Safari ext. 1Password 4.4 Manual Manual Manual Manual Manual Manual
Safari ext. LastPass 3.1.21 Auto Manual Warning Auto Auto Auto
Safari ext. Keeper 7.5.26 Manual Manual Manual Manual Manual Manual
Windows IE 11.0.9600.16531 Auto/Man No Fill Auto/Man Auto/Man Auto/Man Manual

8.1 Pro KeePass 2.24 Manual Manual Manual Manual Manual Manual
IE addon IdentitySafe 2014.7.0.43 Auto Auto Auto Auto Auto Auto
iOS 7.1.1 Mobile Safari Auto No Fill Auto Auto No Fill Auto

1Password 4.5.1 Manual Manual Manual Manual Manual Manual
LastPass Tab 2.0.7 Auto Manual Auto Auto Auto Auto
Chrome 34.0.1847.18 Auto No Fill No Fill Auto No Fill Auto

Android 4.3 Chrome 34.0.1847.114 Auto No Fill No Fill Auto Auto No Fill
Android Browser Auto No Fill Auto Auto No Fill Auto

Table 1: Password Manager autofill behavior (automatic autofill, manual autofill, or no fill), depending on the protocol
(http/https), autocomplete attribute, form action used on the current page relative to the protocol, and form action used
when the password was saved. Manual autofilling refers to autofilling a password after some user interaction, such as
a click or tap on one of the form fields. No fill means that no autofilling of passwords takes place. The second to last
column refers to autofill behavior when the password field’s autocomplete attribute is set to “off”. The last column
refers to autofill behavior for a login page loaded over a bad HTTPS connection.

2.1 Autofill policies
Next, we ask what happens when the PM is presented

with a login page that is slightly different from the login
page at the time the password was saved. Should the PM
apply autofill or not? Different PMs behave differently
and we survey the different policies we found. Table 1
summarizes some of our findings.

The domain and path. All password managers we
tested allow passwords to be autofilled on any page
within the same domain as the page from which the pass-
word was originally saved. For example, a password
originally saved on https://www.example.com/aaa.

php would be filled on https://www.example.com/

bbb.php. This allows autofill to function on sites that
display the login form on multiple pages, such as in a
page header visible on all pages. It also allows autofill
after a site redesign that moves the login form.

This feature means that an attacker can attack the
password manager (as in Section 4) on the least-secure
page within the domain. It also means that two sites
hosted on the same domain (ie, example.edu/~jdoe
and example.edu/~jsmith) are treated as a single site
by the password manager.

Protocol: HTTP vs. HTTPS. Suppose the password
was saved on a login page loaded over one protocol (say,

HTTPS), but the current login page is loaded over a
different protocol (say, HTTP)? All other elements of
the URL are the same, including the domain and path.
Should the password manager autofill the password on
the current login page?

Chrome, Safari, Firefox, and Internet Explorer all
refuse to autofill if the protocol on the current login page
is different from the protocol at the time the password
was saved. However, 1Password, Keeper, and LastPass
all allow autofill after user interaction in this case. Note
that LastPass normally uses automatic autofill, so this
downgrade to manual autofill on a different protocol was
implemented as a conscious security measure. Norton
IdentitySafe does not pay attention to the protocol. It au-
tomatically autofills a password saved under HTTPS on
a page served by HTTP. As we show later on, any form
of autofilling, manual or not, is dangerous on a protocol
change.

Modified form action. A form’s action attribute spec-
ifies where the form’s contents will be sent to upon sub-
mission.

<form action="example.com" method="post">

One way an attacker can steal a user’s password is to
change the action on the login form to a URL under the
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attacker’s control. Therefore, one would expect pass-
word managers to not autofill a login form if the form’s
action differs from the action when the password was
first saved.

We consider two different cases. First, suppose that
at the time the login page is loaded the form’s action
field points to a different URL than when the pass-
word was first saved. Safari, Norton IdentitySafe and
IE (on HTTPS pages) nevertheless automatically autofill
the password field. Desktop Chrome and IE (on HTTP
pages) autofill after some manual interaction with the
user. LastPass asks for user confirmation before filling
a form whose action points to a different origin than the
current page.

Second, suppose that at the time the login page is
loaded the form’s action field points to the correct URL.
However, JavaScript on the page modifies the form ac-
tion field so that when the form is submitted the data is
sent to a different URL. All of the password managers
we tested allow an autofilled form to be submitted in this
case even though the password is being sent to the wrong
location. We discuss the implications of this in Section 4
and discuss mitigations in Section 5.

Password managers without automatic autofill require
user interaction before filling the form, but none give
any indication to the user that the form’s action does not
match the action when the credentials were first saved.
Since a form’s action is normally not visible to the user,
there is no way for the user to be sure that the form was
submitting to the place the user intended.

The effects of the action attribute on autofill behavior
is captured in the third and fourth columns of Table 1.

Autocomplete attribute A website can use the auto-
complete attribute to suggest that autocompletion be dis-
abled for a form input [3]:

<input autocomplete="off" ... >

We find that Firefox, Mobile Safari, the default An-
droid Browser, and the iOS version of Chrome respect
the autocomplete attribute when it is applied to a pass-
word input. If a password field has its autocomplete at-
tribute set to “off”, these password managers will neither
fill it nor offer to save new passwords entered into it. All
of the other password managers we tested fill the pass-
word anyway, ignoring the value of the autocomplete at-
tribute. LastPass ignores the attribute by default, but pro-
vides an option to respect it.

Once the password manager contains a password for a
site, the autocomplete attribute does not affect its vulner-
ability to the attacks presented in this paper. As described

in Section 4, in our setting, the attacker controls the net-
work and can modify the login form to turn the password
input’s autocomplete attribute on even if the victim web-
site turns it off.

In supporting browsers, the autocomplete attribute can
be used to prevent the password from being saved at all.
This trivially defends against our attacks, as they require
a saved password. However, it is not a suitable defense in
general due to usability concerns. A password manager
that doesn’t save or fill passwords will not be popular
amongst users.

Broken HTTPS behavior. Suppose the password was
saved on a login page loaded over a valid HTTPS con-
nection, but when visiting this login page at a later time
the resulting HTTPS session is broken, say due to a bad
certificate. The user may choose to ignore the certificate
warning and visit the login page regardless. Should the
password manager automatically autofill passwords in
this case? The desktop and Android versions of Chrome
refuse to autofill passwords in this situation. IE down-
grades from automatic to manual autofill. All other pass-
word managers we tested autofill passwords as normal
when the user clicks through HTTPS warnings. As we
will see, this can lead to significant attacks.

Modified password field name. All autofilling pass-
word managers, except for LastPass, autofill passwords
even when the password element on the login page has a
name that differs from the name present when the pass-
word was first saved. Autofilling in such situations can
lead to “self-exfiltration” attacks, as discussed in Sec-
tion 5.2.1. LastPass requires manual interaction before
autofilling a password in a field whose name is different
from when the password was saved.

2.2 Additional PM Features
Several password managers have the following secu-

rity features worth mentioning:

iFrame autofill. Norton IdentitySafe, Mobile Safari
and LastPass Tab do not autofill a form in an iFrame that
is not same-origin to its parent page. Desktop Chrome re-
quires manual interaction to autofill a form in an iFrame
regardless of origin. Chrome for iOS and the Android
browser will never autofill an iFrame. Firefox, Safari,
and Chrome for Android automatically autofill forms in
iFrames regardless of origin.

Safari and Mobile Safari will only autofill a single lo-
gin form per top-level page load. If a page, combined
with all of its iFrames, has more than one login form,
only the first will be autofilled.

We discuss the impact of these policies on security in
Section 4.
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Visibility. Norton IdentitySafe does not automatically
autofill a form that is invisible because its CSS display
attribute is set to “none” (either directly or inherited from
a parent). However, it will automatically autofill a form
with an opacity of 0. Therefore, this defense does not
enhance security.

Autofill method. KeePass is unique amongst desktop
password managers in that it does not integrate directly
with the browser. Instead, it can “autotype” a sequence
of keystrokes into whatever text field is active. For most
login forms, this means it will type the username, the
Tab key, the password, then the Enter key to populate
and submit the form.

Autofill and Submit. 1Password, LastPass, Norton
IdentitySafe, and KeePass provide variants of “autofill
and submit” functionality, in which the password man-
agers not only autofills a login form but also automati-
cally submits it. This frees the user from interacting with
the submit button of a login form and thus makes autofill
more convenient for the user.

3 Threat Model
In the next section we present a number of attacks

against password managers that extract passwords from
all the managers we examined. First, we define the at-
tackers capabilities and goals. We only consider active
man-in-the-middle network attackers i.e. we assume that
the adversary can interpose and modify arbitrary network
traffic originating from or destined to the user’s machine.
However, unlike standard man-in-the-middle attacks, we
do not require the user to log into any target websites in
the presence of the attacker. Instead, the setup consists
of two phases:

First, the user logs in to a number of sites and the at-
tacker cannot observe or interfere with these logins. The
user’s password manager records the passwords used for
these logins. For password managers that support sync-
ing of stored passwords across multiple machines (e.g.,
Apple’s iCloud KeyChain), users may even carry out this
step on an altogether different device from the eventual
victim device.

At a later time the user connects to a malicious net-
work controlled by the attacker, such as a rogue WiFi
router in a coffee shop. The attacker can inject, block,
and modify packets and its goal is to extract the pass-
words stored in the user’s password manager without any
action from the user.

We call this type of attacker the evil coffee shop at-
tacker. These attacks require only temporary control of a
network router and are much easier and thus more likely

to happen in practice. We show that even such weak
man in the middle attackers can leverage design flaws in
password managers to remotely extract stored passwords
without the user logging into any website.

The attacker has no software (malware) installed on
the user’s machine. We only assume the presence of
a password manager acting in the context of a web
browser.

4 Remote extraction of passwords from
password managers

We show that an evil coffee shop attacker can extract
passwords stored in the user’s password manager. In
many of our attacks the user need not interact with the
victim web site and is unaware that password extraction
is taking place. We discuss defenses in Section 5.

4.1 Sweep attacks
Sweep attacks take advantage of automatic password

autofill to steal the credentials for multiple sites at once
without the user visiting any of the victim sites. For
password managers backed by a syncing service (such
as Apple’s iCloud Keychain) the attacker can extract site
passwords even if the user never visited the site on that
device. These attacks work in password managers that
support automatic autofill, highlighting the fundamental
danger of this feature.

Sweep attacks consist of three steps. First, the attacker
makes the user’s browser visit an arbitrary vulnerable
webpage at the target site without the user’s knowledge.
Next, by tampering with network traffic the attacker in-
jects JavaScript code into the vulnerable webpage as it is
fetched over the network using one of the methods de-
scribed in Section 4.2. Finally, the JavaScript code exfil-
trates passwords to the attacker using the techniques in
Section 4.3.

In the sweep attacks we implemented, the user con-
nects to a WiFi hotspot controlled by the attacker. When
the user launches the browser, the browser is redirected
to a standard hotspot landing page asking for user con-
sent to standard terms of use. This is common behavior
for public hotspots. Unbeknownst to the user, however,
the landing page contains invisible elements that imple-
ment the attack.

iFrame sweep attack. Here the innocuous hotspot
landing page contains invisible iFrames pointing to the
arbitrary pages at multiple target sites. When the browser
loads these iFrames, the attacker uses his control of the
router to inject a login form and JavaScript into each
iFrame using the methods described in Section 4.2. As
we will see, injecting a login form and JavaScript is not



454 23rd USENIX Security Symposium USENIX Association

difficult and can be done in several different ways. All
that is needed is some vulnerable page on the target site.
It is especially easy for sites that serve their login page
over HTTP (but submit passwords over HTTPS), which
is a common setup discussed in the next section.

As each iFrame loads, the password manager will au-
tomatically populate the corresponding password field
with the user’s password. The injected JavaScript in each
iFrame can then steal and exfiltrate these credentials.

Our experiments show that this method can extract
passwords, unbeknownst to the user, at a rate of about ten
passwords per second. To prevent the user from clicking
through the landing page before the attacks are done, the
landing page includes a JavaScript animated progress bar
that forces the user to wait until the attacks complete.

We also find that the password extraction process can
be made more efficient by arranging the iFrames in a
hierarchical structure instead of adding one iFrame to
the top-level page for each target website. Adding all
the iFrames to the top-level page would create large in-
creases in both the amount of traffic on the network and
the amount of memory used by the victim’s browser. Hi-
erarchical arrangement of the iFrames can avoid such is-
sues. The top-level iFrame contains most of the code
for the attack and dynamically spawns child frames and
navigates them to the target pages. This technique al-
lows the iFrames to load asynchronously and thus en-
sures that network and memory usage remain reasonable
for the duration of the attack.

Chrome (all platforms) is the only automatic autofill
password manager that is not vulnerable to the iFrame-
based attack, because they never automatically autofill
passwords in iFrames. All the other automatic autofill
password managers are vulnerable to this attack. Even
though the autofill policies of Norton IdentitySafe, Sa-
fari, Mobile Safari, and LastPass Tab described in Sec-
tion 2.2 restrict the number of passwords that can be
stolen in a single sweep to 1, they remain vulnerable.

Window sweep attack. A variant of the sweep attack
uses windows instead of invisible iFrames. If the attacker
can trick users into disabling their popup blocker (e.g.,
by requiring a window to open before the user can gain
access to the WiFi network), the landing page can open
each of the victim pages in a separate window. This is
more noticeable than the iFrame-based approach, but the
JavaScript injected into each victim page can disguise
these windows to minimize the chances of detection.
Techniques for disguising the windows include minimiz-
ing their size, moving them to the edge of the screen,
hiding the pages’ contents so that they appear to the user
as blank windows, and closing them as soon as the pass-

word has been stolen.
Nearly all automatic autofill password managers, in-

cluding desktop Chrome, are vulnerable to the window-
based attack. Only LastPass Tab is not vulnerable, as it
does not support popup windows at all. Hence, although
iFrames make the sweep attack easier, they are not re-
quired.

Redirect sweep attack. A redirect sweep attack en-
ables password extraction without any iFrames or sepa-
rate windows. In our implementation, once the user con-
nects to a network controlled by the attacker and requests
an arbitrary page (say, a.com), the network attacker re-
sponds with an HTTP redirect to some vulnerable page
on the target site (say, b.com). The user’s browser re-
ceives the redirect and issues a request for the page at
b.com. The attacker allows the page to load, but injects a
login form and JavaScript into the page, as described in
Section 4.2. The injected JavaScript disguises the page
(for example, by hiding its body) so that the user does
not see that b.com is being visited.

When the user’s browser loads the page from b.com,
the vulnerable password manager will automatically aut-
ofill the login form with the credentials for b.com, which
the injected JavaScript can then exfiltrate. Once done,
the injected JavaScript redirects the user’s browser to the
next victim site, (say c.com) and exfiltrates the user’s
password at c.com in the same way. When sufficiently
many passwords have been exfiltrated the attacker redi-
rects the user’s browser to the original page requested by
the user (a.com).

This attack leaves small indications that password ex-
traction took place. While the attack is underway the
user’s address bar will display the address of the attacked
site, and the attacked site will remain in the user’s his-
tory. However, as long as the body of the page itself is
disguised, most users will not notice these small visual
clues.

All of the automatic autofill password managers we
tested were vulnerable to this attack.

Summary. Table 2 describes which password man-
agers are vulnerable to these sweep attacks.

Attack amplification via password sync. Most pass-
word managers offer services that synchronize users’
passwords between different devices. These password
synchronization services can potentially result in pass-
word extraction from devices without them ever having
visited the victim site.

Suppose the user’s password manager syncs between
their desktop and tablet, and will automatically autofill
a password synced from another device without user in-
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Platform Password Manager iFrame sweep Window sweep Redirect sweep
Mac OS X 10.9.3 Chrome 34.0.1847.137 + +

Firefox 29.0.1 + + +
Safari 7.0.3 Single + +

Safari ext. 1Password 4.4
Safari ext. LastPass 3.1.21 + + +
Safari ext. Keeper 7.5.26
Windows 8.1 Pro Internet Explorer 11.0.9600.16531 HTTPS HTTPS HTTPS

KeePass 2.24
IE addon Norton IdentitySafe 2014.7.0.43 SO + +
iOS 7.1.1 Mobile Safari Single, SO + +

1Password 4.5.1
LastPass Tab 2.0.7 SO +
Chrome 34.0.1847.18 + +

Android 4.3 Chrome 34.0.1847.114 + +
Android Browser + +

Table 2: Vulnerability to sweep attacks. + indicates vulnerability without restriction. HTTPS indicates vulnerability
only on pages served over HTTPS. Single indicates a single site is vulnerable per top-level page load. SO indicates
vulnerability when the page containing the iFrame is same-origin with the target page in the iFrame.

teraction. Suppose further that the site c.com is vulner-
able to network attacks and thus to the attacks described
above. The user is careful and only ever visits c.com on
their desktop, which never leaves the user’s safe home
network. However, when the user connects their tablet to
the attacker’s WiFi network at a coffee shop, the attacker
can launch a sweep attack on the user’s tablet and extract
the user’s password for c.com even though the user has
never visited c.com on their tablet.

We tested Apple’s iCloud Keychain, Google Chrome
Sync, Firefox Sync, and LastPass Tab, and found all of
them to be vulnerable to this attack. In general, any pass-
word manager that automatically autofills a password
synced from another device will be vulnerable to this
type of attack amplification. Therefore, the security of
any password manager is only as strong as the security
of the weakest password manager it syncs with.

4.2 Injection Techniques
Sweep attacks rely on the attacker’s ability to modify a

page on the victim site by tampering with network traffic.
The attacks are simplest when the vulnerable page is the
login page itself. However, any page that is same-origin
with login page is sufficient, as all password managers
associate saved passwords with domains and ignore the
login page’s path. The attacker can inject a login form
into any page in the origin of the actual login page and
launch a password extraction attack against that page.
We list a few viable injections techniques.

HTTP login page. Consider a web site that serves its
login page over HTTP, but submits the login form over

HTTPS. While this setup protects the user’s password
from eavesdropping when the form is submitted, a cof-
fee shop attacker can easily inject the required JavaScript
into the login form at the router and mount all the sweep
attacks discussed in the previous section.

Clearly serving a login form over HTTP is bad practice
because it exposes the site to SSLstrip attacks [33]. How-
ever extracting passwords via SSLstrip requires users to
actively enter their passwords while connected to the at-
tacker’s network and visiting the victim page. In con-
trast, the sweep attacks in the previous section extract
passwords without any user interaction.

To test the prevalence of this setup — a login page
loaded over HTTP, but login form submitted over HTTPS
— we surveyed Alexa Top 500 sites (as of October
2013) by manually visiting them and examining their
login procedures. Of the 500 sites surveyed, 408 had
login forms. 71 of these 408 sites, or 17.40%, use
HTTP for loading the login page, but HTTPS for sub-
mitting it. Some well known names are on this list of 71
sites, including ask.com, godaddy.com, reddit.com,
huffingtonpost.com, and att.com.

Additionally, 123 (or 30.15%) of the sites used HTTP
both for loading the login page and for submitting it. This
setup is trivially vulnerable to eavesdropping, but a vul-
nerable password manager increases this vulnerability by
removing the need for a human to enter their password.
For the purposes of our attacks, these sites can be thought
of as an especially vulnerable subclass of sites with a lo-
gin form served over HTTP.
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Passwords for all these vulnerable websites can be eas-
ily extracted from an autofilling password manager using
the sweep attacks in the previous section. One could ar-
gue that all these sites need to be redesigned to load and
submit the login page over HTTPS. However, until that is
done there is a need to strengthen password managers to
prevent these attacks. We discuss defenses in Section 5.

Embedded devices I. Many embedded devices serve
their login pages over HTTP by default because the chan-
nel is assumed to be protected by a WiFi encryption
protocol such as WPA2. Indeed, Gourdin et al. report
that the majority of the embedded web interfaces still
use HTTP [26]. Similarly, internal servers in a corpo-
rate network may also serve web login pages over HTTP
because access to these servers can only be done over a
Virtual Private Network (VPN).

Sweep attacks are very effective against these devices:
the password manager autofills the password even when
the underlying network connection is insecure. By in-
jecting JavaScript into the HTTP login page as above, a
coffee shop attacker can extract passwords for embedded
devices and corporate servers that the user has previously
interacted with.

Embedded Devices II. Some home routers serve their
login pages over HTTPS, but use are self-signed certifi-
cates. An attacker can purchase a valid certificate for
the same common name as the router’s [38] or generate
its own self signed certificate. When the user’s machine
connects to the attacker’s network, the attacker can spoof
the user’s home router by presenting a valid certificate for
the router’s web site. This allows the attacker to mount
the sweep attack and extract the user’s home router pass-
word.

Broken HTTPS. Consider a public site whose login
page is served over HTTPS. In Section 2 we noted that
many password managers that autofill passwords auto-
matically do so even when the login page is loaded over
a broken HTTPS connection, say due to a bad certificate.
This can be exploited in our redirect sweep attack: when
the browser is redirected to the victim site, the attacker
serves the modified login page using a self signed cert
for that site. This modified login page contains a login
form and the JavaScript needed to exfiltrate the user’s
password once it is autofilled by the password manager.

These self signed certs will generate HTTPS warning
in the browser, but if the redirect sweep attack happens as
part of the process of logging on to the hotspot, the user is
motivated to click through the resulting HTTPS warning
messages. As a result the attacker can extract user pass-
words from the password manager, even for sites where

the login page is served over HTTPS.
Indeed, several prior works have found that users often

tend to click through HTTPS warnings [43, 8]. The user
may decide to click through the warning and visit the site
anyway, but not enter any sensitive information. Never-
theless, the user’s password manager autofills the pass-
word resulting in password extraction by the attacker, re-
gardless of the user’s caution. All of the password man-
agers we tested fill passwords even when the user has
clicked through an SSL warning, with the exception of
the desktop and Android versions of Chrome.

Active Mixed Content. Any HTTPS webpage con-
taining active content (e.g., scripts) that is fetched over
HTTP is also a potential vector. If rendering active mixed
content is enabled in the user’s browser, any HTTPS page
containing active mixed content is vulnerable to injec-
tion. Chrome, Firefox, and IE block active mixed content
by default but provide a user option to enable it. Safari,
Mobile Safari, and the Android stock browser allow ac-
tive mixed content to be fetched and executed without
any warnings. Several types of active mixed content, es-
pecially those processed by browser plugins, are harder
to block. For example, embedding a Shockwave Flash
(SWF) file over HTTP if not blocked correctly can be
used by a network attacker to inject arbitrary scripts [30].

XSS Injection. A cross-site scripting vulnerability in
a page allows the attacker to inject JavaScript to modify
the page as needed [24]. XSS vulnerabilities are listed
as one of the most common web vulnerabilities in 2013
internet security threat report by Symantec [20]. If an
XSS vulnerability is present on any page of the victim
site, the sweep attacks will work even if the site’s login
page is served over HTTPS. For example, the attacker
simply includes an iFrame or a redirect on the malicious
hotspot landing page that links to the XSS page. The link
uses the XSS vulnerability to inject the required login
form and JavaScript into the page.

Furthermore, an XSS vulnerability allows for a weaker
threat model than our coffee shop attacker. An ordinary
web attacker can trick the user into visiting his site, then
launch the attack through the XSS vulnerability. This
style of attack requires no access to the user’s network
and has been suggested previously by RSnake [37] and
Saltzman et al. [40].

Leftover Passwords. The user’s password manager
may contain leftover passwords from older, less secure
versions of a site. An attacker could spoof the old site to
steal the leftover password. Unless the user is proactive
about removing older passwords, updating the security
of the site does not protect the domain from this type of



USENIX Association  23rd USENIX Security Symposium 457

attack. For example, if a user’s password manager con-
tained a password for Facebook from before its switch
to HTTPS, an attacker could spoof an HTTP Facebook
login page to steal the password.

4.3 Password Exfiltration
In the previous section we referred to JavaScript that

exfiltrates the user’s password once it is autofilled by the
password manager. Once the password manager has aut-
ofilled the login form, the attacker must be able to access
the filled-in credentials and send them to a server under
its control. We briefly describe two methods for accom-
plishing this.

4.3.1 Method #1: Stealth
Using stealth exfiltration, the attacker waits until the

login form is populated with the user’s credentials auto-
matically by a password manager, then steals the pass-
word by loading an attacker controlled page in an invis-
ible iFrame and passing the credentials as parameters.
The following simple JavaScript does just that and works
with all password managers we tested:

function testPassword() {

var password =

document.forms[0].password.value;

if(password != "") {

var temp = document.createElement("div");

temp.innerHTML +=

"<iFrame src=\""+ attacker_addr +

"?password=" + password +

"\" style=\"display:none;\" />";

document.body.appendChild(temp);

clearInterval(interval);

}}

interval = setInterval(testPassword, 50);

4.3.2 Method #2: Action
An HTML form’s “action” is the URL to which the

form’s data will be submitted. The attacker can mod-
ify a login form’s action attribute so that it submits to an
attacker-controlled site, thereby leaking the user’s cre-
dentials to the attacker. If the attacker redirects the user’s
browser back to the real action, the user will not notice
the change.

Automatic autofill password managers populate pass-
word forms when the page first loads. The attacker can
then use injected JavaScript to change the action, sub-
mit the form and steal the password. If the login page
is loaded in an iFrame or if it is rendered invisible, the
users will not even realize that a login form was submit-
ted. The following simple code does just that:

changer = function() {

document.forms[0].action = attacker_addr;

document.forms[0].submit(); }

setTimeout(changer, 1000);

In section 2.1 we showed that password managers that
automatically autofill passwords do so on page load and
show no warning to the user when the submitted form ac-
tion differs from the action when the password was first
saved. Thus, all password managers with automatic aut-
ofill are vulnerable to this exfiltration method.

4.4 Attacks that need user interaction
All of the attacks described thus far take advantage

of automatic autofill password managers to work when
the user does not interact with the login form. How-
ever, the exfiltration techniques we described work re-
gardless of how the login form was filled. If the user’s
password manager requires user input to fill passwords
and an attacker can trick the user to interact with the lo-
gin form without them realizing it, the same exfiltration
techniques can be used to steal the password as soon as
the password form is filled.

We created a simple “clickjacking” attack [29, 39, 31].
The attacker presents the user with a benign form seem-
ingly unrelated to the target site. Overlaying the benign
form is an invisible iFrame pointing to the target site’s
login page. The iFrame is positioned such that when a
user interacts with the benign form, they actually inter-
act with the invisible iFrame — in this case, when the
user thinks they are filling a form on a benign site, they
are actually filling the password in the target site. Once
filled, any of the exfiltration techniques described previ-
ously can be used to steal the password. This attack steals
a password for one site at a time, but could be repeated
to steal passwords for multiple sites.

We confirmed this attack works against both Chrome
and Internet Explorer 11, as both required manual inter-
action before filling in at least some situations.

5 Strengthening password managers
In this section we present two complementary solu-

tions to the attacks presented earlier. Before describing
the details of our solutions, we first describe why some
of the obvious solutions do not work. For example, as all
our attacks require JavaScript injection, a potential so-
lution is to prevent password managers from autofilling
passwords on a page that is vulnerable to JavaScript in-
jection. This solution is hard to implement in practice
as some JavaScript injection vectors (e.g., XSS bugs)
are extremely hard for the browser to detect. Another
possible solution is to completely block autofill inside
iFrames. However, this solution does not prevent the
window or redirect sweep attacks described in Section 4.
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Moreover, blocking autofill inside iFrames will inconve-
nience users of benign websites that include login forms
inside iFrames.

5.1 Forcing user interaction
Our ultimate goal is to ensure that using a password

manager results in better security than when users man-
ually enter passwords in a password field. This is cer-
tainly not the case with password managers today, as the
attacks of the previous section demonstrate. We begin
with the simplest defense that makes password managers
no worse than manual user entry.

Our most powerful attacks exploit the automatic aut-
ofill of the password field. An obvious defense is to al-
ways require some user interaction before autofilling a
form. This will prevent sweep attacks where multiple
passwords are extracted without any user interaction. In-
teraction can come in the form of a keyboard shortcut,
clicking a button, selecting an entry from a menu, or typ-
ing into the username field. Regardless of the type of
interaction, it must be protected against clickjacking at-
tacks as described in Section 4.4. The user interaction
should occur through trusted browser UI that JavaScript
cannot interact with, preventing malicious JavaScript
from spoofing user interaction and triggering an autofill.

Furthermore, the password manager should show the
domain name being autofilled before the filling occurs,
so that users know which site is being autofilled. This
reduces the chances of the user filling a form without
meaning to. For example, if a login page for one site
contains an invisible iFrame pointing to the login page
of another site, the user must explicitly choose which do-
main they want filled.

In some settings, such as broken HTTPS, the password
manager should simply refuse to autofill passwords.

Implementation. Always forcing user interaction was
easy to prototype in Chrome1 because Chrome al-
ready requires user input in certain situations, such
as when the action on the current page is different
from the action when the password was saved. Since
the UI implementation already existed we simply had
to always trigger it. We did so by hardcoding the
wait_for_username variable to true in the construc-
tor of the PasswordFormFillData object. Note that
this does not protect against the clickjacking attacks de-
scribed in Section 4.4 but can be extended to do so.

Minimizing user inconvenience. As always forcing
user interaction before autofilling may cause inconve-
nience to the user, password managers could provide
a “autofill-and-submit” functionality that once triggered

1Chromium build 231333

by user interaction will autofill the login form and sub-
mit it. We found that variants of autofill-and-submit are
already supported by 1Password, LastPass, Norton Iden-
titySafe, and KeePass.

With this feature, the user’s total interaction will re-
main similar to the current manual autofill password
managers. Instead of interacting with the submit button
after the password managers autofill the login form, the
user will interact with the password manager to trigger
autofill-and-submit. As long as the conditions stated ear-
lier in this section are satisfied, the use of such a feature
will be as secure as manually entering a password.

5.2 Secure Filling
Our main defense, called secure filling, is intended to

make the use of password managers more secure than
typing in passwords manually. Simply requiring user
interaction is not sufficient. Indeed, if a login page
is loaded over HTTP but submitted over HTTPS, no
browser or password manager implementation provides
security once the login form has been filled with the
user’s password: JavaScript can read the password di-
rectly from the form or change the form’s action so that
it submits to a password stealing page hosted by the at-
tacker.

The goal of secure filling is that even if an attacker in-
jects malicious JavaScript into the login page, passwords
autofilled by the password manager will remain secure so
long as the form is submitted over HTTPS. This defense
is somewhat akin to HttpOnly cookies [10], but applied
to autofilled passwords: they can be submitted to the web
server, but cannot be accessed by JavaScript. We discuss
compatibility issues at the end of the section.

Our proposed defense works as follows:

1. Along with the username and password, the pass-
word manager stores the action present in the login
form when the username and password were first
saved.

2. When a login form is autofilled by the password
manager, the password field becomes unreadable
by JavaScript. We say that the autofill is now “in
progress”.

3. If the username or password fields are modified
(by the user or by JavaScript) while an autofill is
in progress, the autofill aborts. The password is
cleared from the password field, and password field
becomes readable by JavaScript once more.

4. Once a form with an autofill in progress is submit-
ted, and after all JavaScript code that is going to be
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run has run, the browser checks that the form’s ac-
tion matches the domain of the action it has stored.
If the domains do not match, the password field is
erased and the form submission fails. If the domains
do match, the form is allowed to submit as normal.

Making the password field unreadable by JavaScript
prevents stealth exfiltration, as the malicious JavaScript
is unable to read the password field and thus unable to
steal the password. Checking the action before allow-
ing the form to submit ensures that the action has not
been changed to point to a potentially malicious site.
The password is guaranteed to only be filled into a form
that submits to the same place as when the password was
originally saved. For this to work, it is essential that the
check be performed after JavaScript’s (and thus the at-
tacker’s) last opportunity to modify the form’s action.

In the case where the form’s action does not match
what is stored, it may be desirable to give the user the
option to submit the form (and password) anyway. How-
ever, the browser should allow the user to make an ed-
ucated decision by showing the user both the new and
original actions and explaining how their password may
be leaked. This will weaken security, as the user may
chose to submit the form when they should not, but it
would improve compatibility when sites undergo a re-
design and the login page changes.

Implementation. We implemented a proto-
type of this defense in Chrome2 by modify-
ing the PasswordAutofillAgent class. In the
FillUserNameAndPassword method, we fill the
password field with a dummy value (a sequence of
unprintable characters), then store the real password and
the form’s action in a PasswordInfo object associated
with the form. In the WillSendSubmitEvent method,
we check if the dummy value is still present in the pass-
word field; if it is, and if the form’s action matches the
action we had stored, we replace the dummy value with
the real password and allow the form to submit. While
our implementation is only a prototype, it shows that
implementing this defense is reasonably straightforward,
at least in Chrome.

Although browsers vendors will need to implement
this functionality in their own password managers, they
may consider providing a mechanism for external pass-
word manager extensions to implement the same func-
tionality. An API could allow the password manager ex-
tension to fill a form and designate it as autofilled, as well
as designate the expected action on the form. The behav-
ior would then be the same as with the internal password

2Chromium build 231333

manager: the password field would become unreadable
by JavaScript, and the browser checks that the action has
not changed before submitting the form.

5.2.1 Limitations of secure filling
The secure filling approach will cause compatibility

issues with existing sites whose login process relies on
the ability to read the password field using JavaScript.

AJAX-based login. Some sites submit their login
forms using AJAX instead of standard form submission.
When the login form’s submit button is pressed, these
sites use JavaScript to read the form fields, then construct
and submit an XMLHttpRequest object. This approach
is not compatible with our solution, as JavaScript would
not be able to read the filled password field and there-
fore be unable to construct the XMLHttpRequest. Fur-
thermore, this does not use the form’s action field, and
therefore the password manager cannot detect when the
password is being submitted to a different site than when
it was first saved.

To study the impact our proposal would have on ex-
isting popular sites, we looked for the use of AJAX for
login on the Alexa Top 50 sites, as of October 26, 2013.
10 of the these 50 sites used AJAX to submit logins. 8
of 10 sites were based in China, with only one Chinese
site on the list not using AJAX. The remaining two sites
were based in Russia and the U.S., with other sites from
both countries using ordinary form submission. This
suggests the use of AJAX to submit passwords is popu-
lar in China but not common elsewhere in the world, and
overall AJAX is used by a significant minority of popular
sites.

We propose two workarounds that will allow our solu-
tion to work with AJAX. First, sites could place the login
form in an iFrame instead of using XMLHttpRequest.
The iFrame would submit using standard form submis-
sion. Using this approach, there is no need for JavaScript
to read the form fields and the form’s action behaves nor-
mally. Therefore, it is fully compatible with our secure
filling recommendation, but still allows the user to login
asynchronously.

Second, for sites that must use XMLHttpRequest, the
browser could provide an additional API that allows
JavaScript to submit the password without being able to
read it. The existing XMLHttpRequest API uses a send()
method to send data. We propose an additional method,
sendPassword(). The sendPassword() method accepts a
form as a parameter, and sends the contents of the form’s
password fields without ever making them readable to
other JavaScript. To prevent an attacker from exfiltrating
a password using AJAX, the password manager should
check that whenever a filled password is sent using send-
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Password(), the destination URL matches the destination
URL from the first time the filled password was sent.

Although these workarounds will require modifica-
tions to a few existing sites, the security benefits are well
worth the effort. The only downside for sites that do not
make the required modifications is that their users will
not be able to use some password managers.

Preventing self exfiltration attacks. Chen et al. [17]
point out that in some cases an attacker can extract data
using what they call “self-exfiltration.” In our setting this
translates to the following potential attack: if any page on
the victim site supports a public discussion forum, an at-
tacker can cause the secure filling mechanism to submit
the password to the forum page and have the password
posted publicly. The attacker can later visit the public fo-
rum and retrieve the posted passwords. Since the attacker
is changing the login form’s action to another page in the
same domain our secure filling mechanism will allow the
password to be sent. In this discussion, the public forum
can be replaced by any public form-posted data on the
victim site

For this attack to work, the name of the password field
on the login page must be the same as the name of the text
field on the public forum page. An attacker can easily
accomplish this by sending to the browser a login page
with the desired name.

Fortunately, it is straight forward to defend against
this issue: our secure filling mechanism should only fill
a password field whose name matches the name of the
field when the password was saved. Furthermore, dy-
namically changing the name attribute using JavaScript
should cause a fill to abort. This defense prevents the
attacker from submitting the password using any field
with a namename other than the one chosen by the site
itself for the login page. This prevents the self exfiltra-
tion attack, except for the extremely unlikely event where
a public forum page on the victim site has a text field
whose name happens to be identical to the password field
name on the login page.

User registration pages. An additional limitation of
our secure filling proposal is that it cannot improve the
security of manually entered passwords. HTML does
not provide a way to distinguish between password fields
on user registration pages and password fields in login
forms. Registration pages frequently use JavaScript to
evaluate passwords before submission — for example,
to check password strength or to verify two passwords
match. Therefore, JavaScript on registration pages must
have access to the password.

There are two solutions to this problem. One option

is to forbid JavaScript from reading any password field,
and require that registration pages use regular text fields
programmatically made to behave like password fields.
On every key stroke JavaScript on the page replaces the
character with an asterisk, as in a password field. To the
user the text field will behave as a password field, yet
JavaScript on the registration page will be able to access
the password.

Alternatively, HTML can be slightly extended to sup-
port two types of password fields, one for login and one
for registration. For login, the Password field allows no
JavaScript access to its contents as needed for secure fill.
The PasswordRegistration field used for registration al-
lows JavaScript access to its contents but is never aut-
ofilled with a saved password (separate password man-
ager features such as a password generator can continue
to work).

5.3 Server-side defenses
How can a site defend itself without support from

password managers? As the attacks rely on decisions
made client-side by the user’s password manager, a com-
plete server-side defense is not possible. However, a few
existing best-practices can be used to greatly reduce the
attack area:

1. Use HTTPS on both the login page and page it sub-
mits to. Ideally, use HTTPS everywhere on the site
and enable HSTS (HTTP Strict Transport Security)
to prevent pages from ever loading under HTTP.

2. Use CSP (Content Security Policy) to prevent the
execution of inline scripts, making the injection of
JavaScript directly into the login page ineffective.

3. Host the login page in a different subdomain that
the rest of the site (i.e., login.site.com instead of
site.com). This limits the number of pages consid-
ered same-origin with the login page, reducing the
attack surface.

None of these defenses are unique to the attacks we
described, but are best-practices that will make our at-
tacks more difficult. Even with these defenses, attacks
are still possible — attacks that take advantage of broken
HTTPS, for example, will still be feasible. Therefore,
it remains important that password managers implement
the fixes we described to fully defend against the attacks.

6 Related work
There have been several prior works about finding vul-

nerabilities in existing password managers as well as
building stronger password authentication systems. We
summarize them below.
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Vulnerabilities in password managers: Belekno et
al. [11] and Gasti et al. [25] surveyed several password
managers and found that most of them save passwords
to device storage in an insecure manner. However, these
attacks have a very different threat model than the at-
tacks described in this paper. They require the attacker
to have physical access to a user’s device. By contrast,
for our attacks we only consider network attackers which
is a weaker threat model than the ones requiring physical
access.

Besides autofilling of passwords, several password
managers also support autofilling of forms with informa-
tion like name, phone no etc. Prior works [21, 35, 27]
have shown that an attacker can steal autofilled informa-
tion by using specially crafted forms. This is a different
class of attack than the attacks on login forms as unlike
login passwords, information filled into these forms is
not tied to any particular origin. However, for complete-
ness, we summarize our findings about attacks against
autofilling of regular forms in Appendix A.

Some existing works [23, 2] have demonstrated how
an attacker can use injected JavaScript to steal user’s
stored passwords in a password manager for login pages
that are either vulnerable to XSS attacks or are fetched
over HTTP. However, unlike our attacks, these attacks
require that users willingly visit the vulnerable website at
the presence of the attacker. Reverse Cross-Site Request
(RCSR) [13] vulnerabilities perform phishing attacks by
leveraging the fact that several password managers will
fill in passwords to login forms even if the form’s ac-
tion differs from the action when the password was first
saved. These attacks require that the user clicks the sub-
mit button. By contrast, our attacks are completely auto-
mated and transparent to the user.

The most closely related works to the attacks we
present in this paper are by RSnake [37] and Saltzman
et al. [40]. RSnake [37] speculated that an attacker can
exploit form autofilling tools that fills forms without any
user input in sites vulnerable to XSS attacks to extract the
autofillable information without users’ notice. The basic
idea is to inject JavaScript using the XSS attack and exfil-
trate the autofilled information. Saltzman et al. [40] sug-
gested that active network attackers can inject iFrames
to login forms of websites vulnerable to script injec-
tion either through XSS attacks or through pages loaded
over HTTP, make the password managers fill those login
forms, and steal those passwords without users noticing
anything wrong. However, none of these works tested the
attacks. We performed a comprehensive study of vulner-
abilities and presented several new and different attack
vectors (mixed content, broken SSL, embedded device

admin pages etc.) and attack techniques (such as the redi-
rect attack).

Using XSS attacks for stealing autofilled passwords
has also been explored by Stock et al. [42]. They sug-
gested that the password managers can prevent such at-
tacks by using a placeholder dummy password for aut-
ofilling and replacing it with the original one just before
submitting the login form to the remote server. In this
work, unlike Stock at al., we explore several different
vectors for stealing autofilled passwords besides XSS at-
tacks. We also investigate several different third-party
password managers together with the builtin password
managers that were analyzed by Stock et al.

Blanchou et al. [12] describe several weaknesses of
password manager browser extensions and implement
a phishing attack that demonstrates the danger of auto-
matic autofill. They do not examine any built-in browser
password managers or consider how passwords from
multiple sites could be stolen in one attack. They sug-
gest that password managers prevent the cross-domain
submission of passwords (what we called action exfiltra-
tion in this paper), but do not consider stealth exfiltration.

Fahl et al. [22] demonstrate attacks against Android
password managers. However, their attacks were specific
to the Android operating system, and most relied upon a
malicious Android app, not a network attacker.

Li et al. [32] survey a variety of vulnerabilities specific
to third-party web-based password managers and a web
attacker, then discuss mitigation strategies. They do not
discuss browser or native code password managers, nor
a network attacker.

Both the Chromium and Firefox bug databases have
bugs filed to prevent autofilling of login information in-
side an iFrame [18, 16]. However, preventing autofilling
of passwords inside iFrames will not prevent the window
sweep or the redirect attacks described in Section 4. At
the time of this writing, only the Chromium bug has been
fixed.

Another Chromium bug [19] seeks to only autofill
forms after the user interacts with the login page, but not
necessarily the login form. This is not yet implemented,
however, increasing the scope of interaction to the entire
page will make it easier for the attackers to launch click-
jacking attacks. In contrast, autofilling only after explicit
user interaction with the login form as suggested in Sec-
tion 5 is robust against such attacks.

A Firefox bug [14] discusses man-in-the-middle at-
tacks against the password manager similar to our redi-
rect attack. Another bug [15] suggests that filled pass-
words should not be readable by JavaScript. Their ap-
proach is similar to our secure filling, but remains vulner-
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able to exfiltration using the action attribute. Although
both bugs are several years old, neither has been acted
upon.

Password manager features: Aris [9] discusses the
autocomplete attribute and why setting autocomplete=off
results in poor security in addition to a bad user experi-
ence.

Secure password authentication systems: Another
related line of research investigated designing secure
password authentication systems that can choose strong
domain-specific passwords with minimal user interven-
tion [36, 28]. The main motivation behind these works
is to minimize the damage caused by users mistakenly
revealing their passwords through phishing websites or
social engineering These solutions also protect against
an attacker leveraging reused passwords that were stolen
from a low security website on a high security website.
None of these works focus on autofilling of passwords
and thus do not help in preventing against the attacks we
presented in this paper.

There are also several research works that built pass-
word authentication systems that supported autofill-
ing [45, 44]. However, their primary goal was to prevent
phishing attacks. In this paper, we focus on existing pass-
word managers and thus do not evaluate how vulnerable
these systems are against our attacks.

Sandler et al. proposed the ‘password booth’, a new
secure browser-controlled mechanism to let users se-
curely enter passwords that are not unaccessible from
JavaScript running as part of the host page’s origin [41].
Their solution is similar to our secure filling defense, but
does not take password managers into account. Secure
filling takes advantage of password managers to provide
guarantees the password booth cannot, namely that an
autofilled password is submitted to the same origin it was
saved from. Furthermore, their proposal requires a dra-
matic UI change for all users, whereas ours requires only
a very minimal UI change from automatic to manual aut-
ofill. They suggest that a dramatic change is a feature
because it makes security more visible to the user, yet
at the same time a dramatic change will reduce adoption
from browser developers unwilling to upset their users
with change. Ultimately, our two ideas are compatible
as the password booth could be extended to work with
password managers as we describe in this paper.

An early unpublished version of this paper, containing
only a subset of the results, appears as a technical report
in [34].

7 Conclusions
In this paper we surveyed a wide variety of password

managers and found that they follow very different and
inconsistent autofill policies. We showed how an evil
coffee shop attacker can leverage these policies to steal
the user’s stored passwords without any user interaction.
We also demonstrated that password managers can pre-
vent these attacks by simply following two steps - never
autofilling under certain conditions like in the presence
of HTTPS certificate validation errors and requiring user
interaction through some form of trusted browser UI, that
untrusted JavaScript cannot affect, before autofilling any
passwords. Finally, we presented secure filling, a defense
that makes autofilling password managers more secure
than manually entering a password under certain circum-
stances (e.g., a login page fetched over HTTP but submit-
ted over HTTPS). We hope that this work will improve
the security of password managers and encourage devel-
opers to adopt our enhancements.

We disclosed our results to the password manager ven-
dors, prompting several changes to autofill policies. Due
to our findings, LastPass will no longer automatically
autofill password fields in iFrames, and 1Password will
no longer offer to fill passwords from HTTPS pages on
HTTP pages.
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A Autofilling of forms
Several password managers (Chrome, Safari, LastPass

and 1Password) that we studied in this paper also sup-
ported autofilling forms with different pieces of informa-
tion like name, email address, phone no, credit card no,
expiry date etc. Even though this is not directly related
to autofilling of passwords we summarize our findings in
this section for completeness.

Unlike login information, autofill information for
forms is not tied to any origin. Therefore, forms from
any domain can be autofilled with the same information.
To make autofilling secure all the password managers
we studied required user interaction to start autofilling of
forms. However, several prior works have noticed that a
malicious attacker can create specially crafted forms that
only have certain innocuous fields visible (e.g. name)
while other more sensitive fields (e.g. phone number) in-
visible to the user and once the user triggers autofilling,
both the invisible and visible fields get filled and thus be-
come accessible by the attacker [21, 35].

We found that while all the autofilling password man-
agers we studied are to some extent vulnerable to this
attack, the type of sensitive information that can be ex-
tracted depends on the nature of user interaction required

to trigger autofill. Unlike the rest of the paper in this sec-
tion we consider web attackers only as the autofill infor-
mation is not tied by any origin.

• Chrome & Safari: Both Chrome and Safari sepa-
rate the autofillable information into two categories
- personal information (e.g., name, email address,
phone no., physical address) and credit card infor-
mation (e.g., credit card no, expiry date). To trigger
autofill for each category the user needs to click a
field in each category and select an entry from the
available ones. Thus, even if an attacker makes a
user click a visible field in the personal information
category none of the hidden credit card fields will
get autofilled. This makes stealing credit informa-
tion much harder in these password managers with-
out the users noticing it.

• LastPass: Unlike Chrome and Safari, for triggering
autofilling, LastPass only requires that user click a
button shown on top of the page. Once this but-
ton is clicked all fields in the form (both hidden and
visible) gets filled. This makes it very easy for an
attacker to create a crafted form showing only fields
like name and email address while stealing addi-
tional information, such as credit cards, or a Social
Security Number, through hidden fields.

• 1Password: Unlike LastPass, 1Password requires
that the users click different buttons depending on
what information they want to fill. Thus, it is not
possible to steal credit card information from 1Pass-
word by making all credit cards hidden. However,
if a legitimate page that a user wants to fill credit
card information into also contains an iFrame with
hidden credit card fields from a third-party domain
(e.g., advertisement), 1Password will fill the credit
card information inside the iFrame as well as in the
main page with a single click and no notification to
the user.
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Abstract
We conduct a security analysis of five popular web-based
password managers. Unlike “local” password managers,
web-based password managers run in the browser. We
identify four key security concerns for web-based pass-
word managers and, for each, identify representative vul-
nerabilities through our case studies. Our attacks are se-
vere: in four out of the five password managers we stud-
ied, an attacker can learn a user’s credentials for arbi-
trary websites. We find vulnerabilities in diverse features
like one-time passwords, bookmarklets, and shared pass-
words. The root-causes of the vulnerabilities are also di-
verse: ranging from logic and authorization mistakes to
misunderstandings about the web security model, in ad-
dition to the typical vulnerabilities like CSRF and XSS.
Our study suggests that it remains to be a challenge for
the password managers to be secure. To guide future de-
velopment of password managers, we provide guidance
for password managers. Given the diversity of vulner-
abilities we identified, we advocate a defense-in-depth
approach to ensure security of password managers.

1 Introduction
It is a truth universally acknowledged, that password-
based authentication on the web is insecure. One pri-
mary, if not the primary, concern with password authen-
tication is the cognitive burden of choosing secure, ran-
dom passwords across all the sites that rely on pass-
word authentication. A large body of evidence suggests
users have—possibly, rationally [20]—given up, choos-
ing simple passwords and reusing them across sites.

Password managers aim to provide a way out of this
dire scenario. A secure password manager could au-
tomatically generate and fill-in passwords on websites,
freeing users from the cognitive burden of remembering
them. Additionally, since password managers automati-
cally fill in passwords based on the current location of the
page, they also provide some protection against phish-
ing attacks. Add cloud-based synchronization across de-

vices, and password managers promise tremendous se-
curity and usability benefits at minimal deployability
costs [10].

Given these advantages, the popular media often ex-
tols the security advantages of modern password man-
agers (e.g., CNET [11], PC Magazine [29], and New
York Times [32]). Even technical publications, from
books [12, 34] to papers [19], recommend password
managers. A recent US-CERT publication [21] notes:

[A Password Manager] is one of the best
ways to keep track of each unique password
or passphrase that you have created for your
various online accounts without writing them
down on a piece of paper and risking that oth-
ers will see them.

Unsurprisingly, users are increasingly looking towards
password managers for relieving password fatigue. Last-
Pass, a web-based password manager that syncs across
devices, claimed to have over a million users in Jan-
uary 2011 [25]. PasswordBox, launched in May 2013,
claims to have over a million users in less than three
months [42].

Our work aims to evaluate the security of popular
password managers in practice. While idealized pass-
word managers provide a lot of advantages, implemen-
tation flaws can negate all the advantages of an idealized
password manager, similar to previous results with other
password replacement schemes such as SSOs [40, 38].
We aim to understand the current state of password man-
agers and identify best practices and anti-patterns to
guide the design of current and future password man-
agers.

Widespread adoption of insecure password managers
could make things worse: adding a new, untested sin-
gle point of failure to the web authentication ecosystem.
After all, a vulnerability in a password manager could
allow an attacker to steal all passwords for a user in a
single swoop. Given the increasing popularity of pass-
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word managers, the possibility of vulnerable password
managers is disconcerting and motivates our work.

We conduct a comprehensive security analysis of five
popular, modern web-based password managers. We
identified four key concerns for modern web-based pass-
word managers: bookmarklet vulnerabilities, “classic”
web vulnerabilities, logic vulnerabilities, and UI vulner-
abilities. Using this framework for our analysis, we stud-
ied each password application and found multiple vulner-
abilities of each of the four types.

Our attacks are severe: in four out of the five password
managers we studied, an attacker can learn a user’s cre-
dentials for arbitrary websites. We find vulnerabilities in
diverse features like one-time passwords, bookmarklets,
and shared passwords. The root-causes of the vulnerabil-
ities are also diverse: ranging from logic and authoriza-
tion mistakes to misunderstandings about the web secu-
rity model, in addition to vulnerabilities like CSRF and
XSS.

All the password manager applications we studied are
proprietary and rely on code obfuscation/minification
techniques. In the absence of standard, cross-platform
mechanisms, the password managers we study imple-
ment features like auto-fill, client-side encryption, and
one-time password in diverse ways. The password man-
agers we study also lack a published security architec-
ture. All these issues combine to make analysis difficult.

Our main contribution is systematically identifying the
attack surface, security goals, and vulnerabilities in pop-
ular password managers. Modern web-based password
managers are complex applications and our systematic
approach enables a comprehensive security analysis (in
contrast to typical manual approaches).

Millions of users trust these vulnerable password man-
agers to securely store their secrets. Our study strikes a
note of caution: while in theory password managers pro-
vide a number of advantages, it appears that real-world
password managers are often insecure.

Finally, to guide future development of password man-
agers, we provide guidance for password managers. We
identify anti-patterns that could hide more vulnerabili-
ties; architectural and protocol changes that would fix the
vulnerabilities; as well as identify mitigations (such as
Content Security Policy [14]) that could have mitigated
some vulnerabilities. Our focus is not on finding fixes for
the vulnerabilities we identified; instead, our guidance
is broader and aims to reduce and mitigate any future
vulnerabilities. Given the diversity of vulnerabilities we
identified, we believe a defense-in-depth approach has
the best shot at ensuring the security of password man-
agers.

Ethics and Responsible Disclosure. We experimen-
tally verified all our attacks in an ethical manner. We
reported all the attacks discussed below to the software

Alice a legitimate user
Bob a legitimate collaborator
hunter2 an example password
dropbox.com a benign web application
facebook.com a benign web application
/login entry point (login page) for a web application
Mallory an attacker
Eve an attacker
evil.com a website controlled by an attacker
dropbox.com The dropbox.com JavaScript code

running in the browser

Figure 1: Naming convention used in the paper. URLs
default to https unless otherwise specified.

vendors affected in the last week of August 2013. Four
out of the five vendors responded within a week of our
report, while one (NeedMyPassword) still has not re-
sponded to our report. Aside from linkability vulnera-
bilities and those found in NeedMyPassword, all other
bugs that we describe in the paper have been fixed by
vendors within days after disclosure. None of the pass-
word managers had a bug bounty program.

Organization. We organize the rest of the paper as
follows: Section 2 provides background on modern web-
based password managers and their features. We also ar-
ticulate their security goals and explain our threat model
in Section 2. Next, we present the four key sources of
vulnerabilities we used to guide our analysis (Section 3).
Section 4 presents our study of five representative pass-
word managers, broken down by the source of vulnera-
bilities (per Section 3). We provide guidance to password
managers in Section 5. We present related work in Sec-
tion 6 before concluding (Section 7).

2 Background
To start, we explain the concept of a password manager
and discuss some salient features in modern implemen-
tations. We also briefly list the password managers we
studied, identify the threat model we work with, and the
security goals for web-based password managers. Here
and throughout this paper, we rely on a familiar naming
convention (presented in Figure 1) to identify users, web
applications, and attackers.

2.1 A Basic Password Manager
At its core, a password manager exists as a database to
store a user’s passwords and usernames on different sites.
The password manager controls access to this database
via a master username/password. A secure password
manager, with a strong master password, ensures that a
user can rely on distinct, unguessable passwords for each
web application without the associated cognitive burden
of memorizing all them. Instead, the user only has to
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remember one strong master password.
A password manager maintains a database of a user’s

credentials on different web applications. A web appli-
cation is a site that authenticates its users by asking for a
username/password combination. The web application’s
“entry point” is the page where the application’s user can
enter her username and password. We call the combina-
tion of an entry point, username, and password a creden-
tial. A user can store multiple credentials for the same
web application, in which case a name distinguishes each
(typically the username).

Figure 2 (a) illustrates the general protocol of how a
user (Alice) uses a password manager (e.g., LastPass) to
log in to a web application (e.g., Dropbox). Alice first
logs in to the password manager using her master user-
name/password (her LastPass username and password),
as shown in Step 1 . Then, in Step 2 , Alice retrieves
her credential for dropbox.com. Finally, Alice uses this
credential to log into dropbox.com in Step 3 and 4 .

Since manually retrieving and sending credentials is
cumbersome, password managers may also automate the
process of selecting the appropriate credential and log-
ging in to the opened web application. This may include
navigating a web browser to the entry point, filling in
some text boxes with the username/password, and sub-
mitting the login form. Since these tasks involve execut-
ing code inside the web application, password managers
often rely on a privileged browser extension or a book-
marklet for the same.

2.2 Features in Modern Password Man-
agers

Modern password managers provide a number of conve-
nience and security features that are relevant to a security
analysis. We briefly elucidate three below.

Manager Application

User
①

②

③

④

Manager

User

②

Collaborator

①

(a). authentication to a web application (b). sharing with a collaborator

Figure 2: Different parties in a password manager
scheme

Collaboration. Modern password managers include
the ability to share passwords with a collaborator. Fig-
ure 2 (b) illustrates the general protocol of how a user Al-
ice shares a credential of hers with a collaborator Bob. In
Step 1 , Alice requests that the password manager share
a specified credential with Bob. In Step 2 , the pass-
word manager forwards the credential to Bob when Bob
requests it. Both Alice and Bob need accounts with the

password manager. My1login even allows the password
owner to set read/write permissions on the shared creden-
tials, but the efficacy of these fine-grained controls is not
clear, since denying write access does not prevent a col-
laborator from going to the web application and changing
the account’s password.

Credential Encryption. Due to the particularly sen-
sitive nature of the data handled by password managers,
password managers aim to minimize the amount of
code and personnel with access to the credentials in the
clear. One common technique is encrypting the creden-
tial database on the user’s computer, thus preventing a
passive attacker at the server-side from accessing the cre-
dentials in plaintext. In web-based password managers,
this corresponds to using JavaScript to encrypt pass-
words on the client side (including pages on the pass-
word manager’s website, browser extensions, and book-
marklets). The password manager encrypts/decrypts the
credential database using a key derivation function start-
ing from a user provided secret. If the password man-
ager supports credential encryption, we call the encryp-
tion key the user’s master key. For example, LastPass
uses JavaScript to decrypt/encrypt the user’s credential
database using a key derived from the user’s master user-
name and password.

Login Bookmarklets. As discussed above, password
managers typically rely on browser extensions to im-
plement auto-fill and auto-login functionality. Unfortu-
nately, users can only install these in a browser that sup-
ports extensions. With the popularity of mobile devices
whose browsers lack support for extension APIs (e.g.,
Mobile Safari or Internet Explorer), password managers
have adopted a more portable solution by providing a
bookmarklet. A bookmarklet is a snippet of JavaScript
code that installs as a bookmark, which, instead of navi-
gating to a URL when activated, runs the JavaScript snip-
pet in the (possibly malicious) context of the current page
(e.g., evil.com). This allows the password manager to
interact with a login form using widely supported book-
marking mechanisms.

2.3 Representative Password Manager Ap-
plications

To evaluate the security of modern password managers,
we studied a representative sample of five modern pass-
word managers supporting a diverse mix of features.
Table 1 provides an overview of their features. The
columns “Extension” and “Bookmarklet” indicate sup-
port for login automation through the particular mecha-
nism; “Website” indicates the presence of a web-based
account management interface; and “Credential Encryp-
tion” and “Collaboration” refer to the features described
in Section 2.2. For password managers supporting cre-
dential encryption, Table 1 also lists their key derivation

3
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Master Key Derivation Encrypted Fields

LastPass ✓ ✓ ✓ KDF(mp,mu,5000,32) usernames and passwords ✓
RoboForm ✓ ✓ ✓ × ×
My1login ✓ × ✓ MD5(pheven)+MD5(phodd) usernames and passwords ✓
PasswordBox × ✓ × KDF(mp,mu,10000,32) passwords only ✓
NeedMyPassword × × ✓ × ×

mu: master username mp: master password
ph: passphrase pheven(odd): characters at even (odd) positions of ph
KDF(p,s,c,l) is a key derivation function [23], which derives key of length l octets for the password p, the salt s, and the iteration count c.

Table 1: List of Password Managers Studied.

function and the fields encrypted.

2.3.1 LastPass

LastPass [24] is a popular, award-winning password
manager available on phones, tablets, and desktops for
all the major operating systems and browsers. It is
the top-rated and Editors’ Choice password manager for
both PC Magazine [29] and CNET [11]. As of August
2013, LastPass had over one million users.

LastPass is one of the most full-featured password
manager applications available. It supports nearly all ma-
jor browsers and mobile/desktop platforms and includes
features such as bookmarklets, one-time passwords, and
two-factor authentication. LastPass users can access
their credentials using the LastPass extension, through
a bookmarklet, or directly through the LastPass website.
LastPass stores the credential database encrypted on the
LastPass servers and also allows users to share passwords
with each other.

2.3.2 RoboForm

RoboForm (Everywhere) [33] is another top-rated pass-
word manager [29].1 In RoboForm, each credential
(i.e., username, password, and entry point tuple) has
its own file named (by default) after the web applica-
tion’s domain. For example, RoboForm uses “drop-
box” as the default filename when saving credentials for
dropbox.com. The user can also choose arbitrary names
for the files. Unless the user creates a master password to
protect the files, these credential files are sent to Robo-
Form servers in the clear. The user can access her cre-
dential files directly through the RoboForm website or
via the RoboForm extension or bookmarklet.

1RoboForm (Desktop) is a version of RoboForm that only stores
credentials on a single computer and does not sync across devices us-
ing a web server. We focus only on the web-based RoboForm (Every-
where) software.

2.3.3 My1login

My1login is a web-based password manager, launched
in April 2012; it started a special business-targeted prod-
uct launched in May 2013. Our study was based on a
then-beta version of their consumer-facing service. For
maximum compatibility, My1login relies exclusively on
bookmarklets and does not provide any browser exten-
sions. Users can access credentials via a web appli-
cation. My1login also supports sharing of credentials
between two My1login accounts. My1login stores all
credentials encrypted at the server-side with a special
passphrase that the user sets up. In contrast to other
password managers, which use the standard PBKDF al-
gorithm, My1login concatenates the MD5 hash of odd
and even characters of the passphrase to generate a 256-
bit key. We do not comment on this further because we
found a simpler, more severe flaw in My1login [27].

2.3.4 PasswordBox

PasswordBox [31], a web-based password manager that
launched in 2013, is highly rated by both PC Maga-
zine [29] and CNET [11]. Within three months of its
inception in May 2013, PasswordBox had attracted over
one million users [42]. PasswordBox, unlike other pass-
word managers discussed earlier, does not support book-
marklets; instead, it requires users to install a browser
extension. PasswordBox also allows sharing credentials
between users and encrypts all passwords using a 256-bit
key derived using 10000 iterations of PBKDF2 and the
PasswordBox username as the salt.

2.3.5 NeedMyPassword

Finally, we also studied a basic password manager
named NeedMyPassword [30]. NeedMyPassword lacks
common features such as auto-login, credential sharing,
and password generation. Instead, it provides only cre-
dential storage, accessible through the NeedMyPassword
website. User credentials are not encrypted before send-
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ing to NeedMyPassword servers.

2.4 Threat Model
Our main threat model is the web attacker [2]. Briefly, a
web attacker controls one or more web servers and DNS
domains and can get a victim to visit domains controlled
by the attacker. We believe this is the key threat model
for web-based password managers that often run in the
browser. For our study, we extend this model a bit: the
user may create an account on the attacker’s web appli-
cation and use the password manager for managing the
credentials for the same. Our threat model allows the
victim to rely on the password manager’s extension, the
bookmarklet, and website as she sees fit. The attacker
can also create accounts in the password manager service
and make requests to the password manager directly.

The password manager’s code often runs in a web ap-
plication’s origin (via an extension or a bookmarklet).
We assume that the password manager’s code is not ma-
licious and does not steal sensitive data from web ap-
plications. We also assume that the password manager
does not share Alice’s credentials with user Bob, unless
asked to do so by Alice. Additionally, we assume that
the user uses a unique password for the password man-
ager and does not share it with other applications such as
evil.com.

2.5 Security Goal
At a high level, a password manager only has one key
security invariant: ensure that a stored password is ac-
cessed only by the authorized user(s) and the website the
password is for. We discuss how password managers (at-
tempt to) achieve this invariant by following four security
goals. A related taxonomy appears in Bonneau et al.’s
analysis of general web authentication schemes [10], but
ours is a bit different since we focus exclusively on web-
based password managers. Nonetheless, all our goals
map to goals mentioned in Bonneau et al.’s work. As
we present in Section 4, we found attacks that violate
all of the security goals identified below and range from
complete (password manager) account takeover to pri-
vacy violations.

Master Account Security. The first goal of password
manager application is the integrity of the master ac-
count. It should be impossible for an attacker to authen-
ticate as the user to the password manager. It is crucial
that the password manager maintain the security of the
master account and safeguard credentials such as mas-
ter password and cookies. In case of password managers
that encrypt credentials, the master key/password used to
encrypt the credential database should always remain at
the client-side.

Credential Database Security. The main responsi-
bility of a password manager is securely storing the list

of a user’s credentials. A password manager needs to
ensure the security—including confidentiality, integrity,
and availability—of the credential database. The at-
tacker, Eve, should not be able to learn Alice’s creden-
tials, which would allow Eve to log in as Alice; or modify
credentials, which would allow Eve to carry out a form of
login CSRF attacks; or delete credentials, which would
allow Eve to carry out a denial-of-service attack on Al-
ice.

Collaborator Integrity. The collaboration, or shar-
ing, feature in modern password managers complicates
credential databases. Now, each credential has an access-
control list identifying the list of users allowed to read-
/write the credential. A password manager must ensure
the security of this feature: e.g., flaws in this feature
could allow an attacker to learn a user’s credential. While
we realize that these goals are a subset of the broader
goal of credential database security (above), we sepa-
rated them out to highlight the security concerns of the
sharing credentials feature.

Unlinkability. The use of a password manager should
not allow colluding web applications to track a single
user across websites, possibly due to leaked identifiers.
We use the Bonneau et al.’s definition of unlinkabil-
ity [10]: a password manager violates unlinkability if
it allows tracking a user across web applications even
in the absence of other techniques like web fingerprint-
ing [16]. For example, a privacy-minded user could rely
on different browsers or computers to foil web browser
fingerprinting; a password manager should not add a re-
liable fingerprinting mechanism that makes that effort
moot. Such a fingerprinting mechanism would violate
the user’s privacy expectations. Equivalently, relying on
a password manager should not allow a web application
to link two accounts owned by the user with the (same)
web application.

3 Attack Surface

The key difference between web-based password man-
agers and “local” password managers is their need to
work in web browsers. Web-based password managers
store credentials in the cloud and a user logs on to the
manager to retrieve his/her credentials. Access to the
stored credentials is via extensions, a website, or even
bookmarklets—all of which run in the browser.

To guide our investigation, we identified four key con-
cerns for modern web-based password managers: book-
marklet vulnerabilities, classic web vulnerabilities, au-
thorization vulnerabilities, and UI vulnerabilities. We
discuss each in turn below. In the next section, we will
present representative vulnerabilities of each type.
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3.1 Bookmarklet Vulnerabilities
JavaScript is a dynamic, extensible language with deep
support for meta-programming. The bookmarklet code,
running in the context of the attacker’s JavaScript con-
text cannot trust any of the APIs available to typical web
applications—an attacker could have replaced them with
malicious code. Relying too much on these APIs has cre-
ated a class of vulnerabilities unique to web-based pass-
word managers.

To fill in a password on (say) dropbox.com, a pass-
word manager needs to successfully authenticate a user,
download the (possibly encrypted) credential, decrypt it
(if necessary), authenticate the web application, and, fi-
nally, perform the login. Doing all this in an untrusted
website’s scripting environment (as a bookmarklet does)
is tricky. In fact, three of the five password managers we
studied (Table 1) provide full-fledged bookmarklet sup-
port, and all of them were vulnerable to attacks ranging
from credential theft to linkability attacks (Section 4).

Browser extensions, which modified the webpage,
faced a similar problem in the past. Currently, both Fire-
fox and Chrome instead provide native or isolated APIs
for browser extensions. Unfortunately, popular mobile
browsers, including Safari on iOS, Chrome on Android/i-
Phone, and the stock Android Browser, do not support
extensions. As a result, web-based password managers
often rely on bookmarklets instead.

3.2 Web Vulnerabilities
A password manager runs in a web browser, where
it must coexist with the web applications whose pass-
words it manages as well as other untrusted sites. Un-
fortunately, relying on the web platform for a security-
sensitive application such as password managers is
fraught with challenges.

Web-based password manager developers need to un-
derstand the security model of the web. For exam-
ple, browsers share authentication tokens such as cook-
ies across applications (including across applications and
extensions), leading to attacks such as cross-site request
forgery (CSRF). Applications running in the browser
runtime also need to sanitize all untrusted input before
inserting it into the document; insufficient sanitization
could lead to cross-site scripting attacks, which in the
web security model implies a complete compromise.

3.3 Authorization Vulnerabilities
Sharing credentials increases the complexity of securing
password managers. While previously, each credential
was only accessible by its owner, now each credential
needs an access control list. Any user could potentially
access a credential belonging to Alice, if Alice has autho-
rized it. A password manager needs to ensure that all ac-
tions related to sharing/updating credentials are fully au-

thorized. Confusing authentication for authorization is a
classic security vulnerability, one that we find even pass-
word managers make (Section 4). We separate out au-
thorization vulnerabilities from web vulnerabilities since
they are often due to a missing check at the server-side.
For example, all our authorization vulnerabilities involve
requests made by an attacker from his own browser, not
via Alice’s browser (when Alice visits evil.com).

3.4 User Interface Vulnerabilities
A major benefit of password managers is their ability to
mitigate phishing attacks. Users do not actually mem-
orize the password for a web application; instead, they
rely on the password manager to detect which applica-
tion is open and fill in the right password. The logic that
performs this is impervious to phishing attacks: it will
only look at the URL to determine which credential to
use.

These advantages are moot if the password manager
itself is vulnerable to phishing attacks. Even worse, in
the case of password managers, a single phishing attack
can expose all of a user’s credentials. Thus, we believe
it behooves password managers to take extra precau-
tions against phishing attacks. While it is possible that
password managers are susceptible to classic phishing
attacks, we focus on anti-patterns that make password
managers more vulnerable than the typical website.

For example, consider what happens when a user
clicks on a password manager’s bookmarklet while not
logged in to the password manager. A simple option
is asking the user to login in an iframe. Unfortunately,
this is trivial for the attacker to intercept and replace the
iframe with a fake dialog. Since users cannot see the
URL of an iframe, there is no way for a user to identify
whether a particular iframe actually belongs to the pass-
word manager and is not spoofed. We argue that this is
an anti-pattern that password managers should avoid.

4 Security Analysis of Web-based Pass-
word Managers

Next, we report the results of our security analysis of five
popular password managers. We organize our results per
the discussion in Section 3. Table 2 summarizes the vul-
nerabilities we found. Our discussion below highlights
the presence of different types of security vulnerabili-
ties in web-based password managers. We do not present
complete architectural details of each password manager;
instead, we only provide enough technical details to un-
derstand each vulnerability.

4.1 Bookmarklet Vulnerabilities
As discussed earlier, a bookmarklet allows a user of a
password manager to log in to web applications with-
out needing to install any extension, a particularly useful

6



USENIX Association  23rd USENIX Security Symposium 471

Bookmarklet Web Authorization User Interface
Vulnerabilities Vulnerabilities Vulnerabilities Vulnerabilities

LastPass ✓(§ 4.1.1) ✓(§ 4.2.1) ✓([27])
RoboForm ✓([27]) ✓([27]) NA ✓(§ 4.4)
My1login ✓([27]) ✓(§ 4.3.1)

PasswordBox NA ✓(§ 4.3.2) NA
NeedMyPassword NA ✓([27]) NA NA

Table 2: Summary of Vulnerabilities Discovered. NA identifies vulnerabilities not applicable to the particular password
manager because it does not provide the relevant functionality.

feature with mobile browsers that lack extension support.
Three of the password managers we studied—LastPass,
RoboForm, and My1login—provide access to creden-
tials and auto-fill functionality using bookmarklets. In
fact, My1login only provides bookmarklet for auto-fill
support, advertising it as a feature (“No install needed”).

We found critical vulnerabilities in all three book-
marklets we studied. If a user clicks on the bookmarklet
on an attacker’s site, the attacker, in all three cases, learns
credentials for arbitrary websites. We only discuss one
representative vulnerability here and provide details of
the other two vulnerabilities in our extended technical
report [27].

While in 2009 Adida et al. identified attacks on pass-
word manager bookmarklets [1], our study indicates that
these issues still plague password managers. This is par-
ticularly a cause of concern given the popularity of mo-
bile devices that lack full-fledged support for extensions.

4.1.1 Case Study: LastPass Bookmarklet

LastPass stores the credential database on the
lastpass.com servers encrypted with a master_key,
which is a 256-bit symmetric key derived from the user’s
master username and master password. The LastPass
client-side code never sends the master password or
master key to the LastPass servers.

Recall that a bookmarklet runs in the context of the
(possibly malicious) web application. At the same time,
due to LastPass’s credential encryption, the bookmarklet
needs to include the secret master_key (or a way to
get to it), to decrypt the credential database. Including
this secret in the bookmarklet, while still keeping it se-
cret from the web application, is tricky. LastPass also
provides the ability to revoke a previously created book-
marklet, further complicating this feature.

Installing a Bookmarklet. A user, Alice, wish-
ing to install a bookmarklet needs to create a special
link through her LastPass settings page. On Alice’s re-
quest, the LastPass page code creates a new random
value _LASTPASS_RAND and encrypts the master_key

with it, all within Alice’s browser. The LastPass
servers then store this encrypted master key (called
key_rand_encrypted) and an identifier h along with

_LASTPASS_RAND

2
h|u

GET bml.php?v

3

4

ref|rh|h|u

ref|rh|h|u
GET bml.php?iframe

ref|rh|h|u

6
GET bml.php?payload

alice|d|
key_rand_encrypted

7

8
getrand

PostMessage

10
credential

iframe

u = dropbox.com

5

ref|rh|h|u

1. check cookies and h
2. extract d and
    key_rand_encrypted

extract the credential for u from d, alice, 
_LASTPASS_RAND, and key_rand_encrypted

Alice
lastpass.com (iframe)

PostMessage

PostMessage

_LASTPASS_RAND|h
1

Bookmarklet Click

Alice dropbox.com

LastPass

9

Figure 3: LastPass: Automatic login using bookmarklet.
u is the domain on which Alice clicked on the book-
marklet.

Alice’s credential database. The page then creates a
JavaScript snippet containing _LASTPASS_RAND and h,
which Alice can save as a bookmark. This design al-
lows Alice to revoke this bookmarklet in the future by
just deleting the corresponding h and encrypted master
key from the LastPass servers.

Using the Bookmarklet. Figure 3 illustrates how
Alice uses her LastPass bookmarklet to log in to
dropbox.com. At the Dropbox entry point, Alice clicks
on her LastPass bookmarklet, which includes the token
_LASTPASS_RAND and h. The bookmarklet code first
checks the current page’s domain and adds a script el-
ement to the page sourced from lastpass.com. The
request for the script element (Step 2 in Figure 3) sends

7
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2

alice|d|key_rand_encrypted
3

u = dropbox.com
ref = u

ref|rh|h|u
GET bml.php?payload

1. check cookies and h
2. extract d and
    key_rand_encrypted

extract the credential for u from d, alice, 
_LASTPASS_RAND, and key_rand_encrypted

_LASTPASS_RAND|h
1

Bookmarklet Click

Alice

LastPass

evil.com
Mallory

Figure 4: Attack on LastPass bookmarklet based auto-
login. The rh,h values are random; u and ref identify
the Malloy’s target website.

h and the web application domain dropbox.com as pa-
rameters h and u. LastPass checks h and if the parameter
is valid (i.e., Alice has not revoked the bookmarklet), re-
sponds with a JavaScript file containing the additional
parameters ref and rh.

Next, the newly fetched JavaScript file creates
an iframe to lastpass.com using four parame-
ters: ref,rh,h,u. This iframe includes a script
located at lastpass.com/bml.php?u=dropbox.com

that, when downloaded, includes the encrypted mas-
ter key key_rand_encrypted and the credential for
dropbox.com encrypted with the master key. The iframe
then receives the bookmarklet’s _LASTPASS_RAND value
via a postMessage call, decrypts the dropbox.com cre-
dential and sends them back.

Vulnerability. The resource at
bml.php?u=dropbox.com (Step 6 Figure 3) is at a pre-
dictable URI and contains sensitive information. It pro-
vides the encrypted master key key_rand_encrypted

and the credential for dropbox.com. The same-origin
policy allows an attacker to include a script from any
origin and execute it in the attacker’s webpage.

LastPass Bookmarklet Attack. Figure 4 illustrates
how a malicious web application evil.com can steal
Alice’s credential for dropbox.com. When Alice vis-
its the attacker’s site evil.com and clicks her LastPass
bookmarklet, the attacker uses any of a number of hijack
techniques [1, 8] (e.g., Function.toSource) and ex-
tracts both h and _LASTPASS_RAND. Then, the attacker
imitates Step 6 from Figure 3 (as Step 2 here) by writ-
ing a <script> tag with src set to lastpass.com/

bml.php?u=dropbox.com and adding the parameters
rh (any string of length 64), r (any number), and h (from
the bookmarklet).

The downloaded script, which runs on the at-
tacker’s page, includes all the information needed
to decrypt credential for dropbox.com (notably,
key_rand_encrypted). Again, the attacker uses the
JavaScript hijack technique to extract out the encrypted
credential and decrypts them with the _LASTPASS_RAND

value stolen earlier. The attacker can repeat the attack to
steal all of Alice’s credentials, violating the confidential-
ity of the credential database.

LastPass Linkability Attack. Finally, we note that
the h and _LASTPASS_RAND remain the same across
browsers but differ by user. As discussed above, any
website where the user clicks the bookmarklet can learn
these pseudo-identifiers h and _LASTPASS_RAND [1].
This allows colluding websites to track a user, violating
the user’s privacy expectations [10]. Additionally, this
also allows a single website to identify and link multiple
accounts belonging to the same user, which violates the
unlinkability goal.

4.2 Web Vulnerabilities
Next, we study vulnerabilities in password managers
caused due to subtleties of the web platform. We focus
on CSRF and XSS vulnerabilities, which are common in
web applications. We find CSRF vulnerabilities in Last-
Pass, RoboForm, and NeedMyPassword as well as XSS
vulnerabilities in NeedMyPassword.

Our attacks are severe: XSS vulnerabilities in Need-
MyPassword allow for complete account takeover, while
the CSRF vulnerabilities in RoboForm allow an attacker
to update, delete, and add arbitrary credentials to a user’s
credential database. We only discuss the CSRF vul-
nerability in LastPass here and discuss the remaining
CSRF and XSS vulnerabilities in our extended technical
report[27].

4.2.1 Case Study: LastPass One Time Password

One-Time password (OTP) is a feature of LastPass that
allows a user to generate an authentication code for the
master account that is only valid for one use. A user can
use a one-time password to prevent a physical observer
from gaining access to her LastPass account [10].

Generating an OTP. Before getting into the details,
we point out that Alice’s LastPass OTP must be able to
authenticate Alice to LastPass and allow Alice to recover
her master key; all without revealing anything extra (in-
cluding the OTP itself) to LastPass servers (since that
would defeat the credential encryption feature).

Figure 5 illustrates how Alice creates an OTP
otp. This starts with Alice creating a string otp

locally in her browser. Next, Alice computes
h = hash(hash(alice|otp)|otp) with her LastPass
username alice. LastPass will use h to authenti-
cate Alice, without having to know the exact value
of otp. Then, Alice encrypts her master key with
hash(alice|otp). Alice sends h and the encrypted
master key (rand_encrypted_key) to LastPass. No-
tice that the LastPass servers never see the generated
one-time password or Alice’s master key in the clear.
LastPass saves a record associating the values h and

8
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1
h|rand_encrypted_key

lastpass.com/otp.php

LastPass

save (email,h,rand_encrypted_key) 
to the backend storage

validate user by checking cookies

ok 2

POST otp.php

locally generate an OTP otp

Alice

(a). OTP creation

(b). using OTP to login

1
email|h

lastpass.com/otp.php?forcelogin=1

rand_encrypted_key 2

type email and OTP otp

compute h = hash(hash(email|otp)|otp)

check if (email,h,rand_encrypted_key) 
exists in the backend storage 
for some rand_encrypted_key

Alice

extract local_key by decrypting rand_encrypted_key 
using hash(email|otp)

POST otp.php

LastPass

Figure 5: LastPass OTP Creation. Note the absence of
any CSRF token in the request in Step 1.

1
h|rand_encrypted_key

lastpass.com/otp.php

LastPass

save (email,h,rand_encrypted_key) 
to the backend storage

validate user by checking cookies

ok 2

POST otp.php

locally generate an OTP otp

Alice

(a). OTP creation

(b). using OTP to login

1
email|h

lastpass.com/otp.php?forcelogin=1

rand_encrypted_key 2

type email and OTP otp

compute h = hash(hash(email|otp)|otp)

check if (email,h,rand_encrypted_key) 
exists in the backend storage 
for some rand_encrypted_key

Alice

extract local_key by decrypting rand_encrypted_key 
using hash(email|otp)

POST otp.php

LastPass

Figure 6: Using the LastPass
OTP.rand encrypted key is the master key encrypted
with hash(alice|otp),

rand_encrypted_key with Alice’s LastPass username.
Using the OTP. To sign in with her OTP (Fig-

ure 6), Alice recomputes h from her knowledge of
otp, and sends it to LastPass along with her LastPass
username. LastPass checks its records for a matching
username and h. It starts an authenticated session for
(i.e., sets session cookies identifying) Alice and sends
back her rand_encrypted_key. Alice then decrypts
rand_encrypted_key to recover her master key.

Vulnerability. We found that the request used to set
up the OTP (Step 1 Figure 5) is vulnerable to a classic
CSRF attack. The LastPass server authenticates Alice
(in Step 1) only with her cookies. Since LastPass does
not know the OTP or the master key, it cannot validate
that rand_encrypted_key actually corresponds to an
encrypted value of the master key. Fixing this vulnera-
bility involves adding a CSRF token to the OTP creation
form.

OTP Attack on LastPass. An attacker, Mallory, who
knows Alice’s LastPass username, can come up with
a string otp’ and using the same algorithm as above,
generate a forged value h’ and rand_fake_key with a
made-up master key. On submitting the CSRF POST re-
quest, LastPass will store h’ as authenticating Alice.

Mallory can then use otp’ to log-in to LastPass us-
ing otp’. Of course, decrypting the rand_fake_key

will not give Mallory Alice’s real master key. Nonethe-
less, using this CSRF attack, Mallory obtains Alice’s en-
crypted password database. We find this leads to three
attacks.

First, LastPass stores the list of web application en-
try points unencrypted, and Mallory can now read this
list. This is a breach of privacy: starting with just Al-
ice’s LastPass username, Mallory now knows all the web
applications Alice has accounts on.

Secondly, the encrypted password database is now
available to Mallory for offline guessing. Recall that the
LastPass uses a key derived from Alice’s master pass-
word, which Alice has to memorize. Unlike the pass-
words randomly generated by LastPass, this master pass-
word is likely vulnerable to guessing. It is instructive to
consider that, after a server breach, LastPass requires all
its users to reset their passwords [41].

Finally, we also find that this attack leads to a denial
of service attack. Mallory, logged in as Alice, can delete
any credential in Alice’s database, despite being unable
to decrypt the database. Since the username is part of
the credential, recovering all these credentials would be
tedious, or in some cases impossible.

4.3 Authorization Vulnerabilities
Looking beyond vulnerabilities stemming from the na-
ture of the web platform, we now discuss some vulnera-
bilities that come from logic errors in the password man-
ager. We found that two of the three password managers
that support credential sharing both mistake authentica-
tion for authorization. An attacker can create two fake
accounts, Eve and Mallory, in the password manager and
share Alice’s credentials with Mallory by sending a cor-
rectly crafted message from Eve’s account. Importantly,
the actual errors do not ever involve Alice or her browser
and thus the attacks work in the absence of Alice visiting
the attacker’s website.

4.3.1 Case Study: My1login Sharing Credentials

My1login relies on client-side encryption of the creden-
tial database. This complicates sharing: Alice and Bob
need to share credentials, through My1login as an un-
trusted channel. My1login relies on public-keys for both
Alice and Bob to share credentials: when Alice shares
a credential with Bob, My1login first encrypts it with
Bob’s public-key before sending it to Bob. This ensures
that only Bob can see the shared credentials.

Sharing My1login Credentials. Figure 7 illustrates
how Alice shares a credential with Bob in My1login.
In the first two steps, Alice obtains Bob’s public key
kb. Then, in Step 3, Alice (i.e., Alice’s My1login in-
stance) encrypts the credential with kb and sends the
encrypted username alice.dropbox@gmail.com and
password hunter2 to My1login.

9
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1 Get_Public_Key|email|wcid

publickey|userid 2

3

wcid|send_to|username|
password|publickey

wcid|shareId|email|userid 4

1
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Bob

shareId|createdby|
username|password|url

send_to = Bob

Alice
My1loginmy1login.com/index-in.php

POST my1Login_REST_service.php

check cookies

check cookies

POST my1Login_REST_service.php

2

check cookies

my1login.com/index-in.php

(a). Sharing a web card

(b). Accessing a shared web card

My1loginFigure 7: Sharing Credentials on My1login

Using the Shared Credential. Bob’s My1login in-
stance polls the My1login server for any updates. The
My1login server notifies Bob of the newly shared cre-
dential, sending him the information that Alice encrypted
with his public key. Bob decrypts the shared credentials
(username and password) for website url with his pri-
vate key. Once Alice shares a credential with Bob, he can
also update it. In such cases, My1login automatically up-
dates the credential globally by sharing the update with
collaborators on the web card (Alice, in this case). This
occurs through essentially the same request as Step 3 in
Figure 7, but this time Bob encrypts the credential with
Alice’s public-key.

Vulnerability. Our analysis revealed that My1login
only authenticates Alice before sharing a web card; it
does not check whether Alice owns or has the authority
to share the web card identified in the wcid (Step 3, Fig-
ure 7).

My1login Share Attack. Since My1login does not
check wcid in Figure 7 Step 3, an attacker Mallory can
share any web card (given its id) to a collaborator Eve.
This vulnerability allows Mallory to steal any credential
whose ID she knows (perhaps because Eve shared it in
the past but revoked it later).

Worse, further analysis revealed that web card ids are
globally unique, auto-incrementing numbers. In Step 3,
Figure 7, Mallory can even use numbers referring to
cards not yet created.

Suppose that wcid refers to a web card that belongs
to (or will belong to) Alice. Mallory generates a dummy
username and password like “userabc” and “pwdabcm,”
encrypts it and shares it with Eve. Eve receives the
dummy credentials. While these credentials are useless,
notice that this registered Eve as a collaborator on this
web card, even if it belongs to Alice.

In the future, whenever Alice or any other collaborator
updates the web card, the My1login client automatically
re-encrypts the real credential and sends it to each col-

{ ” id ” : 4097211,
”member id”: 3751238,
”name”: ”Dropbox”,
” url ” : ”https :// www.dropbox.com/login”,
” login ” : ” alice .dropbox@gmail.com”,
”note”: {},
”created at” : ”2013−07−18T13:50:18−04:00”,
”updated at”: ”2013−07−18T13:50:18−04:00”,
”password k”: ”AAQsrfjgfcWj/4FsP64BTYTJpbgpBK4+yltal”,
” settings ” : ”{\”autologin\”:\”1\”, ...} ” ,
”member fullname”: ”Alice Gordon”,

}

Listing 1: Example PasswordBox asset

laborator, including Eve. It is trivial for Mallory to share
all web cards, current and future, to Eve, who awaits up-
dates to steal real credentials.

In the attack above, Eve learns Alice’s credentials only
if Alice updates them after the attack. Alternatively, Eve
can install new credentials to Alice’s database without
authorization from Alice. This allows Eve to execute a
form of login CSRF attack [5]. Alternatively, Eve can in-
stall wrong credentials to Alice’s database, which would
cause an error when Alice attempts to use them. It is
likely that Alice, in response, would update the web card
with her correct credentials and unknowingly share them
with Eve.

One concern is how to ethically verify the My1login
authorization flaw without sharing another user’s creden-
tial by mistake. We observed over multiple days that it is
rare that any other user creates a new web card between
2am - 3am PST. We then verified this vulnerability one
day between 2am and 3am without sharing another user’s
credential by mistake.

4.3.2 Case Study: PasswordBox Sharing Creden-
tials

PasswordBox stores a user’s credential for a web appli-
cation in a JSON-encoded asset file. Listing 1 presents
an example asset for Dropbox. We focus on two
salient properties: first, password_k is the encrypted
value of Alice’s password for dropbox.com and is the
only encrypted field in the asset. Other details such
as entry point URL, the name Alice used to register
(member_fullname) and so on, are all in cleartext.

Second, our analysis revealed that asset_id is an
auto-incrementing, unique (across all users) id for each
asset. Assuming asset_id started at 1, we can infer that
PasswordBox manages over 4 million assets, an assump-
tion anyone can verify with the flaw we discuss next. (We
did not, because of the obvious ethical concerns.)

Sharing Credentials. Figure 8 shows how a user Al-
ice shares one of her assets identified by asset_id to
a collaborator Bob. On clicking share, the Password-
Box extension on Alice’s browser makes a POST re-
quest to the passwordbox.com servers that includes the
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1
GET /api/0/assets

Bob

[assets]

Alice
PasswordBoxpasswordbox.com
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check cookies

2

check cookies

passwordbox.com

(a). Sharing an asset

(b). Accessing a shared asset

shared|crypted_key|contact_id|asset_id

PasswordBox

Figure 8: PasswordBox: Sharing an asset. The under-
lined passwordbox.com on the left indicates that the
code making the request runs in the passwordbox.com

origin.

contact_id, the contact to share credentials with (in
this case, Bob’s id); and asset_id, the id of the cre-
dential to share (as in Listing 1). In the future, whenever
Bob downloads the list of assets accessible to him, Pass-
wordBox includes Alice’s shared credential.

Vulnerability. The absence of a CSRF token sug-
gested the possibility of a CSRF flaw in the protocol.
Fortunately (or, unfortunately), we found that Password-
Box implemented a strong defense against CSRF at-
tacks: it checks the Referer header as well as includes
a special X-CSRF-Token in the headers of the HTTP
request. Instead, we found a far more serious logic
bug in the sharing assets functionality. In its sharing
logic, PasswordBox never checks whether Alice owns
the asset_id she is sharing. This allows Mallory to
share assets she does not own with Eve, similar to the
My1login attack (Section 4.3.1).

PasswordBox Share Attack. Similar to the “share-
and-update” attack on My1login, Mallory and Eve run
through the protocol in Figure 8. Mallory can share
any asset to Eve by simply setting asset_id. Since
asset_id is an auto increment number, Mallory can it-
erate through all possible asset_id and share all exist-
ing 4 million assets with Eve. Listing 2 is the JavaScript
snippet that Mallory used to share an arbitrary asset to
Eve, whose contact_id is assumed to be 123.

As we noted above, PasswordBox only encrypts the
password field in an asset; disclosure of every user’s full
name, usernames, web application URLs, and creation
times is a severe privacy breach.

function share(asset id){
var xmlhttp = new XMLHttpRequest();
var jsn = ’{”shared”:true, ”crypted key:” ”ABC”, ”contact id ”: 123,

”asset id ”: ’ + asset id + ’}’ ;
xmlhttp.open(”POST”,”https://api0.passwordbox.com/api/0/secrets”,true);
xmlhttp.setRequestHeader(”Content−type”, ”application/json”);
xmlhttp.send(jsn);

}

Listing 2: JavaScript snippet to share a asset with Eve

4.4 User Interface Vulnerabilities

Earlier, discussing bookmarklet vulnerabilities (Sec-
tion 4.1), we focused on the behavior of a password man-
ager when the user is already authenticated to the pass-
word manager. If the user is not authenticated to the pass-
word manager, then the user needs to log in to her mas-
ter account. This provides a potential avenue for phish-
ing vulnerabilities and the password manager should not
train bookmarklet users towards insecure practices. The
ideal secure option in such a scenario is asking the user
open a new tab (manually) and logging in to the pass-
word manager.

We find that only the My1login bookmarklet defaults
to this secure behavior. Clicking on the My1login book-
marklet, when not logged in, results in a message asking
the user to open a new window and log in. We found that
both RoboForm and LastPass bookmarklets were vulner-
able to phishing attacks. Below, we discuss the Robo-
Form vulnerability and present the LastPass vulnerabil-
ity in our technical report [27]. We also have recorded
video demonstrations of these attacks online [4].

Case Study: RoboForm. Recall that when Alice
clicks her RoboForm bookmarklet, the bookmarklet cre-
ates an iframe in the current web application. If Alice has
not logged in to RoboForm, the iframe request redirects
to the RoboForm login page, displaying a login form in
the iframe. This design is insecure: it trains Alice to
fill in her RoboForm password even when the URL bar
(belonging to the surrounding web application) does not
point to roboform.com. An attacker can trivially block
the RoboForm iframe load and spoof an authentication
dialog that steals Alice’s RoboForm credentials. A se-
cure design would ask Alice to open a new tab to Robo-
Form and log in.

One concern with successfully carrying out this attack
is detecting whether Alice is already logged in to Robo-
Form. We found that the height of the RoboForm iframe
(the dialog) is greater than 200px if and only if Alice is
already logged-in. Using this side-channel, the attacker
can modify the spoofed iframe to make the attack con-
vincing.
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5 Lessons and Mitigations
We now attempt to distill the lessons learnt from our
study and provide guidance to password managers on
closing the vulnerabilities we found and mitigating fu-
ture ones. Our focus here is on concrete guidance and
defense-in-depth. We identify improvements in architec-
tures and protocols to mitigate vulnerabilities as well as
the use of browser mitigations like CSP. We also iden-
tify anti-patterns that developers of password managers
should avoid. Security reviewers and users can also rely
on the patterns and (absence of) the mitigations we dis-
cuss as indicators of the security of a password manager.

5.1 Bookmarklet Vulnerabilities
All the bookmarklets we studied were vulnerable. The
root cause of these vulnerabilities is that the bookmarklet
code executes in the untrusted context of the webpage.
The web browser guarantees a secure, isolated execu-
tion environment for iframes and we advocate an iframe-
based architecture for securing password manager book-
marklets. Modern features such as credential encryption,
which requires secure client-side code execution, makes
the use of defenses proposed in previous work impracti-
cal [1].

Recommendation. We recommend password-
managers rely on a design similar to proposed by Bhar-
gavan et al. [8]. When the user clicks the bookmarklet,
the bookmarklet code loads the password manager code
in an iframe, running in the password manager’s origin.
The browser’s same-origin policy isolates code executing
in the iframe from the web application page and guaran-
tees integrity of DOM APIs.

The password manager’s iframe uses postMessage

for communicating with the application page and main-
tains a simple invariant: a message carrying a creden-
tial for dropbox.com has a target origin of https://

www.dropbox.com. The browser guarantees that only
the Dropbox page receives the message. The only se-
cret in the bookmarklet code is an HMAC function (pro-
tected by DJS [8]) that the password manager iframe can
use to provide click authentication (i.e., the user actually
clicked the bookmarklet). Unfortunately, the presence of
the secret in the bookmarklet allows linkability attacks.

For unlinkability, we recommend password managers
do not rely on such a secret and HMAC function. Dis-
abling this secret loses the “click authentication” prop-
erty. Since password manager browser extensions typi-
cally include “auto fill” functionality, we believe the loss
of click authentication is acceptable. If needed, the code
in the password manager iframe could draw a dialog to
ask for user confirmation before sharing credentials with
the website. Such a design is vulnerable to clickjacking
and we also recommend the use of upcoming mitigations
for UI security [39].

Instead, password managers could rely on asking the
user for permission to share credentials in the iframe cre-
ated.

The core issue behind bookmarklet vulnerabilities is
the absence of secure (or “isolated”) DOM APIs for
bookmarklets. An alternative possibility is for browser
vendors to provide bookmarklets with secure access
to these DOM APIs, similar to the access granted to
Chrome/Firefox extensions.

5.2 Web Vulnerabilities
We found a number of “classic” web application vulner-
abilities in password managers. Based on the critical and
sensitive nature of data handled by password managers,
we recommend defense-in-depth features such as CSP
and identify anti-patterns that developers should beware
of.

XSS. XSS is a well-studied problem and we will not
recapitulate all the defenses for the same here. We rec-
ommend that web applications, in addition to validating
input and sanitizing outputs, should also turn on Con-
tent Security Policy to provide a second layer of defense
against XSS. The absence of a strong CSP policy in a
password manager should raise red flags for users and
reviewers. In the applications we studied, only Last-
Pass shipped with a Content-Security-Policy header, al-
beit with an unsafe policy that allows eval and inline
scripts.

CSRF. The prevalence of CSRF vulnerabilities in
password managers surprised us. We recommend pass-
word managers should include CSRF protection (via to-
kens) for all their pages and forms. For defense in depth,
these applications should also check the Referer and Ori-
gin headers for all requests. While not a reliable de-
fense, these headers provide a useful secondary layer of
defense.

One concern with CSRF tokens is the need to create
and maintain state at the server-side. This could be cum-
bersome for password managers that provide an interface
through a browser extension: it is infeasible to request a
new token before rendering every form. Instead, these
applications can rely on special headers (e.g., X-CSRF-
Token) for CSRF defense. The web security model dis-
allows evil.com from setting headers for a cross-origin
request.2

Secrets in JavaScript files. An anti-pattern we no-
ticed was the presence of secret values—based off of
tokens in the request URI or cookies in the request—
in script files. Unfortunately, the web platform does
not provide strong isolation guarantees for scripts: any
(untrusted) origin can include scripts from the password
manager’s website. We recommend password managers

2Unless explicitly whitelisted by the receiving server via Access-
Control-* headers.
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serve all secret values in HTML or separate JSON files.
This requirement is easy to check: the scripts used by the
password managers should be the same across all users of
the password manager. Serving user-specific JavaScript
files based on tokens in the URI is a clear anti-pattern.
An alternative is Defensive JavaScript [8], which pro-
vides a principled defense to ensure secrecy of values in
JavaScript code.

5.3 Authorization Vulnerabilities
The web application vulnerabilities discussed above
stemmed from quirks of the web platform (e.g., ambi-
ent authentication with cookies). Worryingly, we found
a number of logic flaws in password managers classified
under two broad categories. The first category, insuf-
ficient authorization, creates vulnerabilities exacerbated
by the second category, predictable identifiers. We iden-
tify an anti-pattern, predictable identifiers, and the core
security vulnerability, insufficient authorization, below
and discuss mitigations.

Insufficient Authorization. Confusing authentication
with authorization is a classic security vulnerability. Out
of the three password managers that support collabora-
tion, we found insufficient authorization vulnerabilities
in two of them. Unfortunately, these are logic flaws,
and a simple mitigation is difficult. One possibility is
for password managers to use a simpler sharing model.
For example, let each credential have only one owner—
only the credential’s owner can change it or its collabo-
rator list. A simple model eases authorization checks and
could make insufficient authorization stand out.

Predictable Identifier. Both our attacks on logic
vulnerabilities rely on predictable identifiers (e.g., con-
secutive integers). We recommend password managers
switch to cryptographically secure random numbers for
identifiers—this adds defense in depth, even if the server
is careful to check authorization. The use of predictable
identifiers should be rare and any use should be a cause
for a security review. As we discussed earlier, the nature
of the data handled by password managers warrants such
a default-secure posture.

5.4 User Interface Vulnerabilities
Our proposed solution of relying on iframes and storing
tokens in localStorage/cookies works seamlessly only if
the user is already logged in. If this is not true, the iframe
needs to ask the user to log in. As our attacks demon-
strated, the only secure way to do this is asking the user
to manually open a new tab and login. My1login is the
only password manager relying on this design and we
recommend other password managers adopt a similar de-
sign. Cautious users can protect themselves against such
an attack by always logging in using a new tab instead of
trusting a popup or iframe.

6 Related Work

A number of researchers have investigated security of
web-based password managers. Bhargavan et al. did a
study on five password managers, along with a num-
ber of other web services that provide encrypted stor-
age of data in the cloud, and presented a number of
web attacks that could violate the intended security of
the products [7]. This work inspired a redesign of the
LastPass bookmarklet to decrypt a user’s credentials in-
side LastPass’s iframe, making it harder for an attacker
to steal the master key. Adida et al. provide a compre-
hensive overview of a number of attacks on password
manager bookmarklets; we reuse some of the ideas but
find that, with modern password managers relying on
encrypted credentials, a new defense based on iframes
is needed [1]. Belenko et al. studied the cryptographic
properties of password managers for mobile devices and
their vulnerability to brute force attacks [6].

In concurrent work, Blanchou and Youn [9] as well as
Silver et al. [35] found a number of serious flaws in the
auto-fill functionality in password managers. In contrast,
we analyze a broader range of functionality but focus on
third-party web-based password managers only.

Bonneau et al. [10] presented a framework for eval-
uating alternatives to passwords in terms of usability,
deployability, and security. This framework highlights
advantages of an idealized password manager, but our
work demonstrates that, in practice, password managers
have flaws in their implementations that critically under-
mine their security. Similarly, recent work found imple-
mentation flaws in other password alternatives such as
SSOs [40, 38].

The common web attack vectors we considered, such
as CSRF and XSS, have seen a lot of work in the past
decade. For attacks and defenses, we defer to prior litera-
ture for comprehensive surveys on CSRF [43], XSS [18],
and server-side defenses for both [26]. Recent work also
focused on logic flaws and insufficient authorization in
web applications [17, 37, 36].

The security of mutually distrusting JavaScript run-
ning in the same origin (an important consideration in
bookmarklet code) has not been a concern in the design
of the web platform. Bhargavan et al. identified a number
of flaws in bookmarklets and proposed a new subset of
JavaScript called Defensive JavaScript to mitigate them,
which we discussed in depth in Section 5.1. Defensive
JavaScript [8] is the only work we are aware of that aims
to protect a JavaScript gadget from the host webpage. A
large body of work exists for the converse goal of pro-
tecting a host webpage from third party JavaScript code
(such as code that draws a gadget) [22, 3, 13, 28]; a sur-
vey compares these approaches [15].
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7 Conclusions
We presented a systematic security analysis of five web-
based password managers. We found critical vulnerabil-
ities in all the password managers and in four password
managers, an attacker could steal arbitrary credentials
from a user’s account. Our work is a wake-up call for
developers of web-based password managers. The wide
spectrum of discovered vulnerabilities, however, makes
a single solution unlikely. Instead, we believe devel-
oping a secure web-based password manager entails a
systematic, defense-in-depth approach. To help such an
effort, we provided guidance and mitigations based on
our analysis. Since our analysis was manual, it is pos-
sible that other vulnerabilities lie undiscovered. Future
work includes creating tools to automatically identify
such vulnerabilities and developing a principled, secure-
by-construction password manager.
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Abstract
This paper presents SpanDex, a set of extensions to An-
droid’s Dalvik virtual machine that ensures apps do not
leak users’ passwords. The primary technical challenge
addressed by SpanDex is precise, sound, and efficient
handling of implicit information flows (e.g., information
transferred by a program’s control flow). SpanDex han-
dles implicit flows by borrowing techniques from sym-
bolic execution to precisely quantify the amount of infor-
mation a process’ control flow reveals about a secret. To
apply these techniques at runtime without sacrificing per-
formance, SpanDex runs untrusted code in a data-flow
sensitive sandbox, which limits the mix of operations that
an app can perform on sensitive data. Experiments with
a SpanDex prototype using 50 popular Android apps and
an analysis of a large list of leaked passwords predicts
that for 90% of users, an attacker would need over 80
login attempts to guess their password. Today the same
attacker would need only one attempt for all users.

1 Introduction

Today’s consumer mobile platforms such as Android and
iOS manage large ecosystems of untrusted third-party
applications called “apps.” Apps are often integrated
with remote services such as Facebook and Twitter, and
it is common for an app to request one or more pass-
words upon installation. Given the critical and ubiqui-
tous role that passwords play in linking mobile apps to
cloud-based platforms, it is paramount that mobile op-
erating systems prevent apps from leaking users’ pass-
words. Unfortunately, users have no insight into how
their passwords are used, even as credential-stealing mo-
bile apps grow in number and sophistication [12, 13, 24].

Taint tracking is an obvious starting point for securing
passwords [11]. Under taint tracking, a monitor main-
tains a label for each storage object. As a process ex-
ecutes, the monitor dynamically updates objects’ labels

to indicate which parts of the system state hold secret
information. Taint tracking has been extensively stud-
ied for many decades and has practical appeal because it
can be transparently implemented below existing inter-
faces [11, 19, 5, 14].

Most taint-tracking monitors handle only explicit
flows, which directly transfer secret information from an
operation’s source operands to its destination operands.
However, programs also contain implicit flows, which
transfer secret information to objects via a program’s
control flow. Implicit flows are a long-standing prob-
lem [8] that, if left untracked, can dangerously under-
state which objects contain secret information. On the
other hand, existing techniques for securely tracking im-
plicit flows are prone to significantly overstating which
objects contain secret information.

Consider secret-holding integer variable s and pseudo-
code if s != 0 then x := a else y := b done. This code
contains explicit flows from a to x and from b to y as well
as implicit flows from s to x and s to y. A secure monitor
must account for the information that flows from s to x
and s to y, regardless of which branch the program takes:
y’s value will depend on s even when s is non-zero, and
x’s value will depend on s even when s is zero.

Existing approaches to tracking implicit flows apply
static analysis to all untaken execution paths within the
scope of a tainted conditional branch. The goal of this
analysis is to identify all objects whose values are influ-
enced by the condition. Strong security requires such
analysis to be applied conservatively, which can lead
to prohibitively high false-positive rates due to variable
aliasing and context sensitivity [10, 14].

In this paper, we describe a set of extensions to An-
droid’s Dalvik virtual machine (VM) called SpanDex
that provides strong security guarantees for third-party
apps’ handling of passwords. The key to our approach is
focusing on the common access patterns and semantics
of the data type we are trying to protect (i.e., passwords).

SpanDex handles implicit flows by borrowing tech-
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niques from symbolic execution to precisely quantify
the amount of information a process’ control flow re-
veals about a secret. Underlying this approach is the
observation that as long as implicit flows transfer a safe
amount of information about a secret, the monitor need
not worry about where this information is stored. For ex-
ample, mobile apps commonly branch on a user’s pass-
word to check that it contains a valid mix of characters.
As long as the implicit flows caused by these operations
reveal only that the password is well formatted, the mon-
itor does not need to update any object labels to indicate
which variables’ values depend on this information.

To quantify implicit flows at runtime without sacrific-
ing performance, SpanDex executes untrusted code in
a data-flow defined sandbox. The key property of the
sandbox is that it uses data-flow information to restrict
how untrusted code operates on secret data. In particular,
SpanDex is the first system to use constraint-satisfaction
problems (CSPs) at runtime to naturally prevent pro-
grams from certain classes of behavior. For example,
SpanDex does not allow untrusted code to encrypt secret
data using its own cryptographic implementations. In-
stead, SpanDex’s sandbox forces apps that require cryp-
tography to call into a trusted library.

SpanDex does not “solve” the general problem of im-
plicit flows. If the amount of secret information revealed
through a process’ control flow exceeds a safe threshold,
then a monitor must either fall back on conservative static
analysis for updating individual labels or simply assume
that all subsequent process outputs reveal confidential in-
formation. However, we believe that the techniques un-
derlying SpanDex may be applicable to important data
types besides passwords, including credit card numbers
and social security numbers. Experiments with a proto-
type implementation demonstrate that SpanDex is a prac-
tical approach to securing passwords. Our experiments
show that SpanDex generates far fewer false alarms than
the current state of the art, protects user passwords from
a strong attacker, and is efficient.

This paper makes the following contributions:
• SpanDex is the first runtime to securely track pass-

word data on unmodified apps at runtime without
overtainting or poor performance.

• SpanDex is the first runtime to use online CSP-
solving to force untrusted code to invoke trusted li-
braries when performing certain classes of compu-
tation on secret data.

• Experiments with a SpanDex prototype show that
it imposes negligible performance overhead, and a
study of 50 popular, non-malicious unmodified An-
droid apps found that all but eight executed nor-
mally.

The rest of this paper is organized as follows: Sec-
tion 2 describes background information and our mo-

tivation, Section 3 provides an overview of SpanDex’s
design, Section 4 describes SpanDex’s design in detail,
Section 5 describes our SpanDex prototype, Section 6
describes our evaluation, and Section 7 provides our con-
clusions.

2 Background and motivation

Under dynamic information-flow tracking (i.e., taint
tracking), a monitor maintains a label for each storage
object capable of holding secret information. A label
indicates what kind of secret information its associated
object contains. Labels are typically represented as an
array of one-bit tags. Each tag is associated with a differ-
ent source of secret data. A tag is set if its object’s value
depends on data from the tag’s associated source. Oper-
ations change objects’ state by transferring information
from one set of objects to another. Monitors propagate
tags by interposing on operations that could transfer se-
cret information, and then updating objects’ labels to re-
flect any data dependencies caused by an operation. We
say that information derived from a secret is safe if it re-
veals so little about the original secret that releasing the
information poses no threat. However, if information is
unsafe, then it should only be released to a trusted entity.

2.1 Related work: soundness, precision,
and efficiency

The three most important considerations for taint track-
ing are soundness, precision, and efficiency. Tracking
is sound if it can identify all process outputs that con-
tain an unsafe amount of secret information. Soundness
is necessary for security guarantees, such as preventing
unauthorized accesses of secret information. Tracking is
precise if it can identify how much secret information a
process output contains. Precision can be tuned along
two dimensions: better storage precision associates la-
bels with finer-grained objects, and better tag precision
associates finer-grained data sources with each tag.

Imprecise tracking leads to overtainting, in which safe
outputs are treated as if they are unsafe. A common way
to compensate for imprecise tracking is to require users
or developers to declassify tainted outputs by explicitly
clearing objects’ tags.

Tracking is efficient if propagating tags slows oper-
ations by a reasonable amount. The relationship be-
tween efficiency and precision is straightforward: in-
creasing storage precision causes a monitor to propagate
tags more frequently because it must interpose on lower-
level operations; increasing tag precision causes a moni-
tor to do more work each time it propagates tags. Finding
a suitable balance of soundness, precision, and efficiency

2



USENIX Association  23rd USENIX Security Symposium 483

is challenging, and prior work has investigated a variety
of points in the design space.

One approach to information-flow tracking is to use
static analysis in combination with a secrecy-aware type
system and programmer-defined declassifiers to prevent
illegal flows [20]. This approach is sound, precise, and
efficient but is not compatible with legacy apps. Integrat-
ing secrecy annotations and declassifiers into apps and
platform libraries requires a non-trivial re-engineering
effort by developers and platform maintainers.

An alternative way to ensure soundness is to propa-
gate tags on high-level operations that generate only ex-
plicit flows. An explicit flow occurs when an operation
directly transfers information from from a set of well-
defined source objects to a set of well-defined destination
objects [8]. For example, process-level monitors such as
Asbestos [9], Flume [15], and HiStar [23] maintain la-
bels for each address space and kernel-managed commu-
nication channel (e.g., file or socket), and propagate tags
for each authorized invocation of the system API.

Such process-grained tracking is sound and efficient,
but operations defined by a system API commonly ma-
nipulate fine-grained objects, such as byte ranges of
memory. The mismatch between the granularity of la-
beled objects and operation arguments leads to impreci-
sion. For example, once a process-grained monitor sets
a tag for an address space’s label, it conservatively as-
sumes that any subsequent operation that copies data out
of the address space is unsafe, even if the operation dis-
closes no secret information.

As with language-based flow monitors, process-
grained monitors must rely on trusted declassifiers to
compensate for this imprecision. These declassifiers
proxy all inter-object information transfers and are au-
thorized to clear tags from labels under their control.
However, because declassifiers make decisions with lim-
ited context, they can be difficult to write and require
developers to modify existing apps.

Other monitoring schemes have improved precision
by associating labels with finer-grained objects such as
individual bytes of memory [5, 19]. While tracking at
too fine a granularity leads to prohibitively poor perfor-
mance [5, 19] (e.g., 10x to 30x slowdown), propagating
tags for individual variables within a high-level language
runtime is efficient [11]. The primary challenge for such
fine-grained tracking is balancing soundness and preci-
sion in the presence of implicit flows.

As before, consider secret-holding variable s and
pseudo-code if s != 0 then x := a else y := b done. Bor-
rowing terminology from [18], we say that all operations
between then and done represent the enclosed region of
the conditional branch. Thus, the enclosed region con-
tains explicit flows from a to x and from b to y. Opera-
tions like conditional branches induce implicit flows by

transferring information from the objects used to evalu-
ate a condition to any object whose value is influenced
by an execution path through the enclosed region. We
refer to the set of influenced objects as the enclosed set.
The enclosed set includes all objects that are modified
along the taken execution path as well as all objects that
might have been modified along any untaken paths. To
ensure soundness, a monitor must propagate s’s tags to
all objects in the enclosed set.

Propagating tags to members of the enclosed set can
lead to overtainting in two ways. First, because a con-
ditional branch does not specify its enclosed set, the
membership must be computed through a combination
of static and dynamic analysis [5, 18]. In our exam-
ple, a simple static analysis of the program’s control-flow
graph could identify the complete enclosed set consisting
of x and y. However, strong soundness guarantees require
an overly conservative analysis of far more complex un-
taken paths containing context-sensitive operations and
aliased variables. This can overstate which objects’ val-
ues are actually influenced by a branch. Less conserva-
tive tag propagation creates opportunities for malicious
code to leak secret information.

Second and more important, the amount of informa-
tion transferred through a process’ control flow is of-
ten very low. These information-poor flows expose the
problem with tag imprecision. In particular, conventional
monitors can only account for an implicit flow by propa-
gating single-bit tags from the branch condition to mem-
bers of the enclosed set. And yet members of the en-
closed set can only reflect as much new information as
the branch condition reveals. When the condition re-
veals very little information (e.g., s != 0), a single-bit
tag cannot be used to differentiate between an object
whose value is weakly dependent on secret information
and one whose value encodes the entire secret. Thus,
when an execution’s control flow transfers very little in-
formation, propagating tags to members of the enclosed
set significantly overstates how much secret information
the branch transfers to the rest of the program state.

Prior work on DTA++[14] and Flowcheck [18] have
articulated similar insights about the causes of overtaint-
ing. DTA++ propagates tags to an enclosed set only if
an execution’s control flow reveals the entire secret (i.e.,
the execution path is injective with respect to a secret
input). However, DTA++ relies on offline symbolic ex-
ecution of several representative inputs to select which
branches should propagate tags to their enclosed sets.
Offline symbolic execution provides limited code cov-
erage for moderately complex programs and is unlikely
to deter actively malicious programs.

Flowcheck focuses on the imprecision of single-bit
taint tags and precisely quantifies the total amount of
secret information an execution reveals (as measured in
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bits). However, Flowcheck imposes significant perfor-
mance penalties and must compute the enclosed set (of-
ten with assistance from the programmer) to quantify the
channel capacity of enclosed regions.

To summarize, we are unaware of any prior work on
information-flow tracking that provides a combination of
soundness, precision, and efficiency that would be suit-
able for tracking passwords on today’s mobile platforms.

2.2 Android-app study

To test our hypothesis that conventional handling of im-
plicit flows leads to overtainting and false alarms, we
created a modified version of TaintDroid [11] called
TaintDroid++ that supports limited implicit-flow track-
ing. TaintDroid and TaintDroid++ track explicit flows
the same way. Each variable in a Dalvik executable is
assigned a label consisting of multiple tags, and tags
are propagated according to a standard tag-propagation
logic.

The primary difference between the two monitors is
that TaintDroid ignores implicit flows and TaintDroid++
does not. First, for a Dalvik executable, TaintDroid++
constructs a control-flow graph and identifies the imme-
diate post-dominator (ipd) for each control-flow opera-
tion. It then uses smali [1] to insert custom Dalvik in-
structions that annotate (1) each ipd with a unique iden-
tifier, and (2) each control-flow operation with the iden-
tifier of its ipd. Like Dytan [5], TaintDroid++ does not
propagate tags to objects that might have been updated
along untaken execution paths.

Using these two execution environments, we ran four
popular Android apps that require a user to enter a pass-
word: the official apps for LinkedIn, Twitter, Tumblr,
and Instagram. Both systems tagged password data as
it was input but before it was returned to an app. We then
manually exercised each app’s functionality and moni-
tored its network and file outputs for tainted data.

Figure 1 shows the number and type of tainted out-
puts we observed for apps running under TaintDroid
and TaintDroid++. For each tainted output, we manu-
ally inspected the content to determine whether it con-
tained password data or not. Each tainted output under
TaintDroid appeared to be an authentication message that
clearly contained a password. TaintDroid++ also tainted
these outputs, but generated many more tainted network
and file writes. We were unable to detect any password
information in these extra tainted outputs, and regard
them as evidence of overtainting.

Overtainting is only a problem if incorrectly tainted
data is copied to an inappropriate sink. Thus, a false
positive occurs when an app copies data that is safe but
tainted to an inappropriate sink. Apps authenticate us-
ing the OAuth protocol and should not store a local copy
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Figure 1: Tainted outputs for apps running under Taint-
Droid and TaintDroid++.

of a password once they receive an OAuth token from
a server. Thus, each tainted file write generated under
TaintDroid++ is a false positive.

For network writes, we also consider whether the
password data was sent over an encrypted connection
(i.e., over SSL) and the IP address of the remote server.
Both Tumblr and Instagram under TaintDroid++ gen-
erated unencrypted tainted network writes. None of
these writes were tainted under TaintDroid. Furthermore,
TaintDroid only taints outputs to appropriate servers,
but under TaintDroid++ several overtainted outputs were
sent to third-parties such as the cloudfront.net CDN and
flurry.com analytics servers. These results are consistent
with previous work on overtainting [4, 22], and confirm
that securing users’ passwords requires a better balance
of soundness and precision.

3 System Overview

This section provides an overview of SpanDex, including
the principles and attacker model that inform its design.

3.1 Principles
SpanDex’s primary goal is to soundly and precisely track
how information about a password circulates through a
mobile app. For example, if an app requests a Face-
book password, then SpanDex should raise an alert only
if the app tries to send an unsafe amount of information
about the password to a non-Facebook server. Prevent-
ing leaks also requires a way for users to securely en-
ter and categorize their passwords, and to address these
issues we rely on secure password-entry systems such
as ScreenPass [17]. SpanDex is focused on tracking in-
formation after a password has been securely input and
handed over to an untrusted app. The following design
principles guided our work.
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Monitor explicit and implicit flows differently. In
practice, explicit and implicit flows affect a program’s
state in very different ways. Operations on secret
data that trigger explicit flows transfer a relatively large
amount of secret information to a small number of ob-
jects. The inverse is true of control-flow operations that
depend on secret data. These operations often transfer
very little secret information to members of a large en-
closed set. These observations led us to apply different
mechanisms to tracking explicit and implicit flows.

First, SpanDex uses conventional taint tracking to
monitor explicit flows. SpanDex is integrated with Taint-
Droid and Android’s Dalvik VM, and maintains a label
for each program variable. Each label logically consists
of a single-bit tag indicating whether the variable con-
tains an unsafe amount of information about a character
within a user’s password. Because explicit flows trans-
fer a relatively large amount of information between ob-
jects, when an object’s tag is set, SpanDex assumes that
the variable contains an unsafe amount of secret infor-
mation.

Second, when SpanDex encounters a branch with a
tainted condition, it does not immediately propagate tags
to objects in the enclosed set. Rather, SpanDex first up-
dates an upper bound on the total amount of secret infor-
mation the execution’s control flow has revealed to that
point. This upper bound precisely captures the maximum
amount of secret information that an attacker could en-
code in untagged objects. As long as the total amount
of secret information transferred through implicit flows
is safe, SpanDex can ignore where that information is
stored.

Like DTA++, SpanDex borrows techniques from sym-
bolic execution to quantify the amount of information re-
vealed through implicit flows. In particular, SpanDex in-
tegrates operation logging with tag propagation to record
the chain of operations leading from a tainted variable’s
current state back to the original secret input. When
SpanDex encounters a tainted conditional branch, it up-
dates its information bounds by using these records to
solve a constraint-satisfaction problem (CSP). The CSP
solution identifies a set of secret inputs that could have
led to the observed execution path. This set precisely
captures the amount of information transferred through
implicit flows.

The drawback of applying these techniques at runtime
is the potential for poor performance. A monitor can ef-
ficiently record operations on tainted data at runtime, but
solving a CSP when encountering a tainted branch could
be disastrous. In the worst case, trying to solve a CSP
could cause a non-malicious app to halt. For example,
passwords must be encrypted before they are sent over
the network, but it is infeasible to compute the set of all
plaintext inputs that could have generated an encrypted

output. Balancing the need to track implicit flows while
preventing common primitives such as cryptography
from slowing, or even halting, non-malicious apps led to
our second design principle.

If commonly used functionality makes tracking diffi-
cult, force apps to use a trusted implementation. Mo-
bile apps typically receive a password, perform sanity
checks on the characters, encode the password as an http-
request string, encrypt the http-request, and forward the
encrypted string to a server. The code used to transform
password data from one representation to another (e.g.,
encoding a character array as an http-request string and
then encrypting the string) is problematic because it uses
a number of operations that make quantifying implicit
flows prohibitively slow or even impossible. This code
includes a large number of bit-wise and array-indexing
operations interleaved with tainted conditional branches.
If SpanDex tracked implicit flows within this code as we
have described thus far, non-malicious apps would be-
come unusable.

Fortunately, it is exceedingly rare for apps to imple-
ment this functionality themselves. Instead, apps rely on
platform libraries for common transformations, such as
character encoding and cryptography. On Android this
library code is small in size, easy to understand, and pro-
tected by the Java type system.

Tracking explicit flows remains the same for trusted
libraries as for untrusted app code. However, within a
trusted library, SpanDex does not solve CSPs when en-
countering a tainted branch and may directly update the
information bound of a secret before exiting. This ap-
proach is sound for library code whose state is strongly
encapsulated and whose semantics are well understood.

For example, encrypting a tainted string involves a
sequence of calls into a crypto library for initializing
the algorithm’s state, updating that state, and retrieving
the final encrypted result. Ignoring tainted conditional
branches within this code is sound for two reasons. First,
tracking explicit flows within the library ensures that any
intermediate outputs as well as the final output are prop-
erly tagged. Second, external code can only access li-
brary state through the narrow interface defined by the
library API; there is no way for untrusted code to infer
properties about the plaintext except those that the library
explicitly exposes through its interface or by branching
on the plaintext data itself. SpanDex tracks both cases.

The protection boundary separating untrusted code
from trusted library code has two novel properties. First,
the boundary is defined by both data flow and con-
trol flow. An app is allowed to use a custom crypto-
graphic implementation on untainted data, but must use
the trusted crypto library to encrypt tainted data. Second,
the boundary is enforced by the aggregate complexity of
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the operations performed rather than by hardware or a
conventional software guard. If an app attempts to en-
crypt password data using a custom implementation or
branches on encrypted data returned by the trusted li-
brary, it will be forced to solve an intractable CSP and
halt.

Thus, the key property of a SpanDex’s sandbox is that
it restricts the classes of computation that untrusted code
may directly perform on secret data. Instead, an app must
yield control to the trusted platform so that these compu-
tations can be performed on its behalf.

Given an execution environment that can efficiently
quantify the amount of secret information transferred
through implicit flows, SpanDex’s final challenge is
determining whether the quantified amount is safe to
release. This challenge led to our final design principle.

Use properties of a secret’s data type to set release
policies. Like SpanDex, DTA++ requires a threshold
on the amount of information revealed through implicit
flows. DTA++ applies a strict policy to determine when
to propagate tags by doing so only when the control flow
is injective. That is, DTA++ propagates tags when a sin-
gle secret value could have led to a particular execution
path.

Though simple, this policy is inappropriate for Span-
Dex. Revealing an entire secret value via implicit flows
is clearly unsafe, but revealing partial information about
a password may be too. For example, using carefully
crafted branches, malware could cause significant harm
by narrowing every character of a password to two pos-
sible values. However, as we have seen, treating all im-
plicit flows as unsafe leads to prohibitive overtainting.
SpanDex’s challenge is to support practical release poli-
cies that sit between these two extremes.

SpanDex benefits from its focus on passwords. Pass-
words have a well-defined representation and fairly well
understood attacker model. For example, it is reasonable
to assume that an attacker knows that a password consists
of a sequence of human-readable characters (i.e., ASCII
characters 32 through 126), many of which are likely to
be alphanumeric. An attacker gains no new information
from observing the control flow of a process if the flow
reveals that each character is within the expected range
of values. We investigate what apps’ control flows reveal
in Section 6.

3.2 Trust and attacker model

SpanDex is implemented below the Dalvik VM interface
(i.e., the Dex bytecode ISA), and the protections pro-
vided by this VM provide the foundation for SpanDex’s
trust model. Most Android app logic is written in Java
and compiled into Dex bytecodes, which run in an iso-

lated Dalvik VM instance. SpanDex cannot protect pass-
words from an app that executes third-party native code
while there is password data in its address space. Thus,
objects tainted with password data must be cleared be-
fore an app is allowed to execute its own native code. In
addition, once a process invokes third-party native code,
it may not receive password data. SpanDex must rely on
the kernel to maintain information about which processes
have invoked third-party native code. Finally, apps may
not write tainted data to persistent storage or send it to
another app via IPC.

SpanDex is focused on securely tracking how pass-
word data flows within an app. Attacks on other aspects
of password handling are outside the scope of our de-
sign. First, we assume that users can securely enter their
password before it is given to an app, and that users will
tag a password with its associated domain. A secure,
unspoofable user interface, such as the one provided by
ScreenPass [17], can provide such guarantees. Special
purpose hardware, such as Apple’s Touch ID fingerprint
sensor and secure enclave [2], could also provide this
guarantee.

Second, SpanDex can help ensure that password data
is shared only with servers within the domain specified
by the user, but provides no guarantees once it leaves
a device. For example, SpanDex cannot prevent an at-
tacker from sending a user’s Facebook password as a
message to a Facebook account controlled by the at-
tacker. Preventing such cases requires cooperation be-
tween SpanDex and the remote server. SpanDex could
notify the service when a message contains password
data, and the service could determine whether such mes-
sages should contain password data.

We assume that an attacker completely controls one or
more apps that a user has installed, and that the attacker
is also in control of one or more remote servers. The
attacker’s servers can communicate with the attacker’s
apps, but the servers reside in a different domain than the
one the user associates with her password. The attacker
can make calls into the platform libraries and manipulate
its apps’ data and control flows to send information about
passwords to its remote servers.

Based on the large-scale leakage of large password
lists from major services, such as Gawker [21] and Sony
Playstation [3], we assume that an attacker has access to
a large list of unique passwords, and that the user’s pass-
word is on the list. However, we assume that the attacker
does not know which usernames are associated with each
entry in its list (though it does know the user’s username).

Thus, our attacker’s goal is to de-anonymize the user
within its password list using information gathered from
its apps. The attacker can send its servers as much un-
tainted data describing a user’s password as SpanDex’s
release policies allow (i.e., the password length as well
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as a range of possible values for each password charac-
ter). In the worst case, the attacker will eliminate all but
one of the passwords in its list. On the other hand, if the
app provides no new information, then the user’s pass-
word could be any on the list.

Once the attacker has computed the set of possible
passwords for a username, it can only identify the correct
username-password combination through online query-
ing. For example, if an attacker infers that Bob’s Face-
book password is one of ten possibilities, then the at-
tacker needs at most ten tries to login to Facebook as
Bob.

The attacker may also have extra information about the
usage distribution of passwords in its database. For ex-
ample, the attacker may know that one password is used
by twice as many users as another. While information
from the app can help the attacker narrow a user’s pass-
word to a smaller set of possibilities, the usage distri-
bution allows the attacker to prioritize its login attempts
to reduce the expected number of attempts before a suc-
cessful login. We return to this issue in Section 6.

4 SpanDex

As with conventional taint tracking, SpanDex updates
objects’ labels on each operation that generates an ex-
plicit flow. If the monitor encounters a control-flow op-
eration with a tainted condition, it does not update the
labels of objects in the enclosed set. Instead, the moni-
tor updates an upper bound on the amount of information
the execution’s control flow has revealed about the secret
input.

SpanDex represents this bound as a possibility set (p-
set). SpanDex maintains a p-set for each password char-
acter an app receives. P-sets logically contain the pos-
sible values of a character revealed by a process’ control
flow. Each time the app’s control flow changes as a result
of tainted objects, SpanDex attempts to remove values
from the secret’s p-set.

4.1 Operation dag
In order to narrow a p-set, SpanDex must understand the
data flow from the original secret values to a tainted con-
dition. We capture these dependencies in an operation
dag (op-dag). This directed acyclic graph provides a
record of all taint-propagating operations that influenced
a tainted object’s value as well as the order in which the
operations occurred.

SpanDex reuses TaintDroid’s label-storage strategy,
and stores each 32-bit label adjacent to its object’s value.
However, whereas each bit in a TaintDroid label repre-
sents a different category of sensitive data (e.g., location
or IMEI), SpanDex labels are pointers to nodes in the

op-dag. If an object’s label is null, then it is untainted.
If an object’s label is non-null, then its value depends on
secret data.

Label storage in SpanDex most significantly differs
from TaintDroid for arrays. In TaintDroid, each array
is assigned a single label for all entries. If any array ele-
ment becomes tainted, then the entire array is treated as
tainted. This approach is inappropriate for SpanDex be-
cause we want to track individual password characters.
Thus, SpanDex maintains per-entry labels. However, the
reason that TaintDroid maintains a single label for each
array is storage overhead. Byte and character arrays ac-
count for a large percentage of an app’s memory usage,
and assigning a 32-bit label for each byte-array entry
could lead to a minimum fourfold increase in memory
overhead for array labels.

To avoid this overhead, SpanDex allocates labels for
arrays only after they contain tainted data. Each array is
initially allocated a single label. If the array is untainted,
then its label points to null. If the array contains tainted
data, then its label points to a separate label array, with
one label for each array entry. As with local-variable and
object-field labels, array-element labels point to nodes
in the op-dag. Since very few arrays contain password
data, the overhead of maintaining per-entry labels is low
overall.

The roots of the op-dag are special nodes that con-
tain the original value of each secret (i.e., each password
character), a pointer to the secret’s p-set, and domain in-
formation. A p-set is represented as a doubly-linked list
of value ranges. Each entry in the list contains a pointer
to the previous and next entries, as well as a minimum
and maximum value. Ranges are inclusive, and the union
of the ranges specifies the set of possible secret values
revealed by an app’s control flow. SpanDex initializes p-
sets to the range [32,126] to represent all printable ASCII
characters. A secret’s domain can be specified by the
user through a special software keyboard [17].

Each tainted object version has an associated non-
root node that records the operation that created the ver-
sion, including its source operands. Source operands
can be stored as concrete values (when operands are un-
tainted) or as pointers to other nodes in the op-dag (when
operands are tainted).

A node can point to more than one node, and there
may be multiple paths from a node to one or more roots.
The more complex the paths from a node to the op-dag
roots are, the more complex updating p-sets becomes.

4.2 Example execution

If a tainted variable influences an app’s control flow (e.g.,
via a conditional branch), then SpanDex traverses the op-
dag from the node pointed to by the object’s label toward
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the roots. To demonstrate how SpanDex maintains and
uses op-dags and p-sets, consider the simple snippet of
pseduo-code below. Figure 2 shows the resulting op-dag
and p-set.
0000: mov v1, v0 // v0, v1 label=ROOT
0002: add v2, v1, 3 // v2’s label=N1
0004: add v2, v2, 2 // v2’s label=N2
0006: sub v3, 6, v2 // v3’s label=N3
0008: add v2, v2, 7 // v2’s label=N4
000a: const/16 v4, 122 // v4’s label=0
000c: if-le v3, v4, 0016
000e: ...

The first character of the password is ’p’, or numeric
value 112, and is stored in register v0. The password’s
domain is Facebook. v0’s label points to the Root node
for the secret character. v0 is then copied into v1, whose
label must also point to Root. The sum of v1 and 3 is
then stored in v2, whose label then points to new node,
N1. N1 contains the addition operation, the 3 operand,
and points to Root. The next line adds 2 to v2. This cre-
ates a new version of v2, which is recorded in N2. N2
contains the 2 operand and points to the node for the pre-
vious version of v2, node N1. The remaining arithmetic
operations proceed similarly. Finally, the code loads the
constant value of 122 into v4 for an upcoming condi-
tional branch. v4’s label is null, since it is not tainted.

When the code reaches the conditional branch, v3 is
less than or equal to v4, since v3’s value is 111, and v4’s
value is 122. Because v3’s label is non-null, SpanDex
uses the op-dag node in v3’s label (N3) to update the p-
set.

Updating the p-set is equivalent to solving a CSP to de-
termine which secret values could have led to the control-
flow change. In our example, updating the p-set is easy.
SpanDex solves the inequality v0+6−2−3≤ 122, lead-
ing to v0 ≤ 121. Thus, the control flow reveals that the
first character of the user’s password is within the range
of [32,121]. SpanDex updates the p-set to reflect this be-
fore resuming execution. Figure 2 shows the state of the
op-dag and p-set at this point.

This simple example demonstrates some of the chal-
lenges and nuances of SpanDex’s approach. First, each
node in the op-dag represents a version of a tainted vari-
able. N3 points to the version of v2 used to update v3,
so that when SpanDex reaches the conditional branch, it
can retrieve the sequence of operations that led to v3’s
current value.

Second, reversible operations such as addition and
subtraction make updating p-sets straightforward. Un-
fortunately, Dalvik supports a number of instructions that
are much trickier to handle. For example, Dalvik sup-
ports instructions for operating on Java Object references
and arrays that behave very differently than simple arith-
metic operations. Even some classes of arithmetic oper-
ations, such as bit-wise operators and division, can make
solving a CSP non-trivial.

V1

V1 label=Root

V0

V0 label=Root

V2

V2 label=N4

V3

V3 label=N3

p-set Secret 
= 'p'Root

+ 3 RootN1

+ N1 2N2

- 6 N2N3

+ N2 7N4

Dalvik internal heapDalvik internal stack

p-set = [32, 121]

V4

V4 label=null

Domain
= 'FB'

Figure 2: Simple op-dag and p-set example.

Third, there was a single path from N3 to Root in
our example. If N3 had forked due to multiple tainted
operands, or had led to multiple root nodes due to mix-
ing secret characters, solving the CSP would have been
far more complex. Compression and cryptography often
mix information from multiple characters, which creates
a complex nest of paths from nodes to the op-dag roots.

Fortunately, among the popular non-malicious apps
that we have studied, difficult-to-handle operations oc-
cur only in platform code such as the Android cryptog-
raphy library. Furthermore, it is rare to find apps that
branch on the results of these operations outside of plat-
form code. Thus, as long as SpanDex can ensure that
all outputs from these libraries are explicit and tainted,
then we can ignore implicit flows within them (and, thus,
avoid CSP solving).

This approach is intuitive. First, outside of simple san-
ity checking on a password, there is little reason for an
app to operate on password data itself. Second, libraries
such as a crypto library are designed to suppress implicit
flows. Observing an encrypted output or a cryptographic
hash should not reveal anything about the plaintext input.
Third, there is no obvious reason why app code should
branch on either encrypted data or a cryptographic hash.
Apps simply use the platform libraries to encode these
outputs as strings and send them to a server.

There are many difficult operations that we have not
observed in either app code or library code. Our general
approach to these operations is to propagate taint to the
results of these operations, but to fault if they cause the
control flow to change. For example, an app may use
bit-wise operations to encode a character, but branching
on the encoded result is not allowed. This is secure and
does not disrupt non-malicious apps. In the next section,
we describe how SpanDex treats each class of Dex byte-
codes in greater detail.
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4.3 Dex bytecodes

In this section, we describe how SpanDex handles
each of the following classes of bytecodes: type-
conversion operations, object operations, control-flow
operations, arithmetic operations, and array operations.
Type conversions. Dalvik supports the following data
types: boolean, byte, char, short, int, long, float, double,
and Object reference, as well as arrays of each of these
types. P-set ranges are represented internally as pairs of
floats. Solving CSPs involving conversions to alternate
representations is supported as long as the type is a native
and numeric.
Object operations. Dex provides a number of instruc-
tions for converting between data types, but conversions
can also occur through Object-method invocations and
arrays. For example, an app could index into an Object
array with a tainted character, where the fields of each
Object encodes its position in the array. The returned
Object reference would be tainted, and would identify
the character used to index into the array. The return
value of any method used to access a field of the tainted
Object would also be tainted. However, SpanDex would
have to understand the internal semantics of the Object
in order to solve a CSP involving the tainted returned
value. Thus, branching on data derived from a tainted
Object reference is not allowed.
Control-flow. A Dalvik program’s control flow can
change as a result of secret data in many ways. Con-
ditional branch operations such as if-eq are the most
straightforward, and SpanDex handles these as described
in Section 4.2.

Dalvik also supports two case switching operations:
packed-switch and sparse-switch. Both in-
structions take an index and a reference to a jump table as
arguments. The difference between the instructions is the
format of the jump table and how it is used. The table for
a packed-switch is a list of key-target pairs, in which
the keys are consecutive integers. Dalvik first checks to
see if the index is within the table’s range of consecutive
keys. If it is not, then the code does not branch and ex-
ecution resumes at the instruction following the switch
instruction. If it is in the table, then the code computes
the new PC by adding the matching target to the current
PC.

The table for a sparse-switch is also a list of key-
target pairs, but the keys do not have to be consecutive in-
tegers (though they have to be sorted from low-to-high).
To handle this instruction, the VM checks whether the
index is greater than zero and less than or equal to the ta-
ble size. It then uses the index to perform a binary search
on the keys to find a match. If it finds a match, then it
jumps to the instruction at the sum of the matching target

and current PC.
Although more complex than conditional branches,

handling these switch instructions is straightforward. If
the code falls through the switch instruction, then the re-
sulting implicit flow reveals that the index is not equal
to any of the table keys. SpanDex can solve a CSP for
each of the keys and update its p-sets accordingly. If the
control-flow is diverted by the switch instruction, then
the resulting implicit flow reveals that the index is equal
to the matching table key. SpanDex can solve a CSP for
this condition as well. In practice, most switch instruc-
tions are packed and the corresponding jump tables are
small, which makes solving CSPs for these operations
fast.

Finally, a program’s control flow can be influenced by
tainted data if an operation on tainted data causes an ex-
ception to be thrown. For example, an app could divide
a number by a tainted variable with a value of zero, or
it could use a tainted variable to index beyond the length
of an array. SpanDex could compute a CSP for the infor-
mation revealed by each of these conditions, e.g., that a
tainted variable is equal to zero or that a tainted variable
is greater than the length of an array. However, we have
not seen this behavior in any of the apps we have stud-
ied. As a result, our current implementation simply stops
the program when an instruction with a tainted operand
causes an exception to be thrown.
Arithmetic. As we saw in Section 4.2, reversible arith-
metic operations are straightforward to handle. Other
arithmetic operations are not impossible to handle, but
require a complex solver. For example, reversing mul-
tiplication and division operations is tricky because of
rounding. Bit-wise operations are even more difficult to
reason about. Fortunately, it is exceedingly rare for app
code to branch on the results of these operations. Instead,
we have observed that trusted library code is far more
likely to branch on the results of these operations. As
long as we can ensure that all library outputs are explicit,
then we do not need to solve CSPs involving difficult op-
erations when in trusted code.
Arrays. Dex provides instructions for inserting (iput)
and retrieving (iget) data from an array. Due to type-
conversion problems, SpanDex does not allow tainted in-
dexing of non-numeric arrays. In particular, an app may
not use a tainted variable to index into an Object array.

Handling an iget operation requires keeping a
checkpoint of the array in the op-dag node for the vari-
able holding the result. For example, say that all of the
entries in an int array are zero or one, and that an app
indexes into the array with a tainted variable. The re-
turned value would be stored in a tainted variable. If the
app later branched on the tainted variable, then SpanDex
must look at the array checkpoint to determine which in-
dexes would have returned the same value as the exe-
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cuted iget. In practice, tainted iget instructions are
rare, and when they do occur the arrays are small.

Unlike a tainted iget, a tainted iput instruction is
dangerous. Consider an attacker that initializes an array
a with known size, such that all entries are equal to zero.
It then stores the first password character in the variable
s and inserts a one into a[s]. Because SpanDex maintains
per-entry labels for arrays, a[s] is tainted, but no other en-
tries are. The attacker can then incrementally send each
value in the array to its server: only a[s] is tainted and
will be stopped by SpanDex. Unfortunately, stopping the
app at this point is too late, since the number of received
zeros reveals the value of s. As a result of this attack,
tainted iput instructions are illegal.

Finally, Dex also provides instructions such as
filled-new-array for creating and populating ar-
rays, and SpanDex disallows tainted operands on these
instructions.

4.4 Trusted libraries

As described above, there are a number of operations
on tainted data that would add significant complexity
to SpanDex’s CSP solver to support. Even worse, the
complexity of the op-dags that combinations of these op-
erations would create make it doubtful that even a so-
phisticated solver could handle them quickly, if at all.
Ideally, these operations would never arise, and if they
did, an app would never branch on their results. Sadly,
this not the case. Many apps require cryptographic and
string-encoding libraries to handle passwords, and these
libraries are rife with difficult to handle operations as
well as branching on the results of those operations.

Trying to solve such complex CSPs would make Span-
Dex unusable: non-malicious apps would halt just trying
to encrypt a password. At the same time, ignoring flows
generated by these operations is not secure. Luckily, we
have observed that branching on the results of difficult
operations consistently occurs within a handful of sim-
ple platform libraries.

Thus, SpanDex’s approach to handling difficult im-
plicit flows is to identify the functionality that creates
them in advance and to isolate these flows inside trusted
implementations. As long as the outgoing information
flows from these libraries are always tainted and ex-
plicit, SpanDex does not need to worry about their in-
ternal control-flow leaking secret information. Further-
more, this code is open and well known, is protected by
the Java type system, and can be modified to eliminate
implicit flows through the library API.

The set of libraries that SpanDex trusts not to leak
information implicitly is: java.lang.String (selected
methods excluded), java.lang.Character, java.lang.Math,
java.lang.IntegralToString, java.lang.RealToString,

java.lang.AbstractStringBuilder, java.net.URLEncoder,
java.util.HashMap, android.os.Bundle, android.os.-
Parcel, and org.bouncycastle.crypto. Nearly all of this
code is either stateless string encoding and decoding or
cryptography.

4.5 Various attacks and counter-measures

We described several attacks in Section 3.2 that are be-
yond the scope of SpanDex. In this section, we describe
several other attacks and how SpanDex might handle
them.

First, SpanDex does not allow tainted data to be writ-
ten to the file system or copied to another process via
IPC. This is reasonable because mobile apps should only
require a user’s password to retrieve an OAuth token
from a remote server. After receiving the token, the app
should discard the user’s password. If an app tries to
copy tainted data to an external server, then SpanDex
must consult the domains in the set of reachable op-dag
root nodes.

Second, an attacker could have multiple apps under
its control generate multiple overlapping (but not iden-
tical) p-sets. Each individual p-set would appear safe,
but when combined at the attacker’s server, they could
collectively reveal an unsafe amount of information. Re-
latedly, a malicious app could request a user’s password
multiple times and compute different ranges on each
password copy.

One way to detect this class of attacks is by inspect-
ing the membership of a secret’s p-sets. For the apps
that we have observed, p-sets usually correspond to natu-
ral character groupings, e.g., numbers, lower-case letters,
upper-case letters, and related special characters. P-sets
containing unusual character groupings could be a strong
signal that an app is malicious.

The solution to this attack suggests a larger class of
counter-measures that use information from the p-sets
and op-dag to detect malicious behavior. For example,
anomalous operation mixes or an unusually large op-dag
could indicate an attack. One of the advantages of Span-
Dex is that it gives the monitor a great deal of insight into
how an app operates on password data. We believe that
this information could enable a rich universe of policies,
though enumerating all of them is beyond the scope of
this paper.

Finally, it is possible that SpanDex is vulnerable to
certain classes of side-channel and timing attacks that we
have not considered. However, any attack that relies on
branching on tainted data would be detected. For exam-
ple, consider the well-known attack on Tenex’s password
checker [16]. Even though the attack uses a page-fault
side channel that is out of SpanDex’s scope, SpanDex
would have prevented it because each additional charac-

10
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ter comparison would have narrowed its p-set to an un-
safe level.

5 Implementation

Our SpanDex prototype is built on top of TaintDroid for
Android 2.3.4. We modified TaintDroid to support p-
sets and op-dags, and made several modification to the
Android support libraries. Most of our changes to these
libraries were made in java.lang.String.

First, public String methods whose return value could
reveal something about a tainted string’s value are not
considered trusted to ensure that p-sets are updated prop-
erly (e.g., equals(Object), compareTo(String)).

Second, as a performance optimization, the Dalvik
VM replaces calls to certain performance-critical Java
methods with inlined ”intrinsic” functions that are
written in C and built in to the Dalvik VM (e.g.,
String.equals(Object), String.compareTo(String)). How-
ever, if an intrinsic inlined function operates on a tainted
string and performs comparisons involving the string’s
characters, we are unable to update the p-sets accord-
ingly. To avoid this, we modified Dalvik’s intrinsic in-
lines that operate on strings to check if the string is
tainted and, if so, invoke the Java version instead.

Third, Android’s implementation of java.lang.String
performs an optimization when converting an ASCII
character to its String value: it uses the character’s ASCII
code to index into a constant char array containing all
ASCII characters. If the character to be converted is
tainted, we prevent this optimization from being used,
as it would result in an array lookup with a tainted index.

Finally, we modified the android.widget.TextView and
implemented a custom IME with a special tainted input
mode that can be enabled to indicate to SpanDex when a
sequence of characters is sensitive (i.e., a password).

6 Evaluation

In order to evaluate SpanDex, we sought answers to the
following questions: How well does SpanDex protect
users’ passwords from an attacker? What is the perfor-
mance overhead of SpanDex?

6.1 Password protection
As described in Section 3.2, we have designed SpanDex
based on an attacker that has access to a large list of clear-
text passwords. The attacker knows that a user’s pass-
word is in the list, and uses untainted information from
its malicious app to narrow a user’s password to a smaller
set of possibilities. To understand how well SpanDex can
protect users from such an attack, we need to know the

kind of p-sets that real apps induce, we need access to
a large list of cleartext passwords, and we need a realis-
tic distribution of how passwords are used. All of these
pieces of information will allow us to calculate the num-
ber of expected logins an attacker would need to guess a
user’s password, given the amount of untainted password
information that SpanDex allows apps to reveal.

First, we ran 50 popular apps from Google’s Play
Store. Each of these apps required a login, and we used
the same 35-character password for each app. The pass-
word contained one lower-case letter (“a”), one upper-
case letter (“A”), one number (“0”), and one of each of
the 32 non-space special ASCII characters. 42 ran with-
out modification1. The top row of Table 1 shows each
character in the password.

Eight apps invoked native code before requesting a
user’s password2. While these apps would have to be
modified to run under SpanDex, waiting to invoke native
code before requesting a user’s password is unlikely to
require major changes. All other apps ran normally.

For the 42 apps that ran unmodified, after their pass-
word was sent, we inspected the p-set for each password
character and counted its size. Table 1 shows the maxi-
mum, 75th percentile, median, 25th percentile, and min-
imum p-set size for each password character. The header
of the table shows the password. The first thing to notice
is that the p-sets for the letters in our password (i.e., “A”
and “a”) were never smaller than 26. This makes sense,
since each app is branching to determine that the charac-
ter is either a lower or upper case letter. The same is true
for the number in our password, “0”. No numeric p-set
was smaller than 10.

The more difficult cases are the non-alphanumeric spe-
cial characters. For these cases, the p-sets are fairly
app specific. In some cases, the app’s control flow de-
pends on a specific character (e.g., Skout with several
special characters), but most characters’ p-sets remain
large across most apps. With the exception of “*”, “-
”, “.”, and “ ”, all non-alphanumeric characters had large
p-sets for 75% of apps or more.

Given this observed app behavior, we next ob-
tained the uniqpass-v11 list of 131-million unique pass-
words [7]. The list contains passwords from a number of
sources, including the Sony [3] and Gawker [21] leaks.
To simulate an attack, we selected a password, p, from
the list and computed the p-sets that a typical app would
generate for p. In particular, we assume that the at-

1Audible, Amazon, Amazonmp3, Askfm, Atbat, Badoo, Chase,
Crackle, Ebay, Etsy, Evernote, Facebook, Flipboard, Flixster,
Foursquare, Heek, Howaboutwe, Iheartradio, imdb, LinkedIn, Myfit-
nesspal, Nflmobile, Pandora, Path, Pinger, Pinterest, Rhapsody, Sk-
out, Snapchat, Soundcloud, Square, Tagged, Textplus, Tumblr, Tunein,
Twitter, Walmart, Wordpress, Yelp, Zillow, Zite, and Zoosk

2Dropbox, Hulu+, Kindle, Mint, Skype, Spotify, Starbucks, and
Voxer

11
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! ” # $ % & ’ ( ) * + , - . / 0 : ; < = > ? @ A [ \ ] ˆ ‘ a { | } ˜
Max 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95 95
75th 90 16 33 90 90 33 33 90 90 90 90 90 90 90 83 92 90 90 33 90 92 90 90 90 90 32 65 90 90 90 95 90 90 90 90
Med 16 12 12 16 16 12 12 16 16 13 16 16 13 13 14 10 7 7 7 7 7 7 7 26 6 6 6 6 6 6 90 4 4 4 4
25th 12 4 12 12 12 12 12 12 12 1 12 12 1 1 12 10 7 7 7 7 7 7 7 26 5 5 5 5 1 5 26 4 4 4 4
Min 1 1 3 1 1 1 1 1 1 1 3 4 1 1 1 10 1 1 1 1 1 1 3 26 1 1 2 4 1 4 26 1 1 3 4

Table 1: Password-character p-set sizes for 42 popular Android apps

tacker can infer p’s length and whether each character is
a lower-case letter (26 possibilities), an upper-case letter
(26 possibilities), a number (10 possibilities), or a mem-
ber of a block of special ASCII characters (i.e., the 16
characters below “0”, the seven characters between “9”
and “A”, the six characters between “Z” and “a”, and the
four characters after “z”).

This information gave us a kind of regular expression
for p based on the type of each of its characters. We call
the set of passwords matching this expression the match
set and the size of the match set the match count. The
larger a password’s match count, the more uncertain an
attacker is about what password the user entered. We
computed the match count for all passwords in the uniq-
pass list in this way. Finally, we counted the number of
passwords with a given match count to arrive at the in-
verse distribution function.

These calculations show that if SpanDex allows an at-
tacker to learn the p-sets for a password from a typical
app, the attacker will have trouble narrowing the set of
possible passwords for the user. In particular, 92% of
passwords have a match count greater than 10,000, 96%
of passwords have a match count greater than 1,000, 98%
of passwords have a match count greater than 100, and
99% of passwords have a match count greater than 10.

Unfortunately, recent work on a variety of password
databases suggest that password usage follows a zipf dis-
tribution [6]. Thus, we also model the N passwords in a
match set as a population of N elements that contains ex-
actly one success (as a user would only have one correct
password). Next, we let n be the random variable de-
noting the number of tries required to guess the correct
password and find E[n], the expected value of n. If the
passwords are all equally probable, we try them in ran-
dom order. Otherwise, we try them in the descending
order of their probability. Note that each password try is
done without replacement, i.e., after trying i passwords,
we only consider the remaining (N − i) passwords when
picking the next most probable password.

A study of the distribution of passwords publicly
leaked from Hotmail, flirtlife.de, computerbits.ie, and
RockYou found that the passwords in each of these sets
can be reasonably modelled by a zipf distribution with
s parameter values of 0.246, 0.695, 0.23, and 0.7878 re-
spectively [6]. Using these values of s, we modeled the
passwords in each match set and computed the CDF of
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Figure 3: CDFs of expected login attempts using the
uniqpass password list.

E[n].
When s = 0.7878, 95% of the time, the attacker is

likely to guess the correct password within 50 tries.
When the s value for the zipf distribution is 0.246 or less,
99% of passwords are expected to require 10 or more lo-
gin attempts, and 90% of passwords are expected to re-
quire 80 or more attempts. Figure 3 shows the CDFs for
all four s values.

Unfortunately, we do not know the usage distribution
for the uniqpass dataset since it contains only unique
passwords.

6.2 Performance overhead

To measure the performance overhead of SpanDex we
used the CaffeineMark benchmark and compared it to
stock Android 2.3.4 and TaintDroid. Both TaintDroid
and SpanDex ran without any tainted data. Since Span-
Dex only handles password data that is discarded after an
initial login, this is SpanDex’s common case. The bench-
mark was run on a Nexus S smartphone. The results are
in Figure 4.

Overall, SpanDex performs only 16% worse than
stock Android and 7% worse than TaintDroid. Stock An-
droid performs significantly better than either TaintDroid
or SpanDex in the string portion of the benchmark. This
is because TaintDroid and SpanDex both disable some
optimized string-processing code to store labels.

Finally, we would like to note that when testing apps
in Section 6.1, we did not encounter any noticeable slow
down under SpanDex. This was due to login being dom-
inated by network latency and the simplicity of the CSPs
these apps generated.

12
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Figure 4: CaffeineMark results for Android (left bar),
TaintDroid (middle bar), and SpanDex (right bar).

7 Conclusion

SpanDex tracks implicit flows by quantifying the amount
of information transferred through implicit flows when
an app executes a tainted control-flow operation. Using
a strong attacker model in which a user’s password is
known to exist in a large password list, we found that for
a realistic password-usage distribution, for 90% of users
an attacker is expected to need 80 or more login attempts
to guess their password.
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Abstract
Correctly integrating third-party services into web ap-
plications is challenging, and mistakes can have grave
consequences when third-party services are used for
security-critical tasks such as authentication and autho-
rization. Developers often misunderstand integration re-
quirements and make critical mistakes when integrating
services such as single sign-on APIs. Since traditional
programming techniques are hard to apply to programs
running inside black-box web servers, we propose to de-
tect vulnerabilities by probing behaviors of the system.
This paper describes the design and implementation of
SSOScan, an automatic vulnerability checker for appli-
cations using Facebook Single Sign-On (SSO) APIs. We
used SSOScan to study the twenty thousand top-ranked
websites for five SSO vulnerabilities. Of the 1660 sites
in our study that employ Facebook SSO, over 20% were
found to suffer from at least one serious vulnerability.

1 Introduction

Single Sign-On (SSO) services are increasingly used to
implement authentication for modern applications. SSO-
enabled applications allow users to log into an applica-
tion using an established account (with a service such as
Facebook or Twitter) and connect their account on the
new site to an established Internet identity. Should the
application need more information from the user, it may
ask the user for extra permissions from the established
service. Once granted, the requested information is re-
turned to the application, which can then be used in the
transparent account registration process.

Although these services provide SDKs intended to en-
able developers without security expertise to integrate
their services, actually integrating security-critical third-
party services correctly can be difficult. Wang et al. iden-
tified several ways applications integrating SSO SDKs
can be vulnerable to serious attacks even when develop-
ers closely follow the documentation [27].

To better understand and mitigate these risks, we de-
veloped SSOScan, an automated vulnerability checker
for applications using SSO. SSOScan takes a website
URL as input, determines if that site uses Facebook SSO,
and automatically signs into the site using Facebook test
accounts and completes the registration process when
necessary. Then, SSOScan simulates several attacks on
the site while observing the responses and monitoring
network traffic to automatically determine if the appli-
cation is vulnerable to any of the tested vulnerabilities.
We focus only on Facebook SSO in this work, but our
approach could be used to check SSO integrations using
other identity providers or other protocols. Many of our
techniques could also be adapted to scan for vulnerabili-
ties in integrating other security-critical services such as
online payments and file sharing APIs.

1.1 Contributions

Our work makes two types of contributions: those related
to the construction of our scanning tool which are largely
independent of the particular vulnerabilities, and those
resulting from our large-scale study of Facebook SSO
implementations.

SSOScan. We explain the design and implementation of
SSOScan (Section 3), as well as how to handle some of
the challenges in the automation process. We describe
techniques that automatically perform user interactions
to walk through the SSO process (Section 3.1), includ-
ing clicking the correct buttons and filling in registration
forms. We collected information of almost 30,000 click
attempts for sites that implement Facebook SSO which
shows in detail how the individual heuristics are affecting
SSOScan’s behavior (Section 5.2). This provides exper-
imental evidence to support our design choices and shed
light on future research that shares a similar goal. SSO-
Scan can detect whether a target application contains any
of the five vulnerabilities listed in Section 2.2 with an
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average testing time of 3.5 minutes, and is able to check
792 (81%) of the 973 websites that implement functional
Facebook SSO from the top 10,000 with no human inter-
vention at all.

Large-scale study. We ran SSOScan on the top 20,000
US websites (Section 4). Key results from the study in-
clude finding at least one vulnerability in 345 of the 1660
sites that use Facebook SSO (Section 4.1). We also learn
how vulnerability rates vary due to different ways of in-
tegrating Facebook SSO (Section 4.1.1). We manually
analyzed the 228 sites ranked in the top 10,000 that SSO-
Scan cannot test automatically and report on the reasons
for failures (Section 4.2). Our study reveals the complex-
ity of automatically interacting with web sites that follow
a myriad of designs, while suggesting techniques that
could improve future automated testing tools. In Sec-
tion 6, we discuss our experiences reporting the vulnera-
bilities to site owners and possible ways SSOScan could
be deployed.

2 Background

This section provides a brief introduction to single sign-
on systems, describes the vulnerabilities we checked, and
summarizes relevant previous work.

2.1 Single Sign-On

A typical single sign-on process involves three parties.
Alice first visits a web application and elects to use SSO
to login. She is then redirected to the identity provider’s
SSO entry point (e.g., Facebook’s server). After she logs
into Facebook, her OAuth credentials are issued to the
application server. The application server confirms the
identity and authenticates the client.

OAuth uses three different types of (rather confu-
singly-named) credentials:

Access token. An access token represents permissions
granted by the user. For example, the application may
request that user grant permission to access the birth-
day and friend lists from her Facebook account. Upon
the user’s consent, a token will be issued and forwarded
to the application which may then use it to obtain the
granted information from Facebook. An access token
eventually expires, but may be valid for a long time.

Code. A code is used to exchange for an access token
through the identity provider. This exchange requires the
application’s unique app secret to proceed. If the secret
does not match, Facebook will not issue the token. This
means a code is bound to a user as well as a target appli-
cation. With Facebook SSO, the code expires after being

used in the first exchange.

Signed request. A signed request is a base64 encoded
string that contains a user identity, a code, and a signa-
ture that can be verified using an application’s app secret
and some other metainformation. Once issued, it is not
tied to Facebook (except for the enveloped code), and the
signature can be verified locally.

2.2 Vulnerabilities

Our interest in building an automatic scanning tool was
initially motivated by the access token misuse vulnera-
bility reported by Wang et al. [27]. We further identified
four new vulnerabilities that are both serious and suitable
for automatic testing. The first two vulnerabilities con-
cern confusions about how authentication and authoriza-
tion are done; the other three concern failures to protect
important secrets.

Access token misuse. This vulnerability stems from
confusion about authentication and authorization. In
OAuth 2.0, an access token is intended for authoriza-
tion purposes only because it is not tied to any specific
application. When a service uses an access token to au-
thenticate users, it will also accept ones granted to any
other application. Figure 1 illustrates an impersonation
attack that exploits this vulnerability: Alice visits Mal-
lory’s website (step 1), logs in using Facebook SSO (2),
and receives an access token from Facebook (3). Then,
Mallory’s client-side code running in Alice’s browser
forwards the access token to Mallory (4), which presents
the token to a vulnerable application’s server (5). After
confirming the token represents Alice, Foo’s application
server authenticates Mallory as Alice (6).

1. Visit 

3. Issue credentials 

4. Forward  
credentials 

5. Reuse credentials 

6. Authenticated 

Facebook User 

Mallory 
Foo app server 

2. Login 

Figure 1: OAuth credential misuse

Signed request misuse. Sometimes developers have
chosen the correct OAuth credentials to use, but still end
up with a vulnerable implementation. One way this hap-
pens is when information decoded from a signed request
is used but the signature is never checked using the
app secret. The attack to exploit this vulnerability is

2
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similar to the previous one, except that Mallory needs
to reuse the signed request in addition to access token.

App secret leak. When a developer registers an appli-
cation with Facebook, she receives an app secret. It
is essential for the application owner to keep it a se-
cret because the app secret is used as the key to cre-
ate signed requests and to access many other privileged
functionalities. However, careless developers may reveal
this secret to clients, especially when using code flow to
authenticate users. By design, the code and app secret
must be sent from the application’s back end server to
Facebook in exchange for an access token. When this
exchange is carried out through the client instead of the
server, app secret is exposed to any malicious client.

User OAuth credentials leak. The last two vulnerabili-
ties both leak a user’s OAuth credentials. When the Face-
book OAuth landing page contains third-party content,
requests to retrieve those contents will automatically in-
clude OAuth credentials in the referer header, which
leaks them to the third-party. To thwart this leakage,
Facebook offers a layer of protection by only allowing
access token and signed request to appear in the URL
fragments, which are not visible in the referer header.
Therefore only code can be leaked via referer unless the
application intentionally pulls the credentials and puts it
in the URL1. In addition, credentials can be exfiltrated
by third-party scripts if they are present in the page con-
tent. If a malicious party is able to obtain these creden-
tials, it could carry out impersonation attacks or perform
malicious actions using permissions the user granted the
original application, such as posting on the user’s time-
line or accessing sensitive information. Note the differ-
ence between embedding OAuth credentials in the URL
and in the body content is that the former will directly
leak them to third parties, while the latter only leaks the
credential when the embedded third party code accesses
it explicitly.

2.3 Related Work

Our work builds on extensive previous work on automat-
ically testing applications for vulnerabilities. We briefly
describe relevant approaches next, as well as previous
works that analyze vulnerabilities in SSO services.

Program analysis. Program analysis techniques such as
static analysis [3] and dynamic analysis including sym-
bolic execution [7, 17] automatically identify vulnera-
bilities with fast testing speed and good code coverage.
Runtime instrumentation techniques such as taint track-
ing [11] and inference [18] also help to safeguard sensi-

1Surpsingly, we found several sites doing this (e.g., dealchicken.com
and bloglovin.com).

tive source-sink pairs. However, these techniques require
white-box access to the application (at least at the level of
its binary), which is not available for remote web appli-
cation testing. Automated web application testing tools
that work on the server implementation [1, 8, 16] do not
apply to large-scale vulnerability testing well. They ei-
ther require access to application source code or other
specific details such as UML or application states. For
our purposes, the test target (application server imple-
mentation) is only available as a black box.

Automated security testing. Penetration testing is
widely used to check applications for vulnerabilities [15,
28]. The tester analyzes the system and performs sim-
ulated attacks on it, often requiring substantial manual
effort. More automated testing requires an oracle to de-
termine whether or not a test failed. Sprenkle et al.
developed a difference metric by comparing two web-
pages based on DOM structure and n-grams [21] and im-
proved results using machine learning techniques [22].
SSOScan also requires an oracle (Section 3.2) to deter-
mine session identity. For our purposes, a targeted oracle
works better than their generic approach.

Automated GUI testing. SSOScan is also closely re-
lated to automated GUI testing. The GUI element trig-
gering approach we take shares some similarities with re-
cent works to simulate random user interactions on GUI
element to explore application execution space on An-
droid system [14], native Windows applications [29], and
web applications [5, 10]. Their common goal is to ex-
plore app execution space efficiently to discover buggy,
abnormal or malicious behavior. By contrast, our goal is
to drive the application through a particular SSO process
rather than explore its execution space. Further, we need
the tests to proceed fast enough for large-scale evalua-
tion. Since each simulated user interaction with the web
application involves round-trip traffic and a non-trivial
delay to get the response, our primary focus is to develop
useful heuristics to quickly prune search space before
triggering any user interactions.

SmartDroid [32] and AppIntent [31] both aim to re-
cover sequences of UI events required to reach a par-
ticular program state or follow an execution path ob-
tained from static analysis. These approaches target An-
droid applications and rely on client-side information
that is not available for our web application scanning
tool, where the necessary state only exists on the (inac-
cessible) server side.

Human cooperative testing. Off-the-shelf testing tools
like Selenium [19] and TestingBot [24] can be used to
discover bugs in web applications under developers’ as-
sistance. These tools replay user interactions based on
testing scripts that are manually created by the applica-

3



498 23rd USENIX Security Symposium USENIX Association

tion developer. BugBuster [6] offers some automatic web
application exploration capabilities, but still does not un-
derstand the application context enough to perform any
non-trivial actions such as those involving authentication
and business logic.

To reduce developer effort, Pirolli et al. [13], Elbaum
et al. [9], and the Zaddach tool [12] show promising re-
sults by collecting interactions from normal users and re-
playing them to learn application states and invariants for
vulnerability scanning. These works do not require extra
manual effort from developers to write testing script or
specify user interactions. However, one potential prob-
lem these works fail to address is user’s privacy con-
cerns when submitting interactions. This could be es-
pecially sensitive when the actions involve passwords or
payments. SSOScan avoids this problem and is comple-
mentary to this line of work — SSOScan attempts to scan
applications in a fully automatic fashion and does not re-
quire traces from any party.

Single sign-on security. Single sign-on has emerged as
an important security service and has been well-studied
in recent years. Previous works have discovered prob-
lems in protocols, bugs in SDK code and missed assump-
tions in developers’ implementations [4, 20, 23, 25, 27].
Automated scanning is especially valuable for vulnera-
bilities that cannot be simply fixed by upgrading SDKs
or improving the protocols, but stem from mistakes inte-
grating the SSO service.

Integuard [30] and AuthScan [2] have similar goals
with SSOScan. Integuard infers invariants across re-
quests and responses and uses them to perform intru-
sion detection on future activities. AuthScan [2] is an
automated tool to extract specifications from SSO imple-
mentations by using both static program analysis and dy-
namic behavior probing. Our goals differ in that we focus
on detecting specific vulnerabilities rather than generic
ones. This enables us to establish clear automation goals
and build well-defined state machines for the scanner,
and removes the uncertainties the previous works incur
when inferring invariants or modeling unknown func-
tions. The drawback is our approach relies on knowledge
of particular vulnerabilities. For many integrated web
services, including SSO, many vulnerabilities are known
or can be obtained using systematic explication [27].

3 SSOScan

SSOScan consists of two main parts: the Enroller and
the Vulnerability Tester. The Enroller automatically reg-
isters two test accounts at a web application using Face-
book SSO. The Vulnerability Tester simulates attacks
and monitors traffic to test for each vulnerability. In this
section, we describe the general workflow of these mod-
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Figure 2: Enroller Overview.
Ovals represent testing states, curved rectangles represent different
modules in our tool, and diamonds represent control flow decisions.

ules necessary to understand the results in Section 4, but
defer the details of our heuristics to Section 5.

3.1 Enroller
Figure 2 shows the workflow of the Enroller. Given a
target web application, our tool first removes all cook-
ies from the browser and navigates to the target URL.
A short delay after the page has fired its onload event,
the SSO button finder (Section 3.1.1) analyzes the DOM
and outputs the most likely candidate elements for SSO
button. The Enroller then simulates clicks on those ele-
ments, monitoring traffic to listen for the Facebook SSO
traffic pattern. Once a click or sequence of clicks is found
that produces the recognizable SSO traffic, SSOScan au-
tomatically logs into Facebook and grants the requested
permissions to the application.

About 44% of sites we tested still require a user to reg-
ister when using SSO, so it is important to automate this
process. SSOScan combines heuristics with random in-
puts to fill in and submit the forms (Section 3.1.2), and
then uses an oracle (Section 3.2) to determine if the sub-
mission succeeds. If the oracle deems the registration to
be a failure, the Enroller tries using different strategies
(Section 5) until either the oracle passes or a threshold
level of effort is exceeded. The entire process succeeds
for 80% of the websites using Facebook SSO in the top
10,000 sites (Section 4 presents detailed results).

3.1.1 SSO Button Finder

A typical starting page, taken from huffingtonpost.com,
is shown in Figure 3. SSOScan needs to first find and
click the “Log in” button on the main page, and then the
“Log in with Facebook” button on the overlay that pops
up afterwards. As illustrated in Figure 4, SSOScan first
extracts a list of qualifying elements from all nodes in
an HTML page, and then extracts content strings from
such elements. The Button Finder relies on the assump-
tion that developers put one of a small pre-defined set

4



USENIX Association  23rd USENIX Security Symposium 499

of expected words in the text content or attributes of the
SSO button. It computes a score for each element by
matching its content with regular expressions such as
[ Ll ][ Oo][Gg][IiOo][Nn] which indicates its resemblance
to “login”. SSOScan forms a candidate pool consisting
of the top-scoring elements and triggers clicks on them.
(Section 5 describes the heuristic choices SSOScan uses
to filter elements and compute scores.)

3.1.2 Completing Registration

The required interactions to complete the registration
process after single sign-on vary significantly across web
applications. They range from simply clicking a submit
button (e.g., Figure 5, in which all input fields are pre-
populated using information taken from the SSO pro-
cess), to very complicated registration processes that in-
volve interactively filling in multiple forms.

SSOScan attempts to complete all forms on the SSO
landing page by leaving pre-populated fields untouched
and processing the remaining inputs in the order of ra-
dios, selects, checkboxes and finally text inputs. We
found this ordering to be very important to achieve
higher automation success, as some forms may dynami-
cally change what needs to be filled upon selecting differ-
ent radio or select elements. Processing these elements
first allows SSOScan to rescan for dynamically generated
fields and process them accordingly.

For radio and select elements, SSOScan randomly
chooses an option; for checkboxes, it simply checks
all of them. For text inputs, SSOScan tries to infer
their requirements using heuristics and provide satisfac-
tory mock values. Once all the inputs have been filled,
the next step is to reuse the SSO Button Finder (Sec-
tion 3.1.1) with different settings designed to find submit
buttons. After SSOScan attempts to click on a submit
button candidate, it refers to the oracle to determine if
the entire registration process is successful.

1 
2 

Figure 3: SSO Buttons (huffingtonpost.com)

             
             

String 
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Figure 4: SSO button finder workflow

3.2 Oracle

The Oracle analyzes the application and determines
whether it is in an authenticated state, and if so, further
identifies the session identity. This module is necessary
for SSOScan to decide if a registration attempt is suc-
cessful. It is also used by the Vulnerability Tester to de-
termine if a simulated impersonation attack succeeds.

The key observation behind the Oracle is that web ap-
plications normally remove the original login button and
display some identifying information about the user in
an authenticated session. For example, after a successful
registration many websites display a welcome message
that includes the user’s first name.

After the page finishes loading, the Oracle searches
the entire DOM and document.cookie for test account
user information (e.g., names, email, or profile images).
We evaluate the correctness of our assumptions and ef-
fectiveness of our Oracle in Section 4.2.

3.3 Vulnerability Tester

After the Enroller successfully registers two test ac-
counts, control is passed to the Vulnerability Tester
which checks the target application for the vulnerabilities
described in Section 2.2. We use two different probing
approaches to cover the five tested vulnerabilities: simu-
lated attacks and passive monitoring.

Simulated Attacks.The two credential misuse vulnera-
bilities are tested using simulated impersonation attacks.
We describe how this is done for signed request misuses;
the method for checking access token misuses is similar.

Figure 5: Registration Form (espn.go.com).
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To set up the tests, we created a test application Mal
which uses Facebook SSO, and obtained Alice’s sign-
ed request for Mal. This mimics the scenario where
Alice is tricked into visiting and signing into an arbi-
trary malicious website using Facebook. After the ac-
count registration finishes, we use Bob’s credentials to
sign into Facebook for target application, but replace the
signed request in Facebook’s response with the prior re-
sponse received for Alice. For consistency, we also re-
place all access tokens found in the traffic.

The attack is successful if Bob is able to login as Al-
ice using the replayed signed request. The Vulnerability
Tester deems the site vulnerable if the Oracle determines
that Alice is logged in after the simulated attack.

Passive Monitoring. The three credential leakage vul-
nerabilities are detected using passive approaches. For
brevity, we only explain how leaks through the referrer
header are detected; the other leaks are detected similarly
by observing network traffic and web page contents.

To check if an application leaks the user’s OAuth cre-
dentials through the referrer header, SSOScan monitors
all request data during the account registration process
and compares each referrer header to OAuth credentials
recorded in earlier stages. If a match is found, SSOScan
then checks if the requesting page contains any third-
party content such as scripts, images, or other elements
that may generate an HTTP request. SSOScan reports a
potential leakage when credentials are found in the refer-
rer header for a page that contains third-party content.

4 Results

We evaluated SSOScan by running it on the list of the
most popular 20,000 websites based on US traffic down-
loaded from quantcast.com as of 7 July 2013. Of those
20,000 sites, 715 of the sites are shown as hidden profile
(that is, no URL is given, thus excluded from our study).

We ran SSOScan on the remaining 19,285 sites in
September 2013, and found that homepages of 1372 sites
failed to load during two initial attempts (most likely due
to either expired or incorrect domain name, server error,
or downtime). We excluded these sites from our data set,
leaving a final test dataset containing 17,913 sites.

Completing the tests took about three days, running 15
concurrent sessions spread across three machines. The
average time to test a site is 3.5 minutes. We limited the
maximum stalling time for each site on any one module
to four minutes, and the overall testing time to 25 min-
utes per site. If this timeout is reached, SSOScan restarts
and retries a second time before skipping it. We ran extra
rounds on tests that failed or stalled during initial round
until either the test is completed or the four rounds max-
imum limit has been reached. The extra rounds involved

Not Vulnerable 
77.4% 

Buggy  
2.3% 

Valid Top 20,000 sites 

No Facebook  
SSO, 83.1 % 

Timeout/error 7.6% 

Facebook  
SSO, 9.3% 

Vulnerable 
20.3% 

1660 Sites using Facebook SSO 

Figure 6: Results overview

fewer sites (<10%) and took a week to complete running
on one machine with four concurrent sessions.

In July 2014, we re-ran the tests on the vulnerable sites
to see how many sites had corrected the vulnerabilities.
The results from that scan are reported in Section 6.2.

4.1 Automated Test Results

Figure 6 presents results purely based on automatic tests
run by SSOScan. SSOScan found a total of 1660 sites
using Facebook SSO among the 17,913 sites (9.3% of
the total). Figure 7 shows the number of Facebook SSO
supported sites, sites that misuse credentials, and sites
that leak credentials distributed by site ranking. The dot-
ted lines on top of the bars show the average stats of all
sites that are more popular than that rank. In Section 4.3,
we report on our manual analysis on failed tests for sites
ranked in the top 10,000.

Facebook SSO integration. Figure 7 (a) shows that
more popular sites are more likely to integrate Facebook
SSO. Of the top 1000 sites, 270 (27%) of them include
Facebook SSO, compared to only 52 out of the 1000
lowest-ranked sites in our dataset. This supports our be-
lieve that covering the top-ranked 20,000 websites is suf-
ficient to get a clear picture of prevailing Facebook SSO
usage since less popular sites are both less visited and
less likely to use Facebook SSO.

Faulty implementations. To implement Facebook SSO,
an application must be configured correctly in the Face-
book developer center. Using incorrect parameters to call
the SSO entry point also result in errors that will prevent
any user from authenticating to that application through
SSO. Such cases, automatically identified by SSOScan,
were more common than we expected. The most popular
errors include setting the application to ‘sandbox’ mode
(for development stage only) in the developer center, or
providing a wrong application ID. SSOScan found 39
(2.3% out of 1660 sites that incorporate Facebook SSO
buttons) sites that display visible Facebook SSO buttons
but have implementations so buggy that no user could
ever login using them. A possible explanation is that the
buttons are there for SEO purposes and the developers
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Figure 7: Facebook integration results by site rank

never actually bothered to implement it, or the develop-
ers simply copied and pasted an SSO snippet customized
for another application without ever testing it.

Vulnerability trends. We found 202 sites (12.1%) that
misuse credentials (126 of which are misusing both ac-
cess token and signed request) and 146 sites (8.6%) that
leak Facebook SSO credentials (of which 72 sites are
leaking through both referrer headers and DOM). A to-
tal of 345 sites (20.3%) suffered from at least one of the
five tested vulnerabilities, and 3 sites suffered from both
credential misuse and leakage problems.

It is also worth noting that SSOScan did not find any
sites leaking their app secret to the public by calling the
token exchange API on the client side. To verify that
we implemented the check correctly, we have confirmed
that SSOScan does correctly identify this vulnerability
on our manually-crafted faulty application. This is an in-
teresting result, especially compared to the high number
of sites that have at least one of the other vulnerabilities.
We suspect this is partly due to explicit warnings in the
documentation and the increased effort required to actu-
ally implement the token exchange on the client side.

As shown in Figure 7 (b) and (c), more popular sites
appear to be more likely to have credential misuse vul-
nerabilities, while less popular sites tend to have more
credential leakage problems. This fact certainly raises
concern — credential leakage could potentially do dam-
age to users’ Facebook accounts, and it would be hard to
contact numerous low-profile problematic sites to have
them all fixed. The victim’s Facebook account is in jeop-
ardy if any of the applications he or she uses have such
problem. Even though credential misuse cannot harm

Facebook accounts directly, the fact that such vulnera-
bilities exist in high-profile websites is worrisome, as im-
personation attacks carried against sites with millions of
users have more severe consequences thank similar at-
tacks on lower-profile sites.

Of the top-1000-ranked sites, 60 of the 270 (22.2%)
that support Facebook SSO are found to have at least one
vulnerability. The vulnerability rate is 21.3% across all
sites in the top 10,000 and 18.5% for sites ranked from
10,001 to 20,000. This overal vulnerability rate suggests
that development practices at larger companies do not ap-
pear to be more stringent (at least with respect to SSO)
than they are at less popular sites.

As we do not have access to server side source code,
we cannot measure how reusing code may positively or
negatively affect the vulnerability trend. However, we
did notice that some sites use fourth party services (e.g.
Janrain, Gigya) to implement the Facebook SSO. In such
scenarios, the user effectively does two SSO processes
during authentication — the user, Facebook (IdP) and
Janrain (RP) initially; the user, Janrain (IdP) and the true
relying party afterwards. As the Facebook SSO process
is entirely handled by the fourth party and is hidden to the
relying party, the RP’s behavior is not relevant to this vul-
nerability. We have manually tested both Janrain and Gi-
gya’s Facebook SSO implementation for credential mis-
use vulnerabilities and confirmed that both of them cor-
rectly implement the process by only using code flow to
authenticate users. As a result, sites using these services
contribute to a lower vulnerability rate. Note that the RP
would still need to implement the second SSO process
correctly to avoid vulnerabilties, but SSOScan currently
does not check IdPs other than Facebook.

7



502 23rd USENIX Security Symposium USENIX Association

4.1.1 Front-end Integration

There are three basic client-side methods to integrate
Facebook SSO: a JavaScript SDK, a pre-configured wid-
get, or a custom implementation. (We have no way to
determine how the developers are integrating Facebook
SSO at the back end.) We used SSOScan to aggregate
front-end integration choices and compare them with
vulnerability reports. Table 1 summarizes the results.
Websites using client side SDKs and pre-configured wid-
gets are more likely to misuse credentials (29.1% and
15.5% vs. 1.3% in non SDK/widget implementations).
Our guess is that this is due to the way SDKs and widgets
conveniently expose raw access token, signed request,
or even user name Facebook ID values. This convenience
may lead to the developers to neglect to check the signa-
ture and the intended audience of the credential. How-
ever, our results also show that websites using SDKs and
widgets are better in hiding credentials (3.6% and 2.2%
compared to 12.4% vulnerable rate in SDK/widget im-
plementations). This is likely because such applications
use the Facebook-provided landing page which has safe
redirect URLs and no third-party content. Applications
built this way are secure unless the developers explicitly
add the credentials in the page content or URL.

4.1.2 Examples

We describe two examples of vulnerabilities found by
SSOScan here to illustrate the potential risks. Section 6
discusses our experiences reporting vulnerabilities to site
owners and Facebook.

Match.com. Ranked 118th on the list, Match.com is a
popular online dating website. SSOScan revealed that
match.com is also vulnerable to signed request replace-
ment attacks. To use match.com services, users need
to provide sensitive information including their birthday,
location, photos, personal interests, and sexual orienta-
tion. Impersonators will not only have access to this in-
formation, but also learn whom the victim is dating and
possibly the time and location of the dates.

Fodors.com. Fodor’s is a travel advice website that is
the 217th-ranked US site. Its redirection landing page
contains access token information along with some other

Method Number Misuse Leakage
SDK 578 29.1% 3.6%

Widget 132 15.5% 2.2%
Custom Code 950 1.3% 12.4%

All 1660 12.1% 8.6%

Table 1: Rate of credential misuse and credential leakage
for different Facebook SSO front-end implementations

third-party scripts in its content. The scripts come from
various sources including quantserve.com, fonts.com,
yahooapis.com, and multiple domains owned by Google.
The permission Fodor’s requests includes user’s basic in-
formation, email address, and more importantly, permis-
sion to post to user’s wall on the his or her behalf. This
means if the access token is leaked to a malicious party,
it can post to a user’s Facebook wall without consent in
addition to accessing the user’s basic information.

4.2 Detection Accuracy
To evaluate the detection accuracy of SSOScan, we sam-
pled test cases from all results (including sites reported
to have no Facebook SSO support, secure and vulnera-
ble cases) and manually examined them. We consider
two types of mistakes: misreporting whether the site
integrates Facebook SSO, and incorrectly determining
whether or not a Facebook SSO-enabled website exhibits
a vulnerability.

Facebook Login Detection Correctness. SSOScan
searches SSO button based on heuristics and cannot
guarantee success for all websites. Indeed, it is not possi-
ble for anyone to determine with complete confidence if
a website uses Facebook SSO by just browsing the site.
To roughly measure how many Facebook SSO-enabled
websites were missed by SSOScan, we randomly sam-
pled the 100 sites that were reported by SSOScan to have
no Facebook SSO support and manually examined them.
To make the samples representative of the whole set, we
picked one site out of every 200 sites ordered by their
rank. From manually investigating these 100 sites, we
could only find one site that included Facebook SSO but
was missed by SSOScan. As we introduce later in Sec-
tion 6, we also deployed SSOScan as a web service that
is made available to use in our research group. The web
service has received a total of 69 valid submissions so far
and we have also manually examined the vulnerability
reports.2 We found four cases (5.8%) where a submitted
site included Facebook SSO but SSOScan was not able
to trigger it.

The sites that SSOScan fails to find Facebook lo-
gin present unusual interfaces which our heuristics are
not able to navigate to. Specifically, oovoo.com and
bitdefender.com do not show any login button on its
homepage, but instead the user needs to click a ‘my ac-
count’ button to initiate the login process. The sears.com
site displays a login button on its homepage, but the SSO
process is not initiated until the user interacts with the
popup window three times, which exceeds the maximum

2These have mostly been sites suggested by people we have demoed
SSOScan scan to, since the service has not yet been publicized. Hence,
it is a small and non-representative sample, so not clear what we can
conclude from this at this point.
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click depths (two) in this evaluation. We have also seen
one case (coursesmart.com) in which the login process is
rather typical, but SSOScan still missed the correct login
button (that button is scored the 4th highest while SSO-
Scan only attempts to click the top 3 candidates.). Most
of these issues may be addressed with more relaxed re-
strictions and more regular expression matching as de-
scribed in Section 5.2. Finally, our prototype implemen-
tation is limited to English-language websites due to its
string matching algorithm, but could be extended to in-
clude keywords in other languages.

SSOScan may also incorrectly conclude that a web-
site supports Facebook SSO when it does not. We
have seen sites (e.g., msn.com) that only use Facebook
SSO to download user activities and display them on
the page, but do not integrate their identity system with
Facebook SSO. Although SSOScan is designed to skip
searching on typical Facebook-provided social plugins
and widgets, non-standard integration of such function-
alities may rarely lead to false positives.

Vulnerability Status Correctness. Since SSOScan sim-
ulates potential attacks and verifies their success or fail-
ure, detection is likely to be highly accurate. Never-
theless, we consider several possible reasons that might
cause false positives/negatives to be reported.

SSOScan should be able to capture all credential leak-
age vulnerabilities with no false positives. A false neg-
ative may occur since SSOScan only looks for exact
matches to the original OAuth credential string, so it will
not report a leakage if the credential is slightly trans-
formed or encoded. Further, SSOScan only observes
traffic involving the web client, so does not detect appli-
cation that leak OAuth credentials outside the SSO pro-
cess.

SSOScan only reports a credential misuse vulnerabil-
ity when it can successfully execute an impersonation
attack. So, the only risk for incorrect reports is if the
Oracle incorrectly determines the session identity. We
designed the Oracle to minimize this risk. For example,
information for the test account is chosen carefully to
be unlikely to appear otherwise but to be close enough
to real names to pass sanity checks. For example, the
randomly generated name “Syxvq Ldswpk” was rejected
by a small number of websites, but “Jiskamesda Qua-
narista” always passed sanity checks and only appeared
in an authenticated session in all of our tests. Barring an
unlikely name collision, there does not appear to be any
way SSOScan would produce a false positive credential
misuse report.

The Oracle checks the whole response for identifying
information instead of only the DOM content to han-
dle sites which only embed such information in first-
party cookies after logging in. In some rare cases, these

cookies could be issued even before SSOScan finishes
registration forms. This means that before the Enroller
searches for registration forms to fill in, the Oracle deems
registration as unnecessary because it concludes that the
application is already in an authenticated state. Although
SSOScan is able to proceed and determine vulnerability
status, the application never enters an authenticated state
and false negatives might occur.

Trusted Third-Party Domains. For credential leakage
vulnerabilities, SSOScan reports an application as vul-
nerable if it identifies visible credentials co-existing with
any content or script that comes from any origin other
than the host or Facebook. This could overestimate the
vulnerable sites because the host may own other domains
and serve content over them, which should not be consid-
ered untrusted. For example, content delivery networks
and sub-company scenarios (e.g., cnn.com embedding
content from turner.com which owns CNN) are common
among popular websites.

4.3 Automation Failures

For about 19% of the top 10,000 tested site that include
functional Facebook SSO, SSOScan is not able to fully
automate the checking process. Figure 8 shows the dis-
tribution of rank of failed test websites.

To better understand the reasons why SSOScan fails,
we manually studied all 228 failed cases reported by
SSOScan for sites ranked in the top 10,000. We found
that although 47 out of these 228 cases set their Face-
book application configurations and SSO entry points
properly, they never respond to credentials returned by
Facebook SSO, which means no users would be able to
successfully log into these sites through Facebook SSO.
Excluding these 47 left us a total of 181 failure cases.

Registration automation failure. By far the most com-
mon reason for SSOScan to fail is due to complicated or
highly-customized registration process. We found 43.7%
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Failure reason Number Percent
linking/subscription 51 28.1%

CAPTCHAs 34 18.8%
identity invisible to oracle 28 15.5%

atypical input elements 20 11.0%
atypical submit buttons 19 10.5%

email verification 10 5.5%
non-HTTPS submission forms 9 5.0%

other (e.g., timeouts) 10 5.5%
Total failures 181 100.0%

Table 2: Automation Failure Causes (top 10,000 sites)

of the sites that implement Facebook SSO still require
users to perform additional actions to complete the reg-
istration (roughly evenly distributed by site popularity).
SSOScan failed to complete registration on 143 (33.6%)
of them. Table 2 shows the major reasons contributing
to this failure ordered by their occurrences: 1) sites that
require SSO users to link to an existing account or pro-
vide payment information to subscribe to the service;
Currently SSOScan cannot handle the “linking” action:
automatically registering a “traditional” account and per-
form the linking poses an out-of-scope challenge — do-
ing so often requires solving CAPTCHAs3. 2) registra-
tion forms after the SSO process include CAPTCHAs;
3) special input elements (e.g. div, span or image as op-
posed to input) cannot be found automatically, or spe-
cial requirements for the input that cannot be fulfilled;
4) sites where the registration submission button cannot
be located; 5) sites that requires users to confirm email
addresses before continuing (usually this involves click-
ing a link in an email sent by the server to the user’s
email address); and 6) sites that insecurely send regis-
tration data using a non-HTTPS form which causes the
testing browser to pop up a warning and stall.

Oracle confusion. SSOScan may also fail because the
oracle reports failure (15.5%), which occurs when it de-
tects the login button no longer exists after Facebook
SSO but cannot identify the session identity. We man-
ually analyzed such cases and found the biggest obstacle
is that the application homepage does not include any
identifying information at all. For example, instead of
showing ‘Welcome, {username}’, it shows ‘Welcome,
customer’, or simply ‘Welcome’, and the user name is
only displayed when accessing the account information

3On the contrary, most tested applications (942 out of 973, see Sec-
tion 4.3) do not ask users to solve CAPTCHAs when an account is
created through SSO. This is a reasonable practice, since the user who
is able to provide a valid Facebook account should have already passed
Facebook’s requirements, and adding additional CAPTCHAs would be
unnecessarily annoying to the users.

page. In other cases, SSO authentication serves only a
sub-service of the website such as its affiliated forum,
but not the homepage which does not display any identi-
fying information.

Others. During the testing, we have also seen a number
of sites with extremely long loading time or inconsistent
network latencies after Facebook SSO or upon navigat-
ing to certain pages. While the latency spikes can likely
be resolved by re-running the tests, frequent long delays
which accumulate to SSOScan’s maximum timeout will
always halt the automation process. For example, this
happens when SSOScan accidentally triggers a browser
confirmation dialog that requires user interaction, or ask-
ing users to stop a busy script execution.

5 Heuristics Evaluation

The ability of SSOScan to successfully complete the
Facebook single sign-on and registration process de-
pends on heuristics it uses to find buttons and fill in regis-
tration forms. Since each attempted button click involves
a high-latency round-trip with the server, early pruning
of search space and prioritization of elements is impor-
tant for achieving successful completion within a reason-
able amount of time. This section describes and analyzes
the heuristics SSOScan uses. We analyze the click data
collected from the top 10,000 sites that use Facebook
SSO and show how tweaking the heuristics significantly
improves performance.

5.1 Options

Each step in the automation process can be controlled
by many options, including filters that can be enabled to
eliminate candidate elements that are unlikely to be the
correct target, weightings that adjust the contribution of
different element properties to its score, and other behav-
ior modifiers. The ones SSOScan used when running the
Section 4 study are described below; additional options
are described in our tech report [33].

Candidate rank. The button finder produces a candidate
element list ranked by score. SSOScan will first attempt
clicking on the highest-ranked element, but sometimes

Figure 9: Example corner cases
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the correct element is ranked lower. This option controls
the maximum number of click attempts SSOScan makes
before succeeding or giving up. For Section 4’s experi-
ment, the lowest ranked element SSOScan clicks is the
third.

Visibility filter. Most websites only expect users to click
on UI elements that are visible, so the button finder in-
cludes a filter that ignores all invisible elements (e.g., el-
ements with zero height or width, shadowed in the back-
ground layer, or those which appear only when the user
scrolls the initial screen position).

Position filter. We noticed that SSOScan sometimes gets
distracted by a search box submit button when complet-
ing the registration form, even if it is able to correctly
fill in the required information in all input elements. To
eliminate these misclicks, the position filter eliminates
the submit buttons which are displayed above any inputs
based on our observation that submit buttons nearly al-
ways come last in a registration form.

Registration form filter. As mentioned earlier in Sec-
tion 4.3, many websites provide two actions for the user
after SSO is completed: ‘create new account’ or ‘link an
existing account’. The latter option requires the user to
enter the user name and password of an existing account
to finish the enrollment process. To avoid these, the reg-
istration form filter rejects a candidate submit button if
its parent form contains only two visible text inputs, one
has the meaning of ‘name’ or ‘email’ and the other is of
type password, since such an element is most likely to be
a submit button of a linking form.

Element content matching. SSOScan searches for ele-
ments whose labels are close to “login with Facebook”
for SSO buttons by default. However, quite a few pop-
ular websites (e.g. coupons.com, right side of Figure 9)
only allow users to “sign up with Facebook” first before
logging in with Facebook. If the user has yet to do this,
attempting to login with Facebook will produce an er-
ror. To handle this situation, SSOScan will search for
elements with semantics similar to “sign up with Face-
book” when it fails to register using the “login” buttons.

A filter may significantly reduce the number of mis-
clicks. However, it may also occasionally exclude cor-
rect elements. For example, not every correct submit
button is below all inputs (e.g., left of Figure 9, and
expedia.com’s submit button would have been missed
with the element position filter enabled).

Hence, SSOScan is designed to explore target sites us-
ing different option settings if enrollment does not suc-
ceed with the initial settings. It will continue to attempt
to complete the enrollment process using different set-
tings until either all configurations have been exhausted
or the timeout threshold is reached. SSOScan avoids do-

ing duplicate work by detecting if a click attempt has
resulted in a previously visited or completely explored
state (see our tech report for details [33]).

5.2 Experiment Setup

In theory, SSOScan could exhaustively trigger clicks on
every element on the page (and on all response pages up
to some maximum depth), which would result in nearly
100% success rate. This would be prohibitively slow in
practice, though, so the number of attempted clicks must
be limited for any realistic test. Given the time needed
for each click attempt, it is important to configure our
scoring heuristics well to maximize the probability of a
successful enrollment in the minimum amount of time.

To gather statistics about the candidate elements, we
modified SSOScan to try all possible strategies even if it
has already found the correct login button and to record
information about all attempted clicks, including for ex-
ample their size, position, visibility to the user, content
string feature and whether it is successful. We define a
click as successful if it is included in any sequence of
clicks from the start page to triggering the SSO process,
regardless of whether it appeared in an attempt that failed
to trigger the process. Because SSOScan skips previ-
ously explored states to avoid redundant effort, it auto-
matically rejects click sequences which involves cyclic
state transitions such as clicking on an irrelevant link and
then clicking on a logo which returns to the initial state.

We set up SSOScan to expand the candidate pool size
for each configuration from 3 to 8, add more matching
regular expressions (e.g., to match the string “forum”
which occasionally leads to a login page on sites where
no login is visible on the start page), and use equal weight
for each of them. We also removed all candidate filters
described in Section 5.1. Our goal is to capture as many
ways to trigger the SSO process as possible by doing
as close to an exhaustive search as is feasible. This in-
creases the time required to scan a typical site to almost
an hour (compared to a few minutes with the setup used
in the full study).

We ran the test on the 973 sites from the top-10,000
ranked sites that were detected by SSOScan to support
Facebook SSO in our main study (Section 4). This bi-
ases the study slightly, since it only includes sites where
the configuration used in the initial study was able to
find Facebook SSO. Ideally we would like to run all top-
10,000 sites to avoid any bias introduced by the data set,
but the significantly increased testing time prohibits us to
do so, and the result of our subsequent study on a random
sample of sites (Section 5.4) supports the claim that only
few sites containing Facebook SSO were missed by the
main study.
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5.3 Results
The experiment recorded 29,539 unique4 click attempts,
of which 5086 (17.2%) are successful (that is, they either
directly trigger SSO, or lead to subsequent clicks that
trigger SSO). This amounts to approximately 30 unique
clicks attempted per site, but the number varies signifi-
cantly based on the site design, from a few up to 109.

Element type and content. Figure 10 shows how dif-
ferent button types and properties impact success rates.
We report the success rate as the number of times that
element appeared as a successful click divided by the to-
tal number of clicks attempted on elements of that type.
The number beneath the element feature gives the total
number of times that type of element occurred as a suc-
cessful click target across all the test sites. For exam-
ple, the BUTTON element type has an excellent success
rate — 60% of all BUTTON candidates are true positives
for the Facebook SSO button. But since it only appears
as a successful click on 78 out of 973 sites in our sam-
ple, it is rarely useful. By contrast, clicking on DIV ele-
ments are much less likely to trigger the Facebook login,
but such elements are more common. The right side of
Figure 10 shows that elements that are directly visible
to the user has a higher success rate than invisible ones,
and elements residing in iframes are twice as likely to be
the correct target as their counterparts in the main page.
These results suggest ways of weighting element types to
improve the scoring function and increase the likelihood
of finding successful clicks early.

4If two clicks happens on pages with the same URL, same element
XPath and same element outerHTML, we consider them the same click.
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Figure 12: Impact of Login Button Size

Figure 11 shows how the success rate varies with at-
tribute content (matched by the given regular expres-
sion). The keyword “oauth” rarely exists in any content,
but when it appears it is very likely to identify the target
element. The result also shows that “FB” is not a good
indicator to predict the target, and we think this is proba-
bly because it is very short and may be used for similarly
named JavaScript variables or random abbreviations.

Both figures include data for the first click only (but do
measure first click success based on subsequent clicks).
Data for the second clicks are noticeably different from
the first, and overall success rates are lower on second
clicks. The most interesting fact we found is that “con-
nect” (39%) and “Facebook” (36%) become the most
successful matches of all regular expressions, followed
by “oauth” at (26%). No other regular expressions ex-
ceed 20% success for the second click.

Element size. Figure 12 gives the cumulative distribu-
tion function of the width and height of target elements.
For example, the 80th percentile width of the true positive
elements is approximately 150px, compared to 300px for
false positive elements. We did not find any significant
difference between first and second clicks, so the figure
combines data from all clicks. The key result is that wide
elements are less likely to be true positives, possibly due
to SSOScan incorrectly including many large underlay
elements as candidates. The result is similar for element
height (the lower two lines in the figure). This suggests
that it would be useful to add a filter function that ex-
cludes candidates whose width is greater than 300px. We
would expect it to eliminate 20% of the false positives
while hardly missing any of the true positives. Alterna-
tively, SSOScan could adjust the final score of a node
according to its size based on these results.

Element position. Figure 13 shows the heatmap of the
login button’s position in a page. The intensity at a lo-
cation indicates the number of elements found there sat-
isfying the property. Only visible elements are shown,
and each successful click only attributes to the intensity
once. All four figures are normalized with respect to their
maximum intensity (i.e., element density).

The figures show an interesting distinction from first
click to second click: successful first clicks almost ex-

12
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First Click, True Positive First Click, False Positive 

Second Click, False Positive Second Click, True Positive 

Figure 13: Login button location heatmap

clusively appear in the upper right corner of the page,
while the second click appears generally in the upper-
middle part of a page. The false positives are relatively
more scattered everywhere on the page5. This result sug-
gest we should assign a higher weight for elements for
these locations, and focus on elements in the vicinity of
the upper right corner for the first click. We could po-
tentially even ignore the other criteria and only consider
position to find login buttons on foreign-language sites.

5.4 Validation
After incorporating what we learned from these results
(e.g., weight adjustment for different button sizes and
types), we reran the SSOScan with the new heuristics
on the sites ranked from 10,000 to 20,000 that SSOScan
determined to support Facebook in the original study,
which were not included in the heuristics evaluation. We
compare the results with those obtained by using a “con-
trol” version of SSOScan, with equal weights on all fea-
tures and no candidate filtering. All other settings such as
candidate pool size are the same between two versions.

The results support the hypothesis that adjusting heu-
ristics according to the results of the evaluation can im-
prove the speed and robustness of detection of Facebook
SSO integrations. The naı̈ve control version missed 72
out of the 601 sites while the new heuristics missed only
two. The average rank of correct candidate elements for
the first and second click is 1.32 and 1.23 for the con-
trol experiment, which improves to 1.23 and 1.17 respec-
tively with the new heuristics.

We also randomly picked 500 random sites from the
sites that SSOScan have yet to find Facebook support
in the experiment in Section 4. We tested the expanded

5The figures also show a clear width boundary. In the experiments
the browser resolution is 1920x1200, and it seems that most develop-
ers’ designs follow a standard width of approximately 960px, which is
why the density appears to be cut off.

heuristics on these sites, and further increased the max-
imum click depth to three to see if more SSO integra-
tions could be found. Individual tests took an average of
31 minutes to finish, but varies significantly from a few
minutes up to an hour (threshold) based on site content.

Four additional sites were found that support Face-
book SSO from this sample in total. Two are found due to
the added regular expression [Ff ][ Oo][Rr][Uu][Mm], one
of which required three clicks to trigger the SSO process.
Another site is found due to the improved candidate rank-
ing algorithm, and the fourth was found using the new
candidate selection method that includes all elements in
the right corner of the page, even if they do not match
any regular expressions. This provides a reasonable de-
gree of confidence that our original study found a large
enough fraction of all the popular sites using Facebook
SSO to be representative, although likely missed around
1% of Facebook SSO sites. We did not try click depths
greater than 3 because of the exponential time growth re-
quired to complete each test, but we feel confident that
the number of Facebook SSO interfaces that can only be
discovered by attempting more than 3 clicks is very low.

6 Discussion

This section concludes by discussing limitations of SSO-
Scan, sharing our experiences reporting vulnerabilities,
and suggesting ways SSOScan can be deployed to help
secure applications integrating SSO services.

6.1 Limitations
While SSOScan is able to automatically synthesize ba-
sic user interactions and analyze traffic patterns, this ap-
proach is not suitable for detecting all types of vulner-
abilities. It only works for vulnerabilities that can be
checked by observing traffic or simulating predictable
user events, and falls short if the vulnerability testing in-
volves deep server-side application scanning or compli-
cated interactions. For example, Wang et al. [27] point
out that the application’s app secret might be leaked to
arbitrary party if any page including Facebook’s PHP
SDK invokes two functions in a specific way. This
type of vulnerability could be checked at the developer
side using program analysis techniques, but cannot be
checked by an external tool with no awareness of the
sites’ implementation details or internal state.

6.2 Communication and Responses
We started contacting the site owners shortly after obtain-
ing our first list of vulnerable sites, manually sending out
notifications to 20 vulnerable websites that we thought
were interesting. We contacted them either by submitting
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a form on their website or through email. The responses
were very disappointing, especially compared with our
previous experiences reporting SDK-level vulnerabilities
to identity providers who tend to respond quickly and ef-
fectively to vulnerability reports [27]. The vulnerabili-
ties found by SSOScan, on the other hand, are primar-
ily in consumer-oriented sites without dedicated security
teams or clear ways to effectively report security issues.

Of the 20 notifications, we only received eight re-
sponses, most of which appear to be automated. After the
initial response, three websites sent us follow-up status
updates. ESPN.com thanked us and told us the message
has been passed onto appropriate personnel, but no fol-
low up actions ensued. One of answers.com’s engineers
asked us for more details, but failed to respond again af-
ter we replied with proposed fix. As of July 2014, both
sites are still vulnerable. Four months after getting the
automated reply from ehow.com, we received a response
stating that they have removed Facebook SSO from their
website due to “content deemed inappropriate”, and we
have confirmed that the Facebook SSO button has in-
deed been removed. Sadly, we think their staff likely
did not (bother to) understand our explanation for the fix
and simply removed the feature.

The other instance where a reported vulnerability was
fixed was for hipmunk.com. Hipmunk was found to be
vulnerable to both the access token and signed request
replacement attacks. We did not get any response from
Hipmunk when the vulnerability was reported through
the normal channels, but through a personal connection
we were able to contact them directly. This led to a quick
response and series of emails with one of Hipmunk’s en-
gineers. We explained how to check the signature of
a signed request, which should fix both vulnerabilities.
However, when they got back to us believing that the fix
was complete, we re-ran SSOScan and found that Hip-
munk was still vulnerable to the access token replace-
ment attack. This meant Hipmunk checked the signa-
ture of signed request after the fix, but never decoded the
signed message body and compared its Facebook ID with
the one returned by exchanging access token. This sur-
prised us, as we implicitly assumed the developers will
consume the signed message body after verifying its sig-
nature, and thus only included ‘verifying signature’ in
the proposed fix. After further explanation, the site was
fixed and now passes all our tests.

Retesting vulnerable sites. We retested all 345 vulnera-
ble sites in May 2014, nine months after our initial exper-
iment, including the 20 websites we had notified directly.
SSOScan found that 48 of the sites had eliminated the
vulnerabilities (including one out of the 20 sites we con-
tacted, mapquest.com). Of the 48 fixed sites, 22 had pre-
viously been diagnosed as credential leaking sites, and

27 were misusing credentials (one site, trove.com, fixed
both problems). We further examined these sites man-
ually to investigate the possible reasons and measures
to fix the problems. As for sites that fixed credential
misuses, we found that many had abandoned the token
or signed request flow in favor of the more secure code
flow, which automatically protects them from credential
reuse attacks. For credential leakages, we found that
a number of sites redesigned their SSO process to fea-
ture a smoother user experience, e.g., replaced traditional
redirection flows with AJAX operations, which naturally
eliminated credential leakage via referer header.

Communication with Facebook. Due to the ineffec-
tiveness of our direct communication with site owners,
we contacted Facebook’s platform integrity team in May
2014. Facebook’s engineers indicated that they are par-
ticularly worried about access token leakage through ref-
erer headers (because a malicious party in possess of the
token may perform privileged Facebook actions on be-
half of the user, which potentially directly harms Face-
book), but are also concerned with the credential misuse
scenario. Facebook asked for a list of the vulnerable ap-
plications and contacted all the sites with access token
leakage and credential misuse vulnerabilities (a total of
95 sites that we were able to re-confirm at the time of re-
port), and informed us that they would “take enforcement
action as necessary” upon the ten sites that are leaking
access tokens in the referer headers. Facebook’s engi-
neers could not provide us with more information about
what this entails or any direct responses they received,
but an SSOScan re-run one month later (early July 2014)
revealed that only four out of the 95 sites had fixed their
problems (of the ten sites leaking access tokens, only
two had been fixed). Even for Facebook, it appears to be
difficult to convince consumer-focused websites to take
security vulnerabilities seriously.

6.3 Deployment

Our experiences reporting vulnerabilities found by SSO-
Scan suggest that notifying vendors individually will
have little impact, which is consistent with experiences
reported by Wang et al. with on-line stores [26]. Hence,
we consider two alternate ways of deploying SSOScan
to improve the security of integrated applications.

App center integration. We believe SSOScan would
be most effective when used by an application distribu-
tion center (e.g. Apple store, Google Play) or identity
provider (e.g., Facebook) as part of the application vali-
dation process. The identity provider has a strong moti-
vation to protect users who use its service for SSO, and
could use SSOScan to identify sites that can compro-
mise those users. It could then deliver warning messages
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to visitors of vulnerable applications during the log in
through Facebook SSO process, or even go so far as to
shut down SSO logins for that application. We also be-
lieve our results can provide guidance to vendors devel-
oping SSO services. The results in Section 4.1 indicate
that sites are more likely to misuse credentials when us-
ing the Facebook JavaScript SDK. With Facebook’s help,
this problem could be mitigated by placing detailed in-
structions inside the SDK. The instructions could be pre-
sented as (non-executable) code in the SDK rather than
as comments, so that the developers cannot get by with-
out reading and removing them.

Checking-as-a-service. Without involving an central-
ized infrastructure, the best opportunity to deploy SSO-
Scan is as a vulnerability scanning service that devel-
opers can use to check their implementations before
their applications are launched (our prototype service at
http://www.ssoscan.org/ can be used for this now). For
a developer-directed test, it would be reasonable to ask
the developer to either guide the tool through the reg-
istration process or provide a special test account that
bypasses this step in cases where it cannot be fully au-
tomated. Even if we assume no aid from the developers,
they should at least be able to tolerate a longer testing
time than is feasible in doing a large-scale scan.

Availability

SSOScan is available at http://www.SSOScan.org/ as a
public web service. The source code is available (linked
from that site) under an open source license.
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Abstract
Repressive nation-states have long monitored telecommunica-
tions to keep tabs on political dissent. The Internet and online
social networks, however, pose novel technical challenges to
this practice, even as they open up new domains for surveil-
lance. We analyze an extensive collection of suspicious files
and links targeting activists, opposition members, and non-
governmental organizations in the Middle East over the past
several years. We find that these artifacts reflect efforts to at-
tack targets’ devices for the purposes of eavesdropping, stealing
information, and/or unmasking anonymous users. We describe
attack campaigns we have observed in Bahrain, Syria, and the
United Arab Emirates, investigating attackers, tools, and tech-
niques. In addition to off-the-shelf remote access trojans and
the use of third-party IP-tracking services, we identify commer-
cial spyware marketed exclusively to governments, including
Gamma’s FinSpy and Hacking Team’s Remote Control Sys-
tem (RCS). We describe their use in Bahrain and the UAE, and
map out the potential broader scope of this activity by conduct-
ing global scans of the corresponding command-and-control
(C&C) servers. Finally, we frame the real-world consequences
of these campaigns via strong circumstantial evidence linking
hacking to arrests, interrogations, and imprisonment.

1 Introduction

Computer security research devotes extensive efforts to pro-
tecting individuals against indiscriminate, large-scale attacks
such as those used by cybercriminals. Recently, the prob-
lem of protecting institutions against targeted attacks conducted
by nation-states (so-called “Advanced Persistent Threats”) has
likewise elicited significant research interest. Where these two
problem domains intersect, however—targeted cyber attacks by
nation-states against individuals—has received virtually no sig-
nificant, methodical research attention to date. This new prob-
lem space poses challenges that are both technically complex
and of significant real-world importance.

In this work we undertake to characterize the emergent prob-
lem space of nation-state Internet attacks against individuals
engaged in pro-democracy or opposition movements. While
we lack the data to do so in a fully comprehensive fashion,

we provide extensive detail from both technical and operational
perspectives as seen in three countries. We view such character-
izations as the fundamental first step necessary for the rigorous,
scientific pursuit of a new problem space.

For our study we draw upon several years of research we
have conducted into cases from Bahrain, Syria and the United
Arab Emirates. We frame the nature of these attacks, and the
technology and infrastructure used to conduct them, in the con-
text of their impacts on real people. We hope in the process to
inspire additional research efforts addressing the difficult prob-
lem of how to adequately protect individuals with very limited
resources facing powerful adversaries.

As an illustration of this phenomenon, consider the follow-
ing anecdote, pieced together from public reports and court
documents.

At dawn on 3/12/13,1 police raided the house of 17-year-
old Ali Al-Shofa, confiscated his laptop and phone, and took
him into custody. He was charged with referring to Bahrain’s
King as a “dictator” ( ����

�
�����) and “fallen one” (��

�����) on a
pseudonymous Twitter account, @alkawarahnews. Accord-
ing to court documents, Bahrain’s Cyber Crime Unit had linked
an IP address registered in his father’s name to the account on
12/9/12. Operators of @alkawarahnews later forwarded a
suspicious private message to one of the authors. The message
was received on 12/8/12 on a Facebook account linked to the
Twitter handle, and contained a link to a protest video, purport-
edly sent by an anti-government individual. The link redirected
through iplogger.org, a service that records the IP address
of anyone who clicks. Analytics for the link indicate that it had
been clicked once from inside Bahrain. On 6/25/13, Ali was
sentenced to one year in prison.

Ali’s case is an example of the larger phenomenon we in-
vestigate: attacks against activists, dissidents, trade unionists,
human rights campaigners, journalists, and members of NGOs
(henceforth “targets”) in the Middle East. The attacks we have
documented usually involve the use of malicious links or e-mail
attachments, designed to obtain information from a device. On
the one hand, we have observed attacks using a wide range of
off-the-shelf spyware, as well as publicly available third-party
services, like iplogger.org. On the other hand, some at-
tacks use so-called “lawful intercept” trojans and related equip-

1Dates in the paper are given MM/DD/YY.
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ment, purportedly sold exclusively to governments by compa-
nies like Gamma International and Hacking Team. The lat-
ter advertises that governments need its technology to “look
through their target’s eyes” rather than rely solely on “passive
monitoring” [1]. Overall, the attacks we document are rarely
technically novel. In fact, we suspect that the majority of at-
tacks could be substantially limited via well-known security
practices, settings, and software updates. Yet, the attacks are
noteworthy for their careful social engineering, their links to
governments, and their real-world impact.

We obtained the majority of our artifacts by encouraging in-
dividuals who might be targeted by governments to provide us
with suspicious files and unsolicited links, especially from un-
familiar senders. While this process has provided a rich set of
artifacts to analyze, it does not permit us to claim our dataset is
representative.

Our analysis links these attacks with a common class of ac-
tor: an attacker whose behavior, choice of target, or use of in-
formation obtained in the attack, aligns with the interests of a
government. In some cases, such as Ali’s, the attackers appear
to be governments themselves; in other cases, they appear in-
stead to be pro-government actors, ranging from patriotic, not
necessarily skilled volunteers to cyber mercenaries. The phe-
nomenon has been identified before, such as in Libya, when
the fall of Gaddafi’s regime revealed direct government ties to
hacking during the 2011 Civil War [2].

We make the following contributions:

• We analyze the technology associated with targeted at-
tacks (e.g., malicious links, spyware), and trace it back
to its programmers and manufacturers. While the attacks
are not novel—and indeed often involve technology used
by the cybercrime underground—they are significant be-
cause they have a real-world impact and visibility, and
are connected to governments. In addition, we often find
amateurish mistakes in either the attacker’s technology or
operations, indicating that energy spent countering these
threats can realize significant benefits. We do not, how-
ever, conclude that all nation-state attacks or attackers
are incompetent, and we suspect that some attacks have
evaded our detection.

• When possible, we empirically characterize the attacks
and technology we have observed. We map out global
use of two commercial hacking tools by governments by
searching through Internet scan data using fingerprints for
command-and-control (C&C) servers derived from our
spyware analysis.

• We develop strong evidence tying attacks to govern-
ment sponsors and corporate suppliers, countering de-
nials, sometimes energetic and sometimes indirect, of
such involvement [3, 4, 5, 6], in contrast to denials [7]
or claims of a corporate “oversight” board [8]. Our scan-
ning suggests use of “lawful intercept” trojans by 11 ad-
ditional countries considered governed by “authoritarian
regimes.” We believe that activists and journalists in such
countries may experience harassment or consequences to
life or liberty from government surveillance.

Finally, we do not explore potential defenses appropriate for
protecting the target population in this work. We believe that to

do so in a sufficiently well-grounded, meaningful manner first
requires developing an understanding of the targets’ knowledge
of security issues, their posture regarding how they currently
protect themselves, and the resources (including potentially ed-
ucation) that they can draw upon. To this end, we are now con-
ducting (with IRB approval) in-depth interviews with potential
targets along with systematic examination of their Internet de-
vices in order to develop such an understanding.

2 Related Work

In the past decades, a rich body of academic work has grown to
document and understand government Internet censorship, in-
cluding nationwide censorship campaigns like the Great Fire-
wall of China [9, 10, 11]. Research on governmental Internet
surveillance and activities like law-enforcement interception is
a comparatively smaller area [12]. Some academic work looks
at government use of devices to enable censorship, such as key-
word blacklists for Chinese chat clients [13], or the Green Dam
censorware that was to be deployed on all new computers sold
in China [14]. We are aware of only limited previous work
looking at advanced threat actors targeting activists with hack-
ing, though this work has not always been able to establish ev-
idence of government connections [15].

Platforms used by potential targets, such as GMail [16],
Twitter [17], and Facebook [18] increasingly make transport-
layer encryption the default, obscuring communications from
most network surveillance. This use of encryption, along with
the global nature of many social movements, and the role of
diaspora groups, likely makes hacking increasingly attractive,
especially to states who are unable to request or compel content
from these platforms. Indeed, the increasing use of encryption
and the global nature of targets have both been cited by pur-
veyors of “lawful intercept” trojans in their marketing materi-
als [1, 19]. In one notable case in 2009, UAE telecom firm Eti-
salat distributed a system update to its then 145,000 BlackBerry
subscribers that contained spyware to read encrypted Black-
Berry e-mail from the device. The spyware was discovered
when the update drastically slowed users’ phones [20]. In con-
trast to country-scale distribution, our work looks at this kind of
pro-government and government-linked surveillance through
highly targeted attacks.

The term APT (Advanced Persistent Threat) refers to a
sophisticated cyber-attacker who persistently attempts to tar-
get an individual or group [21]. Work outside the academic
community tracking government cyberattacks typically falls
under this umbrella. There has been significant work on
APT outside the academic community, especially among se-
curity professionals, threat intelligence companies, and human
rights groups. Much of this work has focused on suspected
government-on-government or government-on-corporation cy-
ber attacks [22, 23]. Meanwhile, a small but growing body
of this research deals with attacks carried out by governments
against opposition and activist groups operating within, as well
as outside their borders. One of the most notable cases is
GhostNet, a large-scale cyber espionage campaign against the
Tibetan independence movement [24, 25]. Other work avoids
drawing conclusions about the attackers [26].
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Country Date Range Range of Targets Number and Type of Samples Distinct Malware C&C’s
Bahrain 4/9/12—

7/31/13
≥ 12 activists, dissidents, trade unionists,
human rights campaigners, and journalists

8 FinSpy samples, 7 IP spy links received via private
message, > 200 IP spy links observed publicly

4 distinct IP addresses

Syria 2011 to present 10–20 individuals with technical back-
grounds who receive suspect files from their
contacts

40–50: predominantly BlackShades, DarkComet,
Xtreme RAT, njRAT, ShadowTech RAT.

160 distinct IP addresses

UAE 7/23/12—
7/31/13

7 activists, human rights campaigners, and
journalists

31 distinct malware samples spanning 7 types; 5 dis-
tinct exploits

12 distinct IP addresses

Table 1: Range of data for the study.

Country Possible Impacts Probable Impacts
Bahrain 1. 3 individuals arrested, sen-

tenced to 1–12 mo in prison
2. Union leader questioned by
police; fired

1. Activist serving 1 yr in
prison
2. Police raid on house

Syria 1. Sensitive opposition com-
munications exposed to gov-
ernment
2. Exfiltrated material used to
identify and detain activists

1. Opposition members dis-
credited by publishing embar-
rassing materials
2. Exfiltrated materials used
during interrogation by secu-
rity services

UAE Contacts targeted via mal-
ware

Password stolen, e-mail
downloaded

Table 2: Negative outcomes plausibly or quite likely aris-
ing from attacks analyzed.

3 Data Overview and Implications

Our study is based on extensive analysis of malicious files and
suspect communications relevant to the activities of targeted
groups in Bahrain, Syria, and the UAE, as documented in Ta-
ble 1. A number of the attacks had significant real-world impli-
cations, per Table 2. In many cases, we keep our descriptions
somewhat imprecise to avoid potential leakage of target identi-
ties.

We began our work when contacted by individuals con-
cerned that a government might have targeted them for cyber-
attacks. As we became more acquainted with the targeted com-
munities, in some cases we contacted targeted groups directly;
in others, we reached out to individuals with connections to tar-
geted groups, who allowed us to examine their communications
with the groups. For Bahrain and Syria, the work encompassed
10,000s of e-mails and instant messages. For the UAE, the vol-
ume is several thousand communications.

4 Case Studies: Three Countries

This following sections outline recent targeted hacking cam-
paigns in Bahrain, Syria and the UAE. These cases have a com-
mon theme: attacks against targets’ computers and devices with
malicious files and links. In some cases the attackers employed
expensive and “government exclusive” malware, while in other
cases, attackers used cheap and readily available RATs. Across
these cases we find that clever social engineering often plays
a central role, which is strong evidence of a well-informed ad-
versary. We also, however, frequently find technical and op-
erational errors by the attackers that enable us to link attacks
to governments. In general, the attacks we find are not well-
detected by anti-virus programs.

Figure 1: E-mail containing FinSpy.

4.1 Bahrain
We have analyzed two attack campaigns in the context of
Bahrain, where the government has been pursuing a crackdown
against an Arab-Spring inspired uprising since 2/14/2011.

The first involved malicious e-mails containing FinSpy, a
“lawful intercept” trojan sold exclusively to governments. The
second involved specially crafted IP spy links and e-mails de-
signed to reveal the IP addresses of operators of pseudonymous
accounts. Some individuals who apparently clicked on these
links were later arrested, including Ali (cf. §1), whose click
appears to have been used against him in court. While both
campaigns point back to the government, we have not as yet
identified overlap between the campaigns; targets of FinSpy
appeared to reside mainly outside Bahrain, whereas the IP spy
links targeted those mainly inside the country. We examine
each campaign in turn.

FinSpy Campaign. Beginning in April 2012, the authors
received 5 suspicious e-mails from US and UK-based activists
and journalists working on Bahrain. We found that some
of the attachments contained a PE (.exe) file designed to
appear as an image. Their filenames contained a Uni-
code right-to-left override (RLO) character, causing Windows
to render a filename such as gpj.1bajaR.exe instead as
exe.Rajab1.jpg.

The other .rar files contained a Word document with an
embedded ASCII-encoded PE file containing a custom macro
set to automatically run upon document startup. Under default
security settings, Office disables all unsigned macros, so that
a user who opens the document will only see an informational
message that the macro has been disabled. Thus, this attack was
apparently designed with the belief or hope that targets would
have reduced security settings.
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Identification as FinSpy: By running the sample using
Windows Virtual PC, we found the following string in mem-
ory: y:\lsvn_branches\finspyv4.01\finspyv2\.
This string suggests FinSpy, a product of Gamma Inter-
national [27]. The executables used virtualized obfusca-
tion [28], which appeared to be custom-designed. We de-
vised a fingerprint for the obfuscater and located a structurally
similar executable by searching a large malware database.
This executable contained a similar string, except it identi-
fied itself as FinSpy v3.00, and attempted to connect to
tiger.gamma-international.de, a domain registered
to Gamma International GmbH.

Analysis of capabilities: We found that the spyware has
a modular design, and can download additional modules from
a command & control (C&C) server, including password cap-
ture (from over 20 applications) and recording of screenshots,
Skype chat, file transfers, and input from the computer’s micro-
phone and webcam.

To exfiltrate data back to the C&C server, a module encrypts
and writes it to disk in a special folder. The spyware period-
ically probes this folder for files that match a certain naming
convention, then sends them to the C&C server. It then over-
writes the files, renames them several times, and deletes them,
in an apparent effort to frustrate forensic analysis.

Analysis of encryption: Because the malware employed
myriad known anti-debugging and anti-analysis techniques, it
thwarted our attempts to attach debuggers. Since it did not in-
clude anti-VM code, we ran it in TEMU, an x86 emulator de-
signed for malware analysis [29]. TEMU captures instruction-
level execution traces and provides support for taint-tracking.

We found that FinSpy encrypts data using a custom imple-
mentation of AES-256-CBC. The 32 byte AES key and 16 byte
IV are generated by repeatedly reading the low-order-4-bytes of
the Windows clock. The key and IV are encrypted using an em-
bedded RSA-2048 public key, and stored in the same file as the
data. The private key presumably resides on the C&C server.
The weak AES keys make decryption of the data straightfor-
ward. We wrote a program that generally can find these keys in
under an hour, exploiting the fact that many of the system clock
readings occur within the same clock-update quantum.

In addition, FinSpy’s AES code fails to encrypt the last block
of data if less than the AES block size of 128 bits, leaving trail-
ing plaintext. Finally, FinSpy’s wire protocol for C&C commu-
nication uses the same type of encryption, and thus is subject
to the same brute force attack on AES keys. While we suspect
FinSpy’s cryptographic deficiencies reflect bugs, it is also con-
ceivable that the cryptography was deliberately weakened to
facilitate one government monitoring the surveillance of oth-
ers.

C&C server: The samples communicated with
77.69.140.194, which belongs to a subscriber of
Batelco, Bahrain’s main ISP. Analyzing network traffic
between our infected VM and the C&C server revealed that
the server used a global IPID, which allowed us to infer server
activity by its progression.

In response to our preliminary work an executive at Gamma
told the press that Bahrain’s FinSpy server was merely a proxy
and the real server could have been anywhere, as part of a claim
that the Bahrain FinSpy deployment could have been associ-

ated with another government [4]. However, a proxy would
show gaps in a global IPID as it forwarded traffic; our frequent
observation of strictly consecutive IPIDs thus contradicts this
statement.

Exploitation of captured data: Since we suspected the spy-
ware operator would likely seek to exploit captured credentials,
particularly those associated with Bahraini activist organiza-
tions, we worked with Bahrain Watch, an activist organization
inside Bahrain. Bahrain Watch established a fake login page
on their website and provided us with a username and pass-
word. From a clean VM, we logged in using these credentials,
saving the password in Mozilla Firefox. We then infected the
VM with FinSpy and allowed it to connect to the Bahrain C&C
server. Bahrain Watch’s website logs revealed a subsequent
hit from 89.148.0.41—made however to the site’s home-
page, rather than its login page—coming shortly after we had
infected the VM. Decrypting packet captures of the spyware’s
activity, we found that our VM sent the password to the server
exactly one minute earlier:

INDEX,URL,USERNAME,PASSWORD,USERNAME FIELD,
PASSWORD FIELD,FILE,HTTP 1,
http://bahrainwatch.org,bhwatch1,watchba7rain,
username,password,signons.sqlite,,
Very Strong,3.5/4.x

The URL provided to the server did not include the path
to the login page, which was inaccessible from the home-
page. This omission reflects the fact that the Firefox password
database stores only domain names, not full login page URLs,
for each password. Repeating the experiment again yielded a
hit from the same IP address within a minute. We inspected
Bahrain Watch’s logs, which showed no subsequent (or previ-
ous) activity from that address, nor any instances of the same
User Agent string.

IP spy Campaign. In an IP spy attack, the attacker aims to
discover the IP address of a victim who is typically the opera-
tor of a pseudonymous social media or e-mail account. The at-
tacker sends the pseudonymous account a link to a webpage or
an e-mail containing an embedded remote image, using one of
many freely-available services.2 When the victim clicks on the
link or opens the e-mail, their IP address is revealed to the at-
tacker.3 The attacker then discovers the victim’s identity from
their ISP. In one case we identified legal documents that pro-
vided a circumstantial link between such a spy link and a sub-
sequent arrest.

Figure 2 illustrates the larger ecosystem of these attacks. The
attackers appear to represent a single entity, as the activity all
connects back to accounts that sent links shortened using a par-
ticular user account al9mood4 on the bit.ly URL shortening
service.

Recall Ali Faisal Al-Shufa (discussed in Section 1), who
was accused of sending insulting tweets from an account

2e.g., iplogger.org, ip-spy.com, ReadNotify.com.
3Several webmail providers and e-mail clients take limited steps to

automatically block loading this content, but e-mails spoofed to come
from a trusted sender sometimes bypass these defenses.

4A Romanization of the Arabic word for “steadfastness.”
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iplogger.org                     

Bahrain Gov't

Al Kawarah News

(Village media) ReadNotify.com

Twitter ID
485500245

Red Sky
(Translator)

Twitter ID
987487705

Twitter ID
485527587

fatoomah85@gmail.com

Sayed YousifMaryam

Yokogawa Union
(Trade union)

Arrested

Clicked
link

Ali Al-Shufa
Arrested

Bit.ly user
Al9mood

ip-spy.com

Sami Abdulaziz
Fired from job

Yokogawa
Middle East

Jehad Abdulla
(Gov't critic)

Salman Darwish
Arrested

M

(Village media)
Clicked

link

feb14truth.webs.com

House raid

Account begins
sending IP spy links

Legend

Consequence AttackerActor PackerSpyware C&C Domain name TargetedInfectionTarget Exploit E-Mail Bait Document

Figure 2: The ecosystem of Bahrain “IP spy” attacks.

@alkawarahnews (Al Kawarah News in Figure 2). An op-
erator of the account forwarded us a suspicious private message
sent to the Al Kawarah News Facebook account from Red Sky.
Red Sky was purportedly arrested on 10/17/12, was convicted
of insulting the King on his Twitter account @RedSky446,
and was sentenced to four months prison.5 When released, he
found that the passwords for his Twitter, Facebook, and e-mail
accounts had been changed, and did not know how to recover
his accounts.

The message that Red Sky’s account sent to Al Kawarah
News included a link shortened using Google’s goo.gl ser-
vice. We used the goo.gl API to access analytics for the link,
finding that it unshortened to iplogger.org/25SX and was
created on 12/8/12. The link had received only one click, which
came from Bahrain with the referrer www.facebook.com.

Ali’s case files contained a request from the Public Prose-
cution for information on an IP address that it had linked to Al
Kawarah News about 22 hours after the link was created. Court
documents indicate that ISP data linked the IP address to Ali,
and on this basis he was sentenced to one year in prison.

Red Sky also targeted M in Figure 2. M recalled click-
ing on a link from Red Sky while using an Internet connec-
tion from one of the houses in M’s village. The house was
raided by police on 3/12/13, who were looking for the sub-
scriber of the house’s internet connection. Police questioning

5According to information we received from two Twitter users, one
of whom claimed to have met Red Sky in prison; another to be a col-
league.

revolved around Tweets that referred to Bahrain’s King as a
“cursed one.” Red Sky had earlier targeted other users with IP
spy links shortened using the al9mood bit.ly account.

The attack on Jehad Abdulla is noteworthy, as the ac-
count’s activity aligned with communities typically critical of
Bahrain’s opposition. However, the account also directly crit-
icized the King on occasion, in one case referring to him as
“weak” and “stingy.” An account linked to al9mood sent Je-
had Abdulla an IP spy link on 10/2/12 in a public message. On
10/16/12, Salman Darwish was arrested for insulting the King
using the Jehad Abdulla account. He was sentenced to one
month in prison, partly on the basis of his confession. Salman’s
father claims that police denied Salman food, drink, and medi-
cal care.

Another account linked to al9mood targeted @YLUBH, the
Twitter account of Yokogawa Union, a trade union at the
Bahraini branch of a Japanese company. @YLUBH received at
least three IP spy links in late 2012, sent via public Twitter mes-
sages. Yokogawa fired the leader of the trade union, Sami Ab-
dulaziz Hassan, on 3/23/13 [30]. It later emerged that Sami was
indeed the operator of the @YLUBH account, and that the police
had called him in for questioning in relation to its tweets [31].

Use of embedded remote images: We identified several
targets who received spoofed e-mails containing embedded
remote images. Figure 2 shows two such cases, Maryam
and Sayed Yousif. The attacker sent the e-mails using
ReadNotify.com, which records the user’s IP address upon

5
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their mail client downloading the remote image.6

While ReadNotify.com forbids spoofing in their TOS,
the service has a vulnerability known to the attackers (and
which we confirmed) that allows spoofing the From address
by directly setting the parameters on a submission form on their
website We have not found evidence suggesting this vulnerabil-
ity is publicly known, but it appears clear that the attacker ex-
ploited it, as the web form adds a X-Mai1er: RNwebmail
header not added when sending through ReadNotify.com’s
other supported methods. The header appeared in each e-mail
the targets forwarded to us.

When spoofing using this method, the original sender ad-
dress still appears in X-Sender and other headers. Accord-
ing to these, the e-mails received by the targets all came from
fatoomah85@gmail.com. A link sent in one of these e-
mails was connected to the al9mood bit.ly account.

In monitoring accounts connected to al9mood, we counted
more than 200 IP spy links in Twitter messages and public
Facebook posts. Attackers often used (1) accounts of promi-
nent or trusted but jailed individuals like “Red Sky,” (2) fake
personas (e.g., attractive women or fake job seekers when tar-
geting a labor union), or (3) impersonations of legitimate ac-
counts. In one particularly clever tactic, attackers exploited
Twitter’s default font, for example substituting a lowercase “l”
with an uppercase “I” or switching vowels (e.g. from “a” to
an “e”) to create at-a-glance identical usernames. In addition,
malicious accounts tended to quickly delete IP spy tweets sent
via (public) mentions, and frequently change profile names.

4.2 Syria
The use of RATs against the opposition has been a well-
documented feature of the Syrian Civil War since the first re-
ports were published in early 2012 [36, 39, 40, 32, 34]. The
phenomenon is widespread, and in our experience, most mem-
bers of the opposition know that some hacking is taking place.
As summarized in Table 3, the attacks often include fake or ma-
liciously packaged security tools; intriguing, or ideological, or
movement-relevant content (e.g. lists of wanted persons). The
seeding techniques and bait files suggest a good understanding
of the opposition’s needs, fears and behavior, coupled with ba-
sic familiarity with off-the-shelf RATs. In some cases attacks
occur in a context that points to a more direct connection to
one of the belligerents: the Syrian opposition has regularly ob-
served that detainees’ accounts begin seeding malware shortly
after their arrest by government forces [41].

Researchers and security professionals have already profiled
many of these RATs, including DarkComet [42, 43], Black-
shades Remote Controller [38], Xtreme RAT [44], njRAT [26],
and ShadowTech [36]. Some are available for purchase by any-
one, in contrast to “government only” FinSpy and RCS. For ex-
ample, Xtreme RAT retails for e350, while a version of Black-
shades lists for e40. Others, like DarkComet, are free. We
have also observed cracked versions of these RATs on Arabic-
language hacker forums, making them available with little ef-
fort and no payment trail. While the RATs are cheaper and less

6YahooMail and the iPhone mail client automatically load these re-
mote images, especially in e-mails spoofed from trusted senders.

sophisticated than FinSpy and RCS, they share the same ba-
sic functionality, including screen capture, keylogging, remote
monitoring of webcams and microphones, remote shell, and file
exfiltration.

In the most common attack sequence we observed, illus-
trated with three examples in Figure 3, the attacker seeds mal-
ware via private chat messages, posts in opposition-controlled
social media groups, or e-mail. These techniques often limit
the world-visibility of malicious files and links, slowing their
detection by common AV products. Typically, targets receive
either (1) a PE in a .zip or .rar, (2) a file download link, or
(3) a link that will trigger a drive-by download. The messages
usually include text, often in Arabic, that attempts to persuade
the target to execute the file or click the link.

The first attacks in Figure 3 date to 2012, and use bait files
with a DarkComet RAT payload. These attacks share the same
C&C, 216.6.0.28, a Syrian IP address belonging to the Syr-
ian Telecommunications Establishment, and publicly reported
as a C&C of Syrian malware since February 2012 [45]. The
first bait file presents to the victim as a PDF containing infor-
mation about a planned uprising in Aleppo. In fact the file is a
Windows Screensaver (.scr) that masquerades as a PDF using
Unicode RLO, rendering a name such as “.fdp.scr” dis-
play to the victim as “.rcs.pdf.” The second bait file is
a dummy program containing DarkComet while masquerading
as a Skype call encryption program, playing to opposition para-
noia about government backdoors in common software. The
third attack in Figure 3, observed in October 2013, entices tar-
gets with e-mails purporting to contain or link to videos about
the current conflict, infecting victims with Xtreme RAT, and
using the C&C tn1.linkpc.net.

For seeding, the attackers typically use compromised ac-
counts (including those of arrested individuals) or fake iden-
tities masquerading as pro-opposition. Our illustration shows
in abstract terms the use of Victim A’s account to seed mal-
ware (“Aleppo Plan”) via (say) Skype messages to Victim(s)
Bn. In the cases of Opp. Member C and NGO Worker
D (here, actual victims, not abstract), targeting was by e-mail
from domains apparently belonging to opposition groups, in-
dicating a potential compromise. One domain remains active,
hosting a website of the Salafist Al-Nusra front [46], while the
other appears dormant. Opp. Member C received a malicious
file as an e-mail attachment, while NGO Worker D was sent a
shortened link (url[.]no/Uu5) to a download from a directory
of Mrconstrucciones[.]net,7 a site that may have been com-
promised. Both attacks resulted in an Xtreme RAT infection.

Interestingly, in the case of the fake Skype encryption
the deception extended to a YouTube video from “IT Se-
curity Lab” [47] demonstrating the program’s purported ca-
pabilities, as well as a website promoting the tool, skype-
encryption.sytes.net. The attackers also constructed a ba-
sic, faux GUI for their “Encryption” program (see Figure 4).
The fake GUI has a number of non-functional buttons like “En-
crypt” and “DeCrypt,” which generate fake prompts. While dis-
tracted by this meaningless interaction, the victim’s machine is
infected with DarkComet 3.3 [32, 33].

Anecdotally, campaign volume appears to track significant

7Obfuscated to avoid accidental clicks on active malware URLs.
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Type Features Examples (RATs)
Security tools Executable files presented as a “tool” often accompanied by justifica-

tions or statements of its value in the targeted seeding, for example on
a social media site, at the download location, or in videos

“Skype Encryption” (DC) [32, 33], “Facebook Security” (cus-
tom) [34], Anti-hacker (DC) [35], Fake Freegate VPN (ST) [36]

Ideologically or
movement-relevant
files

A document or PE as download or attachment with accompanying en-
couragement to open or act on the material, often masquerading as
legitimate PDF documents or inadvertently leaked regime programs.
Frequent use of RLO to disguise true extension (such as .exe or
.scr)

“Names of individuals wanted by the Regime,” (DC) “Aleppo
[uprising] Plan” (DC) [37], important video (BS) [38], “Hama
Rebels Council” document (DC) [39], “wanted persons”
database frontend (custom), movement relevant video (njRAT),
file about the Free Syrian Army (Xtreme RAT)

Miscellaneous tools Tools pretending to offer functionality relevant to the opposition, such
as a fake tool claiming to “mass report” regime pages on Facebook

hack facebook pro v6.9 (DC) [40]

Table 3: Campaigns and RATs employed in Syrian surveillance. BS = Blackshades, DC = DarkComet, ST = Shad-
owTech.

Victim(s) Bn

Account seeds
“Aleppo Plan”

Clicks
file

Arrested

Account seeds
“Aleppo Plan”

Credentials
gained

Dark Comet
SY Gov't

216.6.0.28

SY Malware 
Actors

Opp. Member C

fsa@freesyria.com

E-Mail

Xtreme Rat

NGO Worker D

mohamed@jalnosra.com

E-Mail

 tn1.linkpc.net Mrconstrucciones.net Url.no

“Aleppo Plan”

fsa.zip

Victim A

skype-encription
.sytes.net

“Skype 
Encryption”

Figure 3: A sample from the ecosystem of Syrian malware campaigns.

events in the ongoing conflict. For example, campaigns dwin-
dled and then rebounded within hours after Syria’s 2012 Inter-
net shutdown [48]. Similarly, activity observed by the authors
also dwindled prior to expectation of US-led military action
against Syrian government targets in September 2013. Once
this option appeared to be off the table, the volume of new
samples and campaigns we observed again increased, includ-
ing the recent targeting of NGO workers per Figure 3. We are
aware of only a negligible number of cases of the opposition
using similar RATs against Syrian Government supporters, al-
though evidence exists of other kinds of electronic attacks by
third parties.

Real world consequences. The logistics and activities of
Syria’s numerous opposition groups are intentionally concealed
from public view to protect both their efficacy, and the lives of
people participating in them. Nevertheless, Syrian opposition
members are generally familiar with stories off digital compro-
mises of high-profile figures, including those entrusted with the
most sensitive roles, as well as rank-and-file members. Com-
promise of operational security poses a documented threat to
life both for victims of electronic compromise, and to family
members and associates.

The Syrian conflict is ongoing, making it difficult to assem-

Figure 4: The fake Skype program distracts the victim
with the promise of encrypted communications while in-
fecting their machine with DarkComet.
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ble comprehensive evidence of linkages between government
actors and malware campaigns. Moreover, many individuals
whose identities have been compromised are in prison or oth-
erwise disappeared, and thus unable to relate the evidence pre-
sented to them during interrogation. Still, strong circumstantial
evidence links the use of RATs, phishing, and government ac-
tivity, which we briefly summarize here: (1) many Syrians have
recounted to journalists and the authors how interrogators con-
fronted them with material from their computers. For example:

The policeman told me, “Do you remember when
you were talking to your friend and you told him
you had something wrong [sic] and paid a lot of
money? At that time we were taking information
from your laptop.” [41]

(2) Syrian activists have supplied cases to international journal-
ists [41], where arrests are quickly followed by the social me-
dia accounts of detained individuals seeding malware to contact
lists (Figure 3). (3) Finally, despite the notoriety of the attack
campaigns, including mention of C&C IPs in international me-
dia [45], the Syrian government has made no public statements
about these campaigns nor acted to shut down the servers.

Beyond the ongoing challenges of attribution, these malware
campaigns have a tangible impact on the Syrian opposition, and
generally align with the interests of the Syrian government’s
propaganda operations. The case of Abdul Razzaq Tlass, a
leader in the Free Syrian Army, is illustrative of the potential
uses of such campaigns. In 2012 a string of videos emerged
showing Tlass sexting and engaged in lewd activity in front of
a webcam [49]. While he denied the videos, the harm to his rep-
utation was substantial and he was eventually replaced [50].

4.3 UAE
While the UAE has experienced no recent uprising or politi-
cal unrest, it has nevertheless cracked down on its opposition,
concurrent with the Arab Spring.

The first attacks we observed in the UAE involved a
government-grade “lawful interception” trojan known as Re-
mote Control System (RCS), sold by the Italian company Hack-
ing Team. The associated C&C server indicated direct UAE
government involvement. Over time, we stopped receiving
RCS samples from UAE targets, and instead observed a shift
to the use of off-the-shelf RATs, and possible involvement of
cyber-mercenary groups. However, poor attacker operational
security allowed us to link most observed attacks together.

RCS. UAE activist Ahmed Mansoor (per Figure 5), impris-
oned from April to November 2011 after signing an online pro-
democracy petition [51], received an e-mail purportedly from
“Arabic Wikileaks” in July 2012. He opened the associated at-
tachment, “veryimportant.doc,” and saw what he described as
“scrambled letters”. He forwarded us the e-mail for investiga-
tion.

The attachment exploited CVE-2010-3333, an RTF pars-
ing vulnerability in Microsoft Office. The document did not
contain any bait content, and part of the malformed RTF
that triggered the exploit was displayed in the document.
The exploit loaded shellcode that downloaded a second stage

3-Stage
Exploit Kit

owner.no-ip.biz

Xtreme RAT

RCS

Laptop
infected

Communicated
via E-Mail

Ahmed

Author

“wikileaks”
“veryimportant”

UAE Gov't HackingTeam

E-Mail account
compromised

ar-24.com

CVE-2010-3333

Figure 5: Part of the ecosystem of UAE surveillance at-
tacks.

from ar-24.com, which in turn downloaded spyware from
ar-24.com. We denote this combination as the 3-Stage Ex-
ploit Kit in Figure 5.

The C&C server also ran on ar-24.com. When we ob-
tained the sample in July 2012, ar-24.com resolved to an
IP address on Linode, a hosting provider. Three months later, it
resolved to a UAE address belonging to the Royal Group [52],
an organization linked to the UAE government; it is chaired by
Sheikh Tahnoon bin Zayed Al-Nayhan, a member of the UAE
ruling family and a son of the founder of the UAE.

Identification as RCS: We identified strings in memory
that matched those in a Symantec analysis [53] of RCS (also
known as DaVinci or Crisis), a product of the Italian com-
pany Hacking Team [54]. We also located a structurally sim-
ilar Word document via VirusTotal. The document used the
same exploit and attempted to download a second stage from
rcs-demo.hackingteam.it, which was unavailable at
the time of testing.

Analysis of capabilities: RCS has a suite of functionality
largely similar to FinSpy. One difference was in the vectors
used to install the spyware. We located additional samples (see
§ 5), some of which were embedded in a .jar file that installs
an OS-appropriate version of RCS (Windows or OSX), option-
ally using an exploit. If embedded as an applet, and no exploit
is present, Java displays a security warning and asks the user
whether they authorize the installation. We also saw instances
of the 3-Stage Exploit Kit where the first stage contained a
Flash exploit; in some cases, we could obtain all stages and
confirm that these installed RCS. Some samples were packed
with the MPress packer [55], and some Windows samples were
obfuscated to look like the PuTTY SSH client.

Another difference is in persistence. For example, the RCS
sample sent to Ahmed adds a Run registry key, whereas the
FinSpy samples used in Bahrain overwrite the hard disk’s boot
sector to modify the boot process; the spyware is loaded be-
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fore the OS, and injects itself into OS processes as they start.
The RCS samples we examined also had the ability to propa-
gate to other devices, including into inactive VMWare virtual
machines by modifying the disk image, onto USB flash drives,
and onto Windows Mobile phones. We did not observe similar
capabilities in the FinSpy samples we examined.

Exploitation of captured data: When Ahmed Mansoor re-
ceived the RCS document, he opened it, infecting his computer
(Figure 5). Ahmed subsequently noted several suspicious ac-
cesses to his GMail account using IMAP. Even after he changed
his password, the accesses continued. While corresponding
with Ahmed on his compromised account, an author of this pa-
per discovered that the attackers had installed an application-
specific password [56] in Ahmed’s GMail account, a secondary
password that they apparently used to access his account even
after he changed his main password. The suspicious accesses
stopped after removal of the application-specific password.

Two weeks after this correspondence with Ahmed, one of us
(Author in Figure 5) received a targeted e-mail with a link to
a file hosted on Google Docs containing a commercial off-the-
shelf RAT, Xtreme RAT. The e-mail was sent from the UAE’s
timezone (as well as of other countries) and contained the terms
“veryimportant” and “wikileaks”, just like in the e-mail re-
ceived by Ahmed.

The instance of Xtreme RAT sent to Author used
owner.no-ip.biz for its C&C, one of the domains men-
tioned in a report published by Norman about a year-long cam-
paign of cyberattacks on Israeli and Palestinian targets carried
out by a group that Norman was unable to identify [57]. Three
months after Author was targeted, Ahmed received an e-mail
containing an attachment with Xtreme RAT that talked to the
same C&C server (Figure 5), suggesting that the attackers who
infected Ahmed with RCS may have provided a list of interest-
ing e-mail addresses to another group for further targeting.

Possible consequences: Shortly after he was targeted,
Ahmed says he was physically assaulted twice by an attacker
who appeared able to track Ahmed’s location [58]. He also re-
ports that his car was stolen, a large sum of money disappeared
from his bank account, and his passport was confiscated [59].
He believes these consequences are part of a government in-
timidation campaign against him, but we did not uncover any
direct links to his infection. (Interestingly, spyware subse-
quently sent to others has used bait content about Ahmed.)

Further attacks: In October 2012, UAE Journalist A and
Human Rights activist B (per Figure 6) forwarded us suspi-
cious e-mails they had received that contained a Word docu-
ment corresponding to the first stage of 3-Stage Exploit Kit
(Figure 5). The attachment contained an embedded Flash file
that exploited a vulnerability fixed in Adobe Flash 11.4, loading
shell code to download a second stage from faddeha.com.
We were unable to obtain the second stage or the ultimate pay-
load, as the website was unavailable at the time of testing.
However, the exploit kit appears indicative of Hacking Team
involvement. A page on faddeha.com found in Google’s
cache contained an embedded .jar with the same applet class
(WebEnhancer) as those observed in other .jar files that we
found to contain RCS.

Same IPHosts sample that
talks to C&C

Used by sample
that talks to C&C

dreems.no-ip.ca

upload.bz

hamas.sytes.netfaddeha.com

sn.all-google.com

SpyNet

CVE-2013-0422

njRAT

storge.myftp.org

VB Packer

DarkComet CVE 2012-0158

H.R. activist E

Journalist C

Journalist F

Journalist A,

H.R. activist B

Relative of

political detainee D

Appin

SameIP1 

SameIP1 

njq8

Figure 6: Another part of the ecosystem of UAE surveil-
lance attacks.

Off-the-shelf RATs. We found a file that VirusTotal had
downloaded from faddeha.com, which appeared to be a re-
mote access toolkit known as SpyNet, available for general pur-
chase for 50 Euros [60]. The SpyNet sample communicated
with the C&C hamas.sytes.net.

SpyNet Packing: We found another instance of the first
stage of the 3-Stage Exploit Kit on VirusTotal. The exploit
downloaded a second stage, which in turn downloaded a sam-
ple of SpyNet from maile-s.com. This sample of SpyNet
communicated with the same C&C hamas.sytes.net.
The sample was packed using ASProtect [61]. When run, the
sample unpacks a compiled Visual Basic project that loads, via
the RunPE method [62], an executable packed with UPX [63].
Finally, this executable unpacks SpyNet. SpyNet’s GUI only
offers an option to pack with UPX, suggesting that the attack-
ers specially added the other layers of packing. In some cases,
the Visual Basic project bears the name NoWayTech, which
appears to be an underground RunPE tool, while others are
named SpyVisual, which we have been unable to trace to any
public underground tools, and thus also may reflect customiza-
tion by the attacker. The SpyVisual projects contain the string
c:\Users\Zain\AppData\Local\Temp\OLE1EmbedStrm.wav,
which we used as the fingerprint VB Packer in Figure 6.

Cedar Key attack: The same VB Packer was used in an
attack on Relative of political detainee D and H.R. activist
E in Figure 6. These individuals received e-mails containing a
link to a web page hosted on cedarkeyrv.com impersonat-
ing YouTube. Loading the page greeted the target with “Video
loading please wait . . .” The page redirected to a YouTube
video a few seconds later, but first loaded a Java exploit [64]—a
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known vulnerability with no patch at the time that the e-mails
were sent. Oracle released a patch 12 hours after activists began
receiving these links.

The cedarkeyrv.com domain is associated with an RV
park in Cedar Key, Florida. The website’s hosting company
told us that the site had apparently suffered a compromise, but
did not have further details.

The exploit used in the attack appears to have been origi-
nally posted by a Kuwaiti user, njq8, on an Arabic-language
exploit sharing site [65]. We contacted njq8, who told us
that he had obtained the exploit elsewhere and modified it
prior to posting. The attack downloaded an instance of
SpyNet from isteeler.com (which from our inspection did
not appear to have any legitimate content), which used the
C&C storge.myftp.org. This same C&C occurred in an-
other attack (Figure 6) targeting Relative of political detainee
D; in that case, the payload was a freely-available RAT known
as njRAT, written by the same njq8 as the exploit-poster dis-
cussed above. However, we did not find any other evidence
suggesting njq8’s involvement in either attack.

More SpyNet attacks: The domain hamas.sytes.net,
which we previously saw used by two SpyNet sam-
ples, resolved to 67.205.79.177. Historically,
dreems.no-ip.ca also resolved to this address. An
unidentified dropper using this C&C targeted Journalist F; a
SpyNet attack on Relative of political detainee D also used
this C&C. In that latter case, the sample arrived via e-mail
in a .rar attachment that contained an .scr file disguised
as a Word document. The .scr file was a self-extracting
archive that decompressed and ran both the bait document
and the payload. The SMTP source of the e-mail was
webmail.upload.bz.

Appin: In early 2013 UAE H.R. activist E forwarded nu-
merous documents that included a particular CVE-2012-0158
exploit for Microsoft Word. In all, these totaled 17 distinct
hashes of documents, and 10 distinct hashes of payloads (some
documents that differed in their hash downloaded the same pay-
load). The exploits primarily downloaded instances of SpyNet
from upload.bz, which for the most part communicated
with C&C at sn.all-google.com. This domain was also
used for C&C in other attacks, including that on Journalist C.

Two of the other CVE-2012-0158 exploits down-
loaded DarkComet from www.getmedia.us and
www.technopenta.com after posting system infor-
mation to random123.site11.com. All three domains
match those used by an Indian cybermercenary group said
to be linked to Appin Security Group [66]. The former
two domains hosted content other than spyware (i.e., they
may have been compromised). We alerted the owner of
www.getmedia.us, who removed the payloads.

5 Empirical characterization

The samples we received afforded us an opportunity to em-
pirically characterize the use of FinFisher and Hacking Team
around the world, enabling us to assess their prevalence, and
identify other country cases that may warrant future investiga-
tion. We analyzed the samples and the behavior of their C&C

servers to develop indicators (fingerprints) for how the servers
respond to certain types of requests. We then scanned the full
Internet IPv4 address space (“/0”) for these, along with prob-
ing results found by past scans. In many cases we do not release
the full details of our fingerprints to avoid compromising what
may be legitimate investigations.

5.1 FinSpy
Identifying and linking servers: We developed a number
of fingerprints for identifying FinSpy servers using HTTP-
based probing as well as FinSpy’s custom TLV-based proto-
col. We leveraged quirks such as specific non-compliance
with RFC 2616, responses to certain types of invalid data,
and the presence of signatures such as the bizarre “Hallo
Steffi” that Guarnieri identified from Bahraini FinSpy C&C
servers [67, 68]. See Appendix A for details. We then exhaus-
tively scanned the Internet looking for matches to these finger-
prints.

Gamma documentation advertises that an operator of FinSpy
can obscure the location of the C&C server (called the mas-
ter) by setting up a proxy known as a relay. In Spring 2013
we noticed FinSpy servers now issuing 302 Redirects to
google.com. However, we noticed anomalies: for ex-
ample, servers in India were redirecting to the Latvian ver-
sion of Google google.lv. We suspect that the server
in India was a relay forwarding to a master in Latvia. Be-
cause the master served as a proxy for Google, we could
uncover its IP address using a Google feature that prints a
user’s IP address for the query “IP address.” We created an
additional fingerprint based on the proxying behavior and is-
sued GET /search?q=ip+address&nord=1 requests to
servers We note some interesting master locations in Table 4.

Server locations: In all, our fingerprints matched 92 dis-
tinct IP addresses in 35 different countries. Probing these on
8/8/13 revealed 22 distinct addresses still responding, sited
in: Bahrain, Bangladesh, Bosnia and Herzegovina, Estonia,
Ethiopia, Germany, Hong Kong, Indonesia, Macedonia, Mex-
ico, Romania, Serbia, Turkmenistan, and the United States. We
found servers responding to a number of our fingerprints, sug-
gesting either that some servers lag in their updates, or a con-
certed effort to vary the behavior of FinSpy servers to make
detection harder.

We found: (1) 3 IP addresses in ranges registered to Gamma.
(2) Servers in 3 IP ranges explicitly registered to govern-
ment agencies: Turkmenistan’s Ministry of Communications,
Qatar’s State Security Bureau, and the Bulgarian Council of
Ministers. (3) 3 additional IP addresses in Bahrain, all in
Batelco. (4) Servers in 7 countries with governments classified
as “authoritarian regimes” by The Economist [69]: Bahrain,
Ethiopia, Nigeria, Qatar, Turkmenistan, UAE, Vietnam.

Additional FinSpy samples: In parallel to our scanning,
we obtained 9 samples of FinSpy by writing YARA [70] rules
for the “malware hunting” feature of VirusTotal Intelligence.
This feature sends us all newly-submitted samples that match
our signatures. We located a version of FinSpy that does not
use the normal FinSpy handshake, but instead uses a protocol
based on HTTP POST requests for communication with the
C&C server. This did not appear to be an older or newer ver-
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Relay IP Relay Block Assignment Relay Country Master IP Master Block Assignment Master Country
5.199.xxx.xxx SynWebHost Lithuania 188.219.xxx.xx Vodafone Italy
46.23.xxx.xxx UK2 VPS.net UK 78.100.xxx.xxx State Security Building Qatar
119.18.xxx.xxx HostGator India 81.198.xxx.xxx Statoil DSL Latvia
180.235.xxx.xxx Asia Web Services Hong Kong 80.95.xxx.xxx T-Systems Czech Republic
182.54.xxx.xxx GPLHost Australia 180.250.xxx.xxx PT Telekom Indonesia
206.190.xxx.xxx WestHost USA 112.78.xxx.xxx Biznet ISP Indonesia
206.190.xxx.xxx Softlayer USA 197.156.xxx.xxx Ethio Telecom Ethiopia
209.59.xxx.xxx Endurance International USA 59.167.xxx.xxx Internode Australia
209.59.xxx.xxx Endurance International USA 212.166.xxx.xxx Vodafone Spain

Table 4: Deproxifying FinSpy (mapping initial C&C IP addresses to the masters to which they forward).

sion of the protocol, suggesting that our scan results may not
reveal the full scope of FinSpy C&C servers. Perhaps, the
HTTP POST protocol was only delivered to a specific Gamma
customer to meet a requirement.

5.2 Remote Control System (RCS)
We began by analyzing the UAE RCS sample from Ahmed and
6 samples obtained from VirusTotal by searching for AV re-
sults containing the strings “DaVinci” and “RCS.” At the time,
several AV vendors had added detection for RCS based on a
sample analyzed by Dr. Web [71] and the UAE RCS sample
sent to Ahmed. We also similarly obtained and analyzed sam-
ples of FSBSpy [72], a piece of malware that can report system
information, upload screenshots, and drop and execute more
malware, Based on these samples, we devised YARA signa-
tures that yielded 23 additional samples of structurally similar
malware.

Fingerprints: We probed the C&C servers of the RCS and
FSBSpy samples, and found that they responded in a distinc-
tive way to HTTP requests, and returned distinctive SSL cer-
tificates.

We searched sources including Shodan, 5 Internet Census
service probes [73], and Critical.IO scanning data [68] for the
observed distinctive HTTP behavior. We searched for the dis-
tinctive SSL certificates in two Internet Census service probes,
and SSL certificate scans from ZMap [74]. We also contacted a
team at TU Munich [75], who applied our fingerprints to their
SSL scanning data. Across all of these sources, we obtained
31,345 indicator hits reflecting 555 IP addresses in 48 coun-
tries.

One SSL certificate returned by 175 of the servers was issued
by “/CN=RCS Certification Authority /O=HT srl,” apparently
referring to the name of the spyware and the company. Servers
for 5 of our FSBSpy samples and 2 of our RCS samples re-
sponded with this type of certificate.

Some servers returned these certificates in chains that in-
cluded another distinctive certificate. We found 175 distinct IP
addresses (including the C&C’s for 5 of our FSBSpy samples
and 2 of our RCS samples) responded with this second type of
certificate.

We devised two more indicators: one that matched 125 IP
addresses, including 7 of our FSBSpy samples’ C&C’s, and
one that matched 2 IP addresses, in Italy and Kazakhstan.

Server locations: On 11/4/13 we probed all of the IP ad-
dresses that we collected, finding 166 active addresses match-

Country IPs
United States 61

United Kingdom 18
Italy 16
Japan 10

Morocco 7

Provider IPs
Linode 42

NOC4Hosts 16
Telecom Italia 9

Maroc Telecom 7
InfoLink 6

Table 5: Top countries and hosting providers for RCS
servers active on 11/4/13.

ing one of our fingerprints in 29 different countries. We sum-
marize the top providers and countries in Table 5.

The prevalence of active servers either located in the USA or
hosted by Linode is striking,8 and seems to indicate a pervasive
use of out-of-country web hosting and VPS services.

In addition, we found: (1) 3 IP addresses on a /28 named
“HT public subnet” that is registered to the CFO of Hacking
Team [76]. The domain hackingteam.it resolves to an
address in this range. (2) An address belonging to Omantel, a
majority-state-owned telecom in Oman. This address was un-
reachable when we probed it; a researcher pointed us to an FS-
BSpy sample that contained an Arabic-language bait document
about Omani poetry, which talked to a C&C in the UK. (3) 7
IP addresses belonging to Maroc Telecom. Moroccan journal-
ists at Mamfakinch.com were previously targeted by RCS in
2012 [77]. (4) Overall, servers in 8 countries with governments
deemed “authoritarian regimes” [69]: Azerbaijan, Kazakhstan,
Nigeria, Oman, Saudi Arabia, Sudan, UAE, Uzbekistan.

Link to Hacking Team: All active servers match-
ing one of our signatures also responded peculiarly when
queried with particular ill-formed HTTP requests, respond-
ing with “HTTP1/1 400 Bad request” (should be
“HTTP/1.1”) and a body of “Detected error: HTTP
code 400”. Googling for this response yielded a GitHub
project em-http-server [78], a Ruby-based webserver.
The project’s author is listed as Alberto Ornaghi, a software
architect at Hacking Team. We suspect that the Hacking Team
C&C server code may incorporate code from this project.

Links between servers: We identified many cases where
several servers hosted by different providers, and in different
countries, returned identical SSL certificates matching our fin-
gerprints. We also observed 30 active servers used a global
IPID. Only one active server had neither a global IPID nor

819 of the 42 Linode servers were hosted in the USA, so the two
patterns of prevalence are mostly distinct.
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an SSL certificate matching our fingerprints. We assessed
whether servers returning SSL certificates were forwarding to
the servers with global IPIDs by inducing bursts of traffic at the
former and monitoring the IPID at the latter. For 11 servers,
we found that the server’s activity correlated to bursts sent to
other servers We grouped servers by the SSL certificates they
returned, and found that each group forwarded to only a sin-
gle server, except for one case where a group forwarded to two
different IPs (both in Morocco). We also found two groups
that forwarded to the same address. There was a 1:1 mapping
between the remaining 8 addresses and groups. We refer to a
group along with the server(s) it forwards to as a server group.
We identified several server groups that may be associated with
victims or operators in a certain country. Some of these suggest
possible further investigation:

Turkey: We identified a group containing 20 servers in 9
countries. Two RCS and 5 FSBSpy samples from VirusTo-
tal communicated with various servers in the group. The RCS
samples also communicated with domains with lapsed registra-
tions, so we registered them to observe incoming traffic. We ex-
clusively received RCS traffic from Turkish IP addresses. (RCS
traffic is identifiable based on a distinctive user agent and URL
in POST requests.) A sample of FSBSpy apparently installed
from an exploit on a Turkish server talked to one of the servers
in this group.[79]

We also found server groups containing servers in Uzbek-
istan and Kazakhstan; we found FSBSpy samples on Virus-
Total uploaded from these countries that communicated with
servers in these groups.

In the above cases, save Turkey, the country we have identi-
fied is classified as an “authoritarian regime,” and may be using
Hacking Team products against the types of targets we profile
in this paper. In the case of Turkey, there are hints that the tool
may be employed against dissidents [80].

6 Summary

Targeted surveillance of individuals conducted by nation-states
poses an exceptionally challenging security problem, given the
great imbalance of resources and expertise between the victims
and the attackers. We have sketched the nature of this problem
space as reported to us by targeted individuals in three Middle
Eastern countries. The attacks include spyware for ongoing
monitoring and the use of “IP spy” links to deanonymize those
who voice dissent.

The attacks, while sometimes incorporating effective so-
cial engineering, in general lack novel technical elements. In-
stead, they employ prepackaged tools developed by vendors
or acquired from the cybercrime underground. This technol-
ogy sometimes suffers from what strike us as amateurish mis-
takes (multiple serious errors implementing cryptography, bro-
ken protocol messages), as does the attackers’ employment of
it (identifying-information embedded in binaries, C&C servers
discoverable via scanning or “Google hacking”, clusters of at-
tack accounts tied by common activity). Some of these errors
assisted our efforts to assemble strong circumstantial evidence
of governmental origins. In addition, we mapped out the global
use of two “governmental” hacking suites, including identify-

ing 11 cases in which they appeared to be used in countries
governed by “authoritarian regimes.”

We aim with this work to inspire additional research efforts
addressing the difficult problem of how to adequately protect
individuals with very limited resources facing very powerful
adversaries. Open questions include robust, practical detection
of targeted attacks designed to exfiltrate data from a victim’s
computer, as well as detection of and defense against novel at-
tack vectors, like tampering with Internet connections to insert
malware.

The task is highly challenging, but the potential stakes are
likewise very high. An opposition member, reflecting on gov-
ernment hacking in Libya, speculated as to why some users
would execute files even while recognizing them as potentially
malicious [2]: “If we were vulnerable we couldn’t care less . . .
we were desperate to get our voices out . . . it was a matter of
life or death . . . it was just vital to get this information out.”
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A FinSpy fingerprints

Previous work by Guarnieri on scanning for FinSpy servers
found that in response to a request such as GET /, the
Bahraini FinSpy C&C server returns a response with the string
“Hallo Steffi” [67]. Guarnieri searched a database of
such responses compiled by the Critical.IO Internet scanning
project [68], locating 11 additional servers in 10 countries [67].
We refer to this fingerprint as α1. Concurrent with this ef-
fort, we devised our own fingerprint β1 that tested three as-
pects of the handshake between a FinSpy infectee and a Fin-
Spy C&C server, which follows a custom TLV-based protocol
running on ports such as 22, 53, 80, and 443. We conducted
targeted scanning of several countries using β1, and also con-
firmed Guarnieri’s findings for those servers still reachable af-
ter he published his findings.

We observed a trend: changes in HTTP response behavior
by FinFisher after publication of findings about the software.
In July 2012, for example, after a post about Bahraini FinSpy
samples [81], servers closed the TCP connection in response
to a GET / or HEAD / request (although servers continued
to behave consistently with β1. Other changes followed later
in 2012, including a new response to GET / requests that in-
cluded an imperfect copy of an Apache server’s HTTP response
(the Date header used UTC rather than GMT). We fingerprinted
this error as α2, and later in 2012 fingerprinted other distinctive
behavior in response to GET / requests as α3.

Subsequent scans of /0 for α2 and α3, and five service
probes of the Internet Census for α1 through α3, located several
additional servers. In Feburary 2013 we identified and finger-
printed new HTTP response behavior with α4 and modified β1
to produce β2, which tests only two of the three aspects of the
FinSpy handshake (the third test of β1 was broken when Fin-
Spy servers were updated to accept types of invalid data they
had previously rejected).

As of 3/13/13, all servers that matched any α fingerprint
matched β2.
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Abstract

Targeted attacks on civil society and non-governmental
organizations have gone underreported despite the fact
that these organizations have been shown to be frequent
targets of these attacks. In this paper, we shed light on
targeted malware attacks faced by these organizations by
studying malicious e-mails received by 10 civil society
organizations (the majority of which are from groups re-
lated to China and Tibet issues) over a period of 4 years.

Our study highlights important properties of malware
threats faced by these organizations with implications on
how these organizations defend themselves and how we
quantify these threats. We find that the technical sophis-
tication of malware we observe is fairly low, with more
effort placed on socially engineering the e-mail con-
tent. Based on this observation, we develop the Targeted
Threat Index (TTI), a metric which incorporates both so-
cial engineering and technical sophistication when as-
sessing the risk of malware threats. We demonstrate that
this metric is more effective than simple technical sophis-
tication for identifying malware threats with the high-
est potential to successfully compromise victims. We
also discuss how education efforts focused on changing
user behaviour can help prevent compromise. For two
of the three Tibetan groups in our study simple steps
such as avoiding the use of email attachments could
cut document-based malware threats delivered through
e-mail that we observed by up to 95%.

1 Introduction

Civil society organizations (CSOs), working on hu-
man rights issues around the globe, face a spectrum
of politically-motivated information security threats that
seek to deny (e.g. Internet filtering, denial-of-service at-
tacks), manipulate (e.g. website defacements) or moni-
tor (e.g. targeted malware) information related to their
work. Targeted malware attacks in particular are an in-

creasing problem for CSOs. These attacks are not iso-
lated incidents, but waves of attacks organized in cam-
paigns that persistently attempt to compromise systems
and gain access to networks over long periods of time
while remaining undetected. These campaigns are cus-
tom designed for specific targets and are conducted by
highly motivated attackers. The objective of these cam-
paigns is to extract information from compromised sys-
tems and monitor user activity and is best understood as
a form of espionage. CSOs can be particularly suscep-
tible to these threats due to limited resources and lack
of security awareness. Targeted malware is an active re-
search area, particularly in private industry. However,
focused studies on targeted attacks against CSOs are rel-
atively limited despite the persistent threats they face and
the vulnerability of these groups.

In this study, we work with 10 CSOs for a period of
4 years to characterize and track targeted malware cam-
paigns against these groups. With the exception of two
groups that work on human rights in multiple countries,
the remaining eight groups focus on China and Tibet-
related human rights issues. We focus on targeted mal-
ware typically delivered via e-mail that is specifically tai-
lored to these groups as opposed to conventional spam
which has been well characterized in numerous previous
works [27, 42, 45, 52, 70, 71]. We consider the threats to
these groups along two axes: the technical sophistica-
tion of the malware as well as sophistication of the so-
cial engineering used to deliver the malicious payload.
We combine these two metrics to form an overall threat
ranking that we call the Targeted Threat Index (TTI).
While other scoring systems exist for characterizing the
level of severity and danger of a technical vulnerabil-
ity [7, 17, 41, 50], no common system exists for ranking
the sophistication of targeted e-mail attacks. TTI allows
us to gain insights into the relative sophistication of so-
cial engineering and malware leveraged against CSOs.

A key to the success of our study is a unique method-
ology, combining qualitative and technical analysis of
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e-mails and their attachments with fieldwork (e.g. site
visits) and interviews with affected CSOs. This method-
ology, which we describe in more detail in Section 3, al-
lows us to both accurately rate the level of targeting of e-
mail messages by interfacing with CSOs participating in
our study (Section 4.2), and understand the relative tech-
nical sophistication of different malware families used in
the attacks (Section 4.3). By combining the strengths of
our qualitative and quantitative analysis, we are able to
accurately understand trends in terms of social engineer-
ing and technical sophistication of politically-motivated
targeted malware threats faced by CSOs.

Our study makes the following observations, which
have implications for security strategies that CSOs can
employ to protect themselves from targeted malware:

Attachments are the primary vector for email based
targeted malware. More than 80% of malware deliv-
ered to Tibet-related organizations in our study and sub-
mitted to us is contained in an e-mail attachment. Fur-
ther, for 2 of the 3 Tibetan organizations in our study
(with at least 40 submitted e-mails), simply not opening
attachments would mitigate more than 95% of targeted
malware threats that use email as a vector.

Targeted malware technical sophistication is low. So-
cial engineering sophistication is high We find that
the technical sophistication of targeted malware deliv-
ered to CSOs in our study is relatively low (e.g., rela-
tive to commercial malware that has been found targeting
CSOs and journalists [35,36,38] and conventional finan-
cially motivated malware), with much more effort given
to socially engineering messages to mislead users. This
finding highlights the potential for education efforts fo-
cused on changing user behaviours rather than high-cost
technical security solutions to help protect CSOs.

CSOs face persistent and highly motivated actors.
For numerous malware samples in our study we ob-
serve several versions of the software appearing over
the course of our four year study. These multiple ver-
sions show evidence of technical improvements to com-
plement existing social engineering techniques.

Since the start of our study we have participated in
a series of workshops with the participating Tibetan or-
ganizations to translate these results into a training cur-
riculum. Specifically, we have educated them about how
to identify suspicious e-mail headers to identify spoofed
senders and demonstrated tools that can be used to check
e-mailed links for malware and drive-by-downloads.

The rest of the paper is structured as follows. Sec-
tion 2 presents relevant background on targeted malware
and attacks on CSOs. Our data collection methodology
is described in Section 3. We describe our targeting and
technical sophistication metrics as well as how we com-
bine them to produce the Targeted Threat Index (TTI)

in Section 4. Training and outreach implications of our
work are discussed in Section 5. We present related work
in Section 6 and conclude in Section 7.

2 Background

2.1 Targeted Malware Overview

Targeted malware are a category of attacks that are dis-
tinct from common spam, phishing, and financially mo-
tivated malware. Spam and mass phishing attacks are
indiscriminate in the selection of targets and are directed
to the largest number of users possible. Similarly, finan-
cially motivated malware such as banking trojans seek
to compromise as many users as possible to maximize
the potential profits that can be made. The social engi-
neering tactics and themes used by these kinds of attacks
are generic and the attack vectors are sent in high vol-
umes. By contrast targeted malware attacks are designed
for specific targets, sent in lower volumes, and are moti-
vated by the objective of stealing specific sensitive data
from a target.

Targeted malware attacks typically involve the follow-
ing stages [24, 66]:

Reconnaissance: During this stage attackers conduct
research on targets including profiling systems, software,
and information security defenses used to identify possi-
ble vulnerabilities and contextual information on person-
nel and activities to aid social engineering.

Delivery: During this stage a vector for delivering
the attack is selected. Common vectors include e-mails
with malicious documents or links, or contacting targets
through instant messaging services and using social en-
gineering to send malware to them. Typically, a target of
such an attack receives an e-mail, possibly appearing to
be from someone they know, containing text that urges
the user to open an attached document (or visit a web-
site).

Compromise: During this stage malicious code is exe-
cuted on a target machine typically after a user initiated
action such as opening a malicious document or link.

Command and Control: During this stage the infected
host system establishes a communications channel to a
command and control (C&C) server operated by the at-
tackers. Once this channel has been established the at-
tackers can issue commands and download further mal-
ware on to the system

Additional attacker actions: After a successful com-
promise is established, attackers can conduct a number of
actions including ex-filtrating data from the infected host
and transmitting it back to attackers through a process
of encrypting, compressing, and transferring to a server

2
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operated by the attackers. Attackers may also use pe-
ripherals such as webcams and microphones to monitor
users in real time. The infected host may also serve as
a starting point to infect other machines on the network
and seek out specific information or credentials.

2.2 Targeted Malware and CSOs

Targeted malware has become recognized by govern-
ments and businesses around the world as a serious po-
litical and corporate espionage threat. The United States
government has been particularly vocal on the threat tar-
geted malware enabled espionage poses. General Keith
Alexander, current Director of the National Security
Agency and Commander of United States Cyber Com-
mand has stated that the theft of US intellectual property
through cyber espionage constitutes the “greatest transfer
of wealth in history” [47]. Recent widely publicized tar-
geted malware intrusions against Google, RSA, the New
York Times and other high profile targets have raised
public awareness around these attacks [20, 44, 48]

Despite this increased attention, targeted malware is
not a new problem, with over a decade of public reports
on these kinds of attacks [66]. However, the majority
of research on targeted malware is conducted by private
security companies who typically focus on campaigns
against industry and government entities. As a result, tar-
geted attacks on civil society and non-governmental or-
ganizations have gone underreported despite the fact that
these organizations have been shown to be frequently
targeted by cyber espionage campaigns. In particular,
communities related to ethnic minority groups in China
including Tibetans, Uyghurs, and religious groups such
as Falun Gong have been frequent targets of cyber es-
pionage campaigns with reports dating back to at least
2002 [61].

In some cases, the same actors have been revealed to
be targeting civil society groups, government and indus-
try entities. A notable example of this was the 2009 re-
port by the Citizen Lab, a research group at the Univer-
sity of Toronto, which uncovered the “GhostNet” cyber
espionage network. GhostNet successfully compromised
prominent organizations in the Tibetan community in ad-
dition to 1,295 hosts in 103 countries, including min-
istries of foreign affairs, embassies, international organi-
zations, and news media [25]. The GhostNet case is not
an isolated example, as other reports have shown CSOs
(commonly Tibetan organizations) included as targets in
campaigns that are also directed to a range of govern-
ment and industry entities [8,26,28,29,54–56] Some of
these reports include technical details on the CSO spe-
cific attacks [26, 28, 54, 55] while others note them as a
target but do not address in detail [8, 29, 56].

While the majority of documented targeted malware

campaigns against CSOs involve China and Tibet-related
groups and potentially China-related attack operators
[9–11, 23, 25, 26, 32, 61–65, 67, 68] , these kinds of at-
tacks go beyond China. Recent research and news media
have reported attacks against large human rights groups
focused on multiple issues and countries [31, 46], and
communities related to Syria [18] and Iran [37]. Re-
searchers have also uncovered the use of commercial
network intrusion products used to target activists from
Bahrain [38], the United Arab Emirates [36], and jour-
nalists from Ethiopia [35].

3 Data collection

Since our study involves dealing with e-mail messages
which may contain personally identifiable information
(PII) and collection of information from CSOs who need
to maintain privacy of their data, we consulted with our
institutional research ethics board during the design of
our study. The methods described below have been sub-
mitted to and approved by this board.

3.1 Study Participants
We recruited participants via three main channels: (1)
an open call on our Web site, (2) outreach to organi-
zations we had prior relationship with and (3) referrals
from participating groups. As part of the study these
groups agreed to share technical data (e.g., e-mails with
suspicious attachments) and participate in interviews at
the onset and end of the study. Their identity and any PII
shared with us were kept strictly confidential.

For the purposes of our study, we focused on organiza-
tions with missions concerning the promotion or protec-
tion of human rights. For purposes of this study, ”human
rights” means any or all of the rights enumerated under
the Universal Declaration of Human Rights [60], the In-
ternational Covenant on Civil and Political Rights [58],
and the International Covenant on Economic, Social and
Cultural Rights [59]. We also considered organizations
on a case by case basis that have a mission that does not
directly implicate human rights, but who may nonethe-
less be targeted by politically motivated digital attacks
because of work related to human rights issues (e.g., me-
dia organizations that report on human rights violations).

In total, 10 organizations participated in the study
(summarized in Table 1). The majority of these groups
work on China-related rights issues and five of these or-
ganizations focus specifically on Tibetan rights. The high
rate of participation from China and Tibet-related human
rights issues is due in part to our previous relationships
with these communities and a significant interest and en-
thusiasm expressed by the groups. In addition to the
China and Tibet-related groups, our study also includes
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two groups, Rights Group 1 and 2 that work on multiple
human rights related issues in various countries.

The majority of organizations operate from small of-
fices with less than 20 employees. Some organizations
(China Group 2, Tibet Group 2) have no physical office
and consist of small virtual teams collaborating remotely,
often from home offices. Of these groups only two
(China Group 1, China Group 3) have a dedicated system
administrator on staff. Other groups (Tibet Groups 1-5;
China Group 2) rely on volunteers or staff with related
technical skills (e.g. Web development) to provide tech-
nical support. Rights Group 1 and Rights Group 2 are
much larger organizations relative to the others in our
sample. Both organizations have over 100 employees,
multiple offices, dedicated IT teams, and enterprise level
computing infrastructures.

3.2 Data Sources
We collect the following pieces of information from the
participant groups in order to understand the malware
threats they face:

User-submitted e-mail messages. Our primary data
source is a collection of e-mails identified by participants
as suspicious which were forwarded to a dedicated e-
mail server administered by our research team. When
available these submissions included full headers, file
attachments and / or links. There are three key limita-
tions to relying on user-submitted e-mails for our anal-
ysis. First, we are only able to study e-mails identified
by participants as suspicious, which may bias our re-
sults to only reporting threats that have been flagged by
users. Further, individuals may forget to forward e-mails
in some cases. Relying on self-reporting also creates bias
between groups as individuals at different organizations
may have different thresholds for reporting, which cre-
ates difficulties in accurately comparing submission rates
between groups. Thus the amount of threat behaviour
we see should be considered a lower bound on what oc-
curs in practice. Second, having participants forward us
e-mails does not allow us to verify if the targeted organi-
zation was successfully compromised by the attack (e.g.,
if another member of the organization open and executed
malware on their machine) and what the scope of the at-
tack was. Finally, e-mail is only one vector that may be
used to target organizations. Other vectors include water-
hole attacks [21], denial of service attacks, or any other
vectors (e.g., physical threats like infected USB sticks).
These limitations mean that it is possible that we did not
comprehensively observe all attacks experienced by our
study groups and some more advanced attacks may have
gone unreported.

Recognizing the limitations of e-mail submissions, we
complement user submitted emails with data from Net-

Table 2: Breakdown of e-mails submitted per group.
Organization Code # of e-mails
China Group 1 53
China Group 2 18
China Group 3 58
Rights Group 1 28
Rights Group 2 2
Tibet Group 1 365
Tibet Group 2 177
Tibet Group 3 2
Tibet Group 4 97
Tibet Group 5 4

work Intrusion Detection System (NIDS) alerts, web-
site monitoring, and interviews. Also, upon request of
study groups who were concerned of possible infection
we analyzed packet capture data from suspect machines.
Through the course of this supplementary analysis we
did not find indications of malware compromise that
used samples that were not included in our pool of user-
submitted emails. In this paper we focus on reporting
results from analyzing the user submitted emails through
the TTI. The NIDS and website monitoring components
were added later in our study and do not significantly
contribute to TTI analysis. 1

3.3 Overview of User-Submitted E-mails

The e-mails examined in this study span over four years,
from October 14, 2009 to December 31, 2013. Data col-
lection began on November 28, 2011, but China Group
3 and Tibet Group 1 forwarded us their pre-existing
archives of suspicious emails, resulting in e-mail sam-
ples dating back to October 14, 2009. In total, we re-
ceived 817 e-mails from the 10 groups participating in
our study. Table 2 breaks down the submissions from
each groups and illustrates that submissions were highly
non-uniform across the groups. Thus, in general, we fo-
cus on the groups with at least 50 e-mail submissions for
our analysis.

Figure 1 shows the cumulative number of e-mail sub-
missions per month over the course of the study. For
example, China Group 3 shared a set of e-mails received
in 2010 by a highly targeted member of the organization,
which can be observed in Figure 1. Tibet Group 1 ac-
counts for the highest number of submissions relative to
the other groups due to being one of the first groups in
the study and being persistently targeted by politically
motivated malware. Tibetan Groups 2 and 4, who joined
the study later (in April 2012) show a similar submission
rate to original Tibetan Group 1, suggesting these groups
are targeted at a similar rate. In Section 4.2, we investi-
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Table 1: Summary of groups participating in our study.
Organization Code Description Organization size
China Group 1 Human rights organization focused on rights and social justice issues

related to China
Small (1-20 employees)

China Group 2 Independent news organization reporting on China Small (1-20 employees)
China Group 3 Human rights organization focused on rights and social justice issues

related to China
Small (1-20 employees)

Rights Group 1 Human rights organization focused on multiple issues and countries Large (over 100 employees)
Rights Group 2 Human rights organization focused on multiple issues and countries Large (over 100 employees)
Tibet Group 1 Human rights organization focused on Tibet Small (1-20 employees)
Tibet Group 2 Human rights organization focused on Tibet Small (1-20 employees)
Tibet Group 3 Independent news organization reporting on Tibet Small (1-20 employees)
Tibet Group 4 Human rights organization focused on Tibet Small (1-20 employees)
Tibet Group 5 Human rights organization focused on Tibet Small (1-20 employees)
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Figure 1: Cumulative number of messages per group
over the course of our study for groups that submitted
at least 50 e-mail messages.

gate commonalities in targeting of these groups.
We further classify e-mails as malicious if they include

attached malware, a direct link to malware or a site with
a drive-by download, or a link to a phishing page. Fig-
ure 2 shows the amount of e-mails of each type for the
groups that submitted at least 25 e-mails to our system.
The most common approach employed in these e-mails
was attaching a malicious payload to the e-mail itself.
However, we notice a higher rate of phishing attacks on
the China-related groups and the rights groups working
on multiple international human rights issues. In partic-
ular, 46% of the e-mails submitted by China Group 1,
and 50% of the e-mails submitted by Rights Group 1, di-
rect the user to a phishing Web site. In the case of China
Group 1, this large proportion of phishing sites is ob-
served because this group configured their spam filter to
forward e-mails to our system, resulting in us receiving
a large number of generic, non-targeted spam. In con-
trast, the phishing observed for Rights Group 1, while
low in volume (13 out of 26 messages) is targeted. We
delve more into how we rate the targeting of e-mails in
Section 4.2.

The rate of submissions to our project meant that it
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Figure 2: Breakdown of malicious e-mails based on
whether they deliver malware as an attachment, refer the
use to a link with a malicious file, or attempt to phish
data from the user.

was feasible to manually analyze e-mail attachments for
malware as they were submitted. This analysis gives us
higher confidence in our results because AV signatures
are frequently unable to detect new or modified threats,
and can overlook the presence of a malicious payload
that can be easily identified upon manual inspection (e.g.
shellcode in an RTF exploit). In total, we analyzed 3,617
payload files and found 2,814 (78%) of them to be ma-
licious. Section 4.3 describes our analysis methodology
in more detail.

4 Targeted Threat Index

Our dataset includes a wide range of targeted malware
threats varying in level of both social engineering and
technical complexity. This range presents a challenge
in ranking the relative sophistication of the malware and
targeting tactics used by attackers.

While scoring systems such as the Common Vulnera-
bility Scoring System [17] exist for the purpose of com-
municating the level of severity and danger of a vul-
nerability, there is no standardized system for ranking
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the sophistication of targeted email attacks. This gap is
likely because evaluating the sophistication of the target-
ing is non-technical, and cannot be automated due to the
requirement of a strong familiarity with the underlying
subject material.

To address this gap we developed the Targeted Threat
Index (TTI) to assign a ranking score to the targeted ma-
licious emails in our dataset. The TTI score is intended
for use in prioritizing the analysis of incoming threats,
as well as for getting an overall idea of how severely an
organization is threatened.

The TTI score is calculated by taking a base value de-
termined by the sophistication of the targeting method,
which is then multiplied by a value for the technical
sophistication of the malware. The base score can be
used independently to compare emails, and the combined
score gives an indication of the level of effort an attacker
has put into individual threats.

4.1 TTI Metric

The TTI score is calculated in two parts:

(Social Engineering Sophistication Base Value)
×(Technical Sophistication Multiplier) = TTI Score

TTI scores range from 1 to 10, where 10 is the most
sophisticated attack. Scores of 0 are reserved for threats
that are not targeted, even if they are malicious. For
example, spam using an attached PDF or XLS to by-
pass anti-spam filters, and highly sophisticated finan-
cially motivated malware, would both score 0.

This section overviews how we compute the Social
Engineering Sophistication Base Value (Section 4.2) and
the Technical Sophistication Multiplier (Section 4.3). In
Section 4.4, we present the results of computing and an-
alyzing the TTI value of threats observed by the organi-
zations in our study. We also discuss implications and
limitations of the metric.

4.2 Social Engineering Tactics

We leverage a manual coding approach to measure the
sophistication of social engineering tactics used in the at-
tacks observed by the organizations in our study. While
automated approaches may be explored in the future, this
manual analysis allows us to have high confidence in our
results, especially since understanding the social engi-
neering often required contextual information provided
by the organizations in our study. To quantify the level
of sophistication, we manually analyse the e-mail subject
line, body, attachments and header fields. We perform an
initial content analysis by coding the e-mails based on

their semantic content, and then use these results to gen-
erate a numerical metric quantifying the level of targeting
used.

4.2.1 Content coding and analysis results

We code the e-mails based on their subject line, body, at-
tachments and headers using the following methodology:

Subject line, body, and attachments. The content of
the subject line, body and attachments for each submitted
e-mail were content coded into 8 themes, each contain-
ing categories for specific instances of the theme: Coun-
try / Region (referring to a specific geographical country
or region); Ethnic Groups (referring to a specific ethnic
group); Event (referring to a specific event); Organiza-
tions (referring to specific organizations); People (refer-
ring to specific persons), Political (reference to specific
political issues), Technology (reference to technical sup-
port), Miscellaneous (content without clear context or
categories that do not fall into one of the other themes).
Table 3 summarizes the themes and provides examples
of categories within each theme.

E-mail headers. The header of each e-mail was an-
alyzed to determine if the sending e-mail address was
spoofed or the e-mail address was otherwise designed
to appear to come from a real person and / or organiza-
tion (e.g. by registering an e-mail account that resembles
a person and / or organization’s name from a free mail
provider). We divide the results based on whether they
attempted to spoof an organization or a specific person.

Using this manual analysis, we perform a content anal-
ysis of e-mails submitted by the organizations. Results
of this analysis confirm that social engineering is an im-
portant tool in the arsenal of adversaries who aim to de-
liver targeted malware. Specifically, 95% and 97% of
e-mails to Chinese and Tibetan groups, respectively, in-
cluded reference to relevant regional issues. Spoofing
of specific senders and organizations was also prevalent
with 52% of e-mails to Tibetan groups designed to ap-
pear to come from real organizations, often from within
the Tibetan community. For example, a common tar-
get of spoofing was the Central Tibetan Administration
(CTA), referenced in 21% of the spoofed e-mails, which
administers programs for Tibetan refugees living in In-
dia and advocates for human rights in Tibet. While the
number of e-mail submissions were lower for the gen-
eral human rights groups, we observe similar trends there
with 92% of e-mails submitted by Rights Group 1 ap-
pearing to come from individuals in the group (as a result
of spoofing).

In some cases we even observed the same attackers
targeting multiple CSOs with customized e-mail lures.
For example, we tracked a campaign that targeted China
Groups 1 and 2, and Tibet Group 1 with a remote access
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Table 3: Overview of themes and categories within the themes for grouping targeted e-mail messages.
Theme Total Categories Example Categories
Country/Region 26 China, US, European Union
Ethnic Groups 2 Tibetan, Uyghur
Event 31 self immolation, Communist Party of China, 18th National Party Congress
Organizations 32 United Nations, Central Tibetan Administration
People 31 His Holiness the Dalai Lama, Hu Jintao
Political 6 human rights, terrorism
Technology 5 software updates, virtual private servers
Miscellaneous 1 content without clear context which falls outside of the other themes

trojan we call IEXPL0RE [22] China Group 1 received
the malware in e-mails claiming to be from personal
friends whereas China Group 2 received the malware in
an e-mail containing a story about a high-rise apartment
building fire in China. In contrast, Tibet Group 1 re-
ceived the malware embedded into a video of a speech
by the Dalai Lama, attached to an e-mail about a year in
review of Tibetan human rights issues.

4.2.2 Social Engineering Sophistication Base Value

While the content analysis results clearly show attacks
tailored to the interests of targeted groups, content cod-
ing alone does not give a relative score of the sophistica-
tion used in the attacks. We now describe how we assign
the “social engineering sophistication base value” to e-
mails based on their level of social engineering.

To measure the targeting sophistication we assign a
score that ranges from 0-5 that rates the social engineer-
ing techniques used to get the victim to open the attach-
ment. This score considers the content and presentation
of the e-mail message as well as the claimed sender iden-
tity. This determination also includes the content of any
associated files, as malware is often implanted into legit-
imate relevant documents to evade suspicion from users
when the malicious documents are opened.

The Social Engineering Sophistication Base Value is
assigned based on the following criteria:
0 Not Targeted: Recipient does not appear to be a spe-
cific target. Content is not relevant to the recipient. The
e-mail is likely spam or a non-targeted phishing attempt.
1 Targeted Not Customized: Recipient is a specific
target. Content is not relevant to the recipient or contains
information that is obviously false with little to no valida-
tion required by the recipient. The e-mail header and/or
signature do not reference a real person or organization.
2 Targeted Poorly Customized: Recipient is a specific
target. Content is generally relevant to the target but has
attributes that make it appear questionable (e.g. incom-
plete text, poor spelling and grammar, incorrect address-
ing). The e-mail header and / or signature may reference
a real person or organization.

3 Targeted Customized: Recipient is a specific target.
Content is relevant to the target and may repurpose legit-
imate information (such as a news article, press release,
conference or event website) and can be externally ver-
ified (e.g. message references information that can be
found on a website). Or, the e-mail text appears to re-
purpose legitimate e-mail messages that may have been
collected from public mailing lists or from compromised
accounts. The e-mail header and / or signature references
a real person or organization.

4 Targeted Personalized: Recipient is a specific target.
The e-mail message is personalized for the recipient or
target organization (e.g. specifically addressed or refer-
ring to individual and / or organization by name). Con-
tent is relevant to the target and may repurpose legitimate
information that can be externally verified or appears to
repurpose legitimate messages. The e-mail header and /
or signature references a real person or organization.

5 Targeted Highly Personalized: Recipient is a spe-
cific target. The e-mail message is individually person-
alized and customized for the recipient and references
confidential / sensitive information that is directly rele-
vant to the target (e.g. internal meeting minutes, com-
promised communications from the organization). The
e-mail header and / or signature references a real person
or organization.

Content coding of emails and determinations of so-
cial engineering ratings for the TTI were performed by
five independent coders who were given a code book for
content categories and the TTI social engineering scale
with examples to guide analysis. We performed regu-
lar inter-rater reliability checks and flagged any poten-
tial edge cases and inconsistencies for discussion and re-
evaluation. Following completion of this analysis, two
of the authors reviewed the social engineering base value
scores to ensure consistency and conformity to the scale.
We provide specific examples of each of these targeting
values in Appendix A.
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Figure 3: Social engineering sophistication base value
assigned to e-mail submissions from groups that submit-
ted at least 50 e-mails.

4.2.3 Summary of Social Engineering Sophistica-
tion Base Value

Figure 3 shows the targeting score for organizations in
our study who submitted at least 50 e-mails. We can see
that actors targeting these groups put significant effort
into targeting their messages, in particular the three Ti-
betan groups included in Figure 3 observe more than half
of their messages with a targeting score of 3 or higher.
This result means adversaries are taking care to make the
e-mail appear to come from a legitimate individual or or-
ganization, and include relevant information (e.g., news
reports or exchanges from public mailing lists). Higher
targeting scores, which result from actions such as per-
sonalizing lures to an individual in the group, or includ-
ing information that requires prior reconnaissance tend
to be more rare, but we do observe instances of them.
For example, in the case of China Group 3, we observed
an e-mail which received a social engineering score of 5,
which claimed to be from the group’s funder and refer-
enced a specific meeting they had planned that was not
public knowledge.

4.3 Technical Sophistication
We manually analyzed all submitted emails and attach-
ments to determine whether they contained politically-
motivated malware. The malware is then analyzed in de-
tail to extract information such as the vulnerability, C&C
server (if present), and technical sophistication of the ex-
ploit.

4.3.1 Assessment methodology

The first step in our analysis pipeline is determining
whether the email contains politically motivated malware
or not. This process involves an initial inspection for
social engineering of the email message and attachment
(e.g., an executable pretending to be a document). We
also correlate with other emails received as part of this
project to identify already-known malware. Well-known

malware attacks (e.g., the Zeus trojan masquerading as
an email from the ACH credit card payment processor,
or Bredolab malware pretending to be from the DHL
courier service) are not considered targeted attacks in our
study, but are still kept for potential review.

Once we have identified emails which we suspect of
containing politically-motivated malware, we perform
the following analysis steps on any attachments to ver-
ify that they indeed contain malware. First, we run the
attachment in a sandboxed VM to look for malicious ac-
tivity e.g., an Office document writing files to disk or try-
ing to connect to a C&C server. We also check the MD5
hash of the attachment against the Virus Total database to
see if it matches existing viruses. We also manually ex-
amine the attached file for signs of malicious intent (e.g.,
executable payload in a PDF, shellcode or Javascript).
We exclude any graphics attached to the email which are
used for social engineering (and do not contain malicious
payload) from our analysis.

We follow this initial analysis with more detailed tech-
nical analysis of the attachments which we confirm con-
tain malware. First, we manually verify the file type of
the attachment for overview statistics. This manual anal-
ysis is necessary as the Unix file command may be mis-
led by methods of manipulating important bytes in the
file (e.g., replacing \rtf1 with \rtf[null]). We then iden-
tify if the vulnerability included in the malware already
exists in a corpus of vulnerabilities, such as the Com-
mon Vulnerabilities and Exposures (CVE) naming sys-
tem. We also perform analysis of network traffic from
the attachment to identify the C&C server the malware
attempts to contact. In cases where the malware does
not execute in our controlled environment we manually
examine the file to extract the relevant information.

On a case-by-case basis we use additional tools such
as IDA [1] and OllyDbg [3] for detailed static and dy-
namic analysis, respectively. Our goal in this analysis
is to identify relationships between malware campaigns
between organizations, or instances of the same malware
family repeatedly targeting a given organization. By ob-
serving overlapping C&C servers, or mapping malware
to common exploits identified by anti virus/security com-
panies we can cluster attacks that we believe come from
the same malware family and potentially the same adver-
sary.

4.3.2 Technical Sophistication Multiplier

While the previous analysis is useful for understanding
the nature of threats, we also score threats numerically to
aid in understanding the relative technical sophistication
of their approaches. Each malware sample is assigned
one of the following values:

1 Not Protected - The sample contains no code protec-
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tion such as packing, obfuscation (e.g. simple rotation
of interesting or identifying strings), or anti-reversing
tricks.

1.25 Minor Protection - The sample contains a sim-
ple method of protection, such as one of the following:
code protection using publicly available tools where the
reverse method is available, such as UPX packing; sim-
ple anti-reversing techniques such as not using import
tables, or a call to IsDebuggerPresent(); self-disabling in
the presence of AV software.

1.5 Multiple Minor Protection Techniques - The sam-
ple contains multiple distinct minor code protection tech-
niques (anti-reversing tricks, packing, VM / reversing
tools detection) that require some low-level knowledge.
This level includes malware where code that contains the
core functionality of the program is decrypted only in
memory.

1.75 Advanced Protection - The sample contains mi-
nor code protection techniques along with at least one
advanced protection method such as rootkit functionality
or a custom virtualized packer.

2 Multiple Advanced Protection Techniques - The
sample contains multiple distinct advanced protection
techniques, e.g. rootkit capability, virtualized packer,
multiple anti-reversing techniques, and is clearly de-
signed by a professional software engineering team.

The purpose of the technical sophistication multiplier
is to measure how well the payload of the malware can
conceal its presence on a compromised machine. We use
a multiplier because advanced malware requires signif-
icantly more time and effort (or money, in the case of
commercial solutions) to customize for a particular tar-
get.

We focus on the level of obfuscation used to hide pro-
gram functionality and avoid detection for the follow-
ing reasons: (1) It allows the compromised system to
remain infected for a longer period; (2) it hinders ana-
lysts from dissecting a sample and developing instruc-
tions to detect the malware and disinfect a compromised
system; (3) since most common used remote access tro-
jans (RATs) have the same core functionality (e.g. key-
logging, running commands, exfiltrating data, control-
ling microphones and webcams, etc.) the level of ob-
fuscation used to conceal what the malware is doing can
be used to distinguish one RAT from another.

4.3.3 Summary of Technical Sophistication Multi-
plier Value

Figure 4 shows the technical sophistication multiplier
values for e-mails submitted by the different organiza-
tions in our study. One key observation we make here
is that the email-based targeted malware that was self-
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Figure 4: Technical sophistication multiplier assigned to
e-mail submissions from groups that submitted at least
50 e-mails.

reported by our study groups is relatively simple. The
highest multiplier value we see is 1.5 and even that value
is seen infrequently. The majority of malware observed
is rated either 1 or 1.25 according to our technical scoring
criteria, with Tibetan Groups observing a higher fraction
of malware rated 1.25 and Chinese groups observing a
higher fraction rated 1.

The technical sophistication multiplier value is also
useful for assessing the technical evolution of threats in
our study. When we group malware into different fam-
ily groups we can see some of these groups are under
active development. For example, we observe multiple
versions of the Enfal [40, 49], Mongal [14], and Gh0st
RAT [15] families with increasing levels of sophistica-
tion and defenses in place to protect the malware code
(resulting in an increase in technical multiplier from 1 to
1.25 for these families). Since our technical multiplier
value focuses on how well malware code defends and
disguises itself, changes to other aspects of the code may
not result in an increase in value (e.g., we observe multi-
ple versions of the IMuler.A/Revir.A malware which all
receive a score of 1). Interestingly, when we observe both
a Windows and Mac version of a given malware family,
the technical score for the Mac version tended to be lower
with the Mac version being relatively primitive relative to
the Windows variant.

4.4 TTI Results
We now show how the TTI metric can help us better char-
acterize the relative threat posed by targeted malware.
Figure 5 shows the technical sophistication multiplier
and maximum/minimum TTI scores for malware fami-
lies observed in our dataset. Since we primarily observe
simple malware, with a technical sophistication multi-
plier of 1 or 1.25, this value does a poor job of differen-
tiating the threat posed by the different malware families
to the CSOs. However, by incorporating both the tech-
nical sophistication and targeting base value into the TTI
metric we can gain more insights into how effective these
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Figure 5: Comparison of the maximum and minimum
TTI score and technical sophistication multiplied for
malware families observed in our data (sorted in decreas-
ing order of maximum TTI).

threats may be in practice.
The impact of using TTI is especially apparent when

trying to gain insights into the targeted malware that
poses the biggest risk to CSOs. Table 4 shows the top
5 malware families we observe in terms of technical so-
phistication and in terms of TTI score. If we consider the
malware families with the highest technical sophistica-
tion, we can see that their TTI values are relatively low,
with maximums ranging from 1.5 to 4.5. These tend to be
malware families that are familiar to researchers. In par-
ticular, PlugX and PoisonIvy have been used in targeted
attacks together [43] and PlugX is still actively used and
under constant development [16]. Despite technical so-
phistication, the social engineering lures of these threats
are not well crafted and pose less of a risk to the CSOs
whose members may be able to identify and avoid these
threats.

In contrast, the top 5 malware families in terms of
TTI have lower technical sophistication (1.25) but much
higher levels of social engineering. It is no surprise that
threats which score the highest TTI use well known mal-
ware that have been extensively documented in attacks
against a variety of targets. For example, the TTI scores
reflect that Gh0st RAT continues to be seen in higher
risk attacks due to its popularity amongst attackers even
though it is an older and not particularly advanced tool.
Since there is no direct connection between the technical
sophistication of threats and the level of social engineer-
ing used to target CSOs, it is likely that different threat
actors, with a different focus, are at work here. Indeed,
Gh0st RAT was discovered by the Citizen Lab in their
analysis of GhostNet [25] and IEXPL0RE RAT was dis-
covered and named for the first time in our work.

Another observation is that commercial malware such
as FinFisher and DaVinci RCS, while being of much
higher technical sophistication (relative to the samples in

Table 4: Top malware families in our data set in terms of
technical sophistication multiplier and in terms of final
TTI score.

Technical Sophistication
Family TTI Tech. Soph.
3102 3 1.5
nAspyUpdate 1.5 1.5
PlugX 4.5 1.5
PoisonIvy 3 1.5
WMIScriptKids 3 1.5

TTI
Family TTI Tech. Soph. .
Gh0stRAT LURK0 6.25 1.25
shadownet 6.25 1.25
conime 5 1.25
duojeen 5 1.25
iexpl0re 5 1.25

our study), do not necessarily score higher on TTI than
a targeted attack with advanced social engineering and
more basic malware. For example, analyzing a FinFisher
sample targeted against Bahraini activists [38] with the
TTI, produces an overall TTI score that is dependent on
the social targeting aspect, even though the malware is
very technically advanced. In this case, the FinFisher at-
tack scores 4.0 on the TTI (base targeting score of 2 with
a technical multiplier of 2). Although the email used
in the attack references the name and organization of a
real journalist, the content is poorly customized, and has
attributes that look questionable. However, the techni-
cal sophistication of the malware is advanced earning it
a score of 2 due to multiple advanced protection tech-
niques, including a custom-written virtualized packer,
MBR modification, and rootkit functionality. The sample
also uses multiple minor forms of protection, including
at least half a dozen anti-debugging tricks. Even though
the technical multiplier is the maximum value, the over-
all TTI score is only 4.0 due to the low targeting base
value. FinFisher is only effective if it is surreptitiously
installed on a users’ computer. If the malware is deliv-
ered through an email attachment, infection is only suc-
cessful if the user opens the malicious file. The advanced
nature of this malware will cause the overall score to in-
crease quickly with improved targeting, but as it still re-
quires user intervention, this threat scores lower overall
than attacks with highly targeted social engineering us-
ing less sophisticated malware.

Similar findings can also be observed in attacks using
DaVinci RCS developed by Italy-based company Hack-
ing Team against activists and independent media groups
from the United Arab Emirates and Morocco [36]. While
the malware used in these publicly reported attacks is
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technically sophisticated, the social engineering lures
employed are poorly customized for the targets result-
ing in a 4.0 TTI score (targeting base value 2, technical
multiplier 2).

These results support the idea that different threat ac-
tors have varying focuses and levels of resources, and
as a result, different methodologies for attacks. For ex-
ample, the majority of malware submitted by our study
groups appear to be from adversaries that have in-house
malware development capabilities and the capacity to
organize and implement targeted malware campaigns.
These adversaries are spending significant effort on so-
cial engineering, but generally do not use technically
advanced malware. Conversely, the adversaries using
FinFisher and DaVinci RCS have bought these products
rather than develop malware themselves. However, while
the FinFisher and RCS samples are technically sophisti-
cated pieces of malware, the attacks we analyzed are not
sophisticated in terms of social engineering tactics.

4.5 Limitations of TTI
While the Targeted Threat Index gives insight into the
distribution of how sophisticated threats are, we are still
in the process of evaluating and refining it through in-
teractions with the groups in our study and inclusion of
more sophisticated threats observed in related investiga-
tions in our lab. Average TTI scores in our dataset may
be skewed due to the self-reporting method we use in the
study. Very good threats are less likely to be noticed and
reported while being sent to far fewer people, and low-
quality emails are much more likely to be sent in bulk
and stand out. It is also possible that individuals in differ-
ent groups may be more diligent in submitting samples,
which could affect between group comparisons. We are
more interested, however, in worst-case (highest) scores
and not in comparing the average threat severity between
organizations.

Finally, this metric is calculated based on the technical
sophistication of the payload, not on the specific exploit.
There is currently no method to modify the TTI score in
a way similar to the temporal metrics used by the CVSS
metric. A temporal metric could be added to increase
the final TTI value for 0-day vulnerabilities, or possibly
to reduce the score for exploits that are easily detectable
due to a public and well-known generation script, e.g.
Metasploit [2].

5 Implications

Our study primarily focuses on threats that groups work-
ing on human rights issues related to Tibet or China are
currently facing. While our dataset is concentrated on
these types of groups, our results have implications for

how CSOs can protect themselves against email-based
targeted malware.

Specifically, we find that moving towards cloud-based
platforms (e.g., Google Docs) instead of relying on e-
mail attachments would prevent more than 95% of the
e-mail malware seen by 2 out of 3 Tibetan groups that
had more than 50 e-mail submissions.

Further, our results highlight the potential for lower-
cost user education initiatives to guard against sophis-
ticated social engineering attacks, rather than high cost
technical solutions. This observation stems from the fact
that much of the malware we observe is not technically
sophisticated, but rather relies on social engineering to
deliver its payload by convincing users to open malicious
attachments or links. Other studies [35, 36, 38] that have
revealed the use of commercial malware products against
CSOs and journalists have shown that many of these
cases also rely on duping users into opening malicious
e-mail attachments or social engineered instant messag-
ing conversations. These incidents show that even ad-
vanced targeted malware requires successful exploitation
of users through social engineering tactics.

User education can be a powerful tool against the
kinds of targeted attacks we observed in this study. In-
deed, the Tibetan community has taken an active ap-
proach with campaigns that urge Tibetan users to not
send or open attachments and suggests alternative cloud
based options such as Google Docs and Dropbox for
sharing documents [53]. We have also engaged the Ti-
betan groups in a series of workshops to introduce train-
ing curriculum which draws on examples submitted by
organizations participating in our study. We have also
provided them with technical background to identify sus-
picious e-mail headers and how to use free services to
check the validity of suspicious links in e-mail messages.

The mitigation strategies presented here are focused
on email vectors and do not consider all of the possible
attacks these groups may face. We highlight these strate-
gies in particular because the majority of groups in our
study identified document-based targeted malware as a
high priority information security concern. The adver-
saries behind these attacks are highly motivated and will
likely adapt their tactics as users change their behaviors.
For example, it is plausible that if every user in a partic-
ular community began to avoid opening attachments and
document-based malware infected fewer targets, attack-
ers may move on to vectors such as waterhole attacks or
attacks on cloud document platforms to fill the gap. User
education and awareness raising activities need to be on-
going efforts that are informed by current research on the
state of threats particular communities are experiencing.
Evaluation of the effectiveness of user education efforts
in at risk communities and corresponding reactions from
attackers is required to understand the dynamics between
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these processes.

6 Related Work

There is a wide body of literature on filtering and detec-
tion methods for spam [27,42,45,52,70,71] and phishing
emails and websites [12, 34, 39, 69]. Attention has also
been given to evaluating user behavior around phishing
attacks and techniques for evading them [6, 30, 33]. By
comparison research on detecting email vectors used for
targeted malware attacks is limited. A notable excep-
tion is [4, 5], which uses threat and recipient features
with a random forest classifier to detect targeted mali-
cious emails in a dataset from a large Fortune 500 com-
pany. Other work has focused on imporoving detection
of documents (e.g. PDF, Microsoft Office) with embed-
ded malicious code [13, 51, 57]

Another area of research explores methods for model-
ing the stages of targeted attacks and using these mod-
els to develop defenses. Guira and Wang [19] propose
a conceptual attack model called the attack pyramid to
model targeted attacks and identify features that can be
detected at the various stages. Hutchins, Cloppert and
Amin, [24] use a kill chain model to track targeted at-
tack campaigns and inform defensive strategies.

Metrics have been developed to characterize security
vulnerabilities and their severity [7, 41, 50]. The indus-
try standard is the Common Vulnerability Scoring Sys-
tem (CVSS) [17], which uses three metric groups for
characterizing vulnerabilities and their impacts. These
groups are: base metric group (the intrinsic and fun-
damental characteristics of a vulnerability that are con-
stant over time and user environments), temporal metric
group (characteristics of a vulnerability that change over
time but not among user environments) and environmen-
tal metric group (characteristics of a vulnerability that
are relevant and unique to a particular user’s environ-
ment). The CVSS is a widely adopted metric, but only
rates technical vulnerabilities. Targeted attacks rely on a
user action of opening a malicious attachment or visiting
a malicious link to successfully compromise a system.
Therefore, the sophistication of message lures and other
social engineering tactics are an important part of deter-
mining the severity of a targeted attack. Systems like the
CVSS cannot address this contextual component.

Our study makes the following contributions to the
literature. Previous studies of targeted attacks against
CSOs usually focus on particular incidents or campaigns
and do not include longitudinal observations of attacks
against a range of CSO targets. While standards exist
for rating the sophistication of technical vulnerabilities
and research has been done on detecting targeted mal-
ware attacks and modeling campaigns, there is no scor-
ing system that considers both the sophistication of mal-

ware and social engineering tactics used in targeted mal-
ware attacks. We address this gap through development
of the TTI and validate the metric against four years of
data collected from 10 CSOs.

7 Conclusions

Our study provides an in-depth look at targeted malware
threats faced by CSOs. We find that considering the
technical sophistication of these threats alone is insuf-
ficient and that educating users about social engineer-
ing tactics used by adversaries can be a powerful tool
for improving the security of these organizations. Our
results point to simple steps groups can take to protect
themselves from document-based targeted malware such
as shifting to cloud-based document platforms instead
of relying on attachments which can contain exploits.
Further research is needed to measure the effectiveness
of education strategies for changing user behaviour and
how effective these efforts are in mitigation of document-
based malware for CSOs. Further work is also required
in monitoring how attackers adapt tactics in response to
observed behavioural changes in targeted communities.

In ongoing work we are continuing our collection of e-
mails and NIDS alerts as well as monitoring other attacks
against these groups (e.g., waterhole attacks and DoS at-
tacks) to understand how threats vary based on their de-
livery mechanism. We are also working to extend our
methodology to more diverse CSO communities such as
those in Latin America, Africa, and other underreported
regions to better document the politically motivated dig-
ital threats they may be experiencing.
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From: world fdc <fdc2008paris@gmail.com>
To: [Tibet Group 1]

Subject: Invitation

Please reply

1 Attachment: invitation.doc

Figure 6: Example of e-mail with Targeting Score 1

From: ciran nima <nimaciran@gmail.com>
To: [Tibet Group 1]

Date: 18 Aug 2011

Subject: Truth of monk dies after setting

himself on fire

Truth of monk dies after setting himself on

fire

1 Attachment: Truth of monk dies after

setting himself on fire.doc

Figure 7: Example of e-mail with Targeting Score 2

Notes

1 We report on results from other collection sources (e.g.
NIDS alerts, website monitoring, and interviews), and cluster anal-
ysis of campaigns in a forthcoming technical report available at
https://citizenlab/targeted-threats

Appendix

A Examples of targeted e-mails

In this section, we provide specific examples of e-mails
that would be assigned targeting scores described in Sec-
tion 4.2.2.

Targeting Score 1 (Targeted Not customized). The e-
mail in Figure 6 was sent to Tibet group 1. The message
content and sender are vague and do not relate to the in-
terest of the group. The attachment is a word document
implanted with malware. The lack of relevant informa-
tion in this message gives it a score of 1 (targeted, not
customized).

Targeting Score 2 (Targeted, Poorly Customized).
The e-mail in Figure 7 was sent to Tibet group 1. It refer-
ences Tibetan self-immolations which is an issue of inter-
est to the group. However, the sender does not appear to
be from a real person or organization. The message con-
tent is terse and does not referenced information that can
be externally validated. Therefore this message scores a
2 (targeted, poorly customized).
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From: Palden Sangpo

<palden.sangpo@tibetancareers.org>
Subject: Activity Report from Tibetan

Career Centre, Bylakuppe

Date: 24 Jan 2013

To: [Tibet Group 2]

Dear Sir/Madam,

Tashi Delek.

Please find the attachment of the activity

report of Tibetan Career Centre, Bylakuppe

with this mail. As I was asked to send

this activity report to your office.

Thank you.

Regards,

Palden Sangpo, Consultant.

Tibetan Career Centre,

Old Guest House, Lugsam Tibetan Settlement

Office,

PO Bylakuppe, Mysore District, Karnataka

State - 571 104

E-mail: palden.sangpo@tibetancareers.org,

MO +91 9901407808, Off +91 8971551644

www.tibet.jobeestan.com

1 Attachment: Report to CTA home.doc

Figure 8: Example of e-mail with Targeting Score 3

Targeting Score 3 (Targeted Customized). The e-
mail in Figure 8 was sent to Tibet group 2. On the sur-
face it appears to be a professional e-mail from “Palden
Sangpo” a consultant at the Tibet Career Centre. The
e-mail sender address and signature reference accurate
contact details that can be easily verified through an In-
ternet search. However, the e-mail headers reveal the
purported e-mail sender address is fraudulent and the
actual sender was albano_kuqo@gmx.com. The e-mail
generally addresses the organization rather than the indi-
vidual recipient. Therefore this message scores a 3 (tar-
geted, customized).

Targeting Score 4 (Targeted Personalized). The e-
mail in Figure 9 was sent to Tibet group 1. It is directly
addressed to the director of the group and appears to
come from Mr. Cheng Li, a prominent China scholar
based at the Brookings Institute. The e-mail address
is made to appear to be from Mr. Cheng Li, but from
an AOL account (chengli.brookings@aol.com) that was
registered by the attackers. The message asks the recip-
ient for information on recent Tibetan self-immolations.
The level of customization and personalization used in

From: Cheng Li <chengli.brookings@aol.com>
Subject:Happy Tib Losar and Ask You a

Favour

23 Feb 2012

To: [Tibet Group 1]

Dear [Redacted]

I am Cheng Li from John L. Thornton China

Center of Brookings. I will attend an

annual meeting on Religious Research

with CIIS in Shanghai next week, and

plan to take the chance to visit Tibet.

Attached is a list of tibetans who have

self-immolated from 2009 which my assistant

prepared for me, but i am not sure of its

accuracy. Would you please have a look

and make necessary corrections. I will be

really much appreciated if you could do me

the favor and offer some more information

about the latest happenings inside tibet.

Thank you again and happy Tib losar!

Cheng Li

Director of Research, John L. Thornton

China Center

Brookings Institution

1 Attachment: list_of_self_immolations.

xls

Figure 9: Example of e-mail with Targeting Score 4

this message gives it a score of 4 (targeted, personalized).
Targeting Score 5 (Targeted Highly Personalized).
Targeting scores of 5 (targeted, highly personalized) re-
quire reference to internal information to the target orga-
nization that could not be obtained through open sources.
Examples of messages scoring at this level include an
e-mail that purported to come from a funder of China
Group 3 that provided details of an upcoming meeting
the group actually had scheduled with the funder. In
another example, Tibet Group 2 and Tibet Group 3 re-
ceived separate e-mails that contained specific personal
details about a South African group’s visit to Dharam-
sala, India that appear to have been repurposed from a
real private communication. The malicious attachment
contained an authentic travel itinerary, which would be
displayed after the user opened the document. The pri-
vate information used in these messages suggest that the
attackers performed significant reconnaissance of these
groups and likely obtained the information through prior
compromise.
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Abstract
We present an empirical analysis of targeted attacks
against a human-rights Non-Governmental Organization
(NGO) representing a minority living in China. In par-
ticular, we analyze the social engineering techniques, at-
tack vectors, and malware employed in malicious emails
received by two members of the NGO over a four-year
period. We find that both the language and topic of
the emails were highly tailored to the victims, and that
sender impersonation was commonly used to lure them
into opening malicious attachments. We also show that
the majority of attacks employed malicious documents
with recent but disclosed vulnerabilities that tend to
evade common defenses. Finally, we find that the NGO
received malware from different families and that over a
quarter of the malware can be linked to entities that have
been reported to engage in targeted attacks against polit-
ical and industrial organizations, and Tibetan NGOs.

1 Introduction
In the last few years, a new class of cyber attacks has
emerged that is more targeted at individuals and organi-
zations. Unlike their opportunistic, large-scale counter-
parts, targeted attacks aim to compromise a handful of
specific, high-value victims. These attacks have received
substantial media attention, and have successfully com-
promised a wide range of targets including critical na-
tional infrastructures [19], Fortune 500 companies [23],
news agencies [20], and political dissidents [10, 11, 16].

Despite the high stakes involved in these attacks, the
ecosystem sustaining them remains poorly understood.
The main reason for this lack of understanding is that vic-
tims rarely share the details of a high-profile compromise
with the public, and they typically do not disclose what
sensitive information has been lost to the attackers. Ac-
cording to folk wisdom, attackers carrying out targeted
attacks are generally thought to be state-sponsored. Ex-
amples of national organizations that have been reported
to be engaged in targeted attacks include the NSA’s of-

fice of Tailored Access Operations (TAO) [3] and the
People’s Liberation Army’s Unit 61398 [15]. Recently,
researchers also attributed attacks in the Middle East to
the governments of Bahrain, Syria, and the United Arab
Emirates [16].

There now exists public evidence that virtually every
computer system connected to the internet is susceptible
to targeted attacks. The Stuxnet attack even successfully
compromised air-gapped Iranian power plants [19] and
was able to damage the centrifuges in the facility. More
recently, Google, Facebook, the New York Times, and
many other global companies have been compromised
by targeted attacks. Furthermore, political dissidents and
Non-Governmental Organizations (NGOs) are also being
targeted [10, 11, 16].

In this paper, we analyze 1,493 suspicious emails col-
lected over a four-year period by two members of the
World Uyghur Congress (WUC), an NGO representing
an ethnic group of over ten million individuals mainly
living in China. WUC volunteers who suspected that
they were being specifically targeted by malware shared
the suspicious emails that they received with us for anal-
ysis. We find that these emails contain 1,176 malicious
attachments and target 724 unique email addresses be-
longing to individuals affiliated with 108 different orga-
nizations. This result indicates that, despite their targeted
content, these attacks were sent to several related victims
(e.g., via Cc). Although the majority of these targeted or-
ganizations were NGOs, they also comprised a few high-
profile targets such as the New York Times and US em-
bassies.

We leverage this dataset to perform an empirical anal-
ysis of targeted attacks in the wild. First, we analyze
the engineering techniques and find that the language
and topic of the malicious emails were tailored to the
mother tongue and level of specialization of the victims.
We also find that sender impersonation was common and
that some attacks in our dataset originated from com-
promised email accounts belonging to high-profile ac-
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tivists. Second, whereas recent studies report that ma-
licious archives and executables represented the majority
of the targeted-attack threat [15, 22], we find that mali-
cious documents were the most common attack vector in
our dataset. Although we do not find evidence of zero-
day vulnerabilities, we observe that most attacks used re-
cent vulnerabilities, that exploits were quickly replaced
to adapt to new defense mechanisms, and that they of-
ten bypassed common defenses. Third, we perform an
analysis of the first-stage malware delivered over these
malicious emails and find that WUC has been targeted
with different families of malware over the last year. We
find that over a quarter of these malware samples exhib-
ited similarities with those used by entities reported to
have carried out targeted attacks.

Our work complements existing reports on targeted at-
tacks such as GhostNet, Mandiant, and Symantec Inter-
net Security Threat (ISTR) 2013 [11, 15, 22]. Whereas
the GhostNet and Mandiant reports focus on the attack
lifecycle after the initial compromise, this study provides
an in-depth analysis of the reconnaissance performed be-
fore the compromise. We note that both approaches have
pros and cons and are complementary: While it is hard
for the authors of these reports to know how a system be-
came compromised in retrospect, it is equally hard for us
to know if the observed attacks will compromise the tar-
geted system(s). Finally, whereas ISTR provides some
numbers about reconnaissance analysis for industrial-
espionage attacks [22], we present a thorough and rig-
orous analysis of the attacks in our dataset.

Finally, to foster research in this area, we release our
dataset of targeted malware to the community [4].
Scope. Measuring real-world targeted attacks is chal-
lenging and this paper has a number of important bi-
ases. First, our dataset contains mainly attacks against
the Uyghur and human-rights communities. While the
specifics of the social engineering techniques (e.g., use
of Uyghur language) will vary from one targeted com-
munity to another, we argue that identifying commonly
used techniques (e.g., topic, language, senders’ imper-
sonation) and their purpose is a necessary step towards
designing effective defenses. Another limitation of our
dataset is that it captures only targeted attacks carried out
over email channels and that were detected by our vol-
unteers. Although malicious emails seem to constitute
the majority of targeted attacks, different attack vectors
such as targeted drive-by downloads are equally impor-
tant. Finally, we reiterate that the goal of this study is to
understand the reconnaissance phase occurring before a
compromise. Analyzing second-stage malware, monitor-
ing compromised systems, and determining the purpose
of targeted attacks are all outside of the scope of this pa-
per and are the topic of recent related work [10, 16]. We
discuss open research challenges in Section 6.

Figure 1: Screenshot of a malicious email with an im-
personated sender, and a malicious document exploit-
ing Common Vulnerabilities and Exposures (CVE) num-
ber 2012-0158 and containing malware. The email re-
plays an actual announcement about a conference in
Geneva and was edited by the attacker to add that all
fees would be covered.

2 Overview

Context. WUC, the NGO from which we have received
our dataset, represents the Uyghurs, an ethnic minority
concentrated in the Xinjiang region in China. Xinjiang
is the largest Chinese administrative division, has abun-
dant natural resources such as oil, and is China’s largest
natural gas-producing region. WUC frequently engages
in advocacy and meeting with politicians and diplomats
at the EU and UN, as well as collaborating with a variety
of NGOs. Rebiya Kadeer, WUC’s current president, was
the fifth richest person in China before her imprisonment
for dissent in 1996, and is now in exile in the US. Fi-
nally, WUC is partly funded by the National Endowment
for Democracy (NED), a US NGO itself funded by the
US Congress to promote democracy. (We will see below
that NED has been targeted with the same malware as
WUC.)

WUC has been a regular target of Distributed De-
nial of Service (DDoS) attacks and telephone disrup-
tions, as well as targeted attacks. For example, the
WUC’s website became inaccessible from June 28 to
July 10, 2011 due to such a DDoS attack. Concurrently
to this attack, the professional and private phone lines of
WUC employees were flooded with incoming calls, and
the WUC’s contact email address received 15,000 spam
emails in one week.
Data acquisition. In addition to these intermittent
threats, WUC employees constantly receive suspicious
emails impersonating their colleagues and containing
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malicious links and attachments. These emails consis-
tently evade spam and malware defenses deployed by
webmail providers and are often relevant to WUC’s ac-
tivities. In fact, our volunteers claim that the emails are
often so targeted that they need to confirm their legiti-
macy with the impersonated sender in person. For ex-
ample, Figure 1 shows the screenshot of such an email
that replays the actual announcement for a conference in
Geneva organized by WUC. As a result, WUC members
are wary of any emails containing links or attachments,
and some of them save these emails for future inspec-
tion. We came in contact with two WUC employees who
shared the suspicious emails that they had received (with
consent from WUC). The authors of this work were not
involved in the data collection.
Characteristics of the dataset. The two volunteers
shared with us the headers and content of 1,493 suspi-
cious emails that they received over a four-year period.
1,178 (79%) of these emails were sent to the private
email addresses of the two NGO employees from whom
we obtained the data, 16 via the public email address of
the WUC, and the remaining 299 emails were forwarded
to them (126 of these by colleagues at WUC). Overall,
89% of these emails were received directly by our volun-
teers or their colleagues at WUC. As we will see below,
they also contain numerous email addresses in the To and
Cc fields belonging to individuals that are not affiliated
with WUC.

The emails contained 209 links and 1,649 attachments,
including 1,176 with malware (247 RAR, 49 ZIP, 144
PDF, and 655 Microsoft Office files, and 81 files in other
formats). Our analysis revealed 1,116 malicious emails
containing malware attachments. (We were not able to
verify the maliciousness of the links as most of them
were invalid by the time we obtained the data.) In the fol-
lowing, we analyze malicious emails exclusively and we
refer to malicious archives or documents depending on
whether they contained RAR or ZIP, PDF or Microsoft
Office documents, respectively. Finally, the volunteers
labeled the data wherever necessary, enabling us, for ex-
ample, to establish that the sender of the emails was im-
personated for 84% of the emails. Table 1 summarizes
the main characteristics of these malicious emails.
Scope of the dataset. Analyzing the headers of the ma-
licious emails revealed a surprisingly large number of re-
cipients in the To or Cc fields. In particular, we observed
that malicious emails had been sent to 1,250 unique
email addresses and 157 organizations. A potential ex-
planation for this behavior could be that the attacker tam-
pered with the email headers (e.g., via a compromised
SMTP server) as part of social engineering so these
emails were only delivered to our volunteers, despite
the additional indicated recipients. To test this hypoth-
esis, we considered only those emails received directly

by our volunteers, originating from well-known webmail
domains (i.e., aol.com, gmx.de, gmx.com, gmail.com,
googlemail.com, hotmail.com, outlook.com, and ya-
hoo.com), and verified via Sender Policy Framework
(SPF) and DomainKeys Identified Mail (DKIM). SPF
and DKIM are methods commonly used to authenticate
the sending server of an email message. By verifying
that these malicious emails originated from well-known
webmail servers, we obtain 568 malicious emails whose
headers are very unlikely to have been tampered with by
the attacker. By repeating our above analysis on these
emails only, we obtain 724 unique email addresses and
108 organizations. Other organizations besides WUC
include NED (WUC’s main source of funding and it-
self funded by the US congress), the New York Times,
and US embassies. In summary, while we obtained our
dataset from two volunteers working for a single orga-
nization, it offers substantial coverage not only of one
NGO, but also of those attacks against multiple NGOs in
which attackers target more than one organization with
the same email. We show the full list of organizations
targeted in our dataset in Appendix A.

What are targeted attacks? There is no precise defini-
tion of targeted attacks. In this paper, we loosely define
these attacks as low-volume, socially engineered com-
munication which entices specific victims into installing
malware. In the dataset we analyze here, the communi-
cation is by email, and the mechanism of exploitation is
primarily using malicious archives or documents. A tar-
geted victim, in this work, refers to specific individuals,
or an organization as a whole. When necessary, we also
use the term volunteer(s) to distinguish between our two
collaborators and other victims.

The terms targeted attacks and Advanced Persistent
Threats (or APTs) are often used interchangeably. As
this paper focuses on the reconnaissance phase of tar-
geted attacks (occurring before a compromise), we can-
not measure how long attackers would have remained in
control of the targeted systems (i.e., their persistency).
As a result, we simply refer to these attacks as targeted
attacks, and not APTs, throughout the rest of this pa-
per. We discuss specific social engineering characteris-
tics that make targeted attacks difficult to detect by un-
suspecting average users in Section 3, the attack vectors
used in our dataset in Section 4, and the malware fam-
ilies they install in Section 5. Finally, we will discuss
open research challenges in Section 6.

Ethics. The dataset was collected prior to our contact-
ing WUC and for the purpose of future security analysis.
Furthermore, WUC approved the disclosure of all the in-
formation contained in this paper and requested that the
organization’s name not be anonymized.
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Table 1: Summary of our dataset originating from two volunteers. Malicious indicates the fraction of emails containing
malware, Impersonated the fraction of emails with an impersonated sender, # recipients and # orgs the number of
unique email addresses that were listed in the To and Cc fields of the malicious emails and the corresponding number
of organizations, respectively.

Beginning - end Size Malicious Impersonated # recipients # orgs
1st volunteer Sept 2012 - Sept 2013 98 MB 154/241 (64%) 141/154 (92%) 124 25
2nd volunteer Sept 2009 - Jul 2013 818 MB 962/1,252 (77%) 802/962 (83%) 666 102

Total Sept 2009 - Sept 2013 916 MB 1,116/1,493 (75%) 943/1,116 (84%) 724 108

3 Analysis of social engineering

The GhostNet, Mandiant, ISTR, and other reports [11,
15, 22] mention the use of socially-engineered emails to
lure their victims into installing malware, clicking on
malicious links, or opening malicious documents. For
example, the GhostNet report refers to one spoofed email
containing a malicious DOC attachment, and the Man-
diant report to one email sent from a webmail account
bearing the name of the company’s CEO enticing several
employees to open malware contained in a ZIP archive.
Concurrent work reports the use of careful social engi-
neering against civilians and NGOs in the Middle East
[16] and also Tibetan and human-rights NGOs [10]. De-
spite this anecdotal evidence, we are not aware of any
rigorous and thorough analysis of the social engineering
techniques employed in targeted attacks. In this section,
we seek to answer the following questions in the context
of our dataset:

• What social traits of victims are generally ex-
ploited? Do attackers generally impersonate a
sender known to the victim and if so who do they
choose to impersonate?

• Who are the victims? Are malicious emails sent
only to specific individuals, to entire organizations,
or communities of users?

• When are users being targeted? When do users
start being targeted? Are the same users frequently
being targeted and for how long? Are several
users from the same organization being targeted
simultaneously?

3.1 Methodology
The analysis below focuses on 1,116 malicious emails
received between 2009 and 2013.
Topics and language. To attempt to understand how
well the attacker knows his victims, we manually catego-
rized the emails (coded) by topic and language. (Unless

indicated otherwise, the analysis below was performed
on emails that were coded by one of the author.) The
topic was determined by reading the emails’ titles and
bodies and, in cases where emails were not written in En-
glish, we also used an online translation service. Emails
whose topic was still unclear after using the translator
were labeled as Unknown.
Targeted victims. To determine the targeted victims
of these attacks, we searched the email addresses and
full names of the senders and receivers for the mali-
cious emails originating from trustworthy SMTP servers.
When available, we used their public profiles available
on social media websites such as Google, Facebook, and
Skype to determine their professional positions and or-
ganizations. We assume we have found the social profile
of a victim if one of the three following rules applies (in
that order): First, if the social profile refers directly to
the email address seen in the malicious email; second,
if the social profile refers to an organization whose do-
main matches the victims’ email address; or third, if we
find contextual evidence that the social profile is linked
to WUC, Uyghurs, or the topic of the malicious email.
Out of 724 victims’ email addresses, we found the pro-
file of 32% (237), 4% (30), and 23% (167) using the first,
second, and last rule, respectively.
Organizations and industries. In the following, WUC
refers to victims directly affiliated with the organiza-
tion (including our volunteers). Other Uyghur NGOs
include Australia, Belgium, Canada, Finland, France,
Japan, Netherlands, Norway, Sweden, and UK associa-
tions. Other NGOs include non-profit organizations such
as Amnesty International, Reporters Without Borders,
and Tibetan NGOs. Academia, Politics, and Business
contain victims working in these industries. Finally, Un-
known corresponds to victims for which we were not able
to determine an affiliation.
Ranks. We also translated the professional positions
of the victims into one of the three categories: High,
Medium, and Low profile. We consider professional lead-
ership positions such as chairpersons, presidents, and ex-
ecutives as high-profile, job positions such as assistants,
and IT personnel as medium-profile, and unknown and
shared email addresses (e.g., NGO’s contact informa-
tion) as low-profile.
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Figure 2: Distribution of the topics of the malicious
emails for each year of the dataset shared by our two
volunteers. The left bar corresponds to the data shared
by both volunteers, and the next two bar groups to each
year of the data shared by our first and second volun-
teer, respectively. The content of malicious emails is
targeted to the victims.
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Figure 3: Distribution of languages for each year of our
dataset. Malicious emails employ the language of their
victims.

Impersonation. Finally, to understand the social con-
text of the attack, each of our volunteers coded (based
on her experience within the organization) all the email
addresses of the senders into one of five categories:
Spoofed, Typo, Name, Suspicious, or Unknown. (Coding
was done based exclusively on the personal knowledge
of the volunteers.) An email is marked as Spoofed if it
bears the exact sender email address of a person known
to our volunteers, as Typo if it resembles a sender email
address known to the receiver but is not identical, and as
Name if the attacker used the full name of a volunteer’s
contact (with a different email address). Finally, email
addresses that look as if they had been generated by
a computer program (e.g., uiow839djs93j@yahoo.com)
are labeled as Suspicious and all remaining emails as Un-

known. Our assumption is that, because our volunteers
received most of the malicious emails directly, they were
likely to recognize cases where their contacts were be-
ing impersonated. We note that labeling is conservative:
Our volunteers may sometimes label Spoofed or Typo ad-
dresses as Unknown because they do not know the person
impersonated in the attack. This may happen, for exam-
ple, in cases where they were not the primary target of
the attack (e.g., they appeared in Cc).
Limitations. Our dataset originates from WUC and is
limited to those victims that were targeted together with
that organization. We will see that these victims were of-
ten NGOs. As a result, the social engineering techniques
observed here may differ from attacks against different
entities such as companies, political institutions, or even
other NGOs. Despite these limitations, we argue that this
analysis is an important first step towards understanding
the human factors exploited by targeted attacks.

3.2 Results

In this subsection, we discuss the results of our analy-
sis of the social engineering techniques used in the mali-
cious emails.
Topics and language. The topic of malicious emails in
our dataset can generally be classified into one of three
categories: WUC, Uyghur, and human-rights. In partic-
ular, we observed 51% (575) of malicious emails per-
taining to WUC, 29% (326) to Uyghurs, 12% (139) to
human-rights, and 3% (28) to other topics. In addition,
the native language of the victim is often used in the ma-
licious emails. In fact, 69% (664) of the emails sent to the
second volunteer were written in the Uyghur language,
and 62% (96) for the first one. These results indicate that
attackers invested significant effort to tailor the content
of the malicious emails to their victims, as we see in Fig-
ure 2 and Figure 3.
Specialized events. In addition to being on topic, we
also observed that emails often referred to specific events
that would only be of interest to the targeted victims.
Throughout our dataset, we found 46% of events (491)
related to organizational events (e.g., conferences). We
note that these references are generally much more spe-
cialized than those used in typical phishing and other
profit-motivated attacks. For example, Figure 1 shows a
screenshot of an attack that replayed the announcement
of a conference on a very specialized topic. The mali-
cious email was edited by the attacker to add that all fees
would be covered (probably to raise the target’s interest).
Impersonation. We find that attackers used carefully
crafted email addresses to impersonate high-profile iden-
tities that the victims may directly know. That is, attack-
ers used one of the following four techniques to add le-
gitimacy to a malicious email: First, 41% (465) of the
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Figure 4: Distribution of senders’ impersonation tech-
niques for each year of our dataset. Malicious emails
spoof the email address of a contact of the volunteers,
use a very similar address controlled by the attacker,
or a contact’s full name.

email addresses have Typos (i.e., the email address re-
sembles known sender addresses, but with minor, sub-
tle differences). These email addresses are identical to
legitimate ones with the exception of a few characters
being swapped, replaced, or added in the username. Sec-
ond, 12% (134) of the senders’ full names corresponded
to existing contacts of the volunteers. Third, we find
that most email addresses belonged to well-known email
providers — Google being the most prominent with 58%
of all emails using the Gmail or GoogleMail domains,
followed by Yahoo with 16%.

Fourth, we find that 30% (337) of the sender emails
were spoofed (i.e., the email was sent from the address of
a person that the volunteer knows). This observation sug-
gests that the attacker had knowledge of the victim’s so-
cial context, and had either spoofed the email header, or
compromised the corresponding email account. To iden-
tify a subset of compromised email accounts, we con-
sider spoofed emails authenticated by the senders’ do-
mains using both SPF and DKIM. To reduce the chances
of capturing compromised servers instead of compro-
mised accounts, we also consider only well-known, trust-
worthy domains such as GMail. This procedure yields
malicious emails that were likely sent from the legitimate
account of the victims’ contacts. We found that three
email accounts belonging to prominent activists, includ-
ing two out of 10 of the WUC leaders, were compro-
mised and being used to send malicious emails. We have
alerted these users and are currently working with them
to deploy defenses and more comprehensive monitoring
techniques, as we will discuss in Section 6.

We show the distributions of malicious emails sent
with spoofed, typo, suspicious, or unknown email ad-
dresses in Figure 4, and the ranks of the impersonated
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Figure 5: Distribution of impersonated senders’ ranks for
each year of our dataset. Malicious emails often imper-
sonate high-profile individuals.
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Figure 6: Distribution of languages employed to write
about the main topics of malicious emails. There is a
strong correlation between malicious emails’ topics
and the language in which they are written.

senders in Figure 5. (We do not show the correspond-
ing ranks for receivers because NGOs generally function
with a handful of employees, all playing a key role in the
organization.)
Targeted victims. For the analysis below, which lever-
ages other recipients besides our two volunteers, we fur-
ther filter emails to keep only those originating from
well-known domains (as described in Section 2). Doing
this leaves us with 568 malicious emails that are likely
to have indeed been sent to all the email addresses in the
header. We find that the attacks target more organiza-
tions than WUC, including 38 Uyghur NGOs, 28 Other
NGOs, as well as 41 Journalistic, Academic, and Polit-
ical organizations. (See Appendix A for the complete
list of targeted organizations.) Interestingly, we find a
strong correlation between the topic of an email and the
language in which the email was written, as we show in
Figure 6. Our results show that English was more and
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Figure 7: Timeline of attacks, in number of malicious
emails per month, against the 60 most targeted victims
(our two volunteers’ rows are shaded and the vertical
line corresponds to one of our volunteer joining WUC).
The Y axis represents victims grouped by organization.
ETUE corresponds to the East Turkestan Union in Eu-
rope NGO and Others to different organizations. Each of
the top 60 victims has been frequently attacked over
the last four years and several victims from the same
NGOs were attacked simultaneously.

more common as the topic became less and less special-
ized. We hypothesize that attackers may have sent the
same email messages to several recipients with similar
interests to reduce the costs involved in manually craft-
ing these emails.
Timing. Our dataset shows that the same victims were
frequently targeted and that several members of the
same organization were routinely targeted simultane-
ously. This suggests that attackers were using a “spray”
strategy, trying to find the weakest links in the targeted
organization, and hence, optimizing their chance of suc-
cess. Spraying is clearly visible in Figure 7 where we
see that the top 60 most targeted victims in our dataset
received malicious emails often over the last four years.
(We note that the dataset shared by one of our volun-
teers starts on August 2012, explaining why we observe
more malicious emails after that date.) We also see that,
31 email accounts from individuals without affiliation to
WUC were often targeted simultaneously to the WUC
accounts.

Summary of Findings. We now revisit the initial ques-
tions posed at the beginning of this section. First, we
saw that most emails in our dataset pertained to WUC,
Uyghurs, or human-rights, were written in the recipi-
ent’s mother tongue, and often referred to very special-
ized events. We also found that sender impersonation
was common and that some email accounts belonging to
WUC’s leadership were compromised and used to spread
targeted attacks. (We note that many more accounts may
be compromised but remain dormant or do not appear
as compromised in our dataset.) Second, we showed
that numerous NGOs were being targeted simultaneously
with WUC and that the specialization of emails var-
ied depending on the recipient(s). Finally, we observed
that the most targeted victims received several malicious
emails every month and that attacks were sprayed over
several organizations’ employees.

4 Analysis of attack vectors

We now analyze the techniques used to execute arbitrary
code on the victim’s computer. The related work re-
ports the use of malicious links, email attachments, and
IP tracking services [10, 16]. Whereas ISTR 2013 re-
ports that EXE are largely used in targeted attacks, and
the Mandiant report that ZIP is the predominant format
that they have observed in the last several years, we find
that these formats represent 0% and 4% (49) of malicious
attachments in our dataset, respectively. Instead, we find
RAR archives and malicious documents to be the most
common attack vectors. Hypotheses that may explain
these discrepancies with the Mandiant report include the
tuning of attack vectors to adapt to the defenses mecha-
nisms used by different populations of email users (e.g.,
NGOs vs. corporations); Mandiant’s attacker (APT1),
mainly using primitive attack vectors such as archives;
and/or Mandiant having excluded more advanced attack
vectors, such as documents, from its report. However, in
the absence of empirical data on APT1’s attack vectors,
we cannot test these hypotheses. In this section, we per-
form a quantitative study of the attack vectors employed
in our dataset, and also analyze their dynamics. We seek
to answer the following questions:

• What attack vectors are being employed against
WUC? Do they generally rely only on human fail-
ures or also on software vulnerabilities? Do they
evolve in time and if so, how quickly do they adapt
to new defense mechanisms?

• What is the efficacy of existing countermeasures?
As all malicious documents in our dataset used
well-known vulnerabilities, would commercial,
state-of-the-art defenses have detected all of them?

7



550 23rd USENIX Security Symposium USENIX Association

2009−09 2010−09 2011−09 2012−09 2013−09
0

10

20

30

40

50

60
Targeted vulnerabilities

Time

N
um

be
r o

f m
al

ic
io

us
 d

oc
um

en
ts

Unknown
Others
2006−2492
2009−3129
2010−3333
2012−0158

2009−09 2010−09 2011−09 2012−09 2013−09
0

10

20

30

40

50

60
Targeted applications

Time

N
um

be
r o

f m
al

ic
io

us
 d

oc
um

en
ts

Office
Acrobat

Figure 8: Number of malicious documents containing a given vulnerability (CVE) (left) and target application (right)
for each month of our dataset. We represent the top four CVEs in number of attacks over the whole trace individu-
ally and others are represented in aggregate. The vertical line in November 2010 corresponds to the deployment of
sandboxing in Acrobat Reader. Although Acrobat Reader was the most targeted application until 2010, recent
attacks mainly target the Office suite.

4.1 Methodology
Malicious archives. To analyze the archives’ contents,
we extracted them in a disconnected VM environment
and manually inspected their contents to determine the
type of files they contain, independently of their exten-
sions. In the case of EXE files, we also examined them
manually to determine whether their Microsoft Windows
icons were similar to those used for other file formats
(e.g., JPEG) in order to persuade average users that they
were not executable.
Malicious documents. We used two methodologies to
determine the characteristics of the vulnerabilities being
exploited by malicious documents. First, we submitted
the documents to VirusTotal [1] for analysis. Each of the
45 Antivirus (AVs) on VirusTotal classified the checked
sample as benign or malicious, and attached a “tag” de-
scribing the auxiliary information relating to the sample.
Often the tag is a Common Vulnerabilities and Exposures
(CVE) number, presumably corresponding to the signa-
ture that matched, but in some cases, the tag field is not
a CVE; it is either tagged as “unknown” or contains a
symptomatic description such as the inclusion of a sus-
picious OLE object. We refer to these three tags as CVE,
Unknown, and Heuristic, respectively. Often all AVs re-
ported a Single CVE but sometimes, they reported Mul-
tiple, conflicting CVEs. Once we collected all CVE tags,
we then scraped the National Vulnerability Database [18]
to obtain the release date and vulnerable applications for
each of the CVEs that we found.

Second, we inspected the documents manually to con-
firm that they contain malware, and also used taint-
assisted analysis both to verify the accuracy of the CVEs
reported in AV reports and to investigate the presence of
zero-day vulnerabilities.1 The methodological details of

1Hereafter, zero-day vulnerabilities refer to vulnerabilities that were

our taint-assisted manual analysis are described in Ap-
pendix B.
Defenses. We performed a retrospective analysis of the
protection offered by common defenses such as AV and
webmail providers in the context of our malicious docu-
ments. For AV, we used VirusTotal to determine whether
a malicious document is detected by the scanning engine
of each AV, as described above. For webmail channels,
we created an email account on GMail, Hotmail, and Ya-
hoo, and used a dedicated SMTP server to send emails
to that account with malicious documents attached. We
considered malicious documents delivered without mod-
ifications as undetected by the webmail defenses. Oth-
erwise, if an email or its attachment is dropped, or if the
attachment’s payload is modified, we considered it as de-
tected. The analyses based on webmails and VirusTotal
were performed in November 2013 and July 2014, re-
spectively.
Limitations. As with social engineering, our analysis
of attack vectors is biased towards NGOs. In addition,
the above methodology is limited to the attack vectors
captured in our dataset. For example, we miss attacks
against the NGOs’ web servers unless the corresponding
malicious link appears in the suspicious emails.

Second, our taint-assisted analysis of vulnerabilities is
limited to those documents for which we were able to
analyze the logs manually. For example, we found that
opening PDF files in our environment generated log files
that were far too large (around 15GB in the median case)
for manual analysis. As a result, we were able to man-
ually confirm vulnerabilities only against Microsoft Of-
fice. However, despite this limitation, we were also able
to determine which PDF documents contained malware
through manual inspection.

not publicly disclosed at the time of the attack.

8
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Table 2: List of well-known vulnerabilities exploited by
malicious documents. Release corresponds to the release
date of the vulnerability and First to its first exploitation
in our data set (in number of days relative to the release
date). Resolved corresponds to the number of Microsoft
Office vulnerabilities that were mistagged in AV reports
but that we were able to resolve using taint-assisted man-
ual analysis.

CVE Release First Apps # emails Resolved
2006-0022 06/13/06 1,191 Office 2 0
2006-2389 07/11/06 1,166 Office 18 16
2006-2492 05/20/06 1,125 Office 59 47
2007-5659 02/12/08 588 Acrobat 3 0
2008-0081 01/16/08 651 Office 1 0
2008-0118 03/11/08 1,010 Office 1 0
2008-4841 12/10/08 824 Office 1 0
2009-0557 06/10/09 405 Office 2 0
2009-0563 06/10/09 880 Office 31 0
2009-0927 03/19/09 180 Acrobat 11 0
2009-1862 07/23/09 68 Acrobat 3 0
2009-3129 11/11/09 188 Office 58 4
2009-4324 12/15/09 4 Acrobat 15 0
2010-0188 02/22/10 28 Acrobat 15 0
2010-1297 06/08/10 0 Acrobat 9 0
2010-2883 09/09/10 7 Acrobat 7 0
2010-3333 11/10/10 49 Office 220 0
2010-3654 10/29/10 0 Office 7 0
2011-0611 04/13/11 0 Acrobat 19 0
2011-0097 04/13/11 224 Office 3 0
2011-2462 12/07/11 2 Acrobat 5 0
2012-0158 04/10/12 37 Office 278 12
2013-0640 02/14/13 68 Acrobat 1 0

Finally, our defense analysis was performed in bulk,
after the time of the attacks. As a result of the difference
between the times of attack and analysis (up to four years
for the first malicious documents), the detection rates re-
ported hereafter should be treated as upper bounds. This
is because the AV signatures at the time of the analysis
were more up-to-date than they would have been at the
time of the attack.

4.2 Results: Attack vectors
4.2.1 Malicious archives

We observed numerous targeted attacks leveraging social
engineering and human failure to install malware on the
victim’s computer. In particular, we found 247 RAR and
49 ZIP containing malicious EXE. In 10 cases, the ma-
licious archives were password protected with the pass-
word included in the email’s body. We hypothesize that
archiving was used as a rudimentary form of packer for
the malware to evade detection by the distribution chan-
nels. Finally, we found that 20% of all EXEs contained
in the archives used an icon that resembled a non-EXE,
i.e., a DOC, JPEG, or PDF icon, in 20%, 19%, and 7%
of the cases.

day 0 1 2 3 4 5
2010−3654
2011−0611
2011−2462
2009−4324
2010−2883
2010−0188
2012−0158
2010−3333
2009−1862
2013−0640
2009−0927
2009−3129
2011−0097
2009−0557
2007−5659
2008−0081
2008−4841
2009−0563
2008−0118
2006−2492
2006−2389
2006−0022

Time (years)

1−5 6−10 >10
Acrobat Office

Figure 9: Timeline of the target vulnerabilities. The Y
axis corresponds to CVEs and each circle to the number
of CVEs seen each month after the public disclosure of
the vulnerability (day 0). All vulnerabilities were first
targeted after their public disclosure.

4.2.2 Malicious documents

We used taint-assisted analysis to resolve the conflicts
due to AV mistagging and summarize the CVE informa-
tion in Table 2. The number of conflicts resolved using
taint-assisted manual analysis is reported in the last col-
umn Resolved. Additional taint-analysis results are re-
ported in Appendix B.
Zero-day versus unpatched vulnerabilities. We find
no evidence of the use of zero-day vulnerabilities against
our dataset, but several uses of disclosed vulnerabilities
within the same week as their public release date. In
addition, we see in Figure 9 that vulnerabilities continued
to be exploited for years after their disclosure, and this
confirms that unpatched vulnerabilities represent a large
fraction of attacks in our dataset. To ascertain the CVE
being exploited in each sample, we used a combination
of the telemetry data available in CVE tags generated by
AVs, and a manual analysis to resolve cases where the tag
was ambiguous. For each sample, we then recover the
public disclosure date for the vulnerability manually, and
treat it as the corresponding day-zero. By comparing the
time of use in our email dataset, we are able to ascertain
the lifetime of vulnerability exploits.

We find several instances of exploits that were used
in publicly-reported targeted attacks in our dataset. For

9
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Figure 10: Detection rates of popular webmails for the
malicious documents. The efficacy of webmails to de-
tect malicious documents varies widely.

instance, vulnerabilities such as CVE-2009-4324, CVE-
2010-3654, and CVE-2010-2883 have been reported to
be zero-day vulnerabilities [6]. However, in our dataset,
these vulnerabilities were used after their disclosure.
Evolution of target applications. Our data shows a
sudden switch from Adobe Reader to Microsoft Office
suite as the primary targeted application as of Novem-
ber 2010, as seen in Figure 8. We find a correlation be-
tween the time of this switch and two events: (a) the de-
ployment of sandboxing defenses in Adobe Reader and
(b) the disclosure of vulnerabilities in the Office suite.
The first version of Acrobat Reader to support sandbox-
ing for Windows (version 10.0) was released on Novem-
ber 15, 2010. Within the same month, a stack buffer
overflow against Microsoft Office was released publicly
(November 2010), reported as CVE-2010-3333. We see
this CVE being massively exploited in our dataset as of
January 2011, which is a time lag of two months. We
observe the use of CVE-2010-3333 being replaced with
CVE-2012-0158 in January 2013. This evidence sug-
gests that attackers adapted their targeted vectors to use
newly disclosed vulnerabilities within a few days to a few
months of disclosure, and that updates to the security de-
sign of software reduces its exploitability in the wild (as
one would expect).

4.3 Results: Bypassing common defenses

We now investigate the efficacy of existing defenses
against malicious documents.
Email / Webmail Filtering. Despite the retrospective
analysis of the malicious documents, we find that the
detection rates of malicious documents for GMail, Hot-
mail, and Yahoo were still relatively low (see Figure 10).
We also find that GMail failed to detect most malicious
documents sent after March 2012. In particular, while
the detection of documents sent before March 2012 was
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Figure 11: Detection rates of malicious documents for
each of the top 30 AVs as reported by VirusTotal. No sin-
gle AV detected all malicious documents despite their
use of well-known vulnerabilities.

73%, it is 28% after that date. Interestingly, 71% of the
true positives for GMail after March 2012 corresponded
to RTF files with all \r\n character sequences substituted
with the \n character. While this substitution did not de-
activate the malware, we observed that it broke the shell-
codes embedded into these documents as they require the
document size to remain unchanged to function properly.
As a result, the malware was never executed. Although
we cannot verify the purpose of this substitution, we note
that its appearance coincided with that of the malicious
RTF files. We conclude this discussion by pointing out
that Yahoo’s low detection rate is interesting as it claims
to be using Symantec AV for its webmail service [12] —
which, as we will see below, has a much higher detection
rate.
Signature-based AV Scanning. In Figure 11, we show
the detection rates for the top 30 VirusTotal AVs, sorted
by decreasing detection rate of the malicious documents.
There are two main takeaways from this graph. First,
no single vendor detected all original malicious docu-
ments, even though we have seen that they used well-
known vulnerabilities. For example, Qihoo, the vendor
with the overall best efficacy, was unable to detect 3% of
the malicious documents based on scanning. Second, we
observe large variations among the efficacy of different
AV vendors. That is, the detection rate dropped by 30%
from the first to the twentieth AV (CAT QuickHeal) and
the 15 AVs with the lowest detection rate (not shown) all
had a detection rate of less than 35%.
Summary of Findings. We found that malicious docu-
ments are the most popular attack vectors in our dataset
followed by malicious archives. Malicious documents
tended to use newly released vulnerabilities, often within
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Table 3: Summary of the malware clusters. For each cluster, we show the malware family (or an ID if we could
not determine it), the number of malicious emails containing the malware, the number of Command and Control
(C2) servers, the similarities in terms of communication protocols and C2 with malware attributed to known entities
(entity(Com,C2)). Our dataset contains several families of first-stage malware previously seen in targeted attacks
carried out in the wild.

Clusters 1 2 Surtr 4 5 6 7 8 9 TravNet
# samples 67 (9%) 58 (8%) 51 (7%) 37 (5%) 30 (4%) 22 (3%) 19 (2%) 19 (2%) 18 (2%) 13 (2%)

# C2 6 2 6 18 13 3 8 13 9 4
Similarity DTL(C2) — DTL(C2) — — — — — — TravNet(Com,C2)

a week, continued to utilize them for several years, and
most of them used well-known instead of zero-day vul-
nerabilities. In particular, our taint-assisted manual anal-
ysis of Office documents did not reveal a single zero-
day vulnerability in our dataset. This raises the ques-
tion of whether defense mechanisms deployed in web-
mails and state-of-the-art commercial defenses are effec-
tive in blocking these well-known attacks. Furthermore,
we found that malicious archives often contained EXE
files that masquerade as pictures or documents.

5 Malware analysis

We now analyze the first-stage malware found in ma-
licious documents. Unlike the Mandiant report, which
provides an analysis for malware that targets different
organizations and that (they claim) originates from the
same group, our analysis focuses on all malware (in our
dataset) that has targeted a single organization. By look-
ing at targeted attacks from the perspective of the target
rather than the attacker, our analysis enables us to de-
termine whether WUC has been targeted with the same
or different malware over the years. We also take a dif-
ferent approach from the authors of the GhostNet report
who performed malware analysis on a few compromised
systems belonging to different but related organizations.
We instead analyze over six hundred malware samples
used to establish a foothold on the targeted systems of a
single organization. Our analysis differs from the related
work in its scale and context [16] or focus [10]. This
section aims to answer the following question:

• Is WUC targeted with the same or different mal-
ware? In the latter case, are there similarities be-
tween this first-stage malware and others found in
targeted attacks in the wild?

5.1 Methodology
Our analysis below was done on 689 malware samples
that we extracted from malicious documents.
Clustering. To make our analysis tractable for 689
malware samples, we started by clustering the malware

based on its behavior. To do so, we ran the malicious
EXE and DLL files in a disconnected sandboxed envi-
ronment and hooked the function calls to resolve domain
names and establish network communications. In ad-
dition, to obtain the TCP port number on which com-
munication is done, we intercepted function calls to
gethostbyname and returned a dummy routable IP ad-
dress. As a result, the malware subsequently reveals the
port number when it initiates a connection with the re-
turned IP. (See Appendix C for the complete list of Com-
mand and Control (C2) domains.) Finally, we generated
behavioral profiles for 586 samples, clustered them using
an approach similar to [5, 14], and manually verified the
accuracy of the resulting clusters.
Malware family and similarities. Similarly to Bailey
et al. [5], we found that determining the malware fam-
ily using AV signature scanning was unproductive. To
determine whether our malware shares similarities with
other known targeted malware, we relied on several re-
ports on targeted attacks [9,13]. We extracted the C2 do-
mains and, when available, additional information about
the malware (e.g., hashes and behavior) from these re-
ports. Finally, we correlated the domains, IP addresses,
hashes, and behavioral profiles with those from the re-
ports in order to find similarities between the different
sets of malware. We performed this analysis in February
2014.
Limitations. Our behavioral analysis was performed in a
disconnected environment and as a result, it is limited to
the first stage of the malware behavior. Studying the be-
havior of additional payload that would be downloaded
after the compromise is beyond the scope of this paper
and will be the subject of future work.

5.2 Results
We now analyze the malware clusters and their similari-
ties with other targeted malware found in the wild.
Cluster sizes. We find that 57% of our malware be-
longed to the ten largest clusters (we show additional
information about these clusters in Table 3). In total,
five clusters (two in the top ten) used at least one of
dtl6.mooo.com, dtl.dnsd.me, or dtl.eatuo.com as their
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C2 domains, indicating some operational link between
them. In fact, at the time of analysis, these three do-
mains resolved into the same IP address and the mal-
ware in each cluster connected to different ports of the
same server. Despite these apparent similarities, how-
ever, manual analysis of the behavioral logs revealed that
their logic differed from one another, explaining their as-
signment to different clusters. Combined, these five clus-
ters represented 24% of the malware that we analyzed.

Malware family and similarities. We found various de-
grees of similarities between our clusters and targeted at-
tacks reported in the wild. First, the five clusters above
had the same C2 as the DTL group reported by FireEye
in November 2013 and that the malware was of the same
family as one of these clusters’ (APT.9002, not shown)
[9]. In particular, we found that one of our samples in
that cluster had the same MD5 hash as those described
in the FireEye report and that eight had identical mani-
fest resources. FireEye claims that this malware has been
used in targeted attacks against various governmental and
industrial organizations.

Second, malware in the Surtr cluster had the same be-
havioral profile as samples used against the Tibetan com-
munity in March 2012 [7]. Although the two sets of sam-
ples had different MD5 hashes, they both connected to
the same C2 server (shared with APT.9002) on the same
port number, and exhibited the same behavior to estab-
lish persistency on the victim’s machine.

Third, our 13 TravNet samples exhibited similar be-
havior as those used against Indian targets in 2013 [2]. To
do so, we obtained the samples used in India, generated
their behavioral profiles, and compared them manually
with the malware in our TravNet cluster. Although both
sets connected to different C2 servers and exhibited vari-
ations in the way they searched the victims’ file system,
we found that they both used the same communication
protocol with the C2.

Fourth, samples in another cluster communicated with
the same C2 server and exhibited the same behavior as a
Vidgrab sample found in a malicious document sent to a
victim in Hong Kong in August 2013 [8].

Summary of findings. We found that WUC has been
targeted with several malware families in the last year.
We also showed that the Surtr and APT.9002 clusters
corresponded to malware that Citizenlab and FireEye
identified as having targeted the Tibetan community,
as well as other political and industrial organizations
[7, 9]. Furthermore, 24% of our malware (including
Surtr, APT.9002 and three other clusters) had at least one
C2 domain in common, which was identical to those of
the Citizenlab and FireEye reports.

6 Future Work

Several directions for future work arise from this work.
We briefly discuss them below.
Attack vectors and generalization. Our analysis is
limited to attack vectors used against WUC. Similar stud-
ies on a wider range of targets would benefit understand-
ing this emerging threat better. Further, our attack vec-
tors distributed over email channels and have two main
limitations. First, it is possible that our volunteers have
been attacked via other channels besides email. Sec-
ond, although we have seen various organizations tar-
geted with the same malware as WUC, it is generally
hard to determine with certainty which victims were the
primary target of these attacks. Therefore, it is possi-
ble that other victims have been targeted with additional
attack vectors when the attacks did not involve WUC.
Further research is needed to overcome these limitations

Exploring different channels that attackers use for dis-
tributing malicious payloads is important. As a step to-
wards this goal, we are currently collaborating with the
Safebrowsing team at Google to investigate the emer-
gent threat of watering-hole attacks. These attacks are
conceptually very similar to drive-by download attacks
with one key difference: They compromise very specific
websites commonly visited by the targeted community
(e.g., a company’s website) and wait for victims to visit
the website. As compared to spear phishing, watering-
hole attacks offer the advantage of potentially targeting
a fairly large number of victims (e.g., all employees of a
large company) before raising suspicion. We conjecture
that the small number of suspicious links in our dataset
may be due to the small size of the targeted organizations
and the public availability of their employees’ email ad-
dresses.

Other attack vectors include but are not limited to
packets injection to redirect victims to malicious servers
(similar to those used in watering-hole attacks) and phys-
ical attacks on the victims’ devices [3]. Detecting these
attacks would require completely different methodolo-
gies than the one we used in this paper.
Monitoring. We have seen that a few high-profile mem-
bers of the Uyghur community were compromised and
that their email accounts were being used as stepping
stones to carry out targeted attacks. Although it is possi-
ble that these email accounts were compromised via tar-
geted attacks, we have not yet confirmed this hypothesis.
More generally, we do not know yet what is the specific
aim of these targeted attacks. Monitoring the full lifecy-
cle of targeted attacks would require novel measurement
systems, deployed at the end users, that can identify com-
promises without being detected.

Pinpointing the geolocation of attackers carrying out
targeted attacks, or attack attribution, is another open

12



USENIX Association  23rd USENIX Security Symposium 555

monitoring challenge. Marczak et al. were able to at-
tribute targeted attacks to governments in the Middle
East by analyzing relationships of cause and effect be-
tween compromises and real-world consequences [16].
In contrast to monitoring and attack attribution, this pa-
per has presented a extensive, complementary analysis of
the life cycle of targeted attacks before the compromise.
Large-scale malware analysis and clustering. We
found it challenging to (a) cluster targeted malware and
(b) locate similar samples. First, this malware sometimes
exhibits significant similarity in its logic and different
malware may also use the same Command and Control
(C2) infrastructure. As a result, traditional clustering al-
gorithms tend not to work very well. Second, we located
similar samples based on a limited set of indicators such
as C2, cryptographic hash, or YARA signatures, how-
ever, we feel that our current capability in that respect has
a lot of room for improvement. We foresee that a search
engine that can, for example, locate malware matching
certain indicators out of an arbitrarily large corpus would
be a useful instrument for researchers working on tar-
geted attacks.

Our analysis of CVEs highlights that telemetry data
from commercial AVs is not always reliable. Our analy-
sis complemented with taint-analysis was largely manual
and time-intensive. Analysis techniques to quickly diag-
nose known CVEs directly from given exploits is an open
problem and perhaps one of independent interest.
Defenses. Our findings confirm that AVs may miss
known CVEs, even years after their release dates.
Clearly, known CVEs contribute a large part of the
emerging threat of targeted attacks. Understanding why
commercial AVs miss known attacks conclusively, for
example to tradeoff false positives or performance for
security, is an important research direction. Designing
effective defenses against targeted attacks is a major re-
search challenge which depends on our ability to under-
stand the threat at hand. As part of future work, one
could evaluate the effectiveness of novel defenses based
on the findings from this paper. As a small step towards
that goal, we plan to soon deploy a webmail plugin that
combines metadata and stylometry analysis [17] to detect
contact impersonation.

7 Conclusion

We have presented an empirical analysis of a dataset
capturing four years of targeted attacks against a human-
rights NGO. First, we showed that social engineering
was an important component of targeted attacks with
significant effort paid in crafting emails that look legiti-
mate in terms of topics, languages, and senders. We also
found that victims were targeted often, over the course
of several years, and simultaneously with colleagues

from the same organization. Second, we found that
malicious documents with well-known vulnerabilities
were the most common attack vectors in our dataset and
that they tended to bypass common defenses deployed in
webmails or users’ computers. Finally, we provided an
analysis of the targeted malware and showed that over
a quarter of samples exhibited similarities with entities
known to be involved in targeted attacks against a variety
of industries. We hope that this paper, together with
the public release of our malware dataset, will facilitate
future research on targeted attacks and, ultimately, guide
the deployment of effective defenses against this threat.
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A Targeted organizations
Organization # Recipients # Emails First-Last
World Uyghur Congress (WUC) 53 2,366 2009-2013
East Turkestan Union in Europe (ETUE) 7 153 2010-2013
Australian Uyghur Association 3 129 2009-2013
Euro-Asia Foundation in Turkey 2 101 2010-2013
Uyghur Canadian Association 6 98 2009-2013
Germany Uyghur Women Committee 2 82 2009-2013
Radio Free Asia (RFA) 12 80 2010-2013
France Uyghur Association 5 80 2009-2013
Eastern Turkestan Australian Association (ETAA) 6 77 2009-2013
Uyghur American Association (UAA) 10 72 2010-2013
Eastern Turkestan Uyghur Association in Netherlands 4 69 2010-2013
Netherland Uyghur Union 1 60 2012-2013
United Nations for a Free Tibet (UK) 1 57 2011-2013
Eastern Turkestan Culture and Solidarity Association 13 53 2009-2013
Viktoria Uyghur Association 1 48 2010-2013
Japan Uyghur Association 2 43 2012-2013
Switzerland East Turkestan Association 2 43 2010-2013
Hacettepe University Turkey 3 41 2010-2013
Kazakhstan Academy of Poetry 2 36 2009-2013
Belgium Uyghur Association 1 35 2009-2013
Kyrgyzstan Uyghur Association 2 33 2011-2013
Uyghur Canadian Society 1 31 2009-2013
Uyghur Academy 5 25 2009-2013
Munich Uyghur Elders Meshrep 1 22 2012-2013
Republican Uyghur Cultural Center of Kazakhstan 1 22 2009-2013
Sweden Uyghur Association 4 12 2010-2013
Virginia Department of Social Services 1 11 2009-2012
Unrepresented Nations and Peoples Organization (UNPO) 5 8 2010-2013
Sociale Verzekeringsbank (SVB) NGO Netherland 1 8 2012-2013
China Democratic Party (CDP) 5 5 2009-2011
Finland Uyghur Association 1 5 2013
Jet Propulsion Laboratory, founded by NASA 1 5 2012
Pennsylvania State University US 1 5 2010-2013
Uyghur Support Group Nederland 2 5 2010-2013
Norway Uyghur Committee 1 5 2010-2013
Amnesty International 4 4 2010-2012
Association of European Border Regions (AEBR) 1 4 2010-2011
Howard University US 1 4 2012-2013
Initiatives for China 3 4 2009-2010
LSE Asia Research Center and Silk Road Dialogue 2 4 2012-2013
The Government-in-Exile of the Republic of East Turkistan 2 4 2010-2011
Uyghur Human Rights Project (UHRP) 2 4 2010
Australian Migration Options Pty Ltd 3 4 2010
Agence France-Presse 1 3 2013
National Endowment for Democracy (NED) 2 3 2010-2012
PEN International 3 3 2009-2013
Syracuse University US 1 3 2013
Worldwide Protest in Honor and Support of Uyghurs Dying for Freedom 1 3 2013
Australian Government - Department of Foreign Affairs and Trade 2 3 2010
New Tang Dynasty Television China 2 3 2010
The Epoch Times 2 3 2010
Ministry of Foreign Affairs Norway 1 2 2013
International University of Kagoshima Japan 1 2 2013
Association of Islam Religion 1 2 2013
Bilkent University Turkey 2 2 2011-2012
Embassy of Azerbaijan in Beijing 2 2 2010
Indiana University School of Law-Indianapolis LL.M. 1 2 2012
KYOCERA Document Solutions Development America 1 2 2013
New York Times 2 2 2009
Pfizer Government Research Laboratory - Clinical Pharmacology 1 2 2011-2012
Saudi Arabia - Luggage Bags and Cases Company 1 2 2013
Students for a Free Tibet 2 2 2010
Sweden Uyghur Education Union 1 2 2010-2013
Uyghur International Culture Center 1 2 2012
The Protestant Church Amsterdam 1 2 2010
Swiss Agency for Development and Cooperation (SDC) Kargyzstan 1 1 2013
American Bar Association for Attorneys in US 1 1 2010
Assistance for Work Germany Frankfurt 1 1 2010
Bishkek Human Rights Committee 1 1 2012
Central Tibetan Administration (CTA) 1 1 2010
Chinese Translation Commercial Business 1 1 2009
Circassian Cultural Center (CHKTS) 1 1 2012
Colombian National Radio 1 1 2010
Embassy of the United States in Australia 1 1 2010
Europa Haber Newspaper Turkey 1 1 2010
Europe-China Cultural Communication (ECCC) 1 1 2011
Freelance Reporter and writer Turkey 1 1 2012
Goethe University Frankfurt am Main Germany 1 1 2012
Human Rights Campaign in China 1 1 2010
International Enterprise (IE) - Singapore Government 1 1 2010
International Tibet Independence Movement 1 1 2010
Jasmine Revolution China (Pro-Democracy Protests) 1 1 2009
Socialist Party (Netherlands) 1 1 2011
Los Angeles Times 1 1 2010
Milli Gazete (National Newspaper Turkey) 1 1 2010
Norwegian Tibet Committee 1 1 2010
Photographer Turkey 1 1 2012
CNN International Hong Kong 1 1 2012
Reporters Without Borders 1 1 2012
Republican National Lawyers Association Maryland 1 1 2010
Save Tibet - International Campaign for Tibet 1 1 2010
Society for Threatened People (STPI) 1 1 2012
Southern Mongolian Human Rights 1 1 2012
Stucco Manufacturers Association US 1 1 2013
Superior School of Arts France 1 1 2012
The George Washington University 1 1 2013
TurkishNews Newspaper 1 1 2010
US Bureau of Transportation Statistics 1 1 2009
Umit Uighur Language School 1 1 2010
Union of Turkish-Islamic Cultural Associations in Europe 1 1 2012
University of Adelaide Melbourne 1 1 2010
University of Khartoum Sudan 1 1 2012
US Embassy and Consulate in Munich Germany 1 1 2011
Wei Jingsheng Foundation 1 1 2009
Xinjiang Arts Institute China 1 1 2010
Yenicag Gazetti (Newspaper Turkey) 1 1 2010
American University 1 1 2012
Islamic Jihad Union 1 1 2012
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B Dynamic taint-assisted analysis of mali-
cious documents

B.1 Methodology
We use BitBlaze [21] to perform dynamic taint-tracking analy-
sis of the targeted applications under the malicious documents
as input and configure it to report four kinds of reports: (a)
when a tainted Extended Instruction Pointer (EIP) is executed,
(b) when a memory fault is triggered in the target program, (c)
when a new process is spawned from the target program, or
(d) when the analysis “times out” (i.e., runs without interrup-
tion for over 15 minutes). To mark malicious documents as a
source of taint, we tainted the network inputs and routed the
malicious input file using netcat. Additionally, we set Bit-
Blaze to exit tracing at the detection of null pointer exceptions,
user exceptions, tainted EIPs, and process exits before the start
of the trace. A tag was generated from the trace by obtain-
ing the last instruction with tainted operands, and matching it
with the list of loaded modules generated by TEMU. Our guest
(analysis) system configuration used in the image consists of
clean installations of Windows XP SP2 with TEMU drivers and
Microsoft Office 2003.
B.2 Results
Anti-virus software typically uses static signature-matching or
whitelisting techniques to analyze malware. To validate the
analysis results available from commercial AV, we ran a sep-
arate semi-automated dynamic analysis of the targeted applica-
tion under our malicious documents.

Out of 817 unique input documents (725 malicious and 92
legitimate), 295 timed out with our BitBlaze analysis without
reporting a tainted EIP, a memory fault, or a newly spawned
process.2 Another 13 of them were incompatible with our anal-
ysis infrastructure (using a more recent DOCX format). We
could not compare these cases directly to the results obtained
from VirusTotal. Therefore, we focus on the remaining 509
malicious documents in the evaluation.
Efficacy of Taint EIP Detection. Taint-tracking detected
tainted EIP execution in 477 out of the 509 documents. In
19 cases of the undetected 32 cases, however, a new process
was spawned without it being detected by taint-tracking. We
treat these as false negatives in taint-tracking. We speculate
that this is likely to be due to missed direct flows, untracked
indirect flows (via control dependencies, or table-lookups), or
attacks using non-control-flow hijacking attacks (such as argu-
ment corruption). 13 documents did not lead to a tainted EIP
execution, but instead caused a memory fault. This could be
due to a difference in our test infrastructure and the victim’s,
or an attempt to evade analysis. In 33 of the 477 cases where
tainted EIP was detected, no new spawned process was created,
and the tainted EIP instruction did not correspond to any shell-
code. All these cases correspond to a particular instruction trig-
gering the tainted EIP detection in MSO.DLL, a dynamic-link
library found in Microsoft Office installations. To understand
this case better, we manually created blank benign documents
and fed them to Microsoft Office — they too triggered tainted

2We believe 150 of these are due to user-interaction which we could
not presently automate, and the remaining could potentially be ana-
lyzed with a faster test platform; we plan to investigate this in the fu-
ture.
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Figure 12: Breakdown of dynamic taint-assisted analy-
sis, and comparison to VirusTotal AV results. Single,
Multiple, Heuristics, and Unknown correspond to the dif-
ferent AV tags assigned to documents. The main bars
show the detection result from BitBlaze: (a) Detected
by Tainted EIP execution, (b) Timeout, (c) Spawned pro-
cess without tainted EIP execution, (d) Memory Fault
without tainted EIP execution, and (e) DOCX unable to
run in our analysis environment. Within each main bar,
each stacked bar represents the corresponding tag given
by VirusTotal.
EIP detections. We treat these cases as false positives in taint
detection, possibly because of benign dynamic generation of
code. All the remaining cases (i.e., 444 out of 477) are legiti-
mate exploits that we could confirm to execute shellcode.
Dynamic Taint versus VirusTotal. Figure 12 shows the de-
tailed comparison of taint-assisted classification of vulnera-
bilities versus the results from VirusTotal. Out of a total of
477 documents on which tainted EIP was detected, VirusTotal
tagged 397 documents with one or more CVEs. Of the remain-
ing 80 cases that are detected by tainted EIP execution, 24 are
undetected by VirusTotal, and 56 are detected, but marked Un-
known (i.e., no CVE assigned) by VirusTotal. Dynamic taint
analysis to determine the tainted EIP was helpful to further
refine the results of AV detection for a majority of these 56
tagged-Unknown cases. Specifically, for 55 out of the 56 doc-
uments, taint-assisted manual analysis was able to resolve it to
the exploited CVE.

Out of a total of 477 documents on which tainted EIP was
detected, VirusTotal tagged 397 documents with one or more
CVEs. Our taint-assisted manual analysis agrees with the
VirusTotal CVE tag results on 372 of these 397. That is, 372
documents were detected to execute a tainted EIP for which we
could manually correlate to a single CVE that was the same as
the one reported by a majority of the AVs in VirusTotal.3 Thus,
for a large majority of the cases, taint-assisted analysis agrees
with the AV results. Of the remaining 25 cases, 17 could be
identified as misclassifications because the CVE reported by
most of the AVs in VirusTotal was not the one that affected
the program. The 8 remaining documents were tagged by taint
analysis as being false positives even though a CVE was ob-
tained from VirusTotal.

3Note that different AVs often tag the same vulnerability with dif-
ferent tags in VirusTotal. We took the tag given by a majority of the
reported tags, as the representative of the sample.
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C Command and Control (C2) servers

C2 # Emails
61.178.77.169 74

dtl.dnsd.me 66
ns.dns3-domain.com 55

dtl.eatuo.com 44
202.85.136.181 32

update.googmail.org 31
dtl6.mooo.com 29

www.discoverypeace.org 26
58.64.172.177 22

email.googmail.org 22
news.googmail.org 22

61.128.122.147 17
softmy.jkub.com 15

61.234.4.213 13
dnsmm.bpa.nu 11

121.170.178.221 10
zeropan007.3322.org 10

wwzzsh.3322.org 9
222.77.70.237 9

3.test.3322.org.cn 8
1.test.3322.org.cn 8
2.test.3322.org.cn 8

eemete.freetcp.com 8
apple12.crabdance.com 8

wolf001.us109.eoidc.net 7
4.test.3322.org.cn 7

etdt.cable.nu 6
205.209.159.162 6

br.stat-dns.com 6
66.79.188.23 6

www.southstock.net 6
ns1.3322.net 5

121.254.173.57 5
www.uyghur.25u.com 5

202.96.128.166 5
ns1.oray.net 5

jhska.cable.nu 5
test195.3322.org 5

61.234.4.218 5
61.128.110.37 5
ns1.china.com 5

a2010226.gicp.net 5
logonin.uyghuri.com 4
macaonews.8800.org 4

book.websurprisemail.com 4
desk.websurprisemail.com 4

test.3322.org.cn 4
221.239.82.21 4

liveservices.dyndns.info 4
180.169.28.58 4

portright.org 4
video.googmail.org 4

www.guzhijiaozihaha.net 4
207.46.11.22 4

www.googmail.org 4
2.test.3322.org 3

dcp.googmail.org 3
test.3322.org 3

np6.dnsrd.com 3

C2 # Emails
mzyzy.vicp.net 3

mygoodbug.dnsd.info 3
www.uyghuri.mrface.com 3

6.test.3322.org.cn 3
218.82.206.229 3

uyghur.sov.tw 3
3.test.3322.org 3

newwhitehouse.org 3
goodnewspaper.f3322.org 3

nskupdate.com 3
webmonder.gicp.net 3

61.132.74.68 3
61.178.77.108 3

betterpeony.com 3
4.test.3322.org 3

61.234.4.210 3
9.test.3322.org.cn 3
8.test.3322.org.cn 3

1.test.3322.org 3
radio.googmail.org 3

7.test.3322.org.cn 3
tokyo.collegememory.com 2

201.22.184.42 2
61.178.77.96 2

webproxy.serveuser.com 2
www.bbcnewes.net 2

done.youtubesitegroup.com 2
alma.apple.cloudns.org 2

webmailsvr.com 2
polat.googmail.org 2

religion.xicp.net 2
connectsexy.dns-dns.com 2

dns3.westcowboy.com 2
61.220.138.100 2

27.254.41.7 2
116.92.6.197 2
apple12.co.cc 2

58.64.129.149 2
worldmaprsh.com 2

phinex127.gicp.net 2
wxjz.6600.org 2

gecko.jkub.com 2
smtp.126.com 2
errorslog.com 2

uyghurie.51vip.biz 2
tanmii.gicp.net 2
211.115.207.7 2

59.188.5.19 2
206.196.106.85 2

religion.8866.org 2
68.89.135.192 2

blogging.blogsite.org 2
softjohn.ddns.us 2

report.dns-dns.com 2
115.160.188.245 2

newyorkonlin.com 2
tw252.gicp.net 2

61.222.31.54 2
tomsonmartin.ikwb.com 2

C2 # Emails
www.info-microsoft.com 2

www.uyhanur.nna.cc 2
www.micosofts.com 2

100.4.43.2 2
61.234.4.214 1

a.yahoohello.com 1
bc1516.7766.org 1

202.68.226.250 1
msdn.homelinux.org 1

207.204.245.192 1
216.131.66.96 1

www.avasters.com 1
202.130.112.231 1

nbsstt.3322.org 1
goodnewspaper.3322.org 1

webposter.gicp.net 1
uyghur1.webhop.net 1

webwx.3322.orgxiexie.8866.org 1
125.141.149.49 1

guanshan.3322.org 1
leelee.dnset.com 1

uygur.eicp.net 1
kxwss.8800.org 1

173.208.157.186 1
rc.arkinixik.com 1

www.uusuanru.nna.cc 1
uxz.fo.mooo.com 1

uygur.51vip.biz 1
peopleunion.gicp.net 1

free1000.gnway.net 1
uxz.fo.dnsd.info 1

wodebeizi119.jkub.com 1
itsec.eicp.net 1

stormgo.oicp.net 1
boy303.2288.org 1

webjz.9966.org 1
zbing.strangled.net 1

tommark5454.xxxy.info 1
oyghur1.webhop.net 1

addi.apple.cloudns.org 1
60.170.255.85 1

toolsbar.dns0755.net 1
61.132.74.113 1

113.10.201.250 1
home.graffiti.net 1

statistics.netrobots.org 1
freesky365.gnway.net 1

greta.ikwb.com 1
englishclub.2288.org 1

mm.utf888.com 1
annchan.mrface.com 1
www.shine.4pu.com 1

copy.apple.cloudns.org 1
220.171.107.138 1

uyghuri.mrface.com 1
218.108.42.59 1
58.64.193.228 1
tt9c.2288.org 1

forum.universityexp.com 1

C2 # Emails
googlehk.dynamicdns.co.uk 1

113.10.201.254 1
152.101.38.177 1

blog.sina.com.cn 1
uyghur.epac.to 1

xinxin20080628.gicp.net 1
yah00mail.gicp.net 1

hbnjx.6600.org 1
humanbeing2009.gicp.net 1

webhelp01.freetcp.com 1
mobile.yourtrap.com 1

125.141.149.23 1
222.73.27.223 1

www.jiapin.org 1
ibmcorp.slyip.com 1

182.16.11.187 1
star2.ksksz.com 1
69.197.132.130 1

www.yahooprotect.com 1
xiexie.8866.org 1

img.mic-road.com 1
photo.googmail.org 1
tonylee38.gicp.net 1

suggest.dns1.us 1
worldview.instanthq.com 1
goodnewspaper.gicp.net 1

112.121.182.150 1
abc69696969.vicp.net 1

put.adultdns.net 1
loadbook.strangled.net 1

internet.3-a.net 1
news.scvhosts.com 1

98.126.20.221 1
mydeyuming.cable.nu 1

gshjl.3322.org 1
forever001.dtdns.net 1

grt1.25u.com 1
66.197.202.242 1

kaba.wikaba.com 1
221.239.96.180 1
174.139.133.58 1
125.141.149.46 1
frank.3feet.com 1

115.126.3.214 1
liveservices.dyndns.tv 1

inc.3feet.com 1
1nsmm.bpa.nu 1

www.yahooprotect.net 1
222.82.220.118 1

webwxjz.3322.org 1
61.234.4.220 1

thankyou09.gicp.net 1
218.28.72.138 1

soft.epac.to 1
www.yahooip.net 1
msejake.7766.org 1

202.67.215.143 1
www.yahoohello.com 1

202.109.121.138 1
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Abstract

Users speaking different languages may prefer different
patterns in creating their passwords, and thus knowledge
on English passwords cannot help to guess passwords
from other languages well. Research has already shown
Chinese passwords are one of the most difficult ones to
guess. We believe that the conclusion is biased because,
to the best of our knowledge, little empirical study has
examined regional differences of passwords on a large
scale, especially on Chinese passwords. In this paper, we
study the differences between passwords from Chinese
and English speaking users, leveraging over 100 million
leaked and publicly available passwords from Chinese
and international websites in recent years. We found that
Chinese prefer digits when composing their passwords
while English users prefer letters, especially lowercase
letters. However, their strength against password guess-
ing is similar. Second, we observe that both users pre-
fer to use the patterns that they are familiar with, e.g.,
Chinese Pinyins for Chinese and English words for En-
glish users. Third, we observe that both Chinese and En-
glish users prefer their conventional format when they
use dates to construct passwords. Based on these obser-
vations, we improve a PCFG (Probabilistic Context-Free
Grammar) based password guessing method by inserting
Pinyins (about 2.3% more entries) into the attack dictio-
nary and insert our observed composition rules into the
guessing rule set. As a result, our experiments show that
the efficiency of password guessing increases by 34%.

1 Introduction

Passwords are the most widely used credentials for au-
thenticating Web users around the world, including the
users that do not speak English. Text-based passwords
are likely to remain the dominant mechanism for authen-
ticating users for the foreseeable future [7][19]. Mean-
while, researchers are still in the process of understand-

ing the security strength of passwords and exploiting
methods to improve password guessing. Although in-
sightful, most existing work focuses on passwords of
English users. Little work has studied the impact of re-
gional convention and languages on password selection
utilizing a large dataset of passwords. One exception is
Bonneau [6], who studied password strength based on
languages by performing an empirical study on Yahoo!
users and concluded that Chinese passwords are among
the hardest ones to guess. We believe his finding is bi-
ased because of his dataset (i.e., Yahoo users are familiar
with English). In this paper, we analyze passwords of
non-English speakers, specifically, Chinese users, which
represent 618 million Internet users as of the end of
2013 [12], and compare them with passwords of English
users.

To understand the differences between Chinese and
English passwords, this paper leverages over 100 mil-
lion leaked and publicly available passwords from sev-
eral popular Chinese websites (CSDN [13], Tianya [33],
Duduniu [17], 7k7k [5], and 178.com [4]) and English
websites (RockYou [30] and yahoo [37]). These Chinese
websites only provide Chinese webpages, and we con-
sider their users as Chinese users. In addition, English
websites mainly intend to serve users who are familiar
with English, and we consider the users of RockYou and
Yahoo as English users. Note that, these websites (ex-
cept Duduniu, which is an e-commerce website) pro-
vide similar services, i.e., non-monetary ones such as
web portal, online communities, social networking, on-
line forums, etc. Thus, we consider them comparable
and having similar influence on their users when choos-
ing passwords. This makes their password data corpus
promising for studying the impact of languages on pass-
word composition.

The unfortunate leakages of the large volume of pass-
words provides us an opportunity to understand pass-
word differences between the two groups of users in
depth. Such analysis is important, because it enables



560 23rd USENIX Security Symposium USENIX Association

Language Site Address Amount Distinct Accounts

CSDN Chinese http://www.csdn.net/ 6,428,629 6,423,483
Tianya Chinese http://www.tianya.cn/ 30,179,474 26,223,020
Duduniu Chinese http://www.duduniu.cn/ 16,282,969 15,131,833
7k7k Chinese http://www.7k7k.com/ 19,138,270 15,940,099
178.com Chinese http://www.178.com/ 9,072,824 9,072,804
RockYou English http://www.rockyou.com/ 32,603,048 32,602,882
Yahoo English http://www.yahoo.com/ 442,837 442,837

Total 114,148,051 105,836,958

Table 1: Basic information of leaked passwords of the websites that are analyzed in this paper. We removed the
duplicated accounts between Tianya and 7k7k from the Tianya dataset. See details in Appendix A.

better password guessing evaluation and can guide web
masters to protect the accounts.

We designed analysis tools and leveraged the guess-
ing resistance indicators (such as α-work-factors [28]
and β -success-rates [10]) to find the differences among
accounts of multiple websites, and found the prefer-
ence of the two groups of users. Then, we improved
the efficiency of the Probabilistic Context-Free Grammar
(PCFG) based password guessing method [35] by adding
regionally preferred patterns (i.e. Pinyins) into the dic-
tionary and modifying the generated guessing rules. We
summarize our findings and main contributions as fol-
lows:

• Different Characters Sets: Chinese users prefer
digits in their passwords, while English users pre-
fer letters, especially lowercase letters. However,
the password strength against guessing is similar for
both groups and thus both groups share similar se-
curity concerns in protecting passwords.

• Patterns of Languages and Dates: Both Chinese
and English users prefer to use language-related
patterns as passwords. That is, Chinese users pre-
fer Chinese Pinyins and English users prefer En-
glish words. As for dates, both groups prefer their
conventional formats. That is, Chinese prefer dates
with the year at the beginning and English users pre-
fer dates with the year at the end.

• Improvement of the Efficiency of Password
Guessing: Based on our observations, we add
20,000 Pinyins into the dictionary and add the
guessing rules, resulting in an improvement of effi-
ciency by 34% in guessing Chinese passwords using
a PCFG based guessing method. This confirms that
the Pinyins and date’s rules are important in guess-
ing Chinese passwords.

The rest of the paper is organized as follows: Section 2
summarizes our observations on the differences between
passwords from Chinese and English users. Section 3

presents the results of guessing using modified Bon-
neau’s methods [6] and PCFG based methods [35]. In
Section 4, we discuss the related work and conclude in
Section 5.

2 Regional Differences on Passwords

2.1 Dataset Setup
To discover the differences between the passwords of
Chinese and English users, we analyzed a corpus of over
100 million passwords from multiple websites that are in
Chinese and English, respectively. All the leaked pass-
words are publicly available for downloading. During
our research, we followed the ethical practice and never
utilized the leaked passwords for reasons other than un-
derstanding the overall statistical observation of pass-
words.

At the end of 2010, an incident that is known as CSDN
Password Leakage Incident happened, and passwords
from five websites, including CSDN, Tianya, Duduniu,
7k7k and 178.com, were leaked in several consecutive
days. The total number of leaked accounts is over 80
million, and all the leaked passwords are in plaintext. We
summarize the website information in Table 1.
CSDN [13] is one of the most popular Chinese IT pro-

fessional communities, similar to MSDN. Tianya [33] is
the largest online forums and blogs in China. 7k7k [5]
and 178.com [4] are two websites providing game infor-

Chinese English

1 123456 (2.17%) 123456 (0.88%)
2 123456789 (0.65%) 12345 (0.24%)
3 111111 (0.59%) 123456789 (0.23%)
4 12345678 (0.39%) password (0.18%)
5 000000 (0.34%) iloveyou (0.15%)

Table 2: The most popular passwords and their occur-
rence percentages.
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Figure 1: Character distribution, i.e., the occurrence percentage of each character for Chinese and English passwords.
The characters are arranged in a descending order according to the percentages in Chinese passwords.

mation and online flash games. Duduniu [17] is a com-
mercial site that mainly sells management software plat-
forms for Internet bars. It is worth noting that all these
websites are extremely popular in China, among which
CSDN and Tianya have been ranked top 1,000 in Alexa
Top Global Sites recently. Thus, their users cover a large
percentage of Internet users in China.

Besides their popularity, the leaked password data cor-
pus is promising for understanding the language impact
on passwords because few password policies are en-
forced in the above five Chinese websites before the leak-
age according to our investigation. For example, CSDN
allows a password with as few as five digits, and such
a rule remains unchanged even after the password leak-
age event. Furthermore, Tianya allows passwords as
short as six characters since it was founded. Thus, the
leaked password data corpus represents the password set
that was composed with little influence from password
policies.

Password leakage events also happened to English
websites as well. In 2009, attackers broke into the
database of RockYou and released the 32 million pass-
words (in plaintext) to the public. In 2012, Yahoo’s ac-
counts were leaked. A hacking group ‘DD3Ds Com-
pany’ utilized a union-based SQL injection to obtain lo-
gin details of about 450 thousand user accounts.

The raw files contain duplication and blank passwords
that can affect the analysis. For instance, we detected that
attackers copied a portion of 7k7k passwords to Tianya,
because the password duplication rate between Tianya

and 7k7k is much more than the rate between any other
two websites (i.e., about 90% between Tianya and 7k7k

and about 30% between any other two websites). We
thus removed these duplicate passwords in Tianya us-
ing the method described in Appendix A. After remov-
ing the accounts with blank passwords and filtering out
duplicated accounts, we obtained 105,836,958 accounts,

as detailed in Table 1. Finally, we imported them into
MySQL for further analysis.

2.2 Password Comparison
2.2.1 The Most Popular Passwords

We list the five most popular passwords of Chinese and
English users in Table 2, from which we have the follow-
ing observations:

• In total, the five most popular passwords constitute
4.14% of all Chinese passwords and 1.69% of all
English passwords, which shows that Chinese pass-
words are more congregated.

• Interestingly, although in English datasets, there are
a larger number of letter-only passwords (see details
in Section 2.2.3), the top 3 most popular passwords
are digit-only. In addition, both groups share similar
popular passwords, e.g., 123456 and 123456789.

2.2.2 Character Distribution

To understand the frequency of each character, which in-
cludes letters (a-z, A-Z), digits (0-9), and symbols (all
printable characters except digits and letters), we ana-
lyzed the percentage of each character for Chinese and
English passwords and depict them in Figure 1, where
the characters are arranged in descending order accord-
ing to the percentages in Chinese passwords.

• Digits. In Chinese passwords, the top used charac-
ters are digits. Although English users do not use
digits as frequently as Chinese users do, digits are
among the most frequently used characters.

• Letters. In general, Chinese passwords use letters
less frequently than English passwords do. In addi-
tion, some letters exhibit similar usage percentages

3
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Digit Letter-only Letter+Digit Letter+Symbol Symbol Letter+Digit+Symbol
-only (Lowercase-only) (Lowercase+Digit) (Lowercase+Symbol) +Digit (Lowercase+Digit+Symbol)

CSDN 45.06% 12.39% (11.68%) 39.02% (35.60%) 0.50% (0.42%) 0.61% 2.39% (2.04%)
Tianya 64.56% 10.20% (9.89%) 23.12% (21.27%) 0.25% (0.22%) 0.71% 1.14% (1.01%)
Duduniu 32.86% 11.76% (11.08%) 53.69% (50.93%) 0.52% (0.48%) 0.17% 0.92% (0.80%)
7k7k 60.77% 11.13% (10.75%) 26.41% (23.03%) 0.14% (0.12%) 0.32% 1.14% (0.49%)
178.com 48.07% 9.17% (9.00%) 42.11% (41.25%) 0.06% (0.06%) 0.31% 0.27% (0.26%)

RockYou 15.93% 44.04% (41.68%) 36.22% (33.17%) 1.91% (1.64%) 0.16% 1.71% (1.44%)
Yahoo 5.89% 34.64% (33.08%) 56.62% (50.60%) 0.62% (0.49%) 0.04% 2.18% (1.38%)

Table 3: Compositions of passwords. The percentages outside parentheses are the ones counting both uppercase and
lowercase letters, and the percentage inside parentheses are the ones counting only lowercase letters. The sum of
the percentages in one row is slightly smaller than one, because symbol-only passwords are not listed, and they only
account for a small percentage.

# of Structures/10K Most Popular Structure Most Popular Structure%

CSDN 884 DDDDDDDD 21.50%
Tianya 756 DDDDDD 30.10%
Duduniu 610 DDDDDD 7.25%
7k7k 635 DDDDDD 19.51%
178.com 459 DDDDDD 15.48%

RockYou 803 LLLLLL 5.40%
Yahoo 1165 LLLLLL 9.19%

Table 4: Structures of passwords. # of structures/10K refers to the number of different structures in every 10,000
passwords, and the other two columns contain the structures and occurrence percentages of the most popular passwords
in both Chinese websites and English ones. D represents a digit, and L represents a lowercase letter.

for both groups of passwords, e.g., the letter a is
the mostly used letter in both groups. Some letters
show distinct usages, e.g., the letter q is frequently
used in Chinese passwords but is much less used in
English passwords; the letter r is much more popu-
lar in English passwords than in Chinese ones. This
is because of the word patterns in either languages.
For instance, the letters q and a are popular build-
ing blocks of Pinyins, but the letter r is not. We will
discuss Chinese Pinyins and English words in detail
in Section 2.2.5.

• Symbols. Symbols are used less in both Chinese
and English passwords, in general. Interestingly, for
both groups of passwords, several symbols share the
similar usage percentages: the symbol dot (.) is the
most frequently used, and symbols like left brace
({) and right brace (}) are less likely to be used.
However, regional differences on symbol usages do
exist: the question mark (?) is more frequently used
in Chinese passwords than in English passwords.

2.2.3 Compositions and Structures of Passwords

To understand the structures of passwords in both groups,
we analyzed passwords in two aspects. (1) we divided

passwords according to their compositions and calcu-
lated the percentages in seven category (shown in Ta-
ble 3). The categories are pure digits, pure letters, dig-
its and letters, letters and symbols, etc. (2) We cal-
culated the percentages of different types of password
structures utilizing representations in the Probabilistic
Context-Free Grammar [35]. For example, the structure
of Johns0n! is modeled as ULLLLDLS (U = uppercase,
L= lowercase, D = digit, and S = symbol). The structure
comparison of both password groups is shown in Table 4
where # of Structures/10K refers to the number of dif-
ferent structures in every 10,000 passwords. The most
popular structure is the one that appears the most in the
data-set. From Table 3 and Table 4, we can obtain the
following observations:

• A majority (around 50% on average) of Chinese
users prefer digit-only passwords. This could be
due to their language. Chinese characters cannot be
entered directly as a password, and digits appear to
be the best candidate when users are creating new
passwords. Although Chinese users can use Pinyins
as discussed in Section 2.2.5, digits seem to be more
convenient. As shown in Table 4, DDDDDD is the
dominant structure in most Chinese websites. For
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Figure 2: A typical layout of a keyboard (103P) used in
China, which is the same as an English keyboard layout.

CSDN, the structure DDDDDDDD is the top selec-
tion, and DDDDDD is ranked at 14. A six-digit
number may be an ATM PIN, a birthday, or the last
six digits of citizen ID cards. We will discuss details
in Section 2.2.6.

• For both password groups, a good portion of pass-
words contain both letters and digits, and no obvi-
ous differences seem to exist between these web-
sites. The owners of the passwords in this category
could be users who are concerned with password
security but are unwilling to bother with symbols.

2.2.4 Keyboard Patterns

Sometimes, users prefer to create their passwords ac-
cording to keyboard patterns [32]. Thus, we analyzed
the percentages of three primary keyboard patterns. Note
that Chinese users utilize standard English keyboards
(shown in Figure 2), i.e., they use the same ones as En-
glish users.

• Same Row: The same row passwords are formed
by a consecutive sequence of characters in the same
row on keyboard, e.g., asdfhj.

• Zig Zag: The zig-zag passwords are formed by a
sequence of characters, where each key is adjacent
to the next one but not in the same row, e.g., qawsxd.

• Snake: The snake passwords consist of a sequence
of characters whose keys are adjacent on keyboards

Chinese English

Same Row 8.31% (0.55%) 2.42% (0.25%)
Zig Zag 0.26% 0.06%
Snake 0.27% 0.08%

Table 5: Percentage of passwords with different key-
board patterns. Most passwords of the Same Row pattern
are digit-only. The numbers in the parentheses represent
passwords that have the Same Row pattern and are not
digit-only.

yet they are neither in the Same Row or Zig Zag,
e.g., zxcfgh.

Algorithm to Identify Keyboard Patterns. In order
to automatically classify passwords into the aforemen-
tioned three categories, we assign a coordinate to each
character on the keyboard. We define that the x-axis in-
creases from left to right and the y-axis increases from
top to bottom. For example, the coordinates of 1 (and
!) are (1,0), and the coordinates of q, a, and z are (1,1),
(1,2), and (1,3), respectively. Provided the coordinates of
the characters, we can determine if a password is in a spe-
cific keyboard pattern using the algorithm illustrated in
Algorithm 1, where isAd jacent(pos1, pos2) determines
whether two letters located in the coordinates pos1 and
pos2 are adjacent in the same row or column.

Result. The statistics analyzed by Algorithm 1 is
shown in Table 5, from which we observe that more
than 8% of Chinese passwords are composed according
to keyboard patterns but fewer English passwords are.
After removing all digit-only passwords, the keyboard
pattern passwords reduce to about 1%. This is because
most passwords of the same row pattern are digit only.
Nevertheless, Chinese users tend to use keyboard pattern
passwords more often than English users do, e.g., there
are 0.2% more Zig Zag passwords for Chinese than En-
glish users. This could be because keyboard patterns are
easy to create and remember for Chinese users who are
unfamiliar with English.

2.2.5 Chinese Pinyins and English Words

Chinese Pinyin was developed in 1950s and is de-
signed to represent the pronunciation of Chinese char-
acters. Although there are lots of dialects in China, the
Pinyins for characters are the same. Trained with Pinyin
since primary school, Chinese computer users are famil-
iar with it. Pinyin is the most popular method to input
Chinese characters to a computer because it requires al-
most no extra training for Chinese. Typically, a Chinese
character is entered by multiple keystrokes. Although
other input methods, such as Wubi, exist, these methods
are not as popular due to their steep learning curves.

Since websites do not support passwords composed of
Chinese characters directly, unsurprisingly, just like the
words in English passwords, Pinyins are widely used in
passwords of Chinese users. Ignoring the tones, typi-
cally, a word in Pinyins uses a set of 21 sounds repre-
senting the beginning of the word called initials, and a set
of 37 sounds representing the end of the word called fi-
nals. These two combine to form about 420 different ba-
sic Pinyin elements [3]. However, users may use various
compositions of multiple Pinyins in their passwords. For
example, the password nihao, is composed of Pinyins ni
and hao.
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Letter-only Passwords Mixed Passwords
Chinese Pinyins% English Words% Chinese Pinyins% English Words%

CSDN 41.61% (5.15%) 15.59% (1.93%) 25.49% (10.68%) 7.97% (3.34%)
Tianya 40.63% (4.15%) 10.39% (1.06%) 23.59% (5.78%) 6.05% (1.48%)
Duduniu 33.28% (3.91%) 15.35% (1.80%) 25.17% (13.87%) 6.48% (3.57%)
7k7k 44.70% (4.97%) 10.04% (1.12%) 21.09% (5.84%) 7.02% (1.94%)
178.com 57.31% (5.25%) 2.20% (0.20%) 23.49% (9.97%) 4.58% (1.94%)

RockYou 6.94% (2.99%) 25.47% (10.98%) 6.88% (2.61%) 28.11% (10.65%)
Yahoo 4.31% (1.46%) 34.92% (11.86%) 4.53% (2.59%) 27.99% (16.01%)

Table 6: Percentage of the passwords that contain Chinese Pinyins or English words. Mixed passwords refer to the
ones that contain at least two types of characters with one of them being letters. The percentages inside the parentheses
are the proportions out of the entire password dataset, and the percentage ahead of the parentheses are the ones out
of the letter-only passwords or mixed passwords. For example, in the row of CSDN, 41.61% (5.15%) means that in
the letter-only passwords, 41.61% are composed of Chinese Pinyins, and these passwords occupy 5.15% in the whole
dataset of CSDN.

Top Chinese Pinyins Top English Words

1 woaini (1.47%) password (1.28%)
2 li (1.06%) iloveyou (0.98%)
3 wang (0.97%) love (0.76%)
4 tianya (0.89%) angel (0.59%)
5 zhang (0.84%) monkey (0.45%)

Table 7: The most popular Chinese Pinyins and English
words. The percentage base for top Chinese Pinyins is
all the Pinyins we extracted from letter-only and mixed
passwords in five Chinese websites. Similarly, the per-
centage base for top English words is all the words we
extracted from letter-only and mixed passwords in both
English websites.

Algorithm to Identify Pinyins or English Words.
We can determine whether a password is composed of
Chinese Pinyins or English words by string matching.
For example, a password helloworld is composed of En-
glish words hello and world. For English words, we
chose the Oxford English Dictionary [1] and extracted
more than 20,000 commonly used English words.

To improve the matching efficiency, we use Trie (or
prefix tree) to identify if the passwords are composed
of Chinese Pinyins or English words. We first construct
Trie by inserting Chinese Pinyins or English words one
by one. With the Tries, we can identify if a password
is composed of Chinese Pinyins or English words. The
algorithm to insert entries into the Trie is shown in Algo-
rithm 2. In our experiments, we constructed two Tries:
one is constructed out of Chinese Pinyins, and the other
is built based on the more than 20,000 commonly used
English words. The procedure to identify if a password is
composed of Chinese Pinyins or English words is shown
in Algorithm 3. The structure node has two properties.

The first is named as child, which is an array of node
and represents the child nodes. The second is a boolean,
isValue, which represents if the string from the root to
the current node is a valid value. The algorithm will try
to match the password with the known strings from Trie
recursively.

Note that because it is hard to determine the semantic
meaning, a password may be semantically meaningless
even if it is a composition of Chinese Pinyins or En-
glish words. Furthermore, some passwords can be in-
terpreted as compositions of Pinyins and English words
at the same time. We removed the passwords with both
Pinyins and English words in our analysis.

Result. We performed statistical analysis of the usage
of Chinese Pinyins and English words in two aspects.
Firstly, we calculated the percentages of passwords that
are composed of Chinese Pinyins or English words out
of all the letter-only passwords. Secondly, we calculated
the percentages of Pinyins or English words out of all
the mixed passwords (i.e., the ones contain at least two
types of characters with one of them being letters). The
results are shown in Table 6. Table 7 lists the top five
most popular Chinese Pinyins and English words. From
Table 6 and 7, we draw the following conclusions:

• Out of the letter-only passwords, Pinyins are the
dominant patterns for Chinese users in composing
their passwords, and English words dominate the
English passwords. Even when we consider all cat-
egories of passwords, these patterns are still the ba-
sic building blocks for a large portion of passwords,
i.e., more than 10% English passwords contain En-
glish words, and about 5% of Chinese passwords
consist of Pinyins.

• Interestingly, it seems that love is always the main
theme of human beings. As shown in Table 7, love
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# Consecutive Exactly Eight Digits YYYYMMDD MMDDYYYY DDMMYYYY

CSDN 1,621,954 29.24% 0.25% 0.43%
Tianya 3,639,517 36.26% 0.35% 0.60%
Duduniu 1,700,329 28.87% 0.28% 0.84%
7k7k 2,470,204 32.41% 0.18% 0.37%
178.com 995,832 30.46% 0.13% 0.19%

RockYou 929,987 2.64% 7.70% 17.66%
Yahoo 6,981 2.78% 12.00% 11.17%

Table 8: Statistics of eight-digit date patterns: the number of occurrences of eight consecutive digits and percentages
of three date formats. The percentage bases are listed in the second column. Y=year, M=month and D=day. For
example, 20130115 is in the format of YYYYMMDD.

# Consecutive Exactly Six Digits YYMMDD MMDDYY DDMMYY

CSDN 809,050 27.21% 4.04% 1.24%
Tianya 9,477,069 23.93% 3.05% 1.19%
Duduniu 2,688,347 17.84% 2.97% 1.78%
7k7k 3,999,958 24.34% 2.63% 0.88%
178.com 2,525,254 13.96% 1.72% 1.30%

RockYou 2,758,871 5.63% 21.90% 18.42%
Yahoo 21,020 4.66% 25.99% 7.77%

Table 9: Statistics of six-digit date patterns: the number of occurrences of six consecutive digits and percentages of
three date formats. The percentage bases are listed in the second column.

and iloveyou are ranked at the second and the third
in English passwords. Meanwhile, woaini is the top
ranked Pinyin, which means I love you in Chinese.

• The Pinyins of names are widely used in Chinese
passwords. The Pinyins li, wang and zhang, listed
as the top used Pinyins for passwords in Table 7, are
among the most popular surnames in China. Note
that it is difficult to identify first names in Chinese,
because they could be almost any combinations of
Pinyins.

• The website names appear to be an important part of
Chinese passwords. For example, tianya, which is
the website name, is ranked at the fourth in Chinese
Pinyins.

• We found that some passwords from RockYou and
Yahoo are composed of Pinyins, and we suspect that
the owners are Chinese. Most of these Pinyins do
not map to meaningful expression, and thus we sus-
pect they are names. For example, yaowei, which is
composed of Pinyins yao and wei, is most likely to
be a name because either yao or wei can be a sur-
name.

The influence of Chinese Pinyins in password guess-
ing is discussed in Section 3.2.

2.2.6 Dates

Given that digits are commonly used in passwords, we
try to understand the meaning of these digits. Since dates
are typically represented as a string of digits, in this sub-
section we analyze the usage of dates in passwords.

Date Format. We focused our attention on six-digit
and eight-digit dates. We first extracted all consecu-
tive sequences of exactly six or eight digits from these
passwords, and then calculated the dates which are in
the range from 1900 to 2099. We classified six-digit
dates into three formats: YYMMDD, MMDDYY, and
DDMMYY. Similarly, we classify eight-digit dates into
YYYYMMDD, MMDDYYYY and DDMMYYYY. The re-
sults are shown in Table 8 and 9. Note that there might
be ambiguity when interpreting dates. For example,
11121987 may be interpreted as either November 12,
1987 or December 11, 1987. In this case, we assigned
the passwords to one of the formats according to the
probability distribution of all the passwords that can be
uniquely determined. For instance, if 20% of passwords
that contain date can be uniquely identified as MMDDYY
and 80% of them as DDMMYY. Then, we assigned 20%
of the ambiguous passwords to MMDDYY and 80% to
DDMMYY.

Furthermore, there may be false positive where a gen-
eral six-digit number is considered as a date. For exam-
ple, 123123 could be considered as December 31, 1923,

7
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Digit-only Letter+Digit Symbol+Digit Letter+Digit+Symbol
(Lowercase+Digit) (Lowercase+Digit+Symbol)

CSDN 51.98% 45.59% (41.36%) 0.50% 1.93% (1.67%)
Tianya 78.84% 19.91% (18.69%) 0.31% 0.72% (0.65%)
Duduniu 41.28% 58.17% (54.86%) 0.24% 0.31% (0.30%)
7k7k 73.90% 25.51% (24.61%) 0.18% 0.41% (0.37%)
178.com 50.91% 48.73% (48.07%) 0.32% 0.04% (0.04%)

RockYou 82.62% 16.52% (14.99%) 0.23% 0.63% (0.54%)
Yahoo 60.94% 38.03% (34.61%) 0.16% 0.86% (0.62%)

Table 10: Compositions of passwords that contain dates. The percentages outside parentheses are the ones counting
both uppercase and lowercase letters, and the percentage inside parentheses are the ones counting only lowercase
letters.

but most likely it is just two consecutive 123. Thus, we
selected 30 six-digit numbers that might cause such type
of false positive 1. Granted that we could have introduced
false negatives or cannot manage to remove all the false
positives for sure, these 30 numbers represent the pat-
terns that have special meanings or are easy to remem-
ber, and most likely they do not map to any dates. For
instance, ‘520520’ has a similar sound as ‘ i love you i
love you’ in Chinese. Thus, we believe that eliminating
them will increase the accuracy of our statistics.

Table 8 and Table 9 show the results. For example, the
29.24% in the first row in Table 8 means that among the
1,621,954 eight-digit numbers, 29.24% of them are in the
format of YYYYMMDD. We can conclude that Chinese
users prefer to use the format YYYYMMDD and YYM-
MDD. This conforms with Chinese conventions where
people prefer to begin dates with years. On the contrary,
a majority of English users prefer to end the date with
years.

Password Composition. What are the compositions
of passwords that contain dates? Are they composed of
pure digits or mixed with letters? We calculated the per-
centages of digit-only, letter and digit, symbol and digit,
letter and digit and symbol passwords out of all pass-
words that contain dates (both six-digit and eight-digit
dates). As shown in Table 10, for all Chinese and En-
glish websites except Duduniu, most dates observed in
our analysis are digit-only passwords, i.e., when dates
are used as passwords, they are used alone. What ranks
the second is the passwords containing letters and digits.
Note for Duduniu, the passwords that contain dates are
more likely to contain both digits and letters than digits
only. This could be because Duduniu is an e-commerce
website and its users tend to choose a password with
stronger strength, i.e., they tend to select passwords with

1The 30 six-digit numbers are: 111111, 123123, 111000, 112233,
100200, 111222, 121212, 520520, 110110, 123000, 101010, 111333,
110120, 102030, 110119, 121314, 521125, 120120, 010203, 122333,
121121, 101101, 131211, 100100, 321123, 110112, 112211, 111112,
520521, 110111.

Beginning Middle End

CSDN 21.68% 4.32% 74.00%
Tianya 27.33% 4.75% 67.07%
Duduniu 24.76% 1.36% 73.88%
7k7k 32.17% 2.70% 65.13%
178.com 22.30% 1.03% 76.67%

RockYou 27.40% 3.91% 68.69%
Yahoo 22.66% 5.00% 72.34%

Table 11: Positions of dates. The percentages of pass-
words that contains dates at the beginning, the middle, or
the end.

both digits and letters, but not digits only.
Date Position. To understand the position of dates

in passwords, we analyzed those passwords that contain
dates (digit-only passwords are not included).

We categorize the position of the dates as beginning,
middle, and end, and summarize the results in Table 11.
For both Chinese and English users, they prefer to have
dates appear at the end of passwords and rarely place
them in the middle.

2.3 Resistance to Guessing
Given the huge differences between Chinese and English
passwords, a fundamental question is whether those dif-
ferences lead to different levels of password strength. In
this section, we examine password strength against pass-
word cracking.

2.3.1 Metrics to Measure Password Sets

We evaluated how resistant those passwords are against
guessing by using the measurement metrics adopted by
Bonneau [6][8], which are designed to evaluate the pass-
word strength in different regions.

As shown in Table 12, we briefly introduce these met-
rics: H∞ is defined as min-entropy, a worst-case secu-
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Metric Formula Term Description

H∞(X ) − log2(p1) Worst-case security metric

G(X ) ∑N
i=1 pi · i guesswork The expected number of sequential guesses to find the password of an

account if an attacker proceeds in optimal order

G̃(X ) log2(2 ·G(X )−1) Bit representation of G(X )

µα (X ) min{ j ∈ [1,N]|∑ j
i=1 pi ≥ α} α-work-factor The expected number of guesses needed to succeed with probability α

µ̃α (X ) log2

(
µα (X )

λµα

)
Bit representation of µα (X )

λβ (X ) ∑β
i=1 pi β -success rate The probability that an attacker can correctly guess the password of an

account given β guesses

Gα (X ) (1−λµα ) ·µα +∑µα
i=1 pi · i α-guesswork The expected number of guesses per account to achieve a success rate α

G̃α (X ) log2

(
2·Gα (X )

λµα
−1

)
+ log2

(
1

2−λµα

)
Bit representation of G̃α (X )

Table 12: Metrics [6][8] list used in our analysis. X refers to the probability distribution of passwords; N refers
to the number of distinct passwords in a password set; pi refers to the probability of the i-th password in X where
p1 ≥ p2 ≥ p3 ≥ ·· · ≥ pN .

rity metric for human-chosen passwords, i.e., when a
user chooses the mostly likely password. G is defined
as guesswork, representing the expected number of se-
quential guesses to find a password of an account if an
attacker proceeds in an optimal order, i.e., trying pass-
words in a descending order of the password probabil-
ity. µα is called marginal guesswork or α-work-factor,
which measures the expected number of guesses needed
to succeed with probability α . Marginal success rate or
β -success rate, λβ , represents the probability that an at-
tacker can correctly guess the password of an account
given β guesses. Gα , the α-guesswork, reflects the ex-
pected number of guesses per account to achieve a suc-
cess rate α .

To be more intuitive to programmers and cryptogra-
phers, we can convert these metrics into units of bits by
taking the logarithmic value. We use a tilde over each
letter to denote the values that are converted into bits: G̃,
µ̃α and G̃α .

In this section, we follow the same assumption as pro-
posed by Bonneau [6][8], i.e., attackers know the exact
distributions of the target password set and calculate the
password strength, i.e., the attackers utilize the distribu-
tion of passwords to crack passwords in the same web-
site. We call it intra-site guessing. In the next section,
we relax the assumption, and we examine the guessing
efficiency if the attackers are only aware of password dis-
tribution of other websites.

2.3.2 Resistance to Intra-Site Guessing

We summarize the calculated metrics for each website in
Table 13 and Figure 3, and we draw the following obser-
vations:

• In Table 13, we observe that the β -success-
rates (λ5, λ10) of RockYou and Yahoo are much
lower than those of Chinese websites, i.e., given
β (e.g.,5,10) guesses, the probability of guessing
Chinese passwords correctly is higher. This phe-
nomenon shows that Chinese websites have a lot of
repeated passwords, but the G0.25 and G0.5 are sim-
ilar (less than 3) between Chinese and English web-
sites (except 178.com). Thus, it may be easier to
guess a small proportion of Chinese passwords, but
for a majority of Chinese passwords, guessing them
becomes as hard as guessing English ones.

• In Figure 3, the value of α-work-factors of CSDN,
Tianya and 7k7k are small if the expected success
rate α is small, but it grows quickly with the in-
crease of α . This phenomenon indicates that al-
though part of Chinese users use the weak pass-
words that are easy to guess, a considerable number
of users still carefully select passwords to protect
their accounts. In addition, the users of Duduniu
tend to choose better passwords. One possible ex-
planation is that Duduniu involves monetary trans-
action and users tend to choose secure passwords.

9
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G̃ H∞ λ5 λ10 G̃0.25 G̃0.5

CSDN 21.29 4.77 9.41% 10.44% 15.60 20.30
Tianya 21.49 4.55 7.15% 8.11% 14.67 19.11

Duduniu 22.55 6.02 2.74% 3.51% 18.94 21.59
7k7k 21.25 4.75 6.53% 7.61% 15.22 19.63

178.com 20.40 5.11 6.40% 8.74% 9.50 15.67

RockYou 22.65 6.81 1.71% 2.05% 15.88 19.80
Yahoo 18.03 8.05 0.78% 1.01% 16.31 17.68

Table 13: Resistance to guessing. H∞ is the min-entropy for the most likely passwords. For G̃, H∞, and G̃α , a larger
value maps to stronger security. For λβ , a smaller value indicates a lower possiblity of successful password cracking.
Overall, the table shows that a small portion of Chinese passwords are repreaded and weak, but guessing a majority of
Chinese passwords is as hard as guessing English ones.
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Figure 3: The expected number of guesses needed to succeed with a success rate α (α-work-factors, µ̃α ) of all seven
websites. The dash lines represent English websites and solid lines map to Chinese websites.

3 Cross-Region Guessing

In this section, we would like to answer the following
questions.

• Given that an attacker only has the password distri-
bution of English websites, how well can she guess
the passwords of Chinese websites?

• Given the knowledge of the differences between
Chinese and English passwords, can an attacker im-
prove the efficiency of guessing the passwords of
Chinese websites?

The following two subsections answer these two ques-
tions.

3.1 Cross-Site Password Guessing
In this section, we examine how well an attacker can
guess passwords from a website when she only possesses

a password set of another website, and we call such sce-
narios as cross-site password guessing. This represents
the situation when an attacker want to crack passwords
of a website whose passwords have never been leaked.
We modify the metrics that are modeled for the intra-
website password guessing (listed in Table 12) to eval-
uate cross-site password guessing. We use two metrics,
α-work-factors and β -success-rates, to evaluate the re-
sistance to cross-site guessing. We denote these two met-
rics by adding a check symbol:

µ̌α(X ) = min{ j ∈ [1,Nother]|
j

∑
i=1

p(other)i ≥ α} (1)

ˇ̃µα(X ) = log2

(
µ̌α(X )

λ̌µ̌α

)
(2)

λ̌β (X ) =
β

∑
i=1

p(other)i (3)

10



USENIX Association  23rd USENIX Security Symposium 569

0.00

5.00

10.00

15.00

20.00

25.00

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

Cr
os

s-
sit

e 
α-

w
or

k-
fa

ct
or

(b
it)

success rate α

CSDN->RockYou
Tianya->RockYou
Duduniu->RockYou
7k7k->RockYou
178.com->RockYou
RockYou->CSDN
RockYou->Tianya
RockYou->Duduniu
RockYou->7k7k
RockYou->178.com

Figure 4: α-work-factors (µ̃α ) of cross-site guessing, i.e., the expected number of guesses needed to succeed with a
success rate α . “X->Y” means using the X’s optimal order to guess Y’s passwords. For example, “CSDN->RockYou”
means using the CSDN’s optimal order to guess RockYou’s passwords.

Chinese Websites → RockYou RockYou → Chinese Websites
λ̌5 λ̌10 λ̌5 λ̌10

CSDN 0.31% 0.35% 3.79% 7.11%
Tianya 1.24% 1.34% 4.78% 5.16%

Duduniu 1.18% 1.50% 2.11% 2.27%
7k7k 1.20% 1.28% 4.39% 4.66%

178.com 0.93% 1.00% 3.19% 3.33%

Table 14: β -success-rates of cross-site guessing. The data in columns 2 and 3 maps to the scenarios that we used
each Chinese datesets to guess Rockyou passwords, and the data in columns 4 and 5 maps to the ones that we used
Rockyou passwords to guess the ones of each Chinese website. These data shows that the cross-site guessing between
Chinese and English users is hard.

In the above metrics, p(other)i refers to the probabil-
ity of the other websites’ i-th password in X . For ex-
ample, we utilize the CSDN’s optimal password order to
estimate the strength of Tianya’s passwords, and X is
the probability distribution of Tianya. In the CSDN’s op-
timal order, “123456” is the first password. Given that
in Tianya’s passwords “123456” accounts for 0.52%,
p(CSDN)1 is 0.52%.

Using the methods mentioned above, we examine two
scenarios: (1) given the passwords from the five Chinese
websites as a prior knowledge, how well can we guess
the passwords of RockYou; (2) given the passwords of
RockYou, how well can we guess the passwords of the
five Chinese websites. Note that we did not take Yahoo

into consideration because of its small data size. The
results of α-work-factors and β -success-rates of cross-
site guessing are shown in Figure 4 and Table 14, where
we can conclude that cross-site guessing is much harder
than intra-site guessing (shown in Figure 3 and Table 13).

A lower β -success-rates means that the probability

of correct guesses given β guesses are lower. In cases
of using the information of Chinese passwords to guess
the RockYou passwords, the β -success rates (λ̌5 to λ̌10)
(listed in the 2nd and 3rd columns of Table 14) are lower
than the intra-site guessing ones, i.e., λ5 = 1.71% and
λ10 = 2.05% for RockYou. In cases of using the in-
formation of the RockYou passwords to guess Chinese
passwords, the β -success rates (λ̌5 to λ̌10) (listed in the
4th and 5th columns of Table 14) are also lower than the
corresponding intra-site guessing listed in Table 13. A
higher α-work-factors means that it takes a larger num-
ber of guesses to hit the right passwords. Compared
with intra-site guessing (shown in Figure 3), for the same
α value, the α-work-factors of the cross-site guessing
(shown in Figure 4) is larger. Thus, cross-site guessing
is harder.
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Algorithm 1 Identify Keyboard Patterns
Input: S: a string
Output: the keyboard pattern of S

————————————————————–
1: if S.length < 4 then
2: return NO PATTERN
3: end if
4: letters[]← S.toCharArray()
5: samerow ← TRUE
6: zigzag ← TRUE
7: for i = 1; i < letters.length(); i++ do
8: pos1 ← letters[i−1]
9: pos2 ← letters[i]

10: if isAdjacent(pos1, pos2) then
11: samerow ← samerow&isSamerow(pos1, pos2)

12: zigzag ← zigzag&!isSamerow(pos1, pos2)
13: else
14: return NO PATTERN
15: end if
16: end for
17: if samerow then
18: return SAME ROW
19: end if
20: if zigzag then
21: return ZIG ZAG
22: end if
23: return SNAKE

3.2 Guessing with Probabilistic Context-
Free Grammar

The PCFG-based guessing method [35] increases the ef-
ficiency of password cracking process by trying pass-
words according to a decreasing order of password prob-
ability. The key of PCFG is to generate password rules
(or structures). The rules can be constructed either from
passwords themselves or word-mangling templates that
can be filled in with dictionary words, for example. In
our experiments, we built rules from three sources: (1)
password sets, (2) dictionaries, and optionally (3) dates.
We chose to use PCFG to examine whether the afore-
mentioned rules are useful for guessing Chinese pass-
words, because it has been shown to be efficient in pass-
word guessing [21][24].

3.2.1 Methodology

We are interested in two questions: (1) How important
are Pinyins and date formats for guessing Chinese pass-
words? (2) Given that an attacker is only aware of the
English password distribution, can she synthesize a pass-
word distribution utilizing the differences that we have

Algorithm 2 Insert into the Trie
Input:

S: a string (a Chinese Pinyin or English word) that
needs to be inserted into the Trie
Root: the root of the Trie
————————————————————–

1: S ← S.toLowercase()
2: letters[]← S.toCharArray()
3: node ← Root
4: for i = 0; i < letters.length(); i++ do
5: pos ← letters[i]− ‘a’
6: node.child[pos].val ← letters[i]
7: node ← node.child[pos]
8: end for
9: node.isValue ← TRUE

observed to improve the efficiency of cracking Chinese
passwords?

To answer those questions, we created rules out of
three types of sources for the PCFG-based guessing
method: password training sets, dictionaries, and dates.
For password training sets, we generated the following
ones. Note that all training sets contain 2,000,000 pass-
words, respectively.

• RockyouTS: This training set contains passwords
that are randomly chosen from RockYou. This rep-
resents a training set that only contains English
password information.

• MRockyouTS: This training set also contains pass-
words from RockYou. However, the passwords are
carefully selected so that its distribution follows the
Chinese password distribution: 50% of the pass-
words are digit-only, and 10% are letter-only. This
data set helps to examine whether the structure of
passwords is enough to assist password guessing.

• RockyouDuduTS: Half of the passwords of this
training set are randomly chosen from Duduniu,
and the other half are randomly chosen from
RockYou. This dataset helps to examine whether
combined samples of Chinese and English pass-
words can assist password guessing.

• DuduTS: This training set contains passwords ran-
domly chosen from Duduniu only. This represents
the scenario that an attacker manages to obtain Chi-
nese password sets.

In order to examine the effect of Pinyins in password
guessing, we construct two dictionaries:

• EDict: This dictionary is a combination of the Dic-
0294 and English-Lower. Dic-0294 is obtained

12



USENIX Association  23rd USENIX Security Symposium 571

5.00% 10.00% 15.00% 20.00%

DuduTS (CDict)

DuduTS (EDict)

RockyouDuduTS (CDict)

RockyouDuduTS (EDict)

MRockyouTS (CDict+Date)

MRockyouTS (EDict+Date)

MRockyouTS (CDict)

MRockyouTS (EDict)

RockyouTS (CDict+Date)

RockyouTS (EDict+Date)

RockyouTS (CDict)

RockyouTS (EDict)

Percentage of Cracked Passwords

Figure 5: Passwords guessed within 10B guesses. Terminologies are explained in Section 3.2.1 in detail.

from a password guessing website [3] and English-
lower is obtained from John the Ripper’s public
website [2]. EDict has 869,310 unique entries in
total.

• CDict: To form this dictionary, in addition to EDict,
we add 20,000 most frequently used Pinyins from
the five Chinese websites. As a result, the size of
CDict is larger than EDict by about 2.3%.

Besides Pinyins, dates also play an important role in
password guessing. Since dates are digits, we mod-
ify the rules generated by the PCFG directly. We add
20,000 six-digit dates and 20,000 eight-digit dates that
are most frequently used in the Chinese websites to the
rules. These dates are assigned with the highest prob-
abilities in the observed rules of six-digit numbers and
eight-digit numbers, respectively. In total, these rules in-
crease the number of six-digit and eight-digit rules by
about 15% for MRockyouTS and about 31% for Rocky-
ouTS. We do not apply these rules to training sets Rock-
youDuduTS and DuduTS, because they already contain
enough Chinese dates.

We used the above dictionaries and the modified rule
set to guess the passwords of CSDN, and try 10 billion
guesses per experiment.

3.2.2 Results of the PCFG based Guessing

As shown in Figure 5, the name of the training set is
labeled on the left. In the parentheses, EDict and CDict
represents which dictionary the guessing is based on and
Date means that we added the dates to the rules generated
by PCFG. According to Figure 5, we have the following
conclusion.

• Chinese Pinyins and dates play an important role
in guessing Chinese passwords. By adding 20,000
Pinyins into the dictionary, we managed to increase
the percentage of password guessing. For Rock-
youTS, from EDict to CDict, the guessing effi-
ciency increases by 13% and from EDict+Date to
CDict+Date, the guessing efficiency increases by
14%.

Furthermore, according to Section 2.2.3, more than
half Chinese passwords are digit-only. For Rocky-
ouTS, the guessing efficiency increases by 17% af-
ter adding dates into EDict and it increases by 18%
after adding dates into CDict. Last but not least,
under the same dictionary, adding dates changes
the percentage of guessed passwords of RockyouTS
more than that of RockyouDuduTS.

• If we use the training set RockyouTS and MRock-
youTS, the differences between the percentages of
guessed passwords are small (less than 0.45% in all
scenarios). This means that the distribution of pass-
word categories (e.g., letter-only, digit-only, etc.)
does not play an important role in password guess-
ing. It is the string patterns that make difference,
since Chinese and English users prefer to use differ-
ent patterns of digits and letters. Thus, using Rock-
youDuduTS, which consists both English password
and Chinese password patterns can help the pass-
word guessing.

In total, from EDict to CDict+Date, we increase the
guessing efficiency by 34% for RockyouTS. This guess-
ing experiment imply that Pinyin and date’s rules should
be considered in password protection in websites. E.g.,
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Algorithm 3 IdentifyComposition
Input:

S: a string that needs to match elements of Trie
Root: the root of the Trie

Output:
Whether the string S is composed of the element (s)
in the Trie.
————————————————————–

1: if S is NULL or S.length() is 0 then
2: return FALSE
3: end if
4: letters[]← S.toCharArray()
5: node ← Root
6: for i = 0; i < letters.length; i++ do
7: pos ← letters[i]−‘a’
8: if node.child[pos] is NULL then
9: if i is 0 then

10: return FALSE
11: end if
12: if node.isValue is FALSE then
13: return FALSE
14: end if
15: return IdentifyComposition(S.substring(i))
16: else
17: node ← node.child[pos]
18: if IdentifyComposition(S.substring(i + 1)) is

TRUE and node.isValue is TRUE then
19: return TRUE
20: end if
21: end if
22: end for
23: return node.isValue

Web masters should tell Chinese users to reduce the us-
age of Pinyin or dates in composing their passwords.

4 Related Work

Although graphical passwords, biometrics and other al-
ternatives to text-based passwords have been proposed,
text-based passwords still predominate today’s Internet
due to its ease of implementation. A large body of re-
search has shown the characteristics of user-created pass-
words [14][16][22][23][31][29][15].

Morris et al. [25] described the history of the design
of the password security scheme and studied the pass-
word habits of 3,289 Unix users. Yan et al. [38] studied
the password memorability and security. They found that
users rarely choose passwords that are both hard to guess
and easy to remember. Howe et al. [20] studied the be-
havior of home computer users because home computer
users are more likely to suffer from various attacks, e.g.,
phishing [36], dictionary attacks [27], heuristic pass-

word guessing [35], or brute force attacks. Florencio et
al. [18] reported a large-scale study of Web passwords
habits. The study involved half a million users over a
three-month period. They found that on average, each
user has 6.5 passwords and about 25 websites accounts.
Kelly et al. [21] studied 12,000 actual passwords from
several perspectives. They found that certain passwords
policies which can improve the strength of user-created
passwords are underestimated. In addition, a blacklist
of weak passwords improves the security of passwords
greatly. However, the aforementioned literature rarely
mentioned the password difference between different re-
gions, especially between Chinese and English users.

Bonneau [6] analyzed the language dependency of
password guessing. The results show that among all
Yahoo passwords, passwords created by Chinese are al-
most the hardest to guess. However, our experiments
show that (1) the passwords of both English and Chinese
users are similar in strength as shown in Figure 3 and
Table 13; (2) if an attacker is aware of the fundamen-
tal differences between two languages (as pointed out in
this paper), she or he can guess Chinese passwords effi-
ciently. Moreover, our empirical study is based on two
groups of websites: five Chinese websites, and two En-
glish websites, which represents a larger and more di-
verse corpus of passwords than Yahoo data set in Bon-
neau’s work, and our corpus include passwords from
users that only speak Chinese, unlike the Chinese users
in Bonneau’s work who should be familiar with English.
Bonneau et al. [9] also investigated the lingering ef-
fects of character encoding on the password ecosystem
based on password datasets from Chinese, English, He-
brew and Spanish speakers. Comparing with the results
in [9], our large-scale empirical analysis in this paper
also shows that the strength of the passwords of Chi-
nese and English users is similar. Moreover, we firstly
quantitatively measure how an attacker can leverage the
lingering effects to crack more Chinese passwords.

In terms of measuring the strength of passwords, NIST
standards [11] propose to use Shannon’s entropy to esti-
mate the strength of a single password. Unfortunately,
this method does not work well. Bonneau [6][8] pro-
posed a set of metrics to measure the strength of pass-
words. These metrics are independent of what the pass-
words are, but depend on the distribution of the pass-
words. We modify these metrics to estimate the strength
of passwords across websites. In addition, Kelly et
al. [21] used guess numbers to measure the strength of
passwords.

Guessing passwords has attracted much attention.
Narayanan et al. [26] discussed a password-guessing al-
gorithm based on Markov model. In this model, guessing
passwords is based on the frequency of each character.
Weir et al. [35] proposed a PCFG based password guess-
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ing method. The PCFG generates password structures
in the highest probability order based on a training set
of passwords. Then, it generates word-mangling rules
and guesses passwords from these rules. This approach
provides us with an opportunity to examine the differ-
ences between Chinese and English passwords. In addi-
tion, Veras et al. [34] employed Natural Language Pro-
cessing techniques to understand the semantic patterns in
passwords, then cracked more passwords than a state-of-
the-art approach did.

5 Conclusion and Future Work

To the best of our knowledge, this paper is the first large-
scale empirical study on Chinese Web passwords, lever-
aging a corpus of 100 million publicly available pass-
words. By comparing Chinese and English passwords,
we find that Chinese users prefer digits in their pass-
words. Moreover, Pinyins and dates also appear often
in their passwords. Leveraging these observations, we
show that by adding rules and Pinyins into the dictionary
for guessing passwords, we can improve the guessing ef-
ficiency of cracking Chinese passwords by 34%.

With an increasing number of password creation poli-
cies being enforced by websites, a direction for future
study is to investigate the status quo of the password cre-
ation policies in Chinese websites and to study the im-
pact of these policies on password statistics. Also, it is
worthy exploring the semantic meanings of the Chinese
passwords.
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A Method to Remove the Copied Pass-
words in Tianya

Tianya and 7k7k have an unusually large number of
the same accounts (identified by email) with the same
passwords. Since the statistic features of these dupli-
cated accounts are different from the ones between any
other websites, thus we suspected that the attackers have
copied accounts from Tianya to 7k7k or vice versa.

To investigate whether the accounts are copied from
Tianya to 7k7k or vice versa, we performed the follow-
ing analysis. We first divided all accounts from Tianya

and 7k7k into two groups: One group contains the
users who have the same accounts and passwords both at
Tianya and 7k7k, and the other contains the users who
do not. We call the passwords of the two groups reused
passwords and not-reused passwords.

After analyzing the compositions (e.g., digit-only
passwords) of the reused passwords and not-reused pass-
words, we found that the proportions of various compo-
sitions are similar between the reused passwords and the
7k7k’s not-reused passwords, but different with Tianya’s
not-reused passwords. As a result, we believe that it
is likely that accounts have been copied from 7k7k

to Tianya and we deleted the reused passwords from
Tianya.
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Password Portfolios and the Finite-Effort User:
Sustainably Managing Large Numbers of Accounts∗

Dinei Florêncio and Cormac Herley
Microsoft Research, Redmond, USA

Paul C. van Oorschot
Carleton University, Ottawa, Canada

Abstract. We explore how to manage a portfolio of pass-
words. We review why mandating exclusively strong
passwords with no re-use gives users an impossible task
as portfolio size grows. We find that approaches justified
by loss-minimization alone, and those that ignore impor-
tant attack vectors (e.g., vectors exploiting re-use), are
amenable to analysis but unrealistic. In contrast, we pro-
pose, model and analyze portfolio management under a
realistic attack suite, with an objective function costing
both loss and user effort. Our findings directly challenge
accepted wisdom and conventional advice. We find, for
example, that a portfolio strategy ruling out weak pass-
words or password re-use is sub-optimal. We give an op-
timal solution for how to group accounts for re-use, and
model-based principles for portfolio management.

1 Introduction

Due to the growth in online services, many users now
manage dozens of password-protected accounts. Many
service providers, awareness campaigns (US DHS [1]),
and government entities (US-CERT [2]) stress two foun-
dations for password security:

A1: Passwords should be random and strong; and
A2: Passwords should not be re-used across accounts.

Despite this, users have long been observed to choose
weak passwords. Leaked datasets, such as the 32 mil-
lion plaintext passwords from Rockyou, reveal that most
users fall far short of following “traditional” advice on
password strength. Evidence also indicates widespread
password re-use [21]. While admonitions against this
are almost universal, ignoring that advice seems equally
universal. Clearly, users find managing a large password
portfolio burdensome. Both password re-use, and choos-
ing weak passwords, remain popular coping strategies.

∗USENIX Security 2014, August 20-22.

Numerous efforts have been made to address the ne-
glect of password strength by users. Many sites stress the
importance of, and offer tips on how strong passwords
can be made easier to construct and remember; e.g.,
US-CERT [2] and others commonly suggest passphrase-
based and other mnemonic approaches. But while signif-
icant attention has been devoted to motivating and help-
ing users choose strong individual passwords, there is lit-
tle guidance on how to choose and manage large numbers
of them. We aim to give, and justify, such guidance.

We explore how a large portfolio of passwords can be
maintained without ignoring that users have limited abil-
ities. Can password re-use be part of sensible portfolio
management, or is it never justifiable? Is a unique strong
password for every account, including blog sites and
throw-away accounts, truly the best use of limited hu-
man memory resources? In practice, many users gather
accounts into groups that re-use a password, but little
guidance exists on choosing appropriate groups. Given
that re-use does and will happen, we explore how to do
so in a principled way, and answer these questions.

Our findings directly challenge some conventional
wisdom. For example, we find: strategies that rule out
password re-use or the use of weak passwords are sub-
optimal. Both are valuable tools in balancing the alloca-
tion of effort between higher and lower value accounts.

We first review password-related demands on users,
and consider users’ options under the reasonable but
too-rare assumption of finite user effort. This realism
yields an inherent trade-off between two desired out-
comes: greater password strength and avoiding re-use.
Acknowledging fixed user effort budgets, more of one
means less of the other.

We explore the implications of password re-use, and
outline an optimal password-sharing strategy: for a fixed
number of passwords and a given set of accounts, how to
partition accounts to minimize total expected loss. Loss
analysis is greatly complicated by cross-contamination
issues due to password re-use. We address this by a novel
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partitioning of attacks into three broad classes covering
the major threat vectors, itself of independent interest.

2 Related Work

In 2000, Dhamija and Perrig [18] interviewed 30 par-
ticipants reporting 1–7 unique passwords for 10–50 web
sites. Circa 2001, Sasse and Brostoff [45] surveyed 144
employees reporting on average 16 passwords including
non-online activity. A 2004 survey of 218 college stu-
dents by Brown et al. [11] indicated on average 8.18
password accounts serviced by 4.45 unique passwords.
In 2006 Gaw and Felten [24] surveyed 58 (mainly stu-
dent) participants by online questionnaire with in-lab
follow-up of 49, exploring how users manage online
passwords, the extent of reuse and how users justify it,
and the use of related passwords; they reported on aver-
age 13 passwords and found reuse increased over time—
new accounts accumulated faster than new passwords.
Riley’s 2006 survey [44] of 315 college students (8.5 ac-
counts on average) reported: 74.9% have a set of prede-
termined passwords they frequently re-use; 54.6% very
frequently or always use a same password for multiple
accounts; 33% use some variation of a same password
for multiple accounts; and 60% do not vary the complex-
ity of their passwords with the nature of a site. In a 2007
study of password use/re-use across three months by over
a half million users, Florêncio and Herley [21] reported
on average 25 accounts serviced by 6.5 unique pass-
words, re-used passwords used on average at 5.7 sites,
and strong passwords re-used less.

Notoatmodo’s 2007 thesis [42] explored password
re-use and users’ perspectives of their real-world
passwords—and especially relevant to our work, how
users mentally group both accounts and passwords into
categories, relationships between account and password
groups, and details of users’ reasons both for, and for not,
reusing passwords. The 26 participants surveyed had on
average 12.9 accounts and 8.1 passwords; most reused
passwords (132 of 336 accounts had unique passwords).
Reuse was found again (see above) to increase with num-
ber of accounts. A hypothesis progressed was that users
manage their accounts and passwords by mentally sep-
arating both into categories based on perceived account
similarities and password similarities,1 Regarding group-
ing accounts, and which accounts they felt were “high
importance”, most participants had only one high impor-
tance account group (1.54 such groups on average), and
high importance groups were found to be smaller (fewer

1Examples of similarities for grouping passwords: “school stuff”,
email accounts, online banking, and semantic properties related to se-
curity (e.g., overall length, number of letters). Examples for account
grouping: type of service related to the account (e.g., financial, educa-
tion, communication), similar levels of risk or importance.

accounts per group: mean 1.84 vs. 2.78 for low impor-
tance groups). 45% reported reusing at least one pass-
word from a high importance group vs. 96% reusing at
least one password from a low importance group; 70%
had passwords exclusively used for an account in high
importance groups (2.9 such passwords on average). In
line with our views, Notoatmodo suggests “reusing pass-
words on unimportant accounts which contain no sensi-
tive information should not be discouraged ... Expecting
users to create unique, strong passwords for all their ac-
counts is ... unreasonable ... Instead, users should be
educated to identify which accounts [not to] reuse pass-
words on.” While granting that password re-use is dan-
gerous, Karp [36] also argues for re-use (“human nature
being what it is, not reusing passwords is equally danger-
ous”) but in a different direction: by a password manager
tool re-using a user password as a master password com-
bined with details of a target site (e.g., site name) for
site-specific passwords.

The “domino effect” of password re-use is well-
documented (e.g., Ives et al. [32]; Gouda et al. [25]).
The need for re-use is exacerbated by large numbers of
passwords consuming user’s memory capacity [3]. In
scarce empirical work on implications of password re-
use, Bonneau and Preibusch [9] analyze password imple-
mentations across 150 free websites, explaining techni-
cal means by which password re-use allows low-security
sites—often unmotivated to spend effort or user experi-
ence securing passwords—to compromise high-security
sites. The same authors [43] explore this question as
a negative externality of password policies, finding a
tragedy of the commons whereby sites with the low-
est security needs can endanger those with the highest.
Florêncio and Herley [22] find that the imposition of
stringent password policies is better correlated with insu-
lation from the consequences of poor usability than the
need for greater security.

While the degree of password re-use naturally varies
with the users studied, their circumstances and envi-
ronment at a give time, evidence clearly shows it is
widespread. The accuracy of self-reported re-use statis-
tics is debatable, but a lower bound on re-use in real life
is possible from leaked password databases from two
different sites: from each database, recover a (userid,
password) list, find userids common to both (e.g., re-
used email addresses), then count password re-use in-
stances. Das et al. [17] estimate that 43-51% of users
re-use passwords across sites, and give algorithms that
improve an attacker’s ability to exploit this fact; this
exceeds the 12-20% rate of some earlier studies noted
above [24, 21]. Lemos [38] reports that intersection of
the breached database pair (Yahoo Voices, Sony online)
and (Sony online, Gawker) found usernames had re-used
passwords across two sites 59% and two-thirds of the
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time in the two pairs. RockYou’s leaked dataset [30]
was explored by Bonneau [7, p.83] and Weir et al. [48].
Zhang et al. [49] easily predict new passwords from old
when password aging policies force updates.

Over a 2011 two-week diary study of password use by
Hayashi et al. [28], 20 participants reported 8.6 accounts
on average, and to not use any memory aids for 60% of
accounts; 19 of 20 said they reused passwords for mul-
tiple accounts. This may indicate under-estimating pass-
word re-use risk vs. writing passwords down. From a
2010 one-week diary-based study wherein 32 staff from
two organizations produced just over 6 passwords each,
Inglesant et al. [31] suggest that password polices be de-
signed not to maximize password strength but rather to
aid users in setting strengths appropriate to specific use
contexts. Grawemeyer et al. [26] explore re-use among
coping strategies in managing collections of passwords,
in a detailed 2011 diary study of 22 participants over 7
days. In 2014, Stobert et al. [47] also explore user cop-
ing strategies for managing passwords, with guided inter-
views and questionnaires on 27 participants—noting as a
user concern “rationing effort to best protect important
accounts”, and that “many participants [reported] having
a specific password that they reused widely on accounts
of low interest, low importance, or infrequent use”.

The idea of grouping passwords, e.g., by level of im-
portance, has seen little academic study, but Cheswick
et al. [15, pp.140-141] suggested four categories: worth-
less, slightly important, quite secure, and top security.
Cheswick more recently [13] suggests three classes:
those that (a) have no importance; (b) are inconvenient
if stolen; or (c) result in a major problem if abused. Five
categories each are given by Grosse et al. [27] (based on
account value) and Florêncio et al. [23] (based on con-
sequence of compromise). Cheswick [14] also reviews
common password guidance, and the ongoing suitabil-
ity of circa-1985 U.S. government password guidelines.
Florêncio and Herley suggest defender goals are well
modelled by minimizing loss plus effort [20].

Nithyanand et al. [41] explore issues related to pass-
word re-use, under an attack model focused on server-
side breakin (excluding phishing, client-side malware);
seek solutions to maximize “remaining value” (i.e., min-
imize loss, vs. loss plus effort herein); show their
password allocation problem is NP-complete; and find
heuristic solutions to special cases (for accounts of equal
value, with identical compromise probabilities, etc.).

3 The Difficulty of Managing a Portfolio

Issues related to complexities of human memory, encod-
ing and recalling information (see [10]) currently pre-
clude a satisfactory cognitive model or measure of the
load passwords place on users. Nonetheless we begin

with a naive model to highlight impossible-to-meet as-
sumptions, and to position and motivate later discussion.
We stress that our later modeling (Sections 4 onward)
abandons these assumptions and this naive model, tack-
ling a more realistic setting. We acknowledge that our
equations in this Section, e.g., for the difficulty of as-
sociating passwords with accounts, give at best crude
estimates. We emphasize also that this paper considers
ordinary text passwords, not text or graphical variations
using cues; we make no claims regarding such schemes.

An active web-user may have a hundred or more
password-protected accounts. Ideally a user with N ac-
counts chooses N strong passwords. If passwords were
random collections of equi-probable characters, the dif-
ficulty of remembering them would be related to their
length. Assume each such password is lgS bits. The
effort required to manage the portfolio might naively ap-
pear to be N lgS. But beyond remembering N passwords,
users must remember which matches which account. We
now explicitly consider this often overlooked sub-task.

3.1 Matching Passwords to Accounts
There are N · (N − 1) · · ·1 = N! possible mappings of N
unique passwords to accounts; no encoding of this infor-
mation uses less than lg(N!) bits, unless passwords con-
tain clues as to which site they serve, violating A1 above.
Thus the number of bits to be remembered to manage a
portfolio of N passwords, each of lgS bits, is at least:

E(N) = N · lgS+ lg(N!). (1)

(As noted above, this approximation fails to address the
complexities of human cognition, but suffices for the ar-
gument below.) Clearly this grows rapidly with N, the
second term super-linearly by Stirling’s approximation
(lnN! ≈ N lnN−N). Consider a conscientious user, with
N = 100 accounts. Choosing unique random passwords
of 40 bits for each account rewards him with the obliga-
tion to remember 100×40+ lg(100!)= 4525 bits (equiv-
alent to 1362 random digits or 170 random 8-digit PINs).
This burden far exceeds what users can manage by mem-
orization (i.e., without other aids); for most it is insup-
portable. How can users reduce it? An obvious shortcut,
with significant side effect, is to choose weaker (less ran-
dom) passwords; the linear dependence on lgS suggests
reducing strength as much as possible.

While using weaker passwords clearly reduces the first
term of (1), no matter how weak N distinct passwords
are, the second term is unaffected. Considering that term
alone, N = 100 yields lg(N!) = 525. This is double the
lg(52!) = 226 bits required to memorize the order of a
shuffled card deck, and equivalent to remembering 158
random digits—random since as noted, no encoding of
an N ×N assignment takes fewer than lg(N!) bits. Thus,

3
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the assignment burden alone, including the problem of
password interference [16], is evidently beyond a rea-
sonable expectation of users.

So the two staples A1, A2 of password advice ap-
pear impossible to meet individually, let alone simulta-
neously. How do users proceed? They “cheat” on A1
by choosing passwords far weaker than advised. But this
isn’t enough—no matter how weak the passwords, a user
must still remember lg(N!) random bits for password as-
signment. A further coping strategy is needed.

3.2 Password Re-use as a Coping Strategy
Consider next a user with N accounts using G ≤ N pass-
words to cover them. Assume for now each password is
used at n = N/G accounts, that the password-to-group
assignment is random and (for simplicity) that G di-
vides N. The burden of remembering passwords drops
to G · lgS bits. What of the further burden of remem-
bering which password goes where? The G groups of
accounts each have n = N/G elements. There are CN

n
possible combinations for the first group, CN−n

n for the
second, etc., so the number of possible assignments of N
accounts to G equal-sized groups is:

(
N
n

)
·
(

N −n
n

)
· · ·

(
n
n

)
=

N!
(n!)G .

Thus the user effort (memory burden in bits) drops to:

EG(N) = G lgS+ lg(N!)−G · lg(n!) (2)
≈ G lgS+N lgG

the last line following by Stirling’s approximation again.
Now compare the burden of managing a portfolio

with and without password re-use. For example, even
if lgS is as low as 20, from (2), the burden of manag-
ing 100 accounts with 10 passwords is E10(100) = 506
bits, while from (1) the burden of doing so with 100 is
E(100) = 2525 bits. Thus, in this instance, password re-
use reduces the memorization burden by a factor of five.

3.3 Tradeoff: Re-use & Password Strength
What other solutions use the same effort? A portfolio of
N passwords can be managed in many ways. If EG(N) is
fixed then lgS ≈ (EG(N)−N lgG)/G. So, lgS falls faster
than 1/G: doubling the number of passwords more than
halves the number of bits per password. So, if G = N (no
password re-use), then lgS must be small.

Fig.1 shows the locus of solutions in the G-lgS plane
when N = 100 and the budget is EG(100) = 400,550 and
700 bits. This reveals the essential tradeoff: less re-use
(i.e., increasing G) implies weaker passwords. For exam-
ple, at fixed effort EG(N) = 400, two possible operating

points are (G = 4, lgS = 52.5) and (G = 5, lgS = 36.2).
At fixed effort, the question is not whether achieving
password strength and avoiding re-use are good, but how
these relative goods are best traded off. Deciding, e.g.,
between these two operating points depends on whether
reducing password re-use (by increasing G from 4 to 5)
reduces the risk of harm by more or less than reducing
password strength (from 52.5 to 36.2 bits). The rapid
decline of lgS in Fig.1 as G increases suggests that, far
from being unallowable, password re-use is a necessary
and sensible tool in managing a portfolio. Re-use ap-
pears unavoidable if lgS must remain above some min-
imum (and effort below some maximum). Fig.1 further
suggests that G should be small: high values of G seem
to imply very low values of lgS. This enormous saving
in user effort that password re-use provides may explain
its ongoing prevalence in practice [24, 19, 21, 45].

Note on entropy: caution is needed to avoid historical
pitfalls such as assuming particular ranges for lgS based
on metrics appropriate only for random passwords, or
misleading rules-of-thumb on what is necessary to with-
stand attack. We intend lgS to represent user effort to re-
member a password, not attacker guessing difficulty; the
two may be correlated but should not be used in place
of each other. For example, if a user has 7 unique pass-
words, and each names a major Hawaiian island, then
lgS = lg7 ≈ 2.8 bits. But this offers little guide on how
hard these passwords are to guess. It is also well un-
derstood [48, 8, 37, 39] that t · lgC and NIST’s crude
password entropy estimate [12], significantly overesti-
mate the difficulty of guessing user-chosen length-t pass-
words from C-character alphabets. Equally, such metrics
must not be mis-used to estimate users’ capabilities or ef-
fort, lest we drastically over-estimate what a reasonable
cognitive burden is.

4 Objective Function: Loss + Effort

Suppose a user has N password-protected accounts. Ad-
vice such as A1, A2 implicitly assume the goal is to min-
imize loss. Let Pi be the probability of compromise in a
given period (e.g., per year, under the current password
management strategy), and Li the loss endured upon such
compromise. We intend that Pi capture the probabil-
ity that an attacker gains the means to access account
i, whether or not that means is used or results in loss.
We intend Li to capture the expected value of the con-
sequences of account compromise (regardless of attack
vector), including direct losses and any indirect costs in-
volved in remediation. The total expected loss is

L =
N

∑
i=1

Pi ·Li. (3)
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Figure 1: Locus of achievable solutions trading off re-use and
password strength for fixed effort EG(N) = 400,550,700 in (2)
at N = 100. Note that when effort is kept constant, lower levels
of re-use are only achieved by having weaker passwords.

A major complication we will find—and defer to Section
5—is that some attacks affect more than one account;
e.g., malware and system attacks affect all accounts, and
if passwords are re-used then an attack against one ac-
count can affect many others. But for now, suppose that
attacks are only against individual accounts. Then the Pi
depend on effort Ei devoted to account i but not to E j.
The probability of compromise Pi = Pi(Ei) is presum-
ably monotonically non-increasing with effort. Investing
more effort generally reduces Pi; a stronger password re-
duces the risk that it falls to password-guessing attacks.

If aiming to minimize expected loss L, the solution
occurs when L has derivative zero with respect to E =

∑i Ei, which from (3) gives the system of equations

dPi

dEi
= 0 for i = 1,2,3, · · · ,N. (4)

The solution is trivial: the optimum is achieved when
further effort can’t reduce the probability of loss for any
of the N accounts. Thus to minimize L, we should in-
crease each Ei until no further reduction is possible (fur-
ther effort does not affect Pi). If Pi(Ei) is monotonically
decreasing—so further effort always reduces Pi—then
expected loss is minimized at infinite effort. Thus the
lack of a constraint on effort leads to an unrealistic solu-
tion. Note also that users gravitate toward a solution very
different from this effort-maximizing one. From this we
infer: the objective function users minimize is not merely
expected loss—if it were they’d always invest effort that
could reduce loss and always follow A1, A2.

This optimization has an obvious flaw: minimizing L
implicitly values user effort at zero. Users presumably
care about loss due to account compromise, but they also

factor in the effort they must spend to reduce that loss.
They may be willing to spend effort to reduce loss, but at
some point there are diminishing returns; and it is waste-
ful to continue after the cost of further effort exceeds
expected reduction in loss. Thus, rather than an uncon-
strained optimization [29] ignoring reluctance to increase
effort, we should solve a constrained problem explicitly
including cost of user effort.

One way to incorporate a constraint is to minimize loss
subject to a bound—e.g., say ∑Ei < Emax to model users
with an upper limit on the effort they are willing to ex-
ert. This is reminiscent of the compliance budget [5, 4];
it can be achieved with Lagrangian multipliers. A more
general approach, which we follow, is to minimize not
the expected loss, but the sum of effort plus loss, L+E.
As a precedent for this approach, economics Nobel lau-
reate Becker notes [6] that attempts to minimize crime
lead to perverse results, and it is preferable to minimize
the costs of crime plus the costs of detecting, prosecut-
ing and punishing it. For example, it makes little sense
to spend $1 more on policing effort if that reduces the
effects of crime by less than $1.

To illustrate the importance of the objective function
we revisit the question of finding optimum allocation of
effort2 when dPi/dE j = 0, i �= j (i.e., no cross-account
attacks). The optimum occurs when the derivative (with
respect to E) of objective function L+E is 0: dL/dE +
1 = 0. Using (3) to substitute for L gives the system

Li ·
dPi

dEi
=−1 for i = 1,2,3, · · · ,N. (5)

Thus, at optimum effort allocation,3 the marginal return
on effort to reduce Pj is a factor Li/L j higher than that to
reduce Pi :

dPj

dE j
=

Li

L j
· dPi

dEi
. (6)

If the loss for the most important account is, say, 104

times that for the least important (L1 = 104LN) then the
marginal return on effort should differ by that factor.
Thus, effort should not be spent equally on all accounts.

While we are unlikely to find an exact form for how
the probability of harm varies with effort, using a para-
metric form can help illustrate the relations. Basing an
example on Shamir’s quote “to halve your vulnerability
you have to double your expenditure” [46], we exam-
ine what happens when there is a reciprocal relation be-
tween them, i.e., Pi(Ei) ∝ 1/Ei. This gives dP(Ei)/dEi ∝
−1/E2

i . Substituting into (6) indicates how the relative
effort for two accounts should depend on the relative
losses:

E j =

√
L j

Li
·Ei.

2This includes max cumulative effort and where/how to allocate it.
3This is also true at other points, though not proven here.
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So if two accounts differ in value by factor 104, ideally
the effort expended would differ by a factor 100. We reit-
erate: this analysis, as it depends on the parametric form
for Pi(Ei), is for illustrative purposes only.

Now contrast this solution minimizing L+E, with that
found by minimizing L alone (system (4) above). First, if
minimizing L, all passwords should be as strong as pos-
sible, meaning that (at the optimum) no additional effort
can reduce the risk for any account. When minimizing
L+E this isn’t the case: (5) says that (at the optimum)
additional effort may still reduce risk for every account,
but it is sub-optimal to spend it. Second, when minimiz-
ing L, the optimum protection given to an account is in-
dependent of Li. When minimizing L+E some accounts
should be (possibly far) less protected than others: (5)
shows that the rate of return on effort should be inversely
related to the account value.

Thus, using objective function L+E (not L) makes an
enormous difference in solutions. We posit that much of
the advice directed at users aims to minimize L only, and
is ignored as users implicitly care about E also and have
found operating points attempting to minimize their ob-
jective function; these points may or may not be optimal,
but have been arrived at by ad hoc methods. We note that
in minimizing L+E we neglect the non-linear response
to probabilities predicted by Prospect Theory [35]. We
believe that the rational model which offers (Kahneman
[34]) “great precision in some situations and good ap-
proximation in many others” is the most realistic one that
we can currently make progress on, and significantly ad-
vances a model that neglects E. Finally, use of the term
portfolio is not accidental. Since 1952 [40] it has been
recognized that managing a portfolio of equities raises
issues drastically different from managing individual se-
curities. In an analogous situation for passwords, due to
cross-account attacks, the security of accounts cannot be
considered in isolation, yet the literature has given little
attention to the portfolio problem.

5 Modeling Loss, Effort, Attack Classes

While (5) offers to guide effort allocation when minimiz-
ing L+E, it assumed dPi/dE j = 0 for i �= j; we post-
poned issues of cross-account attacks. This might be
reasonable if guessing were the only attack and account
passwords were unique; the probability Pi of compromise
of account i would then depend only on how passwords
withstood attack. But that over-simplifies. With pass-
word re-use, compromise of one account can leak to oth-
ers, and client-side malware affects all accounts. Such
attack vectors are too important to ignore. Pi depends on
effort not just devoted to account i but also, e.g., to ad-
dress client malware or avoid phishing, and the security
of other sites the password is re-used on.

If we can’t assume partial derivatives of zero, then on
minimizing L+E, instead of (5) we get the system

N

∑
i=1

∂Pi

∂E j
·Li =−1 for j = 1,2,3, · · · ,N. (7)

This is not simply a linear system. The N unknowns
E j, specified implicitly by the constraint on N2 partial
derivatives, relate non-linearly to the Li. The intuition of
(5) is now lost. A simple interpretation (e.g., marginal
return on effort should be inversely related to loss) is
no longer discernible, as instead of appearing singly, the
partial derivatives are now constrained by a sum.

Note that if we minimize L instead of L+E we get
a system similar to (7), but with zero on the right side.
Since losses must be non-negative and the partial deriva-
tives are non-positive, the solution is achieved by set-
ting ∂Pi/∂E j = 0 for all i, j. This would again indi-
cate optimality occurs when no further effort can reduce
any of the loss probabilities. Thus, the fully general
system is tractable if we use the wrong objective func-
tion. Alternatively, a simplified system (i.e., assuming
∂Pi/∂E j = 0 for i �= j) is tractable using a realistic ob-
jective function. However, the general system using the
realistic objective function is challenging. Our way for-
ward is to re-structure the problem to isolate types of at-
tack affected by different types of effort. By including
the major attack vectors, the model is necessarily more
complicated than that yielding (5), but will allow insight
on how to manage a portfolio when minimizing L+E.

5.1 Attack Classes and Attack Vectors
We partition attacks into three classes:

• Class I attacks (FULL): these compromise all
password-protected accounts of a user. They in-
volve general attack vectors targeting the client ma-
chine. Upon success, the attacker acquires actual
passwords. Example: client-side malware (e.g.,
persistent keyloggers), which we assume provides
attacker access to all of a user’s passwords.

• Class II attacks (GROUP): these compromise all
of a user’s accounts protected by the same shared
(“group”) password, with the attacker obtaining
that password; this includes singleton groups. Ex-
amples: phishing, brute-force and other guessing,
shoulder-surfing, server break-ins to obtain pass-
word files, network channel compromise. We as-
sume the attacker will try appropriate credentials
with this password on all relevant sites (a finite
number), determining associated account userids
from public information or otherwise, and gain ac-
cess to all accounts that use this password. Com-

6
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Class I
(Full, direct)

Class II
(Group, direct)

Class III
(Single, indirect)

Attack
Vectors

Client-side malware
(keyloggers, etc.)

Phishing, password guessing,
shoulder-surfing,

system-side database compromise,
network channel compromise

Session hijacking,
cross-site scripting,

password reset mechanisms

Effort elements
addressing attack

Run AV, disable unused apps/interfaces,
run up-to-date software (apply patches),

avoid suspicious links,
don’t click on email attachments

Choose strong passwords,
don’t re-use passwords,
change passwords often,

don’t write down,
avoid phishing sites little advice

Table 1: Attack classes for password-protected accounts, attack vectors, and relevant user effort elements (defensive actions).

promising one account thus may imply losses in all
same-password accounts of the user.

• Class III attacks (SINGLE): these compromise
only a target account, without obtaining the actual
password.4 Example attack vectors: cookie steal-
ing, single-session hijacking (e.g., by cross-site re-
quest forgery), exploiting password reset vectors
(but not those that mail-back original passwords).
The attacker may gain account access, but cannot
leverage this to access other accounts, even same-
password accounts.

While this classification is still a simplification—e.g.,
some passwords are easily derived from related pass-
words [49]—it allows us to model cross-contamination.
To handle the case where passwords are modified-and-
shared rather than simply shared between groups, as ob-
served by Das etal [17], would require an adjustment to
this model (e.g. by modifying Class II). Table 1 synop-
sizes the attack classes, their principal vectors and user
effort that addresses them. Note that the user effort re-
lated to passwords (e.g., strength, avoiding re-use, avoid-
ing phishing sites) is concentrated in Class II. Class I
deals with system-wide attacks. Class III deals with at-
tacks affecting only a single account, not others sharing
the same password.

The probability of individual account compromise can
now be split as:

Pi ≈ PI +PII
i +PIII

i (8)

where superscripts denote attack class. Here, and
throughout the paper, the compromise probabilities are
assumed small enough that the well-known approxima-
tion (1−∏i (1−Pi))≈ ∑i Pi can be used. For Class I we
omit the subscript from attack probability PI , since it has
the same value for all accounts. Now, if a user has G ≤ N
unique passwords, sharing password w j across a set AJ

4In the case of password resets mentioned next, the attack may re-
cover a new temporary reset password, but not the original password
possibly shared across other accounts.

of accounts, the expected loss becomes:

L = PI
N

∑
i=1

Li +
G

∑
J=1

( ∑
i∈AJ

PII
i )( ∑

i∈AJ

Li)+
N

∑
i=1

PIII
i Li

= PI
N

∑
i=1

Li +
G

∑
J=1

PJ ·LJ +
N

∑
i=1

PIII
i Li. (9)

To distinguish, e.g., account i from password-sharing
group J, we abuse notation with upper-case indices; and
similarly subscripts to denote sums over groups, so

LJ = ∑
i∈AJ

Li and PJ = PII
J = ∑

i∈AJ

PII
i , (10)

dropping PII
J ’s superscript as this is for Class II only.

The three terms on the right side of (9) match the three
attack classes. The first term is the probability of a Class
I attack, weighted by the entire portfolio value. The
second term is the sum across the G password-sharing
groups, each weighted by the value of the accounts in
that group. This highlights the drawback of password
re-use: a compromise is not isolated to one account, but
spreads to others. The third term is the sum of proba-
bility of individual account compromise weighted by the
account value.

5.2 Modeling Effort Allocation and Effec-
tiveness

To minimize an objective function that includes both loss
and effort, both must be mapped to the same dimen-
sion. For simplicity, we assign a monetary value E for
the time and effort—a mapping that is naturally user-
dependent. The cost of this management has different
components; preventing different attacks often requires
different mechanisms. Thus again, this is split based on
the class of attack the effort addresses:

E = EI +EII +EIII (11)

= EI +
G

∑
J=1

EII
J +

N

∑
i=1

EIII
i .

Under the assumption that effort is applied independently
across classes, from (11) we also have: ∂E/∂EI =

7



582 23rd USENIX Security Symposium USENIX Association

∂E/∂EII = ∂E/∂EIII = 1. EI is the cost of defensive
effort related to Class I attacks—including, e.g., the total
cost and time/effort associated with purchasing/running
anti-virus software, and all effort related to keeping a
computer malware-free. EII

J is the cost of effort involved
in combating Class II attacks on a group that share the
same password (brute force, social engineering, etc.).
Clearly, EG(N) given in (2), the cost of managing the
password portfolio, is a portion of EII . However, EII

also includes effort devoted to other Class II attacks, such
as phishing [33]. EIII relates to account-specific efforts,
which may include, e.g., managing one-time passwords
or second-factor authentication devices.

Assuming the three types of efforts can be controlled
independently, objective L+E is minimized when

∂ (L+E)
∂EI =

∂ (L+E)
∂EII =

∂ (L+E)
∂EIII = 0 (12)

which simplifies to:

∂L
∂EI =

∂L
∂EII =

∂L
∂EIII =−1. (13)

Substituting our expression for loss (9) into each of these
three equalities, the parade of equations concludes with:

(
N

∑
i=1

Li

)
∂PI

∂EI = −1 (14)

LJ ·
∂PJ

∂EJ
= −1,J = 1 · · ·G (15)

Li ·
∂PIII

i

∂EIII
i

= −1, i = 1 · · ·N. (16)

Note that we have used the fact that the effort devoted to
group J does not affect either the probability of loss for
group K (i.e., ∂PII

K /∂EII
J = 0 when K �= J) or the effort

devoted there (i.e., ∂EII
K /∂EII

J = 0 for K �= J).

5.3 Implications of the Model
Equations (14)-(16) help formalize the concept of opti-
mization of defensive investment (i.e., effort) related to
expected loss. We briefly discuss each further.

Class I equation. Eqn (14) relates to Class I attacks,
e.g., client-end malware like keyloggers. It isolates the
cost of avoiding such attacks from efforts directly related
to password management. The sum over all Li reflects
the definition: Class I attacks compromise all of a user’s
passwords—thus the loss may be quite large, especially
if the sum strongly dominates individual Li values. The
absence of individual Pi in (14) reflects that defensive ef-
fort (cost) related to reducing likelihood of Class I losses
is unrelated to costs associated with managing individual
passwords. This is notable as current password advice

to end-users is predominantly related to managing indi-
vidual passwords (e.g., choosing stronger, more complex
passwords, not re-using across accounts), none of which
is related to (14).

Common advice related to (14) includes (see Table 1):
keeping software up-to-date with patches; using AV
(anti-virus) protection; disabling unused applications and
interfaces; “hardening” the platform OS.

Regarding overall investment in client-end protection,
(14) informs us that effort expended defending Class I
attacks should be driven by: (i) the total value of all
accounts the user accesses from the client device—the
larger this value, the more worthwhile even small de-
fensive efforts which reduce the probability of losses;
and (ii) the degree to which incremental defensive ef-
fort reduces the probability of Class I attacks. Note that,
counter-intuitively, the effort optimally expended is not
driven by the absolute probability of Class I attacks—
since effort spent doesn’t necessarily reduce the proba-
bility of successful attack, even if Pi is large.

Class II equation. Note that (15) is a set of equations,
one for each password-sharing group J. LJ accumulates
losses over the accounts sharing a password, based on
the assumption that once a password is compromised, all
accounts sharing it may suffer. PJ sum probabilities over
all accounts in the group, for a similar reason.

Regarding overall investment in defenses against Class
II attacks, (15) informs us that the allocation of such ef-
fort should be driven by the following, considered now
for each group: (i) the total value of all accounts in the
shared-password group—the larger this value, the more
worthwhile defensive efforts which reduce the PJ ; and
(ii) the cumulative sum, across all groups accounts, of
the degree to which incremental defensive effort reduces
the probability of Class II attacks. As above for Class I,
the optimal effort expended is not driven by the absolute
probability of Class II attacks; the same is true for (16)
and Class III.

The similarity between (15) and (5) should be obvi-
ous: we again have a constraint involving a single partial
derivative. A few conclusions can be drawn that mirror
those drawn about the simpler model in Section 4. First,
all passwords should not be equally strong (that would
be wasteful, allocating excessive effort to low-value ac-
count groups at the expense of high-value ones). Sec-
ond, the rate of change of PJ with respect to effort should
be inversely proportional to LJ . This means that (unless
a user has excess capacity of effort they wish to spend,
and no higher-value groups to spend it on) groups with
LJ ≈ 0 should be very exposed and should have weak
passwords, since as 1/LJ → ∞, they should be at the
point where ∂PJ/∂EJ is extremely high; thus even tiny
invested effort would reduce PJ significantly, but spend-
ing effort there would be wasteful as we care not about

8
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PJ but PJ ·LJ . Effort is better spent on an account group
with high LJ (even if ∂PJ/∂EJ is very low). It makes no
sense to invest at all on accounts where LJ = 0, so long
as any other account has LJ > 0.

Toy example. To illustrate (15), suppose two bank ac-
counts sharing a common password have loss values 10
and 12. Assume that the first account is phished, and
thereafter an attacker tries the same password with ap-
propriate obtained userid on all banks. Assume further
that additional effort δE = 3 units (e.g., a stronger group
password) reduces individual account compromise prob-
abilities from 0.1 to 0.09 (first account) and from 0.05
to 0.03 (second). Then the initial expected loss (see (9))
of (10+ 12)(0.1+ 0.05) = 3.3 is reduced, by extra ef-
fort, to (10+12)(0.09+0.03) = 2.64. Thus extra effort
of 3 units reduced loss by only 0.66. This can also be
observed by looking at the differences (or derivatives, as
in (15)); the change is (10+ 12)(−0.01/3− 0.02/3) =
−0.22. And, in this example, as −0.22 is less negative
than −1, we have higher investment than optimal—the
cost of effort invested exceeds the reduction in loss it
provides. The equations thus confirm our expectations,
despite the “units of measure” carrying little meaning.

Class III equation. Finally, (16) reminds us that, re-
gardless of password policies, we must keep in mind and
beware reset mechanisms and alternative access paths.
Class III attacks involve only a single account and are un-
related to group sharing of passwords, being unrelated to
the actual choice of passwords. As noted in Table 1, users
get little advice related to Class III attacks (and hence
∂PIII

i /∂EIII
i ≈ 0). In the sequel, (16) is discussed little,

as risks associated with these attacks are largely imper-
vious to user effort, our present focus. Regarding overall
effort defending Class III attacks, (16) tells us that, con-
sidering now each account individually, the allocation of
such effort should depend on: (i) the account value; and
(ii) the degree to which new effort reduces the probability
of Class III attacks on it.

6 Account Grouping for Password Re-use

We saw in Section 3 that, without additional coping
mechanisms, re-use is unavoidable for large N. We now
show that it can help, even for smaller portfolios. Since
we seek to minimize L+E there are two components to
consider: changes in effort, and in expected loss. For
loss, we need consider only Class II attacks, as Class I
and III attacks are unaffected by re-use.

Consider the case of three accounts, two relatively
low-value (L1,L2), one high-value (L3) so L3/(L1 +
L2) = m >> 1. For simplicity assume further PII

1 ≈ PII
2

(we will drop superscripts II, as only Class II attacks
are relevant). Now compare Case A (using three unique
passwords) vs. Case B (re-use one password across low-

value accounts, with unique password for high-value).
For Case A, expected Class II losses are: P1L1 +P2L2 +
P3L3. For Case B, re-use increases the expected loss
over the first two accounts by ∆L = (P1 +P2)(L1 +L2)−
(P1L1 + P2L2); as P1 = P2 now, this is P1L2 + P2L1 =
P1(L1 + L2) > 0, but the user manages one fewer pass-
word. Assume the saved effort ∆E is used to strengthen
the high-value password5 reducing the expected loss re-
lated to the third account from P3L3 to (P3(1 − e))L3
where 0 < e < 1. So Case B is preferable (has lower
expected loss) provided the increase ∆L in expected loss
over the first two accounts is less than the expected de-
crease on the third, i.e., provided: P1(L1 +L2) < eP3L3,
or equivalently,

m > P1/(eP3) (17)

We expect (17) often holds—e.g., if m = 50 (a financial
account with value 100 times that of a free or low-value
subscription site) and P1 ≈ P3, then (17) is true for e >
1/50 = .02, i.e., a 2% or greater reduction in probability
of loss due to a strengthened password. The right side
of (17) becomes even smaller if P3 > P1, and if P3 < P1
then (17) still holds for a correspondingly larger e. Thus
certainly, re-use can be beneficial.

Of course, guessing is but one possible Class II at-
tack; some others also increase the consequences of re-
use. The risks of some, like phishing, can be reduced by
the user, while that of others, like server-side attacks, are
largely impervious to user effort (see 7.3).

6.1 Share among Accounts of Similar P/L

We now explore how to re-use passwords “properly”.
Based on the loss model, we give an optimal password
re-use strategy in the following sense: for a fixed num-
ber of passwords, and a given set of accounts (thus effort
is fixed), find how to group accounts to minimize total
expected loss.

As before, assume a user splits N accounts into G
groups each sharing a unique password. Per the second
term on the right of (9), the total Class II loss is:

LII =
G

∑
J=1

( ∑
i∈AJ

PII
i )( ∑

i∈AJ

Li) (18)

Is there an optimal way to partition this set of accounts
into shared-password groups AJ?

We first address the case of adding a new account to
an existing portfolio; i.e., we have G groups and must
decide to which group a new account is best added. From
(18), adding a new account with (Pi,Li) to group J, the
incremental loss is (with LJ ,PJ as in 5.1):

∆L = PiLJ +LiPJ +PiLi (19)
5If users do not do this, the case for re-use is lost; this is critical.
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From (2), the incremental effort is ∆E ≈ lgG. Since nei-
ther ∆E, nor the third term of ∆L depend on the group J,
the objective function, L+E, depends on the group as-
signment only through the first two terms of (19). Thus
the new account should be added to the group AJ mini-
mizing PiLJ +LiPJ . This brings an interesting insight: if
any group J exists such that PJ < PK and LJ < LK for all
G (i.e., the group has both a smaller total probability and
a smaller total loss than all other groups), then all new
accounts should be added to that group J, until one of
the two inequalities fails.

Thus without loss of generality, the remaining case is
in deciding between two groups AJ , AK when PJ < PK
and LJ > LK . Here, new account i should be assigned to
AJ (vs. AK) if and only if:

PiLJ +PJLi ≤ PiLK +PKLi (20)

This can be rewritten as

Li

Pi
≥ LJ −LK

PK −PJ
(21)

Fig.2 illustrates this constraint graphically. Recall that
a line of slope m in the PL plane is given by L = m ·
P+ c. Thus, (21) says that account i should be placed in
group AJ (vs. AK) if and only if point (Pi,Li) lies above
a line with slope (LJ −LK)/(PK −PJ) going through the
origin. Fig.2 shows the construction of a (solid red) line
with slope (LJ −LK)/(PK −PJ); it passes through points
(PK ,LJ), (PJ ,LK). The dashed red line is one of the same
slope, but through the origin.

In summary, the decision boundary between adjacent
groups AJ and AK is given by the line:

L =

(
LJ −LK

PK −PJ

)
·P. (22)

A necessary condition for optimality is the absence of
profitable single moves in the following sense: if a par-
titioning of accounts is optimal, the total loss cannot be
decreased by moving any account i from group AJ to any
other group AK . This can be expressed as

PiLJ∗ +PJ∗Li ≤ PiLK +PKLi for all K. (23)

Here (PK ,PJ∗) are the total loss probabilities, and
(LK ,LJ∗) the total losses, resp., for groups K and J∗

where J∗ denotes group J after removing account i. Sim-
ilar to (21), we can rewrite (23) as

Li

Pi
≥ LJ∗ −LK

PK −PJ∗
for all K. (24)

Consider the case when the number of accounts N be-
comes large, in which case Pi and Li are typically small
relative to P and L. We can then assume the total loss

LJ 

LK 

PJ PK Pi 

Li 

Figure 2: Optimal assignment of a new account (Pi,Li) be-
tween two groups J and K. If the new account falls above the
dashed red line, total loss will be smaller when the account is
assigned to group J.

and probability of each group does not change much by
adding or removing a single account. Thus PJ∗ ≈ PJ (i.e.,
PJ ≈ (PJ +Pi)).

We first show that given an optimal grouping, for any
groups J and K the decision boundary is bounded by:

LK

PK
≤ LJ −LK

PK −PJ
≤ LJ

PJ
. (25)

The decision boundary slope (Fig.2, dashed red line) thus
must be between that of the green and blue lines.

To show this, note that group K must contain at least
one account i with Li/Pi ≥ LK/PK (since all of the Li
and Pi are ≥ 0). Thus (21) holds, implying account i
belongs in group AJ rather than AK unless the righthand
inequality of (25) holds. The reverse argument applies to
show the lefthand inequality in (25).

Now (22) tells us that the decision boundaries are lines
through the origin; so each group has at most two neigh-
bors. Further, (25) when applied to every pair of “adja-
cent” groups in the PL plane, implies the same ordering
applies to not only the ratio of L and P differences as in
(22), but also the ratio of their values:

L1

P1
≥ L2

P2
≥ ·· · ≥ LG

PG
(26)

where, without loss of generality, the groups have been
ordered clockwise, according to their order in the PL
plane. In general for groups AJ , AK , recall that PJ < PK
implies LJ > LK . From this it follows that, given an or-
dering for the ratio, the same ordering must apply to the
expected loss and the reverse ordering for probability,
i.e.,

P1 ≤ ·· · ≤ PG and L1 ≥ ·· · ≥ LG. (27)

Thus ordering the account groups by decreasing total
loss, they have increasing total probability; due to the
possibility of equality, none of the orderings is strict.

10
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6.2 Groups Similarly Weighted by PL

Consider next how large and how disparate different
groups will be. We show that under certain conditions,
the groups formed have similar individual products PL.
With focus again on the outcome as G increases, from
Section 6.1 the groups obey an ordering in terms of P,
L, and L/P, and the decision line slope (dashed red line
in Fig.2) must be between the slopes of the two adja-
cent groups. Thus, assuming accounts exist around ev-
ery point in the PL plane, as G increases the adjacent
groups have increasingly similar slopes, with bounds
on the decision boundary slope per (25). Since, from
(27), the Li are non-increasing, and from (27), the Pi
are non-decreasing, we have LJ ≥ (LJ +LK)/2 ≥ LK and
PJ ≤ (PJ +PK)/2 ≤ PK . It follows from (25) that, as G
increases:

LJ −LK

PK −PJ
≈ (LJ +LK)/2

(PJ +PK)/2
. (28)

Re-arranging yields:

(LJ −LK)(PJ +PK)≈−(PJ −PK)(LJ +LK) (29)

Expanding products and eliminating common terms,

PJLJ ≈ PKLK (30)

Thus the product of probability and loss for adjacent
groups is about equal, increasingly so as the numbers of
groups G and accounts per group increase.

6.3 Pedagogical Illustration through Two
Generated Datasets

To illustrate, we generated two datasets, assigning ac-
counts to groups with an optimization program obeying
the “no profitable moves” rule. The simulation models
100 accounts, with randomly assigned Pi and Li, to be
divided in five groups (shown by different colors in the
figures). The program assigns accounts to a group one at
a time. After each assignment, it tests all possible sin-
gle moves and swaps, performing any profitable moves
before moving on to assign the next account. In the first
dataset, corresponding to Fig.3 and Table 2, Pi and Li are
independently drawn from uniform distributions.

In practice, the combination of (23), (25), and (30)
means that whenever passwords are to be re-used across
accounts, the optimum strategy is to do so across ac-
counts with similar P/L ratio, and add enough accounts
per group to achieve similar total PL products for each
group. The resulting account assignments split the PL
plane into slices (see Fig.3). This implies that most high-
value accounts end up in the same group (particularly if
they have low compromise probability), and most low-
value accounts end up in another group (particularly if
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Figure 3: Password grouping, under the “no profitable moves”
strategy. For this example, 100 accounts are uniformly placed
at random in the PL plane, and optimally assigned to one of 5
groups. Note the linear decision boundaries, corresponding to
P/L ranges (slices).

they have high compromise probability)—apparently in
line with what many users currently do. Table 2 reports
selected characteristics of the 5 password groups; note
the similar values of PL across groups, strictly decreas-
ing L, and strictly increasing P and P/L.

While the dataset used to produce Fig.3 allows visual-
ization of the linear decision boundaries, such a dataset
with independent distribution over P and L is not what
we would expect in practice. We thus generated a second
dataset (see Fig.4 and Table 3) where Li follows a power
law distribution and the expected value of Pi is inversely
proportional to (the square of) Li. While all observations
on the previous dataset still hold, further insights are ev-
ident. As on this dataset high-value accounts are less
likely to have high Pi, the high-value accounts end up
grouped together. Indeed, group 1 includes 53 accounts,
more than half of the set, while group 5 has only 4 ac-
counts (see Table 3).

The total resulting loss across all five groups is 7.94×
104. To see how this optimal assignment compares to a
random assignment, we computed total loss on the same
dataset on randomly assigning accounts to the 5 groups
(in 100,000 Monte Carlo trials), finding an average PL of
1.16× 108 (std deviation 0.24× 108). Thus the optimal
loss was 1500 times smaller than by random assignment,
and 5 standard deviations below the mean.

We emphasize that both datasets are modelled exam-
ples to illustrate principles. For other datasets, the gen-
eral findings will hold, but actual construction of groups
may significantly differ depending on the data.
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Group # P L PL P/L max P/L min P/L Group Size
1 1.88e+01 3.96e+05 7.44e+06 4.75e-05 6.09e-04 1.80e-05 28
2 1.14e+01 8.08e+05 9.17e+06 1.40e-05 1.77e-05 1.09e-05 16
3 9.35e+00 9.71e+05 9.08e+06 9.63e-06 1.08e-05 8.93e-06 13
4 7.94e+00 1.14e+06 9.06e+06 6.96e-06 8.72e-06 4.79e-06 16
5 4.91e+00 1.82e+06 8.93e+06 2.70e-06 4.73e-06 3.22e-07 27

Table 2: Characteristics of each group in the grouping corresponding to Figure 3.

Group # P L PL P/L max P/L min P/L Group Size
1 2.29e+01 3.24e+02 7.41e+03 7.06e-02 9.46e+02 1.44e-03 53
2 6.70e-01 1.76e+04 1.18e+04 3.80e-05 1.24e-03 4.45e-06 24
3 6.42e-02 2.40e+05 1.54e+04 2.68e-07 1.66e-06 3.01e-08 11
4 7.04e-03 2.45e+06 1.72e+04 2.88e-09 1.66e-08 4.09e-10 8
5 1.26e-03 2.19e+07 2.77e+04 5.76e-11 2.80e-10 9.29e-12 4

Table 3: Characteristics of each group in the grouping corresponding to Figure 4.
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Figure 4: Password grouping, second dataset (Pi’s drawn from
a distribution with mean inversely proportional to L2

i ). Due to
the non-linear axis, the decision boundaries are no longer lin-
ear. The number of accounts in each group differs from Fig.3.

7 Special Cases

Next, special cases illustrate how the model addresses
additional assumptions and circumstances.

7.1 Case 1:
Unknown Pi (Modeled as Equal)

The model highlights two variables with large effect on
the problem: loss and compromise probability. Most
users could give some estimate of loss that would re-
sult from compromise of a specified account—perhaps
not entirely accurate, but representative of expected loss,
even if only in relative terms. In contrast, user estimates
of probabilities would likely be far worse, perhaps with-

out sense of even relative Pi’s. We thus consider here
what results from the optimization model on assuming
equal probabilities p = Pi for all i. Slice-based partition-
ing still applies, as does the ordering—the latter now eas-
ier with all accounts on a vertical line in the PiLi plane.
The main question is how many accounts will each group
have, and how does that relate to the Li of accounts in
each group.

If group J has NJ accounts, write PJ = pNJ . Then (30)
yields (pNJ)(LJ)≈ (pNK)(LK), or, equivalently:

NJ

NK
≈
√

LK/NK

LJ/NJ
. (31)

Thus groups with high-value accounts will have fewer
accounts; optimally, the number of accounts NJ in a
group J varies inversely with the square root of the av-
erage loss LJ/NJ in that group.

To illustrate, we re-run the optimization process on the
second dataset (see Section 6.3), but now assuming igno-
rance of individual probabilities, modeling equal Pi. The
principles discussed earlier now result in the accounts be-
ing split by strict ordering of losses. The number of ac-
counts in the 5 groups is now (82, 11 4, 2, 1), vs. (53, 24,
11, 8, 4) in Table 3. As might be expected, total losses
increase to 1.24× 106, vs. 7.94× 104 for optimization
using known probabilities. This is 16× higher than the
optimum, but still 93× smaller than the average loss from
random assignment (see Section 6.3).

7.2 Case 2:
Group Passwords of Unequal Strength

We showed in Section 5.3 that passwords should not have
the same strength. We now show how the assumption
made in Section 6 (that Pi did not change much when we
moved account i from password group J to group K) can
be relaxed, so that there is no incompatibility. Here we

12
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briefly analyze the impact, on optimization results, when
Pi is password-dependent and groups have passwords of
different strength. Denote the (now group-dependent)
compromise probabilities Pi∈J , Pi∈K . Then by the argu-
ment used in (20), account i should be assigned to AJ if
and only if

Pi∈JLJ +PJLi ≤ Pi∈KLK +PKLi. (32)

We again seek a bounding condition on Li/Pi, but now
using what group-neutral Pi value? We use the geometric
average Pi =

√
Pi∈JPi∈K and define the squareroot ratio

r =
√

Pi∈J/Pi∈K . Then (32) yields

Li

Pi
≥ rLJ − (1/r)LK

PK −PJ
. (33)

Note r>1 if group J has password weaker than K. Thus
with respect to group assignment, a weaker group J pass-
word has an effect equivalent to scaling up group losses
LJ , making it harder to satisfy the condition for assign-
ment to group J. Other results regarding the slicing, P
and L ordering, and so on remain as before.

7.3 Case 3:
Unequal Server Break-in Probabilities

Finally, consider the effects of different levels of secu-
rity at the server. The probability of server break-in is
largely outside users’ control, but the consequences are
not: a user may decide to share a password across ac-
counts, only to have one of the servers leak her password,
compromising all accounts sharing it. While the previous
analysis already takes into consideration server break-in
(as a Class II attack), we now analyze how two sites with
different server break-in probabilities will affect the op-
timum allocation.

Consider two accounts i and j, with same values
Li = L j but different probabilities, Pi = Pj + δi, where
δi is the added break-in probability due to a site i server
poorly managed compared to j. Upon assigning account
i (poorly managed) to a group, the added probability
δi will imply a higher ratio Pi/Li, so the account will
(likely) be grouped with accounts with higher P/L, typi-
cally lower-value accounts. Furthermore, as discussed in
Section 5.3, these groups may have a weaker password.
Thus, for a server with higher break-in probability, opti-
mum password grouping seems to push towards group-
ing the related account with lower-value accounts.

Related to this, our criteria for optimality depend on
how loss probabilities change with respect to effort, but
not on the magnitudes of the probabilities themselves.
Consider the possible case of a threat unaddressable by
user effort, swamping all others. Let Pi = Pi,u + Pi,u,
where dPi,u/dE = 0. If Pi,u > 103Pi,u, it may be fruitless

to spend substantial user effort if such expenditure af-
fects only the third decimal place in Pi. Nonetheless, this
is what our criterion for optimality suggests. System-
side or back-end (server) risks may swamp risks under
user control; we simply do not know.

7.4 Case 4: Coping Alternatives including
Password Managers

Despite violating long-standing password guidance,
writing passwords down is, if properly done, increas-
ingly accepted as a coping mechanism. Other strategies
to cope with the human impossibility of using strong
passwords everywhere without re-use include single-
sign-on, use of email-based password reset mechanisms,
and password managers. Such “password concentra-
tors”, a form of password re-use, allow access to many
accounts from one master access point, with account
passwords stored either locally or in the cloud. While
not explored in detail here, each can be analyzed in our
framework; we illustrate for password managers.

The main threats (recall Table 1) when re-use is em-
ployed are client-side malware (all accounts fall), and
various Class II attacks such as guessing, phishing, sniff-
ing wireless links and server breaches (all accounts in
the same sharing group fall). We must modify this pic-
ture slightly if a password manager is used. For Case
A (password store on a user’s local machine), the main
risk is still Class I attacks like client-side malware. There
is a decreased risk of phishing presumably, as users re-
member fewer individual passwords; similarly for guess-
ing attacks, as arbitrarily strong passwords now require
no user effort, and the master password that unlocks the
store resides on the client. A server-side breach com-
promises only a single account. Thus, a password man-
ager with client-side store approximates our model with
G = N. The cost, of course, is that portability across dif-
ferent client devices is lost as the passwords (if they are
unique and random) are effectively anchored to the client
on which they are stored.

Consider next (Case B) a cloud-based store, protected
by a single password. Phishing and guessing attacks
against any system-assigned secrets at the end-servers
remain unchanged. Now however, additional guessing,
phishing and server breach attacks exist against the sin-
gle master password which can result in the compromise
of all accounts. Class I attacks (e.g. due to malware on
the client) are unchanged. A password manager with a
password-protected cloud-based store approximates our
system with G = 1. It trades one set of risks for another:
the use of random and unique passwords in such a sys-
tem reduces both the risks related to any single manager-
chosen password being stolen and those related to re-use
in the face of server compromise. However, it introduces

13
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severe new risks: if the master password is guessed or
used on any malware-infected client, or the cloud store is
compromised, then all credentials are lost.

8 Discussion and Implications

Recapping, recall first the task of end-users: to choose
passwords random and strong (entropy lgS bits) without
re-use. The effort to manage N such passwords without
re-use is modelled as N lgS + lg(N!); as portfolio size
increases, this overwhelms user capability.

M1: Remembering random and unique passwords is in-
feasible for other than very small portfolios.

Users coping strategies include weak passwords and re-
use. There is a large disconnect: what standard advice
mandates as essential turns out to be impossible. We sug-
gest this is due to a failure to explicitly include user effort
in the objective function. Seeking to minimize loss alone
leads to unrealistic effort-maximizing solutions. While
some recent work [5, 4, 29] criticizes the practice of ig-
noring the burden password advice places on users, it has
not to our knowledge been included directly in the objec-
tive function. We make a related observation:

M2: While advice typically minimizes L over a single or
small set of sites, user best interest is to minimize
L+E over an entire portfolio.

The diversity of attacks complicates our search for an
optimum effort allocation. Short-cuts are tempting; we
can minimize L+E while ignoring cross-account attacks
(as in Section 4), or consider all attack types and min-
imize L alone. The first scopes the problem too nar-
rowly, the second leads to the unrealistic demand to in-
vest unbounded effort. While both yield “solutions” that
are simpler than the model in Section 5, our work sug-
gests that realistic analysis must address a realistic attack
model and a realistic objective function.

M3: Realistic analysis of password effort allocation re-
quires incorporating attack vectors affecting 1) all
accounts; 2) accounts sharing a password; and 3)
single accounts.

Our segmentation of the space into Class I, II and III
attacks yields interesting insights. Minimizing L + E
over a portfolio implies user effort be spent unequally
across accounts. As can be seen from (15), all passwords
should not be equally strong; equal spending overspends
on low-value, and underspends on high-value accounts
(or account groups). Recall that, from (27), there is an
ordering of the group values LJ ; the largest may be many
times greater than the smallest (L1 � LG). Any group
for which LJ ≈ 0 should have ∂PJ/∂EJ high (meaning

a weak password). If we again invoke the reciprocal re-
lation between PJ and EJ suggested in Section 4, we’d
again find E1 =

√
L1/LG ·EG. Thus a 104× value differ-

ence between the most and least valuable groups would
imply a 100× difference in invested effort. In this sense,
not only are weak passwords understandable and allow-
able, but their absence would be sub-optimal:

M4: A password portfolio strategy that rules out weak
passwords is sub-optimal.

Next, while sharing a password across a group of ac-
counts can amplify consequences if it is compromised,
we find it is sub-optimal not to re-use. First, (1) indicates
re-use becomes unavoidable when N is large. Second,
(2) and Fig.1 demonstrate the tradeoff involved even if
N is small enough that re-use is theoretically avoidable;
i.e., re-use increases the probability of loss from certain
attacks, but also reduces effort. The question then is not
whether re-use is good or bad, but whether the effort re-
quired to avoid re-use can be better spent on other attack
types. Section 6 gives an example.

M5: A password portfolio strategy that rules out pass-
word re-use is sub-optimal.

The optimal strategy places accounts with similar P/L
ratio in groups sharing a password. Enough accounts
are added to each group to achieve similar PL products
per group. Most high-value accounts (particularly if they
have low Pi) end up in the same group(s), and most low-
value accounts (particularly if they have high Pi) in an-
other group(s).

M6: Optimal password grouping tends to (i) group to-
gether accounts with high value and low probability
of compromise; and (ii) group together accounts of
low value and high compromise probability.

The above observation lines up well with anecdotal ac-
counts of what many users actually do. Our findings
also agree with the informal claim [29], that users’ actual
effort allocation represents an efficient operating point.
Thus, actual user password-related behavior is closer to
optimal than current expert advice.

Password managers (cf. Section 7.4) may improve us-
ability and reduce some risks, but remain vulnerable to
Class I attacks (e.g., client-side malware). Managers that
store passwords only on the client improve resistance to
Class II attacks, since they can choose better passwords
and eliminate re-use. However, in storing only on the
client this gives up one of the major advantages of pass-
words, i.e. portability. Managers that store passwords
in the cloud remove this restriction, but introduce a new
system-wide attack: as before if the client is infected
with malware all accounts are compromised, but now this

14
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happens also if the cloud store is breached or the master
password is stolen or guessed. Thus, cloud-storage man-
agers trade one type of vulnerability for another.

M7: Password managers using client-only storage allow
a portfolio with random passwords and no re-use,
but lose cross-client portability. However, if cloud
storage is used it resembles a portfolio with only
one group, since a new attack on either the master
password or the store itself threatens all accounts.

Another disconnect stems from many password-
related threats being unrelated to the standard advice on
maintaining a portfolio: Class I attacks, server breaches
and Class III attacks are not reduced by password ad-
vice staples such as A1 and A2. Since successful Class
I attacks sum the losses across all accounts, the advice
to protect against them is disappointingly vague, while
advice to protect against the less consequential Class II
attacks is far more detailed and effort-consuming. It ap-
pears that users are given the advice that is most eas-
ily given, rather than the advice that would have greatest
impact. Comparing (14) and (15) shows that at optimal-
ity the marginal return on effort spent on Class I attacks
should be lower than that for any Class II group (e.g.,
effort should not be wasted strenghtening passwords for
a group with low LJ if any effective Class I measure re-
mains undone). Greater focus is needed to explore which
advice, for example from Table 1, provides protection
against which attack vectors:

M8: We lack metrics for the cost to end-users, of follow-
ing standard advice, and the effectiveness of follow-
ing it on reducing overall expected loss.

An important outcome of our review is that, when
minimizing L+E, optimality depends on the losses Li,
and on how the probability of loss varies with respect to
effort ∂Pi/∂Ei. In contrast if one minimizes L, the so-
lution depends on neither. Without better knowledge of
real-world values for L, and especially ∂Pi/∂Ei, we are
unlikely to achieve optimal resource allocation in prac-
tice. Conventional user behavior appears to be based al-
most exclusively on L, which users may be able to es-
timate; ∂Pi/∂Ei values are almost entirely overlooked.
This points to an important research direction: while re-
cent work has greatly improved understanding of pass-
word guessing resistance [8], we are almost entirely ig-
norant on how this evolves with effort.

M9: Without better estimates of how loss probability
changes with effort, we should not expect to be able
to allocate effort (even close to) optimally.

Finally, can concrete advice for users be distilled from
our findings? For example, absent knowing how Pi

change as a function of various types of effort, we lack
a prescriptive way to determine the optimal number of
groups G. Nonetheless, the knee of the curves in Fig.1,
and what we know of user behavior [24, 21, 14] points to
the number of groups being below 10 if no other aids
are used. The values of loss probabilities Pi are en-
tirely unknown; expected loss values Li, or at least rel-
ative importance, are more easily estimated or ordered.
Thus the variables needed to find an optimal grouping
are (and are likely to remain) unavailable to most users.
We might however simplify, e.g., assuming all Pi equal,
or that Pi values differ by an order of magnitude between
heuristically-defined categories (e.g., banks, merchants,
throwaway accounts, etc.).

While the optimal strategy involves selective re-use
and weaker passwords, benefits accrue only if the effort
saved is re-deployed elsewhere for better returns. Users
must not arbitrarily weaken and re-use passwords. Thus
empirical studies are needed to determine if our guide-
lines can be followed by users.

We hesitate to give definitive advice. First, this re-
quires more insight than our current understanding of LJ
and ∂PJ/∂EJ values allows. Second, we are reminded
how far bad assumptions (e.g., minimizing L vs. L+E)
can lead us astray. Consider, however, a strategy that
chooses G in the range 5 to 10, and assigns accounts
to groups by value so that the number of accounts in a
group is as in Section 7.1. Given the uncertainty about
unknown parameters, a strategy like this may be the best
we have—and may even be optimal.

9 Concluding Remarks
We have explored the task of managing a portfolio of
passwords. A starting point for our analysis was the
critical observation that to be realistic, efficient password
management should consider a realistic suite of attacks
and minimize the sum of expected loss and user effort.
Our model yields detailed results; it indicates that any
strategy that rules out weak passwords or re-use will be
sub-optimal. We have shown that optimality requires
forming groups whose accounts in sum have similar
PL values (P = ∑Pi,L = ∑Li). This suggests simple
guidelines, such as: if Pi is similar across accounts, then
optimal grouping will put high-value accounts in smaller
(or singleton) groups, and low-value accounts in larger
groups. Our findings are consistent with certain user
behaviors (e.g., [47]) that contradict accepted advice,
offering to justify the behavior and giving evidence for
the model’s utility. We find that optimally, marginal
return on effort is inversely proportional to account
values. We note that while password re-use must be
part of an optimal portfolio strategy, it is no panacea.
Far from optimal outcomes will result if accounts are
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grouped arbitrarily.
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Abstract

To discourage the creation of predictable passwords, vul-
nerable to guessing attacks, we present Telepathwords.
As a user creates a password, Telepathwords makes real-
time predictions for the next character that user will type.
While the concept is simple, making accurate predictions
requires efficient algorithms to model users’ behavior
and to employ already-typed characters to predict subse-
quent ones. We first made the Telepathwords technology
available to the public in late 2013 and have since served
hundreds of thousands of user sessions.

We ran a human-subjects experiment to compare pass-
word policies that use Telepathwords to those that rely
on composition rules, comparing participants’ passwords
using two different password-evaluation algorithms. We
found that participants create far fewer weak passwords
using the Telepathwords-based policies than policies
based only on character composition. Participants using
Telepathwords were also more likely to report that the
password feedback was helpful.

1 Introduction
Users are often advised or required to choose passwords
that comply with certain policies. Passwords must be at
least eight characters long. They must contain charac-
ters from at least three out of four character categories
(uppercase characters, lowercase characters, digits, and
symbols). The password should not be based on a dictio-
nary word.

While rules for composing passwords often feel arbi-
trary and capricious, they respond to a problem of gen-
uine concern: left to their own devices, a significant frac-
tion of users will choose common passwords that attack-
ers may guess quickly. Composition rules were created
decades ago under the assumption that minimum-length
and character-set requirements would result in passwords
that were harder for attackers to guess. It is only in the

past few years that researchers have begun to test this hy-
pothesis (and found the evidence to support it far weaker
than assumed).

Indeed, password-composition rules feel arbitrary and
capricious because, quite simply, they often are. Users
can hardly be blamed if they question the credibility of
rules that reward those who choose the common pass-
word P@ssw0rd over those who enter a long randomly
generated string restricted to lowercase letters (e.g., to
facilitate typing on a touch-screen keyboard) or of pass-
word meters that offer irreconcilably different quality es-
timates for the same string [4]. If we are to prevent users
from selecting weak passwords, we must first improve
the technology used to identify weak choices, but also
overcome any skepticism caused the failure to clearly ex-
plain the need for the restrictions being imposed.

Our proposal, Telepathwords, is different from previ-
ous weak-password prevention schemes in that, as users
enter their proposed password, it shows its best predic-
tions for the next character they will type in real time (see
Figure 1). Telepathwords makes these predictions us-
ing knowledge of common behaviors users exhibit when
choosing passwords, common strings they frequently use
to construct passwords, and a general model of the user’s
language. Telepathwords presents users who enter weak
passwords with immediate and compelling evidence that
their intended password may be easier to guess than they
had previously assumed: a display of the characters they
are about to type.

We describe the design, implementation, human-
subjects testing, public deployment, and user response
to the Telepathwords system. The results of our se-
curity testing are particularly compelling. In a 2,560-
person Mechanical Turk study, passwords created us-
ing Telepathwords significantly outperformed (using
both entropy and guessing number metrics) those cre-
ated under length and character composition policies,
while remaining as memorable as passwords chosen
with the least stringent requirement (an eight-character
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Figure 1: The Telepathwords system, shown here as deployed in a publicly available password-weakness checker,
attempts to guess the next character of a users’ password before he or she types it.

minimum-length requirement). They matched or slightly
beat passwords created under a policy that checked
against a large cracking-dictionary, while at the same
time having more users state that they found the visual
feedback useful. The improvements in guessing resis-
tance were most pronounced for the most vulnerable part
of the distribution. That is, the weakest passwords cre-
ated using Telepathwords require orders of magnitude
more guesses than the weakest passwords created under
policies based on composition and length. This suggests
that Telepathwords can offer meaningful improvement in
defending against online guessing attacks; an improve-
ment that we hope can rebuild users’ confidence that the
constraints being imposed on them are indeed necessary.

2 Design and Implementation
We begin our discussion of the Telepathwords system by
describing the intended user experience, then discuss the
overall architecture and prediction algorithms required to
implement that experience. We also describe the feed-
back mechanisms we included to observe usage of the
system, as well as the limitations inherent to our imple-
mentation.

2.1 User Experience
Telepathwords enhances the text field into which users
type new passwords with two additional elements: a pre-
diction display and a feedback bar. Figure 1 illustrates
both, with the prediction display just to the right of the
typed password (P@ ) and the feedback bar immedi-
ately above it.

2.1.1 Prediction display
The prediction display shows the three characters (or
fewer) that Telepathwords predicts the user is most likely
to type next. As users are most likely to be familiar with
prediction from autocomplete, where the predictions rep-
resent a desirable mechanism to save labor, we needed to

emphasize that the characters telepathwords predict are
undesirable, as these choices are least likely to make the
password harder for attackers to guess. We thus display
predicted characters in block uppercase within the prohi-
bition symbol, or ‘universal no symbol’: a red circle with
a slash through it. We anticipated the symbol would be
familiar to users because it is standardized (ISO 3864-1,
though we did not strive to achieve full compliance in our
use), widely used in road signs, and pervasive in popular
culture such as t-shirts and movies.

To the right of the character we present a short expla-
nation of why that character was predicted. If we pre-
dicted the character because we detected the user typing
a repeating sequence of characters, we display ‘repeat-
ing’ followed by the character sequence being repeated.
If it is the next character of a common string, we present
the words ‘as in’ followed by that string, with the next
character boldfaced and underlined. For example, in Fig-
ure 1, the input of “P@$$” yields predictions: “W as in
password,” “I as in passion,” and “P as in passport.”

2.1.2 Feedback bar

In the feedback bar above the password-entry field, we
show either a checkmark or crossout symbol aligned di-
rectly above each of the characters already typed. A
checkmark means the character was not predicted by
Telepathwords, whereas a crossout indicates it was one
of the characters guessed. We also display a crossout if
the user types a common substitute for one of the pre-
dicted characters, such as an @ to avoid using an a. To
the right of these symbols we provide guidance as to how
many more hard-to-guess characters are recommended,
or would be required if Telepathwords were deployed
with a particular minimum hard-to-guess character re-
quirement. For example, Figure 1 shows one check and
three crossouts above the user input “P@$$” since each
of the last three characters was predicted based on the
characters that came before it.

2
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2.1.3 Special cases

In many applications, password-creation fields are con-
figured to hide the keys typed, replacing them with a
generic symbol (usually a solid circle or an asterisk).
When the password field is configured to hide the char-
acters that have been typed, we also replace those char-
acters with a solid circle in our prediction string. The
predicted characters are still shown.

When users type a common substitute for a predicted
character, such as a $ when an s is predicted, we display
the following message customized for the replacement:

Replacing a predictable letter with a key that looks
similar?

Attackers also know to substitute for s, so
it does little to improve your password.

We faced a particularly delicate conundrum in how to
handle predictions that completed profanities. An exam-
ination of the Rockyou leaked dataset reveals that pro-
fanities are not uncommon choices. Unlike applications
of prediction in search queries, we could not simply re-
move these predictions, as this would lead users to be-
lieve falsely that profane passwords were less weak than
they actually are. On the other hand, we could not dis-
play profanities to users who might have no intent of typ-
ing them, and who might be minors. We decided that
providing good security advice mandated that we predict
the next character, but we replace the rest of the profane
string with a string of solid circles in the explanation
of the prediction. We also display a pop-up message if
users complete a profanity, alerting them to the fact that
profanities are common in passwords and thus quite pre-
dictable. In crafting this message, we decided to embrace
the inevitability that some users might find humor in our
attempts to hide profanity.

Do you email your mother with that keyboard?

Many people include profanity in their pass-
words. Attackers know this. If you also use
profanity, you’ll just make your password easier for
attackers to guess.

2.2 Architecture
Telepathwords employs a client-server architecture, us-
ing JavaScript to present a front-end user interface us-
ing predictions asynchronously queried from a prediction
server. The constraints of client-side prediction would
not have allowed our prediction engine to use a 1.5GB
language corpus (see Section 2.3.1), which we hope to
grow in order to increase prediction quality and recog-
nize additional languages.

ResultSet
string passwordPrefix
Prediction[] predictions

Prediction
char charPredicted
Score likelihoodScore
Reason[] reasonsForPrediction

TrieNode
Score likelihoodScore
{char→TrieNode} children

WindowOfTrieNodes
WindowOfTrieNodes parent
string queryStr
Score penalty
{uint→TrieNode} nodeForEachSuffixLength

Figure 2: When the client queries the server with a pass-
word prefix, the Telepathwords prediction engine gener-
ates a result set containing a series of predictions, each
of which may have been predicted based on a number of
reasons (e.g., a dictionary match or a keyboard pattern).

Other weak-password-prevention systems, such as
common password meters, eschew server-side predic-
tions. One justification is security. However, the current
architecture of the web necessitates that whatever pass-
word the user eventually chooses will inevitably be sent
to the website’s servers in a plaintext-decryptable format.
To prevent the size of a prediction from revealing the pre-
fix sent to the server, we use a custom format to compress
and then pad responses to a common length. We route all
client-server communications over HTTPS.

A second reason to eschew server-side predictions is
performance. However, network latencies are relatively
small in comparison to users’ expectations of response
time, and can be made smaller by moving servers closer
to users and pre-fetching likely queries, as demonstrated
by the speed of auto-complete in web search. For exam-
ple, though our deployment used servers in a single ge-
ographic location to serve users worldwide, the median
latency between key-up and the rendering of a prediction
at the client was a fifth of a second (see Section 3).

One additional security risk we decided to take was to
maintain a cache of previously queried prefixes on the
server, whereas we would otherwise be able to delete all
evidence of a past request after serving a prediction. This
greatly increases the likelihood that when the nth char-
acter of a password arrives, the server will already have
done the work to process the first n−1 characters.

2.3 Prediction algorithms

When performing a prediction, we create a result set data
structure and populate it with a set of predictions, as il-
lustrated in Figure 2. Each prediction object represents a
possible next character of the password and a score that
indicates its estimated likelihood. There may be more
than one reason to predict a character, and so each pre-
diction object contains a set of reason objects. We pop-
ulate the result set by spawning a set of predictors, algo-
rithms which identify reasons for predicting a character

3
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TrieNode
Score likelihoodScore
{char→TrieNode} children

(a) Node data structure
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(b) A section of the trie

p

a r o

s r g

…

…

…

(c) Descent to node par.

Figure 3: The trie data structure maps strings to likeli-
hood scores. Nodes (circles) with higher scores appear
to the left of lower-scoring siblings. Subfigure (c) illus-
trates a walk to the node storing the likelihood score for
string par.

will be typed next, add that reason to the prediction ob-
ject for that character, and increase the predictions score
as necessary.

When all the predictors have run, we rank the pre-
dictions and reasons. Before sending predictions to the
client, we discard predictions and reasons that are not
ranked high enough to be displayed to the user. We cache
the result set so that we can use it again for future queries
for this string, or extensions of this string.

Telepathwords currently contains predictors for com-
mon character sequences, keyboard movements, re-
peated strings, and interleaved strings.

2.3.1 Common character sequences

This predictor detects known prefixes of common char-
acter sequences from language models and databases of
common passwords, and predicts the remaining suffix.
The expected likelihood of the prediction increases with
the length and frequency with which the prefix was ob-
served when the model was built.

To search quickly through a large prefix of known
strings and their frequencies, we use the space-efficient
completion trie of Hsu and Ottaviano [10], as illustrated
in Figure 3. The trie used by Telepathwords contains
a 1.5GB English-language model derived from browser
search queries and a set of passwords that occurred five
times or more in the RockYou dataset. We removed all
capitalization and spaces from the language model be-
fore building the trie.

Completion tries are already used for auto-completion
and word-breaking applications, and these applications
require algorithms that adapt to common misspellings
and typos. For example, existing systems will walk a

a

b

c

b

c ca

a

b b

parentparent

WindowOfTrieNodes
WindowOfTrieNodes parent
Score penalty
TrieNode[] nodeForEachSuffix

Figure 4: Telepathwords uses a sliding window to walk
the trie for each suffix of the queried string. If the query
string is a single character (e.g., a), the sliding window
will contain only one node (left). A two-character string
(ab) will a sliding window that walks the trie to two dif-
ferent nodes (center). The query string abc yields a win-
dow that covers the suffixes c, bc, and the full suffix abc
(right). Adding one character to the query causes the
pointer to each node to descend to the child node for that
added character, and creates a new node in the window
by stepping from the root node to the added character.
Telepathwords may add a penalty to the window when
the path down the trie is different from the actual string
queried, such as if a window is created to represent a
transposition.

completion trie reversing the two characters at the suffix,
applying a penalty to account for the fact that transposi-
tions occur with much lower frequency than correctly se-
quenced characters. If the transposed prefix occurs with
sufficient frequency to overcome the penalty, the system
may continue to track that transposition and make pre-
dictions based on it.

Since Telepathwords uses tries to look for common
strings that may begin anywhere in the query (e.g.,
passw in the query notapassword), we maintain a win-
dow of completion-trie nodes for each possible starting
position, as illustrated in Figure 4. We track the trie
node for each possible suffix of the query. In addition,
we maintain two special windows: one that walks the
trie only when letters are typed and one that does so
only when digits are typed. These special windows help
to detect words broken up by non-alphabetic characters
(e.g., pa1234ssword) or numbers broken up by non-
digits (e.g., 12x34y678z9).

In contrast to other applications of tries, users choose
passwords with the deliberate goal of creating a string
that is hard to predict, leaving many more anomalies to
detect and work around than if divergences from known
strings occurred only by accident. We thus maintained a
large list of windows for each queried password prefix so
as to preserve nodes that might not immediately appear

4
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Figure 5: The common character sequence predictor
walks the ancestry chain to see if a completion that was
broken by an unpredicted character might still provide
the best guess for what happens next. For pa**w, the
third ancestor (pa) predicted the w in the fifth position,
and since there are no other likely predictions, predic-
tions using this ancestor reach the top.

valuable but might prove predictive as more characters
arrive.

We also built a table mapping common character sub-
stitutions, such as 3 for e, for s, and 0 for o, that are of-
ten provided in password-creation guidance (in our view,
misguidedly). If we detect a character that is often substi-
tute for another, we create a window using the character
we believe was substituted for and assign that window an
appropriate penalty.

To detect when users type distractor characters in
place of predicted characters, then carry on with the pre-
dicted string, we walk up the ancestry path of the current
prefix to look for predictions that may have been aban-
doned due to such behavior. For example, if the user has
typed the prefix pa**w, the algorithm will walk up from
pa**w to the ancestor prefix pa, determine that the pre-
diction of password for this prefix would have correctly
predicted the w in the fifth position, and may thus revive
that prediction to predict a o in the next position. See
Figure 5. Similarly, we use the standard error-correction
technique of detecting when a user has skipped a key and
typed the second character predicted in place of the next
character predicted.

The analysis of each password prefix of length n be-
gins with the analysis of its immediate prefix of length
n− 1. Thus, the cost of analysis grows at least linearly
with the length of the password. We maintain a main-
memory cache of recently analyzed query strings so that
results can be re-used when the suffixes of a previously-
queried string are queried.

Even under heavy load, the cache is small in compar-
ison to the 1.5GB language corpus. In our deployment,
the language corpus is stored in main memory. During
development, we found performance to be sufficiently
fast using a solid state drive (SSD) to store the corpus
and only mapping pages into main memory on demand.
In our deployment, we prefetched the full corpus into
DRAM as our servers did not have SSDs.

Figure 6: The password 3edc4, composed of vertical
columns on a QWERTY keyboard (3edc, 4rfv, etc.),
triggers the keyboard-movement predictor yielding r

as the top guess for the next character. The second pre-
diction guesses that the 4 is used in place of for in
forever, and the third prediction guesses that ecuador
is interleaved into every other character of the password.

Figure 7: The start of a repeating string triggers the rep-
etition predictor.

2.3.2 Keyboard movements

We developed this predictor to detect passwords com-
posed of a sequence of characters typed by moving one’s
finger over a sequence of adjacent keys.

We built a keyboard model that maps characters to x
and y coordinates that represent the column and row of
the key used to type each character on a keyboard. We
represent an n-character password prefix as a sequence
of n key positions, then generate a series of n−1 move-
ments from the first to the last character. We then work
backward from the end of the prefix to count the num-
ber of consecutive moves that are to adjacent keys and,
of those, the number of consecutive moves in the same
direction. We count movements that wrap from one end
of the keyboard (e.g., from top to bottom) as adjacent.

We have currently mapped only QWERTY keyboards,
but the implementation is generalized to support any
mapping of characters to coordinates.

2.3.3 Repeated strings

This predictor looks for instances of repeated strings in
password prefixes. For each possible suffix of length n, it
looks for repeated sequences of the suffix. The longer the
repeated sequence, the stronger the prediction. If the rep-
etitions are adjacent to each other (xyabcabcabc), then
the predictor guesses the next character in the repeated
sequence (or the first if the end has been reached). If the
suffix and its copy are not adjacent, then the early copy
and the intervening string are assumed to be in the pro-
cess of repeating. For example, in abcdefabc the suffix
abc is repeated twice and the predictor guesses that def
will come next.

5
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2.3.4 Interleaved strings

This predictor looks for passwords composed of two
predictable strings interleaved with each other, such as
p*a*s*s*w*o*r*d or ppaasswwoorrdd. It splits pass-
words to separate the odd- and even-indexed characters
and runs the other predictors (with interleaving-detection
turned off) on the substrings. If, for example, the next
character is at an even-index, it uses the even-index sub-
string to make the prediction, and also examines the pre-
dictability of the odd-index substring in evaluating the
likelihood that the query actually represents two inter-
leaved strings.

2.4 Telemetry
Our public deployment of Telepathwords maintains a
limited log of user behaviors, including page loading, re-
sizing, key-up events, and prediction rendering events.
Unless users explicitly opt-in to ‘donate’ their keystrokes
to science, we record the timing of keyup events, the
number of keys added or deleted, and the position of the
change, but not the actual keys typed. We also record
whether characters currently in the password field were
among those predicted, recording data similar to that
which is displayed in the feedback bar.

While we store logs online, the server is unable to read
their contents. At the start of a user session the client-
side JavaScript requests a one-time session-encryption
key from the server. The server generates the key, en-
crypts it with a public key, and then writes the encrypted
session key to the first entry of the log for the session.
It then sends the key to the client and maintains no fur-
ther record of it. The private key is not stored on any
publicly facing server. The client XORs the log data
stream with a bit stream generated by using AES in
counter mode with the Stanford Javascript Crypto Li-
brary (SJCL) [27]. We opted for this approach, inspired
by Kelsey and Schneier [23], because of its simplicity
and as concerns over confidentiality far outweighed that
of integrity. As logs are never read online, and no action
is taken with them but to store them, we do not know of
a scenario in which an adversary could learn the contents
of the logs by modifying them.

2.5 System Limitations
The current deployment of Telepathwords has some lim-
itations that are inherent to research prototypes. The lan-
guage corpus is US-centric and somewhat dated, and so
unlikely to pick up on words or phrases uncommon in the
United States or that have entered the common lexicon
since 2012. An ideal set of corpora would be interna-
tional and receive constant updates from the latest search
queries, news, and other topical sources.

Telepathwords cannot currently detect reversed char-
acter sequences (gfedcba in place of abcdefg) unless
that reversal is itself already common enough to be in
the language corpus (as it is for drowssap, for exam-
ple). One way to implement reversal detection would be
to reverse the more common strings in our language cor-
pus, assess a penalty for the reversal, and insert them into
our completion trie.

The privacy promises made by the current deployment
of Telepathwords prohibit analysis of passwords for any
purpose other than the issuing of predictions, and so the
language corpus, scoring rules, and known set of com-
mon password-creation behaviors do not grow over time.
Thus, if users flock to common behaviors in response
to Telepathwords (as they do in response to password-
composition rules) we may not be able to detect these
behaviors in the current deployment.

3 Deployment

Our first deployment of the Telepathwords technol-
ogy is a password-testing website, similar in pur-
pose to existing websites that offer to test the
‘strength’ of passwords [9, 16, 20], which is hosted at
https://telepathwords.research.microsoft.com. We took
great pains to avoid positioning the service as measur-
ing any form of ‘strength’ or ‘security’, as no system can
be certain that any user-chosen password is truly strong
or secure. There is no guarantee that a password that ap-
pears strong would not be predictable by an attacker with
better knowledge of how certain users construct pass-
words.

As with any publicly facing Internet service, we de-
ployed Telepathwords with some trepidation not know-
ing what usage levels to expect and not knowing what
factors we may have failed to anticipate when perform-
ing load-testing experiments. In our pre-deployment
throughput tests, Telepathwords processed 454,486 pass-
words in a database of breached Yahoo! Voices pass-
words in under 7 hours using 3 cores of a 3Ghz Xeon E5
1607 (roughly five passwords per core-second.)

We opened up our system to the public on December 5,
2013 and saw our highest usage rates shortly afterward,
as the technical press published articles about the release.

3.1 Data collected
We downloaded our encrypted logs to a researcher’s
workstation for decryption and analysis. We graph the
arrival rate of users to our service in Figure 8, which il-
lustrates the burst of traffic during initial release dissi-
pating over time. We are also able to observe the de-
lay experienced by users between the time they typed a
key and received a prediction for what the following key
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Figure 8: Sessions served per day by the Telepathwords
service shortly after release. (A Session is counted when
the Telepathwords page loads and the server receives a
request for a session ID and encryption key used for log-
ging.)
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Figure 9: The distribution of the delay between the
“keyup” and “render” events for all keystrokes during the
recording period. The median occurs at 208ms.

would be, graphed in Figure 9. The median delay was
200ms. A peak in the graph around 20ms is likely due to
fast rendering of predictions cached within the browser.

We are also able to use the logs to track how much
activity users perform during each user session. In Fig-
ure 10, we examine the distribution of number of keys
pressed per user session, seeing that some users appeared
to use the site to test multiple passwords.

4 Experimental Methodology

In addition to the deployment, we conducted a compar-
ative evaluation of Telepathwords and a number of ex-
isting password-composition policies via a two-part on-
line study using Amazon’s Mechanical Turk crowdsourc-
ing service. To facilitate comparisons with prior work,
much of our methdology mirrors that of a recent line
of research from Carnegie Mellon University, includ-
ing that of Kelley [12], Komanduri [13], Mazurek [15],
Shay [24, 25], Ur [28], and others.
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Figure 10: The number of keystrokes received per user
session provides insight into user engagement with the
site. The median is 15 and the mean is 21 keys pressed
per session.

Our experiment was approved by Carnegie Mellon
University’s institutional review board prior to the start
of our study.

4.1 Recruiting and Data Collection
We recruited participants from Amazon’s Mechanical
Turk by listing a Human Intelligence Task (HIT) in
which we offered 55 cents to “Take a 5-minute survey
with 70-cent bonus opportunity!” We required partici-
pants be 18 years of age and located in the United States.

We asked participants to imagine that their email ac-
count had been compromised and that they needed to cre-
ate a new password to replace it. We used a round-robin
algorithm to assign participants one of six password-
composition policies. As users typed their proposed
password, we provided real-time feedback indicating the
conditions that needed to be met for participants to sat-
isfy their assigned policy. Whereas prior CMU studies
checked compliance with password policies after partic-
ipants had submitted them, in this study we enabled the
submit button only after a participant had satisfied the
policy (and correctly retyped the password).

After participants submitted the password, we pre-
sented a survey with up to 24 questions to ask about their
experience creating the password, more general ques-
tions about their password habits, and their demograph-
ics. Following the survey we asked participants to recall
their passwords, giving them five attempts to do so. We
displayed their password to them if they could not recall
it within those five attempts. This concluded part one of
our study.

Two days later, we invited participants to return for
part two of our study, sending them an email via an in-
terface provided by Mechancial Turk. We offered 70
cents to return for this HIT, in which we asked partici-
pants to recall their passwords. Again, we allowed par-
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ticipants five attempts to provide the correct password.
We displayed participants’ passwords if they were unable
to succeed within five attempts, though we did not tell
them this a priori. We wanted participants to complete
the study whether or not they recalled their password, so
we provided them with a last-resort mechanism for re-
covering their passwords: a link, which would send an
email, which contained a link, which led to a webpage,
which displayed the correct password. We took this in-
tentionally circuitous approach, rather than simply show-
ing participants their passwords on request, to discourage
them from using the recovery mechanism without first
trying to recall their passwords. Outside the extra effort
for password recovery, we did not further penalize par-
ticipants for failing to recall their passwords; if we had,
and future participants learned about it, they might have
been more likely to store their passwords.

Finally, we asked participants to take an 18-question
survey asking about their password-recall process and
whether they had stored their passwords.

Except as noted, we focus our analysis on those par-
ticipants who finished the first part of our study. Our
analysis of dropout rates examines all participants who
begin the study, and our analysis of part two examines
only those participants who finished part two. We ex-
clude participants from part two if they did not complete
it within three days of the invitation.

4.2 Treatments
The only features of our study that varied between par-
ticipants were the assigned password-composition pol-
icy, whether the password field hid the characters typed
into it, and a few survey questions about policies specific
to certain treatments. Of the six password policies we
assigned to participants, two use a Telepathwords-based
policy and four use policies based on composition-rules
and (in one case) dictionary checks.

• telepath, telepath-v These two conditions em-
ployed a Telepathwords-based policy that required
users to provide a password with at least six charac-
ters that were not predicted by the system. The sys-
tem does not predict the first character, and so the
first character of each password always counted to-
ward the requirement. The two conditions differed
only in that passwords would be shown by default
as they were being typed in telepath-v and were hid-
den by default in telepath.

• basic8 This condition required passwords of at least
eight characters in length.

• 3class8 This condition also required passwords of at
least eight characters in length, adding the require-
ment that the password include three of four char-

Figure 11: The 3class8-d treatment on the experimental
website.

Figure 12: The telepath treatment on the experimental
website.

acter classes: uppercase letters, lowercase letters,
digits, and symbols. This policy mirrors the default
password policy for Microsoft Windows Active Di-
rectory.

• 3class12 This condition required passwords of at
least 12 characters in length from three of four char-
acter classes.

• 3class8-d This condition required passwords to in-
clude at least eight characters, from three of four
character classes, and required that the string of all
letters within the password not match any of the
roughly 3M words in the free Openwall cracking
dictionary [5].

We displayed the requirements that had not yet been
met directly above the password-entry field, as shown in
Figure 11. If the password had not yet met the length
requirement, we displayed that requirement. If a pass-
word met the length requirement, we displayed remain-
ing composition requirements, if any. If the password
met the length and composition requirements but failed a
dictionary check (for 3class8-d), we displayed the match
and indicated that the password must not contain the
matched word.

We displayed a checkbox that allowed participants to
show or hide the characters being typed. With the excep-
tion of telepath-v, the password was hidden by default.

8
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basic8 3class8 3class12 3class8-d telepath telepath-v
Participation

arrived at part one 476 475 472 469 476 476
finished part one 431/476 (91%) 440/475 (93%) 425/472 (90%) 402/469 (86%) 420/476 (88%) 442/476 (93%)

returned & finished part two in <3 days 270/431 (63%) 296/440 (67%) 277/425 (65%) 260/402 (65%) 267/420 (64%) 257/442 (58%)

Password Selection & Handling among part-two participants
did not store 172/270 (64%) 197/296 (67%) 168/277 (61%) 155/260 (60%) 168/267 (63%) 141/257 (55%)

did not re-use 221/270 (82%) 228/296 (77%) 226/277 (82%) 214/260 (82%) 229/267 (86%) 203/257 (79%)
did not store or re-use 135/270 (50%) 149/296 (50%) 140/277 (51%) 118/260 (45%) 138/267 (52%) 112/257 (44%)

Password Recall in 5 tries without reminder
during part one 423/431 (98%) 434/440 (99%) 414/425 (97%) 391/402 (97%) 407/420 (97%) 429/442 (97%)

all part-two participants 176/270 (65%) 213/296 (72%) 186/277 (67%) 193/260 (74%) 183/267 (69%) 178/257 (69%)
part two did not store 105/172 (61%) 131/197 (66%) 104/168 (62%) 103/155 (66%) 103/168 (61%) 86/141 (61%)

part two did not re-use 144/221 (65%) 163/228 (71%) 151/226 (67%) 155/214 (72%) 159/229 (69%) 143/203 (70%)
part two did not store or re-use 83/135 (61%) 97/149 (65%) 86/140 (61%) 73/118 (62%) 84/138 (61%) 69/112 (62%)

Table 1: We tally the set of participants who began part one of our study, finished it, and who returned for part two.
We measure recall rates for part one (shortly after password selection) and part two. We break down part-two recall
rates to factor out participants who reported re-using passwords they already knew or storing their passwords.

5 Experimental Results and Analysis

The application of multiple statistical tests increases the
chance of producing a Type I error, finding a significant
difference where none exists. To compensate for this, we
use a standard two-step process. First, we only perform
pairwise tests if an omnibus test is significant. We use
the Kruskal-Wallis omnibus test (KW) for quantitative
data and the χ2 test for categorical data. Second, we cor-
rect all pairwise tests using the Holm-Bonferroni method
(HC). We use the Mann-Whitney U for quantitative pair-
wise comparisons and Fisher’s Exact Test and the χ2 test
for categorical pairwise comparisons.

We performed our experiment in February 2014. We
recruited 2,844 workers to accept our HIT for part one
of our study. Of these, 2,560 finished, received payment,
and received invitations to return two days later. A total
of 1,627 participants (64%) returned for the second HIT
within three days of when we sent their invitation. Par-
ticipants’ demographics reflected a typical population of
workers on Mechanical Turk, with a median reported age
of 27, nearly 60% reporting as male, and 44% reporting
having at least a bachelor’s degree.

We show the progress of participants through our
study in Table 1. We removed from our analysis five par-
ticipants who created more than one password by using
the back button or reloading the password-creation page.

The condition with the highest dropout rate was
3class8-d, while the lowest dropout rate was telepath-v.
Table 2 shows the dropout rates for each condition. It
also gives the test’s p-value for the null hypothesis (that
the difference between dropout rates was unaffected by
condition) for each pair of conditions. For example, at
p= 0.01 (resp. p= 0.007) the difference in dropout rates
between 3class8-d and 3class8 (resp. telepath-v) is sig-

Fisher’s Exact Test p
(Holm-Bonferroni corrected)

Treatment Part one dropout te
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ss
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c8
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th

-v

3class8-d 67/469 14% 1.000 .458 .318 .010 .007
telepath 56/476 12% 1.000 1.000 .318 .255
3class12 47/472 10% 1.000 1.000 1.000
basic8 45/476 9% 1.000 1.000
3class8 35/475 7% 1.000
telepath-v 34/476 7%

Omnibus χ2
5 =19.373, p=0.002

Table 2: The fraction of participants who dropped out
during part one, with corrected pairwise comparisons of
all treatment groups.

nificant. For all of the other condition pairs the hypoth-
esis that condition had no effect on dropout rate is not
ruled out. Note that the table has a triangular structure
since we list the result of each pairwise test only once,
and this same format is used for our other categorical
tests (i.e. Tables 3, 4, 5, 6 and 7).

The median time spent to create a password was 32
seconds for participants in basic8, 43 for 3class8, 53 for
both 3class12 and 3class8-d, 85 for telepath-v, and 96
for telepath. We anticipated participants using Telepath-
words might spend more time, as these treatments in-
cluded three lines of instructions not present in other
treatments (see Figure 12) and their novelty may have
led to more exploration.

9
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Figure 13: “Creating my password was difficult” and
“Creating my password was annoying.”

5.1 Recall

We provide recall rates for part one of the study for ref-
erence only, as just minutes had passed since participants
had chosen their passwords. In the second section of Ta-
ble 1, we see that 61.5% of participants indicated that
they had not stored their password and that we had not
detected them pasting or auto-filling a password into the
recall field. Differences between treatment groups were
not statistically significant (χ2

5 =9.231, p=0.1).
We looked at the number of part two recall attempts

by the subset of participants who did not store their pass-
words, did not use the reminder feature, and did not
re-use a previous password. Of these 502 participants,
79.3% entered the password on the first attempt, and
14.5% entered it on the second attempt. While the om-
nibus test shows a significant difference between condi-
tions for taking more than one attempt (χ2

5 =13.943, p
=0.016), the pairwise tests showed no significant differ-
ences. Among the 398 of these participants who en-
tered their password correctly on the first attempt, the
median password-entry time was 14.8 seconds; this did
not vary significantly by condition (KW χ2

5 =4.705, p
=0.453). Looking at the 1159 participants who did not
use the reminder, 80.9% entered the password correctly
on the first try. This differed by condition (χ2

5 =12.604, p
=0.027), but no pairwise test was significant.

5.2 Participant Sentiment

In addition to recording participant behavior, we asked
participants about their experience. We asked all partic-
ipants whether they felt that creating their password was
difficult or annoying, with results in Figure 13. We show
the pairwise comparisons across conditions for difficulty
in Table 3 and annoyance in Table 4.

The three policies that tested participants’ passwords
against lists of common passwords (the Telepathwords
conditions and 3class8-d) had a greater proportion of par-
ticipants who were annoyed than those using the purely
composition-based policies. The differences with the
simplest policies were significant, as shown in Table 4.

Fisher’s Exact Test p
(Holm-Bonferroni corrected)

Treatment Creation difficult te
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telepath 163/420 39% .374 .078 <.001 <.001 <.001
telepath-v 158/442 36% .374 <.001 <.001 <.001
3class8-d 123/402 31% .006 <.001 <.001
3class12 87/425 20% .374 .005
3class8 73/440 17% .209
basic8 51/431 12%

Omnibus χ2
5 =135.199, p<.001

Table 3: The fraction of participants in each treatment
who agreed that it was difficult to create a password dur-
ing the experiment.

Fisher’s Exact Test p
(Holm-Bonferroni corrected)

Treatment Creation annoying 3c
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telepath 175/420 42% 1.000 1.000 .034 .002 <.001
3class8-d 165/402 41% 1.000 .052 .004 <.001
telepath-v 175/442 40% .117 .013 <.001
3class12 136/425 32% 1.000 .005
3class8 129/440 29% .052
basic8 92/431 21%

Omnibus χ2
5 =61.805, p<.001

Table 4: The fraction of participants in each treatment
who agreed that it was annoying to create the password
during the experiment.

Figure 14: “When compared to the password I use for
my primary email account, the password I created for
this study was:”.

We also asked participants whether they believed their
study-created password to be more, less, or just as secure
as their primary email password. The results are in Fig-
ure 14. Belief that the study passwords were more secure

10
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Fisher’s Exact Test p
(Holm-Bonferroni corrected)
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3class12 180/425 42% 1.000 .329 .134 <.001 <.001
telepath 172/420 41% .552 .309 <.001 <.001
telepath-v 161/442 36% 1.000 .013 <.001
3class8-d 139/402 35% .075 <.001
3class8 116/440 26% .027
basic8 78/431 18%

Omnibus χ2
5 =83.62, p<.001

Table 5: The fraction of participants who selected “More
secure” in response to “When compared to the password
I use for my primary email account, the password I cre-
ated for this study was:”.

Figure 15: “The visual feedback I received gave me
insight into the quality of my password” and “The vi-
sual feedback that was displayed helped me to create a
stronger password that I would have otherwise.”

ranged from 18.1% for basic8 to 42.4% for 3class12, and
significant differences are in Table 5.

We displayed visual feedback in all conditions to help
participants comply with their assigned policy. We asked
participants if they believed the feedback gave them in-
sight into their passwords and if it helped them to create
better passwords. We show their responses in Figure 15
paired with significance tests in Tables 6 and 7.

The Telepathwords treatments, along with 3class12,
had the greatest proportion of participants who believed
the feedback helped them create a stronger password.
A significantly larger portion of participants in the two
Telepathwords conditions agreed that the feedback pro-
vided more insight than the other treatments—including
the dictionary-based feedback in 3class8-d. This is tem-
pered of course by the higher number who found pass-
word creation difficult or annoying with the tool. We see
this as a hopeful sign that Telepathwords can help im-
prove the credibility of technology designed to prevent
users from choosing weak passwords.

Fisher’s Exact Test p
(Holm-Bonferroni corrected)

Treatment Gave Insight te
le

pa
th

-v

3c
la

ss
12

3c
la

ss
8-

d

3c
la

ss
8

ba
si

c8

telepath 315/420 75% 1.000 <.001 <.001 <.001 <.001
telepath-v 331/442 75% <.001 <.001 <.001 <.001
3class12 253/425 60% .873 .678 <.001
3class8-d 224/402 56% 1.000 <.001
3class8 241/440 55% <.001
basic8 146/431 34%

Omnibus χ2
5 =208.104, p<.001

Table 6: Agreement with “The visual feedback I received
gave me insight into the quality of my password.”

Fisher’s Exact Test p
(Holm-Bonferroni corrected)

Treatment Feedback Helped te
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telepath 231/420 55% 1.000 1.000 .029 .001 <.001
telepath-v 241/442 55% 1.000 .029 .001 <.001
3class12 231/425 54% .033 .001 <.001
3class8-d 180/402 45% 1.000 <.001
3class8 183/440 42% <.001
basic8 77/431 18%

Omnibus χ2
5 =178.62, p<.001

Table 7: Agreement with “The visual feedback that was
displayed helped me to create a stronger password that I
would have otherwise.”

5.3 Security Results

In Table 8 we present statistics summarizing the com-
position of passwords created under each policy, and se-
curity scores calculated by three metrics. We focus our
analysis on the passwords identified to be weakest as an
attacker is most likely to try these first. Dictionary at-
tacks to obtain beachheads into organizations succeed
when the first account is breached. Thus, improving the
security of the weakest password in an organization by
a small amount is far more likely to prevent an attacker
from obtaining a beachhead than a large improvement to
the average password would. This is particularly true for
an online attack where a limited number of guesses per
account can be tried.

We did not encounter any repeat passwords in our
sample, so we cannot use frequency as a metric. Rather,
the first metric we apply is an entropy calculation gener-
ated by the open-source zxcvbn password meter [30]. Its
advantages are that it is publicly available, open-source,
and already relied on by large-scale systems, including
DropBox. Its primary disadvantage is that it was de-
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signed to meet the constraints required for deployment
as a client-side password meter; it needed to be small
enough to download quickly and efficient enough to run
in JavaScript. As such, it cannot perform the same level
of computational analysis or apply the same body of
knowledge as a tool designed for guessing.

The second metric we apply is a guess-number calcu-
lator developed by Saranga Komanduri, which first ap-
peared in Kelley et al. [12, 25]. We call this metric
Weir+ because it builds on the guessing approach of Weir
et al. [29]. Its advantages are that it is designed with
the explicit goal of measuring the number of guesses re-
quired to crack a password, can be trained to target spe-
cific password policies, and represents the state of the
art in measuring strength against a guessing attack. The
disadvantages of Weir+ include that it is available only
by contacting the author, written in multiple program-
ming languages, and has not been made easy to config-
ure. Further, its results may vary based on the size and
quality of the training data. In order to create a large
training set of passwords that comply with the Telepath-
words policies, we used the 133,109 passwords in the
Yahoo! Voices breach data set that received a score of
6 hard-to-guess characters or more from Telepathwords,
which represents 29% of the 453,488 passwords revealed
by that breach.

Our final metric is the score provided by the current
version of Telepathwords itself—the number of hard-to-
guess characters. We find this informative for comparing
treatments other than those that employ Telepathwords.
The scores for participants in telepath and telepath-v
are provided exclusively for completeness, as partici-
pants who were able to generate a password that met the
Telepathwords policy will score well by default (though
we note that two participants received a 5 due to a change
to predictions from the version deployed during the ex-
periment and the version used to calculate scores).

Regardless of metric, the telepath and telepath-v pass-
words do substantially better than all other conditions,
with the possible exception of 3class8-d. We present the
scores for each metric in Table 8.

For the zxcvbn entropy measure, we show in Fig-
ure 16 that telepath and telepath-v passwords outperform
those from all other conditions for the weakest password
in each condition and the weakest 2.5%, 5%, and 10%
of passwords. Thus, Telepathwords did the best job of
preventing weak passwords. Only when we consider the
median entropy do 3class12 and 3class8-d become com-
petitive. The improvement with respect to 3class8 and
basic8 is enormous.

Figure 17 illustrates the Weir+ measurements. Again
the two Telepathwords conditions show enormous im-
provement over basic8 and 3class8. They show con-
siderable improvement over 3class12 on minimum en-
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Figure 16: We sort the passwords in each condition
by zxcvbn-entropy scores, from lowest to highest, and
present the fraction of passwords with scores at or be-
low a given value. Only passwords with entropy scores
of 20 or less are shown in order to highlight the weakest
passwords in each condition.
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Figure 17: We sort the passwords in each condition by
their Weir+ guess number, from lowest to highest, and
present the fraction of passwords that with guess counts
at or below a given number of guesses.

tropy, and on entropy of the weakest 2.5%, 5%, and 10%.
The 3class8-d condition is roughly comparable to the
two Telepathwords conditions, except when we consider
minimum entropy, where it does considerably worse.

To substantiate further the impact of using Telepath-
words and dictionary-based approaches, we present in
Table 9 the weakest 2.5% of passwords according to
each metric. For example, the weakest 2.5% under
3class8 contain such obvious and easily-guessed choices
as Password1 and P@5sword, which compare unfavor-
ably with those in either of the Telepathwords conditions
of 3class8-d.
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Mean characters per class zxcvbn Entropy Telepathwords score Weir+ score
N Upper Lower Digit Symbol Min 2.5% 5% 10% Med Min 2.5% 5% 10% Med Min 2.5% 5% 10%

3class12 425 1.7 8.0 3.2 0.9 6.8 14.8 17.0 20.4 33.4 2 3 3 4 7 6.4 22.4 27.8 31.5
3class8-d 402 1.5 6.6 2.6 0.8 11.0 15.6 17.8 22.1 32.7 1 3 3 3 6 16.0 26.6 29.4 33.6
3class8 438 1.6 6.6 2.5 0.6 3.0 11.7 14.1 16.1 29.1 1 2 2 3 6 0.0 14.4 17.4 24.9
basic8 429 1.0 7.9 2.4 0.4 0.0 9.5 12.6 15.4 27.9 1 2 2 3 6 1.0 13.0 17.7 22.4
telepath 420 1.0 7.0 2.5 0.6 9.7 17.9 19.7 22.4 32.0 5 6 6 6 7 21.0 26.1 29.3 33.0
telepath-v 441 1.1 7.0 2.7 0.5 13.0 18.4 20.4 22.4 32.8 6 6 6 6 7 19.9 27.4 29.9 33.2

Table 8: Security metrics of passwords created by participants. We show minimum and median zxcvbn and Telepath-
words scores, along with percentiles selected to indicate the vulnerability of each condition to early guessing. We
report Weir+ scores as the log2 of their guess numbers for comparison with entropy scores. We do not show median
Weir+ scores as only basic8 reached 50% cracked in our analysis.

zxcvbn

basic8 3class8 3class12 3class8-d telepath telepath-v
password Password1 Thispassword1 1qaz2wsx! thisisapassword guessmypassw0rd
12345678 P@5sword Password@123 123456789jI 2014welcome Mary3476

P@55w0rd EL1Z@B3TH Qwerty12345@ Zaq12wsx jim1965 altoids123
PASSWORD1234 Password8 Passwordneeds1 @bs0lute $hrod3 almay123

passwordme Mypassword1 !PaSsWoRd123 A11iance 1024scott the1step!
sunshine Samantha1 StephenASmith1 Beer4y0u mothertrucker snoopy1969!

Youknow123 Whatever1 1NewP@ssword Hawk3y3s burkeds kylemonkey1986
brittany Whoi1234 Chief$123456 G0dZ1Ll4 pi$$a123 Scr3wdr1v3r123

drowssap My2password MonKeY12345! @SunSh1n3 12noraa sion12
Washington1 Shelby1234 Asdfghjkl123 Cut13p13 c@reful951 lmi2014

1987camaros
Weir+

password Password1 Asdfghjkl123 Pokemon91 1024scott iamabeliever
12345678 Password8 Password@123 Redtruck1 jim1965 feefifofum
sunshine Rainbow3 bulldog*1234 Nackson1 cesar5000 motuwethfr
brittany Robert07 Jp1234567890 ZaqXsw12 mi1213 snorelax

qwertyuiop Cougars1 Johnny#12345 H1r12345 mothertrucker broseph
drowssap Andrew24 Strawberry246 Monkeydude1 thisisapassword cats59
trinity1 Marcus12 Guadalajara1 Plascencia1 imalittleteapot peacaboo1

sugarbaby Liverpool15 123Cheetos!! Caedus12 awdxsz almay123
deeznuts Bahamut1 Abc123456789! Godalmighty1 chieri altoids123

monkey69 Abby1234 Qwerty12345@ Yaniku13 coffeecup123 jacran1
sion12

Telepathwords
frenchfry Password1 MountainDew1 BearBear1

qwertyuiop EL1Z@B3TH P00lsidebars B4sk3r*v1ll3
password P@5sword Elephants.19 Redtruck1
p09op09o Robert07 Password@123 A11iance

P@55w0rd Samantha1 cRAYON123456 Ilove!myself
PASSWORD1234 Whatever1 MonKeY12345! Zaq12wsx

R0ckstar! Qwaszx12 Abc123456789! Cut13p13
Monkeys21 !PaSsWoRd123 Monkeydude1
Scoobydoo2 Asdfghjkl123 ZaqXsw12

Qwerty12345@ Galvestontx1

Table 9: The weakest 2.5% of passwords as scored by each metric (weakest at top). For the Telepathwords metric,
the weakest passwords in the telepathwords conditions are not shown because there are too many passwords at the
minimum score threshold to present here.

5.4 Limitations

All artificial experiments have limitations and ours was
no exception. We make note of two such limitations.

Our study used a role-playing scenario to encourage
users to create passwords. Participants playing roles may

choose weaker passwords than they would for an ac-
count they value. They might also choose stronger pass-
words than they would for an account they didn’t value.
Schechter et al. [22] have shown that participants in se-
curity studies behave differently when the laboratory en-
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vironment frees them from risk, and Fahl et al. [7] have
shown a specific effect for choice of passwords. While
limiting the interpretations of absolute scores, so long
as these effects impact conditions equally, the method-
ology still facilitates cross-condition comparisons—the
primary focus of the experiment. In fact, if our goal is
to study the ability of technology to help unmotivated
users choose better passwords, having participants who
are less motivated than they would be in real-world con-
ditions may be beneficial.

We measured recall over a short period of two to five
days in a context where participants entered their pass-
word a few minutes after choosing it. In contexts in
which users do not re-enter their passwords immediately
after creating them, or in which they do not return for
more than five days, they may be more likely to forget
them. In contexts where users use their passwords more
frequently after creating them, they may be less likely to
forget them within two to five days. Had we selected dif-
ferent return periods we might have been more likely to
see differences in recall rates.

6 Related Work

While some security practitioners simply hope that pass-
words, and their associated weaknesses, can be wished
away, Bonneau et al. [3] have argued that passwords are
not going away anytime soon. Password-composition
rules date back at least to 1979, when Morris and Thomp-
son reported on the predictability of the passwords used
by users on their Unix systems; they proposed that pass-
words longer than four characters, or purely alphabetic
passwords longer than five characters, will be “very safe
indeed” [19]. Bonneau analyzed nearly 70 million pass-
words in 2012, 33 years later, to measure the impact of
a six-character minimum requirement compared with no
requirement [2]. He found that it made almost no differ-
ence in security. In a study of the distribution of pass-
word policies, Florêncio and Herley found that usability
imperatives appeared to play at least as large a role as
security among the 75 websites examined [8].

Early studies of proactive password-quality verifica-
tion mechanisms includes the work of Spafford [26], who
suggests an efficient method for storing a dictionary for
checking. Bishop et al., in 1995, suggested checking
passwords for dictionary entries, user information, and
other common patterns at password creation [1]. They
also provided some statistics on these patterns in pass-
words. Weir et al. also examined password-composition
rules by looking at samples of passwords [29]. These
works did not look at passwords created under varying
rules, however.

Microsoft Windows has enforced password-
composition rules at least as far back as 2000, with

the default requiring at least 8 characters from three
of four character classes: uppercase, lowercase, digits,
and others [17, 18]. One problem with the Windows
implementation is that when Windows rejects a user’s
proposed password, it does not provide a list of the rules
being enforced or identify specifically which rules the
password is violating.

Many websites offer password meters that provide
feedback on the strength of passwords as users type
them. Based on a survey of the top 100 websites in 2012,
most password meters use simple password-composition
rules such as length and number of non-lowercase char-
acters to determine when a password is good enough to
reach the next level on the meter [28]. Egelman et al. [6]
examined whether the presence of a password meter
made any appreciable difference in password strength.
They found that the meter made a difference when users
were changing their password for an existing impor-
tant account; but the meter had little effect when users
were registering a new password for a low-importance
account. Ur et al. also studied the effect of password-
strength meters on password-creation. They found that
when users became frustrated and lost confidence in the
meter, more weak passwords appeared [28]. Very re-
cently, de Carné de Carnavalet and Mannan [4] examined
several password meters in use at popular websites and
found gross inconsistencies, with the same password reg-
istering very different strength across different meters.
Collectively, these findings are in line with our concern
that password policies and meters may harm credibility
and lead users to put less effort into choosing a good
password.

One exception to the reliance on composition rules in
password meters is zxcvbn, an open-source meter devel-
oped and used by DropBox, which uses a small language
corpus to calculate entropy estimates in real time [30].
Designed to run entirely in the users’ browser, it is writ-
ten in JavaScript and compresses down to 320KB. While
zxcvbn provides a much-needed improvement in the
credibility of its strength estimates when compared to ap-
proaches relying solely on composition rules, this cred-
ibility is unlikely to be observed by users. In fact, its
perceived credibility may suffer if users, who have been
told that adding characters increases password strength,
see scores decrease when certain characters are added.
For example, when typing iatemylunch, the strength
estimate decreases from the second-best score (3) to the
worst score (1) when the final character is added. Even if
users find zxcvbn’s strength estimates credible, they are
unlikely to understand the underlying entropy-estimation
mechanism and thus be unsure how to improve their
scores. The advice zxcvbn offers, such as using inside
jokes and unusual use of uppercase, could potentially
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lead users to cluster around common strategies, yielding
a set of new common passwords for attackers to guess.

Schechter et al. [21] offered another alternative to
password-composition rules, suggesting a system that
prevents users from choosing passwords popular among
a large set of users. Another approach that seeks to limit
dangerously common passwords was proposed by Mal-
one and Maher [14]. These approaches, however, are
most appropriate for systems with tens of millions of
users, in which uniqueness is a strong indicator that a
password is hard to guess. Relatively weak passwords
may be unique among hundreds or thousands of user ac-
counts.

The human-subjects experiment we perform in this
work seeks to replicate the methodology used in prior
password studies. Many of our choices in recruiting,
question design, and the timing of the invitation to part
two of the study reflect a desire to facilitate comparison
with prior work. This includes the work of Komanduri et
al. [13] and Kelley et al. [12], who used similar study
designs to perform comparative analyses of password-
composition rules. These prior studies found that in-
creasing length requirements in passwords generally led
to more usable passwords that were also less likely to be
identified as weak by their guessing algorithm [13, 12].
Most recently, Shay et al. studied password-composition
policies requiring longer passwords, finding the best per-
formance came from mixing a 12-character minimum
with a requirement of three character sets [25]. One key
difference between our work and most prior studies is
that all of our treatments provided feedback to users as
they typed their passwords. With the exception of Ur
et al.’s examination of meters providing optional guid-
ance [28], all of these prior studies from Carnegie Mellon
required participants to submit passwords before testing
for, or providing feedback on, compliance with a policy.

A valuable use case for Telepathwords-based policies,
which do not place any character-set requirements on
passwords, is the affordance of creating all-lowercase
passwords for easy entry on a touch screen. Jakobs-
son and Akavipat proposed a scheme for mobile devices
that uses easily-typed passwords with auto-completion
for easier password entry [11].

Fahl et al. [7] pointed out limitations in studies that
use role-playing to generate passwords, as we do in this
study. They find significant differences between pass-
words generated in these scenarios and real passwords.
Komanduri et al. found that users created stronger pass-
words when asked to role-play, compared to when asked
simply to create a password for a study [13]. Mazurek et
al. used a methodology similar to ours and compared
their results to genuine user passwords in a univer-
sity [15]. They found that while the experimental pass-

words were slightly weaker than the genuine passwords,
they were similar in many other respects.

7 Conclusion

Telepathwords provides users with significantly more in-
sight into the quality of their passwords than all other
approaches, and results in passwords stronger than ap-
proaches that do not use dictionaries. For example, the
metrics suggest that to crack 1% of Telepathwords pass-
words, an attacker needs to make more than a factor of a
thousand more guesses per password than for passwords
created under the default password policy employed by
Microsoft Windows Active Directory. While a higher
number of users found password creation difficult or an-
noying using the tool, the security improvements did not
come at any measurable impact to memorability.
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Abstract
Challenging the conventional wisdom that users cannot
remember cryptographically-strong secrets, we test the
hypothesis that users can learn randomly-assigned 56-
bit codes (encoded as either 6 words or 12 characters)
through spaced repetition. We asked remote research
participants to perform a distractor task that required log-
ging into a website 90 times, over up to two weeks, with
a password of their choosing. After they entered their
chosen password correctly we displayed a short code (4
letters or 2 words, 18.8 bits) that we required them to
type. For subsequent logins we added an increasing de-
lay prior to displaying the code, which participants could
avoid by typing the code from memory. As participants
learned, we added two more codes to comprise a 56.4-
bit secret. Overall, 94% of participants eventually typed
their entire secret from memory, learning it after a me-
dian of 36 logins. The learning component of our system
added a median delay of just 6.9 s per login and a to-
tal of less than 12 minutes over an average of ten days.
88% were able to recall their codes exactly when asked
at least three days later, with only 21% reporting having
written their secret down. As one participant wrote with
surprise, “the words are branded into my brain.”

1 Introduction

Humans are incapable of securely storing high-quality cryp-
tographic keys . . . they are also large, expensive to maintain,
difficult to manage, and they pollute the environment. It is as-
tonishing that these devices continue to be manufactured and
deployed. But they are sufficiently pervasive that we must de-
sign our protocols around their limitations.

—Kaufman, Perlman and Speciner, 2002 [54]

The dismissal of human memory by the security com-
munity reached the point of parody long ago. While as-
signing random passwords to users was considered stan-
dard as recently in the mid-1980s [26], the practice died

out in the 90s [4] and NIST guidelines now presume all
passwords are user-chosen [32]. Most banks have even
given up on expecting customers to memorize random
four-digits PINs [22].

We hypothesized that perceived limits on humans’
ability to remember secrets are an artifact of today’s sys-
tems, which provide users with a single brief opportunity
during enrolment to permanently imprint a secret pass-
word into long-term memory. By contrast, modern theo-
ries of the brain posit that it is important to forget random
information seen once, with no connection to past expe-
rience, so as to avoid being overwhelmed by the constant
flow of new sensory information [10].

We hypothesized that, if we could relax time con-
straints under which users are expected to learn, most
could memorize a randomly-assigned secret of 56 bits.
To allow for this memorization period, we propose using
an alternate form of authentication while learning, which
may be weaker or less convenient than we would like in
the long-term. For example, while learning a strong se-
cret used to protect an enterprise account, users might
be allowed to login using a user-chosen password, but
only from their assigned computer on the corporate net-
work and only for a probationary period. Or, if learning a
master key for their password manager, which maintains
a database of all personal credentials, users might only
be allowed to upload this database to the network after
learning a strong secret used to encrypt it.

By relaxing this time constraint we are able to ex-
ploit spaced repetition, in which information is learned
through exposure separated by significant delay inter-
vals. Spaced repetition was identified in the 19th cen-
tury [43] and has been robustly shown to be among the
most effective means of memorizing unstructured infor-
mation [35, 11]. Perhaps the highest praise is its popu-
larity amongst medical students, language learners, and
others who are highly motivated to learn a large amount
of vocabulary as efficiently as possible [34, 91].

To test our hypothesis, we piggybacked spaced repeti-
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Figure 1: The login form for a user logging in for the first
time, learning a code made of letters.

tion of a new random secret onto an existing login pro-
cess utilizing a user-chosen password. Our system can be
seen in action in Figure 1. After receiving a user’s self-
chosen password, we add a new field into which they
must type a random security code, which we display di-
rectly above this field. With each login we add a 1

3 second
delay (up to a maximum of 10 seconds) before display-
ing the hint for them to copy, encouraging them to type
the code from memory if possible to save time.

We recruited remote research participants to perform a
study that required logging into a website 90 times over
up to 15 days, which they did at an average rate of nine
logins per day. We assigned each participant a random
56-bit ‘security code’ encoded into three chunks of either
four lowercase letters or two words. After participants
began to enter the first chunk before it was displayed, we
added a second and likewise for the third and final chunk.
We did not tell participants that learning the random se-
cret was a goal of the research study; they simply learned
it to save time. Participants experienced a median addi-
tional delay from using our system of just 6.9 s on each
login, or about 11 m 53 s total over the entire study.

Three days after participants completed the initial
study and had stopped using their security codes, we
asked them to recall their code from memory in a follow-
up survey which 88% completed. They returned after
a median of 3 days 18 hours (mean 4 days 23 hours).
We found that 46 of 56 (82%) assigned letters and 52 of
56 (93%) assigned words recalled their codes correctly.
Only 21% reported writing down or otherwise storing the
security codes outside their memory and the recall rate
was actually higher amongst those who didn’t.

While 56-bit secrets are usually overkill for web au-
thentication, the most common use of passwords to-
day, there are several compelling applications for “high
value” passwords such as master passwords for pass-
word managers, passwords used to protect private keys,
device-unlock passwords, and enterprise login pass-
words where cryptographically-strong passwords can
eliminate an entire class of attack. In debunking the
myth that users are inherently incapable of remembering
a strong secret, we advocate that using spaced repetition
to train users to remember strong secrets should be avail-
able in every security engineer’s toolbox.

2 Security goals

Evaluating the difficulty of guessing user-chosen pass-
words is messy [56] and security engineers are left with
few hard guarantees beyond empirical estimates of min-
entropy, which can be as low as 10 bits or fewer [18]. By
contrast, with random passwords we can easily provide
strong bounds of the difficulty of guessing, if not other
attack vectors against passwords [20].

2.1 The cost of brute-force

Random passwords are primarily a defense against an
offline attack (eq. brute-force attack), in which the at-
tacker is capable of trying as many guesses as they can
afford to check computationally. We can estimate the
cost of brute-force by observing the Bitcoin network [3],
which utilizes proof-of-work with SHA-256 to maintain
integrity of its transaction ledger and hence provides di-
rect monetary rewards for efficient brute force. While
SHA-256 is just one example of a secure hash function,
it provides a reasonable benchmark.

In 2013, Bitcoin miners collectively performed ≈ 275

SHA-256 hashes in exchange for bitcoin rewards worth
≈ US$257M. This provides only a rough estimate as Bit-
coin’s price has fluctuated and Bitcoin miners may have
profited from carrying significant exchange-rate risk or
utilizing stolen electricity. Still, this is the only publicly-
known operation performing in excess of 264 crypto-
graphic operations and hence provides the best estimate
available. Even assuming a centralized effort could be
an order of magnitude more efficient, this still leaves us
with an estimate of US$1M to perform a 270 SHA-256
evaluations and around US$1B for 280 evaluations.

In most scenarios, we can gain equivalent security
with a smaller secret by key stretching, deliberately mak-
ing the verification function computationally expensive
for both the attacker and legitimate users [66, 57]. Clas-
sically, this takes the form of an iterated hash func-
tion, though there are more advanced techniques such as
memory-bound hashes like scrypt [69] or halting pass-
word puzzles which run forever on incorrect guesses and
require costly backtracking [25].

With simple iterated password hashing, a modern CPU
can compute a hash function like SHA-256 at around
10 MHz [1] (10 million SHA-256 computations per sec-
ond), meaning that if we slow down legitimate users by
≈ 2 ms we can add 14 bits to the effective strength of
a password, and we can add 24 bits at a cost of ≈ 2 s.
While brute-forcing speed will increase as hardware im-
proves [38], the same advances enable defenders to con-
tinuously increase [72] the amount of stretching in use at
constant real-world cost [19], meaning these basic num-
bers should persist indefinitely.

2
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2.2 Practical attack scenarios

Given the above constraints, we consider a 56-bit ran-
dom password a reasonable target for most practical sce-
narios, pushing the attacker cost around US$1M with 14
bits (around 2 ms) of stretching, or US$1B with 24 bits
(around 2 s) of stretching. Defending against offline at-
tacks remains useful in several scenarios.

Password managers are a compelling aid to the diffi-
culty of remembering many passwords online, but they
reduce security for all of a user’s credentials to the
strength of a master password used to encrypt them at
rest. In at least one instance, a password management
service suffered a breach of the systems used to store
users’ data [63]. Given that password managers only
need to decrypt the credentials at startup, several seconds
of stretching may be acceptable.

Similarly, when creating a public/private key pair for
personal communication, users today typically use a
password to encrypt the private key file to guard against
theft. Given a sufficiently strong random password, users
could use their password and a unique public salt (e.g.,
an email address) to seed a random number generator and
create the keys. The private key could then simply be re-
derived when needed from the password, preventing the
need for storing the private key at all. This application
also likely tolerates extensive stretching.

Passwords used to unlock personal devices (e.g.
smartphones) are becoming increasingly critical as these
devices are often a second factor (or sole factor) in au-
thentication to many other services. Today, most devices
use relatively weak secrets and rely on tamper-proof
hardware to limit the number of guesses if a device is
stolen. Strong passwords could be used to remove trust in
device hardware. This is a more challenging application,
however. The budget for key-stretching may be 14 bits or
fewer, due to the frequency with which users authenticate
and the limited CPU and battery resources available. Ad-
ditionally, entering strong passwords quickly on a small
touchscreen may be prohibitive.

Finally, when authenticating users remotely, such as
logging into an enterprise network, security requirements
may motivate transitioning from user-chosen secrets to
strong random ones. Defending against online guessing,
in which the attacker must verify password guesses us-
ing the genuine login server as an oracle, can be done
with far smaller random passwords. Even without ex-
plicit rate-limiting, attacking a 40-bit secret online would
generate significantly more traffic than any practical sys-
tem routinely handles. 40-bit random passwords would
ensure defense-in-depth against failures in rate-limiting.

Alternately, attackers may perform an offline attack
if a remote authentication server is breached. In gen-
eral, we would favor back-end defenses against pass-

word database compromises which don’t place an addi-
tional burden on users—such as hashing passwords with
a key kept in special-purpose hardware, dividing infor-
mation up amongst multiple servers [52] or one limited-
bandwidth server [41]. Random passwords would also
frustrate brute-force in this scenario, although the oppor-
tunity for key-stretching is probably closer to the 2 ms
(14 bit) range to limit load on the login server.

3 Design

Given our estimation that a 56-bit secret can provide
acceptable security against feasible brute-force attacks
given a strong hash function and reasonable key stretch-
ing, our goal was to design a simple prototype interface
that could train users to learn 56 bits secret with as little
burden as possible.

Spaced repetition [43, 70, 62] typically employs de-
lays (spacings) of increasing length between rehearsals
of the chunk of information to be memorized. While pre-
cisely controlling rehearsal spacing makes sense in appli-
cations where education is users’ primary goal, we did
not want to interrupt users from their work. Instead, we
chose to piggyback learning on top of an already-existing
interruption in users’ work-flow—the login process it-
self. We allow users to employ a user-chosen password
for login, then piggyback learning of our assigned secret
at the end of the login step. We split the 56-bit secret up
into three equal-sized chunks to be learned sequentially,
to enable a gradual presentation and make it as easy as
possible for users to start typing from memory.

3.1 Encoding the secret
Although previous studies have found no significant dif-
ferences in user’s ability to memorize a secret encoded
as words or letters [77, 64], we implemented both encod-
ings. For letters, we used a string of 12 lowercase letters
chosen uniformly at random from the English alphabet to
encode a 2612 ≈ 56.4 bit secret. The three chunks of the
secret were 4 letters each (representing ≈ 18.8 bits each).

For words, we chose a sequence of 6 short, common
English words. To keep security identical to that of the
letters case, we created our own list of 676 (262) pos-
sible words such that 6 words chosen uniformly at ran-
dom would encode a 6766 = 2612 ≈ 56.4 bit secret. We
extracted all 3–5 English nouns, verbs and adjectives
(which users tend to prefer in passwords [24, 85]) from
Wiktionary, excluding those marked as vulgar or slang
words and plural nouns. We also manually filtered out
potentially insulting or negative words. From these can-
didate words we then greedily built our dictionary of 676
words by repeatedly choosing the most common remain-
ing word, ranked by frequency in the Google N-gram

3
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web corpus [27]. After choosing each word we then re-
moved all words within an edit distance of two from the
remaining set of candidates to potentially allow limited
typo correction. We also excluded words which were a
complete prefix of any other word, to potentially allow
auto-complete. We present the complete list in Table 3.

3.2 Login form and hinting

Unlike typical login forms, we do not present a button
to complete sign-in, but rather automatically submit the
password for verification via AJAX each time a character
is typed. Above the password field we display the word
“verifying” while awaiting a response and “not yet cor-
rect” while the current text is not the correct password.

After the user’s self-chosen password is verified, a text
box for entering the first chunk of the user’s assigned
code appears to the right of the password field, as we
show in Figure 1. On the first login, we display the
correct value of the chunk immediately above the field
into which users must enter it. In the version used for
our study, we included a pop-up introducing the security
code and its purpose:

Due to concerns about stolen accounts and bonuses, we are giv-
ing you an additional security code. To finish logging in, simply
type the [four letters | two words] above the text box. Your code
will not change, so once you have learned it, try to type it before
the hint appears.

We color each character a user enters into the security
code field green if it is correct and red if incorrect. We re-
place correct characters with a green circle after 250 ms.

With each consecutive login, we delay the appearance
of the hint by 1

3 of a second for each time the user has
previously seen the chunk, up to a maximum of 10 sec-
onds. If the user types a character correctly before the
delay expires, we start the delay countdown again. We
selected these delay values with the goal of imposing the
minimal annoyance necessary to nudge users to start typ-
ing from memory.

After a user enters a chunk without seeing the hint on
three consecutive logins, we add another chunk. In the
version used in our study, we show a pop-up which can
be dismissed for all future logins:

Congratulations! You have learned the first [four letters | two
words] of your security code. We have added another [four let-
ters | two words]. Just like the first [four letters | two words],
once you have learned them, you can type them without waiting
for the hint to appear.

When we detect that a user has finished typing the
first chunk of their security code, we automatically tab
(moved the cursor) to the text field for the second chunk
and then start the delay for that chunk’s hint. After typ-
ing the second chunk correctly from memory three times

Figure 2: The login form for a user in who has just re-
ceived the third security code chunk words.

in a row, we add the third and final chunk. In the version
used in the study, we also displayed one more pop-up:

Congratulations! You have learned the first [eight letters | four
words] of your security code. We have added a final [four letters
| two words]. These are the last [four letters | two words] we
will ask you to learn. Once you have learned them, you can type
them before the hint appears. Once you know the full code, we
can use it to protect your account.

We illustrate the login process from our study, using
all three chunks, in Figure 2. In a real deployment, once
the user is consistently typing the entire security code
from memory, entering their self-chosen password would
no longer be necessary.

We disable pasting and automatic form-filling for the
security code field to encourage users to type from mem-
ory. We allow users to type their code in lower or upper
case, with all non-letter characters being ignored, includ-
ing spaces between words as no word is a prefix of any
other word. During training we automatically insert a
space at the end of any entered code word so users learn
that they do not need to type the spaces.

4 Experimental Methodology

We used a remote online study to evaluate our system.
To keep participants from realizing the purpose of our
study was the security codes and potentially altering their
behavior, we presented our study as a psychology study
with the security codes a routine part of logging in to
participate. We recruited participants using Amazon’s
Mechanical Turk (MTurk) platform [59] and paid them
to participate, which required logging in 90 times in 15
days. For completeness, we provide exact study materi-
als the extended version of this paper [23].

4.1 The distractor task

We intended our distractor task to provide a plausible
object of study that would lead us to ask participants to
log in to our website repeatedly (distracting participants
from the subject of our investigation) and to require a
non-trivial mental effort (distracting them from making
conscious efforts to memorize their security codes). Yet
we also wanted the distractor task to be relatively fast,

4
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Figure 3: The Attention Game, our distractor task

interesting, and challenging, since we were asking par-
ticipants to perform a large number of logins.

We designed a game to resemble descendants of the
classic psychological study that revealed the Stroop ef-
fect [79]. Our game measured participants’ ability to ig-
nore where a word appeared (the left or right side of their
screen) and respond to the meaning of the word itself.
Each 60-second game consisted of 10 trials during which
either the word ‘left’ or ‘right’ would appear in one of
two squares on the screen, as illustrated in Figure 3. The
words appeared in a random square after a random delay
of 2–4 seconds, after which participants were asked to
immediately press the f key upon seeing the word ‘left’
or j key upon seeing the word ‘right’ (corresponding to
the left and right sides of a QWERTY keyboard). During
the game, participants saw a score based on their reaction
time, with penalties for pressing the wrong key.

4.2 Treatments
We randomly assigned participants to three treatments:
letters (40% of participants), words (40%), and control
(20%). Participants in the letters and words treatments
received security codes consisting of letters and words,
respectively, as described in Section 3.1. Participants
in the control treatment received no security code at all
and saw a simple password form for all logins; we in-
cluded this treatment primarily to gauge whether the ad-
ditional security codes were causing participants to drop
out of the experiment more than traditional authentica-
tion would have.

4.3 Recruiting
We recruited participants to our study using Ama-
zon’s Mechanical Turk by posting a Human Intelligence
Task (HIT) titled “60-Second Attention Study”, paying

US$0.40, and requiring no login. When participants
completed the game, we presented them with an offer
to “Earn $19 by being part of our extended study” (a
screenshot of the offer is in the extended version of this
paper [23]). The offer stated that participants would be
required to play the game again 90 times within 15 days,
answer two short questions before playing the game, wait
30 minutes after each game before starting a new game
session, and that they would have to login for each ses-
sion. We warned participants that those who joined the
extended study but did not complete it would not receive
partial payment. Our study prominently listed Microsoft
Research as the institution responsible for the study. As
we did not want to place an undue burden on workers
who were not interested in even reading our offer, we
provided a link with a large boldface heading titled “Get
paid now for your participation in this short experiment”
allowing participants to be paid immediately without ac-
cepting, or even reading, our offer.

When workers who had performed the single-game
HIT signed up to participate in our 90-game attention
study, we presented them with a sign-up page displaying
our approved consent form and asking them to choose a
username and a password of at least six characters. For
the 88 logins following signup (games 2–89), and for lo-
gin to the final session (in which we did not show the
game but instead showed the final survey), we required
participants to login using the chosen password and se-
curity code (if assigned a non-control treatment).

Amazon’s policies forbid HITs that require workers to
sign up for accounts on websites or to provide their email
addresses. These rules prevent a number of abusive uses
of Mechanical Turk. They also protect Amazon’s busi-
ness by forbidding requesters from recruiting workers,
establishing a means of contact that bypasses Amazon,
and then paying hired workers for future tasks without
paying Amazon for its role in recruiting the workers. Our
HIT was compliant with the letter of these rules because
we only required workers to play the attention game, and
they were in no way obligated to sign up for the full at-
tention study. We were also compliant with the spirit of
the rules, as we were not asking workers to engage in
abusive actions and we did not cut Amazon out of their
role as market maker—we paid participants for the 90-
game attention study by posting a bonus for the HIT they
already completed through Amazon.

As in any two-week project, some participants re-
quested extensions to the completion deadline in order to
reach 90 completed game. We provided 24-hour exten-
sions to participants who were within 20 games of com-
pleting the study at the deadline.
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Figure 4: Participants were asked to fill out this two-
question survey before every attention game.

Figure 5: After completing an attention test, participants
could not perform another one for 30 minutes.

4.4 Sessions
After each login we presented a very short survey (shown
in Figure 4) asking participants about their recent sleep
and eating. This was designed solely to support the pur-
ported goal of the study and we ignored the responses.

After participants completed the survey we immedi-
ately displayed the “Attention Game”. When they com-
pleted the game, we overlaid a timer on top of the page
counting down 30 minutes until they could again fill out
the survey and play the game (see Figure 5). The timer
also counted down in the title of the page, so that partic-
ipants would see the countdown when browsing in other
tabs and know when they were next allowed to play. If
participants tried to log into the website again before the
30-minute waiting period was complete, we displayed
the countdown again, starting from the amount of time
remaining since they last completed the game.

4.5 Completion survey
When participants logged in for the 90th and final time,
we skipped the game and displayed our completion sur-
vey. We provide the full text of the survey (with partici-
pants’ answer counts) in the extended version of this pa-
per [23]. We started the survey with demographic ques-

tions and then asked participants if they had written down
or stored their passwords or assigned security codes out-
side of their memory.

We then debriefed participants about the true nature of
the study, explaining that the security code was the focus
of the study, though we did not reveal that we planned
a follow-up study. We could not defer the debriefing to
the follow-up study, as participants had not committed to
engage with us beyond the end of the study and might
not accept invitations for future contact. Indeed, some
participants reported discussing the study in forums, but
as we had entrusted those who finished the study with the
truth, they returned that trust by respecting forum rules
against ‘spoilers’ in all cases we are aware of.

To aid with the follow-up study, we asked participants
to provide their email address, stating the question in a
manner that we hoped would minimize suspicion that a
formal follow-up study was imminent.

If our analysis raises more questions about your experi-
ence during the study, may we contact you and ask you to
answer a few questions in return for an additional bonus?
If so, provide your email below. (This is optional!)

4.6 Payment
We paid $20 to participants who completed the study, as
opposed to the $19 promised, to show extra gratitude for
their participation. We informed participants of this only
after they had completed the ‘attention’ study and filled
out their post-deception ethics questionnaire, so as to not
taint their responses about the ethics of the deception.
However, this payment came well before the invitation
to the follow-up study. Receiving a payment exceeding
what we had promised may have increased participants’
receptiveness to that invitation.

Despite telling participants they would not be paid un-
less they completed the study, we did pay $0.20 per lo-
gin to all participants who logged into the site at least
once after signing up. We did so because we couldn’t
be certain that the extra work of entering a security code
didn’t cause some participants to drop out. We wanted
to ensure that if participants found the security code so
arduous as to quit, they would not lose out on payment
for the attention tests they did complete. We did not re-
veal this fact to the participants who completed the study
and filled out the ethics survey as we feared they might
communicate it to those who had yet to finish.

4.7 Follow-ups
At least 72 hours after a non-control group participant
completed the study, we emailed them an invitation to
perform an additional HIT for $1 (this email is repro-
duced in the extended version of this paper [23]). Most
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participants provided an email address in the final sur-
vey of the attention study; we tried to contact those who
didn’t via Mechanical Turk. When participants accepted
the HIT, we identified them by their Mechanical Turk ID
to verify that they’d participated in the main study.1

The follow-up study contained only one question:

Please try to recall and enter the security code that we as-
signed you during the attention study.
If you stored or wrote down your security code, please
do not look it up. We are only interested in knowing what
you can recall using only your memory. It’s OK if you
don’t remember some or all of it. Just do the best you can.

We presented participants with three text fields for the
three chunks of their security code. Unlike the data-entry
field used when they logged in for the attention experi-
ment, we used plain text fields without any guidance as to
whether the characters typed were correct. We accepted
all responses from participants that arrived within two
weeks of their completion of the study.

We emailed all participants who completed the first
follow-up again 14 days after they completed it with the
offer to complete a second identical follow-up for an ad-
ditional $1 reward.

4.8 Ethics
The experiment was performed by Microsoft Research
and was reviewed and approved by the organizations’s
ethics review process prior to the start of our first pilot.2

We employed deception to mask the focus of our re-
search out of concern that participants might work harder
to memorize a code if they knew it to be the focus of our
study. We took a number of steps to minimize the poten-
tial for our deception to cause harm. We provided partic-
ipants with estimates for the amount of time to complete
the study padded to include the unanticipated time to en-
ter the security code. While we told participants they
would not be paid if they did not complete the study, we
did make partial payments. We monitored how partic-
ipants responded to the deception, investigating the re-
sponses of pilot participants before proceeding with the
full study and continued to monitor participants in the
full study, using a standard post-deception survey hosted
by the Ethical Research Project [82]. We also offered
participants the opportunity to withdraw their consent for
use data derived from their participants. The vast major-
ity of participants had no objection to the deception and

1We failed to verify that it had been three days since they completed
the study, requiring us to disqualify three participants who discovered
the follow-up study prematurely (see Section 5.1).

2The first author started a position at Princeton after the research
was underway. He was not involved in the execution of the study or
communications with participants. He did not have access to the email
addresses of those participants who volunteered to provide them (the
only personally-identifiable information collected).

none asked to have their data withdrawn. We provide
more detail on participants’ ethics responses in the ex-
tended version of this paper [23].

5 Results

We present overall analysis of the most important results
from our study: participant’s ability to learn and recall
security codes. We present a full accounting of partici-
pants’ responses to the multiple-choice questions of our
final survey and the complete text of that survey in the ex-
tended version of this paper [23], including demograph-
ics which reflect the typical MTurk population [74].

5.1 Recruitment and completion
We offered our initial attention-game task to roughly 300
workers from February 3–5, 2014. 251 workers accepted
the offer to participate in our study by completing the
sign-up page and playing the first game. We stopped
inviting new participants when we had reached roughly
100 sign-ups for our two experimental groups. Partic-
ipants’ assigned treatment had no effect until they re-
turned after sign-up and correctly entered their username
and chosen password into the login page, so we discard
the 28 who signed up but never returned. We categorize
the 223 participants who did return in Table 1.

5.1.1 Dropouts

Inserting a security-code learning step into the login pro-
cess creates an added burden for participants. Of par-
ticipants who completed the study, typing (and waiting
for) the security codes added a median delay of 6.9 s per
login. To measure the impact of this burden, we tested
the hypothesis that participants assigned a security code
would be less likely to complete the experiment than
those in the control. The null hypothesis is that group
assignment has no impact on the rate of completion.

Indeed, the study-completion rates in the fourth row
of Table 1 are higher for control than the experimental
groups. We use a two-tailed Fisher’s Exact Test to com-
pare the proportion of participants who completed the
study between those assigned a security code (the union
of the letters and words treatments, or 133 of 170) to that
of the control (35 of 41). The probability of this dif-
ference occurring by chance under the null hypothesis is
p = 0.2166. While this is far from the threshold for sta-
tistical significance, such a test cannot be used to reject
the alternate hypothesis that the observed difference re-
flects a real percentage of participants who dropped out
due to the security code.

Digging into the data further, we can separate out
those participants who abandoned the study after exactly
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Control Letters Words Total
Signed up for the ‘attention’ study 41 92 90 223

Quit after 2 or 3 games 0/41 0% 9/92 10% 12/90 13% 21/223 9%
Otherwise failed to finish 6/41 15% 14/92 15% 12/90 13% 32/223 14%

Completed the ‘attention’ study 35/41 85% 69/92 75% 66/90 73% 170/223 76%
Received full security code — 63/68 93% 64/65 98% 127/133 95%

Typed entire code from memory — 62/63 99% 64/64 100% 126/127 99%
Participated in first follow-up — 56/63 89% 56/64 88% 112/127 88%

Recalled code correctly — 46/56 82% 52/56 93% 98/112 88%
Participated in second follow-up — 52/56 93% 52/56 93% 104/112 93%

Recalled code correctly — 29/52 56% 32/52 62% 61/104 59%

Table 1: Results summary: participants who signed up for the attention study, the fraction of those participants who
completed the study, the fraction of the remaining participants who entered the first two chunks of their security code
reliably enough to be shown the full security code (all three chunks), the fraction of those remaining who participated
in the follow-up studies (after 3 and 17 days, respectively), and the fraction of those who recalled their security code
correctly. The control group did not receive security codes and hence are excluded from the latter rows of the table.

two or three games from those who failed to finish later
(no participant quit after the fourth or fifth games). While
no participant in the control quit between two or three
games, 9 participants assigned to letters and 12 assigned
to words did. For participants who completed more than
three games, the rate of failure to finish the study is re-
markably consistent between groups. We do not perform
statistical tests as this threshold is data-derived and any
hypothesis based on it would be post-hoc. Rather, as our
study otherwise presents a overall favorable view of ran-
dom assigned secrets, we present the data in this way as
it illustrates to the reader reason for skepticism regarding
user acceptance among unmotivated participants.

5.1.2 Participants who appeared not to learn

Six participants completed the study without receiving
all three chunks of their security codes, having failed to
demonstrate learning by typing the first chunk (one par-
ticipant from letters) or second chunk (five participants,
four from letters and one from words) before the hint ap-
peared. After the conclusion of the study we offered par-
ticipants $1 to provide insights into what had happened
and all replied. Two in the letters group, including the
one who only received one chunk, reported genuine diffi-
culty with memory. The other four stated quite explicitly
(which we provide in the extended version of this pa-
per [23]) that they purposely avoided revealing that they
had learned the second chunk to avoid being assigned
more to learn.

5.1.3 Excluded participants

We found it necessary to exclude four participants from
some of our analysis. Three participants, two in words

and one in letters, discovered and accepted the follow-
up HIT before three days had passed since the end of
the study, ignoring the admonition not to accept this HIT
without an invitation. Though these participants all com-
pleted the 90-game attention study, learned and recalled
their entire security code, we count them as having not
returned for the follow-up. We corrected this bug prior
to the second follow-up. We disqualified one additional
‘participant’ in the letters group which appeared to be
using an automated script.

After revealing the deceptive nature of the study we
gave participants the option to withdraw their consent for
us to use our observations of their behavior, while still
receiving full payment. Fortunately, none chose to do so.

5.2 Learning rates

Of non-control participants completing the study, 93%
eventually learned their full security code well enough
to type it from memory three times in a row (91% of
letters and 96% of words). Most participants learned
their security codes early in the study, after a median of
36 logins (37 for letters and 33 of words). We show the
cumulative distribution of when participants memorized
each chunk of their code in Figure 6.

We consider whether participants first typed their
codes from memory in fewer logins with either letters
or words, with the null hypothesis that encoding had no
impact on this measure of learning speed. A two-tailed
Mann-Whitney U (rank sum) test on the distribution of
these two sets of learning speeds estimates a probability
of p = 0.07 (U = 1616) of observing this difference by
chance, preventing us from rejecting the null hypothesis.

We had hypothesized that, with each subsequent
chunk we asked participants to memorize, their learn-
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Figure 6: We show the proportion of participants who
had memorized each chunk of their security code after
a given number of login attempts. We considered a par-
ticipant to have memorized a chunk after they entered it
without a hint in three consecutive logins.

ing speed might decrease due to interference [31] or in-
crease due to familiarity with the system. Learning times
decreased. We use a Mann-Whitney U test to compare
learning times between the first and final chunks, using
times only for participants who learned all three, yielding
a significant p < 0.001 (U = 4717). To remove the im-
pact of the time required to notice the delay and learn that
they could enter the code before it appeared, we compare
the learning times between the third and second chunks.
This difference is much smaller, with a Mann-Whitney
U test yielding a probability of p = 0.39 (U = 7646) of
an effect due to chance.

To illustrate the increasing rate of learning we show,
in Figure 7, the percent of participants who typed each
chunk correctly from memory as a function of the num-
ber of previous exposures to that chunk.

5.3 Login speed and errors
Overall, participants in the words group took a median
time of 7.7 s to enter their security codes, including wait-
ing for any hints to appear that they needed, and partic-
ipants in the letters group took a median time of 6.0 s.
Restricting our analysis to those logins in which partici-
pants were required to enter all three chunks of the code
only increases the median login time to 8.2 s for words
and 6.1 s for letters.3 The distribution had a relatively
long tail, however, with the 95th percentile of logins tak-
ing 23.6 s for words and 20.5 s for letters.

3The median login time actually went down for letters participants
when all three chunks were required, likely because this included more
logins typed exclusively from memory with no waiting for a hint.
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Figure 7: For each of the three chunks in participants’ se-
curity codes, we show the proportion of participants who
entered each chunk without a hint as a function of the
number of previous exposures to the chunk (the number
of previous logins in which the chunk appeared). On the
whole, participants actually memorized their second and
third chunks more quickly than the first.

After computing the median login time for each par-
ticipant, we compared the set of these values for par-
ticipants in the two experimental groups using a Mann-
Whitney U . We can reject the null hypothesis that the dif-
ferences between these medians were the result of chance
with p < 0.01 (U = 1452) and conclude that participants
in the letters group were significantly faster.

Errors in entering security codes (whether typos or
genuine memory errors) were relatively rare: over all 90
logins participants in the words group made fewer errors
(with a median of 5) than participants in the letters group
(median 7). Using a Mann-Whitney U , we cannot reject
the null hypothesis that neither group would make more
errors than the other (p = 0.08 (U = 1706)).

5.4 Recall of security codes in follow-ups
We sent invitations to participants to follow-up studies
testing recall of their security codes 3 days after the ini-
tial study ended and then 14 more days after they com-
pleted the first follow-up. The median time between
when participants completed the study and actually took
the first follow-up study was 3 days 18 hours (mean 4
days 23 hours). For the second follow-up study the me-
dian time was 16 days 0 hours (mean 16 days 13 hours).
By comparison, the median time to complete the study
itself was 10 days 5 hours (mean 9 days 19 hours).

Overall, 88% of participants recalled their code cor-
rectly in the first follow-up and 59% did so in the sec-
ond. The drop-off at the second follow-up was expected
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as memory is believed to decay exponentially with the
delay since the information was last recalled [89].

We had hypothesized that participants in the letters
treatment might be more or less likely to recall their secu-
rity codes correctly in the follow-ups than participants in
the words treatment. As seen in Table 1, of participants
in the letters group 82% recalled their security codes cor-
rectly in the first follow-up and 56% did so in the second
study, compared to 93% and 62%, respectively, of users
in words. Using a two-tailed Fisher’s Exact Test, we can-
not rule out the null hypothesis that participants in ei-
ther group were equally likely to recall codes correctly,
with the observed differences occurring with a p = 0.15
chance in the first follow-up and p = 0.45 in the second
follow-up under the null hypothesis.

5.4.1 Types of errors

We observed 14 participants incorrectly entering their
code in the first follow-up and 52 in the second. All
13 users who entered incorrectly in the first follow-up
and participated in the second entered their code incor-
rectly again. This sample is too low to draw firm con-
clusions about the nature of participants’ recall errors,
but we did see evidence that users retained partial mem-
ory, with 75% of users entering at least one component
of their code correctly in the second follow-up and 48%
missing only one component or entering components in
the wrong order. Re-arranging the order of components,
which accounted for 10% of errors, could be corrected
by accepting components in any order at a loss of only
log2(3!)≈ 2.6 bits of security. Unfortunately, the major-
ity of other errors could not be corrected without signif-
icantly downgrading security. Only 3 participants (6%)
in the second-followup (and 2 in the first) entered a code
within an edit distance of 2 of the correct code. We
present further information on the types of errors ob-
served in the extended version of this paper [23].

5.4.2 Storing security codes

A minority of participants reported storing their security
code outside of their memory, as presented in Table 2.
We were concerned that participants who had stored their
security codes might have been tempted to look them up
and thereby inflated the recall rate during the follow-up.
However, only 82% of participants storing their security
code recalled it correctly on follow-up, whereas 89% of
participants not storing the security code did. While it’s
possible that participants who did not rely on a stored
code were better able to remember as a result, we had not
hypothesized this in advance nor would the differences
we observed have been statistically significant.

We had hypothesized that participants might be more

likely to write down or otherwise store codes outside
their memory if assigned a code composed of letters as
opposed to words, or vice versa. The null hypothesis is
that treatment has no impact on the choice to store codes.
In the completion survey, 18 of the 69 participants in
the letters treatment reported having stored their security
code, as compared to 10 of the 66 in the words treatment.
We use a two-sided Fisher’s Exact Test to estimate that
such a difference would occur with probability p = 0.14
under the null hypothesis. Thus we can not conclude that
either treatment made participants more likely to write
their code down.

6 Limitations

Whenever testing a new approach to security, its novelty
alone may be enough to reveal to research participants
that it is the focus of the study. Despite our best efforts,
of the 133 participants in the experimental groups who
completed the study (68 in letters and 65 in words), only
35 (26%, 24 from letters and 11 from words) reported
that they did not suspect that the security code might be
the focus of the study. The majority, 70 (53%, 28 from
letters and 42 from words) reported having some suspi-
cion and 28 (21%, 16 from letters and 12 from words)
reported being ‘certain’ the security code was the focus
of the study. Still, to our knowledge no participants re-
vealed any ‘spoilers’ on public forums. Participants who
suspected we were studying their ability to learn the se-
curity code may have tried harder to memorize the code
than if they had not, though it’s not clear how their effort
would compare to that of a real-world user relying on a
randomly-assigned code to secure something valuable.

7 Background and related work

7.1 Physiological principles of memory

Human memory has been studied extensively by psy-
chologists (as well as neuroscientists and others). The
spacing effect describes how people are better able to re-
call information if it is presented for the same duration,
but in intervals spaced over a longer period of time. This
effect was first described in the 19th century [43] and is
considered one of the most robust memory effects [10].
It has even been demonstrated in animals. The effect is
almost always far more powerful than variations in mem-
ory between individual people [35].

The cause of the spacing effect is still under debate,
but most theories are based around the multi-store model
of memory [33] in which short-term (or working mem-
ory) and long-term memory are distinct neurological pro-
cesses [8, 9]. One theory of the spacing effect posits
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Did you store any part of the additional security code for the
study website, such as by writing it down, emailing it to

yourself, or adding it to a password manager?
‘Yes’ ‘No’

Letters Words Letters Words
Completed the study 18/68 26% 10/65 15% 50/68 74% 55/65 85%

Reported storing password 11/18 61% 6/10 60% 2/50 4% 0/55 0%
Received full security code 16/18 89% 9/10 90% 47/50 94% 55/55 100%
Participated in follow-up 14/16 88% 8/9 89% 42/47 89% 48/55 87%
Recalled code correctly 12/14 86% 6/8 75% 34/42 81% 46/48 96%

Table 2: A minority of participants reported storing their security code outside of their memory. Each row corresponds
to an identically-named row in Table 1, separated by participants’ response to the code storage question in each column.
The first row shows the fraction of all participants who completed the study in each group, and each subsequent row
as a fraction of the one above, except for the italicized row which identifies participants who reported storing their
self-chosen password (which was much more common amongst participants who stored their security code).

that when information is presented which has left short-
term memory, a trace of it is recognized from long-term
memory [47] and hence stimulated, strengthening the
long-term memory through long-term potentiation [14]
of neural synapses. Thus, massed presentation of in-
formation is less effective at forming long-term memo-
ries because the information is recognized from work-
ing memory as it is presented. In our case, the natural
spacing between password logins is almost certainly long
enough for the password to have left working memory.

Early work on spaced learning focused on expanding
presentation in which an exponentially increasing inter-
val between presentations was considered optimal [70,
62]. More recent reviews have suggested that the pre-
cise spacing between presentations is not particularly im-
portant [11] or that even spacing may actually be supe-
rior [53]. This is fortunate for our purposes as password
logins are likely to be relatively evenly spaced in time.
Other work has focused on dynamically changing spac-
ing using feedback from the learner such as speed and
accuracy of recall [68] which could potentially guide ar-
tificial rehearsal of passwords.

7.2 Approaches to random passwords
Many proposals have aimed to produce random pass-
words which are easier for humans to memorize, im-
plicitly invoking several principles of human memory.
Early proposals typically focused on pronounceable ran-
dom passwords [46, 90] in which strings were produced
randomly but with an English-like distribution of letters
or phonemes. This was the basis for NIST’s APG stan-
dard [2], though that specific scheme was later shown to
be weak [45]. The independently-designed pwgen com-
mand for generating pronounceable passwords is still
distributed with many Unix systems [5].

Generating a random set of words from a dictionary, as

we did in our words treatment, is also a classic approach,
now immortalized by the web comic XKCD [67]. This
was first proposed by Kurzban [61] with a very small 100
word dictionary, the popular Diceware project [6] offers
4,000 word dictionaries. Little available research exists
on what size and composition of dictionaries is optimal.

Finally, a number of proposals have aimed to enhance
memorability of a random string by offering a secondary
coding such as a set of images [58], a grammatical sen-
tence [7, 50], or a song [65]. Brown’s passmaze proto-
col was recognition-based, with users simply recogniz-
ing words in a grid [29]. None of these proposals has
received extensive published usability studies.

7.3 Studies on password recall
A number of studies have examined user performance
in recalling passwords under various conditions. These
studies often involve users choosing or being assigned a
new password in an explicitly experimental setting, and
testing the percentage of users who can correctly recall
their password later. Surprisingly, a large number of
studies have failed to find any statistically significant im-
pact on users’ ability to recall passwords chosen under
a variety of experimental treatments, including varying
length and composition requirements [95, 71, 92, 86, 60]
or requiring sentence-length passphrases [55].4 The con-
sistent lack of impact of password structure on recall
rates across studies appears to have gone unremarked in
any of the individual studies.

However, several studies have found that stricter com-
position requirements increase the number of users writ-
ing their passwords down [71, 60] and users self-report
that they believe passwords are harder to remember when
created under stricter password policies [60, 92].

4Keith et al. [55] did observe far more typos with sentence-length
passwords, which needed correcting to isolate the effective recall rates.
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At least three studies have concluded that users are
more likely to remember passwords they use with greater
frequency [95, 28, 42]. This suggests that lack of ad-
equate training may in fact be the main bottleneck to
password memorization, rather than the inherent com-
plexity of passwords themselves. Brostoff [28] appears
to have made the only study of password automacity (the
ability to enter a password without consciously thinking
about it), and estimated that for most users, this property
emerges for passwords they type at least once per day.

A few studies have directly compared recall rates of
user-generated passwords to assigned passwords. Inter-
estingly, none has been able to conclude that users were
less likely to remember assigned passwords. For exam-
ple, in a 1990 study by Zviran and Haga [94] in which
users were asked to generate a password and then recall it
3 months later, recall was below 50% for all unprompted
text passwords and no worse for system-assigned random
passwords, though the rate of writing increased. A simi-
lar lab study by Bunnell et al. found a negligibly smaller
difference in recall rate for random passwords [30]. A
2000 study by Yan et al. [92] found that users assigned
random passwords for real, frequently-used accounts ac-
tually requested fewer password resets than users choos-
ing their own passwords, though those users were also
encouraged to write their passwords down “until they had
memorized them.” Stobert in 2011 [78] found no sig-
nificant difference in recall between assigned and user-
chosen text passwords.

Two studies have exclusively compared user’s ability
to recall random passwords under different encodings.
The results of both were inconclusive, with no signifi-
cant difference in recall rate between users given random
alphanumeric strings, random pronounceable strings or
randomly generated passphrases at a comparable secu-
rity level of 30 [77] or 38 bits [64]. The results ap-
pear robust to significant changes in the word dictionary
used for passwords or the letters used in random strings.
However, users stated that alphanumeric strings seemed
harder to memorize than random passphrases [77].

All of these studies except that of Yan et al. face va-
lidity concerns as the passwords were explicitly created
for a study of password security. A 2013 study by Fahl
et al. [44] compared user behavior in such scenarios and
found that a non-trivial proportion of users behave signif-
icantly differently in explicit password studies by choos-
ing deliberately weak passwords, while a large number of
users re-use real passwords in laboratory studies. Both
behaviors bias text passwords to appear more memo-
rable, as deliberately weak passwords may be easy to
memorize and existing passwords may already be mem-
orized. Also of concern, all of these studies (again ex-
cluding Yan et al.) involved a single enrollment process
followed by recall test, with no opportunity for learning.

Spaced repetition for passwords was recently sug-
gested by Blocki et al. [16], who proposed designing
password schemes which insert a minimal number of ar-
tificial rehearsals to maintain security. After our study,
Blocki published results from a preliminary study on
mnemonic passwords with formal rehearsals [15]. Com-
pared to our study, participants performed a much lower
number of rehearsals spaced (about 10) spaced over a
longer period (up to 64 days), prompted by the system
at specific times rather than at the participant’s conve-
nience. Unlike our study participants were aware that
memorization was the explicit goal of the study. Blocki
also incorporated additional mnemonic techniques (im-
ages and stories). This study provides evidence that
spaced repetition and other techniques can be applied
more aggressively for motivated users, whereas as our
study demonstrates the practicality with few system
changes and unmotivated users.

7.4 Alternative authentication schemes

Several approaches have been explored for exploiting
properties of human memory in authentication systems.
One approach is to query already-held memories us-
ing personal knowledge question schemes such as “what
is your mother’s maiden name?” though more sophis-
ticated schemes have been proposed [93, 48] While
these schemes typically enable better recall than pass-
words, they are vulnerable to attacks by close social re-
lations [76], many people’s answers are available in on-
line search engines or social networks [73], and many
questions are vulnerable to statistical guessing [21, 76].
An advantage of personal knowledge questions is that
they represent cued recall with the question acting as
a cue, which generally increases memory performance
over free recall.

Graphical passwords aim to utilize humans’ strong
abilities to recognize visual data [13]. Some schemes
employ cued recall only by asking users to recognize a
secret image from a set [40, 87, 80]. Others use uncued
memory by asking users to draw a secret pattern [49, 81,
12] or click a set of secret points in an image [88, 37].
These schemes are often still vulnerable to guessing at-
tacks due to predictable user choices [39, 83, 84]. The
Persuasive Cued Click-Points scheme [36] attempts to
address this by forcing users to choose points within a
system-assigned region, which was not found to signif-
icantly reduce recall. Still, it remains unclear exactly
what level of security is provided by most graphical
schemes and they generally take longer to authentication
than typing a text password. They have found an im-
portant niche on mobile devices with touch screens, with
current versions of Android and Windows 8 deploying
graphical schemes for screen unlock.

12
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Bojinov et al. [17] proposed the use of implicit mem-
ory for authentication, training users to type a random
key sequence in rapid order using a game similar to one
used in psychological research to study implicit mem-
ory formation [75]. After a 30–45 minute training pe-
riod, users were tested 1–2 weeks later on the same game
with their trained sequences and random sequences, with
about half performing significantly better on trained se-
quences. Such a scheme offers the unique property that
users are unaware of their secret and thus incapable of
leaking it to an attacker who doesn’t know the correct
secret challenge to test on, providing a measure of re-
sistance against “rubber-hose” attacks (physical torture).
Without dramatic improvements however this scheme is
impractical for normal personal or corporate logins due
to the very long enrollment and login times and the low
rate of successful authentication.

8 Open questions and future work

As this was our first exploration of spaced repetition for
learning random secrets, many of our design choices
were best guesses worthy of further exploration. The
character set used when encoding secrets as letters,
namely 26 lowercase letters, might be inferior to an ex-
panded set such as base-32 with digits included [51]. Our
choice of a dictionary of 676 words is almost surely not
optimal, since we deliberately chose it for equivalence to
the size of our character set. Splitting the secret into three
equal-sized chunks was also simply a design heuristic,
performance might be better with more or fewer chunks.

We expect spaced repetition to be a powerful enough
tool for users to memorize secrets under a variety rep-
resenation formats, though the precise details may have
important implications. We observed letters to be slightly
faster to type and words slightly faster to learn. We also
observed double the rate of forgotten codes after three
days in the letters group and, though this difference was
not statistically significant given our sample sizes and the
low absolute difference, this is worthy of further study as
this difference could be important in practice.

Our system can likely be improved by exploiting ad-
ditional memory effects, such as dual-coding secrets by
showing pictures next to each word or requiring greater
depth of processing during each rehearsal. Cued recall
could also be utilized by showing users random prompts
(images or text) in addition to a random password.

On the downside, interference effects may be a ma-
jor hindrance if users were asked to memorize multiple
random passwords using a system like ours. This is wor-
thy of further study, but suggests that random passwords
should only be used for critical accounts.

Changing the login frequency may decrease or in-
crease performance. We aimed to approximate the num-

ber of daily logins required in an enterprise environment
in which users lock their screen whenever leaving their
desks. In this context, the trade-offs appear reasonable
if newly-enrolled users can learn a strong password after
two weeks of reduced security (to the level of a user-
chosen password) with about 10 minutes of aggregate
time spent learning during the training period.

In contexts with far fewer logins, such as password
managers or private keys which might be used once
per day or less, learning might require a larger number
of total logins. If a higher total number of logins are
needed and they occur at a slower rate, this may lead
to an unacceptable period of reduced security. In this
case, security-conscious users could use rehearsals out-
side of authentication events. Further, if codes are used
extremely infrequently after being memorized, artificial
rehearsals may be desirable even after learning the secret.
These are important cases to study, in particular as these
are cases in which there is no good alternative defense
against offline brute-force attacks.

While the learning rates of our participants did not
slow down as the number of chunks they memorized in-
creased, they might have more have trouble as the num-
ber of chunks grows further or as they have to asso-
ciate different codes with different accounts. Fortunately,
most users only have a small number of accounts valu-
able enough to require a strong random secret.

9 Conclusion

For those discouraged by the ample literature detailing
the problems that can result when users and security
mechanisms collide, we see hope for the human race.
Most users can memorize strong cryptographic secrets
when, using systems freed from the constraints of tradi-
tional one-time enrollment interfaces, they have the op-
portunity to learn over time. Our prototype system and
evaluation demonstrate the brain’s remarkable ability to
learn and later recall random strings—a fact that sur-
prised even participants at the conclusion of our study.
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[43] EBBINGHAUS, H. Über das gedächtnis: untersuchungen zur ex-
perimentellen psychologie. Duncker & Humblot, 1885.

[44] FAHL, S., HARBACH, M., ACAR, Y., AND SMITH, M. On the
ecological validity of a password study. In Proceedings of the
Ninth Symposium on Usable Privacy and Security (2013), ACM,
p. 13.

[45] GANESAN, R., DAVIES, C., AND ATLANTIC, B. A new attack
on random pronounceable password generators. In Proceedings
of the 17th {NIST}-{NCSC} National Computer Security Con-
ference (1994).

[46] GASSER, M. A random word generator for pronounceable pass-
words. Tech. rep., DTIC Document, 1975.

[47] GREENE, R. L. Spacing effects in memory: Evidence for a two-
process account. Journal of Experimental Psychology: Learning,
Memory, and Cognition 15, 3 (1989), 371.

[48] JAKOBSSON, M., YANG, L., AND WETZEL, S. Quantifying the
security of preference-based authentication. In Proceedings of
the 4th ACM Workshop on Digital Identity Management (2008),
ACM, pp. 61–70.

[49] JERMYN, I., MAYER, A., MONROSE, F., REITER, M. K., RU-
BIN, A. D., ET AL. The design and analysis of graphical pass-
words. In Proceedings of the 8th USENIX Security Symposium
(1999), vol. 8, Washington DC, pp. 1–1.

[50] JEYARAMAN, S., AND TOPKARA, U. Have the cake and eat it
too—Infusing usability into text-password based authentication
systems. In Computer Security Applications Conference, 21st
Annual (2005), IEEE.

[51] JOSEFSSON, S. The Base16, Base32, and Base64 Data Encod-
ings. RFC 4648 (Proposed Standard), Oct. 2006.

[52] JUELS, A., AND RIVEST, R. L. Honeywords: Making Password-
cracking Detectable. In Proceedings of the 2013 ACM SIGSAC
Conference on Computer & Communications Security (New
York, NY, USA, 2013), CCS ’13, ACM, pp. 145–160.

[53] KARPICKE, J. D., AND ROEDIGER III, H. L. Expanding re-
trieval practice promotes short-term retention, but equally spaced
retrieval enhances long-term retention. Journal of Experimental
Psychology: Learning, Memory, and Cognition 33, 4 (2007), 704.

[54] KAUFMAN, C., PERLMAN, R., AND SPECINER, M. Network
security: Private communication in a public world. Prentice Hall
Press, 2002.

[55] KEITH, M., SHAO, B., AND STEINBART, P. J. The usability of
passphrases for authentication: An empirical field study. Interna-
tional Journal of Human-Computer Studies 65, 1 (2007), 17–28.

[56] KELLEY, P. G., KOMANDURI, S., MAZUREK, M. L., SHAY,
R., VIDAS, T., BAUER, L., CHRISTIN, N., CRANOR, L. F.,
AND LOPEZ, J. Guess again (and again and again): Measuring
password strength by simulating password-cracking algorithms.
In 2012 IEEE Symposium on Security and Privacy (2012), IEEE,
pp. 523–537.

[57] KELSEY, J., SCHNEIER, B., HALL, C., AND WAGNER, D. Se-
cure applications of low-entropy keys. In Information Security.
Springer, 1998, pp. 121–134.

[58] KING, M. Rebus passwords. In Proceedings of the Seventh
Annual Computer Security Applications Conference, 1991 (Dec
1991), pp. 239–243.

[59] KITTUR, A., CHI, E. H., AND SUH, B. Crowdsourcing User
Studies with Mechanical Turk. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (New York,
NY, USA, 2008), CHI ’08, ACM, pp. 453–456.

[60] KOMANDURI, S., SHAY, R., KELLEY, P. G., MAZUREK, M. L.,
BAUER, L., CHRISTIN, N., CRANOR, L. F., AND EGELMAN,
S. Of passwords and people: measuring the effect of password-
composition policies. In Proceedings of the SIGCHI Confer-
ence on Human Factors in Computing Systems (2011), ACM,
pp. 2595–2604.

[61] KURZBAN, S. A. Easily Remembered Passphrases: A Better
Approach. SIGSAC Rev. 3, 2-4 (Sept. 1985), 10–21.

[62] LANDAUER, T., AND BJORK, R. Optimum rehearsal patterns
and name learning. InM. M. Gruneberg, PE Morris, & RN Sykes
(Eds.), Practical aspects of memory (pp. 625-632), 1978.

[63] LASTPASS. LastPass Security Notification.
http://blog.lastpass.com/2011/05/lastpass-security-
notification.html.

[64] LEONHARD, M. D., AND VENKATAKRISHNAN, V. A compar-
ative study of three random password generators. In IEEE EIT
(2007).

[65] MEUNIER, P. C. Sing-a-Password: Quality Random Password
Generation with Mnemonics. 1998.

[66] MORRIS, R., AND THOMPSON, K. Password Security: A Case
History. Communications of the ACM 22, 11 (1979), 594–597.

[67] MUNROE, R. Password Strength. https://www.xkcd.com/

936/, 2012.

[68] PAVLIK, P. I., AND ANDERSON, J. R. Using a model to com-
pute the optimal schedule of practice. Journal of Experimental
Psychology: Applied 14, 2 (2008), 101.

[69] PERCIVAL, C. Stronger key derivation via sequential memory-
hard functions. 2009.

[70] PIMSLEUR, P. A memory schedule. Modern Language Journal
(1967), 73–75.

[71] PROCTOR, R. W., LIEN, M.-C., VU, K.-P. L., SCHULTZ,
E. E., AND SALVENDY, G. Improving computer security for
authentication of users: Influence of proactive password restric-
tions. Behavior Research Methods, Instruments, & Computers
34, 2 (2002), 163–169.

[72] PROVOS, N., AND MAZIERES, D. A Future-Adaptable Pass-
word Scheme. In USENIX Annual Technical Conference,
FREENIX Track (1999), pp. 81–91.

[73] RABKIN, A. Personal knowledge questions for fallback authenti-
cation: Security questions in the era of Facebook. In Proceedings
of the 4th Symposium on Usable Privacy and Security (2008),
ACM, pp. 13–23.

[74] ROSS, J., IRANI, L., SILBERMAN, M. S., ZALDIVAR, A., AND
TOMLINSON, B. Who Are the Crowdworkers?: Shifting De-
mographics in Mechanical Turk. In CHI ’10 Extended Abstracts
on Human Factors in Computing Systems (New York, NY, USA,
2010), CHI EA ’10, ACM, pp. 2863–2872.

[75] SANCHEZ, D. J., GOBEL, E. W., AND REBER, P. J. Performing
the unexplainable: Implicit task performance reveals individually
reliable sequence learning without explicit knowledge. Psycho-
nomic Bulletin & Review 17, 6 (2010), 790–796.

15



622 23rd USENIX Security Symposium USENIX Association

[76] SCHECHTER, S., BRUSH, A. B., AND EGELMAN, S. It’s No
Secret. Measuring the Security and Reliability of Authentication
via “Secret” Questions. In Security and Privacy, 2009 30th IEEE
Symposium on (2009), IEEE, pp. 375–390.

[77] SHAY, R., KELLEY, P. G., KOMANDURI, S., MAZUREK, M. L.,
UR, B., VIDAS, T., BAUER, L., CHRISTIN, N., AND CRANOR,
L. F. Correct horse battery staple: Exploring the usability of
system-assigned passphrases. In Proceedings of the Eighth Sym-
posium on Usable Privacy and Security (2012), ACM, p. 7.

[78] STOBERT, E. A. Memorability of Assigned Random Graphical
Passwords. Master’s thesis, Carleton University, 2011.

[79] STROOP, J. R. Studies of Interference in Serial Verbal Reactions.
Journal of Experimental Psychology 18, 6 (Dec. 1935), 643–662.

[80] STUBBLEFIELD, A., AND SIMON, D. Inkblot authentication.
Microsoft Research (2004).

[81] TAO, H., AND ADAMS, C. Pass-Go: A Proposal to Improve
the Usability of Graphical Passwords. IJ Network Security 7, 2
(2008), 273–292.

[82] THE ETHICAL RESEARCH PROJECT. Post-experiment sur-
vey for deception studies. https://www.ethicalresearch.

org/.

[83] VAN OORSCHOT, P. C., AND THORPE, J. On predictive mod-
els and user-drawn graphical passwords. ACM Transactions on
Information and System Security (TISSEC) 10, 4 (2008), 5.

[84] VAN OORSCHOT, P. C., AND THORPE, J. Exploiting predictabil-
ity in click-based graphical passwords. Journal of Computer Se-
curity 19, 4 (2011), 669–702.

[85] VERAS, R., COLLINS, C., AND THORPE, J. On the semantic
patterns of passwords and their security impact. In Network and
Distributed System Security Symposium (NDSS’14) (2014).

[86] VU, K.-P. L., PROCTOR, R. W., BHARGAV-SPANTZEL, A.,
TAI, B.-L. B., COOK, J., AND EUGENE SCHULTZ, E. Im-
proving password security and memorability to protect personal
and organizational information. International Journal of Human-
Computer Studies 65, 8 (2007), 744–757.

[87] WEINSHALL, D., AND KIRKPATRICK, S. Passwords You’ll
Never Forget, but Can’t Recall. In CHI ’04 Extended Abstracts
on Human Factors in Computing Systems (New York, NY, USA,
2004), CHI EA ’04, ACM, pp. 1399–1402.

[88] WIEDENBECK, S., WATERS, J., BIRGET, J.-C., BRODSKIY,
A., AND MEMON, N. PassPoints: Design and longitudinal eval-
uation of a graphical password system. International Journal of
Human-Computer Studies 63, 1 (2005), 102–127.

[89] WIXTED, J. T. The psychology and neuroscience of forgetting.
Annual Psychology Review 55 (2004), 235–269.

[90] WOOD, H. M. The use of passwords for controlled access to
computer resources, vol. 500. US Department of Commerce, Na-
tional Bureau of Standards, 1977.

[91] WOZNIAK, P. SuperMemo 2004. TESL EJ 10, 4 (2007).

[92] YAN, J. J., BLACKWELL, A. F., ANDERSON, R. J., AND
GRANT, A. Password Memorability and Security: Empirical Re-
sults. IEEE Security & privacy 2, 5 (2004), 25–31.

[93] ZVIRAN, M., AND HAGA, W. User authentication by cognitive
passwords: an empirical assessment. In Proceedings of the 5th
Jerusalem Conference on Information Technology (Oct 1990),
pp. 137–144.

[94] ZVIRAN, M., AND HAGA, W. J. Passwords Security: An Ex-
ploratory Study. Tech. rep., Naval Postgraduate School, 1990.

[95] ZVIRAN, M., AND HAGA, W. J. Password security: an empirical
study. Journal of Management Information Systems 15 (1999),
161–186.

16



USENIX Association  23rd USENIX Security Symposium 623

able abuse acid acorn acre actor add adobe adult aft age agile agony
air alarm album alert alive ally amber ample angle anvil apply apron arbor

area army aroma arrow arson ask aspen asset atlas atom attic audit aunt
aura auto aware awful axis baby back bad baker bare basis baton beam
beer begin belly bench best bias big birth bison bite blame blind bloom
blue board body bogus bolt bones book born bound bowl box brain break
brief broth brute buddy buff bugle build bulk burst butt buy buzz cabin
cadet call camp can cargo case cedar cello cent chair check child chose
chute cider cigar city civil class clear climb clock club coal cobra code
cog color comic copy cord cost court cover craft crew crime crown cruel
cups curve cut cycle daily dance dark dash data death debt decoy delay
depot desk diary diet dim ditto dizzy dose doubt downy dozen drawn dream
drive drop drug dry due dust duty dwarf eager early easy eaten ebb
echo edge edit egg elbow elder elite elm empty end enemy entry envy
equal era error essay ether event exact exile extra eye fact faith false
fancy far fatal fault favor feast feet fence ferry fetch feud fever fiber
field fifty film find first fit flat flesh flint flow fluid fly focus
foe folk foot form four foyer frame free front fruit full fume funny

fused fuzzy gala gang gas gauge gaze gel ghost giant gift give glad
gleam glory glut goat good gorge gourd grace great grid group grub guard
guess guide gulf gym habit half hand happy harsh hasty haul haven hawk
hazy head heel help hem here high hike hint hoax holy home honor
hoop hot house huge human hurt husk hyper ice idea idle idol ill
image inch index inner input iris iron issue item ivory ivy jade jazz
jewel job join joke jolly judge juice junk jury karma keep key kid
king kiss knee knife known labor lady laid lamb lane lapse large last
laugh lava law layer leaf left legal lemon lens level lies life lily
limit link lion lip liter loan lobby local lodge logic long loose loss
loud love lowly luck lunch lynx lyric madam magic main major mango maple

march mason may meat media melon memo menu mercy mess metal milk minor
mixed model moist mole mom money moral motor mouth moved mud music mute
myth nap navy neck need neon new nine noble nod noise nomad north
note noun novel numb nurse nylon oak oats ocean offer oil old one
open optic orbit order organ ounce outer oval owner pale panic paper part
pass path pause pawn pearl pedal peg penny peril petty phase phone piano
piece pipe pitch pivot place plea plot plug poet point polo pond poor
poppy porch posse power press price proof pub pulse pump pupil pure quart
queen quite radio ram range rapid rate razor real rebel red reef relic
rents reply resin rhyme rib rich ridge right riot rise river road robot
rock roll room rope rough row royal ruby rule rumor run rural rush
saga salt same satin sauce scale scene scope scrap sedan sense serve set
seven sewer share she ship show shrub sick side siege sign silly siren

six skew skin skull sky slack sleep slice sloth slump small smear smile
snake sneer snout snug soap soda solid sonic soon sort soul space speak
spine split spoke spur squad state step stiff story straw study style sugar
suit sum super surf sway sweet swift sword syrup taboo tail take talk
taste tax teak tempo ten term text thank theft thing thorn three thumb
tiara tidal tiger tilt time title toast today token tomb tons tooth top
torso total touch town trade trend trial trout true tube tuft tug tulip
tuna turn tutor twist two type ultra uncle union upper urban urge user
usual value vapor vat vein verse veto video view vigor vinyl viper virus
visit vital vivid vogue voice voter vowel wafer wagon wait waltz warm wasp

Table 3: The 676 (262) words used by the words treatment
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Abstract
Significant recent research advances have made it possi-
ble to design systems that can automatically determine
with high accuracy the maliciousness of a target website.
While highly useful, such systems are reactive by nature.
In this paper, we take a complementary approach, and at-
tempt to design, implement, and evaluate a novel classi-
fication system which predicts, whether a given, not yet
compromised website will become malicious in the fu-
ture. We adapt several techniques from data mining and
machine learning which are particularly well-suited for
this problem. A key aspect of our system is that the set
of features it relies on is automatically extracted from the
data it acquires; this allows us to be able to detect new
attack trends relatively quickly. We evaluate our imple-
mentation on a corpus of 444,519 websites, containing
a total of 4,916,203 webpages, and show that we man-
age to achieve good detection accuracy over a one-year
horizon; that is, we generally manage to correctly predict
that currently benign websites will become compromised
within a year.

1 Introduction
Online criminal activities take many different forms,
ranging from advertising counterfeit goods through spam
email [21], to hosting “drive-by-downloads” services
[29] that surreptitiously install malicious software (“mal-
ware”) on the victim machine, to distributed denial-of-
service attacks [27], to only name a few. Among those,
research on analysis and classification of end-host mal-
ware – which allows an attacker to take over the vic-
tim’s computer for a variety of purposes – has been a
particularly active field for years (see, e.g., [6, 7, 16]
among many others). More recently, a number of stud-
ies [8,15,20,22,36] have started looking into “webserver
malware,” where, instead of targeting arbitrary hosts for
compromise, the attacker attempts to inject code on ma-
chines running web servers. Webserver malware dif-
fers from end-host malware in its design and objectives.

Webserver malware indeed frequently exploits outdated
or unpatched versions of popular content-management
systems (CMS). Its main goal is usually not to com-
pletely compromise the machine on which it resides, but
instead to get the victimized webserver to participate in
search-engine poisoning or redirection campaigns pro-
moting questionable services (counterfeits, unlicensed
pharmaceuticals, ...), or to act as a delivery server for
malware.

Such infections of webservers are particularly com-
mon. For instance, the 2013 Sophos security threat re-
port [33, p.7] states that in 2012, 80% of websites hosting
malicious contents were compromised webservers that
belonged to unsuspecting third-parties. Various measure-
ment efforts [20, 25, 36] demonstrate that people engag-
ing in the illicit trade of counterfeit goods are increas-
ingly relying on compromised webservers to bring traf-
fic to their stores, to the point of supplanting spam as a
means of advertising [20].

Most of the work to date on identifying webserver
malware, both in academia (e.g., [8, 15]) and industry
(e.g., [3, 5, 14, 24]) is primarily based on detecting the
presence of an active infection on a website. In turn, this
helps determine which campaign the infected website is
a part of, as well as populating blacklists of known com-
promised sites. While a highly useful line of work, it is
by design reactive: only websites that have already been
compromised can be identified.

Our core contribution in this paper is to propose, im-
plement, and evaluate a general methodology to identify
webservers that are at a high risk of becoming malicious
before they actually become malicious. In other words,
we present techniques that allow to proactively identify
likely targets for attackers as well as sites that may be
hosted by malicious users. This is particularly useful for
search engines, that need to be able to assess whether
or not they are linking to potentially risky contents; for
blacklist operators, who can obtain, ahead of time, a list
of sites to keep an eye on, and potentially warn these
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sites’ operators of the risks they face ahead of the actual
compromise; and of course for site operators themselves,
which can use tools based on the techniques we describe
here as part of a good security hygiene, along with prac-
tices such as penetration testing.

Traditional penetration testing techniques often rely
on ad-hoc procedures rather than scientific assessment
[26] and are greatly dependent on the expertise of the
tester herself. Different from penetration testing, our ap-
proach relies on an online classification algorithm (“clas-
sifier”) that can 1) automatically detect whether a server
is likely to become malicious (that is, it is probably vul-
nerable, and the vulnerability is actively exploited in the
wild; or the site is hosted with malicious intent), and that
can 2) quickly adapt to emerging threats. At a high level,
the classifier determines if a given website shares a set
of features (e.g., utilization of a given CMS, specifics of
the webpages’ structures, presence of certain keywords
in pages, ...) with websites known to have been mali-
cious. A key aspect of our approach is that the feature
list used to make this determination is automatically ex-
tracted from a training set of malicious and benign web-
pages, and is updated over time, as threats evolve.

We build this classifier, and train it on 444,519
archives sites containing a total of 4,916,203 webpages.
We are able to correctly predict that sites will eventually
become compromised within 1 year while achieving a
true positive rate of 66% and a false positive rate of 17%.
This level of performance is very encouraging given the
large imbalance in the data available (few examples of
compromised sites as opposed to benign sites) and the
fact that we are essentially trying to predict the future.
We are also able to discover a number of content features
that were rather unexpected, but that, in hindsight, make
perfect sense.

The remainder of this paper proceeds as follows. We
review background and related work in Section 2. We de-
tail how we build our classifier in Section 3, describe our
evaluation and measurement methodology in Section 4,
and present our empirical results in Section 5. We dis-
cuss limitations of our approach in Section 6 before con-
cluding in Section 7.

2 Background and related work
Webserver malware has garnered quite a bit of attention
in recent years. As part of large scale study on spam,
Levchenko et al. [21] briefly allude to search-engine op-
timization performed my miscreants to drive traffic to
their websites. Several papers [17, 19, 20, 22] describe
measurement-based studies of the “search-redirection”
attacks, in which compromised websites are first be-
ing used to link to each other and associate themselves
with searches for pharmaceutical and illicit products;
this allows the attacker to have a set of high-ranked

links displayed by the search engine in response to such
queries. The second part of the compromise is to have
a piece of malware on the site that checks the prove-
nance of the traffic coming to the compromise site. For
instance, if traffic is determined to come from a Google
search for drugs, it is immediately redirected—possibly
through several intermediaries—to an illicit online phar-
macy. These studies are primarily empirical characteri-
zations of the phenomenon, but do not go in great details
about how to curb the problem from the standpoint of the
compromised hosts.

In the same spirit of providing comprehensive mea-
surements of web-based abuse, McCoy et al. [25] looks
at revenues and expenses at online pharmacies, includ-
ing an assessment of the commissions paid to “network
affiliates” that bring customers to the websites. Wang et
al. [36] provides a longitudinal study of a search-engine
optimization botnet.

Another, recent group of papers looks at how to de-
tect websites that have been compromised. Among these
papers, Invernizzi et al. [15] focuses on automatically
finding recently compromised websites; Borgolte et al.
[8] look more specifically at previously unknown web-
based infection campaigns (e.g., previously unknown in-
jections of obfuscated JavaScript-code). Different from
these papers, we use machine-learning tools to attempt to
detect websites that have not been compromised yet, but
that are likely to become malicious in the future, over a
reasonably long horizon (approximately one year).

The research most closely related to this paper is the
recent work by Vasek and Moore [35]. Vasek and Moore
manually identified the CMS a website is using, and stud-
ied the correlation between that CMS the website secu-
rity. They determined that in general, sites using a CMS
are more likely to behave maliciously, and that some
CMS types and versions are more targeted and compro-
mised than others. Their research supports the basic in-
tuition that the content of a website is a coherent basis
for making predictions about its security outcome.

This paper builds on existing techniques from machine
learning and data mining to solve a security issue. Di-
rectly related to the work we present in this paper is
the data extraction algorithm of Yi et al. [38], which we
adapt to our own needs. We also rely on an ensemble of
decision-tree classifiers for our algorithm, adapting the
techniques described by Gao et al. [13].

3 Classifying websites
Our goal is to build a classifier which can predict with
high certainty if a given website will become malicious
in the future. To that effect, we start by discussing the
properties our classifier must satisfy. We then elaborate
on the learning process our classifier uses to differentiate
between benign and malicious websites. Last, we de-
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scribe an automatic process for selecting a set features
that will be used for classification.

3.1 Desired properties
At a high level, our classifier must be efficient, inter-
pretable, robust to imbalanced data, robust to missing
features when data is not available, and adaptive to an
environment that can drastically change over time. We
detail each point in turn below.

Efficiency: Since our classifier uses webpages as an in-
put, the volume of the data available to train (and test)
the classifier is essentially the entire World Wide Web.
As a result, it is important the the classifier scale favor-
ably with large, possibly infinite datasets. The classifier
should thus use an online learning algorithm for learning
from a streaming data source.

Interpretability: When the classifier predicts whether a
website will become malicious (i.e., it is vulnerable, and
likely to be exploited; or likely to host malicious con-
tent), it is useful to understand why and how the classifier
arrived at the prediction. Interpretable classification is
essential to meaningfully inform website operators of the
security issues they may be facing. Interpretability is also
useful to detect evolution in the factors that put a website
at risk of being compromised. The strong requirement
for interpretability unfortunately rules out a large number
of possible classifiers which, despite achieving excellent
classification accuracy, generally lack interpretability.

Robustness to imbalanced data: In many applications
of learning, the datasets that are available are assumed
to be balanced, that is, there is an equal number of ex-
amples for each class. In our context, this assumption
is typically violated as examples of malicious behavior
tend to be relatively rare compared to innocuous exam-
ples. We will elaborate in Section 5 on the relative sizes
of both datasets, but assume, for now, that 1% of all ex-
isting websites are likely to become malicious, i.e., they
are vulnerable, and exploits for these vulnerabilities exist
and are actively used; or they are hosted by actors with
malicious intent. A trivial classifier consistently predict-
ing that all websites are safe would be right 99% of the
time! Yet, it would be hard to argue that such a classi-
fier is useful at all. In other words, our datasets are im-
balanced, which has been shown to be problematic for
learning—the more imbalanced the datasets, the more
learning is impacted [30].

At a fundamental level, simply maximizing accuracy
is not an appropriate performance metric here. Instead,
we will need to take into account both false positives
(a benign website is incorrectly classified as vulnerable)
and false negatives (a vulnerable website is incorrectly
classified as benign) to evaluate the performance of our
classifier. For instance, the trivial classifier discussed

above, which categorizes all input as benign, would yield
0% false positives, which is excellent, but 100% of false
negatives among the population of vulnerable websites,
which is obviously inadequate. Hence, metrics such as
receiver-operating characteristics (ROC) curves which
account for both false positive and false negatives are
much more appropriate in the context of our study for
evaluating the classifier we design.

Robustness to errors: Due to its heterogeneity (many
different HTML standards co-exist, and HTML engines
are usually fairly robust to standard violations) and its
sheer size (billions of web pages), the Web is a notori-
ously inconsistent dataset. That is, for any reasonable set
of features we can come up with, it will be frequently the
case that some of the features may either be inconclusive
or undetermined. As a simple example, imagine consid-
ering website popularity metrics given by the Alexa Web
Information Service (AWIS, [1]) as part of our feature
set. AWIS unfortunately provides little or no information
for very unpopular websites. Given that webpage pop-
ularity distribution is “heavy-tailed [9],” these features
would be missing for a significant portion of the entire
population. Our classifier should therefore be robust to
errors as well as missing features.

Another reason for the classifier to be robust to errors
is that the datasets used in predicting whether a web-
site will become compromised are fundamentally noisy.
Blacklists of malicious websites are unfortunately in-
complete. Thus, malicious sites may be mislabeled as
benign, and the classifier’s performance should not de-
grade too severely in the presence of mislabeled exam-
ples.

Adaptive: Both the content on the World Wide Web,
and the threats attackers pose vary drastically over time.
As new exploits are discovered, or old vulnerabilities are
being patched, the sites being attacked change over time.
The classifier should thus be able to learn the evolution
of these threats. In machine learning parlance, we need a
classifier that is adaptive to “concept drift” [37].

All of these desired properties led us to consider an en-
semble of decision-tree classifiers. The method of using
an ensemble of classifiers is taken from prior work [13].
The system works by buffering examples from an input
data stream. After a threshold number of examples has
been reached, the system trains a set of classifiers by re-
sampling all past examples of the minority class as well
as recent examples of the majority class. While the type
of classifier used in the ensemble may vary, we chose to
use C4.5 decision trees [31].

The system is efficient as it does not require the stor-
age or training on majority class examples from the far
past. The system is also interpretable and robust to errors
as the type of classifier being used is a decision-tree in

3
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timet t+h

Past Future(Present)

desired test time

Known data

available data for prediction

(a) Using the present to predict the future

timet−h t

Past

desired test timeavailable for prediction

Future(Present)

Known data

(b) Using the past to predict the present

Figure 1: Prediction timeline. Attempting to predict
the future makes it impossible to immediately evaluate
whether the prediction was correct (a). A possible alter-
native (b) is to use past data to simulate a prediction done
in the past (at t −h) that can then be tested at the present
time t.

an ensemble [13]. Periodically retraining our classifiers
makes them robust to concept drift as long as retrain-
ing occurs sufficiently often. Finally, the system handles
class imbalance by resampling the input stream, namely,
it resamples from the set of all minority class training
examples from the past as well as recent majority class
examples.

3.2 Learning process
The type of classification we aim to perform presents
unique challenges in the learning process.

Lack of knowledge of the future: Assume that at a
given time t, our classifier predicts that a given website
w is likely to become compromised in the future. Be-
cause the website has not been compromised yet—and
may not be compromised for a while—we cannot imme-
diately know whether the prediction is correct. Instead,
we have to wait until we have reached a time (t + h) to
effectively be able to verify whether the site has become
compromised between t and (t + h), or if the classifier
was in error. This is particularly problematic, since just
training the classifier—let alone using it—would require
to wait at least until (t + h). This is the situation illus-
trated in Figure 1(a).

A second, related issue, is that of defining a mean-
ingful “time horizon” h. If h is too long, it will be im-
possible to even verify that the classifier was right. In
an extreme case, when h → ∞, the performance of the
classifier cannot be evaluated.1 Selecting a time horizon
too short (e.g., h = 0) would likewise reduce to the prob-
lem of determining whether a website is already compro-
mised or not—a very different objective for which a rich
literature already exists, as discussed earlier.

1Given the complexity of modern computer software, it is likely that
exploitable bugs exist in most, if not all webservers, even though they
might have not been found yet. As a result, a trivial classifier predicting
that all websites will be compromised over an infinite horizon (h → ∞)
may not even be a bad choice.

We attempt to solve these issues as follows. First, de-
ciding what is a meaningful value for the horizon h ap-
pears, in the end, to be a design choice. Unless other-
wise noted, we will assume that h is set to one year. This
choice does not affect our classifier design, but impacts
the data we use for training.

Second, while we cannot predict the future at time t,
we can use the past for training. More precisely, for train-
ing purposes we can solve our issue if we could extract a
set of features, and perform classification on an archived
version of the website w as it appeared at time (t − h)
and check whether, by time t, w has become malicious.
This is what we depict in Figure 1(b). Fortunately, this is
doable: At the time of this writing, the Internet Archive’s
Wayback Machine [34] keeps an archive of more than
391 billion webpages saved over time, which allows us
to obtain “past versions” of a large number of websites.

Obtaining examples of malicious and benign web-
sites: To train our classifier, we must have ground truth
on a set of websites—some known to be malicious, and
some known to be benign. Confirmed malicious websites
can be obtained from blacklists (e.g., [28]). In addition,
accessing historical records of these blacklists allows us
to determine (roughly) at what time a website became
malicious. Indeed, the first time at which a compromised
website appeared in a blacklist gives an upper bound on
the time at which the site became malicious. We can then
grab older archived versions of the site from the Way-
back Machine to obtain an example of a site that was
originally not malicious and then became malicious.

We obtain benign websites by randomly sampling
DNS zone files, and checking that the sampled sites are
not (and have never been) in any blacklist. We then also
cull archives of these benign sites from the Wayback ma-
chine, so that we can compare at the same time in the
past sites that have become malicious to sites that have
remained benign.

We emphasize that, to evaluate the performance of the
classifier at a particular time t, training examples from
the past (e.g., t−h) may be used; and these examples can
then be used to test on the future. However, the converse
is not true: even if that data is available, we cannot train
on the present t and test on the past (t−h) as we would be
using future information that was unknown at the time of
the test. Figure 1(b) illustrates that data available to build
predictions is a strict subset of the known data.

Dealing with imbalanced datasets: As far as the learn-
ing process is concerned, one can employ class re-
balancing techniques. At a high level, class re-balancing
has been studied as a means to improve classifier perfor-
mance by training on a distribution other than the natu-
rally sampled distribution. Since we sample only a ran-
dom subset of sites which were not compromised, we

4
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already perform some resampling in the form of a one-
sided selection.

3.3 Dynamic extraction of the feature list
Any classifier needs to use a list of features on which to
base its decisions. Many features can be used to charac-
terize a website, ranging from look and feel, to traffic, to
textual contents. Here we discuss in more details these
potential features. We then turn to a description of the
dynamic process we use to update these features.

3.3.1 Candidate feature families

As potential candidates for our feature list, we start by
considering the following families of features.

Traffic statistics. Website statistics on its traffic, popu-
larity, and so forth might be useful in indicating a spe-
cific website became compromised. For instance, if a
certain website suddenly sees a change in popularity, it
could mean that it became used as part of a redirection
campaign. Such statistics may be readily available from
services such as the aforementioned Alexa Web Informa-
tion Service, if the website popularity is not negligible.

Filesystem structure. The directory hierarchy of the
site, the presence of certain files may all be interesting
candidate features reflecting the type of software run-
ning on the webserver. For instance the presence of a
wp-admin directory might be indicative of a specific
content management system (WordPress in that case),
which in turn might be exploitable if other features in-
dicate an older, unpatched version is running.

Webpage structure and contents. Webpages on the
website may be a strong indicator of a given type of
content-based management system or webserver soft-
ware. To that effect, we need to distill useful page
structure and content from a given webpage. The user-
generated content within webpages is generally not use-
ful for classification, and so it is desirable to filter it out
and only keep the “template” the website uses. Extract-
ing such a template goes beyond extraction of the Docu-
ment Object Model (DOM) trees, which do not provide
an easy way to differentiate between user-generated con-
tents and template. We discuss in the next section how
extracting this kind of information can be accomplished
in practice.

Page content can then distilled into features using
several techniques. We chose to use binary features
that detect the presence of particular HTML tags in a
site. For instance, “is the keyword joe’s guestbook/v1.2.3
present?” is such a binary feature. Of course, using such
a binary encoding will result in a rather large feature set
as it is less expressive than other encoding choices. How-
ever the resulting features are extremely interpretable

and, as we will see later, are relatively straightforward
to extract automatically.

Perhaps more interestingly, we observed that features
on filesystem structure can actually be captured by look-
ing at the contents of the webpages. Indeed, when
we collect information about internal links (e.g., <a
href=”../top.html”>) we are actually gathering informa-
tion about the filesystem as well. In other words, features
characterizing the webpage structure provide enough in-
formation for our purposes.

3.3.2 Dynamic updates

We consider traffic statistics as “static” features that we
always try to include in the classification process, at least
when they are available. On the other hand, all of the
content-based features are dynamically extracted. We
use a statistical heuristic to sort features which would
have been useful for classifying recent training examples
and apply the top performing features to subsequent ex-
amples.

4 Implementation
We next turn to a discussion of how we implemented our
classifier in practice. We first introduce the data sources
we used for benign and soon-to-be malicious websites.
We then turn to explaining how we conducted the parsing
and filtering of websites. Last we give details of how we
implemented dynamic feature extraction.

4.1 Data sources
We need two different sources of data to train our clas-
sifier: a ground truth for soon-to-be malicious websites,
and a set of benign websites.

Malicious websites. We used two sets of blacklists as
ground truth for malicious websites. First, we obtained
historical data from PhishTank [28]. This data contains
11,724,276 unique links from 91,155 unique sites, col-
lected between February 23, 2013 and December 31,
2013. The Wayback machine contained usable archives
for 34,922 (38.3%) of these sites within the required
range of dates.

We then complemented this data with a list of web-
sites known to have been infected by “search-redirection
attacks,” originally described in 2011 [20, 22]. In this
attack, miscreants inject code on webservers to have
them participate in link farming and advertise illicit
products—primarily prescription drugs. From a related
measurement project [19], we obtained a list, collected
between October 20, 2011 and September 16, 2013, of
738,479 unique links, all exhibiting redirecting behav-
ior, from 16,173 unique sites. Amazingly, the Wayback
machine contained archives in the acceptable range for
14,425 (89%) of these sites.

5
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Figure 2: Cumulative distribution function of the
number of pages scraped. Benign websites very fre-
quently contain only a handful of pages.

We use these two blacklists in particular because we
determined, through manual inspection, that a large per-
centage of sites in these lists have either been compro-
mised by an external attacker or are maliciously hosted.
On the other hand, various other blacklists often label
sites that are heavily spammed or contain adult content
as malicious, which we do not think is appropriate.

Benign websites. We randomly sampled the entire
.com zone file from January 14th, 2014. For each do-
main, we enumerated the available archives in the Way-
back machine. If at least an archive was found, we
selected one of the available archives in the range of
February, 20, 2010 to September 31, 2013. This yielded
337,191 website archives. We then removed all archives
that corresponded to sites known as malicious. We re-
moved 27 of them that were among the set of sites known
to have been infected by search-redirection attacks, and
another 72 that matched PhishTank entries. We also dis-
carded an additional 421 sites found in the DNS-BH [2],
Google SafeBrowsing [14], and hpHosts [23] blacklists,
eventually using 336,671 websites in our benign corpus.

Structural properties. Figure 2 shows some interest-
ing characteristics of the size of the websites we con-
sider. Specifically, the cumulative distribution function
of the number of pages each website archive contains dif-
fers considerably between the datasets. For many benign
sites, that were randomly sampled from zone files, only a
few pages were archived. This is because many domains
host only a parking page or redirect (without being ma-
licious) to another site immediately. Other sites are very
small and host only a few different pages.

On the other hand, malicious sites from both of our
blacklists contain more pages per site, since in many
cases they are reasonably large websites that had some
form of visibility (e.g., in Google rankings), before be-
coming compromised and malicious. In some other
cases, some of the blacklisted sites are sites maliciously
registered, that do host numerous phishing pages.

4.2 Parsing and filtering websites
We scraped web pages from the Wayback Machine us-
ing the Scrapy framework [4], and a collection of custom
Python scripts.

Selecting which archive to use. The scripts took in a
URL and a range of dates as inputs, and then navigated
The WayBack Machine to determine all the archives that
existed for that URL within the specified range.

Sites first appear in a blacklist at a particular time t. If
a site appears in multiple blacklists or in the same black-
list multiple times, we use the earliest known infection
date. We then search for snapshots archived by the Way-
back machine between t−12 months and to t−3 months
prior to the site being blacklisted. The choice of this
range is to satisfy two concerns about the usefulness of
the archive data. Because compromised sites are not gen-
erally instantaneously detected, if the date of the archive
is chosen too close to the first time the site appeared in
a blacklist, is is possible that the archived version was
already compromised. On the other hand, if the archived
version was chosen too far from the time at which the
site was compromised, the site may have changed dra-
matically. For instance, the content management system
powering the site may have been updated or replaced en-
tirely.

If multiple archives exist in the range t − 3 months–
t − 12 months, then we select an archive as close to t −
12 months as possible; this matches our choice for h =
1 year described earlier. We also download and scrape
the most recent available archive, and compare it with the
the one-year old archive to ensure that they are using the
same content management system. In the event that the
structure of the page has changed dramatically (defined
as more than 10% changes) we randomly select a more
recent archive (i.e., between zero and one year old), and
repeat the process.

Scraping process. We scrape each archived site, using
a breadth-first search. We terminate the process at ei-
ther a depth of two links, or 20 pages have been saved,
and purposefully only download text (HTML source, and
any script or cascading style sheets (CSS) embedded in
the page, but no external scripts or images). Using a
breadth-first search allows us to rapidly sample a large
variety of web pages. It is indeed common for websites
to contain multiple kinds of webpages, for example fo-
rums and posts, blogs and guestbooks, login and con-
tact pages. A breadth-first search provides an idea of the
amount of page diversity in a site without requiring us to
scrape the entire site. Limiting ourselves to 20 pages al-
lows us to quickly collect information on a large number
of websites, and in fact allows us to capture the vast ma-
jority of websites in their entirety, according to Figure 2,
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Figure 3: DOM and style trees. The figure, adapted from Yi et al. [38], shows two DOM trees corresponding to two
separate pages, and the resulting style tree.

while—as we will see later—providing enough informa-
tion to our classifier to be able to make good decisions.

Filtering. Once a batch of webpages has been saved for
a given website, we filter each of them to remove user-
generated content. We define user-generated content as
all data in webpage, visible and invisible, which is not
part of the underline template or content-management
system. This includes for instance blog posts, forum
posts, guestbook entries, and comments. Our assumption
is that user-generated content is orthogonal to the secu-
rity risks that a site a priori faces and is therefore simply
noise to the classifier. User-generated content can, on the
other hand, indicate that a site has already been compro-
mised, for instance if blog posts are riddled with spam
links and keywords. But, since our objective is to detect
vulnerable (as opposed to already compromised) sites,
user-generated content is not useful to our classification.

The process of extracting information from webpages
is a well-studied problem in data mining [10, 11, 32, 38,
39]. Generally the problem is framed as attempting to
isolate user-generated content which otherwise would be
diluted by page template content. We are attempting to
do the exact opposite thing: discarding user-generated
content while extracting templates. To that effect, we
“turn on its head” the content-extraction algorithm pro-
posed by Yi et al. [38] to have it only preserve templates
and discard contents.

Yi et al. describes an algorithm where each webpage
in a website is broken down into a Document Object
Model (DOM) tree and joined into a single larger struc-
ture referred to as a style tree. We illustrate this con-
struction in Figure 3. In the figure, two different pages in
a given website produce two different DOM trees (DOM
1 and DOM 2 in the figure). DOM trees are essentially
capturing the tags and attributes present in the page, as
well as their relationship; for instance, ¡table¿ elements
are under ¡body¿.

The style tree incorporates not only a summary of the
individual pieces of content within the pages, but also
their structural relationships with each other. Each node
in a style tree represents an HTML tag from one or pos-
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Figure 4: C.d.f. of CompImp over the style tree
generated for dailyshotofcoffee.com. We use
1,000 pages to generate the style tree.

sibly many pages within the site and has a derived prop-
erty called composite importance (CompImp), which is
an information-based measure of how important the node
is. Without getting into mathematical details—which can
be found in Yi et al. [38]—nodes which have a CompImp
value close to 1 are either unique, or have children which
are unique. On the other hand, nodes which have a Com-
pImp value closer to 0 typically appear often in the site.

While Yi et al. try to filter out nodes with CompImp
below a given threshold to extract user content, we are
interested in the exact opposite objective; so instead we
filter out nodes whose CompImp is above a threshold.

We provide an illustration with the example of
dailyshotofcoffee.com. We built, for the pur-
pose of this example, a style tree using 1,000 randomly
sampled pages from this website. We plot the Com-
pImp of nodes in the resulting style tree in Figure 4. A
large portion of the nodes in the style tree have a Com-
pImp value of exactly 1 since their content is completely
unique within the site. The jumps in the graph show
that some portions of the site may use different templates
or different variations of the same template. For exam-
ple, particular navigation bars are present when viewing
some pages but not when viewing others.

We illustrate the effect of selecting different values as
a threshold for filtering in Figure 5. We consider a ran-
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(a) Original (b) CompImp > 0.99 (c) CompImp > 0.6 (d) CompImp > 0.1

Figure 5: Impact of various thresholds on filtering. The figure shows how different CmpInt thresholds affect the
filtering of the webpage shown in (a). Thresholds of 0.99 and 0.6 produce the same output, whereas a threshold of 0.1
discards too many elements.
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Figure 6: C.d.f. of CompImp over all style trees gen-
erated for 10,000 random sites. We use 1,000 pages per
website to generate the style tree.

dom page of dailyshotofcoffee.com showed in
Figure 5(a). In Figures 5(b), (c), and (d), we show the re-
sult of filtering with a threshold value of 0.99, 0.6 and 0.1
respectively. There is no difference between using 0.99
and 0.6 as a threshold since there are very few nodes in
the style tree that had a CompImp between 0.6 and 0.99,
as shown in Figure 4. There is a notable difference when
using 0.1 as a threshold since portions of the page tem-
plate are present on some but not all pages of the site.

In general, style trees generated for other sites seem to
follow a similar distribution, as shown in Figure 6 where
we plot the aggregated CompImp c.d.f. over all style
trees generated for 10,000 sites. The aggregation does
have a slight curve around the CompImp value 1 which
indicates that a few sites do have style trees with nodes in
this space. Such sites typically use a fixed template with
the exception of a few pages such as 404 error pages,
login, and registration pages.

A concern with applying style trees for filtering in this
setting occurs in instances where there are only a few ex-
amples of pages from a particular site. Trivially, if there
is only a single page from the site, then the style tree is
just the page itself, and if only a few examples are found
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Figure 7: C.d.f. of CompImp over the style tree gen-
erated for dailyshotofcoffee.com using only 5
pages. The plot represents the fraction of nodes less than
a threshold in the style tree generated from only five ran-
dom pages from dailyshotofcoffee.com.

then the estimates of nodes in the style tree will be highly
dependent on where in the site those pages were sampled
from. In Figure 7, we plot the cumulative distribution
function for CompImp over the style tree generated for
dailyshotofcoffee.com, but this time, only using
five random pages from the site. Compared to Figure 4,
we see that the particular cutoffs are slightly different
from when we used 1,000 pages; but the general shape
still remains the same. Manual inspection over many
sites has indicates that this approach still works well with
as few as five pages. This serves as further justification
to our design decision of only scraping 20 pages at most
from each website.

With all of these experiments in mind, we selected
a thresholding value of 0.99 for our system, and elim-
inated from our filtering process sites where we could
only scrape less than five pages.

4.3 Feature extraction
We derived the set of features used in classification from
two main sources, the Alexa Web Information Service
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Feature Discretization fn. Values

AWIS Site Rank �log(SiteRank)� [0 . . .8]
Links to the site �log(LinksIn)� [0 . . .7]
Load percentile �LoadPercentile/10� [0 . . .10]
Adult site? (Boolean) {0,1}
Reach per million �log(reachPerMillion)� [0 . . .5]

Table 1: AWIS features used in our classifier and
their discretization. Those features are static—i.e., they
are used whenever available.

(AWIS) and the content of the saved web pages. Fea-
tures generated from the pages content are dynamically
generated during the learning process according to a cho-
sen statistic. For the classification process we use an en-
semble of decision trees so that the input features should
be discrete. In order to obtain useful discrete features
(i.e., discrete features that do not take on too many val-
ues relative to the number of examples), we apply a map-
ping process to convert continuous quantities (load per-
centile) and large discrete quantities (global page rank)
to a useful set of discrete quantities. The mappings used
are shown in Table 1.

4.3.1 AWIS features

For every site that was scraped, we downloaded an en-
try from AWIS on Feb 2, 2014. While the date of the
scrape does not match the date of the web ranking infor-
mation, it can still provide tremendous value in helping
to establish the approximate popularity of a site. Indeed,
we observed that in the overwhelming majority of cases,
the ranking of sites and the other information provided
does not change significantly over time; and after dis-
cretization does not change at all. This mismatch is not
a fundamental consequence of the experiment design but
rather a product retrospectively obtaining negative train-
ing examples (sites which did not become compromised)
which can be done in real time.

Intuitively, AWIS information may be useful because
attackers may target their resources toward popular hosts
running on powerful hardware. Adversaries which host
malicious sites may have incentives to make their own
malicious sites popular. Additionally, search engines are
a powerful tool used by attackers to find vulnerable tar-
gets (through, e.g., “Google dorks [18]”) which causes a
bias toward popular sites.

We summarize the AWIS features used in Table 1. An
AWIS entry contains estimates of a site’s global and re-
gional popularity rankings. The entry also contains es-
timates of the reach of a site (the fraction of all users
that are exposed to the site) and the number of other
sites which link in. Additionally, the average time that
it takes users to load the page and some behavioral mea-
surements such as page views per user are provided.

The second column of Table 1 shows how AWIS infor-
mation is discretized to be used as a feature in a decision-
tree classifier. Discretization groups a continuous feature
such as load percentile or a large discrete feature such as
global page rank into a few discrete values which make
them more suitable for learning. If a feature is contin-
uous or if too many discrete values are used, then the
training examples will appear sparse in the feature space
and the classifier will see new examples as being unique
instead of identifying them as similar to previous exam-
ples when making predictions.

For many features such as AWIS Site Rank, a loga-
rithm is used to compress a large domain of ranks down
to a small range of outputs. This is reasonable since for
a highly ranked site, varying by a particular number of
rankings is significant relative to much lower ranked site.
This is because the popularity of sites on the Internet fol-
lows a long tailed distribution [9].

Dealing with missing features. Some features are not
available for all sites, for example information about the
number of users reached by the site per million users was
not present for many sites. In these cases, there are two
options. We could reserve a default value for missing
information; or we could simply not provide a value and
let the classifier deal with handling missing attributes.

When a decision-tree classifier encounters a case of
a missing attribute, it will typically assign it either the
most common value for that attribute, the most common
value given the target class of the example (when train-
ing), or randomly assign it a value based on the estimated
distribution of the attribute. In our particular case, we
observed that when a feature was missing, the site also
tended to be extremely unpopular. We asserted that in
these cases, a feature such as reach per million would
probably also be small and assigned it a default value.
For other types of missing attributes such as page load
time, we did not assign the feature a default value since
there is likely no correlation between the true value of
the attribute and its failure to appear in the AWIS entry.

4.3.2 Content-based features

The content of pages in the observed sites provides ex-
tremely useful information for determining if the site will
become malicious. Unlike many settings where learning
is applied, the distribution of sites on the web and the
attacks that they face vary over time.

Many Internet web hosts are attacked via some ex-
ploit to a vulnerability in a content-management system
(CMS), that their hosted site is using. It is quite common
for adversaries to enumerate vulnerable hosts by look-
ing for CMSs that they can exploit. Different CMSs and
even different configurations of the same CMS leak in-
formation about their presence through content such as
tags associated with their template, meta tags, and com-
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ments. The set of CMSs being used varies over time:
new CMSs are released and older ones fall out of favor,
as a result, the page content that signals their presence is
also time varying.

To determine content-based features, each of the pages
that survived the acquisition and filtering process de-
scribed earlier was parsed into a set of HTML tags.
Each HTML tag was represented as the tuple (type, at-
tributes, content). The tags from all the pages in a site
were then aggregated into a list without repetition. This
means that duplicate tags, i.e., tags matching precisely
the same type, attributes and content of another tag were
dropped. This approach differs from that taken in typi-
cal document classification techniques where the docu-
ment frequency of terms is useful, since for example a
document that uses the word “investment” a dozen times
may be more likely to be related to finance than a docu-
ment that uses it once. However, a website that has many
instances of the same tag may simply indicate that the
site has many pages. We could balance the number of
occurrences of a tag by weighting the number of pages
used; but then, relatively homogeneous sites where the
same tag appears on every page would give that tag a
high score while less homogeneous sites would assign a
low score. As a result, we chose to only use the existence
of a tag within a site but not the number of times the tag
appeared.

During the training phase, we then augmented the lists
of tags from each site with the sites’ classification; and
added to a dictionary which contains a list of all tags
from all sites, and a count of the number of positive and
negative sites a particular tag has appeared in. This dic-
tionary grew extremely quickly; to avoid unwieldy in-
crease in its size, we developed the following heuristic.
After adding information from every 5,000 sites to the
dictionary, we purged from the dictionary all tags that
had appeared only once. This heuristic removed approxi-
mately 85% of the content from the dictionary every time
it was run.

Statistic-based extraction. The problem of feature ex-
traction reduces to selecting the particular tags in the dic-
tionary that will yield the best classification performance
on future examples. At the time of feature selection, the
impact of including or excluding a particular feature is
unknown. As a result, we cannot determine an optimal
set of features at that time. So, instead we use the follow-
ing technique. We fix a number N of features we want to
use. We then select a statistic ŝ, and, for each tag t in the
dictionary, we compute its statistic ŝ(t). We then simply
take the top-N ranked entries in the dictionary according
to the statistic ŝ.

Many statistics can be used in practice [12]. In our im-
plementation, we use N = 200, and ŝ to be ACC2. ACC2

is the balanced accuracy for tag x, defined as:

ŝ(x) =
∣∣∣∣
|{x : x ∈ w,w ∈ M }|

|M | − |{x : x ∈ w,w ∈ B}|
|B|

∣∣∣∣ ,

where B and M are the set of benign, and malicious
websites, respectively; the notation x ∈ w means (by a
slight abuse of notation) that the tag x is present in the
tag dictionary associated with website w. In essence, the
statistic computes the absolute value of the difference be-
tween the tag frequency in malicious pages and the tag
frequency in benign pages.

A key observation is that these top features can be pe-
riodically recomputed in order to reflect changes in the
statistic value that occurred as a result of recent exam-
ples. In our implementation, we recomputed the top fea-
tures every time that the decision tree classifiers in the
ensemble are trained.

As the distribution of software running on the web
changes and as the attacks against websites evolve, the
tags that are useful for classification will also change. A
problem arises when the dictionary of tags from previ-
ous examples is large. For a new tag to be considered a
top tag, it needs to be observed a large number of times
since |M | and |B| are very large. This can mean that
there is a significant delay between when a tag becomes
useful for classification and when it will be selected as a
top feature, or for example in the case of tags associated
with unpopular CMSs, which will never be used.

A way of dealing with this problem is to use window-
ing, where the dictionary of tags only contains entries
from the last K sites. By selecting a sufficiently small
window, the statistic for a tag that is trending can rapidly
rise into the top N tags and be selected as a feature. The
trade-off when selecting window size is that small win-
dow sizes will be less robust to noise but faster to capture
new relevant features while larger windows will be more
robust to noise and slower to identify new features.

An additional strategy when calculating the statistic
value for features is to weight occurrences of the feature
differently depending on when they are observed. With
windowing, all observations in the window are weighted
equally with a coefficient of 1, and all observations out-
side of the window are discarded by applying a coeffi-
cient of 0. Various functions such as linear and expo-
nential may be used to generate coefficients that scale
observations and grant additional emphasis on recent ob-
servations of a feature.

5 Experimental results
We evaluate here both our dynamic feature extraction al-
gorithm, and the overall performance of our classifier, by
providing ROC curves.
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Feature Stat.

meta{’content’: ’WordPress 3.2.1’, ’name’: ’generator’} 0.0569
ul{’class’: [’xoxo’, ’blogroll’]} 0.0446
You can start editing here. 0.0421
meta{’content’: ’WordPress 3.3.1’, ’name’: ’generator’} 0.0268
/all in one seo pack 0.0252
span{’class’: [’breadcrumbs’, ’pathway’]} 0.0226
If comments are open, but there are no comments. 0.0222
div{’id’: ’content disclaimer’} 0.0039

Table 2: Selection of the top features after processing
the first 90,000 examples. These features are a chosen
subset of the top 100 features determined by the system
after 90,000 examples had been observed and using win-
dowing with a window size of 15,000 examples and lin-
ear attenuation.

5.1 Dynamic Feature Extraction
We analyzed dynamic features by logging the values of
the statistic AAC2 after adding every example to the sys-
tem. We selected a few particular features from a very
large set of candidates to serve as examples and to guide
intuition regarding dynamic feature extraction. The pro-
cess of feature extraction could be performed indepen-
dently of classification and was run multiple times under
different conditions to explore the effect of different pa-
rameters such as the use of windowing and attenuation.
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Figure 8: Statistic value for various tags corre-
sponding to different version of the Wordpress con-
tent management system.

Dynamic feature extraction is essential, as it allows
the system to automatically identify features useful in
predicting if a domain will become malicious; this au-
tomation is imperative in a concept-drifting domain. For
example, Figure 8 shows the computed statistic value for
various features that correspond directly to different ver-
sions of the Wordpress CMS. Over time, the usefulness
of different features changes. In general, as new versions
of a CMS are released, or new exploits are found for ex-
isting ones, or completely new CMSs are developed, the
set of the features most useful for learning will be con-
stantly evolving.

Table 2 shows a selection of the 200 tags with highest
statistic value after 90,000 examples had been passed to
the system using a window size of 15,000 examples and a
linear weighting scheme. A meaningful feature, i.e., with
a large statistic value, is either a feature whose presence
is relatively frequent among examples of malicious sites,
or whose presence is frequent among benign sites. Of
the 15,000 sites in the window used for generating the
table, there were 2,692 malicious sites, and 12,308 be-
nign ones. The feature ul{’class’: [’xoxo’, ’blogroll’]}
was observed in 736 malicious sites and 1,027 benign
ones (461.34 malicious, 538.32 benign after attenuation)
making it relatively more frequent in malicious sites. The
feature div{’id’: ’content disclaimer’} was observed in
no malicious sites and 62 benign ones (47.88 benign af-
ter attenuation) making it more frequent in benign sites.
After manual inspection, we determined that this feature
corresponded to a domain parking page where no other
content was hosted on the domain.
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Figure 9: Statistic value for meta{’content’: ’Word-
Press 3.3.1’, ’name’: ’generator’} over time. The
statistic was computed over the experiment using win-
dow sizes of 1,000, 5,000, 15,000, 50,000 and 100,000
samples and uniform weighting.
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Figure 10: Statistic value for meta{’content’: ’Word-
Press 3.3.1’, ’name’: ’generator’} over time. The
statistic was computed over the experiment using a win-
dow size of 15,000 samples and various weighting tech-
niques.
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Figure 11: Statistic value for div{’id’: ’con-
tent disclaimer’} over time. The statistic was com-
puted over the experiment using a window of size 15,000
samples and linear attenuation.

The calculation of the ACC2 statistic for a feature
at a particular time is parameterized by the window
size and by a weighting scheme. As an example, Fig-
ure 9 shows the value of the statistic computed for the
tag meta{’content’: ’WordPress 3.3.1’, ’name’: ’gen-
erator’} over the experiment using different window
sizes. When using a window, we compute the statistic by
only considering examples that occurred within that win-
dow. We made passes over the data using window sizes
of 1,000, 5,000, 15,000, 50,000 and 100,000 samples,
which approximately correspond to 3 days, 2 weeks,
7 weeks, 24 weeks, and 48 weeks respectively.

A small window size generates a statistic value ex-
tremely sensitive to a few observations whereas a large
window size yields a relatively insensitive statistic value.
The window size thus yields a performance trade-off.
If the statistic value for a feature is computed with a
very small window, then the feature is prone to being in-
correctly identified as meaningful, but will correctly be
identified as meaningful with very low latency as only a
few observations are needed. A large window will result
in less errors regarding the usefulness of a feature but
will create a higher latency.

Figure 10 shows the effect of varying the weighting
scheme with a constant window size. Using a weight-
ing scheme gives higher weight to more recent examples
and the effect is very similar to simply decreasing the
window size. There is almost no difference between ex-
ponential and linear decay.

Features belonging to positive (malicious) and nega-
tive (benign) examples often carry with them their own
characteristics. The statistic values of negative examples
tend to be relatively constant and time-invariant as the
example in Figure 11 shows. These are generally fea-
tures that indicate a lack of interesting content and there-
fore a lack of malicious content—for instance, domain
parking pages. Conversely, the statistic value of positive
examples tend to contain a large spike as evidenced by
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Figure 12: Statistic value for meta{’content’: ’Word-
Press 3.3.1’, ’name’: ’generator’} over time. The
statistic was computed over the experiment using a win-
dow of size 15,000 samples and linear attenuation.

the example in Figure 12. The features correspond to
vulnerable software and spike when an attack campaign
exploiting that vulnerability is launched. Occasionally,
additional spikes are observed, presumably correspond-
ing to subsequent campaigns against unpatched software.

A design consideration when working with dynamic
features is whether or not it is appropriate to use features
that were highly ranked at some point in the past in ad-
dition to features that are currently highly ranked. As
discussed above, negative features tend to be relatively
constant and less affected, unlike positive features which
fluctuate wildly. These positive features tend to indicate
the presence of software with a known vulnerability that
may continue to be exploited in the future.

Since it may happen that a feature will be useful in
the future, as long as computational resources are avail-
able, better classification performance can be achieved
by including past features in addition to the current top
performing features. The result of including past features
is that in situations where attack campaigns are launched
against previously observed CMSs, the features useful
for identifying such sites do not need to be learned again.

5.2 Classification performance
We ran the system with three different configurations to
understand and evaluate the impact that different con-
figurations had on overall performance. We send input
to our ensemble of classifiers as “blocks,” i.e., a set of
websites to be used as examples. The first configuration
generated content features from the very first block of
the input stream but did not recompute them after that.
The second configuration recomputed features from ev-
ery block in the input stream but did not use past features
which did not currently have a top statistic value. The
third configuration used dynamic features in addition to
all features that had been used in the past.

For all configurations, we used a block size of 10,000
examples for retraining the ensemble of C4.5 classifiers.
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We also used a window size of 10,000 samples when
computing the statistic value of features, and we relied
on features with the top 100 statistic values. We gener-
ated ROC curves by oversampling the minority class by
100% and 200% and undersampling the majority class
by 100%, 200%, 300%, and 500%. We ran each combi-
nation of over- and undersampling as its own experiment,
resulting in a total of 10 experiments for each configura-
tion. The true positive rate and false positive rate2 for
each experiment is taken as the average of the true pos-
itive and false positive rates for each block, that is, each
block in the input stream to the system is tested on before
being trained on, and the rates are taken as the average
over the tested blocks.

Best operating point
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Figure 13: ROC plot for three different strategies of
dynamic features. The classifier was run using three
different configurations for dynamic features. The first
configuration corresponds to classifiers trained on both
current and past top features; the second corresponds
to classifiers trained using only current top features; the
third corresponds to classifiers trained using the top fea-
tures from the first 5,000 samples.

Figure 13 shows the ROC curves generated for the
three configurations described. The points resulting from
the experiments have been linearly connected to form the
curves. One can see that the configuration which used
past features performed the best, followed by the con-
figuration which used only current top dynamic features
and the configuration which did not use dynamic features
at all. The best operating point appears to achieve a true
positive rate of 66% and a false positive rate of 17%.

The configuration which did not use dynamic features
ended up selecting a feature set which was heavily biased
by the contents of first block in the input data stream.
While the features selected were useful on learning the
first block, they did not generalize well to future exam-
ples since the distribution of pages that were observed
had changed. This is a problem faced by all such sys-
tems in this setting that are deployed using a static set

2The false negative rate and true negative rates are simple comple-
ments of the respective positive rates.

of features, unless the features set is fully expressive of
the page content, i.e., all changes in the page content are
able to be uniquely identified by a corresponding change
in the feature values, then the features will eventually be-
come less useful in classification as the distribution of
pages changes.

The configuration which only used the current top dy-
namic features also performed relatively poorly. To un-
derstand why this is the case, we can see that in Fig-
ures 11 and 12 some features have a statistic value which
oscillates to reflect the change in usefulness of the fea-
ture due to the time varying input distribution. One can
also see that when a feature becomes useful, the corre-
sponding increase in the statistic value lags behind since
a few instances of the feature need to be observed be-
fore the statistic can obtain a high value again. During
this transient period, the system fails to use features that
would be useful in classification and so performance suf-
fers. This problem may be partially addressed by shrink-
ing the input block size from the data streams well as the
window for computing the static value to a smaller value
to reduce the transient. However such a strategy will still
be outperformed by the strategy which remembers past
features.
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Figure 14: AUC plot for the system over time us-
ing current and past dynamic features. The system
was run using both current and past top dynamic fea-
tures. ROC curves were generated for each block of ex-
amples that was processed and the corresponding AUC
value was computed.

For each input block in the experiments using past fea-
tures, we recorded the true positive and false positive
rates and used them to generate an ROC curve. We then
used the ROC curve to approximate the area under the
curve (AUC) which is a value that gives some intuitive
understanding of how well the classifier performed on
that block. Figure 14 shows the AUC values for each
block in the experiment. The system performed rela-
tively poorly until a sufficient number of blocks had been
processed at which point the performance increased to a
threshold value. We believe that the difficulty in achiev-
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ing better performance is due to the nature of the prob-
lem, specifically it is not always the case that the content
of a site and its traffic statistics are a factor in whether or
not it will become compromised. We discuss this issue
in more details in the limitations section.

Finally, we observed that when classification yielded
a prediction that a site would become compromised, the
reasoning can be read as the conjunction of conditions
from the decision tree. For example the classifica-
tion of www.bisoft.org which appeared in the
search redirection data set was described as (Global
Site Rank = 8) ∧ ( <META NAME=”Generator”
CONTENT=”EditPlus”>= 1) ∧ (<script
type=”text/javascript” src=”/static/js/analytics.js”> =
1). The classification of benign examples was generally
less obvious.

The conditions resulting in incorrect classification
tended to follow a few main types. The first type are
instances where a website would in the future become
malicious, but very few examples like it exist at classi-
fication time. These sites contained content that would
eventually yield prominent features for identifying sites
that would become malicious but were not classified cor-
rectly due to latency in the dynamic feature extraction.
As an example, consider in Figure 12 the samples that
occurred just before the first significant spike.

The second type of instance that was incorrectly clas-
sified were examples that did not become malicious, but
were classified as becoming so based on some strong
positive content features that they contained. It is likely
that after an initial attack campaign, vulnerable CMSs
are less targeted due to the incremental number of com-
promises that could be yielded from them.

The third type of instance that was incorrectly clas-
sified were examples that would be become malicious
for seemingly no apparent reason. These examples
that would become malicious did not follow the general
trend of large spikes corresponding to attack campaigns
against a CMS, and have been observed with positive fea-
tures both before and after its initial spike as well as with
strong negative features. It is believed that these exam-
ples are cases where a site is becoming malicious for rea-
sons completely independent of its content or traffic pro-
file. It could be the case that an attack is launched where
default login credentials for many CMSs are being at-
tempted resulting in a few seemingly random breaks. It
could also be the case that the domain in question was
sold or rebuilt after observing it causing the system to er-
roneously predict its future malicious status from its old
content.

6 Limitations
The limits on the classification performance of the sys-
tem can be attributed to the following few difficulties in
predicting if a site will become malicious.

Our system assumes the factors responsible for
whether or not a site will become compromised can be
summarized by its content and its traffic statistics. This
assumption is sometimes violated, since for example
sites may be compromised and become malicious due
to weak administrator passwords being guessed or being
retrieved via social engineering. Other examples may in-
clude adversaries who host their own sites with malicious
intent. While it is often the case that such actors use sim-
ilar page templates due to their participation in affiliate
networks or out of convenience, such sites may introduce
examples where the factors for the site being malicious
are independent of its content. In such situations, the
system will fail to perform well since the factors for site
becoming malicious are outside its domain of inputs.

The nature of adversaries who compromise sites may
also be perceived as a limitation on what our system
can do. It has been observed that attack campaigns
are launched where adversaries appear to enumerate
and compromise sites containing a similar vulnerability.
While adversaries do attack many sites which contain a
particular vulnerability, it is generally not a reasonable
assumption that they will systematically attack all sites
containing this vulnerability both at the time of the cam-
paign and in the future. The impact of this behavior on
the system is that sites which contain similar content to
those which were compromised in the campaign will be
classified as becoming malicious in the future, when they
actually may not since attackers have chosen to ignore
them. While this does deteriorate the performance of the
system, we argue that this does not take away its useful-
ness since these misclassifications represent sites which
are still at considerable security risk and need attention.

The dynamic feature extraction system also presents
at least two main limitations. The first is a correlation
of features that are selected as top features at any given
point in time. Tags often rise to the top of the list because
they are part of some page template which has come up
frequently. There may be multiple tags associated with a
particular page template which all rise at the same time,
and so a few of the top tags are redundant since they are
identifying the same thing. It would be desirable to mea-
sure the correlation of the top features in order to select
a more diverse and useful set however no attempt to do
this was made in our experiments.

Another limitation of the dynamic features is that for
system configurations which use past features in addition
to the current top features, the size of the feature set is
monotonically increasing. Thus, it will take longer over
time train the classifiers and run the system. It would be
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useful to further investigate the trade-offs between clas-
sification performance and limited feature lists.

Last, dynamic features introduce a unique opportunity
for adversarial machine learning approach to poison the
performance of the system. Adversaries which control
a website may attempt to remove, change, or insert tags
into their pages in order to damage the effectiveness of
feature generation. For example, adversaries that host or
control sites that have distinguishing tags may either try
to remove them or rewrite them in semantically equiv-
alent ways to prevent the system from using them for
classification. Since the sites examined by the system are
typically not under adversarial control at the time of eval-
uation, we believe that the impact of such attacks should
be minimal; but it deserves further analysis.

7 Conclusions
We discussed a general approach for predicting a web-
sites propensity to become malicious in the future. We
described a set of desirable properties for any solution
to this problem which are interpretability, efficiency, ro-
bustness to missing data, training errors, and class im-
balance, as well as the ability to adapt to time chang-
ing concepts. We then introduced and adapted a num-
ber of techniques from the data mining and machine
learning communities to help solve this problem, and
demonstrated our solution using an implementation of
these techniques. Our implementation illustrates that
even with a modest dataset, decent performance can be
achieved since we are able to operate with 66% true pos-
itives and only 17% false positives at a one-year horizon.
We are currently working on making our software pub-
licly available.
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Abstract

We present Hulk, a dynamic analysis system that de-
tects malicious behavior in browser extensions by mon-
itoring their execution and corresponding network activ-
ity. Hulk elicits malicious behavior in extensions in two
ways. First, Hulk leverages HoneyPages, which are dy-
namic pages that adapt to an extension’s expectations in
web page structure and content. Second, Hulk employs
a fuzzer to drive the numerous event handlers that mod-
ern extensions heavily rely upon. We analyzed 48K ex-
tensions from the Chrome Web store, driving each with
over 1M URLs. We identify a number of malicious ex-
tensions, including one with 5.5 million affected users,
stressing the risks that extensions pose for today’s web
security ecosystem, and the need to further strengthen
browser security to protect user data and privacy.

1 Introduction

All major web browsers today support broad extension
ecosystems that allow third parties to install a wide range
of modified behavior or additional functionality. Inter-
net Explorer has binary add-ons (Browser Helper Ob-
jects), while Firefox, Chrome, Opera, and Safari support
JavaScript-based extensions. Some browsers have online
web stores to distribute extensions to users. For exam-
ple, the most popular extension in Chrome’s Web Store,
AdBlock, has over 10 million users. Other popular ex-
tensions serve a variety of functions, such as preserving
privacy, changing the aesthetics of the browser’s UI, or
integrating with web services such as Google Translate.

The amount of critical and private data that web
browsers mediate continues to increase, and naturally
this data has become a target for criminals. In addition,
the web’s advertising ecosystem offers opportunities to
profit by manipulating a user’s everyday browsing be-
havior. As a result, malicious browser extensions have
become a new threat, as criminals realize the potential

to monetize a victim’s web browsing session and readily
access web-related content and private data.

Our work examines extensions for Google Chrome
that are designed with malicious intent—a threat dis-
tinct from that posed by attackers exploiting bugs in be-
nign extensions, which has seen prior study [6, 5]. Ex-
tensions for Google Chrome are primarily distributed
through the Chrome Web Store.1 Like app stores for
other platforms, such as Android or iOS, inherent risks
arise when downloading and executing programs from
untrusted sources. Reports have documented not only
malicious extensions [27], but miscreants purchasing ex-
tensions (and thereby access to their userbases via update
mechanisms) to add malicious functionality [2, 25]. In
addition to the web store, extensions can also be directly
installed by users and other programs. Installed by a pro-
cess called sideloading, these extensions pose a recog-
nized risk that browser vendors have attempted to prevent
through modifications to the browser [22]. Sideloaded
extensions are especially problematic since they can be
installed without user knowledge, and are not subject to
review by a web store. Despite efforts to stifle sideloaded
extensions, they remain a significant problem [12].

In this paper we present Hulk, a tool for detecting ma-
licious behavior in Google Chrome extensions. Hulk re-
lies on dynamic execution of extensions and uses several
techniques to trigger malicious functionality during exe-
cution. One technique we developed to elicit malicious
behavior is the use of HoneyPages: specially-crafted web
pages designed to satisfy the structural conditions that
trigger a given extension. We interpose on all queries and
modifications to the DOM tree of the HoneyPage to au-
tomatically create elements and mimic DOM tree struc-
tures for extensions on the fly. Using this technique, we
can readily observe malicious behavior that inserts new
iframe or div elements.

In addition, we built a fuzzer to drive the execution

1https://chrome.google.com/webstore/category/extensions
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of event handlers registered by extensions. In our ex-
periments, we use the fuzzer to trigger all event handlers
associated with web requests, exercising each with 1 mil-
lion URLs. Although we undertook extensive efforts to
trigger malicious behavior, the possibility remains that
Hulk lacks the mechanisms to satisfy all of the conditions
necessary for eliciting an extension’s malicious behavior.

Our analysis of 48,332 Chrome extensions found that
malicious extensions pose a serious threat to users. By
developing a set of rules that label execution logs from
Hulk, we identified 130 malicious extensions and 4,712
“suspicious” extensions, most of which appear in the
Chrome Web Store. Several large classes of malicious
behavior appear within our set of extensions: affiliate
fraud, credential theft, ad injection or replacement, and
social network abuse. In one case, an extension perform-
ing ad replacement had nearly 2 million users, similar in
size to some of the largest botnets.

In summary, we frame our contributions as follows:

• We present Hulk, a system to perform dynamic
analysis for Chrome extensions.

• We demonstrate the effectiveness of HoneyPages
and event handler fuzzing to elicit malicious behav-
ior in browser extensions.

• We perform the first broad study of malicious
Chrome extensions.

• We characterize several classes of malicious
Chrome extensions, some with very large footprints
(up to 5.5M installations) and propose solutions to
eliminate entire classes of malicious behavior.

2 Background

We begin by reviewing the Google Chrome extension
model and the opportunities this model provides to mali-
cious extensions.

2.1 Chrome Extension Composition
Google Chrome supports extensions written in
JavaScript and HTML (distributed as a single zip

file). A small number of extensions also include binary
code plugins, although these are subject to a manual
security review process [15]. Each extension contains a
(mandatory) manifest that, along with other extension
parameters, describes the permissions the extension uses
and the list of resources that the browser should load.

The permission system is designed in the spirit of least
privilege, with the goal of limiting the resources avail-
able to an extension in case it has exploitable vulnera-
bilities [5]. The threat model does not attempt to ad-
dress malicious extensions accessing sensitive content or

performing other actions. The permission system deter-
mines which sites an extension can access, the allowed
API calls, and the use of binary plugins. We describe
relevant parts of the permission system later in this sec-
tion. See Barth et al. for a more detailed description of
Chrome’s extension architecture [5].

2.2 Installing Extensions
The Chrome Web Store is the official means for users
to find and install extensions. The web store is similar
to other app stores, such as those for iOS and Android,
in that developers create extensions and upload them to
the store for users to download. Extension developers
can also push out updates without requiring any action
by the end-user.

In addition to the Chrome Web Store, extensions can
also be installed manually by a user or an external pro-
gram. We refer to the installation of extensions out-
side the web store as sideloading. Chrome version 25
(released February, 2013) included changes to prevent
silent installation of Chrome extensions and require that
the user indicate consent for installation [22]. In May,
2014, Chrome took further steps to prevent sideload-
ing by requiring all installed extensions to be hosted in
the Chrome Web Store [18]. While these changes in-
crease the difficulty of sideloading, it is still possible
for programs to force silent installation of extensions,
since the attacker already has control of the machine. For
our study we obtained a set of extensions that are side-
loaded into Chrome by other Windows programs, many
of which are known malware.

2.3 Extension Permissions

Permissions. Chrome requires extensions to list the
permissions needed to access the different parts of the
extension API. For example, Figure 1 shows a portion
of a manifest file requesting permission to access the
webRequest and cookies API. The webRequest per-
mission allows the extension to “observe and analyze
traffic and to intercept, block, or modify requests in-
flight” by allowing the extension to register callbacks
associated with different parts of the HTTP stack [15].
Similarly, the cookies API allows the extension to get,
set, and be notified of changes to cookies.

The extension API permissions operate in con-
junction with the optional host permissions, which
limit the API permissions to access resources only
for the specified URLs. For example, in Fig-
ure 1 the extension requests host permissions for
https://www.google.com/, which allows it to ac-
cess cookies and webRequest APIs for the specified
domains. Host permissions also support wildcarding

2
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...

"permissions": [

"cookies",

"webRequest",

"*://*.facebook.com/",

"https://www.google.com/"

],

...

"content_scripts": [

{

"matches": ["http://www.yahoo.com/*"],

"js": ["jquery.js", "myscript.js"]

}

],

...

"background": {

"scripts": ["background.js"]

},

...

"content_security_policy": "script-src 'self'

http://www.foo.com 'unsafe-eval';"

...

Figure 1: Example of a manifest that shows API permis-
sions for two hosts, followed by content scripts that run
on http://www.yahoo.com, followed by a background
script that runs on all pages. Finally, the CSP specifies
the ability to include and eval scripts in the extension
from foo.com.

URLs. In Figure 1, the extension requests access to
*://*.facebook.com. This permission allows for ac-
cess to all subdomains of facebook.com requested via
any URL scheme. In addition to wildcards, the special
token <all urls> matches any URL.

Besides the permissions described above, we found
that extensions request a variety of other permissions. In
Section 4 we summarize the permissions requested for
all of the extensions we examined, and we discuss the
permissions relevant to various types of abuse in Sec-
tion 5. Other resources provide a thorough analysis of
the Chrome permission system [5, 6].

Content Scripts. In addition to permissions for access-
ing various resources associated with a page, extensions
can also specify a list of content scripts to indicate
JavaScript files that will run inside of the web page. Fig-
ure 1 shows an example of including two JavaScript files,
jquery.js and myscript.js that will be run in the
context of the page for any URLs matching the specified
URL patterns (all pages on http://www.yahoo.com/

in this example). Inside of each JavaScript file the au-
thor can include further logic to decide if and when to
execute.

The ability to run in the context of a page is a powerful
feature. Once a content script executes, any resulting ac-
tions become indistinguishable from actions performed
by JavaScript provided by the web server. Not only can
the scripts modify the DOM tree or other scripts, but they
can also issue authenticated web requests (such as POST
with proper cookies).

Background Pages. Besides the content scripts that
allow an extension to interact with a given page,
Chrome also allows extensions to run scripts in a
“background page”. Figure 1 shows an example man-
ifest file that specifies background.js as a back-
ground page. Background pages often contain the
logic and state an extension needs for the entirety
of the browser session and do not have any visibil-
ity to the user. For example, an extension request-
ing webRequest permissions may use the background
script to attach a listener to read outgoing requests
using the chrome.webRequest.onBeforeRequest.

addListener() call. After filtering on the host permis-
sions, Chrome will send the extension a notification for
every outgoing request. We detail further examples in
the context of the extensions in the following sections.

Content Security Policy. In general, servers can specify
a Content Security Policy (CSP) header that the browser
uses to determine the sources from which it can include
objects on the page. CSP can also specify other options,
such as whether to allow the page to perform an eval

or to embed inline JavaScript [29]. Extensions can use
the same syntax to express their CSP in the manifest file.
For example, an extension that wishes to include source
from foo.com and to execute eval can specify its CSP
as shown in Figure 1.

3 Architecture

In this section, we describe the architecture of Hulk, our
dynamic analysis system that identifies malicious behav-
ior in Chrome extensions. Hulk dynamically loads exten-
sions in a monitored environment and observes the inter-
action of extensions with the loaded web pages. Using
a set of heuristics to identify potentially dangerous be-
havior, it labels extensions as malicious, suspicious, or
benign. In the rest of this section we describe how Hulk
works and the challenges that arise in analyzing browser
extensions.

3.1 Profiling Extensions
At the core of our dynamic analysis system is an instru-
mented browser and extension loader that enables us to
automatically install extensions and instrument activity
during web browsing. Our monitoring hooks collect data

3



644 23rd USENIX Security Symposium USENIX Association

from multiple vantage points within Hulk as it visits web
pages and triggers a range of extension behavior.

URL Extraction. Before we dynamically analyze an ex-
tension we need to ensure that we can trigger the exten-
sion’s functionality. Most extensions interact with the
content of web pages, so we need to choose which URLs
to load for our analysis. To this end, we use three sources
of URLs: the manifest, the source code, and a list of pop-
ular sites. First, using the manifest file of the extension
we construct valid URLs that match the permissions and
content scripts specified. In some cases, the host per-
missions of an extension are restrictive—for example,
https://*.facebook.com—so we can generate URLs
that will match the pattern. It is more difficult to pick
URLs to visit in cases where the extension requests host
permissions on all URLs (Section 2.3), because the ma-
licious behavior may only trigger on a small subset of
sites. Therefore, we search the source code for any static
URLs and visit those as well. Finally, for every extension
we also visit a set of popular sites targeted by malicious
extensions. We constantly strive to improve this list as
we detect malicious extensions attacking particular do-
mains. We however note that although we use multiple
sources of URLs to determine the appropriate pages to
visit, our approach is not complete; we discuss the limi-
tations further in Section 7.

HoneyPages. Some extensions activate based on the
content of a web page instead of the URL. To analyze
such extensions we use specially crafted pages that at-
tempt to satisfy the conditions that an extension looks
for on a page before performing an action. We call these
HoneyPages. HoneyPages contain JavaScript functions
that overload built-in functions that query the DOM tree
of the web page. As a result, when an extension queries
for the presence of a specific element we can automati-
cally create it and insert it into the page. For example, if
the extension queries an iframe DOM element with the
intention to alter it, then our HoneyPage will create an
iframe element, inject it in the DOM tree, and return it
to the extension.

HoneyPages enable us to supplement the URL extrac-
tion phase and dynamically create an environment for the
extension to perform as many actions as it needs. The on-
demand nature of a HoneyPage does not restrict us to a
specific DOM tree structure, but enables us to determine
what an extension looks for in a page during execution,
since we can record all interactions within a HoneyPage.
By using HoneyPages we can better understand how the
extension will behave on arbitrary pages that are other-
wise difficult to generate prior to analysis.

3.2 Event-Based Execution
The Chrome browser offers to extensions an event-
based model to register callbacks that respond to certain
browser-level events. For example, extensions use the
chrome.webRequest.onBeforeRequest callback to
intercept all outgoing HTTP requests from the browser.
HoneyPages will not trigger callbacks for network events
that require special properties, such as a specific URL
or HTTP header. Therefore, we complement Honey-
Pages with event handler fuzzing. Specifically, we in-
voke all event callbacks that an extension registers in the
chrome.webRequest API with mock event objects. We
point to a HoneyPage loaded in the active tab while in-
voking the callbacks, enabling us to monitor the changes
that the extension attempts to make on that page. Our
approach allows us to test for every extension the exten-
sion’s callbacks on the top 1 million Alexa domains in
under 10 seconds on average.

3.2.1 Monitoring Hooks

Browser Extension API. Depending on the permissions
included in the manifest (Section 2.3), an extension can
use the Chrome extension API to perform actions not
available to JavaScript running in a web page. As such,
monitoring the extension API captures a subset of the
total JavaScript activity that results from an extension,
but gives us a detailed picture of what the extension at-
tempts to do. For example, we monitor the extension API
and log if the extension registers a callback to intercept
all HTTP requests performed by the browser, and then
track the changes that the extension makes to the HTTP
requests. To do this, we leverage the current logging in-
frastructure offered by Chrome for monitoring the activ-
ity of extensions. We build upon the JavaScript func-
tion call logging provided by the browser to identify ma-
licious behavior, such as tampering of security-related
HTTP headers.

Content Scripts. We intercept and log all additional
code introduced by the extension in the context of the
visited page. Doing so provides a more complete picture
of the extension’s functionality, since it can include re-
mote scripts from arbitrary locations and inject them into
the page. Remote scripts can compromise the page’s se-
curity similar to third-party JavaScript libraries [23], and
make the analysis of the extension more difficult. Using
remote scripts gives miscreants the ability to blacklist IP
addresses of our analysis system (i.e., cloaking [17, 28])
or return code without the malicious components. Re-
mote JavaScript inclusion also renders static analysis
on the extension’s code fundamentally incomplete since
parts of the extension’s codebase are not available until
execution.
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Network Logging. We use a transparent proxy that in-
tercepts all browser HTTP and DNS traffic to log the re-
quests made during extension execution. A browser ex-
tension has a set of files available as resources loaded by
the browser, and it can also download and execute con-
tent from the web. Since the URLs retrieved can be com-
puted at runtime, monitoring the network activity of the
extension is critical for a complete analysis of its source
code and included components. In addition to identifying
remote content, we log all domains contacted by moni-
toring the DNS requests generated by the browser. Do-
ing so enables us to identify extensions that contact non-
existent domains, which can occur because the extension
is no longer operational or up-to-date. In these cases, our
analysis was necessarily incomplete, since when the do-
main was active the extension could have fetched more
remote code from it.

3.3 Detecting Malicious Behavior

As described in the previous section, our dynamic anal-
ysis system can provide detailed information about all
browser and extension activity performed while visiting
web pages. We combine this data to label the extension
as either benign, suspicious, or malicious by applying a
set of labeling heuristics based on the behavior. Labeling
an extension as malicious indicates we identified behav-
ior harmful to the user. Suspicious indicates the presence
of potentially harmful actions or exposing the user to new
risks, but without certainty that these represent malicious
actions. Finally, when we do not find any suspicious ac-
tivity, we label the extension as benign.

3.3.1 JavaScript Attributes

We use our monitoring modules described in Sec-
tion 3.2.1 to identify malicious JavaScript execution. Be-
low we detail actions that we consider malicious or sus-
picious in our post-processing analysis.

Extension API. As described earlier, Chrome’s exten-
sion API offers privileged access to additional function-
ality of the browser besides native JavaScript, using per-
missions specified in the manifest file. While there are
benign uses for every permission, we found several ex-
tensions that abuse the API. Specifically, for reasons de-
scribed below, we consider the following actions avail-
able only through the extension API as malicious: unin-
stalling other extensions, preventing uninstallation of the
current extension, and manipulating HTTP headers.

We consider uninstalling other extensions as malicious
because some extensions uninstall cleaner extensions,
such as the extension Facebook created to remove harm-

ful extensions on its blacklist.2 We detect this behavior
by monitoring the chrome.management.uninstall

API calls. To avoid false positives, we can differentiate
cleaners from malicious extensions because, to the best
of our knowledge, cleaners operate in a different fashion
than Antivirus does: they clean up malicious extensions
and then remove themselves from the browser. This dif-
fers from the behavior of malicious extensions, which
remain persistent on the system.

Besides attempting to uninstall other extensions, mali-
cious extensions often prevent the user from uninstalling
the extension itself. More specifically, we found exten-
sions that prevent the user from opening Chrome’s exten-
sion configuration page where a user can conveniently
uninstall any extension. To prevent uninstallation, ma-
licious extensions interfere with tabs that point to the
extension configuration page, chrome://extensions,
either by replacing the URL with a different one, or by
removing the tab completely. For analysis, we load a tab
with chrome://extensions in the browser during our
dynamic analysis and monitor any interactions to iden-
tify such behavior.

Lastly, using callbacks in the webRequest API,
a malicious extension can manipulate HTTP headers.
Extensions can use the webRequest API to effec-
tively perform a man-in-the-middle attack on HTTP
requests and responses before they are handled by
the browser. This behavior is often malicious (or at
least dangerous) since we found extensions that re-
move security-related headers, such as Content-Security-
Policy or X-Frame-Options, through the use of call-
backs such as webRequest.onHeadersReceived and
webRequestInterval.eventHandled. By monitor-
ing the use of this API, we can log events that reveal state
of HTTP headers before and after the request. Upon ma-
nipulation of any security-related headers, we label the
extension as malicious.
Interaction with visited pages. In addition to the exten-
sion API, we also monitor an extension’s use of content
scripts to modify web content loaded in the browser. In
our analysis, we flag two kinds of interaction: sensitive
information theft as malicious and injection of remote
JavaScript content as suspicious.

There are many ways an extension can steal per-
sonal information from the user. For example, it can
act as a JavaScript-based keylogger by intercepting all
keystrokes on a page. Extensions can also access form
data, such as a password field, before it is encrypted
and sent over the network. Finally, extensions can also
steal sensitive information from third parties by access-
ing sites with which the user has a valid session, and ei-

2https://chrome.google.com/webstore/

detail/facebook-malicious-extens/

mhkafblddkepdhhjpmedkngigkjjknoa
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ther issuing requests to exfiltrate data, or simply stealing
valid authentication tokens.

We label any extension that injects remote JavaScript
content into a web page as suspicious. We define this ac-
tivity as adding a script element with a src attribute
pointing to a domain that is different from the one of
the web page. Including these scripts complicates anal-
ysis since the JavaScript content can change without any
corresponding change in the extension. We have ob-
served changes to JavaScript files that substantially alter
the functionality of an extension, possibly due to a server
compromise.

3.3.2 Network Level
By monitoring network requests, including DNS lookups
and HTTP requests, we identify other types of suspi-
cious/malicious behavior. Using a manual analysis of
network logs we have identified two attributes that indi-
cate malicious or suspicious behavior: request errors and
modification of HTTP requests. To detect HTTP mod-
ifications, we examine if the network response that we
observe on the wire differs from the network response
finally processed by the browser.

As we discussed earlier, the extension API offers call-
backs to give extensions the ability to intercept and ma-
nipulate web requests. Not only can extensions drop
security-related headers, but extensions can change or
add parameters in URLs before the HTTP request is sent.
We find such suspicious behavior common, especially
among extensions that request permissions on shopping-
related sites such as Amazon, EBay, and others. In these
cases, the extension adds parameters to the URL that in-
dicate that the site should credit a particular affiliate for
any resulting sales. We discuss this behavior in more de-
tail in Section 5. At the network level, we have the com-
plete view of how the requests originally appeared. We
combine that knowledge with our chrome.* API moni-
toring to identify the exact changes made to the request.

We also look for errors during domain name resolution
to identify extensions that contact domains since taken
down. As with drive-by downloads, we expect that ma-
licious code dynamically loaded into an extension will
eventually become blacklisted. In such cases, the exten-
sion will fail to introduce more code during its execution.
We detect this behavior and mark it as suspicious.

3.4 Injected Content Analysis
A Chrome extension can also manipulate the visited
pages of the browser by injecting a content script. The
injected script runs in the context of the visited page
and thus has full access to its DOM tree. The injected
code can vary significantly, and, with the dynamic na-

Analysis result Count

Malicious 130
Suspicious 4,712
Benign 43,490

Total 48,332

Table 1: Classification distribution of extensions.

Detection class Count

[s] Injects dynamic JavaScript 2,672
[s] Produces HTTP 4xx errors 2,322
[s] Evals with input >128 chars long 451
[m] Prevents extension uninstall 56
[m] Steals password from form 39
[s] Performs requests to non-existent domain 26
[m] Contains keylogging functionality 23
[m] Injects security-related HTTP header 11
[m] Steals email address from form 10
[m] Uninstalls extensions 8

Table 2: Distribution of detected suspicious/malicious
behavior from analyzed extensions. Notice that an ex-
tension might have more than one detections and that we
mark with [m] detections classified as malicious and with
[s] detections classified as suspicious.

ture of JavaScript, can prove difficult to analyze stati-
cally. The use of HoneyPages enables us to understand
the injected code’s full intentions. Instead of trying to
infer what the code will do, we actually run it to observe
its effects on the DOM tree and classify it accordingly.
For example, if the injected code looks for a form field
with the name “password,” we classify it as malicious,
since it can potentially hijack the user’s credentials on
the page. Another example concerns injecting additional
code, where the injected code is part of a two-stage pro-
cess that fetches yet more code from the web and dynam-
ically executes it in the context of the visited page. By
relying on HoneyPages to understand the code’s inten-
tions by the effect that the code has on a given page, we
obtain a more precise view of what the code attempts do
than we can using only static analysis.

4 Results

To evaluate Hulk we use two sources of extensions: the
official Chrome Web Store (totaling 47,940 extensions),
and extensions sideloaded by binaries. We obtained the
latter based on binaries executed in Anubis [1], which,
after removing a large number of duplicates, resulted in
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Rank Top 10 types of permissions # ext.

1 tabs 16,787
2 notifications 12,011
3 unlimitedStorage 9,424
4 storage 5,725
5 contextMenus 4,774
6 cookies 2,872
7 webRequest 2,849
8 webRequestBlocking 2,102
9 webNavigation 1,623
10 management 1,533

Table 3: The top 10 permissions found in the manifest
files for all extensions we ran. Extensions can include
more than one permission.

a set of 392 unique extensions. As shown in Table 1, in
total we analyzed 48,332 distinct extensions, of which
Hulk labeled 130 as malicious and 4,712 as suspicious.
Table 2 summarizes all of the detected behaviors, which
we analyze in more detail in the following sections.

4.1 Permissions Used
In this section we characterize the extensions we exe-
cuted by identifying the most popular permissions, con-
tent scripts, and API calls that they performed.

Permissions. Table 3 shows the top 10 permissions
from 30,392 unique extensions that use the Chrome Ex-
tension API (excluding the host permissions). The most
commonly used, the tabs permission, allows an exten-
sion to interact with the browser’s tabs, including nav-
igating a tab to a specified URL and registering call-
backs to react to changes in the address bar. The sec-
ond most popular permission, notifications, allows
an extension to generate custom notifications that alert
the user. The storage and unlimitedStorage per-
missions allow storing of permanent data in the user’s
browser. The contextMenus permission allows an ex-
tension to add additional items on the context menu of
the browser. Context menus appear when the user right
clicks on a page. To manipulate the browser’s cookies,
an extension needs to ask for the cookies permission.
The permissions webRequest, webRequestBlocking
and webNavigation allow an extension to inspect, in-
tercept, block, or modify web requests from the browser.
Finally, an extension can get a list of other extensions
installed in the browser—and even disable or unistall
them—with the management permission.

We also computed permission statistics independently
for the set of benign extensions and the set of mali-
cious or suspicious ones. To our surprise, we found

Rank Top 25 hosts in permissions # ext.

1 http://*/* 7,319
2 https://*/* 6,395
3 <all urls > 2,044
4 http://*/ 1,126
5 *://*/* 1,025
6 https://*/ 665
7 www.flashgame90.com/Default.aspx 224
8 https://api.twitter.com/ 200
9 http://localhost/* 161
10 http://127.0.0.1/* 133
11 https://secure.flickr.com/ 95
12 *://*.facebook.com/* 91
13 *://*/ 89
14 https://www.facebook.com/* 82
15 http://vk.com/* 77
16 http://*.facebook.com/* 77
17 https://mail.google.com/* 71
18 https://*.facebook.com/* 70
19 http://*.google.com/ 68
20 https://www.google-analytics.com/ 67
21 https://mail.google.com/ 64
22 https://*.google.com/ 62
23 https://twitter.com/* 61
24 https://www.googleapis.com/ 60
25 google.com/accounts/OAuthGetAcc[..] 56

Table 4: The top 25 host permissions used by extensions.
Extensions can include more than one host permission
per manifest.

that permissions for benign extensions do not dif-
fer significantly from permissions requested by mali-
cious/suspicious ones, indicating that often attackers do
not need to target different APIs to perform their attacks;
maliciousness instead manifests in the way they use the
API.

We found 18,313 extensions that use host permissions
to restrict on which pages the extension can use the priv-
ileged chrome.* API. Table 4 shows the top 25 hosts
appearing in host permissions. As seen in the table, ex-
tensions typically request broad permissions using wild-
cards in URL patterns. In addition these, we examined
the hosts that extensions specified as targets for injecting
content scripts, per Table 5, finding similar broad decla-
rations. In practice, extension authors often use content
scripts and host permissions in an unrestricted fashion.

API calls. Table 6 shows the top 15 Chrome Ex-
tension API calls made during by extensions during
our experiments. There are several measurement arti-
facts introduced by our methodology. To load an ex-
tension for testing, we install the extension on a clean

7
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Rank Top 25 hosts in content scripts # ext.

1 http://*/* 12,472
2 https://*/* 10,864
3 <all urls> 4,795
4 *://*/* 1,536
5 https://www.facebook.com/* 520
6 *://*.facebook.com/* 510
7 https://mail.google.com/* 458
8 http://www.facebook.com/* 433
9 https://*.facebook.com/* 344
10 http://*.facebook.com/* 320
11 file://*/* 315
12 https://twitter.com/* 303
13 http://mail.google.com/* 273
14 *://pages.brandthunder.com/[..] 265
15 https://plus.google.com/* 261
16 ftp://*/* 246
17 http://vk.com/* 227
18 http://www.youtube.com/* 211
19 file:///* 207
20 *://mail.google.com/* 189
21 http://twitter.com/* 179
22 *://www.facebook.com/* 178
23 http://ak.imgfarm.com/images[..] 177
24 *://*.reddit.com/* 164
25 https://vk.com/* 164

Table 5: The top 25 hosts used in extensions’ content
script permissions.

browser each time we start an analysis. This causes
runtime.onInstalled to appear in every analysis in-
dependent of the extension’s activities. We also open the
chrome://extensions tab from inside the extension to
determine if the extension interferes with the manage-
ment of extensions. This causes Hulk to record a large
number of tabs.create calls. In Table 6 the tabs API
is by far the most used API, which matches the popular-
ity of tabs permissions observed in Table 3.

4.2 Network Level
Using network activity alone we identified 24 malicious
extensions. These extensions were labeled as malicious
by Hulk because they tampered with security-related
HTTP headers. By removing HTTP response headers
like Content-Security-Policy, the malicious extensions
can inject JavaScript into pages that specifically do not
allow scripts from external sources (according to the CSP
policies provided by the web server). For example, Hulk
found multiple variants of an active extension on the
Chrome Web Store targeting users that seek to cheat in

Rank Top 15 chrome.* APIs called # calls

1 runtime.onInstalled 182,476
2 webRequestInternal.eventHandled 57,466
3 tabs.getAllInWindow 49,312
4 tabs.onUpdated 32,354
5 tabs.create 25,947
6 i18n.getMessage 13,549
7 webRequest.onBeforeSendHeaders 13,213
8 runtime.connect 13,004
9 extension.getURL 11,942

10 storage.get 10,178
11 contextMenus.create 7,816
12 tabs.get 6,970
13 webRequest.onBeforeRequest 6,168
14 runtime.sendMessage 5,847
15 extension.sendRequest 5,454

Table 6: The top 15 chrome.* APIs called by extensions
during dynamic analysis.

online games; these extensions, generally going by the
name “Cheat in your favorite games”, affect over 20K
users.

During our experiments we encountered cases where
our analysis could not obtain the full set of information
needed to make a decision regarding the maliciousness
of an analyzed extension. This problem arose due ex-
tensions performing HTTP requests that either returned
errors, such as an HTTP 404 responses, or having do-
main names that no longer resolved. In such cases, given
our inability to exercise the extension’s full set of capa-
bilities, and because the failed requests might correspond
to fetching additional code, we mark these extensions as
suspicious.

4.3 Extensions Management

Using signals tailored to detect the manipulation of
the chrome://extensions page (as described in Sec-
tion 3.3), we found several extensions on the Chrome
Web Store that prevent uninstallation. Two of of these
extensions claim to be video players (each with thou-
sands of user) and completely replace Chrome’s ex-
tensions management with a page that prevents users
from uninstalling them. These are “HD Video Player”
with 7,173 users and “SmartScreen Video Plugin” with
11,012 users. These signals also generated a false pos-
itive: the “No Tab Left Behind” extension (with only
8 users) allows only one tab at a time to be open. Thus,
during our execution this extension prevented us from
opening the extension settings tab.
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4.4 Code Injection
Code injection was the most commonly detected “sus-
picious” feature in our dataset. In principle injection
need not occur at all, since Chrome extensions can come
packaged with all the code needed to operate. In to-
tal, we found more than 3,000 extensions that dynam-
ically introduced remotely-retrieved code either through
script injections or by evoking eval. As we noted earlier,
using remote code renders static analysis on the exten-
sion’s code fundamentally incomplete. However, Hulk
can identify code injections and pinpoint the remote lo-
cations from which an extension fetches code. Although
not necessarily malicious, we found many cases of dan-
gerous code injection. For example, our system identi-
fied an extension named “Bang5TaoShopping assistant”
from the Chrome Web Store that has been installed in
5.6 million (!) browsers and injects code into every vis-
ited page. Several extensions perform this same activity,
while others insert tracking pixels for similar purposes.
One instance sends cleartext HTTP request to a server
controlled by the extension that encodes the URL visited
by the user along with a unique identifier, leaking users
browsing behavior and thus compromising their privacy.

5 Profiting from Maliciousness

In this section, we discuss five categories of malicious
behavior in extensions, and describe their characteris-
tics and the methods they employ to carry out their
goals. We base each of these categories on examples we
found in our feeds. When the extension is available on
the Chrome Web Store, we also when possible include
the number of users prior to reporting the extension to
Google for review.

We have reported to Google any extension that per-
forms behavior that is clearly abusive or malicious, and
several of our reports have lead to removals of extensions
from the web store.

5.1 Ad Manipulation
Advertisement manipulation falls in a grey area in that it
does not subvert the user, but rather manipulates an ex-
ternal ecosystem. Replacing ads might appear benign to
end users, but removes the potential for monetary credit
for website owners (publishers) and instead fraudulently
credits the extension owner. We include in this category
the addition of new ads as well as the replacement of ex-
isting ads or identifiers. We find a range of behaviors
in extensions, such as replacing banner ads with differ-
ent identically-sized banners; inserting banners and text
ads into well-known sites (such as Wikipedia); changing
affiliate IDs for ads; or simply overlaying ads on top of

"content_scripts": [{

"matches": ["http://*/*", "https://*/*"],

"js": ["js/content.js"]

}],

"permissions": ["http://*/*",

"https://*/*", "tabs"],

Figure 2: Permission-related JSON from the manifest
file of an extension performing ad replacement.

content. Each instance aims to profit from impressions
or clicks on the substituted advertisements.

As one striking example of ad manipulation we
found an extension on the Chrome Web Store that had
1.8M users at the time we detected it. The exten-
sion, named “SimilarSites Pro” used primarily unobfus-
cated JS to perform benign functionality as advertised
on the Chrome Web Store; however, it also inserted a
script element into the content of web pages that down-
loads another, fully-obfuscated script (using eval and
unescape) from a web server. At the time of analysis,
this script contained a large conditional block that looked
for iframe elements of particular sizes, such as 728x90
pixels, and replaced them with new banners of the same
size. Since our first analysis, we have seen several new
versions of the script available from the same URL. In
addition, the extension contains a blacklist of sites and
meta keywords where it should not change the banners,
which appears due to many ad networks prohibiting the
display of their ads on porn sites.

We find the same JavaScript included in five other ex-
tensions from the Chrome Web Store, as well as one
sideloaded extension. Based on manual analysis, these
extensions are primarily produced by a single company
called “SimilarGroup” that engages in dubious behavior
through the Chrome Web Store.

To perform banner replacement, the extension requests
the permissions shown in Figure 2. Such exception-
ally wide permissions are not uncommon [6]. There-
fore, their presence alone provides little insight into the
functionality of the extension. The most significant per-
mission in Figure 2 is the broad use of content scripts
that allow the extension to inject dynamic JavaScript files
from a remote location. Following injection, execution
continues as though the page had included it. Such con-
tent scripts provide an exceptionally powerful feature to
enable a variety of malicious behaviors, as further dis-
cussed in this Section.

5.2 Affiliate Fraud
Many major merchant web sites such as amazon.com,
godaddy.com, and ebay.com run affiliate programs that

9
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credit affiliates with a fraction of the sales made as a
result of customers referred by the affiliates. Usually
merchant programs assign unique identifiers to affiliates,
which affiliates then include in the URL that refers cus-
tomers to the merchant site. Furthermore, affiliate pro-
grams usually associate a cookie with the user’s browser
so that they can attribute a sale to an affiliate within sev-
eral hours after a user originally visited the merchant site
with an affiliate identifier.

As an example, when a user reads product reviews
on an Amazon affiliate’s blog and clicks on a link
to Amazon, the link includes an Amazon affiliate ID
specified with the tag parameter in the URL, such
as http://www.amazon.com/dp/0961825170/?tag=
affiliateID. When Amazon receives this request, it
returns a Set-Cookie header with a cookie that asso-
ciates the user with the affiliate. When the customer re-
turns to Amazon within 24 hours and makes a purchase,
Amazon credits the affiliate with a small percentage of
the transaction amount.

Such programs expect affiliates to bring potential cus-
tomers to their sites via affiliate pages that advertise the
merchant products. However, we found examples of
several extensions involved in cookie stuffing—a tech-
nique that causes the user’s browser to visit the merchant
URLs without the user clicking on affiliate URLs. Do-
ing so causes the merchant to deliver a cookie associ-
ated with the fraudulent affiliate, who then receives credit
for any future, unrelated purchase made by the customer
on the merchant site. Besides defrauding the merchant,
the fraudulent affiliate also causes an over-write of the
cookie associated with any legitimate affiliate who might
have genuinely influenced the user to buy the product.

In our study, we found two kinds of extensions that
defrauded affiliate programs. The first group includes
extensions that provide some utility to users—such as
refreshing pages automatically every few seconds, or
changing the theme of popular sites like Facebook—but
do not inform users of the extension author profiting from
the user’s web browsing. Generally, these activities in-
volve monitoring visited URLs for merchant sites where
the extension can earn a commission and modifying the
outgoing requested URLs to include the affiliate ID, or
by injecting iframe’s that include affiliate URLs.

For example, we found an extension named “*Split
Screen*” (with 52K users) that allows users to show two
tabs in a single window, while also stealthily monitoring
the URLs visited by the user. It then silently replaces the
requested URL with the affiliate’s URL for sites such as
amazon.com, amazon.co.uk, hotelscombing.com,
hostgator.com, godaddy.com, and booking.com.
For some merchants, it also sets the referrer header for
outgoing requests to falsely imply a visit through the af-
filiate’s site. The extension is able to make these changes

using tab and webRequest permissions, as well as
by registering callbacks on chrome.tabs.onUpdated

to identify changes in the URL as a user types,
and chrome.webRequest.onBeforeSendHeaders to
modify the referrer header before the browser sends a re-
quest to a merchant site. We found four other extensions
created by the same developer that similarly provided
some small utility to the user while defrauding merchant
programs in the background. Overall this developer’s ex-
tensions have nearly 70K users.

Another extension we found named “Facebook
Theme: Basic Minimalist Black Theme” (2.5K users) al-
lows users to change the appearance of Facebook. Be-
sides its stated intent, however, it also monitors brows-
ing and appends an affiliate identifier to 7 different Ama-
zon sites. By using its Content Security Policy (Sec-
tion 2.3) to perform eval, it runs a highly-obfuscated
hexadecimal and base64-encoded background script that
stores all affiliate identifiers in Chrome’s storage (using
storage permissions), and registers callbacks on tab up-
date events using tab permissions. When the user visits
any URL, Chrome notifies the extension, and the exten-
sion uses regular expressions to identify target Amazon
URLs for which to add an affiliate identifier. The ex-
tension then updates the URL before the browser sends
the request. The creator of the extension appears well
aware that the extension violates Amazon’s Conditions
of Use [3] and has heavily used obfuscation, evidently to
evade any static analysis for detecting affiliate fraud.

As another example, we found an extension named
“Page Refresh” (200 installations) that allows users to
refresh tabs periodically and only requests tabs permis-
sion. By using the background page to listen on all tab
update events, if a user visits a merchant site it sets the
URL in the tab to a URL shortener that redirects the user
to the same merchant page but with the affiliate identifier
included in the URL, thereby stuffing a cookie into the
user’s browser. This extension abuses 40 different mer-
chants, again including Amazon.

This approach has the advantage that it capitalizes on
organic traffic to merchant sites, which can make fraud
detection difficult because merchants see visit behavior
highly similar to that they would otherwise see as a result
of legitimate affiliate referrals.

The second group of extensions includes extensions
that clearly state in their descriptions that the exten-
sion monetizes the user’s online purchases—generally
for charitable causes or donations to organizations. The
intent or legitimacy of such programs is difficult to ascer-
tain. For example, the extension “Give as you Live” [8]
has over 11K users, and forms part of a larger cam-
paign [7] to raise funds for charities from user purchases
online. The extension works by adding a list of stores
for which the extension author has signed up as an affil-
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iate to the results of major search engines. It also adds a
script on merchant sites such as amazon.co.uk to redi-
rect users via its own URL. While it does bring legitimate
and likely well-intentioned traffic to Amazon, the legiti-
mate affiliates can lose out if users choose to read product
reviews on affiliate sites and then make the purchase via
this extension.

In fact, a plethora of extensions exists allowing users
to donate to charity simply by shopping online. An-
other such extension uses webRequest permissions to
modify the requested URL to the affiliate URL, includ-
ing over-writing the existing affiliate URL. While this
clearly constitutes cookie-stuffing, the extension adver-
tises itself as “Help support our charity by shopping at
amazon.co.uk”.3

5.3 Information Theft
Information theft clearly reflects malicious behavior that
has the potential to harm the user in a number of ways,
from disclosing private information to financial loss.
This broad category of abuse in many ways replicates
the functionality of some malware families. Within the
browser, we observe stealing of: keypresses, passwords
and form data, private in-page content (e.g., bank bal-
ances), and authentication tokens such as cookies. We
do not include extensions that simply re-use existing au-
thentication tokens already present, such as extensions
that spam on social networks; we discuss these in Sec-
tion 5.4.

One example of keylogging we found in the Chrome
Web Store, “Chrome Keylogger”, is an experimental ex-
tension from researchers [14] that is now removed. Key-
loggers use content scripts to register callbacks for key
press events, recording the pressed key by using the mes-
saging API to communicate with a background page.
The background page then queues up data to send to a
remote server. This behavior has similarities with that
of extensions that steal form data, although the specific
event handlers differ. Both form field theft and keylog-
ging require the extension to specify a content script but
do not require other permissions.

5.4 OSN Abuse
Online social network abuse constitutes the final cate-
gory of prevalent malicious extensions we found. These
extensions typically target Facebook, and spread via both
the Chrome Web Store and sideloading. These exten-
sions use existing authentication data to interact with
the APIs and websites of online social networks. Previ-
ous work identified and reported Chrome extensions that

3 The extension creator also helpfully marked the JavaScript code
that adds the affiliate identifier as something to obfuscate in the future.

"content_scripts": [{

"js":["BlobBuilder.js", ... ],

"matches":["http://*/*", "https://*/*" ],

"run_at": "document_end"

}],

"permissions":["http://*/*", "https://*/*",

"*://*.facebook.com/",

"tabs", "cookies", "notifications",

"contextMenus", "webRequest", ...],

Figure 3: Permissions and content script excerpts from
the manifest for an extension that spams on Facebook
and creates Tumblr accounts.

abuse social networks, reporting that thousands of users
had installed extensions from the Chrome Web Store that
spam on Facebook [4].

We found a number of extensions that post spam mes-
sages and use other features provided by social networks,
such as the ability to upload and comment on photos or
query the social graph. When we execute these exten-
sions with Hulk, the HoneyPage features allows the ex-
tensions to create elements and insert them into the DOM
tree. While we do not typically inspect the visual results
of our executions, in one case we observed an extension
creating div elements to mimic Facebook status updates
and inserting them into a page. The HoneyPage acted as
a sink for the spam status messages resulting in a page
full of spam for the infected user.

One extension of interest, WhasApp (a name closely
resembling the popular WhatsApp, a mobile chat appli-
cation), has since been removed from the Chrome Web
Store, but we also found evidence of the same extension
being sideloaded from malware. The extension targets
both Facebook and Tumblr. At Facebook, the extension
uploads images to Facebook and then comments on them
with messages containing URLs. In some cases the links
are used to spread the malicious extension to a wider au-
dience, while other URLs sought to monetize users as
part of a spam campaign to advertise products. At Tum-
blr, the extension creates new Tumblr accounts and veri-
fies them in the background.

The manifest file contains permissions and content
scripts that request broad access, as shown in Figure 3.
The extension is in fact over-privileged, since the exten-
sion in fact does not use some of the API permissions
the manifest includes. Prior work has identified over-
privileging as not uncommon, even among benign ex-
tensions [13]. Figure 3 shows the extension specifically
requesting access for permissions and content scripts
on facebook.com in addition to all other sites, which
provides a hint as to the sites targeted. To carry out
spamming on Facebook and Tumblr account creation,

11
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the extension actually only requires the use of content
scripts. The abusive component of the extension is 15
lines of JavaScript that downloads a much larger remote
JavaScript file containing the spamming functionality.

6 Recommendations

In this section, we frame changes to make Chrome’s ex-
tension ecosystem safer. Extensions should not have the
ability to manipulate browser configuration pages, such
as chrome://extensions, that govern how users man-
age and uninstall extensions. Extensions should also not
be allowed to uninstall other extensions unless they are
from the same author or a trusted source (such as Google
or Antivirus vendors). We also recommend preventing
extensions from manipulating HTTP requests by remov-
ing security-related headers that compromise the secu-
rity of web pages. This change will require modifica-
tions to several extension APIs to comprehensively ad-
dress this issue, the primary one being webRequest.

To address cloaking and other changes in remotely in-
cluded content, we suggest that Google should encour-
age local inclusion of static files in the context of a
web page. Chrome supports pushing automatic updates
of extensions to users, so remotely including additional
JavaScript code is not necessary to support rapid changes
in an extenion’s code. This change will make it possi-
ble to have a more complete analysis of extension behav-
ior, since the analysis engine—Hulk or otherwise4—will
have the complete extension code available. To encour-
age developers to write completely self-contained exten-
sions and not load additional code from the network, one
could introduce a new policies, such as: if an exten-
sion loads code from a remote site, it loses permissions
such as the ability to inject that new code into the visited
pages.

Finally, extensions should not have the ability to hook
all keyboard events on a given site. The window.onkey*
API that exists in JavaScript has utility for pages that
want to intercept the keyboard events of their users, but in
the context of extensions it provides too much power. An
experimental API (chrome.commands) exists that allows
extensions to register keyboard shortcuts; this strikes us
as a step in the right direction, as this covers the common
use-case for requiring access to these events.

These suggestions will not eliminate malicious exten-
sions, but can prevent classes of attacks, and significantly
facilitate the analysis of extensions.

4 In particular, ultimately an extension store operator such as
Google needs to undertake such analysis as part of its curation of the
store contents.

7 Limitations

Our system uses dynamic analysis for analyzing exten-
sions, and, as with every dynamic analysis system, the
correct classification of an extension relies on triggering
the malicious activity. Hulk employs HoneyPages and
event handler fuzzing on the extension’s web request lis-
teners to enhance dynamic analysis, but does not provide
a complete view of extension behavior. For example,
we do not attempt to address cloaking that loads differ-
ent code based on the client’s location or time. We also
will not observe behavior that depends on specific tar-
gets, such as those that require user interaction with a
visited page to take effect. Similarly, pages that require
sign-in pose difficulties. Hulk has a pre-set list of sites
and credentials to use while visiting pages, but does not
perform account creation on the fly.

Hulk’s Honeypages do not currently support multi-
step querying of DOM elements. While we can place
elements in the DOM tree that an extension looks for, if
the extension expects elements to have additional prop-
erties in order to trigger its malicious behavior, we will
fail to adapt to the extension’s expectations. We plan on
improving HoneyPages to support multi-step querying,
and for many element types and attributes this appears
possible.

We currently also lack data flow analysis in the
Chrome browser, a feature that would substantially im-
prove the depth of behavior available for analysis. One
example where this would prove particular useful regards
keystroke interception. Without data flow tracking, we
cannot automatically derive whether this information ul-
timately becomes transmitted to a third party via a net-
work request.

Another difficult concern for Hulk is analysis eva-
sion by extensions that specifically look for HoneyPages.
A determined adversary with knowledge of the system
could try to evade Hulk by querying for random elements
in the DOM tree first, and, if found, avoid malicious ac-
tivity. A similar type of evasive behavior arose for in
submissions to Wepawet [17]. One way to counter this is
by introducing non-deterministic HoneyPages for which
DOM tree queries only succeed with a given probabil-
ity. We could further enhance this approach by crawling
a few million sites and building models of the existing
elements to assign apt probabilities weights for different
queries. This approach may also require analysis of an
extension’s DOM queries in case the extension repeat-
edly performs these in an effort to detect randomized
queries. Finally, we can consider measuring code cov-
erage to examine the impact that each DOM query has
on the amount of code executed by an extension, as the
extension will skip executing the malicious code when it
detects the presence of an analysis system.

12
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8 Related Work

Browser extensions have been available for Internet Ex-
plorer and Firefox for over a decade. As a result of
a study of vulnerabilities in Firefox extensions, Barth
et al. designed an extension architecture that promotes
least privilege and isolation of components to prevent
a compromised extension from gaining full access to a
user’s browser [5], an architecture subsequently adopted
by Google Chrome. Since then, further work has exam-
ined the success of the Chrome extension architecture
at preventing damage [6] and the ability of developers
to correctly request privileges for their extensions [13].
Similar studies have examined the Firefox extension sys-
tem to limit the potential damage arising from exploita-
tion of extension vulnerabilities, and to improve the de-
fenses the browser provides [27]. These works have a
focus mostly tangential to our work, since the principle
of least privilege does not prevent an overtly malicious
extension from executing malicious code.

The security industry has documented malicious ex-
tensions in ways similar to malware reports and other
new threats [2, 4]. Liu et al. examined Google Chrome
extensions and, based on malicious extensions the au-
thors built, suggested refined privileges to make detect-
ing malicious extensions easier [21]. In our work, we
build a system that performs dynamic analysis and clas-
sification of extensions, and present an analysis of mali-
cious extensions that we found in the wild.

JavaScript-based program analysis has particular
promise for benefiting our work, and in light of our cur-
rent limitations we will be exploring techniques that we
can adapt to improve our system’s detection capabili-
ties. Research has applied information flow analysis to
Firefox extensions [10], performed taint-based tracking
of untrusted data within the browser [11], used sym-
bolic execution to detect vulnerabilities [26], applied
static verification to extensions [16], contained exten-
sions in privacy-preserving environments [20], and used
supervised learning of browser memory profiles to detect
privacy-sensitive events [14].

Our work has similarities to that of other malware de-
tection and execution systems. While our implementa-
tion and requirements significantly differ from systems
that execute Windows binary malware (such as Anu-
bis [1]), at a high level we share common goals of ex-
ecuting and extracting data from samples. Like Anu-
bis, Wepawet, the GQ honeyfarm, and other malware
execution platforms, we share the difficult problem of
triggering malicious behavior in a synthetic environ-
ment [9, 19]. Other research in this area has focused
on classification and discerning malware from good-
ware [24].

9 Summary

In this paper we presented Hulk, a system to dynamically
analyze Chrome browser extensions and identify mali-
cious behavior. Our system monitors an extension’s ac-
tions and creates a dynamic environment that adapts to an
extension’s needs in order to trigger the intended behav-
ior of extensions, classifying the extension as malicious
or benign accordingly. In total, we identified 130 ma-
licious and 4,712 suspicious extensions that have up to
5.5 million browser installations, many of which remain
live in the Chrome Web Store. Based on these results,
we developed a detailed characterization of the malicious
behavior that we found, targeted at determining the moti-
vation behind the extension. Finally, we propose several
changes for the Chrome browser ecosystem that could
eliminate classes of extension-based attacks and aid with
analysis.
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Abstract
The current generation of client-side Cross-Site Scripting
filters rely on string comparison to detect request values
that are reflected in the corresponding response’s HTML.
This coarse approximation of occurring data flows is in-
capable of reliably stopping attacks which leverage non-
trivial injection contexts. To demonstrate this, we con-
duct a thorough analysis of the current state-of-the-art in
browser-based XSS filtering and uncover a set of concep-
tual shortcomings, that allow efficient creation of filter
evasions, especially in the case of DOM-based XSS. To
validate our findings, we report on practical experiments
using a set of 1,602 real-world vulnerabilities, achiev-
ing a rate of 73% successful filter bypasses. Motivated
by our findings, we propose an alternative filter design
for DOM-based XSS, that utilizes runtime taint tracking
and taint-aware parsers to stop the parsing of attacker-
controlled syntactic content. To examine the efficiency
and feasibility of our approach, we present a practi-
cal implementation based on the open source browser
Chromium. Our proposed approach has a low false pos-
itive rate and robustly protects against DOM-based XSS
exploits.

1 Introduction
Ever since its initial discovery in the year 2000 [6],
Cross-Site Scripting (XSS) is an ever-present security
concern in Web applications. Even today, more than ten
years after the first advisory, XSS vulnerabilities occur
in high numbers [39] with no signs that the problem will
be fundamentally resolved in the near future. Further-
more, in recent years, DOM-based XSS, a subtype of the
vulnerability class that occurs due to insecure client-side
JavaScript, has gained traction, probably due to the shift
towards rich, JavaScript heavy Web applications. In a
recent study, we have shown that approximately 10% of
the Alexa Top 5000 carry at least one DOM-based XSS
vulnerability [18].

The design of protection measures against XSS has re-
ceived considerable attention. In its core, XSS is a client-
side security problem: The malicious code is executed in
the client-side context of the victim, affecting his client-
side execution environment. Hence, a well-suited place
to protect end users against XSS vulnerabilities is the
Web browser. Following this concept, several client-side
XSS filters have been developed over the years.

These contemporary client-side XSS filtering mech-
anisms rely on string-based comparison of outgoing
HTTP requests and incoming HTTP responses to detect
reflected XSS attack payloads. In essence, this string
comparison is an approximation of server-side data flows
that might result in direct inclusion of request data in the
HTTP response. While this approximative approach is
valid for server-based XSS vulnerabilities – the browser
has no insight on the server-side logic – it is unnecessar-
ily imprecise for client-side XSS issues.

In contrast to server-side problems, the complete
data flow within the browser from attacker-controlled
sources to the security-sensitive sinks into the browser’s
JavaScript engine occurs within one system and thus can
be tracked seamlessly and precisely. Based on this ob-
servation, we propose a different protection approach: A
client-side XSS filtering mechanism relying on precise
dynamic taint tracking and taint-aware parsers within the
browser.

To demonstrate the current limitations of the estab-
lished approaches – which focus mainly on stopping re-
flected XSS attacks – we first conduct an in-depth anal-
ysis of the current state-of-the-art in client-side XSS fil-
tering, with focus on the capabilities of thwarting DOM-
based XSS attacks (see Section 3). In course of this anal-
ysis, we uncover a set of conceptual weaknesses which,
taken together, render the existing techniques incapable
of protecting against the majority of client-side XSS at-
tacks (see Section 4). To practically validate our analy-
sis, we report on a fully automatic system to create XSS
attacks which evade the current protection mechanism:
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Using a data set of 1,602 real-life DOM-based XSS vul-
nerabilities, we successfully created XSS vectors that by-
passed client-side filtering in 73% of all cases, affecting
81% of all vulnerable domains we found.

Motivated by the results of our experiments, we pro-
pose an alternative approach for client-side prevention
of DOM-based XSS: Using character-level taint tracking
in the browser we can precisely detect cases in which
attacker-controlled values end up in a syntactic parsing
context which might lead to the browser executing the
injected data as JavaScript. By enhancing the browser’s
HTML and JavaScript parsers to identify tokens that
carry taint markers, we can efficiently and robustly stop
injection attempts. To summarize, we make the follow-
ing contributions:

• Systematic analysis of conceptual shortcomings of
current client-side XSS filters: We report on a sys-
tematic investigation on the current state-of-the-art
client-side XSS filter, the XSS Auditor, and identify
a set of conceptual flaws that render the filter inca-
pable of effectively protecting against DOM-based
XSS attacks.

• Automatic filter bypass generation: To validate our
findings and to demonstrate the severity of the iden-
tified filter limitations, we built a fully automated
system to generate XSS payloads which bypass the
string comparison based XSS filter. Our system
leverages the precise flow information of our taint-
enhanced JavaScript engine and our detailed knowl-
edge on the Auditor’s functionality to create ex-
ploit payloads that are tailored to a vulnerability’s
specific injection context and the applicable filter
weakness. By practically applying our system to
a set of 1,602 real-world DOM-based XSS vulnera-
bilities, we achieved a success rate of 73% success-
ful filter bypasses.

• Robust protection approach, utilizing client-side
taint propagation: Based on the identified weak-
nesses in the established XSS filtering approaches,
we propose an alternative protection measure which
is designed to address the specific characteris-
tics of DOM-based XSS. Through combining a
taint-enhanced browsing engine with taint-aware
JavaScript and HTML parsers, we are able to pre-
cisely track the flow of attacker-controlled data into
the parsers. This in turn enables our system to reli-
ably detect and stop injected code on parse time.

2 Technical Background
In the following, we briefly discuss DOM-based Cross-
Site Scripting and shed light on the technical basis used
for this work, namely a taint-aware browsing engine.

2.1 DOM-based Cross-Site Scripting
Cross-Site Scripting (XSS) is a term describing attacks
where the adversary is able to inject his own script code
into a vulnerable application, which is subsequently ex-
ecuted in the browser of the victim in the context of
this application. In contrast to the server-side variants
of XSS, namely reflected and persistent, the term DOM-
based Cross-Site Scripting (or DOM-based XSS) sub-
sumes all classes of vulnerabilities which are caused by
insecure client-side code. The term itself was coined by
Klein in 2005 [16]. These issues come to light when un-
trusted data is used in a security-critical context, such as
a call to eval. In the context of DOM-based XSS, this
data might originate from different sources such as the
URL, postMessages [38] or the Web Storage API.

2.2 Browser-level Taint Tracking
One of the underlying technical cornerstones of this pa-
per is the taint-enhanced browsing browsing engine we
developed for CCS 2013 [18]. This engine allows precise
tracking of data flows from attacker-controlled sources,
such as document.location, to sinks, such as eval.

Our implementation, based on the open source
browser Chromium, provides support for tracking infor-
mation flow on the granularity of single characters by
attaching a numerical value to identify the origin of the
character’s taint. This taint marker is propagated when-
ever string operations are conducted and is also persisted
between the two realms of the rendering component, i.e.,
Blink, and the V8 JavaScript engine.

As this part of our system is not one of the paper’s
major contributions, we omit further details for brevity
reasons and refer the reader to the aforementioned paper.

3 Current Approaches for Client-side XSS
Filtering

In this section we investigate the current in-browser tech-
niques used to detect and prevent XSS attacks. More
specifically, we describe the concepts of the Firefox plu-
gin NoScript [20], Internet Explorer’s XSS Filter [29]
and Chrome’s XSS Auditor [2].

3.1 Regular-expression-based Ap-
proaches: NoScript and Internet
Explorer

One of the first mechanisms on the client side to pro-
tect against XSS attacks was introduced by the NoScript
Firefox Plugin [22] in 2007. NoScript utilizes regular ex-
pressions to filter outgoing HTTP requests for potentially
malicious payloads. If one of the regular expressions
matches, the corresponding parts are removed from the
HTTP request. The malicious payload will thus never
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reach the vulnerable application and hence an attack is
thwarted. Nevertheless, as described in NoScript’s fea-
ture list, this potentially leads to false positives [21]
due to its aggressive filtering approach. NoScript works
around this issue by prompting the user whether to re-
peat the request, this time disabling the protection mech-
anism. While this seems to be a valid approach for
NoScript’s security-aware users, it is not acceptable as
a general Web browser feature, as many studies have
shown that an average user is not able to properly react
to such security warnings [9, 13, 34].

In order to tackle this problem Microsoft slightly ex-
tended NoScript’s approach and integrated it into Inter-
net Explorer [29]. Similar to NoScript, IE’s XSS fil-
ter utilizes regular expressions to identify malicious pay-
loads within outgoing HTTP requests. Instead of remov-
ing the potentially malicious parts from a request, the
filter generates a signature of the match and waits for the
HTTP response to arrive at the browser. If the signature
matches anything inside the response, i.e., if the payload
is also contained within the response, the filter removes
the parts it considers to be suspicious. Thus, attacks are
only blocked if the payload is indeed contained in the re-
sponse and, hence, depending on the situation, false pos-
itives are less frequent. In fact, avoiding false positives is
one of the filter’s many design goals [30], even if this re-
sults in a higher false negative rate, as Microsoft’s David
Ross states: “Thus, the XSS Filter defends against the
most common XSS attacks but it is not, and will never
be, an XSS panacea.” [30].

In 2010, Bates et al. [2] demonstrated that regular-
expression-based filtering systems have severe issues and
proposed a superior approach in the form of the XSS Au-
ditor, which has been adopted by the WebKit browser
family (Chrome, Safari, Yandex).

3.2 State-of-the-Art: The XSS Auditor
Based on the identified weaknesses of regular-
expression-based XSS defenses, Bates et al. proposed
the XSS Auditor – a new system that is “faster, protects
against more vulnerabilities, and is harder for attackers
to abuse” [2]. Up to now, the XSS Auditor constitutes
the state-of-the art in client-side XSS mitigation, albeit
focusing mainly on reflected XSS.

As we will demonstrate in this paper, the XSS Auditor
also has shortcomings, especially related to DOM-based
XSS attacks. Before we explore the limitations of the
system in the next section, we provide an overview of
the Auditor’s protection mechanism.

One of the key differences between Chrome’s XSS
Auditor and previous filter designs is the filter’s place-
ment within the browser architecture. Instead of apply-
ing regular expressions on the string representations of
the HTTP requests or responses, the Auditor is placed

between the HTML parser and the JavaScript engine [2].
The idea behind this placement is, that an attacker’s pay-
load has to be parsed by the HTML parser to be trans-
ferred to the JavaScript engine where the injected pay-
load is being executed.

In order to block XSS attacks, the Auditor receives
each token generated by the HTML parser and checks
whether the token itself or some of its attributes are con-
tained in either the request URL or the request body.
If so, the filter considers the token to be injected and
replaces JavaScript or potentially harmful HTML at-
tributes with a benign value. Such a benign value is
a payload that has no effect, such as about:blank,
javascript:void(0) or an empty string. The injected
fragments will thus not be passed to the JavaScript en-
gine and hence attacks are prevented.

The main design goals of the filter are to avoid false
positives and to minimize performance impact. Before
demonstrating that these goals severely impact the filter’s
detection capabilities, we will first provide details on the
detection algorithm (simplified to satisfy space and read-
ability constraints):

1. Initialization (For document fragments)
(a) Deactivate the filter

2. Initialization (For each full document)
(a) Fully decode the request URL
(b) Fully decode the request body
(c) Check if request could contain an injection

i. If not, deactivate the filter
ii. Otherwise continue

3. For each start token in the document do...
(a) Check and delete dangerous attributes

i. Delete injected event handlers
ii. Delete injected JavaScript URLs

(b) Conduct tag specific checks
4. For each script token in the document do...

(a) Check and delete injected inline code

As soon as the so-called HTMLDocumentParser is
spawned by Chrome, an initialization routine of the XSS
Auditor is called. The parser can either be invoked
for parsing document fragments or complete documents.
While the XSS filter is deactivated for document frag-
ments, it guesses whether an injection attack is likely to
be present for full documents. If either the URL or the re-
quest body contains one of the characters shown in List-
ing 1, the filter is activated. If none of these characters
is found, the filter assumes the browser not being under
attack and skips the complete filtering process.

If, on the other hand, one of the characters mentioned
in Listing 1 is present in the request the Auditor in-
vestigates every token within the document for injected
values that might cause script execution. This process



658 23rd USENIX Security Symposium USENIX Association

Listing 1 Required characters to activate the filter
static bool isRequiredForInjection(UChar c)

{

return (c == ’\’’ || c == ’"’ ||

c == ’<’ || c == ’>’);

}

is threefold: First the Auditor looks for dangerous at-
tributes, second it conducts tag specific checks for certain
attributes and third it filters injected inline scripts.
Dangerous Attributes are, in the view of the Auditor,
attributes that either contain a JavaScript URL or have
the name of an inline event handler (onclick, onload,
etc.) as these attributes can enable XSS attacks. If such
an attribute is found, the Auditor searches for it within
the corresponding request. If a match is found, the fil-
ter assumes the attribute to be injected and either deletes
the complete attribute value in case of event handlers or
replaces the JavaScript URL with a benign URL.
Tag-specific filtering Besides event handlers and at-
tributes containing JavaScript URLs, other tag specific
attributes that need to be filtered exist. An attacker could,
for example, inject a script tag and use the src attribute
to load an external script file. Hence, for any script to-
ken, the Auditor additionally checks the legitimacy of the
src attribute. In total, the Auditor conducts such checks
for 18 additional attributes contained in 11 tokens (script,
object, param, embed, applet, iframe, meta, base, form,
input and button).
Filter inline scripts Whenever the Auditor encounters
a script tag, it also validates whether the content between
opening and closing tag has been injected. If the content
can be found in the request, it is replaced with an empty
string.

4 Limitations of String-based XSS Filters
In this section we report on a detailed analysis we con-
ducted to assess the XSS Auditor’s protection capabili-
ties with a focus on DOM-based XSS. Although the XSS
Auditor was designed to stop reflected Cross-Site Script-
ing attacks, it is also the most advanced and deployed
filter against DOM-based XSS attacks. In the following,
we therefore analyze issues related to the concept of the
Auditor, which impair its capabilities of stopping DOM-
based XSS attacks. In doing so, we show the arising need
for a filter capable of stopping DOM-based XSS attacks.

4.1 Scope-related Issues
In general, the Auditor is called whenever potentially
dangerous elements are encountered during the initial
parsing of the HTTP response. These are, however,
not the only situations in which attacker-controlled data
might end up being interpreted as code. In this section,

we explore situations in which the filter is not active and
hence does not protect against attacks.
eval As mentioned earlier, the Auditor is placed be-
tween the HTML parser and the JavaScript engine to in-
tercept potential XSS payloads. Still, not every DOM-
based XSS attack needs to go through the HTML parser.
If a Web site invokes the JavaScript function eval with
user-provided data, the execution will never pass the
HTML parser. Therefore, the Auditor will never see a
malicious payload that an attacker injected into a call to
eval. As we will demonstrate later, eval is commonly
used in Web applications.
innerHTML While script tags inserted via
innerHTML are not executed, it is still possible to
execute JavaScript via inline event handlers. Hence,
innerHTML is also prone to XSS attacks. In earlier
versions of the Auditor content parsed via innerHTML

was also filtered. Google later experienced some per-
formance drawbacks in innerHTML-heavy applications
[17] and as a consequence, the Auditor is nowadays dis-
abled for document fragment parsing which is invoked
upon an assignment to innerHTML.
Direct assignment to dangerous DOM properties
Besides eval and innerHTML it is also possible to trig-
ger the execution of scripts without invoking a HTML
parsing process as a few examples in Listing 2 show. As
no HTML parsing takes place in these cases, the XSS
Auditor is never invoked. Hence, if a Web application
assigns a user-controlled value to such a DOM property,
an attacker is able to evade the filter.

Listing 2 Examples for dangerous DOM properties
var s = document.createElement("script");

s.innerText = "myFunction(1)"; // 1.

s.src = "http://example.org/script.js"// 2.

var i = document.createElement("iframe");

i.src = "javascript:myFunction(1)" // 3.

var a = document.createElement("a");

a.href = "javascript:myFunction(1)" // 4.

Second order flows When investigating a token, the
Auditor always validates whether a suspicious value was
contained within the preceding HTTP request’s URL or
body. As demonstrated by Hanna et al. [10], second or-
der flows are relevant for DOM-based XSS. So, for ex-
ample, if a value is written into LocalStorage within one
request/response cycle, it can be used to cause a DOM-
based XSS attack in another request/response pair. As
the Auditor only investigates the last request, it will not
find the value sent with the second-last request. Local-
Storage is only one of many ways to persist data across
multiple HTTP requests as Cookies, WebStorage or the
File API exist nowadays.
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Alternative attack vectors It is not sufficient to only
check the URL and the request body in order to pre-
vent DOM-based XSS attacks. Multiple other sources
of attacker-controllable data exist which could be abused
to inject malicious content into an application. Examples
are the PostMessage API, the window.name attribute, or
the document.referer attribute. As the Auditor does
not take these sources into account, they can be used to
evade the filter.

Furthermore, Bojinov et al. demonstrated that data can
be injected by an attacker via alternative communication
channels [4]. Thus, so-called cross-channel scripting at-
tacks also bypass the XSS Auditor.
Unquoted attribute injection During initialization,
the Auditor checks whether filtering is necessary by ver-
ifying the presence of the characters shown in Listing 1.
In doing so, it implicitly assumes that an attack is not
possible without these characters. This assumption, how-
ever, is wrong. In Listing 3 we show a common vulnera-
bility and the corresponding attack (note: the value of the
id attribute is not surrounded by quotes). In this example,
the payload does not make use of the required characters.
Normally, the XSS Auditor would block the src attribute
containing the JavaScript URL. In this case, however, it
does not conduct any checks as it is deactivated.

Listing 3 Unquoted Attribute injection
var id = location.hash.slice(1);

var code = "<iframe id=" + id + " [...]>";

code += "</iframe>";

document.write(code);

// attack payload within URL

"//example.org/#1 src=javascript:eval(name)"

4.2 String-matching-related Issues
In the following we explore the limits of the implemented
string matching algorithms. Whenever the Auditor finds
a potentially dangerous element or attribute, it verifies
whether the corresponding string representation can be
found in the request. If an attacker is able to mislead
the string-matching algorithm, the filter can be bypassed.
Hence, the precision of this process determines the fil-
ter’s effectiveness and as a result its false positive and
false negative rates.

4.2.1 Partial Injections

One of the assumptions the Auditor makes is that an at-
tacker has to inject a complete tag or attribute to success-
fully launch an attack. As a consequence the filter always
aims to find the complete tag or the complete attribute
within the request. While this approach reduces false

positives as it is very unlikely that an application con-
tains an existing tag or attribute in its URL legitimately,
it does not regard application-specific scenarios. This as-
sumption leads to potential problems in three different
cases:
Attribute Hijacking One of the first things the Audi-
tor does is to check whether a dangerous attribute was
injected into the application. Hence, whenever it dis-
covers a dangerous attribute during the parsing process it
regenerates the string representation of the attribute and
matches it against the URL and the request body. List-
ing 4 shows the string generation process:

Listing 4 Attribute string matching
// current start token

<iframe [...] onload="alert(’example’)">

// Step 1: extract the dangerous attribute

onload="alert(’example’)"

// Step 2: Truncate after 100 characters

onload="alert(’example’)"

// Step 3: Truncate at a terminating char

onload="alert(’

After detecting a potentially dangerous attribute the
Auditor extracts its decoded string representation. Then,
it truncates the attribute at 100 chars to avoid the com-
parison of very long strings. It finally truncates the string
at one of seven so-called terminating characters (this is
done to detect attacks, that we will cover later). The re-
sulting string is then matched against the URL. Obvi-
ously, the resulting string always contains the name of
the potentially dangerous attribute. Hence, the under-
lying assumption here is that the attacker always has to
inject the attributes herself. In real-world applications,
however, attributes can often be hijacked by an attacker
as shown in Listing 5. Although the onload attribute
is a dangerous event handler attribute, the Auditor will
not discover it within the URL as the onload attribute’s
name is hardcoded within the application and not in-
jected by the attacker.

Listing 5 Attribute & Tag hijacking vulnerability
var h = location.hash.slice(1);

var code = "<iframe onload=’" + h + "’"

code += "[...]></iframe>";

document.write(code);

//attack for attribute hijacking

"//example.org/#alert(’example’)"

//attack for tag hijacking

"//example.org/#’ srcdoc=’...’"

Tag Hijacking After checking for dangerous attributes
the Auditor conducts tag specific attribute checks.
Matching all attributes of all tokens within an HTML
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document against the URL and request body, however,
can be a very time consuming and error-prone task.
Therefore, the auditor only matches an attribute against
the URL if it can find the tag’s name in the URL. For
example, if the filter investigates an iframe token it vali-
dates whether the sequence <iframe is contained in the
request before matching the src or srcdoc attribute 1.
Hence, if the injection point of a vulnerability lies within
such a tag, the attacker can hijack the tag and inject ad-
ditional attributes to it. As the tag itself is hardcoded the
Auditor will skip any of its checks for specific attributes.
An example of this attack is provided in Listing 5.
In-Script Injections Another vulnerability that is not
detectable by the XSS Auditor is an injection inside of
an existing inline script. As described in Section 3.2,
whenever the filter encounters a script tag, it matches the
complete inline content of the script against the request.
Real-world Web applications however often make use of
dynamically generated inline scripts made up from user-
controllable input mixed with hardcoded values. Hence,
instead of injecting a script tag via the URL an attacker
is able to simply inject code into an existing dynamic in-
line script. As a consequence searching for the complete
script content within sources of user input will not be
successful.

4.2.2 Trailing Content

A very similar problem to partial injections is trailing
content. When real-world Web applications write in-
put to the document, they do not simply write one sin-
gle value coming from the user but rather use a string
that was constructed from hardcoded values as well as
potentially attacker-controlled values. Listing 6 shows a
real-world example.

Listing 6 An example of String construction
var code = "<iframe src=’//example.org/";

code += getParamFromURL("page_name");

code += ".html’></iframe>";;

document.write(code);

// attack payload:

"’ onload=’alert(1);foo"

// resulting code

"<iframe src=’//example.org/’

onload=’alert(1);foo.html’>"

Note, that the injection point is inside the src attribute
of the iframe tag. Within this src attribute, the attacker-
controllable input starts in the middle of the attribute

1For iframe.srcdoc the tag hijacking attack is not possible anymore,
as concurrent research discovered this issue and reported it to Google.
Upon the report Google changed the behavior for srcdoc. Nevertheless,
for any other of the 18 special attributes, tag hijacking still is an issue

(after //example.org/) and some more content is fol-
lowing the injection point (.html). When crafting an
attack, the attacker is able to use the trailing content
within the payload to confuse the string matching pro-
cess. Despite the fact that the Auditor is aware of this
issue (source code comments indicate this) and defends
against it, the current defenses are not able to reliably
detect which parts are actually injected by the attacker
and which parts are hardcoded within the Web applica-
tion. We found four bypasses which allow an attacker to
exploit this problem in different and partly unexpected
ways. Due to the high complexity and the limited space,
we omit a detailed explanation here.

4.2.3 Double Injections

Another conceptional flaw of string-matching-based ap-
proaches is the inability to discover concatenated values
coming from more than one source of user input. As we
have shown in previous work [18], a call to a security
sensitive function contains on average three potentially
attacker provided substrings. Listing 7 shows an exam-
ple for such a double injection.

Listing 7 An example of double injection
var id = getParamFromURL("id");

var name = getParamFromURL("name");

var code = "<iframe id=’" + id + "’";

code += " name=’" + name +"’";

code += "[...]></iframe>";

document.write(code);

// attack

id="’/><script>void(’"

name="’);alert(1)</script>"

// resulting code

<iframe id=’’/>

<script>void(’ name=’);alert(1)</script>

[...]></iframe>

As the call to document.write contains two injection
points (id, name) an attacker is able to split the payload.
A specially crafted set of inputs, as shown in the List-
ing, therefore leads to the creation of a valid script tag
that is a combination of both attacker inputs. In this case,
the Auditor’s string matching algorithm would search for
void(’name=’);alert(1) within the request. Finding
this value in the URL, however, is not possible as the
’ name =’ part is hardcoded and not originating from
the URL. Furthermore, the attacker is able to arbitrarily
change the order in which the values appear within the
URL. Hence, double injections are a severe conceptional
problem for string-matching-based approaches. In total,
we identified three different classes of double injection.
The first class has been explained in the example above.
A call to document.write contains two injection points
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and the injected values are independent from each other.
Very similar to this approach, the double injection pattern
also applies to situations in which a single value is used
twice within a single call to a security sensitive function.
Finally, double injection attacks can be conducted if sub-
sequent calls to document.write are made containing
attacker-controllable values.

4.2.4 Application-specific Input Mutation

Another assumption of the XSS Auditor is that input of
the user always reaches the parser without any modi-
fications. If even one character of the input changed,
the string matching algorithm will fail to find the pay-
load and hence is not able to block the resulting attack.
Application-specific encoding functions or data formats,
therefore, lead to situations in which the filter can be by-
passed.

4.3 Practical Experiments
As previously demonstrated we found numerous condi-
tions under which the protection mechanisms of the XSS
Auditor can be evaded, especially with respect to DOM-
based Cross-Site Scripting. In order to assess the sever-
ity of the identified issues for real-world applications, we
conducted a practical experiment. We used the method-
ology applied for our previous paper [18] to collect a
set of 1,602 unique real-world DOM-based XSS vulner-
abilities on 958 domains. We then built a bypass gen-
eration engine to verify whether a certain vulnerability
allows employing one of the bypassing techniques de-
scribed above.

Using our taint-aware infrastructure we are able to
determine the exact injection context of a vulnerabil-
ity. As soon as our infrastructure detects a call to a se-
curity sensitive sink such as document.write, eval,
or innerHTML, it stores the string value and the exact
taint information. Using a set of patched HTML and
JavaScript parsers, we can exactly determine the location
of the injection point. Using this data, we cannot only
give an indication for a filter evasion possibility, but also
generate an exact bypass that takes the injection point’s
context as well as the specific flaws of the Auditor into
account. Applying this technique we compiled a set of
bypasses that we evaluated against the vulnerabilities.

In doing so, we were able to bypass the filter for 73%
of the 1,602 vulnerabilities, successfully exploiting 81%
of the 958 domains in our initial data set.

4.4 Analysis & Discussion
As demonstrated by our practical experiments, the XSS
Auditor – which aims at stopping reflected Cross-Site
Scripting – can not stop DOM-based XSS attacks in

the aforementioned cases. We therefore believe that ad-
ditional defenses are necessary to combat this type of
Cross-Site Scripting. Furthermore, the results of our
analysis lead us to believe that the design of the XSS Au-
ditor is prone to being bypassed in certain reflected XSS
attack scenarios which are related to string-based match-
ing issues. Since the focus of our work is on DOM-based
XSS, we leave the investigation of this assumption to fu-
ture work.

In our analysis, we identified two conceptual issues
that limit the Auditor’s approach in detecting and stop-
ping DOM-based XSS attacks.
Placement One of the Auditor’s strengths compared to
Internet Explorer’s and NoScript’s approach is its place-
ment between the HTML parser and the JavaScript en-
gine. This way the Auditor does not need to approximate
the browser’s behavior during the filtering process. As
we have shown in Section 4.1 the current placement is
prone to different attack scenarios which are not taken
into account by the filter. Currently the Auditor is not
able to catch JavaScript-based injection attacks and situ-
ations in which HTML parsing is not conducted prior to
a script execution.
String matching Even if it would be possible to ex-
tend the Auditor’s reach to the JavaScript engine and the
so-called DOM bindings, the string matching algorithm
is another conceptual problem that will be very difficult
if not impossible to solve. In order to cope with the situa-
tion the XSS Auditor introduced many additional checks
and optimizations to thwart attacks. Nevertheless and de-
spite the fact that a lot of bug hunters regularly inves-
tigate the filter’s inner workings, we were able to find
13 bypasses targeting the string matching algorithm. All
the mentioned problems will not disappear as employing
string matching is inherently imprecise.

5 Preventing Client-side Injection Attacks
during Parse-time

As the previous section has shown, current concepts of
Cross-Site Scripting filters are not designed to thwart
DOM-based XSS and, thus, are not sufficient to protect
users against these kinds of attacks. In this section, we
discuss the methodology behind our newly proposed fil-
ter as well as the corresponding policy considerations.
We then go into detail on the issue of handling postMes-
sages in our filter and finally outline the technical chal-
lenges we had to overcome to implement the concept into
a real-world browser.

5.1 Methodology Overview
As we have demonstrated in Section 4.2, client-side XSS
filters relying on string comparison lack the required pre-
cision for robust attack mitigation. String comparison
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as an approximation of occurring data flows is a neces-
sary evil for flows that traverse the server. For DOM-
based XSS, this is not the case: The full data flow oc-
curs within the browser’s engines and can thus be ob-
served precisely. For this reason, we propose an alterna-
tive protection mechanism that relies on runtime tracking
of data-flows and taint-aware parsers and makes use of
two interconnected components:

• A taint-enhanced JavaScript engine that tracks the
flow of attacker-controlled data.

• Taint-aware JavaScript and HTML parsers capable
of detecting generation of code from tainted values.

This way our protection approach reliably spots
attacker-controlled data during the parsing process and
is able to stop cases in which tainted data alters the exe-
cution flow of a piece of JavaScript. In the following, we
discuss the general concept and security policy, whereas
we go into more detail on the implementation in Sec-
tion 5.4 and investigate the implications of our proposed
filtering approach in Section 6.1.

5.2 Precise Code Injection Prevention
As we outlined in the previous section our protection ap-
proach relies on precise byte-level taint tracking.

In the following we give a detailed overview on the
necessary changes we performed in order to implement
our filtering approach. More specifically, we made
changes to the browser’s rendering engine, the JavaScript
engine and the DOM bindings, which connect the two
engines.
JavaScript Engine When encountering a piece of
JavaScript code, the JavaScript engine first tokenizes it
to later execute it according to the ECMAScript language
specification.

While it is a totally valid use case to utilize user-
provided data within data values such as String, Boolean
or Integer literals, we argue that such a value should
never be turned into tokens that can alter a program’s
control flow such as a function call or a variable as-
signment. We therefore propose that the tokenization
of potentially attacker-provided data should never result
in the generation of tokens other than literals. As our
JavaScript engine is taint-aware, the parser is always able
to determine the origin of a character or a token. Hence,
whenever the parser encounters a token that violates our
policy, execution of the current code block can be termi-
nated immediately.
Rendering Engine Besides injecting malicious
JavaScript code directly into an application, attackers
are able to indirectly trigger the execution of client-side
code. For example, the attacker could inject an HTML
tag, such as the script or object tag, to make the browser

fetch and execute an external script or plugin applet.
Hence, only patching the JavaScript engine is not suf-
ficient to prevent DOM-based XSS attacks. To address
this issue we additionally patched the HTML parser’s
logic on how to handle the inclusion of external content.
When including active content we again validate the
origin of a script’s or plugin applet’s URL based on
our taint information. One possible policy here is to
reject URL containing tainted characters. However, as
we assess later, real-world applications commonly use
tainted data within URLs of dynamically created applets
or scripts. Therefore, we allow tainted data within such
a remote URL, but we do not allow the tainted data to
be contained either in the protocol or the domain of the
URL. The only exemption to this rule is the inclusion
of external code from the same origin. In these cases,
similar to what the Auditor does, we allow the inclusion
even if the protocol or domain is tainted. This way, we
make sure that active content can only be loaded from
hosts trusted by the legitimate Web application.
DOM bindings Very similar to the previous case the
execution of remote active content can also be triggered
via a direct assignment to a script or object tag’s src at-
tribute via the DOM API. This assignment does not take
place within the HTML parser but rather inside the DOM
API. We therefore patched the DOM bindings to imple-
ment the same policy as mentioned above.
Intentional Untainting As our taint-aware browser re-
jects the generation of code originating from a user-
controllable source, we might break cases in which such
a generation is desired. A Web application could, for ex-
ample, thoroughly sanitize the input for later execution.
In order to enable such cases we offer an API to taint
and untaint strings. If a Web application explicitly wants
to opt-out of our protection mechanism, the API can be
used to completely remove taint from a string.

5.3 Handling Tainted JSON
While our policy effectively blocks the execution of
attacker-injected JavaScript, only allowing literals causes
issues with tainted JSON. Although JavaScript provides
dedicated functionality to parse JSON, many program-
mers make use of eval to do so. This is mainly due to
the fact that eval is more tolerant whereas JSON.parse
accepts only well-formed JSON strings. Using our pro-
posed policy we disallow tokens like braces or colons
which are necessary for parsing of JSON. In a prelimi-
nary crawl, we found that numerous applications make
use of postMessages to exchange JSON objects across
origin boundaries. Hence, simply passing on completely
tainted JSON to the JavaScript parser would break all
these applications whereas allowing the additional to-
kens to be generated from parsing tainted JSON might
jeopardize our protection scheme. In order to combat
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these two issues we implemented a separate policy for
JSON contained within postMessages. Whenever our
implementation encounters a string which heuristically
matches the format of JSON, we parse it in a tolerant
way and deserialize the resulting object. In doing so, we
only taint the data values within the JSON string. This
way incompatible Web applications are still able to parse
JSON objects via eval without triggering a taint excep-
tion. Since we validated the JSON’s structure, malicious
payloads cannot be injected via the JSON syntax. If a
deserialized object’s attributes are used later to generate
code, they are still tainted and attacks can be detected. If
for some reason our parser fails, we forward the original,
tainted value to the postMessage’s recipient to allow for
backwards compatibility.

5.4 Implementation
To practically validate the feasibility of our protection
approach we conducted a prototypical implementation
based on the open source browser, Chromium, version
30.0.1561.0. This section will provide details on a se-
lection of issues we encountered when implementing the
desired protection capabilities.

Equality problem for tainted strings: We had to de-
cide when a tainted string should be considered equal
to an untainted version as this requirement is dependent
on the situation at hand. Under certain circumstances
we do want to consider them as being equal but there
are also conditions under which equality should not be
given. For example, when creating DOM elements from
tainted strings, we do want a tainted string to be equal
to an untainted version because the tainted string should
match the untainted version for the correct element to be
created. If the strings would not match, the correct ele-
ment could not be looked up and hence an unknown (or
custom) element would be created. On the other hand,
when looking up a string in a cache, we do not want the
tainted version to be equal to an untainted one. If that
were the case, we might loose taint as we retrieve the un-
tainted version. For performance reasons WebKit uses
addresses of certain strings it considers to be unique to
perform an equality check. We thus needed to imple-
ment a fallback method for the equality check on tainted
strings if we desire a tainted string to be equal to its un-
tainted version.

Attaching taint to JavaScript Tokens: To prevent
code strings from untrusted sources to generate code, we
needed to forward taint information from strings to these
generated tokens. We thus needed to broaden the inter-
face not only leading to the JavaScript lexer but also to
the parser. V8 not only has a parser for the JavaScript
language but also for JSON to efficiently read serialized
data. While it was conceptually easy to attach another bit
to the generated tokens, a sophisticated buffering logic

inside V8 needed to be made taint aware. A variety of
CharacterStream classes buffer characters of an input
stream to be consumed by the scanner and also enables
it to push back characters if it did not accept them. To
enable taint propagation all classes of an inheritance hi-
erarchy at least three levels deep needed to be changed.

6 Practical Evaluation
After the implementation of our modified engine as well
as the augmented HTML and JavaScript parsers we eval-
uated our approach in three different dimensions. In this
section we shed light on the compatibility of our ap-
proach with the current Web, discuss its protection ca-
pabilities, and evaluate its performance in comparison to
the vanilla implementation of Chromium as well as other
commonly used browsers. Finally, we summarize the re-
sults of said evaluation and discuss their meaning.

6.1 Compatibility
While a secure solution seems desirable, it will not be
accepted by users if it negatively affects existing appli-
cations. Therefore, in the following, we discuss the
compatibility of our proposed defense to real-world ap-
plications. We differentiate between the two realms in
which our approach is deployed – namely the JavaScript
parser and the HTML/DOM components – and answer
the questions:

1. In what fraction of the analyzed applications do we
break at least one functionality?

2. How big is the fraction of all documents in which
we break at least one functionality?

3. How many of these false positives are actually
caused by vulnerable pieces of code which allow an
attacker to execute a Cross-Site Scripting attack?

6.1.1 Analysis methodology

To answer these questions for a large body of domains,
we conducted a shallow crawl of the Alexa Top 10,000
domains (going down one level from the start page) with
our implemented filter enabled. Rather than just block-
ing execution we also sent a report back to our backend
each time the execution of code was blocked. Among
the information sent to the backend were the URL of the
page that triggered the exception, the exact string that
was being parsed as well as the corresponding taint in-
formation. Since we assume that we are not subject to
a DOM-based XSS attack when following the links on
said start pages, we initially count all blocked executions
of JavaScript as false positives. In total, our crawler
visited 981,453 different URLs, consisting of a total of
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9,304,036 frames. The percentages in the following are
relative to the number of frames we analyzed.

6.1.2 Compatibility of JavaScript Parsing Rules

In total, our crawler encountered and subsequently re-
ported taint exceptions, i.e., violations of the aforemen-
tioned policy for tainted tokens, in 5,979 frames. In the
next step, we determined the Alexa ranks for all frames
which caused exceptions, resulting in a total of 50 do-
mains. Manual analysis of the data showed that on each
of these 50 domains, only one JavaScript code snippet
was responsible for the violation of our parsing policy.
Out of these 50 issues, 23 were caused by data stemming
from a postMessage, whereas the remaining 27 could be
attributed to data originating from the URL. With respect
to the analyzed data set this means that the proposed pol-
icy for parsing tainted JavaScript causes issues on 0.50%
of the domains we visited, whereas in total only 0.06%
of the analyzed frames caused issues.

To get a better insight into whether these false positive
were in fact caused by vulnerable JavaScript snippets, we
manually tried to exploit the flows which had triggered a
parsing violation. Out of the 23 issues related to data
from postMessages, we found that one script did not em-
ploy proper origin checking, allowing us to exploit the
insecure flow. Of the 27 other scripts which were not us-
ing data from postMessages, we were able to exploit 21
scripts and hence 21 additional domains. This constitutes
a total number of 50 domain on which one functional-
ity caused a false positive, while 22 domains contained
an actual vulnerability in just the functionality our filter
blocked.
Importance of JSON-handling policy As we outlined
in Section 5.3, we do allow for postMessages to con-
tain tainted JSON which is automatically selectively un-
tainted by our prototype. To motivate the necessity for
this decision, we initially also gathered taint exceptions
caused by tainted JSON (stemming from postMessages)
being parsed by eval. This analysis showed that next to
the 5,979 taint exceptions we had initially encountered,
90,937 additional documents utilized tainted JSON from
postMessages in a policy-violating manner. Albeit, with
respect to our data set, this only caused issues with less
than 1% of all documents we analyzed, it puts emphasis
on the necessity for our proposed selective untainting,
whereas on the other hand, it also shows that program-
mers utilize eval quite often in conjunction with JSON
exchanged via postMessages.

6.1.3 Compatibility of HTML Injection Rules

As discussed in the Section 5.2, our modified browser
blocks the execution of external scripts if any character

in the domain name of the external script resources is
tainted – only exempting those scripts that are located
on the same domain as the including document. Anal-
ogous to what we had investigated with respect to the
JavaScript parsing policy, we wanted to determine in how
many applications we would potentially break function-
ality when employing the proposed HTML parsing pol-
icy. We therefore implemented a reporting feature for
any tainted HTML and a blocking feature for policy-
violating HTML. This feature would always send a re-
port containing the URL of the page, the HTML to be
parsed, as well as the exact taint information to the back-
end. We will go into further detail on injected HTML
in Section 7 and will now focus on all those tainted
HTML snippets which violate the policy we defined in
Section 5.2.

During our crawl, 8,805 out of the 9,304,036 docu-
ments we visited triggered our policy of tainted HTML,
spreading across 73 domains. Out of these, 8,667 vio-
lations (on 67 domains) were caused by script elements
with src attributes containing one or more tainted char-
acters in the domain of the included external script. Out
of the remaining six domains, we found that three uti-
lized base.href such that the domain name contained
tainted characters and thus, our prototype triggered a pol-
icy exception on these pages. Additionally, two domains
used policy-violating input.formaction attributes and
the final remaining domain had a tainted domain name in
an embed.src attribute. In total, this sums up to a false
positive rate of 0.09% with respect to documents as well
as 0.73% for the analyzed domains.

Subsequently, we analyzed the 73 domains which uti-
lized policy violation HTML injection to determine how
many of them were susceptible to a DOM-based XSS at-
tack. In doing so, we found that we could exploit the
insecure use of user-provided data in the HTML parser
in 60 out of 73 cases.

6.1.4 Compatibility of DOM API Rules

As we discussed previously we also examine as-
signments to security-critical DOM properties like
script.src or base.href and block them according
to our policy. In our compatibility crawl, our engine
blocked such assignments on 60 different domains in 182
documents, whereas the largest amount of blocks could
be attributed to script.src. Noteworthy in this in-
stance is the fact that 45 out of these 60 blocks interfered
with third-party advertisement by only two providers.

After having counted the false positive, we yet again
tried to exploit the flows that had been flagged as ma-
licious by our policy enforcer. Out of the 60 domains
our enforcer had triggered a block on, we verified that
eight constitute exploitable vulnerabilities. In compari-
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exploitable
documents domains domains

JavaScript 5,979 50 22
HTML 8,805 73 60
DOM API 182 60 8

Sum 14,966 183 90

Table 1: False positives by blocking component

son to the amount of exploitable blocks we had encoun-
tered for the JavaScript and HTML injection polices this
number seems quite low. This is due to the fact that both
the aforementioned advertisement providers employed
whitelisting to ensure that only script content hosted on
their domains could be assigned. In total, this sums up
to 0.60% false positives with respect to domains and just
0.002% of all analyzed documents.

6.1.5 Summary

In this section we evaluated the false positive rate of our
filter. In total, the filtering rules inside the JavaScript
parser, the HTML parser and the security-sensitive DOM
APIs caused issues on 14,966 document across 183
domains. Considering the data set we analyzed this
amounts to a false positive ratio of 0.16% for all ana-
lyzed documents and 1.83% for domains. Noteworthy
in this instance is however the fact that out of the 183
domains on which our filter blocked a single functional-
ity, 90 contained actual verified vulnerabilities in just that
functionality. Table 1 shows the number of documents
and domains on which our policy caused false positive,
also denoting in which of the different policy-enforcing
components the exception was generated as well as the
amount of domains in which the blocked functionality
caused an exploitable vulnerability.

6.2 Protection
To ensure that our protection scheme does not perform
worse than the original Auditor, we re-ran all exploits
that successfully triggered when the Auditor was dis-
abled. All exploits were caught by the JavaScript parser,
showing that our scheme is at least as capable of stopping
DOM-based Cross-Site Scripting as the Auditor.

To verify the effectiveness of our proposed protec-
tion scheme, we ran all generated exploits and bypasses
against our newly designed filter. To minimize side-
effects, we also disabled the XSS Auditor completely to
ensure that blocking would only be conducted by our
filtering mechanism. As we discussed in Section 4.2,
alongside the scoping-related issues that were responsi-
ble for the successful bypassing of the Auditor by the

first generation of exploits, other issues related to string
matching arose. In the following, we briefly discuss our
protection scheme with respect to stopping these kinds
of exploits.

Scoping: eval and innerHTML In contrast to the
XSS Auditor our filtering approach is fully capable of
blocking injections into eval due to the fact that it is im-
plemented directly in the JavaScript parser. In the XSS
Auditor, innerHTML is not checked for performance rea-
sons. To check whether a given token was generated
from a tainted source, a simple boolean flag has to be
checked, therefore we do not have these performance-
inhibiting issues.

Injection attacks targeting DOM APIs In our ex-
periments, we did not specifically target the direct as-
signment to security-critical DOM API properties. In-
side the API, analogous to the HTML parser, assign-
ment to one of these critical properties might cause di-
rect JavaScript execution (such as a javascript: URL
for an iframe.src) or trigger loading of remote content.
For the first case, our taint tracking approach is capable
of persisting the taint information to the execution of the
JavaScript contained in the URL and hence, the DOM
API does not have to intervene. For the loading of re-
mote content, the rules of the HTML parser are applied,
disallowing the assignment of the property if the domain
name contains tainted characters.

Partial injection One of the biggest issues, namely
partial injection, was stopped at multiple points in our
filter. Depending on the element and attribute which
could be hijacked, the attack vector either consisted of
injected JavaScript code or of an URL attribute used to
retrieve foreign content (e.g. through script.src). For
the direct injection of JavaScript code, the previously dis-
cussed JavaScript parser was able to stop all exploit pro-
totypes whereas for exploits targeting URL attributes the
taint-aware HTML parser successfully detected and re-
moved these elements, thus stopping the exploit.

Trailing content and double injection The bypasses
which we categorized as trailing content are targeting
a weakness of the Auditor, specifically the fact that it
searches for completely injected tags whereas double in-
jection bypasses take advantage of the same issue. Both
trailing content and double injections can be abused to
either inject JavaScript code or control attributes which
download remote script content. Hence, analogous to
partial injection, the filtering rules in the HTML and
JavaScript parsers could in conjunction with the precise
origin information stop all exploits.

Second order flows and alternative attack vectors
Similar to injection attacks targeting the direct assign-
ment of DOM properties through JavaScript, we did not
generate any exploits for second order flows. Neverthe-
less, we persist the taint information through intermedi-
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ary sources like the WebStorage API. Therefore, our pro-
totype is fully capable of detecting the origin of data from
these intermediary source and can thus stop these kinds
of exploits as well. As for postMessages, window.name
and document.referer, our implementation taints all
these sources of potentially attacker-controlled data and
is hence able to stop all injection attacks pertaining to
these sources.

Application-specific input mutation Our engine
propagates taint information through string modification
operations. Therefore, it does not suffer the drawbacks of
current implementations based on string matching. All
exploits targeting vulnerabilities belonging to this class
were caught within our HTML and JavaScript parsers.

6.3 Performance
In order to evaluate the performance of our imple-
mentation we conducted experiments with the popular
JavaScript benchmark suites Sunspider, Kraken, and Oc-
tane as well as the browser benchmark suite Dromaeo.
Sunspider was developed by the WebKit authors to “fo-
cus on short-running tests [that have] direct relevance to
the web” [28]. Google has developed Octane which in-
cludes “5 new benchmarks created from full, unaltered,
well-known web applications and libraries” [5]. Mozilla
has developed Kraken which “focuses on realistic work-
loads and forward-looking applications” [15]. Dromaeo,
which is a combination of several JavaScript and HTM-
L/DOM tests, finally serves as a measure of the overall
impact our implementation has on the everyday browsing
experience.

All tests ultimately lead to a single numerical value,
either being a time needed for a run (the lower the bet-
ter) or a score (the higher the better), reflecting the per-
formance of the browser under investigation. For run-
time (score) values the results were divided by the values
obtained for the unmodified version of the Web browser
(vice versa). These serve as the baseline for our further
comparisons. With the obtained results we computed a
slowdown factor reflecting how many times slower our
modified version is. To set these numbers into context,
we also evaluated other popular Web browsers, namely
Internet Explorer 11 and Firefox 26.0. To eliminate side
effects of, e.g., the operating system or network latency,
we ran each of the benchmarking suites locally for ten
times using an Intel Core i7 3770 with 16GB of RAM.
All experiments, apart from Internet Explorer, were con-
ducted in a virtual machine running Ubuntu 13.04 64-
bit on that system whereas IE was benchmarked natively
running Windows 7.

Table 2 shows the results of our experiments. To as-
certain a baseline for our measurements we ran all bench-
marks on a vanilla build of Chromium. The table shows
the mean results (in points or milliseconds) as well as the

standard error and the slowdown factor for each test and
browser. Internet Explorer employs an optimization to
detect and remove dead code, causing it to have signif-
icantly better performance under the Sunspider bench-
mark than the other Web browsers [40]. As the results
generated by all browsers under the Kraken benchmark
were varying rather strongly, we ran the browsers in our
virtual machines 50 times against the Kraken benchmark.
Regardless, we still see a rather high standard error of the
mean for all the browsers.

We chose the aforementioned tests because they
are widely used to evaluate the performance of both
JavaScript and HTML rendering engines. Nevertheless,
these tests are obviously not designed to perform opera-
tions on tainted strings. As we discussed in Section 5.4,
our engine usually only switches to this runtime im-
plementation if the operation is conducted on a tainted
string. In the initial runs, which is denoted in Table 2
as Tainted Best, our engine incurred slowdown factors of
1.08, 1.01, 1.16 and 1.05, resulting in an average slow-
down factor of 7%. Since the tests are not targeting the
usage of tainted data, we conducted a second run. This
time we modified our implementation to treat all strings
as being tainted, forcing it to use as much of our new
logic as possible. In this, the performance was naturally
worse than in the first run. More precisely, by calculating
the average over the observed slowdown factors for our
modified (denoted as Tainted Worst) version, we see that
our implementation incurs, in the worst case, an over-
head of 17% compared to the vanilla version. While the
performance hit is significant, we will elaborate on pos-
sible performance improvements in the next section.

6.4 Discussion
In this section we evaluated compatibility, protection ca-
pability as well as performance of our proposed filter
against DOM-based Cross-Site Scripting. In the follow-
ing we will briefly discuss the implications of these eval-
uations.

In our compatibility crawl we found that 183 of the
10,000 domains we analyzed had one functionality that
was incompatible with our policies for the JavaScript
parser, the HTML parser and the DOM APIs. Although
this number appears to be quite high at first sight it also
includes 90 domains on which we could successfully a
vulnerability in just the functionality that was blocked
by our filter. On the other hand, the total number of do-
mains, which our approach protected from a DOM-based
XSS attack amounts to 958. Although the XSS Auditor
is not designed to combat DOM-based XSS attacks, it is
the only currently employed defense for Google Chrome
against such attacks. As we discussed in Section 4.3,
the Auditor could be bypassed on 81% of these domains,
protecting users on only 183 domains in our initial data
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Dromaeo Octane Kraken (ms) Sunspider (ms)

Baseline 1167.4 1.89 – 20177.9 64.47 – 1418.9 94.29 – 169.02 0.37 –
Tainted Best 1082.6 2.40 1.08 19851.0 54.54 1.01 1653.1 59.84 1.16 178.03 0.70 1.05
Tainted Worst 1015.6 1.93 1.15 18168.7 70.24 1.11 1814.4 64.55 1.27 192.66 0.26 1.14

Firefox 26.0 721.7 2.94 1.62 16958.5 97.40 1.19 1291.3 1.14 0.91 171.86 0.65 1.02
IE 11 607.0 2.13 1.92 17247.2 47.15 1.17 1858.5 4.16 1.31 78.05 0.13 0.46

Table 2: Benchmark results, showing mean, standard error and slowdown factor for all browsers and tests

set. This shows that with respect to its protection capa-
bilities our approach is more reliable than currently de-
ployed techniques, which do not offer protection against
this type of attack.

Apart from reliable protection and a low false posi-
tive rate, one requirement for a browser-based XSS fil-
ter is its performance. Our performance measurements
showed that our implementation incurs an overhead be-
tween 7 and 17%. Chrome’s JavaScript engine V8 draws
much of its superior performance from utilizing so-called
generated code, i.e., ASM code generated directly from
macros. To allow for a small margin for error, we opted
to implement most of the logic – such as copying of taint
information – in C++ runtime code. We realize that the
performance impact of our current prototype might be
too high to allow for productive deployment in Chrome.
Nevertheless, we believe that an optimized implementa-
tion making more frequent use of said generated code
would ensure better performance and possibly allow for
deployment of our approach.

Our approach only aims at defeating DOM-based
Cross-Site Scripting while the XSS Auditor’s focus is on
reflected XSS. We therefore believe that deployment be-
sides the Auditor is a sound way of implementing a more
robust client-side XSS filter, capable of handling both re-
flected and DOM-based XSS.

7 Outlook: HTML Injection
As we discussed in Section 5.4, our engine allows for
precise tracking of tainted data throughout the execution
of a program and hence, also to the HTML parser. There-
fore, our approach also enables the browser to precisely
block all attacker-injected HTML even it is not related
to Cross-Site Scripting. Although this was out of scope
for this work, we believe that it is relevant future work.
Therefore, we give a short glimpse into the current state
of the Web with respect to partially tainted HTML passed
to the parser.

As we discussed in Section 6.1, we conducted a com-
patibility crawl of the Alexa Top 10,000 in which we
analyzed a total of 9,304,036 documents, out of which
632,109 generated 2,393,739 tainted HTML reports.
Typically, each of the HTML snippets contained the def-

inition of more than one tag. In total, we found that pars-
ing the snippets yielded in 3,650,506 tainted HTML el-
ements whereas we consider an element tainted if either
the tag name, any attribute name or any attribute value is
tainted. Considering the severity of attacker-controllable
HTML snippets, we distinguish between four types:

1. Tag injection (TI): the adversary can inject a tag
with a name of his choosing.

2. Attribute injection (AI): injection of the complete
attribute, namely both name and value

3. Full attribute value injection (FAVI): full control
over the value, but not the name

4. Partial attribute value injection (PAVI): attacker
only controls part of the attribute

We analyzed the data we gathered in our crawl to de-
termine whether blocking of tainted HTML data is feasi-
ble and if so, with what policy. Our analysis showed that
out of the Top 10,000 Alexa domains, just one made use
of full tag injection, injecting a p tag originating from a
postMessage. This leads us to believe that full tag in-
jection with tainted data is very rare and not common
practice.

The analysis also unveiled that the most frequently
tainted elements – namely a, script, iframe and img –
made up for 3,503,655 and thus over 95% of all ele-
ments containing any tainted data. Hence, we focused
our analysis on these and examined which attributes were
tainted. Analogous to our definition of a tainted element,
we consider an attribute to be tainted if either its name or
value contains any tainted characters. Considering this
notion, we – for each of the four elements – ascertained
which attribute is most frequently injected using tainted
data. For a elements, the most frequent attribute con-
taining tainted data was href whereas script, iframe
and img tags mostly had tainted src attributes. Although
we found no case where the name of an attribute was
tainted, we found a larger number of elements with full
attribute value injection. The results of our study are de-
picted in Table 3, which shows the absolute numbers of
occurrences. We also gathered reports from documents
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FAVI PAVI
Top 10k all Top 10k all

iframe.src 349 2,222 384,946 438,415
script.src 4,215 8,667 1,078,015 1,292,046
a.href 124,812 133,838 1,162,093 1,191,598
img.src 5,128 6,791 275,579 312,033

Domains 799 1,014 4,446 6,772

Table 3: Amounts of full and partial value injection for
domains in the Alexa Top 10,000 and beyond.

on domains not belonging to the Alexa Top 10,000 as
content is often included from those. The first number
in each column gives the amount for documents on the
Alexa Top 10,000, whereas the second number shows the
number for all documents we crawled.

Summarizing, we ascertain that taint tracking in the
browser can also be used to stop HTML injection. Our
study on tainted HTML content on the Alexa Top 10,000
domains has shown that blocking elements with tainted
tag names is a viable way of providing additional secu-
rity against attacks like information exfiltration [7] while
causing just one incompatibly. We also discovered that
the applications we crawled do not make use of tainted
attribute names, hence we assume that blocking tainted
attributes does also not cause incompatibilities with the
current Web. In contrast, blocking HTML that either
has fully or partially tainted attribute values does not ap-
pear to be feasible since our analysis showed that 8%
of all domains make use of fully tainted attribute values
whereas more than 44% used partially tainted values in
their element’s attributes. As there is an overlap between
these two groups of domains, the total number of do-
mains that would causes incompatibilities is 4,622, thus
resulting in more than 46% incompatibilities. Thus, we
established that although blocking HTML is technically
possible with our implementation this would most likely
break a large number of applications.

8 Related work
XSS Filter As already mentioned earlier, the conceptu-
ally closest work to this paper is Bates et al.’s [2] analysis
of regular expression-based XSS filters and the subse-
quent proposal of the methodology that constitutes the
basis for the XSS Auditor. Furthermore, Pelizzi and
Sekar [26] proposed potential improvements for Bates
et al.’s method in order to address the problem of partial
injections. Similar to what Bates et al. discussed, they in-
strument the HTML parser and apply approximate string
matching inside it. Due to the fact that DOM-based
XSS allows an attacker to make use of insecure calls to

eval as well as direct assignments to security-sensitive
DOM APIs, it is still susceptible to some bypasses we
discussed. Furthermore, the presented approach is not
fully evaluated, especially with respect to the occurring
false positive rate. Besides this, and the other two major
browser-based XSS filters [21, 29], the majority of XSS
protection approaches, such as [23, 14, 24, 35], reside on
the server-side.

Filter evasion is an active topic especially in the of-
fensive community. Academic approaches in this area
include, for instance, the work by Heiderich et al. on
SVG-based evasions [11] and filter evasion by misusing
browser-based parser quirks and mutations [12] as well
as approaches that rely on parser confusion and poly-
glots, such as Barth et al. [1] and Magazinius et al. [19].

Dynamic taint tracking Taint propagation is a well
established tool to address injection attacks. After its
initial introduction within the Perl interpreter [37], vari-
ous server-side approaches have been presented that rely
on this technique [25, 27, 33, 24, 3]. In 2007, Vogt et
al. [36] pioneered browser-based dynamic taint tracking,
employing the technique to prevent the leakage of sensi-
tive data to a remote attacker rather than trying to prevent
the attack itself. The first work to utilize taint tracking for
the detection of DOM-based XSS was DOMinator [8],
which was later followed by FLAX [31] and Lekies et
al. [18]. For NDSS 2009, Sekar [32] proposed and im-
plemented a scheme for taint inference, speeding up taint
tracking approaches which had been presented up to this
point.

9 Conclusion

In this paper we presented the design, implementation
and thorough evaluation of a client-side countermea-
sure which is capable to precisely and robustly stop
DOM-based XSS attacks. Our mechanism relies on the
combination of a taint-enhanced JavaScript engine and
taint-aware parsers which block the parsing of attacker-
controlled syntactic content. Existing measures, such as
the XSS Auditor, are still valuable to combat XSS in
cases that are out of scope of our approach, namely XSS
which is caused by vulnerable data flows that traverse the
server.

In case of client-side vulnerabilities, our approach reli-
ably and precisely detects injected syntactic content and,
thus, is superior in blocking DOM-based XSS. Although
our current implementation induces a runtime overhead
between 7 and 17%, we believe that an efficient na-
tive integration of our approach is feasible. If adopted,
our technique would effectively lead to an extinction of
DOM-based XSS and, thus, significantly improve the se-
curity properties of the Web browser overall.
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Abstract
In this paper we consider TLS Man-In-The-Middle

(MITM) attacks in the context of web applications,
where the attacker is able to successfully impersonate
the legitimate server to the user, with the goal of imper-
sonating the user to the server and thus compromising
the user’s online account and data. We describe in detail
why the recently proposed client authentication protocols
based on TLS Channel IDs, as well as client web authen-
tication in general, cannot fully prevent such attacks.

Nevertheless, we show that strong client authentica-
tion, such as Channel ID-based authentication, can be
combined with the concept of server invariance, a weaker
and easier to achieve property than server authentica-
tion, in order to protect against the considered attacks.
We specifically leverage Channel ID-based authentica-
tion in combination with server invariance to create a
novel mechanism that we call SISCA: Server Invariance
with Strong Client Authentication. SISCA resists user
impersonation via TLS MITM attacks, regardless of how
the attacker is able to successfully achieve server imper-
sonation. We analyze our proposal and show how it can
be integrated in today’s web infrastructure.

1 Introduction
Web applications increasingly employ the TLS pro-

tocol to secure HTTP communication (i.e., HTTP over
TLS, or HTTPS) between a user’s browser and the web
server. TLS enables users to securely access and inter-
act with their online accounts, and protects, among other
things, common user authentication credentials, such as
passwords and cookies. Such credentials are considered
weak; they are transmitted over the network and are sus-
ceptible to theft and abuse, unless protected by TLS.

Nevertheless, during TLS connection establishment, it
is essential that the server’s authenticity is verified. If
an attacker successfully impersonates the server to the
user, she is then able to steal the user’s credentials and
subsequently use them to impersonate the user to the le-
gitimate server. This way, the attacker gains access to the
user’s account and data which can be abused for a vari-

ety of purposes, such as spying on the user [18, 48]. This
attack is known as TLS Man-In-The-Middle (MITM).

TLS server authentication is commonly achieved
through the use of X.509 server certificates. A server cer-
tificate binds a public key to the identity of a server, des-
ignating that this server holds the corresponding private
key. The browser accepts a certificate if it bears the signa-
ture of any trusted Certificate Authority (CA). Browsers
are typically configured to trust hundreds of CAs.

An attacker can thus successfully impersonate a legit-
imate server to the browser by presenting a valid certifi-
cate for that server, as long as she holds the correspond-
ing private key. In previous years, quite a few incidents
involving mis-issued certificates [2, 9, 11, 48, 49] were
made public. Even in the case where the attacker simply
presents an invalid (e.g., self-signed) certificate not ac-
cepted by the browser, she will still succeed in her attack
if the user defies the browser’s security warning.

In order to thwart such attacks, various proposals have
emerged. Some proposals focus on enhancing the certifi-
cate authentication model. Their objective is to prevent
an attacker possessing a mis-issued, yet valid certificate,
from impersonating the server (e.g., [20, 33, 36, 52]).

Other proposals focus on strengthening client authen-
tication. Strong client authentication prevents user cre-
dential theft or renders it useless, even if the attacker
can successfully impersonate the server to the user. One
such prominent proposal is Channel ID-based client au-
thentication, introduced in 2012. TLS Channel IDs [4]
are experimentally supported in Google Chrome and are
planned to be used in the second factor authentication
standard U2F, proposed by the FIDO alliance [22].

In this paper we show that Channel ID-based ap-
proaches, as well as web authentication solutions that
focus solely on client authentication are vulnerable to
an attack that we call Man-In-The-Middle-Script-In-The-
Browser (MITM-SITB), and is similar to dynamic pharm-
ing [32] (see Section 4). This attack bypasses Channel
ID-based defenses by shipping malicious JavaScript to
the user’s browser within a TLS connection with the at-
tacker, and using this JavaScript in direct connections
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with the legitimate server to attack the user’s account.
Nevertheless, we show that TLS MITM attacks where

the attacker’s goal is user impersonation can still be pre-
vented by strong client authentication, such as Channel
ID-based authentication, provided that it is combined
with the concept of server invariance, that is, the re-
quirement that the client keeps communicating with the
same entity (either the legitimate server, or the attacker)
across multiple connections intended for the same server.
Server invariance is a weaker requirement than server au-
thentication, and thus, it is easier to achieve as no ini-
tial trust is necessary. Building on this observation, we
propose a solution called SISCA: Server Invariance with
Strong Client Authentication, that combines Channel ID-
based client authentication and server invariance.

SISCA can resist TLS MITM attacks that are based
on mis-issued valid certificates, as well as invalid certifi-
cates, requiring no user involvement in the detection of
the attack (i.e., no by-passable security warnings when
server invariance violation occurs). SISCA also thwarts
attackers that hold the private key of the legitimate server.
Contributions. In this work we analyze TLS MITM
attacks whose goal is user impersonation and make the
following contributions. (i) We show, by launching a
MITM-SITB attack, that Channel ID-based client au-
thentication solutions do not fully prevent TLS MITM
attacks; (ii) we further argue that effective prevention
of MITM-based user impersonation attacks requires
strong user authentication and (at least) server invariance;
(iii) we propose a novel solution that prevents MITM-
based user impersonation, based on the combination of
strong client authentication and server invariance; (iv) we
implement and evaluate a basic prototype of our solution.

2 Channel ID-based Authentication and
MITM Attacks

2.1 Attacker Model and Goals
Attacker Goals. The attacker’s goal in a MITM attack
is typically to impersonate the user (victim) to the legit-
imate server (e.g., a social networking, webmail, or e-
banking website) in order to compromise the user’s on-
line account and data. This is indeed the case where the
attacker wishes for example to spy on the user [18, 48],
or abuse his account for nefarious purposes, e.g., perform
fraudulent financial transactions. Alternatively, the at-
tacker could aim to only impersonate the server to the
user (and not the user to the server), such that she serves
the user with fake content (e.g., fake news). In this paper,
we focus on the first, more impactful, scenario.
Attacker Model. We adopt the attacker model consid-
ered by Channel IDs [4]. The adversary is able to posi-
tion herself suitably on the network and perform a TLS
MITM attack between the user and the target web server.

In other words, the attacker is able to successfully imper-
sonate the server to the user. We distinguish between two
types of MITM1 attackers.

The MITM+certificate attacker holds (i) a valid cer-
tificate for the domain of the target web server, binding
the identity of the server to the public key, of which she
holds the corresponding private key. The attacker, how-
ever, has no access to the private key of the target web
server. This, for example, can happen if the attacker com-
promises a CA or is able to force a CA issue such a cer-
tificate. Such attacks have been reported in the recent
years [2, 9, 11, 48]. Moreover, in this category we also
consider a weaker attacker that only holds (ii) an invalid
(e.g., self-signed) certificate. In this case, the attacker
will still succeed in impersonating the server to the user
if the latter ignores the security warnings of the browser2,
which is a common phenomenon [51].

The MITM+key attacker holds the private key of the
legitimate server. While we are not aware of publicized
incidents involving server key compromise, such attacks
are feasible, as the Heartbleed vulnerability in OpenSSL
has shown [1], and can be very stealthy, remaining unno-
ticed. Thus, they are well worth addressing [28, 30, 35].

From the above it follows that the attacker is able to ob-
tain the user’s weak credentials, namely passwords and
HTTP cookies. She is not, however, able to compromise
the user’s browser or his devices (e.g., mobile phones).

2.2 TLS Channel IDs
Channel IDs is a recent proposal for strengthening

client authentication. It is a TLS extension, originally
proposed in [15] as Origin-Bound Certificates (OBCs).
A refined version has been submitted as an IETF Internet-
Draft [4]. Currently, Channel IDs are experimentally sup-
ported by Google’s Chrome browser and Google servers.

In brief, when the browser visits a TLS-enabled web
server for the first time, it creates a new private/public
key pair (on-the-fly and without any user interaction)
and proves possession of the private key, during the TLS
handshake. This TLS connection is subsequently iden-
tified by the corresponding public key, which is called
the Channel ID. Upon subsequent TLS connections to
the same web server, or more precisely, to the same web
origin, the browser uses the same Channel ID. This en-
ables the web server to identify the same browser across
multiple TLS connections.

2.2.1 Channel ID-Based Authentication

By Channel ID-based authentication we refer to the
use of Channel IDs throughout the user authentication
process, designed to thwart both types of MITM attack-
ers presented in Section 2.1 [4, §6], [13, §3].

1We use the terms “TLS MITM” and “MITM” interchangeably.
2We use the term “browser” to refer to any “user agent” in general.
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Figure 1: PhoneAuth and FIDO U2F; leveraging Channel IDs
to secure the initial login against MITM attacks.

Initial Login. When the user attempts to login to
his online account for the first time from a particular
browser, the web server requires that the user authenti-
cates using a strong second factor authentication device,
as in PhoneAuth [13] and FIDO Universal 2nd Factor
(U2F) [22] protocols. These protocols leverage Chan-
nel IDs to secure the intial login process against MITM
attacks. In brief, as part of the authentication protocol,
the second factor device compares the Channel ID of the
browser to the Channel ID of the TLS connection that the
server witnesses. If they are equal, then the browser is di-
rectly connected to the web server through TLS (because
they share the same view of the connection), and thus
there is no MITM attack taking place. On the other hand,
if the Channel IDs differ, then the server is not directly
connected to the user’s browser. Instead, as shown in Fig-
ure 1, there is an attacker in the middle, and the device
aborts the authentication protocol, stopping the attack.
Subsequent Logins. Upon successful initial authentica-
tion the server sets a cookie to the user’s browser, and
binds it to the Channel ID of the browser. As proposed
in [15], a server may create a channel-bound cookie as
follows: 〈v, HMAC(k,v|cid)〉, where v is the original
cookie value, cid is the browser Channel ID and k is a
secret key only known to the server, used for computing
a MAC over the concatenation of v and cid. The channel-
bound cookie is considered valid only if it is presented
over that particular Channel ID. Therefore, subsequent
interaction with the server from that particular browser is
protected by the channel-bound cookie. An attacker that
manages to steal a channel-bound cookie, e.g., through
a MITM attack, cannot use it to impersonate the user to
the web server, since she does not know the private key
of the correct Channel ID. Figure 2 illustrates this con-
cept. Note that at this stage, the second factor device is
not required for authenticating the user [12].

2.3 MITM Attack on Channel ID-Based
Authentication

We show how Channel ID-based authentication still
allows a MITM attacker to successfully impersonate the

Channel ID

TLSTLS

TLS
Set$Cookie)

, : TLS Channel IDs

Figure 2: Binding authentication tokens (e.g., cookies) to the
browser’s Channel ID (green). A MITM attacker who steals
such a cookie, cannot use it to impersonate the user, since the
attacker has a different Channel ID (red).

user. This is due to the way web applications are run
and interact with the servers, which differs from other
internet client-server protocols (e.g., IMAP over TLS).

In particular, web servers are allowed to send script-
ing code to the browser, which the latter executes within
the security context of the web application (according
to the rules defined by the same-origin policy [5]). In
fact, client-side scripting and especially JavaScript, is the
foundation of dynamic, rich web applications that vastly
improve user experience, and its presence is ubiquitous.

Moreover, a browser can establish multiple TLS con-
nections with the same server. In addition, a typical web
application loads resources, such as images and scripts,
from multiple domains (cross-origin network access [5]).
Assuming that all communication is TLS-protected, this
means that the browser needs to establish TLS connec-
tions with multiple servers while loading a web page.

Given the above, there is a conceptually simple attack
that a MITM+certificate or MITM+key attacker can per-
form, which bypasses the security offered by Channel
IDs. We assume that the user tries to access the target
web server, say www.example.com. The attacker then
proceeds as follows:

1. She intercepts a single TLS connection attempt
made by the browser to www.example.com, and by
presenting a valid certificate (or invalid with the user
ignoring the browser’s warning), she successfully
impersonates the legitimate server to the browser.

2. Through the established connection, the browser
makes an HTTP request to the server. The attacker
replies with an HTTP response, which includes a
malicious piece of JavaScript code. This script will
execute within the origin of www.example.com.

3. The attacker closes the intercepted TLS connection.
This forces the browser to initiate a new TLS con-
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Figure 3: MITM-SITB attack on Channel ID-based PhoneAu-
th/U2F, used for the initial login. The attacker’s JavaScript code
is executed within the origin of the target server (shown by the
dotted arrow).

nection in order to transmit subsequent requests, or
use another existing one, if any (this behavior con-
forms with the HTTP specification [23]). At the
same time, the attacker allows subsequent TLS con-
nection attempts to pass through, without interfer-
ing with them. As a result, once the attacker closes
that single intercepted connection, all other connec-
tions, existing and new, are directly established be-
tween the browser and the legitimate server.

4. The attacker gains full control over the user’s ses-
sion in that particular web application. Her script
has unrestricted access over the web documents be-
longing to www.example.com and can monitor all
the client-side activity of the web application. More-
over, she can issue arbitrary malicious requests to
the target server using the XMLHttpRequest ob-
ject [3], in order to perform a desired action or
extract sensitive user information. The malicious
code can upload any extracted data to an attacker-
controlled server. As another example, if the web
application is Ajax-based, the attacker can perform
Prototype Hijacking [46]. This allows her to eaves-
drop and modify on-the-fly all the HTTP requests
made through XMLHttpRequest.

In summary, the MITM attacker “transfers” herself
(via the malicious script) within the user’s browser, and
continues her attack from there. We call this attack Man-
In-The-Middle-Script-In-The-Browser (MITM-SITB).

Figure 3 illustrates the MITM-SITB attack in the
case when the user is about to initially authenti-
cate to www.example.com using PhoneAuth or U2F.
The attacker intercepts a TLS connection, pushes her
JavaScript code to the user’s browser, and terminates
the connection. The browser then establishes a new
TLS connection for subsequent communication, only
this time with the legitimate server; the attacker will not

Channel ID Attack

TLS

TLS

4

1

2

3

1. Intercept connection!
2. Push malicious script!
3. Close connection!
4. Gain control

Figure 4: MITM-SITB attack on Channel ID-based authentica-
tion after the initial login, where requests are protected with a
channel-bound cookie.

hijack it. This ensures that the user authentication is per-
formed over a direct connection between the browser and
the server, but with the attacker’s code running in the
browser. The view of the TLS channel will be the same
for the browser and the server, and the Channel ID com-
parison made by the second factor device will pass.

Figure 4 shows how the attack works in the case when
the user has already logged in on www.example.com in
the past, and the server has set a channel-bound cookie
in the user’s browser. Like before, the attacker ships ma-
licious JavaScript code to the browser by intercepting a
TLS connection to www.example.com. She then termi-
nates the intercepted connection. This forces the browser
to establish a new TLS connection, which is not inter-
cepted by the attacker. This ensures that any subsequent
requests, either legitimate or malicious (issued by the
attacker’s script) are accepted by the legitimate server,
since they will carry the channel-bound cookie, which
authenticates the user, over the correct Channel ID.

From the above attack description there are various
details that remain unclear. For example, which TLS
connection the attacker should intercept, whether to
“hit and run” or persist as much as possible, etc. De-
pending on the scenario, there are various alternatives,
which are mostly implementation decisions. The at-
tacker can for example choose the following strategy.
She intercepts the very first TLS connection, i.e., the
one that the browser initiates once it is directed to
www.example.com. Depending on the situation, the
attacker’s HTTP response could contain the expected
HTML document of the website’s starting page, together
with the appropriately injected malicious script, or it
could only contain the malicious script, which will take
care of loading the starting page in the browser. Then, as
described before, the attacker closes this first connection
and subsequent communication (malicious or not) takes
place through a direct connection to the legitimate server.
The Cross-Origin Communication Case. Visiting a sin-
gle web page typically involves cross-origin communica-
tion with different domains in the background. For exam-
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Figure 5: MITM-SITB attack on Channel ID-based authentica-
tion leveraging cross-origin communication. Channel IDs for
static.example.com are of no use.

ple a typical network optimization technique is to have
the browser load the static resources of the website, such
as images, style sheets and scripts, from so-called cook-
ieless domains (e.g., Google websites usually load static
resources from gstatic.com [24]). These domains, as
their name suggests, do not set any cookies, so as to min-
imize network latency. As a matter of fact, on such do-
mains, client authentication does not apply at all, as they
are just used to serve static resources, which anyone, in-
cluding the attacker, can access. Hence in those cases,
the attacker can perform a conventional MITM attack
against a cookieless domain, and inject her malicious
code at the moment when the target web server requests
a legitimate JavaScript file from that domain (Figure 5).

2.4 Proof of Concept Attack
We validate our attack against Channel IDs through a

proof of concept implementation. We use two Apache
TLS-enabled servers (one for the attacker, one for the
legitimate server) and an interception proxy that can se-
lectively forward TLS connections to either server. The
legitimate server uses a patched OpenSSL version that
supports Channel IDs and leverages them for creating
channel-bound cookies. We use Google Chrome as the
user’s browser, since it supports Channel IDs, and ensure
that it accepts the certificates of both servers. We are then
able to inject JavaScript code to the user’s browser from
the attacker’s server and issue HTTP requests that are ac-
cepted and processed by the legitimate server.

2.5 Scope and Implications of the Attack
The MITM-SITB attack presented in Section 2.3 is not

specific to Channel ID-based client authentication proto-
cols. In fact, it applies to any web client authentication
method. This attack demonstrates that, in the context of

web applications, it does not seem possible to prevent
TLS MITM attacks via client authentication alone.

We provide the following informal reasoning for the
above claim. Client authentication does not prevent an
attacker from impersonating the legitimate server. This
allows her to intercept a server-authenticated (i.e., TLS)
connection and ship her JavaScript code to the user’s
browser. The browser, treating the attacker’s code as
trusted (as it came through a server-authenticated connec-
tion), executes it within the target server’s origin. The at-
tacker accesses the user’s account through requests initi-
ated by her code and transmitted over another, direct con-
nection between the browser and the legitimate server.

As a result, schemes such as traditional TLS client au-
thentication [14] and TLS Session Aware User Authenti-
cation [42, 43] are still susceptible to TLS MITM attacks,
via MITM-SITB. The attacker succeeds in impersonating
the user to the web server and compromising his account.

3 Addressing TLS MITM Attacks
As shown in Section 2, strong client authentication

alone is not sufficient to prevent MITM attacks that lead
to user impersonation in web applications. So, how can
we effectively prevent such attacks? In this section we
show that there are two orthogonal solutions; (i) the
known solution of preventing the attacker from imper-
sonating the legitimate server at all, i.e., ensuring correct
server authentication; (ii) our novel approach of combin-
ing strong client authentication with server invariance.

3.1 Prevent Server Impersonation
The known and straightforward solution to the prob-

lem at hand is to prevent the attacker from impersonating
the server in the first place. This way, the attacker can
neither steal weak user credentials in order to mount a
conventional MITM attack, nor ship malicious Javascript
in order to mount a MITM-SITB attack. Note that in
this case, strong client authentication (e.g., Channel ID-
based) is not necessary for preventing MITM attacks (it
is, however, still useful for preventing other attacks, such
as phishing and server password database compromise).

The solutions that try to prevent server impersonation
essentially address the issue of forged server certificates
(and thus defeating MITM+certificate attacks), by per-
forming enhanced certificate verification. Such solutions
are mainly based on pinning [20, 38], multi-path prob-
ing [33, 36, 37, 52] and hybrid approaches [19, 29] (a
thorough survey can be found in [10]).

3.2 Our Proposal: SISCA
3.2.1 Main Concept

The fact that strong client authentication alone cannot
effectively prevent MITM attacks in web applications,
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Figure 6: TLS MITM attacks in web applications can be
thwarted by combining strong client authentication with server
invariance.

raises the following question. Is there a way to some-
how still benefit from strong client authentication with
respect to addressing MITM attacks?

To answer, we make the following observation. In the
context of web applications, a MITM attacker can per-
form user impersonation via two approaches:

1. The conventional MITM attack, in which the at-
tacker compromises the user’s credentials and uses
them for impersonation. This attack can be effec-
tively prevented by strong client authentication e.g.,
using Channel ID-based protocols (Figures 1, 2).

2. The MITM-SITB attack, presented in Section 2.3
(Figures 3, 4, 5). As discussed in Section 2.5, client
authentication alone cannot prevent this attack.

For the MITM-SITB attack to be successful, the user’s
browser needs to communicate with two different enti-
ties, namely the attacker and the target web server. Com-
municating with the attacker is, of course, necessary for
injecting the attacker’s script to the browser through the
intercepted TLS connection. In addition, communication
with the target server is essential, so that the attacker ac-
cesses the user’s account and data, through her script.

As a result, we can prevent MITM-SITB by making
sure that the browser communicates only with one entity,
either the legitimate server, or the attacker, but not with
both, during a browsing session (a browsing session is
terminated when the user closes the browser). In other
words, we need to enforce server invariance. When com-
bined with strong client authentication (e.g., Channel ID-
based), which stops the conventional MITM approach,
this technique manages to effectively thwart MITM at-
tacks. Figure 6 illustrates the concept.

In the remaining section we present a novel solution,
called Server Invariance with Strong Client Authentica-
tion (SISCA), which stems from the above result. SISCA
is able to resist MITM+certificate attacks, offering ad-
vantages compared to existing solutions that focus at pre-
venting server impersonation (see Section 3.2.9), as well

as MITM+key attacks under the assumption that the at-
tacker does not persistently compromise the server (see
Section 3.2.2). The details of our solution follow below.

3.2.2 Design Goals and Assumptions

In SISCA we seek to satisfy the following require-
ments: (i) incremental deployment, (ii) scalability,
(iii) minimal overhead, (iv) account for cross-origin com-
munication, assuming that the involved origins belong to,
and are administered by the same entity, (v) mitigation of
MITM+key attacks (besides MITM+certificate attacks).

We make the following assumptions. First, strong
client authentication, which prevents the conventional
way of implementing MITM attacks (Figures 1, 2) is
in place. Specifically, we assume that SISCA-enabled
servers implement Channel ID-based client authentica-
tion. As mentioned before, Channel IDs are already ex-
perimentally supported in Google Chrome. Moreover,
FIDO U2F leverages Channel IDs, as metiononed in Sec-
tion 2.2.1, so it is likely that Channel ID-based authenti-
cation will become available in the foreseeable future.

Second, we assume that SISCA-enabled servers sup-
port TLS with forward secrecy by default [28, 30, 35].
As we discuss below, this is only required for preventing
MITM+key attacks (not relevant for MITM+certificate
attacks). Moreover, we assume that TLS is secure and
cannot be broken by cryptographic attacks, such as those
surveyed in [10].

We finally assume that the MITM+key attacker does
not persistently compromise the target web server. As we
discuss later, this enables SISCA to resist server key com-
promise (i.e., MITM+key attackers) through frequent ro-
tation of the server secrets that are used in SISCA (see
Section 3.2.8). We also note that if an attacker gained
persistent control over the target server, she would prob-
ably not need to resort to MITM attacks to compromise
the users’ accounts, but at the same time she would in-
crease the probability of being detected.

3.2.3 Server Invariance Versus Authentication

As stated above, our goal is to combine strong client
authentication with server invariance. Invariance is a
weaker property than authentication, and thus, easier to
achieve, as no a priori trust is necessary. In contrast, au-
thentication requires some form of initial trust so that the
client can correctly authenticate the server [17].

Consequently, we stress the following very important
difference. Server authentication (and solutions that try
to enforce it, like those mentioned in Section 3.1) implies
that every single TLS connection should be established
with the legitimate server. If the attacker attempts to in-
tercept such a connection, she should be detected by the
browser, i.e., no server impersonation should be possible.

In contrast, server invariance, embraces the fact that
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the attacker can successfully impersonate the server.
As such, we distinguish two scenarios concerning the
browser’s first connection to a particular server: (i) The
first connection is not intercepted by the attacker. Then,
server invariance implies that the attacker is allowed to in-
tercept none of the subsequent connections to that server.
(ii) The first connection is intercepted by the attacker.
Then, server invariance implies that the attacker has to
intercept all subsequent connections to that server. In
either scenario, if the attacker violates server invariance,
she will be detected.

We consider server invariance as a transient property
whose scope is one browsing session. Server invariance
is reset whenever the browser restarts, i.e., the attacker is
allowed again to choose whether to intercept or not the
first connection to the server.

3.2.4 Towards Implementing Server Invariance

In order to implement server invariance, it is impor-
tant to understand the implications of the fact that the
attacker is allowed to impersonate the server. Namely,
the attacker can intercept the first connection and influ-
ence the entire HTTP response, which clearly cannot be
blindly trusted. Therefore, techniques that assume the
attacker is able to influence only a part of the HTTP re-
sponse, such as Content Security Policy (CSP) [50] for
mitigating Cross-Site-Scripting (XSS) [44], as well as
techniques that assume the first connection is trusted (i.e.,
not intercepted by the attacker), such as pinning, cannot
be directly applied for implementing server invariance.

Instead, a server invariance protocol should consist
of two phases, namely invariance initialization and in-
variance verification – initialization and verification for
brevity. In the initialization phase, which is executed
in the first connection to the server during a browsing
session (and could be intercepted by the attacker), the
browser establishes a point of reference. Then, in sub-
sequent connections to the same server, the verification
phase is executed, where the browser verifies that the
point of reference remains unchanged, i.e., the browser
keeps connecting to the same entity.
Server Public Keys. Assuming that we only consider
MITM+certificate attackers, we can leverage the servers’
public keys as the point of reference. Even if the attacker
intercepts the first connection, she will not be able to let
any subsequent connections reach the legitimate server,
because the server’s public key will be different from the
attacker’s. Nevertheless, servers of the same domain may
use different public keys and also, cross-origin interact-
ing domains will have different keys. To solve this issue,
we need to “tie” all the involved public keys together, to
reflect the fact that they belong to the same entity and
thus server invariance should hold across all these do-
mains and keys. We sketch the following technique for

implementing server invariance.
During initialization (first connection), the server

sends a list of all the involved domains and all their pub-
lic keys to the browser, and the latter uses the witnessed
key as well as the list as the point of reference. Then, in
subsequent connections, the browser verifies (i) that the
public key which the server presents is contained in the
list which was received during initialization, and (ii) that
the server agrees on the legitimacy of the public key that
was originally witnessed by the browser during initializa-
tion. Notice how this differs from pinning, which oper-
ates under the assumption that the initial connection is
trusted, and thus does not seek to verify the legitimacy of
the initial connection, and consequently of the received
pins, upon subsequent connections.

The above technique is indeed useful when consider-
ing MITM+certificate attacks and can be used to imple-
ment the server invariance protocol in SISCA. Neverthe-
less, in the following sections we present an alternative
approach that does not leverage server public keys, and
aims to mitigate MITM+key attacks, as well. We note
that the security analysis as well as most of the design
patterns that are discussed in the approach that follows
(e.g., how to prevent downgrade attacks and allow for
partial support and exceptions – Section 3.2.6, how to
secure resource caching – Section 3.2.7, etc) would simi-
larly apply to the previously sketched technique, too.
Our High-Level Approach. In SISCA we choose to im-
plement server invariance as a simple challenge/response
protocol. In the initialization phase (first connection) the
browser sets up a fresh challenge/response pair (which
acts as the point of reference) with the server. Then,
in the verification phase (subsequent connections) the
browser challenges the server to verify server invariance,
i.e., that it is the same entity with which the browser exe-
cuted the initialization.

SISCA has to be executed before any HTTP traffic in-
fluenced by the attacker is processed by the browser or
the server. We choose to implement the protocol at the
application layer, over established TLS sessions via an
HTTP header, named X-Server-Inv, and transmitted
together with the first HTTP request/response pair over a
particular TLS connection. For the protocol to be secure,
on the client side this header is controlled solely by the
browser. It cannot be created or accessed programmati-
cally via scripts (similar to cookie-related headers [3]).

Alternatively, we could implement the server invari-
ance protocol in SISCA as a TLS extension, i.e., at the
transport layer. We deem the application layer more ap-
propriate, since server invariance encompasses semantics
that are naturally offered by the application layer, such as
cross-origin interaction and content inclusion.

Figure 7 depicts a simple example of how a protocol
based on our approach can look like. In this example
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Figure 7: An example challenge/response-based server invari-
ance protocol requiring per-client server state.

protocol, during the initialization phase the browser and
server generate random numbers rb and rs, which they
both store (the server also stores the browser’s Chan-
nel ID cidb). The browser subsequently uses rb as a
challenge during the verification phase, expecting the re-
sponse rs by the server. The latter looks up rs by using rb
and cidb. For the shake of brevity, we do not analyze this
example, but we make the following important remarks.

First, this example requires the server to store per-
client state. This may be undesirable and it also makes it
harder for multiple servers belonging to the same entity
to share the common state which is needed in order to
be able to correctly execute the protocol. For this reason,
SISCA uses symmetric cryptography (MAC), in order to
securely offload the state to the clients.

Second, during the verification phase, the server
should process the incoming HTTP request, only if the
lookup succeeds. If it fails, it means that the attacker
intercepted the first connection (initialization phase) and
that the incoming request may be malicious. We explain
this concept further in the analysis of the SISCA protocol.
We note that due to this fact, SISCA uses a second MAC
tag in order to enable the server perform this check.

3.2.5 Basic Protocol

We now describe the server invariance protocol of
SISCA in detail. We follow a structural approach, mean-
ing that we start with a basic version of our protocol, de-
scribed in this section. Then, in subsequent sections, we
incrementally add features.

Figure 8 illustrates the protocol, assuming no at-
tack. Prior to the protocol execution, the server,
www.example.com, generates two keys ks1 and ks2,
called SISCA keys. The same SISCA keys are used for
all protocol executions (i.e., not for a specific client) and
are never disclosed to other parties. Moreover, recall that
the server and client deploy Channel ID-based authentica-
tion. Each TLS connection will therefore have a Channel
ID cidb, that is created by the user’s browser. As already
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Figure 8: Basic SISCA protocol.

mentioned, the protocol consists of two phases.
Initialization. The initilization phase occurs
once the browser establishes a TLS connection to
www.example.com, for the first time in a browsing
session (upper connection in Figure 8). The browser
picks a random number rb. It then sends 〈‘Init’,rb〉 to
the server (‘Init’ is a string constant), within the first
HTTP request3 over that connection. Upon receiving
this message, the server chooses a random number rs and
computes the following message authentication tags:

t1 = MAC(ks1, ‘1’|rb|rs|cidb) (1)
t2 = MAC(ks2, ‘2’|rb|rs|cidb) (2)

where ‘1’ and ‘2’ are strings constants. Notice that the
server binds the computed tags to the browser’s Channel
ID cidb. rb, rs and the MAC tags will be used in subse-
quent TLS connections to verify server invariance.

Finally, the server sends 〈rs, t1, t2〉 to the browser
within its first HTTP response. The browser stores
〈rb,rs, t1, t2〉, while the server does not store any client-
specific information. At this point, the initialization
phase is complete. Subsequent HTTP requests and re-
sponses over that particular TLS connection do not in-
clude an X-Server-Inv header.
Verification. The verification phase takes place upon ev-
ery subsequent TLS connection to www.example.com,
which occurs within the same browsing session (lower
connection in Figure 8). Like in the first phase,
the protocol messages are exchanged within the first
HTTP request/response pair. The browser sends
〈‘Veri f y’,rb,rs, t1〉 to the server, as part of the first re-
quest. After receiving the request, and before processing
it, the server first checks if

t1
?
= MAC(ks1, ‘1’|rb|rs|cidb). (3)

Here, cidb corresponds to the Channel ID of the TLS
session within which the protocol is currently being exe-

3Note that this is a request that browser would anyway submit, i.e.,
required for loading the web page. It is not an extra request.
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Figure 9: Resilience of SISCA to MITM-SITB (conventional MITM is prevented by Channel-ID based authentication).

cuted, which, if under attack, might differ from the Chan-
nel ID that was used in the initialization phase. If the
check passes, the server computes

t ′2 = MAC(ks2, ‘2’|rb|rs|cidb), (4)

processes the received request, and passes 〈t ′2〉 within
the HTTP response to the browser. Finally, the browser
checks if t ′2

?
= t2 and if it succeeds, it means that server

invariance holds for this TLS connection.
Analysis When Under Attack. Figure 9 illustrates
how the protocol prevents MITM attacks. Recall that,
due to the usage of Channel ID-based authentication,
the attacker cannot perform the conventional attack (Fig-
ures 1, 2) – the attacker’s TLS sessions will have a differ-
ent Channel ID than the client’s and will thus be rejected.
Instead, she has to execute a MITM-SITB attack.

In Figure 9 we illustrate two possible attack scenarios
(based on the discussion of Section 3.2.3) and we show
why the attacker fails in both. In Figure 9a the attacker
intercepts the verification phase of SISCA. Since the at-
tacker didn’t participate in the initialization phase of the
protocol, she does not know the correct MAC response
t2 to the client’s challenge. Moreover, since she does not
have access to ks2, she cannot calculate the correct t2 ei-
ther (Eq. (4)). As a result, the user’s browser rejects the
attacker’s response and terminates the session, notifying
the user (no user decision is required). Even if the at-
tacker pushes a malicious script in her response, it will
not get a chance of being executed.

In the second scenario, depicted in Figure 9b,
the attacker intercepts the first TLS connection to
www.example.com. She thus executes the initialization
phase with the browser and injects her script, which is ex-
ecuted within the web origin of www.example.com. To
successfully complete her attack, the attacker needs to let
a subsequent TLS connection reach the legitimate server,
and access the user’s account via that connection.

After the browser establishes a connection with the
legitimate server, the two of them execute the verifica-
tion phase, as part of the first HTTP request/response
pair. The server, before processing the HTTP request
(which might as well be malicious), checks whether Con-
dition (3) is true. Since the attacker does not have ac-
cess to key ks1, she could not have computed the cor-
rect t1 (Eq. (1)). Thus, during the initialization phase,
she sends a t1 value to the browser that is not the cor-
rect one. Consequently, Condition (3) will not be sat-
isfied. In this case the server does not process the
request, and instead notifies the browser by sending
an empty HTTP response containing 〈‘Alert’〉 in the
X-Server-Inv header. This indicates violation of the
server invariance and the browser aborts the session.

We remark that in the second scenario, it is the legit-
imate server that checks server invariance, detects the
ongoing MITM attack and notifies the browser. This is
important in order to prevent even a single malicious re-
quest from being accepted and processed by the server.

We conclude our analysis, with a few remarks that are
relevant for both of the scenarios described above. First,
note that the attacker cannot relay any of the necessary
MAC computations to the legitimate server. In other
words, she cannot manipulate the server to compute for
her the values needed for cheating in the protocol. This is
because the server binds all its computations to the chan-
nel ID of the client with whom it communicates (the at-
tacker’s channel ID will be different from the user’s).

Second, note that the protocol is secure so long as the
attacker cannot “open” already established TLS connec-
tions between the browser and the legitimate server (i.e.,
connections that she chose not to intercept). If she could
do that, she would be able to extract the correct values
of both t1 and t2 and successfully cheat. Recall that, the
MITM+key attacker holds the private key of the legiti-
mate server. Therefore, in order to prevent such an at-
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tacker from eavesdropping on already established TLS
connections, it is essential that these connections have
TLS forward secrecy enabled.

Third, when considering MITM+key attacks it is rea-
sonable to assume that the attacker can also extract the
SISCA keys, similar to the private key of the server. As
stated in the assumptions (Section 3.2.2) and explained
in Section 3.2.8, SISCA keys, unlike the private key, can
be frequently rotated. SISCA can thus resist MITM+key
attacks, assuming no persistent server compromise.

Finally, the attacker can choose not to reply at all,
when executing SISCA with the user. This essentially
leads to a Denial of Service (DoS) attack. However, such
attacks can already be achieved even by attackers less
powerful that those considered here. That is, attackers
that cannot perform TLS MITM attacks, but can block
network traffic between the browser and the server.
Different Origins. The SISCA protocol execution is
guided by the same-origin policy [5]. In particular,
SISCA is executed independently, i.e., different proto-
col instances, when loading web pages and documents
that belong to different origins. For example, assume
that the browser navigates to www.example.com for the
first time in the current browsing session. Then, a new
instance of SISCA will be created for this origin and
its initialization phase will be executed on the first TLS
connection. If the browser further navigates to pages be-
longing to www.example.com, and this triggers the cre-
ation of new TLS connections by the browser, then for
those connections the browser will execute the verifica-
tion phase of the previously created SISCA instance cor-
responding to www.example.com (same origin). When
the browser navigates to another website (different ori-
gin), say www.another.com, then a new instance of
SISCA will be created and used for the loading of docu-
ments from that origin (assuming that this is the first visit
to www.another.com in that browsing session). Also
any HTTP redirections during navigation that lead to dif-
ferent origins will cause the corresponding SISCA in-
stances for those origins to be created and used.

3.2.6 Cross-Origin Communication

In the previous section we assumed that accessing the
web pages of www.example.com involves communica-
tion only with that domain, i.e., web origin. However,
this is not a realistic scenario in today’s web applica-
tions. Many websites perform cross-origin requests, e.g.,
to load resources. SISCA can accommodate for such
scenarios so long as all the involved domains belong to,
and are administered by the same entity, such that the re-
quired SISCA keys, ks1 and ks2, can be shared across all
relevant servers.

Therefore, for cross-origin communication the
browser uses the SISCA instance corresponding to
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Figure 10: SISCA adapted for cross-origin communi-
cation (the origins share the same SISCA keys), when
the browser uses a different Channel ID for each origin.
Here, www.example.com performs a cross-origin request to
examplestatic.com.

the initiating origin. For example, assume that a page
loaded from www.example.com performs a cross-origin
request to static.example.com. The browser will
create a TLS connection to static.example.com and
will execute the verification phase of the SISCA instance
that corresponds to www.example.com. Any potential
HTTP redirections will also use the SISCA instance of
the initiating origin, www.example.com.
Different Channel IDs. The basic protocol we de-
scribed in Section 3.2.5 also works in the cross-origin
communication scenario, provided that the Channel ID
used by the browser is the same. The Channel ID speci-
fication draft already recommends using the same Chan-
nel ID for a domain and its subdomains [4, 15] (to ac-
count for cookies that have the Domain attribute set).
For example, the browser should use the same Channel
ID for www.example.com and static.example.com.
Nevertheless, for privacy reasons, the specification rec-
ommends using different Channel IDs for unrelated do-
mains. In such cases, SISCA has to account for using
different Channel IDs across domains, when cross-origin
communication takes place.

Figure 10 depicts how the protocol works in such a
scenario. The browser navigates to www.example.com,
and starts a new SISCA instance for that origin. The
browser uses Channel ID cidb (with public key pkb, and
private key skb). At some later point in time, the page
loaded from www.example.com performs a cross-origin
request to examplestatic.com, which is controlled by
the same entity. Nevertheless, since it corresponds to
a different domain (i.e., not a subdomain), the browser
uses a different Channel ID, say cid′

b (with pk′b, sk′b be-
ing the corresponding public/private key pair). In this
case, although the initialization phase of SISCA was ex-
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ecuted using cidb, the verification phase will have to be
executed over a TLS connection with Channel ID cid′

b.
As Figure 10 shows, the browser needs to tell the

server (examplestatic.com) to use cidb instead of cid′
b,

but do so in a secure way. To achieve this, the browser
endorses cid′

b, by signing it with skb, and thus proving
to the server that it owns the private keys of both Chan-
nel IDs cidb and cid′

b. The browser extends the ‘Veri f y’
message by appending cidb and a signature over cid′

b (i.e.,
the Channel ID of that TLS connection) and the rest of
the message parameters using skb. The server, before
processing the request, verifies the signature on cid′

b us-
ing the supplied cidb (i.e., pkb). If it passes, then the
server uses cidb for the subsequent steps of the verifica-
tion phase, which remain unchanged.
Overlapping Cross-Origin Access. Browsers typically
send multiple HTTP requests over the same network con-
nection (persistent connections [23]). Due to the ex-
istence of cross-origin communication, a TLS connec-
tion to a particular domain, say static.example.com,
can be used by the browser to transmit cross-origin re-
quests to static.example.com made by different ini-
tiating origins. For example, the browser uses the same
TLS connection to static.example.com, to transmit,
first, a request originating from a document belong-
ing to www.example.com and then, a request originat-
ing from a document belonging to shop.example.com

(we still assume that all three domains belong to the
same entity). In this case, the TLS connection to
static.example.com has to be verified using SISCA
for both initiating domains, independently.

In the above scenario, the browser executes
the verification phase with the SISCA instance of
www.example.com, upon establishing the TLS con-
nection to static.example.com and sending the first
HTTP request, originating from www.example.com.
Subsequently, when the browser wants to reuse the
same connection to send a cross-origin request from
shop.example.com to static.example.com, it once
again executes the verification phase, only this time with
the SISCA instance of shop.example.com. This takes
place upon transmitting the first HTTP request, which
originates from shop.example.com.
Origin Change. A web page is allowed to change
its own origin (effective origin) to a suffix of its
domain, by programmatically setting the value of
document.domain [40]. This allows two pages be-
longing to different subdomains, but presumably to
the same entity, to set their origin to a common
value and enable interaction between them4. For ex-
ample, a page from www.example.com and a page
from shop.example.com can both set their origin to

4Both pages have to explicitly set document.domain.

example.com. In such a case, the attacker can attack
the user account at shop.example.com, by intercepting
the first connection to www.example.com (or any other
example.com subdomain), or vice versa.

To prevent such an attack, the browser has to verify
that server invariance holds across each pair of origins
that change their effective origin to a common value, be-
fore allowing any interaction between them. Each origin
has its own SISCA instance established, and we must en-
sure that both SISCA instances were initialized with the
same remote entity. This can be achieved by running the
verification phase of both instances over the same TLS
connection (established to either origin). The browser
can reuse an already established and verified connection
with one origin, and just verify the connection with the
SISCA instance of the other origin. If no such connec-
tion exists at that time, then the browser can create a new
one to either origin and execute the verification phase of
both SISCA instances. If there is no actual HTTP request
to be sent at that time, the browser can make use of an
HTTP OPTIONS request.
Partial Support and Downgrade Attacks. SISCA must
be incrementally deployable, which means that it must
maintain compatibility with legacy web servers, without
compromising the security of the SISCA-enabled servers.
Moreover, websites must be able to opt for partial sup-
port. As an example, a domain implements SISCA but
still needs to perform cross-origin requests to another do-
main, called incompatible, that either does not support
SISCA, or supports it but belongs to a 3rd party, i.e., it
has different SISCA keys (we discuss on the security of
such design choices at the end of this section).

The above can be achieved by allowing exceptions. If
a particular domain does not support SISCA (including
legacy servers that are not aware of SISCA at all), then
it can simply ignore the X-Server-Inv header, sent dur-
ing the initialization phase, and reply without including
any SISCA-related information. This will be received by
the browser as an exception claim. Moreover, if a domain
supports SISCA but performs cross-origin communica-
tion with one or more incompatible domains, then it can
append an exception list in its response, during the initial-
ization phase, designating the incompatible domains.

However, we note that if the attacker intercepts the ini-
tialization phase of the protocol, then she could perform
a protocol downgrade attack, by providing false excep-
tion claims or exception lists in her response.

To prevent downgrade attacks, the browser should ver-
ify any exception that was received during the initializa-
tion phase, upon every subsequent connection. If the
attacker intercepted the initialization phase and replied
with fake exception claims, then if any of the subsequent
connections reaches the legitimate server, the browser,
with the help of the legitimate server, would detect the
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Figure 11: Preventing downgrade attacks (same-origin case).

attack. This scenario is illustrated in Figure 11.
Regarding cross-origin communication, in order to

help SISCA-enabled legitimate servers detect fake excep-
tion lists previously received by the browser, SISCA pro-
tocol messages should include (in the X-Server-Inv

header) the origin associated with the SISCA instance.
Suppose for example, that the browser executes the
initialization phase with www.example.com which sup-
ports SISCA (executes the protocol normally), but also
includes an exception list stating that it performs cross-
origin requests to shop.example.com which does not
support SISCA. Whenever the browser connects to
shop.example.com to perform a cross-origin request
from www.example.com, the browser includes the ori-
gin of the SISCA instance (www.example.com) and asks
shop.example.com whether it indeed does not sup-
port SISCA with respect to that origin. Assuming that
the connection was not intercepted, shop.example.com
can leverage the supplied origin information to decide
whether the exception reported by the browser is valid.
If not, then it should abort processing the request and
notify the browser of the detected attack. Note that the
above assumes that each SISCA-enabled server is aware
of all the domains that is compatible to execute SISCA
with (i.e., domains with which it shares the same SISCA
keys), which is not difficult to implement.
3rd Party Content Inclusion. As mentioned above, a
domain, say www.example.com, implementing SISCA
can still perform cross-origin requests to incompatible
3rd party domains as long as it designates those domains
as exceptions for the protocol. This of course means that
TLS connections to those domains will not be protected
by SISCA, and could be MITM-ed by the attacker to per-
form a user impersonation attack on www.example.com.
This can be indeed the case if www.example.com in-
cludes active content [39] (in particular, JavaScript and
CSS) from those domains. Embedding JavaScript from
3rd party sites is generally not recommended, and usu-

ally there are ways of avoiding it [41]. Furthermore, de-
pending on the use case, it may be possible to use iframes
to isolate active 3rd party content, instead of directly em-
bedding it within the target origin, in order to mitigate
the risk (the sandbox attribute can help even further).

The embedding of passive content only, such as im-
ages, does not give the attacker the ability to execute
her code within the target origin. Hence, with respect to
preventing user impersonation, such embeddings are safe
and do not undermine the security offered by SISCA.

3.2.7 Resource Caching

Caching of static resources, such as scripts and images,
helps reduce web page loading times as well as server
resource consumption. However, the way caching is cur-
rently implemented [23, 25] can give a MITM attacker
the opportunity to subvert SISCA.

In brief, during one browsing session, the attacker in-
tercepts all TLS connections and ensures that a legiti-
mate, yet maliciously modified script that is required by
the target web server is cached by the browser. Then, dur-
ing a second browsing session, the attacker lets all con-
nections pass through. When the legitimate web page
asks for the inclusion of the aforementioned script, the
browser will load it from cache, essentially enabling the
execution of the attacker’s malicious code. The attacker
will thus be able to access the target web server.

To prevent the above attack, we need to change the
way caching is performed for active content that would
enable this attack (JavaScript and CSS files). We need to
make sure that the browser always communicates with
the server in order to verify that the cached version is
the most recent and also the correct one (i.e., not mali-
ciously modified). Thus, caching of such files should be
performed only using Entity Tags (ETags) [23], but in a
more rigorous way than specified in the current HTTP
specification. In particular, if a web server wishes to in-
struct a browser to cache a JavaScript or CSS file, the
server should use an ETag header which always contains
a cryptographic hash of the file. The browser, before us-
ing, and caching the file should verify that the supplied
hash is correct. Subsequently, before the browser uses
the cached version of the file, it first verifies that the lo-
cal version matches the version of the server (using the
If-None-Match header, as currently done).

3.2.8 Key Rotation

In SISCA, the server has a pair of secret keys, ks1 and
ks2. To resist key compromise (i.e., MITM+key attack-
ers), these keys, unlike the server’s private key, can be
easily rotated. This is because the SISCA keys need not
undergo any certification process, and can thus be rotated
frequently, e.g., weekly, daily, or even hourly. The more
frequent the rotation the smaller the attacker’s window of
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opportunity to successfully mount MITM attacks.
The key transition, of course, has to be performed such

that it does not break the execution of active browser
SISCA instances that rely on the previous keys. At a
high level, one way of achieving this, is to have the server
keep previous keys for a certain period of time (i.e., allow
partial overlap of keys). This can enable browsers with
active SISCA instances that rely on the previous keys
to securely transition to new protocol parameters, i.e., t1
and t2, computed using the new server SISCA keys.

For domains served by a single machine, this is only a
matter of implementing the corresponding functionality
in the web server software (e.g., Apache). For multiple
domains controlled by the same entity and served by mul-
tiple machines, located in the same data center or even in
different data centers across the world, arguably more ef-
fort is required in order to distribute the ever-changing
keys and keep the machines in sync. Nevertheless, a sim-
ilar mechanism is needed for enabling TLS forward se-
crecy while supporting TLS session tickets [34]. Accord-
ing to Twitter’s official blog [30], Twitter engineers have
implemented such a key distribution mechanism.

3.2.9 SISCA Benefits and Drawbacks

SISCA offers the following advantages regarding
MITM+certificate attack prevention. Compared to multi-
path probing solutions, SISCA does not rely on any third
party infrastructure, trusted or not. Since SISCA is built
on top of Channel ID-based authentication, it has to as-
sume that no MITM attack takes place during user en-
rollment. Nevertheless, after this step, no “blind” trust
is required when the user uses a new or clean browser,
contrary to pinning solutions (except preloaded pins), as
discussed in Section 3.2.4. Moreover, in SISCA no user
decision is necessary whenever server invariance viola-
tion is detected. This can occur either due to an attack,
or due to an internal server fault, thus the browser can
abort (possibly after retrying) the session. SISCA is
scalable since it can be deployed incrementally by web
providers (assuming browser support). Finally, SISCA
resists MITM+key attacks, assuming that the attacker
does not persistently compromise the server.

The main disadvantage of SISCA is that it only pro-
tects against MITM attackers whose goal is to imperson-
ate the user to the server. This is arguably the most com-
mon and impactful attacker goal. SISCA does not pro-
tect against attackers whose objective is to provide fake
content to the user. In such cases the attacker can sim-
ply intercept all connections and interact with the user
by serving her own, fake content. In contrast, the tech-
niques that focus on ensuring the correctness of server
authentication (Section 3.1) can protect against such at-
tacks (MITM+certificate attackers). As a result, a recom-
mended strategy would be to use SISCA in conjunction

with any of these techniques. Finally, SISCA requires co-
ordination between an entity’s different domains, in the
sense they must have access to the same SISCA keys.
This is needed for securing cross-origin communication
and, depending on the scale of the entity, can be challeng-
ing from an engineering perspective to set up.

3.2.10 Interaction With Other Web Technologies

SPDY. SPDY [6] multiplexes concurrent HTTP requests
over the same TLS connection to improve network per-
formance. In order for SISCA to be compatible with
the general SPDY functionality, the browser must ensure
that before the SISCA protocol is completed successfully
(i.e., the first request/response pair is exchanged), no fur-
ther requests are sent through the SPDY connection.

Furthermore, SPDY IP Pooling allows, under certain
circumstances, HTTP sessions from the same browser to
different domains (web origins) to be multiplexed over
the same connection. Version 3 of SPDY is compatible
with Channel IDs (recall that different Channel IDs may
need to be used for different origins, but now there is
only one TLS connection). SISCA is compatible with IP
Pooling, as long as the browser manages the multiplexed
HTTP sessions independently, with respect to the execu-
tion of the SISCA protocol.
WebSocket. SISCA is compatible with the WebSocket
protocol [21], when the latter is executed over TLS. This,
of course assumes that (i) Channel IDs are used for the
WebSocket TLS connections, (ii) the SISCA protocol is
executed during the WebSocket handshake (i.e., first re-
quest/response pair), and (iii) JavaScript is not be able to
manipulate the X-Server-Inv header.
Web Storage. Web Storage [27] is an HTML5 feature
that allows a web application to store data locally in the
browser. SISCA can protect code.sessionStorage

(temporary storage), but does not prevent a MITM
attacker from accessing information stored in
window.localStorage (permanent storage), so
no sensitive information should be stored there.
Offline Web Applications. HTML5 offers Offline Web
Applications [26] which allow a website to create an of-
fline version, stored locally in the browser. As with reg-
ular file caching (see Section 3.2.7), this feature can be
leveraged by the attacker to bypass SISCA. Making this
feature secure requires the introduction of design con-
cepts similar to what we proposed for regular caching.
Other Client-Side Technologies. The attacker might at-
tempt to leverage various active client-side technologies
besides JavaScript, such as Flash, Java and Silverlight.
Such technologies allow the attacker to create direct TLS
connections to the legitimate server. Some of the APIs
offered by those technologies also allow the attacker to
forge and arbitrarily manipulate HTTP headers, includ-
ing cookie-related headers or the X-Server-Inv header.
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However, provided that Channel IDs and SISCA are not
integrated with these technologies5, the attacker will not
be able to impersonate the user and compromise his ac-
count on the legitimate server.

3.3 Prototype SISCA Implementation
We created a proof of concept implementation of the

basic SISCA protocol, with additional support for cross-
origin communication, provided that the same Channel
ID is used. On the server side we use Apache 2.4.7
with OpenSSL 1.0.1f, patched for Channel ID support.
SISCA is implemented as an Apache module and con-
sists of 313 lines of C code. On the client side we imple-
ment SISCA by modifying the source code of Chromium
35.0.1849.0 (252194) and the WebKit (Blink) engine.
We make a total of 319 line modifications (insertion-
s/deletions) in existing files and we add 6 new files con-
sisting of 418 lines of C++ code.

We use Base64 encoding for binary data transmis-
sion. When using 128-bit random values (rb and rs)
and HMAC-SHA256 (i.e., 256-bit tags, t1 and t2), the
client’s lengthiest message is 114 bytes long, plus the ori-
gin of the SISCA instance that has to be sent as well. The
server’s lengthiest message is 132 bytes long.

We finally verified that our implementation success-
fully blocks our proof of concept MITM-SITB attack.
Performance Evaluation. To assess the performance
overhead imposed by SISCA (the server invariance part,
not the overhead due to Channel IDs), we measured
the latency of HTTP request/response roundtrips, with
SISCA enabled and disabled. For the measurements we
used a 4KB HTML page, as well as an 84KB jQuery
compressed file, retrieved over a domain that we set up
as being “cookieless”. Chromium ran on a Macbook Pro
laptop (2.3GHz CPU, 8GB RAM) and Apache ran on
a typical server machine (six core Intel Xeon 2.53GHz,
12GB RAM), connected through the campus network.

We found that the overhead of the basic SISCA proto-
col is negligible, as no increase in latency was measured
(averaged over 300 repetitions). Moreover, the HTTP re-
quest to the cookieless domain was able to fit in a single
outgoing packet (a typically desired objective).

Regarding cross-origin communication over different
Channel IDs (see Section 3.2.6), approximately 180
bytes are further added to the request (one ECDSA pub-
lic key and signature in Base64 encoding), which can still
fit in a single packet (for cookieless domain requests).
Furthermore, the server has to perform one ECDSA sig-
nature verification. This overhead could be minimized,
if the browser used the same Channel ID, not only for
subdomains of the same domain, but also for domains be-

5This, for example, means that a TLS connection created by such
an API will have to create and use its own Channel IDs, and that the
browser will not execute SISCA over those connections.

longing to the same entity. Although we do not elaborate
on this idea here, this could be heuristically determined
by the browser, based on which domains are involved in
the execution of the same SISCA instance.

Finally, recall that a SISCA instance is executed only
once per TLS connection and not on every HTTP re-
quest/response.

4 Related Work
A significant amount of research in the past years sur-

rounds the security of the TLS protocol, in the context
of web applications (i.e., HTTPS), as well as web server
and client authentication. A comprehensive overview is
provided in [10], which, among others, surveys existing
primitives that try to enhance the CA trust model in order
to more effectively address MITM attacks.

The use of server impersonation for the compromise
of the user’s account by serving the attacker’s script to
the victim’s browser was first introduced in [32]. In this
attack, called dynamic pharming, the attacker exploits
DNS rebinding vulnerabilities in browsers, by dynami-
cally manipulating DNS records for the target server, in
order to force the user’s browser to connect either to the
attacker (to inject her script) or to the legitimate server.

MITM-SITB is therefore very similar to dynamic
pharming in that it leverages server impersonation to
serve the script to the victim’s browser. Dynamic pharm-
ing focuses on the attacker’s ability to control the client’s
network traffic via DNS attacks, while in this paper we
do not make such assumptions. Instead, MITM-SITB
can leverage any form of MITM where the attacker con-
trols the communication to the client (e.g., an attacker sit-
ting on a backbone) and relies only on the behavior of the
browser to re-establish a connection (with the legitimate
server) once the attacker closes the connection within
which she injected her script to the browser. Dynamic
pharming can equally be used to successfully attack
Channel ID-based solutions. Recently, the act of leverag-
ing script injection via server impersonation against TLS
client authentication was also discussed in [47].

We note that MITM-SITB (as well as dynamic pharm-
ing) differs from Man-In-the-Browser (MITB) [45]. The
latter implies that the attacker is able to take full control
of the browser by exploiting some vulnerability, or in-
stalling a malicious browser plugin. In MITM-SITB, the
attacker runs normal JavaScript code within the target
web origin and only within the boundaries established
by the JavaScript execution environment. Therefore, no
browser exploitation is required. Similarly, MITM-SITB
is different from XSS [44]. In XSS the attacker is able
to influence only parts of the served document (by ex-
ploiting a script injection vulnerability), while in MITM-
SITB she is able to impersonate the server and thus in-
fluence the entire HTTP response sent to the browser.
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SISCA does not prevent MITB or XSS and addressing
these attacks is orthogonal to our work.

To prevent dynamic pharming, the locked same-origin
policy (SOP) was proposed [32]. Weak locked SOP
considers attackers with invalid certificates, while strong
locked SOP also defends against attackers with valid,
mis-issued certificates. Strong locked SOP refines the
concept of origin by including the public key of the
server and can also accommodate for multiple server
keys. Strong locked SOP isolates web objects coming
from connections with not endorsed server public keys in
a separate security context (i.e., different origin). Strong
locked SOP per se does not prevent a MITM attacker
from mounting a conventional MITM attack in order to
impersonate the user. A strong client authentication solu-
tion should be used in conjunction, as with SISCA.

Locked SOP does not resist MITM+key attacks, as
SISCA does. Moreover, locked SOP is not able to se-
cure cross-origin active content inclusion. The risks in-
volved when a web page imports active content, such as
JavaScript, that can be intercepted and modified by an
attacker are discussed in [31]. SISCA can secure cross-
origin inclusions as long as the involved domains belong
to the same entity and thus share the same SISCA keys.

The current Channel ID specification [4] was recently
found to be vulnerable to triple handshake attacks [7],
which affect TLS client authentication in general. The
mitigation proposed in [7] has already been implemented
in the version of Chromium that we used in this work.
SISCA assumes that Channel IDs work as expected, so
eliminating triple handshake attacks is essential for its
security. However, we note that addressing triple hand-
shake attacks does not prevent MITM-SITB attacks.

Recent work has proposed leveraging Channel ID-
based authentication to strengthen federated login [16]
and Cloud authorization credentials [8], against MITM
attacks and credential theft in general. However, such
proposals fail to address MITM attacks, as they are sus-
ceptible to MITM-SITB, unless augmented with server
invariance, as we propose in this paper with SISCA.

Server invariance is based on sender invariance which
was formally defined in [17]. SISCA is inspired by this
notion, assuming that the server’s authenticity cannot be
established via server certificate verification and instead
trying to enforce the weaker property of invariance.

5 Conclusion
In this paper we discussed the requirements to effec-

tively preventing TLS MITM attacks in the context of
web applications, when the attacker’s goal is to imper-
sonate the user to the legitimate server and gain access to
the user’s account and data. Striving to defeat this type
of attack is essential, especially given the recent revela-
tions about government agencies (e.g., the NSA) mount-

ing such attacks in order to perform mass surveillance
against users of major internet services [18, 48].

We showed that strong client authentication alone,
such as the recently proposed Channel ID-based authenti-
cation, cannot prevent such attacks. Instead, strong client
authentication needs to be complemented with the con-
cept of server invariance, which is a weaker and easier
to enforce property than server authentication. Our so-
lution, SISCA, shows that server invariance can be im-
plemented with minimal additional cost on top of the
proposed Channel ID-based approaches, and can be de-
ployed incrementally, thus making it a scalable solution.
Given its security benefits, we believe that SISCA can
act as an additional, strong protection layer in conjunc-
tion with existing proposals that focus on amending to-
day’s server authentication issues, towards the effective
prevention of TLS MITM attacks.
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Abstract
Public infrastructure-as-a-service clouds, such as Ama-
zon EC2 and Microsoft Azure allow arbitrary clients
to run virtual machines (VMs) on shared physical in-
frastructure. This practice of multi-tenancy brings
economies of scale, but also introduces the threat of
malicious VMs abusing the scheduling of shared re-
sources. Recent works have shown how to mount cross-
VM side-channel attacks to steal cryptographic secrets.
The straightforward solution is hard isolation that dedi-
cates hardware to each VM. However, this comes at the
cost of reduced efficiency.

We investigate the principle of soft isolation: reduce
the risk of sharing through better scheduling. With ex-
perimental measurements, we show that a minimum run
time (MRT) guarantee for VM virtual CPUs that lim-
its the frequency of preemptions can effectively prevent
existing Prime+Probe cache-based side-channel attacks.
Through experimental measurements, we find that the
performance impact of MRT guarantees can be very low,
particularly in multi-core settings. Finally, we integrate a
simple per-core CPU state cleansing mechanism, a form
of hard isolation, into Xen. It provides further protection
against side-channel attacks at little cost when used in
conjunction with an MRT guarantee.

1 Introduction

Public infrastructure-as-a-service (IaaS) clouds enable
the increasingly realistic threat of malicious customers
mounting side-channel attacks [35, 46]. An attacker ob-
tains tenancy on the same physical server as a target, and
then uses careful timing of shared hardware components
to steal confidential data. Damaging attacks enable theft
of cryptographic secrets by way of shared per-core CPU
state such as L1 data and instruction caches [46], de-
spite customers running within distinct virtual machines
(VMs).

A general solution to prevent side-channel attacks is
hard isolation: completely prevent sharing of particu-
lar sensitive resources. Such isolation can be obtained
by avoiding multi-tenancy, new hardware that enforces
cache isolation [42, 44], cache coloring [34, 36], or soft-
ware systems such as StealthMem [22]. However, hard
isolation reduces efficiency and raises costs because of
stranded resources that are allocated to a virtual machine
yet left unused.

Another approach has been to prevent attacks by
adding noise to the cache. For example, in the Düppel
system the guest operating system protects against CPU
cache side-channels by making spurious memory re-
quests to obfuscate cache usage [47]. This incurs over-
heads, and also requires users to identify the particular
processes that should be protected.

A final approach has been to interfere with the ability
to obtain accurate measurements of shared hardware by
removing or obscuring time sources. This can be done
by removing hardware timing sources [28], reducing the
granularity of clocks exposed to guest VMs [41], allow-
ing only deterministic computations [6], or using repli-
cation of VMs to normalize timing [26]. These solutions
either have significant overheads, as in the last solution,
or severely limit functionality for workloads that need
accurate timing.

Taking a step back, we note that in addition to shar-
ing resources and having access to fine-grained clocks,
shared-core side-channel attacks also require the ability
to measure the state of the cache frequently. For example,
Zhang et al.’s cross-VM attack on ElGamal preempted
the victim every 16 µs on average [46]. With less fre-
quent interruptions, the attacker’s view of how hardware
state changes in response to a victim becomes obscured.
Perhaps surprisingly, then, is the lack of any investigation
of the relationship between CPU scheduling policies and
side-channel efficacy. In particular, scheduling may en-
able what we call soft isolation: limiting the frequency
of potentially dangerous cross-VM interactions. (We use
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the adjective soft to indicate allowance of occasional fail-
ures, analogous to soft real-time scheduling.)

Contributions. We evaluate the ability of system
software to mitigate cache-based side-channel attacks
through scheduling. In particular, we focus on the type of
mechanism that has schedulers ensure that CPU-bound
workloads cannot be preempted before a minimum time
quantum, even in the presence of higher priority or in-
teractive workloads. We say that such a scheduler offers
a minimum run time (MRT) guarantee. Xen version 4.2
features an MRT guarantee mechanism for the stated pur-
pose of improving the performance of batch workloads
in the presence of interactive workloads that thrash their
cache footprint [11]. A similar mechanism also exists in
the Linux CFS scheduler [29].

Cache-based side-channel attacks are an example of
such highly interactive workloads that thrash the cache.
One might therefore hypothesize that by reducing the
frequency of preemptions via an MRT guarantee, one
achieves a level of soft isolation suitable for mitigating,
or even preventing, a broad class of shared-core side-
channel attacks. We investigate this hypothesis, provid-
ing the first analysis of MRT guarantees as a defense
against cache-based side-channel attacks. With detailed
measurements of cache timing, we show that even an
MRT below 1 ms can defend against existing attacks.

But an MRT guarantee can have negative affects as
well: latency-sensitive workloads may be delayed for the
minimum time quantum. To evaluate the performance
impact of MRT guarantees, we provide extensive mea-
surements with a corpus of latency-sensitive and batch
workloads. We conclude that while worst-case latency
can be hindered by large MRTs in some cases, in prac-
tice Xen’s existing core load-balancing mechanisms mit-
igate the cost by separating CPU-hungry batch work-
loads from latency-sensitive interactive workloads. As
just one example, memcached, when running alongside
batch workloads, suffers only a 7% overhead on 95th-
percentile latency for a 5 ms MRT compared to no MRT.
Median latency is not affected at all.

The existing MRT mechanism only protects CPU-
hungry programs that do not yield the CPU or go idle.
While we are aware of no side-channel attacks that ex-
ploit such victim workloads, we nevertheless investigate
a simple and lightweight use of CPU state cleansing to
protect programs that quickly yield the CPU by obfus-
cating predictive state. By implementing this in the hy-
pervisor scheduler, we can exploit knowledge of when
a cross-VM preemption occurs and the MRT has not
been exceeded. This greatly mitigates the overheads of
cleansing, attesting to a further value to soft-isolation
style mechanisms. In our performance evaluation of this
mechanism, we see only a 10–50 µs worse-case overhead

on median latency due to cleansing while providing pro-
tection for all guest processes within a VM (and not just
select ones, as was the case in Düppel). In contrast, other
proposed defenses have similar (or worse) overhead but
require new hardware, new guest operating systems, or
restrict system functionality.

Outline. In the next section, we provide background
on cache-based side-channel attacks and existing defense
mechanisms. In Section 3 we describe the Xen hyper-
visor scheduling system, its MRT mechanism, and the
principle of soft isolation. In Section 4 we measure the
effectiveness of MRT as a defense. Section 5 shows the
performance of Xen’s MRT mechanism, and Section 6
describes combining MRT with cache cleansing.

2 Background and Motivation

Our work is motivated by the increasing importance
of threats posed by side-channel attacks in multi-tenant
clouds, in which VMs from multiple customers run on
the same physical hardware. We focus on cache-based
side-channels, which are dangerous because they can
leak secret information such as encryption keys and have
been demonstrated between virtual machines in a cloud
environment [46].

Side-channel attacks. We can delineate side-channel
attacks into three classes: time-, trace-, and access-
driven. Time-driven attacks arise when an attacker can
glean useful information via repeated observations of the
(total) duration of a victim operation, such as the time
to compute an encryption (e.g., [5, 7, 10, 16, 24]). Trace-
driven attacks work by having an attacker continuously
monitor a cryptographic operation, for example via elec-
tromagnetic emanations or power usage leaked to the at-
tacker (e.g., [14, 23, 33].

We focus on access-driven side-channel attacks, in
which the attacker is able to run a program on the same
physical server as the victim. These abuse stateful com-
ponents of the system shared between attacker and victim
program, and have proved damaging in a wide variety of
settings, including [3, 15, 31, 32, 35, 45]. In the cross-
process setting, the attacker and victim are two separate
processes running within the same operating system. In
the cross-VM setting, the attacker and victim are two
separate VMs running co-resident (or co-tenant) on the
same server. The cross-VM setting is of particular con-
cern for public IaaS clouds, where it has been shown that
an attacker can obtain co-residence of a malicious VM
on the same server as a target [35]

Zhang, Juels, Reiter, and Ristenpart (ZJRR) [46]
demonstrated the first cross-VM attack with sufficient
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granularity to extract ElGamal secret keys from the vic-
tim. They use a version of the classic Prime+Probe tech-
nique [31]: the attacker first primes the cache (instruc-
tion or data) by accessing a fixed set of addresses that
fill the entire cache. He then yields the CPU, causing
the hypervisor to run the victim, which begins to evict
the attacker’s data or instructions from various cache.
As quickly as possible, the attacker preempts the vic-
tim, and then probes the cache by again accessing a set
of addresses that cover the entire cache. By measuring
the speed of each cache access, the attacker can deter-
mine which cache lines were displaced by the victim, and
hence learn some information about which addresses the
victim accessed.

The ZJRR attack builds off a long line of cross-
process attacks (c.f., [3, 4, 15, 31, 32]) all of which tar-
get per-core microarchitectural state. When simultane-
ous multi-threading (SMT) is disabled (as is typical in
cloud settings), such per-core attacks require that the at-
tacker time-shares a CPU core with the victim. In or-
der to obtain frequent observations of shared state, at-
tacks abuse scheduler mechanisms that prioritize interac-
tive workloads in order to preempt the victim. For exam-
ple, ZJRR use inter-processor interrupts to preempt every
16 µs on average. In their cross-process attack, Bangerter
et al. abuse the Linux process scheduler [15].

Fewer attacks thus far have abused (what we call) off-
core state, such as last-level caches used by multiple
cores. Some off-core attacks are coarse-grained, allow-
ing attackers to learn only a few bits of information (e.g.,
whether the victim is using the cache or not [35]). An
example of a fine-grained off-core attack is the recent
Flush+Reload attack of Yarom and Falkner [45]. Their
attack extends the Bangerter et al. attack to instead target
last-level caches on some modern Intel processors and
has been shown to enable very efficient theft of cryp-
tographic keys in both cross-process and cross-VM set-
tings. However, like the Bangerter et al. attack, it relies
on the attacker and victim having shared memory pages.
This is a common situation for cross-process settings,
but also arises in cross-VM settings should the hypervi-
sor perform memory page deduplication. While several
hypervisors implement deduplication, thus far no IaaS
clouds are known to use the feature and so are not vul-
nerable.

Threat model and goals. Our goal is to mitigate or
completely prevent cross-VM attacks relevant to mod-
ern public IaaS cloud computing settings. We assume
the attacker and victim are separate VMs co-resident on
the same server running a Type I hypervisor. The at-
tacker controls the entire VM, including the guest oper-
ating system and applications, but the hypervisor is run
by the cloud provider and is trusted. SMT and mem-

ory deduplication are disabled. In this context, the best
known attacks rely on:

(1) Shared per-core state that is accessible to the at-
tacker and that has visibly different behavior based
on its state, such as caches and branch predictors.

(2) The ability to preempt the victim VM at short inter-
vals to allow only a few changes to that hardware
state.

(3) Access to a system clock with enough resolution to
distinguish micro-architectural events (e.g., cache
hits and misses).

These conditions are all true in contemporary multi-
tenant cloud settings, such as Amazon’s EC2. Defenses
can target any of these dependencies, and we discuss
some existing approaches next.

Prior defenses. Past work on defenses against such
side-channel attacks identified the above requirements
for successful side-channels and tried to obviate one or
more of the above necessary conditions for attacks. We
classify and summarize these techniques below.

An obvious solution is to prevent an attacker and vic-
tim from sharing hardware, which we call hard isolation.
Partitioning the cache in hardware or software prevents
its contents from being shared [22, 34, 36, 42]. This re-
quires special-purpose hardware or loss of various use-
ful features (e.g., large pages) and thus limits the adop-
tion in a public cloud environment. Assigning VMs to
run on different cores avoids sharing of per-core hard-
ware [21, 27, 38], and assigning them to different servers
avoids sharing of any system hardware [35]. A key chal-
lenge here is identifying an attacker and victim in order
to separate them; otherwise this approach reduces to us-
ing dedicated hardware for each customer, reducing uti-
lization and thus raising the price of computing.

Another form of hard isolation is to reset hardware
state when switching from one VM to another. For
example, flushing the caches on every context switch
prevents the cache state from being shared between
VMs [47]. However, this can decrease performance of
cache-sensitive workloads both because of the time taken
to do the flush and the loss in cache efficiency.

Beyond hard isolation are approaches that modify
hardware to add noise, either in the timing or by obfus-
cating the specific side-channel information. The for-
mer can be accomplished by removing or modifying
timers [26, 28, 41] to prevent attackers from accurately
distinguishing between microarchitectural events, such
as a cache hit and a miss. For example, StopWatch [26]
removes all timing side-channels and incurs a worse-case
overhead of 2.8x for network intensive workloads. Spe-
cialized hardware-support could also be used to obfus-
cate and randomize processor cache usage [25, 44]. All
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of these defenses either result in loss of high-precision
timer or require hardware changes.

Similarly, one can allocate exclusive memory re-
sources for a sensitive process [22] or add noise to ob-
fuscate its hardware usage [47]. Similarly, programs can
be changed to obfuscate access patterns [8,9]. These ap-
proaches are not general-purpose, as they rely on iden-
tifying and fixing all security-relevant programs. Worst-
case overheads for these mechanisms vary from 6–7%.

Several past efforts attempt to minimize performance
interference between workloads (e.g., Q-clouds [30] and
Bubble-Up [27], but do not consider adversarial work-
loads such as side-channel attacks.

3 MRT Guarantees and Soft Isolation

We investigate a different strategy for mitigating per-core
side-channels: adjusting hypervisor core scheduling to
limit the rate of preemptions. This targets the second
requirement of attacks such as ZJRR. Such a scheduler
would realize a security design principle that we call
soft isolation1: limiting the frequency of potentially dan-
gerous interactions between mutually untrustworthy pro-
grams. Unlike hard isolation mechanisms, we will allow
shared state but attempt to use scheduling to limit the
damage. Ideally, the flexibility of soft isolation will ease
the road to deployment, while still significantly mitigat-
ing or even preventing side-channel attacks. We expect
that soft isolation can be incorporated as a design goal
in a variety of resource management contexts. That said,
we focus in the rest of this work on CPU core scheduling.

Xen scheduling. Hypervisors schedule virtual ma-
chines much like an operating system schedules pro-
cesses or threads. Just as a process may contain mul-
tiple threads that can be scheduled on different proces-
sors, a virtual machine may consist of multiple virtual
CPUs (VCPUs) that can be scheduled on different phys-
ical CPUs (PCPUs). The primary difference between
hypervisor and OS scheduling is that the set of VCPUs
across all VMs is relatively static, as VM and VCPU cre-
ation/deletion is a rare event. In contrast, processes and
threads are frequently created and deleted.

Hypervisor schedulers provide low-latency response
times to interactive tasks by prioritizing VCPUs that
need to respond to an outstanding event. The events
are typically physical device or virtual interrupts from
packet arrivals or completed storage requests. Xen’s
credit scheduler normally lets a VCPU run for 30ms be-
fore preempting it so another VCPU can run. However,

1The term “soft” is inherited from soft real-time systems, where one
similarly relaxes requirements (in that case, time deadlines, in our case,
isolation).

choose next 
VCPU!

schedule event!

Is next same 
as prev 
VCPU?!

Is prev_runtime 
< ratelimit_us?!

No!

continue running 
prev VCPU!

Yes!

Yes!

switch to next 
VCPU!

No!

set event timer to 
(ratelimit_us - prev_runtime)!

Figure 1: Logic underlying the Xen MRT mechanism.

when a VCPU receives an event, it may receive boost
priority, which allows it to preempt non-boosted VCPUs
and run immediately.

VCPUs are characterized by Xen as either interactive
(or latency-sensitive) if they are mostly idle until an in-
terrupt comes in, at which point they execute for a short
period and return to idle. Typical interactive workloads
are network servers that execute in response to an incom-
ing packet. We refer to VCPUs that are running longer
computations as batch or CPU-hungry, as they typically
execute for longer than the scheduler’s time slice (30ms
for Xen) without idling.

Schedulers can be work conserving, meaning that they
will never let a PCPU idle if a VCPU is ready to run,
or non-work conserving, meaning that they enforce strict
limits on how much time a VCPU can run. While work-
conserving schedulers can provide higher utilization,
they also provide worse performance isolation: if one
VCPU goes from idle to CPU-hungry, another VCPU on
the same PCPU can see its share of the PCPU drop in
half. As a result, many cloud environments use non-work
conserving schedulers. For example, Amazon EC2’s
m1.small instances are configured to be non-work con-
serving, allocating roughly 40% of a PCPU (called cap
in Xen) to each VCPU of a VM.

Since version 4.2, Xen has included a mechanism
for rate limiting preemptions of a VCPU; we call this
mechanism a minimum run-time (MRT) guarantee. The
logic underlying this mechanism is shown as a flowchart
in Figure 1. Xen exposes a hypervisor parameter,
ratelimit us (the MRT value) that determines the
minimum time any VCPU is guaranteed to run on a
PCPU before being available to be context-switched out
of the PCPU by another VCPU. One could also rate limit
preemptions in other ways, but an MRT guarantee is sim-
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ple to implement. Note that the MRT is not applicable to
VMs that voluntarily give up the CPU, which happens
when the VM goes idle or waits for an event to occur.

As noted previously, the original intent of Xen’s MRT
was to improve performance for CPU-hungry workloads
run in the presence of latency-sensitive workloads: each
preemption pollutes the cache and other microarchitec-
tural state, slowing the CPU-intensive workload

Case study. We experimentally evaluate the Xen MRT
mechanism as a defense against side-channel leakage
by way of soft isolation. Intuitively, the MRT guaran-
tee rate-limits preemptions and provides an attacker less
granularity in his observations of the victim’s use of per-
CPU-core resources. Thus one expects that increased
rate-limits decreases vulnerability. To be deployable,
however, we must also evaluate the impact of MRT guar-
antees on benign workloads. In the next two sections we
investigate the following questions:

(1) How do per-core side-channel attacks perform un-
der various MRT values? (Section 4)

(2) How does performance vary with different MRT
values? (Section 5)

4 Side-channels under MRT Guarantees

We experimentally evaluate the MRT mechanism as a de-
fense against side-channel leakage for per-core state. We
focus on cache-based leakage.

Experimental setup. Running on the hardware setup
shown in Figure 2, we configure Xen to use two VMs, a
victim and attacker. Each has two VCPUs, and we pin
one attacker VCPU and one victim VCPU to each of two
PCPUs (or cores). We use a non-work-conserving sched-
uler whose configuration is shown in Figure 9. This is a
conservative version of the ZJRR attack setting, where
instead the VCPUs were allowed to float — pinning the
victims to the same core only makes it easier for the at-
tacker. The hardware and Xen configurations are similar
to the configuration used in EC2 m1.small instances [12].
(Although Amazon does not make their precise hardware
configurations public, we can still gain some insight into
the hardware on which an instance is running by looking
at sysfs and the CPUID instruction.)

Cache-set timing profile. We start by fixing a simple
victim to measure the effects of increasing MRT guaran-
tees. We have two functions that each access a (distinct)
quarter of the instruction cache (I-cache)2. The victim

2Our test machine has a 32 KB, 4-way set associative cache with
64-byte lines. There are 128 sets.

Machine Configuration Intel Xeon E5645, 2.40GHz
clock, 6 cores in one package

Memory Hierarchy Private 32 KB L1 (I- and D-
cache), 256 KB unified L2,
12 MB shared L3 and 16 GB
main memory.

Xen Version 4.2.1
Xen Scheduler Credit Scheduler 1
Dom0 OS Fedora 18, 3.8.8-

202.fc18.x86 64
Guest OS Ubuntu 12.04.3, Linux 3.7.5

Figure 2: Hardware configuration in local test bed.

alternates between these two functions, accessing each
quarter 500 times. This experiment models a simple I-
cache side-channel where switching from one quarter to
another leaks some secret information (we call any such
leaky function a sensitive operation). Executing the 500
access to a quarter of the I-cache requires approximately
100µs when run in isolation.

We run this victim workload pinned to a victim VCPU
that is pinned to the same PCPU as the attacker VCPU.
The attacker uses the IPI-based Prime+Probe technique3

and measures the time taken to access each I-cache set,
similar to ZJRR [46].

Figure 3 shows heat maps of the timings of the vari-
ous I-cache sets as taken by the Prime+Probe attacker,
for various MRT values between 0 (no MRT) and 5 ms.
Darker colors are longer access times, indicating con-
flicting access to the cache set by the victim. One can
easily see the simple alternating pattern of the victim as
we move up the y-axis of time in Figure 3(b). Also note
that this is different from an idle victim under zero-MRT
shown in Figure 3(a). With no MRT, the attacker makes
approximately 40 observations of each cache set, allow-
ing a relatively detailed view of victim behavior.

As the MRT value increases we see the loss of res-
olution by the attacker as its observations become less
frequent than the alternations of the victim. At an MRT
of 100 µs the pattern is still visible, but noisier. Although
the victim functions run for 100 µs, the prime+probe at-
tacker slows downs the victim by approximately a factor
of two, allowing the pattern to be visible with a 100 µs
MRT. When the MRT value is set to 1 ms the attacker
obtains no discernible information on when the switch-
ing between each I-cache set happens.

In general, an attacker can observe victim behavior
that occurs at a lower frequency than the attacker’s pre-
emptions. We modify the victim program to be 10x

3Note that the attacker requires two VCPUs, one measuring the I-
cache set timing whenever interrupted and the other issuing the IPIs
to wake up the other VCPU. The VCPU issuing IPIs is pinned to a
different PCPU.
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(a) Zero-MRT w/ Idle Victim
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(b) Zero-MRT
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(c) 100µs-MRT
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(d) 1ms-MRT

Figure 3: Heatmaps of I-cache set timing as observed by a prime-probe attacker. Displayed values are from a larger trace of
10,000 timings. (a) Timings for idle victim and no MRT. (b)–(d) Timings for varying MRT values with the victim running.

slower (where each function takes approximately 1 ms
standalone). Figure 4 shows the result for this experi-
ment. With a 1 ms MRT, we observe the alternating pat-
tern. When the MRT is raised to 5 ms, which is longer
than the victim’s computation (≈ 2 ms), no pattern is ap-
parent. Thus, when the MRT is longer than the execution
time of a security-critical function this side-channel fails.

While none of this proves lack of side-channels, it
serves to illustrate the dynamics between side-channels,
duration of sensitive victim operations, and the MRT:
as the MRT increases, the frequency with which an at-
tacker can observe the victim’s behavior decreases, and
the signal and hence leaked information decreases. All
this exposes the relationship between the speed of a sen-
sitive operation, the MRT, and side-channel availability
for an attacker. In particular, very long operations (e.g.,
longer than the MRT) may still be spied upon by side-
channel attackers. Also, infrequently accessed but sen-
sitive memory accesses may leak to the attacker. We
hypothesis that at least for cryptographic victims, even
moderate MRT values on the order of a handful of mil-

liseconds are sufficient to prevent per-core side-channel
attacks. We next look, therefore, at how this relationship
plays out for cryptographic victims.

ElGamal victim. We fix a victim similar to that tar-
geted by ZJRR. The victim executes the modular expo-
nentiation implementation from libgcrypt 1.5.0 using a
2048-bit exponent, base and modulus, in a loop. Pseudo-
code of the exponentiation algorithm appears in Figure 5.
One can see that learning the sequence of operations
leaks the secret key values: if the code in lines 7 and
8 is executed, the bit is a 1; otherwise it is a zero. We in-
strument libgcrypt to write the current bit being operated
upon to a memory page shared with the attacker, allow-
ing us to determine when preemptions occur relative to
operations within the modular exponentiation.

For no MRT guarantee, we observe that the attacker
can preempt the victim many times per individual square,
multiply, or reduce operation (as was also reported by
ZJRR). With MRT guarantees, the rate of preemptions
drops so much that the attacker only can interrupt once
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(a) 1ms-MRT
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(b) 5ms-MRT

Figure 4: Heatmaps of I-cache set timings as observed by a prime-probe attacker for 10x slower victim computations.
Displayed values are from a larger trace of 9,200 timings.

SQUAREMULT(x,e,N):
1: Let en, ...,e1 be the bits of e
2: y ← 1
3: for i = n down to 1 do
4: y ← SQUARE(y)
5: y ← MODREDUCE(y,N)
6: if ei = 1 then
7: y ← MULT(y,x)
8: y ← MODREDUCE(y,N)
9: end if

10: end for
11: return y

Figure 5: Modular exponentiation algorithm used in
libgcrypt version 1.5.0. Note that the control flow followed
when ei = 1 is lines 4 → 5 → 6 → 7 → 8 and when ei = 0 is
lines 4 → 5; denoted by the symbols 1 and 0, respectively.

every several iterations of the inner loop. Figure 6 gives
the number of bits operated on between attacker preemp-
tions for various MRT values. Figure 7 gives the number
of preemptions per entire modular exponentiation com-
putation. We see that for higher MRT values, the rate
of preemption per call to the full modular exponentiation
reduces to just a handful. The ZJRR attack depends on
multiple observations per operation to filter out noise, so
even at the lowest MRT value of 100 µs, with 4–14 op-
erations per observation, the ZJRR attack fails. In the
full version [40], we discuss how one might model this
leakage scenario formally and evidence a lack of any of
a large class of side-channel attacks.

AES victim. We evaluate another commonly exploited
access-driven side-channel victim, AES, which leaks se-
cret information via key-dependent indexing into tables
stored in the L1 data cache [15, 31]. The previous at-

Xen MRT ( ms) Avg. ops/run Min. ops/run
0 0.096 0

0.1 14.1 4
0.5 49.0 32
1.0 92.6 68
2.0 180.7 155
5.0 441.2 386

10.0 873.1 728

Figure 6: The average and minimal number of ElGamal se-
cret key bits operated upon between two attacker preemp-
tions for a range of MRT values. Over runs with 40K pre-
emptions.

Xen MRT Preemptions per function call
(ms) Min Median Max

0 3247 19940 20606
0.1 74 155 166
0.5 22 42 47
1.0 16 22 25
2.0 10 11 13
5.0 0 4 6

10.0 1 2 3

Figure 7: Rate of preemption with various MRT. Here the
function called is the Modular-Exponentiation implementation
in libgcrypt with a 2048 bit exponent. Note that for zero MRT
the rate of preemption is very high that victim computation in-
volving a single bit was preempted multiple times.

tacks, all in the cross-process setting, depend on observ-
ing a very small number of cache accesses to obtain a
clear signal of what portion of the table was accessed by
the victim. Although there has been no known AES at-
tack in the cross-VM setting (at least when deduplication
is turned off, otherwise see [19]), we evaluate effective-
ness of MRT against the best known IPI Prime+Probe
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spy process due to ZJRR. In particular, we measured the
number of private data-cache misses possibly observable
by this Prime+Probe attacker when the victim is running
AES encryption in a loop.

To do so, we modified the Xen scheduler to log the
count of private-cache misses (in our local testbed both
L1 and L2 caches are private) experienced by any VCPU
during a scheduled time slice. This corresponds to the
number of data-cache misses an attacker could ideally
observe. Figure 8 shows the cumulative distribution of
the number of L2-data cache misses (equivalently, pri-
vate data-cache loads) during a time slice of the victim
running OpenSSL-AES. We can see that under no or
lower MRTs the bulk of time slices suffer only a few
tens of D-cache misses that happen between two back-
to-back preemptions of the attacker. (We note that this is
already insufficient to perform prior attacks.) The num-
ber of misses increases to close to 200 for an MRT value
of 5 ms. This means that the AES process is evicting its
own data, further obscuring information from a would-
be attacker. Underlying this is the fact that the number of
AES encryptions completed between two back-to-back
preemptions increases drastically with the MRT: found
that thousands to ten thousands AES block-encryptions
were completed between two preemptions when MRT
was varied from 100 µs to 5 ms, respectively.

Summary. While side channels pose a significant
threat to the security of cloud computing, our measure-
ments in this section show that, fortunately, the hyper-
visor scheduler can help. Current attacks depend on

frequent preemptions to make detailed measurements of
cache contents. Our measurements show that even de-
laying preemption for a fraction of millisecond prevents
known attacks. While this is not proof that future attacks
won’t be found that circumvent the MRT guarantee, it
does strongly suggest that deploying such a soft-isolation
mechanism will raise the bar for attackers. This leaves
the question of whether this mechanism is cheap to de-
ploy, which we answer in the next section.

Note that we have focused on using the MRT mech-
anism for CPU and, indirectly, per-core hardware re-
sources that are shared between multiple VMs. But
rate-limiting-type mechanisms may be useful for other
shared devices like memory, disk/SSD, network, and any
system-level shared devices which suffer from a similar
access-driven side-channels. For instance, a timed disk
read could reveal user’s disk usage statistics like relative
disk head positions [20]. Fine-grained sharing of the disk
across multiple users could leak sensitive information via
such a timing side-channel. Reducing the granularity of
sharing by using MRT-like guarantees in the disk sched-
uler (e.g., servicing requests from user for at least Tmin,
minimum service time, before serving requests from an-
other user) would result in a system with similar secu-
rity guarantees as above, eventually making such side-
channels harder to exploit. Further research is required
to analyze the end-to-end performance impact of such
a mechanism for various shared devices and schedulers
that manage them.

5 Performance of MRT Mechanism

The analysis in the preceding section demonstrates that
MRT guarantees can meaningfully mitigate a large class
of cache-based side-channel attacks. The mitigation be-
comes better as MRT increases. We therefore turn to de-
termining the maximal MRT guarantee one can fix while
not hindering performance.

5.1 Methodology

We designed experiments to quantify the negative and
positive effects of MRT guarantees as compared to a
baseline configuration with no MRT (or zero MRT). Our
testbed configuration uses the same hardware as in the
last section and the Xen configurations are summarized
in Figure 9. We run two DomU VMs each with a single
VCPU. The two VCPUs are pinned to the same PCPU.
Pinning to the same PCPU serves to isolate the effect of
the MRT mechanism. The management VM, Dom0, has
6 VCPUs, one for each PCPU (a standard configuration
option). The remaining PCPUs in the system are other-
wise left idle.
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Work-conserving configuration
Dom0 6 VCPU / no cap / weight 256
DomU 1 VCPU / 2 GB memory / no

cap / weight 256
Non-work-conserving configuration

Dom0 6 VCPU / no cap / weight 512
DomU 1 VCPU / 2 GB memory /

40% cap / weight 256

Figure 9: Xen configurations used for performance experi-
ments.

CPU-hungry Workloads
Workload Description
SPECjbb Java-based application server [37]
graph500 Graph analytics workload [1] with scale

of 18 and edge factor of 20.
mcf , sphinx,
bzip2

SpecCPU2006 cache sensitive bench-
marks [17]

Nqueens Microbenchmark solving n-queens
problem

CProbe Microbenchmark that continuously
trashes L2 private cache.

Latency-sensitive Workloads
Workload Description
Data-Caching Memcached from Cloud Suite-2 with

twitter data set scaled by factor of 5 run
for 3 minutes with rate of 500 requests
per second [13].

Data-Serving Cassandra KV-store from Cloud Suite-2
with total of 100K records4 [13]

Apache Apache webserver, HTTPing
client [18], single 4 KB file at 1 ms
interval.

Ping Ping command at 1 ms interval.
Chatty-CProbe One iteration of CProbe every 10 µs.

Figure 10: Workloads used in performance experiments.

We use a mix of real-world applications and mi-
crobenchmarks in our experiments (shown in Figure 10).
The microbenchmark CProbe simulates a perfectly
cache-sensitive workload that continuously overwrites
data to the (unified) L2 private cache, and Chatty-CProbe
is its interactive counterpart that overwrites the cache ev-
ery 10 µs and then sleeps. We also run the benchmarks
with an idle VCPU (labeled Idle below).

5.2 Latency Sensitivity
The most obvious potential performance downside of a
MRT guarantee is increased latency: interactive work-
loads may have to wait before gaining access to a
PCPU. We measure the negative effects of MRT guar-
antees by running latency-sensitive workloads against
Nqueens (a CPU-bound program with little memory ac-
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Figure 11: 95th Percentile Latency of Various Latency Sen-
sitive Workloads. Under non-work-conserving scheduling.

cess). Figure 11 shows the 95th percentile latency for the
interactive workloads. The baseline results are shown as
a MRT of 0 on the X-axis. As expected, the latency is ap-
proximately equal to the MRT for almost all workloads
(Apache has higher latency because it requires multiple
packets to respond, so it must run multiple times to com-
plete a request). Thus, in the presence of a CPU-intensive
workload and when pinned to the same PCPU, the MRT
can have a large negative impact on interactive latency.

As the workloads behave essentially similarly, we now
focus on just the Data-Caching workload. Figure 12
shows the response latency when run against other work-
loads. For the two CPU-intensive workloads, CProbe
and Nqueens, latency increases linearly with the MRT.
However, when run against either an idle VCPU or
Chatty-CProbe, which runs for only a short period, la-
tency is identical across all MRT values. Thus, the MRT
has little impact when an interactive workload runs alone
or it shares the PCPU with another interactive workload.

We next evaluate the extent of latency increase.
Figure 13 shows the 25th, 50th, 75th, 90th, 95th and 99th

percentile latency for Data-Caching. At the 50th per-
centile and below, latency is the same as with an idle
VCPU. However, at the 75th latency rises to half the
MRT, indicating that a substantial fraction of requests are
delayed.

We repeated the above experiments for the work-
conserving setting, and the results were essentially the
same. We omit them for brevity. Overall, we find that
enforcing an MRT guarantee can severely increase la-
tency when interactive VCPUs share a PCPU with CPU-
intensive workloads. However, they have limited impact
when multiple interactive VCPUs share a PCPU.
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5.3 Batch Efficiency

In addition to measuring the impact on latency-sensitive
workloads, we also measure the impact of MRT guaran-
tees on CPU-hungry workloads. The original goal of the
MRT mechanism was to reduce frequent VCPU context-
switches and improve performance of batch workloads.
We pin a CPU-hungry workload to a PCPU against com-
peting microbenchmarks.

Figure 14 shows the effect of MRT values on the
graph500 workload when run alongside various compet-
ing workloads. Because this is work-conserving schedul-
ing, the runtime of graph500 workload increases by
roughly a factor of two when run alongside Nqueens and
CProbe as compared to Idle, because the share of the
PCPU given to the VCPU running graph500 drops by
one half. The affect of MRT is more pronounced when

looking running alongside Chatty-CProbe, the workload
which tries to frequently interrupt graph500 and trash its
cache. With no MRT guarantee, this can double the run-
time of a program. But with a limit of only 0.5 ms, per-
formance is virtually the same as with an idle VCPU,
both because Chatty-CProbe uses much less CPU and
because it trashes the cache less often.

With a non-work-conserving scheduler, the picture is
significantly different. Figure 15 shows the performance
of three batch workloads when run alongside a variety
of other workloads, for various MRT values. First, we
observe that competing CPU-bound workloads such as
Nqueens and CProbe do not significantly affect the per-
formance of CPU-bound applications, even in the case of
CProbe that trashes the cache. This occurs because the
workloads share the PCPU at coarse intervals (30 ms),
so the cache is only trashed once per 30 ms period. In
contrast, when run with the interactive workload Chatty-
CProbe, applications suffer up to 4% performance loss,
which increases with longer MRT guarantees. Investi-
gating the scheduler traces showed that under zero MRT
the batch workload enjoyed longer scheduler time slices
of 30 ms compared to the non-zero MRT cases. This
was because under zero MRT highly interactive Chatty-
CProbe quickly exhausted Xen’s boost priority. After
this, Chatty-CProbe could not preempt and waited un-
til the running VCPU’s 30 ms time slice expires. With
longer MRT values, though, Chatty-CProbe continues to
preempt and degrade performance more consistently.

Another interesting observation in Figure 15 is that
when the batch workloads share a PCPU with an idle
VCPU, they perform worse than when paired with
Nqueens or CProbe. Further investigation revealed that
an idle VCPU is not completely idle but wakes up at
regular intervals for guest timekeeping reasons. Over-
all, under non-work-conserving settings, running a batch
VCPU with any interactive VCPU (even an idle one) is
worse than running with another batch VCPU (even one
like CProbe that trashes the cache).

5.4 System Performance

The preceding sections showed the impact of MRT guar-
antees when both applications are pinned to a single
core. We next analyze the impact of the Xen scheduler’s
VCPU placement policies, which choose the PCPU on
which to schedule a runnable VCPU. We configure the
system with 4 VMs each with 2 VCPUs to run on 4 PC-
PUs under a non-work conserving scheduler. We run
three different sets of workload mixes, which together
capture a broad spectrum of competing workload com-
binations. Together with a target workload running on
both VCPUs of a single VM, we run: (1) All-Batch —
consisting of worst-case competing CPU-hungry work-
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Figure 14: Average runtime of graph500 workload when run
alongside various competing workloads and under work-
conserving scheduling. Averaged over 5 runs.

load (CProbe); (2) All-Interactive — consisting of worst-
case competing interactive workload (Chatty-CProbe);
and (3) Batch & Interactive — where half of other VC-
PUs run Chatty-CProbe and half CProbe. We compare
the performance of Xen without MRT to running with
the default 5ms limit. The result of the experiment is
shown in Figure 16. For interactive workloads, the fig-
ure shows the relative 95th percentile latency, while for
CPU-hungry workloads it shows relative execution time.

On average across the three programs and three com-
peting workloads, latency-sensitive workloads suffered
on average of only 4% increase in latency with the MRT
guarantee enabled. This contrasts sharply with the 5-fold
latency increase in the pinned experiment discussed ear-
lier. CPU-hungry workloads saw their performance im-
prove by 0.3%. This makes sense given the results in the
preceding section, which showed that an MRT guarantee
offers little value to batch jobs in a non-work-conserving
setting.

To understand why the latency performance is so much
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conserving configuration with 5 ms MRT. Normalized to per-
formance under zero-MRT case. The left three workloads re-
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averaged across 5 runs. In both cases lower is better.

better than our earlier results would suggest, we analyzed
a trace of the scheduler’s decisions. With the non-work-
conserving setting, Xen naturally segregates batch and
interactive workloads. When an interactive VCPU re-
ceives a request, it will migrate to an idle PCPU rather
than preempt a PCPU running a batch VCPU. As the
PCPU running interactive VCPUs is often idle, this leads
to coalescing the interactive VCPUs on one or more PC-
PUs while the batch VCPUs share the remaining PCPUs.

5.5 Summary

Overall, our performance evaluation shows that the
strong security benefits described the in Section 4 can
be achieved at low cost in virtualized settings. Prior
research suggests more complex defense mechanisms
[22, 26, 28, 43, 47] that achieve similar low performance
overheads but at a higher cost of adoption, such as sub-
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stantial hardware changes or modifications to security-
critical programs. In comparison, the MRT guarantee
mechanism is simple and monotonically improves the
security against many existing side-channel attacks with
zero cost of adoption and low overhead.

We note that differences between hypervisor schedul-
ing and OS scheduling mean that the MRT mechanism
cannot be as easily applied by an operating system to de-
fend against malicious processes. As mentioned above, a
hypervisor schedules a small and relatively static number
of VCPUS onto PCPUs. Thus, it is feasible to coalesce
VCPUs with interactive behavior onto PCPUs separate
from those running batch VCPUs. Furthermore, virtu-
alized settings generally run with share-based schedul-
ing, where each VM or VCPU is assigned a fixed share
of CPU resources. In contrast, the OS scheduler must
schedule an unbounded number of threads, often with-
out assigned shares. Thus, there may be more oversub-
scription of PCPUs, which removes the idle time that
allows interactive VCPUs to coalesce separately from
batch VCPUs. As a result, other proposed defenses may
still be applicable for non-virtualized systems, such as
PaaS platforms that multiplex code from several cus-
tomers within a single VM [2].

6 Integrating Core-State Cleansing

While the MRT mechanism was shown to be a cheap mit-
igation for protecting CPU-hungry workloads, it may not
be effective at protecting interactive ones. If a (victim)
VCPU yields the PCPU quickly, the MRT guarantee does
not apply and an attacker may observe its residual state in
the cache, branch predictor, or other hardware structures.
We are unaware of any attacks targeting such interactive
workloads, but that is no guarantee future attacks won’t.

We investigate incorporating per-core state-cleansing
into hypervisor scheduling. Here we are inspired in
large part by the Düppel system [47], which was pro-
posed as a method for guest operating systems to pro-
tect themselves by periodically cleansing a fraction of
the L1 caches. We will see that by integrating a se-
lective state-cleansing (SC) mechanism for I-cache, D-
cache and branch predictor states into a scheduler that al-
ready enforces an MRT guarantee incurs much less over-
head than one might expect. When used, our cleansing
approach provides protection for all processes within a
guest VM (unlike Düppel, which targeted particular pro-
cesses).

6.1 Design and Implementation
We first discuss the cleansing process, and below discuss
when to apply it. The cleanser works by executing a spe-
cially crafted sequence of instructions that together over-

write the I-cache, D-cache, and branch predictor states of
a CPU core. A sample of these instructions is shown in
Figure 17; these instructions are 27 bytes long and fit in
a single I-cache line.

In order to overwrite the branch predictor or the
Branch Target Buffer (BTB) state, a branch instruction
conditioned over a random predicate in memory is used.
There are memory move instructions that add noise to
the D-cache state as well. The last instruction in the set
jumps to an address that corresponds to the next way in
the same I-cache set. This jump sequence is repeated un-
til the last way in the I-cache set is accessed, at which
point it is terminated with a ret instruction. These in-
structions and the random predicates are laid out in mem-
ory buffers that are equal to the size of the I-cache and
D-cache, respectively. Each invocation of the cleansing
mechanism randomly walks through these instructions to
touch all I-cache sets, D-cache sets, and flush the BTB.

We now turn to how we have the scheduler decide
when to schedule cleansing. There are several possibil-
ities. The simplest strategy would be to check, when a
VCPU wakes up, if the prior running VCPU was from
another VM and did not use up its MRT. If so, then run
the cleansing procedure before the incoming VCPU. We
refer to this strategy as Delayed-SC because we defer
cleansing until a VCPU wants to execute. This strat-
egy guarantees to cleanse only when needed, but has the
downside of potentially hurting latency-sensitive appli-
cations (since the cleanse has to run between receiving
an interrupt and executing the VCPU). Another strategy
is to check, when a VCPU relinquishes the PCPU be-
fore its MRT guarantee expires, whether the next VCPU
to run is from another domain or if the PCPU will go
idle. In either case, a cleansing occurs before the next
VCPU or idle task runs. Note that we may do unnec-
essary cleansing here, because the VCPU that runs after
idle may be from the same domain. We therefore refer
to this strategy as Optimistic-SC, given its optimism that
a cross-VM switch will occur after idle. This optimism
may pay off because idle time can be used for cleansing.

Note that the CPU time spent in cleansing in Delayed-
SC is accounted to the incoming VCPU but it is often
free with Optimistic-SC as it uses idle time for cleansing
when possible.

6.2 Evaluation

We focus our evaluation on latency-sensitive tasks: be-
cause we only cleanse when an MRT guarantee is not hit,
CPU-hungry workloads will only be affected minimally
by cleansing. Quantitatively the impact is similar to the
results of Section 5 that show only slight degradation due
to Chatty-CProbe on CPU-hungry workloads.

We use the hardware configuration shown in Figure 2.
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000 <L13-0xd>:

0: 8b 08 mov (%rax),%ecx

2: 85 c9 test %ecx,%ecx

4: 74 07 je d <L13>

6: 8b 08 mov (%rax),%ecx

8: 88 4d ff mov %cl,-0x1(%rbp)

b: eb 05 jmp 12 <L14>

00d <L13>:

d: 8b 08 mov (%rax),%ecx

f: 88 4d ff mov %cl,-0x1(%rbp)

012 <L14>:

12: 48 8b 40 08 mov 0x8(%rax),%rax

17: e9 e5 1f 00 00 jmpq <next way in set>

Figure 17: Instructions used to add noise. The assembly
code is shown using X86 GAS Syntax. %rax holds the address
of the random predicate used in the test instruction at the rel-
ative address 0x2. The moves in the basic blocks <L13> and
<L14> reads the data in the buffer, which uses up the corre-
sponding D-cache set.

We measured the standalone, steady state execution time
of the cleansing routine as 8.4 µs; all overhead beyond
that is either due to additional cache misses that the
workload experiences or slow down of the execution of
the cleansing routine which might itself experience ad-
ditional cache misses. To measure the overhead of the
cleansing scheduler, we pinned two VCPUs of two dif-
ferent VMs to a single PCPU. We measured the perfor-
mance of one of several latency-sensitive workloads run-
ning within one of these VMs, while the other VM ran a
competing workload similar to Chatty-CProbe (but it did
not access memory buffers when awoken). This ensured
frequent cross-VM VCPU-switches simulating a worst
case scenario for the cleansing scheduler.

We ran this experiment in four settings: no MRT guar-
antee (0ms-MRT), a 5 ms MRT guarantee (5ms-MRT),
a 5 ms MRT with Delayed-SC, and finally a 5 ms MRT
with Optimistic-SC. Figure 18 shows the median and
95th percentile latencies under this experiment. The me-
dian latency increases between 10–50 µs compared to the
5ms-MRT baseline, while the 95th percentile results are
more variable, and show at worst a 100 µs increase in tail
latency. For very fast workloads, like Ping, this results
in a 17% latency increase despite the absolute overhead
being small. Most of the overhead comes from reloading
data into the cache, as only 1/3rd of the overhead is from
executing the cleansing code.

To measure overhead for non-adversarial workloads,
we replaced the synthetic worst-case interactive work-
load with a moderately loaded Apache webserver (at 500
requests per second). The result of this experiment is not
shown here as it looks almost identical to Figure 18, sug-
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gesting the choice of competing workload has relatively
little impact on overheads. In this average-case scenario,
we observed an overhead of 20–30 µs across all work-
loads for the Delayed-SC and 10–20 µs for Optimistic-
SC, which is 10 µs faster. Note that in all the above cases,
the cleansing mechanism perform better than the base-
line of no MRT guarantee with no cleansing.

To further understand the trade-off between the two
variations of state-cleansing, we repeated the first (worst-
case) experiment above with varying load on the two
latency-sensitive workloads, Data-Caching and Data-
Serving. The 95th percentile and median latencies
of these workloads under varying loads are shown in
Figure 19 and Figure 20, respectively. The offered load
shown on the x-axis is equivalent to the load perceived
at the server in all cases except for Data-Serving work-
load whose server throughput saturates at 1870rps (this
is denoted as Max in the graph).

The results show that the two strategies perform simi-
larly in most situations, with optimization benefiting in a
few cases. In particular, we see that the 95% latency for
heavier loads on Data-Serving (1250, 1500, and 1750)
is significantly reduced for Optimistic-SC over Delayed-
SC. It turned out that the use of idle-time for cleans-
ing in Optimistic-SC was crucial for Data-Serving work-
load as the tens to hundreds of microsecond overhead
of cleansing mechanism under the Delayed-SC scheme
was enough to exhaust boost priority at higher loads.
From scheduler traces of the runs with Data-Serving
at 1500rps, we found that the VM running the Data-
Serving workload spent 1.9s without boost priority un-
der Delayed-SC compared to 0.8s and 1.1s spent under
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Figure 19: 95th percentile latency impact of the cleansing
scheduler with varying load on the server. (a) Data-Caching
and (b) Data-Serving. The error bars show the standard devia-
tion across 3 runs.

5ms-MRT and Optimistic-SC, respectively (over a 120
long second run). The Data-Serving VM also experi-
enced 37% fewer wakeups under Delayed-SC relative to
5ms-MRT baseline, implying less interactivity.

We conclude that both strategies provide a high-
performance mechanism for selectively cleansing, but
that Optimistic-SC handles certain cases slightly better
due to taking advantage of idle time.

7 Conclusions

Cloud computing promises improved efficiency, but
opens up new threats due to the sharing of hardware
across mutually distrustful customers. While virtual ma-
chine managers effectively prevent direct access to the
data of other customers, current hardware platforms in-
herently leak information when that data is accessed
through predictive structures such as caches and branch
predictors.

We propose that the first line of defense against these
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Figure 20: Median latency impact of the cleansing sched-
uler with varying load on the servers. (a) Data-Caching and
(b) Data-Serving. The error bars show the standard deviation
across 3 runs.

attacks should be the software responsible for determin-
ing access: the hypervisor scheduler. For cache-based
side channels, we showed that the simple mechanism of
MRT guarantees can prevent useful information from be-
ing obtained via side-channel attacks that abuse per-core
state. This suggests a high performance way of achieving
soft isolation, which limits the frequency of potentially
dangerous cross-VM interactions.

We also investigate how the classic defense technique
of CPU state cleansing can interoperate productively
with MRT guarantees. This provides added protection
for interactive workloads at low cost, and takes advan-
tage of the fact that the use of MRT makes rescheduling
(each of which may require cleansing) rarer.

Finally we note that while the focus of our work was
on side-channel attacks, the soft-isolation approach, and
the mechanisms we consider in this paper in particu-
lar, should also be effective at mitigating other classes
of shared-resource attacks. For example, resource-
freeing [39] and on-system degradation-of-service at-
tacks.
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Abstract
In a typical infrastructure-as-a-service cloud setting,

different clients harness the cloud provider’s services by
executing virtual machines (VM). However, recent studies
have shown that the cryptographic keys, the most crucial
component in many of our daily used cryptographic pro-
tocols (e.g., SSL/TLS), can be extracted using cross-VM
side-channel attacks. To defeat such a threat, this paper
introduces HERMES, a new system that aims to protect
the cryptographic keys in the cloud against any kind of
cross-VM side-channel attacks by simply partitioning the
cryptographic keys into random shares, and storing each
share in a different VM. Moreover, it also periodically
re-shares the cryptographic keys, thereby invalidating the
potentially extracted partial ones. We have implemented
HERMES as a library extension that is transparent to the
application software, and performed deep case studies
with a web and a mail server on Amazon EC2 cloud. Our
experimental results show that the runtime overhead of
the proposed system can be as low as 1%.

1 Introduction

Recent advances in cloud computing enable customers
to outsource their computing tasks to the cloud ser-
vice providers (CSPs). Typically, CSPs manage exten-
sive amount of computational resources, and provide
services, such as Infrastructure-as-a-service (IaaS) [40],
Platform-as-a-service (PaaS) [31], Software-as-a-service
(SaaS) [44]. By outsourcing core computing to the cloud,
customers can mitigate the burden of resource manage-
ment, and concentrate more on the core business tasks. A
recent study on the cloud usage [3] reported that nearly
30% of enterprise IT organizations use public IaaS, such
as Microsoft’s Azure Service [12], Amazon’s Elastic Com-
pute Cloud (EC2) [4], or Google’s Compute Engine [9].

Despite its numerous advantages, cloud computing also
introduces new challenges and concerns, primarily the se-
curity and privacy risks [48]. The concerns simply stem

from outsourcing critical data (e.g., health records, social
security numbers, or even cryptographic keys) and/or com-
puting capabilities to a distant computing environment,
where the resources are shared with other potentially un-
trusted customers.

In particular, to increase efficiency and reduce costs,
a CSP may place multiple virtual machines (VMs), be-
longing to different customers, to the same physical ma-
chine. In such an execution platform, VMs should be
logically isolated from each other to protect the privacy
of each client. The CSPs use virtual machine monitors
(VMM) to realize logical isolation among VMs running
on the same physical machine. However, recent studies
show that a clever adversary can perform cross-VM side-
channel attacks (for brevity, cross-VM attack) to learn
private information that resides in another VM, even un-
der carefully enforced logical isolation in public cloud
infrastructures. More specifically, Ristenpart et al. [41]
showed heuristics to improve an adversary’s capabilities
to place its VMs alongside the victim VMs, and learn
crude information (e.g., aggregate cache usage). Most
recently, Zhang et al. [51] managed to extract ElGamal
decryption keys by cross-VM attacks. These studies have
clearly demonstrated that logical isolation and trustworthy
cloud provider are not necessarily enough to guarantee
the security of sensitive information.

It would be too optimistic to assume that an adversary
is only limited to the two aforementioned attacks. Un-
fortunately, there exists a wide variety of side-channel
attacks, each with its own setup and methodology (e.g.,
[13–15, 19, 26, 28, 34, 43]). Simply, the absence of such
attacks on public cloud infrastructures does not neces-
sarily mean that they are inapplicable. In fact, there are
side-channel attacks that target virtualized environments,
and leverage timings of cryptographic operations or mon-
itoring of common resource usage [39, 47]. Those attacks
may be just one step behind being directly applicable to
the public cloud setting; which is why proposing preven-
tion mechanisms is extremely vital for the security and
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privacy of the sensitive data in the VMs including the
cryptographic keys.

To this end, we present HERMES, a system that reme-
dies the cryptographic key disclosure vulnerabilities of
VMs in the public cloud by using well-established crypto-
graphic tools such as Secret Sharing and Threshold Cryp-
tography. Specifically, the key technique in our system is
to partition a cryptographic key into several pieces, which
are computed using threshold cryptosystems, and to store
each share on a different VM. This makes it harder for
an adversary to capture the complete cryptographic key
itself, since it now has to extract shares from multiple
VMs (note that there is no single key or a centralized key
anymore in HERMES). To further improve the resilience,
the same cryptographic key is re-shared periodically, such
that a share is meaningful in only one time period. Conse-
quently, we introduce two significant challenges against
a successful attack: (i) multiple VMs should be attacked,
and (ii) each attack should succeed within a certain time
period. As a proof-of-concept, we apply HERMES to pro-
tect the cryptographic keys of Secure Sockets Layer (SSL)
and Transport Layer Security (TLS) protocols.

Contributions. In short, this paper makes the following
four contributions:

1. We present HERMES, a novel system to prevent the
leakage of cryptographic keys in cloud VMs via
mathematically proven techniques – Secret Sharing
and Threshold Cryptography.

2. As a proof-of-concept, we build a prototype of HER-
MES and apply it to protect the SSL/TLS crypto-
graphic keys, which is significantly more resilient to
any cross-VM attack.

3. We empirically evaluate HERMES with micro bench-
marks, and case studies for a web server and a mail
server, and show that with optimal setup, HERMES
can operate with overheads as low as 1%.

4. We formalize the problem of finding good HERMES
configurations, which minimizes the security risk for
given monetary and performance constraints.

Organization. The rest of the paper is structured as fol-
lows: We start by providing some background information
in §2 about the protocols and techniques used in HERMES.
It is followed by the threat model in §3, and the full techni-
cal details of HERMES in §4. Then, we evaluate HERMES
regarding its efficiency in §5, and discuss its security in §6.
Finally, we review the related work in §7, and conclude
in §8.





















Figure 1: Overview of SSL Protocol Handshake.

2 Background

2.1 SSL/TLS Protocols
SSL and TLS are widely accepted communication proto-
cols to establish a secure channel between two mutually-
distrusting parties, where two protocols contain only a
few minor differences [16,25,29,37]. For brevity, we will
refer the protocols as SSL; and any statement for SSL is
also applicable to TLS.

The SSL protocol consists of a handshake and a record
process, where the parties in the protocol are called the
client and the server. In the handshake process, they use
public key cryptography (PKC) to authenticate each other
and agree on the session keys. The session keys are bound
for only one session, and used for confidentiality and in-
tegrity. To calculate session keys, parties need to share
a master secret, which is derived from random data ex-
changed, and pre-master secret.

Fig. 1 shows an overview of the handshake process.
First, the client starts by sending client hello message
(Step 1), which contains a set of supported cryptographic
algorithms (cipher suites in SSL terms), and some random
data to be used in key generation. Then, the server sends
its certificate, some random data, and the accepted cipher
suite (Step 2a); and key exchange parameters if necessary
(Step 2b). Moreover, if the server wants to authenticate
the client, it requests the client’s certificate (Step 2c). The
server finishes by sending hello done message (Step 2d).
If requested, the client sends its certificate to the server,
along with some random data signed by its private key
(Step 3a). Next, it creates a random pre-master secret,
encrypts it with the server’s public key, and sends to the
server (Step 3b). Now, both parties can calculate the mas-
ter secret from the pre-master secret and random data
using protocol specific combinations of pseudo-random
functions.

Based on the chosen cipher suite, the number and the
content of the messages may vary. For instance, when
Diffie-Helman (DH) [22] is used for pre-master agree-
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ment, the parties sign their DH parameters with their pri-
vate keys, and send them in Step 2b and Step 3b. On the
other hand, they may use RSA to agree on the pre-master
secret, where the client encrypts the pre-master secret with
the server’s RSA public key, and the server decrypts it
using its private key.

2.2 RSA Variants
The following variants of the RSA algorithm alter the
way that a message is exponentiated with the private key.
In both versions, the dealer holds a public-private RSA
key pair, and wants to partition the private key over l
non-colluding parties.

Distributed RSA (D-RSA). Given a private key d, D-
RSA uses additive secret sharing, and partitions d into
l random shares d1, . . . ,dl , where d ≡ d1 + . . .+ dl mod
φ(n), n is the modulus, and φ is Euler’s totient function.
Given the public key (n,e) and a share, none of the parties
can learn anything about d. Furthermore, an adversary
should capture all l shares to learn d.

To exponentiate a message M ∈ Zn with d, one of the
parties acts as the combiner, whose job is to combine
partial results from all parties. Each party pi for 1 ≤ i ≤ l
calculates Mdi , and sends it to the combiner. Then, the
combiner simply multiplies each message and finalizes
the operation. At the end of the process, the combiner
does not learn anything about the private key, but only the
final result Md . For a detailed security analysis, we refer
to the original paper [24].

Threshold RSA (T-RSA). In this variant, the given pri-
vate key is partitioned using shamir secret sharing, in
which only 1 < k ≤ l shares are needed to complete an
exponentiation with d. The key technique in T-RSA is to
embed the private key into a degree (k−1) polynomial,
evaluate the polynomial on l different points, and share
the results over the set of parties. Once again, a party
cannot learn the partitioned private key simply from the
public key and its share.

To exponentiate a message, k parties are chosen uni-
formly at random, where the combiner once again does
not learn anything other than Md . On the other hand, an
adversary should capture k shares to learn the private key.
In App. B, we present more details on private key parti-
tioning and usage, while an intensive security analysis is
performed in the original paper [42].

3 Threat Model

Entities. The entities in our threat model are the Cloud
Service Provider (CSP), the Defender, and the Adversary,
where the last two are simply the clients of the first. The

CSP offers IaaS and PaaS, which the clients can benefit
by initiating VMs. The defender and the adversary use the
same CSP, where the latter attacks the former to retrieve
private information. Although the CSP has a potential
to violate its clients’ privacy and integrity, we assume
that the CSP is trusted. This is a valid assumption, since
(i) Service Level Agreements (SLA) provide a clear-cut
distinction between what a CSP can and cannot perform
on a client’s data/VM, and (ii) disobeying a SLA may
impose prohibiting punishment for the CSP.

Logical isolation. To improve utilization, the cloud
provider may perform multiplexing. Hence, multiple VMs
may run on the same physical machine, which means a
VM of the adversary may run on the same physical ma-
chine with a VM of the defender; and they may share the
same physical resources (e.g., CPU, memory, hard-drives,
cache). On the other hand, we have no distinction on the
VMM that the CSP uses, as long as it provides logical
isolation between the VMs on the same physical machine.
We assume that the adversary knows the software running
on the defender VMs, but cannot leverage the memory
vulnerabilities of those software to compromise (i.e., to
take full control of) the VMs.

Adversary’s goal. The defender has multiple VMs in the
cloud, and each one may contain a set of private cryp-
tographic information. This set of information includes
temporary symmetric keys (e.g., AES key), or a share of
a distributed private key (e.g., share of an RSA key) that
is created by HERMES. An adversary’s aim is to capture
PKC keys, since capturing a session key is useful for only
one session, while acquiring PKC keys grants full access.
To fulfill its desire, the adversary is allowed to execute any
cross-VM attack in its disposal to extract private informa-
tion from each VM, where the attack itself is applicable
to the cloud setup. For instance, in access-driven attacks,
the adversary may need to co-reside its VMs with the de-
fender VMs. In such a case, the adversary should achieve
co-residency, and make the attack applicable in a typical
cloud setup. Moreover, the attacks on the defender VMs
are not necessarily executed in serial manner. Each sep-
arate adversary VM can employ the cross-VM attack in
parallel, if the nature of the attack enables such setup.

Finally, since the adversary uses the same cloud as
the defender, we assume that all channels may be eaves-
dropped by the adversary, starting from right after the
bootstrapping of HERMES. Giving this capability to the
adversary may seem like an overprovision. However, we
take precautions to handle even the worst case scenario,
in which the adversary, somehow by-passing CSP’s secu-
rity mechanisms, listens to the conversations between the
defender VMs.
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Figure 2: Overview of HERMES Layout.

Misc. We do not consider the placement of the defender
VMs, and its effects on the security of HERMES. For in-
stance, one platform (e.g., a region, a physical machine,
etc.) may, somehow, be more susceptible to a certain range
of cross-VM attacks; or one can claim that the more dis-
tributed the defender VMs, the better the security. Zhang
et al. aim to physically isolate a defender VM as much
as possible [50], thus preventing only access-driven side-
channel attacks. Such precautions will tighten the defense
against access-driven attacks; however, it will fail to stop
the adversary from executing different attacks. On the
other hand, HERMES aims to protect the cryptographic
keys from all cross-VM attacks, no matter how the VMs
are placed.

4 The Proposed System – HERMES

In SSL, a certificate may contain public parameters of
different PKCs (e.g., RSA, DSA, ECC), which are em-
ployed to encrypt secret information, or to sign and show
that certain temporary data is authentic. In HERMES, we
assume that the parties use RSA as the PKC; however,
extension to other PKCs is trivial as long as a threshold
cryptosystem for that new PKC is provided.

Setup. Figure 2 shows an overview of the entities in HER-
MES: the defender, the adversary, l number of VMs that
belong to the defender, and the clients who want to es-
tablish secure connection to the defender’s VMs using
SSL and benefit from the defender’s web application. The
defender holds a set of private RSA keys, and partitions
them over the set of defender’s VMs. Each VM holds
one share for each partitioned private key, and they act
together to exponentiate with it. The VM that directly
talks with the client is called the combiner, while the re-
maining VMs are called auxiliary VMs. The adversary

aims to learn at least one of the partitioned RSA private
keys by (i) performing cross-VM attacks on each VM
to capture its shares, and by (ii) listening each message
flowing between the VMs. To achieve secure communi-
cation, each channel is established using our enhanced
SSL protocol. More specifically, inter-VM channels are
established with mutual verification (i.e., both end of the
parties authenticate each other), while only the combiner
VM is authenticated in a channel between that VM and
a client/defender. The defender re-shares the same pri-
vate keys every τ seconds. The time window between
two consecutive re-sharing moments will be referred to
as an epoch, while the shares of a private key in any two
sessions are independent.

Modes. HERMES has two modes of operation, namely
D-RSA and T-RSA modes, using the corresponding RSA
variant (cf. §2.2). When the system runs in D-RSA mode,
the adversary has to capture all shares of a private key
to learn the key itself; whereas in T-RSA mode, it has
to capture at least k shares. The benefits of the second
mode are two-fold: (i) The system is more fault-tolerant
to server failures, and (ii) the system can achieve better
utilization by distributing work among different subsets
of VMs, especially when k ≤ (l/2).

Stages. The execution of HERMES is composed of several
stages: (i) Partitioning a private key (§4.2); (ii) Bootstrap-
ping the system by handing in the initial set of shares, and
establishing initial inter-VM SSL channels (§4.3); (iii)
Establishing connection between a defender VM and a
client (§4.4); (iv) Renegotiating an inter-VM SSL channel
(§4.5); and (v) Distributing new shares of the same private
keys (§4.6).

4.1 Enhancing the SSL Protocol
In SSL, the communicating parties may execute mutual
verification or server-only verification. In any case, the
server uses its private key at two possible steps (cf. Fig. 1):
(i) After Step 2a to sign temporary parameters; (ii) after
Step 3b to decrypt the pre-master secret. On the other
hand, the client uses its private key before Step 3a only
in the mutual verification. With respect to a regular SSL
execution, we change the way that the server or client
computes the modular exponentiation of a message with
its RSA private key at those steps.

Fig. 3 shows the outline of our modifications in a server-
only verified SSL execution. The client performs SSL
handshake with the combiner, while the VMs communi-
cate over already established secure channels. After Step
2a, the combiner may create temporary key parameters
and sign them in collaboration with the auxiliary VMs.
It sends a help sign message to all auxiliary VMs in
D-RSA mode (or up to k in T-RSA mode), where the
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Figure 3: Security Enhanced SSL Outline for Server-only
Verification.

message content is simply the parameters to be signed
(Step 2aa). Each auxiliary VM in the computation calcu-
lates its partial result using its share of the private key and
gives it to the combiner in the sign partial result

message (Step 2ab). On the other hand, if the combiner
has to decrypt an incoming message from the client, it
sends a help decrypt message to all auxiliary VMs
in D-RSA mode (or up to k in T-RSA), containing the
masked or plain version of the client’s message (Step
3ba). Then, each auxiliary VM sends the computed par-
tial result with the dec partial result message to the
combiner (Step 3bb).

Whether or not the content of the help decrypt mes-
sage should be masked with a random number depends
on the mode of operation. Even in the worst case, where
the adversary knows each message exchanged between
VMs, the combiner does not have to mask the message in
D-RSA. The reason comes from the security of D-RSA.
Assume the client sends Me mod n to the combiner, where
M is the pre-master secret, and (n,e) is the public key. In
order to learn M, the adversary needs each VM’s partial
result, just like the combiner does. However, even if the
adversary cracks down all secure channels and captures
all messages, it can only learn l−1 parties’ partial results,
since the combiner does not send its partial result to any-
one. Thus, the adversary cannot learn any useful informa-
tion, and cannot compute M. If T-RSA is employed, then
the combiner selects k VMs, S = {i1, . . . , ik}, uniformly
at random from the set of VMs and sends the message
to them. There are two cases to consider: (i) If the com-
biner is included in S, then the message does not need
masking similar to D-RSA case. The adversary needs k
partial results, but can only capture k−1. (ii) Otherwise,
the combiner masks the message with a random number;
since the adversary may have captured k partial results
sent from k different auxiliary VMs, and the other param-
eters in the calculation are public (e.g., ∆ = l!, a and b can

be calculated from gcd(e,4∆2)), the adversary can now
calculate M.

In addition to server-only verified SSL channels, HER-
MES necessitates mutual verification, since any two de-
fender VMs, V Mi and V Mj, may perform key renegoti-
ation to refresh session keys. Without loss of generality,
assume that V Mi is the client in SSL protocol, while V Mj
acts as the server. Now, both parties should communicate
with the auxiliary VMs to perform operation with their
own private keys. The server may need co-operation after
steps 2a and 3b, while the client may need to sign random
data with its private key before Step 3a. The server acts
as mentioned in server-only authenticated Enhanced SSL.
On the other hand, the client sends help sign message
to auxiliary VMs before Step 3a, and combines the partial
results. By following those steps, two defender VMs can
execute a successful handshaking process, using already
established secure and authenticated SSL channels with
the auxiliary VMs.

4.2 Partitioning Keys
Given an RSA key pair (n,e,d) and the number of VMs
l, the defender performs partitioning and calculates the
shares of each defender’s VM. In case HERMES is running
in T-RSA mode, the defender uses the third parameter k,
minimum number of VMs needed to operate.

In D-RSA, the share of the ith VM, denoted by shi,
is simply a uniformly randomly chosen value from the
domain Zφ(n), where sh1 + . . .+ shl is equal to d. Hence,
the defender chooses l −1 random values, and calculates
the final share as shl = d − (sh1 + . . .+ shl−1) mod φ(n).

On the contrary, key partitioning process is a bit
more complicated in T-RSA. Algo. 1 shows an outline
of preparations of each VM’s share. For each subset
Sα ⊆ {1, . . . , l}, where |Sα |= k, the defender calculates
the interpolation constants λ Sα

0, j , and exponents for each
V Mj ∈ Sα (line 10-16). Moreover, the defender stores the
modulus values for a,b in Vi’s share for d, since i (the
function input) states that the given private key belongs
to V Mi (line 18-19).

4.3 Bootstrapping the System
The defender creates l VM instances on the CSP, and an
RSA key pair (ni,ei,di) for each V Mi, 1 ≤ i ≤ l. Next, she
partitions each private key into shares and gives each VM
a unique ID i ∈ [1, l], the shares that correspond to that
ID, and the certificate for the ith RSA key pair.

At this stage, the VMs need to establish initial authenti-
cated and secure SSL channels using our Enhanced SSL.
However, as mentioned in §4.1, Enhanced SSL necessi-
tates already established secure SSL channels to transfer
messages between VMs. We have to make an assumption
here, which will allow us to bypass this requirement, and
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Algorithm 1 Preparing shares for T-RSA
1: Input: RSA Parameters n, p = 2p′+1, q = 2q′+1,

e, d
2: Input: T-RSA parameters l, k, i
3: for j ← 1 to l do
4: sh j ← /0
5: end for
6: ∆ ← l!

7: Calculate S = {S1, . . . ,Sz}, where z =

(
l
k

)
,∀S j ∈

S, |S j|= k, S j ⊆ {1, . . . , l}, and each S j is distinct
8: m = φ(n)/4

9: Create f (X) = d +
k−1
∑
j=1

a jX j, where ∀a j
R← Z

10: for all Sα ∈ S do
11: for all j ∈ Sα do
12: Calculate λ Sα

0, j

13: exp ← 4 ·∆ · f ( j) ·λ Sα
0, j mod m

14: sh j ← sh j ∪ (i,Sα ,exp)
15: end for
16: end for
17: (a,b)← ecgd(e,4∆2), where a4∆2 +be = 1
18: shi ← shi ∪ (a mod m,b mod m)
19: return sh1, . . . ,shl

to establish initial inter-VM SSL channels. We assume
that the VMs, and the initial set of SSL channels are provi-
sioned securely, i.e., no adversarial attack occurs until the
initial set of SSL channels are established for inter-VM
communications. This is a reasonable assumption, since
(i) locating defender VMs on the cloud takes time [41],
and (ii) the whole process of bootstrapping takes short
time, especially if key-partitioning is performed before-
hand. Once the initial inter-VM SSL channels are estab-
lished, HERMES gets ready to serve the clients. Note that
a defender VM uses the same RSA key pair for inter-VM
and client connections.

Finally, in HERMES, we assume that the number of
VMs is fixed throughout the entire life-time of execution.
However, to augment HERMES capabilities with dynamic
expansion of the system, one should care about the boot-
strapping of those new VMs in terms of planting the initial
secrets and initiating secure channels. As will be clear
in §4.6, during the key re-sharing process, the defender
may hand in secret shares to the newly added VMs. Still,
introducing dynamic expansion via new VMs may lead
to security vulnerabilities that should be investigated thor-
oughly.

4.4 Connecting to a Client

Once the bootstrapping stage is over, a client or the de-
fender may request connection to a defender VM (i) to

consume the services offered by the defender, or (ii) to
distribute new shares for the private keys. In any case,
the connection is established using server-only verified
Enhanced SSL, where the connected VM takes the role
of the combiner VM.

Assume the client wishes to connect to V Mi using En-
hanced SSL. Throughout the handshaking process, V Mi
interacts with the auxiliary VMs (i.e., all VMs other than
V Mi), and performs distributed signing or decryption pro-
cedures as described in §4.1. The whole distributed oper-
ations are transparent to the client, while the combiner or
any auxiliary VM learns nothing, but the result.

4.5 Inter-VM Key Renegotiation
Over time, any two defender VMs may decide to end one
SSL session, and renegotiate keys for the next one. In
such a case, those two VMs use their RSA key pairs, and
perform a new handshaking process using our Enhanced
SSL with mutual verification. Assume V Mi and V Mj de-
cides to perform renegotiation, where V Mi and V Mj act as
the client and server, respectively. Both VMs execute our
Enhanced SSL handshaking process using already estab-
lished SSL channels with the auxiliary VMs. When V Mi
or V Mj needs to perform exponentiation with its private
key, it collaborates with the auxiliary VMs, and calculates
the result.

HERMES allows only one simultaneous key renegoti-
ation at a given time, since an on-going process neces-
sitates already established SSL channels. When two de-
fender VMs start the process, it issues a warning to all
VMs, blocking any other attempt for key renegotiation.
Once the on-going procedure halts, HERMES removes the
warning and allows the first renegotiation attempt.

4.6 Key Re-sharing
At the end of each epoch, the defender creates new shares
for the same private RSA keys that were partitioned and
distributed in the bootstrapping stage. In essence, it uses
the key-partitioning algorithm discussed in §4.2 and gen-
erates shares that are independent from the previous ones.
Then, it simply connects to each defender VM with our
Enhanced SSL, as in §4.4, and hands in the new shares
for all partitioned private keys.

The reason to adhere such a process is to mitigate the
risk of private key disclosure, since the adversary may
have already captured a set of shares for a partitioned
private key. It is obvious that partitioning the same key
for the second time will result in a different set of shares,
which are totally independent from the previous. Hence, if
the adversary did not capture enough shares to identify the
exact key in one epoch, it will have to start from scratch,
since those captured shares mean nothing in the next
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Setup
(1,1) (2,2) (3,3) (4,4) (5,5) (6,6) (7,7) (8,8) (9,9) (10,10)

1 Cli.
Total 2.65 8.96 10.40 11.57 15.40 16.13 13.58 17.44 14.05 13.76
Network − 2.77 2.82 2.75 2.29 2.54 2.37 1.89 1.07 1.56
Combine − 1.78 1.76 1.82 2.25 2.18 1.87 1.99 2.00 1.93

10 Cli.
Total 5.54 31.74 37.85 45.87 43.59 40.82 48.65 52.77 50.64 52.82
Network − 19.42 21.67 14.29 18.92 19.89 25.69 21.68 18.11 14.09
Combine − 1.95 2.05 2.22 2.20 2.18 1.87 2.17 2.58 2.23

100 Cli.
Total 40.90 179.01 178.14 187.67 209.74 212.33 229.38 246.39 257.03 269.73
Network − 121.05 113.36 122.96 108.82 125.52 108.25 106.98 98.71 113.15
Combine − 2.16 2.14 2.01 2.10 2.09 2.03 2.11 2.81 2.28

1000 Cli.
Total 146.94 640.40 728.56 928.75 1023.75 904.59 989.32 1097.64 1001.06 1174.54
Network − 210.36 197.28 202.08 229.03 240.42 204.30 284.05 237.72 233.41
Combine − 2.26 2.08 1.96 2.18 2.17 2.20 2.43 2.24 2.62

Table 1: Average Connection, Network, and Combining Time Spent for D-RSA in milliseconds

epoch. The defender VMs do not immediately start using
the new keys, since each defender should get the new
shares, otherwise HERMES would have synchronization
problems. Instead, a defender VM broadcasts a message
to announce that it has the new shares. When all defender
VMs have the new shares, they pass on to the next epoch,
start using the new shares, and zeroise the old shares to
leave no trace. Till then, the VMs continue using the old
epoch shares.

5 Evaluation

We have implemented a prototype of HERMES atop
the most commonly used open source SSL library,
OpenSSL [10] v1.0.1e, the latest version as of this writing.
Our implementation is a separate shared library compat-
ible with the OpenSSL’s Engine API. Without changing
the OpenSSL source, programmers can plug-in our imple-
mentation and vary the way that RSA computations are
performed with the private key. Meanwhile, we have also
created multi-threaded applications (i) for the auxiliary
VMs to establish SSL connections with the combiner VM,
and to perform mathematical operations (e.g., exponenti-
ation with the private key share); (ii) for the defender to
partition the RSA private keys and hand in the shares to
each defender VM. In this section, we present our evalua-
tion result.

5.1 Experiment Setup

Case Studies. As it is challenging to exhaustively test
HERMES with all the network benchmarks, we evaluated
our system using a micro benchmark to profile the per-
formance, and two representative case studies, in which
SSL connection is necessary. The micro benchmark ex-
periments evaluate the performance under varying system
setups to target possible bottlenecks. Once the system dy-
namics are profiled, we execute two real-life case studies
and check any efficiency deficits. The first case study is a

web server, for which we used Apache HTTP Server [7]
v2.4.4. A client connects to the server via HTTPS, and
retrieves the default web page that comes with the appli-
cation, which is a static HTML page of size 2KB. The
second case study is a mail server using Postfix v2.10 [11].
On top of that, we installed Dovecot [8] v2.2.4 as the
IMAP(s)/POP3(s) server. A client connects to the Dove-
cot instance via IMAPS and checks the status of a mailbox,
which contains a single mail of size 1KB. Both server ap-
plications are executed with the keep alive property off
(i.e., the server does not store SSL sessions, and performs
a new handshake for every connection attempt by the
clients).

One may argue that testing the web and mail servers
with such low-sized content is applicable to real-world
case. It is true that almost all web sites serve contents
that may have much larger sizes. However, the purpose of
the experiments is to put as much pressure as possible to
HERMES in the given web and mail server case studies. As
will be clear in the results, as the number of connections
performed per unit time increases, HERMES acts more
efficiently due to decreased network overhead. Hence,
increasing the content sizes would increase the amount of
time the server spends on processing a query, and decrease
the number of requests per unit time. Instead, we used 1
and 2KB contents, and tried pushing HERMES as much
as possible.

Benchmarks. To extract micro benchmark results, we de-
veloped applications that connect to the given defender
VM, using given number of concurrent clients. For the
web server application, we used two different benchmark-
ing tools: Apache HTTP server benchmarking tool [5]
(AB) v2.4.4, which allows us to send HTTPS queries with
a variety of execution options; and Apache JMeter [6]
(AJ) v2.9, where we used the default HTTPS request sam-
pler that comes with the standard AJ binaries. For the
mail server application, we used AJ again, with the de-
fault mail reader sampler. Similar to the server-side, we
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Setup
(10,2) (10,3) (10,4) (10,5) (10,6) (10,7) (10,8) (10,9) (10,10)

1 Clients
Total 12.06 12.27 13.44 11.57 16.10 17.94 16.80 19.80 13.76
Network 4.97 5.14 4.89 2.75 5.07 5.59 5.29 1.15 1.56
Combine 0.52 0.56 0.58 1.82 2.36 1.56 2.44 2.20 1.93

10 Clients
Total 19.78 23.22 28.14 45.87 39.48 48.99 49.97 60.70 52.82
Network 9.72 10.15 10.19 14.29 16.30 23.15 27.17 34.03 14.09
Combine 1.27 1.07 1.26 2.22 2.42 2.64 3.09 2.81 2.23

100 Clients
Total 54.90 71.07 88.31 187.67 130.17 163.24 182.12 206.00 269.73
Network 11.77 25.27 37.77 122.96 69.74 84.05 82.96 121.32 113.15
Combine 1.24 1.62 1.74 2.01 2.15 2.34 2.80 3.01 2.28

1000 Clients
Total 318.24 418.07 435.98 928.75 653.12 642.48 877.42 995.89 1174.54
Network 88.12 123.72 130.21 202.08 196.29 212.05 214.20 216.97 233.41
Combine 1.50 2.20 1.85 1.96 2.08 2.52 2.82 3.24 2.62

Table 2: Average Connection, Network, and Combining Time Spent for Fixed l = 10 in milliseconds

did not use the keep alive functionality in the benchmark-
ing tools, which forces the clients to perform a new SSL
handshaking for each request.

Hardware. For our experiments, we created 10 VM in-
stances on Amazon EC2. The VM that serves that is aug-
mented with the web and mail server applications is of
the type m1.xlarge with 4 virtual CPU and 15GB of RAM.
The remaining VMs are of the type m1.small with 1 virtual
CPU, 1 virtual core, 1.7GB of RAM, and 64-bit Red Hat
Enterprise Linux 6.4. The reason that we don’t perform
experiments with more number of VMs is that our results
for 10 VMs are enough to extrapolate relations between
HERMES modes, parameters (e.g., l, k, τ), and the per-
formance metrics (e.g., average latency, throughput). All
instances are created in the same EC2 region, US-West at
Oregon. The instances communicate with each other over
Amazon’s private network, while a client or the defender
interacts with the VMs over the public network. On the
other hand, we used a single machine to send connection,
web page, or mail check queries, where the machine is an
IBM x3500m3 server with 16GB of RAM, and 4 quad-
core CPUs at 2.4 GHz. Our client machine is located in
our university campus, and is connected to the defender
VMs over the Internet.

Parameters. We vary the number of concurrent clients
from 1 to 1000 exponentially to observe the effects of
increasing load on HERMES. We believe that the number
1000 is enough, since the number of web page views for
most popular web sites goes up to 37 billion per year,
which is approximately 1100 per second [1, 2]. Each ex-
periment ran for 5 minutes, and the average value of 5
runs is shown as the final result. As will be shown in the
following subsection, we observe that a key re-sharing
process takes approximately 50 msec. Combined with the
observation that the average time to process a query may
go up to 2 sec, we vary τ (i.e., the key re-sharing period)
from 5 to 125 seconds.

We perform experiments using 10 VMs, and represent
the setup as (l,k), where l is the number of active VMs,
and k is the number of shares needed to calculate the
RSA result. When l is equal to k, the system runs with
D-RSA mode of operation using l VMs. Furthermore,
(1,1) represents the single VM setup, where the default
SSL (i.e., the one without our modification and there is
only one key) is used. Also, as l must be greater than or
equal to k, it is important to note that we do not have any
experiment set up of (l,k) where l < k.

5.2 Results

Micro Benchmarking. In this set of experiments, we
aimed to observe the sole effects of HERMES on the perfor-
mance, where the client simply connects to the combiner
VM, and immediately closes the SSL channel, without
sending any additional query. Naturally, we expected to
observe a massive load on the combiner VM, since all
it does is to establish SSL channel with the client using
our enhanced SSL, and nothing else. Thus, the number of
requests per unit time will be high, which will introduce
an increased network overhead.

Table 1 shows the micro benchmark results for D-RSA
with up to 10 VMs (e.g., l = 10). We vary the number
of concurrent clients from 1 to 1000, and measure the
average connection time, average time spent for inter-VM
communication, and average time spent for combining
partial results in milliseconds. It is observed that combin-
ing partial results from the auxiliary VMs do not incur
more than 3 msec overhead; thus, does not affect a suc-
cessful enhanced SSL connection in terms of efficiency.
The reason is the simplicity of combining partial results
(i.e., l modular multiplication). On the other hand, inter-
VM communication dominates the overhead introduced
by the enhanced SSL in D-RSA mode. Especially when
the number of concurrent clients is 1000, average time
required to execute an SSL connection exceeds 1 sec if
l > 7. Thus, the network communication becomes the bot-
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Setup
(2,2) (3,2) (4,2) (5,2) (6,2) (7,2) (8,2) (9,2) (10,2)

1 Clients
Total 8.96 12.03 11.23 11.97 12.37 13.47 12.16 9.58 12.06
Network 2.77 4.77 4.82 5.28 5.10 4.77 5.42 4.76 4.97
Combine 1.78 2.13 0.90 1.30 1.35 0.51 0.53 0.55 0.52

10 Clients
Total 31.74 33.45 23.77 25.34 23.57 20.18 18.81 19.26 19.78
Network 19.42 19.10 11.00 9.78 9.62 8.20 10.49 9.26 9.72
Combine 1.95 2.26 1.52 1.47 1.26 1.50 1.29 1.33 1.27

100 Clients
Total 179.01 164.65 95.30 82.50 80.98 66.95 73.26 58.08 54.90
Network 121.05 95.84 52.52 38.03 30.00 25.90 25.93 25.26 11.77
Combine 2.16 2.19 1.82 1.92 1.42 1.59 1.72 1.15 1.24

1000 Clients
Total 640.40 665.95 548.22 504.12 450.09 340.10 350.46 320.84 318.24
Network 210.36 197.43 150.84 123.75 60.88 55.09 59.19 46.50 88.12
Combine 2.26 1.93 1.91 1.91 1.55 1.41 1.42 2.36 1.50

Table 3: Average Connection, Network, and Combining Time Spent for Fixed k = 2 in milliseconds.

tleneck for D-RSA in high load, in case the combiner VM
closes the connection right after a successful connection.
In the results for our case studies, we observe that if the
combiner has to process a request (e.g., prepare a web
page, or check a mailbox) after a successful SSL connec-
tion, the network overhead decreases, which results in less
average latency.

As previously mentioned, we introduce T-RSA mode to
reduce the overhead by simply distributing work amongst
different sets of VMs. Given the performance of 10 VMs
in D-RSA mode, we check if the performance can be im-
proved in T-RSA mode by reducing k (i.e., the number of
needed VMs). Table 2 shows the results for a fixed l = 10
and varying number of k values. Furthermore, we perform
experiments to observe the effect of increasing number
of VMs for a fixed k = 2, and show the results in Table 3.
The performance metrics and the client parameters are
the same as in Table 1. It is observed that for a fixed l
value, the average latency to complete an enhanced SSL
connection drops down as k gets smaller, especially when
k ≤ (l/2). The reason is that different sets of auxiliary
VMs are consulted to complete a single SSL connection
each time, which results in less network connection over-
head. Hence, per each inter-VM connection, we observe
less load, resulting up to 3 times better performance than
D-RSA mode with same l value (e.g., between (10,10)
and (10,2)). On the other hand, it is still reasonable to
pass to T-RSA, even if k > (l/2), since decreasing k has,
definitely, positive effects on the performance. For a fixed
k value, increasing l by introducing new defender VMs
has positive effects on the average time to complete an en-
hanced SSL connection, by simply reducing the inter-VM
communication overhead. The value of k, indeed, affects
the number of VMs that should be introduced to reduce
the average completion time. We extrapolate that introduc-
ing nearly 2k new VMs into HERMES helps decreasing
the overhead by nearly 50%. To solidify our derivations,
we performed the same T-RSA experiments for different
fixed values of k and l. For brevity, we moved the results

Key re-sharing time (msec)
l Avg.Lat. l Avg.Lat. l Avg.Lat.
2 17.59 5 37.89 8 54.64
3 23.60 6 43.65 9 57.34
4 29.51 7 49.82 10 61.28

Table 4: Average Completion Time for Key Re-sharing in
milliseconds.

of those experiments to App. A, from which the same
observations can be easily made.

We, further, measured the average time of completion
for a single key re-sharing process for varying number of
defender VMs. Since, the number of connections that the
defender has to do in the re-sharing process depends on
l, but not on k, we performed the experiments in D-RSA
mode with l number of VMs. Table 4 shows the results,
where the defender re-shares the same partitioned keys
every 5 seconds, and no other client attempts to connect
to the VMs. The experiments ran for 5 minutes, and the
average time to complete a single key re-sharing is cal-
culated. We observe that the average time increases with
the number of VMs, since the defender has to connect
each VM separately, incurring additional inter-VM com-
munication overhead. We see that the values in Table 4
coincides with the values in Table 1. When l is equal to
10, the defender has to make 10 simultaneous connec-
tions to HERMES, resulting a similar result as 10 clients
D-RSA for the setup (10,10). In case of high load (e.g.,
1000 clients), the key re-sharing process would, definitely,
take longer time. Thus, the optimal τ value for the key
re-sharing epoch should be chosen while considering the
server load, and the number of defender VMs.

Web Server. In our first case study, our aim is to show
that the performance improves as the combiner executes a
CPU intensive operation (e.g., prepare a web page) once
connected to the client. The experimental setup is the
same as the micro benchmarking setup, except now the
combiner VM is a web server. When a client employs
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SSL to connect to the combiner VM and retrieve a web
page, the combiner VM collaborates with the auxiliary
VMs, and executes our enhanced SSL.

Fig. 4a and 4d show the results for HERMES in D-RSA
mode, where the number of VMs changes from 1 to 10,
and the number of concurrent clients changes between
1 to 1000 for τ of 125 sec. We use AB and AJ bench-
marking tools, run the experiments for 5 minutes, and
report the average time needed to execute a web page
retrieval request, and the number of requests per second.
We observe similar performance patterns for both of our
metrics (e.g., performance decrease when l is increased)
in compare to the micro benchmarks. However, the per-
formance difference between the two end points (i.e., be-
tween (1,1) and (10,10)) is narrower, due to more CPU-
intensive processing done by the combiner. For 1000 con-
current clients, average latency and throughput in (1,1)
is 740 msec and 255 req/sec, respectively. On the other
hand, the (10,10) setup results in nearly 2 sec average
latency, and 120 req/sec throughput. Compared to nearly
10 times increase in the micro benchmarking results, we
see that the more CPU-intensive job the server does, the
closer the gap between the (1,1) and (10,10) setups is.

Once again, we check if the performance can be
boosted by passing to T-RSA mode, with decreased num-
ber of needed VMs. Fig. 4b and 4e show the results for
fixed l = 10 and τ = 125 sec. We observe that especially
when k ≤ (l/2), the overhead reduces down to nearly 10%
with respect to (1,1) setup. For instance, in the (10,5)
setup, the average latency is 1088 ms, while the through-
put is 220 req/sec. Even better, the throughput increases
to 248 in (10,3) setup, and to 250 in (10,2) setup, which
is just 2% less than (1,1). The reason stems from distribut-
ing workload to more VMs by keeping seperate parts of
the network busy at the same time, which reduces the
inter-VM communication overhead.

We remark that the results are gathered using the sec-
ond slowest VM instances in Amazon EC2. The defender
can instantiate stronger VM instances, with faster network,
which will definitely improve the performance, since the
network latency turns out to be the bottleneck. Further-
more, the defender can distribute the combiner role to
multiple VMs to achieve further workload distribution.

The next results for the web server case study are given
in Fig. 4c and 4f, where we measure the performance for
varying l parameter and a fixed k = 2. We observe that
having l > 2k boosts the performance. Even in the (4,2)
setup, we measure that the average latency and throughput
is 909 msec and 236 req/sec, respectively, which means
less than 10% overhead for the second metric. When the
number of VMs is more than 3k, HERMES performs nearly
the same as the (1,1) setup.

To show that our choice of τ = 125 sec does not have
major effects on the overall performance, we vary the
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Figure 5: Web Server results for k = 2 with varying τ

length of an epoch exponentially from 5 to 125 sec for
different number of VMs, and fixed number of concurrent
clients of 1000. We chose to execute epoch experiments
for the fastest HERMES setup, namely fixed k with high l
values, and to check if performance degradation occurs
for decreased key re-sharing period. Fig. 5 shows the
results for fixed k = 2 and 1000 concurrent clients, and
varying τ values. We observe that even when τ = 5 sec,
the performance metrics behave similar to τ = 125 sec
case. This stems from the server being already loaded with
enough concurrent clients, so that the seldom requests to
re-share keys are only minor issues that does not take too
much time to process.

Mail Server. Mail Server is our second case study, where
the clients establish connection using SSL via IMAPS pro-
tocol, and check a mailbox that contains a single mail. The
default setting with regular SSL (i.e., (1,1) setup) already
results in an average 5758 ms latency, and 49.5 req/sec
for 1000 concurrent clients. Hence, the combiner has to
do more CPU-intensive operation for each client request.
We claim that the margin between (1,1) and (10,10) se-
tups will be less, since the network will be less occupied
at a given time; thus, it will result in less inter-VM com-
munication overhead.

Fig. 6 shows the results for the mail server case study,
where the clients vary from 1 to 1000, and re-sharing
period is 125 sec. First of all, we observe that the perfor-
mance of each setup looks very similar, with nearly at
most 8% overhead with respect to (1,1). The reason to
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Figure 4: Web Server results

observe such a pattern is, as hypothesized, the fact that
an average mail inquiry takes too much time to process.
It causes low throughput values, resulting less number of
SSL handshakes being made per unit time, which in turn
causes less inter-VM communication overhead.

Once more, we observe that increasing the number of
VMs for D-RSA mode has negative effects on the per-
formance metrics, as shown in Fig. 6a and 6d. On the
contrary, increasing l for fixed k value in T-RSA mode en-
hances the overall performance, due to better distribution
of the defender VMs, as seen in Fig. 6c and 6f.

6 Security Analysis

The theoretical security of HERMES is based on the for-
mally proven security of D-RSA and T-RSA, as discussed
in §2.2. Combined with key re-sharing, the adversary
should successfully capture at least l shares in D-RSA
or k in T-RSA to calculate the shared cryptographic key.
On the other hand, in practice, HERMES should give guar-
antees on the probability of a successful attack based on
some assumptions on the nature of the attack and the
system parameters (e.g., τ , l, k). The defender may have
limited budget, or have certain performance requirements.
In any case, HERMES must minimize any security risk
by choosing l, k, and τ optimally. In this section, we first
formalize the problem of finding such optimal values for
those parameters, and then apply the optimization tech-
nique to a sample configuration: the micro benchmarking

scenario discussed in §5. Our choice to apply optimiza-
tion to only one configuration is due to space constraints;
however, our approach is modular, and is easily applicable
to any other cases.

6.1 Problem Formalization
In our formalization, we consider three main aspects: se-
curity, cost, and performance. Security aspect allows us
to provide an upper bound on the possibility of a suc-
cessful key extraction attack on HERMES for the given k,
l, and τ values. Theoretically, increasing k and l, or de-
creasing τ will make it harder for the adversary to achieve
its goal. However, increasing l implies more defender
VMs running on the cloud, which increases the total cost.
Moreover, our experiments showed that the performance
degrades as l and k increase together. Hence, the opti-
mal values should be assigned to k, l, τ for the given
constraints (e.g., budget, performance limit).

Security Aspect. To quantify the probability of a success-
ful attack in an epoch, we assume that the adversary has
to start from scratch in each epoch, which implies that
it loses all its previously acquired information. This is a
valid assumption, since shares for each epoch are inde-
pendent from one another, and a captured share does not
contribute any information to the next epoch. The inabil-
ity of conducting acquired information to the following
epochs makes it convincing to model the probability of
a successful attack as an exponentially distributed ran-
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Figure 6: Mail Server results

dom variable. Given the success rate parameter θ , the
probability distribution for the attack is:

f (t) =
{ 1

θ e−t/θ if t > 0
0 otherwise

(1)

Since the exponential distribution is memoryless1 and
the cryptographic key is re-shared in each epoch, we can
simply assume that the input to f is the time difference
from the last re-sharing moment. Then, given the length
of the epoch τ , the probability of a successful attack is:

F(τ,θ) =
∫ τ

0
f (t).dt = 1− e−τ/θ (2)

Finally, assuming that the probability of capturing
shares from a single VM is identical to and independent
from all other VMs, the probability of capturing at least k
shares from l defender VMs in an epoch is:

Sec(l,k,τ,θ) =
l

∑
i=k

(
l
i

)
(1− e−τ/θ )i(e−τ/θ )l−i (3)

Cost Aspect. Modeling monetary cost in HERMES is
rather simple compared to the other two aspects. Assum-
ing that the cloud provider does not charge money for
the inter-VM communications, the total monetary cost
is Cost(l) = l.β , where β is the unit cost of running a
single VM on the cloud provider. The cost of communica-
tion with the client is also neglected, since this is not an
additional cost incurred by HERMES.

Performance Aspect. The method to formalize the ex-
pected performance depends heavily on the application
that HERMES is running for, and the metrics that the de-
fender considers. For instance, one may value throughput
more than the latency while running HERMES. On the
other hand, the effects of changing parameters (i.e., k, l) in
the mail server case study is far different than changing the
same parameters in the micro benchmarking experiments.
For brevity, we show the performance of HERMES for the
given k and l as Per f (l,k), and leave it to the defender to
define the characteristics of the function.

Optimization Problem. Given the success rate parameter
θ , the unit cost of a VM β , the budget limit Lcost , and
the performance limit Lper f , the aim of the optimization
problem is to minimize the probability of a successful
attack in an epoch while keeping the total monetary cost
below Lcost and the performance below Lper f . Formally,
the optimization problem is:

minimize: Sec(l,k,τ,θ)
subject to: Cost(l)≤ Lcost , Per f (l,k)≤ Lper f

l ≥ k > 1, τ > 0

6.2 Application to Micro Benchmarking
Modeling performance is highly dependent on the case
study and the aimed configuration, thus it is challenging
to apply the optimization to every single case. Instead, we
targeted to optimize HERMES for 100 concurrent clients
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θ = 600 θ = 3600
Lcost/yr Conf. Sec() Conf. Sec()
$1820 (2,2) 6.8 ·10−5 (2,2) 1.9 ·10−6

$3640 (4,3) 2.2 ·10−6 (4,3) 3.7 ·10−8

$7280 (8,5) 2.1 ·10−9 (8,5) 2.8 ·10−13

$14560 (16,10) 1.1 ·10−17 (16,10) 2.1 ·10−25

Table 5: Optimal setup and resulting successful attack
probabilities in an epoch for fixed expected latency limit

Lper f = 150 msec, and θ = {600,3600}

in the micro benchmarking scenario, since all experiment
results for the chosen configuration are given in §5.2 and
App. B. For brevity, we make a further assignment of
parameters by choosing re-sharing period as τ = 5 sec
and success rate parameter as θ = 3600. τ = 5 sec is the
smallest value that we have tested, and is a valid value
that allows HERMES to complete several computations
in each epoch. Furthermore, choosing small re-sharing
period will tighten the overall security, since the adver-
sary has to complete the attack in a very short period. On
the other hand, choosing θ as 3600 is due to the existing
cross-VM attacks (i.e., [41,51]), which necessitates hours
to capture the cryptographic key. In an exponential distri-
bution, expected waiting time to observe one success is θ .
Since, we expect the attack to succeed in an hour, we as-
sign θ = 3600, representing the number of seconds in an
hour. In addition, we check θ = 600 to observe changes
in optimal values.

In this example, we picked latency as the target per-
formance metric to consider, assuming that the defender
aimed to serve 100 concurrent clients as fast as possible.
The important step to model performance is to figure out
Per f (l,k). To overcome this, we applied multiple linear
regression on our experiment results, and came up with
a formula that gives the expected latency value for the
given l and k values. As it is challenging to test every
possible formula, and increasing the number of variables
may over-fit the training data, we chose a simple poly-
nomial Per f (l,k) = c0 + c1.l + c2.k+ c3.(l/k) to model
the expected latency, where the coefficients are c0 = 118,
c1 =−18, c2 = 31, and c3 = 7. Finally, to observe the ef-
fects of different performance limits Lper f , we calculated
optimal HERMES setups for Lper f ∈ [50,200]. Finally, as-
suming that the defender will use the second cheapest
VM instance on Amazon EC2, she will pay $0.104/hour,
which is approximately $910/yr. We vary the monetary
budget between $1820/yr and $14560/yr to check opti-
mal values, which is simply l ∈ [2,16].

Table 5 shows the results of the optimization proce-
dure for varying monetary budget, and fixed Lper f = 150.
The results include the optimal HERMES setup and the
probability of a successful attack in one epoch, for both
θ = 3600 and 600. We observe that as we increase the

θ = 600 θ = 3600
Lper f Conf. Sec() Conf. Sec()

50 msec (16,6) 2.4 ·10−9 (16,6) 5.6 ·10−14

100 msec (16,8) 2.7 ·10−13 (16,8) 1.7 ·10−19

150 msec (16,10) 1.1 ·10−17 (16,10) 2.1 ·10−25

200 msec (16,11) 5.4 ·10−20 (15,11) 4.9 ·10−29

Table 6: Optimal setup and resulting successful attack
probabilities in an epoch for fixed monetary budget

Lcost = $14560/yr, and θ = {600,3600}

monetary budget, HERMES is allowed to run with more
VMs, resulting in lower probabilities of success for the
adversary. For instance, when the budget is $7280/yr and
θ = 3600, HERMES can be configured to run in (8,5)
setup, while the adversary has only 2.8 ·10−13 chance to
capture the partitioned cryptographic key.

Table 6 shows similar set of results, this time for fixed
monetary budget of $14560/yr, but varying expected per-
formance limit Lper f . We deduce that as HERMES is
allowed to respond slower, it can be configured to run
with increased k, which decreases the attack success prob-
ability. For instance, increasing expected latency from
50 msec to 150 msec decreases the attack success prob-
ability nearly 8 and 11 fold, when θ is 600 and 3600,
respectively.

Note that the probabilities are calculated for a success-
ful attack in one epoch, one would question if the adver-
sary would accomplish its goal in a longer period, say a
year. For $7280/yr and an expected latency of 150 msec
in our micro benchmarking case study, the probability of
capturing the complete cryptographic key in one year is
1.8 ·10−6 if the average time to capture a key is predicted
as 3600 sec, which is a very small probability.

7 Related Work

Attacks. There exists a myriad of side-channel attacks
with different assumptions and setups. The adversary
may leverage observations made on the shared hardware
to execute access driven attacks (e.g., [13, 14, 28, 43]);
measure timings of certain cryptographic operations
of the defender to perform time-driven attacks (e.g.,
[15, 19, 20, 34, 47]); or physically observe the defender
machines and run trace driven attacks (e.g., [18, 26, 33]).
The specific type of attacks, which HERMES aims to mit-
igate, is cross-VM side-channel attacks, in which both
the defender and the adversary are customers to a third-
party cloud infrastructure. Both entities initialize VMs
in the cloud, where the victim’s VMs are attacked by
the adversary’s VMs. Ristenpart et al. [41] showed the
first cross-VM side-channel, in which they first co-reside
their VMs with the defender VMs, and execute an access-
driven attack to retrieve crude information (e.g., aggregate
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cache usage). In another work, though not for adversar-
ial purposes, Zhang et al. [50] present HomeAlone that
performs a co-residency check between two VMs using
classifiers on cache timing. In another attack, Zhang et al.
push it one step further, and extract an ElGamal private
key using cross-VM attacks [51]. Those works showed
that VMs in public cloud infrastructures are vulnerable
to side-channel attacks, and protection mechanisms are
needed to secure private information.

Prevention. Among the variety of side-channel preven-
tion techniques, the most popular ones are randomization-
based approaches. MIST is one of such examples, in
which the square-and-multiply method is extended with
an additional division by a randomly chosen number [38,
45]. Other approaches include adding random noise be-
tween squaring and multiplying operations, or applying
always-multiply techniques. To countermeasure those
side-channel prevention techniques, Karlof et al. promotes
Hidden Markov Model based cryptanalysis as a powerful
tool [30]. On the other hand, Witteman et al. shows a trace
driven side-channel attack to break down always-multiply
technique and message binding in RSA [49]. Although
the latter is trace driven, those two works show that even
randomization based side-channel prevention approaches
could have vulnerabilities that can be used by different
types of adversaries.

There exist several works that aim to prevent side-
channel attacks in public clouds. HomeAlone [50] uses
co-residency checks to see if a VM is physically isolated
from any other VM, and to achieve maximum physical
isolation. Our work aims to prevent the leakage of private
keys even if the adversary co-resides with the defender,
whereas they aim to prevent access-driven side-channel at-
tacks by assuring physical isolation. In HyperSafe, Wang
and Jiang aim to provide hypervisor integrity throughout
the execution [46]. We assume that the cloud provider and
its infrastructure (including the hypervisor) are trusted.
Other prevention mechanisms include [17], which aims
to prevent side-channel attacks that use communication
traffic; StealthMem that hides memory access patterns
to protect private information [32]. Compared to these
works, HERMES is applicable to any type of cross-VM
attacks against cryptographic keys.

8 Conclusion

In this paper, we present HERMES, a novel system to pro-
tect cryptographic keys in cloud VMs. The key idea is to
periodically partition a cryptographic key using additive
or Shamir secret sharing. With two different case studies,
we show that the overhead can be as low as 1%. With
such small overhead in an average request, cryptographic
keys become more leakage-resilient against any adversary.

Furthermore, we model the problem of finding optimal
parameters for the given monetary and performance con-
straints, which minimizes the security risk. Using our for-
mal model, the defender can calculate the probability of a
successful attack, and take precautions (e.g., increase the
number of VMs, decrease epoch length). As a proof-of-
concept, the current implementation of HERMES mainly
focuses on the protection of the RSA private key, which
is widely used in many daily web site and mail server
communications. However, there exists a myriad of works
on threshold signature schemes for different cryptosys-
tems, (e.g., [21, 23, 27, 35, 36]), which may be applicable
to HERMES with slight modifications.
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Setup
(9,2) (9,3) (9,4) (9,5) (9,6) (9,7) (9,8) (9,9)

1 Clients
Total 9.58 10.70 11.53 15.88 13.93 13.97 14.13 14.05
Network 4.76 4.49 4.85 5.30 5.01 4.84 2.45 1.07
Combine 0.55 1.44 1.18 1.65 1.77 1.65 2.75 2.00

10 Clients
Total 19.26 21.29 24.14 31.43 32.81 39.67 46.73 50.64
Network 9.26 10.84 12.87 15.85 14.55 22.92 23.74 18.11
Combine 1.33 1.51 1.68 2.07 2.61 2.83 2.76 2.58

100 Clients
Total 58.08 68.32 91.87 144.08 164.54 209.26 247.54 257.03
Network 25.26 37.91 51.19 98.69 108.02 101.33 111.37 98.71
Combine 1.15 1.64 2.01 2.24 2.56 2.14 2.81 2.81

Table 7: Average Connection, Network, and Combining Time Spent for Fixed l = 9 in milliseconds

Setup
(3,3) (4,3) (5,3) (6,3) (7,3) (8,3) (9,3) (10,3)

1 Clients
Total 10.4 12.98 12.04 11.96 13.33 11.57 10.70 12.27
Network 2.82 6.57 5.11 5.04 5.28 4.92 4.49 5.14
Combine 1.76 1.46 1.66 1.51 1.90 1.49 1.44 0.56

10 Clients
Total 37.85 35.85 29.35 24.22 24.31 21.66 21.29 23.22
Network 21.67 21.81 15.76 12.43 11.53 10.56 10.84 10.15
Combine 2.05 2.02 1.97 1.69 1.71 1.57 1.51 1.07

100 Clients
Total 178.14 209.99 146.54 99.47 86.62 79.72 68.32 71.07
Network 113.36 158.35 112.46 67.47 61.25 51.57 37.91 25.27
Combine 2.14 2.49 2.00 1.85 1.90 1.65 1.64 1.62

Table 8: Average Connection, Network, and Combining Time Spent for Fixed k = 3 in milliseconds

A Additional Experiments

Tables 7 and 8 show the results for the micro benchmark.

B T-RSA Details

Key partitioning: The dealer creates two strong primes
p = 2p′ + 1 and q = 2q′ + 1, where p′ and q′ are also
prime numbers. Next, it creates a random prime number
e > l, and calculates d = e−1 mod m, where m = p′q′.

Then, the dealer creates a random polynomial f (X) =
k−1
∑

i=0
aiXi ∈ Z[X ], where a0 = d, and a1, . . . ,ak−1 are ran-

dom integers in Z. Next, the dealer computes each party
pi’s share as si = f (i) mod m. The public key is (n,e),
while each party is given si as their share of the private
key.

Using the secret key: For a given message M ∈ Z∗
n,

the chosen combiner selects a subset of the parties, S =
{i1, . . . , ik} ⊆ {1, . . . , l}, where |S| = k, and sends M to
each party in S. Each selected party pi j performs the fol-
lowing set of operations:

1. ∆ = l!

2. λ S
0,i j

= ∆
∏ix∈S\{i j} −ix

∏ix∈S\{i j} (i j−ix)

3. wi j = M4∆si j λ0,i j

λ S
0,i j

is the polynomial interpolation constant for pi j

in set S, where ∆ f (0) ≡ ∑i j∈S λ S
0,i j

f (i j) mod m. Once

the combiner gets a partial result, wi j , from each party
in S, it computes w = ∏i j∈S wi j . Then, it executes the
extended Euclidean algorithm for e and e′ = 4∆2, and
gets integers a and b, where e′a+ eb = gcd(e′,e) = 1.
The greatest common divisor of e and e′ is 1, since e is
a prime number, and each factor of e′ is smaller than e.
Finally, the combiner computes y = waMb as the final
result.

The final value y is in fact Md mod n:

w ≡ ∏
i j∈S

wi j ≡ ∏
i j∈S

M4∆si j λ0,i j ≡ M4∆2d ≡ Me′d mod n

y ≡ waMb ≡ Mae′d+b ≡ Md(1−eb)+b ≡ Md mod n

Notes

1In a memoryless probability distribution, the cumulative probability
depends on the distance from the starting time of the distribution to the
current time.
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Abstract

Sharing memory pages between non-trusting processes
is a common method of reducing the memory footprint
of multi-tenanted systems. In this paper we demon-
strate that, due to a weakness in the Intel X86 processors,
page sharing exposes processes to information leaks. We
present FLUSH+RELOAD, a cache side-channel attack
technique that exploits this weakness to monitor access
to memory lines in shared pages. Unlike previous cache
side-channel attacks, FLUSH+RELOAD targets the Last-
Level Cache (i.e. L3 on processors with three cache lev-
els). Consequently, the attack program and the victim do
not need to share the execution core.

We demonstrate the efficacy of the FLUSH+RELOAD
attack by using it to extract the private encryption keys
from a victim program running GnuPG 1.4.13. We tested
the attack both between two unrelated processes in a sin-
gle operating system and between processes running in
separate virtual machines. On average, the attack is able
to recover 96.7% of the bits of the secret key by observ-
ing a single signature or decryption round.

1 Introduction

To reduce the memory footprint of a system, the system
software shares identical memory pages between pro-
cesses running on the system. Such sharing can be based
on the source of the page, as is the case in shared li-
braries [13, 26, 42]. Alternatively, the sharing can be
based on actively searching and coalescing identical con-
tents [6, 55]. To maintain the isolation between non-
trusting processes, the system relies on hardware mecha-
nisms that enforce read only or copy-on-write [13, 40]
semantics for shared pages. While the processor en-
sures that processes cannot change the contents of shared
memory pages, it sometimes fails to block other forms of
inter-process interference.

One form of interference through shared pages results

from the shared use of the processor cache. When a pro-
cess accesses a shared page in memory, the contents of
the accessed memory location is cached. Gullasch et
al. [29] describes a side channel attack technique that
utilises this cache behaviour to extract information on
access to shared memory pages. The technique uses the
processor’s clflush instruction to evict the monitored
memory locations from the cache, and then tests whether
the data in these locations is back in the cache after al-
lowing the victim program to execute a small number of
instructions.

We observe that the clflush instruction evicts the
memory line from all the cache levels, including from
the shared Last-Level-Cache (LLC). Based on this ob-
servation we design the FLUSH+RELOAD attack—an ex-
tension of the Gullasch et al. attack. Unlike the original
attack, FLUSH+RELOAD is a cross-core attack, allowing
the spy and the victim to execute in parallel on differ-
ent execution cores. FLUSH+RELOAD further extends
the Gullasch et al. attack by adapting it to a virtualised
environment, allowing cross-VM attacks.

Two properties of the FLUSH+RELOAD attack make
it more powerful, and hence more dangerous, than prior
micro-architectural side-channel attacks. The first is that
the attack identifies access to specific memory lines,
whereas most prior attacks identify access to larger
classes of locations, such as specific cache sets. Con-
sequently, FLUSH+RELOAD has a high fidelity, does not
suffer from false positives and does not require additional
processing for detecting access. While the Gullasch et al.
attack also identifies access to specific memory lines, the
attack frequently interrupts the victim process and as a
result also suffers from false positives.

The second advantage of the FLUSH+RELOAD attack
is that it focuses on the LLC, which is the cache level
furthest from the processors cores (i.e., L2 in proces-
sors with two cache levels and L3 in processors with
three). The LLC is shared by multiple cores on the
same processor die. While some prior attacks do use the



720 23rd USENIX Security Symposium USENIX Association

LLC [47, 60], all of these attacks have a very low res-
olution and cannot, therefore, attain the fine granularity
required, for example, for cryptanalysis.

To demonstrate the power of FLUSH+RELOAD we use
it to mount an attack on the RSA [48] implementation of
GnuPG [27]. We test the attack in two different scenar-
ios. In the same-OS scenario both the spy and the victim
execute as processes in the same operating system. In
the cross-VM scenario, the spy and the victim execute
in separate, co-located virtual machines. Both scenarios
were tested in a local lab settings on otherwise idle ma-
chines.

By observing a single signing or decryption round, the
attack extracts 98.7% of the bits on average in the same-
OS scenario and 96.7% in the cross-VM scenario, with a
worst case of 95% and 90%, respectively.

The rest of this paper is organised as follows. The next
section presents background information on page shar-
ing, cache architecture and the RSA encryption. Sec-
tion 3 describes the FLUSH+RELOAD technique, fol-
lowed by a description of our attack on GnuPG in Sec-
tion 4. Mitigation techniques are presented in Section 5,
and the related work in Section 6.

2 Preliminaries

2.1 Page Sharing
Sharing memory between processes can serve two dif-
ferent aims. It can be used as an inter-process com-
munication mechanisms between two co-operating pro-
cesses and it can be used for reducing memory footprint
by avoiding replicated copies of identical contents. This
paper focuses on the latter use.

When using content-aware sharing, identical pages
are identified by the disk location the contents of the
page is loaded from. This is the traditional form of
sharing in an operating system, which is used for shar-
ing the text segment of executable files between pro-
cesses executing it and when using shared libraries [26].
Context-aware sharing has been suggested in early op-
erating systems, such as Multics [42] and TENEX [13],
and is implemented in all current major operating sys-
tems. This approach has also been suggested within the
context of virtualisation hypervisors, such as Disco [15]
and Satori [39].

Content-based page sharing, also called memory de-
duplication, is a more aggressive form of page sharing.
When using de-duplication, the system scans the active
memory, identifying and coalescing unrelated pages with
identical contents. De-duplication is implemented in the
VMware ESX [54, 55] and PowerVM [17] hypervisors,
and has also been implemented in Linux [6] and in Win-
dows [33].

As memory pages can be shared between non co-
operating processes, the system must protect the contents
of the pages to prevent malicious processes from modify-
ing the shared contents. To achieve this, the system maps
shared pages as copy-on-write [13, 40]. Read operations
on copy-on-write pages are permitted whereas write op-
erations cause a CPU trap. The system software, which
gains control of the CPU during the trap, copies the con-
tents of the shared page, maps the copied page into the
address space of the writing process and resumes the pro-
cess.

While copy-on-write protects shared pages from mod-
ifications, it is not fully transparent. The delay intro-
duced when modifying a shared page can be detected by
processes, leading to a potential information leak attack.
Such attacks have been implemented within virtualised
environments for creating covert channels [58], for OS
fingerprinting [44] and for detection of applications and
data in other guests [49].

2.2 Cache Architecture

In addition to sharing memory pages, processes run-
ning on the same processor share the processor caches.
Processor caches bridge the gap between the processing
speed of modern processors and the data retrieval speed
of the memory. Caches are small banks of fast memory
in which the processor stores values of recently accessed
memory cells. Due to locality of reference, recently used
values tend to be used again. Retrieving these values
from the cache saves time and reduces the pressure on
the main memory.

Modern processors employ a cache hierarchy consist-
ing of multiple caches. For example, the cache hierarchy
of the Core i5-3470 processor, shown in Fig. 1, consists
of three cache levels: L1, L2 and L3.

32 KB

L1 Inst

32 KB

L1 Data

L2 256KB

Core 2

32 KB

L1 Inst

32 KB

L1 Data

L2 256KB

Core 3

L3 Unified − 6MB

32 KB

L1 Inst

32 KB

L1 Data

Core 0

L2 256KB

32 KB

L1 Inst

32 KB

L1 Data

L2 256KB

Core 1

Figure 1: Intel Ivy Bridge Cache Architecture

The Core i5-3470 processor has four processing units
called cores. Each core has a 64KB L1 cache, divided
into a 32KB data cache and a 32KB instruction cache.
Each core also has a 256KB L2 cache. The four cores

2
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share a 6MB L3 cache, also known as the Last-Level
Cache, or LLC.

The unit of memory in a cache is a line which contains
a fixed number of bytes. A cache consists of multiple
cache sets each of which stores a fixed number of cache
lines. The number of cache lines in a set is the cache
associativity. Each memory line can be cached in any of
the cache lines of a single cache set. The size of cache
lines in the Core i5-3470 processor is 64 bytes. The L1
and L2 caches are 8-way associative and the L3 cache is
12-way associative.

An important feature of the LLC in modern Intel pro-
cessors is that it is an inclusive cache. That is, the LLC
contains copies of all of the data stored in the lower cache
levels. Consequently, flushing or evicting data from the
LLC also remove said data from all other cache levels of
the processor. Our attack exploits this cache behaviour.

Retrieving data from memory or from cache levels
closer to memory takes longer than retrieving it from
cache levels closer to the core. This difference in tim-
ing has been exploited for side-channel attacks. Side-
channel attacks target information that an implementa-
tion of an algorithm leaks through its interaction with
its environment. To exploit the timing difference, an at-
tacker sets the cache to a known state prior to a victim
operation. It can, then, use one of two methods to de-
duce information on the victim’s operation [43]. The
first method is measuring the time it takes for the vic-
tim to execute the operation. As this time depends on
the state of the cache when the victim starts the opera-
tion, the attacker can deduce the cache sets accessed by
the victim and, therefore, learn information on the vic-
tim [5, 9, 57]. The second approach is for the attacker to
measure the time it takes for the attacker to access data
after the victim’s operation. This time is dependent on
the cache state prior to the victim operation as well as
on the changes the victim operation caused in the cache
state [1, 2, 4, 14, 19, 47, 61].

Most prior work on cache side-channel attacks relies
on the victim and spy executing within the same process-
ing core. One reason for that is that many of the attacks
suggested require the victim to be stopped while the spy
performs the attack. To that aim, the attack is combined
with an attack on the scheduler that allows the spy pro-
cess to interrupt and block the victim.

Another reason for attacking within the same core is
that the attacks focus on the L1 cache level, which is not
shared between cores. The large size of the LLC hin-
ders attacks both because setting it to a known state takes
longer than with smaller caches and because the virtual
memory used by the operating system masks the map-
ping of memory addresses to cache sets. Furthermore,
as most of the memory activity occurs at the L1 cache
level, less information can be extracted from LLC activ-

ity. Some prior works do use the LLC as an information
leak channel [46,47,60]. However, due to the cache size,
these channels have a low bandwidth.

We now proceed to describe the RSA encryption.

2.3 RSA
RSA [48] is a public-key cryptographic system that sup-
ports encryption and signing. Generating an encryption
system requires the following steps:

• Randomly selecting two prime numbers p and q and
calculating n = pq.

• Choosing a public exponent e. GnuPG uses e =
65537.

• Calculating a private exponent d ≡ e−1 (mod (p−
1)(q−1)).

The generated encryption system consists of:

• The public key is the pair (n,e).

• The private key is the triple (p,q,d).

• The encrypting function is E(m) = me mod n.

• The decrypting function is D(c) = cd mod n.

CRT-RSA is a common optimisation for the imple-
mentation of the decryption function. It splits the se-
cret key d into two parts dp = d mod (p− 1) and dq =
d mod (q−1), computes two parts of the message: mp =
cdp mod p and mq = cdq mod q. m is then computed
from mp and mq using Garner’s formula [25]:

h = (mp −mq)(q−1 mod p) mod p
m = mq +hq

To compute the encryption and decryption func-
tions, GnuPG versions before 4.1.14 and the related
libgcrypt before version 1.5.3 use the square-and-
multiply exponentiation algorithm [28]. Square-and-
multiply computes x = be mod m by scanning the bits
of the binary representation of the exponent e. Given a
binary representation of e as 2n−1en−1 + · · ·20e0, square-
and-multiply calculates a sequence of intermediate val-
ues xn−1, . . . ,x0 such that xi = b�e/2i� mod m using the
formula xi−1 = xi

2bei−1 . Figure 2 shows a pseudo-code
implementation of square-and-multiply.

As can be seen from the implementation, computing
the exponent consists of sequence of Square and Mul-
tiply operations, each followed by a Modulo Reduce.
This sequence corresponds directly with the bits of the
exponent. Each occurrence of Square-Reduce-Multiply-
Reduce within the sequence corresponds to a bit whose
value is 1. Occurrences of Square-Reduce that are not

3



722 23rd USENIX Security Symposium USENIX Association

1 function exponent(b, e, m)
2 begin
3 x ← 1
4 for i ← |e|−1 downto 0 do
5 x ← x2

6 x ← x mod m
7 if (ei = 1) then
8 x ← xb
9 x ← x mod m

10 endif
11 done
12 return x
13 end

Figure 2: Exponentiation by Square-and-Multiply

followed by a Multiply correspond to bits whose values
are 0. Consequently, a spy process that can trace the ex-
ecution of the square-and-multiply exponentiation algo-
rithm can recover the exponent.

As GnuPG uses the CRT-RSA optimisation, the spy
process can only hope to extract dp and dq. However, for
an arbitrary message m, (m−medp) is a multiple of p.
Hence, knowing dp (and, symmetrically, dq) is sufficient
for factoring n and breaking the encryption [16].

3 The FLUSH+RELOAD Technique

The FLUSH+RELOAD technique is a variant of
PRIME+PROBE [51] that relies on sharing pages between
the spy and the victim processes. With shared pages, the
spy can ensure that a specific memory line is evicted from
the whole cache hierarchy. The spy uses this to monitor
access to the memory line. The attack is a variation of
the technique suggested by Gullasch et al. [29], which in-
clude adaptations for use in multi-core and in virtualised
environments.

A round of attack consists of three phases. During the
first phase, the monitored memory line is flushed from
the cache hierarchy. The spy, then, waits to allow the
victim time to access the memory line before the third
phase. In the third phase, the spy reloads the memory
line, measuring the time to load it. If during the wait
phase the victim accesses the memory line, the line will
be available in the cache and the reload operation will
take a short time. If, on the other hand, the victim has
not accessed the memory line, the line will need to be
brought from memory and the reload will take signifi-
cantly longer. Figure 3 (A) and (B) show the timing of
the attack phases without and with victim access.

As shown in Fig. 3 (C), the victim access can overlap
the reload phase of the spy. In such a case, the victim ac-
cess will not trigger a cache fill. Instead, the victim will
use the cached data from the reload phase. Consequently,
the spy will miss the access.

Attacker

(A)
Victim

Attacker

(B)
Victim

Attacker

(C)
Victim

Attacker

(D)
Victim

Attacker

(E)
Victim

Attacker

Access Something else

Victim

Wait ReloadFlush

Figure 3: Timing of FLUSH+RELOAD. (A) No Victim
Access (B) With Victim Access (C) Victim Access Over-
lap (D) Partial Overlap (E) Multiple Victim Accesses

A similar scenario is when the reload operation par-
tially overlaps the victim access. In this case, depicted
in Fig. 3 (D), the reload phase starts while the victim is
waiting for the data. The reload benefits from the vic-
tim access and terminates faster than if the data has to be
loaded from memory. However, the timing may still be
longer than a load from the cache.

As the victim access is independent of the execution of
the spy process code, increasing the wait period reduces
the probability of missing the access due to an overlap.
On the other hand, increasing the wait period reduces the
granularity of the attack.

One way to improve the resolution of the attack with-
out increasing the error rate is to target memory accesses
that occur frequently, such as a loop body. The attack
will not be able to discern between separate accesses,
but, as Fig. 3 (E) shows, the likelihood of missing the
loop is small.

Several processor optimisations may result in false
positives due to speculative memory accesses issued by
the victim’s processor [34]. These optimisations include
data prefetching to exploit spatial locality and specula-
tive execution [52]. When analysing the attack results,
the attacker must be aware of these optimisations and de-
velop strategies to filter them.

Our implementation of the attack is in Figure 4. The
code measures the time to read the data at a memory ad-
dress and then evicts the memory line from the cache.
This measurement is implemented by the inline assem-
bly code within the asm command.

The assembly code takes one input, the address, which
is stored in register %ecx. (Line 16.) It returns the time
to read this address in the register %eax which is stored

4
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Figure 5: Distribution of Load Times.

1 int probe(char *adrs) {

2 volatile unsigned long time;

3

4 asm __volatile__ (

5 " mfence \n"

6 " lfence \n"

7 " rdtsc \n"

8 " lfence \n"

9 " movl %%eax, %%esi \n"

10 " movl (%1), %%eax \n"

11 " lfence \n"

12 " rdtsc \n"

13 " subl %%esi, %%eax \n"

14 " clflush 0(%1) \n"

15 : "=a" (time)

16 : "c" (adrs)

17 : "%esi", "%edx");

18 return time < threshold;

19 }

Figure 4: Code for the FLUSH+RELOAD Technique

in the variable time. (Line 15.)
Line 10 reads 4 bytes from the memory address in

%ecx, i.e. the address pointed by adrs. To measure the
time it takes to perform this read, we use the processor’s
time stamp counter.

The rdtsc instruction in line 7 reads the 64-bit
counter, returning the low 32 bits of the counter in %eax

and the high 32 bits in %edx. As the times we measure
are short, we treat it as a 32 bit counter, ignoring the 32
most significant bits in %edx. Line 9 copies the counter
to %esi.

After reading the memory, the time stamp counter is
read again. (Line 12.) Line 13 subtracts the value of the
counter before the memory read from the value after the
read, leaving the result in the output register %eax.

The crux of the technique is the ability to evict specific
memory lines from the cache. This is the function of the
clflush instruction in line 14. The clflush instruc-
tion evicts the specific memory line from all the cache
hierarchy, including the L1 and L2 caches of all cores.
Evicting the line from all cores ensures that the next time
the victim accesses the memory line it will be loaded into
L3.

The purpose of the mfence and lfence instructions in
lines 5, 6, 8 and 11 is to serialise the instruction stream.
The processor may execute instructions in parallel or out
of order. Without serialisation, instructions surrounding
the measured code segment may be executed within that
segment.

The lfence instruction performs partial serialisation.
It ensures that load instructions preceding it have com-
pleted before it is executed and that no instruction fol-
lowing it executes before the lfence instruction. The
mfence instruction orders all memory access, fence in-
structions and the clflush instruction. It is not, how-
ever, ordered with respect to other instructions and is,
therefore, not sufficient to ensure ordering.

Intel recommends using the serialising instruction
cpuid for that purpose [45]. However, in virtualised en-
vironments the hypervisor emulates the cpuid instruc-
tion. This software emulation takes too long (over 1,000
cycles) to provide the fine granularity required for the at-
tack.

Line 18 compares the time difference between the
two rdtsc instructions against a predetermined thresh-
old. Loads shorter than the threshold are presumed to
be served from the cache, indicating that another process
has accessed the memory line since it was last flushed
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from the cache. Loads longer than the threshold are pre-
sumed to be served from the memory, indicating no ac-
cess to the memory line.

The threshold used in the attack is system dependent.
To find the threshold for our test systems, we used the
measurement code of the probe in Listing 4 to measure
load times from memory and from the L1 cache level.
(To measure the L1 times we removed the clflush in-
struction in line 14.) The results of 100,000 measure-
ments of each on an HP Elite 8300 with an i5-3470 pro-
cessor, running CentOS 6.5 are presented in Figure 5.

Virtually all loads from the L1 cache measure 44 cy-
cles. (Note that this measure includes an overhead for the
rdtsc and the fence instructions and is, therefore, much
longer than a single load instruction.) Loads from mem-
ory show less constant timing. Over 98% of those take
between 270 and 290 cycles. The rest are mostly spread
around 880 cycles with about 200 loads measured 1140–
1175 cycles. No loads from memory measured less than
200 cycles.

The timings of load operations depend on both the sys-
tem architecture and the software environment. For ex-
ample, on a Dell PowerEdge T420 with Xeon E5-2430
processors, loads from L1 take between 33 and 43 cy-
cles and loads from memory take around 230 cycles. On
the same architecture, within a KVM [37] guest, about
0.02% of the loads from memory take over 6,000 cycles.
We believe these are caused by hypervisor activity.

The L1 measurements underestimate the probe time
for data that the victim accesses. In an attack, data the
victim accesses is read from the L3 cache. Intel docu-
mentation [34] states that the difference is between 22
and 39 cycles. Based on the measurement results and the
Intel documentation we set the threshold to 120 cycles.

To use the FLUSH+RELOAD technique the spy and the
victim processes need to share both the cache hierarchy
and memory pages. In a non-virtualised environment, to
share the cache hierarchy, the attacker needs the ability
to execute software on the victim machine. The attacker,
however, does not need elevated privileges on the vic-
tim machine. For a virtualised environment, the attacker
needs access to a guest co-located on the same host as
the victim guest. Techniques for achieving co-location
are described by Ristenpart et al. [47]. Identifying the
OS and software version in co-resident guests has been
dealt with in past research [44, 49].

For sharing memory pages in system that use content-
aware sharing, the attacker needs read access to the at-
tacked executable or shared libraries. In systems that
support de-duplication the attacker needs access to a
copy of the attacked files. De-duplication will coalesce
pages from these copies with pages from the attacked
files.

4 Attacking GnuPG

In this section we describe how we use the FLUSH+RE-
LOAD technique to extract the components of the private
key from the GnuPG implementation of RSA.

We tested the attack on two hardware platforms: an
HP Elite 8300, which features an Intel Core i5-3470 pro-
cessor and 8GB DDR3-1600 memory and a Dell Pow-
erEdge T420, with two Xeon E5-2430 processors and
32GB DDR3-1333 memory. On each hardware platform
we experimented with two scenarios. The same-OS sce-
nario tests the attack between two unrelated processes in
the same operating system while the cross-VM scenario
demonstrates that the attack works across the virtual ma-
chine isolation boundary in virtualised environments.

The same-OS tests use CentOS 6.5 Linux running on
the hardware. The spy and the victim execute as two
processes within that system. To achieve sharing, the spy
mmaps the victim’s executable file into the spy’s virtual
address space. As the Linux loader maps executable files
into the process when executing them, the spy and the
victim share the memory image of the mapped file. On
the Dell machine we set the CPU affinity of the processes
to ensure that both the victim and the spy execute on the
same physical processor. We do let the processes float
between the cores of the processor.

For the cross-VM scenario we used two different hy-
pervisors: VMware ESXi 5.1 on the HP machine and
Centos 6.5 with KVM on the Dell machine. In each hy-
pervisor we created two virtual machines, one for the
victim and the other for the spy. The virtual machines
run CentOS 6.5 Linux. In this scenario, the spy mmaps a
copy of the victim’s executable file. Sharing is achieved
through the page de-duplication mechanisms of the hy-
pervisors. As in the same-OS scenario, on the Dell ma-
chine we set the CPU affinity of the virtual machines to
ensure execution on the same physical processor.

When a pages is shared, all of the page entries in the
virtual address spaces of the sharing processes map to the
same physical page. As the LLC is physically tagged, en-
tries in the cache depend only on the physical address of
the shared page with no dependency on the virtual ad-
dresses in which the page is mapped. Consequently, we
do not need to take care of the virtual to physical address
mapping and the attack is oblivious to some diversifica-
tion techniques, such as Address Space Layout Random-
ization (ASLR) [50].

The approach we take is to trace the execution of
the victim program. For that, the spy program ap-
plies the FLUSH+RELOAD technique to memory loca-
tions within the victim’s code segment. This, effec-
tively, places probes within the victim program that are
triggered whenever the victim executes the code in the
probed memory lines. Tracing the execution allows the
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Figure 6: Time measurements of probes

spy program to infer the internal state of the victim pro-
gram.

To implement the trace, the spy program divides time
into fixed slots of 2,500 cycles each. In each slot it probes
one memory line of the code of each of the square, mul-
tiply and modulo reduce calculations. To increase the
chance of a probe capturing the access, we selected mem-
ory lines that are executed frequently during the calcu-
lation. Furthermore, to reduce the effect of speculative
execution, we avoided memory lines near the beginning
of the respective functions. After probing the memory
lines, the spy program flushes the lines from the cache
and busy waits to the end of the time slot.

We used the default build of the gpg program, which
includes optimisation at -O2 level and which leaves the
debugging symbols in the executable. We use the debug-
ging symbols to facilitate the mapping of source code
lines to memory addresses. In most distributions, the
GnuPG executable is stripped and does not include these
symbols. Attacks against stripped executables would re-
quire some reverse engineering [20] to recover this map-
ping. As the debugging symbols are not loaded in run
time, these do not affect the victim’s performance.

Measurement times for 100 time slots of the GnuPG
signing with a 2,048 bit key are displayed in Figure 6. In
each time slot, the spy flushes and then measures the time
to read the memory lines in the Square, Multiply and Re-
duce functions. Measurements under the threshold indi-
cate victim access to the respective memory lines. The
exponentiations for signing takes a total of 15,690 slots
or about 18ms. The CRT components used for exponen-
tiation are 1,022 and 1,023 bits long.

Figure 7 is an enlarged view of the boxed section
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in Fig. 6. As the displayed area is below the thresh-
old, the diagram only displays the memory lines that
were retrieved from the cache, showing the activity of
the GnuPG encryption. The steps of the exponentia-
tion are clearly visible in the diagram. For example, be-
tween time slots 3,917 and 3,919 the victim was calcu-
lating a square, Time slots 3,919–3,921 are for modulo
reduce calculation, multiplication in slots 3,922–3,923,
and another modulo reduce in 3,923–3,925. A sequence
of Square-Reduce-Multiply-Reduce indicates that during
these time slots the victim was processing a set bit.

Figure 7 also demonstrates the effects of speculative
execution. To improve performance, the processors tries
to predict future behaviour of the program. When pre-
dicting the behaviour of the test of the bit value (Line 7
in Fig. 2), the processor does not know the value of the
bit. Instead of waiting for the value to be calculated, the
processor speculates that the bit might be clear and starts
bringing memory lines required for the square calcula-
tion into the cache. As a result, cache lines that are part
of the square calculation in Line 5 are brought into the
cache, and are captured by the spy.

We have witnessed speculative execution on both the
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HP and the Dell machines. Moving the probes to cache
lines closer to the end of the probed functions eliminates
the effects of speculative execution on the HP machine.
However, speculative execution is still evident on the
Dell machine.

By recognising sequences of operations, an attacker
can recover the bits of the exponent. Sequences of
Square-Reduce-Multiply-Reduce indicate a set bit. Se-
quences of Square-Reduce which are not followed by
Multiply indicate a clear bit. For example, in Fig. 6, be-
tween time slots 3,903 and 3,906 the calculated sequence
is Square-Reduce, which is followed by a Square, indi-
cating that in these time slots the victim was processing
a clear bit.

Continuing throughout Fig. 6 we find that the bit se-
quence processed in this sample is 0110011010011. Ta-
ble 1 shows the time slots corresponding to each bit.

Table 1: Time Slots for Bit Sequence
Seq. Time Slots Value
1 3,903–3,906 0
2 3,907–3,916 1
3 3,917–3,926 1
4 3,927–3,931 0
5 3,932–3,935 0
6 3,936–3,945 1
7 3,946–3,955 1

Seq. Time Slots Value
8 3,956–3,960 0
9 3,961–3,969 1
10 3,970–3,974 0
11 3,975–3,979 0
12 3,980–3,988 1
13 3,989–3,998 1

System activity may cause the spy to miss time slots.
The spy identifies missed time slot by noting jumps in
the cycle counter. For example, In the run used for gen-
erating Fig. 6, the spy missed time slots 3,983 and 3,984.
In this instance, the missed bits were not enough to hide
the information on the bit processed during these time
slots. However, if more slots are missed, data on bits of
the private key exponent will be lost resulting in capture
errors.

To measure the prevalence of capture errors, we used
our spy program to observe and capture 1,000 signatures
on each of the test configurations. We used a single in-
vocation of a spy program to capture all the signatures
in each system configuration. The GnuPG victim was
executed from a shell in another window. Except for en-
suring that the spy executes while running the signatures,
the executions of the spy and of GnuPG are not synchro-
nised.

For each observed signature, the spy outputs a text line
representing the observed probes in each time slot. We
used a shell script to parse this output and compared the
results against the ground truth. The results are sum-
marised in Table 2 and in Fig. 8. (For clarity, we trim
Fig. 8 at 30% and 100 erroneous bits. A total of 15 sam-
ples have capture errors of more than 100 bits and the
probability of no errors for the HP-CentOS configuration
is 33%.)

Table 2: Statistics on Bit Errors in Capture
Hardware HP Elite 8300 Dell PowerEdge T420
Software CentOS VMware CentOS KVM
Average 1.41 26.55 25.12 66.12
Median 1 25 24 65
Max 15 196 96 190
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Figure 8: Distribution of Bit Errors in Capture

The shell script overestimates the number of errors.
For example, due to the missing time slots, the script
does not identify bit 12 in Table 1. We have manually
inspected a few samples of capture output and estimate
that manual inspection can reduce the number of errors
by 25%-50%. Yet, the use of an automated script allows
us to examine a large number of results.

On the HP machine we observe better results and sig-
nificantly less noise than on the Dell machine. We be-
lieve this to be a consequence of the more advanced op-
timisations of the Xeon processor of the Dell machine.
On each machine, results for the same-OS configuration
are better than those for the cross-VM attack due to the
added processing of the virtualisation layer.

Even accounting for the better results expected from
manual inspection, the number of errors may be too big
for a naı̈ve brute force attack. Several strategies can be
used to reduce the search space and to recover the pri-
vate key. One such strategy is to rely on the nature of
CRT-RSA exponentiation. As discussed in Section 2.3,
an attacker only needs to recover one of the CRT com-
ponents to break the encryption. By attacking the CRT
component that has less errors, the attacker can reduce
the search space to a more manageable size. Table 3 and
Fig. 9 show the distribution of erroneous bits in the bet-
ter captured CRT component in each signature. As these
demonstrate, the search space is significantly reduced.

Several algorithms have been suggested for recover-
ing the RSA exponent from partial information on the
exponent bits [30, 31, 46]. These algorithms require be-
tween 27% and 70% of the bits of the exponent to re-
cover the system key. While our attack reveals over 90%
of the bits, it does not always recover the positions of
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Table 3: Statistics on Bit Errors in the Better Captured
CRT Component

Hardware HP Elite 8300 Dell PowerEdge T420
Software CentOS VMware CentOS KVM
Average 0.20 11.75 7.11 28.66
Median 0 12 6 28
Max 4 68 26 47
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Figure 9: Distribution of Bit Errors in the Better Cap-
tured CRT Component

these bits. E.g. when a sequence of about 10 time slots
is missed, this sequence can cover either one set bit or
two clear bits. The attacker cannot, therefore, determine
the bit positions of the following bits. Further research
is required to determine whether these algorithms can be
adapted to the data our attack recovers.

Another approach for recovering the key is to combine
data from multiple signatures. As the positions of errors
in each capture are independent, there is a small likeli-
hood that any two captures will have errors in the same
bit positions. To test this approach we manually merged
the output of several pairs of observations of the spy un-
der the Dell cross-VM scenario. When merging random
pairs, we had at most a one bit error in the merged results.
When merging the worst capture for the Dell cross-VM
scenario with a random capture, the merged results had
six bit errors, all of them in one of the CRT components
and all have been identified during the process as poten-
tial errors. We, therefore, conclude that by observing two
signatures, the attacker can recover the private key.

While the attack is very effective in recovering expo-
nent bits, it does have some limitations. For the attack to
work, the spy and the victim must execute on the same
physical processor. For our testing, we set the proces-
sor affinity on the multi-processor system. However, in
a real attack scenario the attack depends on the system
scheduler.

When performing the tests, the spy and the victim
were the only load on the system. Such a scenario is not
representative of a real system where multiple processes
are running. We expect such load to create noise that will

affect the quality of capture. Furthermore, for a load that
includes multiple parallel instances of GnuPG, the spy
will be unable to distinguish between memory access of
each instance and will be unable to recover any data.

Another limitation is the length of the secret key. On
the Dell machine, probing three memory locations takes
about 2,200 cycles. Hence, the attack cannot work with
time slots shorter than that. With shorter key lengths,
time slots of 2,200 cycles or more do not provide enough
resolution to trace the victim. Consequently, recovering
the private key is more difficult with shorter keys, sup-
porting the results of Walter [56].

5 Mitigation Techniques

The attack presented here is a real, immediate threat to
computer security. It, therefore, raises the very pertinent
question of countermeasures. The FLUSH+RELOAD at-
tack relies on a combination of four factors for its opera-
tion: data flow from sensitive data to memory access pat-
terns, memory sharing between the spy and the victim,
accurate, high-resolution time measurements and the un-
fettered use of the clflush instruction. Preventing any
of these blocks the attack.

The lack of permission checks for using the clflush
instruction is a weakness of the X86 architecture. Conse-
quently, the most complete solution to the problem is to
limit the power of the clflush instruction. The main use
of the clflush instruction is to enforce memory coher-
ence, e.g. when using devices that do not support mem-
ory coherence [34]. Another potential use of the instruc-
tion is to control the use of the cache for improving pro-
gram performance, e.g. by flushing lines that the program
knows it will not require. However, we are not aware of
any actual use of the instruction for this purpose.

As the first use is, clearly, a system function and the
second is based on the assumption that no other pro-
cess has access to the data, we suggest restricting the
use of clflush to memory pages to which the process
has write access and to memory pages to which the sys-
tem allows clflush access. This access control could be
implemented by adding memory types that restrict flush
access to the PAT (Page Attribute Table) [35, chap. 11].

The ARM architecture [7] also includes instructions to
evict cache lines. However, these instructions can only
be used when the processor is in an elevated privilege
mode. As such, the ARM architecture does not allow
user process to selectively evict memory lines and the
FLUSH+RELOAD is not applicable in this architecture.

Our attack seems not to work on contemporary AMD
processors, such as the A10-6800K and Opteron 6348.
The code in Fig. 5 returns the same result with and
without the clflush instruction. Replacing the second
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rdtsc instruction (Line 12) with the similar rdtscp in-
struction fixes this issue, however, two problems prevent
the use of the technique. The first problem is that data
seems to linger in the cache for some time after being
evicted. The second problem is that the attack does not
capture accesses from other processes. A possible ex-
planation for this behaviour is that the AMD caches are
non-inclusive, i.e. data in L1 does not need to also be in
L2 or L3, as is the case with the Intel caches. Conse-
quently, evicting data from the LLC does not, necessar-
ily, evicts it from the L1 caches of other cores. Processes
executing on other cores can access data in the L1 cache
without triggering a load from memory to the LLC. The
attack does work on older AMD processors, such as the
Opteron 2212.

Hardware based countermeasures, such as those de-
scribed above cannot provide an immediate solution to
the problem. They will take time to develop and will not
protect existing hardware. Consequently, for immediate
mitigation of the attack, software-based solutions are re-
quired.

Another possible solution is preventing sharing be-
tween the spy and the victim. Preventing page shar-
ing between processes provides protection against the
FLUSH+RELOAD attack. However, this approach goes
against the trend of increased sharing in operating sys-
tems and virtualisation hypervisors. Completely elim-
inating page sharing would significantly increase the
memory requirements of modern operating systems and
is, therefore, unlikely to be a feasible solution. As a
partial solution, it may be possible to avoid sharing of
sensitive code by changing the program loader. Another
partial solution is disabling page de-duplication, which
prevents using the FLUSH+RELOAD attack between co-
hosted guests in a virtualised system. This approach is
recommended for public compute clouds which offer the
implied promise that guests cannot interfere with each
other.

Software diversification [24] is a collection of tech-
niques that permute the locations of objects within the
address spaces of processes. While most of these tech-
niques were originally developed as a protection against
memory corruption attacks, some of them can be used to
prevent sharing and, consequently, to mitigate the FLU-
SH+RELOAD attack. More specifically, in virtualised en-
vironments, static reordering of code and data [12,24,36]
can be used to create unique copies of programs in each
virtual machines. As these copies are not available out-
side the specific virtual machine, pages of the program
are not de-duplicated and sharing is prevented. Diversi-
fying the program at run time [22] can prevent sharing of
the program text even when the attacker has access to the
binary file. As discussed above, the FLUSH+RELOAD
technique is oblivious to the virtual to physical address

mapping. Consequently, diversification techniques that
rely on permuting the virtual address mapping of code
pages, such as [50, 59], do not provide any protection
against the attack.

FLUSH+RELOAD, like other side-channel attacks, re-
lies on the availability of a high-resolution clock. Re-
ducing the resolution of the clock or introducing noise to
clock measurement [32, 53] can be an used as a counter-
measure against the attack. The main limitation of this
approach is that the attacker can use other methods for
generating high resolution clocks. Examples include us-
ing data from the network or running a ‘clock’ process in
a separate execution core.

Irrespective of the measures described above, cryp-
tographic software should be protected against the at-
tack. Following our disclosure [18, 38], the GnuPG
team released GnuPG version 1.4.14 and libgcrypt

version 1.5.3. These mitigate the attack using the
square-and-multiply-always [21] algorithm, shown in
Listing 10. The algorithm executes the square and the
multiply steps for each bit, but ignores the result of the
multiply step for bits of value 0.

function exponent(b, e, m)
begin

x ← 1
for i ← |e|−1 downto 0 do

x ← x2

x ← x mod m
x′ ← xb
x′ ← x′ mod m
if (ei = 1) then
x = x′

endif
done
return x

end

Figure 10: Exponentiation by Square-and-Multiply-
Always

When introducing instructions with no effect, care
should be taken to prevent the compiler from optimising
these away. In the case of the GnuPG fix, the optimiser
cannot know that the added addition does not have side-
effects. With the possibility of side-effects, the optimiser
takes a conservative approach and invokes the function.

The implementation still contains a small section of
code that depends on the value of the bit, which could,
theoretically, be exploited by a cache side-channel at-
tack. However, due to speculative execution, the proces-
sor is likely to access the section irrespective of the value
of the bit. Furthermore, as this section is short and is
smaller than a cache line, it is likely to fit within the same
cache line as the preceding or following code. Hence,
we believe that this implementation protects against the
FLUSH+RELOAD attack.
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This fix, however, does not protect against other forms
of side-channel attack. In particular, the code is likely
to be vulnerable to Branch Prediction Analysis [3]. Fur-
thermore, as access patterns to data depend on the values
of the exponent bits, the code is likely to be vulnerable to
PRIME+PROBE attacks [51,61]. Like FLUSH+RELOAD,
these side-channel attacks rely on data flow from secret
exponent bits to memory access patterns. These attacks
can be prevented by using constant time exponentiation,
where the sequence of instructions and memory locations
accessed are fixed and do not depend on the value of the
exponent bits. Techniques for constant time computa-
tion have been explored in the NaCl cryptographic li-
brary [10]. The pattern of accesses to memory lines of
the OpenSSL [41] implementation of RSA exponentia-
tion is not dependent on secret exponent bits. Conse-
quently, even though the implementation is not constant
time [11], it is not vulnerable to our attack.

Constant time computation is not, however, a panacea
for the problem of side-channel attacks. FLUSH+RE-
LOAD can be applied no extract secret data from non
cryptographic software. For such software, the perfor-
mance costs of constant-time computation are unreason-
able, hence other solutions are required.

6 Related Work

Several works have pointed out that page sharing exposes
guests to information leakage, which can be exploited
for implementing covert channels [58], OS fingerprint-
ing [44] and for detecting applications and data in other
guests [49]. These works exploit the copy-on-write fea-
ture of page sharing. Copy-on-write introduces a sig-
nificant delay when a page is copied. Hence, by timing
write operations on pages, a spy can deduce the existence
of pages with identical contents in other guests. As page
de-duplication is a slow process, all these attacks have a
very low resolution.

Using a cache side-channel to trace the execution of
a program is not a new idea [1, 2, 4, 14, 19, 29, 61]. In
all of these attacks, the victim and the spy must share
the execution core, either by using hyper-threading or by
interleaving the execution of the victim and the spy on
the same core.

Gullasch et al. [29] describes an attack on AES which
traces the victim’s access to the S-Boxes. Our work
builds on the attack technique presented by Gullasch et
al. and extends it in two ways. Gullasch et al. only ap-
plies the attack on a time-shared core and does not ex-
ploit the eviction from a shared LLC. Our attack exposes
the use of a shared LLC and demonstrates that the tech-
nique can be used across cores. Additionally, Gullasch
et al. uses the cpuid instruction to synchronise the in-
struction stream whereas we use fence instructions. In

virtualised environments, the cpuid is emulated in soft-
ware and this emulation takes over 1,000 cycles. With
two cpuid instructions in each probe, the Gullasch et al.
probe spans over 2,500 cycles. As our attack requires
three probes within 2,500 cycles, the resolution of the
Gullasch et al. code is is not high enough for implement-
ing our cross-VM attack.

The attack in Zhang et al. [61] specifically targets
virtualised environments, extracting the private ElGa-
mal [23] key of a GnuPG decryption executing in another
guest. The attack depends on a weakness in the scheduler
of the Xen hypervisor [8]. The granularity of the attack
is one probe in 50,000 cycles, limiting the minimum size
of victim key that can be captured. The modulus in the
paper is 4,096 bits long. The attack has low signal to
noise ratio, and requires the use of filtering. Even with
this filtering and the large modulus, the attack requires
six hours of constant decryption to recover the key.

Weiß et al. [57] also describes cache timing attack in
a virtualised environment. The attack is an adaptation
of Bernstein’s attack [9] that relies on the short constant
communication time between domains in the L4 kernel.

7 Conclusions

In this paper we describe the FLUSH+RELOAD tech-
nique and how we use it to extract GnuPG private keys
across multiple processor cores and across virtual ma-
chine boundaries.

It is hard to overstate the severity of the attack, both in
virtualised and in non-virtualised environments. GnuPG
is a very popular cryptographic package. It is used as the
cryptography module of many open-source projects and
is used, for example, for email, file and communication
encryption. Hence, vulnerable versions of GnuPG are
not safe for multi-tenant systems or for any system that
may run untrusted code.

While significant, the attack on GnuPG is only a
demonstration of the power of the FLUSH+RELOAD
technique. The technique is generic and can be used to
monitor other software. It can be used to devise other
types of attacks on cryptographic software. It can also
be used against other types of software. For example, it
could be used to collect statistical data on network traffic
by monitoring network handling code or it could monitor
keyboard drivers to collect keystroke timing information.

Hence, while the GnuPG team has fixed the vulner-
ability in their software, their fix does not address the
broader threat exposed by this paper.

The FLUSH+RELOAD technique exploits the lack of
restrictions on the use of the clflush instruction. Not
restricting the use of the instruction is a security weak-
ness of the Intel implementation of the X86 architecture.
This enables processes to interact using read-only pages.
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Addressing this weakness requires a hardware fix, which,
unless implemented as a microcode update, will not be
applicable to existing hardware.

Preventing page sharing also blocks the FLUSH+RE-
LOAD technique. Given the strength of the attack, we
believe that the memory saved by sharing pages in a vir-
tualised environment does not justify the breach in the
isolation between guests. We, therefore, recommend that
memory de-duplication be switched off.
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[5] ACIIÇMEZ, O., SCHINDLER, W., AND KOÇ, Ç. K. Cache based
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Abstract
As a countermeasure against the famous Bleichenbacher
attack on RSA based ciphersuites, all TLS RFCs starting
from RFC 2246 (TLS 1.0) propose “to treat incorrectly
formatted messages in a manner indistinguishable from
correctly formatted RSA blocks”.

In this paper we show that this objective has not been
achieved yet (cf. Table 1): We present four new Blei-
chenbacher side channels, and three successful Bleichen-
bacher attacks against the Java Secure Socket Extension
(JSSE) SSL/TLS implementation and against hardware
security appliances using the Cavium NITROX SSL ac-
celerator chip. Three of these side channels are timing-
based, and two of them provide the first timing-based
Bleichenbacher attacks on SSL/TLS described in the lit-
erature. Our measurements confirmed that all these side
channels are observable over a switched network, with
timing differences between 1 and 23 microseconds. We
were able to successfully recover the PreMasterSecret
using three of the four side channels in a realistic mea-
surement setup.

1 Introduction

SSL/TLS is, due to its enormous importance, a major tar-
get for attacks. During the last years, novel attack tech-
niques (targeting the TLS Record Layer) have been dis-
covered (see e.g. [21]). However, one of the most famous
attacks is still Bleichenbacher’s chosen-ciphertext attack
on the TLS handshake [5], exploiting side channels of the
RSA decryption process (see Section 3). Formal models
don’t cover this attack: The first full security proof of the
TLS-RSA handshake [17] assumes that the RSA decryp-
tion implementation is ideal without any side channels.

Bleichenbacher’s Attack. Bleichenbacher’s attack is
an adaptive chosen-ciphertext attack on the RSA
PKCS#1 v1.5 encryption padding scheme (denoted by

TLS impl. Side channel Queries & Efficiency
Queries Time

OpenSSL timing O(240) n.a.
JSSE error message 177,000 12 h
JSSE timing 18,600 19.5 h

Cavium timing 7371 41 h

Table 1: Overview on Bleichenbacher side channels and
attacks. In case of timing based side channels, Queries
denotes the number of queries sent to the Bleichenbacher
oracle O (see below); the actual number of requests sent
to the TLS server (and thus the attack duration) depend
on the network quality. Even though we found timing
differences in the OpenSSL implementation, the attack
revealed not to be practical due to the weakness of the
oracle.

PKCS#1 in the following). The only prerequisite for
the attack is the presence of a side channel at the TLS
server which allows to distinguish PKCS#1 compliant
from non-compliant ciphertexts. An attacker with access
to such a side channel can proceed as follows: He records
the TLS handshake of the target connection, and extracts
the RSA-PKCS#1 encrypted ClientKeyExchangemes-
sage c. Then he iteratively creates new ciphertexts
c′,c′′, . . . from c. These are sent to the TLS server as
part of a new handshake, and the server’s responses are
observed. With each successful query, i.e. a query c∗

which is PKCS#1 compliant, the attacker can reduce the
interval in which the original plaintext is located in. He
repeats these steps until the interval only contains one in-
teger, thus decrypting the ciphertext c. Daniel Bleichen-
bacher successfully applied this attack to SSL 3.0 [5] in
1998.

In three of the four presented attacks we are dealing
with timing based side channels, so we have to repeat
measurements to statistically eliminate random noise. In
the following, we use an abstraction to deal with this fact:
A Bleichenbacher oracle O receives a candidate cipher-
text c∗ as input and makes use of a side channel (e.g. by
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repeating measurements) to finally output whether c∗ is
PKCS#1 compliant or not (see Figure 3).

Countermeasures. Soon after the publication of the
original Bleichenbacher attack in 1998, error messages
were unified and the TLS standards introduced the fol-
lowing countermeasure: If the decrypted message struc-
ture is not compliant, the TLS server generates a random
PreMasterSecret, and performs all subsequent hand-
shake computations with this value.1 This countermea-
sure was described in TLS versions 1.0 [9] and 1.1 [10].
TLS 1.2 [11] improves this by prescribing that a random
number must always be generated, independently of the
PKCS#1 compliance of the incoming ciphertext. This
should ensure equal processing times for compliant and
non-compliant ciphertexts.

Novel Side Channels. In this paper we analyze sev-
eral widely used TLS implementations for their vul-
nerability against Bleichenbacher attacks and show that
the implemented countermeasures are not sufficient: We
describe four new Bleichenbacher oracles, and analyze
their sources (see Table 1). Additionally, the strength of
these oracles is evaluated and three of these oracles are
shown to be strong enough to mount Bleichenbacher at-
tacks in practice. This finally led to the decryption of
previously recorded SSL/TLS sessions.

The first side channel is caused by an implementa-
tion bug in the Java Secure Socket Extension (JSSE)
– Java’s built-in SSL/TLS implementation. In JSSE
a different error message can be triggered if the two
most significant bytes are PKCS#1 compliant, but the
PreMasterSecret shows up to be of invalid length.
We were able to successfully exploit this and decrypt a
PreMasterSecret with a few thousand queries.

The second side channel is based on conspicuous tim-
ing differences in the OpenSSL implementation during
PKCS#1 processing. The source of this side channel is
hard to determine: Our working assumption suggests that
it is based on the additional time consumption of choos-
ing a random value. Following the description of Blei-
chenbacher countermeasures in TLS versions 1.0 and
1.1, this random value is only generated if the decrypted
PreMasterSecret is not PKCS#1 compliant. The tim-
ing difference (in the range of few microseconds) caused
by the unequal treatment of random number generation
(depending on the PKCS#1 compliance of the cipher-
texts) may be the cause for this side channel. We were
able to reliably measure a timing difference in the range

1This leads to a fatal error when checking the ClientFinished

(because of different PreMasterSecret at client and server side), but
it does not allow the attacker to distinguish valid from invalid cipher-
texts based on server error messages.

of one microsecond over a LAN and to reliably detect
plaintexts containing valid PreMasterSecret values.

The third side channel is based on the fact that Java’s
Exception handling and error processing can be a time
consuming task: Whenever the resulting plaintext is not
PKCS#1 compliant, an Exception is raised by JSSE
forcing random PreMasterSecret generation. The re-
sulting timing difference is significantly higher (in the
range of 20 microseconds) and can be measured over a
LAN. This qualifies the side channel for practical attacks
under real-world conditions.

The fourth side channel was found in widely used
F5 BIG-IP and IBM Datapower products which rely on
the Cavium NITROX SSL accelerator chip. It allowed
to distinguish invalid messages from messages starting
with 0x??02 (where 0x?? represents an arbitrary byte).
Since the original Bleichenbacher algorithm does not
handle this case, we derived a novel variant of the algo-
rithm and evaluated that it can decrypt 2048-bit cipher-
texts with only 4700 queries to an oracle.

Contribution. The contributions of this paper can be
summarized as follows:

• Impact. We analyze several widely used SSL/TLS
implementations and identify four new Bleichen-
bacher side channels, three of them timing-based.
We describe three successful Bleichenbacher at-
tacks which completely break JSSE and NITROX
based SSL/TLS accelerators.

• Novelty. We describe the first timing based Blei-
chenbacher attacks against a TLS implementation.
We present a novel variant of the original Bleichen-
bacher algorithm to handle specific server behavior
and show that this variant results in a much better
attack performance.

• Insight. We show that Exception handling may
cause large timing differences, measurable over a
LAN. This observation is in general important for
development of side channel free (cryptographic)
implementations in object oriented languages.

• Methodology. Our research was conducted using a
novel framework for SSL/TLS inspection and pen-
etration, called T.I.M.E., which may be of indepen-
dent interest.

Responsible Disclosure. All vulnerabilities were com-
municated to the vendors’ security teams and sent to-
gether with fix proposals. They were fixed or are going
to be fixed in the newest releases.

2
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2 SSL/TLS

The Secure Sockets Layer (SSL) protocol was invented
1994 by Netscape Communications, and later (1999) re-
named to Transport Layer Security (TLS) by the IETF. It
evolved to be the de facto standard for secure data trans-
mission over the Internet and is mostly used, but not lim-
ited, to secure HTTP traffic.

SSL/TLS mainly consists of two components: the
Handshake Protocol to negotiate security primitives and
key material, and the Record Layer where the payload
(HTTP, IMAP, ...) is encrypted and integrity protected.

Record Layer. The Record Layer is initiated with the
NULL ciphersuite, where no cryptographic protection is
applied at all. Then the handshake is executed, until the
ChangeCiperSpec message is sent by one party. Imme-
diately after sending this message, this party switches the
Record Layer to the negotiated parameters (algorithms
and keys) and enables the negotiated security algorithms.

Subsequently, all messages sent through the TLS
channel are secured by the selected cipher suite algo-
rithms and the computed key material. Regarding in-
tegrity and confidentiality the Record Layer relies on
a MAC-then-PAD-then-Encrypt scheme ([22] gives a
detailed overview on this topic and highlights the pit-
falls). The payload data is integrity protected by a (keyed
H)MAC, padded if required, and finally encrypted.

Handshake Protocol. This protocol is used to negoti-
ate the cryptographic primitives and keys. The different
primitives are bundled in cipher suites. A cipher suite
defines the algorithms for (a) key exchange or key agree-
ment, (b) encryption (and, if necessary, the mode of op-
eration) and (c) MAC (Message Authentication Code).
Thus, the cipher suite TLS RSA WITH DES CBC SHA uses
(a) RSA encryption for key exchange, (b) DES encryp-
tion in CBC mode for encryption and (c) a SHA-1 based
HMAC for integrity to protect the payload.

Figure 1 illustrates a typical (RSA-based) handshake
without mutual authentication, between a client and a
server. All cipher suites supported by the client are
listed in the ClientHello message, and one of these
suites is chosen by the server in the ServerHello mes-
sage. The server’s public key for RSA encryption is sent
in the Certificate message and the ciphertext of the
PreMasterSecret chosen by the client is contained in
the ClientKeyExchange message. After this message,
both - client and server - are ready to switch to encrypted
mode (by sending a ChangeCiperSpec message). The
final two Client-/Server Finished messages (con-
taining a cryptographic checksum over all previously ex-
changed handshake messages) are already encrypted.

Client Server 

ClientHello 

ClientKeyExchange 

ChangeCipherSpec 

(Client-)Finished 

ServerHello 

Certificate 

ServerHelloDone 

ChangeCipherSpec 

(Server-)Finished 

Figure 1: SSL/TLS handshake with RSA Key Exchange

Other Protocols. The ChangeCipherSpec Protocol is
used to activate channel protection (switch to negotiated
cipher suite and related key material), whereas the Alert
Protocol is responsible for signalizing errors and failures.

Libraries and Appliances. The work presented in this
paper focuses on the most common open source libraries
and SSL/TLS appliances listed below.

OpenSSL.2 As a widely used open source library
OpenSSL is applied by many applications (such as the
Apache Webserver’s default module for SSL/TLS).

Java Secure Socket Extension (JSSE).3 This library
is the standard implementation of SSL/TLS for the Java
platform, provided as part of the Java Runtime Environ-
ment. Java based applications are very likely to use it.

GnuTLS.4 GnuTLS is another open source library for
SSL/TLS available under GPL.

IBM Datapower and F5 BIG-IP. These two products
are widely used Web application firewalls and security
appliances. Their SSL/TLS processing is handled using
a Cavium NITROX SSL accelerator chip.

3 Bleichenbacher’s Attack

In 1998, Daniel Bleichenbacher presented an adaptive
chosen-ciphertext attack on protocols using the RSA
PKCS #1 encryption standard [5]. He exemplarily ap-
plied his attack to the SSL v3.0 protocol. Through dif-
ferent error messages returned from the SSL server, Blei-

2http://www.openssl.org
3http://docs.oracle.com/javase/7/docs/technotes/

guides/security/jsse/JSSERefGuide.html
4http://www.gnutls.org

3
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chenbacher was able to identify ciphertexts where the
plaintext started with 0x0002. Thus, he used the SSL
server as a (partial) decryption oracle O and was able
to decrypt an encrypted PreMasterSecret, from which
all SSL/TLS session keys are derived [11]. Soon after
this discovery, the error messages were unified in order
to close this side channel. Later, the attack was reenabled
by Klı́ma, Pokorný and Rosa [16] through a different side
channel, fixed again and finally remained unexploitable
for nearly 10 years.

In order to describe the basic attack, we will first
give an overview of the PKCS#1 encryption padding
scheme and its usage in SSL/TLS to secure the
PreMasterSecret. Afterwards, the attack and the
countermeasures are presented. Throughout this section
we write |a| to denote the byte-length of a string a, and
a||b to denote concatenation of a and b. We let (N,e) be
an RSA public key, with corresponding secret key d.

3.1 PKCS#1 v1.5 Encryption Padding
PKCS#1 v1.5. The basic task of the PKCS#1 v1.5 en-
cryption padding scheme is to prepend a random padding
string PS (|PS| > 8) to a message k, and then apply the
RSA encryption function:

1. The encrypter takes a message k and chooses a
random, non-zero string PS, where |PS| > 8 and
|PS|= �−3−|k|.

2. The cleartext block is m = 00||02||PS||00||k. By in-
terpreting this string as an integer m < N,

3. the ciphertext is computed as c = me mod N.

To decrypt such a ciphertext, the decrypter first com-
putes m = cd mod N. Afterwards, it is checked whether
the decrypted message m has a correct PKCS#1 format.
This message m = m1||m2||...||m|m| is PKCS#1 compli-
ant if (x ≥ 10):

m1 = 0x00

m2 = 0x02

0x00 �∈ {m3, . . . ,mx}
0x00 ∈ {mx+1, . . . ,m|m|}

(1)

PKCS#1 usage in TLS. In case of TLS, PKCS#1 is
used for encapsulation of the PreMasterSecret ex-
changed during a handshake which consists of 48 bytes.
The first two bytes of the PreMasterSecret contain a
two-byte version number ma j||min (e.g., ma j = 0x03,
min = 0x01 for TLS 1.0). The remaining bytes are cho-
sen by the client at random. Figure 2 gives an example
of a PreMasterSecret (PMS) padded to be encrypted
with a 2048-bit RSA key.

0200 00 Randomnonzero padding

256 Bytes

205 Bytes 48 Bytes PMS

03 01

Figure 2: PKCS#1 padding applied to a PMS to be en-
crypted with a 2048-bit RSA key

We say that a PKCS#1 compliant message m is TLS
compliant if:

|k| = 48
k1||k2 = ma j||min

(2)

3.2 Basic Attack Idea.

Bleichenbacher’s attack enables an adversary, who is in
possession of a ciphertext c0, to recover the encrypted
plaintext m0. The only prerequisite for this attack is the
ability to access an oracle O that decrypts a ciphertext
c and responds with 1 or 0, depending on whether the
decrypted message m starts with 0x0002 or not:

O(c) =

{
1 if m = cd mod N starts with 0x0002

0 otherwise.

If the oracle answers with 1, the adversary knows that
2B ≤ m ≤ 3B− 1, where B = 28(�−2). The algorithm is
based on the malleability of the RSA encryption scheme
which allows the following blinding:

c = (c0 · se) mod N = (m0s)e mod N

The attacker queries the oracle with c. If the oracle re-
sponds with 0, the attacker increments s and repeats the
previous step. Otherwise, the attacker learns that

2B ≤ m0s− rN < 3B

for some r. This allows the attacker to reduce the set of
possible solutions to

2B+ rN
s

≤ m0 <
3B+ rN

s

By iteratively choosing new values for s, querying the or-
acle, and computing new r values, the attacker narrows
down the interval which contains the original m0 value.
He repeats these steps until only one solution in the inter-
val is left. We refer to the original paper [5] for details.
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3.3 Impact of Oracle Type on Attack Per-
formance

The oracle O needed for the attack can be based on dif-
ferent side channels. For example, it can be provided by
a server responding with different error messages based
on the PKCS#1 compliance. If the server identifies a
message as PKCS#1 compliant, the attacker knows the
message starts with 0x0002.

Bleichenbacher tested his attack against an SSL server
which strictly checked the PKCS#1 format (see Equa-
tion 1). He needed about one million messages to de-
crypt an arbitrary ciphertext (1024-bit RSA). However,
the attack performance varies. Bleichenbacher’s algo-
rithm relies solely on the knowledge that the first two
message bytes are equal to 0x0002. If an oracle is con-
structed from an application which verifies only the first
two bytes of the decrypted message (0x0002), we get a
very “strong” oracle and the attack performs well. On
the other hand, if an application checks also different
properties such as TLS protocol version conformity (see
Equation 2), the oracle can respond with 0 even if the
first two bytes are equal to 0x0002 (e.g., if the extracted
PreMasterSecret is of invalid length). Such a behav-
ior leads to false negatives which slow down the attack
performance. The oracle is “weak”.

The oracle strength can be measured using a proba-
bility that the oracle responds with 1 when a given de-
crypted message starts with 0x0002. Suppose P(A) de-
fines a probability that the first two bytes of the decrypted
message are 0x0002. P(1|A) is a probability that the or-
acle answers with 1, in case that the decrypted message
starts with 0x0002. Suppose we work with a 1024 bit
RSA key. For an oracle strictly checking the PKCS#1
compliance (first eight bytes do not contain 0x00, but
one of the following 118 bytes contains 0x00), the prob-
ability can be computed as:

P1024
PKCS (1|A) =

(
255
256

)8

·
(

1−
(

255
256

)118
)

≈ 0.36

Different oracle types and their impact on the attack
performance were analyzed by Bardou et al. [4]. In addi-
tion, they improved Bleichenbacher’s attack by a factor
of four. An improved attack running with the discussed
oracle needs about 15,000 queries to decrypt a PKCS#1
compliant message (more queries are needed to decrypt
an arbitrary message).

3.4 Countermeasures
Due to its importance, Bleichenbacher’s attack is directly
addressed in the TLS standard [11]. The basic idea of
the proposed countermeasure is to continue the process-
ing with a randomly generated PreMasterSecret every

c'

1 / 0

...

Bleichenbacher's 
Attacker

Bleichenbacher's 
Attacker OracleOracle TLS ServerTLS Server

...

TLS handshake(c')

Bleichenbacher's 
algorithm relying on 
oracle's responses

Constructed oracle 
evaluating message 

conformity

Figure 3: Bleichenbacher’s attack algorithm relies on an
oracle returning 1 or 0 according to the message validity.

time the message structure is invalid or decryption failed
completely. This ensures unified error messages of the
server. Algorithm 1 describes the implementation of this
countermeasure as proposed in TLS 1.2 [11]:

Algorithm 1 A (simplified) countermeasure against
Bleichenbacher’s attack proposed in the TLS stan-
dard [11].

1: generate a random PMSR
2: decrypt the ciphertext: m := dec(c)
3: if ( (m �= 00||02||PS||00||k) OR (|k| �= 48)

OR (k1||k2 �= ma j||min) then
4: proceed with PMS := PMSR
5: else
6: proceed with PMS := k
7: end if

This countermeasure ensures that each ciphertext de-
cryption reveals a PreMasterSecret which is used in
the handshake processing. Thus, the attacker cannot dis-
tinguish between valid and invalid ciphertexts. Note that
a random PreMasterSecret is generated every time,
independently from the ciphertext validity. This ensures
equal processing times of valid and invalid ciphertexts.

4 SSL/TLS Penetration Testing

Given the importance of PKCS#1 format processing in
SSL/TLS, it is important how Bleichenbacher counter-
measures are implemented in real-world applications.

4.1 Attack Challenges

We investigate ways of turning a seemingly secure SSL/-
TLS server into an oracle O suitable for Bleichen-
bacher’s attack. The attack is sketched in Figure 3: The
attacker communicates with O and suggests ciphertexts.
O sends these ciphertexts to the server by performing a
TLS handshake, evaluates its responses, and returns 1 or
0 according to the PKCS#1 conformity.

5
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The oracle can be based on different side channels.
First, noisy TLS servers responding with different error
messages represent a direct oracle OD. Second, even
if the server does not respond with different error mes-
sages, its processing logic can cause different timings
while handling valid and invalid ciphertexts. These silent
checks can be used to construct a timing oracle OT .

When constructing an oracle O , we have to face the
following challenges:

1. O must not respond with false positives: ciphertexts
falsely identified as valid cause Bleichenbacher’s al-
gorithm to end up in a wrong internal state from
which the algorithm cannot recover.

2. O should respond with as few false negatives as
possible: valid ciphertexts falsely identified as in-
valid slow down the attack performance.

3. O should require as few requests as possible.

4.2 T.I.M.E.

This research was enabled by a new framework called
T.I.M.E. - TLS Inspection Made Easy (for details
see [20]). The framework implements a TLS client stack
in Java with means to intercept the communication and
TLS protocol flow at any time through predefined hook-
points. It allows altering TLS messages in an object
based representation or, if necessary, even at bit level.
This renders deep analysis of TLS, simulating complex
attack scenarios, or trigger bugs only occurring in usually
hard to provoke operation states possible. The frame-
work proved to be well suited for the creation of a large
amount of test cases, even in complex attack scenarios.
The modularity allows a quick test case creation and au-
tomated testing for vulnerabilities of many different TLS
implementations with comparably little effort. A com-
prehensive reporting engine eases the analysis even when
working with large amounts of test cases and scanning
targets.

Architecture. Figure 4 illustrates the T.I.M.E. archi-
tecture. It consists of the following main parts:

• SSL/TLS Stack and Network Stack handle the com-
munication between the framework and the remote
SSL/TLS server.

• The Attack Engine consists of different attack mod-
ules including one for Bleichenbacher’s attack. It
contains the attack logic and test cases for trigger-
ing different server behavior to identify bugs in the
server’s SSL/TLS stack.

Targets 

Network Stack 

Fingerprinting 
Engine 

Attack Engine 

Attack 
Report 

Fingerprinting 
Report 

Comprehensive Report 

Target list 

Report 

 
SSL/TLS Stack 

Bleichenbacher 
Module  

Stack Identification 
Module  

Figure 4: T.I.M.E. architecture

• The Fingerprinting Engine generates specifically
formatted messages and triggers different server be-
havior which is analyzed to identify the SSL/TLS
implementation and its version. The description of
this engine is out of scope of this paper.

• The Reporting Module generates attack and finger-
printing reports.

The whole process of intercepting a running com-
munication is event based. An application is able to
register for events of interest, in this case e.g. the
ClientKeyExchange message and Alerts. The work-
flow notifies each observer about occurring events. Once
an observer is notified, the execution control is passed
to this observer. The observer can manipulate the cur-
rent message or internal states of the stack and return
the control back to the workflow. The communication is
paused until the observer returns control. Once returned
the workflow continues immediately with processing.

The interaction between server, attack module and the
handshake workflow of T.I.M.E. is illustrated in Figure 5.

The Bleichenbacher attack logic is built directly upon
the stack and can be used to modify messages during the
TLS handshake. The modified messages are used to trig-
ger different server behavior. This allows to check for
obvious vulnerabilities to Bleichenbacher’s attack.

4.3 Test Environment
As we are performing timing attacks over a network,
special care must be taken for the measurement setup.
Measuring precise processing times from remote is chal-
lenging because of the jitter induced by busy network

6
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Figure 5: Interaction between the components. The Bleichenbacher Attack Module instantiates a
TLS10HandshakeWorkflow object (part of the T.I.M.E. framework), registers as an observer for the
ClientKeyExchange and Alert messages and finally starts the workflow. Every time one of these messages oc-
curs the handshake is paused and the Bleichenbacher Attack Modules gains control. It either modifies the encrypted
PreMasterSecret or analyzes the response message. Finally, it returns the control back to the workflow which
continues with the handshake.

components, by the remote machine and by the measur-
ing client. We also wanted to perform our attacks in
a realistic scenario, in which the attacker has full con-
trol over the measuring machine, but only limited con-
trol over the network quality. We therefore ran the mea-
surement machine with a stripped down Ubuntu 12.04
LTS Linux where we disabled CPU halting (boot param-
eter idle=poll) and CPU frequency scaling (fixing the
CPU frequency using the cpufreq tools). Both settings
are not uncommon in data centers that trade faster re-
sponse times for higher power consumption. We used a
Realtek 8139-based networking card with no support for
interrupt coalescing. Note that this configuration likely
optimizes the quality of the timing measurements, but
it is not a necessary requirement. For a comprehensive
analysis of hardware choices and configuration settings
for timing measurements over networks see [8].

It is realistic to assume that the attacker has some lim-
ited control over the network. For example, if the con-
nection from the attacker’s machine to the target machine
is of bad quality, the attacker can often rent (or compro-
mise) a machine nearby the target machine and launch
the attack from there (consider cloud-based scenarios).
We therefore used a network setting in which the attack-
ing and target machine are in the same (productive) Uni-
versity campus LAN connected through a Cisco Catalyst
2950 switch. This setting emulates the environment of a
common co-location center or a cloud system where the
attacker might even be able to rent a virtual machine that

runs on the same hardware as the target machine [23].
If we use the attack module for triggering different

TLS server messages, the whole T.I.M.E. tool set is
placed on a single machine and communicates as a client
with the remote TLS server. For timing measurement we
had to act differently after we found out that T.I.M.E.
provides no reliable base for highly fine grained time
measurement. Thus, we decided to split the Bleichen-
bacher logic and the TLS logic into separate modules.
Figure 6 illustrates this setup. On the left, we see the
Bleichenbacher attack module that triggers and executes
the attack. The Bleichenbacher logic generates new ci-
phertexts and hands it over to the measurement module.

To test if a TLS implementation has a suitable
timing leak that allows the creation of a timing-
based oracle, one has to measure the delay between
the ClientKeyExchange message and the arrival of
the HANDSHAKE FAILURE message (the server performs
PKCS#1 checking during this period). High precise tim-
ing measurement is not possible in Java (the JVM it-
self causes a significant noise which falsifies the results).
Thus, we modified the lightweight MatrixSSL C imple-
mentation5 to execute the TLS handshake and measure
the timing delays in clock ticks by using the RDTSC as-
sembler directive.

We used the timing analysis tool NetTimer6 to eval-
uate the server response times. This tool implements a

5http://www.matrixssl.org/
6http://sebastian-schinzel.de/nettimer
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Figure 6: Architecture for measuring timing differences. The enhanced T.I.M.E. framework is split into two parts:
The Bleichenbacher Attack Module and the Measurement Module based on the MatrixSSL library.

variant of Crosby’s box hypothesis test, which was found
to perform well for analyzing network delay measure-
ments [8]. With this setup, we were able to reliably dis-
tinguish timing differences of a few hundred nanosec-
onds over a LAN with one thousand repeated measure-
ments. This confirms that the findings of [8] not only
hold for artificial UDP ping-pong protocols, but also for
real-world TCP-based protocols.

4.4 Methodology
Our methodology during evaluation of Bleichenbacher’s
attack on a specific implementation can be summarized
in the following steps.

Triggering Different Server Behaviors. In Sec-
tion 3.1 we described how an encrypted ciphertext is
processed on a TLS server. This process includes sev-
eral validation and unpadding steps. If one of these steps
is implemented incorrectly, a side channel might arise.
Thus, we first implemented different T.I.M.E. test cases
that aim to trigger different server behavior which could
lead to a practical oracle O . These test cases include:

1. A TLS compliant message, see Equation 2.

2. A PKCS#1 compliant message which is not TLS
compliant, see Equation 1. Such a message
can include a wrong TLS version number or a
PreMasterSecret with an invalid length.

3. A non-PKCS#1 compliant message: Such a mes-
sage can for example start with a non-zero byte
or can be missing the 0x00 byte after the random
padding of the message.

We cover all three cases and send the encrypted mes-
sages to the target TLS server and observe if the server

responds with different error messages or timing behav-
ior. As we analyze open source TLS frameworks, we are
able to combine the automatic analysis of the T.I.M.E.
framework with an additional source code review.

Analyzing Oracle Strength. We analyze if the discov-
ered side channel can be used to construct a practical
(Strong) Bleichenbacher oracle. This can be achieved by
considering two factors. First, the probability that the or-
acle responds with 1 if the decrypted message starts with
0x0002. Second, in case of a timing oracle, how many
server requests are needed to distinguish a valid from an
invalid ciphertext.

Performing the Attack. In order to assess the practica-
bility and performance of the attack using a constructed
oracle, we use the oracle in a real attack execution and
report on the number of oracle queries. For this pur-
pose, we implemented the Bleichenbacher attack [5] as
T.I.M.E. test case and extended it with the trimming and
skipping holes methods from [4].

5 First Side Channel: Error Messages in
JSSE

Automated evaluation of JSSE with T.I.M.E. revealed
a new side channel which could be used to construct
a noisy oracle OD−JSSE leading to a successful Blei-
chenbacher attack. In general, the side channel is
caused by an improper padding check and the subse-
quent PreMasterSecret processing. This behavior en-
abled us to force the server to respond with different
alerts while processing differently formatted PKCS#1
messages: INTERNAL ERROR and HANDSHAKE FAILURE.

8
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205 Bytes padding

8 Bytes 117 Bytes 80 Bytes

0200

0200

0200

461 Bytes padding

PMS
48 Bytes

IE

IE

IE

INTERNAL_ERROR

77 Bytes

 padding

373 Bytes 80 Bytes

INTERNAL_ERROR

8 Bytes

0x00 positions provoking 

an INTERNAL_ERROR 

1
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3

Figure 7: If a decrypted message contains a 0x00

byte preceded with non-0x00 bytes in at least one
of the marked positions, JSSE responds with an
INTERNAL ERROR alert. The depicted messages are of
1024 (1), 2048 (2), and 4096 (3) bit length.

Side Channel Analysis. In the following, we analyze
the attack on the server with a 2048 bit (256 bytes) key.
Similar analysis could be applied to other key sizes.

Due to a fixed length of the PreMasterSecret

(PMS), the padding string length can easily be deter-
mined to be 205 bytes (see Figure 2). These bytes
must not include a 0x00 byte. The T.I.M.E. frame-
work enabled us to test the JSSE implementation with
specifically formatted messages. The analysis revealed
that 0x00 bytes inserted at specific padding positions
cause an internal ArrayIndexOutOfBoundsException
leading to a different TLS alert message. The
exception was caused when the PreMasterSecret

length check was not correctly applied (cf. Al-
gorithm 1, line 3). Propagation of the unchecked
ArrayIndexOutOfBoundsException to the surface
lead to the communication abort, the server responded
with an INTERNAL ERROR alert.

More precisely, our test revealed that changing ei-
ther the first 8 or last 80 padding bytes led to a
correct HANDSHAKE FAILURE alert. Changing one
of the remaining padding bytes to 0x00 caused a
different INTERNAL ERROR alert. This was caused
by the MasterSecret computation initialized with a
PreMasterSecret of an incorrect length. By apply-
ing 2048 bit RSA keys, the number of bytes causing an
INTERNAL ERROR alert is equal to 117 (depicted in Fig-
ure 7). In case of 4096 bit keys, this number is equal to
373 (see Figure 7).

In addition to the positions described above in 2048
and 4096 bit long ciphertexts, our analysis revealed that
there is also a chance to attack 1024 bit ciphertexts di-
rectly. Independently of the applied key size, the server

responded with an INTERNAL ERROR if the second to last
byte (m|m|−1) contained 0x00 and the preceding bytes do
not contain 0x00.

The different alert messages offered a new oracle
OD−JSSE responding with 1 (INTERNAL ERROR) or 0
(HANDSHAKE FAILURE) according to the structure of the
decrypted PreMasterSecret.

Oracle Strength. In the following, we evaluate the
probability for 2048 and 4096 bit random mes-
sages starting with 0x0002 to contain a structure
causing an INTERNAL ERROR alert. Let n be the
byte size of the PKCS#1 message and |PMS| the
PreMasterSecret length. The number of bytes pro-
voking an INTERNAL ERROR can be derived as:

x = n−3−|PMS|−8−80.

Let us consider that the first two message bytes are 0x00
02. The probability that the following 8 padding bytes
are non-zero and at least one of the following x bytes
becomes 0x00 (and thus the server responds with an
INTERNAL ERROR alert) is:

PD−JSSE (1|A) =
(

255
256

)8

·
(

1−
(

255
256

)x)

For key sizes of 2048 and 4096 bits (256 and 512 bytes)
it results in:

P2048
D−JSSE (1|A) =

(
255
256

)8

·
(

1−
(

255
256

)117
)

≈ 0.356

P4096
D−JSSE (1|A) =

(
255
256

)8

·
(

1−
(

255
256

)373
)

≈ 0.744

This means that a JSSE server (OD−JSSE ) using
a 2048 bit RSA key responds with a probability of
P2048

D−JSSE(1|A) ≈ 35.6% with 1 (INTERNAL ERROR), if
the decrypted PreMasterSecret message starts with
0x0002. In case of using 4096 bit keys, the oracle is
even more permissive. It responds with a probability of
P4096

D−JSSE(1|A) ≈ 74.4% if the message starts with 0x00

02. These probabilities suggest a low number of false
negatives, leading to an efficient Bleichenbacher attack.

On the other hand, when applying 1024 bit long RSA
keys, OD−JSSE is much less permissive. It responds with
an INTERNAL ERROR only if 0x00 is positioned just be-
fore the last byte. Thus, the probability P1024

D−JSSE(1|A) can
be computed as:

P1024
D−JSSE (1|A) =

(
255
256

)124

·
(

1
256

)
≈ 0.0024
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Mean Median
2048 bit RSA key 176,797 37,399
4096 bit RSA key 73,710 27,744

Table 2: Number of required queries to execute an op-
timized Bleichenbacher’s attack on a JSSE server using
2048 bit and 4096 bit RSA keys.

Attack Evaluation. We used this oracle to perform
a Bleichenbacher attack – the experiment was repeated
1,000 times. Results of this evaluation confirm the find-
ings of our theoretical analysis from the previous section:
Executing the attack using a less restrictive oracle with
a 4096 bit RSA key leads to fewer oracle queries. We
needed about 177,000 queries to a JSSE server applying
2048 bit keys and about 74,000 queries to a JSSE server
applying 4096 bit keys. See Table 2 for details.

We performed full PreMasterSecret recovery at-
tacks against a TLS server working with 2048 bit keys.
With our T.I.M.E. framework we were able to send about
3.85 server queries per second. Thus, sending 177,000
requests lasted about 12 hours. The attack was performed
on localhost.7

Performance evaluation of an oracle using 1024 bit
keys resulted in hundreds of millions of oracle queries.
This is caused by the high restrictiveness of OD−JSSE
when applying keys of this length.

Mitigation. We communicated this problem to the Or-
acle Security response team and the bug was assigned
CVE-2012-5081. The attack is fixed with the Oracle
Java SE Critical Patch October 2012 – Java SE Devel-
opment Kit 6, Update 37 (JDK 6u37).

6 Second Side Channel: Timing Differ-
ences in OpenSSL

The discovery of the aforementioned vulnerability in
JSSE motivated to investigate the source code of open
source SSL/TLS frameworks. We reviewed JSSE,
GnuTLS and OpenSSL and found that they do not im-
plement the countermeasure against Bleichenbacher’s at-
tack as proposed by the TLS 1.2 specification [11].

Side Channel Analysis. The countermeasure against
this attack is mostly implemented as depicted in Algo-
rithm 1. The important observation is that the random
key is generated if, and only if, the received key is not

7Improving the T.I.M.E. sending performance would result in much
faster attack executions. This was however not the primary goal of our
work.

Algorithm 2 Improper implementation of the counter-
measure against Bleichenbacher’s attack (suggested by
TLS 1.0 and TLS 1.1) possibly causing a timing side
channel in all the analyzed implementations.

1: decrypt the ciphertext: m := dec(c)
2: if ( (m �= 00||02||PS||00||k) OR (|k| �= 48)

OR (k1||k2 �= ma j||min) then
3: generate a random PMSR
4: proceed with PMS := PMSR
5: else
6: proceed with PMS := k
7: end if

TLS compliant (see Equation 2). Thus, the random key
generation and the assignment create a new timing side
channel that leaks information about the TLS compli-
ance of a received PreMasterSecret. These processing
steps have independently been observed and criticized by
Matthew Green [18].

Oracle Strength. Timing Reliance. We tested the tim-
ing differences between valid and invalid ciphertexts
with OpenSSL 0.98. Figure 8 shows the filtered results
of our timing analysis over a LAN with 5,000 measure-
ments. The results suggest that we can distinguish TLS
compliant and non-PKCS#1 compliant ciphertexts. We
could achieve similar results for OpenSSL 1.01.

Even though the results clearly showed constant dif-
ferences of about 1.5 microseconds, we are not sure if
the root cause of these differences is additional random
number generation. The OpenSSL code contained sev-

3.2115

3.212

3.2125

3.213

3.2135

3.214

3.2145

Ti
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e 
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Secret invalid
Secret valid

Figure 8: Timing measurement results for OpenSSL
0.98. The valid secret refers to a TLS compliant cipher-
text. The invalid secret refers to a non-PKCS#1 com-
pliant ciphertext. In the non-PKCS#1 compliant struc-
ture the first byte (which should be 0x00) was altered
to 0x08to provoke a random number generation on the
TLS server.
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eral additional branches and loops in the PKCS#1 pro-
cessing which could blur our results. The analysis of
this problem showed up to be very difficult and related
to compile flags. Despite this uncertainty, our measure-
ments clearly show that a side channel exists.

Probability Analysis. The analyzed timing behavior
can be used to construct an oracle

OT−rand(c) =





1 TLS compliant

0
non-TLS compliant (with an addi-
tional random number generation)

However, it does not lead to a practical attack. An
oracle created from this timing leak is very “weak”. It
responds to an oracle request with 1 if, and only if, the
decrypted ciphertext is TLS compliant (see Equation 2).
For a 2048 bit key, the probability that an oracle responds
with 1 in case that the decrypted message starts with
0x0002 is very low:

P2048
T−rand (1|A) =

(
255
256

)205

·
(

1
256

)3

≈ 2.7 ·10−8

The reason is that 205 padding bytes must be non-zero
and the following bytes must contain 0x00||ma j||min.
See Figure 2.

Attack Evaluation. OT−rand is very “weak” and did
not allow to execute a practical Bleichenbacher attack.
We were only able to estimate the number of oracle
queries. According to Bleichenbacher and Bardou et
al. [5, 4], the number of oracle queries for the complete
attack can be computed as:

(217 +16 ·256)/PT−rand = 5 ·1012

Mitigation. The mitigation is described in RFC
5246 [11]. Algorithm 1 illustrates the correct process-
ing: A random value should always be generated, before
processing the decrypted data.

7 Third Side Channel: Internal Exception

We decided to search for different side channels lead-
ing to more practical oracles. As pointed out by James
Manger on the official JOSE (JSON Object Signing and
Encryption) mailing list,8 an additional side channel
could arise from an improper Exception handling in
Java’s PKCS#1 implementation.

8http://www.ietf.org/mail-archive/web/jose/

current/msg01936.html

Side Channel Analysis. The Java PKCS#1 implemen-
tation strictly checks the message format according to
Equation 1. The message must start with 0x0002, con-
tain at least eight non-zero padding bytes, and a 0x00

byte indicating the end of the padding string. If this
format is correct, the secret is extracted. Otherwise, a
BadPaddingException is thrown. The method code
can be found in Listing 9.

1 /∗ ∗
2 ∗ PKCS#1 v1 . 5 unpadding ( b l o c k t y p e 1 and 2 ) .
3 ∗ /
4 p r i v a t e byte [ ] unpadV15 ( byte [ ] padded )
5 throws BadPadd ingExcep t ion {
6 i n t k = 0 ;
7 i f ( padded [ k ++] != 0) {
8 throw new BadPadd ingExcep t ion (
9 ” Data must s t a r t w i th z e r o ” ) ;

10 }
11 i f ( padded [ k ++] != t y p e ) {
12 throw new BadPadd ingExcep t ion (
13 ” B l o c k t y p e mismatch : ” + padded [ 1 ] ) ;
14 }
15 whi le ( t rue ) {
16 i n t b = padded [ k ++] & 0 x f f ;
17 i f ( b == 0) {
18 break ;
19 }
20 i f ( k == padded . l e n g t h ) {
21 throw new BadPadd ingExcep t ion (
22 ” Padding s t r i n g n o t t e r m i n a t e d ” ) ;
23 }
24 i f ( ( t y p e == PAD BLOCKTYPE 1 )
25 && ( b != 0 x f f ) ) {
26 throw new BadPadd ingExcep t ion (
27 ” Padding b y t e n o t 0 x f f : ” + b ) ;
28 }
29 }
30 i n t n = padded . l e n g t h − k ;
31 i f ( n > maxDataSize ) {
32 throw new BadPadd ingExcep t ion (
33 ” Padding s t r i n g t o o s h o r t ” ) ;
34 }
35 byte [ ] d a t a = new byte [ n ] ;
36 System . a r r a y c o p y ( padded ,
37 padded . l e n g t h − n , da t a , 0 , n ) ;
38 re turn d a t a ;
39 }

Figure 9: Java’s PKCS# v1.5 method for format check
and padding removal can throw a BadPaddingException
- Source: sun.security.rsa.RSAPadding

With our T.I.M.E. framework we investigated the
JSSE server implementation which internally uses the
PKCS#1 unpadding method described above. We sent
PKCS#1 compliant and non-PKCS#1 compliant mes-
sages to the JSSE server and found that with non-
PKCS#1 compliant messages an additional Exception
could be provoked. The Exception was correctly han-
dled by the JSSE logic and did not result in a distinguish-
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Figure 10: Timing measurement results for Java 1.7
(JSSE). The valid secret refers to a PKCS#1 compliant
ciphertext. The invalid secret refers to a non-PKCS#1
compliant ciphertext. In the non-PKCS#1 compliant
structure the first byte (which should be 0x00) was al-
tered to 0x08 to provoke an exception on the TLS server.

able error message. Thus, it did not help to create a di-
rect PKCS#1 validation oracle. However, Exception
handling in Java (as well as in other object oriented lan-
guages) can introduce timing delays and thus slow down
the whole application. Throwing, catching, and handling
an Exception are time consuming tasks and thus lead to
additional processing time.

Oracle Strength. Timing Reliance. We analyzed the
timing differences between processing PKCS#1 com-
pliant and non-PKCS#1 compliant messages on TLS
servers running on Java 1.6 and 1.7 platforms. Figure 10
shows the filtered results of our time measurement with
5,000 queries. The results show differences of about 20
microseconds.

Probability Analysis. This behavior allows us to con-
struct a new timing oracle:

OT−exc(c) =





1 PKCS#1 compliant

0
non-PKCS#1 compliant (with an
additional internal exception han-
dling)

OT−exc is very permissive and much stronger than
OT−rand , because it contains fewer plaintext validity
checks. When working with 2048-bit keys, this oracle
responds to a request starting with 0x0002 with 1 with
the following probability:

P2048
T−exc (1|A) =

(
255
256

)8

·
(

1−
(

255
256

)246
)

≈ 0.6

Applying such an oracle results in much lesser queries
and can thus be expected to be used for a practical attack.

Attack Evaluation. We used this timing oracle OT−exc
to perform a real Bleichenbacher attack in a switched
LAN and proved the practicability of OT−exc. The attack
on OpenJDK 1.6 took about 19.5 hours and 18,600 oracle
queries.9 About 20% of PKCS#1 compliant messages
were identified as non-PKCS#1 compliant. The attack
on Java 1.7 took about 55 hours and 20,662 queries. The
larger number of queries and the longer processing time
are caused by a higher value of false negatives (about
50%). The oracle identified about 467 PKCS#1 compli-
ant messages incorrectly.

Mitigation. The object oriented architecture and es-
pecially the Exception handling of the JSSE imple-
mentation makes fixing the timing leak challenging. A
common implementation pattern for RSA decryption is
to provide a (generic) function to which the cipher-
text is passed which returns the plaintext on success or
an Exception otherwise. As stated, the generation of
the Exception creates a detectable timing difference.
Preparing an Exception at function entry, but not throw-
ing it, leads to a smaller time difference, but might still
be exploitable.

As a consequence we implemented a time constant
PKCS#1 processing for SSL/TLS and proposed it as a
fix for this issue to Oracle. The bug was assigned CVE-
2014-411 and it was fixed with the Oracle Java SE Crit-
ical Patch January 2014 – Java SE 7, Update 45 (and
with the previous versions Java SE 5u55 and 6u65).

We verified that a similar timing behavior based on
an additional exception is observable in a widespread
BouncyCastle library.10 BouncyCastle is implemented
in two languages: Java and C#. We tested both imple-
mentations and locally invoked BouncyCastle PKCS#1
decryption methods. We could observe timing differ-
ences of about 20 microseconds between valid and in-
valid PKCS#1 messages in the Java and C# BouncyCas-
tle version. This proved that the described timing behav-
ior is not Java specific, and can be found in other object-
oriented languages as well. We developed a patch for the
Java version of BouncyCastle. We contacted the Boun-
cyCastle developers with the proposed patch in March
2014.

8 Fourth Side Channel: Unexpected Tim-
ing Behavior by Hardware Appliances

The performance and practicability of the previous at-
tacks motivated us to analyze further TLS stacks. We

9One oracle query is not equal to one server request. In order to
respond to an oracle query, OT−exc issued in our scenario up to 750
real server requests. It evaluated the response times and decided if the
ciphertext was valid or not. See Figure 3.

10https://www.bouncycastle.org
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had a chance to evaluate the behavior of F5 BIG-IP
and IBM Datapower which use the Cavium NITROX
SSL accelerator chip. Automated evaluation with our
T.I.M.E. framework revealed that it was possible to ex-
ecute a complete handshake, even though the encoded
PreMasterSecret was of an incorrect format. More
precisely, F5 BIG-IP and IBM Datapower did not ver-
ify the first byte of the PKCS#1 message and accepted
messages which started with 0x??02 (where 0x?? rep-
resents an arbitrary byte).

Side Channel Analysis. This behavior does not lead
to a direct attack. In order to correctly complete a hand-
shake flow and receive a Server Finished message,
an authenticated Client Finished message has to be
sent to the server. Otherwise, the analyzed server re-
sponds with a HANDSHAKE FAILURE message. Since
the Bleichenbacher attacker is not in possession of the
PreMasterSecret, he is not able to authenticate the
Client Finished message and thus cannot trigger dif-
ferent messages. However, the server behavior strongly
indicated that there could be a leakage in the PKCS#1
processing. Even though this leakage did not lead to dif-
ferent server responses, we assumed we could observe
timing differences.

In comparison to the analysis described in the previous
sections, we had no chance to review the code, because
it is not publicly available. This turned our work to a
black-box analysis and made it much harder.

Oracle Strength. We had a chance to evaluate the tim-
ing behavior of an IBM Datapower directly in our lab.
The measurement machine was connected with a router
to the IBM Datapower appliance.11 We created different
TLS requests based on our methodology (TLS compliant
requests, PKCS#1 compliant requests, invalid requests
etc.), and sent these requests to the server while the mea-
surement machine observed the response times. The re-
sponse times were finally compared using the NetTimer
library.

The comparison of the response times confirmed our
predictions and we could see clear timing differences by
processing our TLS requests. The most visible timing
difference was produced by requests starting with 0x??

02, see Figure 11. Based on this timing difference, the
server behavior allowed to construct a new timing oracle:

OT−hard =




1 starts with 0x??02

0 otherwise

11In comparison to the previous measurements, the router did not
route real traffic so our experiments were executed in a “lab” scenario.
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Figure 11: Timing measurement results for our IBM Dat-
apower. The valid secret refers to a message, which
starts with 0x??02, where 0x?? indicates an arbitrary
byte. The invalid secret refers to a message starting with
different bytes.

However, this oracle is not compliant to the oracle
used by Bleichenbacher. It responds with 1 to the request
starting with 0x0102, 0x0202, 0x0302, . . . . Thus, we
needed to modify and adapt the original algorithm to
handle this special case. This novel variant is described
in Section 9.

Attack Evaluation. We evaluated the performance of
our algorithm using a test oracle behaving like OT−hard .
We repeated our experiment 500 times, with a 2048 bit
RSA key. We needed about 4700 queries (median) to
decrypt a ciphertext. This high performance is caused
by the higher number of intervals the oracle accepts.
Manger’s attack [19] also reveals similar behavior.

We used the constructed timing oracle OT−hard to per-
form a real attack on an IBM Datapower appliance. Our
attacker needed 7371 oracle queries. The oracle cor-
rectly evaluated 2033 valid ciphertexts, while 1290 valid
ciphertexts were incorrectly evaluated as invalid. The at-
tack lasted 41 hours. The timing oracle OT−hard issued
about 4,000,000 server queries in total.

Mitigation. We communicated our findings to the ven-
dors in November 2013. The current state of these issues
can be tracked on their websites. F5 tracks this problem
in their Bugzilla database under ID 435652. IBM gives
their customers information about the current state in the
Security Bulletin: SSL/TLS side channel attack on Web-
Sphere DataPower (CVE-2014-0852).12

Since the Cavium products are used by other vendors
like Cisco, Citrix or Juniper Networks, we assume that
many other products were vulnerable, too.13

12http://www.ibm.com/support/docview.wss?uid=

swg21678204
13http://www.cavium.com/winning_products.html
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9 Novel Bleichenbacher Attack Variant

In the previous section we described a new oracle
OT−hard . The oracle responds with 1 if a decrypted mes-
sage starts with 0x??02, where 0x?? represents an ar-
bitrary byte. Such an oracle is not strong enough to im-
plement Bleichenbacher’s attack. The original algorithm
from [5] is not able to tolerate false positives, it requires
an oracle responding with 1 only if the decrypted mes-
sage starts with 0x0002. Note that OT−hard is much
weaker, as it responds with 1 if the message starts with
0x??02. In the following we describe a novel variant
of Bleichenbacher’s attack, which is more robust than
the original one and works also with the weaker oracle
OT−hard .

We assume that the original message is PKCS#1 com-
pliant and lies in the interval [2B,3B), where B = 28(�−2).
In this case the Bleichenbacher algorithm sets the start-
ing interval containing the message of interest m0 ∈ [a,b],
where a = 2B and b = 3B

In the first step, the original algorithm searches for
values s > (2B + N)/3B such that c = (c0 · se) mod N
is decrypted to a PKCS#1 compliant message. This is
not possible by applying OT−hard , since the oracle would
respond with many false positives. We know that if
OT−hard responds with 1, the decrypted message starts
with 0x0002, 0x0102, . . . or 0xFF02. This means the
message lies in one of the following intervals: [2B,3B),
[258B,259B), [514B,515B), . . . . If we start the algo-
rithm with a large s value, we can easily produce a mes-
sage from one of those intervals.

The basic idea behind our algorithm is to use the
additional intervals and make the search more fine-
grained. For this purpose, we define q, where q ∈
{1 . . .(N/256B)}. In the first step, we set r0 = 0 and iter-
atively search si j values by setting q j = 1 . . .(N/256B):

2B+ riN +q j(256B)
b

≤ si j <
3B+ riN +q j(256B)

a
.

We send (c0 · se
i j) mod N to the server and observe its

response. With each valid request, we can reduce the
interval, where the original plaintext m0 lies in:

a = max
(

a,
2B+ riN +q j(256B)

si j

)

b = min
(

b,
3B+ riN +q j(256B)

si j

)

Afterwards, we increment r and repeat the same steps
for q = 1 . . .(N/256B).

The algorithm repeats these steps and reduces the pos-
sible solutions for m0, until only one solution is left.

10 Other TLS Stacks

During our research we also analyzed other SSL/TLS
implementations. Microsoft Schannel (Secure Channel)
revealed no significant timing differences and behaves
quite differently to any other stack: In case of process-
ing errors of any kind, the connection is immediately
terminated instead of sending alert messages. The tim-
ing measurements were too noisy to distill boundaries
for distinguishing different processing branches. Due to
the fact that the product is closed-source a code analysis
was not possible.

11 Related Work

In this section we give a short overview on scientific pub-
lications analyzing side channel attacks and security of
SSL/TLS. For a comprehensive list of SSL/TLS attacks
we refer to [21].

Bleichenbacher Attacks. After publication of the
original attack [5], several variants were discovered.
Klima et al. found out that a strict verification of the
TLS version number in the PreMasterSecret can lead
to a side channel enabling Bleichenbacher’s attack [16].
In [4] Bardou, Focardi, Kawamoto, Simionato, Steel
and Tsay significantly improved Bleichenbacher’s at-
tack, and applied it to other PKCS#1-based environ-
ments.

Although Daniel Bleichenbacher conjectured that
there might be timing-based side channels for Bleichen-
bacher attacks, they were discovered only for other pro-
tocols. For example, Jager et al. [13] describe a prac-
tical timing-based Bleichenbacher attack against imple-
mentations of the XML Encryption standard. They were
able to exploit this side channel over a very noisy net-
work (Planetlab) which was possible because timing dif-
ferences could be increased by the attacker. During their
research, they measured timing differences in the order
of milliseconds whereas we had to cope with microsec-
onds.

Timing Attacks on SSL/TLS. In 2003, Brumley and
Boneh described an attack based on a timing side chan-
nel SSL/TLS [7], applicable if RSA is used for key ex-
change. Based on timing differences during processing
of specially crafted ClientKeyExchange messages the
private key of a server could successfully be extracted.
Additionally, in 2011 Brumley and Tuveri [6] success-
fully attacked ECDSA based TLS connections (only
OpenSSL stacks) by exploiting performance tweaks of
the implementation.

14
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Recent Attacks on SSL/TLS. The BEAST attack by
Rizzo and Duong exploits predictable initialization vec-
tors used by AES-CBC in TLS 1.0 [24]. The CRIME at-
tack of the same authors shows that application of a com-
pression method on plaintexts transported over SSL/-
TLS can lead to serious practical attacks. Both attacks
were theoretically discussed before [3, 15]. The authors
showed how to apply them practically in specific scenar-
ios by exploiting additional side channels. AlFardan and
Paterson presented the Lucky13 padding oracle attack on
AES-CBC [2] which exploits timing differences revealed
by the HMAC computation over the decrypted data.

To practically deploy these attacks, a strong attacker is
needed who is able to force the victim to repeatedly send
the same data to the server. In contrast, our attacks ex-
ploit new side channels to mount Bleichenbacher’s attack
which enables to decrypt the whole PreMasterSecret

(and thus the whole SSL/TLS session) without the need
to control the user’s client software.

Theoretical Results on TLS Security. After publica-
tion of Bleichenbacher’s paper, the security of encoding
schemes for RSA-based TLS was discussed intensively.
However, due to the fact that the Finished messages
are sent encrypted, no full security proof for TLS was
available prior to 2012. In [12], a new security model
(ACCE) was introduced by Jager et al., and a full proof
for TLS-DHE with mutual authentication was given.

One year later, Krawczyk et al. gave a proof for the
two remaining families of ciphersuites, TLS-RSA and
TLS-DH, and for server-only authentication [17]. They
prove security against Bleichenbacher attacks by propos-
ing the following countermeasure: The server should use
the ClientFinished message as a Message Authenti-
cation Code (MAC) for the ClientKeyExchange mes-
sage. Only if ClientFinished is verified successfully,
the server should continue the handshake by making fur-
ther computations.

These two papers contain extensive related work sec-
tions, where all previous theoretical publications on TLS
can be found. Theoretical security proofs must be treated
carefully: The results can only be applied to practical
implementations if all preconditions are satisfied, and if
all cryptographic building blocks are implemented in an
ideal way (i.e. yielding no side channels). Our results
thus do not contradict the proofs, but simply show that
the implementations of the building blocks are not ideal.

12 Future Work

TLS for non-HTTP protocols. The search for new er-
ror or timing-based side channels can be broadened to
cover cryptographic protocol implementations in other

1 /∗ ∗
2 ∗ PKCS#1 v2 . 1 OAEP unpadding (MGF1 ) .
3 ∗ /
4 p r i v a t e byte [ ] unpadOAEP ( byte [ ] padded )
5 throws BadPadd ingExcep t ion {
6 byte [ ] EM = padded ;
7 i n t hLen = lHash . l e n g t h ;
8
9 i f (EM[ 0 ] != 0) {

10 throw new BadPadd ingExcep t ion (
11 ” Data must s t a r t w i th z e r o ” ) ;
12 }
13 . . .

Figure 12: OAEP unpadding function of Java 7.

application scenarios. Especially, protocols that use parts
or concepts of SSL/TLS, such as EAP-TLS [1] or SSL/-
TLS stacks of other languages and frameworks provide
space for further investigation.

OAEP Comes to the Rescue. Many problems related
to the old PKCS#1 are supposed to disappear with the in-
troduction of OAEP [14]. However, during our research
we also found problems in Java’s OAEP processing.
Listing 12 shows the code of Java’s RSAPadding.java
class which contains the logic for OAEP processing.

Line 9-12 outline a conditional branch that could be
used to apply Manger’s attack [19]. Patching is required.
This example shows that OAEP is only of help if imple-
mented correctly, i.e. without side channels.

We notified Oracle about this issue. The code was
patched in the Java release from April 2014.

13 Conclusion

The problem of side channels leaking partial infor-
mation about cryptographic computations seems to be
much more persistent than expected: Error messages
from standard libraries, and especially timig issues make
generic solutions impossible.

The results of this paper show that Bleichenbacher at-
tacks can still be used to break SSL/TLS implementa-
tions. Timing side channels underline the need for cryp-
tographic libraries with branch independent, nearly time
constant execution paths. The uncovered side channels
motivate for the development of cryptographic penetra-
tion testing tools, able to detect such implementation de-
ficiencies in the development phase.

Our results are alarming, especially when consider-
ing that Bleichenbacher attacks are known for about 15
years. They also show that PKCS#1 compliance check-
ing is of prime importance to the security of a TLS im-
plementations: Strict checks on TLS-PKCS#1 compli-
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ance as performed by OpenSSL prevent Bleichenbacher
attacks, even if side channels are present.

The question whether the introduction of RSA-OAEP
padding would solve the problem still remains open:
Only if RSA-OAEP is implemented without any side
channels, the cryptographic features of this padding
scheme can be enforced.
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Abstract
We present Burst ORAM, the first oblivious cloud stor-
age system to achieve both practical response times
and low total bandwidth consumption for bursty work-
loads. For real-world workloads, Burst ORAM can at-
tain response times that are nearly optimal and orders
of magnitude lower than the best existing ORAM sys-
tems by reducing online bandwidth costs and aggres-
sively rescheduling shuffling work to delay the bulk of
the IO until idle periods.

We evaluate our design on an enterprise file system
trace with about 7,500 clients over a 15 day period,
comparing to an insecure baseline encrypted block store
without ORAM. We show that when baseline response
times are low, Burst ORAM response times are compa-
rably low. In a 32TB ORAM with 50ms network latency
and sufficient bandwidth capacity to ensure 90% of re-
quests have baseline response times under 53ms, 90% of
Burst ORAM requests have response times under 63ms,
while requiring only 30 times the total bandwidth con-
sumption of the insecure baseline. Similarly, with suffi-
cient bandwidth to ensure 99.9% of requests have base-
line responses under 70ms, 99.9% of Burst ORAM re-
quests have response times under 76ms.

1 Introduction
Cloud computing allows customers to outsource the bur-
den of data management and benefit from economy of
scale, but privacy concerns hinder its growth [3]. En-
cryption alone is insufficient to ensure privacy in storage
outsourcing applications, as information about the con-
tents of encrypted records may still leak via data access
patterns. Existing work has shown that access patterns
on an encrypted email repository may leak sensitive key-
word search queries [12], and that accesses to encrypted
database tuples may reveal ordering information [5].

Oblivious RAM (ORAM), first proposed in a ground-
breaking work by Goldreich and Ostrovsky [8, 9], is a
cryptographic protocol that allows a client to provably

hide access patterns from an untrusted storage server.
Recently, the research community has focused on mak-
ing ORAM schemes practical for real-world applica-
tions [7, 11, 21, 23–25, 27]. Unfortunately, even with re-
cent improvements, ORAMs still incur substantial band-
width and response time costs.

Many prior ORAM works focus on minimizing band-
width consumption. Several recent works on cloud-
based ORAMs achieve low bandwidth costs using a large
amount of client-side storage [11, 23, 24]. Others rely on
expensive primitives like PIR [17] or additional assump-
tions such as trusted hardware [15] or non-colluding
servers [22] to reduce bandwidth costs.

To be practical, ORAM must also minimize response
times observed by clients for each request. We propose
Burst ORAM, a novel ORAM that dramatically reduces
response times for realistic workloads with bursty char-
acteristics. Burst ORAM is based on ObliviStore [23],
the most bandwidth-efficient existing ORAM.

Burst ORAM uses novel techniques to minimize the
online work of serving requests and delay offline block
shuffling until idle periods. Under realistic bursty loads,
Burst ORAM achieves orders of magnitude shorter re-
sponse times than existing ORAMs, while retaining total
bandwidth costs less than 50% higher than ObliviStore’s.

During long bursts, Burst ORAM’s behavior automat-
ically and gracefully degrades to be similar to that of
ObliviStore. Thus, even in a worst-case workload, Burst
ORAM’s response times and bandwidth costs are com-
petitive with those of existing ORAMs.

We simulate Burst ORAM on a real-world corporate
data access workload (7,500 clients and 15 days) to show
that it can be used practically in a corporate cloud stor-
age environment. We compare against an insecure base-
line encrypted block store without ORAM and show that
when baseline response times are low, Burst ORAM re-
sponse times are also low. In a 32TB ORAM with 50ms
network latency and sufficient bandwidth capacity to en-
sure 90% of requests have baseline response times un-
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der 53ms, 90% of Burst ORAM requests have response
times under 63ms. Similarly, with sufficient bandwidth
to ensure 99.9% of requests have baseline responses un-
der 70ms, 99.9% of Burst ORAM requests have response
times under 76ms. Existing works exhibit response times
on the order of seconds or higher, due to high bandwidth
[11, 23, 25, 28] or computation [17] requirements. To
our knowledge, our work is the first to evaluate ORAM
response times on a realistic, bursty workload.

As in previous ORAM schemes, we do not seek to hide
the timing of data requests. Thus, we assume request
start times and durations are known. To ensure security,
we do not allow the IO scheduler to make use of the data
access sequence or other sensitive information. We an-
alyze Burst ORAM security in Section 6.4.

1.1 Burst ORAM Contributions
Burst ORAM introduces several techniques for reducing
response times and keeping bandwidth costs low that dis-
tinguish it from ObliviStore and other predecessors.

Novel scheduling policies. Burst ORAM prioritizes the
online work that must be complete before requests are
satisfied. If possible, our scheduler delays shuffle work
until off-peak times. Delaying shuffle work consumes
client-side storage, so if a burst is sufficiently long, client
space will fill, forcing shuffling to resume. By this time,
there are typically multiple shuffle jobs pending.

We use a greedy strategy to prioritize jobs that free the
most client-side space per unit of shuffling bandwidth
consumed. This strategy allows us to sustain lower re-
sponse times for longer during an extended burst.

Reduced online bandwidth costs. We propose a new
XOR technique that reduces the online bandwidth cost
from O(logN) blocks per request in ObliviStore to nearly
1, where N is the outsourced block count. The XOR tech-
nique can also be applied to other ORAM implementa-
tions such as SR-ORAM [26] (see Appendix B).

Level caching. We propose a new technique for us-
ing additional available client space to store small levels
from each partition. By caching these levels on the client,
we are able to reduce total bandwidth cost substantially.

1.2 Related Work
Oblivious RAM was first proposed in a seminal work by
Goldreich and Ostrovsky [9]. Since then, a fair amount
of theoretic work has focused on improving its asymp-
totic performance [1, 4, 10, 11, 13, 18, 19, 21, 24, 27].
Recently, there has been much work designing and opti-
mizing ORAM for cloud-based storage outsourcing set-
tings, as noted below. Different ORAMs provide varying
trade-offs between bandwidth cost, client/server storage,
round complexity, and computation.

ORAM has been shown to be feasible for secure (co-)

processor prototypes, which prevent information leakage
due to physical tampering [6, 15, 16, 20]. Since on-chip
trusted cache is expensive, such ORAM schemes need
constant or logarithmic client-side storage, such as the
binary-tree ORAM [21] and its variants [7, 17, 25].

In cloud-based ORAMs, the client typically has more
space, capable of storing O(

√
N) blocks or a small

amount of per-block metadata [10, 23, 24, 28] that can
be used to reduce ORAM bandwidth costs. Burst ORAM
also makes such client space assumptions.

Online and offline costs for ORAM were first made
explicit by Boneh et al. [1] They propose a construc-
tion that has O(1) online but O(

√
N) overall bandwidth

cost. The recent Path-PIR work by Mayberry et al. [17]
mixes ORAM and PIR to achieve O(1) online band-
width cost with an overall bandwidth cost of O(log2 N)
with constant client memory. Unfortunately, the PIR is
still computationally expensive, so their scheme requires
more than 40 seconds for a read from a 1TB database
[17]. Burst ORAM has O(1) online and O(logN) overall
bandwidth cost, without the added overhead of PIR.

Other ORAMs that do not rely on trusted hardware or
non-colluding servers have Ω(logN) online bandwidth
cost including works by Williams, Sion, et al. [27, 28];
by Goodrich, Mitzenmacher, Ohrimenko, and Tamassia
[10, 11]; by Kushilevitz et al. [13]; and by Stefonov, Shi,
et al. [21, 23–25]. Burst ORAM handles bursts much
more effectively by reducing the online cost to nearly 1
block transfer per block request during a burst, greatly
reducing response times.

2 Preliminaries
2.1 Bandwidth Costs
Bandwidth consumption is the primary cost in many
modern ORAMs, so it is important to define how we
measure its different aspects. Each block transferred be-
tween the client and server is a single unit of IO. We as-
sume that blocks are large in practice (at least 1KB), so
transferred meta-data (block IDs) have negligible size.

Definition 1 The bandwidth cost of a storage scheme is
given by the average number of blocks transferred in or-
der to read or write a single block.

We identify bandwidth costs by appending X to the num-
ber. A bandwidth cost of 2X indicates two blocks trans-
ferred per request, which is twice the cost of an unpro-
tected scheme. We consider online, offline, effective, and
overall IO and bandwidth costs, where each cost is given
by the average amount of the corresponding type of IO.

Online IO consists of the block transfers needed before
a request can be safely marked as satisfied, assuming the
scheme starts with no pending IO. The online bandwidth
cost of a storage scheme without ORAM is just 1X — the

2
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Figure 1: Simplified scheme with sequential IO and con-
trived capacity for delaying offline IO. 3 requests require
same online (2), offline (5), and overall (7) IO. Online
IO for R1 is handled immediately, so R1’s effective IO is
only 2. R2 waits for 2 units of offline IO from R1, so its
effective IO is 4. R3 waits for the rest of R1’s offline IO,
plus one unit of R2’s offline IO, so its effective IO is 6.

IO cost of downloading the desired block. In ORAM it
may be higher, as additional blocks may be downloaded
to hide the requested block’s identity.

Offline IO consists of transfers needed to prepare for
subsequent requests, but which may be performed after
the request is satisfied. Without ORAM, the offline band-
width cost is 0X. In ORAM it is generally higher, as addi-
tional shuffle IO is needed to obliviously permute blocks
in order to guarantee privacy for future requests.

Overall IO / bandwidth cost is just the sum of the on-
line and offline IO / bandwidth costs, respectively.

Effective IO consists of all online IO plus any pend-
ing offline IO from previous requests that must be is-
sued before the next request can be satisfied. Without
ORAM, effective IO and online IO are equal. In tra-
ditional ORAMs, offline IO is issued immediately after
each request’s online IO, so effective and overall IO are
equal. In Burst ORAM, we delay some offline IO, reduc-
ing each request’s effective IO as illustrated in Figure 1.
Smaller effective costs mean less IO between requests,
and ultimately shorter response times.

ORAM reads and writes are indistinguishable, so
writes have the same bandwidth costs as reads.

2.2 Response Time

The response time of a block request (ORAM read/write
operation) is defined as the lapse of wall-clock time be-
tween when the request is first issued by the client and
when the client receives a response. The minimum re-
sponse time is the time needed to perform all online IO.
Response times increase when offline IO is needed be-
tween requests, increasing effective IO, or when requests
are issued rapidly in a burst, delaying later requests.

2.3 ObliviStore ORAM
Burst ORAM builds on ObliviStore [23], so we give an
overview of the scheme here. A full description of the
ObliviStore system and its ORAM algorithm spans about
55 pages [23, 24], so we describe it at a high level, fo-
cusing only on components relevant to Burst ORAM.

Partitions and levels. ObliviStore stores N logical data
blocks. Each block is encrypted using a standard sym-
metric key encryption scheme before it is stored on the
server. Every time a block is uploaded by the client, it is
re-encrypted using a new nonce to prevent linking.

ObliviStore securely splits blocks into O(
√

N) parti-
tions of O(

√
N) blocks each. Each partition is an ORAM

consisting of O(logN) levels with 2,4,8, . . . ,O(
√

N)
blocks each. Newly created levels are filled with half
encrypted real blocks and half encrypted dummies, ran-
domly permuted so that reals and dummies are indistin-
guishable to the server. Each level is occupied only half
the time on average. The client has space to store O(

√
N)

blocks and the locations of all N blocks.

Requests. When the client makes a block request,
whether a read or write, the block must first be down-
loaded from the appropriate partition. To maintain obliv-
iousness, ObliviStore must fetch one block from every
non-empty level in the target partition (O(logN) blocks
of online IO). Only one fetched block is real, and the rest
are dummies, except in the case of early shuffle reads de-
scribed below. Once a dummy is fetched, it is discarded,
and new dummies are created later as needed. ObliviS-
tore securely processes multiple requests in parallel, en-
abling full utilization of available bandwidth capacity.

Eviction. Once the real block is fetched, it is updated
or returned to the client as necessary, then ranodmly as-
signed to a new partition p. The block is not immediately
uploaded, but is scheduled for eviction to p and stored in
a client-side data cache. An independent eviction pro-
cess later obliviously evicts the block from the cache to
p. The eviction triggers a write operation on p’s ORAM,
which creates or enlarges a shuffling job for p.

Shuffling Jobs. Each partition p has at most one pending
shuffle job. A job consists of downloading up to O(

√
N)

blocks from p, permuting them on the client with recent
evictions and new dummies, and uploading. Shuffle jobs
incur offline IO, and vary in size (amount of IO) from
O(1) to O(

√
N). Intuitively, to ensure that non-empty

levels have at least one dummy left, we must re-shuffle
a level once half its blocks have been removed. Larger
levels need shuffling less often, so larger jobs occur less
frequently, keeping offline bandwidth costs at O(logN).

Shuffle IO scheduling. A fixed amount of O(logN)
shuffle IO is performed after each request to amortize the
work required for large jobs. The IO for jobs from multi-

3
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ple partitions may be executed in parallel: while waiting
on reads for one partition, we may issue reads or writes
for another. Jobs are started in the order they are created.

Early shuffle reads. Early shuffle reads, referred to as
early cache-ins or real cache-ins in ObliviStore, occur
when a request needs to fetch a block from a level, but at
least half the level’s original blocks have been removed.
In this case, we cannot guarantee that any dummies re-
main. Thus, early shuffle reads must be treated as real
blocks and stored separately by the client until they are
returned to the server as part of a shuffle job. We call such
reads early shuffle reads since the blocks would have
eventually been read during a shuffle job. Early shuffle
reads are infrequent, but made possible since ObliviStore
performs requests while shuffling is in progress.

Level compression. ObliviStore uses a technique called
level compression [24] to compress blocks uploaded dur-
ing shuffling. It allows the client to upload k real and k
dummy blocks using only k blocks of bandwidth with-
out revealing which k are dummies. Level compression
reduces only the offline (shuffling) bandwidth cost.

3 Overview of our Approach
Traditional ORAMs focus on reducing average and
worst-case overall bandwidth costs (per-request over-
all IO). However, even the most bandwidth-efficient
schemes [23, 24] suffer from a 20X–35X bandwidth cost.

In this paper, we instead focus on reducing effective
IO by reducing online IO and delaying offline IO. We
can then satisfy bursts of requests quickly, delaying most
IO until idle periods. Figure 2 illustrates this concept.

Our approach allows many bursts to be satisfied with
nearly a 1X effective bandwidth cost. That is, during
the burst, we transfer just over one block for every block
requested. After the burst we do extra IO to catch up on
shuffling and prepare for future requests. Our approach
maintains an overall bandwidth cost less than 50% higher
than [23, 24] in practice (see Figure 12 in Section 7).

Bursts. Intuitively, a burst is a period of frequent block
requests from the client preceded and followed by rela-
tively idle periods. Many real-world workloads exhibit
bursty patterns (e.g. [2, 14]). Often, bursts are not dis-
crete events, such as when multiple network file system
users are operating concurrently. Thus we handle bursts
fluidly: the more requests issued at once, the more Burst
ORAM tries to delay offline IO until idle periods.

Challenges. We are faced with two key challenges when
building a burst-friendly ORAM system. The first is en-
suring that we maintain security. A naive approach to
reducing online IO may mark requests as satisfied before
enough blocks are read from the server, leaking informa-
tion about the requested block’s identity.

The second challenge is ensuring that we maximally

utilize client storage and available bandwidth while
avoiding deadlock. An excessively aggressive strategy
that delays too much IO may use so much client space
that we run out of room to shuffle. It may also under-
utilize available bandwidth, increasing response times.
On the other hand, an overly conservative strategy may
under-utilize client space or perform shuffling too early,
delaying online IO and increasing response times.

Techniques and Outline. In Burst ORAM, we address
these challenges by combining several novel techniques.
In Section 4 we introduce our XOR technique for reduc-
ing online bandwidth cost to nearly 1X. We also describe
our techniques for prioritizing online IO and delaying of-
fline/shuffle IO until client memory is nearly full. In Sec-
tion 5 we show how Burst ORAM prioritizes efficient
shuffle jobs in order to delay the bulk of the shuffle IO
even further, ensuring that we minimize effective IO dur-
ing long bursts. We then introduce a technique for using
available client space to cache small levels locally to re-
duce shuffle IO in both Burst ORAM and ObliviStore.

In Section 6 we discuss the system-level techniques
used in Burst ORAM, and present its design in detail.
In Section 7, we evaluate Burst ORAM’s performance
through micro-benchmarks and extensive simulations.

4 Prioritizing and Reducing Online IO
Existing ORAMs require high online and offline band-
width costs to obscure access patterns. ObliviStore must
fetch one block from every level in a partition (see
Section 2.3), requiring O(logN) online IO per request.
Figure 3 (left) illustrates this behavior. After each re-
quest, ObliviStore also requires O(logN) offline/shuffle
IO. Since ObliviStore issues online and offline IO before
satisfying the next request, its effective IO is high, lead-
ing to large response times during bursts. Other ORAMs
work differently, such as Path ORAM [25] which orga-
nizes data as a tree, but still have high effective costs.
We now show how Burst ORAM achieves lower effective
bandwidth costs and response times than ObliviStore.

4.1 Prioritizing Online IO
One way we achieve low response times in Burst ORAM
is by prioritizing online IO over shuffle IO. That is, we
suppress shuffle IO during bursts, delaying it until idle
periods. Requests are satisfied once online IO finishes,1

so prioritizing online IO allows us to satisfy all requests
before any shuffle IO starts, keeping response times low
even for later requests. Figure 2 illustrates this behavior.

During the burst, we continue processing requests by
fetching blocks from the server, but since shuffling is
suppressed, no blocks are uploaded. Thus, we must re-
sume shuffling once client storage fills. Section 5.2 dis-

1Each client write also incurs a read, so writes still incur online IO.
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Figure 2: Reducing response time. Because Burst ORAM (right) does much less online IO than ObliviStore (left)
and delays offline IO, it is able to respond to ORAM requests much faster. In this (overfly simplified) illustration, the
bandwidth capacity is enough to transfer 4 blocks concurrently. Both ORAM systems do the same amount of IO.
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Figure 3: Reducing online cost. In ObliviStore (left)
the online bandwidth cost is O(logN) blocks of IO on
average. In Burst ORAM (right), we reduce online IO to
only one block, improving handling of bursty traffic.

cusses how to delay shuffle IO even further. Section 6
details changes from the ObliviStore design required to
avoid deadlock and fully utilize client space.

When available bandwidths are large and bursts are
short, the response time saved by prioritizing online IO
is limited, as most IO needed for the burst can be issued
in parallel. However, when bandwidth is limited or bursts
are long, the savings can be substantial. With shuffle IO
delayed until idle times, online IO dominates the effec-
tive IO, becoming the bottleneck during bursts. Thus we
can further reduce response times by reducing online IO.

4.2 XOR Technique: Reducing Online IO
We introduce a new mechanism called the XOR tech-
nique that allows the Burst ORAM server to combine the
O(logN) blocks fetched during a request into a single
block that is returned to the client (Figure 3 right), re-
ducing the online bandwidth cost to O(1).

If we fetched only the desired block, we would reveal
its identity to the server. Instead, we XOR all the blocks
together and return the result. Since there is at most one
real block among the O(logN) returned, the client can
locally reconstruct the dummy block values and XOR

them with the returned block to recover the encrypted
real block. XOR technique steps are shown in Figure 4.

4.2.1 XOR Technique Details

In Burst ORAM, as in ObliviStore, each request needs to
retrieve a block from a single partition, which is a sim-
plified hierarchical ORAM resembling those in [9]. The
hierarchy contains L≈ 1

2 log2 N levels with real-block ca-
pacities 1,2,4, . . . ,2L−1 respectively.

To retrieve a requested block, the client must fetch ex-
actly one block from each of the L levels. The XOR
technique requires that the client be able to reconstruct
dummy blocks, and that dummies remain indistinguish-
able from real blocks. We achieve this property by en-
crypting a real block b residing in partition p, level �,
and offset off as AESskp,�(off||B). We encrypt a dummy
block residing in partition p, level �, and offset off as
AESskp,�(off). The key skp,� is specific to partition p and
level �, and is randomized every time � is rebuilt.

For simplicity, we start by considering the case with-
out early shuffle reads. In this case, exactly one of the L
blocks requested is the encryption of a real block, and the
rest are encryptions of dummy blocks. The server XORs
all L encrypted blocks together into a single block XQ that
it returns to the client. The client knows which blocks are
dummies, and knows p, �,off for each block, so it recon-
structs all the encrypted dummy blocks and XORs them
with XQ to obtain the encrypted requested/real block.

4.2.2 Handling early shuffle reads

An early shuffle read occurs when we need to read from
a level with no more than half its original blocks remain-
ing. Since such early shuffle reads may be real blocks,
they cannot be included in the XOR. Fortunately, the
number of blocks in a level is public, so the server al-
ready knows which levels will cause early shuffle reads.
Thus, the server simply returns early shuffle reads indi-
vidually, then XORs the remaining blocks, leaking no
information about the access sequence.
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1. Client issues block requests to server, one per level
2. Server, to satisfy request

(a) Retrieves and returns early shuffle reads
(b) XORs remaining blocks together into single

combined block and returns it
3. Client, while waiting for response

(a) Regenerates encrypted dummy block for each
non-early-shuffle-read

(b) XORs all dummies to get subtraction block
4. Client receives combined block from server and

XORs with subtraction block to get requested block
5. Client decrypts requested block

Figure 4: XOR Technique Steps

Since each early shuffle read block must be transferred
individually, early shuffle reads increase online IO. For-
tunately, early shuffle reads are rare, even while shuffling
is suppressed during bursts, so the online bandwidth cost
stays under 2X and near 1X in practice (see Figure 7).

4.2.3 Comparison with ObliviStore

ObliviStore uses level compression to reduce shuffle IO.
When the client uploads a level to the server, it first com-
presses the level down to the combined size of the level’s
real blocks. Since half the blocks are dummies, half the
upload shuffle IO is eliminated. For details on level com-
pression and its security, see [24].

Unfortunately, Burst ORAM’s XOR technique is in-
compatible with level compression due to discrepan-
cies in the ways dummy blocks must be formed. The
XOR technique requires that the client be able to recon-
struct dummy blocks locally, so in Burst ORAM, each
dummy’s position determines its contents. In level com-
pression, each level’s dummy block contents are a func-
tion of the level’s real block contents. Since the client
cannot know the contents of all real blocks in the level, it
cannot reconstruct the dummies locally.

Level compression and the XOR technique yield com-
parable overall IO reductions, though level compression
performs slightly better. For example, the experiment
in Figure 8 incurs roughly 23X and 26X overall band-
width cost using level compression and XOR respec-
tively. However, the XOR technique reduces online IO,
while level compression reduces offline IO, so the XOR
technique is more effective at reducing response times.

5 Scheduling and Reducing Shuffle IO
In Burst ORAM, once client space fills, we must start
shuffling in order to return blocks to the server and
continue the burst. If we are not careful about shuf-
fle IO scheduling, we may immediately start doing large
amounts of IO, dramatically increasing response times.

In this section, we show how Burst ORAM schedules

shuffle IO so that jobs that free the most client space us-
ing the least shuffle IO are prioritized. Thus, at all times,
Burst ORAM issues only the minimum amount of effec-
tive IO needed to continue the burst, keeping response
times lower for longer. We also show how to reduce over-
all IO by locally caching the smallest levels from each
partition. We start by defining shuffle jobs.

5.1 Shuffle Jobs
In Burst ORAM, as in ObliviStore, shuffle IO is divided
into per-partition shuffle jobs. Each job represents the
work needed to shuffle a partition p and upload blocks
evicted to p. A shuffle job is defined by five entities:
• A partition p to which the job belongs
• Blocks evicted to but not yet returned to p
• Levels to read blocks from
• Levels to write blocks to
• Blocks already read from p (early shuffle reads)

Each shuffle job moves through three phases:

Creation Phase. We create a shuffle job for p when a
block is evicted to p following a request. Every job starts
out inactive, meaning we have not started work on it.
If another block is evicted to p, we update the sets of
eviction blocks and read/write levels in p’s inactive job.

When Burst ORAM activates a job, it moves the job
to the Read Phase, freezing the eviction blocks and
read/write levels. Subsequent evictions to p will create
a new inactive shuffle job. At any time, there is at most
one active and one inactive shuffle job for each partition.

Read Phase. Once a shuffle job is activated, we begin
fetching all blocks still on the server that need to be shuf-
fled. That is, all previously unread blocks from all the
job’s read levels. Once all such blocks are fetched, they
are shuffled with all blocks evicted to p and any early
shuffle reads from the read levels. Shuffling consists
of adding/removing dummies, pseudo-randomly permut-
ing the blocks, and then re-encrypting each block. Once
shuffling completes, we move the job to the Write Phase.

Write Phase. Once a job is shuffled we begin storing
all shuffled blocks to the job’s write levels on the server.
Once all writes finish, the job is marked complete, and
Burst ORAM is free to activate p’s inactive job, if any.

5.2 Prioritizing Efficient Jobs
Since executing shuffle IO delays the online IO needed to
satisfy requests, we can reduce response times by doing
as little shuffling as is needed to free up space. The hope
is that we can delay the bulk of the shuffling until an idle
period, so that it does not interfere with pending requests.

By the time client space fills, there will be many par-
titions with inactive shuffle jobs. Since we can choose
jobs in any order, we can minimize the up-front shuffling
work by prioritizing the most efficient shuffle jobs: those

6
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that free up the most client space per unit of shuffle IO.
The space freed by completing a job for partition p is the
number of blocks evicted to p plus the number of early
shuffle reads from the job’s read levels. Thus, we can
define shuffle job efficiency as follows:

Job Efficiency =
# Evictions+# Early Shuffle Reads

# Blocks to Read+# Blocks to Write

Job efficiencies vary substantially. Most jobs start with
1 eviction and 0 early shuffle reads, so their relative effi-
ciencies are determined strictly by the sizes of the job’s
read and write levels. If the partition’s bottom level is
empty, no levels need be read, and only the bottom must
be written, for an overall IO of 2 an an efficiency of 0.5.
If instead the bottom 4 levels are occupied, all 4 levels
must be read, and the 5th level written, for an total of
roughly 15 reads and 32 writes, yielding a much lower
efficiency of just over 0.02. Both jobs free equal amounts
of space, but the higher-efficiency job uses less IO.

Since small levels are written more often than large
ones, efficient jobs are common. Further, by delaying an
unusually inefficient job, we give it time to accumulate
more evictions. While such a job will also accumulate
more IO, the added write levels are generally small, so
the job’s efficiency tends to improve with time. Thus,
prioritizing efficient jobs reduces shuffle IO during the
burst, thereby reducing response times.

Unlike Burst ORAM, ObliviStore does not use client
space to delay shuffling, so there are fewer shuffle jobs to
choose from at any one time. Thus, job scheduling is less
important and jobs are chosen in creation order. Since
ObliviStore is concerned with throughput, not response
times, it has no incentive to prioritize efficient jobs.

5.3 Reducing Shuffle IO via Level Caching
Since small, efficient shuffle jobs are common, Burst
ORAM spends a lot of time accessing small levels. If
we use client space to locally cache the smallest levels of
each partition, we can eliminate the shuffle IO associated
with those levels entirely. Since levels are shuffled with
a frequency inversely proportional to their size, each is
responsible for roughly the same fraction of shuffle IO.
Thus, we can greatly reduce shuffle IO by caching even
a few levels from each partition. Further, since caching
a level eliminates its early shuffle reads, which are com-
mon for small levels, caching can also reduce online IO.

We are therefore faced with a tradeoff between using
client space to store requested blocks, which reduces re-
sponse times for short bursts, and using it for local level
caching, which reduces overall bandwidth cost.

5.3.1 Level Caching in Burst ORAM

In Burst ORAM, we take a conservative approach, and
cache only as many levels as are guaranteed to fit in the
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Figure 5: Burst ORAM Architecture. Solid boxes rep-
resent key system components, while dashed boxes rep-
resent functionality and the effects of the system on IO.

worst case. More precisely, we identify the maximum
number λ such that the client could store all real blocks
from the smallest λ levels of every partition even if all
were full simultaneously. We cache levels by only up-
dating an inactive job when the number of evictions is
such that all the job’s write levels have index at least λ .

Since each level is only occupied half the time,
caching λ levels consumes at most half of the client’s
space on average, leaving the rest for requested blocks.
As we show experimentally in Section 7, level caching
greatly reduces overall bandwidth cost, and can even re-
duce response times since it avoids early shuffle reads.

6 Detailed Burst ORAM Design
The Burst ORAM design is based on ObliviStore, but
incorporates many fundamental functional and system-
level changes. For example, Burst ORAM replaces or
revises all the semaphores used in ObliviStore to achieve
our distinct goal of online IO prioritization while main-
taining security and avoiding deadlock. Burst ORAM
also maximizes client space utilization, implements the
XOR technique to reduce online IO, revises the shuf-
fler to schedule efficient jobs first, and implements level
caching to reduce overall IO.

6.1 Overall Architecture
Figure 5 presents the basic architecture of Burst ORAM,
highlighting key components and functionality. Burst
ORAM consists of two primary components, the online
Requester and the offline Shuffler, which are controlled
by the main event loop ORAM Main. Client-side mem-
ory allocation is shown in Figure 6.

ORAM Main accepts new block requests (reads and
writes) from the client, and adds them to a Request
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Position Map

 

 




Overflow Space

Local Space

Level Cache
Shuffle Buffer

 

Figure 6: Burst ORAM Client Space Allocation. Fixed
client space is reserved for the position map and shuffle
buffer. A small amount of overflow space is needed for
blocks assigned but not yet evicted (data cache in [24]).
Remaining space is managed by Local Space and con-
tains evictions, early shuffle reads, and the level cache.

Queue. On each iteration, ORAM Main tries advancing
the Requester first, only advancing the Shuffler if the Re-
quester needs no IO, thereby prioritizing online IO. The
Requester and Shuffler use semaphores (Section 6.2) to
regulate access to network bandwidth and client space.

The Requester reads each request from the Request
Queue, identifies the desired block’s partition, and
fetches it along with any necessary dummies. To en-
sure oblivious behavior, the Requester must wait until
all dummy blocks have been fetched before marking the
request satisfied. All Requester IO is considered online.

The Shuffler re-encrypts blocks fetched by the Re-
quester, shuffles them with other blocks, and returns
them to the server. The Shuffler is responsible for manag-
ing shuffle jobs, including prioritizing efficient jobs and
implementing level caching. All IO initiated by the shuf-
fler is considered offline or shuffle IO.

6.2 Semaphores
Resources in Burst ORAM are managed via semaphores,
as in ObliviStore. Semaphores are updated using only
server-visible information, so ORAM can safely base its
behavior on semaphores without revealing new informa-
tion. Since Burst ORAM gives online IO strict priority
over shuffle IO, our use of semaphores is substantially
different than ObliviStore’s, which tries to issue the same
amount of IO after each request. ObliviStore uses four
semaphores: Shuffling Buffer, Early Cache-ins, Eviction,
and Shuffling IO. In Burst ORAM, we use three:
• Shuffle Buffer manages client space reserved for

blocks from active shuffle jobs, and differs from
ObliviStore’s Shuffling Buffer only in initial value.

• Local Space manages all remaining space, com-
bining ObliviStore’s Early Cache-in and Eviction
semaphores.

• Concurrent IO manages concurrent block trans-
fers based on network link capacity, preventing
the Shuffler from starving the Requester. It dif-

fers fundamentally from ObliviStore’s Shuffling IO
semaphore, which manages per-request shuffle IO.

Shuffle Buffer semaphore. Shuffle Buffer gives the
number of blocks that may be added to the client’s shuf-
fle buffer. We initialize it to double the maximum parti-
tion size (under 2.4

√
N total for N > 210), to ensure that

the shuffle buffer is large enough to store at least two in-
progress shuffle jobs. When Shuffle Buffer reaches 0, the
Shuffler may not issue additional reads.

Local Space semaphore. Local Space gives the num-
ber of blocks that may still be stored in remaining client
space (space not reserved for the position map or shuffle
buffer). If Local Space is 0, the Requester may not fetch
more blocks. Blocks fetched by the Requester count to-
ward Local Space until their partition’s shuffle job is ac-
tivated and they are absorbed into Shuffle Buffer. Once a
block moves from Local Space to Shuffle Buffer, it is con-
sidered free from the client, and more requests may be
issued. The more client space, the higher Local Space’s
initial value, and the better our burst performance.

Concurrent IO semaphore. Concurrent IO is initial-
ized to the network link’s block capacity. Queuing a
block transfer decrements Concurrent IO, and complet-
ing a transfer increments Concurrent IO. The Shuffler
may only initiate a transfer if Concurrent IO > 0. How-
ever, the Requester may continue to initiate transfers and
decrement Concurrent IO even if it is negative. This
mechanism ensures that no new shuffle IO starts while
there is sufficient online IO to fully utilize the link. If no
online IO starts, Concurrent IO eventually becomes pos-
itive, and shuffle IO resumes, ensuring full utilization.

6.3 Detailed System Behavior
We now describe the interaction between ORAM Main,
the Requester, the Shuffler, and the semaphores in detail.
Accompanying pseudocode can be found in Appendix A.

ORAM Main (Algorithm 1). Incoming read and write
requests are asynchronously added to the Request Queue.
During each iteration, ORAM Main first tries to advance
the Requester, which attempts to satisfy the next request
from the Request Queue. If the queue is empty, or Local
Space too low, ORAM Main advances the Shuffler in-
stead. This mechanism suppresses new shuffle IO during
a new burst of requests until the Requester has fetched as
many blocks as possible.

For each request, we evict v blocks to randomly cho-
sen partitions, where v is the eviction rate, set to 1.3 as
in ObliviStore [23]. When evicting, if the Requester has
previously assigned a block to be evicted to partition p,
then we evict that block. If there are no assigned blocks,
then to maintain obliviousness we evict a new dummy
block instead. Eviction does not send a block to the
server immediately. It merely informs the Shuffler that

8
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the block is ready to be shuffled into p.

Requester (Algorithm 2). To service a request, the Re-
quester first identifies the partition and level containing
the desired block. It then determines which levels require
early shuffle reads, and which need only standard reads.
If Local Space is large enough to accommodate the re-
trieved blocks, the requester issues an asynchronous re-
quest for the necessary blocks Else, control returns to
ORAM Main, giving the Shuffler a chance to free space.

The server asynchronously returns the early shuffle
read blocks and a single combined block obtained from
all standard-read blocks using the XOR technique (Sec-
tion 4). The Requester extracts the desired block from
the combined block or from an early shuffle read block,
then updates the block (write) or returns it to the client
(read). The Requester then assigns the desired block for
eviction to a randomly chosen partition.

Shuffler (Algorithm 3). The Shuffler may only proceed
if Concurrent IO > 0. Otherwise, there is pending on-
line IO, which takes priority over shuffle IO, so control
returns to ORAM Main without any shuffling.

The Shuffler places shuffle jobs into three queues
based on phase. The New Job Queue holds inactive jobs,
prioritized by efficiency. The Read Job Queue holds ac-
tive jobs for which some reads have been issued, but not
all reads are complete. The Write Job Queue holds active
jobs for which all reads, not writes, are complete.

If all reads have been issued for all jobs in the Read
Job Queue, the Shuffler activates the most efficient job
from the New Job Queue, if any. Activating a job moves
it to the Read Job Queue and freezes its read/write lev-
els, preventing it from being updated by subsequent evic-
tions. It also moves the job’s eviction and early shuffle
read blocks from Local Space to Shuffle Buffer, freeing
up Local Space to handle online requests. By ensuring
that all reads for all active jobs are issued before activat-
ing new jobs, we avoid hastily activating inefficient jobs.

The Shuffler then tries to decrement Shuffle Buffer to
determine whether a shuffle read may be issued. If so,
the Shuffler asynchronously fetches a block for a job in
the Read Job Queue. If not, the Shuffler asynchronously
writes a block from a job in the Write Job Queue instead.
Unlike reads, writes do not require Shuffle Buffer space,
so they can always be issued. The Shuffler prioritizes
reads since they are critical prerequisites to activating
new jobs and freeing up Local Space. The equally costly
writes can be delayed until Shuffle Buffer space runs out.

Once all reads for a job complete, the job is shuffled:
dummy blocks are added as needed, then all are per-
muted and re-encrypted. We then move the job to the
Write Job Queue. When all writes finish, we mark the
job complete and remove it from the Write Job Queue.

6.4 Burst ORAM Security
We assume the server knows public information such as
the values of each semaphore and the start and end times
of each request. The server also knows the level config-
uration of each partition and the size and phase of each
shuffle job, including which encrypted blocks have been
read from and written to the server. We must prevent
the server from learning the contents of any encrypted
block, or anything about which plaintext block is being
requested. Thus, the server may not know the location of
a given plaintext block, or even the prior location of any
previously requested encrypted block.

All of Burst ORAM’s publicly visible actions are, or
appear to the server to be, independent of the client’s sen-
sitive data access sequence. Since Burst ORAM treats
the server as a simple block store, the publicly visi-
ble actions consist entirely of deciding when to transfer
which blocks. Intuitively, we must show that each action
taken by Burst ORAM is either deterministic and depen-
dent only on public information, or appears random to
the server. Equivalently, we must be able to generate a
sequence of encrypted block transfers that appears in-
distinguishable from the actions of Burst ORAM using
only public information. We now show how each Burst
ORAM component meets these criteria.

ORAM Main & Client Security. ORAM Main (Algo-
rithm 1) chooses whether to advance the Requester or the
Shuffler, and depends on the size of the request queue
and the Local Space semaphore. Since the number of
pending requests and the semaphores are public, ORAM
Main is deterministic and based only on public informa-
tion. For each eviction, the choice of partition is made
randomly, and exactly one block will always be evicted.
Thus, every action in Algorithm 1 is either truly random
or based on public information, and is trivial to simulate.

Requester Security. The Requester (Algorithm 2) must
first identify the partition containing a desired block.
Since the block was assigned to the partition randomly
and this is the first time it is being retrieved since it was
assigned, the choice of partition appears random to the
server. Within each partition, the requester determin-
istically retrieves one block from each occupied level.
The choice from each level appears random, since blocks
were randomly permuted when the level was created.

The Requester singles out early shuffle reads and re-
turns them individually. The identity of levels that re-
turn early shuffle reads is public, since it depends on the
number of blocks in the level. The remaining blocks are
deterministically combined using XOR into a single re-
turned block. Finally, the request is marked satisfied only
after all blocks have been returned, so request completion
time depends only on public information.

The Requester’s behavior can be simulated using only
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public information by randomly choosing a partition and
randomly selecting one block from each occupied level.
Blocks from levels with at most half their original blocks
remaining should be returned individually, and all others
combined using XOR and returned. Once all blocks have
been returned, the request is marked satisfied.

Shuffler Security. As in ObliviStore, Shuffler (Algo-
rithm 3) operations depend on public semaphores. Job
efficiency, which we use for prioritizing jobs, depends on
the number of blocks to be read and written to perform
shuffling, as well as the number of early shuffle reads
and blocks already evicted (not assigned). The identity
of early shuffle read levels and the number of evictions is
public. Further, the number of reads and writes depends
only on the partition’s level configuration. Thus, job effi-
ciency and job order depend only on public information.
Since the Shuffler’s actions are either truly random (e.g.
permuting blocks) or depend only on public information
(i.e. semaphores), it is trivial to simulate.

Client Space. Since fetched blocks are assigned ran-
domly to partitions, but evicted using an independent
process, the number of blocks awaiting eviction may
grow. The precise number of such blocks may leak in-
formation about where blocks were assigned, so it must
be kept secret, and the client must allocate a fixed amount
of space dedicated to storing such blocks (see Overflow
Space in Figure 6). ObliviStore [23] relies on a proba-
bilistic bound on overflow space provided in [24]. Since
Burst ORAM uses ObliviStore’s assignment and evic-
tion processes, the bound holds for Burst ORAM as well.
Level caching uses space controlled by the Local Space
semaphore, so it depends only on public information.

7 Evaluation
We ran simulations comparing response times and band-
width costs of Burst ORAM with ObliviStore and an in-
secure baseline, using real and synthetic workloads.

7.1 Methodology
7.1.1 Baselines

We compare Burst ORAM and its variants against two
baselines. The first is the ObliviStore ORAM described
in [23], including its level compression optimization. For
fairness, we allow ObliviStore to use extra client space
to locally cache the smallest levels in each partition. The
second baseline is an insecure scheme without ORAM
in which blocks are encrypted, but access patterns are
not hidden. It transfers exactly one block per request.

We evaluate Burst ORAM against ObliviStore since
ObliviStore is the most bandwidth-efficient existing
ORAM scheme. Other schemes require less client stor-
age [25], but incur higher bandwidth costs, and thus
would yield higher response times. We did not include

results from Path-PIR [17] because it requires substan-
tially larger block sizes to be efficient, and its response
times are dominated by the orthogonal consideration of
PIR computation. Path-PIR reports response times in the
40–50 second range for comparably-sized databases.

7.1.2 Metrics

We evaluate Burst ORAM and our baselines using re-
sponse time and bandwidth cost as metrics (see Section
2). We measure average, maximum, and p-percentile re-
sponse times for various p. A p-percentile response time
of t seconds indicates that p percent of the requests were
satisfied with response times under t seconds.

We explicitly measure online, effective, and overall
bandwidth costs. In the insecure baseline, all are 1X,
so response times are minimal. However, if a burst has
high enough frequency to saturate available bandwidth,
requests may still pile up, yielding large response times.

7.1.3 Workloads

We use three workloads. The first consists of an end-
less burst of requests all issued at once, and compares
changes in bandwidth costs of each scheme as a func-
tion of burst length. The second consists of two identi-
cal bursts with equally-spaced requests, separated by an
idle period. It shows how response times change in each
scheme before and after the idle period.

The third workload is based on the NetApp Dataset [2,
14], a corporate workload containing file system accesses
from over 5000 corporate clients and 2500 engineering
clients during 100 days. The file system uses 22TB of its
31TB of available space. More details about the work-
load are provided in the work by Leung et al. [14].

Our NetApp workload uses a 15 day period (Sept. 25
through Oct. 9) during which corporate and engineering
clients were active. Requested chunk sizes range from a
few bits to 64KB, with most at least 4KB [14]. Thus, we
chose a 4KB block size. In total, 312GB of data were
requested using 8.8 ·107 4KB queries.

We configure the NetApp workload ORAM with a
32TB capacity, and allow 100GB of client space, for a
usable storage increase of 328 times. For Burst ORAM
and ObliviStore, at least 33GB is consumed by the posi-
tion map, and only 64GB is used for local block storage.
The total block count is N = 233. Blocks are divided into
�217/3� partitions to maximize server space utilization,
each with an upper-bound partition size of 218 blocks.

7.2 Simulator
We evaluated Burst ORAM’s bandwidth costs and re-
sponse times using a detailed simulator written in Java.
The simulator creates an asynchronous event for each
block to be transferred. We calculate the transfer’s ex-
pected end time from the network latency, the network
bandwidth, and the number of pending transfers.
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Our simulator also measures results for ObliviStore
and the insecure baseline. In all schemes, block requests
are time-stamped as soon as they arrive, and serviced as
soon as possible. Requests pile up indefinitely if they
arrive more frequently than the scheme can handle them.

Burst ORAM’s behavior is driven by semaphores and
appears data-independent to the server. Each request
reads from a partition that appears to be chosen uni-
formly at random, so bandwidth costs and response times
depend only on request arrival times, not on requested
block IDs or contents. Thus, the simulator need only
store counters representing the number of remaining
blocks in each level of each partition, and can avoid stor-
ing block IDs and contents explicitly.

Since the simulator need not represent blocks individ-
ually, it does not measure the costs of encryption, look-
ing up block IDs, or performing disk reads for blocks.
Thus, measured bandwidth costs and response times de-
pend entirely on network latency, bandwidth capacity, re-
quest arrival times, and the scheme itself.

7.2.1 Extrapolating Results to Real-World Settings

Burst ORAM can achieve near-optimal performance for
realistic bursty traffic patterns. In particular, in many
real-life cases bandwidth is overprovisioned to ensure
near-optimal response time under bursts – for the inse-
cure baseline. However, in between bursts, most of the
bandwidth is not utilized. Burst ORAM’s idea is leverag-
ing the available bandwidth in between bursts to ensure
near-optimal response time during bursts.

Our simulation applies mainly to scenarios where the
client-server bandwidth is the primary bandwidth bottle-
neck (i.e., client-server bandwidth is the narrowest pipe
in the system), which is likely to be the case in a real-life
outsourced storage scenario, such as a corporate enter-
prise outsourcing its storage to a cloud provider. While
the simulation assumes that there is a single server, in
practice, the server-side architecture could be more com-
plicated and involve multiple servers interacting with
each other. But as long as server-server bandwidth is not
the bottleneck, our simulation results would be applica-
ble. Similarly, we assume that the server’s disk band-
width is not a bottleneck. This is likely the case if fast
Solid State Drives (SSD) are employed. For example,
assuming 4KB blocks and only one such array of SSDs
with a 100µs random 4KB read latency, our single-array
throughput limits us to satisfying 10,000 requests per
second. In contrast, even a 1Gbps network connection
lets us satisfy only 32,000 requests per second. Thus,
with even six such arrays (3 log2 N SSDs total), assign-
ing roughly

√
N/6 partitions to each array, we can expect

the client-server network to be the bottleneck.
Other than bandwidth, another factor is inherent sys-

tem latencies, e.g., network round-trip times, or inherent
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Figure 7: Online bandwidth costs as a burst lengthens.
Burst ORAM maintains low online cost regardless of
burst length, unlike ObliviStore.
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Figure 8: Effective bandwidth costs as burst grows. Burst
ORAM handles most bursts with ∼1X effective cost. Ef-
fective costs converge to overall costs for long bursts.

disk latencies. Under the same overall bandwidth config-
uration, increased latency is unlikely to affect the near-
optimality of Burst ORAM– while they would increase
Burst ORAM’s total response times, we would expect a
comparable increase in response times for the insecure
baseline.

7.3 Endless Burst Experiments
For the endless burst experiments, we use a 32TB
ORAM with N = 233 4KB blocks and 100GB client
space. We issue 233 requests at once, then start satisfy-
ing requests in order using each scheme. We record the
bandwidth costs of each request, averaged over requests
with similar indexes and over three trials. Figures 7 and
8 show online and effective costs, respectively. The in-
secure baseline is not shown, since its online, effective,
and overall bandwidth costs are all 1.

Figure 7 shows that Burst ORAM maintains 5X–
6X lower online cost than ObliviStore for bursts of all
lengths. When Burst ORAM starts to delay shuffling, it
incurs more early shuffle reads, increasing online cost,
but stays well under 2X on average. Burst ORAM effec-
tive costs can be near 1X because writes associated with
requests are not performed until blocks are shuffled.

Burst ORAM defers shuffling, so its effective cost
stays close to its online cost until client space fills, while
ObliviStore starts shuffling immediately, so its effective
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cost stays constant (Figure 8). Thus, response times for
short bursts will be substantially lower in Burst ORAM
than in ObliviStore.

Eventually, client space fills completely, and even
Burst ORAM must shuffle continuously to keep up with
incoming requests. This behavior is seen at the far right
of Figure 8, where each scheme’s effective cost con-
verges to its overall cost. Burst ORAM’s XOR tech-
nique results in slightly higher overall cost than Oblivi-
Store’s level compression, so Burst ORAM is slightly
less efficient for very long bursts. Without local level
caching, Burst ORAM spends much more time shuf-
fling the smallest levels, yielding the poor performance
of Burst ORAM No Level Caching.

If shuffle jobs are started in arbitrary order, as for Burst
ORAM No Prioritization, the amount of shuffling per re-
quest quickly increases, pushing effective cost toward
overall cost. However, by prioritizing efficient shuffle
jobs as in Burst ORAM proper, more shuffling can be
deferred, keeping effective costs lower for longer, and
maintaining shorter response times.

7.4 Two-Burst Experiments
Our Two-Burst experiments show how each scheme re-
sponds to idle time between bursts. We show that Burst
ORAM uses the idle time effectively, freeing up as much
client space as possible. The longer the gap between
bursts, the longer Burst ORAM maintains low effective
costs during Burst 2.

Figure 9 shows response times during two closely-
spaced bursts, each of ∼ 227 requests spread evenly over
72 seconds. The ORAM holds N = 225 blocks, and
the client has space for 218 blocks. Since we must also
store early shuffle reads and reserve space for the shuf-
fle buffer, the client space is not quite enough to accom-
modate a single burst entirely. We simulate a 100Mbps
network connection with 50ms latency.

All ORAMs start with low response times during
Burst 1. ObliviStore response times quickly increase due
to fixed shuffle work between successive requests. Burst
ORAMs delay shuffle work, so response times stay low
until client space fills. Without level caching, additional
early shuffle reads cause early shuffling and thus pre-
mature spikes in response times.

When Burst 1 ends, the ORAMs continue working,
satisfying pending requests and catching up on shuffling
during the idle period. Longer idle times allow more
shuffling and lower response times at the start of Burst
2. None of the ORAMs have time to fully catch up, so
response times increase sooner during Burst 2. ObliviS-
tore cannot even satisfy all Burst 1 requests before Burst
2 starts, so response times start high on Burst 2. Burst
ORAM does satisfy all Burst 1 requests, so it uses freed
client space to efficiently handle early Burst 2 requests.
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Figure 9: Response times during two same-size bursts
of just over 217 requests spread evenly over 72 seconds.
Client has space for at most 218 blocks. No level caching
causes early spikes due to extra early shuffle reads.

Clearly, Burst ORAM performs better with shuffle pri-
oritization, as it allows more shuffling to be delayed to
the idle period, satisfying more requests quickly in both
bursts. Burst ORAM also does better with local level
caching. Without level caching, we start with more avail-
able client space, but the extra server levels yield more
early shuffle reads to store, filling client space sooner.

7.5 NetApp Workload Experiments
The NetApp experiments show how each scheme per-
forms on a realistic, bursty workload. Burst ORAM ex-
ploits the bursty request patterns, minimizing online IO
and delaying shuffle IO to achieve near-optimal response
times far lower than ObliviStore’s. Level caching keeps
Burst ORAM’s overall bandwidth costs low.

Figure 10 shows 99.9-percentile response times for
several schemes running the 15-day NetApp workload
for varying bandwidths. All experiments assume a 50ms
network latency. For most bandwidths, Burst ORAM re-
sponse times are orders of magnitude lower than those
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Figure 10: (Top) Burst ORAM achieves short response
times in bandwidth-constrained settings. Since Oblivi-
Store has high effective cost, it requires more available
client-server bandwidth to achieve short response times.
(Bottom) Burst ORAM response times are comparable
to those of the insecure (without ORAM) scheme.

of ObliviStore and comparable to those of the insecure
baseline. Shuffle prioritization and level caching notice-
ably reduce response times for bandwidths under 1Gbps.

Figure 11 compares p-percentile response times for
p values of 90%, 99%, and 99.9%. It gives absolute
p-percentile response times for the insecure baseline,
and differences between the insecure baseline and Burst
ORAM p-percentile response times (Burst ORAM over-
head). When baseline response times are low, Burst
ORAM response times are also low across multiple p.

The NetApp dataset descriptions [2, 14] do not spec-
ify the total available network bandwidth, but since it
was likely sufficient to allow decent performance, we ex-
pect from Figure 10 that it was at least between 200Mbps
and 400Mbps. Figure 12 compares the overall bandwidth
costs incurred by each scheme running the NetApp work-
load at 400Mbps. Costs for other bandwidths are simi-
lar. Burst ORAM clearly achieves an online cost several
times lower than ObliviStore’s.

Level caching reduces Burst ORAM’s overall cost
from 42X to 29X. Burst ORAM’s higher cost is due to a
combination of factors needed to achieve short response
times. First, Burst ORAM uses the XOR technique,
which is less efficient overall than ObliviStore’s mutu-
ally exclusive level compression. Second, Burst ORAM
handles smaller jobs first. Such jobs are more efficient
in the short-term, but since they frequently write blocks
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Figure 11: (Top) Insecure baseline (no ORAM) p-
percentile response times for various p. (Bottom) Over-
head (difference) between insecure baseline and Burst
ORAM’s p-percentile response times. Marked nodes
show that when baseline p-percentile response times are
< 100ms, Burst ORAM overhead is also < 100ms.
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Figure 12: To achieve shorter response times, Burst
ORAM incurs higher overall bandwidth cost than Oblivi-
Store, most of which is consumed during idle periods.
Level caching keeps bandwidth costs in check. Job pri-
oritization does not affect overall cost, but does reduce
effective costs and response times (Figures 8, 10).

to small levels, they create more future shuffle work. In
ObliviStore, such jobs are often delayed during a large
job, so fewer levels are created, reducing overall cost.

8 Conclusion
We have presented Burst ORAM, a novel Oblivious
RAM scheme based on ObliviStore and tuned for practi-
cal response times on bursty workloads. We presented a

13
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novel ORAM architecture for prioritizing online IO, and
introduced the XOR technique for reducing online IO.
We also introduced a novel scheduling mechanism for
delaying shuffle IO, and described a level caching mech-
anism that uses extra client space to reduce overall IO.

We simulated Burst ORAM on a real-world workload
and showed that it incurs low online and effective band-
width costs during bursts. Burst ORAM achieved near-
optimal response times that were orders of magnitude
lower than existing ORAM schemes.

Acknowledgements.. This work was supported in part
by grant N00014-07-C-0311 from ONR, the National
Physical Science Consortium Graduate Fellowship; by
NSF under grant number CNS-1314857, a Sloan Re-
search Fellowship, a Google Faculty Research Award;
by the NSF Graduate Research Fellowship under Grant
No. DGE-0946797, a DoD National Defense Science
and Engineering Graduate Fellowship, an Intel award
through the ISTC for Secure Computing, and a grant
from Amazon Web Services.

References
[1] BONEH, D., MAZIERES, D., AND POPA, R. A. Remote

oblivious storage: Making oblivious RAM practical. Manuscript,
http://dspace.mit.edu/bitstream/handle/
1721.1/62006/MIT-CSAIL-TR-2011-018.pdf, 2011.

[2] CHEN, Y., SRINIVASAN, K., GOODSON, G., AND KATZ, R.
Design implications for enterprise storage systems via multi-
dimensional trace analysis. In Proc. ACM SOSP (2011).

[3] CHOW, R., GOLLE, P., JAKOBSSON, M., SHI, E., STADDON,
J., MASUOKA, R., AND MOLINA, J. Controlling data in the
cloud: outsourcing computation without outsourcing control. In
Proc. ACM CCSW (2009), pp. 85–90.
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A Pseudocode
Algorithms 1–4 give pseudocode for Burst ORAM, using
the notation summarized in Table 1. The algorithms are
described in detail in Section 6, but we clarify some of
the code and notation below.

The efficiency of shuffle job Jp is given by:

EJp =
VJp +AJp

RJp +WJp

. (1)

Cp represents the state of partition p at the time p’s last
shuffle job completed, and determines the current set of
occupied levels in p. Vp represents the number of blocks
that have been evicted to p, since p’s last shuffle job com-
pleted. Cp +Vp determines which levels would be occu-
pied if p were to be completely shuffled.

VJp represents the number of evicted blocks that will
be shuffled into p by Jp. Thus, Cp and VJp together de-
termine Jp’s read and write levels.

If Jp is inactive, it is updated whenever Vp changes,
setting VJp ← Vp (Algorithm 1, Line 25). However, we

14
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Table 1: Algorithm Notation
v Eviction rate: blocks evicted per request
λ Number of levels cached locally
p A partition

Vp # blocks evicted to p since p’s last shuffle end
Cp p’s state after last shuffle (shuffled evictions)
b Block ID

D(b) Plaintext contents of b
E(b) Encrypted contents of b
S(b) Server address/ID of b
P(b) Partition containing b, or random if none
L(b) Level containing b, or ⊥ if none

Q IDs of standard-read blocks to fetch
C IDs of early shuffle read blocks to fetch
XQ Combined block (XOR of all blocks in Q)
X ′

Q Subtraction block (XOR of dummies in Q)

Jp Shuffle job for p
VJp Number of evicted blocks Jp will shuffle
EJp Efficiency of Jp

AJp Number of early shuffle reads for Jp

RJp Total blocks remaining to be read for Jp

WJp Total blocks to write for Jp

NJQ New Job Queue
RJQ Read Job Queue
WJQ Write Job Queue

implement level caching by skipping those updates to Jp
that would cause Jp to write to levels with indexes less
than λ (Algorithm 1, Line 23). Once Jp is active, VJp

is no longer updated. When Jp completes, p’s state is
updated to reflect the blocks shuffled in by Jp, setting
Cp ←Cp +VJp (Algorithm 3, Line 37).

If p has no inactive shuffle job, the job is created fol-
lowing the first eviction to p that would allow updating
(Algorithm 1, Line 24). If p has no active job, the inac-
tive job moves to the New Job Queue (NJQ) as soon as
the job is created (Algorithm 1, Line 27), where it stays
until the job is activated. If p does have an active shuffle
job, the inactive job is not added to NJQ until the active
job completes (Algorithm 3, Line 38).

Thus, NJQ contains only inactive shuffle jobs for
those partitions with no active job, ensuring that any job
in NJQ may be activated. NJQ is a priority queue serving
the most efficient jobs first. Job efficiency may change
while the job is in NJQ, since VJp can still be updated.

B Reducing Online Costs of SR-ORAM
We now briefly describe how SR-ORAM [26] can benefit
from our XOR technique. Like ObliviStore, SR-ORAM
requires only a single round-trip to satisfy a request, and
has online bandwidth cost O(logN). SR-ORAM uses an

Algorithm 1 Pseudocode for Client and ORAM Main
1: function CLIENTREAD(b)
2: Append b to RequestQueue
3: On REQUESTCALLBACK(D(b)), return D(b)
4: procedure WRITE(b,d)
5: Append b to RequestQueue
6: On REQUESTCALLBACK(D(b)), write d to D(b)
7: procedure ORAM MAIN
8: RequestMade ← f alse
9: if RequestQueue �= /0 then

10: b ← PEEK(RequestQueue)
11: if FETCH(b) then � Request Issued
12: RequestMade ← true
13: POP(RequestQueue)
14: MAKEEVICTIONS

15: if RequestMade = f alse then
16: TRYSHUFFLEWORK

17: procedure MAKEEVICTIONS
18: PendingEvictions = PendingEvictions+ v
19: while PendingEvictions ≥ 1 do
20: p ← random partition
21: Evict new dummy or assigned real block to p
22: Vp =Vp +1
23: if shuffling p only writes levels ≥ λ then
24: Jp ← p’s inactive job � Create if needed
25: VJp ←Vp
26: if p has no active job then
27: NJQ = NJQ∪ Jp

28: PendingEvictions = PendingEvictions−1

encrypted Bloom filter to let the server obliviously check
whether each level contains the requested block. The
server retrieves the requested block from its level, and
client-selected dummies from all others. Since at most
one block is real, the server can XOR all the blocks to-
gether and return a single combined block.

One difference in SR-ORAM is that the client does not
know a priori which level contains the requested block.
Thus, SR-ORAM must be modified to include the level
index of each retrieved block in its response. To al-
low the client to easily reconstruct dummies, we must
also change SR-ORAM to generate the contents of each
dummy block as in Burst ORAM. Since the client knows
the indexes of the dummy blocks it requested from each
level, it can infer the real block’s level from the server’s
response. The client then reconstructs the all dummy
block contents and XORs them with the returned block
to obtain the requested block, as in Burst ORAM.

SR-ORAM is a synchronous protocol, so it has no
notion equivalent to early shuffle reads. Thus, the
XOR technique reduces SR-ORAM’s online bandwidth
cost from O(logN) to 1. The reduction in overall
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Algorithm 2 Pseudocode for Requester
1: function FETCH(b)
2: P(b),L(b)← position map lookup on b
3: Q = /0,C = /0
4: for level � ∈ P(b) do
5: if � is non-empty then
6: b� ← b if �= L(b)
7: b� ← ID of next dummy in � if � �= L(b)
8: if � more than half full then
9: Q ← Q∪S(b�) � Standard read

10: else
11: C ←C∪S(b�) � Early shuffle read
12: Ret ← |C|+ MAX(|Q|,1) � # blocks to return
13: if Not TRYDEC(Local Space, Ret) then
14: return f alse � Not enough space for blocks
15: DEC(Concurrent IO, Ret)
16: Issue asynch. request for (C,Q) to server
17: When done, server calls:
18: FETCHCALLBACK(E(C), XOR of E(Q))
19: return true
20: procedure FETCHCALLBACK({E(ci)},XQ)
21: INC(Concurrent IO, 1)
22: if b ∈ Q then
23: X ′

Q ←⊕{E(qi) | S(qi) ∈ Q,qi �= b}
24: � Subtraction block, computed locally
25: E(b)← XQ ⊕X ′

Q

26: if b ∈C then
27: E(b)← E(ci) where ci = b
28: D(b)← decrypt E(b)
29: Assign b for eviction to random partition
30: REQUESTCALLBACK(D(b))

cost is negligible, as SR-ORAM has an offline cost
O(log2 N log logN). SR-ORAM contains only one hier-
archy of O(logN) levels, so XOR incurs only O(logN)
extra storage cost for the level-specific keys, fitting into
SR-ORAM’s logarithmic client storage.

Algorithm 3 Pseudocode for Shuffler
1: procedure TRYSHUFFLEWORK
2: if Not TRYDEC(Concurrent IO, 1) then
3: return
4: ReadIssued,WriteIssued ← f alse
5: if All reads for jobs in RJQ issued then
6: TRYACTIVATE � Try to add job to RJQ
7: if Jp ∈ RJQ has not issued read bR then
8: if TRYDEC(Shuffle Buffer, 1) then
9: Issue asynch. request for S(bR)

10: When done: READCALLBACK(E(bR))
11: ReadIssued ← true
12: if !ReadIssued and Jp ∈WJQ has write bW then
13: Write E(bW ) to server
14: When done, call WRITECALLBACK(S(bW ))
15: WriteIssued ← true
16: if Not ReadIssued and Not WriteIssued then
17: INC(Concurrent IO, 1) � No shuffle work
18: procedure TRYACTIVATE
19: if NJQ �= /0 then
20: Jp ← PEEK(NJQ) � Most efficient job
21: if TRYDEC(Shuffle Buffer, VJp +AJp ) then
22: Mark Jp active � VJp frozen
23: INC(Local Space, VJp +AJp )
24: Move Jp from NJQ to RJQ

25: procedure READCALLBACK(E(bR))
26: INC(Concurrent IO, 1)
27: Decrypt E(bR), place D(bR) in Shuffle Buffer
28: if all reads in Jp have finished then
29: Create dummy blocks to get WJp blocks total
30: Permute and re-encrypt the blocks
31: Move Jp from RJQ to WJQ

32: procedure WRITECALLBACK(S(bW ))
33: INC(Concurrent IO, 1)
34: if all writes in Jp have finished then
35: Mark Jp complete
36: Remove Jp from WJQ
37: Update Cp ←Cp +VJp ,Vp ←Vp −VJp

38: Add p’s inactive job, if any, to NJQ

Algorithm 4 Pseudocode for semaphores
1: procedure DEC(Semaphore,Quantity)
2: Semaphore ← Semaphore−Quantity
3: procedure INC(Semaphore,Quantity)
4: Semaphore ← Semaphore+Quantity
5: function TRYDEC(Semaphore,Quantity)
6: if Semaphore < Quantity then return f alse
7: DEC(Semaphore,Quantity); return true
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Abstract

Verifiable computation (VC) enables thin clients to effi-
ciently verify the computational results produced by a
powerful server. Although VC was initially considered to
be mainly of theoretical interest, over the last two years
impressive progress has been made on implementing VC.
Specifically, we now have open-source implementations
of VC systems that handle all classes of computations
expressed either as circuits or in the RAM model. Despite
this very encouraging progress, new enhancements in the
design and implementation of VC protocols are required
to achieve truly practical VC for real-world applications.

In this work, we show that for functions that can be ex-
pressed efficiently in terms of set operations (e.g., a subset
of SQL queries) VC can be enhanced to become drasti-
cally more practical: We present the design and prototype
implementation of a novel VC scheme that achieves or-
ders of magnitude speed-up in comparison with the state
of the art. Specifically, we build and evaluate TRUESET,
a system that can verifiably compute any polynomial-time
function expressed as a circuit consisting of “set gates”
such as union, intersection, difference and set cardinality.
Moreover, TRUESET supports hybrid circuits consisting
of both set gates and traditional arithmetic gates. There-
fore, it does not lose any of the expressiveness of previous
schemes—this also allows the user to choose the most
efficient way to represent different parts of a computation.
By expressing set computations as polynomial operations
and introducing a novel Quadratic Polynomial Program
technique, our experiments show that TRUESET achieves
prover performance speed-up ranging from 30x to 150x
and up to 97% evaluation key size reduction compared to
the state-of-the-art.
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1 Introduction

Verifiable Computation (VC) is a cryptographic protocol
that allows a client to outsource expensive computation
tasks to a worker (e.g., a cloud server), such that the client
can verify the result of the computation in less time than
that required to perform the computation itself. Cryp-
tographic approaches for VC [5, 6, 7, 12, 13, 14, 21]
are attractive in that they require no special trusted hard-
ware or software on the server, and can ensure security
against arbitrarily malicious server behavior, including
software/hardware bugs, misconfigurations, malicious in-
siders, and physical attacks.

Due to its various applications such as secure cloud
computing, the research community has recently made
impressive progress on Verifiable Computation, both on
the theoretical and practical fronts. In particular, several
recent works [2, 3, 9, 23, 25, 26, 29] have implemented
Verifiable Computation for general computation tasks,
and demonstrated promising evidence of its efficiency.
Despite this encouraging progress, performance improve-
ment of orders of magnitude is still required (especially
on the time that the server takes to compute the proof) for
cryptographic VC to become truly practical.

Existing systems for Verifiable Computation are built
to accommodate any language in NP: Specifically, func-
tions/programs are represented as either circuits (Boolean
or arithmetic) or sets of constraints and cryptographic
operations are run on these representations. While such
an approach allows us to express any polynomial-time
computation, it is often not the most efficient way to repre-
sent common computation tasks encountered in practice.
For example, Parno et al. [23] point out that the behavior
of their construction deteriorates abruptly for function-
alities that have “bad” arithmetic circuit representation
and Braun et al. [9] recognize that their scheme is not
quite ready for practical use, restricting their evaluations
to “smaller scales than would occur in real applications.”

In order to reduce the practical cost of Verifiable Com-
putation, we design and build TRUESET. TRUESET is an
efficient and provably secure VC system that specializes
in handling set-centric computation tasks. It allows us to
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model computation as a set circuit—a circuit consisting
of a combination of set operators (such as intersection,
union, difference and sum), instead of just arithmetic op-
erations (such as addition and multiplication in a finite
field). For computation tasks that can be naturally ex-
pressed in terms of set operations (e.g., a subset of SQL
database queries), our experimental results suggest orders-
of-magnitude performance improvement in comparison
with existing VC systems such as Pinocchio [23]. We
now present TRUESET’s main contributions:

Expressiveness. TRUESET retains the expressiveness of
existing VC systems, in that it can support arbitrary com-
putation tasks. Fundamentally, since our set circuit can
support intersection, union, and set difference gates, the
set of logic is complete1. Additionally, in Section 4.4, we
show that TRUESET can be extended to support circuits
that have a mixture of arithmetic gates and set gates. We
achieve this by introducing a “split gate” (which, on input
a set, outputs the individual elements) and a “merge gate”
(which has the opposite function of the split gate).

Input-specific running time. One important reason why
TRUESET significantly outperforms existing VC systems
in practice is that it achieves input-specific running time
for proof computation and key generation. Input-specific
running time means that the running time of the prover is
proportional to the size of the current input.

Achieving input-specific running time is not possible
when set operations are expressed in terms of Boolean
or arithmetic circuits, where one must account for worst-
case set sizes when building the circuit: For example, in
the case of intersection, the worst case size of the output is
the minimum size of the two sets; in the case of union, the
worst case size of the output is the sum of their sizes. Note
that this applies not only to the set that comprises the final
outcome of the computation, but to every intermediate set
generated during the computation. As a result, existing
approaches based on Boolean or arithmetic circuits incur a
large blowup in terms of circuit size when used to express
set operations. In this sense, TRUESET also achieves
asymptotic performance gains for set-centric computation
workloads in comparison with previous approaches.

TRUESET achieves input-specific running time by en-
coding a set of cardinality c as a polynomial of degree
c (such an encoding was also used in previous works,
e.g., [18, 22]), and a set circuit as a circuit on polyno-
mials, where every wire is a polynomial, and every gate
performs polynomial addition or multiplication. As a re-
sult, per-gate computation time for the prover (including
the time for performing the computation and the time for

1Any function computable by Boolean circuits can be computed by
a set circuit: If one encodes the empty set as 0 and a fixed singleton set
{s} as 1, a union expresses the OR gate, an intersection expresses the
AND gate and a set difference from {s} expresses the NOT gate.

SELECT COUNT(UNIVERSITY.id)
FROM UNIVERSITY JOIN CS

ON UNIVERSITY.id = CS.id

Figure 1: An example of a JOIN SQL query (between tables
UNIVERSITY and CS) that can be efficiently supported by
TRUESET. TRUESET will implement JOIN with an intersection
gate and COUNT with a cardinality gate.

producing the proof) is (quasi-)linear in the degree of the
polynomial (i.e., cardinality of the actual set), and not
proportional to the worst-case degree of the polynomial.

Finally, as in other VC systems, verifying in TRUESET
requires work proportional to the size of inputs/outputs,
but not in the running time of the computation.

Implementation and evaluation. We implemented
TRUESET and documented its efficiency comparing it
with a verifiable protocol that compiles a set circuit into
an arithmetic circuit and then uses Pinocchio [23] on
the produced circuit. In TRUESET the prover’s running
time is reduced by approximately 30x for all set sizes
of 64 elements or more. In particular, for a single in-
tersection/union gate over 2 sets of 256 elements each,
TRUESET improves the prover cost by nearly 150x. We
also show that, while other systems [23] cannot—in a
reasonable amount of time—execute over larger inputs,
TRUESET can scale to large sets, e.g., sets with cardinality
of approximately 8000 (213), efficiently accommodating
instances that are about 30x larger than previous systems.
Finally, TRUESET greatly reduces the evaluation key size,
a reduction that can reach 97% for some operations.

Applications. TRUESET is developed to serve various in-
formation retrieval applications that use set operations as a
building block. For example, consider an SQL query that
performs a JOIN over two tables and then computes MAX
or SUM over the result of the join operation. TRUESET
can model the join operation as an intersection and then
use the split gate to perform the maximum or the summa-
tion/cardinality operation over the output of the join—see
Figure 1. Other queries that TRUESET could model are
advanced keyword search queries containing complicated
filters that can be expressed as arbitrary combinations of
set operations (union, intersection, difference) over an
underlying data set. Finally, the computation of similarity
measurements for datasets often employs set operations.
One of the most popular measurements of this type, is the
Jaccard index [17] which is computed for two sets, as the
ratio of the cardinalities of their intersection and union, a
computation that can be easily compiled with TRUESET.

Technical highlight. Our core technical construction is
inspired by the recent quadratic span and arithmetic pro-
grams [14], which were used to implement VC for any
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Boolean or arithmetic circuit. Since our internal repre-
sentation is a polynomial circuit (as mentioned earlier),
we invent quadratic polynomial programs (QPP). During
the prover’s computation, polynomials on the wires of the
circuit are evaluated at a random point s—however, this
takes place in the exponent of a bilinear group, in a way
that the server does not learn s. Evaluating the polynomial
at the point s in effect reduces the polynomial to a value—
therefore one can now think of the polynomial circuit
as a normal arithmetic circuit whose wires encode plain
values. In this way, we can apply techniques resembling
quadratic arithmetic programs. While the intuition may
be summarized as above, designing the actual algebraic
construction and formally proving its security is nonethe-
less challenging, and requires a non-trivial transformation
of quadratic arithmetic programs.

1.1 Related Work

There exists a large amount of theoretical work on VC:
Micali [21] presented a scheme that can accommodate
proofs for any language in NP. A more efficient approach
is based on succinct non-interactive arguments of knowl-
edge (SNARKs) [5, 6, 7, 14]. For the case of polynomial-
time computable functions, protocols based on fully-
homomorphic encryption [12, 13] and attribute-based en-
cryption [24] have also been proposed. In general, the
above schemes employ heavy cryptographic primitives
and therefore are not very practical.

Recent works [2, 3, 9, 23, 25, 26, 29] have made im-
pressive progress toward implementations of some of
the above schemes, showing practicality for particular
functionalities. Unfortunately, the server’s cost for proof
computation remains too high to be considered for wide
deployment in real-world applications.

The problem of verifying a circuit of set operations
was first addressed in a recent work by Canetti et al. [10].
Their proofs are of size linear to the size of the circuit,
without however requiring a preprocessing phase for each
circuit. In comparison, our proofs are of constant size,
once such a preprocessing step has been run.

Papamanthou et al. [22] presented a scheme that pro-
vides verifiability for a single set operation. However,
more general set operations can be accommodated by se-
quentially using their approach, since all intermediate set
outputs are necessary for verification. This would lead to
increased communication complexity.

A related scheme appears in the work of Chung et
al. [11]. As this scheme uses Turing machines for the
underlying computation model, the prover has inherently
high complexity. Another work that combines verifiable
computation with outsourcing of storage is [1], where a
protocol for streaming datasets is proposed but the sup-
ported functionalities are quadratic polynomials only.

2 Definitions

In this section we provide necessary definitions and ter-
minology that will be useful in the rest of the paper.

Circuits of sets and polynomials. TRUESET uses the
same computation abstraction as the one used in the VC
scheme by Parno et al. [23]: a circuit. However, instead
of field elements, the circuit wires now carry sets, and,
instead of arithmetic multiplication and addition gates,
our circuit has three types of gates: intersection, union
and difference. For the sake of presentation, the sets we
are considering are simple sets, though our construction
can be extended to support multisets as well. We therefore
begin by defining a set circuit:

Definition 1 (Set circuit C) A set circuit C is a circuit
that has gates that implement set union, set intersection
or set difference over sets that have elements in a field F.

A set circuit is a tool that provides a clean abstrac-
tion of the computational steps necessary to perform a
set operation. This structured representation will allow
us to naturally encode a set operation into a number of
execution conditions that are met when it is performed
correctly. We stress that it is merely a theoretical abstrac-
tion and does not affect the way in which the computation
is performed; the computing party can use its choice of
efficient native libraries and architectures. In compari-
son, previous works that use arithmetic circuits to encode
more general computations, require the construction (or
simulation) and evaluation of such a circuit, an approach
that introduces an additional source of overhead.

As mentioned in the introduction, our main technique is
based on mapping any set circuit C to a circuit F of poly-
nomial operations, i.e., to a circuit that carries univariate
polynomials on its wires and has polynomial multiplica-
tion and polynomial addition gates. We now define the
polynomial circuit F :

Definition 2 (Polynomial circuit F) A polynomial cir-
cuit F in a field F is a circuit that has gates that im-
plement univariate polynomial addition and univariate
polynomial multiplication over F. We denote with d the
number of multiplication gates of F and with N the num-
ber of input and output wires of F . The input and output
wires are indexed 1, . . . , N . The rest of the wires2 are
indexed N + 1, . . . ,m.

SNARKs. TRUESET’s main building block is a primitive
called succinct non-interactive argument of knowledge
(SNARK) [14]. A SNARK allows a client to commit to

2These wires include free wires (which are inputs only to multiplica-
tion gates) and the outputs of the internal multiplication gates (whose
outputs are not outputs of the circuit). The set of these wires is denoted
with Im and has size at most 3d.
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a computation circuit C and then have a prover provide
succinct cryptographic proofs that there exists an assign-
ment on the wires w (which is called witness) such that
the input-output pair x = (I,O) is valid.

As opposed to verifiable computation [24], a SNARK
allows a prover to specify some wires of the input I as part
of the witness w (this is useful when proving membership
in an NP language, where the prover must prove witness
existence). For this reason, SNARKs are more powerful
than VC and therefore for the rest of the paper, we will
show how to construct a SNARK for hierarchical set
operations. In the full version of our paper [20], we
show how to use the SNARK construction to provide
a VC scheme as well as a VC scheme for outsourced
sets, where the server not only performs the computation,
but also stores the sets for the client. We now give the
SNARK definition, adjusted from [14].

Definition 3 (SNARK scheme) A SNARK scheme con-
sists of three probabilistic polynomial time (PPT) algo-
rithms (KeyGen,Prove,Verify) defined as follows.

1. (pk, sk) ← KeyGen(1k, C). The key generation al-
gorithm takes as input the security parameter k and
a computation circuit C; it outputs a public key pk,
and a secret key sk.

2. π ← Prove(pk, x, w): The prover algorithm takes
as input the public key pk, an input-output pair x =
(I,O), a valid witness w and it outputs a proof π.

3. {0, 1} ← Verify(sk, x, π): Given the key sk, a state-
ment x and a proof π, the verification algorithm
outputs 0 or 1.

We say that a SNARK is publicly-verifiable if sk = pk. In
this case, proofs can be verified by anyone with pk. Oth-
erwise, we call it a secretly-verifiable SNARK, in which
case only the party with sk can verify.

There are various properties that a SNARK should
satisfy. The most important one is soundness. Namely,
no PPT adversary should be able to output a verifying
proof π for an input-output pair x = (I,O) that is not
consistent with C. All the other properties of SNARKs
are described formally in Appendix 6.2.

3 A SNARK for Polynomial Circuits

In their recent seminal work, Gennaro et al. [14] showed
how to compactly encode computations as quadratic pro-
grams, in order to derive very efficient SNARKs. Specif-
ically, they show how to convert any arithmetic circuit
into a comparably-sized Quadratic Arithmetic Program
(QAP), and any Boolean circuit into a comparably-sized
Quadratic Span Program (QSP).

In this section we describe our SNARK construction
for polynomial circuits. The construction is a modifica-
tion of the optimized construction for arithmetic circuits
that was presented by Parno et al. [23] (Protocol 2) and
which is based on the original work of Gennaro et al. [14].
Our extension accounts for univariate polynomials on the
wires, instead of just arithmetic values. We therefore need
to define a quadratic polynomial program:

Definition 4 (Quadratic Polynomial Program (QPP))
A QPP Q for a polynomial circuit F contains three
sets of polynomials V = {vk(x)},W = {wk(x)},Y =
{yk(x)} for k = 1, . . . ,m and a target polynomial τ(x).
We say that Q computes F if: c1(z), c2(z), . . . , cN (z) is
a valid assignment of F’s inputs and outputs iff there
exist polynomials cN+1(z), . . . , cm(z) such that τ(x)
divides p(x, z) where

p(x, z) =

(
m∑

k=1

ck(z)vk(x)

)(
m∑

k=1

ck(z)wk(x)

)

−
(

m∑
k=1

ck(z)yk(x)

)
. (3.1)

We define the degree of Q to equal the degree of τ(x).

The main difference of the above quadratic program with
the one presented in [23] is the fact that we introduce
another variable z in the polynomial p(x, z) representing
the program (hence we need to account for bivariate poly-
nomials, instead of univariate), which is going to account
for the polynomials on the wires of the circuit.
Constructing a QPP. We now show how to construct
a QPP Q for a polynomial circuit. The polynomials in
V,W,Y and the polynomial τ(x) are computed as fol-
lows. Let r1, r2, . . . , rd be random elements in F. First,
set τ(x) = (x−r1)(x−r2) . . . (x−rd) and compute the
polynomial vk(x) such that vk(ri) = 1 iff wire k is the
left input of multiplication gate i, otherwise vk(ri) = 0.
Similarly, wk(ri) = 1 iff wire k is the right input of mul-
tiplication gate i, otherwise wk(ri) = 0 and yk(ri) = 1
iff wire k is the output of multiplication gate i, otherwise
yk(ri) = 0. For example, consider the circuit of Figure 2
that has five inputs and one output and its wires are num-
bered as shown in the figure (gates take the index of the
their output wire). Then τ(x) = (x− r6)(x− r7). For vk
we require that vk(r6) = 0 except for v2(r6) = 1, since
the second wire is the only left input for the sixth gate,
and vk(r7) = 0 except for v1(r7) and v6(r7) which are 1,
since the first and sixth wire contribute as left inputs to
gate 7. Right input polynomials wk are computed simi-
larly and output polynomials yk are computed such that
y6(r6) = y7(r7) = 1; all other cases are set to 0.

To see why the above QPP computes F , let us fo-
cus on a single multiplication gate g, with k1 being its



USENIX Association  23rd USENIX Security Symposium 769

×

c1(z) c2(z) c3(z) c4(z) c5(z)

c6(z)

c7(z)

×

+

+

Figure 2: A sample polynomial circuit.

output wire and k2 and k3 be its left and right input
wires respectively. Due to the divisibility requirement, it
holds p(ri, z) = 0 for i = 1, . . . , d, hence Equation 3.1
will give (

∑m
k=1 ck(z)vk(rg))(

∑m
k=1 ck(z)wk(rg)) =

(
∑m

k=1 ck(z)yk(rg)). Now, from the way the polyno-
mials vk, wk, yk were defined above, most terms are 0
and what remains is ck2

(z)vk2
(rg) · ck3

(z)wk3
(rg) =

ck1
(z)yk1

(rg) or else ck2
(z) · ck3

(z) = ck1
(z), which is

the definition of a multiplication gate. More formally:

Lemma 1 The above QPP Q computes F .

Proof: (⇒) Suppose c1(z), c2(z), . . . , cN (z) are correct
assignments of the input and output wires but there do
not exist polynomials cN+1(z), . . . , cm(z) such that τ(x)
divides p(x, z). Then there is at least one multiplication
gate r with left input x, right input y and output o, such
that p(r, z) �= 0. Let p be the path of multiplication gates
that contains r starting from an input polynomial ci(z) to
an output polynomial cj(z), where i, j ≤ N . Since ci(z)
and cj(z) are correct assignments, there must exist poly-
nomials cx(z) and cy(z) such that cx(z)cy(z) = co(z).
Since r has a single left input, a single right input and
a single output it holds vx(r) = 1 and vi(r) = 0 for all
i �= x. Similarly, wy(r) = 1 and wi(r) = 0 for all i �= y
and yo(r) = 1 and yi(r) = 0 for all i �= o. Therefore
p(r, z) �= 0 implies that for all polynomials cx(z), cy(z),
co(z), it is cx(z)cy(z) �= co(z), a contradiction.

(⇐) Suppose τ(x) divides p(x, z). Then p(r, z) = 0
for all multiplication gates r. By the definition of vi(x),
wi(x), yi(x), the c1(z), c2(z), . . . , cm(z) are correct as-
signments on the circuit wires.

We next give an efficient SNARK construction for poly-
nomial circuits based on the above QPP. Recall that a
polynomial circuit F has d multiplication gates and m
wires, the wires 1, . . . , N occupy inputs and outputs and
set Im = {N + 1, . . . ,m} represents the internal wires,
where |Im| ≤ 3d. Also, we denote with ni the degree of
polynomial on wire i and we set n to be an upper bound
on the degrees of the polynomials on F’s wires.

3.1 Intuition of Construction

The SNARK construction that we present works as fol-
lows. First, the key generation algorithm KeyGen pro-
duces a “commitment” to the polynomial circuit F by
outputting elements that relate to the internal set of wires
Im of the QPP Q = (V,W,Y, τ(x)) as the public key.
These elements encode bivariate polynomials in the ex-
ponent, evaluated at randomly chosen points t and s, to
accommodate for the fact that circuit F encodes opera-
tions over univariate polynomials and not just arithmetic
values (as is the case with [14]).

As was described in the previous section, for the prover
to prove that an assignment c1(z), c2(z), . . . , cN (z) of
polynomials on input/output wires is valid, it suffices
to prove there exist polynomials cN+1(z), . . . , cm(z)
corresponding to assignments on the internal wires,
such that the polynomial p(x, z) from Relation 3.1
has roots r1, r2, . . . , rd. To prove this, the prover
first “solves” the circuit and computes the polynomials
c1(z), c2(z), . . . , cm(z) that correspond to the correct as-
signments on the wires. Then he uses these polynomials
and the public evaluation key (i.e., the circuit “commit-
ment”) to compute the following three types of terms
(which comprise the actual proof). The detailed computa-
tion of these values is described in Section 3.2.

• Extractability terms. These terms declare three
polynomials in the exponent, namely polynomials∑m

k=N+1 ck(z)vk(x),
∑m

k=N+1 ck(z)wk(x), and∑m
k=N+1 ck(z)yk(x). These polynomials corre-

spond to the internal wires since the verifier can
fill in the parts for the input and output wires.

The above terms are engineered to allow extractabil-
ity using a knowledge assumption. In particu-
lar, given these terms, there exists a polynomial-
time extractor that can, with overwhelming proba-
bility, recover the assignment cN+1(z), . . . , cm(z)
on internal wires. This proves the existence of
cN+1(z), . . . , cm(z).

• Consistency check terms. Extraction is done sep-
arately for terms related to the three polynomials∑m

k=N+1 ck(z)vk(x),
∑m

k=N+1 ck(z)wk(x), and∑m
k=N+1 ck(z)yk(x). We therefore require a set of

consistency check terms to ensure that the extracted
cN+1(z), . . . , cm(z) polynomials are consistent for
the above V , W , and Y terms—otherwise, the same
wire can have ambiguous assignments.

• Divisibility check term. Finally, the divisibility
check term is to ensure that the above divisibil-
ity check corresponding to relation p(x, z) =



770 23rd USENIX Security Symposium USENIX Association

h(x, z)τ(x), holds for the polynomial
(

m∑
k=1

ck(z)vk(x)

)(
m∑

k=1

ck(z)wk(x)

)

−
(

m∑
k=1

ck(z)yk(x)

)

declared earlier by the extractability terms.

3.2 Concrete Construction
We now give the algorithms of our SNARK construction,
(following Definition 3). In comparison with the QSP
and QAP constructions [14, 23], one difficulty arises in
our setting when working with polynomials on wires. In
essence, to express a polynomial ck(z) on a wire in our
construction, we evaluate the polynomial at a committed
point z = t. In existing QSP and QAP constructions,
the prover knows the cleartext value on each wire when
constructing the proof. However, in our setting, the prover
does not know what t is, and hence cannot directly evalu-
ate the polynomials ck(z)’s on each wire. In fact, security
would be broken if the prover knew the value of the poly-
nomials at z = t.

To overcome this problem, we have to include more el-
ements in the evaluation key which will contain exponent
powers of the variable t (see the evaluation key below).
In this way, the prover will be able to evaluate ck(t) in
the exponent, without ever learning the value t. We now
give the algorithms:
(pk, sk) ← KeyGen(F , 1k): Let F be a polynomial cir-
cuit. Build the corresponding QPP Q = (V,W,Y, τ(x))
as above. Let e be a non-trivial bilinear map e : G×G →
GT , and let g be a generator of G. G and GT have prime
order p. Pick s, t, rv, rw, αv, αw, αy, β, γ from Zp and
set ry = rvrw and gv = grv , gw = grw and gy = gry .
The public evaluation key EKF is

1. {gt
ivk(s)
v , g

tiwk(s)
w , g

tiyk(s)
y }(i,k)∈[n]×Im .

2. {gt
iαvvk(s)
v , g

tiαwwk(s)
w , g

tiαyyk(s)
y }(i,k)∈[n]×Im .

3. {gt
iβ·vk(s)
v g

tiβ·wk(s)
w g

tiβ·yk(s)
y }(i,k)∈[n]×Im .

4. {gtisj}(i,j)∈[2n]×[d].

The verification key VKF consists of the values

g, gαv , gαw , gαy , gγ , gβγgt(s)y

and the set {gt
ivk(s)
v , g

tiwk(s)
w , g

tiyk(s)
y }(i,k)∈[n]×[N ].

Note VKF and EKF are the public key pk of the SNARK.
Our SNARK is publicly verifiable, hence sk = pk.

π ← Prove(pk, x, w): The input x contains input poly-
nomials u and output polynomials y and the witness w
(which contains assignments of polynomials on the inter-
nal wires). Let ck(z) be the polynomials on the circuit’s
wires such that y = F(u,w). Let h(x, z) be the poly-
nomial such that p(x, z) = h(x, z) · τ(x). The proof is
computed as follows:

1. (Extractability terms) g
vm(s,t)
v , g

wm(s,t)
w , g

ym(s,t)
y ,

g
αvvm(s,t)
v , gαwwm(s,t)

w , gαyym(s,t)
y .

2. (Consistency check term)
g
β·vm(s,t)
v g

β·wm(s,t)
w g

β·ym(s,t)
y .

3. (Divisibility check term) gh(s,t), where

(a) vm(x, z) =
∑

k∈Im
ck(z)vk(x);

(b) wm(x, z) =
∑

k∈Im
ck(z)wk(x); and

(c) ym(x, z) =
∑

k∈Im
ck(z)yk(x). Note that the term

g
β·vm(s,t)
v g

β·wm(s,t)
w g

β·ym(s,t)
y can be computed from pub-

lic key terms {gt
iβ·vk(s)
v g

tiβ·vk(s)
w g

tiβ·yk(s)
y }(i,k)∈[n]×Im .

{0, 1} ← Verify(pk, x, π): Parse the proof π as

1. γv, γw, γy, κv, κw, κy .

2. Λ.

3. γh.

First, verify all three α terms: e(γv, g
αv )

?
= e(κv, g) ∧

e(γw, g
αw)

?
= e(κw, g) ∧ e(γy, g

αy )
?
= e(κy, g). Then

verify the divisibility requirement:

e(λv · γv, λw · γw)/e(λy · γy, g) ?
= e(γh, g

τ(s)),

where λv = g
∑

k∈[N] ck(t)vk(s), λw = g
∑

k∈[N] ck(t)wk(s),
λy = g

∑
k∈[N] ck(t)yk(s). Finally verify the β term:

e(γv · γw · γy, gβγ) ?
= e(Λ, gγ).

3.3 Asymptotic Complexity and Security

In this section we analyze the asymptotic complexity of
our SNARK construction for polynomial circuits. We
also state the security of our scheme.

KeyGen: It is easy to see that the computation time of
KeyGen is O(n|Im|+ nd+ nN) = O(dn).

Prove: Let T be the time required to compute the poly-
nomials ci(z) for i = 1, . . . ,m and let ni be the degree
of the polynomial ci(z) for i = 1, . . . ,m. The compu-
tation of each gci(z)vi(x) (similarly for gci(z)wi(x) and
gci(z)yi(x)) for i ∈ Im takes O(ni) time (specifically,
7 ·∑ni exponentiations are required to compute all the
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proof), since one operation per coefficient of ci(z) is re-
quired. Then multiplication of |Im| terms is required.
Therefore the total time required is

O

(
T +

∑
i∈Im

ni + |Im|
)

= O (T + dν) ,

where ν = maxi=1,...,m{ni} is the maximum degree
of the polynomials over the wires and since |Im| ≤
3d. To compute p(x, z), first the degree d polynomials
vi(x), wi(x), yi(x) for i = 1, ...,m are parsed in time
O(dm). Then p(x, z) is computed according to Equa-
tion 1; each summation term is computed in time O(dν)
with naive bivariate polynomial multiplication and then
they are summed for total complexity of O(mdν). For
the division, note that p(x, z) has maximum degree in z
equal to 2ν and maximum degree in x equal to 2d. To
do the division, we apply “the change of variable trick”.
We set z = x2×(2d)+1 and therefore turn p(x, z) into
a polynomial of one variable x, namely the polynomial
p(x, x2×(2d)+1). Therefore the dividend now has maxi-
mum degree 2ν(4d+ 1) + 2d while the divisor has still
degree d. By using FFT, we can do such division in
O(dν log(dν)) time. Therefore the total time for Prove is
O (T + dν log(dν) +mdν).

Verify: The computation of each element gci(z)vi(x)

(resp. for gci(z)wi(x) and gci(z)yi(x)) for i = 1, . . . , N
takes O(ni) time, since one operation per coefficient of
ci(z) is required. Then multiplication of N terms is re-
quired. Hence, the total time required is O(

∑
i∈[N ] ni),

proportional to the size of the input and output.
We now have the following result. The involved as-

sumptions can be found in Appendix 6.1 and we provide
its proof of security in the full version of our paper [20].

Theorem 1 (Security of the SNARK for F) Let F be
a polynomial circuit with d multiplication gates. Let n be
an upper bound on the degrees of the polynomials on the
wires of F and let q = 4d+ 4. The construction above is
a SNARK under the 2(n+ 1)q-PKE, the (n+ 1)q-PDH
and the 2(n+ 1)q-SDH assumptions.

4 Efficient SNARKs for Set Circuits

In this section, we show how to use the SNARK construc-
tion for polynomial circuits from the previous section to
build a SNARK for set circuits.

We first define a mapping from sets to polynomials (see
Definition 5– such representation was also used in prior
work, e.g., the work of Kissner and Song [18]). Then we
express the correctness of the operations between two sets
as constraints between the polynomials produced from
this mapping (e.g., see Lemma 2). For a set operation to

be correct, these constraints must be satisfied simultane-
ously. To capture that, we represent all these constraints
with a circuit with loops, where a wire can participate in
more than one constraint (see Figure 3).

4.1 Expressing Sets with Polynomials
We first show how to represent sets and set operations
with polynomials and polynomial operations. This repre-
sentation is key for achieving input-specific time, since
we can represent a set with a polynomial evaluated at a
random point (regardless of its cardinality). Given a set,
we define its characteristic polynomial.

Definition 5 (Characteristic polynomial) Let A be a
set of elements {a1, a2, . . . , an} in F. We define its char-
acteristic polynomial as A(z) = (z + a1) . . . (z + an).

We now show the relations between set operations and
polynomial operations. Note that similar relations were
used by Papamanthou et al. [22] in prior work.

Lemma 2 (Intersection constraints) Let A, B and I be
three sets of elements in F. Then I = A ∩ B iff there exist
polynomials α(z), β(z), γ(z) and δ(z) such that

1. α(z)A(z) + β(z)B(z) = I(z).

2. γ(z)I(z) = A(z).

3. δ(z)I(z) = B(z).

Proof: (⇒) If I = A ∩ B, it follows that (i) the great
common divisor of polynomials A(z) and B(z) is I(z),
therefore, by Bézout’s identity, there exist polynomials
α(z) and β(z) such that (i) α(z)A(z) + β(z)B(z) =
I(z); (ii) I(z) divides A(z) and B(z), therefore there exist
polynomials γ(z) and δ(z) such that γ(z)I(z) = A(z)
and δ(z)I(z) = B(z).

(⇐) Let A, B and I be sets. Suppose there exist poly-
nomials α(z), β(z), γ(z) and δ(z) such that (1), (2) and
(3) are true. By replacing (2) and (3) into (1), we get that
α(z) and β(z) do not have any common factor, therefore
I(z) is the greatest common divisor of A(z) and B(z) and
therefore A ∩ B = I.

Corollary 1 (Union constraints) Let A, B and U be
three sets of elements in F. Then U = A ∪ B iff ∃ polyno-
mials i(z), α(z), β(z), γ(z) and δ(z) such that

1. α(z)A(z) + β(z)B(z) = i(z).

2. γ(z)i(z) = A(z).

3. δ(z)i(z) = B(z).

4. δ(z)A(z) = U(z).
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I = A ∩ B

A B

I

+

× ×

× ×

α(z)

A(z) B(z)
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γ(z) δ(z)
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A B

U
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× ×

× ×

α(z)

A(z)

B(z)
β(z)

i(z)
γ(z) δ(z)

×
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A B

D
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× ×

× ×

α(z)

A(z)

B(z)
β(z)

i(z)
γ(z)

δ(z)

×

D(z)

(a) (b) (c)

Figure 3: Set circuits for intersection (a), union (b) and difference (c) expressed as polynomial circuits with loops using Lemma 2,
Corollary 1 and Corollary 2.

Corollary 2 (Difference constraints) Let A, B and D
be three sets of elements in F. Then D = A − B iff ∃
polynomials i(z), α(z), β(z), γ(z) and δ(z) such that

1. α(z)A(z) + β(z)B(z) = i(z).

2. D(z)i(z) = A(z).

3. δ(z)i(z) = B(z).

4.2 From Set to Polynomial Circuits

Polynomial circuits with loops. To compile a set circuit
into a circuit on polynomials, we need to check that the
constraints in Lemma 2 and Corollaries 1 and 2 simultane-
ously satisfy for all intersection, union, and set difference
gates respectively. Doing this in a straightforward manner
seems to require implementing a Boolean AND gate us-
ing polynomial algebra, which introduces an unnecessary
representation overhead.

We use a simple idea to avoid this issue, by introduc-
ing polynomial circuits with loops. This means that the
circuit’s wires, following the direction of evaluation, can
contain loops, as shown in Figure 3. When a circuit con-
tains loops, we require that there exist an assignment for
the wires such that every gate’s inputs and output are con-
sistent. It is not hard to see that we can build a QPP for a
polynomial circuit with loops.

From set circuits to polynomial circuits. Suppose we
have a set circuit C, as in Definition 1. We can compile C
into a polynomial circuit with loops F as follows:

1. Replace every intersection gate gI with the circuit
of Figure 3(a), which implements the constraints in
Lemma 2. Note that 6 additional wires per intersec-
tion gate are introduced during this compilation, 4
of which are free wires. Also, for each intersection
gate, 4 polynomial multiplication gates are added.

2. Replace every union gate gU of C with the circuit of
Figure 3(b), which implements the set of constraints
in Corollary 1. Note that 7 additional wires per
union gate are introduced during this compilation, 3

of which are free wires. Also, for each union gate, 5
polynomial multiplication gates are added.

3. Replace every difference gate gD of C with the cir-
cuit of Figure 3(c), which implements the set of
constraints in Corollary 2. Note that 7 additional
wires per union gate are introduced during this com-
pilation, 3 of which are free wires. Also, for each
difference gate, 5 polynomial multiplication gates
are added.

4.3 Asymptotic Complexity and Security
Let C be a set circuit with d gates (out of which d1 are
intersection gates and d2 are union and difference gates)
and N inputs and outputs. After compiling C into an
polynomial circuit with loops, we end up with a circuit F
with 4d1 + 5d2 multiplication gates since each intersec-
tion introduces 4 multiplication gates and each union or
difference introduces 5 multiplication gates.

Therefore, a SNARK for set circuits with d = d1 + d2
gates can be derived from a SNARK for polynomial cir-
cuits with 4d1 + 5d2 multiplication gates. Note that the
complexity of Prove for the SNARK for set circuits is
O(dν log2 ν log log ν) because the prover runs the ex-
tended Euclidean algorithm to compute the polynomials
on the free wires, which takes O(t log2 t log log t) time,
for t-degree polynomials as inputs.

Theorem 2 (Security of the SNARK for C) Let C be a
set circuit that has d total gates and N total inputs and
outputs. Let n be an upper bound on the cardinalities of
the sets on the wires of C and let q = 16d1 + 20d2 + 4,
where d1 is the number of intersection gates and d2 is
the number of union and difference gates (d = d1 + d2).
The construction above is a SNARK for the set circuit
C under the 2(n+ 1)q-PKE, the (n+ 1)q-PDH and the
2(n+ 1)q-SDH assumptions.

We note here that there do exist known SNARK con-
structions for languages in NP that have excellent asymp-
totic behavior and are input-specific, e.g., the work of
Bitansky et al. [6], based on recursive proof composition.
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Therefore, in theory, our SNARK asymptotics are the
same with the ones by Bitansky et al. [6] (when applied
to the case of set operations). However, the concrete over-
head of such techniques remains high; in fact, for most
functionalities it is hard to deduce the involved constants.
In comparison, with our approach, we can always deduce
an upper bound on the number of necessary operations
involved. We give a tight complexity analysis of our
approach in the full version of our paper [20].

4.4 Handling More Expressive Circuits
As discussed in the introduction, by moving from QAPs to
QPPs our scheme is not losing anything in expressiveness.
So far we explicitly discussed the design of efficient set
circuits that only consist of set gates. Ideally, we want
to be able to efficiently accommodate “hybrid” circuits
that consist both of set and arithmetic operations in an
optimally tailored approach.

In this section we show how, by constructing a split
gate (and a merge gate) that upon input a set A outputs
its elements ai, we gain some “backwards compatibility”
with respect to QAPs. In particular, this allows us to com-
pute on the set elements themselves, e.g., performing MAX
or COUNT. Also, using techniques described by Parno et
al. [23], one can go one step below in the representation
hierarchy and represent ai’s in binary form which yields,
for example, more efficient comparison operations.

Hence we produce a complete toolkit that a delegating
client can use for a general purpose computation, in a
way that allows it both to be more efficient for the part
corresponding to set operations and at the same time per-
form arithmetic and bit operations optimally, choosing
different levels of abstraction for different parts of the
circuit.

Zero-degree assertion gate. Arithmetic values can be
naturally interpreted as zero-degree polynomials. Since
we want to securely accommodate both polynomials and
arithmetic values in our circuit, we need to construct
a gate that will constrain the values of some wires to
arithmetic values. For example, we need to assure that
the outputs of a split gate are indeed numbers (and not
higher degree polynomials).

Lemma 3 (Zero-degree constraints) Let p(z) be a uni-
variate polynomial in F[z]. The degree of p(z) is 0 iff ∃
polynomial q(z) in F[z] such that p(z)q(z) = 1.

Proof: (⇒) Every zero-degree polynomial q(z) ∈ F[z]
also belongs in F. Since every element in F has an inverse,
the claim follows. (⇐) Assume now that p(z)q(z) = 1.
Since polynomial 1 is of degree 0, p(z)q(z) must also
be of degree 0. By polynomial multiplication, we know
that p(z)q(z) has degree deg(p(z)) + deg(q(z)). Hence
deg(p(z)) = deg(q(z)) = 0.

SPLIT
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+

×

z

A(z)

b
a a-1

×

+

b b-1

×
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+

d d-1

×c d z z z

Figure 4: Implementation of a split gate for the set A =
{a, b, c, d}. The elements z and 1 on the wires are hard-coded
in the circuit during setup. All other polynomials on the wires
are computed by the prover.

This simple gate consists of a multiplication gate be-
tween polynomial p(z) and an auxiliary input q(z) com-
puted by the server and the output is set to the (hard-
coded) polynomial 1. If the input is indeed a zero-degree
polynomial, by the above Lemma, q(z) is easily com-
putable by the server (an inverse computation in F).

Split gate. A split gate, depicted in Figure 4, operates
as follows. On input a wire with value A(z), it outputs
n wires with the individual elements ai. First, each of
the wires carrying ai is connected to a degree-zero as-
sertion gate. This will make sure that these wires carry
arithmetic values. Second, each of these wires is used as
an input to an addition gate, with the other input being
the degree-one polynomial z. Then the outputs of all the
addition gates are multiplied together and the output of
the multiplication is connected to the wire carrying A(z).

Split gate with variable number of outputs. In the
above we assumed that the split gate has a fixed number
of outputs, n. However, the number of outputs can vary.
To accommodate this, we assume that n is an upper bound
on the number of outputs of a split gate. Now, for each
of the n output wires, we introduce an indicator variable
νi (picked by the prover) such that if νi = 1, this output
wire is occupied and carries an arithmetic value, other-
wise νi = 0. Then, in the split gate of Figure 4, instead of∏n

i=1(z + ai) we compute
∏n

i=1[νi(z + ai) + (1− νi)].
Note here that an additional restriction we need to impose
is that νi ∈ {0, 1}. Fortunately this can be checked very
easily by adding one self-multiplication gate and a loop
wire for each value that enforces the condition νi ·νi = νi
that clearly holds iff νi = 0 or 1.

Cardinality gate. One immediate side-effect of our con-
struction for split gates with variable number of outputs,
is that it indicates a way to construct another very impor-
tant type of gate, namely a cardinality gate. Imagine for
example a computation where the requested output is not
a set but only its cardinality (e.g., a COUNT SQL-query
or the Jaccard similarity index). A cardinality gate is im-
plemented exactly like a split gate, however it only has a



774 23rd USENIX Security Symposium USENIX Association

single output wire that is computed as
∑

i νi, using n− 1
addition gates over the νi wires.

Merge gate. Finally, the merge gate upon input n wires
carrying numerical values ai, outputs a single wire that
carries them as a set (i.e., its characteristic polynomial).
The construction is similar to that of the split gate, only
in reverse order. First input wires are tested to verify they
are of degree 0, with n zero-degree assertion gates. Then,
these wires are used as input for union gates, taken in
pairs, in an iterative manner (imagine a binary tree of
unions with n leaves and the output set at the root).

5 Evaluation

We now present the evaluation of TRUESET comparing
its performance with Pinocchio [23], which is the state-of-
the-art general VC scheme (already reducing computation
time by orders-of-magnitude when compared with pre-
vious implementations). We also considered alternative
candidates for comparison such as Pantry [9] which is
specialized for stateful computations. Pantry is theoret-
ically more efficient than Pinocchio, as it can support a
RAM-based O(n)-time algorithm for computing set inter-
section (i.e., when the input sets are sorted), instead of the
circuit-based O(n log2 n) or O(n2) algorithms that Pinoc-
chio supports. However, evaluation showed that Pantry
requires considerable proof construction time, even for
simple memory-based operations (e.g., 92 seconds for a
single verifiable put operation in a memory of 8192 ad-
dresses), hence we chose to compare only with Pinocchio.

In our experiments, we analyze the performance of
TRUESET both for the case of a single set operation and
multiple set operations. We begin by presenting the details
of our implementation and the evaluation environment
and then we present the performance results.

5.1 Implementation

We built TRUESET by extending Pinocchio’s C++ imple-
mentation so that it can handle set circuits, with the special
set gates that we propose. However, since the original
implementation of Pinocchio used efficient libraries for
pairing-based cryptography and field manipulation that
are not available for public use (internal to Microsoft), the
first step was to replace those libraries with available free
libraries that have similar characteristics. In particular, we
used the Number Theory Library (NTL) [27] along with
the GNU Multi-Precision (GMP) library [15] for polyno-
mial arithmetic, in addition to an efficient free library for
ate-pairing over Barreto-Naehrig curves [4], in which the
underlying BN curve is y2 = x3 +2 over a 254-bit prime
field Fp that maintains a 126 bit-level of security. As in
Pinocchio, the size of the cryptographic proof produced

by our implementation is typically equal to 288 bytes in
all experiments regardless of the input or circuit sizes.

TRUESET’s executable receives an input file describing
a set circuit that contains one or more of the set gates
described earlier. The executable compiles the circuit
to a QPP in two stages. In the first stage, the set gates
are transformed into their equivalent representation using
polynomial multiplication and addition gates, as in Fig-
ures 3 and 4, and then the QPP is formed directly in the
second stage by generating the roots, and calculating the
V , W and Y polynomials.

Optimizations. For a fair comparison, we employ the
same optimizations used for reducing the exponentiation
overhead in Pinocchio’s implementation. Concerning
polynomial arithmetic, Pinocchio’s implementation uses
an FFT approach to reduce the polynomial multiplication
costs. In our implementation, we use the NTL library,
which already provides an efficient solution for polyno-
mial arithmetic based on FFT [28].

In addition to the above, the following optimizations
were found to be very useful when the number of set gates
is high, or when the set split gate is being used.
1) For key generation, we reduce the generated key size
by considering the maximum polynomial degree that can
appear on each wire, instead of assuming a global upper
bound on the polynomial degree for all wires (as described
in previous sections). This can be calculated by assuming
a maximum cardinality of the sets on the input wires, and
then iterating over the circuit wires to set the maximum
degree per wire in the worst case, e.g. the sum of the
worst case cardinalities of the input sets for the output of
a union gate, and the smaller for intersections.
2) The NTL library does not provide direct support for bi-
variate polynomial operations, needed to calculate h(x, z)
through division of p(x, z) by τ(x). Hence, instead of
doing a naive O(n2) polynomial division, we apply the
change-of-variable trick discussed in Section 3.3 to trans-
form bivariate polynomials into univariate ones that can
be handled efficiently with NTL FFT operations.
3) Finally, calculation of the coefficients of the charac-
teristic polynomial corresponding to the output is done
by the prover and not by the verifier. The verifier then
verifies that the set elements of the output (i.e., the roots
of the characteristic polynomials) match the polynomial
(expressed in coefficients) returned by the server. This can
be efficiently done through a randomized check—see al-
gorithm certify() from [22]. We specify that this slightly
increases the communication bandwidth (the server effec-
tively sends the output set twice, in two different encod-
ings) but we consider this an acceptable overhead (This
can be avoided by having the client perform the interpola-
tion himself, increasing the verification time). It can also
be noted that the input polynomial coefficients computa-
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tion can be outsourced similarly to the server side, if the
client does not have them computed already.

5.2 Experiments Setup
We now provide a comparison between TRUESET’s ap-
proach and Pinocchio’s approach based for set operations.
For a fair comparison, we considered two different ways
to construct the arithmetic circuits used by Pinocchio to
verify the set operations:

• Pairwise comparison-based, which is the naive ap-
proach for performing set operations. This requires
O(n2) equality comparisons.

• Sorting network-based, in which the input sets are
merged and sorted first using and odd-even merge-
sort network [19]. Then a check for duplicate con-
secutive elements is applied to include/remove re-
peated elements, according to the query being exe-
cuted. This requires O(n log2 n) comparator gates,
and O(n) equality gates.

Although the second approach is asymptotically more
efficient, when translated to Pinocchio’s circuits it results
in numerous multiplication gates. This is due to the k-bits
split gates needed to perform comparison operations, re-
sulting into great overhead in the key generation and proof
computation stages. For a k-bit possible input value, this
split gate needs k multiplication constraints to constrain
each bit wire to be either 0 or 1. (It should be noted that
these gates translate a wire into its bit-level representation
and they should not be confused with the split gates we
introduce in this paper, which output the elements of a set
as separate arithmetical values). On the other hand, the
pairwise approach uses zero-equality gates to check for
equality of elements. Each equality gate translates into
only two multiplication gates, requiring only two roots.

For fairness purposes, different Pinocchio circuits were
produced for each different input set cardinality we exper-
iment with, as each wire in Pinocchio’s circuits represents
a single element. On the other hand, TRUESET can use
the same circuit for different input cardinalities.

We consider two Pinocchio circuit implementations:

• MS Pinocchio: This is the executable built using
efficient Microsoft internal libraries.

• NTL-ZM Pinocchio: This is a Pinocchio version
built using exactly the same free libraries we used
for our TRUESET implementation. This will help
ensure having a fair comparison.

The experiments were conducted on a Lenovo IdeaPad
Y580 Laptop. The executable used a single core of a
2.3 GHz Intel Core i7 with 8 GB of RAM. For the input

sets, disjoint sets containing elements in F were assumed.
For running time statistics, ten runs were collected for
each data point, and the 95% confidence interval was
calculated. Due to the scale of the figures, the confidence
interval of the execution times (i.e., error bars) was too
low to be visualized.

5.3 Single-Gate Circuit

In this subsection, we compare TRUESET and Pinocchio’s
protocols based on the verification of a single union op-
eration that accepts two input sets of equal cardinalities.
We study both the time overhead and the key sizes with
respect to different input set cardinalities. Note that, ex-
periments for higher input cardinalities in Pinocchio’s
case incur great memory overhead due to the large circuit
size, therefore we were unable to even perform Pinoc-
chio’s for large input sizes.

Figure 5 shows the comparison between TRUESET’s
approach and Pinocchio’s pairwise and sorting network
approaches, versus the cardinality of each input set. The
results show clearly that TRUESET outperforms both ap-
proaches in the key generation and proof computation
stages by orders of magnitude, while maintaining the
same verification time. Specifically, TRUESET outper-
forms Pinocchio in the prover’s running time by 150x
when the input set cardinality is 28. This saving hap-
pens in both polynomial computations and exponentia-
tion operations, as shown in Figure 5 (c). We also note
that Pinocchio’s pairwise comparison approach outper-
forms the sorting network approach due to the expensive
split gates needed for comparisons in the sorting-network
circuits, as discussed above, which results into a large
constant affecting the performance at small cardinalities.

Considering evaluation and verification key sizes, Fig-
ure 5 also shows a comparison between TRUESET and
Pinocchio under both the pairwise and sorting networks
approaches. The figures demonstrate that TRUESET
yields much smaller evaluation keys due to the more com-
pact wire representation it employs (a single wire for a
set as opposed to a wire per element), e.g., at an input set
cardinality of 28, the saving is about 98%. It can also be
noticed that the keys generated in Pinocchio using sort-
ing networks are much larger than the ones generated in
pairwise circuits, due to the use of the split gates. On the
other hand, TRUESET and Pinocchio almost maintain the
same verification key sizes, as the verification key mainly
depends on the number of input elements in addition to
the number of output elements in the worst case. (The
verification key in TRUESET is negligibly more than the
verification key of Pinocchio, due to an additional value
that is needed to be verified per each input or output set.
This is because an n-element set is represented by an
n-degree polynomial which requires n+ 1 coefficients.)
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Figure 5: Comparison between TRUESET and Pinocchio for the case of a single union gate. In the horizontal axis, we show the
cardinality of each input set in logarithmic scale. (Note: Each time data point is the average of ten runs. The error bars were too
small to be visualized). Subfigures (a), (b) and (d) show the comparison in terms of the key generation, proof computation and
verification times, while (c) shows TRUESET’s prover’s time in more detail compared to Pinocchio’s prover in the case of pairwise
comparison. Subfigures (e) and (f) show the compressed evaluation and verification key sizes (The cryptographic proof for all
instances is 288 bytes).
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Figure 6: The multiple-gate circuit used for evaluation.

5.4 Multiple-Gate Circuit

We now compare TRUESET and Pinocchio’s performance
for a complex set circuit consisting of multiple set op-
erations, illustrated in Figure 6. The circuit takes eight
input sets of equal cardinalities, and outputs one set. We
compare both the prover’s overhead and the key sizes with
respect to different input set cardinalities, but this time
we consider only Pinocchio circuits based on pairwise
comparisons, as the sorting network approach has much
larger overhead for computation times and key sizes as
shown in the previous subsection.

Figure 7 shows a comparison between TRUESET’s
approach and Pinocchio’s approach. The results again
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Figure 7: Comparison between TRUESET and Pinocchio in the case of the multiple-gate circuit shown in Fig. 6, assuming the
pair-wise comparison circuit for Pinocchio. In the horizontal axis, we show the cardinality of each input set in logarithmic scale.
Subfigures (a), (b) and (d) show the comparison in terms of the key generation, proof computation and verification time, while (c)
shows TRUESET’s prover’s time in more detail compared to Pinocchio’s prover time. Subfigures (e) and (f) show the compressed
evaluation and verification key sizes (The cryptographic proof for all instances is 288 bytes).

confirm that TRUESET greatly outperforms Pinocchio’s
elapsed time for key generation and proof computation,
while maintaining the same verification time. In partic-
ular, for input set cardinality of 26, TRUESET’s prover
has a speedup of more than 50x. In terms of key sizes,
the figure confirms the observation that the evaluation key
used by TRUESET is tiny compared to that of Pinocchio,
e.g., 97% smaller when the input cardinality is 26.

5.5 Cardinality and Sum of Set Elements
Here, we evaluate TRUESET when a split gate is used
to calculate the cardinality and sum for the output set of
Figure 6. We compare that with Pinocchio’s performance
for the same functions. One important parameter that
has to be defined for the split gate first is the maximum

cardinality of the set it can support. This is needed for
translating the split gate to the appropriate number of
multiplication gates needed for verification. For example,
a split gate added to the output of the circuit in Figure 6,
will have to account for 4n set elements in the worst case,
if n is the upper bound on the input set cardinalities.

Table 1 presents a comparison between TRUESET and
Pinocchio in terms of the elapsed times in the three stages
and the evaluation/verification key sizes, when the input
set cardinality is 64. As the table shows, TRUESET can
provide better performance in terms of the key generation
and proof computation times (4x better proof computation
time), in addition to a much smaller public evaluation key.
It can be noted that, while there definitely exists a large
improvement over Pinocchio, it is not as large as the one
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Figure 8: Summary of TRUESET performance under all circuits in linear scale.

TRUESET MS Pinocchio NTL-ZM
Pinocchio

Key Generation (sec) 13.07 43.03 47.39
Proof Computation (sec) 32.45 174.99 137.79

Verification (sec) 0.065 0.074 0.066
Evaluation Key (MB) 12.7 72.45 72.45
Verification Key (KB) 49.65 48.6 48.6

Table 1: Comparison between TRUESET and Pinocchio on a
circuit that computes the cardinality and the sum of the output
set in the circuit in Figure 6, at input set cardinality of 64.

exhibited for the previous single-gate and multiple-gate
circuits. Overall, we found the split gate to be costlier
than set gates since the multiplication gates introduced
by the split gate increase proportionally with the number
of the set elements it can support, whereas set gates are
“oblivious” to the number of elements.

5.6 Discussion of Results
The evaluation of TRUESET for single-gate and multiple-
gate circuits showed huge improvement for both key gen-
eration and proof computation time over Pinocchio. For
example, for the single union case with 28-element input
sets, a speed-up of 150x was obtained for the prover’s
time, while providing more than 98% saving in the eval-
uation key size. For a multiple-gate circuit comprised
of seven set gates with eight input sets, each of 26 ele-
ments, a prover speed-up of more than 50x, and key size
reduction of 97% were obtained.

As can be qualitatively inferred by our plots, these
improvements in performance allow us to accommodate
problem instances that are several times larger than what
was considered achievable by previous works. TRUESET
achieves the performance behavior that Pinocchio exhibits
for sets of a few dozen elements, for sets that scale up
to approximately 8000 elements, handling circuits with
nearly 30x larger I/O size. Figure 8 summarizes the be-
havior of TRUESET for all circuits we experimented with,
illustrating its performance for the three stages in linear
scale. In all cases, the running time increases approxi-
mately linearly in the input size. The cost increases more

abruptly when a split gate is introduced due to the added
complexity discussed above. Improving the performance
of the split gate is one possible direction for future work.

Remarks. We discuss here a few points related to the
performance of our scheme.

Performance on Arithmetic Circuits. The presented eval-
uation covered the case of set circuits only, in which
our construction outperformed arithmetic circuits verified
using Pinocchio. Our construction can support typical
arithmetic circuits as well, by assuming that the maximum
polynomial degree on each wire is 0. In this case, our con-
struction will reduce to Pinocchio’s, however due to the
bivariate polynomial operations, there will be more over-
head in accommodating arithmetic circuits. For example,
for an arithmetic circuit handling the multiplication of
two 50x50 32-bit element matrices, the prover’s time with
TRUESET increased by 10% compared to Pinocchio.

Outsourced Sets. In the above, we assumed that the client
possesses the input sets. However, it is common practice
in cloud computing, to not only delegate computations
but storage as well. In this case, the client initially out-
sources the sets to the server and then proceeds to issue
set operation queries over them. This introduces the need
for an additional mechanism to ensure the authenticity of
the set elements used by the server. The full version of
our paper [20] describes a modified protocol that handles
this case using Merkle tree proofs.

Supporting multisets. Finally, it should be noted that
the comparisons with Pinocchio above assumed proper
sets only. In a setting that accommodates multiset op-
erations (i.e., sets that allow repetition in elements), we
expect TRUESET’s performance to be much better, as it
can naturally handle multiset cases without adding any
modifications. On the other hand, Pinocchio multiset
circuits are going to become more complex due to the
added complexity of taking repetitions into account. For
example, in intersection gates, it will not be enough to
only check that two element are equal, but it will also be
necessary to make sure that the matched element was not
encountered before, introducing additional overhead.
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6 Appendix

6.1 Computational Assumptions
Assumption 1 (q-PDH assumption [16]) The q-power
Diffie-Hellman (q-PDH) assumption holds for G if for
all PPT A the following probability is negligible in k:

Pr




(p,G,GT , e, g) ← G(1k); s ← Z∗
p;

G ←
[
g, gs, . . . , gs

q

, gs
q+2

, . . . , gs
2q
]
;

σ ← (p,G,GT , e,G);

y ← A(σ) : y = gs
q+1


 .

Assumption 2 (q-PKE assumption [16]) The q-power
knowledge of exponent assumption holds for G if for all
PPT A there exists a non-uniform PPT extractor χA such
that the following probability is negligible in k:

Pr




(p,G,GT , e, g) ← G(1k); {α, s} ← Z∗
p;

G ←
[
g, gs, . . . , gs

q

, gα, gαs, . . . , gαs
q]

;
σ ← (p,G,GT , e,G);
(c, ĉ; a0, a1, . . . , aq) ← (A||χA)(σ, z) :

ĉ = cα ∧ c �= g
∏q

i=0 ais
i



,

for any auxiliary information z ∈ {0, 1}poly(k) that
is generated independently of α. Note that (y; z) ←
(A||χA)(x) signifies that on input x, A outputs y, and
that χA, given the same input x and A’s random tape,
produces z.

Assumption 3 (q-SDH assumption [8]) The q-strong
Diffie-Hellman (q-SDH) assumption holds for G if for all
PPT A the following probability is negligible in k:

Pr




(p,G,GT , e, g) ← G(1k); {s} ← Z∗
p;

σ ← (p,G,GT , e,G =
[
g, gs, . . . , gs

q]
);

(y, c) ← A(σ) : y = e(g, g)
1

s+c .


 .

6.2 Succinct Non-Interactive Arguments of
Knowledge (SNARKs)

Definition 6 (SNARK) Algorithms
(KeyGen,Prove,Verify) give a succinct non-interactive
argument of knowledge (SNARK) for an NP language L
with corresponding NP relation RL if:

Completeness: For all x ∈ L with witness w ∈ RL(x),
the following probability is negligible in k:

Pr

[
Verify(sk, x, π) = 0

∣∣∣∣
(pk, sk) ← KeyGen(1k),
π ← Prove(pk, x, w)

]

Adaptive soundness: For any PPT algorithm A, the
following probability is negligible in k:

Pr

[
Verify(sk, x, π) = 1

∧ (x /∈ L)

∣∣∣∣
(pk, sk) ← KeyGen(1k),
(x, π) ← A(1k, pk)

]

Succinctness: The length of a proof is given by |π| =
poly(k)poly log(|x|+ |w|).

Extractability: For any poly-size prover Prv, there ex-
ists an extractor Extract such that for any statement
x, auxiliary information µ, the following holds:

Pr




(pk, sk) ← KeyGen(1k)
π ← Prv(pk, x, µ)
Verify(sk, x, π) = 1

∧
w ← Extract(pk, sk, x, π)

w /∈ RL(x)



= negl(k) .

Zero-knowledge: There exists a simulator Sim, such
that for any PPT adversary A, the following holds:

Pr




pk ← KeyGen(1k); (x,w) ← A(pk);
π ← Prove(pk, x, w) : (x,w) ∈ RL

and A(π) = 1




�

Pr




(pk, state) ← Sim(1k); (x,w) ← A(pk);
π ← Sim(pk, x, state) : (x,w) ∈ RL

and A(π) = 1 .




We say that a SNARK is publicly verifiable if sk = pk.
In this case, proofs can be verified by anyone with pk.
Otherwise, we call it a secretly-verifiable SNARK, in
which case only the party with sk can verify.
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Abstract
We build a system that provides succinct non-interactive
zero-knowledge proofs (zk-SNARKs) for program execu-
tions on a von Neumann RISC architecture. The system
has two components: a cryptographic proof system for
verifying satisfiability of arithmetic circuits, and a circuit
generator to translate program executions to such circuits.
Our design of both components improves in functionality
and efficiency over prior work, as follows.

Our circuit generator is the first to be universal: it
does not need to know the program, but only a bound
on its running time. Moreover, the size of the output
circuit depends additively (rather than multiplicatively)
on program size, allowing verification of larger programs.

The cryptographic proof system improves proving and
verification times, by leveraging new algorithms and a
pairing library tailored to the protocol.

We evaluated our system for programs with up to
10,000 instructions, running for up to 32,000 machine
steps, each of which can arbitrarily access random-access
memory; and also demonstrated it executing programs
that use just-in-time compilation. Our proofs are 230
bytes long at 80 bits of security, or 288 bytes long at
128 bits of security. Typical verification time is 5 ms,
regardless of the original program’s running time.

1 Introduction

1.1 Goal
Consider the setting where a client owns a public input x,
a server owns a private input w, and the client wishes to
learn z := F(x,w) for a program F known to both parties.
For instance, x may be a query, w a confidential database,
and F the program that executes the query on the database.
Security. The client is concerned about integrity of
computation: how can he ascertain that the server reports
the correct output z? In contrast, the server is concerned
about confidentiality of his own input: how can he prevent
the client from learning information about w?

Cryptography offers a powerful tool to address these se-
curity concerns: zero-knowledge proofs [43]. The server,
acting as the prover, attempts to convince the client, act-
ing as the verifier, that the following NP statement is true:
“there exists w such that z = F(x,w)”. Indeed:
• The soundness property of the proof system guarantees

that, if the NP statement is false, the prover cannot
convince the verifier (with high probability). Thus,
soundness addresses the client’s integrity concern.

• The zero-knowledge property of the proof system guar-
antees that, if the NP statement is true, the prover can
convince the verifier without leaking any information
about w (beyond was is leaked by the output z). Thus,
zero knowledge addresses the server’s confidentiality.

Moreover, the client sometimes not only seeks soundness
but also proof of knowledge [43, 11], which guarantees
that, whenever he is convinced, not only can he deduce
that a witness w exists, but also that the server knows one
such witness. This stronger property is often necessary to
security if F encodes cryptographic computations, and is
satisfied by most zero-knowledge proof systems.

Efficiency. Besides the aforementioned security desider-
ata, many settings also call for efficiency desiderata. The
client may be either unable or unwilling to engage in
lengthy interactions with the server, or to perform large
computations beyond the “bare minimum” of sending the
input x and receiving the output z. For instance, the client
may be a computationally-weak device with intermittent
connectivity (e.g., a smartphone).

Thus, it is desirable for the proof to be non-interactive
[25, 55, 23]: the server just send the claimed output z̃,
along with a non-interactive proof string π that attests
that z̃ is the correct output. Moreover, it is also desirable
for the proof to be succinct: π has size Oλ (1) and can be
verified in time Oλ (|F |+ |x|+ |z|), where Oλ (·) is some
polynomial in a security parameter λ ; in other words, π is
very short and easy to verify (i.e., verification time does
not depend on |w|, nor F’s running time).
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zk-SNARKs. A proof system achieving the above se-
curity and efficiency desiderata is called a (publicly-
verifiable) zero-knowledge Succinct Non-interactive AR-
gument of Knowledge (zk-SNARK). zk-SNARK con-
structions can be applied to a wide range of security appli-
cations, provided these constructions deliver good enough
efficiency, and support rich enough functionality (i.e., the
class of programs F that is supported).

Remark 1.1. In the zero-knowledge setting above, the
client does not have the server’s input, and so cannot
conduct the computation on his own. Hence, it is not
meaningful to compare “efficiency of outsourced compu-
tation at the server” and “efficiency of native execution at
the client”, because the latter was never an option. Non-
interactive zero-knowledge proofs (and zk-SNARKs) are
useful regardless of cross-over points.

Our goal in this paper is to construct

a zk-SNARK implementation supporting executions on a
universal von Neumann RISC machine.

1.2 Prior work

zk-SNARKs. Many works have obtained zk-SNARK
constructions [45, 51, 38, 22, 56, 16, 52, 27]. Three of
these [56, 16, 27] provide implementations, and thus we
briefly recall them. Parno et al. [56] present two main
contributions.
• A zk-SNARK, with essentially-optimal asymptotics,

for arithmetic circuit satisfiability, based on quadratic
arithmetic programs (QAPs) [38]. They accompany
their construction with an implementation.

• A compiler that maps C programs with fixed memory
accesses and bounded control flow (e.g., array accesses
and loop iteration bounds are compile-time constants)
into corresponding arithmetic circuits.

Ben-Sasson et al. [16] present three main contributions.
• Also a QAP-based zk-SNARK with essentially-

optimal asymptotics for arithmetic circuit satisfiability,
and a corresponding implementation. Their construc-
tion follows the linear-interactive proofs of [22].

• A simple RISC architecture, TinyRAM, along with a
circuit generator for generating arithmetic circuits that
verify correct execution of TinyRAM programs.

• A compiler that, given a C program, produces a corre-
sponding TinyRAM program.

Finally, Braun et al. [27] re-implemented the protocol
of [56] and combined it with a circuit generator that in-
corporates memory-checking techniques [24] to support
random-access memory [14].

Outsourcing computation to powerful servers. Nu-
merous works [63, 65, 66, 64, 32, 68, 71, 67, 27] seek to
verifiably outsource computation to untrusted powerful

servers, e.g., in order to make use of cheaper cycles or
storage. (See Appendix A for a summary.) We stress that
verifiable outsourcing of computations is not our goal.
Rather, as mentioned, we study functionality and effi-
ciency aspects of non-interactive zero-knowledge proofs,
which are useful even when applied to relatively-small
computations, and even with high overheads.

Compared to most protocols to outsource computations,
known zk-SNARKs use “heavyweight” techniques, such
as probabilistically-checkable proofs [6] and expensive
pairing-based cryptography. The optimal choice of pro-
tocol, and whether it actually pays off compared to local
native execution, are complex, computation-dependent
questions [71], and we leave to future work the ques-
tion of whether zk-SNARKs are useful for the goal of
outsourcing computations.

1.3 Limitations of prior work
Recent work has made tremendous progress in taking
zk-SNARKs from asymptotic theory into concrete im-
plementations. Yet, known implementations suffer from
several limitations.

Per-program key generation. As in any non-interactive
zero-knowledge proof, a zk-SNARK requires a one-time
trusted setup of public parameters: a key generator sam-
ples a proving key (used to generate proofs) and a ver-
ification key (used to check proofs). However, current
zk-SNARK implementations [56, 16] require the setup
phase to depend on the program F , which is hard-coded
in the keys. Key generation is costly (quasilinear in F’s
runtime) and is thus difficult to amortize if conducted
anew for each program. More importantly, per-program
key generation requires, for each new choice of program,
a trusted party’s help.

Limited support for high-level languages. Known cir-
cuit generators have limited functionality or efficiency:
(i) [56]’s circuit generator only supports programs with-
out data dependencies, since memory accesses and loop
iteration bounds cannot depend on a program’s input;
(ii) [27]’s circuit generator allows data-dependent memory
accesses, but each such access requires expensive hashing
to verify Merkle-tree authentication paths; (iii) [16]’s cir-
cuit generator supports arbitrary programs but its circuit
size scales inefficiently with program size (namely, it has
size Ω(�T ) for �-instruction T -step TinyRAM programs).
Moreover, while there are techniques that mitigate some
of the above limitations [72], these only apply in special
cases, and not do address general data dependencies, a
common occurrence in many programs.

Generic sub-algorithms. The aforementioned
zk-SNARKs use several sub-algorithms, and in particular
elliptic curves and pairings. Protocol-specific optimiza-
tions are a key ingredient in fast implementations of

2
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pairing-based protocols [59], yet prior implementations
only utilize off-the-shelf cryptographic libraries, and miss
key optimization opportunities.

1.4 Results
We present two main contributions: a new circuit genera-
tor and a new zk-SNARK for circuits. These can be used
independently, or combined to obtain an overall system.

1.4.1 A new circuit generator

We design and build a new circuit generator that incorpo-
rates the following two main improvements.

(1) Our circuit generator is universal: when given input
bounds �,n,T , it produces a circuit that can verify the
execution of any program with ≤ � instructions, on any
input of size ≤ n, for ≤ T steps. Instead, all prior circuit
generators [66, 64, 56, 16, 27] hardcoded the program
in the circuit. Combined with a zk-SNARK for circuits
(or any NP proof system for circuits), we achieve a no-
table conceptual advance: once-and-for-all key genera-
tion that allows verifying all programs up to a given size.
This removes major issues in all prior systems: expen-
sive per-program key generation, and the thorny issue of
conducting it anew in a trusted way for every program.

Our circuit generator supports a universal machine
that, like modern computers, follows the von Neumann
paradigm (program and data lie in the same read/write
address space). Concretely, it supports a von Neumann
RISC architecture called vnTinyRAM, a modification of
TinyRAM [17]. Thus, we also support programs leverag-
ing techniques such as just-in-time compilation or self-
modifying code [36, 58].

To compile C programs to the vnTinyRAM machine
language, we ported the GCC compiler to this architecture,
building on the work of [16].

See Figure 1 for a functionality comparison with prior
circuit generators (for details, see [27, §2]).

Supported functionality [66, 64, 56] [16] [27] this work
side-effect free comp. � � � �
data-dep. mem. accesses × � � �
data-dep. contr. flow × � × �
self-modifying code × × × �
universality × × × �

Figure 1: Functionality comparison among circuit generators.

(2) Our circuit generator efficiently handles larger arbi-
trary programs: the size of the generated circuit C�,n,T
is O

(
(�+ n+ T ) · log(�+ n+ T )

)
gates. Thus, the de-

pendence on program size is additive, instead of multi-
plicative as in [16], where the generated (non-universal)
circuit has size Θ

(
(n+T ) ·(log(n+T )+�)

)
. As Figure 2

shows, our efficiency improvement compared to [16] is

not merely asymptotic but yields sizable concrete sav-
ings: as program size � increases, our amortized per-cycle
gate count is essentially unchanged, while that of [16]
grows without bound, becoming orders of magnitudes
more expensive.

n = 102 |C�,n,T |/T improvement
T = 220 [16] this work
�= 103 1,872 1,368 1.4×
�= 104 10,872 1,371 7.9×
�= 105 100,872 1,400 72.1×
�= 106 1,000,872 1,694 590.8×

Figure 2: Per-cycle gate count improvements over [16].

An efficiency comparison with other non-universal cir-
cuit generators [66, 64, 56, 27] is not well-defined. First,
they support more restricted classes of programs, so a pro-
grammer must “write around” the limited functionality.
Second, their efficiency is not easily specified, since the
output circuit is ad hoc for the given program, and the only
way to know its size is to actually run the circuit generator.
We expect, and find, that such circuit generators perform
better than ours for programs that are already “close to a
circuit”, and worse for programs rich in data-dependent
memory accesses and control flow.

1.4.2 A new zk-SNARK for circuits

Our third contribution is a high-performance implementa-
tion of a zk-SNARK for arithmetic circuits.

(3) We improve upon and implement the protocol of Parno
et al. [56]. Unlike previous zk-SNARK implementations
[56, 16, 27], we do not use off-the-shelf cryptographic
libraries. Rather, we create a tailored implementation
of the requisite components: the underlying finite-field
arithmetic, elliptic-curve group arithmetic, pairing-based
checks, and so on.

To facilitate comparison with prior work, we instanti-
ate our techniques for two specific algebraic setups: we
provide an instantiation based on Edwards curves [33] at
80 bits of security (as in [16]), and an instantiation based
on Barreto–Naehrig curves [9] at 128 bits of security (as
in [56, 27]).

On our reference platform (a typical desktop), proof
verification is fast: at 80-bit security, for an n-byte input
to the circuit, verification takes 4.7+0.0004 ·n millisec-
onds, regardless of circuit size; at 128-bit security, it takes
4.8+0.0005 ·n. The constant term dominates for small
inputs, and corresponds to the verifier’s pairing-based
checks; in both cases, it is less than half the time for sep-
arately evaluating the 12 requisite pairings of the checks.
We achieve this saving by merging parts of the pairings’
computation in a protocol-dependent way — another rea-
son for a custom implementation of the underlying math.

3
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Key generation and proof generation entail a per-gate
cost. For example, for a circuit with 16 million gates: at
80 bits of security, key generation takes 81 µs per gate
and proving takes 109 µs per gate; at 128 bits of security,
these per-gate costs mildly increase to 100 µs and 144 µs.

As in previous zk-SNARK implementations, proofs
have constant size (independent of the circuit or input
size); for us, they are 230 bytes at 80 bits of security, and
288 bytes at 128 bits of security.

Compared to previous implementations of zk-SNARKs
for circuits [56, 16, 27], our implementation improves
both proving and verification times, e.g., see Figure 3.

80 bits of security 128 bits of security
[16] this impr. [56] this impr.

Key gen. 306s 97s 3.2× 123s 117s 1.1×
Prover 351s 115s 3.1× 784s 147s 5.3×
Verifier 66.1ms 4.9ms 13.5× 9.2ms 5.1ms 1.8×
Proof 322B 230B 1.4× 288B 288B (same)

Figure 3: Comparison with prior zk-SNARKs for a 1-million-gate arith-
metic circuit and a 1000-bit input, running on our benchmarking ma-
chine, using software provided by the respective authors. Since [27] is
a re-implementation of [56], we only include the latter’s performance.
(N = 5 and std < 2%)

1.4.3 Two components: independent or combined

Our new circuit generator and our new zk-SNARK for
circuits can be used independently. For instance, the
circuit generator can (up to interface matching) replace
the circuit generators in [66, 64, 56, 16, 27], thus granting
these systems universality. Similarly, our zk-SNARK
for circuits can replace the underlying zk-SNARKs in
[56, 16, 27], or be used directly in applications where a
suitable circuit is already specified.

Combining these two components, we obtain a full
system: a zk-SNARK for proving/verifying correctness of
vnTinyRAM computations; see Figure 4 and Figure 5 for
diagrams of this system. We evaluated this overall sys-
tem for programs with up to 10,000 instructions, running
for up to 32,000 steps. Verification time is, again, only
few milliseconds, independent of the running time of the
vnTinyRAM program, even when program size and input
size are kilobytes. Proofs, as mentioned, have a small
constant size. Key generation and proof generation entail
a per-cycle cost, with a dependence on program size that
“tapers off” as computation length increases. For instance,
at 128-bit security and vnTinyRAM with a word size of
32 bits, key generation takes 210ms per cycle and proving
takes 100ms per cycle, for 8K-instruction programs.

JIT case study: efficient memcpy. Besides evaluat-
ing individual components, we give an example demon-
strating the rich functionality supported by the integrated
system. We wrote a vnTinyRAM implementation of
memcpy that leverages just-in-time compilation (in par-
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verification key 

program size bound 

time bound 
input size bound 

universal 
circuit 

OFFLINE PHASE (ONCE) 
Key Generator 

Figure 4: Offline phase (once). The key generator outputs a proving
key and verification key, for proving and verifying correctness of any
program execution meeting the given bounds.
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Figure 5: Online phase (any number of times). The prover sends a
short and easy-to-verify proof to a verifier. This can be repeated any
number of times, each time for a different program and input.

ticular, dynamic loop unrolling) to require fewer cycles.
(See Section B.)

2 Preliminaries

F[z] denotes the ring of univariate polynomials over F,
and by F≤d [z] the subring of polynomials of degree ≤ d.
Concatenation of vectors/scalars is denoted by ◦.

2.1 Arithmetic circuits
Given a finite field F, an F-arithmetic circuit takes inputs
that are elements in F, and its gates output elements in F.
The circuits we consider only have bilinear gates.1

Definition 2.1. Let n,h, l respectively denote the input,
witness, and output size. The circuit satisfaction prob-
lem of a circuit C : Fn ×Fh → Fl with bilinear gates is
defined by the relation RC = {(�x,�a)∈ Fn×Fh : C(�x,�a) =
0l} and language LC = {�x ∈ Fn : ∃�a ∈ Fh, C(�x,�a) = 0l}.

All the arithmetic circuits we consider are over prime
fields Fp. In this case, when passing boolean strings as
inputs to arithmetic circuits, we pack the string’s bits into
as few field elements as possible: given s ∈ {0,1}m, we

use [[s]]mp to denote the vector �x ∈ F
|m|p
p , where |m|p :=

�m/�log p��, such that the binary representation of xi ∈
Fp is the i-th block of �log p� bits in s (padded with 0’s if
needed). We extend the notation [[s]]mp to binary strings s ∈
{0,1}n with n < m bits via padding: [[s]]mp := [[s0m−n]]mp .

2.2 Quadratic arithmetic programs
Our zk-SNARK leverages quadratic arithmetic programs
(QAPs), introduced by Gennaro et al. [38].

Definition 2.2. A quadratic arithmetic program of size
m and degree d over F is a tuple (�A,�B,�C,Z), where
�A,�B,�C are three vectors, each of m+ 1 polynomials in
F≤d−1[z], and Z ∈ F[z] has degree exactly d.

1A gate with inputs x1, . . . ,xm ∈ F is bilinear if the output is
〈�a,(1,x1, . . . ,xm)〉 · 〈�b,(1,x1, . . . ,xm)〉 for some�a,�b ∈ Fm+1. In particu-
lar, these include addition, multiplication, and constant gates.
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Like a circuit, a QAP induces a satisfaction problem:

Definition 2.3. The satisfaction problem of a size-m
QAP (�A,�B,�C,Z) is the relation R(�A,�B,�C,Z) of pairs (�x,�s)
such that (i) �x ∈ Fn, �s ∈ Fm, and n ≤ m; (ii) xi = si for
i ∈ [n] (i.e., �s extends �x); and (iii) the polynomial Z(z)
divides the following one:

(A0(z)+∑m
i=1 siAi(z)) · (B0(z)+∑m

i=1 siBi(z))

−(C0(z)+∑m
i=1 siCi(z)) .

We denote by L(�A,�B,�C,Z) the language of R(�A,�B,�C,Z).

Gennaro et al. [38] showed that circuit satisfiability can
be efficiently reduced to QAP satisfiability (which can
then be proved and verified using zk-SNARKs):

Lemma 2.4. There exist two polynomial-time algorithms
QAPinst,QAPwit that work as follows. For any circuit
C : Fn×Fh → Fl with a wires and b gates, (�A,�B,�C,Z) :=
QAPinst(C) is a QAP of size m and degree d over F that
satisfies the following three properties.
• EFFICIENCY. It holds that m = a and d = b+ l +1.
• COMPLETENESS. For any (�x,�a) ∈ RC, it holds that
(�x,�s) ∈ R(�A,�B,�C,Z), where�s := QAPwit(C,�x,�a).

• PROOF OF KNOWLEDGE. For any (�x,�s) ∈ R(�A,�B,�C,Z),
it holds that (�x,�a) ∈ RC, where�a is a prefix of�s.

• NON-DEGENERACY. The polynomials A0, . . . ,An are
nonzero and distinct.

2.3 Pairings
Let G1 and G2 be two cyclic groups of order r. We
denote elements of G1,G2 via calligraphic letters such
as P,Q. We write G1 and G2 in additive notation.
Let P1 be a generator of G1, i.e., G1 = {αP1}α∈Fr

(α is also viewed as an integer, hence αP1 is well-
defined); let P2 be a generator for G2. A pairing is
an efficient map e : G1 ×G2 → GT , where GT is also a
cyclic group of order r (which we write in multiplicative
notation), satisfying the following properties: (i) bilin-
earity: for every nonzero elements α,β ∈ Fr, it holds
that e(αP1,βP2) = e(P1,P2)

αβ ; (ii) non-degeneracy:
e(P1,P2) is not the identity in GT .

2.4 zk-SNARKs for arithmetic circuits
A (preprocessing) zk-SNARK for F-arithmetic circuit
satisfiability (see, e.g., [22]) is a triple of polynomial-
time algorithms (G,P,V ), called key generator, prover,
and verifier. The key generator G, given a security pa-
rameter λ and an F-arithmetic circuit C : Fn ×Fh → Fl ,
samples a proving key pk and a verification key vk; these
are the proof system’s public parameters, which need
to be generated only once per circuit. After that, any-
one can use pk to generate non-interactive proofs for the

language LC, and anyone can use the vk to check these
proofs. Namely, given pk and any (�x,�a) ∈ RC, the hon-
est prover P(pk,�x,�a) produces a proof π attesting that
�x ∈ LC; the verifier V (vk,�x,π) checks that π is a valid
proof for�x ∈LC. A proof π is both a proof of knowledge,
and a (statistical) zero-knowledge proof. The succinctness
property requires that π has length Oλ (1) and V runs in
time Oλ (|�x|), where Oλ hides a (fixed) polynomial in λ .

Constructions. Several zk-SNARK constructions are
known [45, 51, 38, 22, 56, 16, 52]. The most efficient ones
are based on quadratic span programs (QSPs) [38, 52] or
quadratic arithmetic programs (QAPs) [38, 22, 56, 16].
We focused on QAP-based constructions, because QAPs
allow for tighter reductions from arithmetic circuits (see
Lemma 2.4). Concretely, we build on the QAP-based
zk-SNARK protocol of Parno et al. [56] (see Section 4).

Remark 2.5 (full succinctness). The key generator G
takes C as input, and so its complexity is linear in |C|.
One could require G to not take C as input, and have
its output keys work for all (polynomial-size) circuits
C; then, G’s running time would be independent of C.
A zk-SNARK satisfying this stronger property is fully
succinct. Theoretical constructions of such zk-SNARKs
are known, based on various cryptographic assumptions
[54, 69, 21]. Despite achieving essentially-optimal asymp-
totics [6, 18, 15, 14, 21] no implementations of them have
been reported to date.

2.5 A von Neumann RISC architecture
Ben-Sasson et al. [16] introduced TinyRAM, a Harvard
RISC architecture with word-addressable memory. We
modify TinyRAM to obtain vnTinyRAM, which differs
from it in two main ways. First, vnTinyRAM follows the
von Neumann paradigm, whereby program and data are
stored in the same read-write address space; programs
may use runtime code generation. Second, vnTinyRAM
has byte-addressable memory, along with instructions to
load/store bytes or words.2

Besides the above main differences, vnTinyRAM is
very similar to TinyRAM. Namely, it is parametrized by
the word size, denoted W , and the number of registers,
denoted K. The CPU state of the machine consists of
(i) a W -bit program counter; (ii) K general-purpose W -bit
registers; (iii) a 1-bit condition flag. The full state of the
machine also includes memory, which is a linear array
of 2W bytes, and two tapes, each with a string of W -bit
words, and read-only in one direction. One tape is for a
primary input and the other for an auxiliary input
(treated as nondeterministic, untrusted advice).

2Byte-addressing is common in programs performing array or string
operations (and is a deeply-ingrained assumption in the GCC and LLVM
compilers), while word-addressing in programs performing arithmetic.
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In memory, an instruction is represented as a double
word (one word for an immediate, and another for opcode,
etc.). Thus, a program is a list of address/double-word
pairs specifying the initial contents of memory; all other
memory locations assume the initial value of 0.

We define the language of accepting computations:

Definition 2.6. Fix bounds �,n,T . The language L�,n,T
consists of pairs ( , ) such that: (i) is a program
with ≤ � instructions, (ii) is a primary input with ≤ n
words, (iii) there exists an auxiliary input s.t. ( , )
accepts in ≤ T steps. We denote by R�,n,T the relation
corresponding to L�,n,T .

3 Our circuit generator

A circuit generator translates the correctness of suitably-
bounded program executions into circuit satisfiability:
given input bounds �,n,T , it produces a circuit that can
verify the execution of any program with ≤ � instructions,
on any input of size ≤ n, for ≤ T steps. More precisely,
using the notations [[s]]p (for packing the binary string
s into field elements) and |s|p (for computing the num-
ber of field elements required to pack s) introduced in
Section 2.1, we define a (universal) circuit generator for
vnTinyRAM as follows.

Definition 3.1. A (universal) circuit generator of effi-
ciency f (·) over a prime field Fp is a polynomial-time
algorithm circ, together with an efficient witness map
wit, working as follows. For any program size bound
�, time bound T , and primary-input size bound n, C :=
circ(�,n,T ) is an Fp-arithmetic circuit C : Fm

p ×Fh
p → Fl

p,
for m := |�2W |p + |nW |p and some h, l, where W is the
word size (cf. Section 2.5).
• EFFICIENCY. The circuit C has f (�,n,T ) gates.
• COMPLETENESS. Given any program , primary in-

put , and witness such that
(
( , ),

)
∈ R�,n,T , it

holds that (�x,�a) ∈ RC, where�x := [[ ]]�2W
p ◦ [[ ]]nW

p and
�a := wit(�,n,T, , , ).

• PROOF OF KNOWLEDGE. There is a polynomial-time
algorithm such that, given any (�x,�a) ∈ RC, outputs a
witness for ( , ) ∈ L�,n,T .

The circuit C output by circ is universal because it does
not depend on the program or primary input , but only
on their respective size bounds � and n (as well as the
time bound T ). When combined with any proof system
for circuit satisfiability (e.g., our zk-SNARK), this fact
enables the generation of the proof systems’ parameters
to be universal as well. Namely, it is possible to generate
keys for all bound choices (e.g., in powers of 2) up to some
constant, once and for all; afterwards, one can pick the
keys corresponding to bounds fitting a given computation.
This avoids expensive per-program key generation and,

more importantly, the need for a trusted party to conduct
key generation anew for every program.

We construct a universal circuit generator with the fol-
lowing efficiency:

Theorem 3.2. There is a circuit generator of efficiency
f (�,n,T ) = O

(
(�+ n + T ) · log(�+ n + T )

)
over any

prime field Fp of size p > 22W , where W is the word
size (cf. Section 2.5).

(In our case, the condition p > 22W is always fulfilled.)

3.1 Past techniques
Most of the difficulties that arise when designing a circuit
generator have to do with data dependencies. A circuit’s
topology does not depend on its inputs but, in contrast,
program flow and memory accesses depend on the choice
of program and the program’s inputs. Thus, a circuit
tasked with verifying program executions must be “ready”
to support a multitude of program flows and memory
accesses, despite the fact that its topology has already
been fixed. Various techniques have been applied to the
design of circuit generators.

Program analysis. In the extreme, if both the program
and its inputs ( , ) are known in advance, designing

a circuit generator is simple: construct a circuit that eval-
uates on ( , ) by preparing the circuit’s topology to
match the pre-determined program flow and memory ac-
cesses. But now suppose that only is known in advance,
but not its inputs ( , ). In this case, by analyzing
piece by piece (e.g., separately examine the various loops,
branches, and so on), one could try to design a circuit C
that can handle different choices of inputs. Most prior
circuit generators [66, 64, 56, 27] take this approach.

However, this approach suffers from several limitations.
First, the class of supported programs is not rich, be-
cause support for data dependencies is limited. E.g., [56]
requires array accesses and loop iteration bounds to be
compile-time constants; also, while [27] supports data-
dependent memory accesses, most program flow is also
restricted to be known (or bounded) at compile-time; mit-
igations are possible, but only in special cases [72]. Sec-
ond, and more importantly, this approach does not seem to
allow for designing universal circuit generators, because
the program is not known in advance and thus there is
no program to analyze.

Multiplex every access. Computers are universal
random-access machines (RAMs), so one approach of
designing a universal circuit is to mimic a computer’s
execution, building a layered circuit as follows. The i-th
layer contains the entire state of the machine (CPU state
and random-access memory) at time step i, and layer i+1
is computed from it by evaluating the transition function

6



USENIX Association  23rd USENIX Security Symposium 787

of the machine, handling any accesses to memory via mul-
tiplexing. While this approach supports arbitrary program
flow, memory accesses are inefficiently supported; indeed,
if memory has S addresses, the resulting circuit is huge:
it has size Ω(T S).

Nondeterministic routing. Ben-Sasson et al. [14] sug-
gested using nondeterministic routing on a Beneš network
to support memory accesses efficiently; Our circuit gen-
erator builds on the techniques of [14, 16], so we briefly
review the main idea behind nondeterministic routing.

Following [14], Ben-Sasson et al. [16] introduced a
simple computer architecture, called TinyRAM, and con-
structed a routing-based circuit generator for TinyRAM.
They define the following notions. A CPU state, denoted
S, is the CPU’s contents (e.g., program counter, regis-
ters, flags) at a given time step. An execution trace for
a program , time bound T , and primary input is a
sequence tr = (S1, . . . ,ST ) of CPU states. An execution
trace tr is valid if there is an auxiliary input such that
the execution trace induced by running on inputs ( , )
is tr.

We seek an arithmetic circuit C for verifying that tr is
valid. We break this down by splitting validity into three
sub-properties: (i) validity of instruction fetch (for each
time step, the correct instruction is fetched); (ii) validity
of instruction execution (for each time step, the fetched
instruction is correctly executed); and (iii) validity of
memory accesses (each load from an address retrieves the
value of the last store to that address).

The first two properties are verified as follows. Con-
struct a circuit C so that, for any two CPU states S and S′,
C (S,S′,g) is satisfied for some “guess” g if and only if S′

can be reached from S (by fetching from the instruction
indicated by the program counter in S and then executing
it), for some state of memory. Then, properties (i) and
(ii) hold if C (Si,Si+1, ·) is satisfiable for i = 1, . . . ,T −1.
Thus, C contains T −1 copies of C , each wired to a pair
of adjacent states in tr.

The third property is verified via nondeterministic rout-
ing. Assume that C also gets as input MemSort(tr), which
equals to the sorting of tr by accessed memory addresses
(breaking ties via timestamps), and write a circuit Cmem so
that validity of memory accesses holds if Cmem is satisfied
by each pair of adjacent states in MemSort(tr). (Roughly,
Cmem checks consistency of “load-after-load”, “load-after-
store”, and so on.) However, C merely gets some auxiliary
input tr∗, which purports to be MemSort(tr). So C works
as follows: (a) C has T −1 copies of Cmem, each wired to
a pair of adjacent states in tr∗; (b) C separately verifies
that tr∗ =MemSort(tr) by routing on a O(T logT )-node
Beneš network. The switches of the routing network are
set according to non-deterministic guesses (i.e., additional
values in the auxiliary input), and the routing network
merely verifies that the switch settings induce a permu-

tation; this allows for a very tight reduction. (Known
constructions that compute the correct permutation hide
large constants in big-oh notation [1].)

Past inefficiencies. After filling in additional details,
the construction of [16] reviewed above gives a circuit
of size Θ

(
(n + T ) · (log(n + T ) + �)

)
= Ω(� · T ). The

Ω(� ·T ) arises from the fact that all of the � instructions
in are hardcoded into each of the T −1 copies of C .
Thus, besides being non-universal, the circuit scales inef-
ficiently as � grows (e.g., for �= 104, C ’s size is already
dominated by ’s size).

3.2 Our construction
In comparison to [16], our circuit generator is universal
and, moreover, its size only grows with �+T (additive
dependence on program size) instead of with � ·T (mul-
tiplicative dependence). As our evaluation demonstrates
(see Section 5.1), the size improvement actually translates
into significant savings in practice.

Instead of hardcoding the program into each copy
of the circuit C , we follow the von Neumann paradigm,
where the program lies in the same read/write memory
space as data. We ensure that is loaded into the initial
state of memory, using a dedicated circuit; we then verify
instruction fetch via the same routing network that is used
for checking data loads/stores. While the idea is intuitive,
realizing it involves numerous technical difficulties, some
of which are described below.

Routing instructions and data. We extend an execution
trace to not only include CPU states but also instructions:
tr= (S1, I1, . . . ,ST , IT ) where Si is the i-th CPU state, and
Ii is the i-th executed instruction. We seek an arithmetic
circuit C that checks tr, in this “extended” format, for the
same three properties as above: (i) validity of instruction
fetch; (ii) validity of instruction execution; (iii) validity of
memory accesses.

As in [16], checking that tr satisfies property (ii)
is quite straightforward. Construct a circuit Cexe so
that, given two CPU states S,S′ and an instruction I,
Cexe(S,S′, I,g) is satisfied, for some guess g, if and only
if S′ can be reached from S, by executing I, for some state
of memory. Then, C contains T −1 copies of Cexe, each
wired to adjacent CPU states and an instruction, i.e., the
i-th copy is Cexe(Si,Si+1, Ii,gi).

Unlike [16], though, we verify properties (i) and (iii)
jointly, via the same routing network. The auxiliary input
now contains tr∗ = (A1, . . . ,A2T ), purportedly equal to the
memory-sorted list of both instructions fetches and CPU
states. (Since the program lies in the same read-write
memory as data, an instruction fetch from is merely
a special type of memory load.) Thus, to check that tr
satisfies properties (i) and (iii), we design C to (a) verify
that tr∗ =MemSort(tr) via nondeterministic routing, and
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(b) verify validity of all (i.e., instruction and data) memory
accesses, via a new circuit C′

mem applied to each pair of
adjacent items Ai,Ai+1 in tr∗. Thus, in this approach,

is never replicated T times; rather, the fetching of its
instructions is verified together with all other memory
accesses, one instruction fetch at a time.

Multiple memory-access types. Each copy of C′
mem

inspects a pair of items in tr∗ and (assuming tr∗ =
MemSort(tr)) must ensure consistency of “load-after-
load”, “load-after-store”, and so on. However, unlike
in [16], the byte-addressable memory of vnTinyRAM
is accessed in different-sized blocks: instruction-size
blocks for instruction fetch; word-size blocks when
loading/storing words; and byte-size blocks when load-
ing/storing bytes. The consistency checks in C′

mem must
handle “aliasing”, i.e., accesses to the same point in mem-
ory via different addresses and block sizes.

We tackle this difficulty as follows. Double-word
blocks are the largest blocks in which memory is ac-
cessed (as instructions are encoded as double words; cf.
Section 2.5). We thus let each item in tr∗ always specify
a double-word, even if the item’s memory access was
with respect to a smaller-sized block (e.g., word or byte).
With this modification, we can let C′

mem perform consis-
tency checks “at the double-word level”, and handling
word/byte accesses by mapping them to double-word ac-
cesses with suitable shifting and masking.

Booting the machine. We have so far assumed that
the program , given as input to C, already appears in
memory. However, the circuit C sketched so far only
verifies the validity of tr with respect to a machine whose
memory is initialized to some state, corresponding to the
execution of some program. But C must verify correct
execution of, specifically, , and so it must also verify
that memory is initialized to contain . Since C does
not explicitly maintain memory (not even the initial one)
and only implicitly reasons about memory via the routing
network, it is not clear how C can perform this check.

We tackle this difficulty as follows. We further modify
the the execution trace tr, by extending it with an initial
boot section, preceding the beginning of the computation,
during which the input program is stored into mem-
ory, one instruction i at a time. This extends the length
of both tr and tr∗ from 2T to �+ 2T , for �-instruction
programs, and introduces a new type of item, “boot in-
put store”, in tr∗. Similarly, the routing network is now
responsible for routing �+2T , rather than 2T , packets.

Further optimizations. The above construction sketch
(depicted in Figure 6) is only intuitive, and does not dis-
cuss other optimizations that ultimately yield the perfor-
mance that we report in Section 5.1.

For example, while [16] rely on Beneš networks, we
rely on arbitrary-size Waksman networks [10], which

only require N(logN −0.91) switches to route N packets,
instead of 2�logN�(�logN�− 0.5). Besides being closer
to the information-theoretic lower bound of N(logN −
1.443), such networks eliminate costly rounding effects
in [16], where the size of the network is doubled if N is
just above a power of 2.

Compiling to vnTinyRAM. To enable verification of
higher-level programs, written in C, we ported the GCC
compiler to the vnTinyRAM architecture, by modifying
the Harvard-architecture, word-addressible TinyRAM C
compiler of [16]. Given a C program, written in the
same subset of C as in [16], the compiler produces the
initial memory map representing a program . This also
served to validate the vnTinyRAM architectural choices
(e.g., the move to byte-addressing significantly, and added
instructions, improved efficiency for many programs).
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Figure 6: Outline of our universal circuit construction with the extended
trace tr on the left and (allegedly) its memory sort tr∗ on the right.

4 Our zk-SNARK for circuits

We discuss our second main contribution: a high-
performance implementation of a zk-SNARK for arith-
metic circuit satisfiability. Our approach is to tailor
the requisite mathematical algorithms to the specific
zk-SNARK protocol at hand. While our techniques can be
instantiated in many algebraic setups and security levels,
we demonstrate them in two specific settings, to facilitate
comparison with prior work.

See Section 2.4 for an informal definition of a
zk-SNARK for arithmetic circuit satisfiability. We im-
prove upon and implement the zk-SNARK of Parno et
al. [56]. For completeness the “PGHR protocol” is sum-
marized in the full version of this paper, which provides
pseudocode for its key generator G, prover P, and verifier
V . The construction is based on QAPs, introduced in
Section 2.2.

Like most other zk-SNARKs, the PGHR protocol relies
on a pairing, which is specified by a prime r ∈ N, three

8
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cyclic groups G1,G2,GT of order r, and a bilinear map
e : G1 ×G2 →GT . (See Section 2.3.)

A pairing is typically instantiated via a pairing-friendly
elliptic curve. Concretely, suppose that one uses a curve
E defined over Fq, with embedding degree k with re-
spect to r, to instantiate the pairing. Then GT is set to
µr, the subgroup of r-th roots of unity in F∗

qk . The in-
stantiation of G1 and G2 depends on the choice of e;
typically, G1 is instantiated as an order-r subgroup of
E(Fq), while, for efficiency reasons [7, 8], G2 as an order-
r subgroup of E ′(Fk/d) where E ′ is a d-th twist of E.
Finally, the pairing e is typically a two-stage function
e(P,Q) := FE(ML(P,Q)), where ML : G1×G2 → Fk

q

is known as Miller loop, and FE : Fk
q → Fk

q is known as

final exponentiation and maps α to FE(α) := α(qk−1)/r.
As mentioned, we instantiate our techniques based on

two different curves: an Edwards curve for the 80-bit
security level (as in [16]) and a Barreto–Naehrig curve for
the 128-bits security level (as in [56, 27]). We selected
both the Edwards curve and Barreto–Naehrig curve so
that r−1 has high 2-adic order (i.e., r−1 is divisible by
a large power of 2), because this was shown to improve
the efficiency of the key generator and the prover [16].

4.1 An optimized verifier
The verifier V takes as input a verification key vk, input
�x ∈ Fn

r , and proof π , and checks if π is a valid proof for
the statement “�x ∈ LC”. The computation of V consists
of two parts. First, use vkIC,0, . . . ,vkIC,n ∈ G1 (part of
vk) and input �x to compute vk�x := vkIC,0 +∑n

i=1 xivkIC,i.
Second, use vk, vk�x, and π , to compute 12 pairings and
perform the required checks. In other words, V performs
O(n) scalar multiplications in G1, followed by O(1) pair-
ing evaluations.

With regard to V ’s first part, variable-base multi-scalar
multiplication techniques can be used to reduce the num-
ber of G1 operations needed to compute vk�x [16, 56].
With regard to V ’s second part, even if the pairing evalu-
ations take constant time (independent of the input size
n), these evaluations are very expensive and dominate for
small n. Our focus here is to minimize the cost of these
pairing evaluations.

When only making “black-box” use of a pairing, the
verifier must evaluate 12 pairings, amounting to 12 Miller
loops plus 12 final exponentiations. The straightfor-
ward approach is to compute these using a generic high-
performance pairing library. We proceed differently:
we obtain high-performance implementations of sub-
components of a pairing, and then tailor their use specifi-
cally to V ’s protocol.

Namely, first, we obtain state-of-the-art implementa-
tions of a Miller loop and final exponentiation. We utilize
optimal pairings [70] to minimize the number of loop

iterations in each Miller loop, and, to efficiently eval-
uate each Miller loop, rely on the formulas of [3] (for
Edwards curves) and [20] (for BN curves). As for final
exponentiation, we use multiple techniques to speed it
up: [62, 44, 35, 50].

Next, building on the above foundation, we incorporate
in V the following optimizations.

(1) Sharing Miller loops and final exponentiations.
The verifier V computes two products of two pairings.
We leverage the fact that a product of pairings can be
evaluated faster than evaluating each pairing separately
and then multiplying the results [60]. Concretely, in a
product of m pairings, the Miller loop iterations for evalu-
ating each factor can be carried out in “lock-step” so to
share a single Miller accumulator variable, using one Fqk

squaring per loop instead of m.
In a similar vein, one can perform a single final expo-

nentiation on the product of the outputs of the m Miller
loops, instead of m final exponentiations and then multi-
plying the results. In fact, since the output of the pairing
can be inverted for free (as the element is unitary so that
inverting equals conjugating [61]), the idea of “sharing”
final exponentiations extends to a ratio of pairing products.
Thus, in the verifier we only need to perform 5, instead of
12, final exponentiations.

Our implementation incorporates both of the above
techniques. For example, at the 80-bit security level,
separately computing 12 optimal pairings costs 13.6ms,
but the above techniques reduce the time to only 8.1ms.
We decrease this further as discussed next.

(2) Precomputation by processing the verification key.
Of the 12 pairings the verifier needs to evaluate, only one
is such that both of its inputs come from the proof π . The
other 11 pairings have one fixed input, either a generator
of G1 or G2, or coming from the verification key vk.

When one input to a pairing is fixed, precomputation
techniques apply [60], especially in the case when the
fixed input is the base point in Miller’s algorithm. In V ,
this holds for 9 out of the 11 pairing evaluations. We
thus split the verifier’s computation into an offline phase,
which consists of a one-time precomputation that only
depends on vk, and a many-time online phase, which
depends on the precomputed values, input�x, and proof π .
The result of the offline phase is a processed verification
key vk∗. While vk∗ is longer than vk, it allows the online
phase to be faster.

E.g., at the 80-bit security level, vk∗ decreases the total
cost of pairing checks from 8.1ms to 4.7ms.

4.2 An optimized prover
The prover P takes as input a proving key pk (which in-
cludes the circuit C : Fn

r ×Fh
r → Fl

r), input �x ∈ Fn
r , and

witness�a ∈ Fr. The prover P is tasked to produce a proof

9
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π , attesting that �x ∈ LC. The computation of P con-
sists of two main parts. First, compute the coefficients�h
of the polynomial H(z) := A(z)B(z)−C(z)

Z(z) , where A,B,C ∈
Fr[z] are derived from the QAP instance (�A,�B,�C,Z) :=
QAPinst(C) and QAP witness�s :=QAPwit(C,�x,�a). Sec-
ond, use the coefficients�h, QAP witness�s, and public key
pk to compute π .

With regard to the first part of P, the coefficients �h
can be efficiently computed via FFT techniques [16, 56];
our implementation follows [16], and leverages the high
2-adic order of r − 1 for both of the elliptic curves we
use. With regard to P’s second part, computing π requires
solving large instances of the following problem: given
elements Q1, . . . ,Qn all in G1 (or all in G2) and scalars
α1, . . . ,αn ∈ Fr, compute 〈�α, �Q〉 := α1Q1 + · · ·+αnQn.
Previous work [56, 16] has leveraged generic multi-scalar
multiplication to compute π . We observe that these algo-
rithms can be tailored to the specific scalar distributions
arising in P. In P, the vector �α is one of two types:
(i) �α ∈ Fd+1

r and represents the coefficients of the degree-
d polynomial H; or (ii) �α = (1◦�s◦δ1 ◦δ2 ◦δ3) ∈ F4+m

r ,
for random δ1,δ2,δ3 ∈ Fr.

In case i, the entries in of �α are random-looking. We
use the Bos–Coster algorithm [26] due to its lesser mem-
ory requirements (as compared to, e.g., [57]). We follow
[19]’s suggestions and achieve an assembly-optimized
heap to implement the Bos–Coster algorithm.

In case ii, the entries in�s depend on the input (C,�x,�a)
to QAPwit; in turn, (C,�x,�a) depends on our circuit gen-
erator (Section 3). Using the above algorithm “as is” is
inefficient: the algorithm works well when all the scalars
have roughly the same bit complexity, but the entries in
�c have very different bit complexity. Indeed, �α equals to
�s augmented with a few entries; and�s, the QAP witness,
can be thought of as the list of wire values in C when
computing on (�x,�a); the bit complexity of a wire value
depends on whether it is storing a boolean value, a word
value, and so on. We observe that there are only a few
“types” of values, so that the entries of �α can be clustered
into few groups of scalars with approximately the same
bit complexity; we then apply the algorithm of [26] to
each such group.

4.3 An optimized key generator

The key generator G takes as input a circuit C : Fn
r ×Fh

r →
Fl

r, and is tasked to compute a proving key pk and a
verification key vk. The computation of G consists of
two main parts. First, evaluate each Ai,Bi,Ci at a random
element τ , where (�A,�B,�C,Z) := QAPinst(C) is the QAP
instance. Second, use these evaluations to compute pk
and vk.

With regard to G’s first part, we follow [16] and again
leverage the fact that Fr has a primitive root of unity of

large order. With regard to G’s second part, it is dominated
by the cost of computing pk, which requires solving large
instances of the following problem: given an element
P in G1 or G2 and scalars α1, . . . ,αn ∈ Fr, compute
α1P, . . . ,αnP . Previous work [56, 16], used fixed-base
windowing [28] to efficiently compute such fixed-base
multi-scalar multiplications.

In our implementation, we achieve additional efficiency,
in space rather than in time. Specifically, we leverage
a structural property of QAPs derived from arithmetic
circuits, in order to reduce the size of the proving key
pk, as we now explain. Lemma 2.4 states that an F-
arithmetic circuit C : Fn × Fh → Fl , with α wires and
β gates, can be converted into a corresponding QAP of
size m = α and degree d ≈ β over F. Roughly, this is
achieved in two steps. First, construct three matrices
A,B,C ∈ F(m+1)×d that encode C’s topology: for each
j ∈ [d], the j-th column of A,B respectively encodes the

“left” and “right” coefficients of the j-th bilinear gate in
C, while the j-th column of C encodes the coefficients of
the gate’s output. Second, letting S ⊂ F be a set of size
d, define Z(z) := ∏ω∈S(z−ω) and, for i ∈ {0, . . . ,m},
let Ai be the low-degree extension of the i-th row of A;
similarly define each Bi and Ci. All prior QAP-based
zk-SNARK implementations exploit the fact that columns
in the matrices A,B,C are very sparse.

In contrast, we also leverage a different kind of spar-
sity: we observe that it is common for entire rows of
A,B,C to be all zeroes, causing the corresponding low-
degree extensions to be zero polynomials.3 For instance,
our circuit generator typically outputs a circuit for which
the percentage of non-zero polynomials in �A,�B,�C is only
about 52%,15%,71% respectively. The fact that many
polynomials in �A,�B,�C evaluate to zero can be used to-
wards reducing the size of pk, by switching from a dense
representation to a sparse one.

In fact, we have engineered our circuit generator to re-
duce the number of non-zero polynomials in �B as much as
possible, because computations associated to evaluations
of �B are conducted with respect to more expensive G2
arithmetic, which we want to avoid as much as possible.

5 Evaluation

We evaluated our system on a desktop computer with
a 3.40 GHz Intel Core i7-4770 CPU (with Turbo Boost
disabled) and 32 GB of RAM. All experiments, except the
largest in Figure 8 and 9, used a small fraction of the RAM.
For the two largest experiments in Figure 9 we added a
Crucial M4 solid state disk for swap space. (While our
code supports multi-threading, our experiments are in
single-thread mode, for comparison with prior work.)

3E.g., if the i-th wire never appears with a non-zero coefficient as
the “left” input of a bilinear gate, then the i-th row of A is zero.
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5.1 Performance of our circuit generator
In Section 3 we described our universal circuit generator;
we now benchmark its performance.

Parameters. The circuit supports vnTinyRAM, which
is parametrized by two quantities: the word size W and
the number of registers K (see Section 2.5). We report
performance for a machine with K = 16 registers, and
two choices of word size: W = 16 and W = 32.

Methodology. Theorem 3.2 provides an asymptotic ef-
ficiency guarantee: it states that our circuit generator has
efficiency f (�,n,T ) = O

(
(�+n+T ) · log(�+n+T )

)
. To

understand concrete efficiency, we “uncover” the con-
stants hidden in the big-oh notation. By studying the num-
ber of gates in various subcircuits of the generated circuit
C := circ(�,n,T ), we computed the following (quite tight)
upper bound on C’s size:

(12+2W ) · �+(12+W ) ·n+ |Cexe| ·T +(|Cmem|+
4logH −1.82) ·H

where H := (�+ n+ 2T ) is the “height” of the routing
network, and
• for (W,K) = (16,16): |Cexe|= 777 and |Cmem|= 211;
• for (W,K) = (32,16): |Cexe|= 1114 and |Cmem|= 355.
In Figure 7, we give per-cycle gate counts (i.e., |C|/|T |)
for various choices of (�,n,T ); we also give sub-counts
divided among program/input boot, CPU execution, mem-
ory checking, and routing. (See the full version of this
paper for an extended table with additional data.)

Discussion. We first go through the size expression, to
understand it: The first two terms, (12+2W ) · �+(12+
W ) ·n, correspond to the pre-execution boot phase, during
which an �-instruction program and an n-word primary
input are loaded into the machine. The term |Cexe| · T
corresponds to the T copies of Cexe used to verify each
CPU transition, given the fetched instruction and two CPU
states. The term |Cmem| ·H corresponds to the H copies
of Cmem used to verify consistency on the memory-sorted
trace. Finally, the term (4logH−1.82) ·H corresponds to
the routing network for routing H packets (two gates for
each of (2logH − 0.91) ·H binary switches). Note that
H = (�+n+2T ) because boot needs �+n memory stores
(one for each program instruction and primary input word)
and execution needs 2T memory accesses (1 instruction
fetch and 1 data store/load per execution cycle).

The gate counts in Figure 7 demonstrate the additive
(instead of multiplicative) dependence on program size of
our universal circuit pays off. For example, for (W,K) =
(32,16), a 100-fold increase in program size, from � =
103 to � = 105, barely impacts the per-cycle gate count:
for T = 220, it increases from 1,992.5 to only 2,041.5.
Indeed, the cost of program size is incurred, once and
for all, during the machine boot; Figure 7 shows that the
per-cycle cost of machine boot diminishes as T grows.

Second, less than half of C’s gates are dedicated to
verifying accesses to random-access memory, while the
majority of gates are dedicated to verifying execution
of the CPU; indeed, almost always, |Cexe|T > 1

2 |C|. Put
otherwise, C, which verifies an automaton with random-
access memory (vnTinyRAM), has size that is less than
twice that for verifying an automaton with the same CPU
but no random-access memory at all. Moreover, note that
the size of Cexe appears quite tight: for example, with
(W,K) = (32,16), it has size 1114, not much larger than
the size of the CPU state (545 bits).

5.2 Performance of our zk-SNARK for cir-
cuit satisfiability

In Section 4 we described our zk-SNARK implementa-
tion; we now benchmark its performance.
Methodology. We provide performance characteristics
for each of the zk-SNARK algorithms, G, P and V , at the
80-bit and 128-bit security levels.
(1) The key generator G takes as input an arithmetic cir-
cuit C : Fn

r ×Fh
r → Fl

r. Its efficiency mostly depends on
the number of gates and wires in C, because these af-
fect the size and degree of the corresponding QAP (see
Lemma 2.4). Thus, we evaluate G on a circuit with
2i gates and 2i wires for i ∈ {10,12, . . . ,24} (and fixed
n = h = l = 100). In Figure 8 we report the resulting
running times and key sizes, as per-gate costs.
(2) The prover P takes as input a proving key pk, input
�x ∈ Fn

r , and witness�a ∈ Fh
r . Its efficiency mostly depends

on the number of gates and wires in C (the circuit used
to generate pk); we thus evaluate P on the proving keys
output by G, for the same circuits as above. In Figure 8
we report the times, as per-gate costs, and proof sizes.
(3) The verifier V takes as input a verification key vk,
input�x ∈ Fn

r , and proof π . Its efficiency depends only on
�x (since the size of �x determines that of vk). Thus, we
evaluate V on a random input �x ∈ Fn

r of 2i bytes for i ∈
{2,4, . . . ,20}. In Figure 8 we report the resulting running
times, along with corresponding key sizes.
Discussion. The data demonstrates that our zk-SNARK
implementation works and scales as expected, as long as
sufficient memory is available (e.g., on a desktop com-
puter with 32GB of DRAM: up to 16 million gates). Key
generation takes about 10ms per gate of C; the size of a
proving key is about 300B per gate, and the size of a ver-
ification key is about 1B per byte of input to C. Running
the prover takes 11ms to 14ms per gate. For an n-byte
input, proof verification time is c1n+ c0, where c0 is a
few milliseconds and c1 is a few tenths of microseconds.

5.3 Performance of the combined system
As discussed, our circuit generator (Section 3) and
zk-SNARK for circuits (Section 4) can be used in-
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Per-cycle gate count of C := circ(�,n,T ) with vnTinyRAM parameters (W,K)

n = 102, K = 16
W = 16 W = 32

|C|/T |C|/T divided among Per
cycle

|C|/T divided among
boot exec. mem. routing boot exec. mem. routing

�
=

10
3 T = 220 1,367.4 0.04 777.0 422.2 168.1 1,992.5 0.08 1,114.0 710.4 168.1

T = 224 1,399.0 0.00 777.0 422.0 200.0 2,024.0 0.00 1,114.0 710.0 200.0
T = 228 1,431.0 0.00 777.0 422.0 232.0 2,056.0 0.00 1,114.0 710.0 232.0

�
=

10
4 T = 220 1,370.3 0.41 777.0 424.0 168.8 1,997.0 0.72 1,114.0 713.4 168.8

T = 224 1,399.2 0.03 777.0 422.1 200.1 2,024.3 0.05 1,114.0 710.2 200.1
T = 228 1,431.0 0.00 777.0 422.0 232.0 2,056.0 0.00 1,114.0 710.0 232.0

�
=

10
5 T = 220 1,399.7 4.12 777.0 442.1 176.4 2,041.5 7.19 1,114.0 743.9 176.4

T = 224 1,401.1 0.26 777.0 423.3 200.6 2,027.2 0.45 1,114.0 712.1 200.6
T = 228 1,431.1 0.02 777.0 422.1 232.0 2,056.2 0.03 1,114.0 710.1 232.0

Figure 7: Per-cycle gate counts in C := circ(�,n,T ) for different choices of (�,n,T ) and vnTinyRAM parameters (W,K).

80 bits of security 128 bits of security

key gen. G time/|C| |pk|/|C| time/|C| |pk|/|C|

n
=

10
0

|C|= 210 0.21ms 248.8B 0.21ms 304.1B
|C|= 212 0.16ms 252.5B 0.17ms 309.1B
|C|= 214 0.14ms 253.4B 0.16ms 310.3B
|C|= 216 0.12ms 253.7B 0.14ms 310.6B
|C|= 218 0.11ms 253.7B 0.12ms 310.7B
|C|= 220 0.10ms 253.7B 0.12ms 310.7B
|C|= 222 0.09ms 253.7B 0.11ms 310.7B
|C|= 224 0.08ms 253.7B 0.10ms 310.7B
|vk| 2.8KB 3.6KB

prover P time/|C| |π| time/|C| |π|

n
=

10
0

|C|= 210 0.18ms 230B 0.21ms 288B
|C|= 212 0.16ms 230B 0.18ms 288B
|C|= 214 0.14ms 230B 0.16ms 288B
|C|= 216 0.13ms 230B 0.15ms 288B
|C|= 218 0.12ms 230B 0.15ms 288B
|C|= 220 0.12ms 230B 0.15ms 288B
|C|= 222 0.11ms 230B 0.14ms 288B
|C|= 224 0.11ms 230B 0.14ms 288B

verifier V |vk|/|�x| time/|�x| |vk|/|�x| time/|�x|
|�x|= 4B 118.7B 1.2ms 123.4B 1.2ms
|�x|= 16B 29.7B 0.3ms 30.8B 0.3ms
|�x|= 64B 8.1B 76.7 µs 8.7B 81.2 µs
|�x|= 256B 2.8B 19.5 µs 2.9B 20.3 µs
|�x|= 1.0KB 1.5B 5.4 µs 1.5B 5.9 µs
|�x|= 4.1KB 1.1B 1.8 µs 1.1B 2.1 µs
|�x|= 16.4KB 1.1B 0.8 µs 1.0B 1.0 µs
|�x|= 65.5KB 1.0B 0.5 µs 1.0B 0.7 µs
|�x|= 262.1KB 1.0B 0.4 µs 1.0B 0.6 µs
|�x|= 1.0MB 1.0B 0.4 µs 1.0B 0.5 µs

Figure 8: Per-gate costs of the key generator and prover; and per-byte
costs of the verifier. (N = 10 and std < 1%)

dependently, or combined to obtain a zk-SNARK for
vnTinyRAM. For completeness, the paper’s full version
we spell out how these two components can be combined.
Here we report measured performance of this combined
system, at the 128-bit security level, and for a word size
W = 32 and number of registers K = 16.

Methodology. A zk-SNARK for vnTinyRAM is a triple
of algorithms (KeyGen,Prove,Verify). Given bounds
�,n,T (for program size, input size, and time), the ef-
ficiency of KeyGen and Prove depends on �,n,T , while

that of Verify essentially depends only on �,n. Thus, we
benchmark the system as follows. We evaluate KeyGen
and Prove for various choices of � and T , while keeping
n = 100. Instead, since the efficiency of Verify does not
depend on T , we evaluate Verify, for various choices of �
and n, on random �-instruction programs and n-word in-
puts. In Figure 9, we report the following measurements:
KeyGen’s running time, the sizes of the keys pk and vk,
Prove’s runtime, the (constant) proof size, and Verify’s
running time. For quantities growing with T , we divide
by T and report the per-cycle cost.
Discussion. The measurements demonstrate that, on
a desktop computer, our zk-SNARK for vnTinyRAM
scales up to computations of 32,000 machine cycles, for
programs with up to 10,000 instructions. Key generation
takes about 200ms per cycle; the size of a proving key is
500KB to 650KB per cycle, and the size of a verification
key is a few kilobytes. Running the prover takes 100ms
to 200ms per cycle. Verification times remain a few ms ,
even for inputs and programs of several kilobytes.

Program-specific vk. The time complexity of Verify is
O(�+ n), so verification time grows with program size.
This is inevitable, because Verify must read a program
(of at most � instructions) and input (of at most n words)
in order to check, via the given proof π , if ( , ) ∈L�,n,T
(cf. Definition 2.6). However, this is inconvenient, e.g.,
when one has to verify many proofs relative to different
inputs to the same program . In our zk-SNARK it is
possible to amortize this cost as follows. Given vk and ,
one can derive, in time O(�), a program-specific verifica-
tion key vk , which can be used to verify proofs relative
to any input to . Subsequently, the time complexity of
Verify for any input (to ) is O(n), independent of �.

5.4 Comparison with prior work

5.4.1 Comparison with prior circuit generators

Universality is the main innovative feature of our circuit
generator. No previous circuit generator achieves univer-
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128 bits of security
W = 32, K = 16

�= 2K �= 4K �= 6K �= 8K �= 10K

K
ey
G
en

tim
e/

T

n
=

10
0

T = 4K 209.8ms 232.1ms 257.5ms 275.9ms 306.4ms
T = 8K 190.9ms 205.9ms 216.1ms 228.9ms 238.8ms
T = 16K 195.4ms 198.1ms 204.2ms 213.6ms 218.3ms
T = 32K 206.0ms 208.4ms 211.2ms 213.5ms 223.7ms

|p
k
|/

T

T = 4K 584.2KB 653.6KB 727.1KB 784.0KB 876.8KB
T = 8K 552.4KB 585.2KB 618.1KB 655.1KB 683.7KB
T = 16K 539.4KB 553.9KB 570.4KB 586.9KB 605.5KB
T = 32K 533.8KB 541.1KB 548.3KB 555.6KB 563.4KB

|vk
|

T = ∗ 17.0KB 33.1KB 49.2KB 65.3KB 81.5KB
P
ro
ve

tim
e/

T

n
=

10
0 T = 4K 75.7ms 86.7ms 103.4ms 104.8ms 133.7ms

T = 8K 69.2ms 79.7ms 97.0ms 110.4ms 113.0ms
T = 16K 89.0ms 89.1ms 98.4ms 99.6ms 103.3ms
T = 32K 98.9ms 98.6ms 102.3ms 102.1ms 114.2ms

V
er
if
y

tim
e

(i
nd

ep
.o

fT
) n = 0 19.0ms 30.0ms 40.6ms 51.2ms 61.3ms

n = 10 19.1ms 30.2ms 40.7ms 51.2ms 61.4ms
n = 102 19.6ms 30.7ms 41.3ms 51.8ms 61.9ms
n = 103 23.0ms 34.1ms 44.7ms 55.2ms 65.4ms
n = 104 48.9ms 60.0ms 70.6ms 81.1ms 91.3ms

Figure 9: Per-cycle costs of KeyGen and Prove for various program sizes �, and total running time of Verify for various � and n.

sality. (See Figure 1 and Section 3.)
Putting universality aside and focusing on efficiency

instead, a comparison with previous circuit generators is a
multi-faceted problem. On one hand, due to a shared core
of techniques, a comparison with [16]’s circuit generator
is straightforward, and shows significant improvements
in circuit size, especially as program size grows. See
Section 1.4.1 and Figure 2 (the figure is for W,K = 16).

Instead, a comparison with other circuit generators
[66, 64, 56, 27] is complex. First, they support a smaller
class of programs (see Figure 1), so a programmer must
“write around” the limited functionality, somehow. And
second, their efficiency is not easily specified: due to the
program-analysis techniques (see Section 3.1) the output
circuit is ad hoc for the given program, and the only way
to know its size is to actually run the circuit generator.

Compared to [66, 64, 56, 27], our circuit generator
performs better for programs that are rich in memory
accesses and control flow, and worse for programs that
are more “circuit like”.

Comparison with [66, 64, 56]. The circuit generators
in [66, 64, 56] restrict loop iteration bounds and memory
accesses to be known at compile time; if a program does
not respect these restrictions, it must be first somehow
mapped to another one that does. For simplicity, we take
[56]’s circuit generator (the latest one) as representative
and, to illustrate the differences between [56]’s and our
circuit generator, we consider two “extremes”.

On one extreme, we wrote a simple C program multi-
plying two 10×10 matrices of 16-bit integers. The circuit
generator in [56] produces a circuit with 1100 gates; in-
stead, our circuit generator (when given the corresponding
vnTinyRAM assembly) produces a much larger circuit:
one with ≈ 107 gates.

On the other extreme, we consider a program mak-
ing many random accesses to memory: pointer-chasing.

Given a permutation π of [N], start position i ∈ [N], and
an integer k, the program outputs πk(i), the element ob-
tained by starting from i and following “pointers” for k
times. Since no information about π is known at com-
pile time, the only way of obtaining π( j), the pointer to
follow, in [56] is via a linear scan. On a simple C pro-
gram that does one linear scan of π to obtain each new
pointer, [56]’s generator outputs a circuit with 2Nk+ 1
gates (each of the k array accesses costs 2N gates).

In vnTinyRAM, the corresponding program consists
of 9 instructions, and the input to it is N + 3 words.
Booting vnTinyRAM with and requires 9+N + 3
“boot stores” (see Section 3.2), and takes 5+ 4k cycles
to execute (independent of N). Say that we fix k = 10;
then, in our circuit generator (with W = 32 and K = 16),
each cycle costs about 2000 gates, and can perform a
random access to memory. Thus, pointer chasing in our
case is cheaper than in [56] already for N > 5000, and the
multiplicative saving, which is about 20N

2000·(5+40) =
N

4500 ,
grows unbounded as N increases.

Comparison with [27]. The circuit generator of [27] is
also based on program analysis, but provides an additional
feature that allows data-dependent memory accesses: a
program may access memory by guessing the value and
verifying its validity via a subcircuit that checks Merkle-
tree authentication paths. In [27], memory consists of
230 cells, and each access costs many gates: 140K for a
load, and 280K for a store. In comparison, in our circuit
generator for vnTinyRAM (with word size W = 32 so
that memory has 232 cells), each memory store/load costs
less than 1000 gates out of about 2000 per cycle (see
Section 5.1). Besides the aforementioned feature, [27]
rely on program analysis, and (as in [66, 64, 56]) only
support bounded control flow. Thus, [27] performs better
than our circuit generator for programs with bounded
control flow and few data-dependent accesses to memory.
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5.4.2 Comparison with prior zk-SNARKs
Addressing the other component of our system, the
zk-SNARK for circuits: Figure 3 compares our imple-
mentation with prior ones, on a 1-million-gate circuit
with a 1000-byte input. As shown, we mildly improve the
key generation time and, more importantly, significantly
improve the “online” costs of proving and verification.

6 Conclusion

We have presented two main contributions: (i) a circuit
generator for a von Neumann RISC architecture that is
universal and scales additively with program size; and
(ii) a high-performance zk-SNARK for arithmetic circuit
satisfiability. These two components can be used inde-
pendently to the benefit of other systems, or combined
into a zk-SNARK that can prove/verify correctness of
computations on this architecture.
The benefits of universality. Universality attains the
conceptual advance of once-and-for-all key generation,
allowing verifying all programs up to a given size. This
removes major issues in prior systems: expensive per-
program key generation and the thorny issue of conduct-
ing it anew in a trusted way for every program.
The price of universality. The price of universality is
still very high. Going forward, and aiming for widespread
use in security applications, more work is required to
slash costs of key generation and proving so to scale up to
larger computations: e.g., billion-gate circuits, or millions
of vnTinyRAM cycles, and beyond. An interesting open
problem is whether the “program analysis” techniques
underlying most prior circuit generators [66, 64, 56, 27],
typically more efficient for restricted classes of programs,
can be used to construct universal circuits.
Beyond vnTinyRAM. Finally, going beyond the foun-
dation of a von Neumann RISC architecture, more work
lies ahead towards a richer architecture (e.g., efficient
support for floating-point arithmetic and cryptographic
acceleration), code libraries, and tighter compilers.

A Other prior work

Prior work most relevant to us is about zk-SNARKs, and
is discussed in Section 1.2. There are also numerous
works studying variations or relaxations of the goal we
consider; here, we summarize some of them.
Interactive proofs for low-depth circuits. Goldwasser
et al. [42] obtained an interactive proof for outsourc-
ing computations of low-depth circuits. A set of works
[32, 68, 67] has optimized and implemented the proto-
col of [42]. The protocol of [42] can also be reduced
to a two-message argument system [48, 47]. Canetti et
al. [30] showed how to extend the techniques in [42] to
also handle non-uniform circuits.

Batching arguments. Ishai et al. [46] constructed a
batching argument for NP, where, to simultaneously ver-
ify that N circuits of size S are satisfiable, the verifier runs
in time max{S2,N}.

A set of works [63, 65, 66, 64] has improved, optimized,
and implemented the batching argument of Ishai et al. [46]
for the purpose of outsourcing computation. In particular,
by relying on quadratic arithmetic programs of [38], Setty
et al. [64] have improved the running time of the veri-
fier and prover to max{S,N} ·poly(λ ) and Õ(S) ·poly(λ )
respectively. Vu et al. [71] provide a system that incorpo-
rates both the batching arguments of [63, 65, 66, 64] as
well as the interactive proofs of [32, 68, 67]. The system
decides which of the two approaches is more efficient to
use for outsourcing a given computation.

Braun et al. [27] apply batching techniques (as well
as zk-SNARKs) to verify MapReduce computations, by
relying on various verifiable data structures.

Arguments with competing provers. Canetti et al. [29]
use collision-resistant hashes to get a protocol for out-
sourcing deterministic computations in a model where
a verifier interacts with two computationally-bounded
provers at least one of which is honest [34]. The proto-
col in [29] works directly for random-access machines,
and therefore does not require reducing random-access
machines to any “lower-level” representation (such as
circuits). Canetti et al. implement their protocol for deter-
ministic x86 programs.

Previous circuit generators. Some prior work ad-
dresses the problem of translating high-level languages
into low-level languages such as circuits. Most prior work
only supports restricted classes of programs: [66, 64]
present a circuit generator based on Fairplay [53, 12],
whose SFDL language does not support important primi-
tives and has inefficient support for others; [56] present a
circuit generator for programs without data dependencies
(pointers and array indices must be known at compile
time, and so do loop iteration bounds).

Other works support more general functionality: [16]
rely on nondeterministic routing to support random-
access machine computations [14]; [27] rely on online
memory checking [24, 14] to support accessing untrusted
storage from a circuit. See [27, Section 2] for a more
detailed overview of some of the above techniques.

Other cryptographic tools. Fully-homomorphic en-
cryption (FHE) [39] and probabilistically-checkable
proofs [5, 4] are powerful tools that are often used in pro-
tocols for outsourcing computations (with integrity or con-
fidentiality guarantees, or both) [49, 54, 2, 37, 31, 47, 41].
However, such constructions have so far not been explored
in practice. Another powerful tool is secure multi-party
computation [40, 13], but most work in this area does not
consider the goal of succinctness.
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B Case study: memcpy

The function memcpy is a standard C function that works
as follows: given as input two array pointers and a length,
memcpy copies the contents of one array to the other.
Of course, with no data dependencies, copying data in a
circuit is trivial: you just connect the appropriate wires.
However, when the array addresses and their lengths are
unknown, and memcpy is invoked as a subroutine in a
larger program, the trivial solution does not work, and an
efficient implementation is needed.

A naive implementation of memcpy iterates, via a loop,
over each array position i and copies the i-th value from
one array to the other. In vnTinyRAM each such loop
iteration costs 6 instructions; 2 of these are to increase the
iteration counter and jump back to the start of the loop.
Thus, for m-long arrays, copying takes 6m instructions
(discounting loop initialization). But, in vnTinyRAM,
one can do better: loop unrolling can be used to avoid
paying for the 2 “control” instructions. Asymptotically,
the optimal number of unrollings depends on the array
length: it is Θ(

√
m). Thus, optimal unrolling requires

dynamic code generation on a von Neumann architec-
ture. We wrote a 54-instruction vnTinyRAM program
for memcpy that uses dynamic loop unrolling to achieve
an efficiency of ≈ 4m+ 11.5

√
m cycles for m-long ar-

rays. For m ≥ 600, we get 1.25× speed-up over the naive
implementation, and 1.4× speed-up for m ≥ 3000.
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Abstract
Private set intersection (PSI) allows two parties to com-
pute the intersection of their sets without revealing any
information about items that are not in the intersection.
It is one of the best studied applications of secure com-
putation and many PSI protocols have been proposed.
However, the variety of existing PSI protocols makes it
difficult to identify the solution that performs best in a re-
spective scenario, especially since they were not all im-
plemented and compared in the same setting.

In this work, we give an overview on existing PSI pro-
tocols that are secure against semi-honest adversaries.
We take advantage of the most recent efficiency improve-
ments in OT extension to propose significant optimiza-
tions to previous PSI protocols and to suggest a new PSI
protocol whose runtime is superior to that of existing pro-
tocols. We compare the performance of the protocols
both theoretically and experimentally, by implementing
all protocols on the same platform, and give recommen-
dations on which protocol to use in a particular setting.

1 Introduction

Private set intersection (PSI) allows two parties P1 and P2
holding sets X and Y , respectively, to identify the inter-
section X ∩Y without revealing any information about
elements that are not in the intersection. The basic PSI
functionality can be used in applications where two par-
ties want to perform JOIN operations over database ta-
bles that they must keep private, e.g., private lists of
preferences, properties, or personal records of clients or
patients. PSI is used for privacy-preserving computa-
tion of functionalities such as relationship path discov-
ery in social networks [37], botnet detection [40], test-
ing of fully-sequenced human genomes [3], proximity
testing [43], or cheater detection in online games [10].
Another use case is measurement of the performance
of web ad campaigns, by comparing purchases by users
who were shown a specific ad to purchases of users who
were not shown the ad. This is essentially a variant of
PSI where the input of the web advertising party is the
identities of the users who were shown the ad, and the

input of the merchant, or of an agency that operates on
its behalf, is the identities of the buyers. It was published
that Facebook and Datalogix, a consumer data collection
company, perform this type of measurements.1 (The ar-
ticle indicates that they seem to be using the insecure
hash-based solution described in §1.1, but instead they
can use a properly secure PSI protocol while still being
reasonably efficient.)

PSI has been a very active research field, and there
have been many suggestions for PSI protocols. The large
number of proposed protocols makes it non-trivial to
perform comprehensive cross-evaluations. This is fur-
ther complicated by the fact that many protocol designs
have not been implemented and evaluated, were analyzed
under different assumptions and observations, and were
often optimized w.r.t. overall runtime while neglecting
other relevant factors such as communication.

In this paper, we give an overview on existing effi-
cient PSI protocols, optimize the recently proposed PSI
protocols of [27] and [17], based on garbled circuits and
Bloom filters, respectively, and describe a new PSI pro-
tocol based on recent results in the area of efficient OT
extensions [1, 35]. We compare both the theoretical and
empirical performance of all protocols on the same plat-
form and conclude with remarks on the protocols and
their suitability for different scenarios.

1.1 Classification of PSI Protocols
A naive solution When confronted with the PSI prob-
lem, most novices come up with a solution where both
parties apply a cryptographic hash function to their in-
puts and then compare the resulting hashes. Although
this protocol is very efficient, it is insecure if the input
domain is not large or does not have high entropy, since
one party could easily run a brute force attack that applies
the hash function to all items that are likely to be in the
input set and compare the results to the received hashes.
(When inputs to PSI have a high entropy, a protocol that
compares hashes of the inputs can be used [41].)

1https://www.eff.org/deeplinks/2012/09/deep-dive-facebook-and-datalogix-
whats-actually-getting-shared-and-how-you-can-opt
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PSI is one of the best studied problems in secure
computation. Since its introduction, several techniques
have been used to realize PSI protocols. While the
first PSI protocols were special-purpose solutions based
on public-key primitives, other solutions were based on
circuit-based generic techniques of secure computation,
that are mostly based on symmetric cryptography. A
recent development are PSI protocols that are based on
oblivious transfer (OT) alone, and combine the efficiency
of symmetric cryptographic primitives with special pur-
pose optimizations. Finally, we describe PSI protocols
that utilize a third party to achieve even better efficiency.

Public-Key-Based PSI A PSI protocol based on the
Diffie-Hellmann (DH) key agreement scheme was pre-
sented in [29] (related ideas were presented earlier
in [36]). This protocol is based on the commutative prop-
erties of the DH function and was used for private prefer-
ence matching, which allows two parties to verify if their
preferences match to some degree.

Freedman et al. [21] introduced PSI protocols se-
cure against semi-honest and malicious adversaries in the
standard model (rather than in the random oracle model
assumed in the DH-based protocol). This protocol was
based on polynomial interpolation, and was extended
in [19], which presents protocols with simulation-based
security against malicious adversaries, and evaluates the
practical efficiency of the proposed hashing schemes. We
discuss the proposed hashing schemes in §6. A similar
approach that uses oblivious pseudo-random functions to
perform PSI was presented in [20]. A protocol that uses
polynomial interpolation and differentiation for finding
intersections between multi-sets was presented in [34].

Another PSI protocol that uses public-key cryptogra-
phy (more specifically, blind-RSA operations) and scales
linearly in the number of elements was presented in [14]
and efficiently implemented and benchmarked in [15].

A PSI protocol based on additively homomorphic en-
cryption was described in [11], but is excluded from this
evaluation since it scales quadratically in the number of
elements and is hence slower than related solutions.

Circuit-Based PSI Generic secure computation proto-
cols have been subject to huge efficiency improvements
in the last decade. They allow the secure evaluation of
arbitrary functions, expressed as Arithmetic or Boolean
circuits. Several Boolean circuits for PSI were proposed
in [27] and evaluated using the Yao’s garbled circuits
framework of [28]. The authors showed that their Java
implementation scales very well with increasing secu-
rity parameter and outperforms the blind-RSA protocol

of [14] for larger security parameter.2 We reflect on and
present new optimizations for circuit-based PSI in §3.

OT-Based PSI A recent PSI protocol of [17] uses
Bloom filters [9] and OT extension [30] to obtain very
efficient PSI protocols with security against semi-honest
and malicious adversaries. We describe this protocol and
our optimization using random OT extension [1] in §4.

Third Party-Based PSI Several PSI protocols have
been proposed that utilize additional parties, e.g., [4].
In [25], a trusted hardware token is used to evaluate an
oblivious pseudo-random function. This approach was
extended to multiple untrusted hardware tokens in [18].
Several efficient server-aided protocol for PSI were pre-
sented and benchmarked in [32]. For their PSI protocol
with a semi-honest server, the authors report a runtime
of 1.7 s for server-aided PSI on one million elements us-
ing 20 threads between cloud instances in the US east
- and west coast and 10 MB of communicated data. In
comparison, our fastest PSI protocol without a server re-
quires 4.9 s for 218 elements using four threads and sends
78 MB (cf. Tab. 1 and Tab. 8). Note that this comparison
is sketchy and is only meant to demonstrate that using
a third party can increase performance. In our work we
focus on PSI protocols without a third party.

1.2 Our Contributions

We describe in detail the PSI protocols based on generic
secure computation and on Bloom filters, and suggest
how to improve their performance using carefully ana-
lyzed features of OT extension. We then introduce a new
OT-based PSI protocol, and perform a detailed experi-
mental comparison of all the PSI protocols that we de-
scribed. In the following, we detail our contributions.

Optimizations of Existing Protocols We improve the
circuit- and Bloom-filter-based PSI protocols using re-
cent optimizations for OT extension [1]. In particular,
in §3 we evaluate the circuit-based solution of [27] on a
secure evaluation of the GMW protocol, and utilize fea-
tures of random OT (cf. §2.2) to optimize the perfor-
mance of multiplexer gates (which form about two thirds
of the circuit). In §4.3 we redesign the Bloom filter-based
protocol of [17] to benefit from using random OT and to
support multi-core environments.

2Subsequent work of [15] claimed that the blind-RSA protocol
of [14] runs faster than the circuit-based protocol of [27] even for larger
security parameter. Their implementation is in C++ instead of Java.
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A Novel OT-Based PSI Protocol We present a new
PSI protocol that is directly based on OT (§5) and di-
rectly benefits from recent improvements in efficient OT
extensions [1, 35]. The basic version of the protocol can
efficiently compare one element with many elements,
but for PSI on n elements it requires O(n2 logn) com-
munication. In §6 we use carefully analyzed hashing
techniques in order to achieve O(n logn) communication.
The resulting protocol has very low computation com-
plexity since it mostly requires symmetric key operations
and has even less communication than some public-key-
based PSI protocols.

A Detailed Comparison of PSI Protocols We imple-
ment the most promising candidate PSI protocols us-
ing state-of-the-art cryptographic techniques and com-
pare their performance on the same platform. As far as
we know, this is the first time that such a wide compar-
ison has been made, since previous comparisons were
either theoretical, compared implementations on differ-
ent platforms or programming languages, or used imple-
mentations without state-of-the-art optimizations. Our
implementations and experiments are described in detail
in §7. Certain experimental results were unexpected. We
give a partial summary of our results in Tab. 1: the values
in parenthesis give the overhead of the original protocols
and highlight the gains achieved by our optimizations.

PSI Protocol DH Circuit [27] Bloom Filter OT
ECC optimized GMW §3.2 optimized §4.3 §5+§6
[29] (original GMW [1]) (original [17])

Runtime (s) 416 762 (1,304) 68 (154) 14
Comm. (MB) 24 14,040 (23,400) 740 (1,393) 78

Table 1: Runtime and transferred data for private set in-
tersection protocols on sets with 218 32-bit elements and
128-bit security with a single thread over Gigabit LAN.

We highlight here the conclusions of our results:

• The Diffie-Hellman-based protocol [29], which was
the first PSI protocol, is actually the most efficient
w.r.t. communication (when implemented using
elliptic-curve crypto). Therefore it is suitable for
settings with distant parties which have strong com-
putation capabilities but limited connectivity.

• Generic circuit-based protocols [27] are less effi-
cient than the newer, OT-based constructions, but
they are more flexible and can easily be adapted for
computing variants of the set intersection function-
ality (e.g., computing whether the size of the inter-
section exceeds some threshold). Our experiments
also support the claim of [27] that circuit-based PSI
protocols are faster than the blind-RSA-based PSI

protocol of [14] for larger security parameters and
given sufficient bandwidth.

• While for larger security parameter previously pro-
posed circuit- and OT-based protocols can be faster
than the public-key-based protocols on a Gigabit
LAN, the DH-based protocol of [29] outperforms
all of them in an Internet network setting. Our new
OT-based protocol (§5+§6) is the only protocol that
maintains its performance advantage in this setting
and even outperforms public-key-based PSI proto-
cols for a mobile network setting.

2 Preliminaries

We give our notation and security definitions in §2.1 and
review recent relevant work on oblivious transfer in §2.2.

2.1 Notation and Security Definitions

We denote the parties as P1 and P2, and their respective
input sets as X and Y with |X |= n1 and |Y |= n2. When
the two input sets are of equal size, we use n = n1 = n2.
We refer to elements from X as x and elements from Y
as y and each element has bit-length σ (we detail the
relation between n and σ in the full version [47]).

We write b[i] for the i-th element of a list b, denote the
bitwise-AND between two bit strings a and b of equal
length as a∧b and the bitwise-XOR as a⊕b.

We refer to a correlation resistant one-way function
as CRF, and to a pseudo-random generator as PRG.

We write
(N

1

)
-OTm

� for m parallel 1-out-of-N oblivious
transfers on �-bit strings, and write OTm

� for
(2

1

)
-OTm

� .

Security parameters We denote the symmetric secu-
rity parameter as κ , the asymmetric security parameter
as ρ , the statistical security parameter as λ , and use the
recommended key sizes of the NIST guideline [45], sum-
marized in Tab. 2. We denote the bit size of elliptic curve
points with ϕ , i.e., ϕ = 284 for Koblitz curve K-283
when using point compression.

Security SYM (κ) FFC and IFC (ρ) ECC (ϕ) Hash
80-bit 80 1,024 K-163 SHA-1
128-bit 128 3,072 K-283 SHA-256

Table 2: NIST recommended key sizes for symmetric
cryptography (SYM), finite field cryptography (FFC),
integer factorization cryptography (IFC), elliptic curve
cryptography (ECC) and hash functions.
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Adversary definition The secure computation litera-
ture considers two types of adversaries with different
strengths: A semi-honest adversary tries to learn as much
information as possible from a given protocol execution
but is not able to deviate from the protocol steps. The
semi-honest adversary model is appropriate for scenarios
where software attestation is enforced or where an un-
trusted third party is able obtain the transcript of the pro-
tocol after its execution, either by stealing it or by legally
enforcing its disclosure. The stronger, malicious adver-
sary extends the semi-honest adversary by being able to
deviate arbitrarily from the protocol steps.

Most protocols for private set intersection, as well
as this work, focus on solutions that are secure against
semi-honest adversaries. PSI protocols for the mali-
cious setting exist, but they are considerably less ef-
ficient than protocols for the semi-honest setting (see,
e.g., [13, 16, 19, 21, 26, 31]).

The random oracle model As most previous works on
efficient PSI, we use the random oracle model to achieve
more efficient implementations [8]. We provide details
and argue about the use of random oracles in the full ver-
sion [47].

2.2 Oblivious Transfer

Oblivious transfer (OT) is a major building block for
secure computation. When executing m invocations of
1-out-of-2 OT on �-bit strings (denoted

(2
1

)
-OTm

� ), the
sender S holds m message pairs (xi

0,x
i
1) with xi

0,x
i
1 ∈

{0,1}�, while the receiver R holds an m-bit choice vector
b. At the end of the protocol, R receives xi

b[i] but learns
nothing about xi

1−b[i], and S learns nothing about b. Many
OT protocols have been proposed, most notably (for the
semi-honest model) the Naor-Pinkas OT [42], which uses
public-key operations and has amortized complexity of
3m public-key operations when performing m OTs.

OT extension [6, 30] reduces the number of expen-
sive public-key operations for OTm

� to that of only OTκ
κ ,

and computes the rest of the protocol using more efficient
symmetric cryptographic operations which are orders of
magnitude faster. The security parameter κ is essentially
independent of the number of OTs m, and can be as small
as 80 or 128. Thereby, the computational complexity for
performing OT is reduced to such an extent, that the net-
work bandwidth becomes the main bottleneck [1].

Recently, the efficiency of OT extension protocols has
gained a lot of attention. In [35], an efficient 1-out-of-
N OT extension protocol was shown, that has sub-linear
communication in κ for short messages. Another proto-
col improvement is outlined in [1, 35], which decreases
the communication from R to S by half. Additionally,

several works [1,44] improve the efficiency of OT by us-
ing an OT variant, called random OT. In random OT,
(xi

0,x
i
1) are chosen uniformly and randomly within the

OT and are output to S, thereby removing the final mes-
sage from S to R. Random OT is useful for many appli-
cations, and we show how it can reduce the overhead of
PSI. We elaborate on these OT extension protocols in the
full version [47].

3 Circuit-Based PSI

Unlike special purpose private set intersection protocols,
the protocols that we describe in this section are based
on a generic secure computation protocol that can be
used for computing arbitrary functionalities. State-of-
the-art for computing the PSI functionality is the sort-
compare-shuffle (SCS) circuit of [27], which has size
O(n logn) (cf. full version [47]for details.) We dis-
cuss these protocols by reflecting on the generic secure
computation protocol of Goldreich-Micali-Wigderson
(GMW) [23] (§3.1) and outlining major optimizations for
evaluating the SCS circuit for PSI using GMW (§3.2).

The usage of generic protocols holds the advantage
that the functionality of the protocol can easily be ex-
tended, without having to change the protocol or the
security of the resulting protocol. For example, it is
straightforward to change the protocol to compute the
size of the intersection, or a function that outputs 1 iff
the intersection is greater than some threshold, or com-
pute a summation of values (e.g., revenues) associated
with the items that are in the intersection. Computing
these variants using other PSI protocols is non-trivial.

3.1 The GMW Protocol

We focus on the GMW protocol [23] for generic secure
computation, which was implemented in the semi-honest
model for multiple parties in [12], optimized for two par-
ties in [49], and extended to the malicious model in [44].

The GMW protocol represents the function to be
computed as a Boolean circuit and uses an XOR-based
secret-sharing and OT to evaluate the circuit. A cir-
cuit with input bit u from P1 and v from P2 is evaluated
as follows. First, P1 and P2 secret-share their input bit
u = u1 ⊕ u2 and v = v1 ⊕ v2 and Pi obtains the shares
labeled with i. The parties then evaluate the Boolean cir-
cuit gate-by-gate, as detailed next. To evaluate an XOR
gate with input wires u and v and output wire w, P1 lo-
cally computes w1 = u1 ⊕ v1 while P2 locally computes
w2 = u2 ⊕ v2.

Evaluating AND gates using multiplication triples
An AND gate with input wire u and v and output wire w
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requires an interaction between both parties using a mul-
tiplication triple [5]. A multiplication triple is a set
of shares α1,α2,β1,β2,γ1,γ2 ∈ {0,1} with (α1 ⊕α2)∧
(β1⊕β2) = γ1⊕γ2. Given a multiplication triple, to eval-
uate an AND gate implementing u AND v, the parties
compute di = αi ⊕ui and ei = βi ⊕vi, exchange di,ei, re-
construct d = d1 ⊕ d2 and e = e1 ⊕ e2, and compute the
shares of the gate output wire as w1 = (d∧e)⊕(d∧β1)⊕
(e∧α1)⊕ γ1 and w2 = (d ∧ β2)⊕ (e∧α2)⊕ γ2. These
are all extremely efficient operations and therefore the
efficiency of the evaluation depends on the efficiency of
generating multiplication triples.

As described in [1], multiplication triples can be gen-
erated using two random OTs on one-bit strings as fol-
lows: both parties choose αi ∈R {0,1} and run two ran-
dom OTs, where in the first OT P1 acts as sender and P2
as receiver with choice bit α2, and in the second OT P2
acts as sender and P1 as receiver with choice bit α1. From
each OT, the sender obtains (xi

0,x
i
1) and sets βi = xi

0 ⊕xi
1

and the receiver obtains xi
αi

. To compute valid γ0,γ1
values for the triple, note that (α1 ⊕α2)∧ (β1 ⊕ β2) =
(α1 ∧β1)⊕ (α1 ∧β2)⊕ (α2 ∧β1)⊕ (α2 ∧β2) = γ0 ⊕ γ1.
Pi locally computes αi ∧βi. Values α1 ∧β2 and α2 ∧β1
are computed using the output of the random OT as
α1∧β2 = x2

α1
⊕x2

0 and α2∧β1 = x1
α2
⊕x1

0. Finally, P1 sets
γ1 = (α1∧β1)⊕x1

0⊕x2
a1

and P2 sets γ2 = (α2∧β2)⊕x2
0⊕

x1
α2

. These computations can be done in a preprocessing
step before the input is known, are independent of cir-
cuit’s structure, and highly parallelizable.

3.2 Optimized Circuit-Based PSI
We describe in this section an optimization which greatly
reduces the overhead of circuit based PSI for GMW (as
is detailed in Tab. 5 in §7, the reduction in the runtime
for inputs of size 218 is about 40%). The optimization is
based on a protocol proposed in [39].

Approximately 2/3 of the AND gates in the SCS cir-
cuit are due to multiplexers (cf. full version [47] for
details). In each multiplexer operation with σ -bit in-
puts x and y and a choice bit s, we compute z[ j] =
s∧ (x[ j]⊕ y[ j])⊕ x[ j] for each 1 ≤ j ≤ σ using σ AND
gates in total. The evaluation of this multiplexer circuit
in the GMW protocol requires random OT2σ

1 , namely 2σ
random OTs of single-bit inputs. We observe that the
same wire s is input to multiple AND gates which allows
for the following optimization.

Consider an input wire u that is the input to multiple
AND gates of the form w[1] = (u AND v[1]), . . . ,w[σ ] =
(u AND v[σ ]). Similar to the evaluation of a single AND
gate described in §3.1, these gates can be evaluated using
a multiplication triple generalized to vectors, which we
call a vector multiplication triple.

A vector multiplication triple has the following form:

α1,α2 ∈ {0,1}; β1,β2,γ1,γ2 ∈ {0,1}σ , where Pi holds
the shares labeled with i that satisfy the condition (α1 ⊕
α2) ∧ (β1[ j]⊕ β2[ j]) = γ1[ j]⊕ γ2[ j]. To evaluate the
AND gates, both parties compute di = αi ⊕ ui and
ei[ j] = βi[ j]⊕ vi[ j], exchange di,ei[ j], set d = d1 ⊕ d2,
e[ j] = e1[ j]⊕ e2[ j], and wi[ j] = (d ∧ e[ j])⊕ (d ∧βi[ j])⊕
(e[ j]∧αi)⊕ γi[ j]. The vector multiplication triple can
be pre-computed analogously to the regular multiplica-
tion triples described in §3.1, but using random OT2

σ ,
namely only two random OTs applied to σ -bit strings:
The parties each choose α1,α2 ∈R {0,1} and perform
a random OT1

σ with P1 acting as sender and P2 acting
as receiver with choice bit α2, and a second random
OT1

σ with P2 acting as sender and P1 acting as receiver
with choice bit α1. From these random OTs, Pi obtains
βi ∈ {0,1}σ = xi

0 ⊕ xi
1 and, analogously to the regular

multiplication triple generation, a valid γi ∈ {0,1}σ .

Efficiency Overall, evaluating σ AND gates with a
vector multiplication triple requires to send 2σ + 2 bits
(instead of 4σ bits with σ regular multiplication triples).
Generating a vector multiplication triple requires 2 ran-
dom OTs on σ -bit strings (instead of 2σ random OTs
with σ regular multiplication triples); as the communi-
cation of random OT is independent of the input length,
this improves communication by factor σ .

In the SCS circuit we have 2n log2 n+n+1 multiplex-
ers, each of which can be evaluated using a single vector
multiplication triple. This reduces the number of random
OTs from 2σ(2n log2 n+n+1) to 2(2n log2 n+n+1).

Further applications of vector multiplication triples
As a side note, we comment that our vector multipli-
cation triples can be used in every circuit where wires
are used as input in two or more AND gates. As such,
another beneficial application is multiplication. When
computing a multiplication between two σ -bit numbers
x and y using the school method multiplication cir-
cuit [49], each bit xi is multiplied with every bit of y:
∀1≤i≤σ∀1≤ j≤σ (xi ∧ y j). Here, using vector multiplica-
tion triples allows to reduce the total number of random
OTs by a factor two, from 4σ2 −2σ OTs to 2σ2.

4 Bloom Filter-Based PSI

The recent PSI protocol of [17] uses Bloom Filters (BF)
and OT to compute set intersection. We summarize
Bloom filters in §4.1 and the PSI protocol of [17] in §4.2.
We then present a redesigned optimized version of the
protocol in §4.3. This optimization reduces the runtime
for inputs of size 218 by 55%−60% (cf. §7, Tab. 5).
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4.1 The Bloom Filter
A BF that represents a set of n elements consists of an
m-bit string F and k independent uniform hash functions
h1, ...,hk with hi : {0,1}∗ �→ [1,m], for 1 ≤ i ≤ k. Ini-
tially, all bits in F are set to zero. An element x is in-
serted into the BF by setting F [hi(x)] = 1 for all i. To
query if the BF contains an item y, one checks all bits
F [hi(y)]. If there is at least one j such that BF [h j(y)] = 0,
then y is not in the BF. If, on the other hand, all bits
BF [hi(y)] are set to one, then y is in the BF except for
a false positive probability ε . An upper bound on ε
can be computed as ε = pk(1+O( k

p

√
lnm−k ln p

m )), where

p = 1−(1− 1
m )

kn. The authors of [17] propose to choose
the number of hash functions as k = 1/ε and the size of
the BF as m = kn/ ln2 ≈ 1.44kn. In their experiments,
they set ε = 2−κ , resulting in k = κ and a filter of size
m ≈ 1.44κn.

4.2 Garbled Bloom Filter-Based PSI
For BF-based PSI, one cannot simply compute the bit-
wise AND of the BFs that represent each set, as this leaks
information (see [17] for details). Instead, the authors
of [17] introduced a variant of the BF, called Garbled
Bloom Filter (GBF). Like a BF, a GBF G uses κ hash
functions h1, ...,hκ , but instead of single bits, it holds
shares of length � at each position G[i], for 1 ≤ i ≤ m.
These shares are chosen uniformly at random, subject to
the constraint that for every element x contained in the
filter G it holds that

⊕κ
j=1 G[h j(x)] = x.

To represent a set X using a GBF G, all positions
of G are initially marked as unoccupied. Each element
x ∈ X is then inserted as follows. First, the insertion
algorithm tries to find a hash function t ∈ [1...κ] such
that G[ht(x)] is unoccupied (the probability of not find-
ing such a function is equal to the probability of a false
positive in the BF, which is negligible due to the choice
of parameters). All other unoccupied positions G[h j(x)]
are set to random �-bit shares. Finally, G[ht(x)] is set
to G[ht(x)] = x⊕

(⊕κ
j=1, j �=t G[h j(x)]

)
to obtain a valid

sharing of x. We emphasize that because existing shares
need to be re-used, the generation of the GBF cannot be
fully parallelized. (We describe below in §4.3 how the
protocol can be modified to enable a parallel execution.)

In the semi-honest secure PSI protocol of [17], P1 gen-
erates a m-bit GBF GX from its set X and P2 generates
a m-bit BF FY from its set Y . P1 and P2 then perform
OTm

� , where for the i-th OT P1 acts as a sender with input
(0,GX [i]) and P2 acts as a receiver with choice bit FY [i].
Thereby, P2 obtains an intersection GBF G(X∧Y ), for
which G(X∧Y )[i] = 0 if FY [i] = 0 and G(X∧Y )[i] = GX [i] if
FY [i] = 1. P2 can check whether an element y is in the in-

tersection by checking whether
⊕k

i=1 G(X∧Y )[hi(y)]
?
= y.

(Note that P2 cannot perform this check for any value
which is not in its input set, since the probability that
it learns all GBF locations associated with that value is
equal to the probability of a false positive, which is neg-
ligible due to the choice of parameters.) The bit-length
of the shares in the GBF can be set to �= λ .

4.3 Random GBF-Based PSI
We introduce an optimization of the GBF-based PSI pro-
tocol of [17], which we call the random Garbled Bloom
Filter protocol. The core idea is to have parties collabo-
ratively generate a random GBF. This is in contrast to the
original protocol where the GBF had to be of a specific
structure (i.e., have the XOR of the entries of x ∈ X be
x). The modified protocol can be based on random OT
extension (in fact, on a version of the protocol which is
even more efficient than the original random OT exten-
sion). For each position in the filter, each party learns a
random value if the corresponding bit in its BF is 1. P1
then sends to P2 the XOR of the GBF values correspond-
ing to each of its inputs, and P2 compares these values to
the XOR of the GBF values of its own inputs.

We denote the primitive that enables this solution
an oblivious pseudo-random generator (OPRG), which
takes as inputs bits b1,b2 from each party, respectively,
generates a random string s, and outputs to Pt s if bt = 1
and nothing otherwise, for t ∈ {0,1}. Additionally, we
require that the parties remain oblivious to whether the
other party obtained s. A protocol for computing this
functionality is obtained by modifying the existing ran-
dom OT extension protocol of [1] as follows.

Recall that in random OT extension, S has no input in
the i-th OT and outputs two values (xi

0,x
i
1), while R in-

puts a choice bit vector b and outputs xi
b[i]. Computation

of each of these values involves one evaluation of a hash
function H (cf. §2.2; the detailed random OT extension
protocol is summarized in the full version [47]). The new
functionality is obtained by having S ignore the xi

0 output
that it receives, and ignore also the xi

1 output if b1 = 0.
Similarly, R ignores its output if b2 = 0. The random OT
extension protocol thus becomes more efficient, since the
parties can ignore parts of the computation.

Our resulting Bloom filter-based protocol works as
follows. First, P1 and P2 each generate a BF, FX and FY
respectively. They evaluate the OPRG with P1 being
the sender and P2 being the receiver, using the bits of
FX and FY as inputs, to obtain random GBFs GX and
GY with entries in {0,1}�. For each element x j in its
set X , P1 then computes mP1 [ j] =

⊕κ
i=1 GX [hi(x j)], with

1 ≤ j ≤ n1. Finally, P1 sends all mP1 values in random
order to P2, which identifies whether an element y in its
set is in the intersection by checking whether a j exists
such that mP1 [ j] =

⊕κ
i=1 GY [hi(y)].
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Correctness For each item in the intersection, P2 gets
from P1 the same XOR value that it computed from its
own GBF, and therefore identifies that the item is in
the intersection. For any item which is not in the in-
tersection, it holds with overwhelming probability that
the XOR value computed by P2 is independent of the n1
values received from P1. The probability of a false posi-
tive identification for that value is therefore n1 ·2−�. The
probability of a false positive identification for any of the
values is n1n2 · 2−�. To achieve correctness with proba-
bility 1-2−λ , we therefore set �= λ + log2 n1 + log2 n2.

Security The security of each party can be easily
proved using a simulation argument. P2’s security is ob-
vious, since the only information that P1 learns are the
random outputs of the random OT protocol, which are
independent of P2’s input and can be easily simulated
by P1. P1’s security is apparent from observing that the
information that P2 receives from P1 is composed of

• The XOR values that P2 computed for each item in
the intersection.

• The XOR values that P1 computed for its n1 −|X ∩
Y | items that are not in the intersection. These val-
ues are independent of P2’s BF unless one of these
items is a false-positive identification in the filter,
which happens with negligible probability ε .

Therefore, the information received from P1 can be easily
simulated by P2 given its legitimate output, i.e., X ∩Y .

Efficiency As shown in Tab. 3, our resulting random
GBF-based PSI protocol has less computation and com-
munication complexity than the original GBF protocol
in [17]. In terms of communication, in our new protocol,
P1 has to send the n1�-bit vector mP1 and P2 has to send
mκ bits in the random OTs. (This is compared to 2mλ
bits and 2mκ bits sent in the original protocol. Later in
our experiments in §7 we show that the communication
is reduced by a factor between 1.9 and 3, cf. Tab. 6.)

The computation complexity of our protocol is
HW(FX ) hash function evaluations for P1 and HW(FY )
hash function evaluations for P2, where HW(·) denotes
the Hamming weight. When the number of hash func-
tions k and the size of the BF m are chosen optimally, we
can approximate the average Hamming weight in a BF
using the probability that a single bit is set to 1, which is
1− (1− ( 1

m ))
kn ≈ 1

2 . Thus, HW(F)≈ m
2 .

A main advantage of our protocol is that it allows to
parallelize all operations: BFs can be generated in paral-
lel (bits in the BF are changed only from 0 to 1) and, most
importantly, the random GBF can also be constructed in
parallel, in contrast to the original GBF-based protocol.

Optimization Party # Bits Sent # calls to H

Original GBF-based PSI [17] P1 2mλ 2m
P2 2mκ m

Random GBF-based PSI (§4.3) P1 n1� m/2
P2 mκ m/2

Table 3: Communication and computation complexities
for Bloom-filter-based PSI of [17] and our optimiza-
tion. (λ : statistical security parameter, κ: symmetric
security parameter, ni: number of elements of party Pi,
m ≈ 1.44κ max(n1,n2), �= λ + log2 n1 + log2 n2).

5 Private Set Intersection via OT

We propose a new private set intersection protocol that
is based on the most efficient OT extension techniques,
in particular the random OT functionality [1, 44] and the
efficient 1-out-of-N OT of [35]. This PSI protocol scales
very efficiently with an increasing set size.

We first describe the protocol for a private equality test
(PEQT) between two elements x and y (§5.1) and then
describe how to efficiently extend it for comparing y to
a set X = {x1, ...,xn} (§5.2). The resulting protocol can
then be simply extended to perform PSI between sets X
and Y by applying the parallel comparison protocol for
each element y ∈ Y (§5.3). The overhead of the protocol
can be greatly improved using hashing (§6).

5.1 The Basic PEQT Protocol

In the most basic private equality test (PEQT) protocol,
P1 and P2 check whether their σ -bit elements x and y are
equal by engaging in random

(2
1

)
OTσ

� , where P2 uses
the bits of y as its choice vector. From each random OT,
P1 obtains two uniformly distributed and random �-bit
strings (si

0,s
i
1), and P2 obtains si

y[i]. P1 then computes
mP1 =

⊕σ
i=1 si

x[i] (the XOR of the strings corresponding
to the binary representation of x) and sends it to P2. P2
compares this value to mP2 =

⊕σ
i=1 si

y[i] and decides that
x = y iff mP1 = mP2 .

The basic private equality test can be improved by us-
ing a base-N representation of the inputs and a

(N
1

)
OT

in the protocol. Specifically, let N = 2η . P1 and P2 check
whether their σ -bit elements x and y are equal by repre-
senting them using t = σ/η letters from an alphabet of
size N, and then engaging in random

(N
1

)
-OTt

�.
For this, P2 cuts its σ -bit element y into t blocks y[i]

of bitlength η each: y = y[1]|| . . . ||y[t]; similarly, P1 in-
terprets x = x[1]|| . . . ||x[t]. In the i-th random

(N
1

)
-OT, P2

inputs y[i] as choice bits and P1 obtains N random and
uniformly distributed �-bit strings (si

0, ...,s
i
N−1); P2 ob-

tains si
y[i]. P1 sends mP1 =

⊕t
i=1 si

x[i] to P2 who compares
it to mP2 =

⊕t
i=1 si

y[i] and decides that x= y iff mP1 =mP2 .
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Correctness If x = y then the choices that both parties
make for their sums are equal, i.e., mP1 =

⊕t
i=1 si

x[i] =⊕t
i=1 si

y[i] = mP2 , and P2 successfully identifies equality.

If x �= y then the probability that mP1 = mP2 is 2−�. To
see that this is true, assume w.l.o.g. that the inputs dif-
fer in their last sub-string, i.e., x[t] �= y[t]. Equality only
holds if the last element received by P2, namely st

y[t], is

equal to
⊕t

i=1 si
x[i]⊕

⊕t−1
i=1 si

y[i]. The value of st
y[t] is inde-

pendent of the other values, and therefore this equality
happens with probability 2−� and thus we can set � to be
equal to the statistical security parameter λ .

Security P2’s security is obvious, since the only infor-
mation that P1 learns are the random values chosen in the
random OT, which are independent of P2’s input.

As for P1’s security, note that P2’s view in the protocol
consists of its t outputs in the random

(N
1

)
-OT protocols,

and of the value mP1 sent by P1. If x = y then mP1 is equal
to the XOR of the first t values. Otherwise, all t +1 val-
ues are uniformly distributed. In both cases, the view of
P2 can be easily simulated given the output of the pro-
tocol (i.e., knowledge whether x = y). The protocol is
therefore secure according to the common security defi-
nitions of secure computation [22].

Efficiency Since in the i-th random OT P1 needs only
the output si

x[i], it suffices to evaluate one hash function

per random OT. When using the random
(2

1

)
-OT exten-

sion protocol3 of [1] and �= λ , the parties perform ran-
dom OTσ

λ , send σκ + λ bits, and do σ hash function
evaluations each. In comparison, when using the random(N

1

)
-OT extension protocol of [35], the parties perform

only σ/η OTs and send 2κ bits per OT; in total, they
have to send 2σκ/η +λ bits and do σ/η hash function
evaluations each. In the full version [47] we provide an
analysis which shows that setting η = 8 results in opti-
mal performance for our PSI protocols.

5.2 Private Set Inclusion Protocol
In a private set inclusion protocol, P1 and P2 check
whether y equals any of the values in X = {x1, ...,xn1}.
The set inclusion protocol is similar to the basic PEQT
protocol, but in order to perform multiple comparisons
in parallel, the OTs are computed over longer strings,
essentially transferring (in parallel) a random string for
each element in the set X .

In more detail, both parties run a random
(N

1

)
-OTt

n1�
,

where P2 uses the bits of y as choice bits. Each received

3Note that for σ < κ we can perform σ base-OTs instead of using
OT extension. However, here we analyze the costs when using OT
extension for simplicity and consistency reasons.

string is of length n1� bits. That is, in the i-th random OT,
P1 obtains N random strings (si

0, ...,s
i
N−1) ∈ {0,1}n1�,

and P2 obtains one random string si
y[i]. The strings are

parsed as a list of n1 sub-strings of length � bits each.
We refer to the j-th sub-string in these lists as si

w[ j], for
1 ≤ j ≤ n1 and 0 ≤ w < N. Using these sub-strings, P1
and P2 can then compute the XOR of the strings corre-
sponding to their respective inputs, compare the results
and decide on equality, as was described in the basic
PEQT protocol in §5.1. In more detail, P1 computes
mP1 [ j] =

⊕t
i=1 si

x j [i]
[ j] and sends the n1�-bit string mP1 to

P2. P2 decides whether y matches any of the elements in
X by computing mP2 =

⊕t
i=1 si

y[i] and checking whether
a j exists with mP1 [ j] = mP2 .

Correctness and security follow from the properties of
the protocol of §5.1. However, now we require that the
value mP2 and all the n1 values mP1 [ j] are distinct, which
happens with probability n12−�. Thus, to achieve cor-
rectness with probability 1-2−λ , we must increase the
bit-length of the OTs to � = λ + log2 n1. Also, note
that P2 learns the position j at which the match is found,
which can be avoided by randomly permuting the inputs.

Efficiency The set inclusion protocol that compares y
to many values has the same number of random OTs
as the basic comparison protocol comparing y to a sin-
gle value, but it requires the transferred strings to be of
length n1(λ + log2(n1)) bits instead of λ bits. Note, how-
ever, that since we use random OTs there is no need to
send these strings in the OT protocol. Instead, all strings
corresponding to the same value of the same input bit can
be generated from a single seed using a pseudo-random
generator. Therefore, the amount of data transferred in
the OTs is the same as for the single comparison PEQT
protocol.

The only additional data that is sent is the n1(λ +
log2 n1)-bit string mP1 , which P1 sends to P2. Hence,
the total amount of communication is 2σκ/η + n1(λ +
log2 n1) bits.

In addition, the PRG which is used to generate the out-
put string from the OT must be evaluated multiple times
to generate the n1(λ + log2 n1) bits. Therefore, the set
inclusion protocol, which compares y to n1 elements, is
less efficient than a single run of the PEQT protocol,
but is definitely more efficient than n1 invocations of the
PEQT protocol.

5.3 The OT-Based PSI Protocol

To obtain the final PSI protocol that computes X ∩Y , P2
simply invokes the private set inclusion protocol of §5.2
for each y ∈ Y . Correctness and security follow from the
properties of the private set inclusion protocol.
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Efficiency Overall, to compute the intersection be-
tween sets X and Y of σ -bit elements, the protocol re-
quires n2σ/η random

(N
1

)
-OTs of n1(λ + log2 n1) bit-

strings and additionally n1n2(λ + log2 n1) bits to be sent.
Using the random

(N
1

)
-OT of [35], the total amount

of communication is 2n2σκ/η +n1n2(λ + log2 n1) bits.
For large n1 and n2, this amount of communication grows
too large for an efficient solution. In order to cope with
large sets, one can use a hashing scheme, as shown in §6.

6 Hashing Schemes and PSI

Several private set intersection protocols are based on
running many invocations of pairwise private equality
tests (PEQT). These protocols include [11, 21, 27] or our
set inclusion protocol in §5. A straightforward imple-
mentation of these protocols requires n2 invocations of
PEQT for sets of size n, and therefore does not scale well.
In [19,21] it was proposed to use hashing schemes to re-
duce the number of comparisons that have to be com-
puted. The idea is to have each party use a publicly
known random hashing scheme to map its input elements
to a set of bins. If an input element is in the intersection,
both parties map it to the same bin. Therefore, the pro-
tocol can check for intersections only between items that
were mapped to the same bin by both parties.

Naively, if n items are mapped to n bins then the av-
erage number of items in a bin is O(1), checking for an
intersection in a bin takes O(1) work, and the total over-
head is O(n). However, privacy requires that the par-
ties hide from each other how many of their inputs were
mapped to each bin.4 As a result, we must calculate in
advance the number of items that will be mapped to the
most populated bin (w.h.p.), and then set all bins to be of
that size. (This can be done by storing dummy items in
bins which are not fully occupied.) This change hides the
bin sizes but also increases the overhead of the protocol,
since the number of comparisons per bin now depends
on the size of the most populated bin rather than on the
actual number of items in the bin. However, while the
parties need to pretend externally that all their items are
real, they do not need to apply all their internal compu-
tations to their dummy items (since they know that these
items are not in the intersection). A careful implementa-
tion of this observation, which takes into account timing
attacks, can further optimize the computation complexity
of the underlying protocols.

The work of [19, 21] gave asymptotic values for the
bin sizes that are used with this technique, and of the

4Otherwise, and since the hash function is public, some information
is leaked about the input. For example, if no items of P1 were mapped
to the first bin by the hash function h, then P2 learns that P1 has no
inputs in the set h−1(1), which covers about 1/n of the input range.

resulting overhead. They left the task of setting ap-
propriate parameters for the hashing schemes to future
work. We revisit the hashing schemes that were outlined
in [19,21], namely, simple hashing, balanced allocations,
and Cuckoo hashing (§6.1). We evaluate the performance
when using hashing schemes for PSI (§6.2), and describe
an analysis of the involved parameters (§6.3). We con-
clude that Cuckoo hashing yields the best performance
(for parameters which we find to be most reasonable).

6.1 Hashing Schemes
Simple Hashing In the simplest hashing scheme the
hash table consists of b bins B1...Bb. Hashing is done
by mapping each input element e to a bin Bh(e) using a
hash function h : {0,1}σ �→ [1,b] that was chosen uni-
formly at random and independently of the input ele-
ments. An element is always added to the bin to which it
is mapped, regardless of whether other elements are al-
ready stored in that bin. Estimating the maximum num-
ber of elements that are mapped to any bin, denoted
maxb, is a non-trivial problem and has been subject to ex-
tensive research [24, 38, 48]. When hashing m elements
to b = m bins, [24] showed that maxb =

lnm
ln lnm (1+o(1))

w.h.p. In this case, there is a difference between the ex-
pected and the maximum number of elements mapped
to a bin, which are 1 and O( lnm

ln lnm ), respectively. When
decreasing the number of bins to a value b satisfying
c ·b lnb=m for some constant c, it was shown in [48] that
maxb = (dc −1+α) lnb, where dc is the largest solution
to f (x) = 1+ x(lnc− lnx+ 1)− c = 0, and α is a pa-
rameter for adjusting the conservativeness of the approx-
imation, and should be set to be slightly larger than 1. In
this case the expected and maximum number of elements
mapped to a bin are of the same order O(lnb)≈ O(lnm).
This is preferable for our purposes, since even though
privacy requires that we set each bin to be as large as the
most populated bin, this size is of the same order as the
expected size of a bin when no privacy is needed.

Balanced Allocations The balanced allocations hash-
ing scheme [2] uses two uniformly random hash func-
tions h1,h2 : {0,1}σ �→ [1,m]. An element e is mapped
by checking which of the two bins Bh1(e) and Bh2(e) is
less occupied, and mapping the element to that bin. A
lookup for an element q is then performed by checking
both bins, Bh1(q) and Bh2(q), and comparing the elements
in these bins to q. The advantage of this scheme, shown
in [2], is that when hashing m elements into b = m bins,
maxb is only lnlnm

ln2 (1+ o(1)), i.e., exponentially smaller
than in simple hashing.
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Cuckoo Hashing Similar to balanced allocations hash-
ing, Cuckoo hashing [46] uses two hash functions h1,h2 :
{0,1}σ �→ [1,b] to map m elements to b = 2(1 + ε)m
bins. The scheme avoids collisions by relocating el-
ements when a collision is found using the following
procedure: An element e is inserted into a bin Bh1(e).
Any prior contents o of Bh1(e) are evicted to a new bin
Bhi(o), using hi to determine the new bin location, where
hi(o) �= h1(e) for i ∈ {1,2}. The procedure is repeated
until no more evictions are necessary, or until a thresh-
old number of relocations been performed. In the latter
case, the last element is put in a special stash s. It was
shown that for a stash of size s ≤ lnm, insertion of m el-
ements fails with probability m−s [33]. A lookup in this
scheme is very efficient as it only compares e to the two
items in Bh1(e) and Bh2(e) and to the s items in the stash.
In exchange for the improved lookup overhead, the size
of the hash table is increased to about 2m bins.

6.2 Evaluation of Hashing-Based PSI
We evaluate the asymptotic overhead of applying the OT-
based PSI protocol that was introduced in §5.3 while us-
ing any of the hashing scheme that we described. Also
note that P1 can save communication since instead of
sending all masks for each bin (including masks for both
dummy and real values), it can send only the masks of
its real values (in permuted order, so that P2 does not
know which value was in each bin). P2 can then simply
check every mask received from P1 against every com-
puted mask. However, in this case the bit-length � of the
masks has to be increased to �′ = λ + log2 n1 + log2 n2,
since P2 has to perform a total of n1n2 comparisons and
the overall error probability must be at most 2−λ . In the
following, we address the mask length for checking one
item against a set of n1 items as �1 = λ + log2 n1 and
the mask length for checking a set of n2 items against n1
items as �2 = λ + log2 n1 + log2 n2.

PSI based on simple hashing A protocol based on
simple hashing allocates the n inputs of P2 to b bins,
such that n=O(b lnb) and b is approximately O(n/ lnn).
Each bin is padded with dummy items to contain the
maximum number of items that is expected in a bin,
which is O(lnb) = O(lnn). For each bin, the parties
need to compute the intersection between sets of O(lnn)
items. Each item can be represented using O(ln lnn)
bits.5 The protocol requires O(lnn ln lnn) random OTs
for each bin. The total number of OTs is therefore
O(n ln lnn). The length of the values transferred in the
OTs (the masks) is �2 lnn bits.

5This holds since the items in a bin can be hashed to a shorter rep-
resentation, as long as no collisions occurs. The length of the hashed
value should be about λ + log((lnn)2) = O(ln lnn).

PSI based on balanced allocations A major problem
occurs when using balanced allocations hashing for PSI:
every item can be mapped to one of two bins, and there-
fore it is unclear with which of P1’s bin should P2 com-
pare its own input elements e. Furthermore, the protocol
must hide from each party the choice of bins made by the
other party to store e, since that choice depends on other
input elements and might reveal information about them.
The solution to this is to use balanced allocations by P2
alone, whereas P1 maps each of its input elements to two
bins using simple hashing with both hash functions h1
and h2. When using b = n bins, P2 has O(ln lnn) items
in each bin, whereas P1 has O(lnn/ ln lnn) items in every
bin (actually, it has twice as many items as with simple
hashing, since it maps each item twice). The items can
be represented using strings of O(ln lnn) bits. The pro-
tocol continues as before. P2 learns the output, but since
P1 does not use balanced allocations, P1 does not learn
P2’s choices in that hashing scheme. The number of OTs
is linear in the number of items stored by P2 multiplied
by the representation length, e.g., O(n ·(ln lnn)2) OTs on
�2 lnn/ ln lnn bit strings. This overhead is larger than that
of the simple hashing-based scheme.

PSI based on Cuckoo hashing Designing PSI based
on Cuckoo hashing encounters the same privacy problem
as when using balanced allocations hashing, and there-
fore the same solution is used. P2 uses Cuckoo hashing
whereas P1 maps each of its elements using simple hash-
ing with each of the two hash functions. P2 maps a sin-
gle item to each of the 2n bins, whereas P1’s bins contain
O(lnn) items. In addition, P2 has a stash of s ≤ lnn el-
ements. Each of these elements must be compared with
each of P1’s n elements. An item in a bin can again be
represented using O(ln lnn) bits, whereas an item in the
stash can be represented using O(lnn) bits. Furthermore,
when checking items in the stash, we check one item
against n1, allowing us to reduce the bit-size of the masks
in the OTs to �1 instead of �2. The protocol therefore per-
forms O(n ln lnn) OTs on inputs of length O(�2 ln lnn)
bits (for the items in the bins), and in addition O((lnn)2)
OTs of inputs of length O(�1 lnn) bits (for the items in
the stash, which are each compared to all items of P1’s
input). Overall, the protocol has the same asymptotic
overhead as the protocol that uses simple hashing.

6.3 Maximum Bin Size and Overhead
When using hashing schemes for private set intersection,
the number of bins b and the corresponding maximum
bin size maxb must be set to values that balance efficiency
and security. If maxb is chosen too small, the probability
of a party failing to perform the mapping, denoted Pfail,
increases. As a result, the output might be inaccurate
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Parameter Total # OTs Comm. [bits] Comm. [MB]
P1 to P2 total, n = 218

No hashing nt n2�1 458,880 / 458,784
Simple Hashing 3.7nt n�2 476 / 121
Balanced Alloc. 2.9nt(ln lnn) 2n�2 1,298 / 595
Cuckoo Hashing (2(1+ ε)n+ s)t sn�1 +2n�2 319 / 89

Table 4: Number of OTs and communication for the
different hashing-based protocols. The total communi-
cation given in the last column is calculated for �1 =
λ + log2 n, �2 = λ + 2log2 n, κ = 128, λ = 40, ε = 0.2,
s = 4. The first value in this column is for t = σ = 32(2

1

)
-OTs per element and the second value is for t = 32/8(N

1

)
-OTs, N = 28. It is composed of the total number of

OTs in the 2nd column times the communication per OT
plus the communication from P1 to P2 in the 3rd column.

(since not all items can be mapped to bins), or one of the
parties needs to request a new hash function (a request
that leaks information about the input set of that party).
On the other hand, the number of performed comparisons
increases with b and maxb. An asymptotic analysis of the
maximum bin size was presented in [19, 21], but leaves
the exact choice of b and maxb and the resulting Pfail to
further work. In the following, we analyze the complex-
ity of the hashing schemes when used in combination
with our set inclusion protocol, described in §5. To com-
pare the performance of the hashing schemes on a unified
base, we depict in Tab. 4 the overall communication, di-
vided into the number of OTs (where we run t OTs per
element) and the number of bits sent from P1 to P2.

In the full version [47]we detail the analysis of setting
the optimal parameters for usage of the different hashing
schemes in our PSI protocol, and of the resulting number
of OTs and communication overhead. The results are
depicted in Tab. 4 and show that Cuckoo hashing has the
lowest communication. In addition, this scheme has a
stronger guarantee on the upper bound of Pfail, since we
achieve rehash probability of n−s. We therefore use this
scheme in our implementation and experiments.

A note on approximations When using a hashing
scheme with fixed bin sizes it is possible that the number
of items mapped to a certain bin, say by P1, is larger than
the capacity of the bin. (This event happens with prob-
ability Pfail.) In such a case it is possible for P1 to ask
to use a new hash function. This request reveals some
information about P1’s input. Another option is for P1
to ignore the missed item, and therefore essentially com-
pute an approximation to the intersection. This choice,
too, might reveal information about P1’s input, albeit in
a more subtle way through multiple invocations of the
functionality. Similarly, in the Bloom filter-based proto-

col, the occurrence of a false positive might leak infor-
mation. The best solution to this issue is to make sure
that the probability of these events happening is negligi-
ble, so that it is almost certain that these events will not
occur in practice. This is the approach that we take in
our comparisons. (Another approach would be to allow
the computation of an approximation of the original in-
tersection function, while analyzing the privacy leakage
effects of this computation, and deciding whether to tol-
erate them. The result might be a more liberal choice of
parameters which will result in a more efficient imple-
mentation of the original protocol.)

7 Experimental Evaluation

In the following we experimentally evaluate the PSI pro-
tocols described before. We describe our benchmarking
environment in §7.1 and then detail the comparison be-
tween the protocols in §7.2. Tab. 5 compares the single-
threaded runtimes of all protocols over Gigabit LAN,
Tab. 6 compares the communication complexities, and
Tab. 7 compares the single-threaded runtimes on differ-
ent networks. In the tables we highlight the protocol with
lowest runtime and communication for each type.

7.1 Benchmarking Environment
We ran our experiments on two Intel Core2Quad desk-
top PCs (without AES-NI extension) with 4 GB RAM,
connected via Gigabit LAN. In each experiment, P1 and
P2 held the same number of input elements n and were
not allowed to perform any pre-computation. We set
n as in [17], i.e., n ∈ {210,212,214,216,218}, but omit-
ted n = 220, since many implementations exceeded the
available main memory. We use σ = 32 as the bit
length of the elements.6 We use a statistical security
parameter λ = 40 and a symmetric security parameter
κ ∈ {80,128} (other security parameters are chosen ac-
cording to Tab. 2). For our set-inclusion protocol we set
η = 8, i.e., use 1-out-of-28 OT extensions.

In our tables, the asymptotic performance is given for
the party with the majority of the workload, and are
divided to public-key operations (asym) and symmetric
cryptographic operations (sym).

Implementations The implementation of the blind-
RSA-based [14] and garbled Bloom-Filter [17] proto-
cols were taken from the authors, but we used a hash-
table to compute the last step in the blind-RSA proto-
col that finds the intersection (the original implemen-

6For protocols whose complexity depends on σ , elements from
a large domain can be hashed to short representations; cf. full ver-
sion [47] for details.
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tation used pairwise comparisons with quadratic run-
time overhead). We implemented a state-of-the-art Yao’s
garbled circuits protocol (using garbled-row-reduction,
point-and-permute, free-XOR, and pipelining, cf [28])
by building on the C++ implementation of [12] and using
the fixed-key garbling scheme of [7]7. For Yao’s garbled
circuits protocol, we evaluated a size-optimized version
of the sort-compare-shuffle circuit (comparison circuits
of size and depth σ ) while for GMW we evaluated a
depth-optimized version (comparison circuits of size 3σ
and depth log2 σ ) for σ -bit input values [49].

We implemented FFC (finite field cryptography) and
IFC (integer factorization cryptography) using the GMP
library (v. 5.1.2), ECC using the Miracl library (v. 5.6.1),
symmetric cryptographic primitives using OpenSSL (v.
1.0.1e), and used the OT extension implementation of [1]
which requires about 3 symmetric cryptographic opera-
tions per OT for the asymptotic performance analysis.

We argue that we provide a fair comparison, since all
protocols are implemented in the same programming lan-
guage (C/C++), run on the same hardware, and use the
same underlying libraries for cryptographic operations.

For each protocol we measured the time from starting
the program until the client outputs the intersecting ele-
ments. All runtimes are averaged over 10 executions.

7.2 Performance Comparison

We divide the performance comparison into three cate-
gories, depending on whether the protocol is based on
public-key operations, circuits, or OT. Afterwards, we
provide experiments for different networks and give a
comparison between the best protocols in each category.

Public-Key-Based PSI For the public-key-based PSI
protocols, we observe that the DH-based protocol of [29]
outperforms the RSA-based protocol of [14] when using
finite field cryptography (FFC). Similarly to [1], we also
obtain the somewhat surprising result that for 80-bit se-
curity elliptic curve cryptography (ECC) using the Mir-
acl library is slower than FFC using the GMP library. For
larger security parameters, however, ECC becomes more
efficient and outperforms FFC by a factor of 3 for 128-bit
security for the DH-based protocol. (The reason for this
phenomenon might be better implementation optimiza-
tions in the GMP library.) The advantage of the ECC-
based protocol is its communication complexity, which is
lowest among all PSI protocols, cf. Tab. 6. We note that
a major advantage of these protocols is their simplicity,
which makes them comparably easy to implement.

7The security of the fixed-key garbling scheme is somewhat contro-
versial but we included it for performance reasons.

Circuit-Based PSI Here we tested Yao- and GMW-
based implementations, as well as an implementation of
our optimized vector multiplication-triple-based GMW
protocol (§3.2). Following is a summary of the results:

• Both the computation complexity and the communi-
cation complexity of the circuit-based PSI protocols
are the highest among all protocols that we tested.

• The basic GMW protocol has the highest overall
runtime and communication complexity.

• Our vector multiplication triple optimization re-
duces the runtime and communication of GMW
by approximately 40%. For security parameter
κ = 80, this implementation is slightly faster than
Yao’s protocol, but it is slightly slower for κ =
128. Communication-wise, the vector multiplica-
tion triple GMW is more efficient than Yao’s proto-
col.

• The runtime of Yao’s protocol hardly increases with
the security parameter, since we use AES-128 for
both versions. Note, however, that our implemen-
tation of Yao’s protocol exceeded the main memory
when processing 218 elements.

• Our Yao implementation does not use the AES-NI
hardware support. Using AES-NI is likely to im-
prove the runtime of the Yao implementation.

We give a more detailed performance comparison for
GMW and Yao’s protocol in the full version [47].

OT-Based PSI The random garbled Bloom filter pro-
tocol of §4.3 improves the original garbled Bloom filter
protocol of [17] by more than a factor of two in runtime
and by factor of 2-3 in communication.

We also implemented our protocol of §5, where we
used Cuckoo hashing with parameters ε = 0.2 and s = 4,
cf. §6. This protocol had the best runtime, and was about
5 times faster than the random garbled Bloom filter pro-
tocol for κ = 128. In terms of communication, our set
inclusion protocol uses less than 20% of the communi-
cation of the random garbled Bloom filter protocol for
κ = 80 and less than 10% communication for κ = 128.

The main difference between the set inclusion protocol
and the random garbled Bloom filter protocol is the de-
pendency of the performance on the symmetric security
parameter κ . In the random garbled Bloom filter proto-
col, the number of OTs is independent of the bit-length σ
but scales linearly with κ . On the other hand, the number
of OTs for the set inclusion protocol is independent of κ
but linear in σ . As a result, the runtime of the Bloom
filter protocol (but not of the set inclusion protocol) is
greatly affected when κ is increased.
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Type Symm. Security Parameter κ 80-bit 128-bit Asymptotic
Set Size n 210 212 214 216 218 210 212 214 216 218

Public-Key
DH-based FFC [29] 0.4 1.6 6.2 24.7 98.8 4.8 19.1 76.5 306.0 1,224.1 2n asym
DH-based ECC [29] 0.7 2.8 11.0 44.1 177.5 1.6 6.5 26.1 104.2 416.2 2n asym
RSA-based [14] 0.5 2.0 7.9 31.3 124.9 7.7 31.0 124.3 497.2 1,982.1 2n asym

Circuit [27]
Yao [7, 28] 1.2 5.7 27.7 128.2 - 1.6 6.3 28.4 129.1 - 12nσ log2 n sym
GMW [1] 1.9 8.6 35.2 161.9 806.5 2.6 12.8 58.9 276.4 1,304.2 30nσ log2 n sym
Vector-MT GMW §3.2 1.2 5.1 21.2 100.3 462.7 1.9 7.8 36.5 168.9 762.4 18nσ log2 n sym

OT
Garbled Bloom Filter [17] 0.3 0.9 3.9 16.1 71.9 0.6 2.0 8.5 37.1 154.4 4.32nκ sym
Random Garbled Bloom Filter §4.3 0.15 0.5 2.0 8.1 34.3 0.27 1.0 4.1 16.7 67.6 3.6nκ sym
Set Inclusion §5 + Hashing §6 0.13 0.2 0.8 3.3 13.5 0.26 0.3 0.9 3.7 13.8 0.75nσ sym

Table 5: Runtimes in seconds for PSI protocols with one thread over Gigabit LAN (σ = 32: bit size of set elements,
asym: public-key operations, sym: symmetric cryptographic operations).

Type Symm. Security Parameter κ 80-bit 128-bit Asymptotic
Set Size n 210 212 214 216 218 210 212 214 216 218

Public-Key
DH-based FFC [29] 0.4 1.5 6.0 24.0 96.0 1.1 4.5 18.0 72.0 288.0 3nρ
DH-based ECC [29] 0.1 0.2 1.0 3.8 15.0 0.1 0.4 1.5 6.0 24.0 3nϕ
RSA-based [14] 0.3 1.1 4.3 17.3 69.0 0.8 3.1 12.5 50.0 200.0 2nρ +2nκ

Circuit [27]
Yao [7, 28] 28.1 135.0 630.0 2,880.0 12,960.0 45.0 216.0 1,008.0 4,608.0 20,736.0 9nκσ log2 n

GMW [1] 31.3 150.0 700.0 3,200.0 14,400.0 50.0 240.0 1,120.0 5,120.0 23,040.0 10nκσ log2 n

Vector-MT GMW §3.2 18.8 90.0 420.0 1,920.0 8,640.0 30.0 144.0 672.0 3,072.0 13,824.0 6nκσ log2 n

OT
Garbled Bloom Filter [17] 3.4 13.5 54.0 216.0 864.0 7.6 30.2 121.0 483.8 1,935.4 2.88nκ(κ +λ )
Random GBF §4.3 1.1 4.5 18.1 72.6 290.4 2.9 11.6 46.2 184.9 739.7 1.44nκ2 +n(λ +2log2 n)

Set Inclusion §5 + Hashing §6 0.2 0.8 3.3 13.4 54.3 0.3 1.2 4.8 19.4 78.3 0.5nκσ +6n(λ +2log2 n)

Table 6: Communication complexity in MB for PSI protocols. (σ = 32: bit size of set elements, security parameters
κ,λ ,ρ,ϕ as defined in §2.1). Numbers are computed from the asymptotic complexity given in the last column.

Experiments for Different Networks For each pro-
tocol type (public-key-based, circuit-based, and OT-
based), we benchmark the best performing PSI protocol
in different network scenarios: Gigabit LAN, 802.11g
WiFi, intra-country WAN, inter-country WAN, and mo-
bile Internet (HSDPA) and depict our results in Tab. 7.
We characterize each network scenario by its bandwidth
and latency. By latency we mean one-way latency, i.e.,
the time from source to sink, and we used the same band-
width for up- and downlink. We simulated these network
types using the Linux command tc and ran the protocols
on n = 216 elements for κ = 128 and with one thread.

The only protocol that is nearly unaffected by the
change in network environment and for which the net-
work has not become the bottleneck is the DH-based
ECC protocol. In this protocol computation is the bottle-
neck which can be improved by using multiple threads.

For the other protocols we observe how the main bot-
tleneck transitions from computation to communication:

For Yao’s protocol this transition happens very early,
already when changing from Gigabit LAN to WiFi (fac-
tor 6 in runtime).8 Our vector-MT GMW protocol and
our random garbled Bloom filter protocol suffer less
drastically from the decreased bandwidth (factor 2.3 in
runtime). However, from the WiFi connection on, the

8The performance advantage of using fixed-key AES garbling in-
stead of SHA-1/SHA-256 already diminished in the WiFi setting.

performance of all three protocol decreases approxi-
mately linear in the bandwidth. Note that, although our
vector-MT GMW protocol has only 66% of the commu-
nication complexity of Yao’s protocol, it is more than two
times faster in slower networks. This can be explained by
the direction of the communication. In Yao’s protocol,
the large garbled circuit is sent in one direction, whereas
the communication in GMW can be evenly distributed in
both directions s.t. it uses both up- and downlink.

For our set inclusion protocol, the network satura-
tion happens when using intra-country WAN. From this
point on, the performance also decreases linearly with
the bandwidth. Still, this protocol is the fastest of all
protocols in all network settings.

Experiments with Multiple Threads Tab. 8 shows the
runtimes with four threads. Of special interest is the
last column, which shows the ratio between the runtimes
with four threads and a single thread for n= 218 elements
and security parameter κ = 128. The DH-based protocol,
which is very simple and easily parallelizable, achieves
almost the optimal speedup of 4x as computation is the
performance bottleneck. The GMW protocol achieves
only a speedup of about 2x, possibly due to the gate-by-
gate evaluation of the circuit resulting in multiple rounds
of communication as the bottleneck. The OT-based pro-
tocols achieve a very good speedup of about 3x.
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Type Network Gigabit LAN 802.11g WiFi Intra-country WAN Inter-country WAN HSDPA
(Bandwidth (Mbit/s) / Latency (ms)) (1,000 / 0.2) (54 / 0.2) (25 / 10) (10 / 50) (3.6 / 500)

Public-Key DH-based ECC [29] 104.2 104.8 107.6 111.8 115.9

Circuit [27] Yao [7, 28] 129.1 779.5 1,735.5 4,631.8 11,658.6
Vector-MT GMW §3.2 168.9 (11.3) 370.5 (18.1) 770.4 (27.5) 1,936.5 (67.2) 5,310.9 (170.2)

OT Random Garbled Bloom Filter §4.3 16.6 37.2 70.8 164.9 445.0
Set Inclusion §5 + Hashing §6 3.7 5.0 8.8 22.8 77.5

Table 7: Runtimes in seconds for PSI protocols with one thread in different network scenarios for n = 216 elements,
σ = 32: bit size of elements, and κ = 128-bit security (cf. Tab. 2); online time for Vector-MT GMW in ().

Type Symm. Security Parameter κ 80-bit 128-bit Speedup
Set Size n 210 212 214 216 218 210 212 214 216 218

Public-Key DH-based FFC [29] 0.1 0.5 1.8 6.7 26.9 1.3 5.2 20.8 80.1 320.1 3.82x
Circuit [27] Vector-MT GMW §3.2 0.8 3.6 15.9 71.3 288.1 1.1 5.6 23.4 96.1 400.9 1.90x

OT Random Garbled Bloom Filter §4.3 0.08 0.2 0.8 3.2 13.1 0.14 0.5 1.7 6.4 25.9 2.61x
Set Inclusion §5 + Hashing §6 0.04 0.16 0.4 1.2 4.7 0.04 0.2 0.5 1.4 4.9 2.81x

Table 8: Runtimes in seconds for PSI protocols with four threads and σ = 32; speedup for n = 218 and κ = 128.

Comparison From the results we observe that OT-
based protocols have the lowest runtime on a fast net-
work. The public-key-based protocols require costly
public-key operations, which scale very poorly with in-
creasing security parameter, but need less communica-
tion than the OT- or circuit-based protocols. The circuit-
based protocols have a smaller runtime than the public-
key-based protocols using FFC or RSA for κ = 128, but
by far the highest communication complexity.

Our set inclusion protocol achieves both the most ef-
ficient runtime and a very low communication overhead.
Compared to the second fastest protocol, namely our op-
timized random garbled Bloom-filter protocol, the set in-
clusion protocol is at least 5 times faster and uses 10
times less communication (for 128 bit security). More-
over, this protocol has the second best communication
overhead, requiring only 3 times the communication of
the DH-ECC-based protocol of [29], but running faster
in all network environments that we tested.

We stress that the choice of the preferable PSI protocol
depends on the application scenario. For instance,

• If communication is the bottleneck and computation
is vast, then the DH-based PSI protocol using ECC
is the most favorable. That protocol is also the sim-
plest protocol to implement.

• The circuit-based protocols are unique in that they
are based on generic secure computation techniques
and can therefore be easily modified to compute
more complex variants of PSI.

• While our set inclusion protocol performs very effi-
ciently for σ = 32, it would require twice the run-
time for σ = 64, while the random garbled Bloom
filter protocol would have approximately the same
runtime (which would still be greater).
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Abstract

Generally speaking, malicious code leverages hooks
within a system to divert the control flow. Without them,
an attacker is blind to the events occurring in the sys-
tem, rendering her unable to perform malicious activities
(e.g., hiding of files or capturing of keystrokes). How-
ever, while hooks are an integral part of modern attacks,
they are at the same time one of their biggest weaknesses:
Even the most sophisticated attack can be easily identi-
fied if one of its hooks is found. In spite of this fact,
hooking mechanisms have remained almost unchanged
over the last years and still rely on the persistent mod-
ification of code or control data to divert the control
flow. As a consequence, hooks represent an abnormal-
ity within the system that is permanently evident and can
in many cases easily be detected as the hook detection
mechanisms of recent years amply demonstrated.

In this paper, we propose a novel hooking concept that
we refer to as dynamic hooking. Instead of modifying
persistent control data permanently, this hooking mech-
anisms targets transient control data such as return ad-
dresses at run-time. The hook itself will thereby reside
within non-control data and remains hidden until it is
triggered. As a result, there is no evident connection be-
tween the hook and the actual control flow change, which
enables dynamic hooks to successfully evade existing de-
tection mechanisms. To realize this idea, dynamic hooks
make use of exploitation techniques to trigger vulner-
abilities at run-time. Due to this approach, dynamic
hooks cannot only be used to arbitrarily modify the con-
trol flow, but can also be applied to conduct non-control
data attacks, which makes them more powerful than their
predecessors. We implemented a prototype that makes
uses of static program slicing and symbolic execution to
automatically extract paths for dynamic hooks that can
then be used by a human expert for their realization. To
demonstrate this, we used the output provided by our
prototype to implement concrete examples of dynamic
hooks for both modern Linux and Windows kernels.

1 Introduction

Over the last decade, the sophistication and technical
level of malicious software (malware) has increased dra-
matically. In the early 2000s, we saw malware such as
the I Love You [29] and Blaster worms [3] that gener-
ally operated in user space with very little in the way
of defensive mechanisms. In contrast, we nowadays see
complex kernel level malware such as Stuxnet, Duqu, and
Flame [6] that show an increase in sophistication in the
target of their attack, the exploitation methods used to
deliver them, and their ability to evade detection. By tar-
geting kernel space, modern malware effectively runs at
the same privilege level as the operating system (OS),
enabling it to attack and modify any part of the system
including the kernel itself. In addition, malware can take
advantage of stealth techniques that were originally only
used by kernel rootkits to hide itself deep within the sys-
tem. This makes the detection of malware increasingly
difficult, especially as malware continues to evolve, en-
abling it to stay one step ahead of the defenders. Cur-
rently, one the most sophisticated methods employed is
data-only malware [16, 41].

However, even very sophisticated malware such as
data-only malware has an Achilles’ heel: in general, mal-
ware needs to intercept events within the system to be
able to fulfill its purpose [27, 44]. Without this capabil-
ity, malware would be unable to react to events or pro-
vide fundamental functionality such as key logging and
file hiding, which would severely limit its possibilities.
Event interception, however, requires malware to divert
the control flow of the infected system at run-time. To
achieve this, malware must install hooks in the system
that facilitate the required control flow transfer on be-
half of the malware whenever the desired event occurs.
While malware might manage to hide itself, these hooks
represent an abnormality that will be permanently visible
within the system and thus lends itself well to becoming
the basis of detection mechanisms. This insight led to
a wide range of research that enable the monitoring of
malware hooking behavior for the purpose of signature
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generation [47] or detecting malware based on control
flow modifications [15, 20, 43].

Although existing systems are not yet able to de-
tect all hooks that are placed by malware, the remain-
ing possibilities for malware to install hooks are con-
stantly dwindling. Hooks that are based on code mod-
ifications are usually no longer an option, since changes
to code areas can be easily detected due to their static na-
ture. This leaves attackers only with the option of data
hooks [43,47], but even here the options are increasingly
restricted by modern detection mechanisms. The reason
for this development is that, in contrast to malware where
one can observe a constant evolution of techniques and
mechanisms used, hooking techniques have not signifi-
cantly changed over the course of recent years.

In this paper, we present a novel hooking concept that
we refer to as dynamic hooking. In contrast to existing
hooking mechanisms which persistently modify control
data, our hooking approach targets transient control data
such as return addresses at run-time. As a consequence,
the resulting control flow change that is introduced by
the hook only becomes visible when the hook is actu-
ally triggered. This significantly complicates the detec-
tion of dynamic hooks as security mechanisms can no
longer focus on persistent control data, but must also
take transient control data into account. What is even
more, the hook itself will thereby reside in non-control
data, which is much more difficult to analyze and ver-
ify [4,15] when compared to control data that traditional
hooks target. Despite the fact that dynamic hooks reside
purely in non-control data, they are able to reliably inter-
cept the execution flow of functions similar to traditional
hooks. Furthermore, they can be used in pure data-only
attacks, which are by themselves a realistic and danger-
ous threat [3, 5]. Thus they are not only harder to detect,
but also more powerful than their predecessors.

To provide these capabilities, dynamic hooks modify
data in such a way that they will trigger vulnerabilities at
run-time. Through this approach, they are able to arbi-
trarily modify the control flow, while the hook itself only
consists of the data that triggers and exploits the vulner-
ability. This makes them quite similar to traditional ex-
ploitation techniques with the exception that they target
applications that are already controlled by the attacker.
Due to this fact, the attack surface for dynamic hooks is
much broader compared to traditional exploitation, since
an attacker can not only attack external functions, but
also internal functions.

Furthermore, dynamic hooks can be obtained automat-
ically in a manner comparable to automated exploit gen-
eration [2]. To demonstrate this, we implemented a pro-
totype that leverages static program slicing [40, 45] and
symbolic execution [34] to automatically extract satisfi-
able, exploitable paths for dynamic hooks. The prototype

thereby provides detailed information about each jump
condition in the path and the actual vulnerability in an
intuitive format, which makes the output suitable for ex-
ploit generation frameworks or a human expert. We used
this prototype to automatically identify dynamic hooks
for recent Linux and Windows kernels. Additionally,
we implemented proof of concepts (POCs) of dynamic
hooks that demonstrate how they can be used in prac-
tice to intercept events such as system calls or to imple-
ment backdoors. This proves that the suggested hooking
mechanism is not only powerful, but also realistic.

In summary, we make the following contributions:

• We present a novel hooking concept called dynamic
hooking that targets transient control data at run-
time instead of persistent control-data. This ap-
proach bypasses existing hook detection techniques
proposed in the last few years.

• We show how dynamic hooks for OS kernels can be
automatically found by leveraging binary analysis
techniques and implemented a prototype.

• We provide detailed POC implementations of dy-
namic hooks for both Linux and Windows kernels
that demonstrate their capabilities and possibilities.

2 Technical Background

Before presenting our approach to realize dynamic
hooks, we first review background information that is
essential for the understanding of the remainder of the
paper. We begin by defining important terms and then
discuss why malware in general requires hooks within
the system to function. Finally, we cover existing hook-
ing mechanisms and their countermeasures.

2.1 Definitions
We first introduce important terms that we will use
throughout the paper. In particular, we highlight the dif-
ferences between control data and non-control data as
well as transient and permanent control data.

Control data and non-control data. Control data
specifies the target location of a branch instruction. By
changing control data, an attacker can arbitrarily change
the control flow of an application. Examples of control
data are return addresses and function pointers.

In contrast, non-control data never contains the target
address for a control transfer. In certain cases, however,
it may influence the control flow of an application. For
instance, a conditional branch may depend on the value
of non-control data.

2
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Transient and persistent control data. We consider
control data to be transient when it cannot be reached
through a pointer-chain originating from a global vari-
able. This essentially implies that there is no lasting con-
nection between the application and the control data. In-
stead, the control data is only visible in the current scope
of the execution such as a return address which is only
valid as long as a function executes.

By extension, we consider all control data that is
reachable through a global variable as persistent, since
the control data is permanently connected to the applica-
tion and can thus always be accessed independent of the
current scope.

2.2 Malware and Hooking

Petroni et al. [27] estimated that about 96% of all root-
kits require hooks within the system to function. Intu-
itively, this makes sense: since the sole purpose of root-
kits is to provide stealth, they have to hide all signs of
an infection. While existing structures can be hidden us-
ing techniques such as direct kernel object manipulation
(DKOM) [38], hooks enable rootkits to react to changes
occurring at run-time. Consider, for instance, that a hid-
den process creates a new network connection or a child
process. Naturally, a rootkit must also hide such newly
created objects to achieve its goal. This, however, re-
quires a rootkit to be notified of the occurrence of such
events. Hooks solve this problem by enabling a rootkit
to install callback functions in the system. This makes
them an integral part of rootkit functionality.

In practice, rootkit functionality is often mixed with
a variety of malicious payloads. According to a report
by Microsoft released in 2012 [13], “some of the most
prevalent malware families today consistently use rootkit
functionality”. The primary reason for this is that the
single purpose of a rootkit is to avoid detection. Con-
sequently, it is not a big surprise that the techniques
formerly only found in rootkits are increasingly being
adapted by malware. Since rootkits require hooks to
function, this, however, also implies that any malware
based on rootkit functionality will require the same.

2.3 Existing Hooking Mechanisms

In general, we distinguish between two different types of
hooks: code hooks and data hooks [11, 43, 47]. Code
hooks work by directly patching the application’s code
regions: wherever the attacker wants to redirect the con-
trol flow of the application, she overwrites existing in-
structions with a branch instruction. As a result, the con-
trol flow of the application is diverted every time the ex-
ecution passes through the modified instructions.

The main problem with code hooks is that code re-
gions are usually static. Therefore, it is generally suffi-
cient to identify modifications to code regions to detect
this type of hook. Various techniques have been pro-
posed that leverage such an approach [22, 27, 31]. As
a result, adversaries resorted to a different hooking form
referred to as data hooks. Instead of modifying code di-
rectly, data hooks target persistent control data within the
application. By modifying control data, the attacker is
able to divert every control transfer that makes use of the
modified data. For example, the most straightforward
method for intercepting the execution of system calls is
to modify function pointers within the system call table.

To counter the threat of data hooks, researchers pro-
posed various systems that aim to protect control data
within an application [9, 20, 27, 43]. However, the main
focus of these systems thereby lies in the protection of
function pointers that are allocated on the heap or reside
within the data region of the application. This is achieved
by ensuring that each function pointer points to a valid
function according to its control flow graph (CFG). Tran-
sient control data on the other side is generally ignored
by these approaches or they merely consider the protec-
tion of return addresses, which is not the only kind of
transient control data. Instead transient function pointer
may also exist as we will discuss in Section 5.1.

While researchers acknowledge that malware could
potentially also target transient control data to modify
the control flow [20, 27, 43], these attacks are usually
only considered in the context of exploitation or return-
oriented rootkits [16], but are not deemed to be rele-
vant for hooking. The reasoning behind this assump-
tion is that malware generally wants to change the con-
trol flow of the target application indefinitely in order to
be continuously able to intercept events. Consequently,
the malware must permanently redirect the control flow
and thus target persistent control data as transient control
data is, by definition, only used by the system for a lim-
ited amount of time. In this paper, we demonstrate that
this assumption is false and can be used to circumvent
existing defense mechanisms against hooking.

3 Dynamic Hooks

In the following, we introduce our novel hooking concept
that we refer to as dynamic hooking. For this purpose, we
provide an overview of the concept, discuss the vulner-
abilities that can be used to implement dynamic hooks,
and cover the types of dynamic hooks that exist and their
properties. Before doing so, however, we first state the
attacker model that we assume throughout this paper.

3
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3.1 Attacker Model & Scope
In the following, we assume that the attacker’s goal is to
install persistent kernel malware such as a rootkit on the
victim’s system. For this purpose, we assume that the
attacker has the ability to manipulate the kernel’s mem-
ory arbitrarily either through a vulnerability or the ability
to load a kernel module (or driver). To avoid detection,
the attacker wishes to hide all the hooks of the malware.
That is, we are not concerned with the stealth of the mal-
ware itself, but instead solely focus on its hooks. Conse-
quently, we consider all malware detection mechanisms
that do not detect malware based on its hooks to be out
of scope for the remainder of the paper. Furthermore, we
assume the target system leverages common protection
mechanisms such as Address Space Layout Randomiza-
tion (ASLR), stack canaries, and W ⊕X .

3.2 High-Level Overview
The main problem with existing hooking mechanisms is
that they require the permanent change of code or func-
tion pointers. Consequently, the desired control flow
change of the malware is permanently evident within
the system [27]. The fundamental idea behind dynamic
hooks is to solve this problem by hiding the desired con-
trol flow change within non-control data such that there
is no clear connection between the changes that the mal-
ware conducts and the actual control flow change. This
is accomplished with the help of exploitation techniques.

To exploit a vulnerable application, an attacker makes
use of specially crafted input data that—when processed
by the application—will eventually trigger a vulnerabil-
ity. If the vulnerability enables the attacker to overwrite
important control structures such as a return address, she
will be able to modify and often control the execution
flow of the application using techniques such as return-
oriented programming (ROP) [35].

With dynamic hooks, we apply the same concepts that
are used in traditional exploitation scenarios to hooking.
That is, we manipulate the input data of the functions we
want to hook in such a way that we will trigger a con-
trol flow modifying vulnerability when the data is used.
This effectively allows us to overwrite control data (e.g.,
a return address) at run-time and enables us to control
the execution flow of the application similar to a tradi-
tional hook. The main difference, however, is that such
a dynamic hook will reside somewhere within the data
structures of the application unnoticed until its malicious
payload is eventually used by the target function.

For this approach to work, we need to identify a con-
trol flow modifying vulnerability in every function that
we want to hook. At first glance this seems unlikely.
However, there is a key difference between the exploita-
tion of traditional vulnerabilities and vulnerabilities that

are used to realize dynamic hooks: the attacker already
controls the application at the time she installs a hook. In
a traditional exploit, the attacker’s goal is to gain control
over an application. To achieve this, she needs to find
an input to the application that will trigger a vulnerabil-
ity. That is, the attacker can only control the external
data which is provided to the application. In the case
of a dynamic hook, however, this restriction does not ap-
ply. As the attacker controls the application, she is free to
access and modify any internal data structure of the ap-
plication. This results in a much stronger attacker model
when compared to traditional exploitation.

Finding and exploiting vulnerabilities in such a sce-
nario becomes much easier for several reasons. First,
many existing protection mechanisms such as ASLR,
stack canaries, or W ⊕X only protect against an exter-
nal attacker, but can be easily circumvented by an at-
tacker that controls the application. Second, the attacker
can prepare the code (or ROP chain) she wants to exe-
cute when the vulnerability is triggered beforehand and
does not have to provide it during the exploitation pro-
cess. This enables the attacker to exploit vulnerabilities
for which traditional methods would be difficult due to
space constraints of the vulnerability. Third, the attack
surface for dynamic hooks is much broader. The attacker
cannot only attack functions that handle user input, but
can also target internal functions that cannot be influ-
enced by the user. In fact, by manipulating internal data
structures, the attacker can create new vulnerabilities that
would not occur during normal operation of the applica-
tion, because the targeted data structures are normally
only accessed and modified by the program itself. This
may even allow the attacker to circumvent checks and fil-
ters within the application as the manipulated data struc-
tures may contain values that could never occur during
normal operation and may thus not have been expected
by the programmer. Finally, to hook a specific event, the
hook may be placed anywhere within the control flow of
the handling code, it is not restricted to a single function.

Example. To illustrate the concept of dynamic hooks
at a concrete example, consider the following code from
the function in the Linux kernel (version 3.8):

1 s t r u c t l i s t _ h e a d {
2 s t r u c t l i s t _ h e a d ∗ n e x t ;
3 s t r u c t l i s t _ h e a d ∗ p rev ;
4 } ;
5
6 s t a t i c vo id l i s t _ d e l ( s t r u c t l i s t _ h e a d ∗ e n t r y )
7 {
8 e n t r y −>next −>prev = e n t r y −>prev ;
9 e n t r y −>prev−>n e x t = e n t r y −>n e x t ;

10 }

This function essentially removes the given entry from
its list. If the attacker controls the and the
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field from the entry to be deleted, she essentially can trig-
ger an arbitrary 8-byte write on a 64-bit architecture. In
particular, she can write the value of into the mem-
ory address (Line 8) and the value of
into the memory address (Line 9). To use this
code fragment for a dynamic hook, the attacker could,
for instance, modify a specific entry within the system
and set its pointer to point to the return address
of the function and its pointer to point
to attacker-controlled code. When the entry is deleted,
the function will then, while processing the
malicious pointers, overwrite its own return address and
activate the code of the attacker on its return.

The example code above was selected as the
function is used throughout the Linux kernel

and demonstrates the arguments stated above. In general,
this function is not exploitable by an external attacker, as
the entries that are used by the function are created by
other internal functions within the kernel. While these
functions initialize the values of the pointers correctly,
an attacker that controls the kernel can modify them arbi-
trarily, thus creating a new vulnerability. The
function does not expect the manipulated values and uses
them without checks. This enables an attacker to con-
duct an arbitrary 8-byte write, which is not enough to
introduce shellcode into the system, but is sufficient to
transfer the control flow to a previously prepared code
region. In addition, the attacker is not hindered by any
of the protection mechanisms used by the Linux kernel,
since she can disable W ⊕X for her code1, does not need
to overwrite the stack canary, and knows the address of
her code or can calculate the address of the location of
the return address2. Finally, since the function
is invoked by many other functions within the kernel, a
dynamic hook within this function is very effective.

3.3 Suitable Vulnerabilities
In principle, any kind of vulnerability can be used to im-
plement a dynamic hook. In this paper, however, we
will, for the sake of simplicity, focus on n-byte writes,
sometimes also referred to as write-what-where primi-
tives, such as the one presented in the previous example.
Such n-byte writes enable an attacker to modify n bytes
at an arbitrary memory location. In our example, the at-
tacker controls an 8-byte write to an arbitrary memory
address. In x86-assembly, n-byte writes are essentially

1Note that this is necessary since the first write (Line 8) of the exam-
ple will write the return address ( ) into the code ( ) of
the attacker. However, this is not a problem in practice, as the attacker
can set her code to be writable and executable. In fact, this is even the
default for memory allocated in the Linux kernel via .

2The location of the return address depends solely on the address of
the kernel stack and the size of the current function’s stack frame. Both
values are known to the attacker as we will describe in Section 4.2.

a memory instruction for which the source and the
destination operand can be controlled by an attacker. An
example of a potential 8-byte write vulnerability in Intel
assembly syntax is the following instruction:

mov [ r a x ] , rbx

If the attacker can control the contents of and
at the time the instruction is executed, she can misuse it
for a dynamic hook. It goes without saying that such
instructions appear frequently within software. In the
Linux 3.8 kernel binary, for instance, we found more than
103,000 instructions similar to the one shown above
that can potentially be abused for an 8-byte write. This
corresponds to about 5% of all instructions (1,976,441)
within the tested Linux kernel binary (Linux 64-bit 3.8
kernel). Note that this does not include the approxi-
mately 58,000 one, two, or four byte write instructions.
Together, this equates to a total of 8% of all instructions
that can potentially be used to realize a dynamic hook.

3.4 Types of Dynamic Hooks

Generally speaking, there are two different types of dy-
namic hooks: dynamic control hooks and dynamic data
hooks. The former target the control flow of the victim
application and can be used as an alternative to tradi-
tional hooks since they enable an attacker to intercept
events within the application. Dynamic data hooks, on
the other side, do not target control data, but rather other
critical data structures within an application. As an ex-
ample, consider that an attacker wants to install a back-
door. For this purpose, she places a dynamic hook into a
control path that can be triggered from userland such as a
specific system call. However, instead of changing con-
trol data, this dynamic hook will upon invocation directly
overwrite the credentials of a predefined process and el-
evate its privileges to root. Since the task credentials are
usually a data value, this can be achieved with a single
memory write. Thus, instead of overwriting a return ad-
dress, the attacker simply sets her hook to overwrite the
memory location where the task credentials reside. As
pointed out by Chen et al. [10], such non-control data
attacks can be quite powerful.

While dynamic data hooks do not modify the control
flow directly, they can be used to influence the control
flow at a later point in time. Consider for instance data
that resides in memory and is processed by a just-in-time
compiler. If an attacker manages to overwrite this data
with dynamic hooks before it gets compiled, she can in-
fluence the instructions that are introduced into the sys-
tem, which can lead to arbitrary code execution [7].
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3.5 Properties of Dynamic Hooks

Components. Dynamic hooks always consist of two
integral components. On the one hand, there is the in-
struction that activates the hook, which we refer to as the
trigger. In the case of an 8-byte write, the trigger is the

instruction that conducts the write on behalf of the
attacker. Every path that leads to the execution of the
trigger is referred to as a trigger path. On the other hand,
there is the data that was manipulated by the attacker and
encodes the malicious action that the attacker wants to
conduct. This is the payload of the hook. For n-byte
writes, the payload usually consists of two manipulated
pointers: the destination pointer, which contains the ad-
dress that will be written to and the source pointer, which
specifies the value that will be written.

Binding. While the same trigger can be shared among
different dynamic hooks, each hook in general requires
its own payload. The reason for this is that the payload
contains the actual data that specifies the control transfer.
This data, however, will only be valid in a particular con-
text. To overwrite a specific return address, for example,
we must first be able to predict its exact location. This
requires us to know the exact path leading to the use of
the payload by the trigger. In practice, this means that
a payload and thus the dynamic hook is usually closely
bound to a specific execution path. The closer the con-
nection between an execution path and a dynamic hook,
the better the control of the attacker over the hook.

In an ideal situation, a dynamic hook is exclusively
bound to a specific execution path. In this case, the
payload of the hook is only processed in the execution
path that leads to its trigger. This enables the attacker
to predict possible modifications applied to the payload
before its use in addition to the state of the machine at
the time of the exploitation with high probability, since
she must only consider a single execution path. Similar
to traditional exploits, this is essential information that
is required to be able to setup a dynamic hook correctly.
After all, the attacker needs to correctly predict the exact
address of the control data, which should be overwrit-
ten and overwrite it with the precise address of the target
code region. Without knowing the exact layout of the
stack as well as the transformations that may be applied
to the payload before its use, this is a hard task.

If there are multiple paths that use the payload, the
dynamic hook is only loosely bound to the path leading
to the trigger instruction. The more execution paths the
payload affects, the more difficult it will become for an
attacker to control the hook. On the one hand, this is due
to the fact that it will become increasingly difficult to
predict the necessary memory addresses and transforma-
tions as has been described above. On the other hand, the

more functions access the actual payload that the attacker
modified, the more likely it will be that the hook intro-
duces side effects into the application that may lead to
unexpected behavior and crash the application. Consider,
for instance, that an entry that is used by the
function has been modified to act as payload for a dy-
namic hook. If the same entry is used by a different
function to iterate through all elements within the list,
this will most likely lead to a crash of the system as the

and the pointer do not point to the previous
and next element, respectively, as would have been ex-
pected.

Coverage. Another important property of a dynamic
hook is coverage: as dynamic hooks should be closely
bound to the execution path containing the trigger, it
is essential that this triggering path is always executed
when the target event that should be hooked is invoked.
In this case, the dynamic hook provides full coverage.
Otherwise, the hook may only be able to intercept some
execution paths of the target event, but not all. In that
case, the hook has only partial coverage and must thus be
combined with other dynamic hooks to be able to achieve
full coverage of the target function. Note that while bind-
ing is a property of the payload of the hook, coverage is
a property of the trigger instruction.

3.6 Automated Path Extraction
So far we have discussed the concept of dynamic hooks
and provided an overview of the different types of dy-
namic hooks and their properties. However, the creation
of a dynamic hook still remains a manual process, which
can—as in the case of traditional exploitation—be very
time-consuming and error-prone especially for complex
binaries such as modern OS kernels. We now describe
how paths for dynamic hooks can be obtained automat-
ically for a given binary. This is essentially a two-step
process: In the first step, we make use of static program
slicing [40, 45] to extract potential paths that could be
used for a dynamic hook. In the second step, we then
employ symbolic execution [17, 34] to verify the satisfi-
ability of the paths and to generate detailed information
for their exploitation.

3.6.1 Program Slicing

To find possible locations for dynamic hooks within an
application, an attacker has to find triggers that make use
of a payload that she can control. Since trigger instruc-
tions can be as simple as a memory move, there usually
exist many triggering instructions in many paths of the
application. To identify whether a particular trigger in-
struction can be used for a dynamic hook, it is necessary

6
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to analyze the data flow that leads to the particular in-
struction. One technique that can be used for this pur-
pose is static program slicing [40, 45].

The basic idea behind static program slicing is to tra-
verse back through the control flow graph (CFG) of an
application starting from a sink node and to extract each
node that directly or indirectly influences the values used
at the sink. Applied to the problem of finding dynamic
hooks, static program slicing thus allows us to deter-
mine where the values of the source and the destination
pointer in an n-byte write originate. To achieve this, we
first identify all potentially vulnerable instructions
within a given binary. These are essentially all in-
structions which move a value contained within a register
to a memory location specified by another register. In the
next step, we then traverse the CFG of the binary back-
wards at the assembler level until we encounter the first
instruction that modifies the source register of the move.
We record this instruction and continue with our back-
ward traversal. Instead of looking for instructions that
modify the source register of the original move, however,
we will from here on search for instructions that modify
the source register of the last instruction we recorded. If
we continue this process, we eventually obtain the reg-
ister or memory location where the value that is later on
contained within the source register originates. We then
repeat the process for the destination register. All the
instructions that we recorded using this method form a
slice of the binary. Each slice contains all the instruc-
tions that affect a given vulnerable instruction.

We implemented a slicer which is capable of extract-
ing potential paths that could be used for n-byte writes
from a 64-bit Linux or Windows kernel binary. The im-
plementation of the slicer is based on the disassembler
IDA Pro [14]. In particular, we make use of the CFG that
IDA provides to perform the above described static inter-
procedural def-use analysis. Starting from each trigger,
we perform a breadth-first search in a backwards direc-
tion. We hereby make use of a register set to conduct the
actual analysis. Initially, this register set consists of the
source and destination register. Whenever we encounter
an instruction that modifies a register included within the
register set, we add the source register of the instruction
to the set and remove the modified register. Since we
walk backwards through the instruction stream, this ef-
fectively allows us to record and track the def-use chains
for the source and destination register. In addition, we
record all instructions that we visit along the way, in or-
der to be able to reconstruct the path that we explored in
case we consider it to be potentially exploitable.

The challenge that remains to be solved is to deter-
mine whether a slice can be used for a dynamic hook
or not. To address this problem, we must know whether
the registers in the vulnerable move can be controlled by

an attacker. We consider this to be the case if the val-
ues of the source and destination register originate from
a global variable. The reasoning behind this approach
is that the data used within the move in this case stems
from a persistent location. Consequently, to control the
final instruction, an attacker can modify the pointer
chain starting from the global variable.

To identify global variables in the kernel, we assume
that each access to a fixed address or the Global Seg-
ment register (GS) constitutes an access to a global vari-
able. The reason for the latter is that both the Linux
and Windows kernels store important global variables
that are valid for a particular CPU within a memory re-
gion pointed to by this register. For instance, both Linux
and Windows store the address of the
( ) or the ( ) structure of the
process that is currently executing in this memory region.

If both the source and the destination register originate
from a fixed address or the memory region pointed to by
GS, we consider the path to be potentially exploitable
and record it such that it can later on be used as input for
the symbolic execution engine.

3.6.2 Symbolic Execution

Symbolic Execution is a well-known program analy-
sis method that has been proposed over three decades
ago [8, 17]. The basic idea of symbolic execution is to
treat input data of interest as symbols rather than con-
crete values. These symbols can represent any possible
value and as we walk over the code of a program, the
values become constrained. Branches, for instance, set
up conditions that constrain symbolic variables. Each of
these conditions can be represented as a logical formula
which can then be fed into an SMT solver to obtain con-
crete values that satisfy the path conditions. A profound
introduction is available in the literature [25, 34].

We use forward symbolic execution to verify the sat-
isfiability of our sliced paths and to produce detailed in-
formation for the creation of the dynamic hooks. In the
process, we utilize the VEX IR, which is a RISC like
intermediate representation with single static assignment
(SSA) properties, deeply connected to the popular Val-
grind toolkit [24]. Due to space limitations, we refrain
from discussing this intermediate language in detail.

To verify satisfiability, we transform each basic block
of the sliced path into VEX IR code and execute the code
symbolically. The translation to VEX IR is achieved by
utilizing a python framework called pyvex [36]. We dis-
mantle every VEX statement that we obtain from pyvex
and link the components of the statements into our own
data structures. These data structures are used to walk
over the VEX code and by doing so, we semantically
map the statements to Z3 expressions. Z3 is a theorem
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prover developed at Microsoft Research that we use to
solve our formulas [23].

As we walk over the VEX code of our sliced paths, we
also keep track of three global contexts, i.e., a memory
context, CPU context, and the current jump condition.
Each context consists of Z3 expressions that semantically
mirror the current state of the execution. Additionally,
each basic block also keeps track of temporary VEX IR
variables in SSA form. By constant propagation, we use
these variables to resolve source and destination. Each
store, load, and register set statement updates the corre-
sponding context in form of Z3 expressions. Once we hit
a jump condition, we ask the solver whether we can take
the jump according to our context. If no solution exists,
we can filter out the path. An unsatisfiable set of formu-
las stops execution of the current path, and we move on
with the next slice.

At this point it is worth mentioning that we do not use
symbolic execution in the traditional sense to achieve
code coverage. Our main goal is to check whether we
can walk down our paths and to determine what value
sets lead us to the end of the slice. We use the symbolic
formulas to generate detailed information about the con-
trolled registers at the time the vulnerability is triggered
as well as the jump conditions that must be fulfilled to
actually reach the trigger. By processing over the VEX
code, the solver also gives us possible values to set.

4 Experiments

Based on the slicer and the symbolic execution engine,
we created a prototype that we used to automatically ex-
tract paths for dynamic hooks in a fully patched Win-
dows 7 SP1 64-bit kernel and a Linux 64-bit 3.8 kernel.
We chose this approach for three main reasons. First and
foremost, since malware nowadays generally attacks the
kernel, this approach allowed us to test the prototype in a
realistic scenario. Second, kernel binaries are especially
complex, which makes them well suited for a thorough
test of our implementation. Finally, by targeting Win-
dows and Linux, the experiments show that the proposed
mechanism is applicable to two of the most popular OSs.

In the following, we first discuss the results that we
obtained by providing detailed statistics about the auto-
matically extracted paths for both kernels. To demon-
strate how useful the prototype is when it comes to the
actual creation of the hooks, we also describe three con-
crete POCs for dynamic hooks that we created based on
the information that the prototype provided.

4.1 Automated Path Extraction
As stated above, we tested our prototype with a fully
patched Windows 7 SP1 64-bit kernel and a Linux 64-bit

3.8 kernel. The goal of the experiment was to automati-
cally extract trigger paths that could then either be used
by a human expert to manually design dynamic hooks or
to automatically generate exploits. Table 1 provides an
overview of the obtained results.

At first, we determined the number of instructions
contained within both kernel binaries for reference. In
the next step, we obtained the number of potentially ex-
ploitable 8-byte instructions. In the process, we only
counted those instructions that move data from one
general purpose register into a memory location speci-
fied by another general purpose register with the condi-
tion that the involved registers were neither nor .
The reason for this restriction is that our prototype imple-
mentation currently does not support a memory model,
meaning that we cannot track memory store and load op-
erations in our slicer, which is why we currently ignore
any path that requires this functionality. We will cover
this limitation in more detail in Section 5.3. As Table 1
shows, about 2 % of all instructions within the tested ker-
nels are instructions that fulfill this criteria.

Next, we used the slicer to extract potentially ex-
ploitable slices for each of the identified moves. In
case of Linux, the slicer considered about 4% of the

instructions as potentially exploitable, while on the
Windows side about 20% of the instructions were
marked as possibly exploitable. We assume that the sig-
nificant difference between Windows and Linux stems
from the fact that Linux has substantially more in-
structions that store or load data from memory (61,651
vs 37,272). Since the slicer does not support a memory
model, it will abort whenever such a instruction is
part of a def-use chain. Due to their number, this sce-
nario is more likely to occur on Linux than on Windows.

Finally, we symbolically executed each of the obtained
slices. In total, this led to 566 exploitable paths for Linux
and 379 exploitable paths for Windows. The symbolic
execution engine thereby produced the required value for
each conditional jump within the path and detailed infor-
mation of the vulnerable instruction. In particular,
the output3 specifies exactly which memory addresses
must be modified in what way to pass the conditional
jumps and where the source and destination values are
located, respectively. This information can directly be
applied to generate exploits or to manually create a dy-
namic hook as we will show in the next section.

4.2 Prototypes

We now present three concrete examples of dynamic
hooks to illustrate the capabilities and properties which
have been discussed throughout the paper. We created

3An example of the output is shown in Section 4.2.3.
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OS Size Instructions 8-byte moves Slices Paths

Linux 3.8 64-bit ( ) 18.8 MB 1,976,441 42,130 (2.1%) 1753 (4%) 566 (32%)
Windows 7 SP1 64-bit ( ) 5.3 MB 1,330,791 26,694 (2.0%) 5450 (20%) 379 (07%)

Table 1: Overview of the 8-byte moves, the potentially exploitable slices, and the exploitable paths according to the
symbolic execution engine for the analyzed Linux and Windows kernels.

these examples based on the output provided by our pro-
totype. The first and the third example focus on a dy-
namic control hook, while the second example demon-
strates a dynamic data hook. To ease the understand-
ing of the examples, all hooks leverage a trigger instruc-
tion within the function (as explained in Sec-
tion 3.2) or its Windows equivalent. The first two hooks
were implemented for Linux 3.8 and an Intel Core i7-
2600 3.4 GHz CPU. To demonstrate that the proposed
concept is similarly applicable to Windows, the third
hook was implemented on a fully patched version of
Windows 7 SP1 running on the same CPU.

4.2.1 Dynamic Control Hook: Intercepting Syscalls

A common functionality that kernel level malware re-
quires is the possibility to intercept system calls. In this
example, we show how a single dynamic hook can be
used to intercept all system calls for a particular process.
To achieve this, the hook is placed into the execution flow
of the system call handler, which is—independent of the
system call mechanism that is used (i.e., interrupt-based,
sysenter-based, or syscall-based)—invoked whenever a
system call on the x86 architecture is executed. The main
purpose of the syscall handler is to invoke the actual sys-
tem call by using the system call number as an index into
the system call table.

Similar to other functions within the kernel, the sys-
tem call handler can be audited for debugging reasons.
Auditing can be enabled or disabled within the flags
field of the struct associated with each
process. By setting the flag, ev-
ery system call conducted by a process will also lead to
the invocation of the auditing functions. In particular,
the function will be executed
before the invocation of a system call and the function

will be executed after the sys-
tem call, but before the system call handler hands control
back to user space. In our POC, the dynamic hook is set
within the function.

When syscall auditing is enabled, the
function records infor-

mation about the system call such as the syscall
number and the arguments of the syscall within the
audit context of the process. The purpose of the

function is to reset the audit

context of the task before the system call returns. In
the process of resetting the audit context, this function
invokes the inline function , which
resets the within the audit context:
1 s t a t i c i n l i n e void a u d i t _ f r e e _ n a m e s (
2 s t r u c t a u d i t _ c o n t e x t ∗ c o n t e x t ) {
3 . . .
4 l i s t _ f o r _ e a c h _ e n t r y _ s a f e ( n , nex t ,
5 &c o n t e x t −>n a m e s _ l i s t , l i s t ) {
6 l i s t _ d e l (&n−> l i s t ) ;
7 }
8 . . .
9 }

The function essentially iterates
over the of the audit context (Line 4) and
deletes every entry within the list (Line 6). Consequently,
if we control the , we can control the entry
that is passed to the function, which in turn al-
lows us to exploit its vulnerability. As the
is not modified by the func-
tion or anywhere else in the kernel4, the attacker is
free to modify it in any way she wants. That is, the

structure is exclusively bound to the exe-
cution path within the syscall handler that we use for our
dynamic hook.

While the structure seems to be perfectly
suited for a dynamic hook, the triggering path places
additional constraints on the hook. The problem arises
due to the fact that the function is contained
within a loop that iterates over all entries within the

list (Line 4). To iterate through the list,
the loop will essentially follow the pointer in every
entry until one of them points back to the first element
in the list, which is . Since we
want to modify the and the pointer of an en-
try within the list to conduct an arbitrary 8-byte write, we
have to take this problem into account and assure that the
list iteration will eventually terminate. To achieve this we
initialize the audit context as shown in Figure 1.

The basic idea behind this setup is to make use of a
special address, referred to as a “magic address”, that
is a valid memory address, but at the same time con-
tains valid x86 instructions. Due to little-endian byte
order, these valid instructions must be contained in re-

4While there are other functions in the kernel that try to access the
, these attempts can be blocked by setting the first member

within the audit context ( ) to one.
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Trampoline

&context->name_list

Magic_Address

next:

next:

prev:

prev: Return Address

&Magic_Address

&context->name_list+ 0xe6eb:

+ 0x230:

+ 0x248:

Figure 1: The audit context structure that the attacker
uses to set a dynamic hook within .

verse order within the address. In Figure 1, the in-
struction encoded into the address is a negative relative
jump ( (address) ⇒ (instruction)) that
will upon execution transfer control to a trampoline, that
then transfers control to an arbitrary address. Initially
when the loop begins iterating over the , it
follows the pointer to the first entry within the list,
which is located at the magic address. The pointer
stored at the magic address will in turn point back to the

, thus fulfilling the loop condition. How-
ever, before the loop exits, the first entry in the list (lo-
cated at the magic address) is processed by the
function. Since the pointer of this entry points to
the location of a return address, the function
will overwrite this return address with the value stored in
the pointer (prev → next = next), which points to

. Consequently, as soon as the
return address is used, control will be transferred to the
address of where the magic
address is stored, leading to the execution of the magic
address and the activation of the trampoline code. Note
that the hook requires the audit context region created
by the attacker to be writable and executable, since the

function conducts two write operations as has
been described in Section 3.2. This is not a big problem
in practice, since every memory region allocated with

is by default writable and executable.

The final problem that remains is which return address
we are actually going to overwrite and how we can pre-
dict its location. As previously stated, the syscall handler
is invoked before every system call and it will invoke the
actual function handling the syscall. Thus, if we know
the stack frame size of the syscall handler and the lo-
cation of the kernel stack, we can predict where the re-
turn address of the function that is invoked by the syscall
handler resides. The stack frame size can be obtained
from the assembler code of the syscall handler, while the

location of kernel stack can be obtained from a kernel
variable ( ). The target
return address will then reside at

.

Summary. A dynamic control hook for intercept-
ing all system calls for a particular process can be
placed in the function. To en-
sure that execution passes through this function, we set
the flag within the
struct of the target process. In the next step, we mod-
ify the audit context of the target process in the way de-
scribed above and use a trampoline to control the execu-
tion flow. This enables us to reliably divert the control
flow at run-time. The resulting dynamic hook will have
full coverage and be exclusively bound to the execution
path leading to the function.

4.2.2 Dynamic Data Hook: Installing a Backdoor

In the second example, we demonstrate the possibilities
of dynamic data hooks. In particular, we show how a
dynamic data hook can be used to install a backdoor
within a Linux system that is capable of elevating the task
rights of a predefined process to root. For this purpose,
we leverage the system call, which enables one
process to attach to another process for debugging rea-
sons. To install the backdoor, we simulate that a process
used the system call to attach to the tar-
get process (i.e. the process that will contain the hook).
This is achieved by manually applying the changes that
the function conducts to the internal
data structures of the target process. Most importantly,
the field of the task must be updated to include

, the field within the task must
be set to 1, and the field must be set to the pro-
cess which will later trigger the backdoor. We will defer
the discussion of this last change for the moment and ex-
plain it in more detail later on.

Once the changes of the func-
tion have been simulated, it is possible to invoke
the function on the so prepared pro-
cess. The execution of this function eventually leads
to the invocation of the function,
which in turn invokes the function using the

pointer within the target process as argu-
ment:
1 void _ _ p t r a c e _ u n l i n k (
2 s t r u c t t a s k _ s t r u c t ∗ c h i l d ) {
3 . . .
4 l i s t _ d e l (& c h i l d −> p t r a c e _ e n t r y ) ;
5 . . .
6 }

To use this code fragment for a dynamic data hook,
we modify the ptrace_entry → next pointer and the

10



USENIX Association  23rd USENIX Security Symposium 823

ptrace_entry → prev pointer of the target process. This
enables us to conduct an arbitrary 8-byte write when the

function is invoked during the execution of
. In particular, we set the pointer

to point to the task credentials that we want to override
and the pointer to an address that is writable and
ends with four zero bytes. To understand this, we have to
take a look at the Linux task credential structure, which
defines the access rights of a process:

1 s t r u c t c r e d {
2 . . .
3 k u i d _ t u i d ; /∗ r e a l UID ∗ /
4 k g i d _ t g i d ; /∗ r e a l GID ∗ /
5 k u i d _ t s u i d ; /∗ saved UID ∗ /
6 k g i d _ t s g i d ; /∗ saved GID ∗ /
7 k u i d _ t e u i d ; /∗ e f f e c t i v e UID ∗ /
8 k g i d _ t e g i d ; /∗ e f f e c t i v e GID ∗ /
9 . . .

10 } ;

Each task contains three pairs of access rights and each
access right pair consists of a user id and a group id. Most
important for us is the effective user id ( ), which
specifies the effective access rights of a process. Since
the root user in Linux generally has the user id zero, our
goal is to overwrite the field, which has a size of 4
bytes, with zeroes. If we choose an address for the
pointer that has its lower 32-bits set to zero and addition-
ally set the pointer to point to the field of the
process whose privileges we want to elevate, we will—
due to the little endian byte order—overwrite the
(prev → next = next) field with zeroes and thus set the
access rights of the process to root. However, because
the function will also write the pointer
into the address of (next → prev = prev),
we have to ensure that the address used within the
pointer points to a writable memory region that does not
contain crucial data. A possible address that can be used
for this purpose is since this ad-
dress usually points to the first 8-bytes of the physical
memory of the machine, which is not used by the Linux
kernel. Finally, note that we will also override the
of the process with the upper 32-bits of the address in the
next pointer. This will, however, not affect the process as
long as it has a valid .

We can now set up a dynamic hook as follows: First,
we need to select a target process that remains running
on the system as it will contain the above described dy-
namic hook. Good candidates are therefore background
daemons such as the SSH daemon. Second, we need to
specify the victim process whose privileges we want to
elevate and setup the dynamic hook within the target pro-
cess. Since we need to know the address of the task struct
of the victim process in order to be able to set the
pointer to its field, this process also needs to remain
running. A good choice in this case could, for instance,

be a shell process within a screen session.
To activate the backdoor, we need to call the

syscall with the argument on the target
process. However, the backdoor cannot be activated by
any process because only the tracing process can detach
from the traced process. Since we simulate the changes
conducted by , the process which can
execute the call, is the process that we
specify as during the setup of the dynamic hook.
While this ensures that the backdoor cannot be triggered
by accident, this requires us to specify the process that
triggers the backdoor when we setup the dynamic hook.
The easiest way to solve this problem is to specify the
victim process as parent of the target process. In this
case the victim, whose privileges will be elevated, can
trigger the backdoor itself.

Summary. A dynamic data hook can be used to imple-
ment a backdoor that can be triggered from user space
with arbitrary access rights. In our example, the back-
door is closely bound to the process that was specified
as the tracing process and to the execution path within

. In addition, the hook only provides
partial coverage as only the detach call to a specific pro-
cess will trigger it, which is desired behavior in the case
of a backdoor.

4.2.3 Dynamic Control Hook: Process Termination

To show that the proposed hooking concept can be ap-
plied to other OSs as well, we will in our final example
present a dynamic control hook that we implemented on
a fully patched version of Windows 7. In particular, the
hook is capable of intercepting the termination of an ar-
bitrary process, which can, for instance, be useful in situ-
ations where a malicious process on the system is found
and terminated by a security application or the user. Due
to the hook, the malware would be notified of this event
and could react to it.

When a process is exiting on Windows 7, the function
is invoked which in turn invokes

various cleanup functions that prepare the termination of
the process. One of these functions is

. To support a wide range of appli-
cations, Windows provides processes with the possibility
to request a change to the system’s clock interval [32].
This enables programs that have a demand for a faster
response time to decrease the clock interval and thus to
increase the number of clock-based interrupts. When a
process emits such a request, the process is added to the

list, which is used by the OS to
manage all timer resolution changes. As the name sug-
gests, the purpose of the

function is to remove processes from the man-
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agement list once they exit. Our automated path extrac-
tion tool discovered the following path within this func-
tion:

1 −−−−SLICE−−−−
2 0 x000000014042c396 mov rax , gs :188 h
3 0 x000000014042c39f mov rbx , [ r a x +70h ]
4 0 x000000014042c3c6 mov rcx , [ rbx +4A8h ]
5 0 x000000014042c3cd mov rax , [ rbx +4B0h ]
6 0 x000000014042c3d4 mov [ r a x ] , r c x
7 0 x000000014042c3d7 mov [ r c x +8 ] , r a x
8
9 −−−−SYMBOLIC−−−−

10 Jump C o n d i t i o n i n : BB_0x14042c390
11 Concat (0 x0 , E x t r a c t (0 x1f , 0x0 ,
12 MEM[RBX+0 x440 ] ) ) >> Concat (0 x0 , 0 xc ) &1 == 0
13
14 CPU CONTEXT/CONTROLLED REGISTERS
15 RCX −> MEM[MEM[MEM[0 x188+GS]+0 x70 ]+0 x4a8 ]
16 RAX −> MEM[MEM[MEM[0 x188+GS]+0 x70 ]+0 x4b0 ]

To remove a process from the
list, the

function obtains the forward and the backward pointer
(Line 4 and Line 5) from the structure of the
process and performs the discussed list delete operation
(Line 6 and Line 7). The only prerequisite for this path
is that the 13th least significant bit of the memory word
at location +0x440 is not set (Line 11). By
manipulating this memory word and the pointers, which
are located within in the struct of the process
at offset 0x4A8 (Line 4) and offset 0x4B0 (line 5) re-
spectively, we can thus perform an arbitrary 8-byte write
and change the control flow. In our POC we set the for-
ward pointer ( ) to point to our shellcode and the back-
ward pointer ( ) to point to the return address of

. Just as in the case
of our first example, the location of the latter can be ob-
tained by subtracting the sum of the stack frames of the
invoking functions from the start address of the kernel
stack, which is stored within the variable
contained within the structure of the thread of
the process. Similarly, the area where the shellcode re-
sides must be writable and executable. On Windows,
we can allocate such a memory region by invoking the

function with the argument
.

One last problem that remains, however, is that the
entry structure of a process is

unfortunately not exclusively bound to the path of our
dynamic hook, since the list is
also used by other functions such as

. The solution to this problem is quite sim-
ple, though: since the list is
not critical for the execution of a process and the

function does on top
of that not iterate through the list, but rather accesses
the forward and backward pointers directly, we can sim-

ply remove the entry from the linked list. As a re-
sult, the manipulated entry will no longer be processed
by other management functions, which will bind the

entry structure exclusively to
our trigger path. In our experiments, removing processes
from the list did not affect their
execution in any way. The proposed dynamic hook there-
fore serves as an example that an exclusive binding of a
hook payload must not be given by the target application,
but can also be manually enforced by the creator of the
hook.

Summary. By manipulating the
entry structure of a process in the way described

above we can install a dynamic hook and intercept the
termination of an arbitrary process on Windows. While
the manipulated structure is by default not exclusively
bound to the trigger path, the creator of the hook can
enforce an exclusive binding manually by removing the
manipulated entry from its linked list. In addition, the
presented dynamic hook had full coverage in our experi-
ments. It was even triggered if we forcefully terminated
the process using the task manager.

5 Discussion

Up to this point, we have not discussed what kinds of
transient control data exist. This is why it may seem to
the reader that dynamic control hooks could be mitigated
by protecting return addresses alone. In this section, we
cover this topic in more detail and show that this is not
the case. In addition, we cover possible countermeasures
against dynamic hooks and review the limitations of the
proposed hooking concept and our current prototype.

5.1 Transient Control Data

Instead of targeting persistent control data such as func-
tion pointers in the system call table, dynamic control
hooks change transient control data at run-time. While
return addresses are a popular example of transient con-
trol data, it is not the only kind of transient control data
that exists. For instance, if a function allocates a local
function pointer, this pointer will reside on the stack and
not in the data segment or the heap. Instead of over-
writing the return address, an attacker can in such a case
similarly target the function pointer. While this is a rather
unlikely scenario, it demonstrates a very important class
of attacks where a local variable on the stack is changed
to achieve the desired control flow change. This class of
attacks is not restricted to function pointers alone. Con-
sider, for example, the following code from the sys-
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tem call in the Linux kernel5:
1 s t r u c t fd {
2 s t r u c t f i l e ∗ f i l e ;
3 i n t n e e d _ p u t ;
4 } ;
5
6 SYSCALL_DEFINE3 ( read , unsigned i n t , fd , char
7 _ _ u s e r ∗ , buf , s i z e _ t , c o u n t ) {
8 s t r u c t fd f = f d g e t ( fd ) ;
9 . . .

10 r e t = f . f i l e −>f_op−>r e a d ( f . f i l e , buf ,
11 count , pos ) ;
12 . . .
13 }

In this case, a local structure ( ) is al-
located on the stack (Line 8). The structure contains
a pointer to another structure ( ),
which in-turn contains a function pointer that is called
in Line 10. With the help of a dynamic hook, an at-
tacker could modify the pointer within the local struc-
ture (Line 2) and point it to an attacker-controlled struc-
ture instead. If she manages this before the function call
in Line 10 is executed, this will effectively allow her to
control the function call and thus enable her to arbitrarily
change the control flow.

Instead of targeting a return address or a function
pointer directly, the attacker in this scenario modifies a
local pointer on the stack. This approach enables her to
control any data that the local function accesses using
this pointer. In the kernel, where objects in general are
accessed through pointer chains, this represents a power-
ful attack vector, which effectively provides control over
any object that the pointer references. Since similar code
exists in many other functions within the kernel, this at-
tack vector must be taken into account when one consid-
ers countermeasures against dynamic hooks.

5.2 Countermeasures
Dynamic hooks are installed by an attacker that already
controls the application, which renders many of the ex-
isting defense mechanisms against exploits ineffective.
However, while dynamic hooks are a powerful attack
vector, there are, of course, countermeasures that can be
used to reduce the attack surface. In the following, we
first discuss possible countermeasures against dynamic
control hooks, before we present defense mechanisms
for dynamic data hooks.

Dynamic control hooks. What makes dynamic con-
trol hooks difficult to detect is that they do not perma-
nently modify control data. Instead, their payload is hid-
den within non-control data and the actual control flow

5For better readability we directly included the function
into the system call. In the actual code the function call in Line 10
will occur in the function.

modification only occurs at run-time. This enables them
to evade popular hook detection mechanisms such as
HookSafe [43] or SBCFI [27], which only protect per-
sistent control data, but ignore transient control data on
the stack. However, at some point during the execution,
dynamic control hooks must override control data in or-
der to divert the control flow. Thus while a dynamic hook
may be hidden at first, it will become visible when it is
triggered. The resulting control flow change can poten-
tially be detected using control flow integrity (CFI) and
related approaches [1, 15, 20, 39, 42, 46, 48].

In order to detect dynamic control hooks with CFI, it
is crucial that every control transfer of an application is
verified. If a single control transfer is missed, this can
potentially be abused by an attacker to install a dynamic
hook. However, finding all possible control transfer in-
structions within complex software such as an OS kernel
is a difficult problem. This is especially true if we con-
sider attacks on transient control data such as the one
present in the last section. Even worse, control trans-
fer instructions can often have more than a single tar-
get. Consequently, one must not only identify all control
transfer locations, but also all the possible targets of these
transfers to avoid false positives. Additionally, if there
are multiple possible targets for a given control transfer
instruction, an attacker can still launch return-to-libc like
attacks [37], which is a general problem of CFI mech-
anisms [48]. Finally, every check of a control transfer
comes at a cost [39]: the more instructions we verify, the
higher the overhead will be and for applications that are
optimized for performance such as an OS kernel, even a
small overhead can have a huge impact.

While current CFI approaches are not yet able to solve
all of these problems, they certainly reduce the attack
surface and make it more difficult to install dynamic
control hooks. The results presented in this paper can
help to further improve these mechanisms by using the
discussed techniques to automatically extract possible
triggers from a given application and adding additional
checks to verify them. To increase the performance, one
could make use of lazy control flow verification as pro-
posed by Bletsch et al. [7]. This could result in an ef-
fective and efficient detection system, which might not
be able to eliminate dynamic control hooks entirely, but
will significantly raise the bar for an attacker.

Dynamic data hooks. The defense mechanisms dis-
cussed above make use of the fact that dynamic control
hooks have to eventually modify the control flow. That
is, the detection mechanisms do not focus on the hook
itself, but rather target the effects of the hook’s invoca-
tion. The idea behind dynamic data hooks is to com-
plicate detection even further by modifying non-control
data instead of control data. As a result, defenders can no
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longer concentrate on the control flow of the application
alone, but rather have to detect integrity violations within
the data of the application.

Verifying the integrity of data structures is a difficult
problem. Petroni et al. [26] were the first to propose a
general architecture for the detection of kernel data in-
tegrity violations. Since then various systems have been
proposed that try to detect or prevent malicious modifi-
cation of kernel data structures [9, 15, 19, 30, 33]. What
is common to all these approaches, however, is that they
only enforce integrity checks, but leave the creation of
the actual integrity constraints to a human expert. To the
best of our knowledge, the only approach that tries to
generate integrity constraints for kernel data structures
automatically is Gibraltar [4]. While this approach pro-
vides a good starting point and could support a human
expert in the creation of integrity constraints, the authors
acknowledge that the generated invariants are “neither
sound nor complete” [4]. Creating reliable and evasion-
resistant integrity constraints is, however, the basis for
the detection of dynamic data hooks.

To be able to effectively protect kernel data structures,
additional research in the field of automatic integrity con-
straint generation is required. Techniques that are able
to generate signatures for kernel data structures such as
the ones presented by Lin et al. [21] or Dolan-Gavitt et
al. [12], could thereby provide a good starting for further
research, as the generated signatures could potentially
be used to infer integrity invariants. In the meanwhile,
initial defense mechanism could use systems such as
HookMap [43] or K-Tracer [18] in combination with the
techniques presented in this paper to generate integrity
constraints for known dynamic hooks that can then be
enforced by one of the systems mentioned above.

Summary. While the threat of dynamic control hooks
can potentially be reduced with the help of (kernel-level)
CFI mechanisms, dynamic data hooks pose a difficult
problem that cannot be easily solved. To detect dynamic
data hooks, reliable integrity constraints are required that
allow the automatic verification of the kernel data re-
gions. Until these constraints are available, one could re-
duce the attack surface with the help of manual integrity
specifications or by automatically creating integrity con-
straints for known attacks.

5.3 Limitations
Dynamic Hooks. Dynamic hooks essentially face two
limitations. First and foremost, not every function may
contain a vulnerability that can be used to implement a
dynamic hook. In contrast, it is likely that there are func-
tions which are immune against the attack. However, this
is not a big problem in practice: if a particular function

cannot be hooked directly, it may still be possible to in-
tercept calls to the function by hooking a function that
immediately precedes or follows the function in the exe-
cution flow. After all, not every function contains a func-
tion pointer either. Function pointer hooks have never-
theless been proven to be very effective in practice.

Second, similar to traditional exploits, a dynamic hook
may face restrictions that are caused by the vulnerability
it is exploiting. For instance, specific hooks such as the
one presented in our first prototype (see Section 4.2.1)
may require that certain memory areas are writable and
executable. Depending on its restrictions, a dynamic
hook may therefore not be suitable for every scenario.
This, however, heavily depends on the particular hook.

Automated Path Extraction. While our prototype al-
ready produces very valuable paths that can be used to
implement powerful dynamic hooks as we have shown
in Section 4.2, it also faces some limitations. First, our
slicer does not yet support a detailed memory model.
As a result, we are unable to find dynamic hooks on
paths where registers, which are currently monitored, are
loaded with values from the stack. This situation fre-
quently occurs when subfunctions are called. In this
case, the calling function often stores register values tem-
porarily on the stack to guarantee that they are not over-
written by the subfunction. During our experiments, the
slicer ignored 79,853 such paths due to this restriction.

Second, the symbolic execution engine currently only
handles a subset of the available x86 instructions. Most
importantly, it is unable to handle some instructions that
are a ring-0 privilege. This is, however, a restriction in
the VEX intermediate language. In the experiments we
conducted, this led to 949 (55%, Linux) and 4,908 (90%,
Windows) paths that could not be verified.

Finally, the slicer and the symbolic execution engine
currently do not consider the properties of binding and
coverage, while determining whether a path could be
used for a dynamic hook or not. Consequently, not all
of the paths extracted by our prototype will be suited for
the implementation of a dynamic hook. As described in
Section 3.5, especially the property of binding can be a
limiting factor. If a payload is only loosely bound, it is
likely that the hook will introduce side effects that can
lead to a crash of the system. Determining automatically
whether a path has exclusive binding or full coverage is
difficult though. As the discussed POCs show, even pay-
loads that initially seem unsuited for the implementation
of a dynamic hook can through subtle manipulations of
the involved data structures yield very reliable hooks. To
designate the binding of a payload, we thus not only have
to identify whether a payload is used in multiple loca-
tions, but we also have to establish how many of those
usages can be controlled by the attacker. This requires
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a profound semantic understanding of the data structures
and functions involved.

6 Related Work

To the best of our knowledge, Petroni et al. [27] were
the first to consider the hooking of transient control data.
However, their work is primarily focused on the detec-
tion of persistent control flow modifications. Attacks on
transient control data are thereby only mentioned as a
limitation of their system. Hofmann et al. [15] presented
a “return to schedule” rootkit that overwrites return ad-
dresses of sleeping processes to periodically invoke itself
and evade hook detection mechanisms. While related to
our work, this approach does not leverage exploitation
techniques to change the control of an application at run-
time. As a consequence, the technique only enables the
rootkit to reschedule itself, but it does not allow it to in-
tercept events within the system, which is the actual goal
of a hooking mechanism.

In addition, there has also been a lot of work con-
cerned with the possibilities of non-control data attacks.
Chen et al. [10] were the first to demonstrate that non-
control data attacks are indeed a dangerous and realis-
tic threat. Sparks and Butler [38] presented DKOM as a
general mechanism to hide objects within kernel space.
Baliga et al. [5] extended this work and presented another
class of stealthy attacks that do not have the goal of hid-
ing objects, but rather target crucial kernel data structures
to subvert the integrity of the system. Finally, Prakash et
al. [28] discussed the manipulation of semantic values in
the kernel to evade virtual machine introspection (VMI).

7 Conclusion

In this paper, we presented a novel hooking concept that
we coined dynamic hooks. The main insight behind this
concept is that existing hooking mechanisms are based
on the permanent modification of persistent control data.
As a consequence, the resulting hooks are constantly ev-
ident within the system and can be detected by verifying
persistent control data alone.

Dynamic hooks solve this problem by targeting tran-
sient control data at run-time. This is achieved by apply-
ing exploitation techniques to the problem of hooking.
To install a dynamic hook, an attacker will modify the
internal data structures of an application in such a way
that its usage will trigger a vulnerability at run-time. The
hook thereby only consists of the modified data as well
as the exploitation logic. This results in a powerful attack
model with a wide range of possibilities as the attacker
can make use of the entire arsenal of exploitation mecha-
nisms to achieve her goal. At the same time, the hook

will remain hidden in non-control data until it is trig-
gered, which makes dynamic hooks not only powerful,
but also difficult to detect in practice.

To show the applicability of the approach, we imple-
mented a prototype that is capable of automatically ex-
tracting paths for dynamic hooks from recent Linux and
Windows kernels. The experiments that we conducted
prove that dynamic hooks are not only a dangerous, but
are also a realistic threat that can be applied to practical
scenarios such as system call hooking and backdooring.
In future work, we plan to further improve our proto-
type implementation and to make use of it to generate in-
tegrity constraints instead of attack vectors that can then
be used for the reliable detection of dynamic hooks.
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Abstract
This paper introduces X-Force, a novel binary analysis
engine. Given a potentially malicious binary executable,
X-Force can force the binary to execute requiring no in-
puts or proper environment. It also explores different ex-
ecution paths inside the binary by systematically forc-
ing the branch outcomes of a very small set of condi-
tional control transfer instructions. X-Force features a
crash-free execution model that can detect and recover
from exceptions. In particular, it can fix invalid mem-
ory accesses by allocating memory on-demand and set-
ting the offending pointers to the allocated memory. We
have applied X-Force to three security applications. The
first is to construct control flow graphs and call graphs
for stripped binaries. The second is to expose hidden
behaviors of malware, including packed and obfuscated
APT malware. X-Force is able to reveal hidden mali-
cious behaviors that had been missed by manual inspec-
tion. In the third application, X-Force substantially im-
proves analysis coverage in dynamic type reconstruction
for stripped binaries.

1 Introduction

Binary analysis has many security applications. For ex-
ample, given an unknown, potentially malicious exe-
cutable, binary analysis helps construct its human in-
spectable representations such as control flow graph
(CFG) and call graph (CG), with which security analysts
can study its behavior [40, 23, 50, 46, 6, 33]. Binary anal-
ysis also helps identify and patch security vulnerabilities
in COTS binaries [10, 14, 31, 51, 11]. Valuable informa-
tion can be reverse-engineered from executables through
binary analyses. Such information includes network pro-
tocols [44, 12, 7, 47, 28, 32], input formats [27, 29, 13],
variable types, and data structure definitions [30, 25, 39].
They can support network sniffing, exploit generation,
VM introspection, and forensic analysis.

Existing binary analysis can be roughly classified into
static, dynamic, and symbolic (concolic) analysis. Static
analysis analyzes an executable directly without execut-
ing it; dynamic analysis acquires analysis results by exe-
cuting the subject binary; symbolic (concolic) analysis is
able to generate inputs to explore different paths of a bi-
nary. These different styles of analyses have their respec-
tive strengths and limitations. Static analysis has diffi-

culty in handling packed and obfuscated binaries. Mem-
ory disambiguation and indirect jump/call target analysis
are known to be very challenging for static analysis.

Dynamic binary analysis is based on executing the bi-
nary on a set of inputs. It is widely used in analyzing
malware. However, dynamic analysis is incomplete by
nature. The quality of analysis results heavily relies on
coverage of the test inputs. Moreover, modern malware
[16, 26, 19] has become highly sophisticated, posing
many new challenges for binary analysis: (1) For a zero-
day binary malware, we typically do not have any knowl-
edge about it, especially the nature of its input, making
traditional execution-based analysis [15, 50, 4, 43, 49]
difficult; (2) Malware binaries are increasingly equipped
with anti-analysis logic [37, 5, 17, 18, 35] and hence may
refuse to run even if given valid input; (3) Malware bi-
naries may contain multi-staged, condition-guarded, and
environment-specific malicious payloads, making it dif-
ficult to reveal all payloads, even if one manages to exe-
cute them.

Symbolic [8] and concolic analysis [38, 20, 40, 10]
has seen much progress in recent years. Some handle
binary programs [40, 10, 33, 6] and can explore various
paths in a binary. However, difficulties exist when scal-
ing them to complex, real-world binaries, as they oper-
ate by modeling individual instructions as symbolic con-
straints and using SMT/SAT solvers to resolve the gen-
erated constraints. Despite recent impressive progress,
SMT/SAT remains expensive. While symbolic and con-
crete executions can be performed simultaneously so that
concrete execution may help when symbolic analysis en-
counters difficulties, the user needs to provide concrete
inputs, called seed inputs, and the quality of seed inputs
is critical to the execution paths that can be explored.
With no or little knowledge about malware input, creat-
ing such seed inputs is difficult. Moreover, many existing
techniques cannot handle obfuscated or self-modifying
binaries.

In this paper, we propose a new, practical execution
engine called X-Force. The core enabling technique
behind X-Force is forced execution which, as its name
suggests, forces an arbitrary binary to execute along
different paths without any input or environment setup.
More specifically, X-Force monitors the execution of a
binary through dynamic binary instrumentation, system-
atically forcing a small set of instructions that may affect
the execution path (e.g., predicates and jump table ac-
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cesses) to have specific values, regardless of their com-
puted values, and supplying random values when inputs
are needed. As such, the concrete program state of the
binary can be systematically explored. For instance, a
packed/obfuscated malware can be forced to unpack/de-
obfuscate itself by setting the branch outcomes of self-
protection checks, which terminate execution in the pres-
ence of debugger or virtual machine. X-Force is able
to tolerate invalid memory accesses by performing on-
demand memory allocations. Furthermore, by exploring
the reachable state of a binary, X-Force is able to explore
different aspects or stages of the binary behavior. For
example, we can expose malware’s data exfiltration op-
erations, without the presence of the real data asset being
targeted.

Compared to manual inspection and static analysis,
X-Force is more accurate as many difficulties for static
analysis, such as handling indirect jumps/calls and ob-
fuscated/packed code, can be substantially mitigated by
the concrete execution of X-Force. Compared to sym-
bolic/concolic analysis, X-Force trades precision slightly
for practicality and extensibility. Note that X-Force may
explore infeasible paths as it forces predicate outcomes;
whereas symbolic analysis attempts to respect path fea-
sibility through constraint solving1. The essence of X-
Force will be discussed later in Section 6. Furthermore,
executions in X-Force are all concrete. Without the need
for modeling and solving constraints, X-Force is more
likely to scale to large programs and long executions.
The concrete execution of X-Force makes it suitable for
analyzing packed and obfuscated binaries. It also makes
it easy to port existing dynamic analysis to X-Force to
leverage the large number of executions, which will mit-
igate the incompleteness of dynamic analyses.

Our main contributions are summarized as follows:
• We propose X-Force, a system that can force a bi-

nary to execute requiring no inputs or any environ-
ment setup.

• We develop a crash-free execution model that could
detect and recover from exceptions properly. We
have also developed various execution path explo-
ration algorithms.

• We have overcome a large number of technical chal-
lenges in making the technique work on real world
binaries including packed and obfuscated malware
binaries.

• We have developed three applications of X-Force.
The first is to construct CFG and CG of stripped bi-
naries, featuring high quality indirect jump and call
target identification; the second is to study hidden
behavior of advanced malwares; the third one is to

1However, due to the difficulty of precisely modeling program be-
havior, even state-of-the-art symbolic analysis techniques [8, 10, 40]
cannot guarantee soundness.

apply X-Force in reverse engineering variable types
and data structure definitions of executables. Our
results show that X-Force substantially advances the
state-of-the-arts.

2 Motivation Example

Consider the snippet in Figure 1. It shows a hidden mali-
cious payload that hijacks the name resolution for a spe-
cific domain (line 14), which varies according to the cur-
rent date (in function genName()). In particular, it re-
ceives some integer input at line 2. If the input satisfies
condition C at line 3, a DNSentry object will be allocated.
In lines 5-8, if the input has the CODE RED bit set, it
populates the object by calling genName() and stores the
input and the generated name as a (key, value) pair into a
hash table. In lines 12-14, the pair is retrieved and used
to guide domain name redirection. Note that the hash
table is used as a general storage for objects of various
types. In line 10, an irrelevant object o is also inserted
into the table.

This example illustrates some of the challenges faced
by both static and symbolic/concolic analysis. In static
analysis, it is difficult to determine that the object re-
trieved at line 12 is the one inserted at line 7 because
the abstract domain has to precisely model the behav-
ior of the hash table put/get operations and the con-
dition that y==x, which requires context-sensitive and
path-sensitive analysis, and disambiguating the mem-
ory bucket[i] and bucket[i+4] in table get() and
table put(). The approximations made by many static
analysis techniques often determine the object at line 12
could be the one put at line 7 or 10. Performed solely at
the binary level, such an analysis is actually much more
challenging than described here. In symbolic/concolic
analysis, one can model the input at line 2 as a symbolic
variable such that, by solving the symbolic constraints
corresponding to path conditions, the hidden payload
might be reached. However, the dictionary read at line 21
will be difficult to handle if the file is unavailable. Mod-
eling the file as symbolic often causes scalability issues
if it has nontrivial format and size, because the generated
symbolic constraints are often complex and the search
space for acquiring syntactically correct inputs may be
extremely large.

In X-Force, the binary is first executed as usual by pro-
viding random inputs. Note that X-Force does not need
to know the input format a priori as its exception recov-
ery mechanism prevents any crashes/exceptions. In other
words, the supply of random input values is merely to
allow the execution to proceed, not to drive the execu-
tion along different paths. In the first normal run, as-
sume that the false branches of the conditionals at lines
3, 5 and 13 are taken, yielding an uninteresting execu-
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Figure 1: Motivating Example.
tion. X-Force will then try to force-set branch outcomes
at a small number (say, 1 or 2) of predicates by perform-
ing systematic search. Assume that the branch outcome
at line 5 is force-set to “true”. The malicious payload
will be forced to activate. Note that pointer p has a null
value at line 6, which will normally crash the execution
at line 22. X-Force tolerates such invalid accesses by al-
locating memory on demand, right before line 22. Also,
even if the dictionary file at line 21 is absent, X-Force
will force it through by supplying random input values.
As such, some random integer and domain are inserted
into the table (line 7) and retrieved later (line 12). Even-
tually, the random domain name is redirected at line 14,
exposing the DNS hijacking operation. We argue that the
domain name itself is not important as long as the hidden
hijacking logic is exposed.

3 High Level Design

3.1 Forced Execution Semantics

This section explains the basics of how a single forced
execution proceeds. The goal is to have a non-crashable
execution. For readability, we focus on explaining how
to detect and recover from memory errors in this subsec-
tion, and then gradually introduce the other aspects of
forced execution such as path exploration and handling
libraries and threads in later sections.

Program P ::= s
Stmt s ::= s1; s2 | nop | r :=� e | r :=� R(ra) |

W�(ra,rv) | jmp�(�1) | if (r�) then jmp(�1) |
jmp�(r) | r := malloc�(rs) |
free�(r) | call�(�1) | call�(r) | ret�

Operator op ::= + | − | ∗ | / | > | < | ...
Expr e ::= c | a | r1 op r2
Register r ::= {esp,eax,ebx, ...}
Const c ::= {true, f alse,0,1,2, ...}
Addr a ::= {0,MIN ADDR,MIN ADDR+1, ...,MAX ADDR}
PC � ::= {�1, �2, �3, ...}

Figure 2: Language.

Language. Due to the complexity of the x86 instruction
set, we introduce a simple low-level language that mod-
els x86 binary executables to facilitate discussion. We
only model a subset that is sufficient to illustrate the key
ideas. Fig. 2 shows the syntax.

Memory reads and writes are modeled by R(ra) and
W(ra, rv) with ra holding the address and rv the value.
Since it is a low-level language, we do not model con-
ditional or loop statements, but rather guarded jumps;
malloc() and free() represent heap allocation and deal-
location. Function invocations and returns are modeled
by call() and ret. In our language, stack/heap memory
addresses are modeled as a range of integers and a special
value 0 to denote the null pointer value. Program coun-
ters (or instruction addresses) are explicitly modeled by
the PC set. Observe that each instruction is labeled with
a PC, denoting its instruction address. Direct jumps/calls
are parameterized with explicit PC values whereas indi-
rect jumps/calls are parameterized with a register.

LSet ::= P (Addr)
SR ∈ RegLinearSet ::= Register �→ &LSet
SM ∈ MemLinearSet ::= Addr �→ &LSet
accessible ∈ AddrAccessible ::= Addr �→ boolean

recovery (r) ::=

1: S ← SM(r)
2: VS ← {}
3: for each address a ∈ S do
4: VS ← VS + {∗(a)}
5: end for
6: min ← the minimal value in VS
7: max ← the maximum value in VS
8: t ← malloc(max−min+BLOCKSIZE)
9: accessible[t, t +max−min+BLOCKSIZE −1] = true

10: for each address a ∈ S do
11: offset ← ∗(a)−min
12: ∗(a)← t +offset
13: end for

Figure 3: Definitions.

In X-Force, we ensure that an execution is not crash-
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Table 1: Linear Set Computation Rules.
Statement Action1,2 Rule
initially foreach (global address t) L-INIT

if (isAddr(∗t)) SM(t) = {t};
r := R(ra) SR(“r”)→ nil; L-READ

if(SM(ra)) SR(“r”)→ SM(ra);
W(ra,rv) if (SM(ra)) SM(ra) = SM(ra)−{ra} L-WRITE

SM(ra)→ nil;
if (SR(“rv”))

SR(“rv”) = SR(“rv”) ∪ {ra};
SM(ra)→ SR(“rv”);

r := a SR(“r”)→{} L-ADDR
r := c SR(“r”)→ nil L-CONST
/*!isAddr(c)*/
r := r1 +/− r2 if (!(isAddr(r1)&&isAddr(r2))) L-LINEAR

SR(“r”)→ nil
if (isAddr(r1)) SR(“r”)→ SR(“r1”);
if (isAddr(r2)) SR(“r”)→ SR(“r2”);

r := r1 ∗/... r2 SR(“r”)→ nil L-NON-LNR
free(r) t = r; L-FREE

while (accessible(t))
if (SM(t)) SM(t) = SM(t)−{t};
t ++;

1. The occurrence“r” denotes the symbolic name of register r, the
occurrence of r denotes the value stored in r.
2. Operator “=” means set update, “→” means pointer update.

able by allocating memory on-demand. However, when
we replace a pointer pointing to an invalid address a with
the allocated memory, we need to update all the other
pointer variables that have the same address value or a
value denoting an offset from the address. We achieve
this through the linear set tracing semantics, which is
also the basic semantics for forced executions2. Its goal
is to identify the set of variables (i.e. memory locations
and registers at the binary level), whose values have lin-
ear correlations. In this paper, we say two variables are
linearly correlated if the value of one variable is com-
puted from the value of the other variable by adding or
subtracting a value. Note that it is simpler than the tradi-
tional definition of linear correlation, which also allows
a scaling multiplier. It is however sufficient in this work
as the goal of linear set tracing is to identify correlated
pointer variables, which are induced by address offset-
tings that are exclusively additions and subtractions.

The semantics is presented in Table 1. The corre-
sponding definitions are presented in Fig 3. Particularly,
linear set LSet denotes a set of addresses such that the
values stored in these addresses are linearly correlated.
Mapping SR maps a register to the reference of a LSet.
Intuitively, one could interpret that it maps a register to
a pointer pointing to a set of addresses such that the val-
ues stored in the register and those addresses are linearly
correlated. Two registers map to the same reference (of a
LSet) implies that the values of the two registers are also
linearly correlated. Similarly, mapping SM maps an ad-
dress to the reference of a LSet such that the values in the
address and all the addresses in LSet are linearly corre-

2We will explain the predicate switching part of the semantics in
Section 3.2

Table 2: Memory Error Prevention and Recovery.
Statement Action Rule
r := malloc(r1) for (i = r to r+ r1 −1) M-ALLOC

accessible(i) = true
free(r) t = r; M-FREE

while (accessible(t))
accessible(t) = false
t ++;

r := R(ra) if (!accessible(ra)) M-READ
recovery(ra);

W(ra,rv) if (!accessible(ra)) M-WRITE
recovery(ra);

lated. The essence of linear set tracing is to maintain the
SR and SM mappings for all registers and addresses that
have been accessed so that at any execution point, we can
query the set of linearly correlated variables of any given
variable.

Before execution, the SM mapping of all global vari-
ables that have an address value is set to the address it-
self, meaning the variable is only linearly correlated with
itself initially (rule L-INIT). Function isAddr(v) deter-
mines if a value v could be an address. X-Force monitors
all memory allocations and the image loading process.
Thus, given a value, X-Force treats it as a pointer if it
falls into static, heap, or stack memory regions. Note
that we do not need to be sure that the value is indeed
an address. Over-approximations only cause some addi-
tional linear set tracing. For a memory read operation,
the SR mapping of the destination register points to the
SM set of the value in the address register if the SM set
exists, which implies the value is an address, otherwise it
is set to nil (rule L-READ). Note that in the rule we use
“r” to denote the symbolic name of r and ra to denote the
value stored in ra. SR(“r”)→ SM(ra) means that we set
SR(“r”) to point to the SM(ra) set. For a memory write,
we first eliminate the destination address from its linear
set. Then, the address is added to the linear set of the
value register as the address essentially denotes a new
linearly correlated variable. Finally, the SM mapping of
the address is updated (rule L-WRITE). Note that oper-
ation “=” means set update, which is different from “→”
meaning set reference update. For a simple address as-
signment, the SR set is set to pointing to an empty linear
set, which is different from a nil value (rule L-ADDR).
The empty set is essentially an LSet object that could be
pointed to by multiple registers to denote their linear cor-
relation. A nil value cannot serve this purpose. For a lin-
ear operator, the SR mapping of the destination register
is set to pointing to the SR mapping of the register hold-
ing an address value (rule L-LINEAR). Intuitively, this
is because we are only interested in the linear correla-
tion between address values (for the purpose of memory
error recovery). For heap de-allocation, we have to re-
move each de-allocated address from its linear set (rule
L-FREE).

Table 2 presents the set of memory error detection and
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recovery rules. The relevant definitions are in Fig. 3.
An auxiliary mapping accessible() is introduced to de-
note if an address has been allocated and hence accessi-
ble. The M-ALLOC and M-FREE rules are standard.
Upon reading or writing an un-accessible address, X-
Force calls function recovery () with the register hold-
ing the invalid address to perform recovery. In the func-
tion, we first acquire the values of all the variables in the
linear set and identify the minimal and maximum val-
ues (lines 1-6). Note that the values may be different
(through address offsetting operations). We then allocate
a piece of memory on demand according to the range of
the values and a pre-defined default memory block size.
Then in lines 9-12, the variables in the linear set are up-
dated according to their offsets in the block. We want
to point out that on-demand allocation may not allocate
enough space. However, such insufficiency will be de-
tected when out-of-bound accesses occur and further on-
demand re-allocation will be performed. We also want
to point out that a correctly developed program would
first write to an address before it reads. As such, the on-
demand allocation is often triggered by the first write to
an invalid buffer such that the value could be correctly
written and later read. In other words, we do not need to
recover values in the on-demand allocated buffers.

In our real implementation, we also update all the reg-
isters that are linearly correlated, which can be deter-
mined by identifying the registers pointing to the same
set. Furthermore, the rules only describe how we ensure
heap memory safety whereas X-Force protects critical
stack addresses such as return addresses and parameters,
which we will discuss later.

Example. Fig. 4 presents part of a sample execution
with the linear set tracing and memory safety semantics.
The program is from the motivation example (Fig. 1). In
the execution, the else branch of line 3 is taken but the
true branch of line 5 is forced. As such, pointer p has
a null value when it is passed to function genName(),
which would cause an exception at line 22. In Fig. 4,
we focus on the executions of lines 6, 22 and 7. The sec-
ond column shows the binary code (in our simplified lan-
guage). The third column shows the corresponding linear
set computation and memory exception detection and re-
covery. Initially, SM(&p = 0x8004c0) is set to pointing
to the set {0x8004c0} according to rule L-INIT. At bi-
nary code line 2, SR(eax) is set to pointing to the set of
SM(&p). At line 3, since the value is further copied to
a stack address 0xce0080, eax, &p and the stack address
all point to the same linear set containing &p and the
stack address. Intuitively, these are the three variables
that are linearly correlated. At lines 9 and 10, edi fur-
ther points to the same linear set. At line 12, when the
program tries to access the address denoted by edi = 4,
the memory safety component detects the exception and

performs on demand allocation. According to the lin-
ear set, &p and the stack address 0xce0080 are set to
the newly allocated address 0xd34780 while edi is up-
dated to 0xd34784 according to its offset. While it is not
presented in the table, the program further initializes the
newly allocated data structure. As a result, when pointer
p is later passed to table put(), it points to a valid data
structure. �

Algorithm 1 Path Exploration Algorithm
Output: Ex - the set of executions (each denoted by a se-

quence of switched predicates) achieving a cer-
tain given goal (e.g. maximum coverage)

Definition switches: the set of switched predicates in a
forced execution, denoted by a sequence of in-
tegers. For example, 1 · 3 · 5 means that the 1st,
3rd, and 5th predicates are switched
WL : P (Int) - a set of forced executions, each
denoted by a sequence of switched predicates
preds : Predicate×boolean - the sequence of
executed predicates with their branch outcomes

1: WL ← {nil}
2: Ex ← nil
3: while WL do
4: switches ← WL.pop()
5: Ex ← Ex ∪ switches
6: Execute the program and switch branch outcomes ac-

cording to switches, update fitness functionF
7: preds ← the sequence of executed predicates
8: t ← the last integer in switches
9: preds ← remove the first t elements in preds

10: for each (p,b) ∈ preds do
11: if eval(F , p,b) then

12: update fitness functionF
13: WL ← WL∪ switches · t
14: end if
15: t ← t +1
16: end for
17: end while

In the early stage of the project, we tried a much sim-
pler strategy that is to terminate a forced execution when
an exception is observed. However, we observed that
since we do not provide any real inputs, exceptions are
very common. Furthermore, simply skipping instruc-
tions that cause exceptions did not work either because
that would have cascading effects on program state cor-
ruption. Finally, a crash-proof execution model as pro-
posed turned out to be the most effective one.

X-Force also automatically recovers from other excep-
tions such as division-by-zero, by skipping those instruc-
tions that cause exceptions. Details are omitted.
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Figure 4: Sample Execution for Linear Set Tracing and Memory Safety. The code is from Fig. 1.

3.2 Path Exploration in X-Force

One important functionality of X-Force is the capability
of exploring different execution paths of a given binary
to expose its behavior and acquire complete analysis re-
sults. In this subsection, we explain the path exploration
algorithm and strategies.

To simplify discussion, we first assume a binary only
performs control transfer through simple predicates (i.e.
predicates with constant control transfer targets). We will
introduce how to extend the algorithms in realistic set-
tings, e.g., supporting exploration of indirect jumps in
later section.

Algorithm 1 describes a general path exploration algo-
rithm, which generates a pool of forced executions that
are supposed to meet our goal specified by a configurable
fitness function. It is a work list algorithm. The work list
stores a list of (forced) executions that may be further
explored by switching more predicates. Each execution
is denoted by a sequence of integer numbers that spec-
ify the executed predicate instances to switch. Note that
X-Force only force-sets the branch outcome of a small
set of predicate instances. It lets the other predicate in-
stances run as usual. Initially (line 1), the work list is
a singleton set with a nil sequence, representing an ex-
ecution without switching any predicate. Note that the
work list is not empty initially. At the end of a forced ex-
ecution, we update the fitness function that indicates the
remaining space to explore (line 6), e.g., coverage. Then
in lines 7-16, we try to determine if it would be of inter-
est to further switch more predicate instances. Lines 7-9
compute the sequence of predicate instances eligible for
switching. Note that it cannot be a predicate before the
last switched predicate specified in switches as switching
such a predicate may change the control flow such that
the specification in switches becomes invalid. In lines
10-16, for each eligible predicate and its current branch
outcome, we query the fitness function to determine if
we should further switch it to generate a new forced ex-
ecution. If so, we add it to the work list and update the

fitness function. Note that in each new forced execution,
we essentially switch one more predicate.

Different Fitness Functions. The search space of all
possible paths is usually prohibitively large for real-
world binaries. Different applications may define differ-
ent fitness functions to control the scope they want to ex-
plore. In the following, we introduce three fitness func-
tions that we use. Other more complex functions can be
similarly developed.

• Linear Search. In certain applications, such as
constructing control flow graphs and dynamic type
reverse engineering (Section 5), the goal may be
just to cover each instruction. The fitness func-
tion F could be defined as a mapping covered :
Predicate × boolean �→ boolean that determines
if a branch of a predicate has been covered. The
evaluation in the box in line 11 of Algorithm 1 is
hence defined as !covered(p,¬b), which means we
will switch the predicate if the other branch has not
been covered. Once we decide to switch an addi-
tional predicate, the fitness function is updated to
reflect the new coverage (line 12). The number of
executions needed is hence O(n) with n the number
instructions in the binary.

• Quadratic Search. In applications such as identify-
ing indirect call targets, which is a very important
challenge in binary analysis, simply covering all in-
structions may not be sufficient, we may need to
cover paths that may lead to indirect calls or gener-
ate different indirect call targets. We hence define F
as a set icalls to keep the set of the indirect call sites
and potential indirect call targets that have been dis-
covered by all the explored paths. The evaluation in
line 11 is hence to test if cardinality of icall grows
with the currently explored path. If so, the execu-
tion is considered important and all eligible unique
predicates (not instances) in the execution are fur-
ther explored. The complexity is O(n2) with n the
number of instructions. X-Force can also limit the
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quadratic search within a function.
• Exponential Search. If we simply set the evaluation

in the line 12 to true, the algorithm performs ex-
ponential search because it will explore each possi-
ble combination. In practice, we cannot afford such
search. However, X-Force provides the capability
for the user to limit such exponential search within
a sub-range of the binary.

Taint Analysis to Reduce Search Space. An observa-
tion is that we do not have to force-set predicates in low-
level utility methods, because their branch outcomes are
usually not affected by any input. Hence in X-Force, we
use taint analysis to track if a predicate is related to pro-
gram input. X-Force will only force branch outcomes of
those tainted predicates. Since this is a standard tech-
nique, we omit its details.

4 Practical Challenges

In this section, we discuss how we address some promi-
nent challenges in handling real world executables.
Jump Tables. In our previous discussion, we assume
control transfer is only through simple predicates. In re-
ality, jump tables allow a jump instruction to have more
than two branches. Jump tables are widely used. They
are usually generated from switch statements in the
source code level. In X-Force, we leverage existing jump
table reverse engineering techniques [21] to recover the
jump table for each indirect jump. Our exploration al-
gorithm then tries to explore all possible targets in the
table.
Handling Loops and Recursions. Since X-Force may
corrupt variables, if a loop bound or loop index is cor-
rupted, an (incorrect) infinite loop may result. Similarly,
if X-Force forces the predicate that guards the termina-
tion of some recursive function call, infinite recursion
may result. To handle infinite loops, X-Force leverages
taint analysis to determine if a loop bound or loop in-
dex is computed from input. If so, it resets the loop
bound/index value to a pre-defined constant. To handle
infinite recursion, X-Force constantly monitors the call
stack. If the stack becomes too deep, X-Force further
checks if there are cyclic call paths within the call stack.
If cyclic paths are detected, X-Force skips calling into
that function by simulating a ”ret” instruction.
Protecting Stack Memory. Our early discussion on
memory safety focused on protecting heap memory.
However, it is equally important to protect stack memory.
Particularly, the return address of a function invocation
and the stack frame base address of the caller are stored
on stack upon the invocation. They are restored when the
callee returns. Since X-Force may corrupt variable val-
ues that affect stack accesses, such critical data could be

undesirably over-written. We hence need to protect stack
memory as well. However, we cannot simply prevent
any stack write beyond the current frame. The strategy
of X-Force is to prevent any stack writes that originate in
the current stack-frame to go beyond the current frame.
Specifically, when a stack write attempts to over-write
the return address, the write is skipped. Furthermore,
the instruction is flagged. Any later instances of the in-
struction that access a stack address beyond the current
stack-frame are also skipped. The flags are cleared when
the callee returns.

Handling Library Function Calls. The default strategy
of X-Force is to avoid switching predicates inside library
calls as our interest falls in user code. X-Force handles
the following library functions in some special ways.
• I/O functions. X-Force skips all output calls and

most input calls except file inputs. X-Force provides
wrappers for file opens and file reads. If the file to
open does not exist, X-Force skips calling the real
file open and returns a special file handler. Upon
file reads, if the file handler has the special value,
it returns without reading the file such that the in-
put buffer contains random values. Supporting file
reads allows X-Force to avoid unnecessary failure
recovery and path exploration if the demanded files
are available.

• Memory manipulation functions. To support mem-
ory safety, X-Force wraps memory allocation and
de-allocation. For memory copy functions such as
memcpy() and strcpy(), the X-Force wrappers
first determine the validity of the copy operation,
e.g., the source and target address ranges must have
been allocated, must not overlap with any critical
stack addresses. If necessary, on-demand alloca-
tion is performed before calling the real function.
This eliminates the need of memory safety monitor-
ing, linear set tracing, and memory error recovery
inside these functions, which could be quite heavy-
weight due to the special structure of these func-
tions. For example, memcpy() copies individual ad-
dresses one by one and these addresses are linearly
correlated as they are computed through pointer ma-
nipulation, leading to very large linear sets.

For statically linked executables, X-Force relies on IDA-
Pro to recognize library functions in a pre-processing
step. IDA leverages a large signature dictionary to rec-
ognize library functions with very good accuracy. For
functions that are not recognized by IDA, X-Force exe-
cutes them as user code.

Handling Threads. Some programs spawn additional
threads during their execution. It is difficult for X-Force
to model multiple threads into a single execution since
the order of their execution is nondeterministic. If we
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simply skip the thread creation library functions such as
CreateThread() and beginthread(), the functions in the
thread could not be covered. To solve this problem, we
adopt a simple yet effective approach of serializing the
execution of threads. The calls to thread creation library
functions are replaced with direct function calls to the
starting functions of threads, which avoid creating mul-
tiple threads and guarantees code coverage at the same
time. Note that as a result, X-Force is incapable of an-
alyzing behavior that is sensitive to schedules. We will
leave it to our future work.

5 Evaluation

X-Force is implemented in PIN. It supports WIN32 ex-
ecutables. In this section, we use three application case
studies to demonstrate the power of X-Force.

Table 4: Detailed Coverage Comparison with Dynamic Analysis

Input Union X-Force Input Union Input Union X-Force
∩ X-Force \ X-Force \ Input Union

164.gzip 3601 5075 3601 0 1474
175.vpr 19398 29218 19398 0 9820
176.gcc 157451 227546 157451 0 70095
181.mcf 1622 1935 1622 0 313

186.crafty 27811 42763 27811 0 14952
197.parser 17339 23135 17339 0 5796
252.eon 15580 27224 15580 0 11644

253.perlbmk 55964 33643 27003 28961 6640
254.gap 37564 110066 37564 0 72502

255.vortex 53798 101207 53798 0 47409
256.bzip2 3612 4830 3612 0 1218
300.twolf 19996 41935 19996 0 21939

5.1 Control Flow Graph (CFG) and Call
Graph (CG) Construction

Construction of CFG and CG is a basic but highly chal-
lenging task for binary analysis, especially the identifi-
cation of indirect call targets. In the first case study, we
apply X-Force to construct CFGs and CGs for stripped
SPECINT 2000 binaries. We also evaluate the perfor-
mance of X-Force in this study. To construct CFGs and
CGs, we use X-Force to explore execution paths and
record all the instructions, control flow edges, and call
edges, including indirect jump and indirect call edges.
The exploration algorithm is a combination of linear
search and quadratic search (Section 3.2). Quadratic
search is limited to functions that contain indirect calls
or encounter values that look like function pointers.

We compare X-Force results with four other ap-
proaches: (1) IDA-Pro; (2) Execute all the test cases pro-
vided in SPEC and union the CFGs and CGs observed
for each program (i.e., dynamic analysis); (3) Static CG
construction using LLVM on SPEC source code (i.e.,
static analysis) 3. (4) Dynamic CFG construction using

3We cannot compare LLVM CFGs with X-Force CFGs as LLVM
CFGs are not represented at the instruction level.

a symbolic execution system S2E [10]. We could not
compare with CodeSurfer-X86 [2], which can also gen-
erate CFG/CG for executables based on static analysis,
because it is not available through commercial or aca-
demic license.

Part of the results is presented in Table 3. Columns 2-
4 present the instructions that are covered by the differ-
ent approaches. Particularly, the second column shows
the number of instructions recognized by IDA. The third
column shows those that are executed by concrete input
runs. Columns 5-8 show the indirect call edges recog-
nized by the different approaches4. The last five columns
show internal data of X-Force.

From the coverage data, we observe that X-Force
could cover a lot more instructions than dynamic analysis
except 253.perlbmk. Note that the dynamic analysis re-
sults are acquired using all the test, training and reference
inputs in SPEC, which are supposed to provide good cov-
erage. Table 4 presents more detailed coverage compari-
son with dynamic analysis. Observe that X-Force covers
all the instructions that are covered by natural runs for
all benchmarks except 253.perlbmk, which we will ex-
plain later. X-Force could cover most of the instructions
identified by IDA except 252.eon and 253.perlbmk.
We have manually inspected the differences between the
IDA and X-Force coverage. For most programs except
253.perlbmk, the differences are caused by part of the
code in those binaries being unreachable. In other words,
they are dead code that cannot be executed by any input.
Since IDA simply scans the code body to construct CFG
and CG, it reports all instructions it could find including
the unreachable ones.

Table 5: Detailed Indirect Call Edges Identification
Comparison with Dynamic Analysis

Input Union X-Force Input Union Input Union X-Force
∩ X-Force \ X-Force \ Input Union

164.gzip 2 2 2 0 0
176.gcc 169 1720 169 0 1551
252.eon 60 121 60 0 61

253.perlbmk 225 151 103 122 48
254.gap 1103 20485 1103 0 19382

255.vortex 28 30 28 0 2

Indirect call edge identification is very challenging in
binary analysis as a call site may have multiple call tar-
gets depending on execution states, which are usually
difficult to cover or abstract. Some of them are dependent
on states related to multiple procedures. Note that there
does not exist an oracle that can provide the ground truth
for the set of real indirect call edges. From the results,
we could observe that LLVM’s indirect call identifica-
tion algorithm generates a large number of edges, much
more than X-Force. However, we confirm that most of
them are bogus because the LLVM algorithm simply re-
lies on method signatures to identify possible targets and

4Direct jump and call edges are easy to identify and elided.
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Table 3: CFG and CG Construction Results.
Coverage Indirect Call Edge X-Force Internals

IDA-Pro Input Union X-Force IDA-Pro Input Union LLVM X-Force Time (s) # of Runs Avg. # of Exp. Avg./Max. Linear Set Size Switched/Total # of predicates
164.gzip 7913 3601 5075 0 2 2 2 704 246 10 2.9/36 2.1/1291
175.vpr 31847 19409 29218 0 0 0 0 8725 1849 49 2.8/19 4.7/2164
176.gcc 310277 157451 227546 25 169 9141 1720 173241 26606 95 4.5/265 12.9/29847
181.mcf 2184 1622 1935 0 0 0 0 129 113 10 3.1/23 4.3/153

186.crafty 43327 27811 42763 0 0 0 0 43995 2496 0.4 2.6/9 8.0/62582
197.parser 25532 17339 23135 0 0 0 0 3424 1820 8 2.5/17 6.4/944
252.eon 70592 15580 27224 0 60 28802 121 6379 2091 4 2.3/10 4.1/3146

253.perlbmk 132264 55964 33643 24 225 - 151 7137 843 0.8 3.5/40 8.3/9535
254.gap 113410 37564 110066 2 1103 187155 20470 50745 7319 1353 30.0/1846 6.0/173316

255.vortex 132053 53798 101207 0 28 340 30 34776 8566 13 2.9/33 7.3/2548
256.bzip2 5761 3612 4830 0 0 0 0 557 209 5 3.3/15 1.4/7001
300.twolf 46556 19996 41935 0 0 0 0 10043 2825 17 2.6/8 5.4/1322

hence is too conservative. X-Force could recognize a lot
more indirect call edges than dynamic analysis. The de-
tailed comparison in Table 5 shows that the X-Force re-
sults cover all the dynamic results and have many more
edges, except 253.perlbmk. We have manually inspected
a random set of the selected edges that are reported by
X-Force but not the dynamic analysis and confirmed that
they are feasible. From the results in Table 3, IDA can
hardly resolve any indirect call edges.

Table 6: Result of using S2E to analyze SPEC programs
Basic Block Function Block Touched Fully Covered Number

Coverage Coverage Functions Functions of Paths
164.gzip 768/2240(34%) 768/1294(59%) 62/186(33%) 21/186(11%) 134
176.gcc 740/46487(1%) 740/1468(50%) 62/1398(4%) 19/1398(1%) 261
252.eon 64/2830(2%) 64/101(63%) 19/649(2%) 13/649(2%) 33

253.perlbmk 1708/37384(4%) 1708/6912(24%) 134/1510(8%) 27/1510(1%) 329
254.gap 1235/28871(4%) 1235/3136(39%) 80/941(8%) 21/941(2%) 29

255.vortex 10933/35979(30%) 10933/20822(52%) 437/1031(42%) 21/1031(2%) 9

We also use S2E to analyze the six SPECINT 2000
programs that contain indirect calls. The four programs
other than 252.eon and 255.vortex read input from
stdin, so we use the s2ecmd utility tool provided by S2E
to write 64 bytes to stdout and pipe the symbolic bytes
into these programs. We run each program in S2E and
use the ExecutionTracer plugin to record the execu-
tion trace. We use the IDA scripts provided by S2E to
extract information of basic blocks and functions from
the binaries, and then use the coverage tool provided
by S2E to calculate the result.

The result is shown in Table 6. The columns show the
following metrics from left to right: (1) coverage of basic
blocks; (2) coverage of basic blocks when excluding the
basic blocks in those functions that are not executed; (3)
coverage of functions; (4) percentage of fully-covered
functions; (5) the number of different paths that S2E ex-
plored. Observe that the coverage is much lower than X-
Force in general. 176.gcc, 253.perlbmk and 254.gap

are parsers/compilers. They have poor coverage on S2E
because they get stuck in the parsing loops/automatas,
whose termination conditions are dependent on the sym-
bolic input. Regarding 255.vortex, S2E fails to solve
the constraints when an indirect jump uses the symbolic
variable as the index of jump table. As a result, S2E fails
to identify most of the indirect call edges due to the fail-
ure of creating different objects. In 252.eon, S2E fails
to solve the constraints of the input file format, which

must contain a specific string as header. The program
throws exception and terminates quickly, which leads to
poor coverage.
253.perlbmk is a difficult case for X-Force. It parses

perl source code to generate syntax trees. The indirect
call targets are stored in the nodes of syntax trees. How-
ever, since the syntax tree construction is driven by fi-
nite automata, path coverage does not seem to be able to
cover enough states in the automata to generate enough
syntax trees of various forms. A few other benchmarks
such as 176.gcc and 254.gap also leverage automata
based parsers, however their indirect call targets are not
so closely-coupled with the state of the automata and
hence X-Force can still get good coverage. We will leave
it to our future work to address this problem.

The last five columns show some statistics of X-Force.
The run time and the number of explorations are largely
linear regarding the number of instructions except for a
small number of functions on which quadratic search is
performed. Some take a long time (e.g., close to 50 hours
for 176.gcc) due to their complexity. The average num-
ber of exceptions is the number of exceptions encoun-
tered and recovered from in each execution (e.g. memory
exceptions, division by zero). The numbers are smaller
than we expected given that we execute these programs
without any inputs and switch branch outcomes. It shows
that our exception recovery could effectively prevent cas-
cading exceptions. The linear set sizes are manageable.
The last column shows the average number of switched
predicates versus the average number of predicate in-
stances in total in an execution. It shows that X-Force
may violate path feasibility only in a very small part of
execution. The performance overhead of X-Force com-
pared to the vanilla PIN is 473 times on average. It is
measured by comparing the number of instructions that
could be executed by X-Force and the vanilla PIN within
the same amount of time.

5.2 Malware Analysis
One common approach to understanding the behavior of
an unknown malware sample is by looking at the library
calls it makes. This could be done by static, dynamic
or symbolic analysis; however, they all have limitations.
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Table 7: Result of using X-Force for malware analysis compared with IDA Pro and native run.
Name MD5 File Size(KB) Number of Library Functions Number of Library Call Sites No. of Runs

IDA Pro Native Run X-Force IDA Pro Native Run X-Force in X-Force
dg003.exe 4ec0027bef4d7e1786a04d021fa8a67f 192 147 129 252 808 546 1750 800
Win32/PWSteal.F 04eb2e58a145462334f849791bc75d18 20 7 21 42 9 28 94 30
APT1.DAIRY 995442f722cc037885335340fc297ea0 19 90 40 100 213 68 236 121
APT1.GREENCAT 0c5e9f564115bfcbee66377a829de55f 14.5 66 26 64 303 114 302 112
APT1.HELAUTO 47e7f92419eb4b98ff4124c3ca11b738 8.5 41 16 39 109 33 109 30
APT1.STARSYPOUND 1f2eb7b090018d975e6d9b40868c94ca 7 37 14 36 80 15 80 25
APT1.WARP 36cd49ad631e99125a3bb2786e405cea 45.5 77 47 79 495 156 414 221
APT1.NEWSREEL 2c49f47c98203b110799ab622265f4ef 21 67 31 67 189 49 192 93
APT1.GOGGLES 57f98d16ac439a11012860f88db21831 10.5 35 21 36 127 45 131 42
APT1.BOUNCER 6ebd05a02459d3b22a9d4a79b8626bf1 56 11 16 97 24 39 562 298

Static analysis could not obtain the parameters of library
calls that are dynamically computed and is infeasible
when the sample is packed or obfuscated. Traditional
dynamic analysis can obtain parameters and is immune
to packing and obfuscation, however, it could only ex-
plore some of the execution paths depending on the input
and the environment. Unfortunately, the input is usually
unknown for malware. Symbolic analysis, while being
able to construct input according to path conditions, has
difficulty in handling complex or packed binaries.

X-Force overcomes these problems as traditional dy-
namic analysis could be built upon X-Force to explore
various execution paths without providing any inputs or
the environment. In this case study, we demonstrate the
use of a library call analysis system we built on top of
X-Force to analyze real-world malware samples.

When we implement library call analysis on top of
X-Force, we slightly adjust X-Force to make it suitable
for handling malware: (1) We enable the concrete exe-
cution of most library functions including output func-
tions because many packers use output functions (e.g.
RtlDecompressBuffer()) to unpack code. We con-
tinue to skip some library calls such as Sleep() and
DeleteFile(); (2) We intercept a few functions that
allocate memory and change page attributes, such as
VirtualAlloc() and VirtualProtect(). This is for
tracking the memory areas of code and data which keep
changing at runtime due to self-modifying and dynami-
cally generated code.

Given a malware sample, we use X-Force to explore
its paths. We use the linear search algorithm (Sec-
tion 3.2) as it provides a good balance between efficiency
and coverage. During each execution, we record a trace
of function calls. For library calls, we also record the
parameter values. The trace is then transformed into an
interprocedural flow graph that has control transfer in-
structions, including jumps and calls, as its nodes, and
control-flow/call edges as its edges. The parameters
of library calls are also annotated on the graph. The
graphs generated in multiple executions are unioned to
produce the final graph. We then manually inspect the
final graphs to understand malware behavior.

Figure 5: The flow graph of the function at 0x1000c630
generated by X-Force when analyzing dg003.exe.

We evaluate our system on 10 real-world malware
samples which are either wild-captured virus/trojan or
APT samples described in [9]. Since our analysis fo-
cuses on library calls, we choose the number of identified
library functions and the total number of their call sites
as the evaluation metric5. We also compare our results
with IDA-Pro and the native run. In IDA, library func-
tions are identified from the import table; the call sites
are identified by scanning the disassemblies. In the na-
tive run, we execute the malware without any arguments
and record the library calls using a PIN tool.

The results are shown in Table 7. We can see that
for packed or obfuscated samples such as dg003.exe,
Win32/PWSteal.F, APT1.DAIRY, and APT1.BOUNCER,
IDA gets fewer library functions and call sites compared
to X-Force. For other samples that are not packed or
obfuscated, since the executables could be properly dis-
assembled, the metrics obtained in IDA and X-Force are

5We exclude the C/C++ runtime initialization functions which are
only called before the main function.
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very close. However, even in such cases, static analysis
is insufficient to understand the malicious behavior be-
cause it does not show the values of the library function
parameters. Compared to the native run method, X-Force
can identify more library functions and call sites.

Next, we present detailed analysis for two representa-
tive samples.

Figure 6: The flow graph of the function at 0x10009b50
in dg003.exe that delete all files on the hard disk.

Dg003.exe. This is a typical APT malware sam-
ple that features multi-staged, condition-guarded and
environment-specific payload. In the first stage, the mal-
ware extracts a DLL which it carries as its resource,
packs the DLL in memory using a proprietary algorithm
and writes the packed DLL to the disk. In the second
stage, the packed DLL is loaded, unpacks itself in mem-
ory and executes the main payload.

There is a previous report [26] in which the analysts
used both static and dynamic analyses to analyze this
sample. To perform static analysis using IDA Pro, they
manually extract and unpack the DLL. This requires re-
verse engineering the unpacking algorithm, which could
be both time consuming and difficult. Our system avoids
such trouble by concretely executing the unpacking rou-
tine which performs the unpacking for us. Compared
with their dynamic analysis, it takes X-Force about 5
hours to finish 800 executions to explore all paths in both
the first and second stages of the malware. After that,
the traces are transformed into a flow graph containing
378 functions. Our system is able to discover a set of
malicious behaviors that are NOT mentioned in the pre-
vious report. As shown in Fig. 5, each highlighted func-
tion call in the graph corresponds to a previously unre-
vealed malicious behavior. Each behavior is identified
using the library calls made in the corresponding func-
tion. For example, as shown in Fig. 6, the library calls
and the parameters in the function at 0x10009b50 show
that it recursively enumerates and deletes files and direc-
tories starting from the root directory, which indicates its
behavior is to delete all files on the disk.

In Fig. 5 we can see that the common dominator of all
these function calls (highlighted in red color) determines
if the value of eax register is larger than 0x196. With taint
analysis in X-Force, we find that the value of the eax reg-
ister is related to an input which is a buffer in a previous
recv library function call. This indicates it represents the
command ID sent by the C&C server, which leads to the
execution of different malicious behaviors. Hence, we
suspect that the previous analysts missed some behav-
iors because the C&C server only sent part of the pos-
sible commands at the time they ran the malware. We
also find that the buffer in the recv function call is trans-
lated to the command ID using a private decryption algo-
rithm, so it would be infeasible for symbolic analysis to
solve the constraints and construct a valid input. We also
want to point out that at the time we perform the analysis,
the C&C server of this malware is already inactive; we
would not be able to discover these malicious behaviors,
had we not used X-Force.

Win32/PWSteal.F. Before trying X-Force on this sam-
ple, we first try static analysis using IDA-Pro. Surpris-
ingly, this sample does not import any suspicious library
function; not even a function that could perform I/O
(e.g. read/write file, registry or network socket). The
LoadLibrary() and GetProcAddress() functions are
not imported either, which means the common approach
of dynamically loading libraries is not used. The strings
in the executable do not contain any DLL name or li-
brary function name either. This indicates the sample
is equipped with advanced API obfuscation technique to
thwart static analysis.

Since static analysis is infeasible, we submit the sam-
ple to the Anubis malware analysis platform for dynamic
analysis. The result shows the malware does read some
registry entries and files, however, none of them seems
malicious. Hence, we feed the sample to our system
in hopes of revealing its real intent. X-Force achieves
full coverage after exploring 30 paths and generates a
graph with 15 functions. By traversing the graph, we
find that this malware aims at stealing the password that
is stored by IE and Firefox in the victim’s machine. It
enumerates the registry entry that stores the encrypted
auto-complete password for IE and calls library func-
tions such as CryptUnprotectData() to decrypt the
stored password. This is very similar to the attack men-
tioned in [1]. Regarding Firefox, it first gets the user
name from profiles.ini under the Firefox applica-
tion data directory, and then steals the password that is
stored in the signons*.txt under the directory of the
user name. The password is then uploaded to a remote
FTP server using the file name [Computer Name].[IP

Address].txt. Clearly, this sample finds the entry ad-
dresses of these library functions at runtime using some
obfuscation techniques. X-Force allows us to identify the
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malicious behavior without spending unnecessary time
on reverse-engineering the API obfuscation.

Moreover, the flow graph also reveals the reason why
Anubis missed the malicious behavior: the malware per-
forms environment checks to make sure the targets ex-
ist before trying to attack. For example, in the function
where the malware steals password from IE, it will try
to open the registry entry that contains the auto-complete
password; if such entry does not exist or is empty, the
malware will cease its operation and return from that
function. Also, before it tries to steal password stored by
Firefox, it will first try querying the installation directory
of Firefox from registry to make sure the target program
exists in the system. Such “prerequisites“ are unlikely
to be fulfilled in automated analysis systems as they are
unpredictable. However, by force-executing through dif-
ferent paths, X-Force is able to get through these checks
to reveal the real intent of the malware.

TYPE_1 func1(TYPE_2 arg1, TYPE_3 arg2) {
TYPE_4 var1;

1 var1 = strlen (arg1);
2 if (arg2 >= var1)
3 return 0;
4 return arg1[arg2];
}

Figure 7: REWARDS example.

5.3 Type Reverse Engineering
Researchers have proposed techniques to reverse engi-
neer variable and data structure types for stripped bi-
naries [30, 39, 25]. The reverse engineered types can
be used in forensic analysis and vulnerability detection.
There are two common approaches. REWARDS [30]
and HOWARD [39] leverage dynamic analysis. They
can produce highly precise results but incompleteness
is a prominent limitation – they cannot reverse engineer
types of variables if such variables are not covered by ex-
ecutions. TIE [25] leverages static analysis and abstract
interpretation such that it provides good coverage. How-
ever, it is challenging to apply the technique to large and
complex binaries due to the cost of analysis.












   

Figure 8: Type reverse engineering coverage results.

One advantage of X-Force is that the forced execu-
tions are essentially concrete executions such that exist-
ing dynamic analyses could be easily ported to X-Force

to benefit from the good coverage. Therefore in the third
case study, we port the implementation of REWARDS to
X-Force. Given a binary executable and a few test in-
puts, REWARDS executes it while monitoring dataflow
during execution. When execution reaches system or
library calls, the types of the parameters of these calls
are known. Such execution points are called type sinks.
Through the dynamic dataflow during execution, such
types could be propagated to variables that (transitively)
contributed to the parameters in the past and to variables
that are (transitively) dependent on these parameters.

Consider the example in Fig. 7. Assume func1 is
executed. After line 1, the type of arg1 and var1 get
resolved using the interface of strlen(). So TYPE 2

is char *, and TYPE 4 is unsigned int. In line 2,
arg2 is compared with var1, implying they have the
same type. Thus TYPE 3 gets resolved as unsigned

int. Later when line 4 gets executed, it returns TYPE 1

which is resolved as char since arg1 is of char *.













   

Figure 9: Type reverse engineering accuracy results.

Porting REWARDS to X-Force requires very little
modification of either the REWARDS or the X-Force
systems as they only interface through the (forced) con-
crete executions. Facilitated by X-Force, REWARDS is
able to run legacy binaries and COTS binaries without
any inputs. In our experiment, we run the new system on
the 12 SPEC2000 INT binaries. They are a lot more com-
plex than the Linux core-util programs used in the origi-
nal paper [30]. To acquire the ground truth, we compile
the programs with the option of generating debugging
symbols as PDB files, and use DIA SDK to read the type
information from the PDB files.

We evaluate the system in terms of both coverage and
accuracy. Coverage means the percentage of variables in
the program that have been executed by our system. Ac-
curacy is the percentage of the covered variables whose
types are correctly reverse engineered. From Fig. 8, the
average coverage is around 84%. The coverage heav-
ily relies on the code coverage of X-Force. Recall that
these programs have non-trivial portion of unreachable
code. The variables in those code regions cannot be re-
verse engineered by our system. From Fig.9, the average
accuracy is about 90%. The majority of type inference
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Figure 10: Essence of X-Force.

failures is caused by the fact that the variables are not
related to any type sink.

We also compare with IDA and the original RE-
WARDS. IDA has a static type inference algorithm that
works in a similar fashion. When we run the original
REWARDS, we have two configurations: (1) use the test
input only (1 input per program) and (2) use both the
test and the reference inputs (around 4 inputs per pro-
gram). From Fig. 8 and Fig. 9, our system has much
better accuracy than IDA (90% vs. 55% on average) and
better coverage than the original REWARDS, i.e., 84%
vs. 57% (test+reference) or 34% (test input only). The
better accuracy than IDA is achieved by the more precise
modeling of behavior difficult for static analysis, such as
heap accesses and indirect calls and jumps.

6 Discussion and Future Work
X-Force is intended to be a practical solution for ana-
lyzing unknown (malicious) binaries without requiring
any source code or inputs. Hence, X-Force trades sound-
ness and completeness for practicality. It is unsound
as it could explore infeasible paths. It is incomplete as
it cannot afford exploring all paths. Figure 10 shows
how X-Force compares with static and dynamic analysis:
The “Reachable Program State” oval denotes all states
that can be reached through possible program inputs –
the ideal coverage for program analysis. Static analyses
often make conservative approximations such that they
yield over-approximate coverage. Dynamic analyses an-
alyze a number of real executions and hence yield under-
approximate results. X-Force explores a larger set of ex-
ecutions than dynamic analyses. Since X-Force makes
unsound approximations, its results may be invalid (i.e.,
outside the ideal oval). Furthermore, it is incomplete as
its results may not cover the ideal ones.

However, we argue that X-Force is still of importance
in practice: (1) There are many security applications
whose analysis results are not so sensitive to paths, such
as the three studies in this paper. As such, path infeasi-
bility may not affect the results much. However, having
concrete states in path exploration is still critical in these
applications such that an execution based approach like
X-Force is suitable; (2) Only a very small percentage of
predicates are switched (Section 5.1) in X-Force. Execu-
tion is allowed to proceed naturally in most predicates,
respecting path feasibility. According to our observa-
tions, most of the predicates that got switched in linear

search are those checking if the program has been pro-
vided the needed parameters, if files are properly opened,
and if certain environmental configurations are correctly
set-up; (3) In X-Force, taint analysis is used to identify
predicates that are affected by inputs and only such pred-
icates are eligible for switching.

Moreover, X-Force allows users to (1) rapidly explore
the behaviors of any (unknown) binary as it simply exe-
cutes the binary (without solving constraints); (2) handle
binaries in a much broader spectrum (e.g., large, packed,
or obfuscated binaries); (3) easily port or develop dy-
namic analysis on X-Force as the executions in X-Force
are no different from regular concrete executions.

Future Work. We believe this paper is just an initial step
in developing a unique type of program analysis different
from the traditional static, dynamic, and symbolic anal-
ysis. We have a number of tasks in our future research
agenda.

• While X-Force simply forces the branch outcomes
of a few predicates without considering their feasi-
bility, we suspect that there is a chance in practice
the forced paths are indeed feasible in many cases.
Note that the likelihood of infeasibility is not high if
the forced predicates are not closely correlated. We
plan to use a symbolic analysis engine that mod-
els the path conditions along the forced paths to ob-
serve how often they are infeasible.

• We develop 3 exploration algorithms in this pa-
per. From the evaluation data on the SPECINT2000
programs, there are cases (e.g., perlbmk) that the
current exploration algorithms cannot handle well.
More effective algorithms, for example, based on
modeling functions behaviors and caching previous
exploration choices, will be developed.

• We currently handle multi-threaded programs by se-
rializing their executions. In the future, we will ex-
plore forcing real concurrent executions. We envi-
sion this has to be integrated with flipping sched-
ule decisions, which is a standard technique in ex-
ploring concurrent execution state. How to handle
the enlarged state space and the potentially intro-
duced infeasible thread schedules will be the new
challenges.

• The current system is implemented as a tool on
top of PIN. To build a tool that makes use of X-
Force, for example REWARDS, the implementation
of the additional tool is currently mixed with X-
Force. They are compiled together to a single PIN-
tool. We aim to make X-Force transparent to dy-
namic analysis developers by providing an PIN-like
interface. Ideally, existing PIN-tools can be easily
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ported to X-Force to benefit from the large number
of executions provided by the X-Force engine.

• We also plan to port the core X-Force engine to
other platforms such as mobile and HTML5 plat-
forms.

7 Related Work
Researchers proposed to force branch outcomes for
patching software failures in [51]. Hardware support was
proposed to facilitate path forcing in [31]. Both require
source code and concrete program inputs. Branch out-
comes are forced to explore paths of binary programs
in [48] to construct control flow graphs. The technique
does not model any heap behavior. Moreover, it skips all
library calls. Similar techniques are proposed to expose
hidden behavior in Android apps [22, 45]. These tech-
niques randomly determine each branch’s outcome, pos-
ing the challenge of excessive infeasible paths. Forced
execution was also proposed to identify kernel-level
rootkits [46]. It completely disregards branch outcomes
during execution and performs simple depth-first search.
None of these techniques performs exception recovery
and instead simply terminates executions when excep-
tions arise. Constraint solving was used in exploring
execution paths to expose malware behavior in [33, 6].
They require concrete inputs to begin with and then mu-
tate such inputs to explore different paths.

X-Force is related to static binary analysis [21, 3, 25,
42, 41], dynamic binary analysis [30, 39, 24] and sym-
bolic binary analysis [10, 40]. We have discussed their
differences from X-Force in Section 6, which are also
supported by our empirical results in Section 5. X-Force
is also related to failure oblivious computing [36] and
on-the-fly exception recovery [34], which are used for
failure tolerance and debugging and require source code.

8 Conclusion
We develop a novel binary analysis engine X-Force,
which forces a binary to execute without any inputs or the
needed environment. It systematically forces the branch
outcomes at a small number of predicates to explore dif-
ferent paths. It can recover from exceptions by allocat-
ing memory on-demand and fixing correlated pointers
accordingly. Our experiments on three security applica-
tions show that X-Force has similar precision as dynamic
analysis but much better coverage due to the capability of
exploring many paths with any inputs.
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Abstract

Function identification is a fundamental challenge in re-
verse engineering and binary program analysis. For in-
stance, binary rewriting and control flow integrity rely on
accurate function detection and identification in binaries.
Although many binary program analyses assume func-
tions can be identified a priori, identifying functions in
stripped binaries remains a challenge.

In this paper, we propose BYTEWEIGHT, a new au-
tomatic function identification algorithm. Our approach
automatically learns key features for recognizing func-
tions and can therefore easily be adapted to different
platforms, new compilers, and new optimizations. We
evaluated our tool against three well-known tools that
feature function identification: IDA, BAP, and Dyninst.
Our data set consists of 2,200 binaries created with three
different compilers, with four different optimization lev-
els, and across two different operating systems. In our
experiments with 2,200 binaries, we found that BYTE-
WEIGHT missed 44,621 functions in comparison with the
266,672 functions missed by the industry-leading tool
IDA. Furthermore, while IDA misidentified 459,247 func-
tions, BYTEWEIGHT misidentified only 43,992 functions.

1 Introduction
Binary analysis is an essential security capability with
extensive applications, including protecting binaries with
control flow integrity (CFI) [1], extracting binary code
sequences from malware [9], and hot patching vulnerabil-
ities [25]. Research interest in binary analysis shows no
sign of waning. In 2013 alone, several papers such as CFI
for COTS [34] (referred to as COTS-CFI in this paper),
the Rendezvous search engine for binaries [21], and the
Phoenix decompiler [28] focus on developing new binary
analysis techniques.

Function identification is a preliminary and necessary
step in many binary analysis techniques and applications.
For example, one property of CFI is to constrain inter-
function control flow to valid paths. In order to reason

about such paths, however, binary-only CFI infrastruc-
tures need to be able to identify functions accurately. In
particular, COTS-CFI [34], CCFIR [33], MoCFI [12],
Abadi et al. [1], and extensions like XFI [15] all depend
on accurate function identification to be effective.

CFI is not the only consumer of binary-level function
identification techniques. For example, Rendezvous [21]
is a search engine that operates at the granularity of func-
tion binaries; incorrect function identification can there-
fore result in incomplete or even incorrect search results.
Decompilers such as Phoenix [28], Boomerang [32], and
Hex-Rays [18] recover high-level source code from bi-
nary code. Naturally, decompilation occurs on only those
functions that have been identified in the input binary.

Given the foundational impact of accurate function
identification in so many security applications, is this
problem easy and can thus be regarded as “solved”? Inter-
estingly, recent security research papers seem to have con-
flicting opinions on this issue. On one side, Kruegel et al.
argued in 2004 that function start identification can be
solved “very well” [23, §4.1] in regular binaries and even
some obfuscated ones. On the other side, Perkins et al.
described static function start identification as “a complex
task in a stripped x86 executable” [25, §2.2.3] and there-
fore applied a dynamic approach in their ClearView sys-
tem. A similar opinion is also shared by Zhang et al., who
stated that “it is difficult to identify all function bound-
aries” [34, §3.2] and used a set of heuristics for this task.

So how good are the current tools at identifying func-
tions from stripped, non-malicious binaries? To find
out, we collected a dataset of 2,200 Linux and Win-
dows binaries generated by GNU gcc, Intel icc, and
Microsoft Visual Studio (VS) with multiple optimization
levels. We then use our dataset to evaluate the most
recent release of three popular off-the-shelf solutions
for function identification: (i) IDA (v6.5 at submission),
used in CodeSurfer/x86 [2], Choi et al.’s work on stati-
cally determining binary similarity [11], BinDiff [4], and
BinNavi [5]; (ii) the CMU Binary Analysis Platform
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(BAP, v0.7), used in the Phoenix decompiler [28] and
the vulnerability analysis tool Mayhem [10]; and (iii) the
unstrip utility in Dyninst (dated 2012-11-30), used in
BinSlayer [7], Sharif et al.’s work on dynamic malware
analysis [29], and Sidiroglou et al.’s work on software
recovery navigation [30].

Our finding is that while IDA performs better than BAP
and Dyninst on our dataset, its result can still be quite
alarming—in our experiment, IDA returned 521,648 true
positives (41.81%), 266,672 false negatives (21.38%),
and 459,247 false positives (36.81%). While there is no
doubt that such failures can have a negative impact on
downstream security analyses, a real issue is in setting
the right expectation on the subject within the security
research community. If there is a publicly-available func-
tion identification solution where both its mechanism and
limitations are well-understood by researchers, then re-
searchers may be come up with creative strategies to cope
with the limitations in their own projects. The goal of
this paper is to explain our process of developing such a
solution and to establish its quality through evaluating it
against the aforementioned solutions.

We draw inspirations from how BAP and Dyninst per-
form function identification since their source code is
available. Both solutions rely on fixed, manually-curated
signatures. Dyninst, at the version we tested, uses the
byte signature 0x55 (push %ebp in assembly) to recog-
nize function starts in ELF x86 binaries [14]. BAP v0.7
uses a more complex signature, but it is also manually
generated. Unfortunately, the process of manually gen-
erating such signatures do not scale well. For example,
each new compiler release may introduce new idioms that
require new signatures to capture. The myriad of different
optimization settings, such as omit frame pointers, may
also demand even more signatures. Clearly, we cannot
expect to manually catch up.

One approach to recognizing functions is to automati-
cally learn key features and patterns. For example, semi-
nal work by Rosenblum et al. proposed binary function
start identification as a supervised machine learning clas-
sification problem [27]. They model function start identi-
fication as a Conditional Random Field (CRF) in which
binary offsets and a number of selected idioms (patterns)
appear in the CRF. Since standard inference methods for
CRF on large, highly-connected graphs are expensive,
Rosenblum et al. adopted feature selection and approxi-
mate inference to speed up their model. However, using
hardware available in 2008, they needed 150 compute-
days just for the feature selection phase on 1,171 binaries.

In this paper, we propose a new automated analysis
for inferring functions and implemented it in our BYTE-
WEIGHT system. A key aspect of BYTEWEIGHT is the
ability to learn signatures for new compilers and opti-
mizations at least one order of magnitude faster than as

reported by Rosenblum et al. [27], even after generously
accounting for CPU speed increase since 2008. In par-
ticular, we avoid using CRFs and feature selection, and
instead opt for a simpler model based on learning prefix
trees. Our simpler model is scalable using current comput-
ing hardware: we finish training 2,064 binaries in under
587 compute-hours. BYTEWEIGHT also does not require
compiler information of testing binaries, which makes the
tool more powerful in practice. In the interest of open
science, we also make our tools and datasets available to
seed future improvements.

At a high level, we learn signatures for function starts
using a weighted prefix tree, and recognize function starts
by matching binary fragments with the signatures. Each
node in the tree corresponds to either a byte or an instruc-
tion, with the path from the root node to any given node
representing a possible sequence of bytes or instructions.
The weights, which can be learned with a single linear
pass over the data set, express the confidence that a se-
quence of bytes or instructions corresponds to a function
start. After function start identification, we then use value
set analysis (VSA) [2] with an incremental control flow re-
covery algorithm to find function bodies with instructions,
and extract function boundaries.

To evaluate our techniques, we perform a large-scale
experiment and provide empirical numbers on how well
these tools work in practice. Based on 2,200 binaries
across operating systems, compilers and optimization op-
tions, our results show that BYTEWEIGHT has a precision
and recall of 97.30% and 97.44% respectively for function
start identification. BYTEWEIGHT also has a precision
and recall of 92.84% and 92.96% for function boundary
identification. Our tool is adaptive for varying compilers
and therefore more general than current pattern matching
methods.

Contributions. This paper makes the following contri-
butions:

• We enumerate the challenges we faced and imple-
ment a new function start identification algorithm
based on prefix trees. Our approach is automatic
and does not require a priori compiler information
(see §4). Our approach models the function start
identification problem in a novel way that makes it
amenable to much faster learning algorithms.

• We evaluate our method on a large test suite across
operating systems, compilers, and compiling opti-
mizations. Our model achieves better accuracy than
previously available tools.

• We make our test infrastructure, data set, implemen-
tation, and results public in an effort to promote open
science (see §5).
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1 #include <stdio.h>
2 #include <string.h>
3 #define MAX 10
4 void sum(char *a, char *b)
5 {
6 printf("%s + %s = %d\n",
7 a, b, atoi(a) + atoi(b));
8 }
9 void sub(char *a, char *b)
10 {
11 printf("%s - %s = %d\n",
12 a, b, atoi(a) - atoi(b));
13 }
14 void assign(char *a, char *b)
15 {
16 char pre_b[MAX];
17 strcpy(pre_b, b);
18 strcpy(b, a);
19 printf("b is changed from %s to %s\n",
20 pre_b, b);
21 }
22 int main(int argc, char **argv)
23 {
24 void (*funcs[3])(char *x, char *y);
25 int f;
26 char a[MAX], b[MAX];
27 funcs[0] = sum;
28 funcs[1] = sub;
29 funcs[2] = assign;
30 scanf("%d %s %s", &f, a, b);
31 (*funcs[f])(a, b);
32 return 0;
33 }

1 00400660 <assign>:
2 mov %rbx,-0x10(%rsp)
3 mov %rbp,-0x8(%rsp)
4 sub $0x28,%rsp
5 mov %rdi,%rbp
6 lea 0xf(%rsp),%rdi
7 ...
8 004006b0 <sub>:
9 mov %rbx,-0x18(%rsp)
10 mov %rbp,-0x10(%rsp)
11 mov %rsi,%rbx
12 mov %r12,-0x8(%rsp)
13 xor %eax,%eax
14 sub $0x18,%rsp
15 ...
16 00400710 <sum>:
17 mov %rbx,-0x18(%rsp)
18 mov %rbp,-0x10(%rsp)
19 mov %rsi,%rbx
20 mov %r12,-0x8(%rsp)
21 xor %eax,%eax
22 sub $0x18,%rsp
23 ...

(a) Source code (b) Assembly compiled by gcc -O3

Figure 1: Example C Code. IDA fails to identify functions sum, sub, and assign in the compiled binary.

2 Running Example

We start with a simple example written in C, shown in
Figure 1. In this program, three functions are stored as
function pointers in the array funcs. When the program
is run, input from the user dictates which function gets
called, as well as the function arguments. We compiled
this example code on Linux Debian 7.2 x86-64 using gcc
with -O3, and stripped the binary using the command
strip. We then used IDA to disassemble the binary
and perform function identification. Many security tools
use IDA in this way as a first step before performing
additional analysis [9, 20, 24]. Unfortunately, for our
example program IDA failed to identify the functions
sum, sub, and assign.

IDA’s failure to identify these three critical functions
has significant implications for security analyses that rely
on accurate function boundary identification. Recall that
the CFI security policy dictates that runtime execution
must follow a path of the static control flow graph (CFG).
In this case, when the CFG is recovered by first iden-
tifying functions using IDA, any call to sum, sub, or
assign would be incorrectly disallowed, breaking legit-
imate program behavior. Indeed, any indirect jump to

an unidentified or mis-identified function will be blocked
by CFI. The greater the number of functions missed, the
more legitimate software functionality incorrectly lost.
Secondly, suppose we are checking code for potential
security-critical bugs. In our sample program, the func-
tion assign is vulnerable to a buffer overflow attack, but
is not identified by IDA as a function. For tools like
ClearView [25] that operate on binaries at the function
level, missing functions can mean missing vulnerabilities.

In our analysis of 1,171 binaries, we observed that
that IDA failed to identify 266,672 functions. BYTE-
WEIGHT improves on this number, missing only 44,621.
BYTEWEIGHT also makes fewer mistakes, incorrectly
identifying functions 43,992 times compared to 459,247
with IDA. While these results are not perfect, they demon-
strate that our automated machine learning approach can
outperform years of manual hand-tuning that has gone
into IDA.

3 Problem Definition and Challenges
The goal of function identification is to faithfully deter-
mine the set of functions that exist in binary code. Deter-
mining what functions exist and which bytes belong to
which functions is trivial if debug information is present.
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For example, “unstripped” Linux binaries contain a sym-
bol table that maps function names to locations in a bi-
nary, and Microsoft program database (PDB) information
contains similar information for Windows binaries. We
start with notation to make our problem definition pre-
cise and then formally define three function identification
problems. We then describe several challenges to any
approach or algorithm that addresses the function identifi-
cation problems. In subsequent sections we provide our
approach.

3.1 Notation and Definitions

A binary program is divided into a number of sections.
Each section is given a type, such as code, data, read-only
data, and so on. In this paper we only consider executable
code, which we treat as a binary string.

Let B denote a binary string. For concreteness, think
of this as a binary string from the .text section in a
Linux executable. Let B[i] denote the ith byte of a binary
string, and B[i : i+ j] refer to the list of contiguous bytes
B[i],B[i+1], . . . ,B[i+ j−1]. Thus, B[i : i+ j] is j-bytes
long (with j ≥ 0).

Each byte in an executable is associated with an ad-
dress. The address of byte i is calculated with respect to
a fixed section offset, i.e., if the section offset is ω , the
address of byte i is i+ω . For convenience, we omit the
offset, and refer to i as the ith address. Since the real ad-
dress can always be calculated by adding the fixed offset,
this can be done without loss of generality.

A function Fi in a binary B is a list of addresses cor-
responding to statements in either a function from the
original compiled language or a function introduced di-
rectly by the compiler, denoted as

F = {B[i],B[ j], . . . ,B[k]}

Note that function bytes need not be a set of contiguous
addresses. We elaborate in §3.3 on real optimizations that
result in high-level functions being compiled to a set of
non-contiguous intervals of instructions.

Towards our goal of determining which bytes of a bi-
nary belong to which functions, we define the set of func-
tions in a binary

FUNCS(B) = {F1,F2, . . . ,Fk}.

Note that functions may share bytes, i.e., it may be that
F1 ∩F2 �= /0. We give examples in §3.3 where this is the
case.

We call the lowest address of a function Fi the func-
tion start address si, i.e., si = min(Fi). The function end
address ei is the maximum byte in a function body, i.e.,
ei = max(Fi). We define the function boundary (si,ei) as
the function start and end addresses for Fi.

In order to evaluate function identification algorithms,
we define ground truth in terms of oracles, which may
have a number of implementations:
Function Oracle. Ofunc is an oracle that, given a binary

B, returns a list of functions FUNCS(B) where each
Fi is a set of bytes representing higher-level function
i, as defined above.

Boundary Oracle. Obound is an oracle that, given
B, returns the set of function boundaries
{(s1,e1),(s2,e2), . . . ,(sk,ek)}.

Start Oracle. Ostart is an oracle that, given B, returns the
set of function start addresses {s1,s2, . . . ,sk}.

These oracles are successively less powerful. For ex-
ample, implementing a boundary oracle Obound from a
function oracle Ofunc requires simply taking the minimum
and maximum element of each Fi. Similarly, a start oracle
Ostart can be implemented from either Ofunc or Obound by
finding the minimum element of each Fi.

We do not restrict ourselves to a specific oracle imple-
mentation, as realizable oracles may vary across operating
system and compiler. For example, the boundary oracle
can be implemented by retaining debug information for
Windows or Linux binaries. The function oracle can be
implemented by instrumenting a compiler to output a
list of instruction addresses included in each compiled
function.

3.2 Problem Definition

With the above definitions, we are now ready to state
our problem definitions. We start with the least powerful
identification (function start) and build up to the most
difficult one (entire function).

Definition 3.1. The Function Start Identification (FSI)
problem is to output the complete list of function starts
{s1,s2, . . . ,sk} given a binary B compiled from a source
with k functions.

Suppose there is an algorithm AFSI(B) for the FSI prob-
lem which outputs S = {s1,s2, . . . ,sk}. Then:

• The set of true positives, TP, is S∩Ostart(B).
• The set of false positives, FP, is S−Ostart(B).
• The set of false negatives, FN, is Ostart(B)−S.
We also define precision and recall. Roughly speak-

ing, precision reflects the number of times an identified
function start is really a function start. A high precision
means that most identified functions are indeed functions,
whereas a low precision means that some sequences are
incorrectly identified as functions. Recall is the mea-
surement describing how many functions were identified
within a binary. A high recall means an algorithm detected
most functions, whereas a low recall means most func-
tions were missed. Mathematically, they can be expressed
as

Precision =
|TP|

|TP|+ |FP|
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and

Recall =
|TP|

|TP|+ |FN| .

A more difficult problem is to identify both the start
and end addresses for a function:

Definition 3.2. The Function Boundary Identification
(FBI) problem is to identify the start and end bytes
(si,ei) for each function i in a binary, i.e., S =
{(s1,e1),(s2,e2), . . . ,(sk,ek)}, given a binary B compiled
from a source with k identified functions.

Suppose there is an algorithm AFBI(B) for the FBI prob-
lem which outputs S= {(s1,e1),(s2,e2), . . . ,(sk,ek)}. We
then define true positives, false positives, and false nega-
tives similarly to above with the additional requirement
that both the start and end addresses must match the out-
put of the boundary oracle, i.e., for oracle output (sgt ,egt)
and algorithm output (sA ,eA ), a positive match requires
sgt = sA and egt = eA . A false negative occurs if either
the start or end address is wrong. Precision and recall are
defined analogously to the FSI problem.

Finally, we define the general function identification
problem:

Definition 3.3. The Function Identification (FI) problem
is to output a set {F1,F2, . . . ,Fk} where each Fi is a list
of bytes corresponding to high-level function i given a
binary B with k identified functions.

We define true positives, false positives, false negatives,
precision, and recall for the FI problem in the same ways
as FSI and FBI but add the requirement that all bytes of a
function must be matched between agorithm and oracle.

The above problem definitions form a natural hierarchy,
where function start identification is the easiest and full
function identification is the most difficult. For exam-
ple, an algorithm AFBI for function boundaries can solve
the function start problem by returning the start element
of each tuple. Similarly, an algorithm for the function
identification problem needs only return the maximum
and minimum element to solve the function boundary
identification problem.

3.3 Challenges

Identifying functions in binary code is made difficult by
optimizing compilers, which can manipulate functions
in unexpected ways. In this section we highlight several
challenges posed by the behavior of optimizing compilers.

Not every byte belongs to a function. Compilers may
introduce extra instructions for alignment and padding
between or within a function. This means that not ev-
ery instruction or byte must belong to a function. For
example, suppose we have symbol table information for a
binary B. One naive algorithm is to first sort symbol-table

1 <_func1>:
2 100000e20: push %rbp
3 100000e21: mov %rsp,%rbp
4 100000e24: lea 0x69(%rip),%rdi
5 100000e2b: pop %rbp
6 100000e2c: jmpq 100000e5e <_puts$stub>
7 100000e31: nopl 0x0(%rax)
8 100000e38: nopl 0x0(%rax,%rax,1)
9 <func2>:

Figure 2: Unreachable function example: source code
and assembly.

entries by address, and then ascribe each byte between en-
try fi and fi+1 as belonging to function fi. This algorithm
has appeared in several binary analysis platforms used in
security research, such as versions of BAP [3] and Bit-
Blaze [6]. This heuristic is flawed, however. For example,
in Figure 2 lines 7–8 are not owned by any function.

Functions may be non-contiguous. Functions may
have gaps. The gaps can be jump tables, data, or
even instructions for completely different functions [26].
As noted by Harris and Miller [19], function sharing
code can also lead to non-contiguous functions. Fig-
ure 3 shows code that starts out with the function
ConvertDefaultLocale. Midway through the function
at lines 17–21, however, the compiler decided to include
a few lines of code for FindNextFileW as an optimiza-
tion. Many binary analysis platforms, such as BAP [3]
and BitBlaze [6], are not able to handle non-contiguous
functions.

Functions may not be reachable. A function may be
dead code and never called, but nonetheless appear in
the binary. Recognizing such functions is still important
in many security scenarios. For example, suppose two
malware samples both contain a unique, identifying, yet
uncalled function. Then the two malware samples are
likely related even though the function is never called.
One consequence of this is that techniques based solely
on recursive disassembling from program start are not
well-suited to solve the function identification problem. A
recursive disassembler only disassembles bytes that occur
along some control flow path, and thus by definition will
miss functions that are not called.

Unreachability may occur for several reasons, includ-
ing compiler optimizations. For example, Figure 4 shows
a function for computing factorials called fac. When
compiled by gcc -O3, the result of the call to fac is pre-
computed and inlined. Although the code of fac appears,
it is never called in the binary code.

Security policies such as CFI and XFI must be aware
of all low-level functions, not just those in the original
code.
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1 <ConvertDefaultLocale>
2 7c8383ff: mov %edi,%edi
3 7c838401: push %ebp
4 ...
5 7c83840c: jz 7c848556
6 7c838412: test %eax, %eax
7 7c838414: jz 7c83965c
8 7c83841a: mov $1024,%ecx
9 7c83841f: cmp %ecx,%eax
10 7c838421: jz 7c83965c
11 7c838427: test $252,%ah
12 7c83842a: jnz 7c838442
13 7c83842c: mov %eax,%edx
14 ...
15 7c838442: pop %ebp
16 7c838443: ret 4
17 ; chunk of different function FindNextFileW
18 7c838446: push 6
19 7c838448: call sub_7c80935e
20 7c83844d:
21 ; end of chunk
22 ...
23 7c83965c: call GetUserDefaultLCID
24 7c890661: jmp 7c838442
25 ...
26 7c848556: mov $8,%eax
27 7c84855b: jmp 7c838442

Figure 3: Lines 17–21 show code from FindNextFileW
included in the middle of ConvertDefaultLocale.

Functions may have multiple entries. High-level lan-
guages use functions as an abstraction with a single entry.
When compiled, however, functions may have multiple
entries as a result of specialization. For example, the icc
compiler with -O1 specialized the chown_failure_ok
function in GNU LIBC. As shown in Figure 5, a new
function entry chown_failure_ok. (note the period) is
added for use when invoking chown_failure_ok with
NULL. The compiled binary has both symbol table entries.
Unlike shared code for two functions that were originally
separate, the compiler here has introduced shared code
via multiple entries as an optimization.

Identifying both functions is necessary in many security
scenarios, e.g., CFI needs to identify each function entry
point for safety, and realize that both are possible targets.
More generally, any binary rewriting for protection (e.g.,
memory safety, control safety, etc.) would need to reason
about both entry points.

Functions may be removed. Functions can be re-
moved by function inlining, especially small functions.
Compilers perform function-inlining to reduce function
call overhead and expose more optimization opportuni-
ties. For example, the function utimens_symlink is in-
lined into the function copy_internal when compiled
by gcc with -O2. The source code and assembly code
are shown in Figure 6. Note that function inlining does
not have to be explicitly declared with inline annota-
tion in source code. Many compilers inline functions
by default unless explicitly disabled with options such

as -fno-deault-inline [17]. This indicates that for
those binary analysis techniques which need function in-
formation, even though source code is accessible, a robust
function identification technique should still operate on
the program binary. If using source code, function iden-
tification may be less precise due to functions that are
inlined during compilation.

Each compilation is different. Binary code is not only
heavily influenced by the compiler but also the compiler
version and specific optimizations employed. For exam-
ple, icc does not pre-compute the result of fac in Fig-
ure 4, but gcc does. Even different versions of a compiler
may change code. For example, traditionally gcc (e.g.,
version 3) would only omit the use of the frame pointer
register %ebp when given the -fomit-frame-pointer
option. Recent versions of gcc (such as version 4.2),
however, opportunistically omit the frame pointer when
compiled with -O1 and -O2. As a result several tools that
identified functions by scanning for push %ebp break.
For example, Dyninst, used for instrumentation in sev-
eral security projects, relies on this heuristic to identify
functions and breaks on recent versions of gcc.

4 BYTEWEIGHT

In this section, we detail the design and algorithms used
by BYTEWEIGHT to solve the function identification
problems. We first start with the FSI problem, and then
move to the more general function identification problem.

We cast FSI as a machine learning classification prob-
lem where the goal is to label each byte of a binary as
either a function start or not. We use machine learning
to automatically generate literal patterns so that BYTE-
WEIGHT can handle new compilers and new optimiza-
tions without relying on manually generated patterns or
heuristics. Our algorithm works with both byte sequences
and disassembled instruction sequences.

Our overall system is shown in Figure 7. Like any clas-
sification problem, we have a training phase followed by
a classification phase. During training, we first compile a
reference corpus of source code to produce binaries where
the start addresses are known. At a high level, our algo-
rithm creates a weighted prefix tree of known function
start byte or instruction sequences. We weight vertices
in the prefix tree by computing the ratio of true positives
to the sum of true and false positives for each sequence
in the reference data set. We have designed and imple-
mented two variations of BYTEWEIGHT: one working
with raw bytes and one with normalized disassembled
instructions. Both use the same overall algorithm and
data structures. We show in our evaluation that the nor-
malization approach provides higher precision and recall,
and costs less time (experiment 5.2).

In the classification phase, we use the weighted prefix
tree to determine whether a given sequence of bytes or



USENIX Association  23rd USENIX Security Symposium 851

1 int fac(int x)
2 {
3 if (x == 1) return 1;
4 else return x * fac(x - 1);
5 }
6
7 void main(int argc, char **argv)
8 {
9 printf("%d", fac(10));
10 }

1 080483f0 <fac>:
2 ...
3 08048410 <main>:
4 ...
5 movl $0x375f00,0x4(%esp)
6 movl $0x8048510,(%esp)
7 call 8048300 ;call printf without fac
8 xor %eax,%eax
9 add $0x8,%esp
10 pop %ebp
11 ret

(a) Source code (b) Assembly compiled by gcc -O2

Figure 4: Unreachable code: source code and assembly.

1 extern bool
2 chown_failure_ok (struct cp_options const *x)
3 {
4 return ((errno == EPERM || errno == EINVAL)
5 && !x->chown_privileges);
6 }

1 <chown_failure_ok>:
2 804f544: mov 0x4(%esp),%eax
3 <chown_failure_ok.>:
4 804f548: push %esi
5 804f549: push %esi
6 804f54a: push %esi
7 ...

(a) Source Code (b) Assembly compiled by icc -O1

Figure 5: chown_failure_ok is specialized: source code and assembly.

instructions corresponds to a function start. We say that a
sequence corresponds to a function start if the correspond-
ing terminal node in the prefix tree has a weight value
larger than the threshold t. In the case where the sequence
exactly matches a path in the prefix tree, the terminal node
is the final node in this path. If the sequence does not
exactly match a path in the tree, the terminal node is the
last matched node in the sequence.

Once we identify function starts, we infer the remaining
bytes (and instructions) that belong to a function using
a CFG recovery algorithm. The algorithm incrementally
determines the CFG using a variant of VSA [2]. If an
indirect jump depends on the value of a register, then we
over-approximate a solution to the function identification
problem by adding edges that correspond to locations
approximated using VSA.

4.1 Learning Phase

The input to the learning phase is a corpus of training
binaries T, and a maximum sequence length � > 0. �
serves as a bound on the maximum tree height.

In BYTEWEIGHT, we first generate the oracle Obound
by compiling known source using a variety of optimiza-
tion levels while retaining debug information. The debug
information gives us the required (si,ei) pair for each
function i in the binary.

In this paper, we consider two possibilities: learning
over raw bytes and learning over normalized instructions.
We refer to both raw bytes and instructions as a sequence
of elements. The sequence length � determines how many

raw sequential bytes or instructions we consider for train-
ing.

Step 1: Extract first � elements for each function (Ex-
traction). In the first step, we iterate over all (si,ei)
pairs and extract the first � elements. If there are fewer
than � elements in the function, we extract the maximum
number of elements. For raw bytes, this is B[s : s+ �]
bytes, and for instructions, it is the first � instructions
disassembled linearly starting from B[s].

Step 2: Generate a prefix tree (Tree Generation). In
step 2, we generate a prefix tree from the extracted se-
quences to represent all possible function start sequences
up to � elements.

A prefix tree, also called a trie, is a data structure en-
abling efficient information retrieval. In the tree, each
non-root node has an associated byte or instruction. The
sequence for a node n is represented by the elements that
appear on the path from the root to n. Note that the tree
represents all strings up to � elements, not just exactly �
elements.

Figure 8a shows an example tree on instructions,
where node callq 0x43a28 represents the instruction
sequence:

push %ebp ;saved stack pointer
mov %esp,%ebp ;establish new frame
callq 0x43a28 ;call another function

If the sequence is over bytes, the prefix tree is calcu-
lated directly, although our experiments indicate that a
prefix tree calculated over normalized instructions fairs



852 23rd USENIX Security Symposium USENIX Association

1 static inline int
2 utimens_symlink (char const *file,
3 struct timespec const *timespec)
4 {
5 int err = lutimens (file, timespec);
6 if (err && errno == ENOSYS)
7 err = 0;
8 return err;
9 }
10
11 static bool
12 copy_internal (char const *src_name,
13 char const *dst_name,
14 ...)
15 {
16 ...
17 if ((dest_is_symlink
18 ?utimens_symlink (dst_name,
19 timespec)
20 :utimens (dst_name, timespec))
21 != 0)
22 ...
23 }

1 <_copy_internal>:
2 100003170: push %rbp
3 100003171: mov %rsp,%rbp
4 100003174: push %r15
5 100003176: push %r14
6 ...
7 10000468c: test %r14b,%r14b
8 10000468f: je 100005bfd
9 100004695: lea -0x738(%rbp),%rsi
10 10000469c: mov -0x750(%rbp),%rdi
11 1000046a3: callq 10000d020 <_lutimens>
12 1000046a8: test %eax,%eax
13 1000046aa: mov %eax,%ebx
14 ...

(a) Source Code (b) Assembly compiled by gcc -O2

Figure 6: Example of function being removed due to function inlining optimization.
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Figure 7: The BYTEWEIGHT function boundary inference approach.

better. We perform two types of normalization: imme-
diate number normalization and call & jump instruction
normalization. As shown in Table 1, normalization takes
an instruction as input and generalizes it so that it can
match against very similar, but not identical instructions.
These two types of normalization help us improve recall
at the cost of a little precision (Table 2). In our running
example, only the function assign is recognized as a
function start when matched against the unnormalized
prefix tree (Figure 8a), while functions assign, sub, and
sum can all be recognized when matched against the nor-
malized prefix tree (Figure 8b).

Step 3: Calculate tree weights (Weight Calculation).
The prefix tree represents possible function start se-
quences up to � elements. For each node, we assign a
weight that represents the likelihood that the sequence

corresponding to the path from the root node to this node
is a function start in the training set. For example, ac-
cording to Figure 8, the weight of node push %ebp is
0.1445, which means that during training, 14.45% of all
sequences with prefix of push %ebp were truly function
starts, while 85.55% were not.

To calculate the weight, we first count the number of
occurrences T+ in which each prefix in the tree matches
a true function start with respect to the ground truth Ostart
for the entire training set T.

Second, we lower the weight of a prefix if it occurs
in a binary, but is not a function start. We do this by
performing an exhaustive disassembly starting from every
address that is not a function start [23]. We match each
exhaustive disassembly sequence of � elements against
the tree. We call these false matches. The number of false
matches T− is the number of times a prefix represented
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mov %rbx,-0x10(%rsp) 

push %ebp mov %esp,%ebp

mov %rbp,-0x8(%rsp) 

sub $0x20,%rsp 

mov %rsi,%rbx 

callq 0x43a28 

callq 0x401320 
Ø 

…

…

0.1445 0.9883 0.0159

0.0320

0.9728

0.94190.96940.8459

0.0000

(a) Unnormalized

mov %rbx,-0x[1-9a-
f][0-9a-f]*\(%rsp\) 

push %ebp mov %esp,%ebp

mov %rbp,-0x[1-9a-
f][0-9a-f]*\(%rsp\) 

sub (?<! -)0x[1-9a-
f][0-9a-f]*,%rsp 

mov %rsi,%rbx 

call[q]* +0x[0-9a-
f]*

Ø 

…

…

0.1445 0.9883 0.0219

0.8459 0.9694

0.9728

0.9419

0.0000

(b) Normalized

Figure 8: Example of unnormalized (a) and normalized (b) prefix tree. Weight is shown above its corresponding node.

in the tree is not a function start in the training set T. The
weight for each node n is then the ratio of true positives
to overall matches

Wn =
T+

T++T−
. (1)

Since the prefix tree can end up being quite large, it
is beneficial to prune the tree of unnecessary nodes. For
each node in the tree, we remove all its child nodes if
the value of T− for this node is 0. For any child node,
the value of T− is never negative and never larger than
the value of T− for the parent node. Hence, if T− is 0
for a parent node, then the value must be 0 for all of the
child nodes as well. The intuition here is that if a child
node matches a sequence that is not a function start, then
so must the parent node. Thus, if the parent node does
not have any false matches, then neither can a child node.
Based on Equation 1, if T− = 0 and T+ > 0, then the
weight of the node is 1. Since the child nodes of such a
node also have a T− value of 0 and are not included in
the tree if T+ = 0, they must also have a weight of 1. As
discussed more in Section 4.2, child nodes with identical
weights are redundant and can safely be removed without
affecting classification.

This pruning optimization helps us greatly reduce the
space needed by the tree. For example, pruning reduced

the number of nodes in the prefix tree from 2,483 to
1,447 for our Windows x86 dataset. Moreover, pruning
increases the speed of matching, since we can determine
the weight of test sequences after traversing fewer nodes
in the tree.

4.2 Classification Phase Using a Weighted Prefix
Tree

The output of the learning phase is a weighted prefix tree
(e.g., Figure 8). The input to the classification step is a
binary B, the weighted prefix tree, and a weight threshold
t.

To classify instructions, we perform exhaustive disas-
sembly of the input binary B and match against the tree.
Matching is done by tokenizing the disassembled stream,
performing normalization as done during learning, and
walking the tree. To classify bytes rather than instructions,
we again start at every offset but instead match the raw
bytes instead of normalized instructions.

The weight of a sequence is determined by last match-
ing node (the terminal node) during the walk. For exam-
ple, given the tree in Figure 8a, and our running example
with sequences

mov %rbx,-0x10(%rsp)
mov %rbp,-0x8(%rsp)
sub %0x28,%rsp
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Type Unnormalized Signature Normalized Signature

Immediate

all
mov $0xaa,%eax mov \$-*0x[0-9a-f]+,%eax

mov %gs:0x0,%eax mov %gs:-*0x[0-9a-f]+,%eax

mov 0x80502c0,%eax mov -*0x[0-9a-f]+,%eax

zero
mov $0xaa,%eax mov \$-*0x[1-9a-f][0-9a-f]*,%eax

mov %gs:0x0,%eax mov %gs:0x0+,%eax

mov 0x80502c0,%eax mov -*0x[1-9a-f][0-9a-f]*,%eax

positive
mov $0xaa,%eax mov \$(?<! -)0x[1-9a-f][0-9a-f]*,%eax

mov %gs:0x0,%eax mov %gs:-0x[0-9a-f]+|0x0+,%eax

mov 0x80502c0,%eax mov (?<! -)0x[1-9a-f][0-9a-f]*,%eax

negative

mov $0xaa,%eax mov \$(?<! -)0x[0-9a-f]+,%eax

mov %gs:0x0,%eax mov %gs:(?<! -)0x[0-9a-f]+,%eax

mov 0x80502c0,%eax mov (?<! -)0x[0-9a-f]+,%eax

movzwl -0x6c(%ebp),%eax movzl -0x[1-9a-f][0-9a-f]*\(%ebp\),%eax

npz
mov $0xaa,%eax mov \$(?<! -)0x[1-9a-f][0-9a-f]*,%eax

mov %gs:0x0,%eax mov %gs:0x0+,%eax

mov 0x80502c0,%eax mov (?<! -)0x[1-9a-f][0-9a-f]*,%eax

movzwl -0x6c(%ebp),%eax movzl -0x[1-9a-f][0-9a-f]*\(%ebp\),%eax

Call & Jump call 0x804cf32 call[q]* +0x[0-9a-f]*

For immediate normalization, we generalize immediate operands. There are five kinds of generalization: all, zero,
positive, negative, and npz. For jump and call instruction normalization, we generalize callee and jump addresses.

Table 1: Normalizations in signature.

the matching node will be mov%rbp,-0x8(%rsp), giving
a weight of 0.9694. However, for another sequence

push %ebp
and $0x2,%esp

we would have weight 0.1445. We say the sequence is the
beginning of a function if the output weight w is not less
than the threshold t.

4.3 The Function Identification Problem

At a high level, we address the function identification
problem by first determining the start addresses for func-
tions, and then performing static analysis to recover the
CFG of instructions that are reachable from the start. Di-
rect control transfers (e.g., direct jumps and calls) are
followed using recursive disassembly. Indirect control
transfers, e.g., from indirect calls or jump tables, are enu-
merated using VSA [2]. The final CFG then represents
all instructions (and corresponding bytes) that are owned
by the function starting at the given address.

CFG recovery starts at a given address and recursively
finds new nodes that are connected to found nodes. The
process ends when no more vertices are added into graph.
Starting at the addresses classified for FSI, CFG recovery
recursively adds instructions that are reachable from these
starts. A first-in-first-out vertex array is maintained during
CFG recovery.

At the beginning, there is only one element – the start
address in the array. In each round, we process the first

element by exploring new reachable instructions. If the
new instruction is not in the array, it will be appended
to the end. Elements in the array are handled accord-
ingly until all elements have been processed and no more
instructions are added.

If the instruction being processed is a branch
mnemonic, the reachable instruction is the branch ref-
erence. If it is a call mnemonic, the reachable instructions
include both the call reference and the instruction directly
following the call instruction. If it is an exit instruction,
there will be no new instruction. For the rest of mnemon-
ics, the new instruction is the next one by address. We
handle indirect control transfer instruction by VSA: we
infer a set that over-approximates the destination of the
indirect jump and thus over-approximate the function
identification problem.

Note that functions can exit by calling a no-return func-
tion such as exit. This means that some call instructions
in fact never return. To detect these instances, we check
the call reference to see if it represents a known no-return
function such as abort or exit.

4.4 Recursive Function Call Resolution

Pattern matching can miss functions; for example, a func-
tion that is written directly in assembly may not obey
calling conventions. To catch these kinds of missed func-
tions, we continue to supplement the function start list
during CFG recovery. If a call instruction has its callee in
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the .text section, we consider the callee to be a function
start. We then do CFG recovery again, starting at the
new function start until there are no more functions added
into the function start list. We will refer to this strategy
as recursive function call resolution (RFCR). In §5.3, we
discuss the effectiveness of this technique in function start
identification.

4.5 Addressing Challenges

In this section, we describe how BYTEWEIGHT addresses
the challenges raised in §3.3.

First, BYTEWEIGHT recovers functions that are un-
reachable via calls because it does not depend on calls to
identify functions. In particular, BYTEWEIGHT recovers
any function start that matches the learned weighted pre-
fix tree as described above. Similarly, our approach will
also learn functions that have multiple entries, provided
a similar specialization occurs in the training set. This
seems realistic in many scenarios since the number of
compiler optimizations that create multiple entry func-
tions are relatively few and can be enumerated during
training.

BYTEWEIGHT also deals with overlapping byte or in-
struction sequences provided that there is a unique start
address. Consider two functions that start at different
addresses, but contain the same bytes. During CFG recov-
ery, BYTEWEIGHT will discover that both functions use
the same bytes, and attribute the bytes to both functions.
BYTEWEIGHT can successfully avoid false identification
for inlined functions when inlined function does not be-
have like an empirical function start (does not weighted
over threshold in training).

Finally, note that BYTEWEIGHT does not need to at-
tribute every byte or instruction to a function. In particular,
only bytes (or instructions) that are reachable from the
recovered function entries will be owned by a function in
the final output.

5 Evaluation
In this section, we discuss our experiments and perfor-
mance. BYTEWEIGHT is a cross-platform tool which can
be run on both Linux and Windows. We used BAP [3] to
construct CFGs. The rest of the implementation consists
of 1988 lines of OCaml code and 222 lines of shell code.
We set up BYTEWEIGHT on one desktop machine with a
quad-core 3.5GHz i7-3770K CPU and 16GB RAM. Our
experiments aimed to address three questions:

1. Does BYTEWEIGHT’s pattern matching model per-
form better than known models for function start
identification? (§5.2)

2. Does BYTEWEIGHT perform function start identi-
fication better than existing binary analysis tools?
(§5.3)

3. Does BYTEWEIGHT perform function boundary
identification better than existing binary analysis
tools? (§5.4)

In this section, we first describe our data set and ground
truth (the oracle), then describe the results of our exper-
iments. We performed three experiments answering the
above three questions. In each experiment, we compared
BYTEWEIGHT against existing tools in terms of both
accuracy and speed.

Because BYTEWEIGHT needs training, we divided the
data into training and testing sets. We used standard 10-
fold validation, dividing the element set into 10 sub-sets,
applying 1 of the 10 on testing, and using the remaining
9 for training. The overall precision and recall represent
the average of each test.

5.1 Data Set and Ground Truth

Our data set consisted of 2,200 different binaries compiled
with four variables:
Operating System. Our evaluation used both Linux and

Windows binaries.
Instruction Set Architecture (ISA). Our binaries con-

sisted of both x86 and x86-64 binaries. One reason
for varying the ISA is that the calling convention is
different, e.g., parameters are passed by default on
the stack in Linux on x86, but in registers on x86-64.

Compiler. We used GNU gcc, Intel icc, and Microsoft
VS.

Optimization Level. We experimented with the four op-
timization levels from no optimization to full opti-
mization.

On Linux, our data set consisted of 2,064 binaries in
total. The data set contained programs from coreutils,
binutils, and findutils compiled with both gcc
4.7.2 and icc 14.0.1. On Windows, we used VS 2010, VS
2012, and VS 2013 (depending on the requirements of the
program) to compile 68 binaries for x86 and x86-64 each.
These binaries came from popular open-source projects:
putty, 7zip, vim, libsodium, libetpan, HID API, and pbc (a
library for protocol buffers). Note that because Microsoft
Symbol Server releases only public symbols which do
not contain information of private functions, we were un-
able to use Microsoft Symbol Server for ground truth and
include Windows system applications in our experiment.

We obtained ground truth for function boundaries from
the symbol table and PDB file for Linux and Windows
binaries, respectively. We used objdump to parse symbol
tables, and Dia2dump [13] to parse PDB files. Addi-
tionally, we extracted “thunk” addresses from PDB files.
While most tools do not take thunks into account, IDA
considers thunks in Windows binaries to be special func-
tions. To get a fair result, we filtered out thunks from
IDA’s output using the list of thunks extracted from PDB
files.
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5.2 Signature Matching Model

Our first experiment evaluated the signature matching
model for function start identification. We compared
BYTEWEIGHT and Rosenblum et al.’s implementation in
terms of both accuracy and speed. In order to equally eval-
uate the signature matching models, recursive function
call resolution was not used in this experiment.

The implementation of Rosenblum et al. is available
as a matching tool with 12 hard-coded signatures for gcc
and 41 hard-coded signatures for icc. Their learning
code was not available, nor was their dataset. Although
they evaluated VS in their paper, the version of the im-
plementation that we had did not support VS and was
limited to x86. Each signature has a weight, which is also
hard-coded. After calculating the probability for each
sequence match, it uses a threshold of 0.5 to filter out
function starts. Taking a binary and a compiler name
(gcc or icc), it generates a list of function start addresses.
To adapt to their requirements, we divide Linux x86 bi-
naries into two groups by compiler, where each group
consists of 516 binaries. We did 10-fold cross valida-
tion for BYTEWEIGHT, and use the same threshold as
Rosenblum et al.’s implementation.

We also evaluated another two varieties of our model:
one without normalization, and one with a maximum
tree height of 3, which is same as the model used by
Rosenblum et al. and BYTEWEIGHT (3), respectively.

Table 2 shows precision, recall, and runtime for each
compiler and each function start identification model.
From the table we can see that Rosenblum et al.’s imple-
mentation had an accuracy below 70%, while both BYTE-
WEIGHT-series models achieved an accuracy of more
than 85%. Note that BYTEWEIGHT with 10-length and
normalized signatures (the last row in table) performed
particularly well, with an accuracy of approximately 97%,
a more than 35% improvement over Rosenblum et al.’s
implementation.

Table 2 also details the accuracy and performance dif-
ferences among BYTEWEIGHT with different configura-
tions. Comparing against the full configuration model
(BYTEWEIGHT), the model with a smaller maximum sig-
nature length (BYTEWEIGHT (3)) performs slightly faster
(3% improvement), but sacrifices 7% in accuracy. The
model without signature normalization (BYTEWEIGHT
(no-norm)) has only 1% higher precision but 6.68% lower
recall, and the testing time is ten times longer than that of
the normalized model.

5.3 Function Start Identification

The second experiment evaluated our full function start
identification against existing static analysis tools. We
compared BYTEWEIGHT (no-RFCR)—a version without
recursive function call resolution, BYTEWEIGHT, and the
following tools:

IDA. We used IDA 6.5, build 140116 along with the
default FLIRT signatures. All function identification
options were enabled.

BAP. We used BAP 0.7, which provides a
get_function utility that can be invoked
directly.

Dyninst. Dyninst offers the tool unstrip [31] to identify
functions in binaries without debug information.

Naive Method. This matched simple 0x55 (push %ebp
or push %rbp) and 0xc3 (ret or retq) signatures
only.

We divided our data set into four categories: ELF x86,
ELF x86-64, PE x86, and PE x86-64. Unlike the previous
experiment, binaries from various compilers but the same
target were grouped together. Overall, we had 1032 ELF
x86 and ELF x86-64 binaries, and 68 PE x86 and PE x86-
64 binaries. We evaluated these categories separately, and
again applied 10-fold validation. During testing, we used
the same score threshold t = 0.5 as in the first experiment.

Note that not every tool in our experiment supports all
binary targets. For example, Dyninst does not support
ELF x86-64, PE x86, or PE x86-64 binaries. We use “-”
to indicate when the target is not supported by the tool.
Also, we omitted 3 failures in BYTEWEIGHT, and 10
failures in Dyninst during this experiment. Due to a bug
in BAP, BYTEWEIGHT failed in 3 icc compiled ELF
x86-64 binaries: ranlib with -O3, ld_new with -O2, and
ld_new with -O3. Dyninst failed in 8 icc compiled ELF
x86-64 binaries and 2 gcc compiled ELF x86-64 binaries.
The results of our experiment are shown in Table 3.

As evident in Table 3, BYTEWEIGHT achieved a higher
precision and recall than BYTEWEIGHT without recursive
function call resolution. BYTEWEIGHT performed above
96% in Linux, while all other tools all performed below
90%. In Windows, we have comparable performance to
IDA in terms of precision, but improved results in terms
of recall.

Interestingly, we found that the naive method was not
able to identify any functions in PE x86-64. This is mainly
because VS does not use push %rbp to begin a function;
instead, it uses move instructions.

5.4 Function Boundary Identification

The third experiment evaluated our function boundary
identification against existing static analysis tools. As in
the last experiment, we compared BYTEWEIGHT, BYTE-
WEIGHT (no-RFCR), IDA, BAP, and Dyninst, classified
binaries by their target, and applied 10-fold validation
on each of the classes. The results of our experiment are
shown in Table 4.

Our tool performed the best in Linux, and was compa-
rable to IDA in Windows. In particular, for Linux binaries,
BYTEWEIGHT and BYTEWEIGHT (no-RFCR) have both
precision and recall above 90%, while IDA is below 73%.
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GCC ICC

Precision Recall Time(sec) Precision Recall Time(sec)

Rosenblum et al. 0.4909 0.4312 1172.41 0.6080 0.6749 2178.14

BYTEWEIGHT (3) 0.9103 0.8711 1417.51 0.8948 0.8592 1905.34

BYTEWEIGHT (no-norm) 0.9877 0.9302 19994.18 0.9727 0.9132 20894.45

BYTEWEIGHT 0.9726 0.9599 1468.75 0.9725 0.9800 1927.90

Table 2: Precision/Recall of different pattern matching models for function start identification.

ELF x86 ELF x86-64 PE x86 PE x86-64

Naive 0.4217/0.3089 0.2606/0.2506 0.6413/0.4999 0.0000/0.0000

Dyninst 0.8877/0.5159 − − −

BAP 0.8910/0.8003 − 0.3912/0.0795 −

IDA 0.7097/0.5834 0.7420/0.5550 0.9467/0.8780 0.9822/0.9334

BYTEWEIGHT (no-RFCR) 0.9836/0.9617 0.9911/0.9757 0.9675/0.9213 0.9774/0.9622

BYTEWEIGHT 0.9841/0.9794 0.9914/0.9847 0.9378/0.9537 0.9788/0.9798

Table 3: Precision/Recall for different function start identification tools.

For Windows binaries, IDA achieves better results than
BYTEWEIGHT with x86-64 binaries, but is slightly worse
for x86 binaries.

5.5 Performance

Training. We compare BYTEWEIGHT against Rosen-
blum et al.’s work in terms of time required for training.
Since we do not have access to either their training code
or their training data, we instead compare the results
based on the performance reported in paper. There are
two main steps in Rosenblum et al.’s work. First, they
conduct feature selection to determine the most informa-
tive idioms – patterns that either immediately precede
a function start, or immediately follow a function start.
Second, they train parameters of these idioms using a
logistic regression model. While they did not provide the
time for parameter learning, they did describe that feature
selection required 150 compute days for 1,171 binaries.
Our tool, however, spent only 586.44 compute hours to
train on 2,064 binaries, including overhead required to
setup cross-validation.

Testing. We list the performance of BYTEWEIGHT,
IDA, BAP, and Dyninst for testing. As described in sec-
tion 4, BYTEWEIGHT has three steps in testing: function
start identification by pattern matching, function boundary
identification by CFG and VSA, and recursive function
call resolution (RFCR). We report our time performance
separately, as shown in Table 5.

IDA is clearly the fastest tool for PE files. For ELF
binaries, it takes a similar amount of time to use IDA and
BYTEWEIGHT to identify function starts, however our
measured times for IDA also include the time required

to run other automatic analyses. BAP and Dyninst have
better performance on ELF x86 binaries, mainly because
they match fewer patterns than BYTEWEIGHT and do
not normalize instructions. This table also shows that
function boundary identification and recursive function
call resolution are expensive to compute. This is mainly
because we use VSA to resolve indirect calls during CFG
recovery, which costs more than typical CFG recovery by
recursive disassembly. Thus while BYTEWEIGHT with
RFCR enabled has improved recall, it is also considerably
slower.

6 Discussion
Recall that our tool considers a sequence of bytes or in-
structions to be a function start if the weight of the cor-
responding terminal node in the learned prefix tree is
greater than 0.5. The choice to use 0.5 as the threshold
was largely dictated by Rosenblum et al., who also used
0.5 as a threshold in their implementation. While this
appears to be a good choice for achieving high precision
and recall in our system, it is not necessarily the optimal
value. In the future, we plan to experiment with differ-
ent thresholds to better understand how this affects the
accuracy of BYTEWEIGHT.

While there are similarities betwen Rosenblum et al.’s
approach and ours, there are also several key differences
that are worth highlighting:

• Rosenblum et al. considered sequences of bytes or
instructions immediately preceding functions, called
prefix idioms, as well the entry idioms that start a
function. Our present model does not include prefix
idioms. Rosenblumet al.’s experiments show prefix
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ELF x86 ELF x86-64 PE x86 PE x86-64

Naive 0.4127/0.3013 0.2472/0.2429 0.5880/0.4701 0.0000/0.0000

Dyninst 0.8737/0.5071 − − −

BAP 0.6038/0.6300 − 0.1003/0.0219 −

IDA 0.7063/0.5653 0.7284/0.5346 0.9393/0.8710 0.9811/0.9324

BYTEWEIGHT (no-RFCR) 0.9285/0.9058 0.9317/0.9159 0.9503/0.9048 0.9287/0.9135

BYTEWEIGHT 0.9278/0.9229 0.9322/0.9252 0.9230/0.9391 0.9304/0.9313

Table 4: Precision/Recall for different function boundary identification tools.

ELF x86 ELF x86-64 PE x86 PE x86-64

Dyninst 2566.90 − − −

BAP 1928.40 − 3849.27 −

IDA* 5157.85 5705.13 318.27 371.59

BYTEWEIGHT-Function Start 3296.98 5718.84 10269.19 11904.06

BYTEWEIGHT-Function Boundary 367018.53 412223.55 54482.30 87661.01

BYTEWEIGHT-RFCR 457997.09 593169.73 84602.56 97627.44

* For IDA, performance represents the total time needed to complete disassembly and auto-analysis.

Table 5: Performance for different function identification tools (in seconds).

idioms increase accuracy in their model. In the fu-
ture, we plan to investigate whether adding prefix
matching to our model can increase its accuracy as
well.

• Rosenblum et al.’s idioms are limited to at most
4 instructions [27, p. 800] due to scalability issues
with forward feature selection. With our prefix tree
model, we can comfortably handle longer instruction
sequences. At present, we settle on a length of 10.
In the future, we plan to optimize the length to strike
a balance between training speed and recognition
accuracy.

• Rosenblum et al.’s CRF model considers both posi-
tive and negative features. For example, their algo-
rithm is designed to avoid identifying two function
starts where the second function begins within the
first instruction of the first function (the so-called
“overlapping disassembly”). Although we consider
both positive and negative features as well, in con-
strast the above outcome is feasible with our algo-
rithm.

While our technique is not compiler-specific, it is based
on supervised learning. As such, obtaining representative
training data is key to achieving good results with BYTE-
WEIGHT. Since compilers and optimizations do change
over time, BYTEWEIGHT may need to be retrained in
order to accurately identify functions in this new environ-
ment. Of course, the need for retraining is a common re-
quirement for every system based on supervised learning.
This is applicable to both BYTEWEIGHT and Rosenblum

et al.’s work, and underscores the importance of having a
computationally efficient training phase.

Despite our tool’s success, there is still room for im-
provement. As shown in Section 5, over 80% of BYTE-
WEIGHT failures are due to the misclassification of the
end instruction for a function, among which more than
half are functions that do not return and functions that
call such no-return functions. To mitigate this, we could
backward propagate information about functions that do
not return to the functions that call them. For example, if
function f always calls function g, and g is identified as
a no-return function, then f should also be considered a
no-return function. We could also use other abstract do-
mains along with the strided intervals of VSA to increase
the precision of our indirect jump analysis [2], which can
in turn help us identify more functions more accurately.

One other scenario where BYTEWEIGHT currently
struggles is with Windows binaries compiled with hot
patching enabled. With such binaries, functions will start
with an extra mov %edi,%edi instruction, which is ef-
fectively a 2-byte nop. A training set that includes bina-
ries with hot patching can reduce the accuracy of BYTE-
WEIGHT. Because the extra instruction mov %edi,%edi
is treated as the function start in binaries with hot patch-
ing, any subsequent instructions are treated as false
matches. Thus, any sequence of instructions that would
normally constitute a function start but now follows a
mov %edi,%edi is considered to be a false match. Con-
sider a hypothetical dataset where all functions start with
push %ebp; mov %esp,%ebp, but half of the binaries
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are compiled with hot patching and thus start functions
with an extra mov %edi,%edi. Half of the time, the se-
quence push %ebp; mov %esp,%ebp will be treated as
a function start, but in the other half it will not be treated
as such, thus leaving the sequence with a weight of 0.5
in our prefix tree. In order to deal with this compiler
peculiarity, we would need give special consideration to
mov %edi,%edi, treating both this instruction and the
instruction following it as a function start for the sake of
training.

Although training BYTEWEIGHT for function start
identification is relatively fast, training for function bound-
ary identification is still quite slow. Profiling reveals that
most of the time is spent building CFGs, and in particular
resolving indirect jumps using VSA. In future work, we
plan to explore alternative approaches that avoid VSA
altogether.

Finally, obfuscated or malicious binaries which inten-
tionally obscure function start information are out of
scope of this paper.

7 Related Work
In addition to the already discussed Rosenblum et al. [27],
there are a variety of existing binary analysis platforms
tackle the binary identification problem. BitBlaze [6]
assumes debug information. If no debug information is
present, it treats the entire section as one function. Bit-
Blaze also provides an interface for incorporating Hex
Rays function identification information.

Dyninst [19] also offers tools, such as unstrip [31],
to identify functions in binaries without debug informa-
tion. Within the Dyninst framework, potential functions
in the .text section are identified using the hex pattern
0x55 representing push %ebp. First, Dyninst will start at
the entry address and traverse inter- and intra-procedural
control flow. The algorithm will scan the gaps between
functions and check if push %ebp is present. This does
not preform well across different optimizations and oper-
ating systems.

IDA using proprietary heuristics and FLIRT [16] tech-
nique attempts to help security researchers recover pro-
cedural abstractions. However, updating the signature
database requires an amount of manual effort that does
not scale. In addition, because FLIRT uses a pattern
matching algorithm to search for signatures, small varia-
tions in libraries such as different compiler optimizations
or the use of different compiler versions, prevent FLIRT
from recognizing important functions in a disassembled
program. The Binary Analysis Platform (BAP) also at-
tempts to provide a reliable identification of functions
using custom-written signatures [8].

Kruegel et al. perform exhaustive disassembly, then
use unigram and bigram instruction models, along with
patterns, to identify functions [23]. Jakstab uses two pre-

defined patterns to identify functions for x86 code [22,
§6.2].

8 Conclusion
In this paper, we introduce BYTEWEIGHT, a system for
automatically learning to identify functions in stripped
binaries. In our evaluation, we show on a test suite of
2,200 binaries that BYTEWEIGHT outperforms previous
work across two operating systems, two compilers, and
four different optimizations. In particular, BYTEWEIGHT
misses only 44,621 functions in comparison with the
266,672 functions missed by the industry-leading tool
IDA. Furthermore, while IDA misidentifies 459,247 func-
tions, BYTEWEIGHT misidentifies only 43,992 functions.
To seed future improvements to the function identification
problem, we are making our tools and dataset available in
support of open science.
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Abstract

Randomly mutating well-formed program inputs or sim-
ply fuzzing, is a highly effective and widely used strategy
to find bugs in software. Other than showing fuzzers find
bugs, there has been little systematic effort in understand-
ing the science of how to fuzz properly. In this paper,
we focus on how to mathematically formulate and reason
about one critical aspect in fuzzing: how best to pick seed
files to maximize the total number of bugs found during
a fuzz campaign. We design and evaluate six different
algorithms using over 650 CPU days on Amazon Elas-
tic Compute Cloud (EC2) to provide ground truth data.
Overall, we find 240 bugs in 8 applications and show that
the choice of algorithm can greatly increase the number
of bugs found. We also show that current seed selection
strategies as found in Peach may fare no better than pick-
ing seeds at random. We make our data set and code
publicly available.

1 Introduction

Software bugs are expensive. A single software flaw
is enough to take down spacecrafts [2], make nuclear
centrifuges spin out of control [17], or recall 100,000s of
faulty cars resulting in billions of dollars in damages [5].
In 2012, the software security market was estimated at
$19.2 billion [12], and recent forecasts predict a steady
increase in the future despite a sequestering economy [19].
The need for finding and fixing bugs in software before
they are exploited by attackers has led to the development
of sophisticated automatic software testing tools.

Fuzzing is a popular and effective choice for finding
bugs in applications. For example, fuzzing is used as
part of the overall quality checking process employed by
Adobe [28], Microsoft [14], and Google [27], as well as

by security companies and consultants to find bugs and
vulnerabilities in COTS systems.

One reason fuzzing is attractive is because it is rela-
tively straightforward and fast to get working. Given a
target application P, and a set of seed input files S, the
programmer needs to:

Step 1. Discover the command line arguments to P so
that it reads from a file. Popular examples include -f,
–file, and using stdin. This step can be manual,
or automated in many cases using simple heuristics
such as trying likely argument combinations.

Step 2. Determine the relevant file types for an applica-
tion automatically. For example, we are unlikely to
find many bugs fuzzing a PDF viewer with a GIF
image. Currently this step is performed manually,
and like the above step the manual process does not
scale to large program bases.

Step 3. Determine a subset of seeds S0 ✓ S to fuzz the
program. For example, an analyst may consider the
possible set of seeds S as every PDF available from
a search engine. Clearly fuzzing on each seed is
computationally prohibitive, thus a seed selection
strategy is necessary. Two typical choices are choos-
ing the set of seed files ad-hoc, e.g., those immedi-
ately handy, and by finding the minimal set of seeds
necessary to achieve code coverage.

Step 4. Fuzz the program and reap risk-reducing, or prof-
itable, bugs.

Throughout this paper we assume maximizing the num-
ber of unique bugs found is the main goal. We make no
specific assumptions about the type of fuzzer, e.g., we
do not assume nor care whether black-box, white-box,
mutational, or any other type of fuzzing is used. For our

1
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experiments, we use BFF, a typical fuzzer used in prac-
tice, though the general approach should apply to any
fuzzer using seeds. Our techniques also make no specific
assumptions about the fuzz scheduling algorithm, thus are
agnostic to the overall fuzzing infrastructure. To evaluate
seed selection strategies, we use popular scheduling algo-
rithms such as round-robin, as well as the best possible
(optimal) scheduling.

We motivate our research with the problem setting of
creating a hypothetical fuzzing testbed for our system,
called COVERSET. COVERSET periodically monitors the
internet, downloads programs, and fuzzes them. The goal
of COVERSET is to maximize the number of bugs found
within a limited time period or budget. Since budgets are
forever constrained, we wish to make intelligent design
decisions that employ the optimal algorithms wherever
possible. How shall we go about building such a system?

Realizing such an intelligent fuzzing system highlights
several deep questions:

Q1. Given millions, billions, or even trillions of PDF
files, which should you use when fuzzing a PDF
viewer? More generally, what algorithms produce
the best result for seed selection of S0 ✓ S in step 3?

Q2. How do you measure the quality of a seed selection
technique independently of the fuzzing scheduling al-
gorithm? For example, if we ran algorithm A on seed
set S1 and S2, and S1 maximized bugs, we would still
be left with the possibility that with a more intelli-
gent scheduling algorithm A0 would do better with
S2 rather than S1. Can we develop a theory to jus-
tify when one seed set is better than another with
the best possible fuzzing strategy, instead of specific
examples?

Q3. Can we converge on a "good" seed set for fuzzing
campaigns on programs for a particular file type?
Specifically, if S0 performs well on program P1, how
does it work on other similar applications P2,P3, . . .?
If there is one seed set that works well across all
programs, then we would only need to precompute it
once and forever use it to fuzz any application. Such
a strategy would save immense time and effort in
practice. If not, we will need to recompute the best
seed set for each new program.

Our main contribution are techniques for answering the
above questions. To the best of our knowledge, many of
the above problems have not been formalized or studied
systematically. In particular:

• We formalize, implement, and test a number of ex-
isting and novel algorithms for seed selection.

• We formalize the notion of ex post facto optimality
seed selection and give the first strategy that pro-

vides an optimal algorithm even if the bugs found by
different seeds are correlated.

• We develop evidence-driven techniques for identi-
fying the quality of a seed selection strategy with
respect to an optimal solution.

• We perform extensive fuzzing experiments using
over 650 CPU days on Amazon EC2 to get ground
truth on representative applications. Overall, we find
240 unique bugs in 8 widely-used applications, all of
which are on the attack surface (they are often used
to process untrusted input, e.g., images, network
files, etc.), most of which are security-critical.

While our techniques are general and can be used on
any data set (and are the main contribution of this work),
our particular result numbers (as any in this line of re-
search) are data dependent. In particular, our initial set
of seed files, programs under test, and time spent test-
ing are all important factors. We have addressed these
issues in several ways. First, we have picked several ap-
plications in each file type category that are typical of
fuzzing campaigns. This mitigates incorrect conclusions
from a non-representative data set or a particularly bad
program. Second, we have performed experiments with
reasonably long running times (12 hour campaigns per
file), accumulating over 650 CPU days of Amazon EC2
time. Third, we are making our data set and code avail-
able, so that: 1) others need not spend time and money
on fuzzing to replicate our data set, 2) others can further
analyze the statistics to dig out additional meaning (e.g.,
perform their own hypothesis testing), and 3) we help
lower the barrier for further improvements to the science
of vulnerability testing and fuzzing. For details, please
visit: http://security.ece.cmu.edu/coverset/.

2 Q1: Seed Selection

How shall we select seed files to use for the fuzzer? For
concreteness, we downloaded a set of seed files S con-
sisting of 4,912,142 distinct files and 274 file types from
Bing. The overall database of seed files is approximately
6TB. Fuzzing each program for a sufficient amount of
time to be effective across all seed files is computationally
expensive. Further, sets of seed files are often duplicative
in the behavior elicited during fuzzing, e.g., s1 may pro-
duce the same bugs as s2, thus fuzzing both s1 and s2 is
wasteful. Which subset of seed files S0 ✓ S shall we use
for fuzzing?

Several papers [1, 11], presentations from well-
respected computer security professionals [8, 22, 26], as
well as tools such as Peach [9], suggest using executable
code coverage as a seed selection strategy. The intuition is
that many seed files likely execute the same code blocks,

2
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Figure 1: The COVERSET pipeline.

and such seeds are likely to produce the same bugs. For
example, Miller reports a 1% increase in code coverage
increases the percentage of bugs found by .92% [22]. This
intuition can be formalized as an instance of the set cover
problem [1, 11]. Does set cover work? Is the minimal set
cover better than other set covers? Should we weight the
set cover, e.g., by how long it takes to fuzz a particular
seed? Previous work has shown a correlation between
coverage and bugs found, but has not performed compar-
ative studies among a number of approaches, nor studied
how to measure optimality (§ 3).

Recall that in the set cover problem (SCP) [6] we
are given a set X and a finite list of subsets F =
{S1,S2, . . . ,Sn} such that every element of X belongs to
at least one subset of F:

X =
[

S2F
S

We say that a set C✓ F is a set cover of X when:

X =
[

S2C
S

The seed selection strategy is formalized as:

Step 1. The user computes the coverage for each of the
n individual seed files. The output is the set of code
blocks 1 executed per seed. For example, suppose a
user is given n= 6 seeds such that each seed executes
the following code blocks:

S1 = {1,2,3,4,5,6} S2 = {5,6,8,9}
S3 = {1,4,7,10} S4 = {2,5,7,8,11}
S5 = {3,6,9,12} S6 = {10,11}

Step 2. The user computes the cummulative coverage
X =

S
Si, e.g., X = {1,2, . . . ,12} for the above.

1We assume code blocks, though any granularity of unit such as
instruction, function, etc. also work.

Step 3. The user computes a set cover to output a subset
C of seeds to use in a subsequent fuzzing campaign.
For example, C1 = {S1,S4,S3,S5} is one set cover,
as is C2 = {S3,S4,S5}, with C2 being optimal in the
unweighted case.

The goal of the minimal set cover problem (MSCP) is
to minimize the number of subsets in the set cover C✓ F.
We call such a set C a minset. Note that a minset need
not be unique, i.e., there may be many possible subsets
of equal minimal cardinality. Each minset represents the
fewest seed files needed to elicit the maximal set of in-
structions with respect to S, thus represents the maximum
data seed reduction size.

In addition to coverage, we may also consider other
attributes, such as speed of execution, file size, etc. A
generalization of the set cover is to include a weight w(S)
for each S 2 F. The total cost of a set cover C is:

Cost (C) = Â
S2C

w(S)

The goal of the weighted minimal set cover problem
(WMSCP) is to find the minimal cost cover set, i.e.,
argmin

C
Cost (C).

Both the MSCP and WMSCP can be augmented to take
an optional argument k (forming k-SCP and k-WSCP re-
spectively) specifying the maximum size of the returned
solution. For example, if k = 2 then the number of sub-
sets is restricted to at most 2 (|C|  2), and the goal is
to maximize the number of covered elements. Note the
returned set may not be a complete set cover.

Both MSCP and WMSCP are well-known NP-hard
problems. Recall that a common approach to dealing with
NP-hard problems in practice is to use an approximation
algorithm. An approximation algorithm is a polynomial-
time algorithm for approximating an optimal solution.
Such an algorithm has an approximation ratio r(n) if, for
any input of size n, the cost C of the solution produced by
the algorithm is within a factor of r(n) of the cost C⇤ of

3
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an optimal solution. The minimal set cover and weighted
set cover problems both have a greedy polynomial-time
ln |X |+ 1-approximation algorithm [4, 16], which is a
threshold below which set cover cannot be approximated
efficiently assuming NP does not have slightly super-
polynomial time algorithms, i.e., the greedy algorithm
is essentially the best algorithm possible in terms of the
approximation ratio it guarantees [10]. Since ln |X | grows
relatively slowly, we expect the greedy strategy to be
relatively close to optimal.

The optimal greedy polynomial-time approximation
algorithm2 for WSCP is:

GREEDY-WEIGHTED-SET-COVER(X ,F)
1 U = X
2 C = /0
3 while U 6= /0
4 S = argmax

S2F
|S\U |/w(S)

5 C = C[S
6 U = U\S
7 return C

Note that the unweighted minset can be solved using the
same algorithm by setting 8S : w(S) = 1.

2.1 Seed Selection Algorithms

In this section we consider: the set cover algorithm from
Peach [9], a minimal set cover [1], a minimal set cover
weighted by execution time, a minimal set cover weighted
by size, and a hotset algorithm. The first two algorithms
have previously been proposed in literature; the remain-
ing are additional design points we propose and evaluate
here. We put these algorithms to the test in our evalu-
ation section to determine the one that yields the best
results (see § 6).

All algorithms take the same set of parameters: given
|F| seed files, the goal is to calculate a data reduction to k
files where k ⌧ |F|. We assume we are given t seconds
to perform the data reduction, after which the selected
k files will be used in a fuzzing campaign (typically of
much greater length than t). We break ties between two
seed files by randomly choosing one.

PEACH SET. Peach 3.1.53 [9] has a class called MinSet
that calculates a cover set C as follows: 3

2Other algorithms exist to compute the weighted minset (see [6,
35-3.3]).

3This is a high-level abstraction of the Delta and RunCoverage

methods. We checked the Peach implementation after the paper sub-
mission, and noticed that the sorting was removed (At Line 4 of the
algorithm) in their MinSet implementation since Peach 3.1.95.

PEACH-MINSET(P,F)
1 C = /0
2 i = 1
3 for S in F
4 cov[i] = MeasureCoverage( S )
5 i = i+1
6 sort( cov ) // sort seeds by coverage
7 for i = 1 to |F|
8 if cov[i]\C 6= /0
9 C = C[ cov[i]

10 return C

Despite having the name MinSet, the above routine
does not calculate the minimal set cover nor a proven
competitive approximation thereof.

RANDOM SET. Pick k seeds at random. This approach
serves as a baseline for other algorithms to beat. Since
the algorithm is randomized, RANDOM SET can have
high variance in terms of seed quality and performance.
To measure the effectiveness of RANDOM SET, unless
specified otherwise, we take the median out of a large
number of runs (100 in our experiments).

HOT SET. Fuzz each seed for t seconds and return the
top k seeds by number of unique bugs found. The ratio-
nale behind HOT SET is similar to multi-armed bandit
algorithms—a buggy program is more likely to have more
bugs. In our experiments, we fuzz each seeds for 5 min-
utes (t = 300) to compute the HOT SET.

UNWEIGHTED MINSET. Use an unweighted k-minset.
This corresponds to standard coverage-based ap-
proaches [1, 23], and serves as a baseline for measuring
their effectiveness. To compute UNWEIGHTED MINSET
when k is greater than the minimum required to get full
coverage, the minset is padded with files sorted based
on the quality metric (coverage). We follow the same
approach for TIME MINSET and SIZE MINSET.

TIME MINSET. Return a k-execution time weighted
minset. This algorithm corresponds to Woo et al.’s ob-
servation that weighting by time in a multi-armed bandit
fuzzing algorithm tends to perform better than the un-
weighted version [29]. The intuition is that seeds that
are fast to execute ultimately lead to far more fuzz runs
during a campaign, and thus potentially more bugs.

SIZE MINSET. Return a k-size weighted minset.
Weighting by file size may change the ultimate minset,
e.g., many smaller files that cover a few code blocks may
be preferable to one very large file that covers many code
blocks—both in terms of time to execute and bits to flip.

4



USENIX Association  23rd USENIX Security Symposium 865

For example, SIZE MINSET will always select a 1KB
seed over a 100MB seed, all other things being equal.

2.2 Specific Research Questions
Previous wisdom has suggested using UNWEIGHTED
MINSET as the algorithm of choice for computing min-
sets [1, 23]. Is this justified? Further, computing the
minset requires measuring code coverage. This compu-
tation requires time, time that could be spent fuzzing as
in the HOT SET algorithm. Are coverage-based minsets
beneficial and when?

More precisely, we formulate the following hypothesis:

Hypothesis 1 (MINSET > RANDOM.) Given the same
size parameter k, MINSET algorithms find more bugs
than RANDOM SET.

Hypothesis 1 is testing whether the heuristics applied
by the algorithms presented above (§ 2.1) are useful. If
they are as useful as choosing a random set, then the
entire idea of using any of these MINSET algorithms is
fundamentally flawed.

Hypothesis 2 (MINSET Benefits > Cost.) Computing
the MINSET for a given application and set of seed
files and then starting fuzzing finds more bugs than just
fuzzing.

Hypothesis 2 tests whether the benefits of the minset
outweigh the cost. Instead of spending time computing
code coverage of seed files, should we instead spend it
fuzzing? If yes, then the idea of reducing the files for
every fuzzed application is flawed. It would also imply
that precomputing minsets is necessary for the minsets to
be useful. This observation leads to our next hypothesis.

Hypothesis 3 (MINSET Transferability.) Given appli-
cations A and B that accept the same filetype F, MINSETA

F
finds the same or more bugs in application B as
MINSETB

F .

Hypothesis 3 tests the transferability of seeds across
applications that accept the same file type. For example,
is the MINSET for PDF viewer A effective on PDF viewer
B? If yes, we only need to compute a minset once per file
type, thus saving resources (even if Hypothesis 2 is false).

Hypothesis 4 (MINSET Data Reduction.) Given a tar-
get application A, a set of seed files F, and a MINSETA

F ,
fuzzing with MINSETA

F finds more bugs than fuzzing with
the entire set F.

Hypothesis 4 tests the main premise of using a reduced
data set. Our MINSET contains fewer bugs than the full
set in total. Under what conditions is the reduction bene-
ficial?

s1 b3 b1 b2 · · ·

s2 b1 b3 b4 · · ·

s3 b2 b1 b2 · · ·

5 10 9

2 1 2

1 10 10

t1,1 c1,2

c3,1

Figure 2: An example of output from fuzzing 3 seeds.
Bugs may be found across seeds (e.g., b1 is found by all
seeds. A single seed may produce the same bug multiple
times, e.g., with s3. We also show the corresponding ILP
variables t (interarrival times) and c (crash ids).

3 Q2: Measuring Selection Quality

There are a variety of seed selection strategies, e.g., to use
minset or pick k seeds at random. How can we argue a
particular seed selection strategy performs well?

One strawman answer is to run seed selection algorithm
A to pick subset SA, algorithm B to pick subset SB. We
then fuzz SA and SB for an equal amount of time and
declare the fuzz campaign with the most bugs the winner.
The fuzz campaign will incrementally fuzz each seed in
each set according to its own scheduling algorithm. While
such an approach may find the best seed selection for a
particular fuzzing strategy, it provides no evidence that a
particular subset is inherently better than another in the
limit.

The main intuition in our approach is to measure the
optimal case for bugs found with a particular subset of
seeds. The best case provides an upper bound on any
scheduling algorithm instead of on a particular scheduling
algorithm. Note the lower bound on the number of bugs
found for a subset is trivially zero, thus all we need is an
upper bound.

To calculate the optimal case, we fuzz each seed in si
for t seconds, recording as we fuzz the arrival rate of bugs.
Given n seeds, the total amount of time fuzzing is n ⇤ t.
For example, given 3 seeds we may have a bug bi arrival
time given by Figure 2.

Post-fuzzing, we then calculate the ex post facto op-
timal search strategy to maximize the number of bugs
found. It may seem strange at first to calculate the op-
timal seed selection strategy after all seeds have been
fuzzed at first blush. However, by doing so we can mea-
sure the quality of the seed selection strategy with respect
to the optimal, thus give the desired upper bound. For
example, if the seed selection strategy picks s1 and s2, we
can calculate the maximum number of bugs that could be

5
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found by any scheduler, and similarly for the set s2,s3 or
any other set. Note we are calculating the upper bound
to scientifically justify a particular strategy. For example,
our experiments suggest to use UNWEIGHTED MINSET
for seed selection. During a practical fuzzing campaign,
one would not recompute the upper bound for the new
dataset; instead, she would use the seed selection strategy
that was shown to empirically perform best in previous
tests.

3.1 Formalization
Let Fuzz be a single-threaded fuzzer that takes in a set
of seeds C ✓ F and a time threshold tthres and outputs a
sequence of unique bugs bi along with the seed files that
triggered them Si and timestamps ti:

Fuzz(C, tthres) = {(b1,S1, t1), . . . ,(bn,Sn, tn)}

Given that we know the ground truth, i.e., we know
the value of Fuzz when applied on every singleton in F:
Fuzz({Si}, tthres) = {(b1,Si, t1), . . . ,(bk,Si, tk)}, we can
model the computation of the optimal scheduling/seed
selection across all seed files in F. Note that the ground
truth is necessary, since any optimal solution can be only
computed in retrospect (if we know how each seed would
perform). We measure optimality of a scheduling/seed
selection by computing the maximum number of unique
bugs found.

The optimal budgeted ex post facto scheduling
problem is given the ground truth for a set of
seeds Fuzz({Si}, tthres) = {(b1,Si, t1), . . . ,(bk,Si, tk)} and
a time threshold tthres, automatically compute the inter-
leaving of fuzzed seeds (time slice spent analyzing each
one) to maximize the number of bugs found. The number
of bugs found for a given minset gives an upper bound on
the performance of the set and can be used as a quality in-
dicator. Note that the same bug may be found by different
seeds and may take different amounts of time to find.

Finding an optimal schedule for a given ground truth is
currently an open problem. Woo et al. come the closest,
but their algorithm assumes each seed produces indepen-
dent bugs [29]. We observe finding an optimal scheduling
algorithm is inherently an integer programming problem.
We formulate finding the exact optimal seed scheduling
as an Integer Linear Programming (ILP) problem. While
computing the optimal schedule is NP-hard, ILP formula-
tions tend to work well in practice.

First, we create an indicator variable for unique bugs
found during fuzzing.

bx =

⇢
1 The schedule includes finding unique bug x
0 Otherwise

The goal of the optimal schedule is to maximize the
number of bugs. However, we do not see bugs, we see

individual crashes arriving during fuzzing. We create an
indicator variable ci, j that determines whether the optimal
schedule includes the jth crash of seed i:

ci, j =

⇢
1 The schedule includes crash j for seed i
0 otherwise

Note that multiple crashes ci, j may correspond to the
same bug. Crashes are triaged to unique bugs via a unique-
ness function denoted by µ . In our experiments, we
use stack hash [24], a non-perfect but industry standard
method. Thus, if the total number of unique stack hashes
is U , we say we found U unique bugs in total. The invari-
ant is:

bx = 1 iff 9 i, j : µ(ci, j) = x (1)

Thus, if two crashes ci, j and ci0, j0 have the same hash, a
schedule can get at most one unique bug by including
either or both crashes.

Finally, we include a cost for finding each bug. We
associate with each crash the incremental fuzzing cost for
seed Si to find the bug:

8i : ti, j =
⇢

ai,1 , j = 1
ai, j −ai, j−1 , j > 1

where ai, j is the arrival time for the ci, j crash, and ti, j
represents interarrival time—the time interval between the
occurrences of ci, j−1 and ci, j. Figure 2 visually illustrates
the connection between ci, j, bx and ti, j.

We are now ready to phrase optimal scheduling with a
fixed time-budget as an ILP maximization problem:

maximize Â
x

bx

subject to 8
i, j
. ci, j+1  ci, j (2)

Â
i, j

ci, j · ti, j  tthres (3)

8
i, j
. ci, j  bx where µ(ci, j) = x (4)

8
x
.bx  Â

i, j
ci, j where µ(ci, j) = x (5)

Constraint (2) ensures that the schedule considers the
order of crashes found. In particular, if the j-th crash of
a seed is found, all the previous crashes must be found
as well. Constraint (3) ensures that the time to find all
the crashes does not exceed our time budget tthres. Con-
straints (4) and (5) link crashes and unique bugs. Con-
straints (4) says that if a crash is found, its corresponding
bug (based on stack-hash) is found, and the next equa-
tion guarantees that if a bug is found, at least one crash
triggering this bug was found.

6
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Additionally, by imposing one extra inequality:

Â
i

ci,1  k (6)

we can bound the number of used seeds by k (if the first
crash of a seed is not found, there is no value in fuzzing
the seed at all), thus getting k-bounded optimal budgeted
scheduling, which gives us the number of bugs found with
the optimal minset of size up to k.

Optimal Seed Selection for Round-Robin. The for-
mulation for optimal budgeted scheduling gives us a best
solution any scheduling algorithm could hope to achieve
both in terms of seeds to select (minset) and interleaving
between explored seeds (scheduling). We can also model
the optimal seed selection for specific scheduling algo-
rithms with the ILP formulation. We show below how
this can be achieved for Round-Robin, as this may be of
independent interest.

Round-Robin scheduling splits the time budget be-
tween the seeds equally. Given a time threshold tthres
and N seeds, each seed will be fuzzed for tthres

N units of
time. Round-Robin is a simple but effective scheduling
algorithm in many adversarial scenarios [29]. Simulating
Round-Robin for a given set of seeds is straightforward,
but computing the optimal subset of seeds of size k with
Round-Robin cannot be solved with a polynomial algo-
rithm. To obtain the optimal minset for Round-Robin, we
add the following inequality to Inequalities 2-6:

8
i
. Â

j
ci, j · ti, j 

tthres

k
(7)

The above inequality ensures that none of the seeds
will be explored for more than tthres

k time units, thus guar-
anteeing that our solution will satisfy the Round-Robin
constraints. Similar extensions can be used to obtain
optimal minsets for other scheduling algorithms.

4 Q3: Transferability of Seed Files

Precomputing a good seed set for a single application P1
may be time intensive. For example, the first step in a
minset-based approach is to run each seed dynamically to
collect coverage information. Collecting this information
may not be cheap. Collecting coverage data often requires
running the program in a dynamic analysis environment
like PIN [18] or Valgrind [25], which can slow down
execution by several orders of magnitude. In our own
experiments, collecting coverage information on our data
set took 7 hours. One way COVERSET could minimize
overall cost is to find a “good” set of seeds and reuse them
from one application to another.

There are several reasons to believe this may work.
One reason is most programs rely on only a few libraries
for PDF, image, and text processing. For example, if ap-
plication P1 and P2 both link against the poppler PDF
library, both applications will likely crash on the same
inputs. However, shared libraries are typically easy to
detect, and such cases may be uninteresting. Suppose
instead P1 and P2 both have independent implementations,
e.g., P1 uses poppler and P2 uses the GhostScript graph-
ics library. One reason P1 and P2 may crash on similar
PDFs is that there are intrinsically hard portions of the
PDF standard to implement right, thus both are likely to
get it wrong. However, one could speculate any number
of reasons the bugs in applications would be independent.
To the best of our knowledge, there has been no previous
systematic investigation to resolve this question when the
bugs are found via fuzzing.

5 System Design

A precondition to fuzzing is configuring the fuzzer to take
the seed file as input. In this step, we are given the entire
database of seeds and a particular program under test P.
To fuzz, we must:

1. Recover P’s command line options.

2. Determine which argument(s) causes P to read in
from the fuzzing source. For simplicity, we focus
on reading from a file, but the general approach may
work with other fuzzing sources.

3. Determine the proper file type, e.g., giving a PDF
reader a PDF as a seed is likely to work better than
giving a GIF. We say a file type is valid for a program
if it does non-trivial processing on the file.

Current fuzz campaigns typically require a human to spec-
ify the above values. For our work, we propose a set of
heuristics to help automate the above procedure.

In our approach, we first use simple heuristics to infer
likely command lines. The heuristics try the obvious
and common command line arguments for accepting files,
e.g., -f file. We also brute force common help options
(e.g., –help) and parse the output for additional possible
command line arguments.

As we recover command lines, we check if they cause
P to read from a file as follows. We create a unique file
name x, run P x, and monitor for system calls that open
x.

In our data set we have 274 different file types, such
as JPEG, GIF, PNG, and video files. Once we know the
proper way to run P with seeds, the question becomes
which seed types should we give P? We infer appropriate
file types based on the following hypothesis: if s is a seed

7
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handled by P and s0 is not, then we expect the coverage of
P(s)> P(s0). This hypothesis suggests an efficient way
to infer file types accepted by an application. First, create
a set of sample file type seeds F , where each element
consists of a seed for a unique file type. Second, for each
si 2 F , count the number of basic blocks executed by
P(si). Third, select the top candidate (or candidates if
desired) by total execution blocks. Though simple, we
show in our evaluation this strategy works well in practice.

6 Experiments

We now present our experiments for checking the validity
of the hypotheses introduced in § 2.2 and evaluate the
overall performance in terms of bug discovered of COV-
ERSET. We start by describing our experimental setup.

Experimental Setup. All of our experiments were run
on medium and small VM instance types on Amazon
EC2 (the type of the instance used is mentioned in every
experiment). All VMs were running the same operating
system, Debian Linux 7.4. The fuzzer used throughout
our experiments is the CERT Basic Fuzzing Framework
(BFF) [15]. All seed files gathered for our fuzzing ex-
periments (4,912,142 files making up more than 6TB of
data) were automatically crawled from the internet us-
ing the Bing API. Specifically, file type information was
extracted from the open source Gnome Desktop applica-
tion launcher data files and passed to the Bing API such
that files of each type could be downloaded, filtered, and
stored on Amazon S3. Coverage data was gathered by
instrumenting applications using the Intel PIN framework
and a standard block-based coverage collection PIN tool.

6.1 Establishing Ground Truth

To test the MINSET hypotheses, we need to obtain the
ground truth (recall from § 3.1) for a fuzzing cam-
paign that accounts for every possible seed selection and
scheduling. We now present our methodology for select-
ing the target applications, files to fuzz, and parameters
for computing the ground truth.

Target Applications. We selected 10 applications and
5 popular file formats: PDF, MP3, GIF, JPG and PNG
for our experiments. Our program selection contains GUI
and command line applications, media viewers, players,
and converters. We manually mapped each program to a
file format it accepts and formed 13 distinct (application,
file formats) to be fuzzed—shown in Table 2. We selected
at least two distinct command lines for each file type to
test transferability (Hypothesis 3).

Seed Files. For each file type used by the target appli-
cations, we sampled uniformly at random 100 seed files
(hence selecting |F|= 100 for the seed file pool size) of
the corresponding type from our seed file database. Note
that determining ground truth for a single seed requires 12
hours, thus finding ground truth on all 4,912,142 is—for
our resources—infeasible.

Fuzzing Parameters. Each of the target applications
was fuzzed for 12 hours with each of the 100 randomly
selected seed files of the right file type. Thus, each target
application was fuzzed for 1,200 hours for a total of 650
CPU-days on an EC2 (m1.small) instance. All detected
crashes were logged with timestamps and triaged based
on BFF’s stack hash algorithm.

The end result of our ground truth experiment is a log
of crashes for each (seed file, application) tuple:

BFF({Si}, tthres = 12h) = {(b1,Si, t1), . . . ,(bk,Si, tk)}

Fuzzing results. BFF found 2,941 unique crashes, iden-
tified by their stack hash. BFF crashed 8 programs out
of the 10 target applications. 2,702 of the unique crashes
were found on one application, mp3gain. Manual in-
spection showed that the crashes were due to a single
exploitable buffer overflow vulnerability that mangled the
stack and confused BFF’s stack-based uniqueness algo-
rithm. When reporting our results, we therefore count
the 2,702 unique crashes in mp3gain as one. With that
adjustment, BFF found 240 bugs. Developing and experi-
menting with more robust, effective, and accurate triaging
algorithms is an open research problem and a possible
direction for future work.

Simulation. The parameters of the experiment allow
us to run simulations and reason about all possible seed
selections (among the 100 seeds of the application) and
scheduling algorithms for a horizon of 12 hours on a
single CPU. Our simulator uses our ILP formulation
from § 3 to compute optimal seed selections and schedul-
ing for a given time budget. Using the ground truth,
we can run simulations to evaluate the performance of
hour-long fuzzing campaigns within minutes, following a
replay-based fuzzing simulation strategy similar to FUZ-
ZSIM [29].

We used the simulator and ran a set of experiments
to answer the following three questions: 1) how good
are seed selection algorithms when compared against
RANDOM SET (§ 6.2) and when compared against each
other (§ 6.2.1)?, 2) can we reuse reduced sets across pro-
grams (§ 6.3)?, and 3) can our algorithm correctly identify
file types for applications (§ 6.4)?
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Figure 3: Comparing bug-finding performance of seed
selection algorithms against RANDOM SET.

6.2 Are Seed Selection Algorithms Better
than Random Sampling?

Spending resources on a seed selection algorithm is only
useful if the selected seeds outperform random seed sam-
pling (RANDOM SET). In this experiment, we compare
the performance of selection algorithms as presented
in §2.1 against the random sampling baseline.

All selection algorithms are deterministic, while RAN-
DOM SET is randomized. Thus, we cannot show that
RANDOM SET is always better (or worse), but we can
instead compute the probability that RANDOM SET is
better (or worse). To estimate the probability, we setup
the following random experiment: we randomly sample
a set of seeds—the size of the set is the same (k = 10
in our experiment for an order of magnitude reduction)
as the competing reduced set—from the seed pool and
measure the number of bugs found. The experiment has
three possible outcomes: 1) the random set finds more
bugs, 2) the random set finds fewer bugs, or 3) the random
and the competitive set find the same number of bugs.

We performed 13,000 repetitions of the above
experiment—1,000 for each (application, file format)
tuple—and measured the frequency of each event when
the optimal scheduling algorithm is employed for both.
We then repeated the same experiment while using Round-
Robin as the scheduling algorithm. We calculated the
probability by dividing the frequency by the number of
samples. Figure 3 summarizes the results. For instance,
the left-most bar is the result for HOT SET with the op-
timal scheduling. You can see that HOT SET finds more
bugs than a RANDOM SET of the same size with a prob-
ability of 32.76%, and it is worse with a probability of
18.57%. They find the same amount of bugs with a proba-
bility of 48.66%.

The first pattern that seems to persist through schedul-
ing and selection algorithms (based on Figure 3) is that

Optimal Round-Robin
HOT SET 63.58% 67.12%
PEACH SET 50.64% 60.30%
UNWEIGHTED MINSET 75.24% 70.24%
SIZE MINSET 66.33% 75.78%
TIME MINSET 52.60% 57.62%

Table 1: Conditional probability of an algorithm outper-
forming RANDOM SET with k=10, given that they do not
have the same performance (Pwin).

there is a substantial number of ties—RANDOM SET
seems to behave as well as selection algorithms for the ma-
jority of the experiments. This is not surprising, since 3/13
(23%) of our (application, file format) combinations—
(mplayer, MP3), (eog, JPG), (jpegtran, JPG)—do not
crash at all. With no crash to find, any algorithm will be
as good as random. Thus, to compare an algorithm to
RANDOM SET we focus on the cases where the two algo-
rithms differ, i.e., we compute the conditional probability
of winning when the two algorithms are not finding the
same number of bugs.

We use Pwin to denote the conditional probability of
an algorithm outperforming RANDOM SET, given that
they do not have the same performance. For example,
for SIZE MINSET, Pwin is defined as: P[SIZE MINSET >
RANDOM SET | SIZE MINSET 6= RANDOM SET]. Ta-
ble 1 shows the values of Pwin for all algorithms for
sets of size k = 10. We see that UNWEIGHTED MINSET
and SIZE MINSET are the algorithms that more consis-
tently outperform RANDOM SET with a Pwin ranging from
66.33% to 75.78%. HOT SET immediately follows in the
63-67% range, and TIME MINSET, PEACH SET have the
worst performance. Note that PEACH SET has a Pwin of
50.64% in the optimal schedule effectively meaning that
it performs very close to a random sample on our dataset.

Conclusion: seed selection algorithms help. With the
exception of the PEACH SET and TIME MINSET algo-
rithms which perform very close to RANDOM SET, our
data shows that heuristics employed by seed selection
algorithms perform better than fully random sampling.
Thus, hypothesis 1 seems to hold. However, the bug dif-
ference is not sufficient to show that any of the selection
algorithms is strictly better with statistical significance.
Fuzzing for longer and/or obtaining the ground truth for a
larger seed pool are possible future directions for show-
ing that seed selection algorithms are strictly better than
choosing at random.
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RANDOM
SET

HOT
SET

UNWEIGHTED
MINSET

TIME
MINSET

SIZE
MINSET

PEACH
SET

Files Programs Crashes Bugs #S #B #S #B #S #B #S #B #S #B #S #B

PDF
xpdf 706 57 10 7 10 9 32 19 32 16 40 19 54 31
mupdf 6,570 88 10 13 10 14 40 29 43 29 49 31 59 31
pdf2svg 5,720 81 10 14 10 27 36 48 39 43 45 47 53 49

MP3
ffmpeg 1 1 10 0 10 1 11 0 11 0 22 0 19 0
mplayer 0 0 10 0 10 0 10 0 12 0 14 0 23 0
mp3gain 434,400 2,702 10 92 10 9 9 150 8 74 10 74 14 175

GIF
eog 9 1 10 0 10 1 29 0 27 0 43 1 44 1
convert 72 2 10 1 10 1 13 1 14 0 24 2 22 1
gif2png 162,302 6 10 4 10 4 16 5 17 5 29 5 33 4

JPG
eog 0 0 10 0 10 0 31 0 31 0 47 0 53 0
jpegtran 0 0 10 0 10 0 10 0 12 0 21 0 23 0

PNG
eog 123 2 10 1 10 1 30 2 30 2 45 2 49 2
convert 2 1 10 0 10 0 11 1 12 1 17 1 16 1

Total 609,905 2,941 132 67 278 255 288 170 406 182 462 295

Table 2: Programs fuzzed to evaluate seed selection strategies and obtain ground truth. The columns include the number
of seed files (#S) obtained with each algorithm, and the number of bugs found (#B) with the optimal scheduling strategy.

6.2.1 Which Algorithm Performed Best?

Table 2 shows the full breakdown of the reduced sets
computed by each algorithm with the optimal schedul-
ing algorithm. Columns 1 and 2 show the file type and
program we are analyzing, while columns 3 and 4 show
the total number of crashes and unique bugs (identified
by stack hash) found during the ground truth experiment.
The next six columns show two main statistics (in sub-
columns) for each of the seed selection algorithms: 1) the
size of the set k (#S), and 2) the number of bugs (#B) iden-
tified with optimal scheduling. All set cover algorithms
(PEACH SET, UNWEIGHTED MINSET, TIME MINSET,
SIZE MINSET) were allowed to compute a full-cover, i.e.,
select as many files as required to cover all blocks. The
other two algorithms (RANDOM SET and HOT SET) were
restricted to sets of size k = 10.

Bug Distribution and Exploitability. The fuzzing
campaign found bugs in 10/13 configurations of
hprogram,file typei, as shown in table 2. In 9/10 configu-
rations we found less than 100 bugs, with one exception:
mp3gain. We investigated the outlier further, and discov-
ered that our fuzzing campaign identified an exploitable
stack overflow vulnerability—the mangled stack trace can
create duplicates in the stack hash algorithm. We verified
the bug is exploitable and notified the developers, who
promptly fixed the issue.

Reduced Set Size. Table 2 reflects the ability of the set
cover algorithms to reduce the original dataset of 100 files.
As expected, UNWEIGHTED MINSET is the best in terms
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Figure 4: Number of bugs found by different seed selec-
tion algorithms with optimal scheduling.

of reduction ability, with 278 files for obtaining full cover.
TIME MINSET requires slightly more files (288). SIZE
MINSET and PEACH SET require almost twice as many
files to obtain full cover (406 and 462 respectively).

Bug Finding. The PEACH SET algorithm finds the high-
est number of bugs (295), followed by UNWEIGHTED
MINSET (255), SIZE MINSET (182) and TIME MINSET
(170). HOT SET and RANDOM SET find substantially
fewer bugs when restricted to subsets of size up to 10.
We emphasize again that bug counts are measured under
optimal scheduling and thus size of the reduced set is
analogous to the performance of the selection algorithm
(the highest number of bugs will be found when all seeds
are selected). Thus, to compare sets of seeds in terms of
bug-finding ability we need a head to head comparison
where sets have the same size k.
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Figure 5: Number of bugs found by different seed selec-
tion algorithms with Round-Robin.

Figure 4 shows all selection algorithms and how they
perform in terms of average number of bugs found as a
function of the parameter k—the size of the seed file set.
The “⇥” symbols represent the size after which each algo-
rithm achieves a full cover (after that point extra files are
added sorted by the metric of the selection algorithm, e,g„
by coverage in UNWEIGHTED MINSET). As witnessed
in the comparison against RANDOM SET, UNWEIGHTED
MINSET consistently performs better than other seed se-
lection algorithms. TIME MINSET and PEACH SET also
eventually converge to the performance of UNWEIGHTED
MINSET under optimal scheduling, closely followed by
random. HOT SET performs the worst, showing that
spending time exploring all seeds can be wasteful. We
also note, that after obtaining full cover (at 20 seed files),
UNWEIGHTED MINSET’s performance does not improve
at the same rate—showing that adding new files that do
not increase code coverage is not beneficial (even with
optimal scheduling).

We performed an additional simulation, where all re-
duced sets were run with Round-Robin as the scheduling
algorithm. Figure 5 shows the performance of each al-
gorithm as a function of the parameter k. Again, we
notice that that UNWEIGHTED MINSET is outperform-
ing the other algorithms. More interestingly, we also
note that UNWEIGHTED MINSET’s performance actually
drops after obtaining full cover. This shows that mini-
mizing the number of seeds is important; adding more
seeds in Round-Robin seems to hurt performance for all
algorithms.

Conclusion: UNWEIGHTED MINSET performed best.
UNWEIGHTED MINSET outperformed all other algo-
rithms in our experiments, both for optimal and Round-
Robin scheduling. This experiment confirms conventional
wisdom that suggests collecting seeds with good coverage
for successful fuzzing. More importantly, it also shows
that computing a minimal cover with an approximation
with a proven competitiveness ratio (UNWEIGHTED MIN-

File Application FULL
SET

UNWEIGHTED
MINSET (k=10)

PDF
xpdf 53% 70%
mupdf 83% 90%
pdf2svg 71% 80%

MP3
ffmpeg 1% 0%
mplayer 0% 0%
mp3gain 95% 100%

GIF
eog 8% 0%
convert 12% 10%
gif2png 97% 100%

JPG eog 0% 0%
jpegtran 0% 0%

PNG eog 22% 30%
convert 2% 10%

Table 3: Probability that a seed will produce a bug in 12
hours of fuzzing.

SET) is better than using an algorithm with no guaranteed
competitive ratio (PEACH SET).

6.2.2 Are reduced seed sets better than a full set?

Hypothesis 4 tests the premise of using a reduced data set.
Will a reduced set of seeds find more bugs than the full
set? We simulated a fuzzing campaign with the full set,
and with different reduced sets. We compare the number
of bugs found by each technique.

Using the optimal scheduling, the full set will always
find more, or the same amount of bugs, than any subsets
of seeds. Indeed, the potential schedules of the full set
is a superset of the potentiel schedules of any reduced
set. The optimal schedule of a reduced set of seeds is a
valid schedule of the full set, but the optimal schedule
of the full set might not be a valid schedule of a reduced
set. Hypothesis 4 is therefore false under the optimal
scheduling. We use a Round-Robin schedule to answer
this question more realistically.

The “⇥” symbols on Figure 5 shows the unpadded
size of the different selection algorithms. For those sizes,
UNWEIGHTED MINSET found 4 bugs on average, and the
other MINSET algorithms found between 2.5 and 3 bugs.
Fuzzing with the full set uncovered only 1 unique bug on
average.

We also measure the quality of a set of seeds by looking
at the average seed quality contained in that set. Our
hypothesis is that a reduced set increases the average seed
quality compared to the full set. To measure quality, we
computed the probability of a seed producing a bug after
fuzzing it for 12 hours, when the seed is picked from the
full set or the UNWEIGHTED MINSET. Table 3 lists the

11
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results of this experiment. The UNWEIGHTED MINSET
had a higher seed quality than the full set in 7 cases, while
the opposite was true in 3 cases. They were tied on the 3
remaining cases.

Conclusion: Fuzzing with a reduced sets is more ef-
ficient in practice. The UNWEIGHTED MINSET out-
performed the full set in our two experiments. Our data
demonstrates that using seed selection techniques is bene-
ficial to fuzzing campaigns.

6.3 Are Reduced Sets Reusable Across Pro-
grams?

We showed that seed selection algorithms improve
fuzzing in terms of bug-finding performance. However,
performing the data reduction may be computationally
expensive; for instance, all set cover algorithms require
collecting coverage information for all the seeds. Is it
more profitable to invest time computing the minset to
fuzz an efficient reduced set, or to simply fuzz the full set
of seeds for the full time budget? In other words, is the
seed selection worth the effort to be performed online?

We answer that question by presenting parts of our
dataset. For example, our JPG bucket contains 530,727
distinct files crawled from the web. Our PIN tool requires
55 seconds (on average based on the 10 applications listed
in Table 2) to compute code coverage for a single seed.
Collecting coverage statistics for all our JPG files would
take 368 CPU-days. For fuzzing campaigns shorter than
a year, there would not be enough time to compute code
coverage, let alone finding more bugs than the full set.

The result above indicates that, while seed selection
techniques help improve the performance of fuzzing, their
benefits may not outweigh the costs. It is impractical to
spend a CPU year of computation to perform a sepa-
rate seed selection for every new application that needs
fuzzing, thus indicating that Hypothesis 2 does not hold.

However, recomputing the reduced set for every appli-
cation may not be necessary. Instead, we can compute a
reduced set for every file type. Our intuition is a reduced
set that is of high-quality for application A should also
be high-quality for application B—assuming they accept
the same file type. Thus, precomputing reduced sets for
popular file types once, would allow us to instantly select
a high-quality set of seed files to start fuzzing. To test
transferability of reduced sets (Hypothesis 3), we measure
seed quality by computing code coverage achieved by a
MINSET across programs.

Do Reduced Sets Transfer Coverage? Using the seed
files from our ground truth experiment (§ 6.1) we mea-
sured the cumulative code coverage achieved in each

configuration (program and file format) with reduced
UNWEIGHTED MINSETs computed on all other con-
figurations (for a total of 13⇥ 13⇥ 100 coverage mea-
surements). All measurements were performed on a
c1.medium instance on amazon.

Figure 6 is a heat map summarizing our results. The
configurations on the bottom (x-axis) represent all com-
puted UNWEIGHTED MINSETs, while the configura-
tions on the left (y-axis) represent the configurations
tested. Darker colors indicate that the selected UN-
WEIGHTED MINSET obtains higher coverage. For ex-
ample, if we select the pdf.mupdf MINSET from the
x-axis, we can see how it performs on all the other con-
figurations on the y-axis. For instance, we notice that
pdf.mupdf MINSET performs noticeably better on 5 con-
figurations: pdf.mupdf (expected since this is the config-
uration on which we computed the MINSET), pdf.xpdf
and pdf.pdf2svg (expected since these applications
also accept pdfs), and interestingly png.convert and
gif.convert. Initially we were surprised that a PDF
MINSET would perform so well on convert; it turns
out that this result is not surprising since convert can
also process PDF files. Similar patterns can be similarly
explained—for example, GIF MINSETs are performing
better than MP3 MINSETs for mplayer, simply because
mplayer can render GIF images.

The heat map allows us to see two clear patterns:

1. High coverage indicates the application accepts a
file type. For instance, by following the row of the
gif.eog configuration we can immediately see that
eog accepts GIF, JPG, and PNG files, while it does
not process MP3s or PDFs. This is exactly the same
pattern we are exploiting in our file type inference
algorithm (§ 6.4).

2. Coverage transfers across applications that process
the same file type. For example, we clearly see
the PDF cluster forming across all PDF configura-
tions, despite differences in implementations. While
xpdf and pdf2svg both use the poppler library
for processing PDFs, mupdf has a completely in-
dependent implementation. Nevertheless, mupdf’s
MINSET performs well on xpdf and vice versa. Our
data shows that similar clusters appear throughout
configurations of the same file type, suggesting that
we can reuse MINSETs across applications that ac-
cept the same file type (Hypothesis 3).

Conclusion: Reduced sets are transferable. Our data
suggests that reduced sets can be transferred to programs
parsing the same file types with respect to code coverage.
Therefore, it is necessary to compute only one reduced
set per file type.
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Figure 6: Transferability of UNWEIGHTED MINSET coverage across configurations. The base configurations, on which
the reduced sets were computed, are on the bottom; the tested configurations are on the left. Darker colors indicate
higher coverage.

6.4 Inferring File Types

In this experiment we ran our algorithm to automatically
infer file types for our 10 applications over a large body of
diverse file types (88 in total including AVI, MP3, MKV
and so forth). We then manually verified the inferred file
type, and measured accuracy. We report an error if a re-
ported file type is not recognized by the target application.
Table 6.4 summarizes our results. Our file type inference
algorithm successfully infers file types for every program
except mp3gain, where the file type inferred was CBR
(Comic Book Reader), instead of MP3.

We manually examined why mp3gain shows higher
code coverage for CBR files. It turns out that our sample
CBR file is larger than 15 MB, and it happens to have a
valid MP3 frame header signature in the middle of the file.
Since mp3gain searches for a valid MP3 frame header
regardless of the entire file format, it is possible to misin-
terpret an input file as a valid MP3 file. In other words,
this is probably not a false positive, because mp3gain
indeed takes in the CBR file and outputs a modified CBR
file, which is the expected behavior of the program.

7 Discussion & Future Work

Input Types. The focus of this paper is on file-parsing
applications. Thus, we do not target applications that
use command line arguments as their input sources (e.g.,
/bin/echo), or applications that receive input from the
network (e.g., /usr/bin/wget). File-based vulnerabilities

Program Inferred File Type Success
convert svg 3
eog png 3
ffmpeg divx 3
gif2png gif 3
jpegtran jpeg 3
mp3gain cbr 7
mplayer avi 3
mupdf pdf 3
pdf2svg pdf 3
xpdf pdf 3

Table 4: File-type inference results on our dataset.

represent a significant attack vector, since remote attacks
can be carried out by simply sending an attachment to the
victim over the network.

Handling argument inputs for applications is straight-
forward: we can extend our fuzzing framework to ran-
domly generate arguments to the exec system call. Treat-
ing network applications would be more elaborate since
we would have to update our seed database to include
network packets for various protocol types. One potential
extension is to utilize automatic protocol reversing [3, 7].
We leave it as future work to support more input types.

Statistical Significance. We have performed initial hy-
pothesis testing based on the data. Currently, using UN-
WEIGHTED MINSET is assumed to outperform other al-
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gorithms. Using our data (see Figure 3), we were able
to show that UNWEIGHTED MINSET is at least as good
as random with high probability. However, the data does
not show with statistical significance that UNWEIGHTED
MINSET is strictly better. Fuzzing longer and with more
seed files and programs may yield more datapoints that
would allow a stronger conclusion—at the cost of a much
more costly ground truth computation: an additional seed
file requires 12 hours of extra fuzzing hours for each ap-
plication. We leave fuzzing for more than 650 days as
future work.

Command Line Inference. Currently, COVERSET uses
several heuristics to infer command line arguments. We
believe that command line inference is an important first
step to fully automate the entire fuzzing process. For
example, COVERSET currently does not handle dependent
arguments, e.g., when option A is valid only when option
B is also selected. Developing systematic and effective
approaches for deriving command line arguments—e.g.,
based on white-box techniques—is a possible direction
for future work.

8 Related Work

In early 90s, Miller et al. [21] introduced the term
fuzzing. Since then, it has become one of the most widely-
deployed technique for finding bugs. There are two major
categories in fuzzing based on its ability to examine the
internal of the software under test: (1) black-box fuzzing
[20], and (2) white-box fuzzing [13, 14]. In this paper,
we use black-box mutational fuzzing as the underlying
technique for our data reduction algorithms.

Coverage-driven seed selection is not new. Several pa-
pers and security practitioners use similar heuristics to se-
lect seeds for fuzzing [1, 8, 9, 11, 22, 23, 26]. FuzzSim by
Woo et al. [29] is the closest work from academia, where
they tackle a seed scheduling problem using multi-armed
bandit algorithms. Our paper differs from their approach
in that we are not developing an online scheduling algo-
rithm, but an offline data-driven seed selection approach.
Therefore, our seed selection is complementary—when it
is used as a preprocessing step—to the FuzzSim schedul-
ing algorithm.

There are several previous works on recovering input
formats, which involves dynamic taint analysis [3, 7].
Our goal is being able to run fuzzing with appropriate
seed files, but not recovering the semantics of file for-
mat. Accommodating more precise file format inference
techniques is out of the scope of this paper.

9 Conclusion

In this paper we designed and evaluated six seed selection
techniques. In addition, we formulated the optimal ex
post facto seed selection scheduling problem as an integer
linear programming problem to measure the quality of
seed selection algorithms. We performed over 650 days
worth of fuzzing to determine ground truth values and
evaluated each algorithm. We found 240 new bugs. Our
results suggest how best to use seed selection algorithms
to maximize the number of bugs found.
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Abstract
Encryption schemes where the ciphertext must abide by a
specified format have diverse applications, ranging from
in-place encryption in databases to per-message encryp-
tion of network traffic for censorship circumvention. De-
spite this, a unifying framework for deploying such en-
cryption schemes has not been developed. One conse-
quence of this is that current schemes are ad-hoc; another
is a requirement for expert knowledge that can disuade
one from using encryption at all.

We present a general-purpose library (called libfte)
that aids engineers in the development and deploy-
ment of format-preserving encryption (FPE) and format-
transforming encryption (FTE) schemes. It incorporates
a new algorithmic approach for performing FPE/FTE
using the nondeterministic finite-state automata (NFA)
representation of a regular expression when specifying
formats. This approach was previously considered un-
workable, and our approach closes this open problem.
We evaluate libfte and show that, compared to other en-
cryption solutions, it introduces negligible latency over-
head, and can decrease diskspace usage by as much
as 62.5% when used for simultaneous encryption and
compression in a PostgreSQL database (both relative to
conventional encryption mechanisms). In the censor-
ship circumvention setting we show that, using regular-
expression formats lifted from the Snort IDS, libfte can
reduce client/server memory requirements by as much as
30%.

1 Introduction

Both in practice and in the academic literature, we see
an increasing number of applications demanding encryp-
tion schemes whose ciphertexts abide by specific for-
matting requirements. A small industry has emerged
around the need for in-place encryption of credit-card
numbers, and other personal and financial data. In the

case of credit-card numbers, this means taking in a string
of 16 decimal digits as plaintext and returning a string
of 16 decimal digits as ciphertext. This is an example of
format-preserving encryption (FPE). NIST is now con-
sidering proposals for standardized FPE schemes, such
as the FFX mode-of-operation [7], which is already used
in some commercial settings [3]. On a totally different
front, a recent paper [11] builds a format-transforming
encryption scheme. It takes in plaintext bit strings (for-
matted or not) and returns ciphertexts formatted to be in-
distinguishable, from the point of view of several state-
of-the-art network monitoring tools, from real HTTP,
SMTP, SMB or other network protocol messages. This
FTE scheme is now part of the Tor Project’s Browser
Bundle, and is being integrated into other anti-censorship
systems.

It seems clear that FPE and FTE have great poten-
tial for other applications, too. Unfortunately, developers
will find a daunting collection of design choices and en-
gineering challenges when they try to use existing FPE
or FTE schemes in new applications, or to instantiate en-
tirely new schemes. To begin with, there isn’t a stan-
dard way to specify the formats that plaintexts or cipher-
texts must respect. There are no established guidelines,
and certainly no automated tools, to help developers un-
derstand whether they should be targeting deterministic
schemes or randomized ones, or how their chosen for-
mats might affect runtime performance and memory us-
age. (In the case of FTE, it can be difficult to tell if a
given input and output format will result in a scheme that
operates properly.) There are no established APIs, and
no reference implementations or open-source libraries to
aid development.

Making FPE/FTE More Approachable: libfte. In
this work, we offer a unifying framework for build-
ing and deploying FPE and FTE schemes. We design
and implement an algorithm library, libfte, and include
in it developer-assistance tools. A paramount goal of
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our effort is ease-of-use: our library exposes an inter-
face in which formats for plaintexts and ciphertexts are
easily specified via Perl-compliant regular expressions
(regexes), and it relieves the programmer of the burdens
of making good algorithm and parameter choices.

Some of what we do is to make existing algorithms
(e.g., FFX) significantly easier to use. But some of the
engineering and deployment challenges demand entirely
new approaches to both FPE and FTE. Perhaps most no-
tably, we solve an open problem regarding how to build
regular-expression-based schemes using a regex’s non-
deterministic finite automaton (NFA) representation, as
opposed to its DFA representation. This is desirable
because it can lead to significantly more space-efficient
schemes, but the approach was previously thought to be
unworkable [5, 11]. We dispel this thought, and experi-
mentally observe the resulting boost in efficiency.
To summarize the main contributions of this work, we:

• Design and implement a library and toolkit to
make development and deployment easy. The libfte
library exposes simple interfaces for performing
FPE/FTE over regex formats specified by the user.
We provide a configuration tool that guides devel-
opers towards good choices for the algorithms that
will instantiate the scheme, and that provides con-
crete feedback on expected offline and online per-
formance and memory usage.

• Develop new FTE schemes that take regular-
expression formats, but can work directly with their
NFA representation. This was previously thought to
be an unworkable approach [5], due to a PSPACE-
hardness result, but we show how to side-step this
via a new encoding primitive called relaxed rank-
ing. The result is FTE schemes that handle a larger
class of regexes, and impose smaller offline/online
memory requirements.

• Detail a general, theoretical framework that cap-
tures existing FPE/FTE schemes as special cases,
and surfaces potentially useful new constructions,
e.g., deterministic FTE that encrypts and com-
presses simultaneously. Due to space constraints,
the formalisms appear mostly in the full ver-
sion [16].

In addition, the libfte library will be made publicly avail-
able as free and open-source software1, with APIs for
Python, C++ and JavaScript.

Applications. We exercise libfte by applying it to a va-
riety of application settings. Table 1 gives a summary
of the diversity of formats required across these various
applications.

We first show how to use libfte to perform FPE of SQL

1https://libfte.org/

Deployment Examples
Setting Type Constraint

Databases credit card number 16-digit string
datefield YYYYMMDD

account balance 32-bit integers
Web Forms email address contains @ symbol,

ends with {.com,. . .}
year, month, day YYYY, MM, DD

URL starts with http(s)
Network HTTP GET request “GET /...”
Monitors Browser X “. . . User-Agent: X . . . ”

SSH traffic “SSH-. . . ”

Table 1: Example deployment settings and constraints
for FPE/FTE schemes.

database fields, a classic motivational setting for FPE, but
one that has (to the best of our knowledge) never been re-
ported upon. We show that performance loss compared
to conventional encryption is negligible. We also show
how to leverage the flexibility of libfte to improve per-
formance, by using a (deterministic) FTE scheme that si-
multaneously encrypts and compresses fields (in a prov-
ably secure manner).

We then use libfte to build a proof-of-concept browser
plugin that encrypts form data on websites such as Ya-
hoo! Contacts. This uses a variety of FPE and FTE
schemes, and allows one to abide by a variety of format
restriction checks performed by the website.

Finally, we show that our NFA-based algorithms in
libfte enable significant memory savings, specifically for
the case of using FTE in the network-monitor-avoidance
setting [11]. Using a corpus of 3,458 regular expres-
sions from the Snort monitor we show that we can reduce
memory consumption of this FTE application by 30%.

2 Previous Approaches and Challenges

We review in more detail some of the main results in
the areas of format-preserving and format-transforming
encryption, and then discuss some of the challenges pre-
sented when one attempts to implement and use these in
practice. As we shall see, existing tools fall short for the
types of applications we target. Table 2 provides a sum-
mary.

Format-preserving encryption. In many settings the
format of a plaintext and its encryption must be the same,
and the tool used to achieve this is format-preserving en-
cryption (FPE). Work on FPE predates its name, with
various special cases such as length-preserving encryp-
tion of bit strings for disk-sector encryption (c.f., [14,
15]), ciphers for integral sets [8], and elastic block ci-
phers [10] including de novo constructions such as the
hasty pudding cipher [21]. For an overview of work on
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Paper Builds Formats Schemes Implementation Comments
[7] FPE slice of ⌃⇤ deterministic none proposed NIST standard
[5] FPE slice of chosen deterministic none first FPE paper, theory only,

regular language requires regex-to-DFA conversion
[11] FTE slice of chosen randomized open source, input format fixed as bitstrings,

regular language but domain specific control of output format,
requires regex-to-DFA conversion

This FPE/ range-slice of deterministic/ open source, control of input and output format,
Work FTE chosen regular language randomized configuration toolchain, NFA and DFA ranking,

non domain specific regex-to-DFA conversion not required

Table 2: Analysis of prior works, and a comparison of features.

FPE, see Rogaway [20].
FPE was first given a formal cryptographic treatment

by Bellare, Ristenpart, Rogaway and Spies (BRRS) [5].
In their work, BRRS suggested an approach to FPE
called the “rank-encipher-unrank” construction. First,
they show how to build a cipher that maps ZN to ZN ,
for an arbitrary fixed number N . (Recall that ZN =
{0, 1, . . . N − 1}.) Now say that X is a set of strings
that all fit some specified format, and one desires an en-
cryption scheme mapping X to X . A classic algorithm
due to Goldberg and Sipser (GS) [12] shows that, given a
DFA for X , there exists an efficiently computable func-
tion rank : X ! ZN , where |X| = N and rank(x)
is defined to be its position (its “rank”) in the shortlex
ordering of X . In addition, rank has an efficiently com-
putable inverse unrank : ZN ! X , so that unrankL(i)
is the i-th string in the ordering of L. Then to encrypt
a string x 2 X: (1) rank the input x to yield a num-
ber a  rank(x), (2) encipher a, giving a new number b,
then (3) unrank b to yield the ciphertext y  unrank(b),
which is an element of X .

BRRS focus on FPE for sets X that are a slice of a
language L, that is X = L\⌃n for some n and where ⌃
is the alphabet of L. Relatedly, we define a range-slice
of a language L as X = L \ (⌃n [ ⌃n+1 [ · · · [ ⌃m),
for n  m. The latter is superior because it offers greater
flexibility, although not explored by BRRS. Still, extend-
ing BRRS to an FPE scheme over the entire (regular)
language is possible, by establishing a total ranking one
slice at a time. The main disadvantage of the BRRS
scheme is that it requires a DFA to represent the set X .
For most users, this is an unnatural way to specify lan-
guages, or slices thereof.

We quickly note that the BRRS algorithm may be sus-
ceptible to timing-based side-channel attacks, since rank
is not constant time. Timing information may therefore
leak partial information about plaintexts. We leave to
future work exploration of this potential security issue,
which extends to libfte and other non-constant-time mes-
sage encodings as well.

The FFX scheme. Bellare, Rogaway, and Spies [7]

specify the FFX mode of operation, which is a specific
kind of FPE scheme and is based on the BRRS work [5].
FFX takes a parameter 2  r  216, the radix, and en-
crypts a plaintext P 2 L =

S
`{0, 1, . . . , r − 1}` to a

ciphertext in L with |L| = |P |. The length ` ranges
between a minimum value of 2 (or 10, if r ≥ 10) and
232 − 1. For example, FFX[10] enciphers strings of dec-
imal digits to (same length) strings of decimal digits;
FFX[8] does likewise for octal strings. In addition, FFX
has an extra “tweak” input, making it a length-preserving
tweakable cipher, in the sense of [17]. The tweak allows
FFX to support associated data.

We are aware of no public, open-source implementa-
tions of FFX, though there do exist proprietary ones [3].
Even given such an implementation, the formats sup-
ported by FFX are not as general as we might like.
For example, the scheme does not support domain ZN

when N is not expressible as r` for the supported
radices r. One can rectify this using cycle walking [8]
but the burden is on developers to properly do so, hinder-
ing usability. Moreover, the user is left to determine how
best to map more general formats into the set of formats
that FFX supports.

Format-transforming encryption. Dyer, Coull, Risten-
part and Shrimpton (DCRS) [11] introduced the notion
of format-transforming encryption, and gave a purpose-
built scheme that mapped bitstring plaintexts to cipher-
texts belonging to a specified regular language. Their
FTE scheme was built to force protocol misidentification
in state of the art deep-packet-inspection (DPI) systems
used for Internet censorship.

The DCRS scheme is randomized, which lets it tar-
get strong privacy goals for the plaintexts (namely, se-
mantic security [13]), and also naturally aligns with us-
ing standard encryption schemes as building blocks. The
scheme itself is similar in spirit to BRRS: the plaintext
bitstring is encrypted using an authenticated encryption
scheme, the resulting intermediate ciphertext interpreted
as a number, and this number is then unranked into the
target language. Like BRRS, this scheme works on slices
of a given regular language.

3



880 23rd USENIX Security Symposium USENIX Association

DCRS observe that regular expressions provide a
friendlier programming interface for specifying inputs.
But to use the GS scheme for ranking/unranking, they
must first convert the given regular expression to an NFA
and then from an NFA to a DFA. The last step often leads
to a large blowup in the number of states, sometimes ren-
dering the process completely intractable. (Examples of
such regexs, and the associated NFA and DFA sizes, are
given in Table 6 in Section 6.) Even when the process is
tractable, the precomputed tables that DCRS and BRRS
use to implement ranking require space that scales lin-
early in the number of states in the DFA. Many of the for-
mats used by DCRS require several megabytes of mem-
ory; in one case, 383 MB. This is prohibitive for many
applications, especially if one wants to keep several po-
tential formats in memory.

Thus, in many instances it would be preferable to use
the NFA representation of the given regex, but BRRS
showed that ranking given just the NFA representation
of a regular language is PSPACE-hard. Building any FPE
or FTE scheme that works directly from an NFA has re-
mained an open problem.

We also note that developers might hope for a gen-
eral purpose FTE scheme, that takes arbitrary regular ex-
pressions for the input and output formats, and that can
be built from existing deterministic cryptographic prim-
itives (e.g., wideblock tweakable blockciphers) or ran-
domized ones (e.g., authenticated encryption schemes).
But actually instantiating such a scheme presents an ar-
ray of algorithmic and engineering choices; in the current
state of affairs, expert knowledge is required.

Summary. While a number of approaches to FPE and
FTE exist, there is a gap between theory and developer-
friendly tools. Implementations are non-existent, and
even expert developers encounter challenges when im-
plementing schemes from the literature, including: un-
derstanding and managing memory requirements, devel-
oping a “good” construction, or engineering the plain-
text/ciphertext format pair. Finally, there exist funda-
mental performance roadblocks when using some classes
of regular expressions. This is compounded by the fact
that, a priori, it isn’t obvious when a given regex will
raise these roadblocks.

3 Overview of libfte

To aid adoption and usage of FPE and FTE, we de-
veloped a set of tools known collectively as libfte. At
a high level, libfte has two primary components (see
Figure 3): a standalone tool called the configuration as-
sistant, and a library of algorithms (implemented in a
mixture of Python and C/C++) that exposes an API for
encryption and decryption via a number of underlying

FPE/FTE schemes. Loosely, the API takes a configura-
tion, describing what algorithms to use, and some key
inputs for those algorithms, while the assistant helps de-
velopers determine good configurations. Let us start by
talking about the assistant.

Configuration assistant. A format is a tuple F =
(R,↵,β), where R is a regular expression, and ↵  β
are numbers. A format defines a set of strings L(F) =
{ s 2 L(R)

∣∣ ↵  |s|  β }, where L(R) is the set
of strings matched by R. Following traditional naming
conventions, we call L(F) the language of the format.
Because of its wide-spread use, in libfte the input R is
specified in Perl-Compatible Regular Expression syntax.
However, we note that PCRE syntax allows expressions
that have no equivalent, formal regular expression. For
instance, PCRE expressions using \1, \2, ... (where \1 is
a back-reference to the first capture group; see [1]) are
not even context free, let alone regular. Thus, libfte ac-
cepts expressions built from a subset of the full PCRE
syntax.

Our configuration assistant takes as input two formats,
one describing the format of plaintext strings (FP ), and
one describing the desired format of ciphertext strings
(FC). It also accepts some “preference parameters”, for
example specifying the maximum memory footprint of
any scheme considered by the assistant, but these are set
to some reasonable default value if not specified. It then
runs a battery of tests, in an effort to determine which
configurations will result in FPE/FTE scheme that abide
by the user’s inputs. Concretely, the assistant outputs a
table listing various possible configurations (some con-
figurations may not be possible, given the user’s input),
along with information pertaining to expected perfor-
mance and memory usage. Given the user’s preferences,
the table lists the best option first. In the case that no
available configuration is possible, the assistant provides
information as to why, so that the user can alter their in-
puts and try again.

The encryption API. The algorithm library exposes an
encryption API that takes as input an encryption config-
uration, which consist of a plaintext format, a cipher-
text format, and a configuration identifier. The latter is
a string that specifies the desired methods for perform-
ing ranking, unranking, encryption and decryption. The
library performs all necessary precomputations (initial-
ize rankers, build look-up tables, etc.) in an initialization
function and returns a handle to an object that can per-
form encryption and decryption, according to the speci-
fied configuration. Currently, ten configurations are sup-
ported by libfte (see Section 6 for descriptions).

Roadmap. In Sections 4 and 5 we describe in detail
the algorithms that result in these configurations. In Sec-
tion 4 we detail a new type of ranking algorithm, what
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Figure 3: Left: The libfte configuration assistant (built against the library) helps users create formats that meet their
specific performance requirements. The assistant takes an input/output format pair and uses a decision-tree process
to determine if the formats are valid. If the formats are deemed valid, performance statistics are reported for the
instantiated scheme(s). Right: The library implements APIs for FPE/FTE schemes. Shown is a diagram of the basic
flow of our FPE/FTE schemes. As input it takes an input/output format and message M and returns a ciphertext C.

we call relaxed ranking, that allows us to work more di-
rectly with regular expressions (in particular, their equiv-
alent NFAs), and sidestep the PSPACE-hardness obsta-
cle. In Section 5, we lay out methods of combining re-
laxed ranking with standard cryptographic primitives to
build both deterministic and randomized FPE and FTE
schemes. For deterministic schemes, we leverage a tech-
nique called cycle walking, and for randomized schemes,
we employ rejection sampling.

Then in Section 6 we describe specific instantiations
of these schemes, and explain how the configuration as-
sistant works in more detail. Finally, in Section 7 we
show how these schemes can be put to work in three dif-
ferent use cases: database encryption, web form encryp-
tion, and network monitor circumvention.

4 Fast, Relaxed Ranking

The rank-encipher-unrank method for constructing
FPE/FTE schemes needs efficient techniques for map-
ping strings in a regular language L to positive integers
as well as computing the inverse operation (mapping pos-
itive integers back to strings in the language). Exist-
ing techniques are often impractical for two main rea-
sons. First, the traditional DFA-based ranking requires
the construction of a DFA corresponding to a regular
expression. DFAs for some regular expressions can be
very large. For instance, the minimum DFA for the regex
(a|b)⇤a(a|b){20} has 1 + 221 states. Second, the num-
bers involved in ranking can be very large (for languages
with many strings) and operations on these integers can
therefore be computationally expensive. As an extreme
example, ranking a 10, 000-byte long element accepted
by the regex .⇤ requires numbers of up to (28)10000 bits,
or 10, 000 bytes. This section tackles these two chal-

lenges.

4.1 Relaxed Ranking
We introduce a framework for building FPE and FTE
schemes directly from NFAs. The resulting algorithms
will often use significantly less memory than the DFA ap-
proach, thus enabling general-purpose regex-based rank-
ing in memory-constrained applications. For instance,
the NFA for the regex (a|b)⇤a(a|b){20} has 48 states.

A key insight is that we can circumvent the negative
result about NFA ranking if we shift to a relaxed rank-
ing approach, which we formally define in a moment.
This will require, in turn, constructing FPE and FTE
schemes given only relaxed ranking which we address
in Section 5.

4.1.1 Relaxed Ranking Schemes

Informally, a relaxed ranking of a language L relaxes the
requirement for a bijection from L to Z|L|.

Formally, a relaxed ranking scheme for L is a pair of
functions RankL and UnrankL, such that:

1. RankL : L ! Zi is injective, i ≥ |L| (Note that
we capitalize ‘Rank’ to distinguish relaxed ranking
from ranking.)

2. UnrankL : Zi ! L is surjective; and

3. For all X 2 L, UnrankL(RankL(X)) = X .

The last condition means that we can correctly invert
points in the image of L, denoted Img(L) ✓ Zi. Note
that a ranking is a relaxed ranking with i = |L|.
DFA-based ranking revisited. As a thought experi-
ment, one can view the traditional GS DFA-based rank-
ing for regular languages as follows: let I be the set of all
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accepting paths in a DFA. First, one maps a string X 2 L
to its accepting path ⇡X 2 I. Then, one maps ⇡X to an
integer via an (exact) ranking. The composition of these
two functions yields a ranking function for all strings in
L. In the DFA ranking algorithms of [5, 12], these two
steps are merged.

A two-stage framework. We can use this two-step pro-
cedure to build efficient relaxed ranking algorithms. Sup-
pose we desire to build a relaxed ranking function RankL
from a given set L into Zi. We first identify three com-
ponents:

1. an intermediate set I for which we can efficiently
perform ranking, i.e., there is an efficient algorithm
for rankI : I ! Zi where i = |I|;

2. an injective function map : L ! I; and
3. a surjective function unmap : I ! L such that for

all X 2 L it holds that unmap(map(X)) = X .
We then define

RankL(X) = rankI(map(X))

UnrankL(Y ) = unmap(unrankI(Y ))

Should unmap additionally be injective, then RankL is a
bijection, and we have (strict) ranking.

At first glance, this framework may seem to not have
accomplished much as we rely on a strict ranking to real-
ize it. But we will ensure that the language I allows for
strict ranking, and so the framework allows us to trans-
form the problem of ranking from a difficult set (L) to an
easier one (I).

4.1.2 Relaxed Ranking Using NFAs

We construct relaxed ranking for NFAs using the ap-
proach above. We use as intermediate set I the set of
all accepting paths in the NFA. To map into this set, for
each string in L we deterministically pick an accepting
path (a process called parsing). To rank on I we de-
fine a path ordering, and generalize the Goldberg-Sipser
ranking algorithm for DFAs to count paths based on this
ordering.

Recall that an NFA is a 5-tuple M = (Q,⌃, δ, q
0

, F ),
where Q is a finite set of states, ⌃ is the alphabet, δ ✓
Q ⇥ ⌃ ⇥ Q is the transition relation2, q

0

2 Q is the
start state, and F ✓ Q is the set of final (or accepting)
states. If (q, a, q0) 2 δ then M may transition from state
q to state q0 when the current input symbol is a. We also
write a transition ⌧ = (q, a, q0) 2 δ as q a! q0, where q
is the source and q0 is the destination of ⌧ .

A path ⇡ in M is a sequence of transitions

qi0
aj1! qi1

aj2! qi2 · · · qin−1

ajn! qin ·
2We assume that there are no ✏-transitions, but this is without loss

of generality as there are standard methods to efficiently remove them
from an NFA.

Path ⇡ can also be expressed as a sequence of transitions
⌧
1

⌧
2

· · · ⌧n, where n = |⇡| is the length of ⇡. The suffix
⇡1 of the path ⇡ is ⌧

2

· · · ⌧n, and we have ⇡ = ⌧
1

⇡1. The
sequence of characters in the path is ⇡|

⌃

= aj1aj2 ...ajn .

The intermediate set I. An accepting path is one that
ends in an accepting state. Let Acc

M

(q) be the set
of accepting paths starting from state q. We let I =
Acc

M

(q
0

).

The functions map and unmap. We must map from L
to I and back. The latter is simpler: define unmap(⇡) to
be the word ⇡|

⌃

. This is fast to compute, in time linear in
|w|. The forward direction map(w) requires a determin-
istic choice for an accepting path for w. This is called
parsing. Any suitable parsing algorithm will work, but
we note that the most obvious algorithms may be quite
inefficient. For example, simply recording all accepting
paths while running the NFA runs in time exponential in
|w| in the worst case.

Linear-time parsing. We now give the (to the best of
our knowledge) first algorithm for determining a com-
pact representation of all of an NFA’s accepting paths for
a string w. Then map(w) simply runs this algorithm for
w and outputs the lexicographically least accepting path.
Our algorithm constructs an implicit representation of a
directed-acyclic graph (DAG) representing all accepting
paths for w. The lexicographically least accepting path
for w can then be found using a simple traversal of the
DAG. Next we describe the algorithm in detail.

Let M = (Q,⌃, δ, q
0

, F ) be an NFA, Q0 ✓ Q, and
c 2 ⌃. We denote by δ(Q0, c) the set of states q such that
(q0, c, q) 2 δ for some q0 2 Q0, and by δ−1(Q0, c) the set
of states q such that (q, c, q0) 2 δ for some q0 2 Q0.

Consider a string w = c
1

c
2

...cn. Traditional NFA
matching starts with a frontier of states F

0

= {q
0

}, and
at every position k in w it computes Fk = δ(Fk−1

, ck).
The string is accepted if Fn \ F 6= ;. However, this
does not allow easy recovery of an accepting path, even
if all Fk sets are saved. The main reason for this is that
there might be states in the frontiers that do not lead to
an accepting state. To work around this, we also scan
the input backwards, maintaining a backwards frontier
set of states where Bn = F , and Bk−1

= δ−1(Bk, ck).
Given the sequences {Fk} and {Bk}, with k = 0, ..., n,
we compute {Sk} where Sk = Fk \ Bk. The set Sk

contains all states reachable from the start state follow-
ing transitions on c

1

...ck such that ck+1

ck+2

...cn is an
accepting path. Together, {Sk} and the NFA transitions
of the form (q, ck, q

0) with q 2 Sk−1

^ q0 2 Sk, form an
implicit Direct Acyclic Graph (DAG) representation of
all accepting paths for w. Finally, we traverse this DAG
starting from q

0

2 S
0

and following the lexicographi-
cally smallest transitions, which yields map(w).

NFA path ranking. All that remains is to give a strict

6
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ranking algorithm for I, the set of accepting paths in
the NFA. Here, we can adapt techniques from the DFA-
based ranking by Goldberg and Sipser. Their algorithm
can be viewed as a recursive procedure for counting the
number of accepting DFA paths that precede a given path
in lexicographical order.

Let T (q, n) be the number of paths of length n in
Acc

M

(q). Note that, for all q 2 Q and 0  i  n,
the value of T (q, i) can be computed in polynomial time
using a simple dynamic-programming algorithm.

Assume that the NFA transitions are enumerated ac-
cording to a total ordering, and that ⌧ l ⌧ 0 means that
⌧ precedes ⌧ 0 according to this order. The ordering
on transitions induces a lexicographical ordering ’≺’ on
paths (which are sequences of transitions). Formally, if
⇡
1

= ⌧
1

⇡1

1

and ⇡
2

= ⌧
2

⇡1

2

, then this order is:

⇡
1

≺ ⇡
2

() ⌧
1

l ⌧
2

_
�
⌧
1

= ⌧
2

^ ⇡1

1

≺ ⇡1

2

�
(1)

Let rank(⇡) be the number of accepting paths ⇡0 ≺ ⇡
that precede ⇡ in the lexicographical order on paths. It
follows that, rank(✏) = 0 (the rank of the empty string
is 0), and for any ⇡ = ⌧⇡1 2 Acc

M

(q), we have:

rank(⇡) = rank(⇡1) +
X

(q,c0,q0)l⌧

T (q0, n− 1) (2)

Note that the sum is over transitions ⌧ 0 = (q, c0, q0) 2 δ
that precede ⌧ in transition order, ⌧ 0 l ⌧ . In words, we
are summing over all outgoing edges from q that lead
to paths that are lexicographically smaller than the paths
that follow the transition ⌧ . Unrolling the recursion gives
us an iterative procedure for ranking accepting paths of
length n that can be efficiently implemented via dynamic
programming.

To conclude, the relaxed ranking for a string w ac-
cepted by an NFA is Rank(w) = rank(map(w)), and the
reverse is Unrank(r) = unmap(unrank(r)).

4.2 Large Integer DFA/NFA Optimization

We present a simple but effective optimization that
speeds up both NFA and DFA-based ranking. In prac-
tice, ranking efficiency depends on how fast we evaluate
the sum in equation (2), and this depends on the precise
definition of the transition order. We define this order so
that we can replace multiple large-integer additions with
a single multiplication. Our experiments confirmed that
this replacement indeed resulted in faster code.

Observe that equations (1) and (2) used for path rank-
ing depend only on transition (edge) order and structure
of the automaton. This observation is valid for both NFA
and DFA. Previous, traditional, DFA ranking is given by
these equations and standard lexicographical ordering,
using character order: (q, c0, q0) l (q, c00, q00)() (c0 <

c00). In a DFA c0 = c00 =) q0 = q00. But equation (1)
does not have to use standard lexicographical ordering.

Our idea is to give priority to states over characters.
We assume a state and character order given by an ar-
bitrary but fixed enumeration of Q and ⌃, and use the
following order for transitions originating from the same
state q: (q, c0, q0)l(q, c00, q00) if-and-only-if (q0 < q00) or
q0 = q00 and c0 < c00. This specific order allows for pre-
computation in equation (2). In equation (2) we can re-
place all the terms T (q0, n−1) which correspond to tran-
sitions (q, c0, q0) l ⌧ with n[q, q0] ⇥ T (q0, n−1), where
the precomputed value n[q, q0] represents the number of
transitions from q to q0. Similarly, all the terms corre-
sponding to edges ⌧ 0 = (q, c0, q00), where ⌧ 0 l ⌧ =
(q, c00, q00), can be replaced by r[q, c00, q00] ⇥ T (q00, n
−1), where r[q, c00, q00] is the number of such transitions.
These optimizations have benefit, because the numbers
T (q, n) can be very large multiple precision integers.

5 Building FTE Schemes

Now we turn to building FTE schemes, treating FPE in
passing as a special case of FTE. We specifically give
two methods for composing relaxed-ranking algorithms
with an underlying cryptographic primitive to make an
FTE scheme. For deterministic FTE, the cryptographic
component is a tweakable cipher (e.g. FFX), and we
call the composition cycle-walking FTE. For random-
ized FTE, the cryptographic component is an authenti-
cated encryption scheme, and we call the composition
method rejection-sampling FTE. (Impatient readers can
look ahead to Figure 4 for the pseudocode.) We delay
specific instantiations of the schemes until Section 6.1.

Informal FTE scheme syntax. We provide a formal
treatment of FTE scheme syntax in the full version. We
provide a simpler, more informal discussion of it here;
this will suffice for what follows. An FTE scheme is a
pair of algorithms (Enc,Dec). The FTE encryption al-
gorithm Enc takes as inputs

• a key K

• a pair of formats (FP ,FC) that describe the language
L(FP ) of plaintext inputs, and the language L(FC)
of ciphertext outputs

• a plaintext string M 2 L(FP )

• associated data, and encryption parameters (both op-
tional)

and outputs a ciphertext string C 2 L(FC), or a special
“failure” symbol ?. Associated data is data that must
be bound to the underlying plaintext, but whose privacy
is not required. (For example, metadata meant to pro-
vide context for the use or provenance of the plaintext.)
We allow for encryption parameters to help enforce spe-
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EncTK(M) :
c
0

 n2s(r,RankX(M))
i  0
Do

if i > i
max

then Ret ?
i  i+ 1
ci  ET

K(ci−1

)
v  s2n(r, ci)

Until v 2 Img(X)[ Img(Y )
If v 2 Img(Y ) then

Ret UnrankY (v)
Ret ?

DecTK(C) :
p
0

 n2s(r,RankY (C))
i  0
Do
i  i+ 1
pi  DT

K(pi−1

)
u  s2n(r, pi)

Until u 2 Img(X)
Ret UnrankX(u)

EncTK(M) :
a  RankX(M)
M 0  n2s(t− ⌧, a)
i  0
Do

if i > i
max

then Ret ?
i  i+ 1
C0  $ ET

K(M 0)
b  s2n(t, C 0)

Until b 2 Img(Y )
Ret UnrankY (b)

DecTK(C) :
b  RankY (C)
C0  n2s(t, b)
If C 0 = ? Ret ?
M 0  $ DT

K(C0)
If M 0 = ? Ret ?
a  s2n(t− ⌧,M 0)
Ret UnrankX(a)

Figure 4: Left: Cycle-walking deterministic FTE. n2s(r, a) returns the string representing number a in radix r, and
s2n(r, b) returns the number whose radix r representation is b. The parameter i

max

determines the maximum number
of iterations. Right: Rejection-sampling randomized FTE.

cific failure criteria, which will become clear when we
describe our schemes. We write EncT,P

K (M) for FTE
encryption of message M , under key K, using associ-
ated data T and parameters P . To ease the burden of
notation (slightly), we typically do not explicitly list the
parameters as inputs. The encryption algorithm may be
randomized, meaning that fresh randomness is used for
each encryption.

The FTE decryption algorithm Dec takes as input
(FP ,FC),K, a ciphertext C, and the associated data T
(if any), and returns a plaintext M or ?. The decryption
algorithm is always deterministic.

Unlike conventional encryption schemes, we do not
demand that EncT,P

K (M) always yield a valid ciphertext,
or always yield ?, when T, P and K are fixed. Instead,
we allow encryption to “fail”, with some small probabil-
ity, to produce a ciphertext for a any given plaintext in
its domain. Doing so will permit us to give simple and
natural FTE schemes that would be ruled out otherwise.

In general, the formats can change during the lifetime
of the key, even on a per-plaintext basis. (Of course,
changes must be synchronized between parties.) When
we talk about an FTE scheme being over some given
formats, or their languages, we implicitly have in mind
some notion of a format-session, during which the for-
mats do not change.

5.1 Cycle-walking (deterministic) FTE

To build deterministic FTE schemes we take inspira-
tion from BRRS rank-encrypt-unrank. However, accom-
modating format transformations and, especially, NFA-
based language representations introduces new chal-
lenges.

To begin, let X = L(FP ) and Y = L(FC). As-
sume that we perform relaxed ranking using the two-
stage framework in Section 4.1.1, with the intermedi-

ate sets I(X) for X and I(Y ) for Y . If RankX and
RankY are the corresponding relaxed-ranking functions,
let Img(X) be the image of X under RankX , and like-
wise Img(Y ) be the image of Y under RankY . Define
NX = |I(X)| and NY = |I(Y )|. (Recall that if we
are using NFA-based ranking over either X or Y , these
values can be significantly larger than |X| or |Y |.) We
assume that both NX , NY are finite.

Say one has a tweakable cipher3 E that natively
supports strings over a variety of radices, e.g. FFX.
(At a minimum, there are many constructions of se-
cure tweakable ciphers that support radix 2, e.g. [9,
14, 15].) Now, fix integers r ≥ 2 and t ≥
dmax{logr(NX), logr(NY )}e, so that a string of t sym-
bols from {0, 1, . . . , r − 1} suffices to represent the
relaxed-rankings of X and Y . Then if E can encipher
the set of strings {0, 1, . . . , r − 1}t, we can encrypt a
plaintext M 2 X as shown on the left side of Figure 4.

Cycle walking. A well-known fact about permutations
is that they can be decomposed into a collection of dis-
joint cycles: starting from any element a in the domain of
the permutation ⇡, repeated application of ⇡ will result in
a sequence of distinct values that eventually ends with a.
Black and Rogaway [8] were the first to exploit this fact
to build ciphers with non-standard domains, and we use
it, too. For any fixed K and T , the mapping induced by
ET

K is a permutation. Thus, inside the Do-loop, the dis-
tinct strings c

0

, c
1

 ET
K(c

0

), c
2

 ET
K(ET

K(c
0

)), and
so on form a sequence that eventually must return to c

0

.
Intuitively, if we want a ciphertext that belongs to a par-
ticular subset S ✓ {0, 1, . . . , r − 1}t, we can walk the
cycle until we hit a string ci 2 S.

There are, however, two important details to consider.
The first is that encryption is not guaranteed to hit any

3If the FTE scheme does not need to support associated data, then
the underlying cipher need not be tweakable, and references to T in the
pseudocode can be dropped.
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string ci 2 S. For example, if the subset is small, or the
cycle is very short. So encryption must be equipped with
test that tells it when this has happened, and ? should
be returned. The second is that there must be a test that
uniquely identifies the starting string c

0

. This is because
decryption should work by waking the cycle in reverse.
Absent a test that uniquely identifies c

0

, it may not be
clear when the reverse cycle-walk should stop.

Our implementation deals with both of these issues.
In particular, c

0

is the t-symbol string that results from
relaxed-ranking our FTE plaintext input M . By defini-
tion, c

0

is a string that, when viewed as a radix-r integer,
is in Img(X). We desire to find a ci that, when viewed
as an integer, is in Img(Y ), since this is the set of in-
tegers that yield ciphertexts in Y that will be properly
decrypted. Intuitively, the walk should halt on the first i
for which this is true. But then, if any of c

1

, . . . , ci−1

represent integers that are in Img(X), proper decryption
is not possible (because we do not know how many steps
to go from ci back to c

0

). Thus our cycle-walking en-
cryption checks, at each step, to see if the current walk
should be terminated because decryption will not be pos-
sible, or because we have found a ci that will yield a
ciphertext Y that will decrypt properly. We also allow
cycle-walking FTE to take a maximum-number-of-steps
parameter i

max

, and encryption fails if that number of
steps is exceeded.

Efficiency. The standard security assumption for a
tweakable cipher is that, for any secret key K, and any
associated data T , the mapping induced by ET

K is indis-
tinguishable from that of a random permutation. Mod-
eling ET

K as such, the expected number of steps be-
fore the cycle-walk terminates is at most rt/|Img(X) [
Img(Y )| (a conservative bound) and never more than
i
max

. Assuming the walk terminates before i
max

steps,
then the probability that the encryption succeeds is ps =
|Img(Y )|/|Img(X) [ Img(Y )|. Since relaxed ranking
is injective, |Img(X)| = |X| and |Img(Y )| = |Y |, so
ps ≥ 1/(1 + |X|/|Y |). Thus we expect that ps is quite
close to 1 if |Y |  |X|.

Each step of the cycle-walk requires checking v 2
Img(X)[ Img(Y ), which can be done by checking v 2
Img(X) first (signaling termination of the walk), and
then v 2 Img(Y ) (signaling successful termination). A
straightforward way to implement the last is to test if v =
RankY (UnrankY (v)) or, using our two-stage viewpoint
on relaxed ranking, map(Unrank(v)) = unrankI(v),
which may be faster. Checking v 2 Img(X) can be done
likewise.

Recall that the NFA representation of a regex, un-
like a DFA representation, may have many accepting
paths for a given string in its language. This can lead
to NX  |X| = Img(X) or NY  |Y | = Img(Y ),
hence, potentially, rt  |Img(X) [ Img(Y )|. When

this happens, the resulting in cycle-walking scheme may
be prohibitively inefficient in some applications.

Simplifications. We note that the cycle-walking tech-
nique is used in [5], as well, but they restrict to the much
simpler case that X = Y . More generally when we
know that Img(X) ✓ Img(Y ), we can simplify our
construction. One may still need to cycle-walk in this
case if rt > |Y |. For example, say one desires to use
r = 2 (binary strings) but the larger of |X|, |Y | is not
a power of two. But when Img(X) ✓ Img(Y ) we
know that, if the encryption cycle-walk terminates be-
fore i

max

steps, then it always finds a point in Img(Y ),
i.e. ps = 1. Also, the expected number of steps is at most
rt/|Img(Y )| = rt/|Y |, again modeling ET

K as a random
permutation. Finally, we note that the walk termination
test can be simplified to v 2 Img(Y ), and encryption can
thereafter immediately return UnrankY (v).

Security. We mentioned, above, that the standard secu-
rity assumption for a tweakable cipher is that, when the
key K is secret, every associated data string T results in
ET

K(·) being indistinguishable from a random permuta-
tion. Under this assumption, it is not hard to see that the
cycle-walking construction outputs (essentially) random
elements of the set Y = L(Fc), when it does not output
?. Intuitively, each ET

K(ci−1

) in the cycle-walk is a ran-
dom string (subject to permutivity), so the corresponding
number v represented by the string is random, too. Thus,
if v 2 Img(Y ), it is a random element of this set, result-
ing in a random element of Y being chosen when v is
unranked.

In the full version we formally define a security no-
tion for deterministic FTE schemes, and give a theorem
stating the security of our construction relative to this se-
curity notion.

5.2 Rejection-Sampling (randomized) FTE

We now turn our attention to building randomized FTE
schemes. Let ⇧ = (K, E ,D) be a conventional, ran-
domized, authenticated-encryption scheme with support
for associated data (AEAD). We assume that this scheme
has a fixed ciphertext stretch ⌧ ; this is typical of in-use
AEAD schemes. To build a randomized FTE scheme us-
ing a generalized ranking scheme, we use a rejection-
sampling approach. Let t be the least integer such that
both of the following are true: (1) |I(X)|  2t−⌧ , and
(2) |I(Y )|  2t. Then to encrypt M 2 X , or de-
crypt C 2 Y , under key K and associated data T , we
do as shown on the right side of Figure 4.

A standard security assumption for AEAD schemes is
that its ciphertexts are indistinguishable from strings (of
the same length) that are uniformly random. Under this
assumption, treating each C 0 as a random t-bit string, the

9
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Sub-Component Written in... Lines of Code
Regular Expression Parser C/C++/Flex/Bison 2,057
DFA Minimizer C/C++ 1,166
NFA/DFA Ranking C/C++ 2,752
FFX C++ 842
FPE/FTE C++ 870
Configuration Assistant C++/Python 731

Table 5: The sub-components of libfte.

expected number of invocations of ET
K is 2t/|Img(Y )| =

2t/|Y |. (And certainly no more than i
max

.)
Under this standard security assumption, it is intuitive

that any element of Y = Fc returned by our rejection-
sampling FTE is a uniform one. If each C 0 is indistin-
guishable from a random string, then the corresponding
number b represented by C 0 is random, too. Hence if
b 2 Img(Y ), then it is a random element of that set, and
so the element of Y that results from unranking b will be
random.

We give a formal security notion for randomized
FTE, and a security theorem for rejection-sampling-
based FTE, in the full version.

6 Realizing LibFTE

In Section 5 we explored strategies for constructing
FPE/FTE schemes in theory. Now, let’s concretely de-
scribe the schemes implemented in libfte.

Implementation. The libfte implementation is a hy-
brid of C, C++, Python, Flex and Bison. We present a
detailed breakdown of the sub-components in Table 5.
We engineered a custom regular expression parser be-
cause off-the-shelf solutions did not expose the appro-
priate data structures necessary to implement our NFA
relaxed-ranking algorithm.

In addition to a native C++ interface, we also pro-
vide interfaces in Python and JavaScript for libfte. The
Python interface is exposed through a manually-written
wrapper around the C++ implementation. The JavaScript
interface is provided through C++-to-JavaScript compi-
lation.

6.1 Schemes Implemented in LibFTE

We use a shorthand notation to refer to types of libfte in-
stantiations. As an example, T-ND-$ is a an FTE scheme
that uses NFA-based ranking (Section 4.1) for the input
format, and DFA-based ranking (Section 4.2) for the out-
put format, and is randomized ($); T-ND denotes the
same, but the scheme is deterministic. FPE constructions
are similarly named, but begin with P.

For deterministic schemes (those without the final $)
we use the cycle-walking construction, with FFX[2]
as the underlying tweakable cipher. For randomized
schemes, we use the rejection-sampling construction.
As the underlying encryption scheme, we employ the
Bellare-Rogaway “encode-then-encipher” paradigm [6],
prepending the result of RankX(M) (interpreted as a
fixed-length bitstring) with the appropriate number of
random padding bits, and applying FFX[2] to this. Be-
cause our particular application of randomized FTE does
not need support for associated data, the FFX tweak was
fixed to an all-zeros string, and we do not need redun-
dancy padding in our encode-then-encipher scheme.

We note that, although we fixed specific instantiations
of FPE/FTE schemes for the sake of a concrete evalua-
tion, there is no reason to restrict to these. In the ran-
domized scheme, for example, one could use CTR-AES
(with a random IV) and HMAC-SHA256 in an “encrypt-
then-mac” composition [4, 18] (including any associated
data in the mac-scope) for the underlying primitive.4

6.2 The LibFTE Configuration Assistant

We now turn our attention towards the implementation
details of the libfte configuration assistant. We di-
vide the internal workflow of the configuration assistant
into three steps. First, we gather requirements from the
user, this is done by the user passing parameters to a
command-line interface. Then, we start with an initial
set of all possible FPE/FTE schemes (i.e., P-xx, T-xx, T-
xx-$) that one could instantiate, and use a decision tree
algorithm to eliminate schemes from the initial set that
do not satisfy user requirements. Finally, the configura-
tion assistant analyzes the set of all schemes that were
not eliminated in stage two, performs a battery of tests
on them, and returns the results to the user. We provide
a sample output of this tool in Figure 7.

Collecting requirements from the user. The command-
line configuration assistant (see Figure 7) takes two re-
quired parameters, the input and output formats. In addi-
tion to the required parameters, the configuration assis-
tant takes optional parameters, most notably: the mem-
ory threshold for the configuration assistant to deter-
minize regexs, and the memory threshold for FPE/FTE
scheme instantiation.

Identifying feasible schemes. Next, the configuration
assistant’s job is to eliminate schemes that fall outside
the user-specified requirements. It starts with a set of all
possible FPE/FTE schemes that one could construct (i.e.,

4One should keep in mind the interaction between the cipher-
text length overheads of AEAD and the expected number of steps in
rejection-sampling.
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Input/Output Format DFA/NFA Memory Encrypt Decrypt
Scheme R ↵ β States Required (ms) (ms)

P-DD

(a|b)* 0 32 2 4KB 0.18 0.18
(a|b)*a(a|b){16} 16 32 131,073 266MB 0.25 0.21
(a|a|b){16}(a|b)* 16 32 18 36KB 0.19 0.18
(a|b){1024} 1,024 1,024 1,026 34MB 1.2 1.2

P-NN

(a|b)* 0 32 3 6KB 0.36 0.35
(a|b)*a(a|b){16} 16 32 36 73KB 0.61 0.60
(a|a|b){16}(a|b)* 16 32 51 103KB 1,340 1,340
(a|b){1024} 1,024 1,024 2,049 68MB 6.6 6.6

Table 6: Performance benchmarks for P-DD and P-NN constructions, based on our Python API. The regular expres-
sions have been selected to highlight the strengths and weaknesses of the constructions. Recall that ↵ and β are upper-
and lowerbounds (respectively) on the length of strings used in a range slice.

$ ./configuration-assistant \
> --input-format "(a|b)*a(a|b){16}" 0 32 \
> --output-format "[0-9a-f]{16}" 0 16

==== Identifying valid schemes ====
WARNING: Memory threshold exceeded when

building DFA for input format
VALID SCHEMES: T-ND, T-NN,

T-ND-$, T-NN-$

==== Evaluating valid schemes ====
SCHEME ENCRYPT DECRYPT ... MEMORY
T-ND 0.32ms 0.31ms ... 77KB
T-NN 0.39ms 0.38ms ... 79KB
...

Figure 7: A sample execution of our configuration as-
sistant for building an FTE scheme. The tool failed to
determinize the regex of the input format, and notifies
the user that that T-ND, T-NN, T-ND-$ and T-NN-$ con-
structions are possible. Then reports on the performance
of these schemes.

P-xx, T-xx, T-xx-$). If the DFA can’t be built (within the
user-specified memory thresholds) for the input format,
then we eliminate P-Dx, T-Dx and T-Dx-$ schemes from
consideration. We repeat this process for the output for-
mat. Then we perform a series of additional checks — in-
volving the sizes of L(FP ), L(FC), the sizes of the inter-
mediate representations, the minimum ciphertext stretch
of underlying cryptographic primitives, etc. — to cull
away schemes that should not be considered further.

Evaluating feasible schemes. Finally, we consider the
set of schemes that remain from the previous step. If
there are none, we output an error. Otherwise, we iterate
through the set of schemes and perform a series of func-
tional and performance tests against them. We have four-
teen quantitative tests, such as: the average time elapsed
to perform encryption/decryption, the (estimated) prob-
ability that encryption returns ?, and memory require-
ments. The final result of the tool is a table output to
the user, each row of the table represents one scheme

and the columns are results from the quantitative tests
performed. The method for sorting (i.e., prefer memory
utilization, prefer runtime performance, etc.) is a user-
configurable parameter.

6.3 Performance

We conclude this section with benchmarks of our
libfte implementation. All benchmarks were per-
formed on Ubuntu 12.04, with an Intel Xeon E3-1220 at
3.10GHz and 32GB of memory. Numbers reported are
an average over 1,000 trials for calls to our libfte Python
API. For memory utilization of each scheme, we mea-
sure the memory required at runtime to use the specified
formats. For encrypt benchmarks we select a random
string in the language of the input format and measure
the time it takes for encrypt to return a ciphertext. For de-
crypt benchmarks we select a random plaintext, encrypt
it, then measure the time it takes for decrypt to recover
the plaintext.

In Table 6 we have the performance of libfte for P-DD
and P-NN schemes. Note that (a|b)*a(a|b){16}
requires roughly four orders of magnitude less memory
using a P-NN scheme, compared to a P-DD scheme.
With the P-NN scheme for (a|a|b){16}(a|b)*,
the high encrypt cost is completely dominated by cycle
walking, we do roughly 720 FFX[2] encrypt calls per
P-NN call. (The configuration assistant would inform
the user of this, and the user would have the opportu-
nity to re-write the expression as (a|b){16}(a|b)*.)
For (a|b)*, the two constructions (i.e., P-DD, P-NN)
require a comparable amount of memory but the P-DD
construction is twice as fast for encryption/decryption.

Due to space constraints we omit benchmarks for T-
xx and T-xx-$ schemes in this section, and defer their
analysis to Section 7.
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7 Exploring LibFTE Use Cases

We turn our attention to integrating libfte into third-party
applications. Our goal is to show that libfte is easy to
use, flexible, and in some cases improves performance,
compared to other cryptographic solutions. In this sec-
tion we consider three use cases: database encryption,
web form encryption, and encryption using formats lifted
from a network monitoring device.

7.1 Databases

We start with integration of libfte into a PostgreSQL
database. For our database we used PostgreSQL 9.1 in
its default configuration. Our server was Ubuntu 12.04
with an Intel Xeon E3-1220 v3 @ 3.10GHz and 32GB
of memory. We use the pgcrypto library that is included
in PostgreSQL’s contrib directory as our baseline cryp-
tographic library. We performed all tests with the Post-
greSQL client and server on the same machine, such that
network latency did not impact our performance results.

The integration of libfte into our database as Post-
greSQL stored procedures required 53 lines of plpython
code.

Pgbench is tool included with PostgreSQL to measure
database performance. As input, pgbench takes a de-
scription of a database transaction and runs the transac-
tion repeatedly, emulates concurrent users, and measures
statistics such as transactions per second and response la-
tency. We used pgbench’s default database schema and
transaction set for testing libfte’s impact on PostgreSQL
performance. The default pgbench testing schema simu-
lates a simple bank and has four tables: accounts, tellers,
branches, and history. The default transaction set for test-
ing includes three query types: SELECT (S), UPDATE
(U) and INSERT (I). There are three different transaction
types that can be selected using pgbench: S, USI, and
USUUI — for each transaction type the acronym repre-
sents the type and order of queries executed.

In order to test the performance impact libfte has on
PostgreSQL, we created four configurations for populat-
ing and accessing data in the database:

• PSQL: The default configuration and schema used
by the pgbench utility for its simple bank application.
No encryption is employed.

• +AES: The default schema, with the following mod-
ifications: the balance columns in accounts, tellers,
and branches are changed from type integer to
type bytea. To secure these fields we use AES128
in ECB mode with PKCS padding.

• +AE: We use the same schema as +AES, but we
change our encryption algorithm to pgcrypto’s rec-
ommended encrypt function pgp sym encrypt,

Account Balance Queries
Transaction Transactions Per Second
Type PSQL +AES +AE +FPE
S 38,500 30,246 8,380 8,280
USI 2,380 2,259 1,580 1,540
USUUI 99.2 97.5 97.2 96.5

Table 8: A comparison of throughput (transac-
tions/second) for our four database configurations.

which provides privacy and integrity of data.
• +FPE: We use the default schema, but employ

a libfte P-DD scheme with the format R  
\-[0-9]{9}, (R, 9, 10), to encrypt account bal-
ances (in accounts, tellers, and branches) in-place.

We note that in our evaluation we did not have the
option to compare libfte to a scheme that provides the
same functionality or security, as no prior scheme ex-
ists. We compare to +AES because it provides a base-
line performance that we would not expect libfte to ex-
ceed. The comparison to +AE, which provides privacy
and integrity, can be used as a baseline for the perfor-
mance of a cryptographic primitive implementation in a
widely-used, mature database product.

Performance For each configuration and transaction
type we executed pgbench for five minutes with 50 ac-
tive customers, leaving all other pgbench parameters as
default. In all configurations except PSQL, when per-
forming modifications to the database we perform an en-
crypt when storing the account balance. When retrieving
the account balance we recover the plaintext via a call to
the decryption algorithm.

In Table 8 we have the have the benchmark results
for transactions per second carried out by the server for
our four database configurations and three transaction
types. For the most complex transaction type (USUUI)
our +FPE configuration reduces the number of transac-
tions per seconds by only 0.8%, compared to the +AE
configuration. For the simplest query type (S), +FPE
reduces the transactions-per-second rate by only 1.1%,
compared to +AE. Compared to the +AES configuration
the +AE and +FPE reduce the transactions per second
by roughly 72%. This is, in fact, not surprising as under
the hood the +FPE configuration relies on FFX, which in
turn calls AES at least ten times.

In Table 9 we have the average latency for each of the
five different query types. This measures the amount
of time elapsed between a client request and server re-
sponse. Compared to the +AE configuration, +FPE in-
troduces no substantial latency.

Simultaneous encryption and compression. As one fi-
nal test, we deploy a T-DD scheme in our PostgreSQL

12
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Account Balance Queries
Average Latency (ms)

Query PSQL +AES +AE +FPE
(U) accounts 0.6 1.2 2.1 2.1
(S) accounts 0.4 0.5 1.0 1.0
(U) tellers 412 412 415 420
(U) branches 78 80 80 84
(I) history 0.2 0.2 0.2 0.2

Table 9: Average latency per query for each database
configuration.

Credit Card Number Queries
PSQL +AES +AE +FPECC +FTECC

Table Size 50MB 65MB 112MB 50MB 42MB
Query Avg. 74ms 92ms 112ms 125ms 110ms

Table 10: FTE for simultaneous encryption and compres-
sion. The table size is the amount of space required on
disk to store the table. We also present the average query
time (over 1,000 trials) for selecting (and decrypting) 100
credit card numbers at random from 1 million records.

database to provide simultaneous privacy and compres-
sion. We augment the default pgbench database schema
to add a new table for credit card numbers. This table has
two columns: an account number of type integer and
a credit card number field of type bytea. (Following
the structure of the pgbench schema, we do not add any
indexes to this table.) We start with the four configura-
tions we presented in our initial benchmarks. However,
we change our +FPE configuration to a P-DD scheme
that encrypts 16-digit credit card number in-place and
call this +FPECC. Then we introduce a new configura-
tion, +FTECC, a T-DD scheme where our input format
is a 16-digit credit card number and our output format is
the set of all 7-byte strings.

In each configuration we populated our database with
1 million random credit card numbers. For each database
configuration, we have a breakdown (Table 10) of the
query cost to retrieve 100 credit card numbers at ran-
dom (and decrypt, if required) as well as the total size
of the new credit card table. Compared to the +AES and
+AE configuration, our +FTECC configuration requires
35% and 62.5% less space, respectively. We note that it
may be possible to employ additional compression in the
PSQL, +FPECC settings (e.g., an int to bitstring conver-
sion). However, such optimizations are not possible in
the +AES and +AE configurations.

We also highlight that, with respect to query times
(Table 10) our +FTECC configuration modestly outper-
forms the +AE configuration. Compared to +AES,
+FTECC introduces a 19.5% increase in query cost.

7.2 Web Forms

Next, we present a Firefox extension powered by libfte.
The job of this browser extension is to encrypt sensitive
contact information, client-side, in a Yahoo address book
contact form, prior to submission to the remote Yahoo
servers.

Browser extension. We tested our libfte-extension with
Firefox version 26, using our C++-to-JavaScript com-
piled libfte API. In addition to libfte , in roughly 200
lines of code, we implemented logic that was responsi-
ble for locating page elements to encrypt/decrypt. The
Yahoo-specific logic was minimal and consisted of map-
pings between form fields and FPE/FTE schemes.

Fields were manually specified using unique identi-
fiers (e.g., CSS id tags) and mapped to their correspond-
ing P-DD FPE scheme in JavaScript. There are many
options for determining what input/output formats to use
for a given scheme. For this proof-of-concept we started
with a set of formats we considered to be reasonable,
then progressively relaxed/increased constraints on the
formats appropriately until they were accepted by Ya-
hoo’s server-side validation. As a couple examples, we
found that the email address field is required to have an
@ symbol, and all dates are required to be valid date
ranges. (e.g., month must between 1 and 12 inclusive)
We expect that such constraints could be identified pro-
grammatically, at scale, using a browser automation tool
such as Selenium [2].

Our Firefox extension exposes an “encrypt/decrypt”
drop-down menu to the user. Prior to saving a new con-
tact to their address book, the user can press the “en-
crypt” button to automatically libfte-encrypt all fields in
the form. To recover the encrypted data, they user visits
the page for a contact, then presses the libfte extension’s
decrypt button to recover the plaintext data. With fur-
ther engineering efforts this encryption/decryption pro-
cess could be transparent to the user. We present a
screenshot of our extension in Figure 11.

7.3 Network Monitors

Finally, we turn our attention to building T-xx-$ schemes
(as used in [11]) by lifting regular expressions from the
Snort IDS [19]. As far as these authors are aware, this
Snort IDS corpus of regular expressions is the largest and
most diverse (publicly available) set of regexes used for
deep-packet inspection.

In the initial exploration of FTE by Dyer et al. [11]
a fundamental limitation to their construction was the
need to perform a regex-to-DFA conversion for formats.
Unfortunately, this creates a natural asymmetry: systems
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Figure 11: Screenshot from our Firefox Browser Ex-
tension that encrypts the data fields of our Yahoo ad-
dress book, client-side, prior to transmission to the Ya-
hoo servers.

such as Snort are able to perform network monitoring di-
rectly from an NFA representation, but the construction
presented by Dyer et al. requires regex-to-DFA conver-
sion. In this section we show that we’ve overcome this
limitation — regular expressions that were intractable us-
ing the construction by Dyer et al. are no longer an ob-
stacle, given our new NFA ranking algorithm.

Snort IDS regex corpus. To build our corpus, we started
with the official Snort ruleset, version 2955, released Jan
14, 2014. Each rule in the ruleset contains a mixture of
values, including static strings or regular expressions to
match against traffic. From each rule we extracted all
regular expressions (as defined by the pcre field) which
resulted in 6,277 expressions. Of these, 3,458 regular ex-
pressions compiled with our regular expression parser5.
For all regular expressions that compiled, if we were able
to instantiate their precomputation table in memory, we
were able to successfully utilize them for encryption.

Corpus evaluation. For each regular expression R in
the Snort corpus we attempted to build a T-DD-$ and
T-DN-$ scheme with an output format F  (R, 0, 256),
and input format that is a blog

2

|L(F)|c-bit string. This
choice of libfte scheme and ↵ and β is motivated by the
construction in [11].

In Figure 12 we plot the CDF of the fraction of the cor-
5We don’t support greedy operators *? or case insensitivity

(?i...), which accounted for the majority of compilation failures.
Greedy operators are used for parsing, not for language definition, and
we do not support extended patterns of the form (?...) in general.
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Figure 12: The CDF representing the fraction of the
Snort corpus that can be instantiated for a given memory
threshold. The CDF graph has a long tail and reaches
100% at 143MB for T-DN-$. We were unable to cal-
culate the threshold for T-DD-$ to reach 100%, due to
memory constraints on our test system.

pus that can be instantiated when constrained by a given
memory threshold, for each scheme. At 1MB, roughly
60% of the corpus can be instantiated using T-DD-$
ranking, compared to roughly 85% of the corpus with
T-DN-$ ranking. At 5MB, T-DN-$ is at roughly 97% and
T-DD-$ is at roughly 92%. If we increase the threshold
to 143MB (beyond the focus of the graph) we can instan-
tiate 100% of the corpus using T-DN-$. Yet, at at thresh-
old of 1GB, we are able to instantiate only 97.0% of the
corpus using T-DD-$. In fact we were unable to con-
struct some schemes (due to memory constraints) using
T-DD-$, so we don’t know the exact threshold required
to reach 100% instantiation.

As a final test we measured the total memory utiliza-
tion for instantiating the complete Snort corpus. Ini-
tially, we instantiated all regular expressions in the cor-
pus using T-DD-$, which required a cumulative 8.8GB
of memory. Then we considered a “best case” scenario,
where, over the 97% of tractable regexs (those that we
could construct a T-DD-$ scheme) we took the minimum
of the T-DD-$ or T-DN-$ memory utilization. Using
the best-case approach we reduced memory utilization to
6.2GB, a reduction of roughly 30%. The best-case sce-
nario is, of course, biased against T-DN-$, as 3% of the
corpus couldn’t be instantiated with T-DD-$.

8 Conclusion

In this paper we presented a unifying approach for de-
ploying format-preserving encryption (FPE) and format-
transforming encryption (FTE) schemes. The approach
is realized via a library we call libfte, which has two
components: an offline configuration assistant to aid en-
gineers in developing formats and understanding their
system-level implications, and an API for instantiating

14
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and deploying FPE/FTE schemes. In the development
of libfte we overcame a number of obstacles. Most no-
tably, we developed a new approach to perform FPE/FTE
directly from the NFA representation of a regular expres-
sion, which was previously considered to be impractical.
This significantly increases the expressiveness of regular
languages for which FTE can be made useful in practice,
and generally improves system efficiency, potentially
making FTE a viable cryptographic option in contexts
where it previously was not. We studied libfte perfor-
mance empirically in several application contexts, find-
ing that it typically introduces negligible performance
overhead relative to conventional encryption. In some
cases (e.g. simultaneous compressions and encryption)
even enables substantial performance improvements.

Our work surfaces many avenues for future research.
To name a few: investigate the security of libfte’s algo-
rithms (and FTE implementations, in general) in the face
of side-channel attacks; integrate FTE into additional ap-
plications, and report on newly found algorithmic and
engineering challenges; and explore efficiency improve-
ments for specific classes of regular expressions that are
in wide use. To promote further research and develop-
ment, we will make libfte open source and publicly avail-
able at https://libfte.org/.
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Abstract
Secure two-party computation allows two mutually dis-
trusting parties to jointly compute an arbitrary function
on their private inputs without revealing anything but the
result. An interesting target for deploying secure compu-
tation protocols are mobile devices as they contain a lot
of sensitive user data. However, their resource restriction
makes the deployment of secure computation protocols a
challenging task.

In this work, we optimize and implement the
secure computation protocol by Goldreich-Micali-
Wigderson (GMW) on mobile phones. To increase per-
formance, we extend the protocol by a trusted hardware
token (i.e., a smartcard). The trusted hardware token al-
lows to pre-compute most of the workload in an initial-
ization phase, which is executed locally on one device
and can be pre-computed independently of the later com-
munication partner. We develop and analyze a proof-
of-concept implementation of generic secure two-party
computation on Android smart phones making use of
a microSD smartcard. Our use cases include private
set intersection for finding shared contacts and private
scheduling of a meeting with location preferences. For
private set intersection, our token-aided implementation
on mobile phones is up to two orders of magnitude faster
than previous generic secure two-party computation pro-
tocols on mobile phones and even as fast as previous
work on desktop computers.

1 Introduction

Secure two-party computation allows two parties to pro-
cess their sensitive data in such a way that its privacy
is protected. In the late eighties, Yao’s garbled cir-
cuits protocol [Yao86] and the protocol of Goldreich-
Micali-Wigderson (GMW) [GMW87] showed the fea-
sibility of secure computation. However, secure com-
putation was considered to be mostly of theoretical in-

terest until the Fairplay framework [MNPS04] demon-
strated that it is indeed practical. Since then, many op-
timizations have been proposed and several frameworks
have implemented Yao’s garbled circuits protocol (e.g.,
FastGC [HEKM11]) and the GMW protocol (e.g., the
framework of [CHK+12]) on desktop PCs.

Motivated by the advances of secure computation
on desktop PCs, researchers have started to investigate
whether secure computation can also be performed in
the mobile domain. Mobile devices, in particular smart-
phones, are an excellent environment for secure compu-
tation, since they accompany users in their daily lives and
typically hold contact information, calendars, and pho-
tos. Users also store sensitive data, such as passwords
or banking information on their devices. Moreover, typ-
ical smartphones are equipped with a multitude of sen-
sors that collect a lot of sensitive information about their
users’ contexts. Therefore, it is of special importance to
protect the privacy of data handled in the mobile domain.

In contrast to desktop PCs, mobile devices are rather
limited in computational power, available memory, com-
munication capabilities, and most notably battery life.
Although mobile phones have seen an increase in pro-
cessing speed over the past years, they are still about one
order of magnitude slower than typical desktop comput-
ers when evaluating cryptographic primitives (cf. §5.4).
These differences are due to the CPU architectures hav-
ing a more restrictive instruction set and being opti-
mized for low power consumption rather than perfor-
mance, since mobile devices are battery-powered and
lack active cooling. Moreover, the limited size of the
main memory requires the programmer to carefully han-
dle data objects in order to avoid costly garbage col-
lections on Java-based Android smartphones. Network
connections of mobile devices are almost exclusively es-
tablished via wireless connections that have lower band-
width and higher, often varying latency compared to
wired connections. Tasks that are computationally in-
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tensive or require long send/receive operations should be
avoided when a mobile device is running on battery, as
such tasks quickly drain the battery charge and thereby
reduce the phone’s standby time. Instead, such oper-
ations could be pre-computed when the mobile device
is connected to a power source, which usually happens
overnight. These limitations pose a big challenge for effi-
cient secure computation and cause generic secure com-
putation protocols to be several hundred times slower on
mobile devices than on desktop PCs [HCE11], even in
the semi-honest adversary model.

To enable secure two-party computation in the mobile
domain, solutions have been developed that outsource
secure computation to the cloud, e.g., [KMR12, Hua12,
CMTB13]. However, recent events have shown that
cloud service providers can be forced to give away data
to third parties that are not necessarily trusted, such as
foreign government agencies. Even if the employed pro-
tocols ensure that the cloud provider learns no informa-
tion about the users’ sensitive data, he can still learn and
hence be forced to reveal meta-information such as the
frequency of access, communication partners involved,
the computed function, or the size of the inputs. More-
over, these server-aided approaches require the mobile
device to be connected to the Internet which might not be
possible in every situation or may cause additional costs.

An alternative solution, which we also use in this
work, is to outsource expensive operations to a trusted
hardware token that has very limited computational re-
sources and is locally held by one of the communica-
tion partners.1 Such hardware tokens are increasingly
being adopted in practice, e.g., trusted platform modules
(TPMs). Their adoption is particularly noteworthy on
mobile devices in the form of smartcards that are the ba-
sis for subscriber identity modules (SIM cards), as well
as for mobile payment or ticketing systems. A first ap-
proach for outsourcing Yao’s garbled circuits protocol to
such a trusted hardware token was proposed in [JKSS10].
However, this protocol requires the function to be known
in advance and uses costly symmetric cryptographic op-
erations during the online phase. We give an alternative
solution that removes these drawbacks.

1.1 Outline and Our Contributions

In this work, we introduce a scheme for token-aided ad-
hoc generic secure two-party computation on mobile de-
vices based on the GMW protocol. After introducing
preliminaries (§2) we detail our setting and trust assump-
tions that are similar to the ones in a TPM scenario (§3).
We outline how a trusted hardware token can be used

1This locality is also a security feature, as external adversaries either
need to corrupt the token before it is shipped to the user or later get
physical access to break into it.

to shift major parts of the workload into an initializa-
tion phase that can be pre-computed on the token, inde-
pendently of the later communication partner (§4), e.g.,
while the mobile device is charging. We thereby obtain
a token-aided scheme that is well-suited for efficient and
decentralized (ad-hoc) secure computation in the mobile
domain. We implement and evaluate our scheme (§5)
and demonstrate its performance using typical secure
computation applications for mobile devices, such as se-
curely scheduling a meeting with location preferences
and privacy-preserving set intersection (§6). We com-
pare our scheme to related work (§7) and conclude and
present directions for future work (§8). More detailed,
our contributions are as follows.

Token-Aided Ad-Hoc Secure Two-Party Computa-
tion on Mobile Devices (§4) We develop a token-aided
secure computation protocol which offloads the main
workload of the GMW protocol to a pre-computation
phase by introducing a secure hardware token T , held by
one party A (cf. §3). T is issued by a trusted third party
and provides correlated randomness [Hua12, Chap. 6]
to both parties that is later used in the secure computa-
tion protocol. To prepare the secure computation, the
other party B obtains seeds for his part of the correlated
randomness from T via an encrypted channel. To fur-
ther increase flexibility, we describe how to make the
pre-computation independent of the size of the evaluated
function | f |, at the cost of a t · log2 | f | factor communi-
cation overhead between T and B, where t is the sym-
metric security parameter. In contrast to Yao-based ap-
proaches [MNPS04,JKSS10,HCE11,HEK12] and previ-
ous realizations of the GMW protocol [CHK+12, SZ13,
ALSZ13], our protocol offers several benefits as summa-
rized in Tab. 1 (cf. §4.5 for details).

Table 1: Comparison with related work.

Property Yao Token Yao GMW Ours
[HCE11] [JKSS10] [CHK+12] §4

f unknown in
init phase

� � � �

ad-hoc com-
munication
� t · | f |

� � � �

� | f | crypto
operations in
ad-hoc phase

� � � �

Implementation (§5) We implement our token-aided
protocol for semi-honest participants and evaluate its
performance using two consumer-grade Android smart-
phones and an off-the-shelf smartcard. Thereby, we pro-
vide an estimate for the achievable runtime of generic se-



USENIX Association  23rd USENIX Security Symposium 895

cure computation in the mobile domain. Our implemen-
tation enables a developer to specify the functionality
as a Boolean circuit, which can, for instance, be gener-
ated from a high-level specification language. We show
that the performance of our token-aided pre-computation
phase is comparable to interactively generating the cor-
related randomness using oblivious transfer.

Applications (§6) We demonstrate the practical feasi-
bility of the GMW protocol on mobile devices by per-
forming secure two-party computation on two smart-
phones using various privacy-preserving applications
such as availability scheduling (§6.1), location-aware
scheduling (§6.2), and set-intersection (§6.3). Most
notably, for private set-intersection, our token-aided
scheme outperforms related work that evaluates generic
secure computation schemes on mobile devices [HCE11]
by up to two orders of magnitude and has a performance
that is comparable with secure computation schemes that
are executed in a desktop environment [HEK12].

2 Preliminaries

In the following, we define our notation (§2.1) and the
ad-hoc scenario (§2.2), and give an overview of oblivi-
ous transfer (§2.3) and the GMW protocol (§2.4). We de-
scribe Yao’s garbled circuits in the full version [DSZ14].

2.1 Notation
We denote the two parties that participate in the secure
computation as A and B. We use the standard notation
for bitwise operations, i.e., x⊕ y denotes bitwise XOR,
x∧ y bitwise AND, and x||y the concatenation of two bit
strings x and y. We refer to the symmetric security pa-
rameter as t and the function to be evaluated as f .

2.2 Ad-Hoc Scenario
In an ad-hoc secure two-party computation scenario, two
parties that do not necessarily know each other in ad-
vance want to spontaneously perform secure computa-
tion of an arbitrary function f on their private inputs x
and y. Traditionally, secure computation protocols con-
sist of two interactive phases: the setup phase (indepen-
dent of x and y) and the online phase. We extend this
setting by a local init phase as depicted in Fig. 1.

The init phase takes place at any time before the
parties have identified each other and is used for pre-
processing. In the setup phase, the parties have deter-
mined their communication partner, establish a commu-
nication channel, and know an upper bound on the func-
tion size | f |. In the online phase, the parties provide their
private inputs x and y to the function f that they want to

A B

Init Phase Setup Phase Online Phase

A B...?A
f(x,y)x y

f

Figure 1: The three secure computation phases.

evaluate and begin the secure computation. The ad-hoc
time is the combined time for setup and online phase.

2.3 Oblivious Transfer

Oblivious transfer (OT) is a fundamental building block
for secure computation. In an OT protocol [Rab81], the
sender inputs two strings (s0,s1). The receiver inputs a
bit c ∈ {0,1} and obtains sc as output without reveal-
ing to the sender which of the two messages he chose
and without the receiver learning any information about
s1−c. OT protocols, such as [NP01], require public-key
cryptography and make OT a relatively costly operation.
OT extension [IKNP03] allows to increase the efficiency
of OT by extending a small number of t base OTs to
a large number n � t of OTs whilst only using O(n)
symmetric cryptographic operations. Optimizations to
the OT extension protocol of [IKNP03] were suggested
in [ALSZ13], which allow the parties to reduce the
amount of data sent per OT. Moreover, [ALSZ13] de-
scribes a more efficient variant of the OT extension pro-
tocol for computing random OT, where the sender ob-
tains two random values as output of the OT protocol.

2.4 The GMW Protocol

In the GMW protocol [GMW87], two (or more) parties
compute a function f , represented as Boolean circuit on
their private inputs by secret sharing their inputs using
an XOR secret sharing scheme and evaluating f gate by
gate. Each party can evaluate XOR gates locally by com-
puting the XOR of the input shares. AND gates, on the
other hand, require the parties to interact with each other
by either evaluating an OT or by using a multiplication
triple [Bea91] as shown in the full version [DSZ14]. Fi-
nally, all parties send the shares of the output wires to the
party that shall obtain the function output. The main cost
factors in GMW are the total number of AND gates in
the circuit, called (multiplicative) size | f |, and the high-
est number of AND gates between any input wire and
any output wire, called (multiplicative) depth d( f ).

Because an interactive OT is required for each AND
gate, it was believed that GMW is very inefficient com-
pared to Yao’s garbled circuits. However, in [CHK+12]
it was shown that by using OT extension [IKNP03]
and OT pre-computation [Bea95] many OTs can be
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pre-computed efficiently in an interactive setup phase.
Thereby, all use of symmetric cryptographic operations
is shifted to the setup phase, leaving only efficient one-
time pad operations for the online phase. Additionally,
the setup phase only requires an upper bound on | f |
to be known before the secure computation. Follow-up
work of [SZ13] demonstrated that, by using OT to pre-
compute multiplication triples in the setup phase, the on-
line phase can be further sped up. Multiplication triples
are random-looking bits ai,bi, and ci, for i ∈ {A,B}, sat-
isfying (cA⊕ cB)= (aA⊕aB)∧ (bA⊕bB), that are held
by the respective parties and used to mask private data
during the secure computation. This masking is done
very efficiently, since no cryptographic operations are re-
quired. In [ALSZ13] it was shown that multiplication
triples can be generated interactively using two random
OTs. [Hua12] proposed to let a trusted server generate
the multiplication triples and send (ai,bi,ci) to party i
over a secure channel via the Internet. In our work, we
propose to do this locally, without knowing the commu-
nication partner in advance.

3 Our Setting

In our setting, depicted in Fig. 2, we focus on ef-
ficient ad-hoc secure computation between two semi-
honest (cf. §3.1) parties A and B who each hold a mo-
bile device, which are approximately equally powerful
but significantly weaker than typical desktop computer
systems. The parties’ devices are connected via a wire-
less network and are battery-powered.

T

A B

Figure 2: The parties involved in the secure computation.

A holds a general-purpose tamper-proof hardware to-
ken T that has very few computational resources. T is
powered by A, and its functionalities are limited to the
standard functionalities described in §3.2. A and T are
connected via a physical low-bandwidth connection and
communicate via a fixed interface. B and T communi-
cate via A, i.e., every message that B and T exchange, is
seen and relayed by A. Note that this directly requires all
communication between B and T to be encrypted such
that it cannot be read by A. We assume that T behaves
semi-honestly, and is issued by a third party, external to
and trusted by both A and B (cf. §3.2).

3.1 Adversary Model

We assume that both parties behave semi-honestly in
the online phase, i.e., they follow the secure computa-
tion protocol, but may try to infer additional information
about the other party’s inputs from the observed mes-
sages. To the best of our knowledge, all previous work on
secure computation between two mobile phones is based
on the semi-honest model (cf. §7.1). The semi-honest
model is suitable in scenarios where the parties want to
prevent inadvertent information leakage and for devices
where the software is controlled by a trusted party (e.g.,
business phones managed by an IT department) or where
code attestation can be applied. Moreover, this model
gives an estimate on the achievable performance of se-
cure computation. We outline how to extend our protocol
to malicious security in the full version [DSZ14].

3.2 Trusted Hardware Token

We use the term trusted hardware token T to refer to
a tamper-proof, programmable device, such as a Java
smartcard, that offers a restricted set of functionali-
ties. Such functionalities include, for instance, hash-
ing, symmetric and asymmetric encryption/decryption,
secure storage and secure random number generation.
A detailed summary of standard smartcard functionali-
ties is given in [HL08]. The hardware token is passive,
i.e., it cannot initiate a communication by itself and only
responds to queries from its host. It contains both per-
sistent and transient memory. T is physically protected
against attacks and is securely erased if it is opened by
force. Each token holds an asymmetric key pair, similar
to an endorsement key used in TPMs [TCG13], where
the public key is certified by a known trusted third party
and allows unique identification of T .

Tiny Trusted Third Party T acts as a tiny trusted
third party that behaves semi-honestly. This assumption
is similar to the TPM model that is widely used in desk-
top environments. T only provides correlated random-
ness that is later used in the secure computation and does
never receive any of A or B’s private inputs. We assume
that only certified code is allowed to be executed on T ,
and that T can only actively deviate from the protocol
if the hardware token’s manufacturer programmed it to
be malicious. We assume the code certification was car-
ried out by a trusted third party, and argue that both the
manufacturer and the certification authority would face
severe reputation loss if it was discovered that they built
backdoors into their products. Moreover, we assume that
neither A nor B colludes with the hardware token man-
ufacturer. This non-collusion assumption is a common
requirement for outsourced secure computation schemes
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such as [Hua12,KMR12,CMTB13] and enables the con-
struction of efficient protocols. Finally, note that, al-
though T is in A’s possession, A cannot easily corrupt T
or obtain its internal information, since T is assumed to
be tamper-proof and does not reveal internal secrets, i.e.,
the costs of an attack are higher than the benefits from
breaking T ’s security. This assumption also holds if A
colludes with or impersonates B.

Protection Against Successful Hardware Attacks
A malicious adversary could try to break into the hard-
ware token. If such an attack is successful, the follow-
ing standard countermeasures can be used to prevent fur-
ther damage: A binding between token and key pair can
be realized by using techniques such as physically un-
cloneable functions (PUFs), however, we are not aware
of solutions that are available in commercial products.
To bind a token to a certain mobile device or person,
T ’s certificate could be personalized with one or mul-
tiple values that are unique per user and that can be ver-
ified over an off-band channel, such as the user’s tele-
phone number or the ID of the user’s passport. Another
line of defense can be certificate revocation lists (CRLs)
that allow the users to check if a token is known to be
compromised or malicious.

4 Token-aided Mobile GMW

In the following section, we give details on our token-
aided GMW-based protocol on mobile devices. Our goal
is to minimize the ad-hoc time, i.e., the time from es-
tablishing the communication channel between A and B
until receiving the results of the secure computation. We
consider the init phase to not be time critical, but we try
to keep its computational overhead small.

A A B

InitvPhase
MTvGen.v(§4.1)

SetupvPhase
SeedvTransferv(§4.2)

OnlinevPhase
CircuitvEvaluation

T T T

A B...

Figure 3: The three phases, workload distribution, and
communication in our token-aided scheme.

An overview of our protocol is given in Fig. 3. The
general idea is to let the hardware token generate mul-
tiplication triples from two (or more) seeds in the init
phase that are independent of the later communication
partner (§4.1). In the setup phase, T then sends one
seed to A and the other seed over an encrypted channel

to B (§4.2). The token thereby replaces the OT protocol
in the setup phase and allows pre-computing the multipli-
cation triples independently of the communication part-
ner. The online phase of the GMW protocol remains un-
changed. In order to overcome the restriction that the
function size needs to be known in advance, we describe
a method that pre-computes several multiplication triple
sequences of different size and only adds a small com-
munication overhead in the setup phase (§4.3). Finally,
we analyze the security of our protocol (§4.4) and com-
pare its performance to previous solutions (§4.5).

4.1 Multiplication Triple Pre-Computation
in the Init Phase

In the original GMW protocol, A and B interactively
compute their multiplication triples (an

A,b
n
A,c

n
A) and

(an
B,b

n
B,c

n
B) in the setup phase using 2n random OT ex-

tensions (cf. §2.4). Instead, we avoid this overhead in
the setup phase and let T pre-compute the multiplica-
tion triples in the init phase as shown in Fig. 4: T first
generates random seeds and then expands these seeds in-
ternally into the multiplication triples and sends cn

A to A.

d

sB

cnBbnBanB

kB

sA

bnAanA

kA

cnA

T

A

cnA

Seed Expansion

Seed Generation

Figure 4: Multiplication triple pre-generation in the init
phase between A and T .

Seed Generation In the seed generation step, T gen-
erates two seeds sA = GkA(d) and sB = GkB(d) us-
ing a cryptographically strong Pseudo-Random Gener-
ator (PRG) G, two master keys kA and kB, and a state
value d, which is unique per multiplication triple se-
quence and can be instantiated with a counter. The two
master keys kA and kB are constant for all multiplica-
tion triple sequences and have to be generated and stored
only once. Thereby, T has to store only the unique
state value d in its internal memory for every multipli-
cation triple sequence. Note that the only values that will
leave the internal memory of T are the seeds sA and sB
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that will be sent in the setup phase to A and B, respec-
tively (cf. §4.2). In order to ensure that sB is not sent out
twice, we require sA to be queried before sB and delete
the state value d as soon as sB has been sent out. A secu-
rity analysis of this scheme is given in §4.4.

Seed Expansion The seed expansion step com-
putes a valid multiplication triple sequence from the
seeds sA and sB by computing (an

A,b
n
A) = GsA(dA) and

(an
B,b

n
B,c

n
B) = GsB(dB) and setting the remaining value

cn
A = (an

A⊕an
B)∧ (bn

A⊕bn
B)⊕ cn

B, where dA and dB are
publicly known state values of A and B, respectively.
Due to the limited memory of the hardware token, the se-
quence cn

A is computed block-wise such that T requires
only a fixed amount of memory, independently of n, and
each block is sent to A, who stores it locally. Note that
the values (an

A,b
n
A,a

n
B,b

n
B,c

n
B) do not need to be stored,

since they can be expanded from sA and sB, respectively.

4.2 Seed Transfer in the Setup Phase
In the setup phase, the hardware token sends the seeds sA
and sB to A and B, respectively, and the parties generate
their multiplication triples as depicted in Fig. 5. A ob-
tains his seed sA directly from T and can read the se-
quence cn

A, which was obtained in the init phase, from
its internal flash storage. B’s seed sB, on the other hand,
cannot be sent in plaintext from T to B as the communi-
cation between the token and B is relayed over A, which
would allow A to intercept sB. We therefore require the
communication between B and T to be encrypted and T
to authenticate itself to B with a certificate.

d

sB

kB

sA

kA

T

A

sA

bnAanA

B

sB

bnBanB cnBcnA

Figure 5: Seed transfer and seed expansion in the setup
phase. sB is sent from T to B over a secure channel.

An encrypted and one-way authenticated communica-
tion channel can be established using a key agreement
protocol from a wide variety of choices (cf. [MvOV96]).
We choose two protocols that allow us to handle dif-
ferent attacker models: For security against a malicious
(active) A we use TLS [IET08] (with RSA for public-
key crypto, AES for symmetric encryption, and HMAC

as message authentication code) and for security against
a semi-honest (passive) A we use KAS1-basic [NIS09]
(with AES for symmetric encryption), cf. the full ver-
sion [DSZ14] for details. Both schemes use T ’s public-
key certificate that is signed by a trusted third party. For
every new connection this certificate is verified by B and
optionally checked against a CRL and/or is checked to be
consistent with A’s identity over an out-of-band channel
to protect against hardware attacks (cf. §3.2).

4.3 Multiplication Triple Composition

The multiplication triple generation described until now
requires the function size n = | f | to be known before-
hand. While this may be the case for some functions,
e.g., for set intersection using bitwise AND (cf. §6.1),
the size of other functions depends on the number of
inputs, e.g., the number of contacts in the address
book (cf. §6.3). The naive solution to not know-
ing n in advance would be to generate several mul-
tiplication triple sequences of fixed size � in the init
phase and send their �n/�� seeds in the setup phase,
when n is known. However, on average this approach
wastes �/2 multiplication triples and requires to send
�n/�� multiplication triple seeds. Thus, a smaller �
results in fewer wasted multiplication triples but more
communication overhead, while a higher � results in
more wasted multiplication triples but less communica-
tion. Since typical function sizes in secure computation
range from millions [HEKM11] to even a billion AND
gates [CMTB13], an appropriate � is difficult to choose.

Instead of generating fixed-length blocks of multipli-
cation triple sequences, we propose to generate m mul-
tiplication triple sequences s0, ...,sm−1 in the init phase,
where si contains 2i (0 ≤ i < m) multiplication triples.
In the setup phase, we then send a set of multiplication
triple seeds {sk |nk = 1}, where nk is the k-th bit of n.
This approach requires sending at most �log2 n� seeds.
As communication between T and A is the bottleneck in
our implementation, we set the smallest size of a multi-
plication triple sequence such that it fits into one packet.

4.4 Security Analysis

In this section, we briefly analyze the security of our pro-
tocol for each of the three secure computation phases.

Init Phase In the init phase no private inputs are in-
volved and B is unknown. Therefore, A can only try to
manipulate the token, which is hard since the hardware
token is tamper-proof. Moreover, A receives only its cA
shares that do not reveal anything about B’s shares or T ’s
internal state, due to the cryptographically strong PRG.
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Setup Phase The only attack a malicious A could play
in the setup phase, is to impersonate B. This attack
is prevented, since every seed sB can only be queried
once (cf. §4.1). The communication between the hard-
ware token and B is done through an encrypted channel,
so that A cannot get access to those messages. For active
security, we use TLS and add a MAC to every packet to
prevent modifications and avoid replay attacks. B can-
not actively attack the token since all communication to
the hardware token is controlled by A. Obviously, any
party can drop or ignore messages, but we exclude this
simple denial of service attack from our system model
since we assume both parties to be willing to participate
in the secure computation. The seeds that each party ob-
tains from the hardware token do also not reveal any ad-
ditional information since they are directly output from
a cryptographically strong PRG to which the hardware
token’s internal state is used as seed.

Online Phase The security for the online phase di-
rectly carries over from the GMW protocol, as we do
not introduce any modifications to this phase.

4.5 Performance Comparison

We show that the asymptotic performance of our protocol
improves over existing solutions. A summary is shown in
Tab. 1 on page 2 and a more detailed comparison is given
in the full version [DSZ14]. An experimental evaluation
of our protocol is provided in §5.4 and its performance
on applications is evaluated in §6.

Asymptotic Performance The init phase of our pro-
tocol is, unlike [JKSS10], independent of a concrete in-
stance of f and can thus be pre-computed without know-
ing a communication partner. During the setup phase, the
communication complexity of our protocol is only O(t)
(or O(t · log2 | f |) if | f | is unknown), which improves
upon the communication of Yao’s protocol and the GMW
protocol [CHK+12, SZ13, ALSZ13] with O(t · | f |) com-
munication. Both parties have to do O(| f |/b) sym-
metric cryptographic operations to expand their seeds.2

The online phase is the first phase where f needs to be
known. Here, A and B send O(| f |) bits in d( f ) rounds,
where d( f ) is the depth of f . The parties’ computation
complexity is negligible, as no cryptographic operations
are evaluated. This is the biggest advantage over Yao’s
garbled circuits protocol [MNPS04, JKSS10, HCE11],
where O(| f |) symmetric cryptographic operations have
to be evaluated during the online phase.

2In our implementation, we instantiate the PRG G with AES-128-
CTR, which has block size b = 128.

Concrete Performance For 80 bit security, the best
known instantiation of Yao’s garbled circuits protocol
(resp. the GMW protocol) require per AND gate 240 bit
(resp. 164 bit) communication and 4+ 1 (resp. 12+ 0)
evaluations of symmetric cryptographic primitives in the
setup+online phase. In comparison, our solution re-
quires only 4 bit communication and 0.04+ 0 fixed-key
AES operations per AND gate.

5 Implementation

This section details the implementation of our scheme.
We introduce the smartcard that we use to instantiate
the hardware token (§5.1), give an overview of our An-
droid implementation (§5.2), outline our benchmarking
environment (§5.3), and experimentally compare the OT
extension-based multiplication triple generation to our
hardware token-based protocol (§5.4).

5.1 G&D Mobile Security Card
In our implementation we instantiate the trusted hard-
ware token T with the Giesecke & Devrient (G&D) Mo-
bile Security Card SE 1.0 (MSC). It is embedded into a
microSD card that additionally contains 2 GB of separate
flash memory. The MSC is based on an NXP SmartMX
P5CD080 micro-controller that runs at a maximum fre-
quency of 10 MHz, has 6 kB of RAM, 80 kB of persistent
EEPROM, and is based on Java Card version 2.2.2. Note
that an applet can only use 1,750 Bytes of the 6 kB RAM
for transient storage. The MSC has co-processors for
3DES, AES and RSA that can be called from a Java
Card applet, as well as native routines for MD5, SHA-1
and SHA256. The MSC runs the operating system G&D
Sm@rtCafe Expert 5.0 which manages the installed Java
Card applets, personalization data, and communication
keys. The communication between the Android operat-
ing system and the MSC is done by a separate service via
the SIMalliance Open Mobile API.

5.2 Architecture
The architecture of our implementation is depicted in
Fig. 6. To support flexibility and extensibility, our modu-
lar architecture consists of the Application that specifies
the functionality, the GMWService that performs secure
computation, and the MTService that performs the mul-
tiplication triple generation and transfer. All communi-
cation between A and T is done via the MSC Smart-
card Service supplied by G&D. The Application can be
implemented by a designer and specifies the desired se-
cure computation functionality as a Boolean circuit that
can, for instance, be compiled from a high-level cir-
cuit description language such as the Secure Function
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Definition Language (SFDL) [MNPS04, MLB12] or the
Portable Circuit Format (PCF) [KMSB13].

The GMWService implements the GMW protocol and
performs the secure computation, given a circuit descrip-
tion and corresponding inputs. The MTService generates
the multiplication triples using either OT extension (OT-
Ext) based on the memory efficient implementation
of [HS13] including the optimizations from [ALSZ13]
or, if one of the parties holds a hardware token, our
token-aided protocol of §4. If a hardware token is
present, the MTService manages the multiplication triple
generation during the init phase by querying the token
and storing the received cA sequences. For the MSC, the
multiplication triple generation on T is performed via
a Java Card applet (MT JC Applet) that implements the
functionality in §4.1 and is accessible through the Java
Card interface. Our implementation can be installed as a
regular Android app and does not require root access to
the smartphone or a custom firmware.

A B

G&D MSC
SCService OT-Ext

T

. . .

GMWService

MTService

f;x zA

jfj

Application

aA;bA;cA

GMWService

MTService

OT-Ext

zB

Application

f;y

jfj aB;bB;cB

. . .

MT  
JC Applet

. . .

Figure 6: Modular architecture design.

Secure computation is performed by having an Appli-
cation running on each smartphone, which specifies the
function f both parties want to compute securely. From
this function the Application generates a circuit descrip-
tion, which it sends to the GMWService. The GMWSer-
vice interprets the circuit and queries the MTService
for the required number of multiplication triples | f |.
The MTServices on both smartphones then communi-
cate with each other and check whether one of the smart-
phones holds a hardware token (A in Fig. 6). If so, both
MTServices perform the seed transfer protocol (cf. §4.2),

expand the obtained seeds (A loads the corresponding
cA sequences obtained in the init phase), and merge the
obtained multiplication triple sequences (cf. §4.3). If
no hardware token is present, the MTServices gener-
ate the multiplication triples by invoking OT extension.
The MTService then provides the multiplication triples
(ai,bi,ci) for i ∈ {A,B} to the GMWService. Finally,
the Applications send their inputs x and y, respectively,
to the GMWService, which performs the secure compu-
tation and returns the output zi = f (x,y).

5.3 Benchmarking Environment
For our mobile benchmarking environment we use two
Samsung Galaxy S3’s, which each have a 1.4 GHz ARM-
Cortex-A9 Quad-Core CPU, 1 GB of RAM, 16 GB of
internal flash memory, a mircoSD card slot, and run the
Android operating system version 4.1.2 (Jelly Bean). For
the communication between the smartphones, we use
Wi-Fi direct. For the evaluation, we put the smartphones
next to each other on a table. The G&D mobile security
card is connected to the mircoSD card slot of one of the
phones. We use the short-term security setting recom-
mended by NIST [NIS12], i.e., a symmetric key size of
80 bits and a public key size of 1,024 bit with a 160 bit
subgroup. We instantiated the pseudo-random genera-
tor G that is used for seed expansion (cf. §4.1) with AES-
128 in CTR mode. The hardware token generates multi-
plication triple sequences of size 2m for 11≤m≤ 24. We
used m = 11 as lower bound on the size, since 2,048 is
the biggest size we can transfer from T to A with a single
packet, and m = 24 as upper bound, since it was appro-
priate for our case studies in §6. Finally, we point out that
our implementation is single-threaded and utilizes only
one of the four available cores of our smartphones. We
leave the extension to multiple threads as future work.

5.4 Performance Evaluation
First, we want to quantify the runtime differences be-
tween the mobile and the desktop environment. We
measure the execution time for AES-128 in ECB mode
for an identical single-threaded Java implementation in
both domains. The smartphone version is running with
5.5 MB/s while the desktop version achieves 61.1 MB/s.
The optimized AES-256 implementation of Truecrypt3,
written in C/C++ and assembly, achieves 143.1 MB/s on
the same desktop machine, running without paralleliza-
tion. For comparison, the smartcard (cf. §5.1) is running
AES-128 at a maximum speed of 16.7 KB/s.

In the following we evaluate the performance of our
token-based scheme (cf. §4) on smartphones, using TLS
or KAS1-basic as key agreement protocol, and compare

3http://www.truecrypt.org
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it to the OT extension based multiplication triple genera-
tion. In our evaluations we only include the time for init
and setup phase, since the online phase is identical for
both approaches. Results for the online phase are given
in §6. All values are averaged over 10 measurements.

Fig. 7 gives an overview over the timings for the gen-
eration of 2m (11 ≤ m ≤ 24) multiplication triples using
either OT extension in the setup phase or the hardware
token (§4.1) in the init phase. Additionally, the setup
phase using TLS and KAS1-basic is depicted, which in-
cludes the seed transfer and the seed expansion of B.
We always assume the worst case number of seeds to be
transferred, i.e., for 224 multiplication triples, we trans-
fer 24−10 = 14 seeds (cf. §4.3). Both axes in Fig. 7 are
given in a logarithmic scale.
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Figure 7: Performance evaluation of the multiplication
triple generation and setup phase.

We observe that OT extension on mobile devices is
able to generate 224 multiplication triples in 1,529 s,
corresponding to 10,971 multiplication triples per sec-
ond. We ran the same code on two desktop PCs with
a 2.5 GHz Intel Core2Quad CPU and 4 GB RAM,
connected via Gigabit LAN and were able to compute
224 multiplication triples in 139 s, which indicates a
performance decrease of factor 11. While the perfor-
mance decrease on mobile devices compared to desktop
computers was significantly less than the factor of 1000
observed in [HCE11], it is still insufficient for effi-
ciently computing complex functions such as private set-
intersection, which typically requires millions of OTs.

In comparison, the multiplication triple generation of
the hardware token during the init phase is able to gener-
ate 224 multiplication triples in 2,883 s, corresponding to
5,819 multiplication triples per second. For the hardware
token-based protocol we observe that the times for send-
ing the seeds using the TLS and KAS1 key agreement
protocols grow very slowly with the number of multipli-
cation triples, since the amount of data to be encrypted

and sent grows only with log2 | f |. Additionally, the TLS-
based key agreement protocol (4.6 s for 211 multiplica-
tion triples) is around factor 3 slower than the KAS1-
based key agreement (1.3 s for 211 multiplication triples).

The overall computation and communication work-
load of OT extension is substantially larger than in our
token-based scheme, but its multiplication triple gener-
ation rate is not much faster. This can be explained by
the faster processing power of the smartphones compared
to that of T and the higher bandwidth of Wi-Fi direct
compared to the relatively slow communication chan-
nel between A and T . However, OT extension suffers
from high energy consumption, due to the CPU utiliza-
tion incurred by the symmetric cryptographic operations,
as well as the Wi-Fi direct communication [PFW11].

We use PowerTutor4 to measure the energy consump-
tion of the smartphone’s CPU for generating 219 multi-
plication triples and compare the interactive evaluation of
random OT extensions with our smartcard solution. Note
that Fig. 8 only displays the CPU’s energy consumption
whereas the energy consumption of Wi-Fi and the smart-
card is not included. However, we argue that the en-
ergy consumption of the smartcard is not a critical factor,
since these operations can be performed when the phone
is charging. The Wi-Fi connection, on the other hand, is
required for OT during the setup phase, thus increasing
the already high battery drain even further. Moreover,
the OT computations have to be done on both devices
simultaneously, draining both devices’ batteries. There-
fore, our token-based solution is particularly well-suited
for the mobile domain, where energy consumption and
battery lifetime are critical factors.
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Figure 8: Accumulated smartphone CPU energy con-
sumption during the generation of multiplication triples.

4http://powertutor.org
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6 Applications

To evaluate the performance of our protocols, we use
the mobile phones and setting as specified in §5.3 and
consider the following privacy-preserving applications:
availability scheduling (§6.1), location-aware schedul-
ing (§6.2), and set intersection (§6.3). We implemented
the applications and depict the performance results for an
average of 10 iterations. We use KAS1-basic [NIS09] as
key authentication scheme. We pre-generated the circuits
using the framework of [SZ13], wrote them into a file,
and read them on the smartphone. The time for reading
the circuit file is included in the setup phase.

6.1 Availability Scheduling

Privacy-preserving availability scheduling is a com-
mon example for secure computation on mobile de-
vices [HCC+01, BJH+11] and enables A and B to find a
possible time slot for a meeting without disclosing their
schedules to each other. To schedule a meeting, A and B
specify a duration and time frame for the meeting. Each
party i ∈ {A,B} then divides the time frame when the
meeting can take place (e.g., a week) into n time slots
tn
i = (ti,1, ..., ti,n) and denotes each time slot ti, j ∈ {0,1}

as either free (ti, j = 1) or occupied (ti, j = 0). The parties
compute their common availability tn

Avail by computing
the bitwise AND of their time slots, i.e., tn

Avail = tn
A∧ tn

B.
Overall, this circuit has n AND gates and depth 1. Note
that the bitwise AND circuit performs a general function-
ality and can, for instance, be used for privacy-preserving
set intersection where elements are taken from a small
domain [HEK12] or location matching [CADT13]. For
our experiments, we set the time frames s.t. meetings
can be scheduled between 8 am and 10 pm for one day
divided into 15 minute slots (n = 56 slots), one week di-
vided into 15 minute slots (n= 392 slots), and one month
divided into 10 minute slots (n = 2,604 slots). We depict
our results in the upper half of Tab. 2.

The multiplication triple generation in the init phase
can be performed in several hundred milliseconds, since
it requires only one (for 56 and 392 time slots) or two
(for 2,604 time slots) packet transfers between T and A.
The setup phase, more detailed the seed transfer proto-
col, is the main bottleneck in this application, as T has
to perform asymmetric and symmetric cryptographic op-
erations. Finally, the online phase requires only millisec-
onds but has a high variance, due to the communication
over Wi-Fi direct and the small number of communica-
tion rounds that are performed in the online phase.

For comparison, we evaluated the same circuit using
the mobile Yao implementation of [HCE11] on the same
phones, which took factor 1.6 (for the day time frame) up
to factor 12 (for the month time frame) longer, cf. Tab. 2.

Table 2: Performance for availability and location-aware
scheduling. | f | is the size of the circuit and d( f ) its
depth. All values measured on smartphones (cf. §5.3).

Time Frame Day Week Month
Availability Scheduling §6.1
| f | / d( f ) 56 / 1 392 / 1 2,604 / 1
Init [s] 0.37 (±1.6%) 0.37 (±1.6%) 0.73 (±1.0%)
Setup [s] 1.3 (±13%) 1.3 (±13%) 1.3 (±13%)
Online [s] 0.002 (±150%) 0.003 (±167%) 0.007 (±129%)
Ad-Hoc [s] 1.3 (±13%) 1.3 (±13%) 1.3 (±13%)

Mobile Yao [HCE11]
Ad-Hoc [s] 2.14 (±7.1%) 3.82 (±4.7%) 15.9 (±2.7%)

Location-Aware Scheduling §6.2
| f | / d( f ) 39,864 / 69 280,605 / 87 1,872,206 / 106
Init [s] 6.9 (±0.3%) 48.5 (±0.2%) 319.6 (±0.5%)
Setup [s] 1.4 (±7.1%) 1.8 (±7.0%) 4.8 (±4.8%)
Online [s] 0.16 (±35%) 0.82 (±7.4%) 5.9 (±18%)
Ad-Hoc [s] 1.5 (±8.4%) 2.6 (±6.5%) 10.7 (±11%)

6.2 Location-Aware Scheduling

In the following we show that our system can be adapted
to compute arbitrary and complex functions. We intro-
duce the location-aware scheduling functionality which
extends the availability scheduling of §6.1, s.t. the dis-
tance between the users is considered as well. The
location-aware scheduling functionality takes into ac-
count the user’s location in a time slot, computes the dis-
tance between the users, verifies if a meeting is feasible,
and outputs the time slot in which the users have to travel
the least distance to meet each other. We argue that this
approach is practical, since such position information are
often already included in the users’ schedules.

In the location-aware scheduling scheme, we assume
that the user i ∈ {A,B} also inputs the location of the
previous appointment Pi and the next appointment Ni and
the distances that he can reach from his previous appoint-
ment pi and from his next appointment ni (cf. Fig. 9 for
an example). Such pi and ni can be computed in plain-
text using the distance between Pi and Ni, the free time
until the next appointment and the duration of the meet-
ing. The minimal distance among all time slots where the
reachable ranges for A and B overlap is selected as final
result. If successful, the function outputs the identified
time slot and for each user whether he should leave from
the location of the previous or next appointment. A de-
tailed description of the functionality is given in the full
version [DSZ14]. We evaluate the scheme on the same
number of time slots used in §6.1 (day, week, month) and
depict the performance in the lower half of Tab. 2.

Compared to availability scheduling, the location-
aware scheduling circuit is significantly bigger and re-
quires more communication rounds. When performing
the scheduling for a month, the circuit consists of 1.8 mil-
lion instead of 2,604 AND gates for availability schedul-
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Figure 9: Location-aware scheduling for one time slot of A and B with previous locations PA and PB, reachable
distances from previous appointments pA and pB, next locations NA and NB and corresponding reachable distances
nA and nB. The meeting can be scheduled between NA and PB as the reachable ranges overlap.

ing. The time for the init phase increases linearly with
the number of AND gates and requires 319 s when per-
forming scheduling for a month. The time for the setup
phase is increased less, since the seed transfer grows only
logarithmically in | f | and the seed expansion is done ef-
ficiently. The online phase is also slowed down substan-
tially (6 s for a month time frame), but is still practical.

6.3 Private Set Intersection

Private set intersection (PSI) is a widely studied problem
in secure computation and can be used for example to
find common contacts in users’ address books [HCE11].
It enables two parties, each holding a set SA and SB with
elements represented as σ -bit strings to determine which
elements both have in common, i.e., SA ∩ SB, without
disclosing any other contents of their sets. While many
special-purpose protocols for PSI exist, e.g., [CT10,
CT12, CADT13], generic protocols mostly build on
the work of [HEK12], where the Sort-Compare-Shuffle
(SCS) circuit was outlined. The idea is to have both par-
ties locally pre-sort their elements, privately merge them,
check adjacent values for equality, and obliviously shuf-
fle the resulting values to hide their order.

We implement the SCS-WN circuit of [HEK12] which
uses a Waksman permutation network to randomly shuf-
fle the resulting elements. We perform the compar-
ison for bit sizes σ ∈ {24,32,160} and compare the
ad-hoc runtime of our protocol to the implementation
of [HCE11] for σ ∈ {24,32}. The results from [HEK12]
are compared to ours for σ ∈ {32,160}. The results
are given in Fig. 10 and in Tab. 3. Note that [HCE11]
and [HEK12] implement Yao’s garbled circuits protocol
using pipelining, whereas we use the GMW protocol.

1

10

100

128 256 512 1024 2048 4096

A
d-

H
oc

 R
un

tim
e 

[s
]

Number of Inputs

[HEK12] SCS-WN (Desktop)
§4 Token Ad-Hoc (Phone)

Figure 10: Private set intersection runtime for σ = 32 bit
elements using our token-based protocol on two smart-
phones (§5.3) and [HEK12] on two desktop PCs.

For a fair comparison, we ran the code from [HCE11]
on our Samsung Galaxy S3 smartphones and observed an
approximate speedup of factor 2 compared to the mea-
surements from their paper, that were made on older
hardware (two Google Nexus One phones). Note that
our performance results, as well as the values for the im-
plementation of [HCE11] are benchmarked on mobile
devices connected via Wi-Fi Direct, while [HEK12] is
benchmarked on two desktop PCs (two Core2Duo E8400
3GHz PCs connected via 100 Mbps LAN).

From Fig. 10 we observe that, due to the seed transfer
in our setup phase (cf. §4.2), the Yao’s garbled circuits
implementation of [HEK12] is faster for up to 256 inputs.
However, the seed transfer time amortizes for larger in-
puts and our token-based scheme outperforms the imple-
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Table 3: Ad-hoc runtime of private set intersection where each party inputs n values of σ bits, measured on identical
mobile phones (§5.3). [HEK12] results are on PCs and taken from the paper (— indicates that no numbers were given).

Number of Inputs n 32 64 128 256 512 1,024

σ = 24bit
| f | 22,432 52,096 118,656 266,240 590,336 1,296,384
Ours [s] 1.7 (±2.2%) 1.9 (±3.4%) 2.1 (±2.4%) 2.5 (±2.4%) 3.6 (±4.2%) 7.4 (±8.7%)
[HCE11] [s] 30 68 161 410 1,052 3,010

σ = 32bit

| f | 30,368 70,528 160,640 360,448 799,232 1,755,136
Ours [s] 1.7 (±2.7%) 1.9 (±3.5%) 2.3 (±7.7%) 3.0 (±18%) 4.4 (±9.8%) 8.5 (±20%)
[HCE11] [s] 42 87 233 565 1,468 4,662
[HEK12] [s] — — 1 2.2 4.95 10.5

σ = 160bit
| f | 156,768 364,096 829,312 1,860,864 4,126,208 9,061,376
Ours [s] 2.2 (±8.8%) 2.7 (±16%) 4.0 (±1.9%) 7.0 (±1.9%) 14.3 (±2.9%) 28.7 (±1.4%)
[HEK12] [s] — — — — — 51.5

mentation of [HEK12], even though our implementation
runs on substantially slower mobile phones while theirs
is evaluated on two desktop PCs. From Tab. 3 we ob-
serve that our scheme outperforms the Yao’s garbled cir-
cuits implementation of [HCE11], evaluated on identical
mobile phones, by factor 18 for 32 inputs with σ = 24 bit
and by up to factor 550 for 1,024 inputs with σ = 32 bit.

Finally, we compare the performance of our protocol
to the PSI protocol of [CADT11,CADT13]. We use their
reported numbers for pre-computed PSI on 20 input val-
ues and set the bit size σ = 160 in our protocol.5 The
protocol of [CADT11, CADT13] needs 3.7 s, while our
ad-hoc runtime is only 2.1 s (±4.8%). Note, however,
that their approach has only a constant number of rounds
and can be sped up using multiple cores.

7 Related Work

We classify related work into three categories: secure
function evaluation (§7.1), server-aided secure function
evaluation (§7.2), and token-based cryptography (§7.3).

7.1 Generic Secure Function Evaluation
The foundations for secure function evaluation (SFE)
were laid by Yao [Yao86] and Goldreich et al. [GMW87]
who demonstrated that every function that is efficiently
representable as Boolean circuit can be computed se-
curely in polynomial time with multiple parties.

SFE Compiler A first compiler for specific secure
two-party computation functionalities was presented in
[MOR03]. The Fairplay framework [MNPS04] was the
first efficient implementation of Yao’s garbled circuits
protocol [Yao86] for generic secure two-party compu-
tation and enabled a user to specify the function to be
computed in a high-level language. The FastGC frame-
work [HEKM11] improved on the results of Fairplay by

5Note that [CADT11, CADT13] also support bigger bit sizes, since
they operate on 1,024-bit ElGamal ciphertexts.

evaluating functions with millions of Boolean gates in
mere minutes using optimizations such as the free XOR
technique [KS08] and pipelining. The FastGC frame-
work has been used to implement various functions such
as privacy-preserving set intersection [HEK12], genomic
sequencing, or AES [HEKM11], and was optimized with
respect to a low memory footprint in [HS13].

Next to Yao’s garbled circuits protocol, the GMW pro-
tocol [GMW87] recently received increasing attention.
The work of [CHK+12] efficiently implemented GMW
in a setting with multiple parties. Subsequently, [SZ13]
optimized GMW for the two-party setting and showed
that GMW has advantages over Yao’s garbled circuits
protocol as it allows to pre-compute all symmetric cryp-
tographic operations in a setup phase and that the work-
load can be split evenly among both parties.

SFE on Mobile Devices A recent line of research aims
at making SFE available on mobile devices, such as
smartphones. In [HCE11] the authors port the FastGC
framework [HEKM11] to smartphones and observe a
substantial performance reduction when compared to the
desktop environment. They identify the slower process-
ing speed and the high memory requirements as the main
bottlenecks. Similarly, [CMSA12] ported the Fairplay
framework [MNPS04] to smartphones. A compiler with
smaller memory constraints than Fairplay was presented
in [MLB12]. We emphasize that previous works on
generic SFE on mobile devices use Yao’s garbled circuits
protocol, whereas our approach is based on GMW.

Several special-purpose protocols for mobile de-
vices using homomorphic encryption were proposed in
[BJH+11] (activity scheduling), [CDA11] (scheduling,
interest sharing), and [CADT11,CADT13] (comparison,
location-based tweets, common friends). In contrast to
generic solutions, such custom-tailored protocols can be
more efficient, but are restricted to specific functionali-
ties. Their extension to new use cases is complex and
usually requires new security proofs.
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7.2 Server-Aided SFE

One way to speed up generic secure computations on re-
source constrained devices is to outsource expensive op-
erations to one or more servers. In [HS12] a system for
fair server-aided secure two-party computation using two
servers was introduced. SALUS [KMR12] is a system
for fair SFE among multiple parties using a single server.
A system that allows cloud-aided garbled circuits evalu-
ation between one mobile device and a server was intro-
duced in [CMTB13] and its efficiency was demonstrated
on large-scale practical applications, such as a secure
path finding algorithm. Both [CMTB13] and [KMR12]
achieve security against malicious adversaries, but re-
quire at least one party to be a machine with more com-
puting power than a mobile phone as it evaluates multiple
garbled circuits. [Hua12] proposes that a trusted server
generates multiplication triples that are sent to both par-
ties over a secure channel, requiring O(| f |) bits commu-
nication. Instead, we propose to replace the server with
a trusted hardware token and show that the communica-
tion to one party can be reduced to sub-linear complexity.
Moreover, they achieve security against malicious adver-
saries based on [NNOB12]; we sketch how to extend our
work to malicious security in the full version [DSZ14].

We consider this line of research as orthogonal to ours,
since it focuses on outsourcing secure computations to a
powerful but untrusted cloud server. In contrast, we fo-
cus on secure computation between two mobile devices
where computations are outsourced to a trusted, but re-
source constrained smartcard locally held by one party.

7.3 Token-Based Cryptography

Another approach is to outsource computations to trusted
hardware tokens, such as smartcards. These tokens are
typically resource-constrained, but have the advantage of
offering a tamper-proof trusted execution environment.

Setup Assumptions for UC Hardware tokens can be
used as setup assumption for Canetti’s universal compos-
ability (UC) framework, as they allow to construct UC
commitments, with which in turn any secure computa-
tion functionality can be realized, e.g., [Kat07, DNW09,
DKMQ11]. These works are mainly feasibility results
and have not been implemented yet.

SFE in Plaintext As discussed in [HL08], the trivial
solution to performing SFE using hardware tokens would
be to have each party send its inputs over a secure chan-
nel to the token, which evaluates f and returns the output.
A similar approach with multiple tokens, which addition-
ally provides fault tolerance was given in [FFP+06].

When using the hardware token for plaintext evalua-
tion, the performance of the time-critical online phase is
limited by the performance of the token, which is typi-
cally very low. Moreover, this requires the token to hold
all input values in memory, which quickly exceeds its
very limited resources.6 Alternatively, the token could
use external secure memory to store inputs and inter-
mediate values, e.g., [IS05, IS10], but this would require
symmetric cryptographic operations in the online phase.
Additionally, each new functionality would have to be
implemented on the token, whereas our scheme is imple-
mented only once and supports arbitrary functionalities.

Specific Functionalities An efficient protocol for pri-
vate set-intersection using smartcards was presented
in [HL08]. This protocol was extended to multiple un-
trusted hardware tokens in [FPS+11]. An anonymous
credential protocol was presented in [BCGS09].

Outsourcing Oblivious Transfer There are several
works that use hardware tokens to compute oblivious
transfer (OT): [GT08] implemented non-interactive OT
using an extension of a TPM, [Kol10] proposed OT se-
cure in the malicious model using a stateless hardware
token, and [DSV10] provided non-interactive OT in the
malicious model using two hardware tokens.

We outsource the setup phase of the GMW proto-
col, which previously was done via OT, to the hard-
ware token. Previous works on outsourcing n OTs re-
quire the hardware token to evaluate O(n) symmetric (or
even asymmetric) cryptographic operations in the ad-hoc
phase. In comparison, our scheme requires T to evaluate
O(n/t) symmetric cryptographic operations in the init
phase and only O(log2 n) symmetric cryptographic oper-
ations in the setup phase (cf. the full version [DSZ14]).

8 Conclusion and Future Work

In this work, we demonstrated that generic ad-hoc se-
cure computation can be performed efficiently on mo-
bile devices when aided by a trusted hardware token.
We showed how to extend the GMW protocol by such
a token, similar to a TPM, to which most costly cryp-
tographic operations can be outsourced. Our scheme
pre-computes most of the workload of GMW in an
initialization phase, which is performed independently
of the later communication partner and without know-
ing the function or its size in advance. This is par-
ticularly desirable as the pre-computation can happen
at any time, e.g., when the device is connected to a

6The smartcard we use in our experiments has 1,750 Bytes of RAM,
which would be completely filled if each party provided 300 inputs of
24 bits length in private set intersection (cf. §6.3).
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power source, which happens regularly with modern
smartphones. The remaining interactive ad-hoc phase
is very efficient and can be executed in a few seconds,
even for complex functionalities. We implemented sev-
eral privacy-preserving applications that are typical for
mobile devices (availability scheduling, location-aware
scheduling, and set-intersection) on off-the-shelf smart-
phones using a general-purpose smartcard and showed
that their execution times are truly practical. We found
that the performance of our scheme is two orders of mag-
nitude faster than that of other generic secure two-party
computation schemes on mobile devices and comparable
to the performance of similar schemes in the semi-honest
adversary model implemented on desktop PCs.

We see several interesting directions for future re-
search. As our scheme is based on the GMW protocol,
it can easily be extended to more than two parties, e.g.,
for securely scheduling a meeting, cf. [CHK+12]. More-
over, our scheme can be modified to also provide security
against malicious parties, cf. [Hua12] (we provide more
details in the full version [DSZ14]). Another direction
might be equipping both mobile devices with a hardware
token to further improve efficiency and/or security.
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Abstract
Traditionally, confidentiality and integrity have been two
desirable design goals that are have been difficult to com-
bine. Zero-Knowledge Proofs of Knowledge (ZKPK) of-
fer a rigorous set of cryptographic mechanisms to bal-
ance these concerns. However, published uses of ZKPK
have been difficult for regular developers to integrate into
their code and, on top of that, have not been demon-
strated to scale as required by most realistic applications.

This paper presents ZØ (pronounced “zee-not”), a
compiler that consumes applications written in C#
into code that automatically produces scalable zero-
knowledge proofs of knowledge, while automatically
splitting applications into distributed multi-tier code. ZØ
builds detailed cost models and uses two existing zero-
knowledge back-ends with varying performance charac-
teristics to select the most efficient translation. Our case
studies have been directly inspired by existing sophisti-
cated widely-deployed commercial products that require
both privacy and integrity. The performance delivered
by ZØ is as much as 40× faster across six complex ap-
plications. We find that when applications are scaled to
real-world settings, existing zero-knowledge compilers
often produce code that fails to run or even compile in
a reasonable amount of time. In these cases, ZØ is the
only solution we know about that is able to provide an
application that works at scale.

1 Introduction
As popular applications rely on personal, privacy-
sensitive information about users, factors such as legal
regulations, industry self-regulation, and a growing body
of privacy-conscious users all pressure developers to re-
spond to demands for privacy. Storing user’s data in
the cloud creates downsides for the application provider,
both immediately and down the road. While policy mea-
sures such as DoNotTrack and anonymous advertising
identifiers become increasingly popular, a recent trend
explored in several research projects has been to move
functionality to the client [13, 17, 37, 40]. Because ex-
ecution happens on the client, such as a mobile device
or even in the browser, this alone provides a degree of
privacy in the computation: only relevant data, if any, is
disclosed (to a server). However, in many cases, moving

functionality to the client conflicts with a need for com-
putational integrity: a malicious client can simply forge
the results of a computation.

Traditionally, confidentiality and integrity have been
two desirable design goals that are have been difficult to
combine. Zero-Knowledge Proofs of Knowledge (ZKPK)
offer a rigorous set of cryptographic mechanisms to bal-
ance these concerns, and recent theoretical developments
suggest that they might translate well into practice. In
the last several years, zero-knowledge approaches have
received a fair bit of attention [23]. The premise of
zero-knowledge computation is its promise of both pri-
vacy and integrity through the mechanism cryptographic
proofs. However, published uses of ZKPK [4, 5, 7, 8,
19, 36] have been difficult for regular developers to in-
tegrate into their code and, on top of that, have not been
demonstrated to scale, as required by most realistic ap-
plications.

Zero-knowledge example: pay as you drive insur-
ance: A frequently mentioned application and a good
example of where zero-knowledge techniques excel is
the practice of mileage metering to bill for car insur-
ance: pay as you drive auto insurance is an emerging
scheme that involves paying a rate proportional to the
number of miles driven, either linearly, or using several
billing brackets [4, 38, 41]. Of course, given that the
insurance company knows much about the customer, in-
cluding their address, if daily mileage data is provided,
much can be inferred about user’s daily activities, where
they shop, etc. [15, 29, 30]. The user in this scheme
performs a calculation on their own data, but of course
the insurance company wants to prevent cheating. Zero-
knowledge proofs provide a way to ensure both privacy
and integrity, which involves performing the billing com-
putation on the user’s hardware (on the client), perhaps,
monthly, and providing the insurance company with 1)
the final bill and 2) a proof of correctness of the account-
ing calculation, which can be verified by the insurance
company (on the server) [4, 18, 35, 39].

What we did: In this paper, we present ZØ, a com-
piler that consumes applications written in a subset of C#
into code that produces scalable zero-knowledge proofs
of knowledge, while automatically splitting applications
into distributed code, to be executed on two (or more)
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execution tiers. We are building on very recent develop-
ments in zero-knowledge cryptographic techniques [16,
31], exposing to the developer the ability to take advan-
tage of these advances. ZØ builds detailed cost models
of the code regions that require ZKPK, and uses exist-
ing zero-knowledge back-ends with varying performance
characteristics to select the most efficient translation, by
formulating and solving constrained numeric optimiza-
tion problems. Our cost modeling takes advantage of the
strengths of both back-ends, while avoiding their weak-
nesses, both for local and global (distributed) optimiza-
tion. Using a set of realistic applications that perform
tasks such as distributed data mining and crowd-sourced
data aggregation, we demonstrate ZØ’s ability to produce
privacy-preserving code which runs significantly faster
than previously possible.

High-level goals: ZØ aims to provide an attractive com-
bination of high-level goals of privacy, integrity, expres-
siveness, and performance. While the first two goals
are achieved through the use of zero-knowledge, to sup-
port ease of programming and expressiveness, ZØ ac-
cepts (a subset of) C#, a widely-used general purpose
language as input that can run in many settings. Of
course, we are not tied to C# and could support an-
other high-level language such as JavaScript, Java, or
C++. Our use of a general-purpose language allows de-
velopers to include hundreds or thousands of lines of C#
or other .NET code, allowing the construction of full-
featured GUI-based distributed applications that support
zero-knowledge instead of small examples written in a
domain-specific language.

To enable distributed programming wherever .NET
code can run, ZØ supports automatic tier-splitting, in-
spired by distributing compilers such as GWT [20] and
Volta [24]. We primarily target client-server computa-
tions (two tiers), although other options such as P2P are
also supported by ZØ. Code produced by ZØ can be run
on desktops, in the cloud, on mobile devices (Windows
Phone) and on the web (Silverlight).

Applications: Much of the inspiration for ZØ came
from our desire to be able to use ZKPK techniques to
build applications directly analogous to some widely-
deployed commercial products, as opposed to toy bench-
marks. In our studies detailed in Section 7, we show
how they can be (re-)built in a privacy- and integrity-
preserving way. For example, our FitBit study was in-
spired by wireless activity tracking devices manufactured
by FitBit (fitbit.com) and Earndit (earndit.com).
The Slice study was inspired by purchase tracking soft-
ware from Slice, Inc. (slice.com). The study Waze app
was inspired by Waze, a popular crowd-sourced, real-
time traffic app for mobile platforms (waze.com).

Contributions: We make these contributions:

• This paper proposes ZØ, a distributing compiler that
allows developers to create highly performant, large
distributed applications, while preserving both privacy
and integrity. ZØ uses precisely calibrated cost mod-
els to choose which underlying zero-knowledge back-
end to employ. Based on the cost model, ZØ statically
determines the appropriate splitting perimeter for the
application to achieve best performance and rewrites
it to be run on multiple tiers.
• Developer: ZØ is designed to be easily accessi-

ble to a regular developer; to this end, we expose
zero-knowledge functionality via LINQ, language-
integrated-queries built into .NET. We demonstrate the
expressiveness of the ZØ approach by developing six
case studies directly inspired by commercial appli-
cations which we hope will become benchmarks for
zero-knowledge tools, ranging from personal fitness
tracking (Fitbit) to crowd-sourced traffic-based rout-
ing (Waze), to personalized shopping scenarios.
• Cost modeling: We develop cost models for the indi-

vidual back-ends, allowing us to perform global cross-
tier optimizations. Our cost-fitting models provide
an excellent match with the observed performance,
with R2 scores between .98 and .99.
• Speedup: We evaluate ZØ on six complex real-life

large-scale applications of zero knowledge, focusing
on latency and throughput of zero-knowledge tasks.
Our global optimizer is fast, completing in under 3
seconds on all programs. ZØ produces code that
achieves as much as 40× speedups compared to state-
of-the art zero-knowledge systems. We also find that
ZØ is able to effectively optimize across tiers in a
distributed application: while the code it generates
may be slower on one tier (we observed one case that
was 2× slower for the server), the savings at other tiers
are always greater (e.g., 4× faster on the client).
• Scale: At scale, existing zero-knowledge compilers

often produce code that fails to run in a reasonable
amount of time, or exhaust system resources during
compilation. In these cases, ZØ is the only solution
that is able to provide a working application.

Paper Organization: The rest of the paper is organized
as follows. Section 2 provides motivating examples and
some background on zero-knowledge. Section 3 gives
an overview of the ZØ approach. Section 5 describes
the ZØ compiler implementation. Section 4 talks about
cost models and both local and global optimizations ZØ
performs. Section 5 describes ZØ implementation. Sec-
tion 6 discusses how ZØ translates C# into ZK proof-
generating code. Section 7 presents six case studies.
Section 8 describes our experimental evaluation. Re-
lated work is discussed in Section 10 and Section 11
concludes the paper. The PDF version of this paper has
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1 public class LoyaltyCard : DistributedRuntime

2 {

3 // Local variable declarations

4 [Location(Client )] IEnumerable <int > shophist;

5 [Location(Client )] IEnumerable <int > items;

6 IEnumerable <Triple > automaton;

7 IEnumerable <Pair > transducer;

8

9 public void Initialize(string [] args)

10 {...}

11

12 public void DoWork(string [] args)

13 {

14 var discount =

15 GetDiscounts(shophist , items ,

16 automata , transducer );

17 ApplyDiscount(discount );

18 }

19

20 [Location(Client )]

21 IEnumerable <Pair > GetDiscounts(

22 [MaxSize(Purchases )] IEnumerable <int > history ,

23 [MaxSize(Items)] IEnumerable <int > items ,

24 [MaxSize(Edges)] IEnumerable <Triple > automata ,

25 [MaxSize(States )] IEnumerable <Pair > transducer)

26 {

27 ZeroKnowledgeBegin ();

28 // Check that the history is in ascending order

29 var historyAscendingCheck = history.Aggregate(

30 0,

31 (last , curel) => check(last <= curel ));

32 // Get the "discount state"

33 var purch_state = history.Aggregate(

34 0,

35 (state , purch) =>

36 automaton.First(

37 trans => (trans.fld(1) == state) &&

38 (trans.fld(2) == purch )).

39 fld (3));

40 var discount = history.Aggregate(

41 new Pair(purch_state , 0),

42 (state , purch) =>

43 new Pair(

44 // Get the next automata state

45 automata.First(

46 trans => (trans.fld(1) == state.fld (1))

47 && (trans.fld(2) == purch )).

48 fld(3),

49 // Total the current state discount

50 state.fld(2) + transducer.First(

51 edge => edge.fld(1) == state.fld (1)));

52 ZeroKnowledgeEnd ();

53

54 return new IEnumerable <Pair >( discount );

55 }

56

57 [Location(External )] void ApplyDiscount (...)

58 {...}

59 }

Figure 1: Example application: a personalized retail loyalty card.

an with additional diagrams to supplement
the main text.

2 Background
To explain the goals of ZØ concretely, we will demon-
strate its functionality on a smartphone application with
conflicting privacy and integrity needs.

2.1 Example: Retail Loyalty Card

Figure 1 shows the ZØ code for a personalized retail loy-
alty card mobile app, with functionality similar to Safe-

❶ 

❷ signed purchase transaction

discount claim + ZKPK

transcations

100

Figure 2: Personalized loyalty card application.

way’s “Just for U” application or Walgreens’ iOS appli-
cation. Each time the customer reaches the check-out
line, this application interacts with the retail terminal in
a bi-directional exchange of information. The exchange
takes place using the phone’s built-in NFC sensor.

First, the application sends a discount claim to the re-
tail terminal, pertaining to the items the customer is about
to purchase. This discount is computed based on the
customer’s previous purchases, using personalization to
provide enhanced value and incentive for the customer.
Zero-knowledge proofs are supplied to ensure the pri-
vacy of the customer’s shopping history, without sacri-
ficing the trustworthiness of their discount claim.

Second, the terminal sends a list of purchases to the
client, corresponding to the current check-out transac-
tion. This list, along with the customer’s other previous
purchases, will be stored in a client-side database used to
compute a discount the next time the user shops with this
retailer.

Application Code: Figure 1 contains C# code for com-
puting the core functionality of this application: using
the customer’s purchase history to produce a discount,
and sending that discount to the retail terminal. It is
important to notice that this is standard C#, capable of
seamless incorporation into larger bodies of C# code. In
fact, ZØ extends the standard C# compiler, and only ap-
plies specialized reasoning to classes that inherit from
ZØ’s DistributedRuntime class. All of the UI and ex-
ternal library code can remain in the application, without
affecting the performance and functionality of ZØ. This
allows ZØ to scale to large applications with arbitrary
legacy dependencies, provided that the sections requiring
zero-knowledge reasoning are localized and moderate in
size. Several important points bear mentioning.

First, of the four functions, two of them, which
we call worker functions, contain location annotations:
GetDiscounts is constrained to execute on the client
(e.g., the user’s smartphone), and ApplyDiscount to
External (e.g., the retail terminal). ZØ generates sep-
arate object code for each of these locations, and inserts
code to handle the network transfer and data marshalling
for any dependencies between these two functions. In or-
der to streamline the code generated by ZØ, the worker
functions must always return void or IEnumerable ob-
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jects, which ZØ’s underlying runtime is optimized to
quickly marshall and transfer.

Second, the target functionality is computed from the
main function DoWork, which is called after Initialize.
Initialize gives the application an opportunity to pre-
pare the class’s local state by reading sensors, buffering
data, etc., and can contain arbitrary C# code. DoWork
is more constrained: it can contain a sequence of calls
to worker functions, with no intermediate local compu-
tations, branching statements, or loop statements. This
allows ZØ to efficiently compute the dependencies be-
tween different tiers. In this case, ZØ determines that the
return value of GetDiscounts (computed on the smart-
phone) is always used by ApplyDiscount (computed on
the retail terminal), and inserts code to package and send,
or receive and unpack, the necessary data as well as any
accompanying zero-knowledge proofs.

Third, the main code is located in GetDiscounts,
which takes a list of the user’s previous purchases
(history), the user’s current check-out items (items),
and a finite-state transducer (automata and transducer),
and produces a discount dollar value for transfer to the
retail terminal. The transducer is produced by the re-
tailer, and is designed to associate past purchases to items
that the customer may be interested in buying in the fu-
ture; the details of designing the transducer are beyond
the scope of this work. GetDiscounts begins by check-
ing that the purchases are given in ascending order, by
their ID numbers; this is a simple optimization that al-
lows the retailer to minimize the size of the transducer.
This check is performed using LINQ’s Aggregate oper-
ator, and ZØ’s check function, which behaves like an
assertion. It then proceeds to traverse the transducer’s
finite-state machine using the customer’s shopping his-
tory, effectively loading the history into the transducer’s
memory in preparation for emitting discount values.

Finally, the customer’s current items are processed by
traversing the finite-state machine, starting in the final
state of the previous traversal, and summing the output
of the transducer relation. The final sum is returned to
DoWork as a discount claim.

Zero-knowledge: The entirety of GetDiscounts is
computed in zero-knowledge, as indicated by the
ZeroKnoweldgeBegin() and ZeroKnowledgeEnd() annota-
tions. Notice that each statement of this method con-
sists of a LINQ query, giving the computation an overall
functional form, without using language features such as
references, loops, or conditionals. This is necessary to
accommodate faithful translation into code that produces
zero-knowledge proofs using the zero-knowledge back-
ends discussed in Section 2.2. However, the programmer
is still able to express computations in this fragment of
standard C#, without dealing with the overhead of inter-
language binding between the engines and the main pro-

gram, and without needing to learn the different input
languages understood by each engine.

Finally, a few subtle details of this code bear mention-
ing. Two of the class variable declarations, shophist
and items, have location annotations that tell ZØ that
they should not leave the customer’s smartphone with-
out first being processed by zero-knowledge code. This
gives the programmer an extra degree of assurance of
the code’s privacy properties, letting her treat the zero-
knowledge code regions like declassifiers with additional
integrity guarantees. Finally, notice that the parameters
to GetDiscounts contain MaxSize attribute annotations.
These optional size annotations allow the ZØ compiler
to do precise cost modeling, as explained in Section 4.

2.2 Zero-Knowledge Back-ends

ZØ relies on two zero-knowledge back-ends, Pinoc-
chio [31] and ZQL [16], to produce code that balances
privacy and integrity. Each of these back-ends takes an
expression, in the form of executable code in a high-level
source language, and produces object code that computes
the expression over dynamically-provided inputs while
building zero-knowledge proofs for the expression on the
given input. These engines have very different character-
istics that affect performance and usability in different
ways, which we outline here.

Pinocchio: Pinocchio utilizes a novel underlying com-
putation model, Quadratic Arithmetic Polynomials, to
evaluate an expression and produce zero-knowledge
proofs [31]. For some computations, it yields perfor-
mance gains several orders of magnitude beyond pre-
vious systems that gave similar functionality, producing
proofs of a constant size regardless of the size or struc-
ture of the target expression.

The expression language supported by Pinocchio is a
strict subset of C, and the object created for evaluation is
an arithmetic circuit [31]. The fact that the target circuit
must be finite, and cannot encode side-effects, imposes
necessary conditions on the parts of C that are available.
Loops and conditionals are “unrolled” during compila-
tion, so all loops must have static bounds. Likewise,
pointers and array indices must be compile-time con-
stants, or simple loop variables (as these are unrolled),
thus simplifying cost modeling. For this paper we used a
publicly released version of Pinoccio 0.4 obtained from
the public distribution1.

ZQL: ZQL utilizes several fairly recent advances in the
theory of zero-knowledge proofs to produce efficient ver-
ified private code that operates over functional lists [16].
The underlying cryptographic machinery used by ZQL
is more traditional than that of Pinocchio, relying heav-
ily on homomorphic commitment schemes to provide its

1
https://vc.codeplex.com/downloads/get/714129



USENIX Association  23rd USENIX Security Symposium 913

60*expOp + 1800*expOp + 
2*hashOp + 30*hashOp + 
900*hashOp + 30*hashOp + 
30*mltEOp + 900*mltEOp + 
2*sigSignOp

900*eqOp + expOp + 60*expOp + 
6300*expOp + extendOp + 
60*extendOp + 4500*extendOp + 
60*extendOp + 30*mltEOp + 
60*mltOp + 60*subOp + 
2700*invEOp + 3600*mltEOp +
5400*mltOp + 900*sIntNumOp + 
3600*subOp + 6*sIntNumOp

eqOp + 3*expOp + 90*expOp + 
9900*expOp + extendOp + 
30*extendOp + 2700*extendOp
+ 2*hashOp + 30*hashOp + 
900*hashOp + 30*hashOp + 
60*mltEOp + 3600*invEOp + 
6300*mltEOp + 900*mltOp + 
1800*sIntNumOp + 900*subOp + 
mltEOp + 3*mltOp + 
6*sIntNumOp + 2*sigVerifyOp + 
3*subOp

60*expOp + 1800*expOp + 
2*hashOp + 30*hashOp + 
900*hashOp + 30*hashOp + 
30*mltEOp + 900*mltEOp + 
2*sigSignOp

900*eqOp + expOp + 60*expOp + 
6300*expOp + extendOp + 
60*extendOp + 4500*extendOp + 
60*extendOp + 30*mltEOp + 
60*mltOp + 60*subOp + 
2700*invEOp + 3600*mltEOp +
5400*mltOp + 900*sIntNumOp + 
3600*subOp + 6*sIntNumOp

eqOp + 3*expOp + 90*expOp + 
9900*expOp + extendOp + 
30*extendOp + 2700*extendOp
+ 2*hashOp + 30*hashOp + 
900*hashOp + 30*hashOp + 
60*mltEOp + 3600*invEOp + 
6300*mltEOp + 900*mltOp + 
1800*sIntNumOp + 900*subOp + 
mltEOp + 3*mltOp + 
6*sIntNumOp + 2*sigVerifyOp + 
3*subOp

1) Input is supplied as C# code, containing a 
mix of ZK blocks and regular blocks.

2) Cost modes for ZQL and Pinoccio are used 
to decide ZK runtime costs.

3) Appropriate ZK translations are generated 
in .NET IL.

4) Final .NET DLLs are produced for each tier
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30*expOp + 450*expOp + 
2*hashOp + 15*hashOp + 
225*hashOp + 15*hashOp + 
15*mltEOp + 225*mltEOp + 
2*sigSignOp

225*eqOp + expOp + 30*expOp + 
1575*expOp + extendOp + 
30*extendOp + 1125*extendOp + 
30*extendOp + 15*mltEOp + 
30*mltOp + 30*subOp + 
675*invEOp + 900*mltEOp + 
1350*mltOp + 225*sIntNumOp + 
900*subOp + 6*sIntNumOp

eqOp + 3*expOp + 45*expOp + 
2475*expOp + extendOp + 
15*extendOp + 675*extendOp + 
2*hashOp + 15*hashOp + 
225*hashOp + 15*hashOp + 
30*mltEOp + 900*invEOp + 
1575*mltEOp + 225*mltOp + 
450*sIntNumOp + 225*subOp + 
mltEOp + 3*mltOp + 
6*sIntNumOp + 2*sigVerifyOp + 
3*subOp

(fold
(fun (acc,i) ! ((let (_1, _2) 
= acc in _2),
(let (_1, _2) = acc in _1)
+ (let (_1, _2) = acc in 
_2)))
(1, 1) inputNums)

(fold
(fun (acc,i) ! ((let (_1, _2) 
= acc in _2),
(let (_1, _2) = acc in _1)
+ (let (_1, _2) = acc in 
_2)))
(1, 1) inputNums)
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Figure 3: ZØ architecture. ZQL and Pinoccio are used as sample back-ends for illustrative purposes.

guarantees. The expression language supported by ZQL
is a simple functional language without side effects, and
limited operator support. In a nutshell, ZQL supports
map and fold operations, as well as find operations over
tuples of integers. Boolean expressions can only be used
inside of find operations, and are currently limited to con-
junctions of equality tests; all forms of inequality are not
explicitly supported, although the authors plan to sup-
port these operations in future versions. In terms of arith-
metic, addition, subtraction, and multiplication are sup-
ported. Finally, multiple operations can be sequenced us-
ing classic functional let bindings. Although these con-
structs might seem modest at first blush, the ability to
perform table lookups using find allows for the evaluation
of logic gates, and the list-based map and fold operations
place no upper-bound on the size of the program’s input,
as in the case of Pinocchio. We obtained a version of
ZQL from its authors.

3 Overview
Figure 3 shows the architecture of the ZØ compiler. The
developer provides as input a set of C# source files,
which may include arbitrary regions of legacy and li-
brary code as well as functionality targeted towards zero-
knowledge proof generation. ZØ then enters a cost mod-
eling stage, analyzing the zero-knowledge regions, build-
ing performance models that characterize the cost of pro-
viding zero-knowledge proof generation and verification
code for each available zero-knowledge back-end. These
models take the form of polynomials over the size of the
input data to the zero-knowledge region in the original
C# application. ZØ then compares the models to deter-
mine which engine the application should use for each
C# statement in the region, and translates the C# code
(depicted in the zero-knowledge translation stage of Fig-
ure 3) into expressions understood by the appropriate
zero-knowledge engine. In the final output stage (Fig-

0	   50	   100	   150	   200	   250	   300	   350	   400	   450	  

Process	  a	  GPS	  Reading	  

Apply	  discount	  

Redeem	  workout	  

Z0	  
Pinocchio	  
ZQL	  

Figure 4: Comparison of times for several applications.

ure 3), ZØ decides how to split the application across
tiers to maximize performance, given privacy annota-
tions as well as relative costs for transmitting data and
computing at each tier.

This translation yields a separate module which is
callable from the original application, either as an
arithmetic circuit (Pinocchio) or standard .NET byte-
code (ZQL). Finally, ZØ partitions the original C# code,
along with the zero-knowledge modules compiled in the
previous step, into multiple applications to run at each
service tier. During partitioning, ZØ inserts code to per-
form communication, synchronization, data marshaling,
and zero-knowledge proof transfer in parallel to the orig-
inal application code. The resulting modules are standard
.NET bytecode that can be run on the proper tiers without
the need for additional specialized software.

Optimization& cost models: Even apparently straight-
forward applications like the personalized loyalty card
app discussed in Section 2.1 contain subtle character-
istics that might make zero-knowledge proof genera-
tion expensive. It is often the case that one zero-
knowledge engine offers significantly better performance
for a particular statement, and selecting the appropri-
ate engine for each computation in the zero-knowledge
region means the difference between a scalable, low-
latency implementation and one that requires hours or
days to execute.
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For the loyalty card application in Figure 1, it turns
out that the inequality comparisons are better handled by
Pinocchio, whereas the table lookups needed to execute
the transducer are very inexpensive when performed by
ZQL. A comparison of the times to perform the opera-
tion on the y-axis for several applications from Section 7
is shown in Figure 4. We can see dramatic differences
in performance between the back-ends, with the ZØ ap-
proach out-performing either of the two back-ends. ZØ
addresses these performance differences by building de-
tailed performance models for each statement in the zero-
knowledge region.
Distributed configuration: To support a variety of dis-
tributed scenarios, ZØ allows the developer to place
code on several different tiers, which are specified us-
ing the following tier labels: Client (end-user’s primary
device), External (provider’s servers), ClientShare (peer-to-
peer nodes), and ClientResource (additional hosts owned by
end-user). Tiers impose data confidentiality and integrity
constraints, as ZØ makes assumptions about the trust re-
lationships between tiers.

The figure in this paragraph shows these relationships;

C CS CR E

C
CS
CR
E

white cells indicate trust, and
gray the opposite. At compile
time, the user can modify the con-
figuration by specifying weights
on each tier label indicating the
relative cost of computation at that tier, as well as the cost
of communication between tiers. ZØ uses these weights
during optimization to determine the best placement of
code and data amongst the tiers, and are only necessary
to fine-tune the performance of certain applications; they
can be ignored and left at the default value of 1 by de-
fault. Data privacy constraints are given by the program-
mer by marking certain variables as private to a particu-
lar tier using the attribute [Private(TL)], where TL specifies
the tier to which the data is considered private (e.g., Client,
External, . . . ).

Note that by design, these annotations are lightweight:
they are only needed on (the few) variables that must be
kept confidential. Most can be declared without any an-
notations at all.

When ZØ compiles the application and runs a global
optimization described in Section 4.2 to place each
worker method on a specific tier, privacy annotations are
used in part to determine on which tiers a method may
reside. These constraints are hard, meaning that a pri-
vacy annotation that requires a less performant compila-
tion configuration will always be respected; if the pri-
vacy constraints conflict with each other, then compi-
lation will not terminate early. Privacy annotations are
propagated transitively using a local dataflow analysis,
so that dependent variables have matching annotations.
Threat model: Because of its reliance on zero-

knowledge back-ends, ZØ makes all of the assumptions
needed for security by ZQL [16] and Pinocchio [31]. The
result of ZØ compilation will be executed on one or more
tiers. Privacy is violated when the trust relationships
given in the previous section are violated. We assume
that tiers cannot learn information by means other than
direct communication, i.e. Server cannot obtain the list of
purchases through side channels, for instance, unless it is
directly shared by Client. Our applications that use secret
sharing (Waze and Slice in Section 7) also assume that
P2P clients do not collude.

4 Cost Models & Optimizations
This section discusses ZØ’s cost modeling approach to
optimizing zero-knowledge computations. As outlined
in Section 3, in many cases one zero-knowledge engine
will outperform the other on a particular computation by
a significant factor, giving ZØ a key opportunity to opti-
mize the code it produces. ZØ optimizes zero-knowledge
regions by building detailed performance models that
characterize the cost of building and verifying zero-
knowledge proofs in each engine. We are able to accom-
plish this with reasonable accuracy because the execution
depth of zero-knowledge regions is statically-bounded (a
necessary condition imposed by the underlying engines),
and the evaluation of zero-knowledge code universally
relies on a few primitive operations. This allows ZØ to
build static cost models as polynomials over the number
of primitive operations each region must execute.

Section 4.1 discusses local optimizations within a
given zero-knowledge region to decide which back-end
to use. Section 4.2 proposes a split for the entire applica-
tion designed for maximal performance.

4.1 Local Optimization

In order to build cost models for ZQL code, we execute
the F# “object code” generated by ZQL’s compiler sym-
bolically. Symbolic data is represented by polynomials
that characterize the size of the corresponding concrete
data, or structured sets of polynomials in the case of
structured data types. The symbolic operation for each
ZQL operation accumulates terms on a polynomial that
characterize the cost of that operation in terms of the size
of its input data, and returns a new polynomial that char-
acterizes the cost of producing of the result. Because
the execution depth of iteration commands is always a
polynomial function of the size of the inputs, and ZQL
programs do not contain branching, accumulating a cost
polynomial by symbolic execution necessarily accounts
for all of the operations contained in a ZQL program.

Recall that Pinocchio compiles C code into a circuit,
which is evaluated by a specialized runtime to produce
and verify zero-knowledge proofs. The Pinocchio run-
time executes roughly the same code to evaluate every
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ZQL Pinocchio
Setup Prover Verif. Keygen Prover Verif.

FitBit 0.01 1.81 0.10 0.39 0.20 0.00
Waze 0.11 0.29 0.25 0.04 0.02 0.00
Loyalty 0.03 0.35 0.11 0.31 0.20 0.00
Slice 0.06 0.41 0.32 0.05 0.03 0.00
Average 0.05 0.72 0.20 0.20 0.11 0.00

Figure 5: Absolute regression error (in seconds).

circuit, varying only on the number of times each opera-
tion is executed to handle every element of each input list
and every operation in the circuit. We build a set of static
polynomials that characterize the execution time of the
runtime in terms of the size of the input circuit, i.e., the
number of I/O wires and multiplication gates it contains.
For example, the cost of the verification stage is given by
the polynomial:

ExpMulB × NInputs + 12 × Pair + VerifyConst

In this polynomial, ExpMulB corresponds to the amount
of time taken to complete a multi-Exponentiation on the
Pinocchio’s base elliptic curve, NInputs to the number
of input wires in the circuit, Pair to the field pairing
cost [31], and VerifyConst to a fixed setup cost for the
verification stage. Similar polynomials are derived for
the other stages of Pinocchio’s runtime.

We use least-squares regression to derive coefficients
for all models except those for Pinocchio’s compute-
stage model, which contains a non-linear term cor-
responding to the O(n · log2n) runtime of polyno-
mial interpolation. To cope with the non-linearity in
Pinocchio’s compute-stage model, we use the Gauss-
Newton method [33] with at most 1,000 iterations and
a randomly-chosen starting point.
Cost-fitting results: To derive the necessary coefficients
for our models, we built a regression training applica-
tion in ZØ consisting of several basic operations likely
to appear in zero-knowledge applications. The training
application takes as input a list of integers, and computes
an aggregate sum, scalar product, second-degree polyno-
mial, boolean mapping, and table lookup on the list. We
compiled this application to use both all-ZQL and all-
Pinocchio zero knowledge computations, and ran it ten
times for each zero-knowledge engine using a fixed list
size (n = 100). We performed regression to learn coeffi-
cients corresponding to the execution time of each primi-
tive operation appearing in the cost model. We then com-
piled a representative subset of the applications described
in Section 7 to use either all-ZQL or all-Pinocchio zero-
knowledge computations, executed each zero-knowledge
region ten times, and recorded the deviation between
execution time predicted by the regression-trained cost
models and the mean execution time observed over all
experiments for a given application. Figure 5 presents

the prediction error of the trained cost models in terms
of the total zero-knowledge execution time in seconds.
Note that the models derived for Pinocchio are gener-
ally more accurate in terms of relative error than those
for ZQL, but the error in both cases is quite small: the
greatest Pinocchio error is 0.39 seconds (on FitBit’s key
generation routine), while the greatest ZQL error is 1.81
seconds (on FitBit’s prover routine). The coefficient
of determination (R2) for each performance model is at
least 0.98, indicating a precise fit of the models to the
execution time.

Summary: To summarize, ZØ is able to build perfor-
mance models of zero-knowledge regions that predict ac-
tual execution time within tenths of a second in most
cases, which provides ample accuracy to make a cor-
rect decision when selecting zero-knowledge engines at
compile-time.

4.2 Global Optimization

ZØ builds cost polynomials to characterize the expense
of each zero-knowledge operation in the target appli-
cation. However, selecting the least expensive engine
for each operation is oftentimes not as straightforward
as evaluating each polynomial at a target input size and
choosing the engine corresponding to the lesser value —
it may be the case that a less expensive operation on the
prover’s side requires a more expensive operation on the
verifier’s side, and depending on the application compu-
tation may be more expensive for the verifier. Alterna-
tively, there may be several ways to partition an applica-
tion between tiers while preserving the privacy of vari-
ables at each tier, with each partition yielding a different
trade-off between computation and communication cost.
To address these concerns, ZØ performs global optimiza-
tion on the application to balance the cost of computation
and communication among differentiated tiers.

Performance of global optimization: We
implemented our global optimization al-
gorithm as part of the ZØ compiler.

Constr. Time

FitBit 179 1.50
Loyalty 38 0.01
Waze 263 2.65
Sice 230 2.14

Figure 6: Global opti-
mization performance,
showing solver time in
seconds for the bench-
marks in Section 7.

We use CCI2 to traverse the AST
of the target code, and our cost
modeler to generate the objective
function.

To perform the constrained
optimization needed to find an
optimal solution, we used the
Nelder-Mead method [33] with at
most 100 iterations. We looked
for integer solutions over the full
space of tier splittings.

The results are presented in Figure 6. Each applica-
tion resulted in between 30 and 300 constraints, and the
constraint solver found an optimal solution in under three
seconds for all applications. Because Nelder-Mead is an
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Figure 7: Splits produced by global ZØ optimizations, for FitBit and
Slice. For each phase of the computation, grey cells indicate computa-
tion location (or tier) chosen by the optimizer, with P and Z denoting
ZQL and Pinocchio back-ends, respectively.

approximate numerical optimization algorithm, it is pos-
sible that it would return a local minimum.

However, we checked the solution returned for each
application, and verified that it corresponded to the true
global minimum. Figure 7 shows examples of ZØ-
computed global splits for two representative applica-
tions.

5 Implementation
In order to make privacy analysis, zero-knowledge trans-
lation, and aggressive optimization feasible for the pro-
grammer, ZØ supports a subset of C# that includes cer-
tain LINQ (language integrated queries [34]) functional-
ity and support for external code. To ensure that the ex-
ternal code does not interfere with the privacy, integrity,
and optimization goals of ZØ, the contexts in which it is
allowed are limited in some cases. The syntax accepted
by ZØ is summarized in Figure 8.

The main program is structured into three parts: an
initialization routine (InitBlock, contained in a method
Initialize), the main body (MainBlock, contained in a
method DoWork), and the worker methods (MethodDef).
The initialization routine may consist of a sequence of
arbitrary C# assignment statements, including calls to
methods in external libraries not written in ZØ’s input
language. The main block consists of a sequence of
method calls, assignment statements, and sleep state-
ments. Each method call in the main body must be to
a worker method defined in the ZØ application.

Zero-knowledge regions: The body of each worker
method can contain calls to external methods, standard
C# arithmetic and Boolean operations, and a subset of
the standard LINQ data processing operations. Regions
comprised of LINQ operations can be converted into
zero-knowledge proof-generating object code using ei-
ther available zero-knowledge engine (ZQL or Pinoc-

Main program definition
Program ::= InitBlock MainBlock MethodDef∗TypeDef∗

InitBlock ::= CSMethodSig VarDecl∗

MainBlock ::= CSMethodSig WorkerStmt+

MethodDef ::= CSMethodSig (ExternCall | LinqStmt)+

TypeDef ::= class Id { CSFieldDef + }
CSMethodSig ::= PrivacyAnnot CSType Id(. . .){ . . . }

Statements
WorkerStmt ::= SleepStmt | CallStmt | ZKAnnot
SleepStmt ::= WorkerSleep(Integer, Integer, Integer)
CallStmt ::= (Id =)? MethodCall
ExternCall ::= return External.Id“(”Id∗“)”
LinqStmt ::= (Id =)? LinqExpr
VarDecl ::= (PrivacyAnnot | SizeAnnot)? Id(= CSExpr)?

Expressions
Lambda ::= “(”Id∗“)” ⇒ LambdaExpr
LambdaExpr ::= MethodCall | ArithOrBoolExpr

| FieldExpr | NewObj
LinqExpr ::= LambdaLinqExpr | ZipLinqExpr
LambdaLinqExpr ::= Id.LambdaLinqId(Lambda)
LambdaLinqId ::= Select | Aggregate | First
ZipLinqExpr ::= Id.Zip(Id, NewAnonObj)
MethodCall ::= Id “(”LambdaExpr∗“)”
NewObj ::= NewAnonObj | NewStaticObj
NewAnonObj ::= new {(Id = LambdaExpr)+}
NewStaticObj ::= new MethodCall
FieldExpr ::= Id.fld〈Type〉(Int)

Annotations
ZKAnnotat ::= ZeroKnowledgeBegin()

| ZeroKnowledgeEnd()
PrivacyAnnot ::= [Private(TL)]
SizeAnnot ::= [MaximumInputSize(Int+)]

Figure 8: BNF syntax for the subset of C# supported by ZØ. Entities
prefixed with CS correspond to the corresponding C# syntax entity.

chio). The supported LINQ operations include Select, Ag-

gregate, First, and Zip. Select provides the ability to project
the data in one list into a new list, while performing
arithmetic and Boolean operations on each item in the
original source list. Aggregate provides the ability to com-
pute iterated functions over a list, maintaining an order-
sensitive state through the iteration, which is eventu-
ally returned as the result of the operation. First pro-
vides the ability to perform searches over lists, using a
programmer-defined predicate to determine which ele-
ment of the list to match. Finally, Zip provides the abil-
ity to combine multiple lists, applying arithmetic and
Boolean operations to each pair of items from the origi-
nal source lists.

Zero-knowledge regions are specified by the program-
mer using a pair of methods ZeroKnowledgeBegin and Ze-

roKnowledgeEnd. Because zero-knowledge computations
provide both integrity and privacy, these annotations
serve a dual purpose. First, the programmer is denot-
ing that the variables which are live [1] at the end of a
zero-knowledge region are trusted across all tiers: the
values have accompanying proofs that any tier can exam-
ine to verify that the computations in the zero-knowledge
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region are performed correctly. Second, these regions
serve to declassify private values that are used as in-
puts to a zero-knowledge region; this is in line with
the approach taken by ZQL [16]. Because the inputs to
zero-knowledge regions are kept private, except in cases
where the computations are in some way invertible, the
output values that depend on these inputs are considered
public to all tiers.

Formal reasoning about composing proofs obtained
from different zero-knowledge back-ends remains an av-
enue for future work. Because this work involves ex-
perimentation with very recent cryptographic tools, we
are not aware of a readily-available composition theorem
that would support reasoning about Pinocchio and ZQL.
Code splitting: ZØ partitions the given target appli-
cation into code that runs on multiple tiers, inserting
marshalling and synchronization code [20, 24] as nec-
essary to ensure that the compiled functionality matches
that specified in the original input program. The rewrite
process is implemented as a bytecode-to-bytecode trans-
formation within the CCI 2 rewriting framework for
.NET [27]. We assume that the target tier for each
method is provided as input to the compiler by the op-
timizer, as described in Section 4.2.

Code partitioning between tiers takes place at method
granularity, and data partitioning is determined by the
chosen code partition; data is transmitted between tiers
on-demand, with all of the data represented by a variable
used by a particular method being transmitted at once
as it becomes available. Only worker methods can be
split between different tiers, so all external code refer-
enced by the application is present on each tier. This al-
lows the compiler to avoid a potentially expensive deep-
dependency analysis of the referenced external code,
while keeping the dependency analysis of the target ap-
plication localized to DoWork.
Runtime support: The architectural principle that
guides ZØ’s tier-splitting algorithm can be summarized
as follows: whenever possible, delegate the data com-
munication and synchronization operations necessary to
support functionality to a runtime API. Each application
compiled by ZØ is linked to a runtime library that pro-
vides an API for communicating data and synchroniza-
tion between separate tiers. When the compiler performs
tier splitting, rather than inlining complex code to per-
form the tasks, simple calls to this API are inserted to
perform the “heavy lifting” of tier crossings at runtime.

6 Translating LINQ to Zero-Knowledge
Our compiler translates specified statements containing
LinqExpr components in the worker methods into code that
generates zero-knowledge proofs of knowledge. To ac-
complish this, ZØ relies on two zero-knowledge back-
ends: ZQL [16] and Pinocchio [31]. Each back-end is

itself a compiler, accepting as input an expression of a
computation, and producing executable code to produce
a zero-knowledge proof of the computation for a given
set of inputs. As such, each back-end supports its own
expression language with significantly different charac-
teristics. The challenge addressed in this section is the
translation of the common subset of LINQ supported by
ZØ into the expression languages of these back-ends.

Figure 1 in the gives an overview of
our back-end compilation process for ZQL and Pinoc-
chio. The details differ widely for each back-end, con-
verging only on the first and last steps which corre-
spond to lifting low-level intermediate language code
into a higher representation and inserting I/O marshal-
ing instructions before and after the compiled object
code. This divergence of functionality is necessary given
the differences between the two expression languages:
ZQL’s expression language is essentially a small subset
of pure standard ML, whereas Pinocchio’s is a subset of
C with restrictions on data types and loop bounds. Be-
cause the subset of LINQ functions supported by ZØ cor-
responds to a small core of functional expressions, trans-
lating from ZØ to Pinocchio is much more involved than
to ZQL.

6.1 Pinocchio

The structure of C code is substantially different from
the types of LINQ queries allowed by ZØ, and Pinoc-
chio’s additional restrictions make translation more com-
plicated yet. First, all list sizes used in the Pinocchio ex-
pression must be statically-declared, and any operation
over a list requires a static value to bound the correspond-
ing loop statement. The LINQ commands in ZØ do not
have these restrictions, so we must find a way to derive
the needed information. Second, many expression forms
in ZØ’s LINQ commands have no corresponding expres-
sion form in C: they must be converted into statements
whose side-effects are available as sub-expressions to en-
closing expressions.

To perform translation to Pinocchio, ZØ follows a
three-step process. First, static values for the size of each
identifier that refers to a list value are derived using a
constraint solver. The basis for this computation is a set
of annotations provided by the developer, which indicate
upper bounds on the sizes of certain input lists.

List Size Resolution: As previously discussed, Pinoc-
chio requires static sizes for all lists and list operations,
so our translation procedure requires a mapping from
identifiers (for those that refer to list objects) to size con-
stants. To produce such a mapping, we use a constraint
resolution procedure over a set of bounding constraints
generated by traversing the source expression. The rules
for generating the constraints are given in Figure 9. Each
rule is of the form Γ, Syntactic Element ⇒ Γ′, where Γ
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con(expr) =

{id.elt} when expr is id.First(. . .)
{id1, id2} when expr is id1.Zip(id2, . . .)
{id} when expr is id.Aggregate(. . .)
{id} when expr is id.Select(. . .)
{id.n} when expr is id.Fld(n)

con(id) = {id}

C-FieldDef1
ϕ ≤ id = x ∧ id.elt = 1

Γ, [MaximumInputSize(x)] IEnumerable〈T〉 id ⇒ Γ ∪ {ϕ}

C-FieldDef2

ϕ =
id ≤ x ∧ id.elt ≤ n1 ∧ id.elt.elt
≤ n2 ∧ · · · ∧ id.(elt)k ≤ nk ∧ id.eltk+1 = 1

Γ, [MaximumInputSize(x, {n1, . . . , nk})] IEnumerable〈T〉 id ⇒ Γ ∪ {ϕ}
C-Method

id(id1, . . . , idn) is a call site

Γ,Type id(id f
1 , . . . , id f

n ) { . . . } ⇒ Γ ∪ {id f
1 ≥ id1, . . . , id

f
n ≥ idn}

C-New
Vi = con(expri)

Γ, new id(expr1, . . . , exprn)⇒ Γ ∪⋃1≤i≤n{
∧

v∈Vi id.i = v}

C-Basic
Command ∈ {Select,First}

Γ, id1.Command(id2 → · · · )⇒ Γ ∪ {id1.elt = id2}
C-Aggregate

Γ, id1.Aggregate((id2, id3)→ · · · )⇒ Γ ∪ {id1.elt = id3}

C-Zip
Γ, id1.Zip(id2, (id3, id4)→ · · · )⇒ Γ ∪ {id1.elt = id3 ∧ id2.elt = id4} C-Assign

V = con(expr)
Γ, id = expr ⇒ Γ ∪ {∧v∈V id = v}

Figure 9: List size constraint generation rules. Γ is a set of constraints.

and Γ′ are sets of constraints. The constraints for each
LINQ command are straightforward. The outcome of Se-

lect, Aggregate, and Zip operations has the same size as the
input variable(s). The outcome of a First statement has the
size of the elements contained in the input list.

The rules are invoked by a procedure that traverses
each node of the program’s AST, and performs syntac-
tic matching on the entity represented by each node and
the Syntactic Element of each rule. As the traversal pro-
ceeds, a list of constraints is maintained, and updated
when rules match AST nodes. When the AST traver-
sal completes, the set of constraints generated is passed
to Z3 for resolution. If the constraints are satisfiable,
Z3 will produce a model that associates constraint vari-
ables to integers that satisfy the original constraints. This
model contains all of the information needed to derive
the needed mapping between identifiers and list sizes.

Type Generation and Function Isolation: Pinocchio
requires static sizes on all arrays and loop bounds. To
accomplish this, ZØ creates a new struct type for each
list with a distinct base type and size in the original pro-
gram. Each new type has two fields: a static array and a
constant defining the size.

Once types for each identifier are established, each
sub-expression in the source statement is converted to a
function body. To see the need for this step, consider
the statement x.Select(el → el.Select(. . .)). C has no ex-
pression form for the functionality needed by the Select

command, so both expressions must be converted into
loop statements. Rather than placing the loop statements
in the same method body and carefully managing side
effects and sequencing with other sub-expressions, we
isolate the emitted code for the inner Select in a separate
function, and emit a call to the new function in its place
in the context of the outer Select expression.

The statements generated for each LINQ command are
straightforward translations of their defined behavior into
basic C; in general, the input loop is iterated over, and the

lambda passed to the command is invoked over each ele-
ment. Field lookups, new object construction, and func-
tion calls are rewritten to their C equivalents.

6.2 ZQL

Recall that we only attempt to convert LinqStmt statements
into zero-knowledge, so there are four primary func-
tions to convert, in addition to a few additional expres-
sion forms. By no coincidence, the four primary LINQ
functions correspond closely to the operations supported
by ZQL. Figure 2 in the gives a set of
rewrite rules that can be used to translate a LinqExpr to
ZQL’s expression language. Select, Aggregate, Zip, and First

calls are translated to map, fold, map2, and find expressions.
Lambda definitions and functions calls are translated
compositionally, by first translating sub-expressions and
then building a new construct in the target language. Ob-
ject creation using new is translated into tuple construc-
tion. Recall that user-defined types in a ZØ program
must expose a single constructor that assigns all fields
of the type; field names are translated into a tuple order
using the constructor signature. Similarly, field accesses
using fld are translated into a let binding that returns the
appropriate tuple component; the translation consults the
target identifier’s type constructor to deduce the number
of fields in the type.

7 Motivating Case Studies
This section presents six case studies in ZØ, that are
the focus of our experiments in Section 8. Similarly
to [16], we assume that the sensor readings devices can
are trusted and untampered with, and come signed by
their producer, but the machine or mobile phone (Client

tier) that performs the distance computation is not.

1) Walk for Charity with FitBit: Several programs ex-
ist for paying users for the amount of physical exercise
they perform, either directly in the form of rewards, or in-
directly by making charitable donations on their behalf,
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such as earndit.com. This works by requiring users
to log their exercise habits using a FitBit or other sensor
device to measure the distance the user walks, runs, or
bikes, and send the logs to a centralized server.
Privacy: The user may not want to reveal their detailed
physical activities or exercise route to a relatively un-
trusted third party.
Integrity: The service is spending money on the basis of
distance derived from sensor logs. If the distance com-
putation can be subverted, the possibility for fraud arises,
analogously to pay as you drive insurance [4, 38, 41].
Solution: Keep all sensor readings local to the user’s
machine (laptop or mobile device), perform the distance
computation locally, on the client, send the result of
the distance computation to the centralized third-party
server. Use ZKPK to ensure that the distance compu-
tation is performed correctly. This approach is similar to
what has been advocated for smart metering [35].
2) Supervised Studies in Social Sciences: Many scien-
tific studies, especially in medical and social sciences,
require subjects to wear sensors and undergo protocols
that provide information about their physiological and
psychological state. A study that seeks to understand the
effect of common workplace events on worker’s stress
levels might require a participant to wear a galvanic skin
response sensor and a camera to detect face-to-face in-
teractions.
Privacy: Participants may have concerns about the use of
their physiological measurements or, most prominently,
the processing of images taken from their cameras.
Integrity: These studies typically involve payment given
to subjects. Subjects concerned about their privacy, or
those who simply do not want to wear intrusive sensor
devices, have an incentive to fake their data.
Solution: Have all sensors associated with the study re-
port readings to the subject’s machine (desktop or mobile
phone). This machine performs aggregate computations
relevant to the actual study on the readings, reporting re-
sults and discarding the raw sensor readings. ZKPK is
used to ensure that the readings are processed correctly.
3) Personalized Loyalty Cards: Many of today’s large
retailers such as Target, BestBuy, etc. use customer loy-
alty cards to encourage repeat visits. Typically, the cus-
tomer must enroll in a loyalty program, and receive a
card that can be applied to receive discounts in future
visits. Recently, certain retailers (e.g., Safeway) have be-
gun personalizing this process by using the customer’s
past purchase history (available because of the associ-
ation between checkout and loyalty card) to create dis-
counts available only to one particular customer. De-
pending on the retailer, these discounts can be sent to
the customer’s mobile phone, or applied automatically at
checkout.

Privacy: Many people are not comfortable with a retailer
tracking their purchases. This is most readily illustrated
by a recent scandal with Target discovering that a teenage
girl was pregnant before her parents did [14].

Integrity: Retailers offer discounts on the basis of past
purchase history. If a customer could fake a purchase
history, they might be able to obtain a discount for an
item of their choosing. Moreover, having a reproducible
strategy for “generating” discounts might create a seri-
ous problem for the retailer, similar to those experienced
by some retailers that were overly generous in offering
Groupons [32].

Solution: The solution is discussed in Section 2.1.

4) Crowd-sourced Traffic Statistics: Several mobile
applications such as Waze (waze.com) and Google Maps
provide traffic congestion information to end-users based
on the combined GPS readings of the users.

Privacy: Users do not want to share their location with
the app’s servers, or the general public (in the case of a
distributed protocol).

Integrity: The app needs reliable GPS readings from
users to provide its core functionality. If users wish
to “game” the system by providing fake GPS readings
while receiving the end-product, the integrity of traffic
data is compromised for everyone.

Solution: Let the users keep their GPS readings local,
and take part in a distributed protocol to compute local
density information for transmission to the app’s central
server. Clients represent their location on a map using a
vector, represented as a set of secret shares, which can
be added to the other clients’ vector shares to derive the
overall traffic density map. When each client sends their
summed shares to the server, it can reconstruct the den-
sity map by combining the shares, as detailed in the ap-
pendix.

5) CNIDS: Collaborative intrusion detection (CNIDS)
has long been a goal of security practitioners [25]. In
the CNIDS scenario, multiple (distrustful) organizations
share the results of their network intrusion detection sen-
sors, to provide their peers with advanced warning about
possible threats. A practical approach involves sharing
IP blacklists: when an IP generates a valid NIDS alert on
one organization’s network, the IP is recorded and sent
to the other participating organizations.

Privacy: NIDS operate on highly sensitive data — raw
network traces. Organizations participating in CNIDS
do not want to share their traces with other organizations,
and in many cases, may be prohibited from doing so by
law or organizational policy.

Integrity: Given the privacy concern and the benefits of
participating, some organizations may want to freeload
by suppressing their own NIDS alerts. Additionally, if
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an adversary manages to compromise a participating net-
work, it may choose to suppress or even generate false
alerts, which may result in a denial of service for the tar-
geted IP address.

Solution: Provide a ZKPK for the NIDS signature-
matching process, to prove that a claimed intrusion is
correct according to the signature. Note that this ap-
proach assumes that raw network data coming into the
NIDS has not been tampered with, but that the machine
performing the signature matching may not be trusted.

6) Slice: Organizing Shopping: Slice (slice.com) is a
service that takes as input a user’s past purchase history
from their email mailbox, and provides various services
using that data. One such service is product recommen-
dation — given everybody’s past purchase history, slice
can build classifiers that predict a likely “next” purchase.

Privacy: Handing one’s entire purchase history to a
profit-driven third party has obvious privacy implica-
tions. So does the troubling need to share one’s email
credentials with Slice at the moment.

Integrity: A user, particularly one concerned about pri-
vacy, might provide fake data to Slice in order to obtain
the useful classifier, which would pollute Slice’s data for
everyone and jeapordize Slice’s ability to profit from the
classifier.

Solution: Keep the user’s purchase history local, and
have the users take part in a distributed protocol in order
to produce the classifier for Slice. Use ZKPK to ensure
that no user is able to subvert the distributed classifier
computation.

8 Experimental Evaluation
All experiments were performed on a Win-
dows Server 2012 R2 machine with two 3.0 GHz 64-bit
cores with 8 GB of RAM. All reported timing measure-
ments correspond only to the zero-knowledge portion
of the application’s execution time, as this is the only
portion that our compiler attempts to optimize.

The execution time of the ZK code is generally much
higher that of the rest of the application, so focusing on
these parts gives an accurate picture of the overall exe-
cution time. Each zero-knowledge proof generation and
verification task was terminated after ten minutes. Our
implementation uses 1,024-bit RSA keys for ZQL com-
putations. Integers in Pinocchio circuits were configured
to have 32-bits for comparison operations, and operate
over a 245-bit field.

Figure 11 summarizes the key performance results
from our experiments. We found that the ZØ-generated
code gave significant performance benefits both in terms
of computation time and proof size: up to 40× runtime
speedup, with most proofs below 1 MB (the largest be-
ing ≈ 1.9 MB). Furthermore, we saw that global opti-

Scaling

ZØ scales to all application configurations. Others may
time out or fail to compile in fewer than 20 minutes on
some parameter settings: 100-byte traces (NIDS), >100
peers (Slice), large automata (Loyalty).

Latency ZØ improves up to 40×, ≈ 5–13× on average

Proof size
ZØ almost always less than 1 MB, at most 1.5 MB. ZQL
proofs can be tens or hundreds of MBs.

Global
tradeoffs

ZØ may be slower at one tier (2× slower for Waze server),
but savings at other tiers is always much greater (4×
faster for Waze clients)

Figure 11: Performance summary.

mization is necessary to arrive at an ideal performance
profile: some applications perform noticeably worse at
one tier, but in each case the speedup at another tier was
always greater. For example, the code ZØ generated for
the Waze server ran ≈ 2× slower than Pinocchio’s on av-
erage, but latency on the client tier was reduced ≈ 4×.

Figure 12 shows the latency speedups across all appli-
cations. The average speedup delivered by ZØ is 3.3×
compared to Pinocchio and 7.4× compared to ZQL.

Results: Space limitations do not allow us to present our
measurements exhaustively. Instead, Figure 10 shows a
sample of the runtime characteristics for our target ap-
plications. Rather than giving raw execution times, the
results are broken into three categories: throughput, la-
tency, and proof size. These metrics were selected to
more clearly depict the impact of zero-knowledge tech-
niques on each application.

Throughput: Figure 10(a)–(c) shows the results of three
experiments involving throughput. Figure 10(a) shows
the server’s throughput for the Waze application, which
corresponds to the number location updates per minute
the server can handle as the number of users (n) in-
creases. Notice that Pinocchio outpaces both the hybrid
and ZQL compilations by about 2× on average. This is
a result of the global optimization engine: verification in
Pinocchio is very fast, whereas the time to construct a
proof can be quite slow: in this case, the proof construc-
tion phase was up to 7× slower than the hybrid solution.
This is critical, as proof construction takes place on the
client where resources are especially constrained for the
application. The discrepancy in resources is correctly
used by ZØ to optimize for a lighter client workload at
the expense of greater server overhead.

Figure 10(b) shows the number of random forest con-
struction queries per minute the Slice server is able to
handle, as the number of participating peers increases.
As with Waze the Pinocchio solution dominates the ZØ
solution at all data points because of the greater ex-
pensive of constructing proofs on the client, where the
Pinocchio solution is up to 4× slower than ZØ.

Figure 10(c) shows the number of intrusion alerts per
minute the collaborative NIDS server can handle as the
number of bytes in the intrusion trace increases. Notice
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Figure 10: (1) Throughput, (2) latency, and (3) proof size for a characteristic sample of application functionality.

that Pinocchio outperforms at a few small data points,
but fails to scale to any larger points. This is not be-
cause the server-side component is unable to scale, but
rather the client timed out at these settings. For the re-
maining points, the ZØ solution outperforms the others
by about 4×, and is the only solution that is able to scale
to even the modest intrusion trace length of 1 KB.

Latency: Figure 10(d)–(f) shows the results of three ex-
periments involving latency. Latency is always measured
in seconds, and has a uniform upper bound of 600 sec-
onds, which corresponds to our experimental timeout.

Pinocchio ZQL
Mean Max Mean Max

FitBit 6.4 6.6 4.5 4.7
Study 1.0 1.0 39.7 40.3
Loyalty 4.1 4.2 10.1 21.8
Waze 4.0 7.1 4.3 4.7
CNIDS 5.3 7.3 2.7 2.7
Slice 2.5 4.1 8.1 12.9
Mean 3.3 7.4

Figure 12: Latency speedup fac-
tors for each application; averages
use geometric mean for propor-
tional speedup.

Figure 10(d) shows
the latency of the client
side of the Loyalty appli-
cation as the number of
purchases used to per-
sonalize discounts (n)
increases. The ZØ
solution far outpaces
both alternatives at all
data points (4–22× im-
provement). These
experiments were per-
formed for an automaton with about 75 edges. We found
that when we scaled the automaton to more realistic sizes
(a few thousand edges), the ZØ solution was the only one
capable of completing any number of purchases before
timing out, and the Pinocchio compiler timed out after 20

minutes. For longer purchase histories, the ZØ solution
completes in just over 1.5 minutes, which is ample time
if the application is location-aware and begins proving a
set of discounts when the user enters the store.

Figure 10(e) shows the NIDS client’s latency to demon-
strate that a single intrusion is present in a trace. Pinoc-
chio times out at all points beyond 300 bytes, whereas
ZØ is about 2.7× faster than ZQL. Otherwise, we see that
as long as intrusions are spaced more than two-and-a-half
minutes (159 seconds) apart, the NIDS client has enough
time to build proofs for each intrusion trace.

Figure 10(f) shows the latency of the Waze client to
send traffic statistics for a single location query as the
size of the map (n) increases. First notice that the ZØ
solution is essentially constant, not varying by more
than 1.5 seconds between any two data points. The other
solutions require as much as 4–7× as long to process a
query on the client, which will limit the quality (i.e., re-
cency) of the statistics the server is able to gather over
time. Second, notice that at about n = 700, ZQL be-
comes more performant than Pinocchio. This is because
as the map increases, the size of the lookup table needed
to encode the regions increases. Pinocchio is not able
to perform lookups as quickly as ZQL, so the portion
of the computation needed for lookups becomes more
significant at higher values of n. ZQL performs worse
at lower values because most of the computation corre-
sponds to the multiplications needed to compute secret
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shares, which it does not complete as quickly as Pinoc-
chio.
Proof Size: Figure 10(g)–(i) shows the results of exper-
iments involving the size of the zero-knowledge proof in
various applications. We always measure in bytes, and
do not display a curve for the Pinocchio solutions, as it is
constant across input size and is usually too small to dis-
tinguish on the same scale as the ZQL and ZØ solutions.
Figure 10(g) shows the proof size for the Loyalty applica-
tion as the number of past purchases (n) varies. While
the Pinocchio solution of course dominates the others by
this metric (864 bytes), as we know from previous ex-
periments (Figure 10(d)) it does not scale in terms of La-
tency. The ZØ proof size remains nearly constant, always
under 500 KB, whereas the ZQL solution requires at least
three megabytes (to perform the inequality checks at the
beginning), and finishes at about 100 megabytes. Note
that we obtained the point at n = 300 despite the time-
out, by letting the prover run for longer in this single
instance. Because the Loyalty application needs to com-
municate this proof wirelessly to a POS terminal, size is
crucial, and the ZØ solution offers the best overall char-
acteristics in terms of size and latency.

Figure 10(h) shows the proof size for the Waze appli-
cation as the number of peers varies. Again, Pinocchio
dominates (2 KB), but the tradeoff in latency for this
proof size is quite high (Figure 10(f)). The ZØ proof
size remains constant at around 5 KB because the only
processing done by ZQL is table lookups, which have
a constant proof size. The ZQL solution requires 20
megabytes for 2,500 clients, and 8 megabytes for 1,000
clients, making it untenable given that the clients need to
transmit proofs frequently over cellular networks.

Figure 10(i) shows the proof size for the NIDS appli-
cation as the intrusion trace length increases. The Pinoc-
chio proof is about 1 KB, but again the tradeoff in latency
makes this characteristic mostly irrelevant. The sizes for
the ZØ and ZQL solutions are both linear, with the ZØ
solution offering a savings of about 4× at all data points.
This is a significant savings, considering that false pos-
itives may be frequent, so the client may need to send
proofs to the server almost continuously.

9 Limitations and Future Work
Proof of security: The main piece of outstanding work
for ZØ is a formal argument of security. Because ZØ
composes non-interactive zero-knowledge proofs from
distinct back-ends, the security guarantees given by the
original back-ends do not necessarily readily translate to
the final optimized code produced by the compiler. In fu-
ture work, we hope to characterize a unified threat model
that encompasses those of both back-ends, as well as
a composition theorem that demonstrates the safety of
ZØ’s modular compilation philosophy.

Optimization robustness: One concern is that a devel-
oper may unwittingly write code in a zero-knowledge
block that ZØ compiles into very inefficient code. In gen-
eral, ZØ’s cost models should allow it to select the best
back-end most of the time. In certain close cases, where
the performance difference between back-ends is slight,
discrepancies between ZØ’s model coefficients and the
characteristics of the target architecture may lead it to
select the less-efficient back-end. However, as the differ-
ence between back-ends is small to begin with in such
cases, the absolute performance penalty will likely be
small as well.

As non-interactive zero-knowledge is still signifi-
cantly more expensive than “normal” computation even
in the best cases, the programmer must be careful not to
place unnecessary statements inside of a zero-knowledge
block. Additionally, if the programmer places inaccu-
rate size annotations on data structures, i.e., annotations
that are significantly larger than the average workloads
encountered in practice, then the cost models used by
ZØ during optimization might not characterize the ac-
tual performance requirements of the application; this
can lead to sub-optimal performance.
Hardware integrity: Many of the applications dis-
cussed in this paper gather data from trusted hardware
devices. The zero-knowledge facilities in ZØ ensure that
the results of computations performed on such data can
also be trusted, i.e., they were derived by the code orig-
inally intended by the application developer. However,
zero-knowledge proofs might not provide all of the guar-
antees needed to realize an intended high-level security
goal in some cases.

For example, nothing prevents a malicious user from
“fooling” the FitBit application by physically manipulat-
ing the hardware to register more steps than were actually
taken. In these cases, ZØ increases security by ensur-
ing that attacks on the application code will not succeed,
so that more-expensive hardware-layer attacks are nec-
essary. Whether this makes an attack on a given applica-
tion sufficiently difficult, or economically infeasible, is a
point to be carefully considered as part of an end-to-end
security strategy.

10 Related Work
Tier-Splitting and Language Methods: A number of
compilers exist that enable automated tier-splitting in
some form. In the context of web programming, Google
Web Toolkit (GWT) [20], Volta [24], Links [11], and
Hilda [43] are among the pioneering efforts. ZØ is clos-
est to Volta and GWT, allowing developers to supply a
single piece of code that is compiled into separate mod-
ules for the client and server. Unlike those projects, ZØ
uses cost models of execution time and data size to de-
rive an optimization problem whose solution represents



USENIX Association  23rd USENIX Security Symposium 923

an ideal division of functionality between tiers.

References TS P I IL O

[11, 20, 24, 43] �
[10] � �
[3] � � �
[40] � �
[2, 3, 16, 26, 31] � �
[16] � � �
[31] � � �
ZØ � � � � �

Figure 13: Comparison of dis-
tributed and secure compiler efforts.
TS = Automatic tier-splitting; P
= Privacy enforcement; I = In-
tegrity enforcement; IL = Inte-
gration with widely-used languages
and runtimes; O = Optimizing code
generation.

Others have used
tier splitting to pro-
vide security and
privacy guarantees.
SWIFT [10] builds on
the JIF [28] language,
incorporating security
types for confidential-
ity and tier-splitting
for web applications.
To accomplish this,
information flow con-
straints are embodied
in an integer program-
ming problem whose
solution corresponds
to a valid (e.g., secure)
placement of code onto tiers that minimizes the number
of messages that must be transferred. Unlike ZØ,
SWIFT does not explicitly account for data size and
transfer time when looking for a split that is likely to
maximize performance.

Backes et al. [3] presented a compiler for distributed
authorization policies written in Evidential DKAL [6],
an authorization logic that supports signature-based
proofs. The use of zero-knowledge proofs allows princi-
pals to prove access rights based on sensitive data with-
out directly revealing its content. ZØ differs in its ap-
plicability: ZØ allows developers to use C# as part of
a larger .NET application, whereas this work translates
authorization logic formulas into cryptographic code.

Others have addressed the problem of untrusted client-
side computation in various contexts [21, 22, 40, 42]. A
similar notion of integrity was presented in Ripley [40],
which prevents client-side cheating in web applications
by efficiently replicating client-side computations on the
server. Unlike ZØ, Ripley’s mechanism does not pre-
serve privacy.

Zero-Knowledge Proofs: Zero-Knowledge proofs of
knowledge [5] have been extensively studied. Schemes
have been developed for various types of relations and
computations [7, 8, 19, 36]. Several projects have sought
to provide zero-knowledge compilers [2, 3, 16, 26, 31]
that take a proof goal and produce executable zero-
knowledge code. The first set of zero-knowledge com-
pilers [2, 3, 26] required specifications of cryptographic
protocols [9], and so are difficult for non-cryptographers
to use. The second generation [16, 31] are geared to-
wards generating ZK code for general computations ex-
pressed in restricted high-level languages. Our work
makes extensive use of these compilers to optimize

zero-knowledge computation. There are a number of
larger projects that incorporate zero-knowledge proofs
in order to manage integrity without sacrificing pri-
vacy. Applications include privacy-preserving smart me-
tering [35], random forest and hidden Markov model
classification [12], and privacy-preserving automotive
toll charges [4].

11 Conclusions
This paper paves the way for using zero-knowledge tech-
niques for day-to-day programming. We have described
the design and implementation of ZØ, a distributing zero-
knowledge compiler which produces distributed applica-
tions that rely on ZKPK to provide simultaneous guaran-
tees for privacy and integrity. We build on recent devel-
opments in zero-knowledge cryptographic techniques,
exposing to the developer the ability to take advantage of
these advances without requiring domain-specific knowl-
edge or learning a new specialized language. Most of
the heavy lifting is done by the compiler, including cost
modeling to decide which zero-knowledge back-end to
use and how to split the application for optimal perfor-
mance, together with the actual code splitting.

Our cost-fitting models provide an excellent match
with the observed performance, with R2 scores at least
and .98. Our global application optimizer is fast, com-
pleting in under 3 seconds on all programs. Our man-
ual and experimental examination of program splits and
back-end choices proposed by ZØ confirms that they are
indeed optimal. Using six applications based on real-life
commercial products, we show how ZØ makes it viable
to use zero-knowledge technology. We observe perfor-
mance improvements of over 40×. Perhaps most impor-
tantly, ZØ allowed many of the applications to scale to
large data sizes with thousands of users while remain-
ing practical in terms of computation time and data size.
This means that applications which were not feasible us-
ing state-of-the-art zero-knowledge tools are now practi-
cal in realistic settings.
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Abstract
Emerging mobile social apps use short-range radios to dis-

cover nearby devices and users. The device discovery proto-
col used by these apps must be highly energy-efficient since it
runs frequently in the background. Also, a good protocol must
enable secure communication (both during and after a period
of device co-location), preserve user privacy (users must not
be tracked by unauthorized third parties), while providing se-
lective linkability (users can recognize friends when strangers
cannot) and efficient silent revocation (users can permanently
or temporarily cloak themselves from certain friends, unilater-
ally and without re-keying their entire friend set).

We introduce SDDR (Secure Device Discovery and Recog-
nition), a protocol that provides secure encounters and satisfies
all of the privacy requirements while remaining highly energy-
efficient. We formally prove the correctness of SDDR, present
a prototype implementation over Bluetooth, and show how ex-
isting frameworks, such as Haggle, can directly use SDDR. Our
results show that the SDDR implementation, run continuously
over a day, uses only ∼10% of the battery capacity of a typical
smartphone. This level of energy consumption is four orders
of magnitude more efficient than prior cryptographic protocols
with proven security, and one order of magnitude more effi-
cient than prior (unproven) protocols designed specifically for
energy-constrained devices.

1 Introduction

Mobile social applications discover nearby users and
provide services based on user activity (what the user is
doing) and context (who and what is nearby). Services
provided include notifications when friends are nearby
(Foursquare [6], Google Latitude [7]), deals from nearby
stores (Foursquare), content sharing with nearby users
(FireChat [5], Whisper [15], Haggle [50]), messaging for
missed connections (SMILE [43], SmokeScreen [27]),
lost and found (Tile [13], StickNFind [12]), sharing pay-
ments with nearby users (Venmo [14]). At their low-
est layer, these applications all discover nearby devices;

many also associate previously linked users to discovered
devices and provide communication among presently or
previously co-located devices.

Most commercially deployed solutions rely on a
trusted cloud service [6, 7], which tracks users’ activ-
ity and location, so that it can match co-located users
and relay information among them. Discovery using a
centralized matchmaking service forces users to disclose
their whereabouts, perils of which have been extensively
noted [16, 19, 24, 48, 52]. Instead of relying on cen-
tralized services, an alternate class of discovery proto-
cols make use of local, short-range radio-to-radio com-
munication [1, 9, 27, 50]. The common practice of us-
ing static identifier(s) in the discovery process [2] leaks
information, since it allows an eavesdropper to track
a user’s locations and movements. To protect against
such tracking, previous work [35–37] has suggested that
ephemeral identifiers should be used in place of static
ones. Simply replacing static identifiers with strictly ran-
dom ephemeral identifiers is insufficient: while eliminat-
ing tracking, it also prevents friends (or users with prior
trust relations) from recognizing each other when nearby.

In this paper, we describe a light-weight, energy-
efficient cryptographic protocol for secure encounters
called SDDR. At a high level, secure encounters provide
the following properties: 1) discovering nearby devices,
2) mapping devices to known principals (if possible), and
3) enabling secure communication for encounter peers.

Device discovery and secure encounter SDDR per-
forms a pair-wise exchange of a secret with each nearby
device. The shared secret enables encounter peers to
communicate securely during and after the encounter,
anonymously and without trusting a third party (e.g.,
sharing related content with event participants).

Selective linkability and revocation Additionally,
SDDR enables a user’s device to be identifiable by spe-
cific other users, while revealing no linkable information
to other devices. For instance, friends can agree to recog-
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nize each others’ devices, while third parties are unable
to link and track devices upon repeat encounters. More-
over, users can efficiently and unilaterally revoke or sus-
pend this linkability, for instance based on the current
time or location (e.g., discoverable by colleagues only
during work hours and on company premises).

Challenges: Energy efficiency and DoS resilience In
theory, designing a protocol that satisfies the above func-
tional and security requirements is straightforward. For
example, an inefficient strawman scheme can be con-
structed using existing cryptographic primitives. Pairs
of devices can perform a Diffie-Hellman key exchange
to establish a shared secret, enabling the users to se-
curely communicate. To support selective linkability,
two users can participate in a standard Private Set Inter-
section (PSI) protocol. A user can allow (or disallow) a
peer to recognize them in a future encounter by includ-
ing (or excluding) a past shared encounter secret from
the set.

However, as we will show in Section 6, using a full-
fledged PSI protocol is impractical. Because the shared
encounter secrets (i.e., elements in the set) are high-
entropy values, it is possible to implement a secure PSI
protocol through an efficient Bloom filter based con-
struction. Unfortunately, even when using an efficient
Bloom filter based PSI scheme, the above strawman
scheme—implemented naively—has high energy con-
sumption. Specifically, a naive implementation requires
a device to wake up its CPU each time it receives a mes-
sage from a nearby device, an expensive operation for
energy-constrained mobile devices. The protocol would
deplete the battery in crowded spaces (e.g., a subway
train) where hundreds of devices may be within radio
range. Furthermore, an attacker mounting a DoS attack
could deplete the victim device’s battery by frequently
injecting messages to cause unnecessary wake ups.

1.1 Contributions
We designed, implemented, and formally proved the
security of SDDR, a light-weight secure encounter
protocol suitable for resource-constrained mobile de-
vices. Our reference implementation source code (us-
ing Bluetooth 2.1 as the short-range radio) is available at
http://www.cs.umd.edu/projects/ebn.
Achieving energy efficiency The main feature of SDDR
is its non-interactiveness, i.e., the encounter protocol
consists of periodic broadcasts of beacon messages,
which enable both the key exchange and selective recog-
nition. Because the SDDR protocol is non-interactive,
the Bluetooth controller can be initialized so that it re-
sponds to discovery requests from peers with a beacon
message, while the main CPU remains completely in the
idle state. A device only needs to wake up its CPU when
actively discovering nearby peers.

Our evaluation shows that such a non-interactive pro-
tocol allows us to improve the energy efficiency by at
least 4 times in comparison with any interactive proto-
col (even if the interactive protocol performs no work),
under a typical setting with 5 new devices nearby on av-
erage during every 60 second discovery interval. Under
the same parameters, we show that an otherwise idle de-
vice running SDDR over Bluetooth 2.1 will operate for
9.3 days on a single charge.

First formal treatment of the problem We are the first
(to the best of our knowledge) to provide a formal treat-
ment of secure device discovery and recognition. We
define a security model that captures the requirements
of secure encounters and selective linkability, and prove
that our solution is secure under the random oracle model
(see Appendix A.3).

Applications over SDDR To demonstrate some of
SDDR’s capabilities, we have modified the Haggle mo-
bile networking platform to use SDDR, enabling efficient
and secure discovery and communication via Bluetooth
for all Haggle apps. For demonstration, we have modi-
fied the PhotoShare app to enable private photo sharing
among friends using SDDR selective linking.

Roadmap The remainder of the paper is organized as
follows. We discuss related work in Section 2. Next, we
review security requirements, formulate the problem and
provide security definitions in Section 3. We present de-
tails of the SDDR discovery protocol in Section 4, fol-
lowed by our reference Bluetooth implementation and
evaluation results in Sections 5 and 6, respectively. We
discuss the properties and implications of SDDR’s en-
counter model in Section 7. We conclude in Section 8.

2 Related Work

Device discovery protocols Several device discovery
protocols have been proposed; however, none simulta-
neously offer the full functionality and security offered
by our SDDR protocol. Since SDDR provides secure de-
vice discovery and recognition for a large range of mo-
bile encounter applications, it allows developers to focus
on their application logic.
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recognition protocols in terms of supported properties.
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Bluetooth 4.0 (BT4) is the most recent version of
the Bluetooth standard, introducing a new low-energy
mode [3], as well as support for random MAC addresses
to be used in communication. Building on top of the
MAC address change support, BT4 adds a form of selec-
tive linkability in which paired (trusted) devices can rec-
ognize each other across MAC address changes, while
remaining unlinkable to all other devices. Since BT4
uses a single shared key for all currently linkable users,
it does not allow for efficient revocation of a subset of
users. Further, BT4 does not natively support encounters
with unlinkable devices.

SMILE [43] is a mobile “missed connections” appli-
cation, which enables users to contact people they pre-
viously met, but for who they don’t have contact infor-
mation. The SMILE protocol creates an identifier and
shared key with any set of devices that are within Blue-
tooth range at a given time. Users can subsequently ex-
change messages (encrypted with the shared key) anony-
mously through a cloud-based, untrusted mailbox associ-
ated with the identifier. Unlike SDDR, SMILE does not
address selective linkability and revocation.

MeetUp [44] is an encounter-based social networking
application that argues for (and uses) strong authentica-
tion within an encounter. This authentication comes in
the form of exchanging signed certificates (from a trusted
authority) attesting to a public key and picture of a user.
However, we feel that in many applications, users should
be unlinkable by default, and should not be required to
distribute any identifiable information (e.g., public key,
user picture) in an encounter. We discuss authentication
in Section 4.4.

SmokeScreen [27], a system that allows friends to
share presence while ensuring privacy, also implements
a selectively linkable discovery protocol for encounter
peers. In SmokeScreen’s discovery protocol, devices pe-
riodically broadcast two types of messages: clique sig-
nals and opaque identifiers. Clique signals enable private
presence sharing among friends, announcing the device’s
presence to all members of a mutually trusting clique. In
comparison with SDDR, SmokeScreen requires a trusted
third-party service and achieves slightly weaker security:
an adversary can infer that two users belong to the same
clique, since all users broadcast the same clique signal
during each time epoch. Furthermore, SDDR can han-
dle 35 nearby devices for the same energy as 3 devices
in SmokeScreen. Additionally, SDDR supports efficient
revocation of linked users, which is not possible with
cliques in SmokeScreen.

SlyFi [35] is a link layer protocol for 802.11 networks
that obfuscates MAC addresses and other information to
prevent tracking by third parties. Unlike SDDR, SlyFi
does not address selective linkability or revocation, nor
does it negotiate shared keys among co-located devices.

SDDR includes a Bluetooth MAC address change proto-
col similar to SlyFi’s to prevent tracking.
Related protocols using Bloom filters Bloom fil-
ters [20] are a space-efficient probabilistic data structure
for set membership. Bloom filters have been used in
many cryptographic protocols [23], including (private)
set-intersection and secure indexes. However, none of
the protocols address the precise problem and security
requirements of SDDR.

Secure indexes are data structures that allow queriers
to perform membership tests for a given word in O(1)
time if they have knowledge of the associated secret.
Secure indexes were first defined and formalized by
Goh [33], who provided a practical implementation
using Bloom filters. Similar work has focused on
privacy-preserving searches over encrypted data [26] and
databases [54] using Bloom filters. If applied to de-
vice recognition, all protocols would allow adversaries
to track users due to the static Bloom filter content.

PrudentExposure [56] allows users to privately dis-
cover appropriate services, where the user and service
belong to the same domain. To maintain user privacy,
PrudentExposure relies on Bloom filters containing time-
varying hashes of domain identities for intersecting the
requested and available domains.

E-SmallTalker [55] and D-Card [25], which builds
on E-SmallTalker, support social networking with
nearby strangers (E-SmallTalker) and friends (D-Card).
BCE [31] enables users to estimate the set of common
friends with other users. These protocols would be in-
secure when applied to the device recognition problem,
as none of the protocols use time-varying information in
the Bloom filters, allowing users to be linked across mul-
tiple handshakes. Additionally, E-SmallTalker does not
apply the Bloom Filter to high-entropy secrets, and thus
is vulnerable to an offline dictionary attack.

Sun et al. [51] present a new way of building trust re-
lationships between users by comparing spatiotemporal
profiles (log of time and location pairs). In addition to
a PSI-based scheme, they present another scheme using
Bloom filters that trades off estimation accuracy and pri-
vacy in a user-defined manner. In SDDR, we avoid the
privacy vs. accuracy trade off since the linkable users
share a high-entropy secret as opposed to low-entropy
time, location pairs.

Dong et al. [30] use garbled Bloom filters to create a
practical PSI protocol that handles billions of set mem-
bers. While more efficient than existing PSI protocols,
it does not scale down when applied to small set sizes
on resource-constrained devices. Because of its reliance
on secret shares instead of bits in the Bloom filter, the
smallest possible Bloom filter to handle a maximum of
256 items would be 17736 bytes — two orders of mag-
nitude larger than what SDDR requires. In addition, the
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communication cost of this interactive protocol increases
linearly with the number of nearby devices.

Nagy et al. [45] use Bloom filters to provide a PSI pro-
tocol that allows users of online social networks (OSNs)
to determine common friends while preserving user pri-
vacy. While their solution provides ample efficiency
gains over standard PSI, saving an order of magnitude in
communication and computation costs, several seconds
per interactive exchange is too much when running on
power-constrained devices in dense environments.

Authenticated key exchange Secure device discovery
and recognition should not be confused with mutual au-
thentication, or authenticated key exchange (AKE) pro-
tocols [21, 40]. SDDR aims to achieve device discovery
and recognition; guaranteeing mutual authentication is
not a goal of the basic SDDR protocol. As noted in Sec-
tion 4.4, once Alice’s device recognizes Bob’s device,
Alice can authenticate Bob by soliciting an explicit veri-
fication message from Bob; however, authentication will
only be performed if desired by the higher-level applica-
tion (or user). While secure device discovery and recog-
nition can be achieved by executing an AKE protocol
with each nearby device (for all possible shared secrets),
such a scheme would be prohibitive in an environment
with many nearby peers.

3 Problem Overview

In this section, we review the requirements for a secure
encounter protocol, sketch a strawman design, and make
observations that enable a practical protocol.

Devices executing a secure encounter protocol should
detect nearby participating devices, and learn their cur-
rent ephemeral network identifier. Additionally, each
pair of nearby devices should generate a unique (except
with negligible probability) shared secret key, known
only to the pair. This key allows the devices to: 1)
uniquely refer to a particular encounter; and, 2) authenti-
cate each other as the peer in the encounter and securely
communicate. The pair should learn no other informa-
tion about each other; when the same pair of devices
meet again, the shared secret and network identifiers ex-
changed should be unrelated.

By default, devices should remain unlinkable, mean-
ing that no identifying information is exchanged. While
unlinkability is appropriate between strangers’ devices,
friends may wish to enable their devices to recognize
each other. A user who allows her device to be rec-
ognized by a friend during future discoveries is termed
selectively linkable (or simply linkable) by that friend.
When two devices discover each other, a recognition pro-
tocol should determine if the remote device corresponds
to a linkable user. Selectively linkable users must share

a unique secret value such that the devices can authenti-
cate each other during the recognition protocol; we refer
to this shared secret as the link value. Users can derive
the link value from the shared secret established during a
prior encounter, or using an out-of-band protocol.

In general, users may not wish to be recognizable by
their entire set of friends at all times (e.g., Alice may
only want her work colleagues to recognize her device
while at work). Therefore, a user should be able to con-
textually (e.g., in terms of time, place, activity) filter the
set of friends that can recognize them. This filtering re-
quires that revocation of selective linkability be efficient
(e.g., not require a group re-keying) and unilateral (e.g.,
not require communication). Additionally, the filtering
may take place in one direction: Alice may want to not
be recognizable by Bob, yet still want to recognize him.
Therefore, we consider two distinct sets of link value: the
set of advertiseIDs (i.e., who you are willing to be rec-
ognized by), and the set of listenIDs (i.e., who you want
to recognize). Alice’s device is able to recognize Bob’s
device if and only if their shared link value is in Bob’s
advertiseIDs and in Alice’s listenIDs.

3.1 Security Requirements
We summarize the security requirements below:

Secure communication If Alice and Bob share an en-
counter, they are able to securely communicate using an
untrusted communication channel, both during and after
the encounter, and regardless of whether Alice and Bob
have opted to selectively link their devices.

Unlinkability The information exchanged during a se-
cure encounter reveals no identifying information about
the participating devices, unless the devices have been
explicitly linked. In particular, unlinked devices that
encounter each other repeatedly are unable to associate
their encounters with a previous encounter.

Selective linkability Alice and Bob can optionally agree
to be linkable, and therefore able to recognize and au-
thenticate each others’ devices in subsequent discover-
ies.

Revocability Alice may, at any time, unilaterally revoke
Bob’s ability to recognize her.

3.2 Threat Model
We assume that user devices, including the operating sys-
tem and any applications the user chooses to run, do not
divulge information identifying or linking the device or
user. Preventing such leaks is an orthogonal concern
outside SDDR’s threat model. User devices attempt to
participate in the protocol with all nearby discovered de-
vices, a subset of which could be controlled by attackers,
who may all collude.

We do not consider radio fingerprinting attacks, which
detect a device by its unique RF signature [22]. Such



USENIX Association  23rd USENIX Security Symposium 929

attacks may require sophisticated radio hardware, and are
outside our threat model.

3.3 Strawman Protocol
A strawman scheme using existing cryptographic tools,
namely Diffie-Hellman [29] (DH) and Private Set Inter-
section [28, 39] (PSI), can meet the requisite security re-
quirements outlined above. Upon detecting a device, the
protocol performs a DH exchange to agree upon a shared
secret key. By generating a new DH public and private
key pair prior to each exchange, devices remain unlink-
able across encounters.

To recognize selectively linkable devices, the proto-
col executes PSI over the devices’ advertised and listen
identifier sets. Selective linkability and revocability prop-
erties are satisfied by all PSI protocols; however, in order
to preserve privacy, we require a PSI protocol that sup-
ports unlinkability across multiple executions.

While the DH+PSI strawman achieves the desired se-
curity properties, it is not practical when frequently run
on resource constrained devices. As shown in Section 6,
the computation and communication requirements of ex-
isting PSI constructions are prohibitively high.

3.4 Observations
In order to enable a practical protocol we rely on several
observations:

First, strict unlinkability requires that two different
discoveries between a pair of devices are unlinkable, re-
gardless of how closely the discoveries are spaced in
time. This property cannot be achieved with a non-
interactive protocol, because it requires a change of
ephemeral network ID and DH keys after each discovery.
In order to use a non-interactive protocol, we must set-
tle for the slightly weaker property of long-term unlink-
ability; devices may be linkable within a time epoch, but
they remain unlinkable across epochs. For an epoch on
the order of minutes, long-term unlinkability is sufficient
in practice. It is important to note that epoch boundaries
and durations do not require time synchronization; de-
vices may choose when to change epochs independently.

Second, detecting selectively linked devices requires
an intersection of the sets of advertised link values be-
tween a pair of devices. Even a simple, insecure inter-
section protocol would require the transmission of the
complete sets during each pair-wise device discovery,
which is too expensive. However, we note that in a
large deployment, discoveries among strangers are far
more common than discoveries among linked devices.
Therefore, an over-approximation of the set intersection
may suffice. False positives can be resolved when two
presumed linkable devices attempt to authenticate each
other using the shared link value.

Finally, we can take advantage of the fact that link val-
ues shared between users are high-entropy values taken

from a large space, by design. General purpose PSI pro-
tocols, on the other hand, ensure security even when sets
contain low-entropy values (e.g., dictionary words).

Using these observations, we present the SDDR proto-
col, which meets the security requirements with practical
performance and energy efficiency.

4 SDDR Design

4.1 High-Level Protocol
Like the strawman protocol, SDDR uses DH to exchange
a shared secret key with each nearby device; however,
SDDR performs the exchange in a non-interactive man-
ner. Periodically, each device broadcasts its DH public
key and receives broadcasts from other nearby devices,
computing all pair-wise shared secret keys.

SDDR divides time into epochs, during which the
ephemeral network address, DH public/private key pair,
and advertiseIDs set digest remain constant. Devices are
unlinkable across epochs, thus preserving long-term un-
linkability. To avoid expensive synchronous communica-
tion, epochs are not synchronized among devices. As a
result, the DH computation may fail to produce a shared
key if it occurs around an epoch change of either device
in a pair. For instance, Alice receives Bob’s broadcast
in her epoch n, but Bob fails to receive Alice’s broadcast
until her epoch n + 1, so he computes a different key.
Because broadcasts occur more frequently than epoch
changes (seconds versus minutes), however, the proba-
bility that a broadcast round yields a shared key quickly
tends to one with every broadcast round.

Since the link identifiers shared between users are
high-entropy values chosen from a large space (e.g., a
shared key produced during a prior discovery), SDDR
can recognize linkable devices by broadcasting salted
hashes of their respective set of advertiseIDs. The DH
public key is used as the salt; since the salt is different
in each epoch, a device cannot be recognized by the bit-
pattern in its Bloom filter across epochs, that ensuring
long-term unlinkability. Each user then searches over the
hashes using their own set of listenIDs, along with the
corresponding salt value, in order to identify the listenID
(if any) associated with the remote device.

However, the communication required for moderately-
size sets (e.g., 256 advertiseIDs) is still too large for an
efficient implementation in Bluetooth due to (pseudo-)
broadcast message length constraints. By allowing the
recognition protocol to over-approximate the actual in-
tersection between the set of local listenIDs and remote
advertiseIDs, SDDR can use a probabilistic set digest
data structure to reduce the communication needed to de-
termine the intersection. The size of the set digests can be
parameterized based on the message size restrictions of
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the radio standard used for communication. The choice
affects performance only; false positives due to the use of
set digests can be resolved using the shared link values,
and therefore have no bearing on the protocol’s security.

The selective linkability property is satisfied by the
use of non-deterministic hashes of the link identifiers
shared by two users, only allowing linkable users to rec-
ognize each other. The revocation is supported by the
user’s ability to add or remove link values from the set of
advertiseIDs.

4.2 Formal Problem Definition
We divide the non-interactive SDDR protocol into two
algorithms (GenBeacon and Recognize), which we for-
malize below:

beacon← GenBeacon(advertiseIDs)

In each epoch, a device wishing to participate in
peer encounters executes the GenBeacon algorithm,
which takes as input the current set of advertiseIDs.
The GenBeacon protocol outputs a message beacon,
which the device then broadcasts to nearby devices.

(sk, listenIDsre,L) ← Recognize(beaconre, listenIDs)
Upon receiving a beaconre from a remote peer, a
device executes the Recognize algorithm, which
additionally takes in the current set of listenIDs.
The Recognize algorithm outputs a secret key sk,
the set of listenIDsre associated with the remote
peer, and the link identifier L for this encounter.

4.3 Detailed Protocol Description
Next, we provide a detailed description of the SDDR pro-
tocol. Pseudo-code for the GenBeacon and Recognize al-
gorithms is shown in Figure 1. In the protocol, as well
as our implementation, we use Bloom filters as the prob-
abilistic set digest data structure; however, other set di-
gests (e.g. Matrix filters [46]) could be used instead.

Each user Pi starts by running GenBeacon in order to
generate the beacon message to broadcast during the cur-
rent epoch. GenBeacon first selects a random DH private
key αi, which corresponds to the DH public key gαi . Af-
terwards, GenBeacon computes the Bloom filter by hash-
ing each advertiseID within ASi (the set of advertiseIDs),
using the DH public key as the salt. The resulting beacon
contains the public key and the Bloom filter.

Each user Pi broadcasts their respective beacon during
the epoch. After receiving a beacon from a remote user
Pj, user Pi runs the Recognize algorithm. Recognize first
computes the DH secret key dhki j, using the local user’s
DH private key and the remote user’s DH public key (as
contained in the beacon). Using the dhki j along with
the local and remote DH public keys, Recognize com-
putes the shared link identifier Li j, which can optionally
be used in case the two users wish to selectively link.

Additionally, Recognize computes the key ski j using
the link identifier Li j, which the two devices can use
to authenticate each other as the peer associated with
this encounter, and then securely communicate. Fi-
nally, Recognize queries the Bloom filter by hashing each
listenID within LSi (the set of listenIDs), using the re-
mote user’s DH public key as the salt, resulting in the set
of matches Mj.

Recall that ski j may not be shared (i.e., ski j �= sk ji)
in some cases when individual devices decide to change
epochs. When a device attempts to communicate using
such a key, the authentication will fail, and the device
retries with a key produced in a subsequent discovery.
Also, to make sure a valid link identifier is used, devices
attempt to authenticate each other as part of the pairing
process to selectively link.

Notation: Let BF{S} denote a Bloom filter encoding the set S. Let
H0, H1, and H2 denote independent hash functions later modeled as
random oracles in the proof.

Inputs: Each user Pi has a set of listenIDs (LSi) and a set of
advertiseIDs (ASi).

Outputs: For all users Pj , discovered by Pi, Pi outputs:

1. ski j: A shared secret key
2. listenIDsre: Set of matching listenID ∈ LSi associated with Pj

3. Li j: A shared link identifier

Protocol: Each Pi performs the following steps:

GenBeacon(ASi)

1. Select random αi ∈R Zp

2. Compute BFi := BF{H1(gαi ||x) : x ∈ ASi}
3. Create beaconi = (gαi ,BFi)

Each user Pi broadcasts beaconi. For each user Pj that user Pi
discovers, Pi runs Recognize.

Recognize(beacon j,LSi)

1. Compute DH key dhki j = (gα j )αi

2. Compute link Li j :=

{
H0(gαi ||gα j ||dhki j) if gαi < gα j

H0(gα j ||gαi ||dhki j) otherwise
3. Compute key ski j := H2(Li j)

4. Query for set M j := {x : x ∈ LSi ∧H1(gα j ||x) ∈ BF j}

Figure 1: SDDR Non-Interactive Protocol.

Hiding Bloom filter load After receiving multiple
Bloom filters, and calculating the distribution of the
number of bits set, it is possible to determine the size
of the remote user’s set of advertiseIDs. This leaks infor-
mation, which could be used to link devices across mul-
tiple epochs. To prevent this leak, the Bloom filters are
padded to a global, uniform target number of elements
N. Rather than computing actual hashes, we randomly
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select K ∗ (N − |advertiseIDs|) (not necessarily distinct)
bits to set to 1, where K is the number of hash functions
used in creating the Bloom filter.

4.4 Identification and Authentication
Identification and mutual authentication are not required
by all applications, and hence are not a part of the basic
SDDR protocol. However, identification and authentica-
tion can be achieved easily on top of SDDR as follows:
Identification Identification allows a user to associate
a principal (e.g., “Bob”) to a specific encounter through
the use of out-of-band (OOB) mechanisms. As part of
the identification procedure, the users agree on the link
identifier (corresponding to the shared encounter) for the
purpose of selective linkability. If Alice wishes to be
recognizable by Bob in the future, she will insert the link
identifier into her advertiseIDs; likewise, if she wishes
to recognize Bob in the future, she will insert the link
identifier into her listenIDs. However, choosing to enable
(or revoke) recognizability is not part of the identification
procedure, and can be performed any time by the user
after the initial, one-time identification has taken place.

It is well known that achieving secure identification,
resistant to man-in-the-middle (MITM) attacks, requires
either an a priori shared secret or an OOB channel. Any
manual authentication technique [32,41,42,53] (e.g., dis-
playing and comparing pictures on both devices, gener-
ated from the link identifiers) allows Alice to securely
identify Bob’s device free of MITM attacks. Addition-
ally, a technique not relying on OOB mechanisms has
been proposed by Gollakota et al. [34] for 802.11, using
tamper-evident messaging to detect and avoid MITM at-
tacks. Note that many applications do not require identi-
fication, such as when users wish to (anonymously) share
photos with other event participants.
Mutual authentication Mutual authentication boot-
straps a secure and authenticated session between two
peers using an a priori shared secret (e.g., the link iden-
tifier agreed upon as part of the identification proce-
dure). Suppose that in a previous encounter, Alice and
Bob participated in the identification procedure; addi-
tionally, both Alice and Bob elected to add the shared
link identifier to both their advertiseIDs and listenIDs.
Thus, in future encounters, Alice and Bob can now au-
thenticate each other (free of MITM attacks). While
the basic SDDR protocol does not provide authenti-
cation, it can easily be achieved by sending an ex-
plicit verification message. For example, a user can
prove to a remote peer that they know the common link
identifier L by simply sending the verification message
〈nonce,H3(L||nonce||dhk)〉.

Alternatively, a user can execute a standard authenti-
cated key exchange (AKE) protocol; however, in the case
of SDDR, since a DH key is already exchanged, an ex-

plicit verification message is sufficient and cheaper than
a standard AKE protocol. Mutual authentication only
needs to be performed when requested by an application
(or user), and thus is not part of the base SDDR protocol.

4.5 Suppressing Bloom filter false positives
The false positive probability of a Bloom filter, denoted
as Pfp, is computed as a function of: the number of ele-
ments inserted (N), the size (in bits) of the Bloom filter
(M), and the number of hash functions per element (K).
Although Bose et al. [47] provide a more accurate (yet
not closed form) solution, Pfp is closely approximated by
the following formula:

Pfp =

(
1−

[
1− 1

M

]KN
)K

In the SDDR protocol, these false positives manifest
themselves as selectively linkable principals associated
with the remote device (and their current shared en-
counter). By default, false positives are not reduced over
the course of an epoch, and only mutual authentication
(see Section 4.4) will allow two peers to check if they are
selectively linkable (resolving any false positives). Ide-
ally, we want to provide a way for the matching set (Mj in
the protocol) to converge towards the exact intersection
of the remote peer’s advertiseIDs and the user’s listenIDs
over time.

If one creates multiple Bloom filters, each using a
unique set of hash functions (or salt value(s)), the inter-
section of the matching sets for the Bloom filters results
in an overall matching set with a reduced false positive
rate. Within a single epoch, a device can compute and
distribute beacons with unique Bloom filters that evolve
over time. Since beacons within the same epoch use
the same DH public key, we modify Step 2 within the
GenBeacon algorithm to additionally use an increment-
ing counter count as part of the salt:

BFi := BF{H1(gαi ||x||count) : x ∈ ASi}

count increments each time a beacon is broadcast, and
is reset to 0 at the start of every epoch. We use this ex-
tension as part of our implementation, as described in
Section 5.

5 SDDR on Android

We have implemented the SDDR protocol on the An-
droid platform as part of a system service. The codebase
is written in C++ and runs with root privileges1 . For
development and evaluation, we use Samsung Galaxy

1SDDR requires root privileges to handle address changes, as well
as to support efficient communication through Extended Inquiry Re-
sponse (EIR) payloads.
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Nexus phones running Android 4.1.2 2 with the android-
omap-tuna-3.0-jb-mr0 kernel. For our implementation,
we selected to use Bluetooth for short-range radio com-
munication; other short-range radios (e.g. WiFi, Zig-
Bee) could also be used for this purpose. We selected
Bluetooth 2.1 (BT2.1) over BT4 because a BT2.1 im-
plementation closely mirrors the protocol as described;
however, we designed a BT4 implementation for use in
EnCore [17]. We use elliptic curve cryptography (ECC)
due to the smaller key sizes relative to RSA, selecting the
192-bit curve as recommended by NIST [4].

We first describe the implementation of the major
components of the SDDR protocol: discovery, hand-
shake, and epoch change. Afterwards, we briefly de-
scribe the system service that we developed to allow all
applications running on the device to take advantage of
SDDR, without each independently managing discover-
ies. Finally, we discuss our integration of the system ser-
vice with the open-source Haggle framework [8].

5.1 SDDR Protocol Components
Discovery In the protocol, a single beacon is broadcast
throughout each epoch. In our implementation, since de-
vices must wake up to discover nearby devices and re-
ceive their beacon messages, we break down each epoch
into multiple discovery intervals. Using the protocol ex-
tension described in Section 4.5 to reduce Bloom filter
false positives, we generate and broadcast a new beacon
during every discovery interval.

There are two roles that devices can take on within
the Bluetooth 2.1 discovery protocol: discoverable and
inquirer. Every device always plays the role of discov-
erable, responding to incoming inquiry scans with infor-
mation on how the inquirer can establish a connection
(e.g., MAC address). By using the extended inquiry re-
sponse (EIR) feature present in BT2.1, which includes an
additional 240 byte payload added to the response, dis-
coverable devices can transmit their beacon to the dis-
coverer during the inquiry scan itself.

At the start of each discovery interval, a device ad-
ditionally takes on the role of inquirer, performing an
inquiry scan in order to collect and process beacon mes-
sages from nearby devices. In addition, the device will
update its EIR payload with a new beacon message; this
payload will be used as a response while discoverable.

Devices must only wake up when acting as a inquirer.
Otherwise, while simply discoverable, only the Blue-
tooth controller (and not the main CPU) must be active;
the controller wakes up every 1.28 seconds to listen and
respond to inquiry scans from nearby devices.

2The Android 4.4 release would provide additional energy savings
with respect to suspend and wakeup transitions due to the updated Alar-
mManager API.

Compute keys and recognize When a inquirer detects
a new device, which could also be an epoch change by
an existing device, it computes the shared secret for the
current epoch using the local DH private key and the
remote device’s DH public key (embedded in the bea-
con). For each device: 1) for its first beacon, the inquirer
queries the Bloom filter contained in the beacon using
H1(gαi ||x||count) for each x in its set of listenIDs; 2) for
subsequent beacons, the inquirer queries the Bloom filter
only for each x previously determined to be in the inter-
section.

Periodic MAC address change SDDR ensures that the
discovery and recognition protocol does not leak linkable
information. However, the underlying Bluetooth packets
have a static MAC address that can be used to track the
device (and the user). As part of our Bluetooth imple-
mentation, we choose a random Bluetooth MAC address
at the start of every epoch. BT2.1 does not provide a na-
tive interface for changing MAC addresses “on-the-fly”;
therefore, we reset the Bluetooth controller each time the
address is changed (once per epoch, nominally fifteen
minutes). Unfortunately, this reset closes ongoing con-
nections and invalidates existing device pairings; how-
ever, the BT4 specification supports changing the public
(random) address for the device while maintaining the
private address for paired devices.

5.2 SDDR Integration
We chose to implement the SDDR protocol as part of a
system service on Android. The centralized service al-
lows for greater energy efficiency as it can broadcasts
discovery information to all applications via IPC mecha-
nisms, as opposed to each application performing its own
discovery. Currently, we allow applications to connect
to the service via local Unix sockets. Applications re-
ceive messages for each discovered device, along with
the shared secret and identity information (if selectively
linkable) for SDDR-aware devices.

Haggle Haggle is a mobile communication platform
for device-to-device radio communication, and supports
a number of content sharing apps. A photo sharing app,
for instance, shares with nearby devices photos whose
textual attributes match a user’s specified interests.

To demonstrate some of SDDR’s capabilities, we have
modified Haggle to use SDDR. This enables Haggle and
its applications to communicate securely with nearby de-
vices, without revealing any linkable information and
without the risk of tracking by third parties. We have
modified Haggle’s photo sharing app to take advantage
of SDDR’s features. Users can add a special attribute to
a photo, which narrows its visibility to a specified set of
linkable user(s). If a photo carries this attribute, it is el-
igible for sharing only with devices of linkable users in
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this set. Finally, when a photo is shared, it is encrypted
with the shared key established by SDDR.

6 Experimental Results

In order to evaluate the design and implementation of
SDDR, we first perform a comparison to the strawman
protocol by focusing on the PSI portion in comparison
to our Bloom filter-based approach. Secondly, we look
at energy consumption both at the level of benchmark-
ing individual operations within the SDDR (and other)
protocols, as well as battery life consumption over the
course of a day. Additionally, we attempt to analyze the
scalability (and DoS resistance) of the SDDR protocol
by extrapolating energy consumption results to a large
number of devices. For a more application-level evalu-
ation, we refer the reader to our work on EnCore [17],
which includes a deployment with 35 users, using a BT4
implementation of SDDR.

6.1 Comparison with PSI
We measure the SDDR discovery protocol computation
time while varying the number of linkable identifiers,
and compare the elapsed time to that required for a PSI
protocol. We use an implementation [11] of the JL10
scheme [38], one of the fastest schemes known-to-date.
JL10 is secure and can be modified to achieve unlinka-
bility across sessions. Both protocols are executed using
a single core on the 1.2 GHz ARM Cortex-A9 processor.

Figure 2 shows the run times for each protocol; each
bar is an average of 50 runs, with error bars denoting
the 5th and 95th percentile values. We divide SDDR
into two separate trials, varying the number of adver-
tisements in order to achieve the specified false positive
rates for each trial. Additional advertisements do not re-
quire much computation time because SDDR only uses
the complete set of listen IDs for the first Bloom filter;
afterwards, SDDR uses the matching set of listen IDs,
which quickly converges towards the actual intersection.

Results show that SDDR is up to four orders of magni-
tude faster than standard PSI. The gain in performance is
crucial for practical deployment, as these computations
take place for every discovered device. In order to pre-
serve user privacy against tracking, large maximum set
sizes (128 to 256 entries) with random entry padding
must be used with typical PSI protocols; alternatively, a
size-hiding PSI scheme [18] can be used, but the perfor-
mance in practice is worse than the scheme we used [10].

6.2 Energy Consumption
SDDR runs on resource-constrained devices, therefore
we evaluate its energy consumption in detail. First, we
look at microbenchmarks for the individual components
of the protocol (e.g., discovery), as well as various idle
states, which provide a baseline for energy consumption.

10µs

100µs

1ms

10ms

100ms

1s

10s

1 2 4 8 16 32 64 128 256

C
o
m

p
u
ta

ti
o
n
 T

im
e
 (

lo
g
 s

c
a
le

)

Size of Advertised Set

SDDR (1 Disc, Pfp = 3.03%)

SDDR (2 Disc, Pfp = 0.09%)

PSI

Figure 2: Protocol execution times of PSI versus SDDR
for an encounter with varying sizes of advertised sets of
link values. The “# disc” represents the number of dis-
covery beacons used to compute the matching set, with
Pfp as the associated false positive probability.

Second, we collect and analyze power traces of our pro-
tocol over several epochs in order to determine the bat-
tery life cost of frequently running our handshake proto-
col over the course of a day. Third, we estimate the re-
duction in battery consumption when in densely crowded
areas, or under denial of service attacks, a device discov-
ers the specification maximum of 255 devices per inquiry
scan [3]. In order to monitor energy consumption over
time, we use the BattOr [49] power monitor.
Microbenchmarks In Table 2, we outline the results
from the microbenchmark experiments. We collect 25
data points for each experiment, and present the aver-
age values in the table above. We enable airplane mode
on the device for each test, ensuring that all radio inter-
faces are disabled unless otherwise explicitly requested.
Idle state requires very little power, as the device remains
in suspended state with the main processor powered off.
Since epoch changes require disabling and re-enabling
the hardware Bluetooth controller, the controller requires
several seconds to return to its working state. An epoch
change requires 568mJ energy consumption — however,
note that epoch changes are relatively infrequent (e.g.,
every fifteen minutes) compared to discovery.

Additionally, we collected power traces for various
discovery and recognition protocols. When there are no
nearby devices, the baseline discovery protocol in Blue-
tooth 2.1 costs 1363mJ per discovery. In comparison,
our implementation of the SDDR protocol over Blue-
tooth 2.1 incurs only 7% additional energy cost while
executing the recognition protocol with 5 nearby devices
(and using 256 advertised and listen IDs). The imple-
mentation of the DH+PSI strawman over Bluetooth 2.1
requires much more energy per execution, over an order
of magnitude greater than the baseline (43,335mJ com-
pared to 1,363mJ). This is expected as the PSI protocol
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Avg. Power Energy
Component (mW) (mJ)
Idle 1.73 -
Bluetooth 2.1

Discovery (0 Devices) 118 1,363
Incoming Connection 200 893

Discovery and Recognition
(5 Devices, 256 Listen IDs)

SDDR over BT2.1 124 1,464
DH+PSI over BT2.1 404 43,335
ResolveAddr in BT4.0 226 737

SDDR Epoch Change 178 568

Table 2: Average power and energy consumed by various
components, or system states. Components which have
energy consumption marked as ’-’ have no well defined
duration.

is not as efficient as SDDR in terms of computation (See
Figure 2) and communication, and it must execute an in-
teractive protocol for each nearby device.

The ResolveAddr protocol, implemented as per the
Bluetooth 4.0 specification, requires less energy (737mJ)
compared to other schemes; however, it neither ex-
changes a session key, nor supports efficient revocation
of the set of linked users [3]. ResolveAddr is optimized
to support a limited feature set, and uses the efficient
broadcast channels made available in Bluetooth 4.0.

In addition, as a point of comparison between inter-
active and non-interactive protocols, we collected power
traces for a device waking up to handle an incoming
connection over Bluetooth 2.1 (without performing any
work). This incoming connection consumes an average
of 893mJ, which is roughly 65% of the cost of an en-
tire discovery operation. This connection cost scales lin-
early, which makes interactive protocols impractical for
handling many nearby devices.
Reduction in battery life In order to gauge the reduc-
tion in battery life of frequently running a discovery and
recognition protocol, we collected power traces for vari-
ous protocol configurations with up to 5 nearby devices
over the course of two epochs (30 minutes). For each
protocol, we evaluate two different discovery intervals
(60 and 120 seconds); existing applications, such as Hag-
gle [8], use a 120 second interval. Since the energy con-
sumption remains the same across two epochs, we ex-
trapolate the energy consumed to a full day (24 hour pe-
riod), as shown in Table 3.

The Samsung Galaxy Nexus battery has a capacity
of 6.48Wh, which we convert to 23,328J for the pur-
pose of comparisons within the table. With 5 nearby
devices, SDDR uses 5.57% of the battery life per day
with a 120 second discovery interval; ResolveAddr uses
slightly less than SDDR (around 3%), due to the reduced
discovery costs. In comparison, the DH+PSI protocol

Energy Battery
State (J) (%)
Full Battery 23,328 100
Idle 150 0.64
Idle with Bluetooth 188 0.81
Running (5 Devices, 256 Listen IDs)
(60s Discovery Interval)

SDDR over BT2.1 2,511 10.76
ResolveAddr in BT4.0 1,260 5.40
DH+PSI over BT2.1 44,619 191.27
IncConn over BT2.1 9,143 39.19

(120s Discovery Interval)
SDDR over BT2.1 1,300 5.57
ResolveAddr in BT4.0 718 3.08
DH+PSI over BT2.1 35,097 150.45

Table 3: Energy and battery life consumption for differ-
ent states and protocol configurations over the course of
one full day. A daily battery consumption of p% means
that the battery would last 100/p days if the device runs
the corresponding protocol and is otherwise idle.

consumes around 150% of the battery over the course of
24 hours. This means that the battery would completely
drain within 16 hours, or within only 12.6 hours when us-
ing the 60 second discovery interval. IncConn provides
a point of reference for the base-line battery life of an
interactive protocol—without executing any protocol, it
consumes around four times as much energy as SDDR.

As previously mentioned, we assume that each discov-
ery returns 5 new nearby devices; in the case of SDDR,
this requires computing the shared secret and using the
complete set of listen IDs (instead of the matching set)
to query the received Bloom filter. In practice, there will
not always be 100% churn in nearby devices in each dis-
covery period, meaning that these results are conserva-
tive estimates of actual energy consumption.

In order to provide a visual comparison between the
protocols, we present snapshots of a single 120 second
discovery interval for both the SDDR and DH+PSI pro-
tocols in Figure 3. These snapshots show the power con-
sumed at each point in time; energy consumption is com-
puted by integrating over a given interval of time. Both
protocols initiate a discovery at around the 20 second
mark. Since we designed the SDDR protocol to support
non-interactive execution, SDDR over BT2.1 can take
advantage of executing both the discovery and recog-
nition portions at the same time. Unlike SDDR, the
DH+PSI protocol must perform an interactive recogni-
tion protocol that takes longer than the discovery pro-
cess itself, and must be performed individually with
each nearby device. In the right half of the plot, both
devices handle incoming discovery and recognition re-
quests from nearby devices (5 for SDDR, and 1 for
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Figure 3: Power traces from running the SDDR and
DH+PSI protocols (implemented over Bluetooth 2.1) for
one discovery interval of 120 seconds.

DH+PSI). Even for the case of a single nearby device,
DH+PSI is not practical.
Crowds and DoS attacks A frequently running protocol
such as SDDR can potentially open up a new avenue of
attack, whereby attackers can try to exhaust the battery
of a victim device by forcing it to continually perform
new discoveries. Even in benign scenarios, a device may
legitimately perform many discoveries over a prolonged
interval, e.g., when the user is at a stadium or an in-
door auditorium, and the device encounters many other
Bluetooth enabled devices. In this section, we experi-
ment with these extreme scenarios, and show that SDDR
does not adversely affect battery consumption, regard-
less of the number of peers it discovers. At the same
time, SDDR is able to discover linked peers, and provide
reasonable performance even in crowded spaces.

In order to study these worst-case scenarios for SDDR,
we estimate the reduction in battery life assuming that
there are 255 new device responses for every inquiry scan
we perform. We use three components of energy con-
sumption for our estimate: idle with Bluetooth running in
discoverable mode (EBT ), epoch changes (EEC), and dis-
coveries (ED). Each of these components represents the
amount of energy consumed in mJ over the course of a
full day (24 hours), and together represent the aggregate
energy consumption while running the SDDR protocol:

ESDDR(d, i) = EBT (d, i)+EEC +ED(d, i) (1)

EBT (d, i) and ED(d, i) vary with respect to the number
of nearby devices (d), and the discovery interval in sec-
onds (i). We measured the average energy consumption
for cases of 1, 3, and 5 discovering devices, for discovery
intervals of 60 and 120 seconds. Additionally, we use the
results of the microbenchmarks from Table 2 to provide
formulas for the energy consumed by epoch changes and
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Figure 4: Estimated daily battery life consumption while
running the SDDR protocol, for varying numbers of
nearby devices.

discoveries. We assume a linear model, with respect to
the number of nearby devices (d), for each i (either 60
or 120 seconds) in computing the formulas for EBT (d, i)
and ED(d, i). The energy consumed by epoch changes
(EEC) does not vary with respect to d or i.

We validate Equation 1 by comparing its results to the
measured values from Table 3. Without any nearby de-
vices, our estimates are off by 1.96% and 0.66% for 60
and 120 second discovery intervals respectively. Like-
wise for the case of 5 devices, our estimates deviate from
the measurement results by 4.61% and 1.74%.

The estimated daily battery life consumption for vary-
ing numbers of nearby devices is shown in Figure 4.
Over the course of an entire day, running the SDDR
protocol with a 120 second discovery interval consumes
27.82% battery life in this worst-case scenario.
Comparison with SmokeScreen We compare the per-
formance of our protocol with SmokeScreen’s discovery
protocol [27]. SmokeScreen requires sending one clique
signal per advertised ID, and does not use a set-digest
data structure (e.g. Bloom filter) to aggregate them. In
the authors’ implementation, the clique signals are sent
over a Bluetooth name request, which holds 248 bytes of
data, i.e., roughly 4 clique signals. This makes Smoke-
Screen less scalable with larger advertised sets: 1) for
more than 4 advertised IDs, the clique signals have to
be sent over multiple Bluetooth name requests (increas-
ing the discovery latency), and 2) sending multiple name
requests for large advertised sets also lead to additional
energy consumption. SDDR requires a constant amount
of time to detect linkability to a given false positive rate,
while SmokeScreen’s detection time increases linearly
with respect to the number of clique signals.

Since the SmokeScreen measurements were reported
several years back, we re-evaluated the energy consump-
tion for SmokeScreen on a recent device. In our measure-
ment, we conservatively estimate the energy consump-
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tion for SmokeScreen, by measuring only communica-
tion related, but not computation- or storage-related en-
ergy overhead. Our results suggest that in the case of
one nearby device, SmokeScreen’s communication con-
sumes 1,628mJ of energy; for three devices, this in-
creases to 2,071mJ. Unfortunately, the cost of perform-
ing a name request for each individual nearby device is
prohibitively expensive. For the same amount of energy
spent by SmokeScreen with 3 nearby devices, SDDR
can discover and process 35 nearby devices (from Equa-
tion 1).

7 Discussion

In this section, we discuss properties and implications of
the somewhat unique communication model provided by
SDDR, which departs from the norm in two basic ways:

• SDDR decouples confidentiality from identity: en-
counter peers can communicate securely, even
though they do not know each other, and cannot rec-
ognize each other during future encounters.

• Communication within SDDR is both defined and
limited by radio range, which may not necessarily
conform to application semantics.

7.1 Confidentiality without Identity
SDDR’s secure encounter primitive provides, in effect,
a per-encounter mutual pseudonym for the encounter
peers, and an associated shared key. It enables the peers
to name each other and communicate securely during
their encounter, and at any time after their encounter via
an untrusted rendez-vous service. The peers can name
and authenticate each other as participants in a specific
encounter and communicate securely, while remaining
anonymous and unlinkable otherwise (assuming they do
not reveal linkable information within their communi-
cation). Interestingly, if the users choose, this type of
anonymous interaction during an encounter can form the
basis for mutual identification and authentication.

Prior systems rely on anonymous or unlinkable en-
counters between peers, such as SMILE [43] which sup-
ports finding missed connections, and SmokeScreen [27]
which allows two anonymous peers to exchange ad-
dresses for further communication (e.g., E-mail ad-
dresses) through the use of a trusted third party service.

7.2 Radio-Range Limited Communication
SDDR communication is limited to radio range, nom-
inally 10 meters for Bluetooth 2.1 (50 meters for the
latest Bluetooth 4.0 standard). From an application de-
sign point-of-view, range-limited communication may
inhibit, but can also prove useful.

Without a third-party data repository or additional pro-
tocol mechanisms, e.g., a multi-hop structure, applica-
tions that provide notifications among devices beyond ra-
dio range cannot be implemented. For example, SDDR
cannot be used to replicate the functionality of Google
Latitude, which provides updates on friend locations in-
dependent of physical distance.

Yet another problem may be that the radio range is
not limiting enough! For instance, consider an applica-
tion that wants to create pairwise encounters and share
a group secret only between users who are in the same
room. Nothing within SDDR will prevent messages
from being received outside the room, enabling a passive
eavesdropper to learn the group secret. External mecha-
nisms, in case of the room limited communication, pos-
sibly a fast attenuating ultrasound identification beacon
are required to manage the impedance mismatch between
application semantics and radio range. In general, ap-
plication designers may choose to use SDDR for a base
level of peer detection, and impose criteria that filters un-
wanted peers.

However, we note that radio range limited communi-
cation can have beneficial effects as well. In many situa-
tions, the Bluetooth radio range includes the attendees of
a socially meaningful event—those with whom a user is
likely to interact or share an experience.

Finally, the confidentiality and anonymity provided by
SDDR may disproportionately empower abusive users,
who could, e.g., spam or otherwise abuse those who are
nearby. Here, radio range limited communication pro-
vides both a bound on abusive communication and a
rudimentary form of accountability. If SDDR is used
for malice, the victim is assured that the source of the
communication is nearby. The victim could move, or
provide evidence of misbehavior (received messages) to
law-enforcement authorities. The physical proximity (ei-
ther of the sender or an accomplice) required for commu-
nication within SDDR can potentially serve as a deterrent
to abusive communication.

8 Conclusion

In this paper, we articulate the need for efficient secure
mobile encounters and their requirements, including se-
lective linkability and efficient revocation. We propose
a light-weight protocol called SDDR, which provably
meets the security requirements under the random oracle
model, and enables highly scalable and energy-efficient
implementations using Bluetooth. Experimental results
show that our protocol outperforms standard Private Set
Intersection by four orders of magnitude. Additionally,
its energy efficiency exceeds that of SmokeScreen by an
order of magnitude, while supporting stronger guaran-
tees. Energy consumption (and the resulting battery life)
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remain practical even under worst-case conditions like
dense crowds or DoS attacks.
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A Formal Security Definitions and Proofs

A.1 Overview
We follow a standard game-based approach for defining secu-
rity. We describe a game between an adversary and challenger.
The adversary controls the communication medium, and is al-
lowed to schedule the actions of legitimate users. For example,
the adversary can instruct a legitimate user to run GenBeacon
to generate a discovery beacon; or instruct a recipient to receive
the beacon(s) and call Recognize to determine the linkability
of discovered neighbors. The adversary can also instruct a le-
gitimate user to perform handshake with any member of the
compromised coalition. Link identifiers generated during such
a handshake (with the adversary) are marked as compromised
(i.e., known to the adversary). In addition, the adversary can ex-
plicitly compromise an encounter between two legitimate users
in which case the secret link identifier and shared key are ex-
posed; or explicitly compromise a user in which case all its
internal states, including previous link identifiers, are exposed.

At some point during the game, the adversary will issue a
challenge, either an anonymity challenge or a confidentiality
challenge.

An anonymity challenge intuitively captures the notion that
an adversary cannot break a legitimate user’s anonymity, unless
the legitimate user has authorized linkability to a party within
the adversary’s coalition. Note that this part of the definition
captures the unlinkability, selective linkability, and revocability
requirements (See Section 3.1) simultaneously.

A confidentiality challenge intuitively captures the notion
that an eavesdropping cannot learn anything about the (online
or post-hoc) communication in between two legitimate users.
This is guaranteed since for any two users that remain uncom-
promised at the end of the security, their shared key established
for some time epoch t is as good as “random” to the adversary
(assuming their encounter in time epoch t also remains uncom-
promised by the end of the security game).

A.2 Formal Security Definitions
We define the following security game between and an adver-
sary A and a challenger C . The time epoch t is initialized to 0
at the beginning of the game. The adversary adaptively makes
a sequence of queries as below.

Next time epoch. Increments the current time epoch t.

Expose handshake beacons. The adversary specifies an un-
compromised user Pi, identifiers of a subset Si of Pi’s previous
encounters, and asks the challenger to expose Pi’s handshake
beacon in the current time step t using the subset of previous
encounters Si.

Handshake - Uncompromised users. The adversary speci-
fies two uncompromised users Pi and Pj, such that Pj can hear
Pi in the current time epoch t. After receiving Pi’s handshake
beacon, Pj calls the Recognize algorithm, and updates its local
state accordingly. The adversary does not obtain information
from the challenger for this query.

Handshake - Adversary. The adversary sends a handshake
beacon to an uncompromised user Pi. Pi calls the Recognize
algorithm, and updates its local state. The identifier of this en-
counter is marked as compromised. The adversary does not
obtain any information from the challenger for this query.

Compromise - Encounter. The adversary specifies a reference
to an encounter which took place in time t ′ ≤ t between two
uncompromised users Pi and Pj, and the challenger reveals to
the adversary the corresponding link identifier, encounter key,
and any additional information associated with this encounter.

Compromise - User. The adversary specifies an uncompro-
mised user Pi. The adversary learns all Pi’s internal state, in-
cluding the list of all previous link identifiers, encounter keys,
received beacons, and any additional information associated
with Pi’s previous encounters3. Pi and all of its link identifiers
are marked as compromised.

Challenge. There can only be one challenge query in the entire
game, of one of the following types. In both cases, the adver-
sary outputs a guess b′ of b selected by the challenger.

• Anonymity. Adversary specifies two users Pi and Pj who
must remain uncompromised at the end of the game. The ad-
versary specifies Si and S j to the challenger, which (respec-
tively) denote a subset of Pi’s and Pj’s previous encounters
that must remain uncompromised at the end of the game. We
require that |Si|= |S j|. Furthermore, at the end of the game,
the adversary must not have issued an “expose handshake
beacon” query in the current time step for Pi (or Pj) involv-
ing any element in the subset Si (or S j).
The challenger flips a random coin b. If b = 0, the challenger
constructs Pi’s handshake beacon for the current time epoch
t for the set Si, and returns it to adversary. If b = 1, the
challenger constructs Pj’s handshake beacon for the set S j,
and returns it to adversary.

• Confidentiality. The adversary specifies two users Pi and
Pj who must remain uncompromised at the end of the game.

3Specific to our construction, the internal states also include the
exponents of Pi’s own DH beacons in all previous time epochs.



USENIX Association  23rd USENIX Security Symposium 939

Furthermore, the encounter between Pi and Pj during time
epoch t must also remain uncompromised at the end of the
game.
The challenger flips a random coin b. If b = 0, challenger
returns the encounter key ski j established between Pi and Pj
in time epoch t. If b= 1, challenger returns a random number
(from an appropriate range).

Definition 1 (Anonymity, Selective linkability). Suppose that
the adversary A makes a single anonymity challenge in the
above security game. The advantage of such an adversary
A is defined as Advlink(A ) := |Pr[b′ = b]− 1

2 |. We say that
our handshake protocol satisfies selective linkability, if the ad-
vantage of any polynomially bounded adversary (making an
anonymity challenge) in the above game is a negligible func-
tion in the security parameter.

Definition 2 (Confidentiality). Suppose that the adversary A
makes a single confidentiality challenge in the above security
game. The advantage of such an adversary A is defined as
Adv(A )conf := |Pr[b′ = b]− 1

2 |. We say that our handshake
protocol satisfies confidentiality, if the advantage of any poly-
nomially bounded adversary (making a confidentiality chal-
lenge) in the above game is a negligible function in the security
parameter.

A.3 Proofs of Security
Theorem 1 (Anonymity, selective linkability). Assume that the
CDH problem is hard. For any polynomial-time algorithm A ,
under the random oracle model,

Advlink(A )≤ negl(λ )

where λ is the security parameter.

Proof. If there is an adversary that can break the anonymity
game with probability ε , we can construct a simulator which
breaks CDH assumption with probability ε

poly(N,T,qo)
, where N

denotes the total number of users, T denotes the total number
of epochs, and qo denotes the number of random oracle queries.
Revealing hashes instead of Bloom filter In the challenge
stage, the Pi∗ ’s Bloom filter will have m elements. Instead of an-
nouncing the Bloom filter, we assume for the proof that users
simply broadcast the outcomes of the hash functions used to
construct the Bloom filter. This will only reveal more informa-
tion to the adversary – so as long as we can prove the secu-
rity when these hashes are revealed, we immediately guarantee
security when the Bloom filter instead of the hash values are
revealed.
Real-or-random version and sequence of hybrid games
Instead of proving the left-or-right version of the game as in
the security definition, we prove the real-or-random version.
Namely, the adversary specifies one user Pi (instead of two) in
the anonymity challenge (who must remain uncompromised at
the end of the game), as well as a subset of Pi’s previous en-
counters (which must remain uncompromised at the end of the
game). The challenger flips a random coin, and either returns
the faithful hash values to the adversary, or returns a list of ran-
dom values from an appropriate range. The adversary’s job is
to distinguish which case it is.

We use a sequence of hybrid games. In the k-th game, re-
place the k-th hash (out of m hashes) in the challenge stage
with some random value from an appropriate range.
Simulator construction The simulator obtains a CDH in-
stance gα ,gβ . The simulator guesses that the k-th encounter
in the anonymity challenge took place between users Pi∗ and
Pî∗ in time step τ . If the guess turns out to be wrong later, the
simulator simply aborts. The simulator answers the following
queries:

Expose handshake beacons. First, the simulator generates the
DH beacons as below: except for users Pi∗ and Pî∗ in time step
τ , the simulator generates all other DH beacons normally. For
Pi∗ and Pî∗ in time step τ , their DH beacons will incorporate gα

and gβ respectively. Notice that the simulator does not know α ,
β , or the dhk := gαβ . Except for gαβ , the simulator can com-
pute all other dhks between two uncompromised users (even
when one of gα or gβ is involved) since the simulator knows
the exponent of at least one DH beacon.

In generating the hashes for the Bloom filter, each hash can
correspond to an encounter of the following types:

• Case 1: The hash does not involve an encounter in time τ .
The simulator can compute the dhk and link identifier nor-
mally in this case.

• Case 2: The hash corresponds to an encounter in time τ , but
at least one of the parties in the encounter is an uncompro-
mised user (at the time of the challenge query) other than
Pi∗ , Pî∗ . Notice that the simulator can compute the dhk (and
hence the link identifier) in this case, since the simulator
knows the exponent of the DH beacon of the other party.

• Case 3: The hash corresponds to an encounter in time τ , and
between Pi∗ and Pî∗ . In this case, the simulator does not know
the dhk= gαβ .

• Case 4: The hash corresponds to an encounter in time τ ,
and between Pi∗ (or Pî∗ ) and the adversary. Suppose in this
encounter in question, the adversary sent Pi∗ the DH beacon
gγ . (The case for Pî∗ is similar and omitted). The simulator
does not know the dhk= gαγ in this case.

Regardless of which type of encounter the hash corresponds
to, as long as the simulator knows the dhk of this encounter, it
can compute the link identifier and Bloom filters. Below, when
we explain how to answer queries of the types “Handshake -
Uncompromised users” and “Handshake - Adversary”, we will
explain how the simulator generates and records a link identi-
fier for each of these encounters – even when it may not know
the dhk (Cases 3 and 4). In this way, the simulator can answer
queries for Cases 3 and 4 as well.

Handshake - Uncompromised users. Except for the en-
counter between Pi∗ and Pî∗ in time epoch τ , for all other en-
counters, the simulator can compute the resulting dhks for both
uncompromised users – even when one of gα or gβ is involved.
Therefore, the simulator computes and saves the dhk, which
may later be used in answering “expose handshake beacon”
queries.

For the encounter between Pi∗ and Pî∗ in time τ , since the
simulator does not know dhk := gαβ , it simply chooses a ran-
dom link identifier and saves it internally, which will later be
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used in answer “Expose handshake beacon” queries to con-
struct Bloom filters.

Handshake - Adversary. Except when time step τ and user
Pi∗ or Pî∗ are involved, the simulator can proceed normally, and
generate and dhk and other secrets that are derived as hashes of
the dhk.

For time step τ , and Pi∗ or Pî∗ , something special needs to
be done. Assume the adversary sends Pi∗ handshake beacon gγ

(the case for Pî∗ is similar and omitted). The simulator does
not know α or γ , hence it cannot compute the corresponding
dhk := gαγ . Without loss of generality, assume gα < gγ . The
simulator picks a random link identifier L∗ – intended to be the
link identifier for this encounter with the adversary. The simu-
lator saves L∗, which will later be used in answering “Expose
handshake beacon” queries.

The simulator informs the random hash oracle of the tuple
(L∗, gα , gγ ). Later, random oracle may receive multiple queries
of the form H0(gα ||gγ ||Z). Suppose there are at most qo of
these queries. With probability 1

qo+1 , the hash oracle never uses

encK∗ as the answer. With probability 1− 1
qo+1 , the hash or-

acle guesses one of these queries at random, and uses L∗ as
the answer. The simulator guesses correctly with probability at
least 1

qo+1 where qo is the number of hash oracle queries.

Compromise - Encounter. The adversary specifies a reference
to a previous encounter (i, j, t ′), where users Pi and Pj are un-
compromised thus far. If i and j are not i∗ or î∗, or t ′ �= τ , the
simulator answers the query normally.

If t ′ = τ , i and j cannot simultaneously be i∗ and î∗, oth-
erwise the simulator would have aborted. If one of i or j is
i∗ or î∗, the simulator can still answer the query, even without
knowing α or β – since the simulator knows the exponent of
the other player’s DH beacon.

Compromise - User. If the adversary issues this query for user
Pi∗ or Pî∗ , the simulator simply aborts. For all other uses, the
query can be answered normally.

Random oracle. Above, we mentioned how the random oracle
handles queries of the form H0(gα ||gγ ||Z), where gγ was a DH
beacon from the adversary in a “Handshake - Adversary” query.
For all other random oracle queries, the simulator picks random
numbers to answer. The simulator records previous random
oracle queries, so in case of a duplicate query, the same answer
is given. Whenever the simulator needs to evaluate the hash
function, it also queries its own random oracle.

Challenge - Anonymity. The Bloom filter hash values re-
quested in the challenge stage must not have been queried in
an “Expose handshake beacon” query. In the k-th hybrid game,
the simulator outputs random values for the first k hashes. For
the rest, the simulator constructs the answers normally – since
these encounters happened before time τ , the simulator can
compute their link identifiers and compute these hashes nor-
mally.

Without loss of generality, assume that gα < gβ . In the
above simulation, the simulator makes all guesses correctly
with probability at least 1

poly(N,T,qo)
. Conditioned on the fact

that the simulator made all guesses correctly, unless the ad-
versary queried H0(gα ||gβ ||gαβ ), the (k − 1)-th and k-th hy-
brid games are information theoretically indistinguishable from
each other to the adversary. Now the adversary cannot have
queried at any point H0(gα ||gβ ||gαβ ) with more than negligi-
ble probability, since otherwise we can construct a simulator
that outputs gαβ with non-negligible probability, thus breaking
the CDH assumption.

Theorem 2 (Confidentiality). Assume that the CDH problem
is hard. For any PPT algorithm A , under the random oracle
model,

Advconf(A )≤ negl(λ )

where λ is the security parameter.

Proof. The simulator guesses that the adversary will issue a
confidentiality between users Pi∗ and Pî∗ in time epoch τ . If the
guess turns out to be wrong later, the simulator simply aborts.

Suppose that simulator gets a CDH instance (gα ,gβ ). The
simulator would then answer all queries exactly as in the proof
of Theorem 1, except for the challenge – instead of submitting
a anonymity challenge, the adversary now submits a confiden-
tiality challenge:

Challenge - Confidentiality. If i, j, and current time epoch τ
does not agree with what the simulator had guessed, the simu-
lator simply aborts. Otherwise, the simulator would have cho-
sen a random link identifier in a “Handshake - Uncompromised
users” query for (i∗, î∗,τ). The encounter key of this session is
obtained by making a random oracle query on H2(L).

The simulator makes all guesses correctly with probability
at least 1

poly(N,T,qo)
. Conditioned on the fact that all guesses are

correct, the encounter key returned in the challenge stage is in-
formation theoretically indistinguishable from random, unless
the adversary has queried H0(gα ||gβ ||gαβ ) (assuming gα < gβ

without loss of generality). However, if the adversary makes
such a random oracle query with non-negligible probability, we
can construct a simulation that leverages the adversary to break
the CDH assumption.

A.4 Co-Linking
Proposition 1. Any non-interactive handshake protocol must
be subject to a co-linking attack.

Proof. In an non-interactive protocol, a user Alice publishes a
message M in a certain time epoch. Suppose Bob and Charles
have met Alice before (in encounters with link-ids L and L′

respectively), and Alice has granted both of them permission
to link her. Bob should be able to derive from his secret state
and the message M, the link identifier L linking this encounter
to the previous encounter L. Similarly, with his secret state and
the message M, Charles should also be able to derive L′. Now
trivially, if Bob and Charles collude, they can decide that the
message M can be linked to previous encounters L and L′.
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Abstract
Constraining dynamic control transfers is a common tech-
nique for mitigating software vulnerabilities. This de-
fense has been widely and successfully used to protect
return addresses and stack data; hence, current attacks
instead typically corrupt vtable and function pointers to
subvert a forward edge (an indirect jump or call) in the
control-flow graph. Forward edges can be protected us-
ing Control-Flow Integrity (CFI) but, to date, CFI im-
plementations have been research prototypes, based on
impractical assumptions or ad hoc, heuristic techniques.
To be widely adoptable, CFI mechanisms must be inte-
grated into production compilers and be compatible with
software-engineering aspects such as incremental compi-
lation and dynamic libraries.

This paper presents implementations of fine-grained,
forward-edge CFI enforcement and analysis for GCC and
LLVM that meet the above requirements. An analysis
and evaluation of the security, performance, and resource
consumption of these mechanisms applied to the SPEC
CPU2006 benchmarks and common benchmarks for the
Chromium web browser show the practicality of our ap-
proach: these fine-grained CFI mechanisms have signif-
icantly lower overhead than recent academic CFI proto-
types. Implementing CFI in industrial compiler frame-
works has also led to insights into design tradeoffs and
practical challenges, such as dynamic loading.

1 Introduction
The computer security research community has developed
several widely-adopted techniques that successfully pro-
tect return addresses and other critical stack data [13, 20].
So, in recent years, attackers have changed their focus
to non-stack-based exploits. Taking advantage of heap-
based memory corruption bugs can allow an attacker to
overwrite a function-pointer value, so that arbitrary ma-
chine code gets executed when that value is used in an
indirect function call [6]. Such exploits are referred to as
forward-edge attacks, as they change forward edges in
the program’s control-flow graph (CFG).

To make these attacks more concrete, consider a C++
program that makes virtual calls and has a use-after-free
bug involving some object. After the object is freed, an

attacker can reallocate the memory formerly occupied by
the object, overwriting its vtable pointer. Later virtual
calls through this object get the attacker’s vtable pointer
and jump to a function from the attacker’s vtable. Such
exploits are becoming commonplace, especially for web
browsers where the attacker can partially control executed
JavaScript code [14, 23].

Control-Flow Integrity (CFI) [1] guards against these
control-flow attacks by verifying that indirect control-
flow instructions target only functions in the program’s
CFG. However, although CFI was first developed over a
decade ago, practical CFI enforcement has not yet been
adopted by mainstream compilers. Instead, CFI imple-
mentations to date are either ad-hoc mechanisms, such
as heuristic-driven, custom binary rewriting frameworks,
or experimental, academic prototypes based on simpli-
fying assumptions that prevent their use in production
compilers [1, 9, 12, 29, 31–34].

In this paper, we present implementations of two mech-
anisms that provide forward-edge CFI protection, one
in LLVM and one in GCC. We also provide a dynamic
CFI analysis tool for LLVM which can help find forward-
edge control-flow vulnerabilities. These CFI implemen-
tations are fully integrated into their respective compil-
ers and were developed in collaboration with their open
source communities. They do not restrict compiler opti-
mizations, operation modes, or features, such as Position-
Independent Code (PIC) or C++ exceptions. Nor do they
restrict the execution environment of their output binaries,
such as its use of dynamically-loaded libraries or Address
Space Layout Randomization (ASLR).

The main contributions of this paper are:
• We present the first CFI implementations that are

fully integrated into production compilers without
restrictions or simplifying assumptions.

• We show that our CFI enforcement is practical and
highly efficient by applying it to standard bench-
marks and the Chromium web browser.

• We identify, discuss, and resolve the main challenges
in the development of a real-world CFI implemen-
tation that is compatible with common software-
engineering practices.

All our mechanisms verify targets of forward-edge in-

1
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direct control transfers but at different levels of preci-
sion, depending on the type of target and the analysis
applied. For example, C++ indirect-control transfers con-
sist mostly of virtual calls, so one of our approaches
focuses entirely on verifying calls through vtables. Our
security analyses show that our CFI mechanisms protect
from 95% to 99.8% of all indirect function calls. They are
also highly efficient, with a performance penalty (after
optimizations) ranging from 1% to 8.7%, as measured on
the SPEC CPU2006 benchmark suite and on web browser
benchmarks.

Most notably, our CFI mechanisms compare favorably
to recent CFI research prototypes. The security guarantees
of our work differ from these prototypes, but a compari-
son is nonetheless instructive, since our attack model is
realistic, and our defenses give strong guarantees.

MIP [28] and CCFIR [34] state efficiency as their main
innovation. In particular, on the SPEC Perl benchmarks
(where they both were slowest), CCFIR reports 8.6% over-
head, and MIP reports 14.9% to 31.3% overhead. Our
mechanisms have a corresponding overhead of less than
2%, as we report in Section 7.2. For C++ benchmarks,
which perform indirect calls more frequently, the perfor-
mance differences can be even greater. Another recent
CFI implementation, bin-CFI [35], reports overheads of
12% on the SPEC Perl benchmarks, but 45% for the C++
benchmark omnetpp, while the overhead is between -1%
and 6.5% for omnetpp compiled using our mechanisms.
Even the most recent CFI implementation, SAFEDIS-
PATCH [19], must sacrifice software-engineering practi-
cality and use profile-driven, whole-program optimization
to achieve overheads comparable to ours (roughly 2% for
all three of their Chromium benchmarks).

2 Attacks and Compiler-based Defenses
Software is often vulnerable to attacks that aim to subvert
program control flow in order to control the software’s
behavior and assume its privileges. Typically, successful
attacks exploit software mistakes or vulnerabilities that
allow corruption of low-level state.

To thwart these low-level attacks, modern compilers,
operating systems, and runtime libraries protect software
integrity using a variety of techniques, ranging from
coarse-level memory protection, through address-space
layout randomization, to the fine-grained type-safety guar-
antees of a high-level language. In particular, machine-
code memory is commonly write protected, and thread
execution stacks are protected by placing them at ran-
dom, secret locations, and by checking that secret values
(a.k.a. canary values) remain unmodified. This guards re-
turn addresses and other stack-based control data against
unintended overwriting [7, 13].

As a result of such compiler-based defenses becoming
widely used, corruption of the execution stack or machine

code has become a far less common means of successful
attack in well-maintained, carefully-written software such
as web browsers [20]. However, there has been a corre-
sponding increase in attacks that corrupt program-control
data stored on the heap, such as C++ vtable pointers (in-
side objects) [14], or function pointers embedded in data
structures; these attacks subvert indirect control trans-
fers and are known as “return-to-libc” or return-oriented
programming [3, 8, 22, 25–27, 30].

In this paper we present three compiler-based mech-
anisms for further protecting the integrity of program
control data. Focusing on the integrity of control-transfer
data stored on the heap, two of our mechanisms enforce
forward-edge CFI by restricting the permitted function
pointer targets and vtables at indirect call sites to a set
that the compiler, linker, and runtime have determined
to be possibly valid. The third mechanism is a runtime
analysis tool designed to catch CFI violations early in
the software development life-cycle. Our mechanisms
are efficient and practical and have been implemented as
components of the GCC and LLVM production compiler
toolchains. While they differ in their details, and in their
security — such as in how precisely the program’s CFG
is enforced — all three of our implementations:
• add new, read-only metadata to compilation modules

to represent aspects of the program’s static CFG;
• add machine code for fast integrity checks before

indirect forward-edge, control-flow instructions;
• optionally divert execution to code that performs

slower integrity checks in certain complex cases;
• call out to error handlers in the case of failures; and
• may employ runtime library routines to handle im-

portant exceptional events such as dynamic loading.
Like all defenses, we aim to prevent certain threats

and not others, according to an attack model. As in the
original work on CFI, our model pessimistically assumes
that an adversary can arbitrarily perturb most writable
program data at any time [1]. The program code, read-
only data, and thread register state cannot be modified.
While pessimistic, this attack model has stood the test of
time, and is both conceptually simple and realistic.

Similar to recent independent CFI work done concur-
rently with ours [19], and motivated by attackers’ increas-
ing focus on heap-based exploits, our mechanisms protect
only forward-edge control transfers. Our attack model
does not contain many types of stack corruption, since,
as stated previously, effective defenses against such cor-
ruption are already in common use. Thus, our choice of
attack model differs from most earlier work on CFI, ex-
cept for work on mechanisms like XFI [12], which place
the stack outside of pointer-accessible memory.

In our attack model we also depart from most previous
CFI work by choosing to trust the compiler toolchain.
For the integration of general-purpose defenses in pro-
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duction compilers, we find relying only on stand-alone
verification of the final, output binaries to be impractical —
although well-suited to custom compilers for specific sce-
narios, such as in Google’s Native Client [17, 21]. While
eliminating trust in the compiler is a laudable goal [24],
doing so increases complexity, reduces portability, and
prevents optimizations, while providing only uncertain
benefits. In particular, we know of no exploits on pre-
vious compiler-based defenses that justify the software
engineering costs of eliminating trust in the compiler.

By adopting the above attack model, our mechanisms
are practical as well as efficient. While many experimen-
tal CFI mechanisms have been constructed and described
in the literature, none have been able to efficiently provide
strong, precise integrity guarantees with the full support
that programmers demand from a production compiler. In
particular, incremental compilation and dynamic libraries
have remained primary challenges for CFI implementa-
tions, as has achieving low performance overheads; these
challenges have only recently started to be addressed in
experimental prototypes that enforce more coarse-grained
CFI policies [28, 34]. However, CFI enforcement that
is too coarse grained may provide only limited protec-
tion [4, 10, 15, 16] against modern attackers.

In summary, by focusing on forward-edge CFI, and
fully integrating into compilers, our mechanisms can en-
force fine-grained CFI at a runtime overhead that im-
proves on that of the best previous work.

Related Work. Following the original 2005 work on
CFI, later revised as Abadi et al. [1], there have been
a number of implementations that have extended or
built-upon CFI: XFI by Erlingsson et al. [12], BGI by
Castro et al. [5], HyperSafe by Wang and Jiang [31],
CFI+Sandboxing by Zeng et al. [32], MoCFI by Davi
et al. [9], CCFIR by Zhang et al. [34], Strato by Zeng
et al. [33], bin-CFI by Zhang et al. [35], MIP by Niu
et al. [28], and SAFEDISPATCH by Jang et al. [19].

These CFI-based mechanisms vary widely in their
goals, tradeoffs and implementation details. To achieve
low overhead, many enforce only coarse-grained CFI,
which may be a weak defense [15].

XFI, Strato, HyperSafe, and BGI use control-flow in-
tegrity primarily as a building block for higher-level func-
tionality, such as enforcing software-based fault isolation
(SFI), or fine-grained memory-access controls. Some,
like XFI, focus on statically verifying untrusted binary
modules, to establish that CFI will be correctly enforced
during their execution, and thus that they can be used
safely within different address spaces, such as the OS
kernel.

Many implementations of CFI are based on binary
rewriting. XFI and the original work on CFI used the
sound, production-quality Windows binary rewriter, Vul-
can [11], as well as debug information in PDB files.

These implementations construct precise control-flow
graphs (CFGs) to ensure that all indirect control trans-
fers are constrained in a sound manner. Other imple-
mentations — including MoCFI, CCFIR, and bin-CFI —
are based on more ad hoc and fragile mechanisms. For
example, MoCFI produces an imprecise CFG for ARM
applications running on an iPhone based on runtime code
dumping, disassembly, and heuristics. CCFIR relies on
relocation tables and recursive disassembly with heuris-
tics to identify code that needs to be protected. The code
is then rewritten to use a special randomized springboard
section through which all indirect control transfers hap-
pen. Bin-CFI also uses heuristic disassembly; however,
unlike CCFIR, bin-CFI injects a CFI-protected copy of
the text section into the original binary and uses dynamic
binary translation to convert pointers between the two
code copies at runtime.

Other implementations, including HyperSafe, MIP,
CFI+Sandboxing, and SAFEDISPATCH are implemented
as modifications to the compiler toolchain and compile
source code to binaries with CFI protection. The first
three are implemented as rewriting either assembly or
the compiler’s Intermediate Representation (IR) of ma-
chine code — essentially a more precise form of binary
rewriting.

Our vtable verification (see Section 3) is most simi-
lar to SAFEDISPATCH: work done independently and
concurrently with ours that adds passes to LLVM for in-
strumenting code with runtime CFI checks, and relies
on profile-driven, whole-program optimization to reduce
enforcement overhead. At a call site, SAFEDISPATCH
checks that either (1) the vtable pointer is to a valid vtable,
for the call site, or (2) the address in the vtable points to a
valid method for the call site. However, SAFEDISPATCH
disallows separate compilation, dynamic libraries, etc.,
and relies on profile-driven, whole-program optimization,
which is not very practical.

The overhead of all these various CFI mechanisms
ranges from 6% to 200%, with some significant variations.
In particular, the recent papers on MIP, CCFIR, and Strato
state their low CFI enforcement overhead as a main con-
tribution; Strato also highlights its support for compiler
optimizations. However, as mentioned previously, their
overheads on comparable benchmarks are several times
larger than those of our CFI mechanisms — and they are
likely to perform even worse on C++ benchmarks. This is
due in part to the different properties our work enforces:
we limit our scope to protecting control data that is not
already well-protected by other mechanisms.

3 VTV: Virtual-Table Verification
Vtable Verification (VTV) is a CFI transformation imple-
mented in GCC 4.9 for C++ programs. VTV protects only
virtual calls and does not attempt to verify other types of

3
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indirect control flow. However, most indirect calls in C++
are virtual calls (e.g., 91.8% in Chrome), making them
attractive targets for attackers. VTV is our most precise
CFI approach: it guarantees that the vtable used by each
protected virtual call is both valid for the program and
also correct for the call site.

3.1 Problem Description

Virtual calls are made through objects, which are instances
of a particular class, where one class (e.g., rectangle)
inherits from another class (e.g., shape), and both classes
can define the same function (e.g., draw()), and declare
it to be virtual. Any class that has a virtual function
is known as a polymorphic class. Such a class has an
associated virtual function table (vtable), which contains
pointers to the code for all the virtual functions for the
class. During execution, a pointer to an object declared
to have the type of a parent class (its static type, e.g.,
shape) may actually point to an object of one of the
child classes (its dynamic type, e.g., rectangle). At
runtime, the object contains a pointer (the vtable pointer)
to the appropriate vtable for its dynamic type. When it
makes a call to a virtual function, the vtable pointer in the
object is dereferenced to find the vtable, then the offset
appropriate for the function is used to find the correct
function pointer within the vtable, and that pointer is used
for the actual indirect call. Though somewhat simplified,
this explanation is generally accurate.

The vtables themselves are placed in read-only memory,
so they cannot be easily attacked. However, the objects
making the calls are allocated on the heap. An attacker
can make use of existing errors in the program, such as
use-after-free, to overwrite the vtable pointer in the object
and make it point to a vtable created by the attacker. The
next time a virtual call is made through the object, it uses
the attacker’s vtable and executes the attacker’s code.

3.2 Overview of VTV

To prevent attacks that hijack virtual calls through bogus
vtables, VTV verifies the validity, at each call site, of
the vtable pointer being used for the virtual call, before
allowing the call to execute. In particular, it verifies that
the vtable pointer about to be used is correct for the call
site, i.e., that it points either to the vtable for the static
type of the object, or to a vtable for one of its descendant
classes. VTV does this by rewriting the IR code for
making the virtual call: a verification call is inserted after
getting the vtable pointer value out of the object (ensuring
the value cannot be attacked between its verification and
its use) and before dereferencing the vtable pointer. The
compiler passes to the verifier function the vtable pointer
from the object and the set of valid vtable pointers for the
call site. If the pointer from the object is in the valid set,
then it gets returned and used. Otherwise, the verification

function calls a failure function, which normally reports
an error and aborts execution immediately.

3.3 More Details
VTV differs from all previous compiler-based CFI im-
plementations in that it allows incremental compilation
rather than requiring that all files be recompiled if a single
one is changed. VTV also does not forbid or restrict dy-
namic library loading. Such requirements and restrictions
are common in research prototypes but impractical for
real world systems.

Because VTV allows incremental compilation and dy-
namic loading, it must assume that its knowledge of the
class hierarchy is incomplete during any particular compi-
lation. Therefore, VTV has two pieces: the main compiler
part, and a runtime library (libvtv), both of which are part
of GCC. In addition to inserting verification calls at each
call site, the compiler collects class hierarchy and vtable
information during compilation, and uses it to generate
function calls into libvtv, which will (at runtime) build
the complete sets of valid vtable pointers for each poly-
morphic class in the program.

To keep track of static types of objects and to find sets
of vtable pointers, VTV creates a special set of variables
called vtable-map variables, one for each polymorphic
class. At runtime, a vtable-map variable will point to the
set of valid vtable pointers for its associated class. When
VTV inserts a verification call, it passes in the appropriate
vtable-map variable for the static type of the object, which
points to the set to use for verification.

Because our vtable-pointer sets need to be built before
any virtual calls execute, VTV creates special constructor
init functions and gives them a high priority. The compiler
inserts into these special functions the calls for building
vtable-pointer sets. These functions run before standard
initialization functions, which run before main, ensuring
the data is in place before any virtual calls are made.

Vtable-map variables and vtable-pointer sets need to
be read only to avoid introducing new vectors for attack.
However, they must be writable when they are first ini-
tialized and whenever a dynamic library is loaded, since
the dynamic library may need to add to the vtable-pointer
sets. So, we need to be able to find all our data quickly.
To keep track of the vtable-pointer sets, we wrote our own
memory allocation scheme based on mmap. VTV uses
this scheme when creating the sets; this lets it find all such
sets in memory.

To find vtable-map variables, VTV writes them into a
special named section in the executable, which is page-
aligned and padded with a page-sized amount of zeros to
prevent any other data from residing on the same pages.
Before updating its data, VTV finds all memory pages that
contain vtable-map variables and vtable-pointer sets and
makes them writable. When it finishes the update, it finds
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all appropriate pages and makes them read-only. Thus,
the only times these VTV data structures are vulnerable
to attack are during program initialization, and possibly
during dlopen calls. The VTV code that updates our data
structures uses pthread mutexes to prevent races between
multiple threads.

3.4 Practical Experience with VTV
We encountered some challenges while developing VTV.

Declaring global variables. Originally, VTV declared
vtable-map variables as COMDAT and as having global
visibility, because incremental compilation can result in
multiple compilation units defining the same vtable-map
variable, and COMDAT sections can be coalesced by the
linker. However, this did not work reliably because there
are many ways in which programmers can override the
visibility of a symbol: linker version scripts can explicitly
declare which symbols have global visibility; the rest of
the symbols become hidden by default. Also, if global
symbols are not added to the dynamic symbol table, then
vtable-map variables might not be global. Finally, calls to
dlopen with the RTLD_LOCAL flag have similar effects.
We found all these techniques at work in Chromium.

When some vtable-map variables do not have global
visibility, there can be multiple live instances of a vtable-
map variable for a particular class, each pointing to a
different vtable-pointer set containing only part of the full
vtable-pointer set for the class. If the verification function
is passed a variable pointing to the wrong part of the set,
execution aborts incorrectly. We call this the split-set
problem.

We finally concluded that there is no existing mecha-
nism for the compiler to ensure a symbol will always be
globally visible. The only way to eliminate the split-set
problem was to accept that there would be multiple live
versions of some vtable-map variables. To handle the
consequences of this new assumption, VTV keeps track
of the first instance of a vtable-map variable for each class.
When initializing any vtable-map variable, it first checks
if it has already seen a version of that variable. If not, then
it allocates a vtable-pointer set for the variable, makes
the variable point to the vtable-pointer set, and registers
the variable in its variable registry. All subsequent vtable-
map variables for that class are then initialized to point to
the same vtable-pointer set as the first one.

Mixing verified and non-verified code. VTV causes
execution to halt for one of three reasons: (1) a vtable
pointer has been corrupted; (2) the C++ code contains
an incorrect cast between two class types (programmer
error); or (3) the set of valid vtable pointers used for
verification is incomplete. The split-set problem is an
example of the last case. This can also occur if some files
that define or extend classes are instrumented with vtable

lib.cc

#include "lib.h"
struct Derived_Priv : public Base {
virtual ~Derived_Priv() {}

};

Base *GetPrivate() {
return new Derived_Priv;

}
void Destroy(Base *pb) {
delete pb; // virtual call #1

}

main.cc

#include "lib.h"
struct Derived : public Base {

virtual ~Derived() {}
};

int main() {
Derived *d = new Derived;
Destroy(d);
Base *pp = GetPrivate();
delete pp; // virtual call #2

}

main.cc lib.cc vcall #1 vcall #2 Missing from vtable
w/ VTV w/ VTV OK OK pointer set

Yes Yes Yes Yes Nothing
No No Yes Yes Nothing
Yes No Yes No Derived_Priv
No Yes No Yes Derived

Figure 1: Example of problems resulting from mixing
verified and unverified code. If only main.cc is compiled
with verification, the vtable pointer for Derived_Priv
does not get added to the valid set for Base, so virtual
call #2 fails to verify. If only lib.cc is compiled with
verification, the vtable pointer for Derived does not get
added to the valid set for Base, so virtual call #1 fails.

verification, and other files that define or extend part of
the class hierarchy are not. A similar effect also can occur
with libraries or plugins that pass objects in and out, if
one is instrumented and the other is not.

Figure 1 shows this problem: a header file, lib.h, de-
clares a base class Base. The class Base contains one
virtual function, its destructor. There are two source files,
lib.cc and main.cc, that each includes lib.h and contains
classes that inherit from Base, as shown in the upper part
of Figure 1. The table in the lower part of Figure 1 shows
the effects on the two marked virtual calls of compiling
lib.cc and main.cc with and without VTV. Note that the
only cases where both virtual calls pass verification are
when everything is built with VTV or nothing is.

We encountered this problem in ChromeOS with the
Chrome browser. There are two third-party libraries
which are built without VTV and are distributed to
ChromeOS as stripped, obfuscated binaries (these bina-
ries are not part of the open-source Chromium project).
To make matters worse, when we built the rest of Chrome
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and ChromeOS with VTV and ran tests that exercised
those libraries, we encountered verification failures.

To deal with the mixed-code problem in general, VTV
was designed and written with a replaceable failure func-
tion. This function gets called if the verification function
fails to find a vtable pointer in a valid set. To replace
the default failure function, a programmer writes a re-
placement function (using the same signature, provided
in a header file in libvtv), compiles it, and links it into
the final binary. For Chrome we replaced the default
failure function with a whitelist failure function. The
whitelist function maintains an array with one record for
each whitelisted library. The record contains the mem-
ory address range where the readonly data section for
the library (which contains all of the library’s vtables)
is loaded. If a vtable pointer fails normal verification, it
gets passed to the whitelist failure function. The function
goes through the array, checking to see if the pointer is
in any of the address ranges. If so, it assumes the pointer
is valid and execution continues (verification succeeded).
Otherwise, it reports an error and aborts.

Because the obfuscated libraries are dynamically
loaded, the whitelist array records do not initially contain
any addresses. If any records are empty when the whitelist
failure function is called, then the function checks to see
if the corresponding library has been loaded, and if so, it
fills in the addresses before verification. For ChromeOS,
our whitelist consists of the two third-party libraries men-
tioned above. This secondary verification, while not as
accurate as normal VTV verification, still severely limits
what an attacker can do, and with it we were able to exe-
cute all our tests on Chrome with no verification failures.
Our secondary failure function only gets called in those
cases where the main verification function fails. In that
case it usually performs at most one alignment check and
four pointer comparisons. Therefore, its overall impact
on performance is small.

3.5 Alternatives & Enhancements for VTV
Since our performance overhead is reasonably good (rang-
ing from 2.0% to 8.7% in the worst case, as we discuss
in Section 7.1), we have not spent much time improv-
ing the performance of VTV. However, there are some
things that could be done to improve these numbers. For
various reasons, Chrome/ChromeOS currently cannot be
compiled with devirtualization1 enabled; we could enable
devirtualization in Chrome and tune the devirtualizer to
be more aggressive when combined with VTV. Partial
inlining of the verification call sequences is another av-

1Devirtualization is an optimization that replaces virtual calls with
a fast-path/slow-path mechanism: the fast path uses a direct call to
the most common target, with a conditional check to make sure this is
right; the slow path falls back on the normal virtual call mechanism.
Devirtualization reduces the number of indirect calls and verifications
and improves the overall performance of VTV.

enue we could explore, since call overhead accounts for a
significant portion of our overall performance penalties.
We could also implement secure methods for caching and
reusing frequently verified values.

When we started implementing VTV, we decided that
we did not want to modify any element of the toolchain
except the compiler, especially because GCC can be used
with a variety of different assemblers and linkers, and
we did not want to modify all of them. An alternative
approach would have been to have the compiler store the
vtable-pointer sets as data in the assembly files. This data
would be passed through the assembler to the linker. At
link time the linker would see the whole program and
could efficiently combine the vtable-pointer sets from
the various object files into the appropriate final vtable-
pointer sets. The dynamic loader, when loading the pro-
gram, could load the pointers into our data sets and mark
them read-only. This approach would eliminate order-
ing issues between functions that build vtable-pointer
sets and functions that make virtual calls. The dynamic
loader would also need to update the data, as appropri-
ate, whenever it loaded a dynamic library that contained
additional vtable pointers. A disadvantage of this alter-
native approach is that instead of requiring modifications
only to the compiler, it would modify the entire toolchain:
the compiler, the assembler, the linker, and the dynamic
loader.

4 IFCC: Indirect Function-Call Checks
Indirect Function-Call Checks (IFCC) is a CFI transforma-
tion implemented over LLVM 3.4. It operates on LLVM
IR during link-time optimization (LTO). IFCC does not
depend on the details of C++ or other high-level lan-
guages; instead, it protects indirect calls by generating
jump tables for indirect-call targets and adding code at
indirect-call sites to transform function pointers, ensuring
that they point to a jump-table entry. Any function pointer
that does not point into the appropriate table is considered
a CFI violation and will be forced into the right table by
IFCC. IFCC collects function-pointers into jump tables
based on function-pointer sets, like VTV’s vtable-pointer
sets, with one table per set.

IFCC forces all indirect-calls to go through its jump ta-
bles. This significantly reduces the set of possible indirect-
call targets, and severely limits attacker options, prevent-
ing attacks that do not jump to a function entry point of
the right type.

Each entry in a jump table consists solely of an aligned
jump instruction to a function. The table is written to
the read-only text area of the executable and is padded
with trap instructions to a power-of-two size so that any
aligned jump to the padding will cause the program to
crash. Since the size of the table is a power of two, IFCC
can compute a mask that can be used at call sites to force
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a function pointer into the right function-pointer set. For
example, if each jump-table entry takes up 8 bytes, and
the table is 512 bytes in size, then there are 64 entries in
the table, and the mask would be 111111000 in binary,
which is 504 in decimal.

IFCC rewrites IR for functions that have their address
taken; we call these address-taken functions. The main
transformation replaces the address of each such function
with the address of the corresponding entry in a jump table.
Additionally, indirect calls are replaced with a sequence
of instructions that use a mask and a base address to
check the function pointer against the function-pointer set
corresponding to the call site. The simplest transformation
subtracts the base address from the pointer, masks the
result, and adds the masked value back to the base. If the
pointer was in the right function-pointer set before this
transformation, then it remains unchanged. If not, then
a call through the resulting pointer is still guaranteed to
transfer control only to addresses in the function-pointer
set or to trap instructions. Note that every pointer in a
jump table is a valid function pointer (although some
of them immediately hit trap instructions when they are
called), so they can correctly be passed to external code.

IFCC can support many kinds of function-pointer sets,
each with different levels of precision. For example, the
most precise version would have one function-pointer set
per function type signature. However, real world code
does not always respect the type of function pointers, so
this can fail for function-pointer casts. We will focus on
two simple ways of constructing function-pointer sets:
(1) Single puts all the functions into a single set; and (2)
Arity assigns functions to a set according to the number
of arguments passed to the indirect call at the call site
(ignoring the return value).

Note that although we implemented only two simple
types of tables, any disjoint partitioning of the function-
pointer types in the program will work, as long as each
call site can be uniquely associated with a single table.
This is true no matter what analysis is used to generate
these tables — be it static, dynamic, or manual. So, for
example, the compiler could perform a detailed analysis
of escaping pointers and use it to separate these pointers
into their own tables.

The following example demonstrates the IFCC tech-
nique for a simple program. Consider a function
int f(char a) { return (int)a; } and a main
function that makes an indirect call to f through a
function-pointer variable g. In LLVM IR, the sym-
bol @f will refer to function defined above; IFCC adds
a @baseptr symbol that stores a pointer to the first
function pointer in the generated jump table. Before
IFCC, the LLVM IR contains an indirect call instruc-
tion %call = call i32 %2(i8 signext 0) to the
function pointer stored in variable %2.

IFCC generates a new symbol @f_JT and defines it
in the IR as an external function. It finds each instance
where the program uses the address of @f and makes it
use the address of @f_JT instead. It also creates a jump
table of the form:

.align 8

.globl f_JT
f_JT:
jmp f

This defines the symbol @f_JT and satisfies the linker.
IFCC instruments the code before the indirect call with
instructions that transform the pointer. There are several
ways to perform this transformation. We show two tech-
niques, one that requires large alignments, and another
for when large alignments are not supported. The require-
ment for large alignment in one scheme is because the
base pointer must be aligned to the size of its table. This
makes the base a prefix of each entry in its table.

When the object format and the kernel support large
table alignments (e.g., greater than one page), IFCC
can use a compact set of instructions to transform a
pointer. The following IR assumes integer representa-
tions of @baseptr in %1 and @mask in %2, and a pointer
to @f in %3.

%4 = and i64 %2, %3
%5 = add i64 %1, %4
%6 = inttoptr i64 %5 to i32 (i8)*
%7 = call i32 %6(i8 signext 0)

In x86-64 assembly, this becomes:

and $mask, %rax
add $baseptr, %rax
callq *%rax

The ELF format supports arbitrary alignments but the
Linux kernel does not (as of version 3.2.5, under ASLR
with Position-Independent Executables (PIE)). Under
ASLR, the kernel treats the beginning of each ELF seg-
ment as an offset and generates a random base to add to
the offset. The base is guaranteed to be aligned to a page
boundary (212) but the resulting address is not guaranteed
to have larger alignment.

Under these circumstances, IFCC changes the way it
operates on function pointers; instead of adding a masked
pointer to a base, it computes the difference between the
base address and the function pointer, masks this value
with the same mask as before, and adds the result to the
base. This ends up generating 3 instructions for pointer
manipulation in x86-64: a sub, then an and, then an add.

4.1 Practical Experience with IFCC
We modified the Chromium build scripts to build under
LTO as much of the code as possible. It built 128 files as
x86-64 ELF objects, and 11,012 files as LLVM IR. We
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then applied, separately, the Single and Arity versions of
IFCC in this configuration.

Like VTV, IFCC suffers from false positives due to
external code. In particular, any function that was not de-
fined or declared during link-time optimization will trig-
ger a CFI violation. This can happen for several reasons.
First, JIT code (like JavaScript engines) can generate func-
tions dynamically. Second, some external functions (like
dlsym or sigaction) can return external function point-
ers. Finally, some functions can be passed to external
libraries and can be called there with external function
pointers; this is common in graphics libraries like gtk.
The number of false positives varies greatly depending on
the external code, ranging from extremely frequent in the
case of JIT-generated code to extremely infrequent in the
case of signal handlers.

To handle function pointers returned by external code,
we added a fixed-size set of special functions to the be-
ginning of each table. These functions perform indirect
jumps through function pointers stored in an array. IFCC
rewrites all calls to external functions (including dlsym)
that return function pointers and inserts a function call
that takes the pointer and writes it to the array if it is not
already present. It returns a pointer to the table entry that
corresponds to the array entry used to store the pointer. If
the array has no more space, then it halts the program with
an error. This converts function pointers from external
code into table entries at the expense of adding a small
number of writable function pointers to the code. This
memory can be protected using the techniques described
in Section 3.4, though the prototype in this paper does not
perform this protection.

To handle functions passed to external functions, IFCC
must find all cases in which functions are passed to exter-
nal code and must rewrite the functions to not test their
function pointers against the jump tables generated by
IFCC. We added a flag to the IFCC plugin that takes
the name of a function to skip in rewriting. To discover
these function pointers, we added a warning mode to the
IFCC transformation that prints at run time the names of
functions that make indirect calls to functions outside the
function-pointer sets. We found 255 such functions in
Chromium, mostly associated with graphics libraries.

4.2 Annotations
The version of IFCC described in this section provides
automatic methods for discovering and handling false
positives. To improve maintainability of software with
IFCC, however, we have implemented a different version
that uses annotations instead of compile-time flags and
uses custom failure functions like VTV. This is the version
that we are working on upstreaming into LLVM.

Instead of functions being forced into the appropriate
jump table, they are checked using the same code se-

quences as above, and any pointer that fails the check
is passed to a custom failure function. IFCC’s default
failure function prints out the name of the function in
which the failure occurred, and the value of the pointer
that failed the check. This version of IFCC adds a compar-
ison, a jump, and function call to the inserted instruction
sequence. However, it gives greater flexibility to the re-
sulting code in handling false positives, as discussed for
VTV.

This new implementation provides annotations and a
simple interprocedural dataflow analysis to help detect
and handle these problems automatically. We provide
two annotations that programmers can add using attribute
notation: __attribute__((annotate())).

• cfi-maybe-external is applied to local vari-
ables/parameters as well as to pointers in data struc-
tures.

• cfi-no-rewrite is applied to functions.

The dataflow analysis in IFCC finds external func-
tion pointers and traces their flow into indirect calls
and into store instructions. It also traces the flow from
cfi-maybe-external-annotated pointers and other
variables into indirect calls and store instructions. It pro-
duces compile-time warnings if it finds a store instruction
for an external function pointer and the pointer in the
store instruction did not come from a location annotated
by cfi-maybe-external. The annotations then can be
used as a kind of whitelist in the CFI failure function, or
these indirect calls can be skipped in rewriting.

The annotation cfi-no-rewrite means that all in-
direct calls in the annotated function might use external
function pointers. The information from this annotation
can be used either to build a whitelist or to skip rewriting.
Our implementation currently skips rewriting for these
indirect calls.

These annotations are also useful for cases that IFCC
cannot detect, like callbacks buried deep inside data struc-
tures passed to external code. Calls to these functions will
generate CFI violations at run time; these violations are
false positives, and the locations of these indirect calls
can be annotated with, e.g., cfi-maybe-external to
indicate this to the CFI failure function.

It might seem like all an adversary has to do is to
find one of the locations that has been annotated with
cfi-maybe-external and overwrite a pointer that
flows into it, and this will defeat IFCC. However, these
annotations merely convey information to the CFI failure
function; this function can perform arbitrarily complex
checks make sure that function pointers that violate CFI
are still valid. For the purposes of our evaluation, we im-
plemented a simple failure function, as described above.
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5 FSan: Indirect-Call-Check Analysis
The more precise the control-flow graph used in a CFI
implementation, the harder it becomes for an attacker
to exploit a program while staying within CFI-enforced
bounds: a more precise CFG leads to fewer choices in
targets for indirect control-transfer instructions. However,
building a precise CFG is a hard problem, and program-
ming techniques like function-pointer type punning and
runtime polymorphism exacerbate this problem. Every
time a CFI mechanism faces uncertainty, it is forced to
be conservative to preserve correctness. Although this
strategy guarantees correctness, it may result in a loss of
security. Thus, techniques that reduce uncertainty about
the CFG can increase security. We can achieve the best
practical results by combining knowledge of program-
ming language constructs (such as vtables), static analy-
sis (such as we do for IFCC), and dynamic analysis. To
that end, we designed FSan—an optional indirect call
checker—and integrated it into Clang, LLVM’s front end.

Clang’s undefined behavior sanitizer (UBSan) instru-
ments C and C++ programs with checks to identify in-
stances of undefined behavior. FSan was added to UBSan
in LLVM 3.4. FSan detects CFI violations at runtime for
indirect function calls.2 FSan operates during the transla-
tion from the Clang AST to LLVM IR, so it has full access
to type information, allowing it to make more accurate
checks than IFCC, which uses IR alone.

FSan is a developer tool designed to perform optional
type checking. In particular, it is not designed to de-
fend against attacks. Instead, it is designed to be used
by developers to identify CFI violations that may lead
to security issues. As a fully accurate checker (it checks
definedness exactly according to the definition in the C++
standard), it can also be used to help guide the develop-
ment of control-flow integrity techniques by identifying
properties of interest to be checked in the field.

FSan prefixes each function emitted by the compiler
with 8 (on x86-32) or 12 (on x86-64) bytes of metadata.
Table 1 shows the layout of these bytes; they are exe-
cutable and cost little in performance, since the first two
bytes encode a relative branch instruction which skips the
rest of the metadata. The next two bytes encode the in-
structions rex.RX push %rsp (on x86-64) or incl
%esi ; pushl %esp (on x86-32); this sequence of
instructions is unlikely to appear at the start of a non-
instrumented function body, and we observed no false
positives in Chromium due to this choice of prefix.

Each indirect call site first loads the first four bytes
from the function pointer, and compares it to the expected
signature — the optionality of FSan arises from selecting
a signature unlikely but permitted to appear at the start of

2The undefined behavior sanitizer also includes a vtable-pointer
checker which is not described here.

Kind Offset Data Interpretation

Signature

0 0xeb
jmp .+0x08/0x0c1 0x06/0x0a

2 0x46 ‘F’
3 0x54 ‘T’

RTTI 4 Pointer to std::type_info for the
function’s type (4/8 bytes)

Table 1: Function prefix data layout for the optional func-
tion type checker.

an uninstrumented function. Because GCC at optimiza-
tion level -O2 and higher and Clang at any optimization
level will align functions to 16 bytes, this initial read suc-
ceeds for each function compiled with these compilers,
regardless of the length of the function. This assumes
GCC-compiled system libraries are compiled with -O2 or
higher.

If the signature matches, then the next 4 or 8 bytes
are loaded and compared against the expected function
Run-Time Type Information (RTTI) pointer, which is
simply the RTTI pointer for the function type of the callee
expression used at the call site. If the pointers are unequal,
then a runtime function is called to print an appropriate
error message. A pointer equality test is sufficient because
the function RTTI pointer for a particular function type is
normally unique. This is because the linker will normally
(but not always) coalesce RTTI objects for the same type,
as they have the same mangled name.

The condition for undefined behavior as specified by
the C++ standard is that the function types do not match
(see C++11 [18, expr.reinterpret.cast], “The effect of call-
ing a function through a pointer to a function type [...]
that is not the same as the type used in the definition of the
function is undefined”), so FSan is precise (no false posi-
tives or false negatives) with respect to this paragraph of
the standard when both the caller and callee are compiled
with the checker (provided that the linker coalesces RTTI
symbols). However, FSan has not been implemented for
C, and indeed would not work in its present form, mainly
because the C rules relating to the definedness of calls to
functions without a prototype are more complex.

Note that the RTTI pointer for a vtable function call
is less precise than the vtable-pointer set check in VTV.
FSan checks that each function has the correct type but
not whether it was in the original program’s CFG.

5.1 Practical Experience with FSan
We evaluated FSan by applying it to Chromium: we ran an
instrumented version of the main browser executable, and
FSan produced a variety of undefined-behavior reports.
Two of the main categories of reports we observed were:

• Template functions whose parameters are of a tem-
plated pointer type, which are cast to functions
whose parameters are of void pointer type so that
they can be used as untyped callbacks;
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• Functions that take context parameters as typed
pointers in the function declaration but void pointers
or pointers to a base class at the call site.

The fix for these types of bugs is simple in principle:
give the parameters a void pointer type and move the
casts into the function body. One instance of each type
of problem was found and fixed in the Skia graphics li-
brary that Chromium uses. This eliminated much of the
low-hanging fruit reported by FSan; most of the remain-
ing problems were more widespread in the codebase and
thus will take more effort to deal with. For example, V8
uses callbacks to implement a feature known as “reviv-
able objects” which Blink (née WebKit) relies on heavily;
in many cases these callbacks were implemented using
the derived types expected by the object implementation,
rather than V8’s base value type.

6 Security Analysis
In order to evaluate the efficacy of security techniques it
is important to apply them to the real-world code they are
expected to protect and measure the impact. To this end,
we analyzed Chromium compiled with VTV and GCC,
and with IFCC and Clang.

One consequence of implementing security mecha-
nisms in the compiler is that it is important to evaluate the
final output rather than simply the output of the particular
compiler pass. The reasons for this are twofold: (1) later
optimization passes may transform the security mecha-
nism in unpredictable ways; and (2) the final linking step
adds additional binary code to the final executable that
the security pass never sees.

Basic optimizations such as common-subexpression
elimination and loop-invariant code motion can elim-
inate redundant checks or hoist checks out of loops.
Although such optimizations are generally acceptable
from a correctness point of view, they may be imper-
missible from a security standpoint. For example, con-
sider two consecutive calls to C++ member functions
obj.foo(); obj.bar();. A security mechanism that
protects virtual function calls, such as VTV, can load a
vtable pointer into a callee-saved register, perform the
verification, and then perform the two calls:

movq (%r12), %rbx ; set rbx to the vptr
movq %rbx, %rdi
callq verify_vtable ; verify_vtable(vptr)
movq %r12, %rdi
callq *16(%rbx) ; obj.foo()
movq %r12, %rdi
callq *24(%rbx) ; obj.bar()

This is perfectly correct behavior since the first function
call is guaranteed by the platform ABI to preserve the
value of the register. However, if rbx is spilled to the
stack in foo() and is later overwritten, e.g., via a buffer
overflow on the stack, then the call to bar() will be to

an attacker-controlled location. An alternative to using a
callee-saved register is to explicitly spill/reload the regis-
ter to/from the stack, which has similar security concerns.

Since protecting the stack is outside the scope of this
work, the compiler has significantly more freedom to
eliminate this sort of redundant check.

Although it is difficult to meaningfully quantify the
security provided by a mitigation measure, recent work
by Zhang and Sekar [35, Definition 1] introduced the
Average Indirect-target Reduction (AIR) metric

AIR =
1
n

n∑
i=1

(
1− Ti

S

)

where n is the number of indirect control-transfer instruc-
tions (indirect calls, jumps, and returns), Ti is the number
of instructions the ith indirect control transfer instruction
could target after applying a CFI technique, and S is the
size of the binary.

It’s clear that for any reasonable CFI technique and
a large binary, Ti � S for all indirect control-transfer
instructions transformed by the technique. Similarly, Ti ≈
S for all other indirect control-transfer instructions. So,
AIR reduces to the fraction of indirect control transfer
instructions that are protected by the technique.3

Since we are focused on protecting forward edges, we
consider the related metric forward-edge AIR, or fAIR,
which performs the same computation as AIR, but the av-
erage is taken only over the forward-edge indirect control
transfer instructions: indirect calls and jumps.

To compute the statistics reported in the rest of this
section, we modified LLVM’s object-file disassembler
to perform a hybrid recursive and linear scan through
the Chromium binary, reconstructing functions and ba-
sic blocks on which we performed our analysis. This
process was aided by ensuring that Chromium was com-
piled with debugging information including symbols (cf.
Bao et al. [2]). This disassembler was used as part of a
stand-alone tool to find all indirect control transfer instruc-
tions. For each such instruction, the tool walks backward
through the CFG, looking for the specific protection mech-
anism. It also attempts to find constants which are inserted
into registers used for the call or jump. See Table 2 for
a break down of forward-edge indirect control transfer
(fICT) instructions in Chromium.

VTV. Compiling a recent version of Chromium using
GCC with vtable verification leads to a final binary con-
taining 124,325 indirect calls and 18,453 indirect jumps
for a total of 142,778 fICT instructions. Of these, 6,855
are neither constant nor protected by vtable verification,
giving fAIRVTV = 95.2%. The majority of the unprotected

3This demonstrates that AIR — and our related fAIR — is at best a
weak proxy for measuring security. Unfortunately, an actual metric for
the security a CFI technique provides has thus far remained elusive.
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fICT VTV IFCC

Constant 7,410 5,957
Constant, spilled† 7,334 315
Protected 113,617 154,244
Protected, spilled† 7,562 33,914
Unprotected 6,855 908

Total 142,778 195,338

Table 2: Forward-edge indirect control transfer (fICT)
instructions in Chromium. Their arguments may be placed
in three classes: (a) a type of constant, (b) an indirect
address protected by CFI, and (c) an unprotected address.
Constant-argument instructions include indirect jumps in
the PLT which target a read-only GOT section and indirect
jump instructions implementing switch statements, as well
as indirect call instructions with constant targets.
† The targets for these indirect control transfer instructions
are either spilled to the stack explicitly or are in callee-
saved registers which are potentially spilled by intervening
function calls.

fICTs come from C libraries, function-pointer adapter
classes, and C-style callbacks.

Although more than 89% of the protected or constant
fICTs are used almost immediately after being verified
or loaded from read-only memory, in 14,896 instances
(about 10%), the indirect target is potentially spilled to
the stack. But this is not a flaw in our protection (see
below).

IFCC. Compiling the same version of Chromium using
Clang with IFCC (Single) produces a different binary con-
taining 175,396 indirect calls and 19,942 indirect jumps
for a total of 195,338 fICT instructions. Having more
calls and jumps is what we would expect since the link-
time optimizer has more inlining opportunities than is the
case when optimizing one translation unit at a time.4

Since IFCC is designed to protect all fICT instruc-
tions, not just C++ virtual member function calls, only
908 fICT instructions are left unprotected. This gives
fAIRIFCC = 99.5%. In fact, this is an over estimate of
the number of unprotected fICT instructions. Of the 908
unprotected instructions, 512 correspond to the special
functions created for function pointers returned from non-
instrumented functions. Discounting those gives the more
accurate value of fAIRIFCC = 99.8%. Most of the remain-
ing unprotected fICT instructions correspond to functions
which are explicitly not instrumented. (See Section 4.1
for a discussion of both of these.) The remaining hand-
ful come from the C run time statically linked into every
binary.

With IFCC, about 18% of the constant or protected
fICTs have targets which are potentially spilled to the

4There is a corresponding decrease in the number of return instruc-
tions for the same reason.

stack. However this is not a fatal flaw, as discussed im-
mediately below, since we are assuming that the stack is
protected by some other means.

Stack spilling implications. For the purpose of our
techniques, spilling target values to the stack introduces
no additional security risk, since an attacker who can over-
write one value on the stack can easily overwrite a saved
return address. This does have serious implications for
CFI schemes that attempt to protect backward edges.

Our experience shows the importance of verifying a
protection mechanism’s intended invariants on the final bi-
nary output after all optimizations, including architecture-
dependent optimization in the compiler backend, have
taken place and the language runtime has been linked in.

Counting ROP gadgets. It is common in CFI papers
to count the number of return-oriented programming gad-
gets that remain after applying the protection mechanism.
Since we are explicitly not protecting return instructions,
it does not make sense to count gadgets.

7 Performance Measurements and Results
We measured the performance of our approaches both
on the C++ tests from the SPEC CPU2006 benchmark
suite and on the Chromium browser running Dromaeo,
SunSpider, and Octane. Except where otherwise specified,
the VTV tests were run all on an HP Z620 Xeon E52690
2.9GHz machine, running Ubuntu Linux 12.04.2, and the
IFCC and FSan tests were run on an HP Z620 Xeon E5550
2.67GHz machine, running the same OS. We turned off
turbo mode and ASLR on these machines, as doing so
significantly reduced the variation in our results.

The Chromium web browser is a large, complex, real-
world application, comprising over 15 million lines of
C++ code in over 50,000 source files, and containing hun-
dreds of thousands of virtual calls. It links in many third-
party libraries and makes extensive use of dynamic library
loading. It is also representative of the type of target at-
tackers are interested in. For all these reasons, Chromium
makes an excellent test for measuring the effects of our
CFI approaches on real-world systems. Both VTV and
IFCC were able to successfully build fully-functional,
protected versions of Chromium.

7.1 VTV Performance
Since verification adds instructions to the execution, some
performance penalty is unavoidable. Initially, we ran
SPEC CPU2006 C++ benchmarks with and without VTV
to get a baseline. Table 3 shows that omnetpp, astar, and
xalancbmk suffer a noticeable performance penalty in
this naive implementation, ranging from 2.4% to 19.2%.
We improve on this later. The other four benchmarks
(povray, namd, soplex, and dealII) showed no significant
performance effects. To determine why, we collected
statistics on those benchmarks, for both compile-time
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no VTV VTV %
Test (seconds) (seconds) slowdown

omnetpp 320.70 346.42 8.0
astar 440.61 450.95 2.4
xalanc. 248.86 296.53 19.2
namd 445.19 445.32 *
dealII 344.89 348.39 *
soplex 235.20 236.46 *
povray 181.18 181.87 *

Table 3: Untuned SPEC run-time numbers, at -O2. The
asterisks indicate changes that are too small to be of any
significance. These numbers are the minimum out of three
runs (standard deviation is very close to zero).

virtual verified run verified
calls calls time calls

Test (static) (dynamic) (secs) per second

namd 2 0 445.32 0
dealII 2,118 201,867,094 348.39 579,428
soplex 720 4,846,399 236.46 20,496
povray 159 159,186 181.87 875
omnetpp 1,312 1,029,110,532 346.42 2,970,702
astar 2 2,780,359,179 450.95 6,165,560
xalanc. 15,753 2,629,817,426 296.53 8,868,639

dromaeo NA 6,705,708,649 2379.34 2,818,303
octane NA 113,037,194 66.41 1,702,214
sunspi. NA 27,068,246 16.36 1,654,943

Table 4: Verifications per second when running SPEC
CPU2006 C++ benchmarks and Chrome with VTV.

(static) and run-time (dynamic) numbers of verified virtual
calls. From this we calculated the number of verified calls
per second. As shown at the top of Table 4, those tests do
not perform enough calls per second to noticeably affect
performance, so we did not include them in any further
analyses of VTV.

Next, we looked at reducing VTV’s performance
penalty. To determine the minimum lower bound penalty,
we considered two sources of performance overhead: (1)
the cost of making the verification function calls; and (2)
the (potential) cost due to the overall increase in code size
(code bloat). We measured these by doing two experi-
ments on the three SPEC benchmarks of interest. First,
we replaced the bodies of the functions in libvtv with
stubs. Second, we inserted an unreachable region of code
preceded by an unconditional jump over the region just be-
fore each virtual call instruction (the unreachable region
represented the code that would be inserted by VTV). Our
results can be seen in Table 5. Note that making calls with
stubs must increase the number of instructions, just as
with the code bloat test. Therefore the stubs penalty auto-
matically includes the code bloat penalty. This shows that

Code Bloat VTV Stubs
% Slowdown % Slowdown

omnetpp 0.0 2.4
astar 0.2 1.0
xalancbmk 0.8 4.7

Table 5: Results of lower bound experiments for VTV.

even if we could reduce to zero the time spent executing
inside the verification function, the minimum lower bound
VTV penalty for these tests ranges from 1.0% to 4.7%.
Note that the lower bound is test-specific and depends on
the number of virtual calls a test executes.

We then tried various options to reduce VTV’s perfor-
mance penalties. The two most effective options were:
using profile guided optimizations (PGO) to improve de-
virtualization, via GCC’s -ripa flag, thus reducing the over-
all number of virtual calls; and statically linking libvtv
itself, to reduce the level of indirection at each verifica-
tion call. We re-ran the SPEC benchmarks using these
various options, and the results are shown at the top of
Figure 2. The xalancbmk test had the worst performance
with VTV, so it is instructive to consider its results under
optimization: devirtualization brought the performance
penalty from 19.2% down to 10.8%, and static linking
reduced it further to 8.7%. The lower bound of VTV is
4.7% for xalancbmk (see Table 5).

Chrome interacts with many system libraries, so to
avoid the problems of mixing verified and unverified
code with VTV we built and ran a verified version of
Chrome in a verified version of ChromeOS on a Chrome-
book (thus building all the libraries with verification
as well). We built ChromeOS version 28 with VTV,
and ran the Dromaeo, SunSpider 1.0.2, and Octane 2.0
benchmarks with it. For these tests, we loaded our im-
ages onto a Chromebook with an Intel Celeron 867 chip,
pinned at 1.3GHz, with ASLR turned off, and we ran
the tests there, with and without VTV. The bottom of
Figure 2 shows the performance costs. We were not
able to build Chrome with PGO and devirtualization, nor
with the statically linked libvtv, so for these measure-
ments we only have the naive, untuned VTV numbers.
For Octane we saw a 2.6% penalty with VTV. SunSpi-
der had a 1.6% penalty. Dromaeo had a fair amount of
variation across the full set of micro-benchmarks, but
the overall performance penalty across all of them was
8.4%. We expect that adding devirtualization would sig-
nificantly improve these numbers. As with the SPEC
benchmarks, the performance penalty varies depending
on the number of verified calls made at runtime. We
measured this for each of these tests (see Table 4). As
expected, Dromaeo, which had the largest penalty, makes
significantly more verified calls/second than the other
two.
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Figure 2: Relative performance overhead of VTV, with
various tuning options, for the SPEC 2006 C++ bench-
marks and for Chrome browser.

7.2 IFCC and FSan Performance
The performance of code compiled under IFCC depends
on how often it makes indirect calls. IFCC adds code to
every indirect call site that is not explicitly skipped by a
command-line directive. The amount of code it adds de-
pends on the version of IFCC: if tables are small enough
to fit in a page in memory, then it can use the transforma-
tion that adds only two instructions (comprising 14 bytes)
to each site. Otherwise, it uses the subtraction version,
which adds 4 instructions (which become 20 bytes). Each
indirect call has additional extra overhead from the jmp in
the indirect call table(s); and jumps through a table might
have effects on instruction-cache usage. Finally, when
rewritten code receives a pointer from dlsym or from a
dynamically-linked library, this pointer is wrapped using
linear search through a fixed-length array; this is a slow
operation but should not happen often.

The exact instructions added by FSan depend on the
specific optimization level used, but we found that it usu-
ally adds about 12 instructions to each call site.

Figure 3 shows results from running C++ programs
from the SPEC benchmark suite under IFCC and FSan
and provides relative performance overhead compared to
an optimized version compiled using Clang; each running
time is the minimum of 10 executions. As expected,
LTO outperforms both IFCC transformations in most
cases. This is because IFCC adds instructions to the
base LTO-compiled binary, and these instructions reduce
performance of the executable. The cases in which IFCC
outperforms LTO involve only small differences in per-
formance and are likely due to effects similar to the noise
discussed by Mytkowicz et al. [24], so we do not analyze
them further here.

We ran the Dromaeo benchmark on Chromium
31.0.1650.41 built with Clang LTO, a version built with
IFCC Single, and a version built with IFCC Arity. Single
got 96.6% of the LTO score, and Arity got 96.1%; higher

is better in Dromaeo, so this is about a 4% overhead, as
shown in Figure 3a. We also built a version of Chromium
and the SPEC CPU2006 benchmarks with the annotation
version of IFCC, and we saw similar results.

IFCC had nearly the same performance as LTO for
both Single and Arity versions of the SPEC CPU2006
benchmarks, except for xalancbmk. FSan had effects sim-
ilar to IFCC. The xalancbmk benchmark suffers the most
performance degradation from IFCC; this is expected due
to it having the most dynamic virtual calls, as shown in
Table 4. Similarly, Dromaeo has a large number of virtual
calls and has the second highest overhead. So, as with
VTV, the performance overhead is directly related to the
number of indirect calls.

7.3 Comparison to Prior Work
The SPEC Perl benchmark is worth highlighting. As Niu
and Tan [28] point out, Perl is, in some sense, a worst
case for CFI techniques for C — whereas C++ code can be
even worse. Perl operates by translating the source code
into bytecode, then sits in a tight loop, interpreting each
instruction by making an indirect call. This worst case
behavior is apparent in the performance of four recent CFI
implementations: CCFIR by Zhang et al. [34], bin-CFI by
Zhang and Sekar [35], Strato by Zeng et al. [33], and MIP
by Niu and Tan [28]. The overheads reported for CCFIR,
bin-CFI, Strato, and MIP are 8.6%, 12%, 15%–25%, and
14.9%–31.3%, respectively.

In contrast, our own work has less than 2% overhead
(see Figure 3a). We are able to achieve this significant
speed up over prior work by focusing only on forward
edges as well as leveraging the compiler to apply opti-
mizations. This gives different security guarantees, but
we believe our attack model comports well with reality.

8 Conclusions
This paper advances the techniques of Control-Flow In-
tegrity, moving them from research prototypes to being
firmly in the domain of the practical. We have described
two different principled, compiler-based CFI solutions
for enforcing control-flow integrity for indirect jumps:
vtable verification for virtual calls (VTV) guarantees that
the vtable being used for a virtual call is not only a valid
vtable for the program but is semantically correct for
the call site; and indirect function-call checking (IFCC)
guarantees that the target of an indirect call is one of the
address-taken functions in the program. We also present
FSan, an optional indirect call checking tool which ver-
ifies at runtime that the target of an indirect call has the
correct function signature, based on the call site.

We have demonstrated that each of these approaches is
feasible by implementing each one in a production com-
piler (GCC or LLVM). We have shown via security analy-
sis that VTV and IFCC both maintain a very high level
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(a) Relative overhead of IFCC enforcement (baseline LLVM
LTO) for SPEC CPU2006 benchmarks and the Dromaeo bench-
mark.

-2% 0% 2% 4% 6% 8%

astar
dealII
namd

omnet.
povray
soplex

xalanc.

FSan

(b) Relative overhead of the FSan optional indirect-call checking
(baseline Clang) for the C++ benchmarks in SPEC CPU2006.

Figure 3: Performance measurements for IFCC and FSan.

of security, with VTV protecting 95.2% of all possible in-
direct jumps in our test, and IFCC protecting 99.8%. We
have also measured the performance of these approaches
and shown that while there is some degradation, averag-
ing in the range of 1%–4%, and in the worst case getting
up to 8.7% for VTV (the most precise approach), this
penalty is fairly low and seems well within the range of
what is acceptable, particularly in exchange for increased
security.

Due to our relaxed, yet realistic, attack model coupled
with compiler optimizations, we achieve significant per-
formance gains over other CFI implementations while
defending against real attacks.
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Abstract

Return-to-user (ret2usr) attacks redirect corrupted kernel
pointers to data residing in user space. In response, sev-
eral kernel-hardening approaches have been proposed to
enforce a more strict address space separation, by pre-
venting arbitrary control flow transfers and dereferences
from kernel to user space. Intel and ARM also recently
introduced hardware support for this purpose in the form
of the SMEP, SMAP, and PXN processor features. Un-
fortunately, although mechanisms like the above prevent
the explicit sharing of the virtual address space among
user processes and the kernel, conditions of implicit shar-
ing still exist due to fundamental design choices that
trade stronger isolation for performance.

In this work, we demonstrate how implicit page frame
sharing can be leveraged for the complete circumven-
tion of software and hardware kernel isolation protec-
tions. We introduce a new kernel exploitation technique,
called return-to-direct-mapped memory (ret2dir), which
bypasses all existing ret2usr defenses, namely SMEP,
SMAP, PXN, KERNEXEC, UDEREF, and kGuard. We
also discuss techniques for constructing reliable ret2dir
exploits against x86, x86-64, AArch32, and AArch64
Linux targets. Finally, to defend against ret2dir attacks,
we present the design and implementation of an exclu-
sive page frame ownership scheme for the Linux ker-
nel that prevents the implicit sharing of physical memory
pages with minimal runtime overhead.

1 Introduction

Although the operating system (OS) kernel has always
been an appealing target, until recently attackers focused
mostly on the exploitation of vulnerabilities in server
and client applications—which often run with adminis-
trative privileges—as they are (for the most part) less
complex to analyze and easier to compromise. During
the past few years, however, the kernel has become an

equally attractive target. Continuing the increasing trend
of the previous years, in 2013 there were 355 reported
kernel vulnerabilities according to the National Vulnera-
bility Database, 140 more than in 2012 [73]. Admittedly,
the exploitation of user-level software has become much
harder, as recent versions of popular OSes come with nu-
merous protections and exploit mitigations. The princi-
ple of least privilege is better enforced in user accounts
and system services, compilers offer more protections
against common software flaws, and highly targeted ap-
plications, such as browsers and document viewers, have
started to employ sandboxing. On the other hand, the
kernel has a huge codebase and an attack surface that
keeps increasing due to the constant addition of new fea-
tures [63]. Indicatively, the size of the Linux kernel in
terms of lines of code has more than doubled, from 6.6
MLOC in v2.6.11 to 16.9 MLOC in v3.10 [32].

Naturally, instead of putting significant effort to ex-
ploit applications fortified with numerous protections
and sandboxes, attackers often turn their attention to
the kernel. By compromising the kernel, they can el-
evate privileges, bypass access control and policy en-
forcement, and escape isolation and confinement mech-
anisms. For instance, in recent exploits against Chrome
and Adobe Reader, after successfully gaining code ex-
ecution, the attackers exploited kernel vulnerabilities to
break out of the respective sandboxed processes [5, 74].

Opportunities for kernel exploitation are abundant. As
an example consider the Linux kernel, which has been
plagued by common software flaws, such as stack and
heap buffer overflows [14, 23, 26], NULL pointer and
pointer arithmetic errors [10, 12], memory disclosure
vulnerabilities [13, 19], use-after-free and format string
bugs [25, 27], signedness errors [17, 24], integer over-
flows [10,16], race conditions [11,15], as well as missing
authorization checks and poor argument sanitization vul-
nerabilities [18, 20–22]. The exploitation of these bugs
is particularly effective, despite the existence of kernel
protection mechanisms, due to the weak separation be-
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tween user and kernel space. Although user programs
cannot access directly kernel code or data, the opposite
is not true, as the kernel is mapped into the address space
of each process for performance reasons. This design
allows an attacker with non-root access to execute code
in privileged mode, or tamper-with critical kernel data
structures, by exploiting a kernel vulnerability and redi-
recting the control or data flow of the kernel to code or
data in user space. Attacks of this kind, known as return-

to-user (ret2usr) [57], affect all major OSes, including
Windows and Linux, and are applicable in x86/x86-64,
ARM, and other popular architectures.

In response to ret2usr attacks, several protections have
been developed to enforce strict address space separa-
tion, such as PaX’s KERNEXEC and UDEREF [77] and
kGuard [57]. Having realized the importance of the prob-
lem, Intel introduced Supervisor Mode Execute Protec-
tion (SMEP) [46] and Supervisor Mode Access Preven-
tion (SMAP) [54], two processor features that, when en-
abled, prevent the execution (or access) of arbitrary user
code (or data) by the kernel. ARM has also introduced
Privileged Execute-Never (PXN) [4], a feature equiva-
lent to SMEP. These features offer similar guarantees to
software protections with negligible runtime overhead.

Although the above mechanisms prevent the explicit
sharing of the virtual address space among user pro-
cesses and the kernel, conditions of implicit data sharing
still exist. Fundamental OS components, such as physi-
cal memory mappings, I/O buffers, and the page cache,
can still allow user processes to influence what data is
accessible by the kernel. In this paper, we study the
above problem in Linux, and expose design decisions
that trade stronger isolation for performance. Specif-
ically, we present a new kernel exploitation technique,
called return-to-direct-mapped memory (ret2dir), which
relies on inherent properties of the memory management
subsystem to bypass existing ret2usr protections. This is
achieved by leveraging a kernel region that directly maps
part or all of a system’s physical memory, enabling at-
tackers to essentially “mirror” user-space data within the
kernel address space.

The task of mounting a ret2dir attack is complicated
due to the different kernel layouts and memory manage-
ment characteristics of different architectures, the par-
tial mapping of physical memory in 32-bit systems, and
the unknown location of the “mirrored” user-space data
within the kernel. We present in detail different tech-
niques for overcoming each of these challenges and con-
structing reliable ret2dir exploits against hardened x86,
x86-64, AArch32, and AArch64 Linux targets.

To mitigate the effects of ret2dir attacks, we present
the design and implementation of an exclusive page
frame ownership scheme for the Linux kernel, which
prevents the implicit sharing of physical memory among

user processes and the kernel. The results of our evalua-
tion show that the proposed defense offers effective pro-
tection with minimal (<3%) runtime overhead.

The main contributions of this paper are the following:

1. We expose a fundamental design weakness in the
memory management subsystem of Linux by intro-
ducing the concept of ret2dir attacks. Our exploita-
tion technique bypasses all existing ret2usr pro-
tections (SMEP, SMAP, PXN, KERNEXEC, UD-
EREF, kGuard) by taking advantage of the kernel’s
direct-mapped physical memory region.

2. We introduce a detailed methodology for mount-
ing reliable ret2dir attacks against x86, x86-64,
AArch32, and AArch64 Linux systems, along with
two techniques for forcing user-space exploit pay-
loads to “emerge” within the kernel’s direct-mapped
RAM area and accurately pinpointing their location.

3. We experimentally evaluate the effectiveness of
ret2dir attacks using a set of nine (eight real-world
and one artificial) exploits against different Linux
kernel configurations and protection mechanisms.
In all cases, our transformed exploits bypass suc-
cessfully the deployed ret2usr protections.

4. We present the design, implementation, and evalu-
ation of an exclusive page frame ownership scheme
for the Linux kernel, which mitigates ret2dir attacks
with negligible (in most cases) runtime overhead.

2 Background and Related Work

2.1 Virtual Memory Organization in Linux

Designs for safely combining different protection do-
mains range from putting the kernel and user processes
into a single address space and establishing boundaries
using software isolation [52], to confining user process
and kernel components into separate, hardware-enforced
address spaces [2, 50, 66]. Linux and Linux-based OSes
(Android [47], Firefox OS [72], Chrome OS [48]) adopt
a more coarse-grained variant of the latter approach, by
dividing the virtual address space into kernel and user

space. In the x86 and 32-bit ARM (AArch32) architec-
tures, the Linux kernel is typically mapped to the upper
1GB of the virtual address space, a split also known as
“3G/1G” [28].1 In x86-64 and 64-bit ARM (AArch64)
the kernel is located in the upper canonical half [60,69].

This design minimizes the overhead of crossing pro-
tection domains, and facilitates fast user-kernel interac-
tions. When servicing a system call or handling an ex-

1Linux also supports 2G/2G and 1G/3G splits. A patch for a 4G/4G
split in x86 [53] exists, but was never included in the mainline kernel
for performance reasons, as it requires a TLB flush per system call.
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ception, the kernel is running within the context of a pre-
empted process. Hence, flushing the TLB is not neces-
sary [53], while the kernel can access user space directly

to read user data or write the result of a system call.

2.2 Return-to-user (ret2usr) Exploits

Although kernel code and user software have both been
plagued by common types of vulnerabilities [9], the exe-
cution model imposed by the shared virtual memory lay-
out between the kernel and user processes makes ker-
nel exploitation noticeably different. The shared address
space provides a unique vantage point to local attack-
ers, as it allows them to control—both in terms of per-
missions and contents—part of the address space that is
accessible by the kernel [91]. Simply put, attackers can
easily execute shellcode with kernel rights by hijacking a
privileged execution path and redirecting it to user space.

Attacks of this kind, known as return-to-user (ret2usr),
have been the de facto kernel exploitation technique (also
in non-Linux OSes [88]) for more than a decade [36].
In a ret2usr attack, kernel data is overwritten with user
space addresses, typically after the exploitation of mem-
ory corruption bugs in kernel code [81], as illustrated
in Figure 1. Attackers primarily aim for control data,
such as return addresses [86], dispatch tables [36, 44],
and function pointers [40, 42, 43, 45], as they directly fa-
cilitate arbitrary code execution [89]. Pointers to crit-
ical data structures stored in the kernel’s heap [38] or
the global data section [44] are also common targets,
as they allow attackers to tamper with critical data con-
tained in these structures by mapping fake copies in user
space [38, 39, 41]. Note that the targeted data structures
typically contain function pointers or data that affect the
control flow of the kernel, so as to diverge execution to
arbitrary points. The end effect of all ret2usr attacks is
that the control or data flow of the kernel is hijacked and

redirected to user space code or data [57].
Most ret2usr exploits use a multi-stage shellcode, with

a first stage that lies in user space and “glues” together
kernel functions (i.e., the second stage) for performing
privilege escalation or executing a rootshell. Technically,
ret2usr expects the kernel to run within the context of
a process controlled by the attacker for exploitation to
be reliable. However, kernel bugs have also been iden-
tified and exploited in interrupt service routines [71]. In
such cases, where the kernel is either running in interrupt

context or in a process context beyond the attacker’s con-
trol [37,85], the respective shellcode has to be injected in
kernel space or be constructed using code gadgets from
the kernel’s text in a ROP/JOP fashion [8,51,87]. The lat-
ter approach is gaining popularity in real-world exploits,
due to the increased adoption of kernel hardening tech-
niques [31, 65, 68, 92, 93, 95].

Figure 1: Operation of ret2usr attacks. A kernel code
or data pointer is hijacked and redirected to controlled
code or data in user space (tampered-with data structures
may further contain pointers to code). Various protection
mechanisms (KERNEXEC, UDEREF, kGuard, SMEP,
SMAP, PXN) prevent arbitrary control flow transfers and
dereferences from kernel to user space.

2.3 Protections Against ret2usr Attacks

Return-to-user attacks are yet another incarnation of
the confused deputy problem [49]. Given the multi-
architecture [42, 83] and multi-OS [88] nature of the
problem, several defensive mechanisms exist for it. In
the remainder of this section, we discuss the ret2usr de-
fenses available in Linux with the help of Figure 1.

PaX: KERNEXEC and UDEREF are two features
of the PaX [77] hardening patch set that prevent con-
trol flow transfers and dereferences from kernel to user
space. In x86, KERNEXEC and UDEREF rely on mem-
ory segmentation [78] to map the kernel space into a
1GB segment that returns a memory fault whenever priv-
ileged code tries to dereference pointers to, or fetch in-
structions from, non-kernel addresses. In x86-64, due to
the lack of segmentation support, UDEREF/amd64 [79]
remaps user space memory into a different (shadow),
non-executable area when execution enters the kernel
(and restores it on exit), to prevent user-space deref-
erences. As the overhead of remapping memory is
significant, an alternative for x86-64 systems is to en-
able KERNEXEC/amd64 [80], which has much lower
overhead, but offers protection against only control-
flow hijacking attacks. Recently, KERNEXEC and UD-
EREF were ported to the ARM architecture [90], but the
patches added support for AArch32 only and rely on the
deprecated MMU domains feature (discussed below).

SMEP/SMAP/PXN: Supervisor Mode Execute Pro-
tection (SMEP) [46] and Supervisor Mode Access Pre-
vention (SMAP) [54] are two recent features of Intel
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processors that facilitate stronger address space separa-
tion (latest kernels support both features [31,95]). SMEP
provides analogous protection to KERNEXEC, whereas
SMAP operates similarly to UDEREF. Recently, ARM
added support for an SMEP-equivalent feature, dubbed
Privileged Execute-Never (PXN) [4], but Linux uses
it only on AArch64. More importantly, on AArch32,
PXN requires the MMU to operate on LPAE mode (the
equivalent of Intel’s Physical Address Extension (PAE)
mode [55]), which disables MMU domains. Therefore,
the use of KERNEXEC/UDEREF on AArch32 implies
giving up support for PXN and large memory (> 4GB).

kGuard: kGuard [57] is a cross-platform compiler
extension that protects the kernel from ret2usr attacks
without relying on special hardware features. It enforces
lightweight address space segregation by augmenting
(at compile time) potentially exploitable control trans-
fers with dynamic control-flow assertions (CFAs) that
(at runtime) prevent the unconstrained transition of priv-
ileged execution paths to user space. The injected CFAs
perform a small runtime check before every computed
branch to verify that the target address is always located
in kernel space or loaded from kernel-mapped mem-
ory. In addition, kGuard incorporates code diversifica-
tion techniques for thwarting attacks against itself.

3 Attack Overview

Linux follows a design that trades weaker kernel-to-user
segregation in favor of faster interactions between user
processes and the kernel. The ret2usr protections dis-
cussed in the previous section aim to alleviate this design
weakness, and fortify the isolation between kernel and
user space with minimal overhead. In this work, we seek
to assess the security offered by these protections and
investigate whether certain performance-oriented design
choices can render them ineffective. Our findings indi-
cate that there exist fundamental decisions, deeply rooted
into the architecture of the Linux memory management
subsystem (mm), which can be abused to weaken the
isolation between kernel and user space. We introduce
a novel kernel exploitation technique, named return-to-
direct-mapped memory (ret2dir), which allows an at-
tacker to perform the equivalent of a ret2usr attack on
a hardened system.

3.1 Threat Model

We assume a Linux kernel hardened against ret2usr
attacks using one (or a combination) of the protec-
tion mechanisms discussed in Section 2.3. More-
over, we assume an unprivileged attacker with local
access, who seeks to elevate privileges by exploiting
a kernel-memory corruption vulnerability [10–27] (see

Section 2.2). Note that we do not make any assumptions
about the type of corrupted data—code and data pointers
are both possible targets [36, 40, 42–45, 86]. Overall, the
adversarial capabilities we presume are identical to those
needed for carrying out a ret2usr attack.

3.2 Attack Strategy

In a kernel hardened against ret2usr attacks, the hijacked
control or data flow can no longer be redirected to user
space in a direct manner—the respective ret2usr protec-
tion scheme(s) will block any such attempt, as shown in
Figure 1. However, the implicit physical memory sharing
between user processes and the kernel allows an attacker
to deconstruct the isolation guarantees offered by ret2usr
protection mechanisms, and redirect the kernel’s control
or data flow to user-controlled code or data.

A key facility that enables the implicit sharing of phys-
ical memory is physmap: a large, contiguous virtual
memory region inside kernel address space that contains
a direct mapping of part or all (depending on the archi-
tecture) physical memory. This region plays a crucial
role in enabling the kernel to allocate and manage dy-
namic memory as fast as possible (we discuss the struc-
ture of physmap in Section 4). We should stress that
although in this study we focus on Linux—one of the
most widely used OSes—direct-mapped RAM regions
exist (in some form) in many OSes, as they are consid-
ered standard practice in physical memory management.
For instance, Solaris uses the seg_kpmmapping facility
to provide a direct mapping of the whole RAM in 64-bit
architectures [70].

As physical memory is allotted to user processes and
the kernel, the existence of physmap results in address

aliasing. Virtual address aliases, or synonyms [62], occur
when two or more different virtual addresses map to the
same physical memory address. Given that physmap
maps a large part (or all) of physical memory within the
kernel, the memory of an attacker-controlled user pro-
cess is accessible through its kernel-resident synonym.

The first step in mounting a ret2dir attack is to map in
user space the exploit payload. Depending on whether
the exploited vulnerability enables the corruption of a
code pointer [36, 40, 42–45, 86] or a data pointer [38, 39,
41], the payload will consist of either shellcode, or con-
trolled (tampered-with) data structures, as shown in Fig-
ure 2. Whenever the mm subsystem allocates (dynamic)
memory to user space, it actually defers giving page
frames until the very last moment. Specifically, physi-
cal memory is granted to user processes in a lazy manner,
using the demand paging and copy-on-write methods [7],
which both rely on page faults to actually allocate RAM.
When the content of the payload is initialized, the MMU
generates a page fault, and the kernel allocates a page
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Figure 2: Overall ret2dir operation. The physmap

(direct-mapped RAM) area enables a hijacked kernel
code or data pointer to access user-controlled data, with-
out crossing the user-kernel space boundary.

frame to the attacking process. Page frames are managed
by mm using a buddy allocator [61]. Given the existence
of physmap, the moment the buddy allocator provides
a page frame to be mapped in user space, mm effectively
creates an alias of the exploit payload in kernel space,
as shown in Figure 2. Although the kernel never uses
such synonyms directly, mm keeps the whole RAM pre-
mapped in order to boost page frame reclamation. This
allows newly deallocated page frames to be made avail-
able to the kernel instantly, without the need to alter page
tables (see Section 4.1 for more details).

Overall, ret2dir takes advantage of the implicit
data sharing between user and kernel space (due to
physmap) to redirect a hijacked kernel control or data
flow to a set of kernel-resident synonym pages, effec-
tively performing the equivalent of a ret2usr attack with-
out reaching out to user space. It is important to note
that the malicious payload “emerges” in kernel space the
moment a page frame is given to the attacking process.
The attacker does not have to explicitly “push” (copy)
the payload to kernel space (e.g., via pipes or message
queues), as physmap makes it readily available. The
use of such methods is also much less flexible, as the sys-
tem imposes strict limits to the amount of memory that
can be allocated for kernel-resident buffers, while the ex-
ploit payload will (most likely) have to be encapsulated
in certain kernel data objects that can affect its structure.

4 Demystifying physmap

A critical first step in understanding the mechanics of
ret2dir attacks is to take a look at how the address
space of the Linux kernel is organized—we use the x86
platform as a reference. The x86-64 architecture uses

48-bit virtual addresses that are sign-extended to 64 bits
(i.e., bits [48:63] are copies of bit [47]). This
scheme natively splits the 64-bit virtual address space
in two canonical halves of 128TB each. Kernel space
occupies the upper half (0xFFFF800000000000 –
0xFFFFFFFFFFFFFFFF), and is further divided into
six regions [60]: the fixmap area, modules, kernel im-
age, vmemmap space, vmalloc arena, and physmap.
In x86, on the other hand, the kernel space can be as-
signed to the upper 1GB, 2GB, or 3GB part of the ad-
dress space, with the first option being the default. As
kernel virtual address space is limited, it can become a
scarce resource, and certain regions collide to prevent its
waste (e.g., modules and vmalloc arena, kernel image
and physmap).2 For the purposes of ret2dir, in the fol-
lowing, we focus only on the direct-mapped region.

4.1 Functionality

The physmap area is a mapping of paramount impor-
tance to the performance of the kernel, as it facilitates
dynamic kernel memory allocation. At a high level,
mm offers two main methods for requesting memory:
vmalloc and kmalloc. With the vmalloc family
of routines, memory can only be allocated in multiples
of page size and is guaranteed to be virtually contigu-
ous but not physically contiguous. In contrast, with the
kmalloc family of routines, memory can be allocated
in byte-level chunks, and is guaranteed to be both virtu-
ally and physically contiguous.

As it offers memory only in page multiples, vmalloc
leads to higher internal memory fragmentation and often
poor cache performance. More importantly, vmalloc
needs to alter the kernel’s page tables every time mem-
ory is (de)allocated to map or unmap the respective page
frames to or from the vmalloc arena. This not only
incurs additional overhead, but results in increased TLB
thrashing [67]. For these reasons, the majority of ker-
nel components use kmalloc. However, given that
kmalloc can be invoked from any context, including
that of interrupt service routines, which have strict timing
constraints, it must satisfy a multitude of different (and
contradicting) requirements. In certain contexts, the al-
locator should never sleep (e.g., when locks are held). In
other cases, it should never fail, or it should return mem-
ory that is guaranteed to be physically contiguous (e.g.,
when a device driver reserves memory for DMA).

Given constraints like the above, physmap is a ne-

cessity, as the main facilitator of optimal performance.

The mm developers opted for a design that lays kmalloc

2To access the contents of a page frame, the kernel must first map
that frame in kernel space. In x86, however, the kernel has only 1GB –
3GB virtual addresses available for managing (up to) 64GB of RAM.
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Architecture PHYS_OFFSET Size Prot.

x86 (3G/1G) 0xC0000000 891MB RW

(2G/2G) 0x80000000 1915MB RW

(1G/3G) 0x40000000 2939MB RW

AArch32 (3G/1G) 0xC0000000 760MB RWX

(2G/2G) 0x80000000 1784MB RWX

(1G/3G) 0x40000000 2808MB RWX

x86-64 0xFFFF880000000000 64TB RW(X)

AArch64 0xFFFFFFC000000000 256GB RWX

Table 1: physmap characteristics across different ar-
chitectures (x86, x86-64, AArch32, AArch64).

over a region3 that pre-maps the entire RAM (or part
of it) for the following reasons [7]. First, kmalloc
(de)allocates memory without touching the kernel’s page
table. This not only reduces TLB pressure significantly,
but also removes high-latency operations, like page table
manipulation and TLB shootdowns [70], from the fast
path. Second, the linear mapping of page frames results
in virtual memory that is guaranteed, by design, to be
always physically contiguous. This leads to increased
cache performance, and has the added benefit of allowing
drivers to directly assign kmalloc’ed regions to DMA
devices that can only operate on physically contiguous
memory (e.g., when there is no IOMMU support). Fi-
nally, page frame accounting is greatly simplified, as ad-
dress translations (virtual-to-physical and vice versa) can
be performed using solely arithmetic operations [64].

4.2 Location and Size

The physmap region is an architecture-independent fea-
ture (this should come as no surprise given the reasons
we outlined above) that exists in all popular Linux plat-
forms. Depending on the memory addressing character-
istics of each ISA, the size of physmap and its exact
location may differ. Nonetheless, in all cases: (i) there
exists a direct mapping of part or all physical memory in
kernel space, and (ii) the mapping starts at a fixed, known
location. The latter is true even in the case where kernel-
space ASLR (KASLR) [35] is employed.

Table 1 lists physmap’s properties of interest for the
platforms we consider. In x86-64 systems, the physmap
maps directly in a 1:1 manner, starting from page frame

3kmalloc is not directly layered over physmap. It is instead
implemented as a collection of geometrically distributed (32B–4KB)
slabs, which are in turn placed over physmap. The slab layer is a hi-
erarchical, type-based data structure caching scheme. By taking into
account certain factors, such as page and object sizes, cache line infor-
mation, and memory access times (in NUMA systems), it can perform
intelligent allocation choices that minimize memory fragmentation and
make the best use of a system’s cache hierarchy. Linux adopted the
slab allocator of SunOS [6], and as of kernel v3.12, it supports three
variants: SLAB, SLUB (default), and SLOB.

zero, the entire RAM of the system into a 64TB region.
AArch64 systems use a 256GB region for the same pur-
pose [69]. Conversely, in x86 systems, the kernel directly
maps only a portion of the available RAM.

The size of physmap on 32-bit architectures de-
pends on two factors: (i) the user/kernel split used
(3G/1G, 2G/2G, or 1G/3G), and (ii) the size of the
vmalloc arena. Under the default setting, in which
1GB is assigned to kernel space and the vmalloc

arena occupies 120MB, the size of physmap is 891MB
(1GB - sizeof(vmalloc + pkmap + fixmap

+ unused)) and starts at 0xC0000000. Like-
wise, under a 2G/2G (1G/3G) split, physmap starts
at 0x80000000 (0x40000000) and spawns 1915MB
(2939MB). The situation in AArch32 is quite simi-
lar [59], with the only difference being the default size
of the vmalloc arena (240MB).

Overall, in 32-bit systems, the amount of di-
rectly mapped physical memory depends on the size
of RAM and physmap. If sizeof(physmap)

≥ sizeof(RAM), then the entire RAM is direct-
mapped—a common case for 32-bit mobile devices
with up to 1GB of RAM. Otherwise, only up
to sizeof(physmap)/sizeof(PAGE) pages are
mapped directly, starting from the first page frame.

4.3 Access Rights

A crucial aspect for mounting a ret2dir attack is the mem-
ory access rights of physmap. To get the protection
bits of the kernel pages that correspond to the direct-
mapped memory region, we built kptdump:4 a utility
in the form of a kernel module that exports page tables
through the debugfs pseudo-filesystem [29]. The tool
traverses the kernel page table, available via the global
symbols swapper_pg_dir (x86/AArch32/AArch64)
and init_level4_pgt (x86-64), and dumps the flags
(U/S, R/W, XD) of every kernel page that falls within the
physmap region.

In x86, physmap is mapped as “readable and write-
able” (RW) in all kernel versions we tried (the oldest one
was v2.6.32, released on Dec. 2009). In x86-64, how-
ever, the permissions of physmap are not in sane state.
Kernels up to v3.8.13 violate the W^X property by map-
ping the entire region as “readable, writeable, and exe-
cutable” (RWX)—only very recent kernels (≥ v3.9) use
the more conservative RW mapping. Finally, AArch32
and AArch64 map physmap with RWX permissions in
every kernel version we tested (up to v3.12).

4 kptdump resembles the functionality of Arjan van de Ven’s
patch [94]; unfortunately, we had to resort to a custom solution, as
that patch is only available for x86/x86-64 and cannot be used “as-is”
in any other architecture.
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5 Locating Synonyms

The final piece for mounting a ret2dir exploit is finding
a way to reliably pinpoint the location of a synonym ad-
dress in the physmap area, given its user-space counter-
part. For legacy environments, in which physmapmaps
only part of the system’s physical memory, such as a 32-
bit system with 8GB of RAM, an additional requirement
is to ensure that the synonym of a user-space address of
interest exists. We have developed two techniques for
achieving both goals. The first relies on page frame infor-
mation available through the pagemap interface of the
/proc filesystem, which is currently accessible by non-
privileged users in all Linux distributions that we studied.
As the danger of ret2dir attacks will (hopefully) encour-
age system administrators and Linux distributions to dis-
able access to pagemap, we have developed a second
technique that does not rely on any information leakage
from the kernel.

5.1 Leaking PFNs (via /proc)

The procfs pseudo-filesystem [58] has a long history
of leaking security-sensitive information [56, 76]. Start-
ing with kernel v2.6.25 (Apr. 2008), a set of pseudo-
files, including /proc/<pid>/pagemap, were added
in /proc to enable the examination of page tables for
debugging purposes. To assess the prevalence of this fa-
cility, we tested the latest releases of the most popular
distributions according to DistroWatch [34] (i.e., Debian,
Ubuntu, Fedora, and CentOS). In all cases, pagemap
was enabled by default.

For every user-space page, pagemap provides a 64-
bit value, indexed by (virtual) page number, which con-
tains information regarding the presence of the page
in RAM [1]. If a page is present in RAM, then
bit [63] is set and bits [0:54] encode its page
frame number (PFN). That being so, the PFN of a
given user-space virtual address uaddr, can be lo-
cated by opening /proc/<pid>/pagemap and read-
ing eight bytes from file offset (uaddr/4096) *
sizeof(uint64_t) (assuming 4KB pages).

Armed with the PFN of a given uaddr, de-
noted as PFN(uaddr), its synonym SYN(uaddr)

in physmap can be located using the following for-
mula: SYN(uaddr) = PHYS_OFFSET + 4096 *
(PFN(uaddr) - PFN_MIN). PHYS_OFFSET cor-
responds to the known, fixed starting kernel virtual
address of physmap (values for different configura-
tions are shown in Table 1), and PFN_MIN is the first
page frame number—in many architectures, including
ARM, physical memory starts from a non-zero offset
(e.g., 0x60000000 in Versatile Express ARM boards,
which corresponds to PFN_MIN = 0x60000). To pre-

vent SYN(uaddr) from being reclaimed (e.g., after
swapping out uaddr), the respective user page can be
“pinned” to RAM using mlock.

sizeof(RAM) > sizeof(physmap): For sys-
tems in which part of RAM is direct-mapped, only a
subset of PFNs is accessible through physmap. For
instance, in an x86 system with 4GB of RAM, the
PFN range is 0x0-0x100000. However, under the
default 3G/1G split, the physmap region maps only
the first 891MB of RAM (see Table 1 for other se-
tups), which means PFNs from 0x0 up to 0x37B00

(PFN_MAX). If the PFN of a user-space address is greater
than PFN_MAX (the PFN of the last direct-mapped page),
then physmap does not contain a synonym for that ad-
dress. Naturally, the question that arises is whether we
can force the buddy allocator to provide page frames with
PFNs less than PFN_MAX.

For compatibility reasons, mm splits physical mem-
ory into several zones. In particular, DMA processors
of older ISA buses can only address the first 16MB
of RAM, while some PCI DMA peripherals can ac-
cess only the first 4GB. To cope with such limita-
tions, mm supports the following zones: ZONE_DMA,
ZONE_DMA32, ZONE_NORMAL, andZONE_HIGHMEM.
The latter is available in 32-bit platforms and con-
tains the page frames that cannot be directly ad-
dressed by the kernel (i.e., those that are not mapped
in physmap). ZONE_NORMAL contains page frames
above ZONE_DMA (and ZONE_DMA32, in 64-bit sys-
tems) and below ZONE_HIGHMEM. When only part
of RAM is direct-mapped, mm orders the zones
as follows: ZONE_HIGHMEM > ZONE_NORMAL >

ZONE_DMA. Given a page frame request, mm will try
to satisfy it starting with the highest zone that com-
plies with the request (e.g., as we have discussed, the
direct-mapped memory of ZONE_NORMAL is preferred
for kmalloc), moving towards lower zones as long as
there are no free page frames available.

From the perspective of an attacker, user processes
get their page frames from ZONE_HIGHMEM first, as mm
tries to preserve the page frames that are direct-mapped
for dynamic memory requests from the kernel. How-
ever, when the page frames of ZONE_HIGHMEM are de-
pleted, due to increased memory pressure, mm inevitably

starts providing page frames from ZONE_NORMAL or

ZONE_DMA. Based on this, our strategy is as follows.
The attacking process repeatedly uses mmap to request
memory. For each page in the requested memory region,
the process causes a page fault by accessing a single
byte, forcing mm to allocate a page frame (alternatively,
the MAP_POPULATE flag in mmap can be used to pre-
allocate all the respective page frames). The process then
checks the PFN of every allocated page, and the same
procedure is repeated until a PFN less than PFN_MAX is
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obtained. The synonym of such a page is then guaran-
teed to be present in physmap, and its exact address can
be calculated using the formula presented above. Note
that depending on the size of physical memory and the
user/kernel split used, we may have to spawn additional
processes to completely deplete ZONE_HIGHMEM. For
example, on an x86 machine with 8GB of RAM and the
default 3G/1G split, up to three processes might be nec-
essary to guarantee that a page frame that falls within
physmap will be acquired. Interestingly, the more be-
nign processes are running on the system, the easier it
is for an attacker to acquire a page with a synonym
in physmap; additional tasks create memory pressure,
“pushing” the attacker’s allocations to the desired zones.

Contiguous synonyms: Certain exploits may require
more than a single page for their payload(s). Pages
that are virtually contiguous in user space, however,
do not necessarily map to page frames that are physi-
cally contiguous, which means that their synonyms will
not be contiguous either. Yet, given physmap’s lin-
ear mapping, two pages with consecutive synonyms have
PFNs that are sequential. Therefore, if 0xBEEF000 and
0xFEEB000 have PFNs 0x2E7C2 and 0x2E7C3, re-
spectively, then they are contiguous in physmap despite
being ∼64MB apart in user space.

To identify consecutive synonyms, we proceed as fol-
lows. Using the same methodology as above, we com-
pute the synonym of a random user page. We then re-
peatedly obtain more synonyms, each time comparing
the PFN of the newly acquired synonym with the PFNs
of those previously retrieved. The process continues un-
til any two (or more, depending on the exploit) synonyms
have sequential PFNs. The exploit payload can then be
split appropriately across the user pages that correspond
to synonyms with sequential PFNs.

5.2 physmap Spraying

As eliminating access to /proc/<pid>/pagemap is
a rather simple task, we also consider the case in which
PFN information is not available. In such a setting, given
a user page that is present in RAM, there is no direct
way of determining the location of its synonym inside
physmap. Recall that our goal is to identify a kernel-
resident page in the physmap area that “mirrors” a user-
resident exploit payload. Although we cannot identify
the synonym of a given user address, it is still possible
to proceed in the opposite direction: pick an arbitrary

physmap address, and ensure (to the extent possible)
that its corresponding page frame is mapped by a user
page that contains the exploit payload.

This can be achieved by exhausting the address space
of the attacking process with (aligned) copies of the ex-
ploit payload, in a way similar to heap spraying [33].

The base address and length of the physmap area is
known in advance (Table 1). The latter corresponds to
PFN_MAX - PFN_MIN page frames, shared among all
user processes and the kernel. If the attacking process
manages to copy the exploit payload into N memory-
resident pages (in the physical memory range mapped
by physmap), then the probability (P) that an arbitrar-
ily chosen, page-aligned physmap address will point
to the exploit payload is: P = N / (PFN_MAX -

PFN_MIN). Our goal is to maximize P.

Spraying: Maximizing N is straightforward, and
boils down to acquiring as many page frames as pos-
sible. The technique we use is similar to the one pre-
sented in Section 5.1. The attacking process repeat-
edly acquires memory using mmap and “sprays” the ex-
ploit payload into the returned regions. We prefer us-
ing mmap, over ways that involve shmget, brk, and
remap_file_pages, due to system limits typically
imposed on the latter. MAP_ANONYMOUS allocations are
also preferred, as existing file-backed mappings (from
competing processes) will be swapped out with higher
priority compared to anonymous mappings. The copy-
ing of the payload causes page faults that result in page
frame allocations by mm (alternatively MAP_POPULATE
can be used). If the virtual address space is not enough
for depleting the entire RAM, as is the case with certain
32-bit configurations, the attacking process must spawn
additional child processes to assist with the allocations.

The procedure continues until mm starts swapping
“sprayed” pages to disk. To pinpoint the exact moment
that swapping occurs, each attacking process checks pe-
riodically whether its sprayed pages are still resident
in physical memory, by calling the getrusage sys-
tem call every few mmap invocations. At the same
time, all attacking processes start a set of background
threads that repeatedly write-access the already allocated
pages, simulating the behavior of mlock, and prevent-
ing (to the extent possible) sprayed pages from being
swapped out—mm swaps page frames to disk using the
LRU policy. Hence, by accessing pages repeatedly, mm
is tricked to believe that they correspond to fresh con-
tent. When the number of memory-resident pages begins
to drop (i.e., the resident-set size (RSS) of the attacking
process(es) starts decreasing), the maximum allowable
physical memory footprint has been reached. Of course,
the size of this footprint also depends on the memory
load inflicted by other processes, which compete with the
attacking processes for RAM.

Signatures: As far as PFN_MAX - PFN_MIN is
concerned, we can reduce the set of potential target pages
in the physmap region, by excluding certain pages that
correspond to frames that the buddy allocator will never
provide to user space. For example, in x86 and x86-64,
the BIOS typically stores the hardware configuration de-
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tected during POST at page frame zero. Likewise, the
physical address range 0xA0000-0xFFFFF is reserved
for mapping the internal memory of certain graphics
cards. In addition, the ELF sections of the kernel image
that correspond to kernel code and global data are loaded
at known, fixed locations in RAM (e.g., 0x1000000
in x86). Based on these and other predetermined allo-
cations, we have generated physmap signatures of re-
served page frame ranges for each configuration we con-
sider. If a signature is not available, then all page frames
are potential targets. By combining physmap spraying
and signatures, we can maximize the probability that our
informed selection of an arbitrary page from physmap

will point to the exploit payload. The results of our ex-
perimental security evaluation (Section 7) show that, de-
pending on the configuration, the probability of success
can be as high as 96%.

6 Putting It All Together

6.1 Bypassing SMAP and UDEREF

We begin with an example of a ret2dir attack against
an x86 system hardened with SMAP or UDEREF. We
assume an exploit for a kernel vulnerability that allows
us to corrupt a kernel data pointer, named kdptr, and
overwrite it with an arbitrary value [38,39,41]. On a sys-
tem with an unhardened kernel, an attacker can overwrite
kdptrwith a user-space address, and force the kernel to
dereference it by invoking the appropriate interface (e.g.,
a buggy system call). However, the presence of SMAP
or UDEREF will cause a memory access violation, ef-
fectively blocking the exploitation attempt. To overcome
this, a ret2dir attack can be mounted as follows.

First, an attacker-controlled user process reserves a
single page (4KB), say at address 0xBEEF000. Next,
the process moves on to initialize the newly allocated
memory with the exploit payload (e.g., a tampered-
with data structure). This payload initialization phase
will cause a page fault, triggering mm to request a free
page frame from the buddy allocator and map it at ad-
dress 0xBEEF000. Suppose that the buddy system
picks page frame 1904 (0x770). In x86, under the de-
fault 3G/1G split, physmap starts at 0xC0000000,
which means that the page frame has been pre-mapped
at address 0xC0000000 + (4096 ∗ 0x770) =

0xC0770000 (according to formula in Section 5.1).
At this point, 0xBEEF000 and 0xC0770000 are syn-
onyms; they both map to the physical page that con-
tains the attacker’s payload. Consequently, any data
in the area 0xBEEF000–0xBEEFFFFF is readily ac-
cessible by the kernel through the synonym addresses
0xC0770000–0xC0770FFF. To make matters worse,
given that physmap is primarily used for implement-

ing dynamic memory, the kernel cannot distinguish
whether the kernel data structure located at address
0xC0770000 is fake or legitimate (i.e., properly al-
located using kmalloc). Therefore, by overwriting
kdptr with 0xC0770000 (instead of 0xBEEF000),
the attacker can bypass SMAP and UDEREF, as both
protections consider benign any dereference of memory
addresses above 0xC0000000.

6.2 Bypassing SMEP, PXN, KERNEXEC,

and kGuard

We use a running example from the x86-64 architec-
ture to demonstrate how a ret2dir attack can bypass
KERNEXEC, kGuard, and SMEP (PXN operates almost
identically to SMEP). We assume the exploitation of
a kernel vulnerability that allows the corruption of
a kernel function pointer, namely kfptr, with an
arbitrary value [40, 42, 43, 45]. In this setting, the
exploit payload is not a set of fake data structures, but
machine code (shellcode) to be executed with elevated
privilege. In real-world kernel exploits, the payload
typically consists of a multi-stage shellcode, the first
stage of which stitches together kernel routines (second
stage) for performing privilege escalation [89]. In most
cases, this boils down to executing something similar to
commit_creds(prepare_kernel_cred(0)).
These two routines replace the credentials ((e)uid,
(e)gid) of a user task with zero, effectively granting
root privileges to the attacking process.

The procedure is similar as in the previous exam-
ple. Suppose that the payload has been copied to
user-space address 0xBEEF000, which the buddy
allocator assigned to page frame 190402 (0x2E7C2). In
x86-64, physmap starts at 0xFFFF880000000000
(see Table 1), and maps the whole RAM using reg-
ular pages (4KB). Hence, a synonym of address
0xBEEF000 is located within kernel space at address
0xFFFF880000000000 + (4096 ∗ 0x2E7C2)

= 0xFFFF87FF9F080000.
In ret2usr scenarios where attackers control a kernel

function pointer, an advantage is that they also control
the memory access rights of the user page(s) that con-
tain the exploit payload, making it trivially easy to mark
the shellcode as executable. In a hardened system, how-
ever, a ret2dir attack allows controling only the content

of the respective synonym pages within physmap—
not their permissions. In other words, although the at-
tacker can set the permissions of the range 0xBEEF000
– 0xBEEFFFF, this will not affect the access rights of
the corresponding physmap pages.

Unfortunately, as shown in Table 1, the W^X prop-
erty is not enforced in many platforms, including
x86-64. In our example, the content of user ad-
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dress 0xBEEF000 is also accessible through kernel
address 0xFFFF87FF9F080000 as plain, executable
code. Therefore, by simply overwriting kfptr with
0xFFFF87FF9F080000 and triggering the kernel to
dereference it, an attacker can directly execute shellcode
with kernel privileges. KERNEXEC, kGuard, and SMEP
(PXN) cannot distinguish whether kfptr points to ma-
licious code or a legitimate kernel routine, and as long
as kfptr≥ 0xFFFF880000000000 and *kfptr is
RWX, the dereference is considered benign.

Non-executable physmap: In the above example,
we took advantage of the fact that some platforms map
part (or all) of the physmap region as executable (X).
The question that arises is whether ret2dir can be ef-
fective when physmap has sane permissions. As we
demonstrate in Section 7, even in this case, ret2dir at-
tacks are possible through the use of return-oriented pro-
gramming (ROP) [8, 51, 87].

Let’s revisit the previous example, this time under
the assumption that physmap is not executable. In-
stead of mapping regular shellcode at 0xBEEF000, an
attacker can map an equivalent ROP payload: an im-
plementation of the same functionality consisting solely
of a chain of code fragments ending with ret instruc-
tions, known as gadgets, which are located in the ker-
nel’s (executable) text segment. To trigger the ROP
chain, kfptr is overwritten with an address that points
to a stack pivoting gadget, which is needed to set the
stack pointer to the beginning of the ROP payload, so
that each gadget can transfer control to the next one. By
overwriting kfptrwith the address of a pivot sequence,
like xchg %rax, %rsp; ret (assuming that %rax
points to 0xFFFF87FF9F080000), the synonym of
the ROP payload now acts as a kernel-mode stack. Note
that Linux allocates a separate kernel stack for every user
thread using kmalloc, making it impossible to differ-
entiate between a legitimate stack and a ROP payload
“pushed” in kernel space using ret2dir, as both reside in
physmap. Finally, the ROP code should also take care
of restoring the stack pointer (and possibly other CPU
registers) to allow for reliable kernel continuation [3,81].

7 Security Evaluation

7.1 Effectiveness

We evaluated the effectiveness of ret2dir against ker-
nels hardened with ret2usr protections, using real-world
and custom exploits. We obtained a set of eight ret2usr
exploits from the Exploit Database (EDB) [75], cover-
ing a wide range of kernel versions (v2.6.33.6–v3.8).
We ran each exploit on an unhardened kernel to ver-
ify that it works, and that it indeed follows a ret2usr
exploitation approach. Next, we repeated the same ex-

periment with every kernel hardened against ret2usr at-
tacks, and, as expected, all exploits failed. Finally, we
transformed the exploits into ret2dir-equivalents, using
the technique(s) presented in Section 5, and used them
against the same hardened systems. Overall, our ret2dir
versions of the exploits bypassed all available ret2usr

protections, namely SMEP, SMAP, PXN, KERNEXEC,
UDEREF, and kGuard.

Table 2 summarizes our findings. The first two
columns (EDB-ID and CVE) correspond to the tested ex-
ploit, and the third (Arch.) and fourth (Kernel) denote the
architecture and kernel version used. The Payload col-
umn indicates the type of payload pushed in kernel space
using ret2dir, which can be a ROP payload (ROP), exe-
cutable instructions (SHELLCODE), tampered-with data
structures (STRUCT), or a combination of the above, de-
pending on the exploit. The Protection column lists the
deployed protection mechanisms in each case. Empty
cells correspond to protections that are not applicable in
the given setup, because they may not be (i) available for
a particular architecture, (ii) supported by a given ker-
nel version, or (iii) relevant against certain types of ex-
ploits. For instance, PXN is available only in ARM ar-
chitectures, while SMEP and SMAP are Intel processor
features. Furthermore, support for SMEP was added in
kernel v3.2 and for SMAP in v3.7. Note that depending
on the permissions of the physmap area (see Table 1),
we had to modify some of the exploits that relied on plain
shellcode to use a ROP payload, in order to achieve ar-
bitrary code execution (although in ret2usr exploits at-
tackers can give executable permission to the user-space
memory that contains the payload, in ret2dir exploits it is
not possible to modify the permissions of physmap).5

Entries for kGuard marked with * require access to the
(randomized) text section of the respective kernel.

As we mentioned in Section 2.3, KERNEXEC and
UDEREF were recently ported to the AArch32 architec-
ture [90]. In addition to providing stronger address space
separation, the authors made an effort to fix the permis-
sions of the kernel in AArch32, by enforcing the W^X

property for the majority of RWX pages in physmap.
However, as the respective patch is currently under de-
velopment, there still exist regions inside physmap that
are mapped as RWX. In kernel v3.8.7, we identified a
~6MB physmap region mapped as RWX that enabled the
execution of plain shellcode in our ret2dir exploit.

The most recent kernel version for which we found a
publicly-available exploit is v3.8. Thus, to evaluate the
latest kernel series (v3.12) we used a custom exploit. We

5Exploit 15285 uses ROP code to bypass KERNEXEC/UDEREF
and plain shellcode to evade kGuard. Exploit 26131 uses ROP
code in x86 (kernel v3.5) to bypass KERNEXEC/UDEREF and
SMEP/SMAP, and plain shellcode in x86-64 (kernel v3.8) to bypass
kGuard, KERNEXEC, and SMEP.
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EDB-ID CVE Arch. Kernel Payload Protection Bypassed

26131 2013-2094 x86/x86-64 3.5/3.8 ROP/SHELLCODE |KERNEXEC|UDEREF|kGuard |SMEP|SMAP| | ✓

24746 2013-1763 x86-64 3.5 SHELLCODE |KERNEXEC| |kGuard |SMEP| | | ✓

15944 N/A x86 2.6.33.6 STRUCT+ROP |KERNEXEC|UDEREF|kGuard*| | | | ✓

15704 2010-4258 x86 2.6.35.8 STRUCT+ROP |KERNEXEC|UDEREF|kGuard*| | | | ✓

15285 2010-3904 x86-64 2.6.33.6 ROP/SHELLCODE |KERNEXEC|UDEREF|kGuard | | | | ✓

15150 2010-3437 x86 2.6.35.8 STRUCT | |UDEREF| | | | | ✓

15023 2010-3301 x86-64 2.6.33.6 STRUCT+ROP |KERNEXEC|UDEREF|kGuard*| | | | ✓

14814 2010-2959 x86 2.6.33.6 STRUCT+ROP |KERNEXEC|UDEREF|kGuard*| | | | ✓

Custom N/A x86 3.12 STRUCT+ROP |KERNEXEC|UDEREF|kGuard*|SMEP|SMAP| | ✓

Custom N/A x86-64 3.12 STRUCT+ROP |KERNEXEC|UDEREF|kGuard*|SMEP|SMAP| | ✓

Custom N/A AArch32 3.8.7 STRUCT+SHELLCODE |KERNEXEC|UDEREF|kGuard | | | | ✓

Custom N/A AArch64 3.12 STRUCT+SHELLCODE | | |kGuard | | |PXN| ✓

Table 2: Tested exploits (converted to use the ret2dir technique) and configurations.

x86-64 AArch32

push %rbp | push r3, lr

mov %rsp, %rbp | mov r0, #0

push %rbx | ldr r1, [pc, #16]

mov $<pkcred>, %rbx | blx r1

mov $<ccreds>, %rax | pop r3, lr

mov $0x0, %rdi | ldr r1, [pc, #8]

callq *%rax | bx r1

mov %rax, %rdi | <pkcred>

callq *%rbx | <ccreds>

mov $0x0, %rax |

pop %rbx |

leaveq |

ret |

Figure 3: The plain shellcode used in ret2dir ex-
ploits for x86-64 (left) and AArch32 (right) targets
(pkcred and ccreds correspond to the addresses of
prepare_kernel_cred and commit_creds).

artificially injected two vulnerabilities that allowed us to
corrupt a kernel data or function pointer, and overwrite it
with a user-controlled value (marked as “Custom” in Ta-
ble 2). Note that both flaws are similar to those exploited
by the publicly-available exploits. Regarding ARM, the
most recent PaX-protected AArch32 kernel that we suc-
cessfully managed to boot was v3.8.7.

We tested every applicable protection for each exploit.
In all cases, the ret2dir versions transfered control solely

to kernel addresses, bypassing all deployed protections.
Figure 3 shows the shellcode we used in x86-64 and
AArch32 architectures. The shellcode is position inde-

pendent, so the only change needed in each exploit is to
to replace pkcred and ccreds with the addresses of
prepare_kernel_cred and commit_creds, re-
spectively, as discussed in Section 6.2. By copying the
shellcode into a user-space page that has a synonym in
the physmap area, we can directly execute it from ker-

/* save orig. esp */

0xc10ed359 /* pop %edx ; ret */

<SCRATCH_SPACE_ADDR1>

0xc127547f /* mov %eax, (%edx) ; ret */

/* save orig. ebp */

0xc10309d5 /* xchg %eax, %ebp ; ret */

0xc10ed359 /* pop %edx ; ret */

<SCRATCH_SPACE_ADDR2>

0xc127547f /* mov %eax, (%edx) ; ret */

/* commit_creds(prepare_kernel_cred(0) */

0xc1258894 /* pop %eax ; ret */

0x00000000

0xc10735e0 /* addr. of prepare_kernel_cred */

0xc1073340 /* addr. of commit_creds’ */

/* restore the saved CPU state */

0xc1258894 /* pop %eax ; ret */

<SCRATCH_SPACE_ADDR2>

0xc1036551 /* mov (%eax), %eax ; ret */

0xc10309d5 /* xchg %eax, %ebp ; ret */

0xc1258894 /* pop %eax ; ret */

<SCRATCH_SPACE_ADDR1>

0xc1036551 /* mov (%eax), %eax ; ret */

0xc100a7f9 /* xchg %eax, %esp ; ret */

Figure 4: Example of an x86 ROP payload (kernel v3.8)
used in our ret2dir exploits for elevating privilege.

nel mode by overwriting a kernel code pointer with the
physmap-resident synonym address of the user-space
page. We followed this strategy for all cases in which
physmap was mapped as executable (corresponding to
the entries of Table 2 that contain SHELLCODE in the
Payload column).

For cases in which physmap is non-executable,
we substituted the shellcode with a ROP payload that
achieves the same purpose. In those cases, the cor-
rupted kernel code pointer is overwritten with the ad-
dress of a stack pivoting gadget, which brings the ker-
nel’s stack pointer to the physmap page that is a syn-
onym for the user page that contains the ROP pay-
load. Figure 4 shows an example of an x86 ROP pay-
load used in our exploits. The first gadgets preserve
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Figure 5: Probability that a selected physmap address
will point to the exploit payload (successful exploitation)
with a single attempt, when using physmap spraying, as
a function of the available RAM.

the esp and ebp registers to facilitate reliable con-
tinuation (as discussed in Section 6.2). The scratch
space can be conveniently located inside the controlled
page(s), so the addresses SCRATCH_SPACE_ADDR1

and SCRATCH_SPACE_ADDR2 can be easily computed
accordingly. The payload then executes essentially the
same code as the shellcode to elevate privilege.

7.2 Spraying Performance

In systems without access to pagemap, ret2dir attacks
have to rely on physmap spraying to find a synonym
that corresponds to the exploit payload. As discussed
in Section 5.2, the probability of randomly selecting a
physmap address that indeed points to the exploit pay-
load depends on (i) the amount of installed RAM, (ii)

the physical memory load due to competing processes,
and (iii) the size of the physmap area. To assess this
probability, we performed a series of experiments under
different system configurations and workloads.

Figure 5 shows the probability of successfully select-
ing a physmap address, with a single attempt, as a func-
tion of the amount of RAM installed in our system; our
testbed included a single host armed with two 2.66GHz
quad-core Intel Xeon X5500 CPUs and 16GB of RAM,
running 64-bit Debian Linux v7. Each bar denotes the
average value over 5 repetitions and error bars corre-
spond to 95% confidence intervals. On every repeti-
tion we count the percentage of the maximum number
of physmap-resident page frames that we managed to
aquire, using the spraying technique (Section 5.2), over
the size of physmap. We used three different work-
loads of increasing memory pressure: an idle system, a
desktop-like workload with constant browsing activity in
multiple tabs (Facebook, Gmail, Twitter, YouTube, and

the USENIX website), and a distributed kernel compi-
lation with 16 parallel threads running on 8 CPU cores
(gcc, as, ld, make). Note that it is necessary to main-
tain continuous activity in the competing processes so
that their working set remains hot (worst-case scenario),
otherwise the attacking ret2dir processes would easily
steal their memory-resident pages.

The probability of success increases with the amount
of RAM. For the lowest-memory configuration (1GB),
the probability ranges between 65–68%, depending on
the workload. This small difference between the idle
and the intensive workloads is an indication that de-
spite the continuous activity of the competing processes,
the ret2dir processes manage to claim a large amount
of memory, as a result of their repeated accesses to all
already allocated pages that in essence “lock” them to
main memory. For the 2GB configuration the probability
jumps to 88%, and reaches 96% for 16GB.

Note that as these experiments were performed on
a 64-bit system, physmap always mapped all avail-
able memory. On 32-bit platforms, in which physmap
maps only a subset of RAM, the probability of success
is even higher. As discussed in Section 5.1, in such
cases, the additional memory pressure created by com-
peting processes, which more likely were spawned be-

fore the ret2dir processes, helps “pushing” ret2dir alloca-
tions to the desired zones (ZONE_NORMAL,ZONE_DMA)
that fall within the physmap area. Finally, depending on
the vulnerability, it is quite common that an unsuccess-
ful attempt will not result in a kernel panic, allowing the
attacker to run the exploit multiple times.

8 Defending Against ret2dir Attacks

Restricting access to /proc/<pid>/pagemap, or
disabling the feature completely (e.g., by compiling the
kernel without support for PROC_PAGE_MONITOR), is
a simple first step that can hinder, but not prevent, ret2dir
attacks. In this section, we present an eXclusive Page
Frame Ownerwhip (XPFO) scheme for the Linux kernel
that provides effective protection with low overhead.

8.1 XPFO Design

XPFO is a thin management layer that enforces exclusive

ownership of page frames by either the kernel or user-
level processes. Specifically, under XPFO, page frames
can never be assigned to both kernel and user space, un-
less a kernel component explicitly requests that (e.g., to
implement zero-copy buffers [84]).

We opted for a design that does not penalize the
performance-critical kernel allocators, at the expense of
low additional overhead whenever page frames are al-
located to (or reclaimed from) user processes. Recall
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that physical memory is allotted to user space using the
demand paging and copy-on-write (COW) methods [7],
both of which rely on page faults to allocate RAM.
Hence, user processes already pay a runtime penalty for
executing the page fault handler and performing the nec-
essary bookkeeping. XPFO aligns well with this design
philosophy, and increases marginally the management
and runtime overhead of user-space page frame alloca-
tion. Crucially, the physmap area is left untouched, and
the slab allocator, as well as kernel components that in-
terface directly with the buddy allocator, continue to get
pages that are guaranteed to be physically contiguous and
benefit from fast virtual-to-physical address translations,
as there are no extra page table walks or modifications.

Whenever a page frame is assigned to a user process,
XPFO unmaps its respective synonym from physmap,
thus breaking unintended aliasing and ensuring that mali-
cious content can no longer be “injected” to kernel space
using ret2dir. Likewise, when a user process releases
page frames back to the kernel, XPFO maps the corre-
sponding pages back in physmap to proactively facili-
tate dynamic (kernel) memory requests. A key require-
ment here is to wipe out the content of page frames that
are returned by (or reclaimed from) user processes, be-
fore making them available to the kernel. Otherwise, a
non-sanitizing XPFO scheme would be vulnerable to the
following attack. A malicious program spawns a child
process that uses the techniques presented in Section 5
to map its payload. Since XPFO is in place, the payload
is unmapped from physmap and cannot be addressed
by the kernel. Yet, it will be mapped back once the child
process terminates, making it readily available to the ma-
licious program for mounting a ret2dir attack.

8.2 Implementation

We implemented XPFO in the Linux kernel v3.13. Our
implementation (∼500LOC) keeps the management and
runtime overhead to the minimum, by employing a set of
optimizations related to TLB handling and page frame
cleaning, and handles appropriately all cases in which
page frames are allocated to (and reclaimed from) user
processes. Specifically, XPFO deals with: (a) demand
paging frames due to previously-requested anonymous
and shared memory mappings (brk, mmap/mmap2,
mremap, shmat), (b) COW frames (fork, clone),
(c) explicitly and implicitly reclaimed frames (_exit,
munmap, shmdt), (d) swapping (both swapped out
and swapped in pages), (e) NUMA frame migrations
(migrate_pages,move_pages), and (f) huge pages
and transparent huge pages.

Handling the above cases is quite challenging. To
that end, we first extended the system’s page frame data
structure (struct page) with the following fields:

xpfo_kmcnt (reference counter), xpfo_lock (spin-
lock) and xpfo_flags (32-bit flags field)—struct

page already contains a flags field, but in 32-bit systems
it is quite congested [30]. Notice that although the kernel
keeps a struct page object for every page frame in
the system, our change requires only 3MB of additional
space per 1GB of RAM (∼0.3% overhead). Moreover,
out of the 32 bits available in xpfo_flags, we only
make use of three: “Tainted” (T; bit 0), “Zapped” (Z; bit
1), and “TLB-shootdown needed” (S; bit 2).

Next, we extended the buddy system. Whenever
the buddy allocator receives requests for page frames
destined to user space (requests with GFP_USER,
GFP_HIGHUSER, or GFP_HIGHUSER_MOVABLE set
to gfp_flags), XPFO unmaps their respective syn-
onyms from physmap and asserts xpfo_flags.T,
indicating that the frames will be allotted to userland
and their contents are not trusted anymore. In contrast,
for page frames destined to kernel space, XPFO asserts
xpfo_flags.S (optimization; see below).

Whenever page frames are released to the buddy sys-
tem, XPFO checks if bit xpfo_flags.T was pre-
viously asserted. If so, the frame was mapped to
user space and needs to be wiped out. After zeroing
its contents, XPFO maps it back to physmap, resets
xpfo_flags.T, and asserts xpfo_flags.Z (opti-
mization; more on that below). If xpfo_flags.T
was not asserted, the buddy system reclaimed a frame
previously allocated to the kernel itself and no action
is necessary (fast-path; no interference with kernel al-
locations). Note that in 32-bit systems, the above are
not performed if the page frame in question comes from
ZONE_HIGHMEM—this zone contains page frames that
are not direct-mapped.

Finally, to achieve complete support of cases
(a)–(f), we leverage kmap/kmap_atomic and
kunmap/kunmap_atomic. These functions are
used to temporarily (un)map page frames acquired
from ZONE_HIGHMEM (see Section 5.1). In 64-bit
systems, where the whole RAM is direct-mapped,
kmap/kmap_atomic returns the address of the re-
spective page frame directly from physmap, whereas
kunmap/kunmap_atomic is defined as NOP and
optimized by the compiler. If XPFO is enabled, all of
them are re-defined accordingly.

As user pages are (preferably) allocated from
ZONE_HIGHMEM, the kernel wraps all code related to
the cases we consider (e.g., demand paging, COW,
swapping) with the above functions. Kernel com-
ponents that use kmap to operate on page frames
not related to user processes do exist, and we distin-
guish these cases using xpfo_flags.T. If a page
frame is passed to kmap/kmap_atomic and that bit
is asserted, this means that the kernel tries to oper-
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ate on a frame assigned to user space via its kernel-
resident synonym (e.g., to read its contents for swap-
ping it out), and thus is temporarily mapped back in
physmap. Likewise, in kunmap/kunmap_atomic,
page frames with xpfo_flags.T asserted are un-
mapped. Note that in 32-bit systems, the XPFO
logic is executed on kmap routines only for direct-
mapped page frames (see Table 1). xpfo_lock

and xpfo_kmcnt are used for handling recursive or
concurrent invocations of kmap/kmap_atomic and
kunmap/kunmap_atomicwith the same page frame.

Optimizations: The overhead of XPFO stems mainly
from two factors: (i) sanitizing the content of reclaimed
pages, and (ii) TLB shootdown and flushing (necessary
since we modify the kernel page table). We employ three
optimizations to keep that overhead to the minimum. As
full TLB flushes result in prohibitive slowdowns [53],
in architectures that support single TLB entry invalida-
tion, XPFO selectively evicts only those entries that cor-
respond to synonyms in physmap that are unmapped;
in x86/x86-64 this is done with the INVLPG instruction.

In systems with multi-core CPUs, XPFO must take
into consideration TLB coherency issues. Specifically,
we have to perform a TLB shootdown whenever a page
frame previously assigned to the kernel itself is mapped
to user space. XPFO extends the buddy system to use
xpfo_flags.S for this purpose. If that flag is asserted
when a page frame is alloted to user space, XPFO invali-
dates the TLB entries that correspond to the synonym of
that frame in physmap, in every CPU core, by sending
IPI interrupts to cascade TLB updates. In all other cases
(i.e., page frames passed from one process to another, re-
claimed page frames from user processes that are later
on alloted to the kernel, and page frames allocated to the
kernel, reclaimed, and subsequently allocated to the ker-
nel again), XPFO performs only local TLB invalidations.

To alleviate the impact of page sanitization, we ex-
ploit the fact that page frames previously mapped to user
space, and in turn reclaimed by the buddy system, have
xpfo_flags.Z asserted. We extended clear_page
to check xpfo_flags.Z and avoid clearing the frame
if the bit is asserted. This optimization avoids zeroing a
page frame twice, in case it was first reclaimed by a user
process and then subsequently allocated to a kernel path
that required a clean page—clear_page is invoked by
every kernel path that requires a zero-filled page frame.

Limitations: XPFO provides protection against
ret2dir attacks, by braking the unintended address space
sharing between different security contexts. However, it
does not prevent generic forms of data sharing between
kernel and user space, such as user-controlled content
pushed to kernel space via I/O buffers, the page cache, or
through system objects like pipes and message queues.

Benchmark Metric Original XPFO (%Overhead)

Apache Req/s 17636.30 17456.47 (%1.02)

NGINX Req/s 16626.05 16186.91 (%2.64)

PostgreSQL Trans/s 135.01 134.62 (%0.29)

Kbuild sec 67.98 69.66 (%2.47)

Kextract sec 12.94 13.10 (%1.24)

GnuPG sec 13.61 13.72 (%0.80)

OpenSSL Sign/s 504.50 503.57 (%0.18)

PyBench ms 3017.00 3025.00 (%0.26)

PHPBench Score 71111.00 70979.00 (%0.18)

IOzone MB/s 70.12 69.43 (%0.98)

tiobench MB/s 0.82 0.81 (%1.22)

dbench MB/s 20.00 19.76 (%1.20)

PostMark Trans/s 411.00 399.00 (%2.91)

Table 3: XPFO performance evaluation results using
macro-benchmarks (upper part) and micro-benchmarks
(lower part) from the Phoronix Test Suite.

8.3 Evaluation

To evaluate the effectiveness of the proposed protection
scheme, we used the ret2dir versions of the real-world
exploits presented in Section 7.1. We back-ported our
XPFO patch to each of the six kernel versions used in our
previous evaluation (see Table 2), and tested again our
ret2dir exploits when XPFO was enabled. In all cases,
XPFO prevented the exploitation attempt.

To assess the performance overhead of XPFO, we
used kernel v3.13, and a collection of macro-benchmarks
and micro-benchmarks from the Phoronix Test Suite
(PTS) [82]. PTS puts together standard system tests, like
apachebench, pgbench, kernel build, and IOzone,
typically used by kernel developers to track performance
regressions. Our testbed was the same with the one used
in Section 7.2; Table 3 summarizes our findings. Overall,
XPFO introduces a minimal (negligible in most cases)
overhead, ranging between 0.18–2.91%.

9 Conclusion

We have presented ret2dir, a novel kernel exploitation
technique that takes advantage of direct-mapped physical
memory regions to bypass existing protections against
ret2usr attacks. To improve kernel isolation, we designed
and implemented XPFO, an exclusive page frame own-
ership scheme for the Linux kernel that prevents the im-
plicit sharing of physical memory. The results of our ex-
perimental evaluation demonstrate that XPFO offers ef-
fective protection with negligible runtime overhead.

Availability

Our prototype implementation of XPFO and all modified
ret2dir exploits are available at: http://www.cs.

columbia.edu/~vpk/research/ret2dir/
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Abstract
Processes retrieve a variety of resources, such as files,

from the operating system to function. However, se-
curely accessing resources has proven to be a challenging
task, accounting for 10-15% of vulnerabilities reported
each year. Current defenses address only a subset of
these vulnerabilities in ad-hoc and incomplete ways. In
this paper, we provide a comprehensive defense against
vulnerabilities during resource access. First, we iden-
tify a fundamental reason that resource access vulnera-
bilities exist – a mismatch between programmer expec-
tations and the actual environment the program runs in.
To address such mismatches, we propose JIGSAW, a sys-
tem that can automatically derive programmer expecta-
tions and enforce it on the deployment. JIGSAW con-
structs programmer expectations as a name flow graph,
which represents the data flows from the inputs used to
construct file pathnames to the retrieval of system re-
sources using those pathnames. We find that whether
a program makes any attempt to filter such flows im-
plies expectations about the threats the programmer ex-
pects during resource retrieval, the enabling JIGSAW to
enforce those expectations. We evaluated JIGSAW on
widely-used programs and found that programmers have
many implicit expectations. These mismatches led us to
discover two previously-unknown vulnerabilities and a
default misconfiguration in the Apache webserver. JIG-
SAW enforces program expectations for approximately
5% overhead for Apache webservers, thus eliminating
vulnerabilities due to resource access efficiently and in
a principled manner.

1 Introduction
Processes retrieve a variety of resources from the oper-
ating system to function. A resource is any abstraction
that the system call API of an operating system (OS) of-
fers to a process (apart from a process itself). Examples
of resources are files (configuration, data, or log files),

network ports, or interprocess communication channels
(IPCs) such as sockets and shared memory. Such OS
abstractions free the programmer from having to know
details of the underlying hardware and allow her to write
portable code. Conceptually, resource access is a pro-
cedure that takes as input the name (e.g., filename) and
namespace bindings (e.g., directories or symbolic links),
and returns the resource (e.g., file) as output to the pro-
cess.

Securely accessing resources has proven to be a chal-
lenging task because of adversarial control of the inputs
to resource access. Adversaries may control the input
name or a binding to direct victim processes to unsafe re-
sources. In the well-known time-of-check to time-of-use
(TOCTTOU) attack [6], an adversary exploits the non-
atomicity between check operations (e.g., access) and
use operations (e.g., open) to redirect the victim to re-
sources of the adversary’s choosing. Other attacks are
link following, untrusted search paths, Trojan-horse li-
brary loads, and directory traversal. These attacks are
collectively referred to as resource access attacks [40].
10-15% of the vulnerabilities reported each year in the
CVE database [12] are due to programs not defending
themselves against these attacks.

Current defenses against such vulnerabilities in con-
ventional OSes are ad-hoc and fundamentally limited.
First, traditional access control is too coarse-grained to
prevent resource access vulnerabilities. A process may
have legitimate access to both low-integrity adversar-
ial files and high-integrity library files; however, the re-
source access to load libraries should not access adver-
sary files (and vice versa). Traditional access control
does not differentiate between these resource accesses,
and thus cannot protect programs. Second, defenses in
the research literature require either system or program
modifications. System defenses have been mainly lim-
ited to TOCTTOU [11, 13, 25–27, 35–38, 44] and link
following [10], or require programs to be written to new
APIs [19,29,34,42]. However, system defenses are fund-
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mentally limited because they do not have sufficient in-
formation about programs [8], and new APIs do not pro-
tect existing programs.

This paper presents an approach to automatically pro-
tect programs that use the current system call API from
resource access vulnerabilities. We make the follow-
ing observations: first, we find that a fundamental cause
for resource access vulnerabilities is programmer ex-
pectations not being satisfied during the program’s sys-
tem deployment. For example, during a particular re-
source access, a programmer might expect to fetch a re-
source that is inaccessible to an adversary (e.g., a log file
in /var/log) and thus not add defensive code checks,
called filters, to protect against adversarial control of
names and bindings. However, this expectation may not
be consistent with the view of the OS distributors (e.g.,
Red Hat, Ubuntu) who actually frame the access con-
trol policy. Thus, if permissions to /var/log allow ad-
versary access (e.g., through a world-writable directory),
adversaries can compromise the victim program. Our
second insight is that we can automatically infer if the
programmer expected adversarial control at a particular
resource access or not, without requiring any annotations
or changes to the program. We do this by detecting the
presence of name and binding filters that programmers
place in the program.

In this paper, we develop JIGSAW, the first system
to provide automated protection for programs during re-
source access without requiring additional programmer
effort. JIGSAW infers programmer expectations and en-
forces these on the deployment1. JIGSAW is based on
two conceptually simple invariants – that the system de-
ployment’s attack surface be a subset of the program-
mer’s expected attack surface, and that resource accesses
not result in confused deputy attacks [16]. These in-
variants, if correctly evaluated and enforced, can theo-
retically provide complete program protection during re-
source access. JIGSAW operates in two phases. In the
first phase, it mines programmer expectations by detect-
ing the presence of filters in program code. Using these
filters, JIGSAW constructs a novel representation, called
the name flow graph, from which the programmer’s ex-
pected attack surface is derived. We show that anoma-
lous cases in the name flow graph can be used to detect
vulnerabilities to resource access attacks. In the second
phase, JIGSAW enforces the invariants by leveraging the
open-source Process Firewall of Vijayakumar et al. [40],
a Linux kernel module that (i) knows about deployment
attack surface using the system’s adversary accessibil-
ity, and (ii) introspects into the program to identify the
resource access and to enforce its expectations as deter-
mined in the first phase.

1Informally, JIGSAW enables “fitting” the programmer’s expecta-
tions on to its deployment.

We evaluate our technique by hardening widely-used
programs against resource access attacks. Our results
show that in general, programmers have many implicit
expectations during resource access. For example, in the
Apache web server, we found 65% of all resource ac-
cesses are implicitly expected not to be under adversary
control. However, this is not conveyed to OS distribu-
tors in any form, and may result in vulnerabilities. JIG-
SAW can be use to detect such vulnerabilities, and we
did find two previously-unknown vulnerabilities and a
default misconfiguration. However, the key feature of
JIGSAW is that it protects program vulnerabilities during
resource access whenever there is a discrepancy between
the programmers’ inferred expectations and the system
configuration, without the need to modify the program
or the system’s access control policies. We also find that
the Process Firewall can enforce such protection to block
resource access vulnerabilities whilst allowing legitimate
functionality for a modest performance overhead of ap-
proximately 5%. An automated analysis as presented in
this paper can thus enforce efficient protection for pro-
grams during resource access at runtime.

In summary, we make the following contributions.
• We precisely define resource access vulnerabilities

and show how they occur due to a mismatch in ex-
pectations between the programmer, the OS distrib-
utor, and the administrator,

• We propose two invariants that, if evaluated and en-
forced correctly, can theoretically provide complete
program protection during resource access,

• We develop JIGSAW, an automated approach that
uses the invariants to protect programs during re-
source access by inferring programmer expectation
using the novel abstraction of a name flow graph,
and

• We evaluate our approach on widely-used pro-
grams, showing how programmers have many im-
plicit expectations, as demonstrated by our discov-
ery of two previously-unknown vulnerabilities and
a default misconfiguration in our deployment of the
Apache web server. Further, we show that we can
produce rules to enforce these implicit assumptions
efficiently using the Process Firewall on any pro-
gram deployment.

2 Problem definition
In this section, we first give a precise definition of when
a resource access is vulnerable. This definition classifies
vulnerabilities into two broad categories. We then iden-
tify the fundamental cause for each of these vulnerability
categories – mismatch between programmer expectation
and system deployment, and difficulty in writing proper
defensive code.
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01 conf = open("httpd.conf");

02 log_file = read(conf);

03 socket = bind(port 80);

04 open(log_file, O_CREAT); // File Squat

05 loop {
06 html_page = recv(socket);

07 strip(html_page, "../"); // Directory Traversal

08 stat(html_page not symlink); // TOCTTOU Race

09 open(html_page, O_RDONLY); // TOCTTOU Race, Symlink

10 write(client_socket, "200 OK");

11 log("200 OK to client")

12 }

Figure 1: Motivating example of resource access vulnerabilities
using a typical processing cycle of a web server.

2.1 Resource Access Attacks
A resource access occurs when a program uses a name
to resolve a resource using namespace bindings. That is,
the inputs to the resource access are the name and the
bindings, and the output is the final resource. Figure 1
shows example webserver code that we use throughout
the paper: the webserver starts up and accesses its config-
uration file (line 2), from which it gets the location of its
log file. It then binds a socket on port 80 (line 3), opens
the log file (line 4), and waits for client requests. When
a client connects, it receives the HTTP request (line 6),
uses this name to fetch the HTML file (line 9). Finally, it
writes the status code to its log file (line 11).

Let us examine some possible resource access vul-
nerabilities. Consider line 6. Here, the program re-
ceives a HTTP request from the client, and serves the
page to the client. The client can supply a name such
as ../../etc/passwd, and if the server does not prop-
erly sanitize the name (which it attempts to do in line 7),
the client is served the password file on the server. This
is a directory traversal vulnerability. Next, consider the
check the server makes in line 8. Here, the server checks
that the HTML file is not a symbolic link. The reason
for this is that in many deployments (e.g., a university
web server serving student web pages), the web page is
controlled by an adversary (i.e., student). The server at-
tempts to prevent a symbolic link vulnerability, where a
student links her web page to the password file. How-
ever, a race condition between the check in line 8 and
the use in line 9, leads to a link following vulnerability
exploiting a TOCTTOU race condition.

To see how such vulnerabilities can be broadly clas-
sified, we introduce adversary accessibility to resources
and adversarial control of resource access. We then de-
fine when resource accesses are vulnerable, and use this
to derive a classification for vulnerabilities.

Adversary accessible resources. An adversary-
accessible resource is one that an adversary has permis-
sions to access (read for secrecy attacks, write for in-
tegrity attacks) under the system’s access control policy.
The complement set is the set of adversary-inaccessible
resources.

Expected/Safe Resource Malicious/Unsafe Resource Vulnerability Class

Adversary-Inaccessible Adversary-Accessible Unexpected Attack Surface
(Hi) Resource (Lo) Resource Untrusted Search Path

File/IPC Squat
PHP File Inclusion

Adversary-Accessible Adversary-Inaccessible Confused Deputy
(Lo) Resource (Hi) Resource Link Following

Directory Traversal
TOCTTOU races

Table 1: Adversaries control resource access to direct victims
to adversary-accessible resources when the victim expected an
adversary inaccessible resource and vice-versa.

Adversary control of resource access. An adversary
controls the resource access by controlling its inputs (the
name or a binding). An adversary controls a binding if
she uses her write permissions in a directory to create a
binding [39]. An adversary controls a name if there is an
explicit data flow2 from an adversary-accessible resource
to the name used in resource access. The adversary needs
write permissions to these resources to control names.

The directory traversal vulnerability above relies on
the adversary’s ability to control the name used in re-
source access. The link following vulnerability relies on
the adversary’s ability to control the binding (creating a
symbolic link).

Resource Access Vulnerability. A resource access
is vulnerable, i.e., a resource access attack is success-
ful, when an adversary uses her control of inputs to re-
source access (the name or a binding) to direct a vic-
tim to an adversary-accessible output resource when the
victim expected an adversary-inaccessible resource (and
vice versa).

On the one hand, the adversary can use control to
direct the victim to an adversary-inaccessible resource
when the program expects an adversary-accessible re-
source. The directory traversal and link following vul-
nerabilities of the classical confused deputy [16] (Row
2 in Table 1). On the other hand, the adversary can di-
rect the victim to an adversary-accessible resource when
the program expects an adversary-inaccessible resource.
Trojan-horse libraries is an example vulnerability of this
type. We call these unexpected attack surface vulnera-
bilities (Row 1 in Table 1), as they occur because the
programmer is not expecting adversary control at these
resource accesses. Table 1 classifies all resource access
vulnerabilities into these two types.
2.2 Causes for Resource Access Vulnera-

bilities
We identify two causes for resource access vulnerabili-
ties – one for each category in Table 1. The first cause is
a mismatch in expectations of adversary control of names
and bindings between the program and the deployment.

2Attacks involving names require the adversary to inject sequences
of ../ or unicode characters. Thus, explicit data flow is necessary; just
implicit data flow is insufficient.
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Consider Figure 2 that describes resource accesses from
the web server example in Figure 1. Here, the program-
mer expects the resource access of the HTML file to be
under adversary control, and to combat this, adds a name
filter 3 from the TCP socket (stripping ../) as well as
a binding filter (check for a link). The programmer did
not expect the log file’s resource access to be adversary-
controlled, and therefore did not add any filters. How-
ever, due to a misconfiguration, this programmer expec-
tation is not satisfied in the deployment configuration,
causing a resource access vulnerability.

In general, resource access vulnerabilities are very
challenging to eliminate because they involve multiple
disconnected parties. First, programmers write code as-
suming that a certain subset of resource accesses are un-
der adversarial control. Resource access checks cause
overhead, so the programmer generally tries to minimize
the number of checks, thereby motivating fewer filters.
Second, there are OS distributors who define access con-
trol policies, thereby determining adversarial control of
resource accesses. However, these OS distributors have
little or no information about the assumptions the pro-
grammer has made about adversarial control, resulting
in a set of possible mismatches. Finally, there are ad-
ministrators who deploy the program on a concrete sys-
tem. The configuration specifies the location of various
resources such as log files. Thus, the administrator’s con-
figuration too may not match the programmer’s expecta-
tion.

The second cause for resource access vulnerabilities is
where the programmer does expect adversary-controlled
resource access, but the filter may be insufficient to pro-
tect the program. Note that when a program encounters
an adversary-controlled resource access, the only valid
resource is an adversary-accessible resource; otherwise,
the program is victim to a confused deputy vulnerabil-
ity. Thus, the program needs to defend itself by filtering
improper requests leading to a confused deputy. How-
ever, both name and binding filters are difficult to get
right due to difficulty in string parsing [4] and inherent
race conditions in the system call API [8] (e.g., lines 8, 9
in Figure 1).

In summary, the two causes of resource access vul-
nerabilities are: (a) unexpected adversarial control of
resource access, and (b) improper filtering of resource
access when adversary control of resource access is ex-
pected. These causes correspond to Rows 1 and 2 in Ta-
ble 1 respectively. With these two causes in mind, we
proceed to a model that precisely describes our solution.
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Figure 2: Demonstrating a mismatch between the expected and
deployed attack surfaces.

3 Model and Solution Overview
In this section, we provide two invariants that directly
address the two causes for resource access vulnerabilities
outlined above.

Consider the set of all resource accesses RA made by a
program4. A resource access happens when a system call
resolves a resource using a name and namespace bind-
ings. The program has code to filter the names and bind-
ings used during certain resource accesses (e.g., ra3 in
Figure 2). From this knowledge, we show in Section 5
how to derive P, the set of resource accesses that a pro-
grammer expects to be under adversarial control. This
set P is the expected resource access attack surface, or
simply, the expected attack surface.

Now, assume that the program is deployed and run on
a system. A subset of the resource accesses made by the
program is adversary-controlled in the deployment. Let
Y be the deployment’s access control policy. Let S be
the set of resource accesses that are adversary-controlled
under Y (ra2 in Figure 2). This set S defines the deploy-
ment resource access attack surface, or simply, the de-
ployment attack surface.

Given Y , the expected attack surface P is safe for the
deployment S if S ⊆ P, i.e., if all resource accesses in
the deployment attack surface are part of the program’s
expected attack surface. Intuitively, this means that the
program has filters to protect itself whenever a resource
access is adversary-controlled. If r is the resource access
under consideration, then, the invariant stated in propo-
sitional logic blocking unexpected adversary is:

Invariant: Unexpected Adversary Control(r) :
(r ∈ S)→ (r ∈ P)

(1)

If this safety invariant is enforced, resource access vul-
3A filter is a check in code that allows only a subset of names, bind-

ings and resources through.
4The representation used to identify a resource access is

implementation-dependent. In our implementation, we use program
stacks at the time of the resource access system call.
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nerabilities are eliminated where programs do not expect
adversary control. Therefore, vulnerabilities are only
possible where programs expect adversary control.

Now that we are dealing with an adversary-controlled
resource access (∈ S) that is also expected (∈ P), the
only valid resource is an adversary-accessible resource;
otherwise, the program would be victim to a confused
deputy attack. We say that resource accesses in P are
protected from a confused deputy vulnerability if, when
the resource access is adversary-controlled (i.e., ∈ S), it
does not accept adversary-inaccessible resources. Let R
be the set of resource accesses that retrieve adversary-
accessible resources (as defined under Y ). Then, a re-
source access r is protected from confused deputy vul-
nerabilities if the following invariant stated in proposi-
tion logic holds:

Invariant: Confused Deputy(r) :
(r ∈ S)→ (r ∈ R)

(2)

Once these two rules are enforced, the only re-
sources that are allowed are adversary-accessible re-
sources where programs expect adversary control. Prob-
lems occur if the program does not properly handle this
adversary-accessible resource. For example, if it does
not filter data read from this resource properly, memory
corruption vulnerabilities might result. Such vulnerabil-
ities that occur in spite of fetching the expected resource
are not within the scope of this work.

Let us examine how the rules above stop the vul-
nerability classes in Table 1. Consider vulnerability in
Row 2, where the victim expects an adversary inacces-
sible resource (high integrity or secrecy), but ends up
with an adversary-accessible (low integrity or secrecy)
resource. The typical case is an untrusted search path
where the program expects to load a high-integrity li-
brary, but searches for libraries in insecure paths due
to programmer oversight or insecure environment vari-
ables, and ends up with a Trojan horse low-integrity li-
brary. Here, since the programmer does not expect a
low-integrity library, she does not place a binding (or
name) filter. Thus, we will infer that this resource ac-
cess is not part of the expected attack surface (�∈ P), and
Invariant 1 above will stop the vulnerability if this re-
source access is controlled in any way (binding or name)
by an adversary (∈ S). The other vulnerability classes
in this category are blocked similarly. Next, consider
vulnerabilities in Row 1. Here, the victim expects an
adversary-accessible resource (low integrity or secrecy),
but ends up with an adversary inaccessible resource (high
integrity or secrecy). In a link following vulnerability,
the adversary creates a symbolic link to a high-secrecy
or high-integrity file, such as the password file. Thus, the
adversary uses her control of bindings (∈ S) to direct the
victim to an adversary-inaccessible resource (�∈ R). In a
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Figure 3: Overview of the design of our system.

directory traversal vulnerability, the adversary uses her
control of the name to supply sequences of ../ to di-
rect the victim to a high-secrecy or high-integrity file. In
both cases, Invariant 2 will block the vulnerability since
the adversary controls the resource access (∈ S) through
the name or binding, but the resource is adversary inac-
cessible (�∈ R).

4 JIGSAW Approach Overview

Figure 3 shows an outline of the design of JIGSAW. JIG-
SAW has two phases. In the first phase, JIGSAW calcu-
lates P, the expected attack surface. Finding P requires
inferring programmer expectations. To infer program-
mer expectations, we propose an intuitive heuristic – if
the programmer expects adversary control at a resource
access, she will place filters in code to handle such con-
trol. Given the program, we perform a black-box analy-
sis to detect the existence of any binding and name filter-
ing separately (Step 1 in Figure 3), and use this informa-
tion to calculate the program’s expected attack surface
(Step 2).

In the second phase, JIGSAW enforces Invariants 1
and 2 above by determining S, the deployment attack sur-
face, and R, the set of adversary-accessible resources.
The deployment’s access control policy Y determines
which resources and bindings are adversary-accessible.
We leverage existing techniques to calculate adversary
accessibility given Y [10, 17, 41] (Step 3). At runtime,
if an adversary-accessible resource is used, that resource
access is in R. If the name is read from an adversary-
accessible resource or the binding used in resolving that
name is adversary accessible, then that resource access
is in S. Finally, we need to enforce Invariants 1 and 2
for individual resource accesses (Step 4). Any enforce-
ment mechanism that applies distinct access control rules
per individual resource access system call would be suit-
able. In our prototype implementation we leverage the
open-source Process Firewall [40] which enables us to
support binary-only programs (i.e., our prototype imple-
mentation does not rely on source code access).
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5 Phase 1: Find Expected Attack Surfaces

The first step is to determine the expected attack surface
P for a program. We do this in two parts. First, we pro-
pose a heuristic that implies the expectations of program-
mers with respect to the adversary control of the inputs to
resource access and introduce the abstraction of a name
flow graph to model these expectations and enable the
detection of missing filters (Sections 5.1 to 5.3). Next,
we outline how one can use dynamic analysis methods
to build name flow graphs by accounting for adversary
control of names and bindings (Sections 5.4 and 5.5).

5.1 Resource Access Expectations

Determining P requires knowledge of the programmers’
expectations – whether the programmers expected the re-
source access to be under adversary control or not. The
most precise solution to this problem is to ask each pro-
grammer to specify her expectation. Unfortunately, such
annotations do not exist currently. As an alternative, we
use the presence of code filters to infer programmer ex-
pectation. We use the following heuristic:

Heuristic. If a programmer expects adversarial con-
trol of a resource access, she will add code filters to pro-
tect the program from adversarial control.

Thus, the way we infer if a programmer expects an
adversary-controlled resource access is by detecting if
she adds any code to filter such adversarial control. An
adversary controls a resource access by controlling either
the name or a binding used in the resource access. Thus,
we need to detect whether a program filters names and
bindings separately.

Before presenting exactly how we detect filtering, we
will introduce the concept of a name flow graph for a
program, which we will use to derive the expected attack
surface P given knowledge of filtered resource accesses.

5.2 Name Flow Graph

We introduce the abstraction of a name flow graph, which
represents the data flow of name values among resource
accesses in the program annotated with the knowledge
of whether names and/or bindings are filtered each in-
dividual resource access. Using this name flow graph,
we will show that we can compute resources accesses
that are missing filters automatically. A name flow graph
Gn = (V,E) is a graph where the resource accesses are
nodes and each edge (a,b) ∈ E represents whether there
exists a data flow in the program between the data of any
of the resources retrieved at the access at node a and any
of the name variables used in an access at node b. We
refer to these edges as name flows.

Further, V =Vf ∪Vu where Vf is the set of resource ac-
cesses that filter bindings and Vu the set of vertices that do
not. Similarly, E = E f ∪Eu, where E f is the set of name
flows that are filtered, and Eu the set that is not. That is,
a name flow graph is a data-flow graph that captures the
flow of names and is annotated with information about
filters. The meaning of filtering for names and bindings
is described in Sections 5.4 and 5.5, respectively.
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Figure 4: Name flow graph for the example in Figure 1.

The name flow graph for our web server in Figure 1
is shown in Figure 4. Its nodes are resource accesses
and edges connect two resource accesses if the data read
at the source resource access may affect the name used
at the target resource access. The bold nodes are those
that filter bindings, whereas the bold edges are those that
filter names.

The name flow graph determines P, the expected at-
tack surface. According to our heuristic in Section 5, a
resource access is part of the expected attack surface if
a programmer places both name and binding filters on
the resource access to handle adversarial control. How-
ever, not all name flows need be filtered – only name
flows originating from other resource accesses also un-
der adversarial control must be. Since this definition is
transitive, we need to start with some initial information
about resource accesses that are part of the expected at-
tack surface, which we do not have. However, we find
that we can easily define which resource accesses should
not be in P. That is, we can use the absence of filters
to determine resource accesses that should not be under
adversarial control. This complement set of P is P. We
define an approach to calculate P below. Any resource
access not in P is then in P, the expected attack surface.

Formally, a resource access u ∈ P if any of the follow-
ing conditions are satisfied:

(i) u ∈Vu: Binding filters do not exist, or
(ii) u e−→ v∈Vu: There exists an unfiltered name flow edge
originating at u, or
(iii) (u ∗−→ v)∧ (v ∈ P): There exists a name flow path
originating at u to a resource access in P.

Consider the example in Figure 5. Here, resource ac-
cesses a and b filter bindings (a,b ∈Vf ). c does not filter
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Figure 5: Example about determining membership in P
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Figure 6: Determining whether a resource access in a resource
flow graph should be in P.

bindings (c ∈ Vu). c’s name is determined from input
at b, and b’s name is determined from input at a. The
name flow from a to b is filtered. By (i) above, c ∈ P
since it does not filter bindings, and the programmer did
not expect adversary control by our heuristic. Next, by
(ii) above, b ∈ P, since it is the origin of an unfiltered
name flow (which adversaries should not control). Fi-
nally, by transitivity using (iii) above, a ∈ P, because it
is the origin of a name flow to a resource access that is in
P, and thus adversaries should not control the name read
from resource access at a. All combinations of name and
binding filters between a pair of nodes and the inference
of node membership in P are presented in Figure 6.

Figure 7 describes the algorithm used to calculate
membership in P, given Vf ,Vu,E f , and Eu. It imple-
ments (i)-(iii) above. It starts by initially assigning any
node that does not filter bindings to P ((i)), and the source
of unfiltered name flows to P ((ii)). It then uses a fixed
point iteration to apply the transitive rule (iii), and adds
the source of any name flow to a target already in P to P.
At the termination of the algorithm, any resource access
not in P is in P.

5.3 Detecting Missing Filters
Using the name flow graph, we can compute cases where
filtering is likely missing. Intuitively, a filter is missing if
the program filters some adversarial control of resource
access but not others. This can happen in two cases: (a)
if an incoming name flow is filtered but the binding at the
resource access is not, or (b) a binding is filtered but an
outgoing name flow is not. The dotted boxes in Figure 6
show these cases.

Precisely, filters are possibly missing at a resource ac-
cess r in two cases:

Case 1: ∃s,e : (s e−→ r∧ e ∈ E f ∧ r ∈Vu). There exists
a filter on an incoming name flow (indicating adversarial
control of name) but not a binding filter, or

Input: Set of unfiltered names Eu and bindings Vu
Output: P
1: P ← /0 � Resource accesses that can be adversary controlled
2: for v ∈Vu do � Any node that does not filter bindings
3: P ← P∪ v � Cannot be adversary controlled
4: end for
5: for e ∈ Eu do � Any edge that does not filter name
6: P ← P∪ e.src � Mark source as not adversary controlled
7: end for
8: c ← True
9: while c = True do � Propagate set - fixed point iteration

10: c ← False
11: for e ∈ Eu do
12: if e.tgt ∈ P∧ e.src �∈ P then
13: P ← P∪ e.src
14: c ← True
15: end if
16: end for
17: end while

Figure 7: Inferring P from knowledge of filtering

Case 2: ∃s,e : (r e−→ s∧ e ∈ Eu ∧ r ∈Vf ). There exists
a filter on a binding (indicating an adversary-accessible
resource) but not on all outgoing name flows.

As an example of a missing filter indicating a vulner-
ability, we found that in the default configuration, the
Apache web server filters the name supplied by a client
(by stripping ../), but does not filter the binding used to
fetch the HTML file. Therefore, an adversary can create
a link of her web page to /etc/passwd, which will be
served.

Not all possibly missing filters indicate a vulnerabil-
ity. Some filters perform the same checks as JIGSAW.
As an example, we found that libc had binding filters
when it accessed (some) resources under /etc to reject
adversary-accessible resources, enforcing Invariant 1 it-
self. Thus, there is no need to filter names originating
from this resource (although Case 2 indicates a possi-
bly missing filter). We call filters that perform the same
checks JIGSAW, redundant.

5.4 Detecting Presence of Binding Filters

We now outline our technique for detecting the filtering
of bindings. Our objective in detecting here is to deter-
mine resource accesses that perform any filtering of bind-
ings. Note that we do not aim to prove the correctness of
the filtering checks themselves.

To define how we detect binding filters, we discuss
how bindings are involved in resource access and how
programs filter them. A program accesses many bindings
(directories and symbolic links) during a single resource
access. In theory, any one of these is controllable by the
adversary. Filtering of directories is done by checking its
security label, whereas link filtering checks if the binding
is a link, and optionally, the security label of the link’s
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target. Bindings are filtered if, in some cases, the pro-
gram does not accept a binding based on checks done on
any binding used during resource access. An ideal solu-
tion would detect the existence of any such check.

Both static and dynamic approaches are possible to de-
tect binding filtering. Static analysis uses the program
code to determine if checks exist. However, this is quite
challenging as there are a wide variety of ways to per-
form checks, including, for example, lowering the priv-
ilege of the process to that of the adversary [9, 39]. In-
stead, we opt for a dynamic analysis that detects the ef-
fects of filtering.

To detect filters, we have to choose a test that will def-
initely fire the filter, if such a filter is present. Our tests
are attacks that attempt to exploit vulnerabilities if filters
were absent. Not all attacks corresponding to vulnerabil-
ity classes in Table 1 are suitable as tests to detect pro-
gram filters. Consider the subset of attacks correspond-
ing to vulnerability classes in Table 1 where the adver-
sary uses her control of bindings to direct the victim to
an adversary-accessible resource (Row 1). If the program
accepts the adversary-accessible resource, it is generally
not possible to determine if this was due to the program
intentionally accepting this resource or due to the pro-
gram assuming that there would be no adversary control
of the resource access. On the other hand, consider the
subset of attacks corresponding to vulnerabilities where
the adversary uses control of bindings to direct the victim
to an adversary-inaccessible resource (e.g., link follow-
ing). Here, if the programmer were expecting adversary-
controlled bindings, she has to add checks to block this
resource access as this scenario is, by definition, a con-
fused deputy vulnerability. Thus, we can use the results
of a link following vulnerability to determine the exis-
tence of binding filters, and thus, the programmer’s ex-
pectation. In Section 8, we describe a dynamic analysis
framework that performs these tests.

5.5 Detecting Presence of Name Filtering
The other way for adversaries to control resource access
is to control names. We aim to determine if the program
makes any attempt to filter names, which would indicate
that the programmer expected to receive an adversary-
controlled name. Again, note that to determine program-
mer expectation, we only need to determine if there is
any filtering at all, not if the filtering is correct.

To determine name filters in programs, we first de-
scribe how names originate. Names are either hard-
coded in the program or received at runtime. First, hard-
coded names are constants defined in the program binary
or a dynamic library. For an adversary to have control
of hard-coded names, she needs to control the binary or
library, in which case trivial code attacks are possible.
Therefore, we assume hard-coded names to not be under

adversarial control. Second, programs get names from
runtime input. In Figure 1, a client is requesting a HTML
file by supplying its name. The server reads the name
from this request (name source) and accesses the HTML
file resource from this client input (name sink). In gen-
eral, a name can be computed from input using one or
more read system calls.

Next, we define the action of filtering names. There
are two ways in which programs filter names. First, pro-
grams can directly manipulate the name. For example,
web servers strip malicious characters (e.g., ..) from
names. Second, it can check that the resource retrieved
from this name is indeed accessible to the adversary. For
example, the setuid mount program accepts a directory
to mount from untrusted users who are potential adver-
saries, but checks that the user indeed has write permis-
sions to the directory before mounting. Thus, a name is
filtered between a source and a sink if, in some cases, the
name read at a source is changed, or the resource access
at the sink is blocked. An ideal solution would detect the
existence of any such checks.

Determining name filtering is a two-step process.
First, we should determine pairs of resource accesses
where the name is read from one resource (source) and
used in the other (sink). Next, we determine if the pro-
gram places any filters between this source-sink pair.

Again, we can use static or dynamic analysis to find
pairs and filters. To detect filters, Balzarotti et al. used
string analysis [4], whereas techniques such as weakest
preconditions [7] or symbolic execution [18] can also be
used. However, static analysis techniques are tradition-
ally sound, but may produce false positives. Therefore,
we use dynamic analysis to detect evidence of filtering.

To determine both pairs and filtering, we use a run-
time analysis inspired by Sekar [33]. Sekar’s aim is to
detect injection attacks in a black-box manner. The tech-
nique is to log all reads and writes by programs, and find
a correlation between reads and writes using an approx-
imate string matching algorithm. Thus, given as input
a log of the program’s read and write buffers, the algo-
rithm returns true if a write buffer matches a read buffer
“approximately”.

We adapt this technique to find name flows. We log
all reads and names during resource access, and find
matches between names and read buffers. We first try
matching the full name; if no match is found, we try to
match the directory path and final resource separately.
Often, parts of a name are read from data of different re-
sources. For example, a web server’s document root is
read from the configuration file, whereas the file to be
served is read from the client’s input. Both of these are
combined to form the name of the resource served. As
with the method for finding binding filters, we use the
directory traversal attack in Row 2 to trigger filtering.
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Since our analysis is a black-box approach, if a possi-
ble name flow is found, the read buffer might just coinci-
dentally happen to have the name, but not actually flow
to it. Thus, we execute a verification step. We run the
test suite again, but this time change the read buffer con-
taining the name to special characters, noting if the name
also changes. If it does, we have found a name flow.

6 Phase 2: Enforce Programmer Expecta-
tions

Once we find the expected attack surface P, JIGSAW en-
forces resource access protections using Invariant 1 and
Invariant 2 in Section 3 on program deployments. To do
this, a reference monitor [1] has to mediate all resource
accesses and enforce these rules. To enforce these rules
correctly for each resource access, a reference monitor
must determine whether this resource access is in P, and
identify the system deployment’s attack surface S and ad-
versary accessibility to resources R.

6.1 Protecting Accesses in P at Runtime
The first challenge is to determine whether the resource
access is in P. There are two ways to do this: (a) the
program code can be modified to convey its expectation
to the monitor through APIs, or (b) the monitor already
knows the program expectation and identifies each re-
source access. Capability systems use code to convey
their expectation during each resource access. Capabil-
ity systems [21] present capabilities for only the expected
resources to the OS during access. For example, decen-
tralized information flow control (DIFC) systems [19,45]
require the programmer to choose labels for the autho-
rized resource for each resource access. However, such
systems require modifying program code and recompila-
tion, which can be complex to do correctly.

Another option is for the reference monitor to extract
information necessary for it to identify the specific re-
source access, and hence whether it is in P. Researchers
have recently made the observation that if they only
protect a process, they may introspect into the process
(safely) to make protection decisions [40]. They imple-
mented a mechanism called the Process Firewall, a Linux
kernel module that introspects into the process to enforce
rules to block vulnerabilities per system call invocation.
This is similar in concept to a network firewall that pro-
tects a host by restricting access per individual firewall
rules. We use this option because it does not require pro-
gram code or system access control policy changes, and
was shown to be much faster than corresponding pro-
gram checks in some cases.

The general invariant that the Process Firewall en-
forces is as follows:
pf invariant(subject, entrypoint,syscall trace,
object, resource id,adversary access, op) �→ Y|N

Here, entrypoint is the user stack at the time of the
system call. Resource accesses in P are identified by
their entrypoint. A single system call may access mul-
tiple bindings (e.g., directories and links) and a resource.
As each binding and resource is accessed at runtime, its
adversary access is used in the decision. If a binding
is adversary-accessible, then the resource access is in S.
If the final resource is adversary-accessible, then the re-
source access is in R. If a resource access in R is the
source of a name, this fact is recorded in syscall trace
and the resource access using this name is in S. This
general invariant is instantiated to enforce our invariants
in Section 3. The invariants are converted into Process
Firewall rules using templates (Section 8).

6.2 Finding Adversary Accessibility R
R is the set of resource accesses at runtime that use adver-
sary accessible resources, and is required to enforce In-
variant 2 in Section 3. Calculating R requires knowing:
(a) who an adversary is, and (b) whether the adversary
has permissions to access resources. We address these
questions in turn.

There have been several heuristics to determine who
an adversary is. Gokyo [17] uses the system’s mandatory
access control policy to determine the set of SELinux la-
bels that are trusted for the system – the rest are adversar-
ial. Vijayakumar et al. [41] extend this approach to iden-
tify per-program adversaries. Chari et al. [10] and Pu et
al. [43] use a model based on discretionary access control
– a process running with a particular user ID (UID) has
as its adversaries any other UID, except for the superuser
(root). We can use any of these approaches to define an
adversary.

Second, we need to determine whether an adversary
has permissions to resources. As discussed in Section 2,
an adversary-accessible resource is one that the sys-
tem’s access control policy Y allows an adversary per-
missions to (read for secrecy vulnerabilities, write for in-
tegrity vulnerabilities, and execute for both). This can be
queried directly from the access control policy Y . Any
resource access at runtime that uses adversary-accessible
resources is in R.

Some resources become adversary-accessible through
indirect means. For example, programs log adversarial
requests to log files. Thus, adversaries affect data in log
files even if the access control policy does not give ad-
versaries direct write permissions to log files. Such ex-
ceptional resources are currently manually added to R.

6.3 Finding Deployment Attack Surface S

The deployment attack surface S is the set of resource ac-
cesses a process performs at runtime that are adversary-
controlled. An adversary can control resource accesses
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by controlling either the name or a binding (or both). An
adversary controls a binding if she uses her write per-
missions in a directory to create a binding. An adversary
controls a name if the adversary has write permission to
the resource the name is fetched from.

To determine adversary control of names, we need to
detect if there is a data flow from adversary-supplied data
to a name used in a resource access. Data flow is most of-
ten determined by taint tracking [5,20,22,31]. However,
taint tracking techniques have overheads ranging from
2× to 50× [28]. Instead, JIGSAW approximates data flow
using control flow (entrypoints – process stacks at the
time of reading names and using names). Pairs of pro-
cess stacks during read and resource access system calls
are initially associated by detecting explicit data flow be-
tween these calls (Section 5.5). During enforcement, if
the Process Firewall sees the same stacks, we assume an
explicit data flow between the read and resource access
system calls, and the resource access is in S.

6.4 Finding Vulnerabilities

We can use the rules generated to also find vulnerabil-
ities. Vulnerabilities are detected whenever a resource
access is denied by our rules but is allowed by the pro-
gram.

We use the same dynamic analysis from test suites
that we use to detect the presence of filters in Sec-
tions 5.4 and 5.5 to also test the program for vulnera-
bilities in our particular deployment. Instead of enforc-
ing the rules, we compare denials by Invariant 1 or In-
variant 2 in Section 3 with whether the program allows
the resource access. If the rule denies resource access
whereas the program accepts the resource, we flag a vul-
nerability. Note that this process locates vulnerabilities
in our specific deployment; there might be other vulner-
abilities in other deployments that we miss. In any case,
our rules, if enforced, will protect these program vulner-
abilities in any deployment.

7 Proving Security of Resource Access

In this section, we first argue that if P, S and R are cal-
culated perfectly, then JIGSAW eliminates resource ac-
cess vulnerabilities. Our argument is oracle-based; that
is, we can reason about the correctness of our approach
assuming the correctness of certain oracles on which it
depends. Our argument is contingent on the correctness
of the three oracles that determine: (i) program expecta-
tion for P, (ii) adversary accessibility of resources for R,
and (iii) adversary control of names and bindings for S.
We then discuss the practical limitations JIGSAW faces
in realizing these oracles.

7.1 Theoretical Argument

Assuming ideally correct oracles for determining pro-
grammer expectation, adversary accessibility of re-
sources and adversary control of names and bindings, we
argue that Invariants 1 and 2 in Section 3 protect a pro-
gram from all resource access vulnerabilities as defined
in Section 2.1 without false positives.

According to the definition in Section 2.1, a resource
access vulnerability is caused when an adversary con-
trols an input (name or binding) to direct a program to an
adversary-accessible resource when the program expects
an adversary-inaccessible resource (and vice-versa). Our
proof hinges on two observations. First, resource access
vulnerabilities are impossible if adversaries do not con-
trol the input name or binding. Invariant 1 denies all ad-
versary control of inputs where the programmer expects
only adversary-inaccessible resources, thus eliminating
all vulnerabilities in these cases. Thus, vulnerabilities
are only possible where the programmer expects to ad-
versary control of input name or binding. Second, if in-
deed the adversary controls the input name or binding,
the only authorized output is an adversary-accessible re-
source; otherwise, a confused deputy vulnerability (Row
2 in Table 1) can result. To block this, Invariant 2 allows
retrieval of only adversary-accessible resources when in-
put is under adversary control. Hence, we have shown
that our rules deny resource accesses if and only if adver-
sary control of input directs the program to unexpected
resources, thus blocking resource access vulnerabilities
without false positives.

7.2 Practical Limitations

In a practical setting, the determination of program ex-
pectations, adversary accessibility to resources, and ad-
versary control of names and bindings is imperfect. This
may lead to false positives and false negatives. We will
discuss limitations with determining each of these in
turn.

The first oracle determines programmer expectation,
for which we use the intuitive heuristic in Section 5: if a
programmer does not place filters, then she does not ex-
pect adversary control of resource access, i.e., she only
expects adversary-inaccessible resources. The detection
of filters themselves uses runtime analysis. This faces
three issues: (i) if identified filters are actually present,
(ii) if actual filters are missed, and (iii) incompleteness
of runtime analysis. First, if a detected filter is not ac-
tually present, this might result in false negatives. How-
ever, to detect filters, we mimic an attack and detect if
the program blocks the attack. The only way the pro-
gram could have blocked the attack is if it had a filter.
Second, if an actual filter is missed, this might result in
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Figure 8: Implementation of JIGSAW’s testing framework.

false positives. By the same argument above, if the fil-
ter cannot defend against our mimicked attack, then it is
not complete enough anyway. Third, runtime analysis
is inherently incomplete and may lead to false negatives
for those resource accesses not covered. However, even
with the limited developer test suites currently available,
we were able to generate rules to block many vulnerabil-
ities and find previously-unknown ones even in mature
programs.

Next, we have the oracle that determines adversary ac-
cessibility to resources. The main challenge here is de-
termining who an adversary is. If we do not have a suffi-
ciently strong adversary model, we may miss adversaries
and hence have false negatives. While there is no univer-
sally agreed-upon definition of who an adversary is, we
use the intuitive DAC model5 that most programmers as-
sume [10, 43]. However, our framework permits the use
of different adversary models. More conservative adver-
sary models [41] will identify more adversary-accessible
resources, possibly exposing more vulnerabilities.

The final oracle determines adversary control of
names and bindings. The challenge here is to determine
if there is a data flow from adversary-supplied data to a
name used in a resource access. As described in Sec-
tion 6.3, JIGSAW approximates data flow using control
flow. However, even if control flow is the same across
two executions of the program, it does not necessarily
imply the data flow is the same, leading to false posi-
tives and negatives. While we have not found this to be a
problem in our experiments (Section 9.4), more precise
data flow tracking techniques [5,20,31] will address this
challenge.

8 Implementation
There are two parts to our implementation. First, we
need to test individual program resource accesses to de-
tect the presence of filters. This is used by the algorithm
in Figure 7 to generate P. Second, we need to enforce
invariants in Section 3 using the Process Firewall. This
involves determining R and S; this is done as discussed
in Section 6.2 and Section 6.3 respectively.

8.1 Testing Programs
To test programs, we develop a framework that can inter-
cept system calls and pass control to a user-space com-
ponent that performs the tests. The kernel component
is a small module that intercepts system calls and re-
turns, and forwards them to a user-space daemon through
netlink sockets. The flow of operations is as shown in
Figure 8. When a monitored program makes a system
call, it is intercepted by the framework’s kernel module,
and forwarded to the user-space daemon. There are two
resource namespaces available per program – a “test”
namespace that is modified for hypothetical tests and the
original namespace (similar in principle to [39]). This
daemon introspects into the monitored process to iden-
tify its resource access (using the user-space stack), and
checks its history to see if filters have already been de-
tected. If not, it then proceeds to modify the test filesys-
tem (for binding filter detection). It then returns to the
kernel module. Control passes to the process in ker-
nel mode, which accesses the original or test filesystem
(depending on whether binding filters are being tested).
The system call end is also intercepted, and similarly for-
warded to the user-space daemon to test for name filters
(as the read buffer is now available and can be modified).

We use test suites provided with program source code
to drive the programs. We repeatedly run these suites
until all resource accesses have been tested for filters.

8.2 Enforcing Invariants
As noted, JIGSAW uses the open-source Process Fire-
wall [40] to perform enforcement. The Process Firewall
is a kernel module that uses the Linux Security Modules
to mediate resource accesses. In addition, it can perform
a user stack backtrace to identify the particular resource
access being made. Given P and the edges in the name
flow graph, we have two rule templates to instantiate in-
variants into rules to be enforced by the Process Firewall.
Figure 9 shows the templates. Note that the rules for con-
fused deputy are stateful. Adversary control of name or
binding is recorded by the first rule, the adversary’s iden-
tity is recorded by the second rule, and the third rule uses

5A process with uid X has as its adversaries any uid Y �= X (except
superuser root)



984 23rd USENIX Security Symposium USENIX Association

Rule Templates

Unexpected Adversary Control: (r ∈ S)∧ (r ∈ P) =⇒ Deny
For each r ∈ P:
pftables -i r.ept -d LOW -o DIR SEARCH -j DROP

Confused Deputy: (r ∈ P)∧ (r ∈ S)∧ (r ∈ R) =⇒ Deny
Name:
For each r1 ∈ P such that E(r1,r2):
pftables -i r1.ept -d LOW -j STATE --set --key

<random value> --value 1

pftables -i r1.ept -d LOW -j STATE --set --key "adv"

--value ADV ID

pftables -i r2.ept -d HIGH -m STATE --key

<random value> --cmp 1 --equal -m PERM -s --key

"adv" --deny -j DROP

Binding:
pftables -d LOW -o DIR SEARCH -j STATE --set --key

<r1.ept> --value 1

pftables -d LOW -o DIR SEARCH -j STATE --set --key

"adv" --value ADV ID

pftables -d HIGH -m STATE --key <random value> --cmp

1 --equal -m PERM -s --key "adv" --deny -j DROP

Figure 9: Process Firewall rule templates.

this state to block access to an adversary-inaccessible re-
source. Thus, R is adversary-specific; in addition to pro-
tecting programs against all its adversaries, it also pre-
vents one adversary from using the program as a con-
fused deputy against another adversary.

9 Evaluation

In this section, we evaluate our technique on several
widely-used programs. We chose these programs be-
cause: (i) resource accesses are central to their opera-
tion, and (ii) they offer a study in contrast – OpenSSH
and Postfix were explicitly architected for security [30],
whereas the others were not. To derive expectations, we
used developer test suites that came with the program or
created our own. We answer: (a) how common are im-
plicit programmer expectations during resource access,
(b) whether the resulting expected attack surface was
safe for our deployment and vulnerabilities where not,
and (c) security effectiveness of hardened programs from
resource access vulnerabilities. We find that in all pro-
grams except OpenSSH, more than 55% of all resource
accesses are implicitly expected to be free from adver-
sarial control. Moreover, we discovered two previously-
unknown vulnerabilities and one default misconfigura-
tion in the Apache webserver. Finally, we find that pro-
tection can be enforced with an overhead of <6% on a
variety of programs and few false positives.

9.1 Implicit Programmer Expectations
Table 2 shows a summary of the results obtained by JIG-
SAW. We first note the percentage of resource accesses
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Figure 10: Resource Flow Graph for Apache. Nodes that have
the icon of adversaries beside them are those where we found
adversarial control of resource access in our deployment.

that are implicitly expected to not be in P, due to the
absence of name or binding filters. For all programs
except OpenSSH, the programmer placed no filters for
more than 55% of resource accesses. If any of these re-
source accesses somehow come under adversarial con-
trol, the program can be compromised. It is very easy for
OS distributor policies or administrator configurations to
not match with these programmer assumptions. By ex-
plicitly identifying such resource accesses, we are able
to protect them from any adversarial access in any de-
ployment. OpenSSH makes fewer assumptions during
resource access (17.6%). However, OpenSSH was re-
architected after several years of experience with previ-
ous vulnerabilities. Using our technique, we can protect
all resource accesses.

9.2 Case Study: Apache
In total, we found 20 resource accesses for Apache. Of
these, Apache code filtered bindings for 7 accesses, and
the name for 5 accesses. This led to 13 out of 20 resource
accesses (65%) not being in P (using the algorithm in
Figure 7). We found three resource accesses in S−P for
the Apache web server in our deployment, violating the
first rule in Section 3. These corresponded to two previ-
ously unknown vulnerabilities in the Apache web server
and one default misconfiguration. That such problems
occur in even a mature program like Apache shows the
importance of principled reasoning of resource access.
While we found these vulnerabilities in our deployment,
other deployments may have different vulnerabilities, but
all will be blocked using our enforcement (Section 9.3).

Figure 10 shows the resource flow graph for Apache.
Apache’s expected attack surface is centered around re-
source accesses during the interaction with a client to
serve a web page. It assumes that the location of the main
configuration file and resources specified in it are not ad-
versary controlled. Apache’s resource flow graph is rela-
tively complex due to long chains of resource flows, and
it is difficult to reason about safety without the help of au-
tomated tools like ours. Resource accesses that had vul-
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Program Dev |V | |E| |Vf | |E f | ∈ P �∈ P Impl. Missing Redundant Vulns. Inv. 1s Inv. 2s
Tests? Exp. %

Apache v2.2.22 Yes* 20 23 7 5 7 13 65% 2 0 3 13 12

OpenSSH v5.3p1 Yes 17 17 14 0 14 3 17.6% 0 3 0 3 2

Samba3 v3.4.7 Yes 210 84 78 19 78 132 62.8% 0 5 0 132 40

Winbind v3.4.7 Yes 50 38 19 13 19 31 63.3% 0 0 0 31 28

Postfix v2.10.0 No 181 15 79 7 79 102 56.32% 0 9 0 102 15

Table 2: Statistics of program-wide resource accesses. Dev Tests show whether we used developer test suites or created our own.
Impl. Exp. is the percentage of resource accesses (|P|/|V |) that are implicitly expected to be adversary-inaccessible. The last two
columns show the number of instantiations of Invariant 1 and Invariant 2 in Section 3 for resource accesses in the program. *- We
augmented the Apache test suite with additional tests.

nerabilities in our deployment are shaded in the graph.

The first vulnerability we found was during resource
access of a user-defined .htpasswd file. Apache allows
each user the option of enabling HTTP authentication for
parts of their website. This includes the ability to specify
a password file of their choice. However, the resource ac-
cess that fetches this password file is not filtered. Thus,
users can specify any password file – even one that they
do not have access to. One example exploit is to direct
this password file to be the system-wide /etc/passwd.
Traditionally, it is difficult to brute-force the system-wide
password file since prompts are rate-limited. However,
since HTTP authentication is not rate-limited, this may
make such brute-force attacks realistic. Such a scenario,
though obvious after discovery, is very difficult to rea-
son about manually due to Apache’s complex resource
accesses. Thus, it has remained hidden all these years.

The second vulnerability is a default misconfiguration.
When serving web pages, Apache controls whether sym-
bolic links can be followed from user web pages by the
option FollowSymLinks, which is turned on by default
in Ubuntu and Fedora packages. Turning this option on
implicitly assumes trust in the user to link to only her
own web pages. Interestingly, the name for this resource
access is filtered – only the bindings are not. One way we
were able to take advantage of this misconfiguration was
through the error document on specific errors, such as
HTTP 404, that is specifiable in the user-defined config-
uration .htaccess file. This allows an adversary to ac-
cess any resource the Apache web server itself can read,
for example, the password file and SSL private keys. We
found that our department web server also had this option
turned on. By simply making an error document linked
to /etc/passwd, we were able to view the contents of
the password file on the server. This demonstrates an-
other typical cause of resource access attacks – adminis-
trators misconfiguring the program and violating safety
of the expected attack surface.

The third vulnerability is a link following attack on
.htaccess. Apache allows .htaccess to be any file
on the filesystem it has access to. This may be exploited

to leak configuration information about the webserver.

Finally, we note that test suites that come with pro-
grams are traditionally focussed towards testing func-
tionality and not necessarily resource access. For exam-
ple, the stock test suite for Apache only uncovered 7 re-
source accesses in total, and after we augmented it, there
were 20 in total. Better test suites for resource access
would help test more resource accesses.

9.3 Process Firewall Enforcement

Process Firewall rules enforce the safety of the ex-
pected attack surface under the deployment attack sur-
face. Given the program’s expected attack surface, Pro-
cess Firewall rules enforce that any adversary-controlled
resource access at runtime (i.e., part of the deployment
attack surface) is allowed only if the resource access is
also part of the program’s expected attack surface. In
addition, for those resource accesses allowed, they also
protect the program against confused-deputy link and di-
rectory traversal vulnerabilities. The last two columns in
Table 2 shows the number of Process Firewall rules we
obtained (separately due to Invariants 1 and 2).

We evaluated the ability of rules to block vulnera-
bilities. First, we verified the ability of these rules to
block the three discovered vulnerabilities in Apache.
Second, we tried previously-known, representative re-
source access vulnerabilities against Apache and Samba.
We tested an untrusted library load (CVE-2006-1564)
against Apache. Here, a bug in the package manager
forced Apache to search for modules in untrusted direc-
tories. Our tool deduced that the resource access that
loaded libraries did not have any filtering, and thus, was
not in P, blocking this vulnerability due to Invariant 1
in Section 3. In addition, we tested a directory traversal
vulnerability in Samba (CVE-2010-0926). This is a con-
fused deputy vulnerability involving a sequence of ../
in a symbolic link. This vulnerability was blocked due to
Invariant 2.
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9.4 False Positives

As discussed in Section 7.2, false positives are caused by
improper determination of: (i) programmer expectation
and (ii) adversary control of names.

First, false positives are caused by a failure of our
heuristic in Section 3 that determines program expecta-
tion. In some cases, we found that a program had no
filters at a resource access, but still expected adversary-
controlled resource access. We found that this case oc-
curs in certain small “helper” programs that perform a
requested task on a resource without any resource ac-
cess filters. For example, consider that the administra-
tor (root) runs the cat utility on a file in an adversarial
user’s home directory. Because cat does not filter the
input bindings, the user can always launch a link fol-
lowing attack by linking the file to the password file,
for example. However, if there is no attempted attack,
then our rule will block cat from accessing the user’s
file, because the resource access has no filters and is thus
not part of the expected attack surface (by our heuristic).
However, we may want to allow such access, because
cat has filters to protect itself from the input data to pre-
vent vulnerabilities such as buffer overflows.

To address such false positives, we propose enforcing
protection for such helper programs specially. Our in-
tuition is that when these programs perform adversary-
controlled resource access, they can be considered ad-
versarial themselves. All subsequent resources to which
data is output by these programs are then considered
adversary-accessible. Other programs reading these
resources should protect themselves from input (e.g.,
names) as if they were dealing with an adversary-
accessible resource.

To enforce this approach, we implemented two
changes. First, we enforce only Invariant 2 (confused
deputy) in Section 3 for these programs. Second, when-
ever Invariant 1 would have disallowed access, we in-
stead allow access, but “taint” all subsequent output re-
sources by marking them with the adversary’s label (us-
ing filesystem extended attributes).

We evaluated the effect of this approach during the
bootup sequence of our Ubuntu 10.04 LTS system.
We manually identified 15 helper programs. During
boot, various startup scripts invoked these helper pro-
grams a total of 36 times. In our deployment, 9 of
these invocations accessed an adversary-accessible re-
source. Note that our original approach would have
blocked these 9 resource accesses, disrupting the boot
sequence, whereas our modification allows these re-
source accesses. These invocations subsequently tainted
4 output resources – two log files and two files stor-
ing runtime state. We found two programs reading
from these tainted files – ufw (a simplified firewall), and

the wpa_supplicant daemon (used to manage wireless
connections). These programs will find the tainted re-
sources adversary-accessible, and will have to protect
themselves from such input.

Second, false positives are caused during enforcement
by our implementation’s approximation of adversarial
data flow using control flow. Such false positives are due
to implementation limitations and not any fundamental
shortcoming of our approach. To evaluate this, we used
two separate test suites for Apache – one to build the
name flow graph and generate Process Firewall rules,
and the other to test the produced rules. We used our
enhanced test suite to generate rules and ApacheBench
to test the generated rules. ApacheBench ran without
any false positives. However, different configurations or
variable values might result in different data flows even if
the stacks remain the same. As mentioned in Section 7.2,
accurate data flow tracking can solve this problem.

9.5 Performance
A detailed study of the Process Firewall is in [40]. In
summary, system call microbenchmarks showed over-
heads of up to 10.6%, whereas macrobenchmarks had
overheads of up to 4%. The main cause for overhead is
unrolling the process stack to identify the system call.
To confirm these results, we evaluated the performance
overhead of a hardened Apache webserver (v2.2.22) that
had the 25 rules from Table 2. Using ApacheBench to
request the default Apache static webpage, we found an
overhead of 4.33% and 5.28% for 1 and 100 concurrent
clients respectively. However, we can compensate for
such overhead by compiling Apache without resource
access filters, since filters are now redundant given our
enforced rules. Vijayakumar et al. [40] showed that re-
moving code filters causes a throughput increase of up to
8% in Apache.

10 Related Work

10.1 Inferring Expectations

Determining programmer expectations from code has
previously been done in a variety of contexts. Engler [14]
et al. infer programmer beliefs from code. For example,
if a pointer p is dereferenced, the inferred belief is that p
!= NULL. They use this to find bugs in the Linux kernel.
Closely related are techniques to infer invariants from
dynamic traces [3, 15, 32]. Daikon [15] uses dynamic
traces to infer hypothesis such as that a particular vari-
able is less than another. Baliga et al. [3] use Linux ker-
nel traces to propose invariants on data structures. While
we deal with a different class of attacks, our approach is
in the same spirit as the above works.
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10.2 Defenses During Resource Access

Current defenses against resource access attacks in OSes
are ad-hoc and fundamentally limited. Defenses can be
classified into those that require changes to either the (i)
system (e.g., OS, libraries), or (ii) program code.

The simplest system defense is to change the access
control policy to allow a process access to only the set of
expected resources. Unfortunately, this defense is both
complicated and does not entirely stop resource access
attacks. First, fixing access control policies is a com-
plicated task. For example, even the minimal (targeted)
SELinux MAC policy on the widely-used Fedora Linux
distribution has 95,600 rules. Understanding and chang-
ing such rules requires domain specific expertise that not
all administrators have. Second, access control alone
is insufficient to stop resource access attacks because it
treats processes as a black-box and does not differenti-
ate between different resource access system calls. In
our example in Figure 1, the web server opens both a
log file and user HTML pages. Thus, it needs permis-
sions to both resources. However, it should not access
the log file when it is serving a user HTML page, and
vice versa. Traditional access control does not make this
difference. Other system defenses have mainly focused
on TOCTTOU attacks [11,13,25–27,35–38,44] and link
following [10]. However, system defenses are prone to
cause false positives because they do not know what pro-
grams expect [8], e.g., which pairs of system calls expect
to access the same resource.

The simplest program defense is to use program code
filters that accept only the expected resources. How-
ever, there are a number of challenges to writing cor-
rect code checks. First, such checks are inefficient and
cause performance overhead. For example, the Apache
web server documentation [2] recommends switching off
resource access checks during web page file retrieval to
improve performance. Second, checks are complicated.
The system-call API that programs use for resource ac-
cess is not atomic, leading to TOCTTOU races. There is
no known race-free method to perform an access-open

check in the current system call API [8]. Chari et al. [10]
show that to defend link following attacks, program-
mers must perform at least four additional system calls
per path component for each resource access. Going
back to the example in Figure 1, the checks on lines
7 and 8 are not enough – the correct sequence to use
is lstat-open-fstat-lstat [10]. Thirdly, program
checks are incomplete, because adversary accessibility
to resources is not sufficiently exposed to programs by
the system-call API. Currently, programs can query ad-
versary accessibility only for UNIX discretionary ac-
cess control (DAC) policies (e.g., using the access

system call), but many UNIX systems now also en-

force mandatory access control (MAC) policies (e.g.,
SELinux [24] and AppArmor [23]) that allow different
adversary accessibility. While custom APIs have been
proposed [19,29,34,42] to address such limitations, these
require additional programmer effort and do not protect
current programs.

11 Conclusion

In this paper, we presented JIGSAW, an automated ap-
proach to protect programs from resource access attacks.
We first precisely defined resource access attacks, and
then noted the fundamental cause for them – a mismatch
between programmer expectations and the actual deploy-
ment the program runs in. We defined two invariants that,
if evaluated and enforced correctly, can theoretically of-
fer complete protection against resource access attacks.
We proposed a novel technique to evaluate programmer
expectations based on the presence of filters, and showed
how the invariants could practically be enforced by the
Process Firewall.

We applied this technique to harden widely-used pro-
grams, and discovered that programmers make a lot of
implicit assumptions. In this process, we discovered
two previously-unknown exploitable vulnerabilities as
well as a default misconfiguration in Apache, the world’s
most widely used web server. This shows that even ma-
ture programs only reason about resource access in an
ad-hoc manner. The analysis as presented in this paper
can thus efficiently and automatically protect programs
against resource attacks at runtime.
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Abstract
Web applications evolved in the last decades from sim-
ple scripts to multi-functional applications. Such com-
plex web applications are prone to different types of se-
curity vulnerabilities that lead to data leakage or a com-
promise of the underlying web server. So called second-
order vulnerabilities occur when an attack payload is first
stored by the application on the web server and then later
on used in a security-critical operation.

In this paper, we introduce the first automated static
code analysis approach to detect second-order vulnera-
bilities and related multi-step exploits in web applica-
tions. By analyzing reads and writes to memory loca-
tions of the web server, we are able to identify unsani-
tized data flows by connecting input and output points of
data in persistent data stores such as databases or ses-
sion data. As a result, we identified 159 second-order
vulnerabilities in six popular web applications such as
the conference management systems HotCRP and Open-
Conf. Moreover, the analysis of web applications eval-
uated in related work revealed that we are able to detect
several critical vulnerabilities previously missed.

1 Introduction

Web applications are the driving force behind the modern
Web since they enable all the services with which users
interact. Often, such applications handle large amounts
of (potentially sensitive) data such as text messages, in-
formation about users, or login credentials that need to
be stored persistently on the underlying web server. Fur-
ther, sessions are used to temporarily store data about a
user interacting with the web application during multi-
step processes. All of this data can potentially be abused
by an attacker to cause harm. Many different kinds of at-
tacks against web applications such as Cross-Site Script-
ing (XSS) or SQL injection (SQLi) attacks are known and
common injection flaws are well understood. Such at-
tacks can be prevented by sanitizing user input and many
approaches to address this problem were presented in the
last few years (e.g., [2, 8, 15, 21, 22, 24, 27, 29]).

One common assumption underlying many detection
and prevention approaches is that data that is already
stored on the server is safe. However, an adversary might
be able to bypass the defenses via so called second-order
vulnerabilities if she manages to first abuse the web ap-
plication to store the attack payload on the web server,
and then later on use this payload in a security-critical
operation. Such vulnerabilities are often overlooked, but
they can have a severe impact in practice. For exam-
ple, XSS attacks that target the application’s users are
worse if the payload is stored in a shared resource and
distributed to all users. Furthermore, within multi-step
exploits a vulnerability can be escalated to a more severe
vulnerability. Thus, detecting second-order vulnerabili-
ties is crucial to improve the security of web applications.

Detecting Second-Order Vulnerabilities To prevent
such attacks, the source code of a given web application
is assessed before it is deployed on a web server. This
can be done either via dynamic or static analysis. There
are several dynamic approaches to detect second-order
XSS attacks via fuzzing [14, 19]. Generally speaking,
such approaches try to inject random strings to all pos-
sible POST request parameters in a black-box approach.
In a second step, the analysis tools determine if the ran-
dom string is printed by the application again without an-
other submission, indicating that it was stored on the web
server. However, the detection accuracy for second-order
vulnerabilities is either unsatisfying or such vulnerabili-
ties are missed completely [4, 7, 13, 23]. Artzi et. al. [1]
presented a dynamic code analysis tool that considers
persistent data in sessions, but their approach misses
other frequently used data stores such as databases or
files. Furthermore, one general drawback of dynamic ap-
proaches is the typically low code coverage.

Static code analysis is a commonly used technique to
find security weaknesses in source code. Taint analysis
and similar code analysis techniques are used to study the
data flow of untrusted (also called tainted) data into criti-
cal operations of the application. However, web applica-
tions can also store untrusted data to external resources
and later on access and reuse it, a problem that is over-

1



990 23rd USENIX Security Symposium USENIX Association

looked in existing approaches. Since the data flow is de-
ferred and can be split among different files and func-
tions of the application, second-order vulnerabilities are
difficult to detect when analyzing the source code stati-
cally. Furthermore, static code analysis has no access to
the external resources used by the application and does
not know the data that is stored in these.

We are not aware of any plain static code analysis im-
plementation handling second-order vulnerabilities. The
main problem is to decide whether data fetched from per-
sistent stores is tainted or not. Assuming all data to be
tainted would lead to a high number of false positives,
while a conservative analysis might miss vulnerabilities.

Our Approach In this paper, we introduce a refined
type of taint analysis. During our data flow analysis, we
collect all locations in persistent stores that are written to
and can be controlled (tainted) by an adversary. If data
is read from a persistent data store, the decision if the
data is tainted or not is delayed to the end of the anal-
ysis. Eventually, when all taintable writings to persis-
tent stores are known, the delayed decisions are made
to detect second-order vulnerabilities. The intricacies of
identifying the exact location within the persistent store
the data is written to is approached with string analy-
sis. Furthermore, sanitization through database lookups
or checks for existing file names are recognized.

We implemented our approach in a prototype for static
PHP code analysis since PHP is the most popular server-
side scripting language on the Web with an increasing
market share of 81.8% [28]. Note that our approach can
be generalized to static code analysis of other languages
by applying the techniques introduced in this paper to
the data flow analysis of another language. We evalu-
ated our approach by analyzing six popular real-world
applications, including OpenConf, HotCRP, and osCom-
merce. Overall, we detected and reported 159 previ-
ously unknown second-order vulnerabilities such as re-
mote command execution vulnerabilities in osCommerce
and OpenConf. We also analyzed three web applications
that were used during the evaluation of prior work in
this area and found that previous work missed several
second-order vulnerabilities, indicating that existing ap-
proaches do not handle such vulnerabilities correctly.
In summary, we make the following three contributions:

• We are the first to propose an automated approach to
statically analyze second-order data flows through
databases, file names, and session variables using
string analysis. This enables us to detect second-
order and multi-step exploitation vulnerabilities in
web applications.

• We study the problem of second-order sanitization,
a crucial step to lower the number of potential false
positives and negatives.

• We built a prototype of the proposed approach and
evaluate second-order data flows of six real-world
web applications. As a result, we detect 159 previ-
ously unknown vulnerabilities ranging from XSS to
remote code execution attacks.

2 Technical Background

In this section, we introduce the nature of second-order
vulnerabilities and multi-step exploits. First, we examine
data flow through persistent data stores and the difficul-
ties of analyzing such flows statically. We then present
two second-order vulnerabilities as motivating examples.

2.1 Persistent Data Stores
We define persistent data stores (PDS) as memory loca-
tions that are used by an application to store data. This
data is available after the incoming request was parsed
and can be accessed later on by the same application to
reuse the data. The term persistent refers to the fact that
data is stored on the web server’s hard drive, although it
can be frequently deleted or updated. Note that this defi-
nition also includes session data since information about
a user’s session is stored on the server and can be reused
by an adversary. We now introduce three commonly used
PDS by web applications.

2.1.1 Databases

Databases are the most popular form of PDS found in
today’s web applications. A database server typically
maintains several databases that consist of multiple ta-
bles. A table is structured in columns that have a specific
data type and length associated with them. Stored data is
accessed via SQL queries that allow to filter, sort, or in-
tersect data on retrieval. In PHP, an API for database in-
teraction is bundled as a PHP extension that provides sev-
eral built-in functions for the database connection, and
the query and access of data.

In contrast to other PDS, writing and reading to a
memory location is performed via the same built-in
query function. SQL has different syntactical forms of
writing data to a table. Listing 1 shows three different
ways to perform the same query.

1 // specified write
2 INSERT INTO users (id,name,pass) VALUES (1, admin , foo )
3 INSERT INTO users SET id = 1, name = admin , pass = foo
4 // unspecified write
5 INSERT INTO users VALUES (1, admin , foo )

Listing 1: Writing to the database table users in SQL.

While the first two queries explicitly define the col-
umn names, the third query does not. We refer to the
first type as specified write and to the second type as un-
specified write. Both types convey a difficulty for static

2
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analysis of the query: a specified write reveals the col-
umn names where data is written to, but does not reveal
if there are any other columns in the table that are filled
with default values. This hinders the reconstruction of
table structures when analyzing SQL queries of an ap-
plication statically. An unspecified write tells us exactly
how many columns exist, but does not reveal its names.
When the columns are accessed later on by name, it is
unclear which column was filled with which value. The
same applies for read operations. A specified read re-
veals the accessed column names in a field list, whereas
an unspecified read, indicated by an asterisk character,
selects all available columns without naming them.

In PHP, the queried data is stored as a result resource.
There are different ways to fetch the data from the result
resource with built-in functions, as shown in Listing 2.
1 // numeric fetch
2 row = mysql_fetch_row( res); echo row[1];
3 // associative fetch
4 row = mysql_fetch_assoc( res); echo row["name"];
5 row = mysql_fetch_object( res); echo row->name;

Listing 2: Fetching data from a database result resource.

Basically, numeric and associative fetch operations ex-
ist. The first method stores the data in a numerically in-
dexed array where the index refers to the order of the
selected columns. The associative fetch stores the data
in an array indexed by column name. It is also possible
to store the data in an object where the property names
equals the column names. The key difference is that
the associative fetch reveals the accessed column names
while the numeric fetch does not.

All different combinations of writing, reading, and ac-
cessing data can occur within a web application. In cer-
tain combinations, it is not clear which columns are ac-
cessed without knowledge about the database schema.
For example, when data is written unspecified and
fetched associatively. In practice, however, we are often
able to reconstruct the database schema from the source
code (see Section 3.4.1 for details).

2.1.2 Session Data

A common way of dealing with the state-less HTTP pro-
tocol are sessions. In PHP, the SESSION array pro-
vides an abstract way of handling session data that is
stored within files (default) or databases. A session value
is associated with an alphanumerical key that represents
the memory location. Note that the SESSION array
needs to be treated like any other superglobal array in
PHP and it can be accessed in any context of the applica-
tion. As any other array, it can be accessed and modified
dynamically, inter-procedurally, and it can have multiple
key names. Besides the SESSION array and the depre-
cated HTTP SESSION VARS array, the built-in functions
session register() and session decode() can be
used to set session data.

2.1.3 File Names

A common source for vulnerabilities is an unsanitized
file name. Developers often overlook that the file name
of an uploaded file can contain malicious characters and
thus can be used as a PDS for an attack payload. For
example, Unix file systems allow any special characters
in file names, except for the slash and the null byte [12].
NTFS allows characters such as the single quote that can
be used for exploitation [20]. For detecting second-order
vulnerabilities, we need to determine paths where files
with arbitrary names are located. The analysis of a file
upload reveals to which path a file is written to and if the
file is named as specified by the user. In PHP, a file that
is submitted via a multi-part POST request is stored in
a temporary directory with a temporary file name. The
temporary and original file name is accessible in the su-
perglobal FILES array. Furthermore, built-in functions
such as rename() and copy() can be used by an ap-
plication to rename a file on the server. Note that also
directory names can be used as PDS, for example when
created with the built-in function mkdir().

2.1.4 Excluded PDS

There are less popular PDS that we do not include in
our analysis. For example, data can be retrieved from a
CGI environment variable, a configuration file, or from
an external resource such as an FTP or SMTP server [5].
However, these PDS are used rarely in practice and de-
cisions can only be made with preconfigured whitelists.
We only consider PDS that are tainted by the application
itself and not through a different channel. Analyzing the
data flow through file content will be an interesting addi-
tion in the future. Here, the challenge is to determine to
what part of a given file data is written to and from what
part of the file data is read from because the structure of
the data within the file is unknown.

Note that data stored via PHP’s built-in functions
ini set() or putenv() only exists for the duration of
the current request. At the end of the request, the envi-
ronment is restored to its original state. Thus, they do not
hold to our definition of a PDS.

2.2 Second-Order Vulnerabilities
A taint-style vulnerability occurs if data controlled by an
attacker is used in a security-critical operation. In the
data flow model, this corresponds to tainted data literally
flowing into a sensitive sink within one possible data flow
of the application. We classify a second-order vulnera-
bility as a taint-style vulnerability where the data flows
through one or more PDS. Here, the attack payload is
first stored in a PDS and later retrieved and used in a sen-
sitive sink. Thus, two distinct data flows require analysis:
(i) source to PDS and (ii) PDS to sink.
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In the following, we introduce two motivating exam-
ples with a payload stored in a PDS. In general, every
combination of a source, sensitive sink, and a PDS is pos-
sible. Depending on the application’s design, the flow of
malicious data occurs within a single or multiple attack
requests (e.g., when different requests for writing and
reading are necessary). Finally, we introduce multi-step
exploits as a subclass of second-order vulnerabilities.

2.2.1 Persistent Cross-Site Scripting

Cross-Site Scripting (XSS) [16] is the most common se-
curity vulnerability in web applications [22]. It occurs
when user input is reflected to the HTML result of the ap-
plication in an unsanitized way. It is then possible to in-
ject arbitrary HTML markup into the response page that
is rendered by the client’s browser. An attacker can abuse
this behavior by embedding malicious code into the re-
sponse that for example locally defaces the web site or
steals cookie information.

We speak of Persistent Cross-Site Scripting if the at-
tacker’s payload is stored in a PDS first, read by the ap-
plication again, and printed to the response page. In con-
trast to non-persistent (reflected) XSS, the attacker does
not have to craft a suspicious link and send it to a victim.
Instead, all users of the application that visit the affected
page are attacked automatically, making the vulnerability
more severe. Furthermore, a persistent XSS vulnerability
can be abused to spread an XSS worm [18, 26].

Listing 3 depicts an example of a persistent XSS vul-
nerability. The simplified code allows to submit a new
comment which is stored in the table comments to-
gether with the name of the author. If no new com-
ment is submitted, it lists all previously submitted com-
ments that are fetched from the database. While the com-
ment itself is sanitized in line 7 by the built-in function
htmlentities() that encodes HTML control charac-
ters, the author’s name is not sanitized in line 6 and thus
affected by XSS. Note that if the source code is analyzed
top-down, it is unknown at the point of the SELECT query
if malicious data can be inserted into the table comments
by an adversary.

1 if(empty( _POST[ submit ])) {
2 // list comments
3 res = mysql_query("SELECT author,text FROM comments");
4 foreach(mysql_fetch_row( res) as row) {
5 comment = mysql_fetch_array( row);
6 echo comment[ author ] . : .
7 htmlentities( comment[ text ]) . "<br />";
8 }
9 }

10 else {
11 // add comment
12 author = addslashes( _POST[ name ]);
13 text = addslashes( _POST[ comment ]);
14 mysql_query("INSERT INTO comments (author, text)
15 VALUES ( author , text )");
16 }

Listing 3: Example for second-order XSS vulnerability.

2.2.2 Second-Order SQL Injection

A SQL injection (SQLi) [9] vulnerability occurs when
a web application dynamically generates a SQL query
with unsanitized user input. Here, an attacker can po-
tentially inject her own SQL syntax to arbitrarily modify
the query. Depending on the environment, the attacker
can potentially extract sensitive data from the database,
modify data, or compromise the web server.

In Listing 4, user supplied credentials are checked
in line 6. If the credentials are valid, the session key
loggedin is set to true and the user-supplied user name
is saved into the session key user. In case the user-
supplied data is invalid, the failed login attempt is logged
to the database with the help of the user-defined log()

function. Here, a second-order SQLi occurs: if an at-
tacker registers with a malicious user name, this name is
written to the session key user and on a second failed
login attempt used in the logging SQL query.
1 function log( error) {
2 user = _SESSION[ user ];
3 mysql_query("INSERT INTO logs (error, user)
4 VALUES ( error , user )");
5 }
6 if(validAuth( _POST[ user ], _POST[ pass ]) {
7 _SESSION[ loggedIn ] = true;
8 _SESSION[ user ] = _POST[ user ];
9 }

10 else {
11 log( Failed login attempt );
12 }

Listing 4: Example for second-order SQLi vulnerability.

2.2.3 Multi-Step Exploitation

Within a second-order vulnerability, the first order (e. g.,
safe writing of user input into the database or a file path)
is not a vulnerability by itself. However, unsafe writing
can lead to other vulnerabilities. We define a multi-step
exploit as the exploitation of a vulnerability in the second
order that requires the exploitation of an unsafe writing
in the first order. Thus, a multi-step exploit is a subclass
of a second-order vulnerability and it can drastically raise
the severity of the first vulnerability.

Since we only consider databases, sessions, and file
names as PDS in our analysis, the following vulnerabili-
ties are relevant:

• SQLi: A SQLi in an INSERT or UPDATE statement
leads to a full compromise of all columns in the
specified table. Furthermore, a SQLi in a SELECT

query allows arbitrary data to be returned.
• Path traversal: A path traversal vulnerability al-

lows to change the current directory of a file opera-
tion to another location. Arbitrary file names can be
created in arbitrary locations if a path traversal vul-
nerability affects the renaming or creation of files.

• Arbitrary file write: An arbitrary file write vulnera-
bility can modify or create a new session file, lead-
ing to the compromise of all session values.
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3 Detecting Second-Order Vulnerabilities

In the following, we describe our approach to auto-
matically detect second-order vulnerabilities via static
code analysis. For this purpose, we extended our pro-
totype RIPS [6] that uses block summaries [30]. In this
section, we first briefly review the used data flow and
taint analysis approach of RIPS (Sections 3.1 and 3.2).
Afterwards, we explain our novel additions for detect-
ing second-order vulnerabilities and multi-step exploits
(Sections 3.3–3.5).

3.1 Data Flow Analysis
RIPS leverages a context-sensitive, intra- and inter-
procedural data flow analysis. We use basic block, func-
tion, and file summaries [30] for efficient, backwards-
directed data flow analysis [6]. First, for each PHP file’s
code, a control flow graph (CFG) consisting of con-
nected basic blocks is generated. Definitions of func-
tions, classes, and methods within the code are extracted.
Then, every CFG is analyzed top-down by simulating the
connected basic blocks one by one. A block edge that
links two connected basic blocks is simulated as well to
identify data sanitization.

During the simulation of one basic block, all assigned
data is transformed into data symbols that we will intro-
duce later. The flow of the data is inferred from these
symbols and summarized in a block summary [30] that
maps data locations to assigned data. The return results
and side-effects (e.g., data assignment or sanitization) of
called built-in functions are determined by a precise sim-
ulation of over 900 unique functions.

If a user-defined function is called within a basic
block, its CFG is generated and all basic blocks are sim-
ulated. Based on these block’s summaries, the data flow
within the function is determined by analyzing return

statements in a similar way to taint analysis (see Sec-
tion 3.2). The results are stored in a function summary.
This summary is used for each call of the user-defined
function, while return values, global variables, and pa-
rameters are adjusted to the callee’s arguments and envi-
ronment context-sensitively. When all basic blocks of a
file’s CFG are simulated, a file summary is generated in a
similar way to functions that is used during file inclusion.

Data and its access within the application’s code is
modeled by so called data symbols [6]:

• Value represents a static "string", integer, float,
or a resolved CONSTANT’s value. Defined constant
values are stored in the environment.

• Variable represents a variable by its name.
• ArrayDimFetch represents the access of an ar-

ray ( array[k]) and extends the Variable sym-
bol with a dimension (k). The dimension lists the
fetched array keys in form of data symbols.

• ArrayDimTree represents a newly declared ar-
ray or the assignment of data to one array key
( array[k] = data). It is organized in a tree
structure. The array keys are represented by array
edges that point to the assigned data symbol. The
ArrayDimTree symbol provides methods to add or
fetch symbols by a dimension that is compared to
the tree’s edges.

• ValueConcat represents the concatenation of two
or more data symbols ( a. b). Two consecutive
Value symbols are merged to one Value symbol.

• Multiple is a container for several data symbols. It
is used, for example, when a function returns differ-
ent values depending on the control flow or PHP’s
ternary operator is used ( c ? a : b).

During data flow analysis, one or more sanitiza-
tion tags can be added to a data symbol, for exam-
ple if sanitization is applied by built-in functions such
as addslashes() or htmlentities(). Each sanitiza-
tion tag represents one context, for example, a single-
quoted SQL value or a double-quoted HTML attribute.
A symbol can be sanitized against one context, but
be vulnerable to another. The tags are removed again
when built-in functions such as stripslashes() or
html entity decode() are called. Furthermore, infor-
mation about encoding is added to every data symbol.

3.2 Context-Sensitive Taint Analysis
The goal is to create a vulnerability report, whenever a
tainted data symbol δ flows into a sensitive sink. Our
implementation is performed with 355 sensitive built-
in functions of PHP. If a call to a sink is encountered
during block simulation, its relevant arguments are an-
alyzed. First, the argument is transformed into a data
symbol. If the symbol was defined within the same basic
block, it is inferred from the block summary. Then, the
symbol is looked up in the block summary of every pre-
vious basic block that is linked with a block edge to the
current basic block. If the lookup in the block summary
succeeds, the inferred symbol is fetched. The dimension
of an ArrayDimFetch symbol is carried until a map-
ping ArrayDimTree symbol is found. The backwards-
directed symbol lookup continues for each linked basic
block and stops if a symbol of type Value is inferred or
the beginning of the CFG is reached. At this point, all
resolved symbols are converted to strings in order to per-
form context-sensitive string analysis [6]. The symbols
Value and Boolean are converted to their representative
string values. Data symbols of sources are mapped to a
Taint ID (TID) that is used as string representation.

Next, each string is analyzed. The location of the TIDs
within the markup is determined to precisely detect the
context. For complex markup languages such as HTML
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or SQL, a markup parser is used. With the help of the
sanitization tags and encoding information of the linked
data symbol, we check if the symbol is sanitized cor-
rectly according to its context. If a TID is found that
belongs to an unsanitized source regarding the current
context, a vulnerability report is generated. Unsanitized
parameters or global variables are added to the function’s
summary as sensitive parameter or global. These are an-
alyzed in the context of each function call.

3.3 Array Handling

By manually analyzing the code of the most popular PHP
applications [28], we empirically found that a common
way to write data into a database is by using arrays. An
example is shown in Listing 5. In line 9 and 10, the ar-
ray’s key defines the table’s column and the array’s value
stores the data to write. The separated array values are
joined to a string again by using the built-in function
implode() (lines 2/3). Based on this observation, we re-
designed the handling of arrays by adding new data sym-
bols. As a side effect, the handling of fetched database
results in form of an array and the handling of the super-
global SESSION array is significantly improved.

1 function insert( table, array) {
2 fields = implode(",", array_keys( array));
3 values = implode(" , ", array);
4 mysql_query("INSERT INTO { table}
5 (". fields.") VALUES ( ". values." )");
6 }
7

8 new_user = array(
9 "name" => addslashes( _POST[ name ]),

10 "pass" => md5( _POST[ pass ]),
11 );
12 insert("users", new_user);
13 // INSERT INTO users (name,pass) VALUES ( X , 123abc... )

Listing 5: Using arrays to write data to a database.

We model the popular built-in function implode() by
adding the data symbol ArrayJoin. With the help of this
symbol, it is possible to keep track of the delimiter that
is used to join strings. If the symbol is inferred to an
ArrayDimTree symbol, a ValueConcat symbol is cre-
ated that joins all symbols of the ArrayDimTree symbol
with the stored delimiter symbol.

Furthermore, we introduce the new symbol
ArrayKey. It is used when the key of an array is ex-
plicitly accessed, such as in the loop foreach( array

as key => value). It is handled similar to the
Variable symbol and is associated with the array’s
name. If the ArrayKey symbol is inferred into an
ArrayDimTree symbol during data flow or taint analy-
sis, a Multiple symbol containing all edges’ symbols
is returned. Built-in functions, such as array keys()

and array search(), return all or parts of the available
keys in an array and can be modeled more precisely with
the ArrayKey symbol.

Figure 1: Data flow model of a conventional (a) and a
second-order (b, c) vulnerability.

3.4 PDS-centric Taint Analysis

We now introduce our novel approach to detect second-
order vulnerabilities. The data flow is illustrated in Fig-
ure 1 (b). Contrarily to a conventional taint-style vulner-
ability as shown in Figure 1 (a), a source flows into a
PDS before it flows from the PDS into a sensitive sink.
We model the data that is read from a PDS by new data
symbols δ ∗ that hold information about their origin.

During code analysis, taintable PDS are identified.
They are stored together with the minimum set of applied
sanitization and encoding tags of the tainting data sym-
bol δ . If one of the new data symbols δ ∗ is encountered
unsanitized during the taint analysis of a sensitive sink, a
vulnerability report is created if its originating PDS was
identified as taintable.

If the PDS is not known as taintable, a temporary vul-
nerability report is created, as shown in Figure 1 (c). The
report is connected to the data symbol δ ∗. At the end
of the code analysis, we decide if the data symbol origi-
nates from a taintable PDS by comparing its origin to all
collected taintable PDS.

In the following, we introduce the analysis of writings
to different PDS. Furthermore, our new data symbols δ ∗

are introduced that model the reading and access of data
that is stored in PDS.

3.4.1 Databases

Modeling the data flow through databases is a complex
task, mainly due to the large API that is available for
databases and the usage of a query language. First, our
prototype tries to obtain as much knowledge of the SQL
schema as possible. Then we try to reconstruct all SQL
queries during SQL injection analysis of 110 built-in
query functions. Finally, the type of operation is deter-
mined, as well as the targeted table and column names.
The access of data is modeled by new data symbols.
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Preparation During the initialization of our tool, we
collect all files with a .sql extension. All available
CREATE TABLE instructions within these files are parsed
so that we can reconstruct the database schema, includ-
ing all table and column names as well as column types
and length. If no schema file is found, each PHP file
in the project is searched via regular expression. The
knowledge of the database schema improves precision
when data is read in an unspecified way, or when data is
sanitized by the column type or length.

Writing A write operation to a database is detected
if the SQL parser identifies an INSERT, UPDATE, or
REPLACE statement. By tokenizing the SQL query, we
determine the targeted table’s name, all specified column
names, and their corresponding input values. In case of
an unspecified write, the parser makes use of the database
schema. If an input value of a column contains a TID
(see Section 3.2), the affected column and table name is
marked as taintable together with the linked source sym-
bol and its sanitization tags.

Reading If the SQL parser encounters a SELECT state-
ment, we try to determine all selected column and ta-
ble names. Multiple table names can occur if tables
are joined or unioned. Alias names within the query
are mapped and resolved. In case of uncertainty, the
parser makes use of the database schema. Finally, a new
ResourceDB symbol is mapped to the analyzed query
function as return value. This symbol holds information
about all selected column names in a numerical hash map
and its corresponding table names.

Access In PHP, database result resources are trans-
formed into arrays by built-in fetch functions (refer to
Listing 2). We ignore the mode of access and let 89 con-
figured fetch functions return a Variable symbol with
the name of the resource. When an ArrayDimFetch

symbol accesses the result of these fetch functions, it is
inferred to the corresponding ResourceDB symbol. In
this case, the carried dimension of the ArrayDimFetch

symbol is evaluated against the available column names
in the ResourceDB symbol. If the asterisk character is
contained in the column list and the dimension is numer-
ical, the database schema is used to find the correct col-
umn name. Otherwise, if the dimension equals a column
name in the field list, a new DataDB symbol is returned
that states which column of which table is accessed.

Sanitization Certain implicit sanitization is considered
when dealing with SQL. If a column is compared to a
static value within a WHERE clause in a SELECT state-
ment, the return value for this column is sanitized. In
this case, the static value is saved within the ResourceDB
symbol and mapped to the column as return value. Fur-
thermore, a sanitization tag for the used quote type is
removed when data is updated or inserted to the database
because one level of escaping is lost during writing.

3.4.2 Session Keys

The analysis of session variables does not require a com-
plex markup parser or new data symbol. Instead, session
data is handled similar to other global arrays. Taintable
session keys are stored during the analysis phase.

Writing If data is assigned to a Variable or
ArrayDimFetch symbol during block simulation and
the symbol’s name is SESSION, the assigned data is
analyzed via taint analysis. If the assigned data is
tainted, its resolved source symbol is stored into an
ArrayDimTree symbol in the environment, together
with the dimension of the SESSION symbol. This way,
an ArrayDimTree is built with all taintable dimensions
of the session array that link to the tainted source sym-
bols and their corresponding sanitization tags.

Reading The access to session data is modeled by
ArrayDimFetch symbols with the name SESSION and
requires no modification. During taint analysis inside a
user-defined function, session variables are handled as
global variables. They are added to the function sum-
mary and they are inspected for each function call in a
context-sensitive way. This avoids premature decisions
about the taint status inside a function if the session key
is overwritten before the function is called. Just as for a
DataDB symbol, a temporary vulnerability report is cre-
ated if a SESSION variable taints a sensitive sink.

3.4.3 File Names

To detect taintable file names, we collect file paths a user
can write to. For this purpose, new data symbols model
directory resources and their accesses. Whenever a path
is reconstructed only partially, we use the same approach
as in file inclusion analysis. Here, a regular expression
is created and mapped to all available paths that were
detected when loading the application files.

Writing To detect a file name manipulation with user
input, we analyze 27 built-in functions such as copy(),
rename(), and file put contents(). Additionally,
file uploads with move uploaded file() are analyzed.
Note that at the same time these built-in functions are
sensitive sinks and generate vulnerability reports such as
an arbitrary file upload vulnerability. The path argument
is analyzed by conventional context-sensitive string anal-
ysis. If the path is tainted, we store it with its prefix
as taintable. When no prefix is present, the file path of
the currently analyzed file is taken. Additionally, if the
source is not sanitized against path traversal attacks, all
paths are assumed as taintable and a flag is set during
analysis accordingly.

Reading We handle three different ways of opening a
directory with PHP’s built-in functions. First, we model
the built-in function scandir() that returns an array,
listing all files and directories within a specified path.
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Second, we model the built-in function glob() that also
returns an array that lists all files and directories speci-
fied by a pattern. We transform the pattern into a regular
expression by substituting the pattern characters * and
? into regular expression equivalents. Third, we model
the built-in function opendir() which returns a direc-
tory handle. For all mentioned built-in functions, we re-
construct the opened path by string analysis and return a
ResourceDir symbol that stores the path’s name.

Access The returned result of scandir() and glob()

is accessed by an array key. Since we do not know nei-
ther the amount nor the order of files in a directory, we
return a DataPath symbol whenever a ResourceDir

symbol is inferred from an ArrayDimFetch symbol, re-
gardless of its dimension. For this purpose, we let the
built-in function readdir() that is supposed to read an
entry of a directory handle return an ArrayDimFetch

symbol with an arbitrary dimension and the name of the
directory handle. It is inferred to a DataPath symbol
when the trace of the ArrayDimFetch symbol results in
a ResourceDir symbol.

Sanitization In order to model sanitization that checks
if a given string is a valid file name, 11 built-in functions
such as file exists and is file() are simulated. We
modified the sanitization check in a way that these func-
tions only sanitize if there is no taintable file path found.
For this purpose, a flag is set during taint analysis if san-
itization of a source by file name is detected. The flag
issues only a temporary vulnerability report that is re-
vised at the end of the analysis regarding the ability to
taint a file path.

3.4.4 Multi-Step Exploits

In order to detect multi-step exploits, we store all ta-
ble names of all writing SQL queries that are affected
by SQLi. Furthermore, we set a flag during the analy-
sis process if an arbitrary file write or arbitrary file re-
name vulnerability is detected. At the end of the analysis,
when the taint decision is made for data that comes from
a PDS, multi-step exploit reports are added to the initial
vulnerability. This is done for all vulnerabilities that rely
on a DataDB symbol that is not tainted through second-
order but which table name is affected by SQLi. Also,
a multi-step exploit is reported if a DataDir symbol oc-
curs and the flag for a file rename vulnerability was set.
All session data is treated as tainted if an arbitrary file
write vulnerability was detected. Additionally, any local
file inclusion vulnerability is extended to a remote code
execution if a file write or upload feature is detected.

Moreover, a SQLi vulnerability within a SELECT

query returns a DataDB symbol with a taint flag. This
flag indicates that all accessed columns are taintable by
modifying the SELECT query during an attack. Thus, all
columns of the DataDB symbol are taintable.

3.5 Inter-procedural PDS Analysis
We optimized the inter-procedural analysis to refine our
string analysis results. Function summaries offer a high
performance but they are also inflexible for functions
with dynamic behavior. Thus, they can weaken the static
reconstruction of dynamically created strings.

3.5.1 Multiple Parameter Trace

As we illustrated in Listing 5, modern applications of-
ten define wrapper functions for PDS access where more
than one parameter is used within one sensitive sink. In
this case, the approach of storing each parameter together
with its prefixed and postfixed markup, and the corre-
sponding vulnerability type as sensitive parameter in the
function summary, is error-prone. When a call to this
function occurs, the approach swaps the parameter sym-
bol with the argument of the function call and traces it for
user input. While this approach works fine for vulnera-
bility detection, it leads to imprecision when it comes to
string reconstruction. Because each argument is traced
separately but both are used in the same sink, the result
of one trace is missing in the result of the other trace. In
Listing 5, for example, the table name is missing in the
reconstructed query while the data is reconstructed from
the new user array.

To circumvent this problem, we refined this approach
for sinks that execute SQL queries or open file paths
within a user-defined function. If multiple parameters or
global variables are involved, all symbols are combined
to one ValueConcat symbol. Then this symbol is stored
in the function summary and analyzed for each function
call. This way, each parameter is traced within one anal-
ysis and all results are present at the same time.

3.5.2 Mapping Returned Resources

Working with function summaries is very efficient when
it comes to performance because each function only re-
quires a single analysis on the first call. For every other
call, the function summary is reused. However, a user-
defined function might return a resource that has dif-
ferent properties for each call. For example, a SELECT

query that embeds the parameter of an user-defined func-
tion as the table name returns a different ResourceDB
symbol for every call, depending on the function’s ar-
gument. If the resource is returned by the user-defined
function, its symbol’s properties change for every differ-
ent function call.

As a solution, we add empty ResourceDB symbols
to the function summary’s set of return values for user-
defined functions with dynamic SQL queries. Once the
sensitive parameters are analyzed and the queries are re-
constructed, a copy of these symbols is updated with the
table and column information and used as returned data.
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4 Evaluation

For evaluating our approach, we selected six real-world
web applications. We chose the conference management
systems OpenConf 5.30 and HotCRP 2.61 for their pop-
ularity in the academic field and osCommerce 2.3.3.4 for
its large size. Furthermore, we evaluated the follow-up
versions of the most prominent software used in related
work [3, 11, 30, 31]: NewsPro 1.1.5, MyBloggie 2.1.4,
and Scarf 2007-02-27.

A second-order vulnerability consists of two data
flows: tainting the PDS and tainting the sensitive sink.
We evaluated our prototype for both steps and present the
true positives (TP) and false positives (FP) in this section.
In addition, we discuss the root cause for false negatives
(FN) and outline the limitations of our approach.

4.1 PDS Usage and Coverage
To obtain an overview of the usage of PDS in web appli-
cations, we manually evaluated the total amount of dif-
ferent memory locations. Note that these numbers do not
reflect how often one memory location is used at run-
time. Then, we evaluated the ability to taint these mem-
ory locations by an application’s user and compared it
to the detection rate of our prototype. A PDS is defined
as taintable if it can contain at least one of the follow-
ing characters submitted by an application user: \<>’".
In total, we manually identified 841 PDS of which 23%
are taintable. Our prototype successfully detected 71%
of the taintable PDS with a false discovery rate of 6%.

4.1.1 Databases

Our implementation successfully recovered the database
schema for all tested applications during the initializa-
tion phase. For evaluation, we categorized all avail-
able columns in the application’s database schema by de-
clared data type. Only columns with a string type, such
as VARCHAR or TEXT, are of interest because they can
store tainted data. As shown in Table 1, we found that
on average about half of the columns are not taintable
due to numeric data types such as INT and DATE.

Table 1: Column types in selected applications.

Software Tables Columns Num String

osCommerce 50 331 193 138
HotCRP 29 217 142 75
OpenConf 18 129 48 81
NewsPro 8 43 18 25
Scarf 7 37 22 15
MyBloggie 4 24 10 14

Total 116 781 55% 45%

We then carefully fuzzed a local instance of each
application manually with common attack payloads in
order to determine which columns of type string are
taintable. Furthermore, we observed which columns
were reported by our prototype implementation as
taintable when the schema is available and when not. The
results are compared in Table 2. Among the columns
with a string type, 53% are taintable. As a result, only
24% of all available columns are not sanitized by the ap-
plication or the columns’ data type.

Table 2: Taintable columns in selected applications.

Schema No schema
Software Taintable TP FP TP FP

osCommerce 63 55 4 55 37
HotCRP 43 27 1 27 3
OpenConf 47 16 1 16 4
NewsPro 12 12 0 12 0
Scarf 10 10 1 10 3
MyBloggie 9 9 0 9 0

Total 184 70% 5% 70% 27%

For the rather old and simple applications, all taintable
columns were detected by our prototype. The modern
and large applications often use loops to construct dy-
namic SQL queries where reconstruction is error-prone.
Overall, we detected 70% of all taintable columns. When
the database schema is known, 5% of our reports are FP.
The root cause is path-sensitive sanitization of data that
is written to the database—a sanitization that our current
prototype is not able to detect yet. The false discovery
rate is higher if the database schema of an application is
not found. In this case, a static analysis tool cannot rea-
son about data types within the database and may flag
columns of numeric data type as taintable.

4.1.2 Sessions

To obtain a ground truth for our evaluation, we again
manually assessed the applications’ code for all accessed
keys of the superglobal SESSION array. Dynamic keys
were reconstructed and keys in multi-dimensional arrays
were counted multiple times. Then, we manually exam-
ined which session keys are taintable by the application’s
user and compared this to the analysis result generated by
our prototype implementation. As shown in Table 3, we
found that only 12% of the 52 identified session keys are
taintable within our selected applications.

Our prototype correctly detected all taintable session
keys. One FP occurred because the sanitized email ad-
dress of a user is written to the session after it is fetched
from the database. This FP is based on the previously
introduced FP in identifying taintable columns. A cus-
tom session management in osCommerce led to exclu-
sion from our evaluation.
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Table 3: Taintable session keys in selected applications.

Software Keys Taintable TP FP

HotCRP 29 2 2 0
OpenConf 14 2 1 0
NewsPro 2 1 1 0
Scarf 4 0 0 1
MyBloggie 3 1 1 0

Total 52 12% 83% 16%

4.1.3 File Names

To evaluate the features that allow an application’s user
to alter a file name, we again manually assessed each
application for file upload, file creation, and file rename
features and counted the different target paths to obtain
a ground truth. Next, we counted the collected taintable
path names reported by our prototype. The results are
shown in Table 4.

Table 4: Taintable paths in selected applications.

Software Paths Taintable TP FP

osCommerce 2 2 2 0
HotCRP 1 0 0 0
OpenConf 1 0 0 1
NewsPro 1 0 0 0
Scarf 1 1 1 0
MyBloggie 2 2 2 0

Total 8 63% 100% 16%

We found at least one feature in each of the applica-
tion’s source code to create a new file. However, half of
the applications sanitize the name of the file before cre-
ating it. Our prototype detected all taintable path names.
One FP occurred for OpenConf, where uploaded files are
sanitized in a path-sensitive way.

Interestingly, a file upload in Scarf is based on a
second-order data flow. The name of the uploaded file is
specified separately and stored as a configuration value
in the database before it is read from the database again
and the file is copied. Because no sanitization is applied,
an administrator is able to copy any file to any location of
the server’s file system which leads to remote code exe-
cution. This critical vulnerability was missed in previous
work that also used this application for evaluating their
approach [3, 31].

4.2 Second-Order Vulnerabilities
We evaluated the ability of our prototype to detect
second-order vulnerabilities. Reports of first-order vul-
nerabilities are ignored for now. Our prototype reported
a total of 159 valid second-order vulnerabilities with a

false discovery rate of 21% (see Table 5 for details).
In summary, 97% of the valid reports are persistent
XSS vulnerabilities where the payload is stored in the
database. Five persistent XSS vulnerabilities are caused
by session data or file names. This is closely related to
the fact that 94% of all taintable PDS we identified are
columns in database tables (see Section 4.1) and sensi-
tive sinks such as echo are one of PHP’s most prominent
built-in features [10].

Table 5: Evaluation results for selected applications.

Software Files LOC TP FP FN

osCommerce 570 66 381 97 29 6
HotCRP 74 40 339 1 1 0
OpenConf 121 20 404 16 4 0
NewsPro 23 5 077 7 1 0
Scarf 19 1 686 37 8 3
MyBloggie 58 9 485 1 0 0

Total 865 143 372 159 43 9
Average 144 23 895 79% 21%

Our evaluation revealed that second-order vulnerabil-
ities are highly critical. Next to persistent XSS and file
vulnerabilities, we detected various remote code exe-
cution vulnerabilities in osCommerce, OpenConf, and
NewsPro. In the following, we introduce two selected
vulnerabilities to illustrate the complexity and severity
of real-world second-order vulnerabilities. It is evident
that these vulnerabilities could only be detected with our
novel approach of analyzing second-order data flows.

4.2.1 Second-Order LFI to RCE in OpenConf

OpenConf is a well-known conference management
software used by many (academic) conferences. Our
prototype found a second-order local file inclusion vul-
nerability in the user-defined printHeader function that
leads to remote command execution. The relevant parts
of the affected file include.php is shown in Listing 6.
1 function printHeader( what, function="0") {
2 require_once GLOBALS[ pfx ] .
3 GLOBALS[ OC_configAR ][ OC_headerFile ];
4 }
5

6 r = mysql_query("SELECT setting , value , parse
7 FROM " . OCC_TABLE_CONFIG . " ");
8 while ( l = mysql_fetch_assoc( r)) {
9 OC_configAR[ l[ setting ]] = l[ value ];

10 }
11 printHeader();

Listing 6: Simplified include.php of OpenConf.

When looking at the code, it does not reveal any vul-
nerability. Whenever the code is included, settings are
loaded from the database and the user-defined function
printHeader() is called. This function includes a con-
figured header file and prints some HTML.

10



USENIX Association  23rd USENIX Security Symposium 999

1 function updateConfigSetting( setting, value) {
2 q = "UPDATE " . OCC_TABLE_CONFIG . "
3 SET value = " . safeSQLstr(trim( value)) . "
4 WHERE setting = " . safeSQLstr( setting) . " ";
5 return(ocsql_query( q));
6 }
7

8 foreach (array_keys( _POST) as p) {
9 if (preg_match("/^OC_[\w-]+ /", p)) {

10 updateConfigSetting( p, _POST[ p]);
11 }
12 }

Listing 7: Simplified code to change settings in
OpenConf.

However, as shown in Listing 7, it is possible for a
privileged chair user to change any configuration setting.
The configuration page does not specify an input field to
change the headerFile setting. Nonetheless, by adding
the key OC headerFile to a manipulated HTTP POST
request, the setting is changed. The loop over the sub-
mitted keys of the POST array in Listing 7, line 8, as
well as the loop over the OC configAR in Listing 6,
line 9, shows once again how important it is to track the
taint status of PHP’s array keys precisely.

A chair member can now include any local file of the
system to the output. Additionally, because the software
allows to upload PDF files to the server, our prototype
added a multi-step exploit report. Indeed, if a PDF file
containing PHP code is uploaded to the server and the
headerFile setting is pointed to that PDF, arbitrary PHP
code is executed. Moreover, our tool reported a SQL
injection vulnerability that is accessible to unprivileged
users. This allows any visitor to extract the chair’s pass-
word hash (salted SHA1) from the database.

4.2.2 Second-Order RCE in NewsPro

Utopia NewsPro is a blogging software and was used in
previous work for evaluation [29–31]. Our prototype re-
ported a second-order code execution vulnerability in the
administrator interface. Here, a user is able to alter the
template files of the blog. The simplified code is shown
in Listing 8.

1 tempid = (int) _POST[ tempid ];
2 template = mysql_real_escape_string( _POST[ template ]);
3 updateTemplate = mysql_query("UPDATE unp_template
4 SET template= template WHERE id= tempid ");

Listing 8: Simplified code to change the template in
NewsPro.

The template code is read from the database in various
places of the source code with help of the user-defined
function unp printTemplate() (see Listing 9). First,
this function writes the template’s code to a cache array
(line 6) and then returns it from this array again. The
example demonstrates the importance of inter-procedural
analysis and array handling.

1 function unp_printTemplate( template) {
2 global templatecache, DB;
3 getTemplate = mysql_query("SELECT name,template
4 FROM unp_template WHERE name= template LIMIT 1");
5 while ( temp = mysql_fetch_array( getTemplate)) {
6 templatecache[ template] = temp[ template ];
7 }
8 return addslashes( templatecache[ template]);
9 }

10 eval( headlines_displaybit = " .
11 unp_printTemplate( headlines_displaybit ). "; );

Listing 9: Simplified Remote Code Execution
vulnerability in NewsPro.

At the call-site, the fetched template is evaluated
with PHP’s eval operator that executes PHP code
(line 10). The template’s code is escaped (line 8),
however, the double-quoted value of the evaluated vari-
able headlines displaybit allows to execute arbi-
trary PHP code using curly syntax. By adding the code
{ {system(id)}} to a template, the system command
id is executed. Note that related work missed to detect
this vulnerability, which is also present in prior versions.

4.3 Multi-Step Exploits

Our prototype reported two arbitrary file upload vulner-
abilities and 14 SQL injection vulnerabilities. Because
these vulnerabilities affect a storage operation, the stored
data can be manipulated during multi-step exploitation.
Our prototype found 14 valid multi-step exploits and a
single FP as shown in Table 6.

Table 6: Reported multi-step exploits in selected appli-
cations.

File SQLi Multi-Step
Software TP TP FP TP FP

osCommerce 1 3 0 3 0
HotCRP 0 1 7 0 1
OpenConf 0 4 1 1 0
NewsPro 0 6 0 9 0
Scarf 1 1 0 1 0
MyBloggie 0 5 0 0 0

Total 2 20 8 14 1
Average 100% 71% 29% 93% 7%

All detected multi-step exploits consist of two steps
and no third-order vulnerabilities were detected within
our selected applications. In the following, we examine
two multi-step exploits in osCommerce that lead to re-
mote command execution to illustrate that these vulnera-
bilities can only be detected with our novel approach of
analyzing multi-step exploits.
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4.3.1 Multi-Step RCE in osCommerce

OsCommerce is a popular e-commerce software. For
one of three reported SQLi vulnerabilities in osCom-
merce, our prototype additionally reported a multi-step
remote code execution exploit. The SQLi is located in
the backup tool of the administrator interface and shown
in Listing 10. Here, a SQL file is uploaded to restore a
database backup. Since the name of the uploaded file
is later used unsanitized in a SQL query, an attacker
is able to insert any data into the configuration ta-
ble by uploading a SQL file with a crafted name. This
enables another, more severe vulnerability: the table
configuration stores a configuration value and a
configuration title for each setting. Furthermore, a
use function can be specified optionally to deploy the
configuration’s value.
1 sql_file = new upload( sql_file );
2 read_from = sql_file->filename;
3 tep_db_query("insert into " . TABLE_CONFIGURATION .
4 " values (null, Last Database Restore , DB_RESTORE ,
5 " . read_from . " , Last database restore file ,
6 6 , 0 , null, now(), , )");

Listing 10: Simplified code of the backup.php file in
osCommerce shows a SQLi through a file name.

When the list of configuration values is loaded
from the database, the function name specified
in the use function column is called with the
configuration value as argument (see Listing 11,
line 5). An attacker can abuse the SQLi to insert
an arbitrary PHP function’s name, such as system, to
the column use function and insert an arbitrary argu-
ment, such as id, to the column configuration value.
When loading the configuration list, the specified func-
tion is fetched and called with the specified argument that
executes the system command id.

1 conf_query = tep_db_query("select configuration_id,
configuration_title, configuration_value,
use_function from " . TABLE_CONFIGURATION . " where
configuration_group_id = " . (int) gID . " ");

2 while ( configuration = tep_db_fetch_array( conf_query)) {
3 if (tep_not_null( configuration[ use_function ])) {
4 use_function = configuration[ use_function ];
5 cfgValue = call_user_func( use_function,
6 configuration[ configuration_value ]);

Listing 11: Simplified code of the configuration.php file
in osCommerce demonstrates a multi-step RCE.

4.3.2 Sanitization Bypass in osCommerce

Another multi-step RCE exploit was reported in osCom-
merce that involves a sanitization bypass. The previously
mentioned backup tool of the administrator interface al-
lows to specify a local ZIP file that is unpacked via the
system command unzip. Here, the target file name is
specified as an argument in the command line if the spec-
ified file name exists on the file system. The simplified
code is shown in Listing 12.

1 if (file_exists(DIR_FS_BACKUP . HTTP_GET_VARS[ file ])) {
2 restore_file = DIR_FS_BACKUP . HTTP_GET_VARS[ file ];
3 exec(LOCAL_EXE_UNZIP . . restore_file . -d .

DIR_FS_BACKUP);
4 }

Listing 12: A dynamically constructed system command
in osCommerce includes the name of an existing file.

An attacker can bypass this check by abusing one of
the file upload functionalities in osCommerce. By up-
loading a file with the name ;id;.zip and afterwards spec-
ifying this file as backup file, the command id is exe-
cuted. The semicolons within the file name terminate the
previous unzip command and introduce a new command.

4.4 False Positives
Our prototype generated 43 false second-order vulnera-
bility reports, leading to a false discovery rate of 21% for
our selected applications. All false positives are based
on the fact that our prototype is not able to detect path-
sensitive sanitization. Thus, persistent XSS was reported
in Scarf and HotCRP that are based on email addresses
stored in the database. Our prototype erroneously iden-
tified these columns as taintable (see Section 4.1.1). The
same error applies to a paper format in OpenConf which
leads to four false positives. A user-defined sanitiza-
tion function using path-sensitive sanitization based on
its argument lead to 29 false persistent XSS reports in os-
Commerce. A false multi-step exploit was reported in
HotCRP caused by a false SQLi report. By performing a
path-sensitive sanitization analysis, these false positives
can be addressed in the future.

4.5 False Negatives
Evaluating false negatives is an error-prone task because
the actual number of vulnerabilities is unknown. Further-
more, no CVE entries are public regarding second-order
vulnerabilities in our selected applications. However, it
is possible to test for false negatives that stem from in-
sufficient detection of taintable PDS. By pre-configuring
our implementation with the taintable PDS we identi-
fied manually, we can compare the amount of detected
second-order vulnerabilities with the number of reports
when PDS are analyzed automatically.

As a result, only six previously missed persistent XSS
in osCommerce were reported. Additionally, another
taintable session key in OpenConf was reported, al-
though the key does not lead to a vulnerability. Fur-
thermore, we manually inspected the source code of the
applications and observed that our SQL parser needs im-
provement. Three false negatives occurred in Scarf be-
cause our parser does not handle SQL string functions
such as concat(). More complex SQL instructions
might lead to further false negatives but are used rarely.
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4.6 Performance

We evaluated our prototype with the implementation
of our approach to detect second-order vulnerabilities
(+SO) and without it (-SO). Our testing environment was
equipped with an Intel i7-2600 CPU with 3.4 GHz and
16 GB of memory. The amount of memory consump-
tion (M, in megabytes), scan time (T, in seconds), and
second-order vulnerability reports (R) for our selected
applications are given in Table 7.

Table 7: Performance results for selected applications.

-SO Analysis +SO Analysis
Software M[mb] T[s] M[mb] T[s] R

osCommerce 834 134 846 213 129
HotCRP 752 186 775 345 3
OpenConf 528 33 523 47 21
NewsPro 50 1 50 3 17
Scarf 39 1 40 14 46
MyBloggie 87 7 87 11 1

Total 2290 362 2321 633 217
Average 382 60 387 106 36

While the memory consumption does not increase sig-
nificantly by adding second-order analysis, the average
scan time increases by 40%. Note, however, that this in-
cludes 217 processed vulnerability reports the prototype
would have missed without the additional second-order
analysis. Furthermore, we believe that a total scan time
of less than 11 minutes for our selected applications is
still reasonable.

5 Related Work

Web applications are widely used in the modern Web and
as a result, security analysis of such applications has at-
tracted a considerable amount of research. We now re-
view related work in this area and discuss how our ap-
proach differs from previous approaches.

Dynamic Analysis There are many different dynamic
approaches to perform a security analysis of a given web
application. For example, Apollo [1] leverages symbolic
and concrete execution techniques in combination with
explicit-state model checking to perform persistent state
analysis for session variables in PHP. Sekar proposes
syntax- and taint-aware policies that can accurately de-
tect and/or block most injection attacks [23]. However,
such approaches are typically limited to simple types of
taint-style vulnerabilities.

There are also dynamic approaches to detect second-
order vulnerabilities. For example, McAllister et al.

present a blackbox scanner capable of detecting persis-
tent XSS [19]. Ardilla [14] aims at detecting both SQL
injection and XSS vulnerabilities by generating sample
inputs, symbolically tracking taint information through
execution (including through database accesses), and au-
tomatically generating concrete exploits. The typical
drawbacks of such dynamic approaches are the limited
test coverage and the missing ability to crawl a given
site “deep” enough. This insight is confirmed by Doupé
et al., who tested eleven black-box dynamic vulnerability
scanners and found that whole classes of vulnerabilities
are not well-understood and cannot be detected by the
state-of-the-art scanners [7].

Static Analysis We perform static analysis of PHP
code and use the concept of block summaries as proposed
by Xie and Aiken [30] and later on refined by Dahse
and Holz [6]. Our analysis tool extends these ideas and
we improved the modeling of the language. More pre-
cisely, we introduce more data symbols (e.g., to analyze
array accesses in a more precise way) and enhance the
analysis of built-in functions such that we can perform
a taint analysis for persistent data stores. Furthermore,
we optimized the inter-procedural analysis to refine our
string analysis results. This enables us to analyze the two
distinct data flows that lead to second-order vulnerabili-
ties: (i) source to PDS and (ii) PDS to sink. As a result,
we are able to detect vulnerabilities missed by these ap-
proaches. Pixy [11] and Saner [2] are other static code
analysis tools for web applications, but both do not rec-
ognize second-order vulnerabilities.

There are static analysis approaches that target other
classes of security vulnerabilities. For example, Safer-
PHP [25] attempts to find semantic attacks (e.g., denial
of service attacks due to infinite loops caused by mali-
cious inputs, or unauthorized database operations due to
missing security checks) within web applications. Role-
Cast [24] identifies security-critical variables and ap-
plies role-specific variable consistency analysis to iden-
tify missing security checks, while Phantm [17] detects
type errors in PHP code. Such kinds of software defects
are out of scope for our analysis.

Static Second-Order Analysis The work closest re-
lated to our approach is MiMoSA [3]. It is an extension
of Pixy [11] to detect multi-module data flow and work
flow vulnerabilities. The data flow through databases is
modeled, however, it uses a dynamic approach for the
reconstruction of SQL queries. Moreover, it focuses on
the detection of the work flow of an application and does
not handle neither other types of PDS nor multi-step ex-
ploits. In comparison, only three data flow vulnerabilities
were detected in Scarf, whereas our approach detected 37
second-order vulnerabilities and one multi-step exploit.
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Zheng and Zhang proposed an approach to detect
atomicity violations in web applications regarding exter-
nal resources [31], which can be seen as being closely
related to second-order vulnerabilities since such con-
currency errors are a pre-condition for second-order ex-
ploits. They perform a context- and path-sensitive inter-
procedural static analysis to automatically detect atom-
icity violations on shared external resources. The tools
NewsPro and Scarf are included into their evaluation, but
the authors did not find any of the second-order vulnera-
bilities detected by our approach. As such, our approach
outperformed prior work on static detection of second-
order vulnerabilities.

6 Conclusion and Future Work

In this paper, we demonstrated that it is possible to stat-
ically model the data flow through persistent data stores
by collecting all storage writings and readings. At the
end of the analysis, we can determine if data read from
a persistent store can be controlled by an attacker and
if this leads to a security vulnerability. Our prototype
implementation demonstrated that this is an overlooked
problem in practice: we identified more than 150 vulner-
abilities in six popular web applications and showed that
prior work in this area did not detect these software de-
fects. From a broader perspective, our approach can be
broken down to the problem of statically reconstructing
all strings that can be generated at runtime by the appli-
cation and thus, is limited by the halting problem.

Future work includes modeling the data flow when
prepared statements are used, supporting more SQL fea-
tures, and analyzing data flow through file content. Also,
path-sensitive sanitization and aliasing should be ana-
lyzed more precisely [32].
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Abstract

Android, iOS, and Windows 8 are changing the applica-
tion architecture of consumer operating systems. These
new architectures required OS designers to rethink secu-
rity and access control. While the new security archi-
tectures improve on traditional desktop and server OS
designs, they lack sufficient protection semantics for dif-
ferent classes of OS customers (e.g., consumer, enter-
prise, and government). The Android OS in particular
has seen over a dozen research proposals for security
enhancements. This paper seeks to promote OS secu-
rity extensibility in the Android OS. We propose the An-
droid Security Modules (ASM) framework, which pro-
vides a programmable interface for defining new refer-
ence monitors for Android. We drive the ASM design by
studying the authorization hook requirements of recent
security enhancement proposals and identify that new
OSes such as Android require new types of authorization
hooks (e.g., replacing data). We describe the design and
implementation of ASM and demonstrate its utility by
developing reference monitors called ASM apps. Finally,
ASM is not only beneficial for security researchers. If
adopted by Google, we envision ASM enabling in-the-
field security enhancement of Android devices without
requiring root access, a significant limitation of existing
bring-your-own-device solutions.

1 Introduction

Consumer operating systems are changing. Android,
iOS, and Windows 8 place a high priority on the user-
application experience. They provide new abstractions
for developing user-applications: applications fill the
screen; they have complex lifecycles that respond to
user and system events; and they use semantically rich
OS provided application programming interfaces (APIs)

∗These authors contributed equally to this work.

such as “get location,” “take picture,” and “search ad-
dress book.” The availability of these semantically rich
OS APIs vastly simplifies application development, and
has led to an explosive growth in the number and diver-
sity of available applications.

These functional changes caused OS designers to re-
think security. The new application abstractions both en-
able and necessitate assigning each user application to a
unique protection domain, rather than executing all user
applications with the user’s ambient authority (the norm
in traditional OSes such as Windows and UNIX). By de-
fault, each application’s protection domain is small, often
containing only the OS APIs deemed not to be security
sensitive and the files it creates. The application must be
granted capabilities to access the full set of semantically
rich OS APIs. This security model provides a better ap-
proximation of least privilege, which limits both the im-
pact of an exploited application, as well as the authority
granted to a Trojan. However, how and when to grant
these privileges has been the topic of much debate [16].

For the last several years, the security research com-
munity has contributed significant discourse on the right
security architecture for these new operating systems.
Android has been the focus of this discourse, mostly due
to its open source foundation, widespread popularity for
mobile devices, and the emergence of malware targeting
it. In the relatively short period of time since the An-
droid platform’s initial release in 2008, there have been
more than a dozen proposals for new Android security
architectures [15, 24, 14, 23, 10, 7, 8, 37, 6, 19, 18, 12,
9, 22, 29]. As we discuss in this paper, while these secu-
rity architecture proposals have very diverse motivations,
their implementations often share hook placements and
enforcement mechanisms.

The primary goal of this paper is to promote OS secu-
rity extensibility [33] in the Android platform. History
has shown that simply providing type enforcement, in-
formation flow control, or capabilities does not meet the
demands of all potential OS customers (e.g., consumers,
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enterprise, government). Therefore, an extensible OS se-
curity interface must be programmable [33]. In short, we
seek to accomplish for Android what the LSM [34] and
TrustedBSD [32] frameworks have provided for Linux
and BSD, respectively. What makes this task interesting
and meaningful to the research community is the pro-
cess of determining the correct semantics of authoriza-
tion hooks for this new OS architecture.

In this paper, we propose the Android Security Mod-
ules (ASM) framework, which provides a set of autho-
rization hooks to build reference monitors for Android
security. We survey over a dozen recent Android secu-
rity architecture proposals to identify the hook seman-
tics required of ASM. Of particular note, we identify the
need to (1) replace data values in OS APIs, and (2) allow
third-party applications to define new ASM hooks. We
design and implement an open source version of ASM
within Android version 4.4 and empirically demonstrate
negligible overhead when no security module is loaded.
ASM fulfills a strong need in the research community. It
provides researchers a standardized interface for security
architectures and will potentially lead to field enhance-
ment of devices without modifying the system firmware
(e.g., BYOD), if adopted by Google.

This paper makes the following contributions:

• We identify the authorization hook semantics re-
quired for new operating systems such as Android.
The Android OS is responsible for enforcing more
than just UNIX system calls. Android includes se-
mantically rich OS APIs and new application lifecy-
cle abstractions that must be included in OS access
control. We also identify the need for authorization
hooks to replace data values and for third-party ap-
plications to introduce new authorization hooks.

• We design and implement the extensible Android Se-
curity Modules (ASM) framework. ASM brings OS
security extensibility to Android. It allows mul-
tiple simultaneous ASM apps to enforce security
requirements while minimizing performance over-
head based on the required authorization hooks.

• We implement two example ASM apps to demon-
strate the utility of the ASM framework. ASM al-
lowed the fast development of useful example ASM
apps with functionalities similar to MockDroid [6]
and password protected apps.

Finally, we envision multiple ways in which ASM can
benefit the security community. ASM currently provides
great value to researchers with the ability to modify the
source code of a device. It provides a modular interface
to define callbacks for a set of authorization hooks that
provide mediation of important protection events. As the
Android OS changes, only the ASM hook placements

need to change, eliminating the need to port each re-
search project to new versions. ASM can provide even
greater benefit if it is adopted into the Android Open
Source Project (AOSP): ASM apps can be added without
source code modification. Ultimately, we envision an in-
terface that allows enterprise IT and researchers to load
ASM apps on production phones without root access.

The remainder of this paper proceeds as follows. Sec-
tion 2 provides a short background on Android. Section 3
defines high level goals that underlie the ASM design.
Section 4 surveys recent work enhancing Android secu-
rity and identifies a common set of authorization hook se-
mantics. Section 5 describes the ASM design. Section 6
evaluates the utility and performance of ASM. Section 7
highlights related work on OS security extensibility. Sec-
tion 8 concludes.

2 Background

The Android OS is based on a Linux kernel, but pro-
vides a substantially different application abstraction
than found in traditional Linux desktop and server dis-
tributions. Android applications are written in Java and
compiled into a special DEX bytecode that executes in
Android’s Dalvik virtual machine. Applications may op-
tionally contain native code components. Application
functionality is divided into components. Android de-
fines four types of components: activity, service, broad-
cast receiver, and content provider. The application’s
user interface is composed of a set of activity compo-
nents. Service components act as daemons, providing
background processing. Broadcast receiver components
handle asynchronous messages. Content provider com-
ponents are per-application data servers that are queried
by other applications.

Application components communicate with one an-
other using Binder interprocess communication (IPC).
Binder provides message passing (called parcels) and
thread management. In addition to data values, parcels
can pass references to other binder objects as well as file
descriptors. When an application holds a reference to a
service component binder object, it can execute remote
procedure calls (RPCs) for any methods defined by that
service. Most of Android’s semantically rich OS APIs
are implemented as RPCs to OS defined service com-
ponents. The OS also defines several content provider
components (e.g., address book) that are queried using
special RPC methods. It should be noted that while de-
velopers are encouraged to use Binder IPC, Android also
supports standard Linux IPC mechanisms, for example
domain sockets or pipes.

Applications often interface with Binder indirectly us-
ing intent messages. The intent message abstraction is
used for communication between activity and broadcast
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receiver components, as well as starting service compo-
nents. Intent messages can be addressed to implicit ac-
tion strings that are resolved by the Activity Manager
Service (AMS). Intent messages and action strings al-
low end users and OEMs to customize the applications
used to perform tasks. The AMS resolves the desired
target application and component, starting a new process
or thread if necessary.

Android enforces component security requirements
using permissions (i.e., text strings that represent capa-
bilities). Android defines a set of core permissions for
protecting OS resources and applications, but third-party
application developers can define new permissions that
are enforced using the same mechanisms as OS permis-
sions. Permissions are granted to applications on install
and stored in the Package Manager Service (PMS). An-
droid places authorization hooks (implemented as a fam-
ily of checkPermission() methods) in the AMS as well
as OS service component RPC methods. checkPermis-
sion() is called along with the process identifier (PID) of
the caller and the appropriate permission string. Calling
checkPermission() invokes an RPC in the PMS, which re-
turns granted if the caller’s PID belongs to an application
that is granted the permission, and throws a security ex-
ception if it is denied. However, not all permissions are
enforced using checkPermission(). Permissions that con-
trol access to low-level capabilities are mapped to Linux
group identifiers (GIDs). Such capabilities include open-
ing network sockets and accessing the SDcard storage.
For these permissions, corresponding GIDs are assigned
to applications at installation time, and the kernel pro-
vides enforcement.

3 Design Goals
A secure operating system requires a reference moni-
tor [2]. Ideally, a reference monitor provides three guar-
antees: complete mediation, tamperpoofness, and ver-
ifiability. We seek to provide a foundation for build-
ing reference monitors in Android. As with LSM [34],
the ASM only provides the reference monitor interface
hooks upon which authorization modules are built. Fur-
thermore, similar to the initial design of LSM, our ASM
design manually places hooks throughout Android.

We seek to design a programmable interface for build-
ing new security enhancements to the Android platform.
Our design is guided by the following goals.

G1 Generic authorization expressibility. We seek to
provide the reference monitor interface hooks nec-
essary to develop both prior and future security
enhancements for Android. Not all authorization
modules will use all hooks, and hooks may need
to be placed at different levels to obtain sufficient
enforcement semantics.

G2 Ensure existing security guarantees. Android
provides sandboxing guarantees to application
providers. Allowing third-parties to extend An-
droid’s security framework potentially breaks those
guarantees. Therefore, ASM’s reference moni-
tor interface hooks should only make enforcement
more restrictive (e.g., fewer permissions or less file
system access). Note that by only allowing more
restrictive enforcement, we lose expressibility (e.g.,
for capability models).

G3 Protect kernel integrity. As an explicit extension to
Goal G2, we must maintain kernel integrity. Some
authorization modules will require hooks within the
Linux kernel. We cannot provide the LSM inter-
face to third-parties without some controls. We ex-
plore several methods of exposing this functionality
in Section 5.4.5.

G4 Multiple authorization modules. While there have
been proposals for supporting multiple LSMs [27],
official support for multiple authorization modules
in Linux has not been adopted at the time of writing.
We see benefit in allowing multiple ASM modules
(e.g., personal and enterprise) and seek to design
support for multiple authorization modules into the
design of ASM. Achieving multiple authorization
modules requires carefully designing the architec-
ture to address potential conflicts.

G5 Minimize resource overhead. When no authoriza-
tion module is loaded, ASM should have negligi-
ble impact on system resources (e.g., CPU perfor-
mance, energy consumption). Furthermore, given
the wide variety of authorization hook semantics,
we recognize that not all authorization modules will
require all hooks. Since some hooks have more
overhead than others, we seek to design ASM such
that different hooks can be enabled and disabled to
minimize overhead.

Threat Model: ASM assumes that the base Android OS
and services are trusted. That is, our trusted comput-
ing base (TCB) includes the Linux kernel, the AMS, the
PMS, and all OS service and content provider compo-
nents. We assume that third-party applications have com-
plete control over their process address spaces. That is,
any authorization hooks placed in framework code that
executes within the third-party application’s process is
untrusted. Finally, since third-party applications can in-
clude their own authorization hooks, they must be trusted
to mediate the protection events they define.

4 Authorization Hook Semantics
The underlying motivation of ASM is to provide a pro-
grammable interface to extend Android security. Re-
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Table 1: Classification of authorization hook semantics required by Android security enhancements
Android Package Sensors / Fake System Content File Network Third Party

System ICC Manager Phone Info Data Providers Access Access Extension
MockDroid [6] � � � � �
XManDroid [7] � � � � �
TrustDroid [8] � � � � �
FlaskDroid [9] � � � � � � � �
CRePE [10] � �
Quire [12] � �
TaintDroid [14] � � � �
Kirin [15] �
IPC Inspection [18] � �
AppFence [19] � � � � � � �
Aquifer [22] � � �
APEX [23] � � �
Saint [24] � � �
SEAndroid [29] � � � �
TISSA [37] � � �

cently, Google adopted the UNIX-level portion of the
SEAndroid [29] project into AOSP. However, Android
security is significantly more complex than simply medi-
ating UNIX system calls. Nearly all application commu-
nication occurs through Binder IPC, which from a UNIX
perspective is an ioctl to /dev/binder. Mediating the
higher level application communication has been the fo-
cus of most Android security research. The goal of this
section is to explore these different proposals to identify
a common set of authorization hooks semantics. That is,
we seek to satisfy Goal G1 by surveying existing propos-
als to enhance Android security.

Academic and industry researchers have proposed
many different security enhancements to the Android
OS. These enhancements have a wide range of mo-
tivations. For example, Kirin [15] places constraints
on permissions of applications being installed. Frame-
works such as Saint [24], XManDroid [7] and Trust-
Droid [8] focus on mediating communication between
components in different applications. FlaskDroid [9] and
the aforementioned SEAndroid [29] project also medi-
ate component interaction as a part of their enforcement.
Aquifer [22] enforces information flow control policies
that follow the user’s UI workflow. IPC Inspection [18]
and Quire [12] track Android intent messages through a
chain of applications to prevent privilege escalation at-
tacks. TaintDroid [14] and AppFence [19] dynamically
track privacy sensitive information as it is used within
an application. APEX [23] and CRePE [10] provide
fine-grained permissions. TISSA [37], MockDroid [6],
and AppFence [19] allow fine-grained policies as well as
allow the substitution of fake information into Android
APIs. While these proposals have diverse motivations,
many share authorization hook semantics.

Table 1 classifies this prior work by authorization hook
semantics. Nearly all of the proposals modify Android’s
Activity Manager Service (AMS) to provide additional
constraints on Inter-Component Communication (ICC).

The Package Manager Service (PMS) is also frequently
modified to customize application permissions. Per-
missions are also occasionally customized by modify-
ing the interfaces to device sensors and system content
providers containing privacy sensitive information (e.g.,
address book). Several proposals also require authoriza-
tion hooks for file and network access, which are en-
forced in the Linux kernel.

The table also denotes two areas that are nonstandard
for OS reference monitors. The first hook semantics is
the use of fake data. That is, instead of simply allowing
or denying a protected operation, the hook must mod-
ify the value that is returned. This third option is of-
ten essential to protecting user privacy while maintain-
ing usability. For example, the geographic coordinates
of the north pole, or maybe a coarse city coordinates can
be substituted for the devices actual location. Replacing
unique identifiers (e.g. IMEI or IMSI) to combat adver-
tising tracking is a further example. The second interest-
ing hook semantics is the inclusion of third-party hooks.
That is, a third-party application wishes the OS reference
monitor to help enforce its security goals.

Finally, TaintDroid [14] and AppFence [19] use fine-
grained taint tracking. They modify Android’s Dalvik
environment to track information within a process. How-
ever, dynamic taint tracking has false negatives, which
may lead to access control circumvention. It also in-
curs more performance overhead than may be tolerable
for some environments. In this work, we only consider
mediation at the process level. Therefore, TaintDroid
and AppFence cannot be built on top of ASM. However,
this does not preclude researchers from combining Taint-
Droid with ASM.

5 ASM Design
The authorization hooks identified in the previous sec-
tion describe semantically what to mediate, but not how
to mediate it. Existing Android security enhancements
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Figure 1: ASM framework architecture

define hooks in different ways, not all of which provide
correct or complete mediation. ASM provides a refer-
ence monitor interface for building new reference moni-
tors. By doing so, ASM allows reference monitor devel-
opers to focus on their novel security enhancements and
not on placing hooks correctly. It also allows separate
scrutiny of authorization hook placement that benefits all
reference monitors built on top of ASM.

Figure 1 shows the ASM framework architecture. Ref-
erence monitors are implemented as ASM apps. Each
ASM app registers for a unique set of authorization
hooks, specifying a callback for each. When a protected
operation occurs, ASM automatically invokes the call-
back in the ASM app. The ASM reference monitor inter-
face is contained within the ASM Bridge. In addition to
managing ASM apps, the ASM Bridge receives protec-
tion events from authorization hooks placed throughout
the Android OS. Since Android places functionality in
multiple userspace processes, authorization hooks only
notify the ASM Bridge if the hook is explicitly enabled.
ASM also supports authorization hooks within the Linux
kernel. To achieve kernel authorization, a special ASM
LSM performs upcalls to the ASM Bridge, again only
doing so for hooks explicitly enabled.

This section details the design of the ASM framework.
We use the following terminology. A protection event
is an OS event requiring access control. Authorization
hooks are placed throughout the Android OS, which in-
voke a callback in the ASM Bridge. The ASM Bridge de-
fines reference monitor interface hooks, for which ASM
apps register hook callbacks. Finally, we frequently refer
to the ASM framework as a whole simply as ASM.

5.1 ASM Apps

Reference monitors are built as ASM apps. They are
developed using the same conventions as other Android
applications. The core part of an ASM app is a service
component that implements the reference monitor hook
interface provided by ASM. There are three main func-
tionalities that must be provided within this service. Fi-
nally, the registration interface itself is protected by An-
droid permissions.

ASM App Registration: An ASM app must register it-
self with the ASM Bridge after it is installed. The time
of registration depends on logic in the specific ASM app.
For example, the ASM app could register itself automat-
ically after install, or it could provide a user interface to
enable and disable it. When the ASM Bridge receives the
registration, it updates its persistent configuration. To ac-
tivate the ASM app, the device must reboot. We require a
reboot to ensure ASM apps receive all protection events
since boot, which may impact their protection state.

Hook Registration: The ASM app service component is
started by ASM during the boot process. At this time, the
ASM app registers for reference monitor interface hooks
for which it wishes to receive callbacks. Different hooks
incur different overheads. ASM only enables a reference
monitor hook if it is registered by an ASM app. There-
fore, ASM app developers should only register for the
hooks required for complete mediation. Finally, if the
ASM registers for hooks defined by a third-party appli-
cation (Section 5.4.4), the application developer and the
ASM app developer must agree on naming conventions.

Handling Hook Callbacks: Once an ASM app regis-
ters for a reference monitor interface hook, it will re-
ceive a callback whenever the corresponding protection
event occurs. The information provided in the callback is
hook-specific. The ASM app returns the access control
decision to the ASM Bridge. As discussed in Section 5.3,
some hooks allow the callback to replace data values.
Finally, similar to registration for third-party hooks, the
ASM app developer must coordinate with the application
developer for information passed to the callback.

Registration Protection: Reference monitors are highly
privileged. While ASM does not allow an ASM
app to override existing Android security protections
(Goal G2), ASM must still protect the ability to re-
ceive callbacks. ASM protects callbacks using An-
droid’s existing permission model. It defines two permis-
sions: REGISTER ASM and REGISTER ASM MODIFY.
The ASM Bridge ensures that an ASM app has the
REGISTER ASM permission during both ASM app reg-
istration and hook registration. Finally, since replacing
data values in an access control callback has greater se-
curity implications, the ASM Bridge ensures the ASM
app has the REGISTER ASM MODIFY permission if it
registers for a hook that allows data modification. This
allows easy ASM app inspection to identify its abilities.

ASM App Deployment: How the ASM permissions are
granted has a significant impact on the practical security
of devices. Previous studies [17] have demonstrated that
end users frequently do not read or understand Android’s
install time permissions. Therefore, malware may at-
tempt to exploit user comprehension of permissions and
gain ASM app privileges. To some extent, this threat is
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mitigated by our goal to ensure existing security guaran-
tees (Goal G2). Different ASM app deployment mod-
els can also mitigate malware. In the use case where re-
searchers change AOSP source code, these permissions
can be bound to the firmware signing key, thereby only
allowing the researchers’ ASM apps to be granted ac-
cess. In the case where ASM is deployed on production
devices, ASM could follow the security model used by
device administration API. That is, a secure setting that
is only modifiable by users would enable whether ASM
apps can be used. An alternative is to use a model simi-
lar to Android’s “Unknown sources” setting for installing
applications. That is, unless a secure user setting is se-
lected, only Google certified ASM apps can be installed.

5.2 ASM Bridge

The ASM Bridge 1) provides the reference monitor in-
terface, and 2) coordinates protection events that occur in
authorization hooks placed throughout the Android OS,
as well as third-party applications. As discussed in Sec-
tion 5.1, ASM apps notify the ASM Bridge of their exis-
tence via an ASM app registration followed by individ-
ual hook registrations. We now discuss several reference
monitor interface considerations.

Per-Hook Activation: All reference monitor interface
hooks are deactivated by default. Each authorization
hook maintains an activation state variable that deter-
mines whether or not the ASM Bridge is notified of
protection events. This approach eliminates unneces-
sary IPC and therefore improves performance (Goal G5)
when no ASM app requires a specific hook. Likewise,
this approach allows ASM to achieve negligible over-
heard when no ASM apps are loaded (see Section 6.2).

When an ASM app registers a callback for a deacti-
vated hook, the ASM Bridge activates the hook by noti-
fying the corresponding authorization hook implemen-
tation. ASM maintains a list of active hooks in each
OS component (e.g., OS service component, OS con-
tent provider component). When a protection event oc-
curs, the OS component creates an access control bundle
that is sent to the ASM Bridge. When the ASM Bridge
receives the access control bundle for a hook, it is for-
warded to each ASM app that registered for the hook.
Similarly, the ASM LSM in the kernel (Section 5.4.5)
maintains a separate activation state variable per hook
and performs an upcall for each protection event.

Callback Timeouts: The ASM Bridge is notified of pro-
tection events via synchronous communication. Autho-
rization hooks in userspace communicate with the ASM
Bridge using Binder IPC, and the ASM LSM uses syn-
chronous upcalls, as described in Section 5.4.5. The
ASM Bridge then uses synchronous Binder IPC to in-
voke all ASM app callbacks for the hook corresponding
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Figure 2: ASM Hook Invocation

to the protection event. If the ASM app callback imple-
mentation is buggy, the authorization hook may stall exe-
cution. Therefore, ASM has the ability to set timeouts on
callback execution. If a timeout occurs, the ASM Bridge
conservatively assumes access is denied.

Master Policy: ASM supports multiple simultaneous
ASM apps (Goal G4). This goal is motivated by multi-
stakeholder scenarios, e.g. users, administrators, and
device manufacturers installing ASM apps on a device.
When more than one ASM app is active, a reconciliation
strategy is required to handle potential conflicts between
access control decisions. The correct conflict resolution
strategy is highly use-case specific. Therefore, providing
a general solution is infeasible [9].

ASM addresses this problem using a master policy
that defines policy conflict reconciliation. For our im-
plementation and evaluation, we use a consensus strat-
egy. That is, all active ASM apps must grant an access
control decision for the action to be allowed. Similar to
FlaskDroid [9], the master policy can be easily modified
to support other conflict resolution strategies [26, 21].
For example, a priority-based resolution policy hierar-
chically orders ASM apps, and a voting policy allows an
action if a specified threshold of ASM apps grant it.

5.3 Callbacks Modifying Data

Before discussing the reference monitor interface hooks
provided by ASM, we must describe one last concept.
While most ASM apps require a simple allow/deny ac-
cess control interface, some may benefit from the abil-
ity to modify data values. For example, MockDroid [6]
modifies values (e.g., IMEI, location) returned by OS
APIs before they are sent to applications. ASM supports
data modifications by providing a special hook type.

Each reference monitor interface hook that poten-
tially requires data replacement is split into two vari-
ants: 1) normal, which allows the corresponding call-
back to simply allow or deny the event, and 2) modify,
which allows the corresponding callback to modify the
value returned by the OS API or content provider, in ad-
dition to specifying allow or deny. As mentioned in Sec-
tion 5.1, modifying data has a greater security sensitivity,
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1 // Callback received by the ASM Bridge:
2 int start_act(inout Intent intent, in String

resolvedType, in ActivityInfo activity, int
requestCode, int callingPid, int callingUid);

3 // Callback to individual ASMs (No modify data):
4 int start_act(in Intent intent, in String

resolvedType, in ActivityInfo activity, int
requestCode, int callingPid, int callingUid);

5 // Callback to individual ASMs (Modify data):
6 int start_act_mod(in Intent intent, inout Bundle

extras, in String resolvedType, in ActivityInfo
activity, int requestCode, int callingPid, int
callingUid);

Listing 1: Example Callback Prototypes Modifying Data

and therefore registration of a modify callback requires
the REGISTER ASM MODIFY permission.

Figure 2 shows how the ASM Bridge manages normal
and modify hooks. To reduce the overhead of handling
authorization hooks, the ASM Bridge is only notified
once per protection event. The ASM Bridge then man-
ages the normal and modify versions, returning the ac-
cess control decision and modified data value (if needed)
to the authorization hook. Additionally, the ASM Bridge
invokes all of the normal callbacks before the modify
versions. This approach allows a performance improve-
ment if a consensus master policy is used (Section 5.2).
In this case, if a normal hook denies access, the modify
callbacks do not need to be called.

Example 1: Listing 1 explains this distinction further via
example. The listing shows the callback prototypes for
the start activity protection event. The first pro-
totype shown, start act(), is the ASM Bridge call-
back used by the authorization hook in the Activity Stack
subsystem of Android’s AMS. This hook is invoked after
intent resolution but before the chosen activity compo-
nent is started. The hook includes 1) the intent message
from the caller, 2) information about the activity to be
started, 3) the caller’s identity, and 4) additional infor-
mation for the current event. By marking intent as inout
(a directive defined in the Android Interface Definition
Language), the ASM Bridge can modify it.

The ASM Bridge splits start act() into the nor-
mal and modify versions. To ensure restrictive enforce-
ment, ASM apps can modify only the extras field sup-
plied by the caller. It cannot modify information that has
been reviewed by the user or the OS, such as the action
string or the target activity. To ensure this restriction, the
ASM Bridge makes the intent immutable, but supplies a
mutable Bundle of extras extracted from the intent to the
ASMs registered for the modify data hook. The modi-
fied extras received by the ASM Bridge are then set back
to the intent before the initial callback from the Activ-
ity Stack to the ASM Bridge returns.

1 // Callback received by the ASM Bridge:
2 int resolveActivity_mod(inout List<ResolveInfo>

resolvedList, in String resolvedtype, int userId,
inout Intent intent, int callingPid, int callingUid);

3 // Callback to individual ASM apps (Modify data):
4 int resolveActivity_mod(inout List<ResolveInfo>

resolvedList, in String resolvedtype, int userId, in
Intent intent, int callingPid, int callingUid, inout
Bundle extras);

Listing 2: Resolve Activity Hook

5.4 Hook Types

ASM provides a reference monitor interface for autho-
rization hooks placed throughout the Android OS. We
now describe five general categories of hooks: 1) lifecy-
cle hooks, 2) OS service hooks, 3) OS content provider
hooks, 4) third-party app hooks, and 5) LSM hooks.

5.4.1 Lifecycle Hooks

ASM provides reference monitor hooks for component
lifecycle events in the Activity Manager Service, the
AMS subsystems, and the Package Manager Service.
Hooks in this category include: resolving intents, start-
ing activities and services, binding to services, dynamic
registration of broadcast receivers, and receiving broad-
cast intents. We demonstrate the lifecycle hook category
with the following example. Note that Example 1 is also
a lifecycle hook.

Example 2: The resolve activity protection
event occurs within the Package Manager Service. The
ASM authorization hook for resolve activity is
placed in the PMS after the intent has been resolved by
the OS, but before a chooser with the resolved activi-
ties is presented to the user. This hook is motivated by
systems such as Saint [24] and Aquifer [22], which re-
fine the list of resolved applications based on access con-
trol policies. Note that refining the chooser list requires
data modification, and therefore, resolve activity
is one of few hooks that only provide a modify version.

Listing 2 shows the callback prototypes defined for
resolve activity. The callback received by the
ASM Bridge from the Android OS contains the list of re-
solved components. The ASM Bridge then executes an
RPC to the ASM app callbacks registered for this hook.
The RPC provides a modifiable resolved component list
and Bundle extras. The other parameters are immutable.
It is important to prevent the ASM from adding new
apps to the list, thereby overriding the OS’s restrictions
(Goal G2). Therefore, we compute the set intersection of
the original list and the modified list, and return the re-
sult to the authorization hook. When multiple ASM apps
register for this hook, the ASM Bridge calls the hook
callback for each ASM app, providing the modified data
from the previous invocation as input.
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5.4.2 OS Service Hooks

Lifecycle hooks include mediation for inter-component
communication using intent messages. However, ASM
apps also require mediation for OS APIs providing func-
tionality such as getting the geographic location and tak-
ing pictures. Android implements this functionality in
different service components designated as system ser-
vices, e.g., location and telephony services.

ASM uses Android’s AppOps subsystem to place the
authorization hooks for many OS service hooks. AppOps
is a very recent addition to AOSP. While there have been
several popular media stories of hobbyist developers us-
ing AppOps to control per-application permissions, Ap-
pOps remains largely undocumented and is not yet avail-
able for public use. Based on our code inspection, Ap-
pOps appears to be an effort by Google to provide more
flexible control of permission related events. Conceptu-
ally, AppOps is an Android security enhancement and
could be implemented as an ASM app. We discuss Ap-
pOps as an ASM app further in Section 7.

The ASM authorization hooks for services use the Ap-
pOps syntax. AppOps defines opcodes for different op-
erations, e.g., OP READ CONTACTS or OP SEND SMS.
To identify the application performing an operation, the
Linux uid and the package name of the application are
used. ASM uses a single authorization hook in AppOps
to call the ASM Bridge. The ASM Bridge decodes the
opcode and translates it into an ASM hook.

AppOps supports graceful enforcement. That is, it
returns empty data instead of throwing a Security Ex-
ception wherever possible (e.g., in Cursors). As a re-
sult, apps do not crash when they are denied access
to resources. On the other hand, AppOps does not
allow data values to be modified at runtime. There-
fore, ASM adds specific data modification hooks. We
also needed to extend AppOps with several hooks for
privacy sensitive operations (e.g., getDeviceId(),
onLocationChanged()). We now discuss two
examples, including both regular AppOps hooks and
ASM’s data modification hooks.

Example 3: Listing 3 shows the callback proto-
type for the AppOps hook for sending an SMS
(OP SEND SMS). The ASM Bridge receives the generic
appOpsQuery() callback and translates the opcode
to the sendSms() hook. ASM apps registered for the
sendSms() hook receive a callback whenever an SMS
message is sent.

Example 4: Listing 4 shows the data modification call-
back prototype for the getDeviceId() OS API call
in the PhoneSubInfo (i.e., telephony) service. The ASM
Bridge receives a callback from the authorization hook
and executes the getDeviceId mod() callback in
ASM apps. ASM apps receiving this callback can re-

1 // Callback received by the ASM Bridge:
2 int appOpsQuery(int opcode, int callingUid, String

packageName);
3 // Here, opcode = OP_SEND_SMS
4 // Callback to individual ASMs:
5 int sendSms(int callingUid, String packageName);

Listing 3: AppOps Hook for Sending SMS

1 // Callback received by the ASM Bridge:
2 int getDeviceId(int callingUid, out String[]

device_ids);
3 // Callback to individual ASMs (Modify data):
4 int getDeviceId_mod(int callingUid, out String[]

device_ids);

Listing 4: getDeviceId Hook

turn deny or allow. If the return value is allow, the ASM
app can also place a custom value in the first index of
the device ids array. This value will be sent to the
Android application that invoked getDeviceId(), in-
stead of the real device ID.

5.4.3 Content Provider Hooks

Content provider components are daemons that provide a
relational database interface for sharing information with
other applications. The ASM Bridge receives callbacks
from the OS content provider components (e.g., Calen-
dar, Contacts, and Telephony). Separate hooks are re-
quired for the insert, update, delete and query functions.
Authorization hooks for insert, update and delete must
be invoked before the action is performed, to preserve
the integrity of the provider’s data. In contrast, the query
function’s hook is invoked after the execution, to allow
filtering of the returned data.

The content provider query RPC returns a database
Cursor object. The Cursor object not a parcelable type,
and therefore the entire query response is not returned to
the caller in a single Binder message. Therefore, ASM
apps cannot filter the query. To account for this, we ex-
tract the Cursor contents into a parcelable ASMCursor
wrapper around a CursorWindow object to include in the
callback to the ASM Bridge.

The following example demonstrates the query inter-
face. ASM only provides normal (i.e., no data modifica-
tion) hooks for insert, delete, and update.

Example 5: Listing 5 shows the callback prototypes
for the CallLogProvider OS content provider. The
ASM Bridge receives the original query and the result
wrapped in an ASMCursor. The callback is split into
normal and modify hook variants. ASM apps that regis-
ter for the normal hook get read access to the query and
the result. ASM apps registered for the data modify hook
can also modify the ASMCursor object. Both the hooks
return allow and deny decisions via the return value.

Finally, we note that this use of a CursorWindow ob-
ject to copy the entire content provider query response



USENIX Association  23rd USENIX Security Symposium 1013

1 // Callback received by the ASM Bridge:
2 int callLogQuery(inout ASMCursor cursor, in Uri uri,

in String[] projection, in String selection, in
String[] selectionArgs, in String sortOrder, int
callingUid, int callingPid);

3 // Callback to individual ASMs (No modify data):
4 int callLogQuery(in ASMCursor cursor, in Uri uri, in

String[] projection, in String selection, in String[]
selectionArgs, in String sortOrder, int callingUid,
int callingPid);

5 // Callback to individual ASMs (Modify data):
6 int callLogQuery_mod(inout ASMCursor cTemp, in Uri

uri, in String[] projection, in String selection, in
String[] selectionArgs, in String sortOrder, int
callingUid, int callingPid);

Listing 5: CallLogProvider query hook

1 // Callbacks received by the ASM Bridge:
2 int hook_handler(in String name, in Bundle b);
3 int hook_handler_mod(in String name, inout Bundle b);
4 // Callback to individual ASMs (No modify data):
5 int hook_handler(in String name, in Bundle b);
6 // Callback to individual ASMs (Modify data):
7 int hook_handler_mod(in String name, inout Bundle b);

Listing 6: Third Party Hooks

into the ASM hook may lead to additional overhead
when query responses are large. This is because Android
uses a lazy retrieval of Cursor contents, only transferring
portions of the response over Binder IPC as needed. One
way to improve ASM query performance is to intercept
the actual data access via Binder to modify data, rather
than serializing the entire response. However, this will
increase the number of callbacks to ASM apps, resulting
in a trade-off. We will explore this and other methods of
performance improvement in future work.

5.4.4 Third Party Hooks

ASM allows third-party Android applications to dynam-
ically add hooks to the ASM Bridge. These hooks are
valuable for extending enforcement into Google and de-
vice manufacturer applications (which are not in AOSP),
as well as third-party applications downloaded from ap-
plication markets (e.g., Google Play Store). Third-party
hooks are identified by 1) a hook name, and 2) the pack-
age name of the application implementing the autho-
rization hook. The complete hook name is a charac-
ter string of the format package name:hook name.
This naming convention provides third parties with their
own namespaces for hooks. Note that third parties do
not specify their package name; ASM obtains it using
the registering application’s uid received from Binder.

To receive callbacks for third-party hooks, ASM apps
implement two generic third-party hook methods, shown
in Listing 6. One method handles normal hook callbacks;
the other method handles data modification hook call-
backs. When the third-party application’s authorization
hook calls the ASM Bridge callback, it passes a generic
Bundle object. The ASM forwards the Bundle to regis-
tered ASM apps for access control decisions. As with

other ASM authorization hooks, third-party hooks are
only activated when an ASM app registers for it.

ASM apps receive hook callbacks for all of their regis-
tered third-party hooks via a single interface (technically
two callbacks, as in Listing 6). Within this callback,
ASM apps must identify the third-party hook by name
and must interpret the data in the Bundle based on the
third-party application’s specification. We assume that
ASM apps that register for third-party hooks are aware
of the absolute hook name and the contained attributes.
The ASM app returns allow, deny, or allow along with a
modification of the Bundle (for data modification hooks).

Finally, the third-party application developer must im-
plement a special service component to receive hook
activation and deactivation callbacks from the ASM
Bridge. The ASM Bridge sends messages to this service
to update the status of a hook. Third-party application
developers must follow the message codes exposed by
ASM for proper hook management.

5.4.5 LSM Hooks

ASM apps sometimes require mediation of UNIX-level
objects such as files and network sockets. ASM can-
not define authorization hooks for such objects in the
userspace portion of the Android OS. Instead, autho-
rization hooks must be placed in the Linux kernel.
Fortunately, the Linux kernel already has the LSM
reference monitor interface for defining kernel refer-
ence monitors. For example, file permission and
socket connect LSM hooks mediate file and net-
work socket operations, respectively.

The main consideration for ASM is how to allow ASM
apps to interface with these LSM hooks. Several poten-
tial approaches exist. First, ASM could allow ASM apps
to load LSM kernel modules directly. This approach is
appropriate when the ASM app developer also has the
ability to rebuild the device firmware. For example, one
target audience for ASM is security researchers prototyp-
ing new reference monitors. In this case, the ASM app
developer can create userspace and kernel components
and provide communication between the two.

However, we would like to also allow ASM apps to
mediate kernel-level objects without rebuilding the de-
vice firmware. Therefore, a second option is to develop
a small mediation programming language that is inter-
preted by an ASM LSM. In this model, the ASM app
developer programs access control logic within the inter-
preted language, and the logic is loaded along with the
ASM on boot. Using an interpreted language would en-
sure kernel integrity (Goal G3).

Our current implementation uses a third option. We
define a special ASM LSM that implements LSM hooks
and performs synchronous upcalls to the ASM Bridge to
complete the access control decision. Consistent with the
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rest of the ASM design, the upcall is only activated when
an ASM app registers for the corresponding reference
monitor hook. To integrate our ASM LSM into the kernel
without removing SEAndroid (Goal G2), we used an un-
official multi-LSM patch [27]. We implemented autho-
rization hooks for many commonly used LSM hooks, in-
cluding file permission and socket connect.

While the upcall approach initially sounds like it
would have very slow performance, our key observation
is that many ASM apps will require very few, if any,
LSM hooks. For example, an ASM app for Aquifer [22]
would only require the file permission and
socket connect LSM hooks. Section 6.2 shows that
both of the aforementioned hooks can be evaluated in
userspace with reasonable performance overhead. Fur-
thermore, placing all ASM app logic in one place (i.e.,
userspace) simplifies reference monitor design.

To improve access performance for large files, we im-
plemented a cache with an expiration policy, where file
accesses (euid, pid, inode, access mask) and decisions
received from ASM apps on those accesses are cached;
and are invalidated if the accesses do not repeat within a
timeout period of 1 ms. Since we cache and match the
file inode as well as the accessing subject’s effective uid
and pid, we do not provide an attacker the opportunity of
taking advantage of a race condition (i.e., requesting for
a file less than 1ms after its access is granted).

Note that this approach may lead to a case where file
access control is too coarse grained for a particular ASM
app. For example, consider a situation where an applica-
tion on the device reads a file continuously. An ASM app
grants this application access, but if at some point during
these accesses it wants to deny the access to this file, the
file permission hook is not triggered since the file
is read before the timeout expires resulting in cache hits.
To address this problem, we allow ASM apps to set this
timeout. If multiple ASM apps set a timeout, the mas-
ter policy can determine the timeout, e.g., the smallest
timeout. ASM apps may also disable the cache, which
provides all file access control callbacks to the ASM, but
also degrades the performance of file reads.

5.5 ASM LSM

Finally, the ASM LSM provides two security features in
addition to the LSM hook upcalls. First, it implements
the task kill LSM hook to prevent registered ASM
apps from being killed. As we discuss in Section 6.1,
some existing security enhancements can be disabled
by killing their processes. Second, it implements the
inode *xattr LSM hooks to provide ASM apps ac-
cess to their own unique extended attribute namespaces.
That is, an ASM app can use file xattrs with a prefix
matching its package name. No other applications can

access these xattrs. File xattrs are needed by security en-
hancements such as Aquifer [22].

6 Evaluation

We evaluate the ASM framework in two ways. First, we
evaluate the utility of ASM via case study by implement-
ing two recent security enhancements for Android as
ASM apps. Second, we evaluate the resource impact of
ASM with respect to both performance and energy con-
sumption. We implemented ASM on Android version
4.4.1, hence we use the Android 4.4.1 AOSP build as our
baseline. All the experiments were performed on an LG
Nexus 4 (GSM). The source code for ASM is available
at http://androidsecuritymodules.org.

6.1 Case Studies
In this section, we evaluate the utility of ASM by im-
plementing existing security solutions as ASM apps. We
implement and study two examples: 1) MockDroid [6]
and 2) AppLock [13]. Finally, we conclude this section
with a summary of lessons learned.

6.1.1 MockDroid

MockDroid [6] is a system-centric security extension for
the Android OS that allows users to gracefully revoke
the privileges requested by an application without the
app crashing. To do so, MockDroid provides a graphical
user interface that allows the user to decide whether in-
dividual applications are presented real or fake responses
when accessing sensitive system components.
Original Implementation: MockDroid extends An-
droid’s permissions model for accessing sensitive ser-
vices by providing alternative “mock” versions. When
users install an application, they choose to use the real
or mock version of permissions. However, users can also
revise this decision later using a graphical user interface.
MockDroid stores the mapping between applications and
permissions in an extension to Android’s Package Man-
ager Service. This policy store is the primary policy de-
cision point in MockDroid.

MockDroid places enforcement logic in relevant An-
droid OS components, as well as the kernel. If an appli-
cation is assigned a mock permission, the Android OS
component will return fake information. For example,
if an application attempts to get the device IMEI, and it
is assigned the mock version of READ PHONE STATE,
then the telephony service will return a fake static IMEI
instead of the device’s real IMEI.

MockDroid also modifies the Linux kernel with en-
forcement logic. Recall from Section 2 that some per-
missions are enforced in the Linux kernel based on GIDs
assigned to applications. MockDroid defines additional
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Table 2: Hooks registered by the MockDroidASM app
Access to Fake ASM Hook ASM Callback

IMEI device id mod int getDeviceId mod(String fake imei[])
Fine/Coarse Location update on location changed mod int onLocationChanged mod(int uid, Location loc)

Internet Connection socket connect int socket connect(String family, String type, int uid)
Contacts Query contacts query mod int query contacts mod (ASMCursor c, String projection, ...)
Contacts Insert contacts insert int contactsInsert(Uri uri, ContentValues values)
Contacts Delete contacts delete int contactsDelete(Uri uri, String selection, String selectionArgs[], ...)
Contacts Update contacts update int contactsUpdate(Uri uri, ContentValues values, String selection, ...)

Receive Broadcast resolve broadcast mod int resolveBroadcastReceivers mod(List resolvedList, String resolvedtype, ..)

GIDs for mock permissions enforced by GID. For exam-
ple, if the user selects to assign the mock version of the
INTERNET permission to an application, it is assigned
to the mock inet group instead of the inet group. To
enforce this mock permission, MockDroid modifies the
inet runtime check in the Linux kernel (a check added
by Android to Linux). In the modified check, if the appli-
cation is in the mock inet group, a socket timeout error
is returned, simulating an unavailable network server.
MockDroidASM: We implemented an ASM app ver-
sion of MockDroid called MockDroidASM. In addi-
tion to ASM permissions for hook registration, Mock-
DroidASM must register for the PACKAGE INSTALL
hook to receive the package name and the list of
requested permissions when each new application
is installed. A MockDroidASM GUI also allows
the user to configure which permissions to grace-
fully revoke from an application (e.g., INTERNET,
READ PHONE STATE).

Instead of using additional mock permissions, Mock-
DroidASM registers for the modify version of ASM
hooks that are triggered when an application attempts
to access sensitive system components. Since Mock-
DroidASM needs to modify values returned to apps, it
requests the REGISTER ASM MODIFY permission, as
described in Section 5.3.

Table 2 shows the most important hooks used by
MockDroidASM. For example, the device id mod
hook allows MockDroidASM to fake the IMEI number
of the device. On the kernel-level, MockDroidASM reg-
isters for the socket connect hook to receive a call-
back when an application tries to connect to a network
server. If INTERNET is revoked by the user, the Mock-
DroidASM returns deny to the ASM LSM, which returns
a socket timeout error to the application.

6.1.2 AppLock

AppLock [13] is an application available on the Google
Play Store. It allows users to protect the user interface
components of applications with a password. Users set a
password to access the AppLock. They then selectively
lock other third-party and system applications through
AppLock’s user interface. When the user tries to open
a protected application, AppLock presents a password

prompt, and the user must enter the correct password be-
fore the application can be used.
Original Implementation: AppLock requests install-
time permissions for 1) getting the list of running apps, 2)
overlaying its user interface over other applications, and
3) killing application processes. While AppLock does
not require any modifications to Android’s source code,
it is uses energy very inefficiently. It can also be circum-
vented using an ADB shell (e.g., “am force-stop
com.domobile.applock”).

AppLock’s LockService uses a busy loop to continu-
ously query the Android operating system for the list of
running applications while the screen is on. If the top ap-
plication is protected by AppLock’s policy, LockService
overlays the current screen with a password prompt user
interface. This interface stays on the screen, trapping all
input until the correct password is entered. If the user de-
cides to return from the lock screen without entering his
password, AppLock kills the protected application. We
have verified this execution via static analysis using Ap-
kTool [1] as well as with another monitoring ASM app
that registers for the start service hook.
AppLockASM: We implemented an ASM app ver-
sion of AppLock called AppLockASM. To provide the
password-protected application functionality, AppLock-
ASM simply registers for the start activity hook.
It then receives a callback whenever an activity compo-
nent is started. When this occurs, AppLockASM dis-
plays its own lock screen. If the user enters the correct
password, the start activity event is allowed. If
the user decides not to enter a password, it is denied.
Unlike AppLock, AppLockASM never starts the target
activity component without the correct password.

6.1.3 Summary

ASM considerably simplifies development of security
modules such as AppLock and MockDroid. For exam-
ple, the original AppLock app performs its functionality
by starting a service in an infinite loop, a design that is in-
efficient in terms of power as well as latency. AppLock-
ASM on the other hand needs to simply register for a
callback with the ASM Framework. The AppLock im-
plementation also prompts a lock screen after the app has
already been started, and has to kill the app when the lock
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Table 3: Performance - Unmodified AOSP, ASM with no reference monitor, and ASM with a reference monitor app
ASM (ms) Overhead (%) Overhead (ms)

Protection Event AOSP (ms) w/o ASM app w/ ASM app w/o ASM app w/ ASM app w/o ASM app w/ ASM app
Start Activity 19.03±1.51 20.01±1.39 22.74±1.77 5.15 19.50 0.98 3.71
Start Service 3.89±0.31 4.6±0.41 8.42±0.61 18.25 116.45 0.71 4.53

Send Broadcast 2.18±0.24 4.48±0.69 6.45±0.55 105.50 196.71 2.30 4.27
Contacts Insert 121.41±5.98 120.48±5.25 135.39±6.35 -0.76 11.51 -0.93 13.98
Contacts Query 17.41±3.88 21.10±3.13 29.50±4.36 21.19 69.44 3.69 12.09

File Read 59.13±1.97 62.27±2.86 65.39±2.93 5.31 10.59 3.14 6.26
File Write 57.68±3.01 57.98±2.76 59.03±3.60 0.52 2.34 0.30 1.35

Socket Create 0.65±0.086 0.79±0.13 4.26±0.56 21.54 555.38 0.14 3.61
Socket Connect 1.61±0.21 1.65±0.22 5.13±0.32 2.48 218.63 0.04 3.52

Socket Bind 2.00±0.17 1.93±0.64 5.15±0.34 -3.5 157.50 -0.07 3.15

screen returns. This arbitrary killing of apps is prevented
in the AppLockASM case, where the callback happens
before the activity is started, and the activity starts only
if the AppLockASM allows. This is also beneficial from
the security point of view, as an AppLockASM-like app
does not need to register for the permission to kill other
apps, reducing the risk in case the locking app itself is
malicious or malfunctions.

The original MockDroid implementation requires
modifications to the Package Manager Service, and has
to implement an entire parallel mock permission frame-
work. This effort can be reduced by registering for a
small number of ASM hooks, without having to modify
system services.

A general lesson learned from these case studies is that
the ASM architecture enables developers to easily im-
plement complex system-centric security enhancements
without the need for third party support. This broadens
the outreach of ASM, and encourages third-party devel-
opers to engage in the development of sophisticated se-
curity solutions for Android-based devices.

6.2 Performance Overhead
To understand the performance implications of ASM, we
micro benchmarked the most common ASM protection
events for modules in Table 1. We performed each ex-
periment 50 times in three execution environments: 1)
AOSP, 2) ASM with no ASM app, and 3) ASM with one
ASM app. The ASM app only registers for the callback
of the tested protection event; all other callbacks remain
deactivated. Since we are only interested in the perfor-
mance overhead caused by framework, our test callback
immediately returns allow. Table 3 shows the mean re-
sults with the 95% confidence intervals.
Lifecycle protection events: To test lifecycle protection
events (i.e., start activity, start service, and send broad-
cast), we created an intent message and added a byte ar-
ray as its data payload (i.e., extras Bundle). Each test
type registered for the modify version of the ASM hook.
We sent the intent for the respective type, pausing for
five seconds between consecutive executions. Potential
areas of overhead for using the hook include: 1) cost of

establishing two additional IPCs, 2) marshalling and un-
marshalling this data across the two IPCs, 3) ASM copy-
ing the extras Bundle when sending it to the ASM app,
and 4) setting the returned Bundle back to the original
intent. To estimate worst case performance, we chose a
very large array (4KB) and registered our test ASM for
modify data hooks. This worst case overhead, though
relatively high, is not noticeable by the user due to its
low absolute value. Additionally, most applications use
files to share very large data values. We note that while
send broadcast has a high overhead percentage, the wall
clock overhead is in the order of milliseconds, which is
negligible overhead for broadcasts.

Content provider protection events: Micro bench-
marks for content providers were performed on the Con-
tacts Provider. For this experiment, our ASM app reg-
isters for the contacts insert callback. It pro-
ceeds to insert a new contact (first and last name) into
the contacts database exposed by the ContactsProvider.
The overhead observed is 11.51% and negligible in
terms of its absolute value. We then registered for the
contacts query mod hook, and performed a query
on the same contact. Query has a greater overhead,
which is attributable to marshalling/unmarshalling the
data between the two IPC calls, and serialization of the
Cursor object into a parcelable. A major cause of this
overhead is also that the Content Provider Cursor is not
populated when the query result is returned to the calling
application, but is instead filled as and when the appli-
cation uses it to retrieved values. As discussed in Sec-
tion 5.4.3, future work will consider alternative methods
of mediating query responses.

File access protection events: File micro benchmarks
tested the file permission hook, which uses an up-
call from the kernel. To test file access performance, our
test app performs an access (read/write) on a 5MB file.
We pause for a second between successive executions.
For writes, we do not see considerable overhead as the
file is written in one shot to disk. Reads used a 16KB
buffer and the default 1ms expiration time for caching
access control decisions, as discussed Section 5.4.5.
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Table 4: Energy overhead of ASM.
Average Power

Consumption (mW) Overhead (%)
AOSP 670.42 -

ASM w/o ASM app 692.83 3.34
ASM w/ ASM app 732.98 9.33

Socket protection events: For socket operations, we
tested the performance overhead for creating, binding
and connecting to an IPv6 socket. Our test ASM app reg-
istered for the socket create, socket bind, and
socket connect callbacks. The absolute overhead is
mainly caused by the callback to the userspace, and is a
constant overhead for socket operations.

6.3 Energy Consumption
Energy consumption is a growing concern for mobile de-
vices. To measure ASM’s impact on energy consump-
tion, we perform energy measurements in same three test
environments as performance: 1) AOSP, 2) ASM with
no ASM app, 3) ASM with one ASM app. The ASM
app registers for all the hooks from the performance ex-
periments. We use the Trepn profiler 4.1 [25] provided
by Qualcomm to perform power measurements. Trepn
uses an interface exposed by the Linux kernel to the
power management IC used on the System on a Chip to
measure energy consumption, a feature that is supported
on a limited set of devices, including the LG Nexus 4.
Trepn samples power consumption measurements every
100 ms. Average values are shown in the Table 4.

We monitor system energy consumption while run-
ning the test applications from Section 6.2. When the
hooks are deactivated, we measured an energy consump-
tion overhead of about 3.34%. Our ASM app used for
the performance and energy consumption experiments
measured an overhead of about 9.33%. This overhead is
caused by the active authorization hooks in the relevant
OS components and kernel, as well as the communica-
tion between the authorization hooks, the ASM Bridge,
and the ASM app.

It should be noted that performing accurate energy
consumption measurements on smartphones is a chal-
lenge. While we consider the individual measurements
to be accurate, we acknowledge that the low sampling
rate used by the Trepn profiler is problematic. However,
each individual experiment is performed 50 times, there-
fore we believe Trepn’s measurements to at least provide
a rough estimate of the energy consumption overhead in-
troduced by ASM.

7 Related Work
Section 4 discussed Android security enhancements that
modify the Android firmware to achieve security media-
tion. As an alternative approach, Aurasium [35], App-
Guard [5], RetroSkeleton [11] and Dr. Android and

Mr. Hide [20] repackage applications with inline ref-
erence monitors (IRMs). While IRMs do not require
firmware modification, rewriting frequently breaks ap-
plications, and the resulting mediation may be circum-
vented if API coverage is incomplete or native libraries
are used. Placing access control mediation within the OS
provides stronger guarantees.

ASM follows the methodology of the LSM [34] and
TrustedBSD [32] reference monitor interface frame-
works. Both frameworks have been highly successful. In
Linux, LSM is widely used to extend Linux security en-
forcement. Version 3.13 of Linux kernel source includes
SELinux [28], AppArmor [3], Tomoyo [31], Smack [30],
and Yama [36] LSMs. TrustedBSD is not only used by
FreeBSD, but also by Apple to implement seatbelt in
Mac OS X and iOS [33].

FlaskDroid [9] also shares motivation with ASM. It
provides an SELinux-style Type Enforcement (TE) pol-
icy language for extending Android security. FlaskDroid
also allows third-party application developers to spec-
ify TE policies to protect their applications. However,
FlaskDroid is limited to TE access control policies. By
providing a programmable interface, ASM enables an
extensible interface that allows not only TE, but also
novel security models not yet invented. Specifically, we
believe the ability to replace data values will become vi-
tal in protecting new operating systems such as Android.

Concurrent to and independent of our work on ASM,
the Android Security Framework (ASF) [4] also pro-
vides an extensible interface to implement security mod-
ules. ASM and ASF are conceptually very similar: both
promote the need for a programmable interface, autho-
rization hooks that replace data (called edit automata in
ASF), and third-party hooks (via callModule() in ASF).
However, their individual approaches differ. A key dif-
ference is that ASM seeks to ensure existing security
guarantees (Goal G2), whereas ASF assumes the module
writer is completely trusted (e.g., can load kernel mod-
ules). Goal G2 is motivated by our vision of enterprise IT
and researchers loading ASM apps on production phones
without root access. ASF does not support this vision.
Furthermore, a vulnerable ASF module can undermine
secrecy and integrity of the system and all installed ap-
plications. That said, ASF does provide expressibility
that ASM does not. Specifically, ASF provides a pro-
grammable interface to adding inline reference monitors
to apps. While IRMs run the risk of breaking apps, they
do support sub-application policies that ASM cannot ex-
press (e.g., forcing an app to use https over http).

Finally, Section 5.4 identified the AppOps security en-
hancement that is currently under development in AOSP.
AppOps adds authorization hooks throughout the An-
droid OS. However, AppOps does not provide a pro-
grammable interface for enhancing OS security. Instead,
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we envision separating the authorization hooks from Ap-
pOps and implementing AppOps as an ASM app. A sim-
ilar process occurred during the creation of LSM when it
was split away from SELinux.

8 Conclusion
This paper has presented the Android Security Modules
framework as a programmable interface for extending
Android’s security. While similar reference monitor in-
terfaces have been proposed for Linux and TrustedBSD,
ASM is novel in how it addresses the semantically rich
OS APIs provided by new operating systems such as An-
droid. We studied over a dozen research proposals that
enhance Android security to motivate the reference mon-
itor interface hooks provided by ASM. Of particular note
is the ability for hooks to replace data, as well as for
third-party application developers to define new hooks.

ASM promotes the creation of novel security enhance-
ments to Android without restricting OS consumers (e.g.,
consumers, enterprise, government) to specific policy
languages (e.g., type enforcement). ASM currently al-
lows researchers with the ability to recompile Android to
rapidly prototype novel reference monitors without need-
ing to consider authorization hook placement. If ASM
is adopted into the AOSP source code, it potentially al-
lows researchers and enterprise IT to add new reference
monitors to production Android devices without requir-
ing root access, a significant limitation of existing bring-
your-own-device solutions.
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Abstract
We present an app automation tool called Brahmastra for
helping app stores and security researchers to test third-
party components in mobile apps at runtime. The main
challenge is that call sites that invoke third-party code
may be deeply embedded in the app, beyond the reach
of traditional GUI testing tools. Our approach uses static
analysis to construct a page transition graph and discover
execution paths to invoke third-party code. We then per-
form binary rewriting to “jump start” the third-party code
by following the execution path, efficiently pruning out
undesired executions. Compared with the state-of-the-
art GUI testing tools, Brahmastra is able to successfully
analyse third-party code in 2.7× more apps and decrease
test duration by a factor of 7. We use Brahmastra to un-
cover interesting results for two use cases: 175 out of
220 children’s apps we tested display ads that point to
web pages that attempt to collect personal information,
which is a potential violation of the Children’s Online
Privacy Protection Act (COPPA); and 13 of the 200 apps
with the Facebook SDK that we tested are vulnerable to
a known access token attack.

1 Introduction
Third-party libraries provide a convenient way for mo-
bile application developers to integrate external services
in the application code base. Advertising that is widely
featured in “free” applications is one example: 95% of
114,000 popular Android applications contain at least
one known advertisement library according to a recent
study [22]. Social media add-ons that streamline or en-
rich the user experience are another popular family of
third-party components. For example, Facebook Login

lets applications authenticate users with their existing
Facebook credentials, and post content to their feed.

Despite this benefit, the use of third-party components
is not without risk: if there are bugs in the library or the
way it is used then the host application as a whole be-
comes vulnerable. This vulnerability occurs because the

library and application run with the same privileges and
without isolation under existing mobile application mod-
els. This behavior is especially problematic because a
number of third-party libraries are widely used by many
applications; any vulnerability in these libraries can im-
pact a large number of applications. Indeed, our inter-
est in this topic grew after learning that popular SDKs
provided by Facebook and Microsoft for authentication
were prone to misuse by applications [30], and that ap-
plications often make improper use of Android cryptog-
raphy libraries [20].

In this paper, we present our solution to the problem
of third-party component integration testing at scale, in
which one party wishes to test a large number of appli-
cations using the same third-party component for a po-
tential vulnerability. To be useful in the context of mo-
bile app stores, we require that a successful solution test
many applications without human involvement. Observe
that it is not sufficient to simply test the third-party li-
brary for bugs in isolation. This is because vulnerabil-
ities often manifest themselves due to the interaction of
the application and the third-party component. Thus our
focus is to develop tools that enable testers to observe in
situ interactions between the third-party component and
remote services in the context of a specific application at
runtime.

We began our research by exploring automated run-
time analysis tools that drive mobile UIs (e.g., [5, 23,
26]) to exercise the third-party component, but quickly
found this approach to be insufficient. Although these
tools are effective at executing many different code paths,
they are often unable to reach specific interactions deep
within the applications for a number of reasons that we
explore within this paper. Instead, our approach lever-
ages the structure of the app to improve test hit rate and
execution speed. To do this, we characterize an app by
statically building a graph of its pages and transitions
between them. We then use path information from the
graph to guide the runtime execution towards the third-
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party component under test. Rather than relying on GUI
manipulation (which requires page layout analysis) we
rewrite the application under test to directly invoke the
callback functions that trigger the desired page transi-
tions.

We built Brahmastra to implement our approach for
Android apps. Our tool statically determines short exe-
cution paths, and dynamically tests them to find one that
correctly invokes a target method in the third-party li-
brary. At this stage, behavior that is specific to the li-
brary is checked. Because our techniques do not require
human involvement, Brahmastra scales to analyze a large
number of applications. To show the benefits of our ap-
proach, we use our tool for two new studies that con-
tribute results to the literature: 1) checking whether chil-
dren’s apps that source advertisements from a third-party
comply with COPPA privacy regulations; and 2) check-
ing that apps which integrate the Facebook SDK do not
have a known security vulnerability [30].

From our analysis of advertisements displayed in 220
kids apps that use two popular ad providers, we find that
36% apps have displayed ads whose content is deemed
inappropriate for kids—such as offering free prizes, or
displaying sexual imagery. We also discover that 80%
apps have displayed ads with landing pages that attempt
to collect personal information from the users, such as
name, address, and online contact information—which
can be a violation of the Children’s Online Privacy Pro-
tection Act [6]. Apart from creating an unsafe environ-
ment for kids, this also leaves the app developers vulner-
able to prosecution, since they are considered liable for
all content displayed by their app.

For our analysis of a vulnerability in third party login
libraries, we run a test case proposed by Wang et al. [30]
against 200 Android apps that bundle Facebook SDK.
We find that 13 of the examined apps are vulnerable.

Contributions: We make two main contributions. The
first is Brahmastra, which embodies our hybrid approach
of static and dynamic analysis to solve the third-party
component integration testing problem for Android apps.
We discuss our approach and key techniques in §4 and
their implementation in §5. We show in §6 that our
techniques work for a large fraction of apps while ex-
isting tools such as randomized testing (Monkey) often
fail. We have made the static analysis part of Brah-
mastra available at https://github.com/plum-
umd/redexer.

Our second contribution is an empirical study of two
security and privacy issues for popular third-party com-
ponents. We find potential violations of child-safety laws
by ads displayed in kids apps as discussed in §7; several
apps used in the wild display content in potential viola-
tion of COPPA due to the behavior of embedded compo-
nents. We find that several popular Android apps are vul-

nerable to the Facebook access token attack as discussed
in §8; A Facebook security team responded immediately
to our findings on 2/27/2014 and had contacted the af-
fected developers with the instructions to fix.

2 Background
As our system is developed in the context of Android,
we begin by describing the structure of Android apps and
support for runtime testing.
Android app structure: An Android app is organized as
a set of pages (e.g., Figure 1) that users can interact with
and navigate between. In Android, each page is repre-
sented by an activity object. Each activity class repre-
sents one kind of page and may be initialized with differ-
ent data, resulting in different activity instances. We
use the terms page and activity instance interchangeably.
Each page contains various GUI elements (e.g., buttons,
lists, and images), known as views. A view can be as-
sociated with a callback function that is invoked when a
user interacts with the view. The callback function can
instantiate a new activity by using a late binding mecha-
nism called intent. An intent encapsulates the descrip-
tion of a desired action (e.g., start a target activity) and
associated parameters. The main activity (or the first
page) of an app, defined in its manifest file, is started by
the application launcher by passing a START intent to it.

For example, in Figure 1, clicking the “Done” button
on activity A1 invokes its event handler, which calls a
callback function defined by the app developer. The call-
back constructs an intent to start activity A2 with nec-
essary parameter P12. The Activity Manager then con-
structs an instance of A2, and starts it with P12 as parame-
ters. We refer to the documentation of Android internals
for more details [2].
Automated dynamic analysis: Recent works have used
a class of automation tools, commonly called a Mon-
key, that, given a mobile app binary, can automatically
execute it and navigate to various parts (i.e., states) of
the app. Examples include PUMA [23], DECAF [25],
AppsPlayground [26], A3E [14], and VanarSena [27]. A
Monkey launches the app in a phone or an emulator, in-
teracts with it by emulating user interactions (e.g., click-
ing a button or swiping a page) to recursively visit vari-
ous pages, and performs specific tasks (e.g., checking ad
frauds in the page or injecting faults) on each page.

In Figure 1, a Monkey may be able to visit the se-
quence of states A1 → A2 → A3→ A4 if it knows the
right UI actions (e.g., type in mother’s name and select
“Due Date” in A1) to trigger each transition. However, if
Monkey clicks a button in A3 other than “Account”, the
app would navigate to a different activity. If the goal of
testing is to invoke specific methods (e.g., Facebook lo-
gin as shown in the example), then without knowing the
structure of the app, a Monkey is likely to wander around
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A1

P12

E1

P34

E2 E3 E4 E5

A2 A3 A4

Figure 1: Activity sequences of com.alt12.babybumpfree that invoke Facebook single sign-on window in the forth
activity (A4): Clicking “I Agree” (E1) then clicking “Done” (E2) opens up A2 with the parameter, fromLoader : tru
(P12). Clicking “Settings” (E3) in A2 opens up the settings activity, A3 and then clicking “Account” (E4) opens up the
login activity, A4 with the parameter, WHICHCLASS : com.alt12.babybumpcore.activity.settings.Settings. Finally,
clicking “Login with Facebook” (E5) opens up the sign-on window within the same activity, A4.

many activities until it reaches A4, if it ever does.

3 Problem and Insights
Our goal is to develop the ability to automatically and
systematically test a large set of mobile apps that embed
a specific third-party component for a potential vulnera-
bility associated with the use of that component. This
ability would let app store operators rapidly vet apps
to contain security vulnerabilities caused by popular li-
braries. It would let component developers check how
apps use or misuse their interfaces. It would also let se-
curity researchers such as ourselves empirically assess
vulnerabilities related to third-party libraries.

A straightforward approach is to use existing Mon-
keys. Unfortunately, this approach does not work well:
it often fails to exercise the target third-party compo-
nent of the app under test. Although recent works pro-
pose techniques to improve various types of coverages,
computed as the fraction of app activities or methods in-
voked by the Monkey, coverage still remains far from
perfect [26, 14, 13, 25, 27]. Moreover, in contrast to tra-
ditional coverage metrics, our success metric is binary
for a given app indicating whether the target third-party
component (or a target method in it) is invoked (i.e., hit)
or not (i.e., miss). Our experiments show that even a
Monkey with a good coverage can have a poor hit rate
for a target third-party component that may be embed-
ded deep inside the app. We used an existing Monkey,
PUMA that reports a > 90% activity coverage compared
to humans [23], but in our experiments it was able to in-
voke a target third-party component only in 13% of the
apps we tested (see §6 for more details). On a close ex-
amination, we discovered several reasons for this poor
hit rate of existing Monkeys:

R1. Timeout: A Monkey can exhaust its time budget be-
fore reaching the target pages due to its trial-and-
error search of the application, especially for apps
with many pages that “blow up” quickly.

R2. Human inputs: A Monkey is unable to visit pages
that are reached after entering human inputs such
as login/password, or gestures beyond simple clicks
that the automated tester cannot produce.

R3. Unidentified elements: A Monkey fails to explore
clickable UI elements that are not visible in the cur-
rent screen (e.g., hidden in an unselected tab) or are
not activated yet (e.g., a “Like” button that is acti-
vated only after the user registers to the app) or are
not identified by underlying UI automation frame-
work (e.g., nonstandard custom control).

R4. Crashes: By stressing the UI, a Monkey exacerbates
app crashes (due to bugs and external dependencies
such as the network) that limit exploration.

Note that, unlike existing Monkeys, our goal is not to
exhaustively execute all the possible code paths but to
execute particular code paths to invoke methods of in-
terest in the third-party library. Therefore, our insight is
to improve coverage by leveraging ways how third party
components are integrated with application code base.
These components are incorporated into an app at the
activity level. Even if the same activity is instantiated
multiple times with different contents, third-party com-
ponents typically behave in the same way in all those
instantiations. This allows us to restrict our analysis at
the level of activity rather than activity instances. Fur-
ther, even if an app contains a large number of activities,
only a small number of them may actually contain the
third-party component of interest. Invoking that compo-
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nent requires successfully executing any and only one of
those activities.

Using this insight, our testing system, Brahmastra,
uses three techniques described below to significantly
boost test hit rate and speed compared to a Monkey that
tries to reach all pages of the app.

Static path pruning: Brahmastra considers only the
“useful” paths that eventually invoke the target third-
party methods and ignores all other “useless” paths. In
Figure 1, Brahmastra considers the execution path A1 →
A2 → A3→ A4 for exploration and ignores many other
paths that do not lead to a target activity, A4.

Such useful paths need to be identified statically be-
fore dynamic analysis is performed. The key challenges
in identifying such paths by static analysis arise due to
highly asynchronous nature of Android apps. We discuss
the challenges and our solution in §4.

Dynamic node pruning: Brahmastra opportunistically
tries to start from an activity in the middle of the path.
If such “jump start” is successful, Brahmastra can ignore
all preceding activities of the path. For example, in Fig-
ure 1, Brahmastra can directly start activity A3, which can
lead to the target activity A4.

Dynamic node pruning poses several challenges —
first, we need to enable jump-starting an arbitrary activity
directly. Second, jump starting to the target activity may
fail due to incorrect parameters in the intent, in which
case we need to find a different activity that is close to
the target, for which jump start succeeds. We discuss
these in detail in next section.

Self-execution of app: Brahmastra rewrites the app bi-
nary to automatically call methods that cause activity
transitions. The appropriate methods are found by static
analysis. In Figure 1, instead of clicking on the button
with label “Done” in A1, Brahmastra would invoke the
onClick() method that would make the transition from
A1 to A2. The advantage over GUI-driven automation is
that it can discover activity-transitioning callbacks even
if they are invisible in the current screen.

In summary, our optimizations can make dynamic
analysis fast by visiting only a small number of activ-
ities of an app. More importantly, they also improve
the test hit rate of such analysis. Faster analysis helps
to avoid any timeouts (R1). Dynamic node pruning can
bypass activities that require human inputs (R2). In Fig-
ure 1, Brahmastra can jump to A3 and bypass A1 that re-
quires selecting a future due date. Intent-driven naviga-
tion helps Brahmastra to make transitions where a Mon-
key fails due to unidentified GUI elements (R3). Finally,
visiting fewer activities reduces the likelihood of crashes
(R4). We quantitatively support these claims in §6.

Figure 2: A simplified call graph of
ch.smalltech.battery.free that shows multiple transi-
tion paths composed of multiple activities. Boxes and
ovals represent classes and methods. Solid edges corre-
spond to synchronous calls; (red) dotted edges indicate
activity transitions; and (blue) dashed edges represent
implicit calls due to user interactions. Three different
paths starting from Home.onOptionItemSelected() reach
AboutBox.onCreate() and share the remaining part.

4 Design
Brahmastra requires as input: a test application binary;
the names of target methods to be invoked within the
context of the application; and the plug-in of a spe-
cific security analysis to run once the target method is
reached. Our system is composed of three parts:

1. Execution Planner statically analyzes the test app
binary and discovers an execution path to invoke the
target third-party method.

2. Execution Engine receives execution paths from the
Planner and launches the test app in one or multi-
ple emulators and automatically navigates through
various pages according to the execution path.

3. Runtime Analyzer is triggered when the test app in-
vokes the target method. It captures the test app’s
runtime state (e.g., page content, sensors accessed,
network trace) and runs the analysis plug-in.

4.1 Execution Planner
The job of the Execution Planner is to determine: (1) the
activities that invoke the target third-party method; and
(2) the method-level execution paths that lead to the tar-
get activities. To accomplish these tasks, we statically
analyze the app binary to construct a call graph that en-
compasses its activities and interactions that cause activ-
ity transitions.

Constructing call graph: A call graph is a graph where
vertices are methods and edges are causal relationship
between method invocation. More precisely, there exists
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1 ImageButton b = (ImageButton)
2 findViewById(R.id.b1);
3 b.setOnClickListener(new OnClickListener() {
4 public void onClick(View v) {
5 ...
6 }});

Figure 3: Example of a programmatic handler registra-
tion. onClick() is bound to setOnClickListener()

an edge from method m1 to m2 if m1 invokes m2. Based
on how m2 is invoked by m1, there are three types of
edges: (1) synchronous edges, if m1 directly calls m2, (2)
asynchronous edges, if m1 invokes m2 asynchronously,
and (3) activity transition edges, if m1 starts an activity
that automatically calls m2. Figure 2 depicts a call graph
of one real app.

While synchronous edges can be identified easily by
scanning the app binary code, discovering other edges
can be difficult. To find activity transition edges, we
rely on the fact that one activity can start another ac-
tivity by generating an intent and passing it to the
startActivity() method. We perform constant propa-
gation analysis [12] so as to track such intent creations
and detect activity transitions. We also conduct class hi-
erarchy analysis [19] to conservatively determine possi-
ble receiver types for dynamic dispatch, where the target
call sites depend on the runtime types of the receivers.

To discover asynchronous edges, we need to consider
all the different ways asynchronous methods can be in-
voked by a mobile app:

1. Programmatic handler registrations: These are call-
backs explicitly bound to methods (e.g., event han-
dler of GUI elements) within the code. Figure 3
shows an example.

2. XML-based handler registrations: These are call-
backs specified in the layout or resource XML files.
Figure 4 shows an example.

3. Lifetime methods: These are methods provided by
the underlying framework that automatically make
transitions to other methods on specific events. Ex-
amples are splash screens and message boxes that
transition to next activities after a timeout or after
user acknowledgment, respectively.

To discover the first and third types, we use constant
propagation analysis to trace callbacks attached to var-
ious event handlers. To handle the second case, we parse
layout XML files corresponding to each activity to figure
out the binding between UI elements and callback meth-
ods.
Efficient call graph computation: A call graph can be
extremely large, thus computing the entire call graph can

1 // layout/about_box_share.xml
2 <Button android:id="@id/mShareFacebook"
3 style="@style/ABB_Black_ShareButton" ... />
4 <Button android:id="@id/mShareTwitter"
5 style="@style/ABB_Black_ShareButton" ... />
6 // values/styles.xml
7 <style name="ABB_Black_ShareButton ... >
8 <item name="android:onClick">onShareClick</item>
9 </style>

10 // ch.smalltech.common.feedback.ShareActivity
11 public void onShareClick(View v){
12 // different behavior depending on argument v
13 }

Figure 4: Example of a XML-based handler registration
observed from ch.smalltech.battery.free. Two buttons
share the onShareClick callback. The binding between
onShareClick and setOnClickListener of each button
can be determined through layout and styles XML files.

be very expensive. For example, the app shown in Fig-
ure 1 declares 74 activities in the manifest; we find at
least 281 callbacks over 452 registering points; and its
call graph is composed of 1,732 nodes and 17,723 edges.
To address this, we use two optimizations to compute a
partial call graph that includes target methods and the
start activity methods. First, we exclude system’s static
libraries and other third-party libraries that are not re-
lated to the target methods. Second, we search transition
paths backwards on call graph. We pinpoint call sites
of target methods while walking through bytecodes. We
then construct a partial call graph, taking into accounts
component transitions via intent and bindings between
views and listeners. Finally, starting from the call sites,
we build backward transition paths, until public compo-
nents including the main activity are reached. If failed,
partial paths collected at the last phase will be returned.

Determining target activity(s): Given the call graph
and a target method, we determine the activities that in-
voke the method as follows. From the call graph, we
can identify the activity boundaries such that all meth-
ods within the same boundary are invoked by the same
activity. Since an activity can be started only through
an activity transition edge in the call graph, any maxi-
mal connected component whose edges are either syn-
chronous or asynchronous define the boundary of an ac-
tivity. In Figure 2, bigger rectangles denote the activity
boundaries. Given the boundaries, we identify the activ-
ities that contain the target method.

Finding activity transition paths: Reaching a target ac-
tivity from the start activity may require several transi-
tions between multiple activities. For example, in Fig-
ure 2, navigating from the start activity (HomeFree) to
a target activity (ShareActivity) requires three transi-
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tions. This implies that Brahmastra requires techniques
for automatic activity transitions, which we describe in
the next subsection. Second, a target activity may be
reachable via multiple transition paths. While the short-
est path is more attractive for fast exploration, the path
may contain blocking activities and hence not executable
by Brahmastra. Therefore, Brahmastra considers all tran-
sition paths (in increasing order of their length); if exe-
cution of a short path fails, it tries a longer one.

Given the call graph G, the Planner computes a small
set P of acyclic transition paths that the Execution En-
gine need to consider. P includes a path if and only if
it terminates at a target activity without a cycle and is
not a suffix of any other path in P. This ensures that P is
useful, complete (i.e., Execution Engine does not need to
consider any path not in P), and compact. For instance
Figure 5 shows one out of three paths contained in P.

HomeFree;.onCreate
---> Home;.onCreate
-#-> Home;.onOptionsItemSelected
---> Home;.showAbout
---> AboutBox;.onCreate
-#-> AboutBox;.onLikeClicked
---> ShareActivity;.onCreate
-#-> ShareActivity;.onShareClick
---> ShareActivity;.share
---> ShareActivity;.onFacebookShare

Figure 5: An example path information for
ch.smalltech.battery.free Dashed arrows stand
for explicit calls or activity transition, whereas ar-
rows with a hash tag represent implicit invocations,
which are either callbacks due to user interactions or
framework-driven callbacks, such as lifecycle methods.

P can be computed by breadth-first traversals in G,
starting from each target activity and traversing along the
reverse direction of the edges.

4.2 Execution Engine
The useful paths P produced by the Execution Planner
already give an opportunity to prune exploration: Brah-
mastra considers only paths in P (and ignore others), and
for each path, it can simply navigate through its activi-
ties from the beginning of the path (by using techniques
described later). Exploration can stop as soon as a target
method is invoked.
Rewriting apps for self-execution: One might use a
Monkey to make activity transitions along useful paths.
Since a Monkey makes such transitions by interacting
with GUI elements, this requires identifying mapping be-
tween GUI elements and transitioning activities and in-
teract with only the GUI elements that make desired tran-
sitions.

We address this limitation with a technique we develop
called self execution. At a high level, we rewrite app bi-
naries to insert code that automatically invokes the call-
backs that trigger desired activity transitions, even if their
corresponding GUI elements are not visible. Such code
is inserted into all the activities in a useful path such that
the rewritten app, after being launched in a phone or an
emulator, would automatically make a series of activity
transitions to the target activity, without any external in-
teraction with its GUI elements.

Jump start: Brahmastra goes beyond the above opti-
mization with a node pruning technique called “jump
start”. Consider a path p = (a0,a1, . . . ,at), where at is a
target activity. Since we are interested only in the target
activity, success of Brahmastra is not affected by what
activity ai in p the execution starts from, as long as the
last activity at is successfully executed. In other words,
one can execute any suffix of p without affecting the hit
rate. The jump start technique tries to execute a suffix —
instead of the whole — useful path. This can improve
Brahmastra’s speed since it can skip navigating through
few activities (in the prefix) of a useful path. Interest-
ingly, this can also improve the hit rate of Brahmastra.
For example, if the first activity a0 requires human in-
puts such as user credentials that an automation system
cannot provide, any effort to go beyond state a0 will fail.

Note that directly executing an activity ai, i > 0, with-
out navigating to it from the start activity a0, may fail.
This is because some activities are required to be invoked
with specific intent parameters. In such cases, Brahmas-
tra tries to jump start to the previous activity ai−1 in the
path. In other words, Brahmastra progressively tries to
execute suffixes of useful paths, in increasing order of
lengths, until the jump start succeeds and the target activ-
ity at is successfully reached or all the suffixes are tried.

Algorithm 1 shows the pseudocode of how execution
with jump start works. Given the set of paths, the al-
gorithm first generates suffixes of all the paths. Then it
tries to execute the suffixes in increasing order of their
length. The algorithm returns true on successful execu-
tion of any suffix. Note that Algorithm 1 needs to know
if a path suffix has been successfully executed (line 9).
We inject lightweight logging into the app binary to de-
termine when and whether target methods are invoked at
runtime.

4.3 Runtime Analyzer
Runtime Analyzer collects various runtime states of the
test app and makes it available to custom analysis plug-
ins for scenario-specific analysis. Runtime states include
UI structure and content (in form of a DOM tree) of the
current app page, list of system calls and sensors invoked
by the current page, and network trace due to the current
page. We describe two plug-ins and analysis results in
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Algorithm 1 Directed Execution

1: INPUT: Set of useful paths P from the Planner
2: OUTPUT: Return true if execution is successful
3: S ← set of suffixes of all paths in P
4: for i from 0 to ∞ do
5: Si ← set of paths of length i in S
6: if Si is empty then
7: return false
8: for each path suffix p in Si do
9: if Execute(p) = true then

10: return true
11:
12: return false

later sections.

5 Implementation of Brahmastra
We implement Brahmastra for analyzing Android apps,
and use the tool to perform two security analyses which
we will describe in §7 and §8. This section describes
several highlights of the tool, along with practical chal-
lenges that we faced in the implementation process and
how we resolved them.

5.1 Execution Planner
Static analyses for constructing a call graph and find-
ing transition paths to target methods are performed us-
ing Redexer [24], a general purpose bytecode rewriting
framework for Android apps. Redexer takes as input
an Android app binary (APK file) and constructs an in-
memory data structure representing DEX file for various
analyses. Redexer offers several utility functions to ma-
nipulate such DEX file and provides a generic engine to
perform data-flow analysis, along with call graph and
control-flow graph.

For special APIs that trigger activity transitions, e.g.,
Context.startActivity(), we perform constant propa-
gation analysis (see Appendix A for details) and identify
a target activity stored inside the intent. Figure 6 de-
picts example bytecode snippets that create and initial-
ize an intent (lines 2 and 6), along with the target activ-
ity (line 4), and starts that activity via startActivity()

(line 8). Mappings between each bytecode show how
we accumulate data-flow information, from empty intent
through class name to intent with the specific target ac-
tivity. We apply the same analysis to bindings between
views and listeners.

5.2 App Rewriting
We use the Soot framework [29] to perform the byte-
code rewriting that enables self execution. Dexpler [7]
converts an Android app binary into Soot’s intermedi-
ate representation, called Jimple, which is designed to

1 // { v3 →this }
2 new-instance v0, Landroid/content/Intent;
3 // { v0 →Intent(), ... }
4 const-class v1, ...AboutBox;
5 // { v1 →Clazz(AboutBox), ... }
6 invoke-direct {v0, v3, v1}, ...Intent;.<init>
7 // { v0 →Intent(AboutBox), ... }
8 invoke-virtual {v3, v0}, ...;.startActivity
9 // { ... }

Figure 6: An example bytecode of activity transition ex-
cerpted from ch.smalltech.battery.free. Mappings be-
tween bytecode represent data-flow information, which
shows what values registers must have. Only modified or
newly added values are shown.

ease analysis and manipulation. The re-writing tool is
composed of Soot’s class visitor methods and an An-
droid XML parser. Given an app binary and an execution
path, the rewriter generates a rewritten binary which ar-
tificially invokes a callback method upon the completion
of the exercising the current activity, triggering the next
activity to be launched. The inserted code depends on the
type of the edge found by the Planner (Recall three kinds
of asynchronous edges described in §4.1). For program-
matic and XML-based registrations, the rewriter finds the
view attached to it — by parsing the activity code, and
the manifest respectively — and invokes the appropri-
ate UI interaction on it after it has completed loading.
Lifetime methods are invoked by the Android framework
directly, and the rewriter skips code insertion for these
cases. In other cases, the rewriter inserts a timed call to
the transition method directly, to allow the activity and
any dependencies of the method to load completely.

5.3 Jump Start
Jump start requires starting an activity even if it is not de-
fined as the Launcher activity in the app. To achieve that,
we manipulate the manifest file of the Android app. The
Intent.ACTION MAIN entry in the manifest file declares
activities that Android activity manager can start directly.
To enable jump start, we insert an ACTION MAIN entry for
each activity along the path specified, so that it can be
started by the Execution Engine. Manifest file also de-
clares an intent filter, which determines the sources from
which an activity may be started, which we modify to
allow the Execution Engine to launch the activity. The
Engine then invokes desired activity by passing an intent
to it. We use the Android Debug Bridge (ADB) [4] for
performing jump start. ADB allows us to create an intent
with the desired parameters and target, and then passes
it to the Android Activity Manager. The activity man-
ager in turn loads the appropriate app data and invokes
the specified activity. Starting the (jump started) activ-
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ity immediately activates self execution from that activ-
ity onwards.

6 Evaluation of Brahmastra
We evaluate Brahmastra in terms of two key metrics: (1)
hit rate, i.e., the fraction of apps for which Brahmastra
can invoke any of target methods, and (2) speed, i.e.,
time (or number of activity transitions) Brahmastra takes
to invoke a target method in an app for which Brahmas-
tra has a hit. Since we are not aware of any existing tool
that can achieve the same goal, we compare Brahmas-
tra against a general Android app exploration tool called,
PUMA [23]. This prototype is the best-performing Mon-
key we were able to find that is amenable to experimen-
tation. In terms of speed and coverage, PUMA is far
better than a basic “random” Monkey. PUMA incorpo-
rates many key optimizations in existing Monkeys such
as AppsPlayground [26], A3E [14], and VanarSena [27]
and we expect it to perform at least on a par with them.

6.1 Experiment Methodology
Target method: For the experiments in this section, we
configure Brahmastra to invoke authentication methods
in the Facebook SDK for Android.1 We choose Face-
book SDK because this is a popular SDK and its meth-
ods are often invoked only deep inside the apps. Using
the public documentation for the Facebook SDK for An-
droid, we determined that it has two target methods for
testing. Note that apps in our dataset use the Facebook
SDK version 3.0.2b or earlier2

Lcom/facebook/android/Facebook;->authorize
Lcom/facebook/android/Facebook;->dialog

Figure 7: Target methods for evaluation

Apps: We crawled 12,571 unique apps from the Google
Play store from late December 2012 till early January
2013. These apps were listed as 500 most popular free
apps in each category provided by the store at the time.
Among them, we find that 1,784 apps include the Face-
book SDK for Android. We consider only apps that in-
voke the authentication method—Over 50 apps appear to
have no call sites to Facebook APIs, and over 400 apps
use the API but do not invoke any calls related to autho-
rization. We also discard apps that do not work with our
tool chain, e.g., crash on the emulator or have issues with
apktool [1] since our analysis depends on the disassem-
bled code of an apk file. This leaves us with 1,010 apps.

1https://developers.facebook.com/docs/
android/login-with-facebook

2The later version of Facebook SDK was released in the middle
of data collection and appears to use different methods to display a
login screen. However, we find that almost no apps in our data set had
adapted the new version yet.

Figure 8: Failure causes of Brahmastra and PUMA.

App execution: In order to determine if Brahmastra or
PUMA is able to reach a program point that invokes the
target method, we instrument apps. The instrumentation
detects when any of the target methods are invoked dur-
ing runtime, by comparing signatures of executing meth-
ods with signatures of target methods. For Brahmastra,
we consider only 5 of all paths generated by the Execu-
tion Planner. For PUMA, we explore each app for up to
250 steps; higher timeouts significantly increase overall
testing time for little gain in hit rate.

6.2 Hit Rate
In our experiments, PUMA was able to successfully in-
voke a target method in 127 apps (13%). Note that
PUMA’s hit rate is significantly lower than its activity
coverage (> 90% compared to humans) reported in [23],
highlighting the difficulty in invoking specific program
points deep inside an app. In contrast, Brahmastra was
successfully able to invoke a target method in 344 (34%)
apps, a 2.7× improvement over PUMA. A closer exam-
ination of our results, as shown in Table 1, reveals that
Brahmastra’s technique can help circumventing all the
root causes for PUMA’s poor hit rate as mentioned in §3.

We now investigate why PUMA and Brahmastra
sometimes fail to invoke the target method. For PUMA,
this is due to the aforementioned four cases. Figure 8
shows the distribution of apps for which PUMA fails due
to specific causes. As shown, all the causes happen in
practice. The most dominant cause is the failure to find
UI controls to interact with, which is mostly due to com-
plex UI layouts of the popular apps we tested. Figure 8
also shows the root causes for Brahmastra’s failure. The
key reasons are as follows:

Blocking page: Even if jump start succeeds, successive
activity transition may fail on a blocking page. Brah-
mastra fails for 20% of the apps due to this cause. We
would like to emphasize that Brahmastra experiences
more blocking pages than PUMA only because Brah-
mastra explores many paths that PUMA does not (e.g.,
because those paths are behind a custom control that
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Case Apps
R1: Timeout in PUMA, success in Brahmastra 62%
R2: Blocking page in PUMA, success in Brahmastra 48%
R3: Unknown control in PUMA, success in Brahmastra 43%
R4: Crash in PUMA, success in Brahmastra 30%

Table 1: % of apps for which Brahmastra succeeds but
PUMA fails due to various reasons mentioned in §3.

PUMA cannot interact with, but Brahmastra can find and
invoke the associated callback) and many of these paths
contain blocking pages. If PUMA tried to explore those
paths, it would have failed as well due to these blocking
pages.
Crash: Jump start can crash if the starting activity ex-
pects specific parameters in the intent and Brahmastra
fails to provide that. Brahmastra fails for 7% of the apps
due to this cause.
Custom components: Execution Planner may fail to
find useful paths if the app uses custom components3,
which can be used to override standard event handlers,
thus breaking our model of standard Android apps. With-
out useful paths, Brahmastra can fail to invoke the target
methods. In our experiments, this happens with 16% of
the apps. We leave as future work a task to extend Execu-
tion Planner to handle custom components. We find that
PUMA also failed 91% on these apps, proving the dif-
ficulty of navigating apps with custom components. In
fact, PUMA suffers much more than Brahmastra due to
custom components.
Improving the hit rate: There are several ways we can
further improve the hit rate of Brahmastra. First, 16%
failures of Brahmastra come because the static analysis
fails to identify useful paths. A better static analysis that
can discover more useful paths can improve Brahmas-
tra’s hit rate. Second, in our experiments, Brahmastra
tried only up to 5 randomly selected useful paths to in-
voke the target method and gave up if they all failed. In
many apps, our static analysis found many tens of use-
ful paths, and our results indicate that the more paths we
tried, the better was the hit rate. More specifically, Brah-
mastra succeeded for 207 apps after considering only
one path, and for 344 apps after considering up to five
paths. This suggests that considering more paths is likely
to improve the hit rate. Additionally, we should select
the paths to avoid any nodes or edges for which explo-
ration failed in previously considered paths instead of
choosing them randomly. In 72 apps, Brahmastra was
unable to find the binding between a callback method
and the UI element associated with it, causing it to fall
back on a direct invocation of the callback method. A
better static analysis can help in this case as well. In 22

3http://developer.android.com/guide/topics/
ui/custom-components.html

Figure 9: Test speed comparison of Brahmastra and
PUMA

apps, Brahmastra deemed a page blocked due to UI el-
ements in the Android SDK (e.g., list elements) whose
behavior was not encoded in the instrumentation engine.
An engineering effort in special-case handling of these
and more views would increase hit rate. We plan to ex-
plore such optimizations in future. Finally, PUMA (and
other Monkeys) and Brahmastra use fundamentally dif-
ferent techniques to navigate between app pages and it
might be possible to combine them in a single system
where PUMA is used if Brahmastra fails (or vice versa).
In our experiments, such a hybrid approach would give
an overall hit rate of 39% (total 397 apps).

6.3 Speed
We use the number of activity transitions required to
reach the target activity as a proxy for speed, since the
actual time will vary depending on a variety of com-
putational factors (e.g., network speed, device specifi-
cations). In Figure 9, we plot the CDF of the number
of transitions required to reach the target activity for the
apps which are successfully tested by both Brahmastra
and PUMA. Since Brahmastra prunes away many un-
necessary paths using static analysis, it runs faster than
PUMA that suffers from uninformed activity transitions
and large fanout in the activity transition graphs. On av-
erage, PUMA requires 18.7 transitions per app, while
Brahmastra requires 2.5 transitions per app, resulting in
7 fold speedup.

7 Analysis of Ads in Kids Apps
Our first scenario is to use Brahmastra to study whether
ad libraries for Android apps meet guidelines for protect-
ing the online privacy of children. We give results for two
popular ad components embedded in 220 kids apps. Our
analysis shows that 80% of the apps displayed ads with a
link to landing pages that have forms for collecting per-
sonal information, and 36% apps displayed ads deemed
inappropriate to children.
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7.1 Motivation and Goals
The Children’s Online Privacy Protection Act (COPPA)
lays down a variety of stipulations that mobile app de-
velopers must follow if their apps are directed at children
under 13 years old [6]. In particular, COPPA disallows
the collection of personal information by these apps un-
less the apps have first obtained parental consent.

COPPA holds the app developer responsible for the
personal information collected by the embedded third
party components as well as by the app’s code [6]. Since
it is common to see ad components included in free apps,
we aim to measure the extent of potentially non-COPPA-
compliant ad components in kids apps. Specifically, our
first goal is to determine whether in-app ads or landing
pages pointed by these ads present forms that collect per-
sonal information. Although displaying collection forms
itself is not a violation, children might type in requested
personal information, especially if these websites claim
to offer free prizes or sweepstakes. In such cases, if
these ads or landing pages do collect personal informa-
tion without explicit parental consent, this act could be
considered as a violation according to COPPA. Since it is
difficult to model these legal terms into technical specifi-
cations, we only report potential concerns in this section.
Our second goal is to test whether content displayed in
in-app ads or landing pages is appropriate for children.
Since this kind of judgement is fundamentally subjective,
we show the breakdown of content categories as labeled
by human testers.

Note that runtime observation is critical for this test-
ing, since ads displayed within apps change dynamically
depending on the inventory of ads at the time of request.

7.2 Testing Procedure
The testing has two steps. For a given app, we first col-
lect ads displayed within apps and landing pages that are
pointed by the ads. Second, for each ad and landing page,
we determine: (1) whether they present forms to collect
personal information such as first and last name, home
address, and online contact as defined in COPPA; and
(2) whether their content appears inappropriate to chil-
dren and if so why.
Driving apps to display ads: We use Brahmastra to au-
tomatically drive apps to display ads. In this study, we
focus on two popular ad libraries, AdMob and Millen-
nial Media, because they account for over 40% of free
Android apps with ads [11]. To get execution paths that
produce ads, we use the following target methods as in-
put to Brahmastra:

Lcom/google/ads/AdView;-><init>
Lcom/millennialmedia/android/MMAdView;-><init>

Collecting ads & landing pages: We redirect all the net-
work traffic from executing test apps through a Fiddler

proxy [8]. We install the Fiddler SSL certificate on the
phone emulator as a trusted certificate to allow it to ex-
amine SSL traffic as well. We then identify the requests
made by the ad libraries to their server component us-
ing domain names. Once these requests are collected,
we replay these traces (several times, over several days),
to fetch ad data from the ad servers as if these requests
were made from these apps. This ad data is generally in
the form of a JSON or XML object that contains details
about the kind of ad served (image or text), the content
to display on the screen (either text or the URL of an im-
age), and the URL to redirect to if the ad is clicked upon.
We record all of above for analysis.

Analyzing ads & landing pages: We use two methods
to characterize ads and landing pages. First, for each
landing page URL collected, we probe the Web of Trust
(WoT) database [9] to get the “child safety” score. Sec-
ond, to better understand the reasons why landing pages
or ads may not be appropriate for children, we use crowd-
sourcing (via Amazon Mechanical Turk [3]) to label each
ad and landing page and to collect detailed information
such as the type of personal information that landing
pages collect. As data collected from crowds may in-
clude inconsistent labeling, we use majority voting to fil-
ter out noise.

7.3 Results

Dataset: We collected our dataset in January 2014. To
find apps intended for children, we use a list of apps
categorized as “Kids” in Amazon’s Android app store4.
Since apps offered from the Amazon store are protected
with DRM and resist bytecode rewriting, we crawled the
Play store for apps with the same package name.

Starting from slightly over 4,000 apps in the Kids cat-
egory, we found 699 free apps with a matching package
name in the Play store. Among these, we find 242 apps
that contain the AdMob or Millennial Media ad libraries.
Using Brahmastra, we were successfully able to retrieve
at least one ad request for 220 of these apps (also in Jan-
uary 2014), for which we report results in this section.
For the remaining 22 apps, either Brahmastra could not
navigate to the correct page, or the app did not serve any
ad despite reaching the target page.

Results: We collected ads from each of the 220 apps
over 5 days, giving us a total collection of 566 unique
ads, and 3,633 unique landing pages. Using WoT, we de-
termine that 183 out of the 3,633 unique landing pages
have the child-safety score below 60, which fall in the
“Unsatisfactory”, “Poor” or “Very Poor” categories. 189
out of the 220 apps (86%) pointed to at least one of these
pages during the monitoring period. Note that WoT did
not contain child-safety ratings for 1,806 pages, so these

4Google Play store does not have a separate kids category.
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Info Type Landing Pages Apps
Home address 47 58
First and last name 231 174
Online contact 100 94
Phone number 17 15
Total 235 175

Table 2: Personal information collected by landing pages

numbers represent a lower bound. We then used Amazon
Mechanical Turk to characterize all 566 ads, and 2,111
randomly selected landing pages out of the 3,633. For
each ad and landing page, we asked Amazon Mechan-
ical Turk to check whether they collect personal infor-
mation (of each type) and whether they contain inappro-
priate content for children (see Appendix B for the task
details). We offered 7 cents (US) per each task (which
involves answering various questions for each website or
banner ad) and collected three responses per data point.
As discussed above, we only counted responses that were
consistent across at least two out of three respondents, to
filter out noise.

Table 2 summarizes the types of personal informa-
tion that landing pages ask users to provide as labeled
by Amazon Mechanical Turk. We find that at least 80%
of the apps in the dataset had displayed ads that point to
landing pages with forms to collect personal information.
On a manual examination of a subset of these pages, we
found no labeling errors. We also found that none of the
sites we manually checked attempt to acquire parental
consent when collecting personal information. See Ap-
pendix B for examples.

Table 3 breaks down child-inappropriate content of the
ads displayed in apps as labeled by Amazon Mechani-
cal Turk. Although COPPA does not regulate the con-
tent of online services, we still find it concerning that
36% (80 out of 220) of the apps display ads with con-
tent deemed inappropriate for children. In particular 26%
(58 apps) displayed ads that offer free prizes (e.g., Fig-
ure 13), which is considered a red flag of deceptive adver-
tising, especially in ads targeting children as discussed in
guidelines published by the Children’s Advertising Re-
view [10]. We also analysed the content displayed on
the landing pages, and found a similar number of content
violations as the ad images.

8 Analysis of Social Media Add-ons
Our second use case is to test apps against a recently
discovered vulnerability associated with the Facebook
SDK [30]. Our testing with Brahmastra shows that 13
out of 200 Android apps are vulnerable to the attack.
Fixing it requires app developers to update the authen-
tication logic in their servers as recommended by [30].

Content Type Image Ads Apps
Child exploitation 2 8
Gambling, contests, lotteries or
sweepstakes

3 2

Misleading users about the
product being advertised

7 16

Violence, weapons or gore 4 5
Alcohol, tobacco or drugs 3 3
Profanity and vulgarity 0 0
Free prize 39 58
Sexual or sexually suggestive
content

12 29

Total 62 80

Table 3: Breakdown of child-inappropriate content in ads

8.1 Testing Goal
The Facebook access token vulnerability discussed
in [30] can be exploited by attackers to steal the vic-
tim’s sensitive information stored in vulnerable apps. For
instance, if a malicious-yet-seemingly benign news app
can trick the victim once to use the app to post a fa-
vorite news story on the victim’s Facebook wall (which
is a common feature found in many news apps), then the
malicious app can use the access token obtained from the
Facebook identity service to access sensitive information
stored by any vulnerable apps that the victim had inter-
acted with and have been associated with the victim’s
Facebook account. This attack can take place offline—
once the malicious app obtains an access token, then it
can send the token to a remote attacker who can imper-
sonate as the victim to vulnerable apps.

Figure 10 gives the steps that allow a malicious appli-
cation to steal Victim’s information from VulApps. The
fact that the online service (VulApps) is able to retrieve
the user’s information from Facebook only means that
the client (MalAppc) possesses the privilege to the Face-
book service, but is not a proof of the client app’s iden-
tity (MalAppc �= VulAppc). The shaded boxes in Figure 10
highlight the vulnerability. See [30] for more detail.

Wang et al. [30] manually tested 27 Windows 8 apps
and showed that 78% of them are vulnerable to the ac-
cess token attack. Our goal is to scale up the testing to a
large number of Android applications. Note that testing
for this vulnerability requires runtime analysis because
the security violation assumptions are based on the inter-
actions among the application, the application service,
and Facebook service.

8.2 Testing Procedure
The testing has three steps. For a given app, we first need
to drive apps to load a Facebook login screen. Second,
we need to supply valid Facebook login credentials to ob-
serve interactions between the test application and Face-
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7. Get user info with access_token
8. Provide Victim’s info

1. Click Login with Facebook

Victim MalAppc VulApps Facebook ID service

5. Return access_token

2. Initiate login with Facebook
3. Prompt Facebook login screen

4. Provide Victim’s Facebook credentials

9. Authenticate this session as Victim

6. Authenticate with access_token

Figure 10: Facebook’s access token, intended for autho-
rizing access to Victim’s info, is used by VulApps to au-
thenticate the session as Victim. From step 9, MalAppc

can steal Victim’s sensitive information in VulApps.

book ID service. Third, we need to determine whether
the test application misuses a Facebook access token for
authenticating a client (steps 7-9) by monitoring network
traffic and application behavior after providing a fraudu-
lent access token.

Driving apps to display Facebook login: We use Brah-
mastra to automatically drive apps to invoke the Face-
book SDK’s authentication methods shown in Figure 7.
Once the authentication methods open the sign-in win-
dow, we supply valid Facebook credentials.

Manipulating traffic with MITM proxy: As before,
we direct all network traffic through a Fiddler proxy.
Since Facebook sign-in traffic is encrypted over SSL, we
also install a Fiddler SSL certificate on the phone emu-
lator to decrypt all SSL traffic.

To manipulate the login, we record an access token

from a successful login session associated with another
application (and therefore simulating an attacker as illus-
trated in the steps 1-5 of Fig. 10) and use the script shown
in Fig. 11. It runs over HTTP responses, and overwrites
an incoming access token with a recorded one.

8.3 Experiments

Dataset: We randomly draw 200 apps from the dataset
used in §6 for this testing.

Results: We find that 18 out of 200 apps use a Face-
book access token for authentication, and among them 13
apps are vulnerable to a fraudulent access token (72%). 5
apps appear not vulnerable, and show some sort of error
message when given a fraudulent access token. The re-
maining 182 apps use the Facebook SDK merely to post
content to the user’s wall, and not as an authentication
mechanism. We determined this by looking at the net-

1 if(oSession.url.Contains("m.facebook.com")) {
2 var toReplace = "access_token=CAAHOi...";
3 ...
4 if(oSession.oResponse.headers.
5 ExistsAndContains("Location", "access_token"))
6 {
7 oSession.oResponse.headers["Location"] =
8 oSession.oResponse.headers["Location"].
9 replace(oRegEx, toReplace);

10 oSession["ui-customcolumn"] = "changed-header";
11 } }

Figure 11: A script used to manipulate access token:
We only show the first 6 bytes of the access token used
in the attack.

work traffic at the login event, and observing that all of it
is sent only to Facebook servers.

To understand how widespread the vulnerability is, we
look at the statistics for the number of downloads on the
Google Play store. Each of the 13 vulnerable apps has
been downloaded more than 10,000 times, the median
number of app downloads is over 500,000, and the most
popular ones have been downloaded more than 10 mil-
lion times. Further, these 13 apps have been built by
12 distinct publishers. This shows that the problem is
not restricted to a few naı̈ve developers. We shared the
list of vulnerable apps with a Facebook security team on
2/27/2014 and got a response immediately that night that
they had contacted the affected developers with the in-
structions to fix. The privacy implications of the pos-
sessing the vulnerability are also serious. To look at what
user data can potentially be exfiltrated, we manually in-
vestigated the 13 vulnerable apps. Users of these apps
may share a friends list, pictures, and messages (three
dating apps); photos and videos (two apps); exercise logs
and stats (one app); homework info (one app) or favorite
news articles, books or music preferences (remaining six
apps). By exploiting the vulnerability, a malicious app
could exfiltrate this data.

9 Related Work

Automated Android app testing: A number of recent
efforts proposed improvements over Android Monkey:
AndroidRipper [13] uses a technique known as GUI rip-
ping to create a GUI model of the application, and ex-
plores its state space. To improve code coverage, An-
droidRipper relies on human testers to type in user cre-
dentials to get through blocking pages. However, de-
spite this manual effort, the tool shows less than 40%
code coverage after exploring an app for 4.5 hours. App-
sPlayground [26] employs a number of heuristics—by
guessing the right forms of input (e.g., email address, zip
code) and by tracking widgets and windows in order to
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reduce duplicate exploration. It shows that these heuris-
tics are helpful although the coverage is still around 33%.
SmartDroid [31] uses a combination of static and dy-
namic analysis to find the UI elements linked to sensitive
APIs. However, unlike Brahmastra, SmartDroid explores
every UI element at runtime to find the right view to
click. A3E [14] also uses static analysis to find an activ-
ity transition graph and uses the graph to efficiently ex-
plore apps. We leveraged the proposed technique when
building an execution path. However, similarly to the
tools listed above, A3E again uses runtime GUI explo-
ration to navigate through activities. In contrast to these
works, Brahmastra determines an execution path using
static analysis and rewrites an app to trigger a planned
navigation, bypassing known difficulties related to GUI
exploration.

Security analysis of in-app ads: Probably because only
recently COPPA [6] had been updated to include mo-
bile apps5, we are not aware of any prior work looking
into the issues around COPPA compliance of advertise-
ments (and the corresponding landing pages) displayed
within apps directed at children. However, several past
works investigated security and privacy issues with re-
spect to Android advertising libraries. AdRisk [22] is a
static analysis tool to examine advertising libraries inte-
grated with Android apps. They report that many ad li-
braries excessively collect privacy-sensitive information
and expose some of the collected information to adver-
tisers. Stevens et al. examine thirteen popular Android
ad libraries and show the prevalent use of tracking iden-
tifiers and the collection of private user information [28].
Worse, through a longitudinal study, Book et al. show
that the use of permissions by Android ad libraries has
increased over the past years [18].

Analyzing logic flaws in web services and SDKs: The
authentication vulnerability discussed in §8 falls into the
category of logic flaws in web programming. Recent pa-
pers have proposed several technologies for testing var-
ious types of logic flaws [16, 17, 21]. However, these
techniques mainly target logic flaws in two-party web
programs, i.e., programs consisting of a client and a
server. Logic flaws become more complicated and in-
triguing in multi-party web programs, in which a client
communicating with multiple servers to accomplish a
task, such as the Facebook-based authentication that we
focus in this paper. AuthScan is a recently developed
technique to automatically extract protocol specifications
from concrete website implementations, and thus dis-
cover new vulnerabilities in the websites [15]. In con-
trast, our goal is not to discover any new vulnerability on
a website, but to scale up the testing of a known vulnera-
bility to a large number of apps.

5The revision was published on July 2013.

10 Discussion

Limitations: Although Brahmastra improves test hit
rates over Monkey-like tools, we discover several id-
iosyncratic behaviors of mobile apps that challenge run-
time testing. Some apps check servers upon launching
and force upgrading if newer versions exist. Some apps
constantly load content from remote servers, showing
transient behaviors (e.g., extremely slow at times). We
also have yet to implement adding callbacks related to
sensor inputs. Another challenge is to isolate dependent
components in the code. We assume that each activity is
more or less independent (except that they pass parame-
ters along with intent) and use our jump start technique
to bypass blocking pages and to speed up testing. How-
ever, we leave as future work a task to statically deter-
mine dependent activities to find activities to jump-start
to without affecting the program behavior.

Other runtime security testing of mobile apps: As
mobile apps are highly driven by user interaction with
visual components in the program, it is important to an-
alyze the code behavior in conjunction with runtime UI
states. For instance, malicious third-party components
can trick users into authorizing the components to access
content (e.g., photos) that the users intended to share with
the application. Brahmastra can be used to capture visual
elements when certain APIs are invoked to check against
such click jacking attempts. Brahmastra can also auto-
mate the testing to check whether privacy-sensitive APIs
are only invoked with explicit user interactions.

11 Conclusion
We have presented a mobile app automation tool, Brah-
mastra, that app store operators and security researchers
can use to test third-party components at runtime as they
are used by real applications. To overcome the known
shortcomings of GUI exploration techniques, we analyze
application structure to discover desired execution paths.
Then we re-write test apps to follow a short path that in-
vokes the target third-party component. We find that we
can more than double the test hit rate while speeding up
testing by a factor of seven compared to a state-of-the-art
Monkey tool.

We use Brahmastra for two case studies, each of which
contributes new results: checking if third-party ad com-
ponents in kids apps are compliant with child-safety reg-
ulations; and checking whether apps that use Facebook
Login are vulnerable to a known security flaw. Among
the kids apps, we discover 36% of 220 kids apps dis-
play ads deemed inappropriate for children, and 80% of
the apps display ads that point to landing pages which
attempt to collect personal information without parental
consent. Among the apps that use Facebook Login, we
find that 13 applications are still vulnerable to the Face-
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book access token attack even though the attack has been
known for almost a year. Brahmastra let us quickly check
the behavior of hundreds of apps for these studies, and
it can easily be used for other studies in the future—
checking whether privacy-sensitive APIs can be invoked
without explicit user interaction, discovering visible UI
elements implicated in click jacking attempts, and more.
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A Constant Propagation Analysis

We extend the existing constant propagation analysis so
as to trace intents, UI elements, and listeners. In ad-
dition to traditional value types, such as numerical or
string constant, we add meta-class, object, and intent
sorts, which track class ids, object references, and in-
tent instances, respectively. For instructions that create
objects; load class ids; or invoke special APIs such as
Intent.setClass(), we add their semantics into the data-
flow transfer function.

Figure 12 illustrates how we extend data-flow lattice;
how we conform to meet operation property; and how we
define semantics of relevant instructions.

1 type lattice = ...
2 | Clazz of string (∗ const−class ∗)
3 | Object of string (∗ instance ∗)
4 | Intent of string (∗ Intent for a specific component ∗)
5 | ...
6 let meet l1 l2 = match l1 , l2 with ...
7 | Clazz c1, Clazz c2 when 0 = compare c1 c2 → l1
8 | Object o1, Object o2 when 0 = compare o1 o2 → l1
9 | Intent i1 , Intent i2 when 0 = compare i1 i2 → l1

10 | ...
11 let transfer ( inn : lattice Map.t) (op, opr) = ...
12 else if OP NEW = op then (∗ NEW ∗)
13 (
14 let dst :: id ::[] = opr in
15 let cname = Dex.get ty name id in
16 if 0 = compare cname ‘‘ Intent ’’
17 then Map.add dst ( Intent ‘‘’’) inn
18 else Map.add dst (Object cname) inn
19 ) ...

Figure 12: Abbreviated source code of extended constant
propagation analysis. Meta-class, object, and intent sorts
maintain information as string, and they can be merged
only if internal values are identical, hence must-analysis.
As an example, this shows how to handle opcode NEW.
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B Examples of Ads in Kids Apps

(a)

(b)

(c)

(d) A1

(e) clicking 
the banner ad

Figure 13: a) and (b) offer a free prize and (c) and (d) are sexually suggestive. (e) shows an example where clicking a
banner ad displayed in a kids app opens up a landing page that presents forms to collect personal information.

Figure 14: A screenshot of the Amazon Mechanical Turk task that we created to characterize landing pages pointed
by ads displayed in kids apps
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Abstract
The security of smartphone GUI frameworks remains

an important yet under-scrutinized topic. In this pa-

per, we report that on the Android system (and likely

other OSes), a weaker form of GUI confidentiality can

be breached in the form of UI state (not the pixels) by a

background app without requiring any permissions. Our

finding leads to a class of attacks which we name UI state

inference attack. The underlying problem is that popular

GUI frameworks by design can potentially reveal every

UI state change through a newly-discovered public side

channel — shared memory. In our evaluation, we show

that for 6 out of 7 popular Android apps, the UI state in-

ference accuracies are 80–90% for the first candidate UI

states, and over 93% for the top 3 candidates.

Even though the UI state does not reveal the exact pix-

els, we show that it can serve as a powerful building

block to enable more serious attacks. To demonstrate

this, we design and fully implement several new attacks

based on the UI state inference attack, including hijack-

ing the UI state to steal sensitive user input (e.g., login

credentials) and obtain sensitive camera images shot by

the user (e.g., personal check photos for banking apps).

We also discuss non-trivial challenges in eliminating the

identified side channel, and suggest more secure alterna-

tive system designs.

1 Introduction

The confidentiality and integrity of applications’ GUI

content are well recognized to be critical in achiev-

ing end-to-end security [1–4]. For instance, in the

desktop and browser environment, window/UI spoofing

(e.g., fake password dialogs) breaks GUI integrity [3, 4].

On the Android platform, malware that takes screenshots

breaches GUI confidentiality [5]. Such security issues

can typically lead to the direct compromise of the con-

fidentiality of user input (e.g., keystrokes). However, a

weaker form of confidentiality breach has not been thor-

oughly explored, namely the knowledge of the applica-

tion UI state (e.g., knowing that the application is show-

ing a login window) without knowing the exact pixels of

the screen, especially in a smartphone environment.

Surprisingly, in this paper we report that on the An-

droid system (and likely on other OSes), such GUI con-

fidentiality breach is indeed possible, leading to serious

security consequences. Specifically, we show that UI

state can be inferred without requiring any Android per-

missions. Here, UI state is defined as a mostly consis-

tent user interface shown in the window level, reflecting

a specific piece of program functionality. An example

of a UI state is a login window, in which the text con-

tent may change but the overall layout and functionality

remain the same. Thus, we call our attack UI state infer-

ence attack. In this attack, an attacker first builds a UI

state machine based on UI state signatures constructed

offline, and then infers UI states in real time from an un-

privileged background app. In Android terminology, the

UI state is known as Activity, so we also call it Activity

inference attack in this paper.

Although UI state knowledge does not directly reveal

user input, due to a lack of direct access to the exact pix-

els or screenshots, we find that it can effectively serve as

a building block and enable more serious attacks such as

stealing sensitive user input. For example, based on the

inferred UI states, we can further break the GUI integrity

by carefully exploiting the designed functionality that al-

lows UI preemption, which is commonly used by alarm

or reminder apps on Android.

The fundamental reason for such confidentiality

breach is in the Android GUI framework design, where

every UI state change can be unexpectedly observed

through publicly accessible side channels. Specifically,

the major enabling factor is a newly-discovered shared-

memory side channel, which can be used to detect win-

dow events in the target application. This side channel

exists because shared memory is commonly adopted by

window managers to efficiently receive window changes

or updates from running applications. For more details,

please refer to §2.1 where we summarize the design and

implementation of common window managers, and §3.2

where we describe how shared memory plays a critical

role. In fact, this design is not specific to Android: nearly

all popular OSes such as Mac OS X, iOS, and Windows

also adopt this shared-memory mechanism for their win-

1
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dow managers. Thus, we believe that our attack on An-

droid is likely to be generalizable to other platforms.

Since the window manager property we exploit has no

obvious vulnerabilities in either design or implementa-

tion, it is non-trivial to construct defense solutions. In §9,

we discuss ways to eliminate the identified side channels,

and also suggest more secure alternative system designs.

Our discovered Activity inference attack enables a

number of serious follow-up attacks including (1) Ac-

tivity hijacking attack that can unnoticeably hijack

the UI state to steal sensitive user input (e.g., lo-

gin credentials), and (2) camera peeking attack that

captures sensitive camera images shot by the user

(e.g., personal check photos for banking apps). We

have fully designed and implemented these attacks and

strongly encourage readers to view several short video

demos at https://sites.google.com/site/

uistateinferenceattack/demos [6].

Furthermore, we demonstrate other less severe but

also interesting security consequences: (1) existing at-

tacks [5, 7–10] can be enhanced in stealthiness and ef-

fectiveness by providing the target UI states; (2) user be-

havior can be inferred through tracking UI state changes.

Previous work has demonstrated other interesting An-

droid side-channel attacks, such as inferring the web

pages a user visits [11] as well as the identity, loca-

tion, and disease information of users [12]. However,

these attacks are mostly application-specific with limited

scope. For instance, Memento [11] only applies to web

browsers, and Zhou et al. [12] reported three side chan-

nels specific to three different apps. In contrast, the UI

state concept in this paper applies generally to all An-

droid apps, leading to not only a larger attack coverage

but also many more serious attacks, such as the Activity

hijacking attack which violates GUI integrity.

The contributions of this paper are as follows:

• We formulate the general UI state inference attack

that violates a weaker form of GUI confidentiality, aimed

at exposing the running UI states of an application. It ex-

ploits the unexpected interaction between the design and

implementation of the GUI framework (mainly the win-

dow manager) and a newly-discovered shared-memory

side channel.

• We design and implement the Android version of

this attack and find an accuracy of 80–90% in determin-

ing the foreground Activity for 6 out of 7 popular apps.

The inference itself does not require any permissions.

• We develop several attack scenarios using the UI

state inference technique and demonstrate that an at-

tacker can steal sensitive user input and sensitive camera

images shot by the user when using Android apps.

For the rest of the paper, we first provide the attack

background and overview in §2. The newly-discovered

side channel and Activity transition detection are detailed

in §3, and based on that, the Activity inference technique

is described in §4. In §5, we evaluate this attack with

popular apps, and §6, §7 and §8 show concrete follow-

up attacks. We cover defense in §9, followed by related

work in §10, before concluding in §11.

2 Background and Overview

2.1 Background: Window Manager

Window manager is system software that interacts with

applications to draw the final pixels from all application

windows to the frame buffer, which is then displayed

on screen. After evolving for decades, the most recent

design is called compositing window manager, which is

used virtually in all modern OSes. Unlike its predeces-

sors, which allow individual applications to draw to the

frame buffer directly, a compositing window manager re-

quires applications to draw the window content to off-

screen buffers first, and use a dedicated window compos-

itor process to combine them into a final image, which is

then drawn to the frame buffer.

Client-drawn and server-drawn buffer design. There

are two types of compositing window manager design,

as shown in Fig. 1. In this figure, client and server refer

to an application and the window compositor1 respec-

tively. In the client-drawn buffer design, the applica-

tions draw window content to off-screen buffers, and use

IPC to communicate these buffers with the server, where

the final image is composited and written to the frame

buffer. This design is very popular and is used in Mac

OS X, iOS, Windows, Android, and Wayland for the fu-

ture Linux [13, 14]. In the server-drawn buffer design,

the main difference is that the off-screen buffers are al-

located and drawn by the window compositor instead of

by the applications. Applications send commands to the

window compositor to direct the drawing process. Only

the X window system on the traditional Linux and Mir

for the future Linux [15] use this design.

Both designs have their advantages. The client-drawn

buffer design provides better isolation between applica-

tions, more flexible window drawing and more balanced

overhead between the client and the server. For the

server-drawn buffer design, the server has control over

all applications’ window buffers, which is better for cen-

tralized resource management. Interestingly, some prior

work choose the former to enhance GUI security [1], but

we find that it actually enables our attacks (shown in §3).

2.2 Background: Android Activity and Ac-

tivity Transition

In Android, the UI state our attack infers is called Activ-

ity. An Activity provides a user interface (UI) for user in-

1For traditional Linux the server is an X server, and the window

compositor is a separate process talking to the X server. In Fig. 1 we

refer to the combination of them as the window compositor.

2
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Figure 1: Two types of compositing window manager design: (a) client-

drawn buffer design, and (b) server-drawn buffer design. Client refers to the

application, and server refers to the window compositor.
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Figure 2: Activities involved in send-

ing money in Android Chase app. The

numbers denote the action order.

teractions, and is typically a full-screen window serving

as a functionality unit in Android. We denote Activities

as a,b, ..., and the set of Activities for an app as A. Due

to security concerns, by default apps cannot know which

Activity is currently shown in the foreground unless they

are the owners or the central Activity manager.

An Activity may display different content depending

on the app state. For instance, a dictionary app may have

a single “definition” Activity showing different texts for

each word lookup. We call these distinct displays View-

States, and denote the set of them for Activity a as a.VS.

Activity transition. In Android, multiple Activities typ-

ically work together and transition from one to another

to support the functionality of an app as a whole. An

example is shown in Fig. 2. During a typical transition,

the current foreground Activity pauses and a new one is

created. A Back Stack [16] storing the current and past

Activities is maintained by Android. To prevent exces-

sive memory usage, at any point in time, only the top

Activity has its window buffer allocated. Whenever an

Activity transition occurs, the off-screen buffer alloca-

tion for the new Activity window and the deallocation

for the existing Activity window take place.

Activity transitions can occur in two ways: a new Ac-

tivity is created (create transition), or an existing one re-

sumes when the BACK key is pressed (resume transi-

tion), corresponding to push and pop actions in the Back

Stack. Fig. 3 shows the major function calls involved

in these two transition types. Both transition types start

by pausing the current foreground Activity, and then

launching the new one. During launch, the create transi-

tion calls both onCreate() and onResume(), while

the resume transition only calls onResume(). Both

onCreate() and onResume() are implemented by

the app. After that, performTraversal() is called,

in which measure() and layout() calculate the

sizes and locations of UI components, and draw() puts

them into a data structure as the new Activity UI. Fi-

nally, the create transition pushes the new Activity into

the Back Stack and stops the current one, while the re-

sume transition pops the current one and destroys it.

Activity transition graph. Immediately after a tran-

Perform-
Pause()

onPause()

performLaunch()
onCreate()

onResume()

performTr-
aversal()
measure()
layout()
draw()

performStop()
onStop()

performLaunch()
onResume()

c

r

c

r performDestroy()
onDestroy()

Figure 3: The function call trace for create (denoted by

c) and resume (denoted by r) transitions.

sition, the user lands on one of the ViewStates of the

new Activity, which we call a LandingState. We de-

note the set of LandingStates for Activity a as a.LS,

and a.LS ⊆ a.VS. Individual LandingStates are denoted

as a.ls1,a.ls2, .... Activity transition is a relationship

a.VS → b.LS,a,b ∈ A. As the ViewState before the tran-

sition is not of interest in this study, we simplify it to

a → b.LS, which forms the graph in Fig. 4. Note that our

definition is slightly different from that in previous work

[17] as the edge tails in our graph are more fine-grained:

they are LandingStates instead of Activities.

2.3 Attack Overview

Our proposed UI state inference is a general side-channel

attack against GUI systems, aimed at exposing the run-

ning UI state of an application at the window level, i.e.,

the currently displayed window (without knowing the ex-

act pixels). To achieve that, the attack exploits a newly-

discovered shared-memory side channel, which may ex-

ist in nearly all popular GUI systems used today (shown

in §3). In this paper, we focus on the attack on the An-

droid platform: Activity inference attack. We expect the

technique to be generalizable to all GUI systems with the

same window manger design as that in Android, such as

the GUI systems in Mac OS X, iOS, Windows, etc.

Threat model. We require an attack app running in the

background on the victim device, which is a common re-

quirement for Android-based attacks [7–11, 18]. To en-

sure stealthiness, the app should be low-overhead, not

draining the battery too quickly. Also, as the purpose

of permissions is to alert users to privacy- or security-

invasive apps [19], the attack should not require any ad-

ditional permissions besides a few very common ones,

for example the INTERNET permission.

3
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General steps. As shown in Fig. 5, Activity inference is

performed in two steps:

1. Activity transition detection: we first detect an Ac-

tivity transition event, which reports a single bit of infor-

mation on whether an Activity transition just occurred.

This is enabled by the newly-discovered shared-memory

side channel. As shown later in §3.3, the change ob-

served through this channel is a highly-distinct “signal”.

2. Activity inference: upon detecting an Activity tran-

sition, we need to differentiate which Activity is entering

the foreground. To do so, we design techniques to train

the “signature” for the landing Activity, which roughly

characterizes its starting behavior through publicly ob-

servable channels, including the new shared-memory

side channel, CPU utilization time, and network activity

(described in §4).

Finally, using our knowledge of the foreground Activ-

ity in real time, we develop novel attacks that can effec-

tively steal sensitive user input as well as other informa-

tion as detailed in §6, §7 and §8.

3 Shared-Memory Side Channel and Ac-

tivity Transition Detection

In this section, we first report the newly-discovered side

channel along with the fundamental reason for its exis-

tence, and then detail the transition detection technique.

3.1 Shared-Memory Side Channels

As with any modern OS design, the memory space of

an Android app process consists of the private space

and the shared space. Table 1 lists memory counters in

/proc/pid/statm and their names used in the Linux com-

mand top and the Linux source code. Inherited from

Linux, these counters can be freely accessed without any

privileges. With these counters, we can calculate both the

private and shared sizes for virtual memory and physical

memory. In this paper, we leverage mm->shared_vm

and file_rss as our shared-memory side channels,

the former for virtual memory and the latter for phys-

ical memory. For convenience, we refer to them as

shared vm and shared pm. In this section, we focus on

using shared vm to detect Activity transition events. In

§4.1, we use both shared vm and shared pm to infer An-

droid Content Provider usages in the Activity inference,

which is another use case we discovered.

3.2 Android Window Events and Shared-

Memory Side Channel

We find that shared vm changes are correlated with An-

droid window events. In this section, we detail its root

cause and prevalence in popular GUI systems.

Shared-memory IPC used in the Android window

manager. As mentioned earlier in §2.1, Android adopts

the client-drawn buffer design, where each client (app)

needs to use a selected IPC mechanism to communicate

their off-screen buffers with the window compositor. In

practice, we find that shared memory is often used, since

it is the most efficient channel (without large memory

copy overhead). On Android, when an Activity tran-

sition occurs, shared vm size changes can be found in

both the app process and the window compositor process

named SurfaceFlinger. More investigations into Android

source code reveal that the size changes correspond to the

allocations and deallocations of a data structure named

GraphicBuffer, which is the off-screen buffer in Android.

In the Android window drawing process shown in Fig. 3,

GraphicBuffer is shared between the app process and the

SurfaceFlinger process using mmap() at the beginning

of draw() in performTraversal().

Interestingly, this implies that if we know the Graph-

icBuffer size for a target window, we can detect its al-

location and deallocation events by monitoring the size

changes of shared vm. Since the GraphicBuffer size is

proportional to the window size, and an Activity is a full-

screen window, its GraphicBuffer size is fixed for a given

device, which can be known beforehand.

It is noteworthy that different from private memory

space, shared memory space changes only when shared

files or libraries are mapped into the virtual memory.

This keeps our side channel clean; as a result, the

changes in shared vm are distinct with minimum noise.

Shared-memory side-channel vulnerability on other

OSes. To understand the scope, we investigate other

OSes besides Android. On Linux, Wayland makes it

clear that it uses shared buffers as IPC between the win-

4
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Item in /proc/- Description Name Name in Linux
pid/statm in top source code

VmSize Total virtual memory size VIRT mm->total vm

drs Private virtual memory size / mm->total vm-

mm->shared vm

resident Total physical memory size RES file rss+anon rss

share Shared physical memory size SHR file rss

Table 1: Android/Linux memory counters in /proc/pid/statm and their

names in the Linux command top, and the Linux source code (obtained

from task statm() in task mmu.c). The type of mm is mm struct.

time
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Sampling
pulse

0
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time

shared_vm
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Figure 6: A successful sampling of an

Activity transition signal for the Activ-

ity transition detection

dow compositor and clients to render the windows [13].

Similar to Android, attackers can use /proc/pid/statm to

get the shared memory size and detect window events.

Mac OS X, iOS and Windows neither explain this IPC

in their documentations nor have corresponding source

code for us to explore, so we did some reverse engi-

neering using memory analysis tools such as VMMap

[20]. On Windows 7, we found that whenever we open

and close a window, a memory block appears and dis-

appears in the shared virtual memory space of both the

window compositor process, Desktop Window Manager,

and the application process. Moreover, the size of this

memory block is proportional to the window size on the

screen. This strongly implies that this memory block is

the off-screen buffer and shared memory is the IPC used

for passing it to the window compositor. Thus, using

the GetProcessMemoryInfo() API that does not

require privilege, similar inference may be possible.

Mac OS X is similar to Windows except that the mem-

ory block in shared memory space is named CG back-

ing store. On iOS this should be the same as Mac

OS X since they share the same window compositor,

Quartz Compositor. But on Mac OS X and iOS, only

system-wide aggregated memory statistics seem avail-

able through host statistics() API, which may

still be usable for this attack but with a less accuracy.

3.3 Activity Transition Detection

With the above knowledge, detecting Activity transition

is simply a matter of detecting the corresponding window

event pattern by monitoring shared vm size changes.

The left half of Fig. 6 shows the typical shared vm

changing pattern for an Activity transition, and we name

it Activity transition signal. In this signal, the posi-

tive and negative spikes are increases and decreases in

shared vm respectively, corresponding to GraphicBuffer

allocations and deallocations. The GraphicBuffer allo-

cation for the new Activity usually happens before the

deallocation for the current Activity, which avoids user-

visible UI delays. Since Activity windows all have full-

screen sizes, the increase and decrease amount are the

same. With the multiple buffer mechanism for UI draw-

ing acceleration on Android [21], 1–3 GraphicBuffer al-

locations or deallocations can be observed during a sin-

gle transition, resulting in multiple spikes in Fig. 6. The

delay between allocations is usually 100–500 ms due to

measurement and layout computations, while the delay

between deallocations is usually under 10 ms. An exam-

ple result of a successful sampling is shown on the right

half of Fig. 6 with the sampling period being 30–100 ms.

To detect this signal, we monitor the changes of

shared vm, and conclude an Activity transition period by

observing (1) both full-screen size shared vm increase

and decrease events, (2) the idle time between two suc-

cessive events is longer than a threshold idle thres. A

successful detection is shown on the top of Fig. 10.

We evaluate this method and find a very low false posi-

tive rate, which is mainly because the shared vm channel

is clean. In addition, it is rare that the following unique

patterns happen randomly in practice: (1) the shared vm

increase and decrease amounts are exactly the same as

the full-screen GraphicBuffer size (920 pages for Sam-

sung Galaxy S3); (2) both the increase and decrease

events occur very closely in time.

On the other hand, this method may have false neg-

atives due to a cancellation effect — when an increase

and a decrease are in the same sampling period, they can-

cel each other and the shared vm size stays unchanged.

Raising the sampling rate can overcome this problem, but

at the cost of increased sampling overhead. Instead, we

solve the problem using the number of minor page faults

(minflt), in /proc/pid/stat. When allocating memory for a

GraphicBuffer, the physical memory is not actually allo-

cated until it is used. At time of use, the same number of

pages faults as the allocated GraphicBuffer page size is

generated. Since minflt monotonically increases as a cu-

mulative counter, we can use it to deduce the occurrence

of a cancellation event.

4 Activity Inference

After detecting an Activity transition, we infer the iden-

tity of the new Activity using two kinds of information:

1. Activity signature. Among functions involved in

the transition (as shown in Fig. 3), onCreate() and

onResume() are defined in the landing Activity, and

the execution of performTraversal() depends on

the UI elements and layout in its LandingState. Thus, ev-

ery transition has behavior specific to the landing Activ-
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ity, giving us opportunities to infer the landing Activity

based on feature data collected during the transition.

2. Activity transition graph. If the Activity transition

graph of an app is sparse, once the foreground Activity is

known, the set of the next candidate Activities is limited,

which can ease the inference difficulty. Thus, we also

consider Activity transition graph in the inference.

Fig. 7 shows an overview of the Activity inference pro-

cess. This process has two phases, the training phase and

the attacking phase. The training phase is executed first

offline. We build a tool to automatically generate Activ-

ity transitions in an app, and at the same time collect fea-

ture data to build the Activity signature and construct the

Activity transition graph. In the attacking phase, when a

user triggers an Activity transition event, the attack app

first collects feature data like in the training phase, then

leverages Activity signature and a transition model based

on the Activity transition graph to perform inference.

4.1 Activity Signature Design

During the transition, we identify four types of features

described below and use them jointly as the signature.

Input method events. Soft keyboard on smartphones is

commonly used to support typing in Activities. It usually

pops up automatically at the landing time. There is also a

window event for the keyboard process, which again can

be inferred through shared vm. This is a binary feature

indicating whether the LandingState requires typing.

Content Provider events. Android component Content

Provider manages access to a structured set of data using

SQLite as backend. To deliver content without memory

copy overhead, Android uses anonymous shared mem-

ory (ashmem) shared by the Content Provider and the app

process. Similar to the compositing window manger de-

sign, by monitoring shared vm, we can detect the query

and release events of the Content Provider. Specifically,

in Android design, we found that the virtual memory size

of ashmem allocated for a Content Provider query is a

fixed large value, e.g., 2048 KB for Android 4.1, which

creates a clear signal. Usually its content only consti-

tutes a small portion. To know the content size, we also

monitor shared pm introduced in §3.1, which indicates

the physical memory allocation size for the content.

The Content Provider is queried in onCreate() and

onResume() to show content in the landing Activity.

For signature construction, we collect Content Provider

query events and the corresponding content size by mon-

itoring shared vm and shared pm. As shared pm may be

noisy, we use a normal distribution to model the size.

CPU utilization time. Fig. 8 shows the CPU utilization

time collected by DDMS [22] for each function in Fig. 3

during the transition. For the 6 transitions, c and r denote

create and resume transition, and 1–4 denote 4 different

LandingStates. The time collected may be inflated due

to the overhead added by DDMS profiling. The figure

shows that CPU utilization time spent in each function

differs across distinct LandingStates due to distinct draw-

ing complexity, and for the same LandingState, resume

transitions usually take less time than create ones since

the former lacks onCreate(). Thus, the CPU utiliza-

tion time can be used to distinguish Activity transitions

with different transition types and LandingStates.

To collect data for this feature, we record the

user space CPU utilization time value (utime), in

/proc/pid/stat for the Activity transition. Similar to pre-

vious work [23, 24], we find that the value for the same

repeated transition roughly follows normal distribution.

Thus, we model it using a normal distribution.

Network events. For LandingStates with content from

the network, network connection(s) are initiated in

performLaunch() during the transition. For a given

LandingState, the request command string such as HTTP

GET is usually hard-coded, with only minor changes

from app states or user input. This leads to similar size

of the first packet immediately after the connection estab-

lishment. We do not use the response packet size, since

the result may be dynamically generated. Fig. 9 shows

the CDF of the first packet sizes for 14 Activity Land-

ingStates in H&R Block. As shown, most distributions

are quite stable, with variations of less than 3 bytes.

To capture the first packet size, we monitor the send

packet size value in /proc/uid stat/uid/tcp snd. We con-
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currently monitor /proc/net/tcp6, which contains net-

work connection information such as the destination IP

address and app uid for all apps. We use the uid to find

the app which the connection belongs to, and use time

correlation to match the first packet size to the connec-

tion. For the LandingState with multiple connections,

we use the whois IP address registry database [25] to get

the organization names and thus distinguish connections

with different purpose. To read first packet sizes accu-

rately, we raise the sampling rate to be 1 in 5 ms during

the transition period. Since this period usually lasts less

than 1 second, the overall sampling overhead is still low.

For signature construction, we keep separate records

for connections with different organization names and

occurrence ordering. For each record, we use the first

packet size appearance frequencies to calculate the prob-

ability for this feature.

Fig. 10 shows the data collection timeline for these

feature data and their relationship with the shared vm

signal. The Content Provider event feature is collected

before the first shared vm increase, and the input method

event feature is collected after the first shared vm de-

crease. Network events are initiated before the first

shared vm increase, while the first packet size is usually

captured after that. The CPU utilization time feature is

collected throughout the whole transition period.

With these four types of features, our signature prob-

ability Prob(�·,a.lsi�), a ∈ A, a.lsi ∈ a.LS is obtained

by computing the product of each feature’s probability,

based on the observation that they are fairly independent.

In §5, we evaluate our signature design with these four

features both jointly and separately.

4.2 Transition Model and Inference Result

Transition model. In our inference, the states (i.e., Ac-

tivities) are not visible, so we use Hidden Markov Model

(HMM) to model Activity transitions. We denote the

foreground Activity trace with n Activity transitions as

{a0,a1, ...,an}. The HMM can be solved using the

Viterbi algorithm [26] with initialization Prob({a0}) =
1
|A| , and inductive steps Prob({a0, ...,an}) = argmax

an.lsi∈an.LS

Prob(�·,an.lsi�)Prob(an|an−1)Prob({a0, ...,an−1}).

In inductive steps, Prob(�·,an.lsi�) denotes the

probability calculated from Activity signature, and

Prob(an|an−1) denotes the probability that an−1 transi-

tions to an. If an−1 has x egress edges in the transition

graph, Prob(an|an−1) =
1
x
, assuming that user choices

are uniformly distributed.

The typical Viterbi algorithm [26] calculates the most

likely Activity trace {a0,a1, ...,an}, with computation

complexity O((n + 1)|A|2). However, for our case,

only the new foreground Activity an is of interest, so

we modify the Viterbi algorithm by only calculating

Prob({an−c+1, ...,an}), where c is a constant. This re-

duces the computation complexity to O(c|A|2). In our

implementation, we choose c = 2.

Inference result. After inference, our attack outputs a

list of Activities in decreasing order of their probabilities.

4.3 Automated Activity Transition Tool

By design, both the Activity signature and Activity tran-

sition graph are mostly independent of user behavior;

therefore, the training phase does not need any victim

participation. Thus, we also develop an automated tool

to accelerate the training process offline.

Implementation. Our tool is built on top of

ActivityInstrumentationTestCase, an An-

droid class for building test cases of an app [27]. The

implementation has around 4000 lines of Java code.

Activity transition graph generation with depth-first

search. To generate the transition graph, we send and

record user input events to Activities to drive the app in

a depth-first search (DFS) fashion like the depth-first ex-

ploration described in [17]. The DFS graph has View-

States as nodes, user input event traces as edges (create

transitions), and the BACK key as the back edge (resume

transitions). Once the foreground Activity changes, tran-

sition information such as the user input trace and the

landing Activity name is recorded. The graph generated

is in the form of the example shown in Fig. 4.

Activity transition graph traversal. With the transi-

tion graph generated, our tool supports automatic graph

traversals in deterministic and random modes. In the ran-

dom mode, the tool chooses random egress edges during

the traversal, and goes back with some probabilities.

Tool limitations. We assume Activities are independent

from each other. If changes in one Activity affect Ac-

tivity transition behavior in another, our tool may not be

aware of that, leading to missed transition edges. For

some user input such as text entering, the input genera-

tion is only a heuristic and cannot ensure 100% cover-

age. To address such limitations, some human effort is

involved to ensure that we do not miss the important Ac-

tivities and ViewStates.

7
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Application Activity Activity transitions Activity LandingStates
name number create resume Total Graph Average egress Number w/ content w/ input w/ network

type type density edge per Activity provider method

WebMD 38 274 129 403 14.0% 10.0 92 18.7% 15.3% 70.3%

Chase 34 257 39 296 17.4% 8.71 50 4% 0.00% 44.0%

Amazon 19 209 190 399 55.3% 21.0 39 0.00% 7.69% 74.3%

NewEgg 55 242 253 495 8.2% 9.0 80 0.00% 8.75% 97.5%

GMail 7 10 10 20 20.4% 2.86 17 0.00% 5.71% 5.8%

H&R Block 20 58 39 97 12.1% 4.85 42 0.00% 2.3% 100%

Hotel.com 24 29 41 70 6.1% 2.92 35 0.00% 2.8% 100%

Table 2: Characteristics of Activity, Activity LandingStates and Activity transitions of selected apps (numbers are

obtained manually as the ground truth). The CPU utilization time feature is omitted since it is always available.

Application Activity transition detection Activity inference accuracy

name Accuracy FP FN Top 1 cand. Top 2 cand. Top 3 cand.

WebMD 99% 0.50% 1.0% 84.5% 91.4% 93.6%

Chase 99.5% 0.53% 0.63% 83.1% 91.8% 95.7%

Amazon 99.3% 4% 0.7% 47.6% 65.6% 74.1%

NewEgg 98.4% 0.1% 1.6% 85.9% 92.6% 96.3%

GMail 99.2% 0% 0.8% 92.0% 98.3% 99.3%

H&R Block 97.7% 2% 2.3% 91.9% 96.7% 98.1%

Hotel.com 96.5% 0.6% 3.5% 82.6% 92.7% 96.7%

Table 3: Activity transition detection and inference result for selected apps.

All results are generated using Activity traces with more than 3000 transitions.
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5 Evaluation

In this section, we evaluate (1) the effectiveness of the

automated Activity transition tool, (2) the performance

of the Activity inference, and (3) the attack overhead.

Attack implementation. We implement the Activity in-

ference attack with around 2300 lines of C++ code com-

piled with Android NDK packaged in an attack app.

Data collection. We use the automated tool in §4.3 to

generate Activity transitions. We use random traversals

to simulate user behavior, and deterministic traversals in

controlled experiments for training and parameter selec-

tion, e.g., the sampling rate. We run all experiments on

Samsung Galaxy S3 devices with Android 4.2. We do

not make use of any device-specific features and expect

our findings to apply to other Android phones.

App selection and characteristics. In our experiments,

we choose 7 Android apps, WebMD, GMail, Chase,

H&R Block, Amazon, NewEgg, and Hotel.com, all of

which are popular and also contain sensitive information.

Table 2 characterizes these apps according to properties

relevant to our attack techniques. NewEgg and GMail

have the highest and the lowest number of Activities, and

Amazon has the highest graph density. Chase app is the

only one with no automatic soft keyboard pop-up during

the transition among these apps. The Content Provider

is only extensively used by WebMD. Except GMail, the

percentage of the network feature is usually high.

5.1 Activity Transition Tool Evaluation

For Activity transition graph generation, the tool typi-

cally spends 10 minutes to 1 hour on a single Activity,

depending on the UI complexity. For all apps except

WebMD, the generated transition graphs are exactly the

same as the ones we generate manually. The transition

graph of WebMD misses 4 create transition edges and 3

resume transition edges, which is caused by dependent

Activity issues described in §4.3. Our tool generates no

fake edges for all selected apps.

5.2 Activity Inference Attack Evaluation

Evaluation methodology. We run the attack app in the

background while the tool triggers Activity transitions.

The triggered Activity traces are recorded as the ground

truth. To simulate the real attack environment, the at-

tack is launched with popular apps such as GMail and

Facebook running in the background. For the Activity

transition detection, we measure the accuracy, false pos-

itive (FP) and false negative (FN) rates. For the Activity

inference, we consider the accuracy for the top N candi-

dates — the inference is considered correct if the right

Activity is ranked top N on the result candidate list.

5.2.1 Activity Transition Detection Results

Aggregated Activity transition detection results are

shown in columns 2–4 in Table 3. For all selected apps,

the detection accuracies are more than 96.5%, and the FP

and FN rates are both less than 4%.

When changing the sampling period from 30 to 100

ms in our experiment, for all apps the increases of FP and

FN rates are no more than 5%. This shows a small im-

pact of the sampling rate on the detection; thus, a lower

sampling rate can be used to reduce sampling overhead.

We also measure Activity transition detection delay,

which is the time from the first shared vm increase to

the moment when the Activity transition is detected in

8



USENIX Association  23rd USENIX Security Symposium 1045

Fig. 10. For all apps, 80% of the delay is shorter than

1300 ms, which is fast enough for Activity tracking.

5.2.2 Activity Inference Results

The aggregated Activity transition inference result is

shown in column 5–7 in Table 3. For all apps except

Amazon, the average accuracies for the top 1 candidates

are 82.6–92.0%, while the top 2 and top 3 candidates’ ac-

curacies exceed 91.4% and 93.6%. Amazon’s accuracy

remains poor, and can achieve 80% only when consid-

ering the top 5 candidates. In the next section, we will

investigate more into the reason of these results.

Fig. 11 shows the CDF of the accuracy for top 1 candi-

dates per Activity in the selected apps. Except Amazon,

all apps have more than 70% of Activities with more than

80% accuracy. For WebMD, NewEgg, Chase and Ho-

tel.com, around 20% Activities have less than 70% accu-

racy. For these Activities, they usually lack some signa-

ture features, or the features they have are too common to

be distinct enough. However, such Activities usually do

not have sensitive data due to a lack of important UI fea-

tures such as text fields for typing, and thus are not rele-

vant to the proposed attacks. For example, in Hotel.com,

the two Activities with less than 70% accuracy are Coun-

trySelectActivity for switching language and Opinion-

LabEmbeddedBrowserActivity for rating the app.

5.2.3 Breakdown Analysis and Discussion

To better understand the performance results, we break

down the contributions of each signature feature and the

transition model further. Table 4 shows the decrease of

the average accuracy for top 1 candidates if leaving out

certain features or the transition model. Without the CPU

utilization time feature, the accuracy decreases by 36.2%

on average, making it the most important contributor.

Contributions from the network feature and the transi-

tion model are also high, which generally improves the

accuracy by 12–30%. As low-entropy features, the Con-

tent Provider and the input method contribute under 5%.

Thus, the CPU utilization time, the network event and

the transition model are the three most important contrib-

utors to the final accuracy. Note that though the Content

Provider and input method features have lower contribu-

tions, we find that the top 2 and top 3 candidates’ accu-

racies benefit more from them. This is because they are

more stable features, and greatly reduce the cases with

extremely poor results due to the high variance in the

CPU utilization time and the network features.

Thus, considering that the CPU utilization time is al-

ways available, apps with a high percentage of network

features, or a sparse transition graph, or both, should

have a high inference accuracy. In Table 2 and Table 3,

this rule applies to all the selected apps except Amazon.

Application ∆ Accuracy for top 1 candidates
name no IM no CP no Net no CPU no HMM

WebMD -3.8% -2.6% -19.1% -25.7% -16.6%

Chase -0% -2.0% -12.8% -71.5% -28.7%

Amazon -10.2% -0% -3.2% -32.0% -5.9%

NewEgg -0.5% -0% -31.7% -20.0% -13.0%

GMail -13.7% -0% -0.9% -58.6% -19.4%

H&RBlock -0.7% -0% -30.7% -27.9% -16.5%

Hotel.com -0.3% -0% -28.8% -17.9% -12.2%

Table 4: Breakdown of individual contributions to accu-

racy. IM, CP, Net, and CPU stand for input method, Con-

tent Provider, network event and CPU utilization time.

Amazon has a low accuracy mainly because it bene-

fits little from either the transition model or the network

event feature due to high transition graph density and in-

frequent network events. The reason for the high transi-

tion graph density is that in Amazon each Activity has

a menu which provides options to transition to nearly

all other Activities. The infrequent network events are

due to its extensively usage of caching, presumably be-

cause much of its content is static and cacheable. How-

ever, we note that many network events are typically not

cacheable, e.g., authentication events and dynamic con-

tent (generated depending on the user input and/or the

context). Compared to the other 6 apps, we find that

these two properties for Amazon are not typical, not

present in another shopping app NewEgg.

The Amazon app case indicates that our inference

method may not work well if certain features are not suf-

ficiently distinct, especially the major contributors such

as the transition model and the network event feature.

To better understand the general applicability of our in-

ference technique, a more extensive measurement study

about the Activity and Activity transition graph proper-

ties is needed, which we leave as future work.

5.2.4 Attack overhead

We use the Monsoon Power Monitor [28] to measure

the attack energy overhead. Using an Activity trace of

WebMD on the same device, with our attack in the back-

ground the power level increases by 2.2 to 6.0% when

the sampling period changes from 100 to 30 ms.

6 Enabled Attack: Activity Hijacking

In this section, based on the UI state tracking, we de-

sign a new Android attack which breaches GUI integrity

— Activity hijacking attack — based on a simple idea:

stealthily inject into the foreground a phishing Activity

at the right timing and steal sensitive information a user

enters, e.g., the password in login Activity.

Note that this is not the first attack popping up a phish-

ing Activity to steal user input, but we argue that it is the

first general one that can hijack any Activities during an

app’s lifetime. Previous study [29] pops up a fake login

9
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Activity every time the attack app detects the launching

of the target app, tricking users into entering login cre-

dentials. However, this can easily cause user suspicion

due to the following: (1) most apps nowadays do not re-

quire login right after the app starts, even for banking

apps like Chase; (2) the attack requires suspicious per-

missions such as BOOT COMPLETED to be notified of

system boot, based on the assumption that login is ex-

pected after the system reboot. With the Activity infer-

ence attack, we no longer suffer from these limitations.

6.1 Activity Hijacking Attack Overview

Fig. 12 shows the general steps of Activity hijacking at-

tack. In step 1, the background attack app uses Activity

inference to monitor the foreground Activity, waiting for

the attack target, for example, LoginActivity in Fig. 12.

In step 2, once the Activity inference reports that the

target victim Activity, e.g., LoginActivity, is about to

enter the foreground, the attack app simultaneously in-

jects a pre-prepared phishing LoginActivity into the fore-

ground. Note that the challenge here is that this intro-

duces a race condition where the injected phishing Ac-

tivity might enter the foreground too early or too late,

causing visual disruption (e.g., broken animation). With

carefully designed timing, we prepare the injection at the

perfect time without any human-observable glitches dur-

ing the transition (see video demos [6]). Thus, the user

will not notice any differences, and continue entering the

password. At this point, the information is stolen and the

attack succeeds.

In step 3, the attack app ends the attack as unsuspi-

ciously as possible. Since the attack app now becomes

the foreground app, it needs to somehow transition back

to the original app without raising much suspicion.

6.2 Attack Design Details

Activity injection. To understand how it is possible to

inject an Activity from one app into the foreground and

preempt the existing one, we have to understand the de-

sign principle of smartphone UI. If we think about apps

such as the alarm and reminder apps, they indeed require

the ability to pop up a window and preempt any fore-

ground Activities. In Android, such functionality is sup-

ported in two ways without requiring any permissions:

(1) starting an Activity with a restricted launching mode

“SingleInstance” [30]; (2) starting an Activity from an

Android broadcast receiver [31]. In our design, since the

timing of the injection is critical, we choose the former

as it can be launched 30 ms faster.

UI phishing. To ensure that the phishing Activity’s UI

appears the same as the victim Activity, we disassem-

ble the victim app’s apk using apktool [32] and copy all

related UI resources to the attack app. However, some-

times the Activity UI may have dynamically loaded ar-

eas which are not determined by the UI resources, e.g.,

the account verification image in banking apps. To solve

that, the attacker can make those areas transparent, given

that Android supports partially transparent Activity [33].

Activity transition animation modifying. Since our in-

jection introduces an additional Activity transition which

is racing with the original transition, the animation of

the additional transition would clearly disrupt the flow.

Fortunately, this problem can be solved by disabling the

transition animation (allowed by Android) by modifying

an Activity configuration of the attack app without need-

ing any permissions. This helps the injection become to-

tally seamless, and as will be discussed in §9, enforcing

this animation may be a feasible mitigation of our attack.

Injection timing constraint. For the attack to succeed,

the Activity injection needs to happen before any user in-

teraction begins, otherwise the UI change triggered by it

may be disrupted by the injected Activity. Since the in-

jection with the current inference technique takes quite

long (the injected Activity will show up after around

1300 ms from the first detected shared vm increase as

measured in §5), any user interaction during this period

would cause disruptions. To reduce the delay, we adapt

the inference to start much earlier. As shown in Fig. 13,

we now start the inference as soon as the shared vm de-

crease is observed (roughly corresponding to the Activity

entering animation start time). In contrast, our original

inference starts after the last shared vm increase.

Note that this would limit the feature collection up to

the point of the shared vm decrease, thus impacting the

inference accuracy. Fortunately, as indicated in Fig. 10,

such change does allow the network event feature, the
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majority of the CPU utilization time features, and the

transition model to be included in the inference, which

are the three most important contributors to the final ac-

curacy as discussed in §5.2.3. Based on our evaluation,

this would reduce the delay to only around 500 ms.

Unsuspicious attack ending. As described in §6.1, in

step 3 we try to transition from the attack app back to the

victim unsuspiciously. Since the phishing Activity now

has the information entered on the screen, it is too abrupt

to directly close it and jump back to the victim. In our

design, we leverage “benign” abnormal events to hide

the attack behavior, e.g., the attack app can show “server

error” after the user clicks on the login button, and then

quickly destroy itself and fall back to the victim.

Deal with cached user data. It is common that some

sensitive data may be cached, thus won’t be entered at all,

e.g., the user name in login Activity. Without waiting for

them to expire, it is difficult to capture any fresh input.

Note that we can simply inject the phishing Activity

with all fields left blank. The challenge is to not alert

the user with any other observable suspicious behavior.

Specifically, depending on the implementation, we find

that the cached user data sometimes show up immedi-

ately in the very first frame of the Activity entering an-

imation (t0 in Fig. 13). Thus, our later injection would

clear the cached fields, which causes visual disruption.

Our solution is to pop up a tailored cache expiration

message (replicating the one from the app), and then

clear such cached data, prompting users to re-enter them.

6.3 Attack Implementation and Evaluation

Implementation. We implement Activity hijacking at-

tack against 4 Activities: H&R Block’s LoginActivity

and RefundInfoActivity for stealing the login creden-

tials and SSN, and NewEgg’s ShippingAddressAddAc-

tivity and PaymentOptionsModifyActivity for stealing

the shipping/billing address and credit card information.

The latter two Activities do not appear frequently in the

check-out process since the corresponding information

may be cached. Thus, to force the user to re-enter them,

our attack injects these two Activities into the check-out

process. The user would simply think that the cached

information has expired. In this case the fake cache ex-

piration messages are not needed, since the attack can

fall back to the check-out process naturally after entering

that information. Attack demos can be found in [6].

Evaluation. The most important metric for our attack is

the Activity injection delay, which is the time from t1 to

t2 in Fig. 13. In Android, it is hard to know precisely the

animation ending time t1, so the delay is measured from

t0 to t2 as an upper bound. In the evaluation the Activity

injection is performed 50 times for the LoginActivity of

H&R Block app, and the average injection delay is 488

ms. Most of the delay time is spent in onCreate()

(242 ms) and performTraverse() (153 ms). From

our experience, the injection is fast enough to complete

before any user interaction starts.

7 Enabled Attack: Camera Peeking

In this section, we show another new attack enabled by

the Activity inference: camera peeking attack.

7.1 Camera Peeking Attack Overview

Due to privacy concerns, many apps store photo images

shot by the camera only in memory and never make them

publicly accessible, for example by writing them to ex-

ternal storage. This applies to many apps such as bank-

ing apps (e.g., Chase), shopping apps (e.g., Amazon and

Best Buy), and search apps (e.g., Google Goggles). Such

photo images contain highly-sensitive information such

as the user’s life events, shopping interests, home address

and signature (on the check). Surprisingly, we show that

with Activity tracking such sensitive and well-protected

camera photo images can be successfully stolen by a

background attack app. Different from PlaceRaider [34],

our attack targets at the camera photo shot by the user,

instead of random ones of the environment.

Our attack follows a simple idea: when an Activity is

using the camera, the attack app quickly takes a separate

image while the camera is still in the same position. In

the following, we detail our design and implementation.

7.2 Attack Design Details

Background on Android camera resource manage-

ment. With the camera permission, an Android app can

obtain and release the camera by calling open() and

release(). Once the camera is obtained, an app can

then take pictures by calling takePicture(). There

are two important properties: (1) exclusive usage. The

camera can be used by only one app at any point in time;

(2) slow initialization. Camera initialization needs to

work with hardware, so open() typically takes 500–

1000 ms (measured on Samsung Galaxy S3 devices).

Obtain camera images in the background. In the An-

droid documentation, taking pictures in the background

is explicitly disallowed due to privacy concerns [35].

Though PlaceRaider [34] succeeded in doing so, we find

that their technique is restricted to certain devices run-

ning old Android systems which do not follow the docu-

mentation correctly, e.g., Droid 3 with Android 2.3.

Interestingly, we find camera preview frames to be

the perfect alternative interface for obtaining camera

images without explicitly calling takePicture().

When using the camera, the preview on the screen

shows a live video stream from the camera. Using

PreviewCallback(), the video stream frames are

returned one by one, which are actually the camera im-

ages we want. SurfaceTexture is used to capture this
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Figure 14: Camera peeking attack process when the

foreground Activity is using the camera

Camera peeking Success DoS # of camera poss-
attack type rate rate ession per round

Blind attack (3s idle time) 81% 19% 30.5

Blind attack (4s idle time) 83% 14% 20.9

Blind attack (5s idle time) 79% 8% 18.9

UI state based attack 99% 0% 1.4

Table 5: User study evaluation result for the camera peeking

attack

image stream, and we find that it can be created with a

nonexistent OpenGL texture object name, thus prevent-

ing any visible preview on the screen. We suspect that

the less restrictive interface is managed by OpenGL li-

brary which bypasses the Android framework and its as-

sociated security checks. Compared to PlaceRaider [34],

this technique not only has no requirement of the sensi-

tive MODIFY AUDIO SETTINGS permission to avoid

shutter sound, but also has much faster “shutter speed” of

24 frames per second. Note that even if this interface is

blocked, our attack can still use techniques in §6 to inject

an Activity to the foreground to get the preview frames.

Obtain photo images shot by the user. Fig. 14 shows

how our attack gets the photo image the user shoots in

the victim app. The photo taking functionality usually

involves a camera shooting Activity and a picture review

Activity. Once the user clicks on the shutter button in the

former, the latter pops up with the picture just taken. Due

to the exclusive usage property, when the foreground Ac-

tivity is using the camera the attack app cannot get the

camera. Thus, once knowing that the camera is in use,

the attack app keeps calling open() to request the cam-

era until it succeeds right after the user presses the shutter

button and the camera gets released during the Activity

transition. Since the delay to get a camera preview frame

is only the initialization time (500–1000 ms), the cam-

era is very likely still pointing at the same object, thus

obtaining a similar image.

Capture the camera usage time. To trigger the attack

process in Fig. 14, the attack app needs to know when

the camera is in use in the foreground. However, due

to the slow initialization, a naive solution which peri-

odically calls open() to check the camera usage will

possess the camera for 500–1000 ms for each checking

action when the camera is not in use. During that time,

if the foreground app tries to use the camera, a denial of

service (DoS) will take place. With 12 popular apps, we

find that when failing to get the camera, most apps pop

up a “camera error” or ”camera is used by another app”

message and some even crash immediately. These errors

may indicate that an attack is ongoing and alert the user.

Besides, the frequent camera resource possessing behav-

ior is easily found suspicious with increasing concerns

about smartphone camera usage [34].

To solve the problem, our attack uses Activity infer-

ence to capture the camera usage time by directly waiting

for the camera shooting Activity. To increase the infer-

ence accuracy for Activities using the camera, we add

camera usage as a binary feature (true or false on the

camera usage status) and it is only tested when the land-

ing Activity is very likely to be the camera shooting Ac-

tivity based on other features to prevent DoS and overly

frequent camera possessions.

7.3 Attack Evaluation

Implementation. We implement the camera peeking at-

tack against the check deposit functionality in Chase app,

which allows users to deposit personal checks by taking

a picture of the check. Besides the network permission,

the attack app also needs the the camera permission to

access camera preview frames. On the check photo, the

attacker can steal much highly-sensitive personal infor-

mation, including the user name, home address, bank

routing/account number, and even the user’s signature.

A video demo is available at [6].

Evaluation methodology. We compare our UI state

based camera peeking attack against the blind attack,

which periodically calls open() to check the fore-

ground camera usage as described in §7.2. We add pa-

rameter idle time for the blind attack as the camera usage

checking period. The longer the idle time is, the lower

the DoS possibility and the camera possession frequency

are. However, the idle time cannot be so long that the at-

tack misses the camera shooting events. Thus, the blind

attack faces a trade-off between the DoS risk, the camera

possession frequency, and the attack success rate.

User study. We evaluate our attack with a user study of

10 volunteers. In the study we use 4 Samsung Galaxy S3

phones with Android 4.1. Three of them use the blind

attacks with idle time being 3, 4 and 5 seconds respec-

tively, and the last one uses the UI state based attack.

Each user performs 10 rounds, and in each round, the

users are asked to first interact with the app as usual, and

then go to the check deposit Activity and take a picture

of a check provided by us. We emphasize that they are

expected to perform as if it is their own check. The IRB

for this study has been approved and we took steps to

ensure that no sensitive user data were exposed, e.g., by

using a fake bank account and personal checks.

Performance metrics. For evaluation we measure: (1)
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DoS rate, the ratio that when the user wants to use the

camera but fails; (2) number of camera possessions, the

number of events that the camera is possessed by the at-

tack app; (3) success rate, the ratio that the attacker gets

the check image after the user shoots the check.

Result. Table 5 shows the user study evaluation results.

With the camera usage feature, the UI state based attack

can achieve 99% success rate, and the only failure case

is due to a failure in detecting the Activity transition. For

the blind attack, the success rate is less than 83%, and

when the idle time increases, the success rate increases

then decreases. The increase is due to lower DoS proba-

bility, and the decrease is because the users usually finish

shooting in around 4 seconds (found in our user study),

so when the idle time increases to 5 seconds, the blind

attack misses some camera shooting events.

UI state based attack causes no DoS during the user

study. For the blind attack, the DoS rate is around 8–

19%, and decreases when the idle time increases. Con-

sidering that a single DoS case may likely cause “sud-

den death” for the attack app, this risk is high, especially

compared to the UI state based attack.

The camera possession number for the UI state based

attack is also a magnitude lower. Every round, except the

necessary one for camera shooting, the UI state based at-

tack only needs 0.4 excessive camera possessions, which

is mainly caused by inaccurate inference. For the blind

attack, to ensure a high success rate, the camera posses-

sion number is proportional to time, making it hard to

avoid suspicious frequent camera possessions.

Fig. 15 includes an average quality check image

“stolen” from a real user, showing that the image is clear

enough to read all the private information.

Figure 15: An example check image “stolen” using the

camera peeking attack.

8 Other Attack Scenarios

Enhance existing attacks. Generally, a class of existing

attacks that are launched only at specific timings bene-

fits from UI state information. Since many attacks need

to be launched at a specific timing, with the UI state

information, both stealthiness and effectiveness can be

achieved. For example, for the phishing attack using

TCP connection hijacking [9,10], the attack app can pre-

cisely target at connections established in Activities with

web pages instead of unrelated ones, e.g., database up-

dating, keepalive messages, etc. The attack thus becomes

more efficient and less suspicious by avoiding frequently

sending large amounts of attack traffic [9]. Similar en-

hancement can also be applied to keystroke inference at-

tacks [7, 8] and screenshot taking attack [5] where only

keystrokes entered in login Activities may be of interest.

User behavior monitoring and analysis. UI states

themselves are user behavior related internal states of an

app. As shown in Fig. 2, due to the limited screen size on

the smartphone, full-screen window-level UI state infor-

mation breaks user-app interaction to very fine-grained

states. Thus, by tracking UI states, a background app can

monitor and analyze user behavior, e.g., in a health app

the user is more often looking for drugs or physicians.

In addition, with Activity tracking, the attacker can

even infer which choice is made inside an Activity (e.g.,

which medical condition a user is interested in). This is

achieved using the size of the request packet obtained by

the technique described in §4.1. For example, for QAL-

istActivity of H&R Block app, we can infer which tax

question a user is interested in based on the length of the

question that is embedded in the query packet. In this

question list, we find that 10 out of 11 question queries

are distinguishable (with different lengths).

A similar technique was proposed recently [12], but

built upon a network event based state machine, with two

limitations: (1) packet size itself can be highly variable

(ads connections may co-occur) and different Activities

may generate similar packet size traces, e.g., login Activ-

ities and user account Activities both have the authentica-

tion connection thus may have similar packet size trace.

UI state knowledge would limit the space of possible

connections significantly as we infer the Activity based

on a more comprehensive set of features; (2) not all user

choices in Android are reflected in network packets —

database/Content Provider can also be used to fetch con-

tent. With our UI state machine, we can further extend

the attack to the Content Provider based user choice in-

ference. For example, in WebMD, DrugSearchMainAc-

tivity has a list of letter A to Z. Once one letter is clicked,

Content Provider is queried to fetch a list of drug names

starting from that letter. With the Content Provider query

event and content size inference technique (described in

§4.1), we characterized all of the choices and found fairly

good entropy: the responding content sizes have 16 dif-

ferent values for the 26 letters, corresponding to 4 bits

out of 4.7 bits of information for the user choice.

9 Defense Discussion

In this section, we suggest more secure system designs

to defend against the attacks found in this paper.
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Proc file system access control. In our attack,

shared vm and features of Activity signature such as

CPU and network all rely on freely accessible files in

proc file system. However, as pointed out by Zhou et

al. [12], simply removing them from the list of pub-

lic resources may not be a good option due to the large

amount of existing apps depending on them. To better

solve the problem, Zhou et al. [12] proposed a mitiga-

tion strategy which reduces the attack effectiveness by

rounding up or down the actual value. This can work for

the network side channel, but may not be effective for

shared vm and shared pm, which are already rounded to

pages (4KB) but still generate a high transition detec-

tion accuracy. This is mainly because the window buffer

size is large enough to be distinct and the side channel

is pretty clean, as discussed in §3.3. Thus, Android sys-

tem may need to reconsider its access control strategy for

these public accessible files to better balance functional-

ity and security. In fact, Android has already restricted

access to certain proc files that are publicly accessible in

the standard Linux, e.g., /proc/pid/smaps. However, our

work indicates that it is still far from being secure.

Window manager design. As described in §3.2, the ex-

istence of the shared-memory side channel is due to the

requirement of the window buffer sharing in the client-

drawn buffer design. Thus, a fundamental way of de-

fending against the UI state inference attack in this paper

is to use the server-drawn buffer design in GUI systems,

though this means that any applications that are exposed

to the details of the client-drawn buffer design need to be

updated, which may introduce other side effects.

Window buffer reuse. The Activity transition signal

consists of shared vm increases and decreases, corre-

sponding to window buffer allocations and deallocations.

To eliminate such signal, the system can avoid them by

pre-allocating two copies of the buffers and reuse them

for all transitions in an app. Note that this is at the cost of

much more memory usage for each app, as each buffer is

several megabytes in size. However, with increasingly

larger memory size in future mobile devices [36], we

think this overhead may be acceptable.

In this paper, the most serious security breaches are

caused by follow-up attacks based on UI state inference.

Thus, we provide suggestions as follows that can miti-

gate the attacks even if the UI state information is leaked.

Enforce UI state transition animation. Animation is an

important indicator for informing users about app state

changes. In the Activity hijacking attack in §6, the seam-

less Activity injection is possible because this indicator

can be turned off in Android. With UI state tracking,

the attacker can leverage this to replace the foreground

UI state with a phishing one without any visible indica-

tions. Thus, one defense on GUI system design side is

to always keep this indicator on by enforcing animation

in all UI state transitions. This helps reduce the attack

stealthiness though it cannot fully eliminate the attack.

Limit background application functionality. In GUI

systems, background applications do not directly interact

with users, so they should not perform privacy-sensitive

actions freely. In §7, a background attacker can still get

camera images, indicating that Android did not suffi-

ciently restrict the background app functionality. With

UI state tracking, an attacker can leverage precise timing

to circumvent app data isolation. Thus, more restrictions

should be imposed to limit background applications’ ac-

cess to sensitive resources like camera, GPS, sensor, etc.

To summarize, we propose solutions that eliminate de-

pendencies of the attack such as the proc file side chan-

nel, which may prevent the attack. However, more inves-

tigation is required to understand their effectiveness and

most of them do require significant changes that have im-

pact on either backward-compatibility or functionality.

10 Related Work

Android malware. The Android OS, like any systems,

contains security vulnerabilities and is vulnerable to mal-

ware [37–39]. For instance, the IPC mechanisms leave

Android vulnerable to confused deputy attacks [38, 39].

Malware can collect privacy-sensitive information by re-

questing certain permissions [37, 40]. To combat these

flaws, a number of defenses have been proposed [38,41],

such as tracking the origin of inter-process calls to pre-

vent unauthorized apps from indirectly accessing priv-

ileged information. Our attack requires neither spe-

cific vulnerabilities nor privacy-sensitive permissions, so

known defense mechanisms will not protect against it.

Side-channel attacks. Much work has been done on

studying side channels. Proc file systems have been

long abused for side-channel attacks. Zhang et al. [24]

found that the ESP/EIP value can be used to infer

keystrokes. Qian et al. [10] used “sequence-number-

dependent” packet counter side channels to infer TCP

sequence number. In memento [11], the memory foot-

prints were found to correlate with the web pages a user

visits. Zhou et al. [12] found three Android/Linux public

resources to leak private information. These attacks are

mostly app-dependent, while in this paper the UI state

inference applies generally to all Android apps, leading

to not only a larger attack coverage but also many more

serious attacks. Timing is another popular form of side

channels. Studies have shown that timing can be used

to infer keystrokes as well as user information revealed

by web applications [23, 42–44]. Sensors are more re-

cent, popular side-channel sources. The sound made by

the keyboard [45], electromagnetic waves [46], and spe-

cial software [47] can be used to infer keystrokes. More

recently, a large number of sensor-based side channels

have been discovered on Android, including the micro-

14
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phone [18], accelerometer [7, 8] and camera [34]. Our

attack does not rely on sensors which may require suspi-

cious permissions. Instead, we leverage only data from

the proc file system, which is readily available with no

permission requirement.

Root causes of side-channel attacks. All side-channel

attacks exist because of certain behavior in the soft-

ware/hardware stack that can be distinguished through

some forms of observable channels by attackers. For ex-

ample, the inter-keystroke timing attack exploits the ap-

plication and OS behavior that handles user input. SSH

programs will send whatever keys the user types immedi-

ately to the network, so the timing is observable through

a network packet trace [23]. For VIM-like programs, cer-

tain program routines are triggered whenever a new key

is captured, so the timing can be captured through snap-

shots of the program’s ESP/EIP values [24]. The TCP

sequence number inference attack [10] exploits the TCP

stack of the OS that exposes internal states through ob-

servable packet counters. In our attack, we exploit a new

side channel caused by popular GUI framework behav-

ior, in particular how user interaction and window events

are designed and implemented.

11 Conclusion

In this paper, we formulate the UI state inference attack

designed at exposing the running UI state of an appli-

cation. This attack is enabled by a newly-discovered

shared-memory side channel, which exists in nearly all

popular GUI systems. We design and implement the An-

droid version of this attack, and show that it has a high

inference accuracy by evaluating it on popular apps. We

then show that UI state tracking can be used as a power-

ful attack building block to enable new Android attacks,

including Activity hijacking and camera peeking. We

also discuss ways of eliminating the side channel, and

suggest more secure system designs.
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Abstract
We show that the MEMS gyroscopes found on mod-
ern smart phones are sufficiently sensitive to measure
acoustic signals in the vicinity of the phone. The re-
sulting signals contain only very low-frequency infor-
mation (<200Hz). Nevertheless we show, using signal
processing and machine learning, that this information is
sufficient to identify speaker information and even parse
speech. Since iOS and Android require no special per-
missions to access the gyro, our results show that apps
and active web content that cannot access the micro-
phone can nevertheless eavesdrop on speech in the vicin-
ity of the phone.

1 Introduction

Modern smartphones and mobile devices have many sen-
sors that enable rich user experience. Being generally
put to good use, they can sometimes unintentionally ex-
pose information the user does not want to share. While
the privacy risks associated with some sensors like a mi-
crophone (eavesdropping), camera or GPS (tracking) are
obvious and well understood, some of the risks remained
under the radar for users and application developers. In
particular, access to motion sensors such as gyroscope
and accelerometer is unmitigated by mobile operating
systems. Namely, every application installed on a phone
and every web page browsed over it can measure and
record these sensors without the user being aware of it.

Recently, a few research works pointed out unintended
information leaks using motion sensors. In Ref. [34] the
authors suggest a method for user identification from gait
patterns obtained from a mobile device’s accelerometers.
The feasibility of keystroke inference from nearby key-
boards using accelerometers has been shown in [35]. In
[21], the authors demonstrate the possibility of keystroke
inference on a mobile device using accelerometers and
mention the potential of using gyroscope measurements
as well, while another study [19] points to the benefits of
exploiting the gyroscope.

All of the above work focused on exploitation of
motion events obtained from the sensors, utilizing the
expected kinetic response of accelerometers and gyro-
scopes. In this paper we reveal a new way to extract in-
formation from gyroscope measurements. We show that

gyroscopes are sufficiently sensitive to measure acous-
tic vibrations. This leads to the possibility of recovering
speech from gyroscope readings, namely using the gyro-
scope as a crude microphone. We show that the sampling
rate of the gyroscope is up to 200 Hz which covers some
of the audible range. This raises the possibility of eaves-
dropping on speech in the vicinity of a phone without
access to the real microphone.

As the sampling rate of the gyroscope is limited, one
cannot fully reconstruct a comprehensible speech from
measurements of a single gyroscope. Therefore, we re-
sort to automatic speech recognition. We extract fea-
tures from the gyroscope measurements using various
signal processing methods and train machine learning al-
gorithms for recognition. We achieve about 50% success
rate for speaker identification from a set of 10 speakers.
We also show that while limiting ourselves to a small vo-
cabulary consisting solely of digit pronunciations (”one”,
”two”, ”three”, ...) and achieve speech recognition suc-
cess rate of 65% for the speaker dependent case and up
to 26% recognition rate for the speaker independent case.
This capability allows an attacker to substantially leak in-
formation about numbers spoken over or next to a phone
(i.e. credit card numbers, social security numbers and the
like).

We also consider the setting of a conference room
where two or more people are carrying smartphones or
tablets. This setting allows an attacker to gain simulta-
neous measurements of speech from several gyroscopes.
We show that by combining the signals from two or more
phones we can increase the effective sampling rate of the
acoustic signal while achieving better speech recognition
rates. In our experiments we achieved 77% successful
recognition rate in the speaker dependent case based on
the digits vocabulary.

The paper structure is as follows: in Section 2 we
provide a brief description of how a MEMS gyroscope
works and present initial investigation of its properties
as a microphone. In Section 3 we discuss speech anal-
ysis and describe our algorithms for speaker and speech
recognition. In Section 4 we suggest a method for audio
signal recovery using samples from multiple devices. In
Section 5 we discuss more directions for exploitation of
gyroscopes’ acoustic sensitivity. Finally, in Section 6 we
discuss mitigation measures of this unexpected threat. In



1054 23rd USENIX Security Symposium USENIX Association

particular, we argue that restricting the sampling rate is
an effective and backwards compatible solution.

2 Gyroscope as a microphone

In this section we explain how MEMS gyroscopes oper-
ate and present an initial investigation of their suscepti-
bility to acoustic signals.

2.1 How does a MEMS gyroscope work?

Standard-size (non-MEMS) gyroscopes are usually com-
posed of a spinning wheel on an axle that is free to as-
sume any orientation. Based on the principles of angular
momentum the wheel resists to changes in orientation,
thereby allowing to measure those changes. Nonethe-
less, all MEMS gyros take advantage of a different phys-
ical phenomenon – the Coriolis force. It is a fictitious
force (d’Alembert force) that appears to act on an object
while viewing it from a rotating reference frame (much
like the centrifugal force). The Coriolis force acts in a
direction perpendicular to the rotation axis of the refer-
ence frame and to the velocity of the viewed object. The
Coriolis force is calculated by F = 2m�v×�ω where m and
v denote the object’s mass and velocity, respectively, and
ω denotes the angular rate of the reference frame.

Generally speaking, MEMS gyros measure their an-
gular rate (ω) by sensing the magnitude of the Cori-
olis force acting on a moving proof mass within the
gyro. Usually the moving proof mass constantly vibrates
within the gyro. Its vibration frequency is also called
the resonance frequency of the gyro. The Coriolis force
is sensed by measuring its resulting vibration, which is
orthogonal to the primary vibration movement. Some
gyroscope designs use a single mass to measure the an-
gular rate of different axes, while others use multiple
masses. Such a general design is commonly called vi-
brating structure gyroscope.

There are two primary vendors of MEMS gyroscopes
for mobile devices: STMicroelectronics [15] and In-
venSense [7]. According to a recent survey [18] STMi-
croelectronics dominates with 80% market share. Tear-
down analyses show that this vendor’s gyros can be
found in Apple’s iPhones and iPads [17, 8] and also in the
latest generations of Samsung’s Galaxy-line phones [5,
6]. The second vendor, InvenSense, has the remaining
20% market share [18]. InvenSense gyros can be found
in Google’s latest generations of Nexus-line phones and
tablets [14, 13] as well as in Galaxy-line tablets [4, 3].
These two vendors’ gyroscopes have different mechani-
cal designs, but are both noticeably influenced by acous-
tic noise.

2.1.1 STMicroelectronics

The design of STMicroelectronics 3-axis gyros is based
on a single driving (vibrating) mass (shown in Figure 1).
The driving mass consists of 4 parts M1, M2, M3 and M4
(Figure 1(b)). They move inward and outward simulta-
neously at a certain frequency1 in the horizontal plane.
As shown in Figure 1(b), when an angular rate is applied
on the Z-axis, due to the Coriolis effect, M2 and M4 will
move in the same horizontal plane in opposite directions
as shown by the red and yellow arrows. When an angular
rate is applied on the X-axis, then M1 and M3 will move
in opposite directions up and down out of the plane due
to the Coriolis effect. When an angular rate is applied
to the Y -axis, then M2 and M4 will move in opposite di-
rections up and down out of the plane. The movement
of the driving mass causes a capacitance change relative
to stationary plates surrounding it. This change is sensed
and translated into the measurement signal.

2.1.2 InvenSense

InvenSense’s gyro design is based on the three separate
driving (vibrating) masses2; each senses angular rate at
a different axis (shown in Figure 2(a)). Each mass is a
coupled dual-mass that move in opposite directions. The
masses that sense the X and Y axes are driven out-of-
plane (see Figure 2(b)), while the Z-axis mass is driven
in-plane. As in the STMicroelectronics design the move-
ment due to the Coriolis force is measures by capacitance
changes.

2.2 Acoustic Effects

It is a well known fact in the MEMS community that
MEMS gyros are susceptible to acoustic noise which de-
grades their accuracy [22, 24, 25]. An acoustic signal af-
fects the gyroscope measurement by making the driving
mass vibrate in the sensing axis (the axis which senses
the Coriolis force). The acoustic signal can be trans-
ferred to the driving mass in one of two ways. First, it
may induce mechanical vibrations to the gyros package.
Additionally, the acoustic signal can travel through the
gyroscope packaging and directly affect the driving mass
in case it is suspended in air. The acoustic noise has the
most substantial effect when it is near the resonance fre-
quency of the vibrating mass. Such effects in some cases
can render the gyro’s measurements useless or even satu-
rated. Therefore to reduce the noise effects vendors man-
ufacture gyros with a high resonance frequency (above

1It is indicated in [1] that STMicroelectronics uses a driving fre-
quency of over 20 KHz.

2According to [43] the driving frequency of the masses is between
25 KHz and 30 KHz.

2
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(a) MEMS structure (b) Driving mass movement depending on the angular rate

Figure 1: STMicroelectronics 3-axis gyro design (Taken from [16]. Figure copyright of STMicroelectronics. Used
with permission.)

(a) MEMS structure (b) Driving mass movement depending on the angu-
lar rate

Figure 2: InvenSense 3-axis gyro design (Taken from [43]. Figure copyright of InvenSense. Used with permission.)

20 KHz) where acoustic signals are minimal. Nonethe-
less, in our experiments we found that acoustic signals
at frequencies much lower than the resonance frequency
still have a measurable effect on a gyro’s measurements,
allowing one to reconstruct the acoustic signal.

2.3 Characteristics of a gyro as a micro-
phone

Due to the gyro’s acoustic susceptibility one can treat gy-
roscope readings as if they were audio samples coming
from a microphone. Note that the frequency of an audi-
ble signal is higher than 20 Hz, while in common cases
the frequency of change of mobile device’s angular ve-
locity is lower than 20 cycles per second. Therefore, one
can high-pass-filter the gyroscope readings in order to re-
tain only the effects of an audio signal even if the mobile
device is moving about. Nonetheless, it should be noted
that this filtering may result in some loss of acoustic in-
formation since some aliased frequencies may be filtered
out (see Section 2.3.2). In the following we explore the
gyroscope characteristics from a standpoint of an acous-
tic sensor, i.e. a microphone. In this section we exemplify
these characteristics by experimenting with Galaxy S III
which has an STMicroelectronics gyro [6].

2.3.1 Sampling

Sampling resolution is measured by the number of
bits per sample. More bits allow us to sample the sig-
nal more accurately at any given time. All the latest gen-
erations of gyroscopes have a sample resolution of 16
bits [9, 12]. This is comparable to a microphone’s sam-
pling resolution used in most audio applications.

Sampling frequency is the rate at which a signal is
sampled. According to the Nyquist sampling theorem
a sampling frequency f enables us to reconstruct sig-
nals at frequencies of up to f/2. Hence, a higher sam-
pling frequency allows us to more accurately reconstruct
the audio signal. In most mobile devices and operating
systems an application is able to sample the output of
a microphone at up to 44.1 KHz. A telephone system
(POTS) samples an audio signal at 8000 Hz. However,
STMicroelectronics’ gyroscope hardware supports sam-
pling frequencies of up to 800 Hz [9], while InvenSense
gyros’ hardware support sampling frequency up to 8000
Hz [12]. Moreover, all mobile operating systems bound
the sampling frequency even further – up to 200 Hz – to
limit power consumption. On top of that, it appears that
some browser toolkits limit the sampling frequency even
further. Table 1 summarizes the results of our experi-

3
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Sampling Freq. [Hz]

A
nd

ro
id

4.
4 application 200

Chrome 25
Firefox 200
Opera 20

iO
S

7

application 100 [2]
Safari 20
Chrome 20

Table 1: Maximum sampling frequencies on different
platforms

ments measuring the maximum sampling frequencies al-
lowed in the latest versions of Android and iOS both for
application and for web application running on common
browsers. The code we used to sample the gyro via a
web page can be found in Appendix B. The results indi-
cate that a Gecko based browser does not limit the sam-
pling frequency beyond the limit imposed by the operat-
ing system, while WebKit and Blink based browsers does
impose stricter limits on it.

2.3.2 Aliasing

As noted above, the sampling frequency of a gyro is uni-
form and can be at most 200 Hz. This allows us to di-
rectly sense audio signals of up to 100 Hz. Aliasing is a
phenomenon where for a sinusoid of frequency f , sam-
pled with frequency fs, the resulting samples are indis-
tinguishable from those of another sinusoid of frequency
| f −N · fs|, for any integer N. The values corresponding
to N �= 0 are called images or aliases of frequency f . An
undesirable phenomenon in general, here aliasing allows
us to sense audio signals having frequencies which are
higher than 100 Hz, thereby extracting more information
from the gyroscope readings. This is illustrated in Fig-
ure 3.

Using the gyro, we recorded a single 280 Hz tone.
Figure 3(a) depicts the recorded signal in the frequency
domain (x-axis) over time (y-axis). A lighter shade in
the spectrogram indicates a stronger signal at the corre-
sponding frequency and time values. It can be clearly
seen that there is a strong signal sensed at frequency 80
Hz starting around 1.5 sec. This is an alias of the 280
Hz-tone. Note that the aliased tone is indistinguishable
from an actual tone at the aliased frequency. Figure 3(b)
depicts a recording of multiple short tones between 130
Hz and 200 Hz. Again, a strong signal can be seen at the
aliased frequencies corresponding to 130 - 170 Hz3. We
also observe some weaker aliases that do not correspond
to the base frequencies of the recorded tones, and per-

3We do not see the aliases corresponding to 180 - 200 Hz, which
might be masked by the noise at low frequencies, i.e., under 20 Hz.

haps correspond to their harmonics. Figure 3(c) depicts
the recording of a chirp in the range of 420 - 480 Hz.
The aliased chirp is detectable in the range of 20 - 80 Hz;
however it is a rather weak signal.

2.3.3 Self noise

The self noise characteristic of a microphone indicates
what is the most quiet sound, in decibels, a microphone
can pick up, i.e. the sound that is just over its self noise.
To measure the gyroscope’s self noise we played 80 Hz
tones for 10 seconds at different volumes while measur-
ing it using a decibel meter. Each tone was recorded by
the Galaxy S III gyroscope. While analyzing the gyro
recordings we realized that the gyro readings have a no-
ticeable increase in amplitude when playing tones with
volume of 75 dB or higher which is comparable to the
volume of a loud conversation. Moreover, a FFT plot of
the gyroscope recordings gives a noticeable peak at the
tone’s frequency when playing tone with a volume as low
as 57 dB which is below the sound level of a normal con-
versation. These findings indicate that a gyro can pick up
audio signals which are lower than 100 HZ during most
conversations made over or next to the phone. To test the
self noise of the gyro for aliased tones we played 150 Hz
and 250 Hz tones. The lowest level of sound the gyro
picked up was 67 dB and 77 dB, respectively. These are
much higher values that are comparable to a loud conver-
sation.

2.3.4 Directionality

We now measure how the angle at which the audio signal
hits the phone affects the gyro. For this experiment we
played an 80 Hz tone at the same volume three times.
The tone was recorded at each time by the Galaxy S
III gyro while the phone rested at a different orientation
allowing the signal to hit it parallel to one of its three
axes (see Figure 4). The gyroscope senses in three axes,
hence for each measurement the gyro actually outputs
three readings – one per axis. As we show next this prop-
erty benefits the gyro’s ability to pick up audio signals
from every direction. For each recording we calculated
the FFT magnitude at 80 Hz. Table 2 summarizes the
results.

It is obvious from the table that for each direction the
audio hit the gyro, there is at least one axis whose read-
ings are dominant by an order of magnitude compared
to the rest. This can be explained by STMicroelectron-
ics gyroscope design as depicted in Figure 14. When the
signal travels in parallel to the phone’s x or y axes, the
sound pressure vibrates mostly masses laid along the re-
spective axis, i.e. M2 and M4 for x axis and M1 and M3

4This is the design of the gyro built into Galaxy S III.
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(b) Multiple tones in the range of 130 – 170 Hz
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(c) A chirp in the range of 420 – 480 Hz

Figure 3: Example of aliasing on a mobile device. Nexus 4 (a,c) and Galaxy SII (b).

Tone direction: X Y Z
Recording direction: x y z x y z x y z
Amplitude: 0.002 0.012 0.0024 0.01 0.007 0.004 0.007 0.0036 0.0003

Table 2: Sensed amplitude for every direction of a tone played at different orientations relative to the phone. For each
orientation the dominant sensed directions are emphasized.

Figure 4: Coordinate system of Android and iOS.

for the y axis; therefore, the gyro primarily senses a ro-
tation at the y or x axes, respectively (see Section 2.1.1).
When the signal travels in parallel to the phone’s z axis
then the sound pressure vibrates all the 4 masses up and
down, hence the gyro primarily senses a rotation at both
x and y axes.

These findings indicate that the gyro is an omni-
directional audio sensor allowing it to pick up audio sig-
nal from every direction.

3 Speech analysis based on a single gyro-
scope

In this section we show that the acoustic signal measured
by a single gyroscope is sufficient to extract information
about the speech signal, such as speaker characteristics

and identity, and even recognize the spoken words or
phrases. We do so by leveraging the fact that aliasing
causes information leaks from higher frequency bands
into the sub-Nyquist range.

Since the fundamentals of human voices are roughly
in the range of 80 – 1100 Hz [20], we can capture a large
fraction of the interesting frequencies, considering the
results we observe in 2.3.2. Although we do not delve
into comparing performance for different types of speak-
ers, one might expect that given a stronger gyroscope
response for low frequencies, typical adult male speech
(Bass, Baritone, Tenor) could be better analyzed than
typical female or child speech (Alto, Mezzo-Soprano,
Soprano) 5, however our tests show that this is not nec-
essarily the case.

The signal recording, as captured by the gyroscope, is
not comprehensible to a human ear, and exhibits a mix-
ture of low frequencies and aliases of frequencies beyond
the Nyquist sampling frequency (which is 1/2 the sam-
pling rate of the Gyroscope, i.e. 100 Hz). While the sig-
nal recorded by a single device does not resemble speech,
it is possible to train a machine to transcribe the signal
with significant success.

Speech recognition tasks can be classified into sev-
eral types according to the setup. Speech recognition can
handle fluent speech or isolated words (or phrases); op-
erate on a closed set of words (finite dictionary) or an
open set6; It can also be speaker dependent (in which
case the recognizer is trained per speaker) or speaker in-

5For more information about vocal range see
http://www.wikipedia.org/wiki/Vocal_range

6For example by identifying phonemes and combining them to
words.
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dependent (in which case the recognizer is expected to
identify phrases pronounced by different speakers and
possibly ones that were not encountered in the training
set). Additionally, speech analysis may be also used to
identify the speaker.

We focused on speaker identification (including gen-
der identification of the speaker) and isolated words
recognition while attempting both speaker independent
and speaker dependent recognition. Although we do not
demonstrate fluent speech transcription, we suggest that
successful isolated words recognition could be fairly eas-
ily transformed into a transcription algorithm by incor-
porating word slicing and HMM [40]. We did not aim
to implement a state-of-the-art speech recognition algo-
rithm, nor to thoroughly evaluate or do a comparative
analysis of the classification tests. Instead, we tried to
indicate the potential risk by showing significant success
rates of our speech analysis algorithms compared to ran-
domly guessing. This section describes speech analysis
techniques that are common in practice, our approach,
and suggestions for further improvements upon it.

3.1 Speech processing: features and algo-
rithms

3.1.1 Features

It is common for various feature extraction methods to
view speech as a process that is stationary for short time
windows. Therefore speech processing usually involves
segmentation of the signal to short (10 – 30 ms) over-
lapping or non-overlapping windows and operation on
them. This results in a time-series of features that char-
acterize the time-dependent behavior of the signal. If
we are interested in time-independent properties we shall
use spectral features or the statistics of those time-series
(such as mean, variance, skewness and kurtosis).

Mel-Frequency Cepstral Coefficients (MFCC) are
widely used features in audio and speech processing ap-
plications. The Mel-scale basically compensates for the
non-linear frequency response of the human ear7. The
Cepstrum transformation is an attempt to separate the ex-
citation signal originated by air passing through the vocal
tract from the effect of the vocal tract (acting as a filter
shaping that excitation signal). The latter is more impor-
tant for the analysis of the vocal signal. It is also common
to take the first and second derivatives of the MFCC as
additional features, indicative of temporal changes [30].

Short Time Fourier Transform (STFT) is essentially
a spectrogram of the signal. Windowing is applied to

7Approximated as logarithmic by the Mel-scale

short overlapping segments of the signal and FFT is
computed. The result captures both spectral and time-
dependent features of the signal.

3.1.2 Classifiers

Support Vector Machine (SVM) is a general binary
classifier, trained to distinguish to groups. We use SVM
to distinguish male and female speakers. Multi-class
SVMs can be constructed using multiple binary SVMs,
to distinguish between multiple groups. We used a multi-
class SVM to distinguish between multiple speakers, and
to recognize words from a limited dictionary.

Gaussian Mixture Model (GMM) has been success-
fully used for speaker identification [41]. We can train a
GMM for each group in the training stage. In the testing
stage we can obtain a match score for the sample using
each one of the GMMs and classify the sample according
to the group corresponding to the GMM that yields the
maximum score.

Dynamic Time Warping (DTW) is a time-series
matching and alignment technique [37]. It can be used to
match time-dependent features in presence of misalign-
ment or when the series are of different lengths. One
of the challenges in word recognition is that the samples
may differ in length, resulting in different number of seg-
ments used to extract features.

3.2 Speaker identification algorithm
Prior to processing we converted the gyroscope record-
ings to audio files in WAV format while upsampling them
to 8 KHz8. We applied silence removal to include only
relevant information and minimize noise. The silence
removal algorithm was based on the implementation in
[29], which classifies the speech into voiced and un-
voiced segments (filtering out the unvoiced) according
to dynamically set thresholds for Short-Time Energy and
Spectral Centroid features computed on short segments
of the speech signal. Note that the gyroscope’s zero-
offset yields particularly noisy recordings even during
unvoiced segments.

We used statistical features based on the first 13
MFCC computed on 40 sub-bands. For each MFCC
we computed the mean and standard deviation. Those
features reflect the spectral properties which are inde-
pendent of the pronounced word. We also use delta-
MFCC (the derivatives of the MFCC), RMS Energy and

8Although upsampling the signal from 200 Hz to 8 KHz does not
increase the accuracy of audio signal, it is more convenient to handle
the WAV file at higher sampling rate with standard speech processing
tools.
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Spectral Centroid statistical features. We used MIRTool-
box [32] for the feature computation. It is important
to note that while MFCC have a physical meaning for
real speech signal, in our case of an narrow-band aliased
signal, MFCC don’t necessarily have an advantage, and
were used partially because of availability in MIRTool-
box. We attempted to identify the gender of the speaker,
distinguish between different speakers of the same gen-
der and distinguish between different speakers in a mixed
set of male and female speakers. For gender identifica-
tion we used a binary SVM, and for speaker identifica-
tion we used multi-class SVM and GMM. We also at-
tempted gender and speaker recognition using DTW with
STFT features. All STFT features were computed with
a window of 512 samples which, for sampling rate of 8
KHz, corresponds to 64 ms.

3.3 Speech recognition algorithm

The preprocessing stage for speech recognition is the
same as for speaker identification. Silence removal is
particularly important here, as the noisy unvoiced seg-
ments can confuse the algorithm, by increasing similar-
ity with irrelevant samples. For word recognition, we
are less interested in the spectral statistical features, but
rather in the development of the features in time, and
therefore suitable features could be obtained by taking
the full spectrogram. In the classification stage we ex-
tract the same features for a sample y. For each possible
label l we obtain a similarity score of the y with each
sample Xl

i corresponding to that guess in the training set.
Let us denote this similarity function by D(y,Xl

i ). Since
different samples of the same word can differ in length,
we use DTW. We sum the similarities to obtain a total
score for that guess

Sl = ∑
i

D(y,Xl
i )

After obtaining a total score for all possible words, the
sample is classified according to the maximum total
score

C(y) = argmax
l

Sl

3.4 Experiment setup

Our setup consisted of a set of loudspeakers that included
a sub-woofer and two tweeters (depicted in Figure 5).
The sub-woofer was particularly important for experi-
menting with low-frequency tones below 200 Hz. The
playback was done at volume of approximately 75 dB to
obtain as high SNR as possible for our experiments. This
means that for more restrictive attack scenarios (farther
source, lower volume) there will be a need to handle low

Figure 5: Experimental setup

SNR, perhaps by filtering out the noise or applying some
other preprocessing for emphasizing the speech signal. 9

3.4.1 Data

Due to the low sampling frequency of the gyro, a recog-
nition of speaker-independent general speech would be
an ambitious long-term task. Therefore, in this work we
set out to recognize speech of a limited dictionary, the
recognition of which would still leak substantial private
information. For this work we chose to focus on the
digits dictionary, which includes the words: zero, one,
two..., nine, and ”oh”. Recognition of such words would
enable an attacker to eavesdrop on private information,
such as credit card numbers, telephone numbers, social
security numbers and the like. This information may be
eavesdropped when the victim speaks over or next to the
phone.

In our experiments, we use the following corpus of
audio signals on which we tested our recognition algo-
rithms.

TIDIGITS This is a subset of a corpus published
in [33]. It includes speech of isolated digits, i.e., 11
words per speaker where each speaker recorded each
word twice. There are 10 speakers (5 female and 5 male).
In total, there are 10×11×2 = 220 recordings. The cor-
pus is digitized at 20 kHz.

3.4.2 Mobile devices

We primarily conducted our experiments using the fol-
lowing mobile devices:

9We tried recording in an anechoic chamber, but it didn’t seem to
provide better recognition results compared to a regular room. We
therefore did not proceed with the anechoic chamber experiments. Yet,
further testing is needed to understand whether we can benefit signifi-
cantly from an anechoic environment.

7
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1. Nexus 4 phone which according to a teardown anal-
ysis [13] is equipped with an InvenSense MPU-
6050 [12] gyroscope and accelerometer chip.

2. Nexus 7 tablet which according to a teardown anal-
ysis [14] is equipped with an InverSense MPU-6050
gyroscope and accelerometer.

3. Samsung Galaxy S III phone which according to a
teardown analysis [6] is equipped with an STMi-
croelectronics LSM330DLC [10] gyroscope and ac-
celerometer chip.

3.5 Sphinx

We first try to recognize digit pronunciations using
general-purpose speech recognition software. We used
Sphinx-4 [47] – a well-known open-source speech recog-
nizer and trainer developed in Carnegie Mellon Univer-
sity. Our aim for Sphinx is to recognize gyro-recordings
of the TIDIGITS corpus. As a first step, in order to test
the waters, instead of using actual gyro recordings we
downsampled the recordings of the TIDITS corpus to
200 Hz; then we trained Sphinx based on the modified
recordings. The aim of this experiment is to understand
whether Sphinx detects any useful information from the
sub-100 Hz band of human speech. Sphinx had a reason-
able success rate, recognizing about 40% of pronuncia-
tions.

Encouraged by the above experiment we then recorded
the TIDIGITS corpus using a gyro – both for Galaxy S
III and Nexus 4. Since Sphinx accepts recording in WAV
format we had to convert the raw gyro recordings. Note
that at this point for each gyro recording we had 3 WAV
files, one for each gyro axis. The final stage is silence
removal. Then we trained Sphinx to create a model based
on a training subset of the TIDIGITS, and tested it using
the complement of this subset.

The recognition rates for either axes and either Nexus
4 or Galaxy S III were rather poor: 14% on average. This
presents only marginal improvement over the expected
success of a random guess which would be 9%.

This poor result can be explained by the fact that
Sphinx’s recognition algorithms are geared towards stan-
dard speech recognition tasks where most of the voice-
band is present and is less suited to speech with very low
sampling frequency.

3.6 Custom recognition algorithms

In this section we present the results obtained using our
custom algorithm. Based on the TIDIGITS corpus we
randomly performed a 10-fold cross-validation. We refer
mainly to the results obtained using Nexus 4 gyroscope

SVM GMM DTW
Nexus 4 80% 72% 84%
Galaxy S III 82% 68% 58%

Table 3: Speaker’s gender identification results

SVM GMM DTW

N
ex

us
4 Mixed female/male 23% 21% 50%

Female speakers 33% 32% 45%
Male speakers 38% 26% 65%

G
al

ax
y

S
II

I

Mixed female/male 20% 19% 17%
Female speakers 30% 20% 29%
Male speakers 32% 21% 25%

Table 4: Speaker identification results

readings in our discussion. We also included in the ta-
bles some results obtained using a Galaxy III device, for
comparison.

Results for gender identification are presented in Table
3. As we see, using DTW scoring for STFT features
yielded a much better success rate.

Results for speaker identification are presented in Ta-
ble 4. Since the results for a mixed female-male set of
speakers may be partially attributed to successful gender
identification, we tested classification for speakers of the
same gender. In this setup we have 5 different speakers.
The improved classification rate (except for DTW for fe-
male speaker set) can be partially attributed to a smaller
number of speakers.

The results for speaker-independent isolated word
recognition are summarized in Table 5. We had correct
classification rate of ∼ 10% using multi-class SVM and
GMM trained with MFCC statistical features, which is
almost equivalent to a random guess. Using DTW with
STFT features we got 23% correct classification for male
speakers, 26% for female speakers and 17% for a mixed
set of both female and male speakers. The confusion ma-
trix in Figure 6, corresponding to the mixed speaker-set
recorded on a Nexus 4, explains the not so high recog-
nition rate, exhibiting many false positives for the words
”6” and ”9”. At the same time the recognition rate for

SVM GMM DTW

N
ex

us
4 Mixed female/male 10% 9% 17%

Female speakers 10% 9% 26%
Male speakers 10% 10% 23%

G
al

ax
y

S
II

I

Mixed female/male 7% 12% 7%
Female speakers 10% 10% 12%
Male speakers 10% 6% 7%

Table 5: Speaker-independent case – isolated words
recognition results

8
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Figure 6: Speaker independent word recognition using
DTW: confusion matrix as a heat map. c(i, j) corresponds
to the number of samples from group i that were classi-
fied as j, where i, j are the row and column indices re-
spectively.

SVM GMM DTW
15% 5% 65%

Table 6: Speaker-dependent case – isolated words recog-
nition for a single speaker. Results obtained via ”leave-
one-out” cross-validation on 44 recorded words pro-
nounced by a single speaker. Recorded using a Nexus
4 device.
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Figure 7: Speaker dependent word recognition using
DTW: confusion matrix as a heat map.

these particular words is high, contributing to the correct
identification rate.

For a speaker-dependent case one may expect to get
better recognition results. We recorded a set of 44
digit pronunciations, where each digit was pronounced
4 times. We tested the performance of our classifiers us-
ing ”leave-one-out” cross-validation. The results are pre-
sented in Table 6, and as we expected exhibit an improve-
ment compared to the speaker independent recognition10

(except for GMM performance that is equivalent to ran-
domly guessing). The confusion matrix corresponding to
the word recognition in a mixed speaker-set using DTW
is presented in Figure 7.

DTW method outperforms SVM and GMM in most
cases. One would expect that DTW would perform bet-
ter for word recognition since the changing in time of
the spectral features is taken into account. While true
for Nexus 4 devices it did not hold for measurements
taken with Galaxy III. possible explanation to that is that
the low-pass filtering on the Galaxy III device renders
all methods quite ineffective resulting in a success rate
equivalent to a random guess. For gender and speaker
identification, we would expect statistical spectral fea-
tures based methods (SVM and GMM) to perform at
least as good as DTW. It is only true for the Galaxy
S III mixed speaker set and gender identification cases,
but not for the other experiments. Specifically for gen-
der identification, capturng the temporal development of
the spectral feature wouldn’t seem like a clear advantage
and is therefore somewhat surprising. One comparative
study that supports the advantage of DTW over SVM for
speaker recognition is [48]. It doesn’t explain though
why it outperforms GMM which is a well established
method for speaker identification. More experimenta-
tion is required to confirm whether this phenomenon is
consistent and whether it is related to capturing the high
frequencies.

3.7 Further improvement

We suggest several possible future improvements on
our recognition algorithms. Phoneme recognition in-
stead of whole words, in combination with an HMM
could improve the recognition results. This could be
more suitable since different pronunciations have dif-
ferent lengths, while an HMM could introduce a better
probabilistic recognition of the words. Pre-filtering of
the signal could be beneficial and reduce irrelevant noise.
It is not clear which frequencies should be filtered and
therefore some experimentation is needed to determine
it.

10It is the place to mention that a larger training set for speaker inde-
pendent word recognition is likely to yield better results. For our tests
we used relatively small training and evaluation sets.
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For our experiments, we used samples recorded by the
gyroscope for training. For speaker-dependent speech
recognition we can imagine it may be easier to obtain
regular speech samples for a particular speaker than a
transcribed recording of gyroscope samples. Even for
speaker independent speech recognition, it would be eas-
ier to use existing audio corpora for training a speech
recognition engine than to produce gyroscope recordings
for a large set of words. For that purpose it would be in-
teresting to test how well the recognition can perform
when the training set is based on normal audio record-
ings, downsampled to 200 Hz to simulate a gyroscope
recording.

Another possible improvement is to leverage the 3-
axis recordings. It is obvious that the three recordings are
correlated while the noise of gyro readings is not. Hence,
one may take advantage of this to get a composed signal
of the three axes to get a better signal-to-noise ratio.

While we suggested that the signal components related
to speech, and those related to motion lie in separate fre-
quency bands, the performance of speech analysis in the
presence of such noise is yet to be evaluated.

4 Reconstruction using multiple devices

In this section we suggest that isolated word recognition
can be improved if we sample the gyroscopes of multiple
devices that are in close proximity, such that they exhibit
a similar response to the acoustic signals around them.
This can happen for instance in a conference room where
two mobile devices are running malicious applications
or, having a browser supporting high-rate sampling of
the gyroscope, are tricked into browsing to a malicious
website.

We do not refer here to the possibility of using sev-
eral different gyroscope readings to effectively obtain
a larger feature vector, or have the classification algo-
rithm take into account the score obtained for all read-
ings. While such methods to exploit the presence of more
than one acoustic side-channel may prove very efficient
we leave them outside the scope of this study. It also
makes sense to look into existing methods for enhancing
speech recognition using multiple microphones, covered
in signal processing and machine learning literature (e.g.,
[23]).

Instead, we look at the possibility of obtaining an en-
hanced signal by using all of the samples for recon-
struction, thus effectively obtaining higher sampling rate.
Moreover, we hint at the more ambitious task of recon-
structing a signal adequate enough to be comprehensible
by a human listener, in a case where we gain access to
readings from several compromised devices. While there
are several practical obstacles to it, we outline the idea,

and demonstrate how partial implementation of it facili-
tates the automatic speech recognition task.

We can look at our system as an array of time-
interleaved data converters (interleaved ADCs). Inter-
leaved ADCs are multiple sampling devices where each
samples the signal with a sub-Nyquist frequency. While
the ADCs should ideally have time offsets corresponding
to a uniform sampling grid (which would allow to sim-
ply interleave the samples and reconstruct according to
the Whittaker-Shannon interpolation formula [44]), usu-
ally there will be small time skews. Also, DC offsets and
different input gains can affect the result and must all be
compensated.

This problem is studied in a context of analog design
and motivated by the need to sample high-frequency sig-
nals using low-cost and energy-efficient low-frequency
A/D converters. While many papers on the subject exist,
such as [27], the proposed algorithms are usually very
hardware centric, oriented towards real-time processing
at high-speed, and mostly capable of compensating for
very small skews. Some of them require one ADC that
samples the signal above the Nyquist rate, which is not
available in our case. At the same time, we do not aim
for a very efficient, real-time algorithm. Utilizing record-
ings from multiple devices implies offline processing of
the recordings, and we can afford a long run-time for the
task.

The ADCs in our case have the same sampling rate
Fs = 1/T = 200. We assume the time-skews between
them are random in the range [0,TQ] where for N ADCs
TQ = T

N is the Nyquist sampling period. Being located
at different distances from the acoustic source they are
likely to exhibit considerably different input gains, and
possibly have some DC offset. [26] provides background
for understanding the problems arising in this configura-
tion and covers some possible solutions.

4.1 Reconstruction algorithm

4.1.1 Signal offset correction

To correct a constant offset we can take the mean of the
Gyro samples and compare it to 0 to get the constant off-
set. It is essentially a simple DC component removal.

4.1.2 Gain mismatch correction

Gain mismatch correction is crucial for a successful sig-
nal reconstruction. We correct the gain by normalizing
the signal to have standard deviation equal to 1. In case
we are provided with some reference signal with a known
peak, we can adjust the gains of the recordings so that the
amplitude at this peak is equal for all of them.

10
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4.1.3 Time mismatch correction

While gyroscope motion events are provided with pre-
cise timestamps set by the hardware, which theoretically
could have been used for aligning the recordings, in prac-
tice, we cannot rely on the clocks of the mobile devices to
be synchronized. Even if we take the trouble of synchro-
nizing the mobile device clock via NTP, or even better, a
GPS clock, the delays introduced by the network, oper-
ating system and further clock-drift will stand in the way
of having clock accuracy on the order of a millisecond11.
While not enough by itself, such synchronization is still
useful for coarse alignment of the samples.

El-Manar describes foreground and background time-
mismatch calibration techniques in his thesis [27]. Fore-
ground calibration means there is a known signal used
to synchronized all the ADCs. While for the purpose of
testing we can align the recordings by maximizing the
cross-correlation with a known signal, played before we
start recording, in an actual attack scenario we probably
won’t be able to use such a marker12. Nevertheless, in
our tests we attempted aligning using a reference sig-
nal as well. It did not exhibit a clear advantage over
obtaining coarse alignment by finding the maximum of
the cross-correlation between the signals. One can also
exhaustively search a certain range of possible offsets,
choosing the one that results in a reconstruction of a sen-
sible audio signal.

Since this only yields alignment on the order of a sam-
pling period of a single gyroscope (T ), we still need to
find the more precise time-skews in the range [0,T ]. We
can scan a range of possible time-skews, choosing the
one that yields a sensible audio signal. We can think of
an automated evaluation of the result by a speech recog-
nition engine or scoring according to features that would
indicate human speech, suggesting a successful recon-
struction.

This scanning is obviously time consuming. If we
have n sources, we set one of the time skews (arbitrary)
to 0, and have n − 1 degrees of freedom to play with,
and the complexity grows exponentially with the number
of sources. Nevertheless, in an attack scenario, it is not
impossible to manually scan all possibilities looking for
the best signal reconstruction, provided the information
is valuable to the eavesdropper.

11Each device samples with a period of 5 ms, therefore even 1 ms
clock accuracy would be quite coarse.

12While an attacker may be able to play using one of the phones’
speakers a known tone/chirp (no special permissions are needed), it is
unlikely to be loud enough to be picked up well by the other device,
and definitely depends on many factors such as distance, position etc.

4.1.4 Signal reconstruction from non-uniform sam-
ples

Assuming we have compensated for offset, gain mis-
match and found the precise time-skews between the
sampling devices, we are dealing with the problem of
signal reconstruction from periodic, non-uniform sam-
ples. A seminal paper on the subject is [28] by Eldar et
al. Among other works in the field are [39, 46] and [31].
Sindhi et al. [45] propose a discrete time implementa-
tion of [28] using digital filterbanks. The general goal is,
given samples on a non-uniform periodic grid, to obtain
estimation of the values on a uniform sampling grid, as
close as possible to the original signal.

A theoretic feasibility justification lies in Papoulis’
Generalized Sampling theorem [38]. Its corollary is that
a signal bandlimited to π/TQ can be recovered from the
samples of N filters with sampling periods T = NTQ. 13

We suggest using one of the proposed methods for sig-
nal reconstruction from periodic non-uniform samples.
With only several devices the reconstructed speech will
still be narrow-band. While it won’t necessarily be easily
understandable by a human listener, it could be used for
better automated identification. Applying narrowband to
wideband speech extension algorithms [36] might pro-
vide audio signals understandable to a human listener.

We suggest using one of the methods for signal re-
construction from periodic non-uniform samples men-
tioned above. With only several devices the recon-
structed speech will still be narrow-band. For exam-
ple, using readings from two devices operating at 200
Hz and given their relative time-skew we obtain an ef-
fective sampling rate of 400 Hz. For four devices we
obtain a sampling rate of 800 Hz, and so on. While a sig-
nal reconstructed using two devices still won’t be easily
understandable by a human listener, it could be used to
improve automatic identification.

We used [28] as a basis for our reconstruction algo-
rithm. The discussion of recurrent non-uniform sam-
pling directly pertains to our task. It proposes a filterbank
scheme to interpolate the samples such that an approxi-
mation of the values on the uniform grid is obtained. The
derivation of the discrete-time interpolation filters is pro-
vided in Appendix A.

This method allows us to perform reconstruction with
arbitrary time-skews; however we do not have at the
time a good method for either a very precise estimation

13It is important to note that in our case the signal is not necessar-
ily bandlimited as required. While the base pitch of the speech can
lie in the range [0,200 ·N], it can contain higher frequencies that are
captured in the recording due to aliasing, and may interfere with the
reconstruction. It depends mainly on the low-pass filtering applied by
the gyroscope. In InvenSense’s MPU-6050, Digital Low-Pass Filtering
(DLPF) is configurable through hardware registers [11], so the condi-
tions depend to some extent on the particular driver implementation.
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SVM GMM DTW
18% 14% 77%

Table 7: Evaluation of the method of reconstruction from
multiple devices. Results obtained via ”leave-one-out”
cross-validation on 44 recorded words pronounced by a
single speaker. Recorded using a Nexus 4 device.

of the time-skews or automatic evaluation of the recon-
struction outcome (which would enable searching over
a range of possible values). For our experiment we ap-
plied this method to the same set of samples used for
speaker-dependent speech recognition evaluation, which
was recorded simultaneously by two devices. We used
the same value for τ , the time-skew for all samples, and
therefore chose the expected value τ = T/2 which is
equivalent to the particular case of sampling on a uni-
form grid (resulting in all-pass interpolation filters). It is
essentially the same as interleaving the samples from the
two readings, and we ended up implementing this trivial
method as well, in order to avoid the adverse effects of
applying finite non-ideal filters.

It is important to note that while we propose a method
rooted in signal processing theory, we cannot confidently
attribute the improved performance to obtaining a sig-
nal that better resembles the original, until we take full
advantage of the method by estimating the precise time-
skew for each recording, and applying true non-uniform
reconstruction. It is currently left as an interesting future
improvement, for which the outlined method can serve
as a starting point. In this sense, our actual experiment
can be seen as taking advantage of better feature vectors,
comprised of data from multiple sources.

4.1.5 Evaluation

We evaluated this approach by repeating the speaker-
dependent word recognition experiment on signals re-
constructed from readings of two Nexus 4 devices. Table
7 summarizes the final results obtained using the sample
interleaving method14.

There was a consistent noticeable improvement com-
pared to the results obtained using readings from a single
device, which supports the value of utilizing multiple gy-
roscopes. We can expect that adding more devices to the
setup would further improve the speech recognition.

14We also compared the performance of the DTW classifier on sam-
ples reconstructed using the filterbank approach. It yielded a slightly
lower correct classification rate of 75% which we attribute to the men-
tioned effects of applying non-ideal finite filters.

5 Further Attacks

In this section we suggest directions for further exploita-
tion of the gyroscopes:

Increasing the gyro’s sampling rate. One possible at-
tack is related to the hardware characteristics of the gyro
devices. The hardware upper bound on sampling fre-
quency is higher than that imposed by the operating sys-
tem or by applications15. InvenSense MPU-6000/MPU-
6050 gyroscopes can provide a sampling rate of up to
8000 Hz. That is the equivalent of a POTS (telephony)
line. STMicroelectronics gyroscopes only allow up to
800 Hz sampling rate, which is still considerably higher
than the 200 Hz allowed by the operating system (see
Appendix C). If the attacker can gain a one-time priv-
ileged access to the device, she could patch an applica-
tion, or a kernel driver, thus increasing this upper bound.
The next steps of the attack are similar: obtaining gyro-
scope measurements using an application or tricking the
user into leaving the browser open on some website. Ob-
taining such a high sampling rate would enable using the
gyroscope as a microphone in the full sense of hearing
the surrounding sounds.

Source separation. Based on experiments’ results pre-
sented in Section 2.3.4 it is obvious that the gyro’s mea-
surements are sensitive to the relative direction from
which the acoustic signal arrives. This may give rise
to the possibility to detect the angle of arrival (AoA) at
which the audio signal hits the phone. Using AoA de-
tection one may be able to better separate and process
multiple sources of audio, e.g. multiple speakers near
the phone.

Ambient sound recognition. There are works (e.g.
[42]) which aim to identify a user’s context and where-
abouts based on the ambient noise detected by his smart
phone, e.g restaurant, street, office, and so on. Some con-
texts are loud enough and may have distinct fingerprint
in the low frequency range to be able to detect them us-
ing a gyroscope, for example railway station, shopping
mall, highway, and bus. This may allow an attacker to
leak more information on the victim user by gaining in-
dications of the user’s whereabouts.

6 Defenses

Let us discuss some ways to mitigate the potential risks.
As it is often the case, a secure design would require an

15As we have shown, the sampling rate available on certain browsers
is much lower than the maximum sampling rate enabled by the OS.
However, this is an application level constraint.
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overall consideration of the whole system and a clear
definition of the power of the attacker against whom
we defend. To defend against an attacker that has only
user-level access to the device (an application or a web-
site), it might be enough to apply low-pass filtering to
the raw samples provided by the gyroscope. Judging by
the sampling rate available for Blink and WebKit based
browsers, it is enough to pass frequencies in the range 0 –
20 Hz. If this rate is enough for most of the applications,
the filtering can be done by the driver or the OS, subvert-
ing any attempt to eavesdrop on higher frequencies that
reveal information about surrounding sounds. In case a
certain application requires an unusually high sampling
rate, it should appear in the list of permissions requested
by that application, or require an explicit authorization
by the user. To defend against attackers who gain root
access, this kind of filtering should be performed at the
hardware level, not being subject to configuration. Of
course, it imposes a restriction on the sample rate avail-
able to applications.

Another possible solution is some kind of acoustic
masking. It can be applied around the sensor only, or
possibly on the case of the mobile device.

7 Conclusion

We show that the acoustic signal measured by the gyro-
scope can reveal private information about the phone’s
environment such as who is speaking in the room and,
to some extent, what is being said. We use signal pro-
cessing and machine learning to analyze speech from
very low frequency samples. With further work on low-
frequency signal processing of this type it should be pos-
sible to further increase the quality of the information
extracted from the gyro.

This work demonstrates an unexpected threat result-
ing from the unmitigated access to the gyro: applications
and active web content running on the phone can eaves-
drop sound signals, including speech, in the vicinity of
the phone. We described several mitigation strategies.
Some are backwards compatible for all but a very small
number of applications and can be adopted by mobile
hardware vendors to block this threat.

A general conclusion we suggest following this work
is that access to all sensors should be controlled by the
permissions framework, possibly differentiating between
low and high sampling rates.
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A Signal reconstruction from Recurrent
Non-Uniform Samples

Here we present the derivation of the discrete-time inter-
polation filters used in our implementation. The notation
in the expressions corresponds to the notation in [28].
The continuous time expression for the interpolation fil-
ters according to Eq. 18 in [28] is given by

hp (t) = apsinc
( t

T

) N−1

∏
q=0,q�=p

sin

(
π
(
t + tp − tq

)
T

)

We then sample this expression at times t = nTQ − tp
and calculate the filter coefficients for 48 taps. Given
these filters, the reconstruction process consists of up-
sampling the input signals by factor N, where N = T/TQ
is the number of ADCs, filtering and summation of the
outputs of all filters (as shown in Figure 8).

B Code for sampling a gyroscope via a
HTML web-page

For a web page to sample a gyro the DeviceMotion class
needs to be utilized. In the following we included a
JavaScript snippet that illustrates this:

13
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i f ( window . DeviceMot ionEven t ) {
window . a d d E v e n t L i s t e n e r ( ’ d e v i c e m o t i o n ’ , f u n c t i o n (

e v e n t ) {
v a r r = e v e n t . r o t a t i o n R a t e ;
i f ( r != n u l l ) {

c o n s o l e . l o g ( ’ R o t a t i o n a t [ x , y , z ] i s : [ ’ +
r . a l p h a + ’ , ’+ r . b e t a + ’ , ’+ r . gamma+ ’ ]\n ’ ) ;

}
}

}

Figure 9 depicts measurements of the above code run-
ning on Firefox (Android) while sampling an audio chirp
50 – 100 Hz.
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Figure 9: Recording audio at 200 Hz using JavaScript
code on a web-page accessed from the Firefox browser
for Android.

C Gyroscope rate limitation on Android

Here we see a code snippet from the Invensense
driver for Android, taken from hardware/in-
vensense/65xx/libsensors iio/MPLSensor.cpp.
The OS is enforcing a rate of 200 Hz.
s t a t i c i n t h e r t z r e q u e s t = 200 ;
# d e f i n e DEFAULT MPL GYRO RATE (20000L ) / / us
. . .
# d e f i n e DEFAULT HW GYRO RATE ( 1 0 0 ) / / Hz
# d e f i n e DEFAULT HW ACCEL RATE ( 2 0 ) / / ms
. . .
/∗ c o n v e r t ns t o hardware u n i t s ∗/
# d e f i n e HW GYRO RATE NS (1000000000LL / r a t e r e q u e s t ) / / t o Hz
# d e f i n e HW ACCEL RATE NS ( r a t e r e q u e s t / (1000000L ) ) / / t o ms
. . .
/∗ c o n v e r t Hz t o hardware u n i t s ∗/
# d e f i n e HW GYRO RATE HZ ( h e r t z r e q u e s t )
# d e f i n e HW ACCEL RATE HZ (1000 / h e r t z r e q u e s t )

D Code Release

We provide the source code of the Android applica-
tion we used for recording the sensor measurements,
as well as the Matlab code we used for analyzing the
data and training and testing of the speech recognition
algorithms. We also provide the gyroscope recordings
used for the evaluation of our method. The code and
data can be downloaded from the project website at

http://crypto.stanford.edu/gyrophone. In addi-
tion, we provide a web page that records gyroscope mea-
surements if accessed from a device that supports it.
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